
EnterpriseOne Tools 8.94
PeopleBook: Interoperability

November 2004

EnterpriseOne Tools 8.94 PeopleBook: Interoperability
SKU E1_TOOLS8.94TIN-B 1104
Copyright © 2004 PeopleSoft, Inc. All rights reserved.
All material contained in this documentation is proprietary and confidential to PeopleSoft, Inc. ("PeopleSoft"), protected
by copyright laws and subject to the nondisclosure provisions of the applicable PeopleSoft agreement. No part of this
documentation may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, including, but not
limited to, electronic, graphic, mechanical, photocopying, recording, or otherwise without the prior written permission of
PeopleSoft.

This documentation is subject to change without notice, and PeopleSoft does not warrant that the material contained in this
documentation is free of errors. Any errors found in this document should be reported to PeopleSoft in writing.

The copyrighted software that accompanies this document is licensed for use only in strict accordance with the applicable
license agreement which should be read carefully as it governs the terms of use of the software and this document, including the
disclosure thereof.
PeopleSoft, PeopleTools, PS/nVision, PeopleCode, PeopleBooks, PeopleTalk, and Vantive are registered trademarks, and Pure
Internet Architecture, Intelligent Context Manager, and The Real-Time Enterprise are trademarks of PeopleSoft, Inc. All other
company and product names may be trademarks of their respective owners. The information contained herein is subject to
change without notice.

Open Source Disclosure
PeopleSoft takes no responsibility for its use or distribution of any open source or shareware software or documentation and
disclaims any and all liability or damages resulting from use of said software or documentation. The following open source
software may be used in PeopleSoft products and the following disclaimers are provided.
Apache Software Foundation
This product includes software developed by the Apache Software Foundation (http://www.apache.org/). Copyright (c)
1999-2000 The Apache Software Foundation. All rights reserved.
THIS SOFTWARE IS PROVIDED "AS IS" ANDANY EXPRESSED OR IMPLIEDWARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIEDWARRANTIES OFMERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION
OR ITS CONTRIBUTORS BE LIABLE FOR ANYDIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
ANDONANY THEORYOF LIABILITY,WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OROTHERWISE) ARISING IN ANYWAYOUTOF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCHDAMAGE.
OpenSSL
Copyright (c) 1998-2003 The OpenSSL Project. All rights reserved.
THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT "AS IS" ANDANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIEDWARRANTIES OFMERCHANTABILITY
AND FITNESS FORA PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT
OR ITS CONTRIBUTORS BE LIABLE FOR ANYDIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
ANDONANY THEORYOF LIABILITY,WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OROTHERWISE) ARISING IN ANYWAYOUTOF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCHDAMAGE.
SSLeay
Copyright (c) 1995-1998 Eric Young. All rights reserved.
THIS SOFTWARE IS PROVIDED BY ERIC YOUNG "AS IS" ANDANY EXPRESS OR IMPLIEDWARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIEDWARRANTIES OFMERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOROR CONTRIBUTORS BE
LIABLE FORANYDIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED ANDONANY THEORYOF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANYWAYOUTOF THE USE OF THIS SOFTWARE, EVEN IF ADVISEDOF THE POSSIBILITY OF SUCH
DAMAGE.
Loki Library
Copyright (c) 2001 by Andrei Alexandrescu. This code accompanies the book:
Alexandrescu, Andrei. "Modern C++ Design: Generic Programming and Design Patterns Applied". Copyright (c) 2001.
Addison-Wesley. Permission to use, copy, modify, distribute and sell this software for any purpose is hereby granted without
fee, provided that the above copyright notice appear in all copies and that both that copyright notice and this permission notice
appear in supporting documentation.

Contents

General Preface
About This PeopleBookxv
PeopleSoft Application Prerequisites.. .xv
PeopleSoft Application Fundamentals.. .xv
Documentation Updates and Printed Documentation.. .xvi

Obtaining Documentation Updates..xvi
Ordering Printed Documentation..xvi

Additional Resources.. .xvii
Typographical Conventions and Visual Cues.. .xviii

Typographical Conventions..xviii
Visual Cues..xix
Country, Region, and Industry Identifiers..xix
Currency Codes..xx

Comments and Suggestions.. .xx
Common Elements Used in PeopleBooks.. .xx

Preface
PeopleSoft EnterpriseOne Preface... .xxiii
PeopleSoft Products.. .xxiii
PeopleSoft Interoperability. .xxiii

Chapter 1
Getting Started with PeopleSoft Tools Interoperability.. .1
PeopleSoft Tools Interoperability Overview... .1
Implementing Interoperability. .1

Chapter 2
Understanding Interoperability... .3
Interoperability. .3
Interoperability Features... .3

Benefits.4
Interoperability Models and Capabilities.. .4

Interoperability Capabilities..6

PeopleSoft Proprietary and Confidential iii

Contents

Interoperability Models..7
Selecting an Interoperability Model. .11
Other Industry Standard Support. .12

Chapter 3
Using Business Function Calls...13
Understanding Business Functions.. .13
Reviewing API and business function documentation.. .14
Creating Business Function Documentation.. .14
Using PeopleSoft EnterpriseOne Tools to Find Business Functions.. .15

Using the Object Management Workbench..15
Using the Cross Reference Facility.15
Using the Analyzer Tool.15
Using the Debug Application..16

Chapter 4
Understanding XML.... .17
XML and PeopleSoft EnterpriseOne... .17
Formatting XML Documents. .18

XML Document Format..18
Type Element...19
Establish Session...19
Expire Session..20
Explicit Transaction...20
Implicit Transaction..20
Prepare/Commit/Rollback..20
Terminate Session..21

XML Standards.. .21
Decimal and Comma Separators..21
Date Usage...21

Configuring the System Environment.. .22
UNIX...22
iSeries..22
WIN32...23

XML Kernel Troubleshooting.. .23

iv PeopleSoft Proprietary and Confidential

Contents

Chapter 5
Understanding XML Transformation Service...25
XML Transformation Service.. .25
XTS Processing... .25
Building a Custom Selector. .30
Configuring the jde.ini File for XTS... .39

Chapter 6
Understanding XML Dispatch....43
XML Dispatch.. .43
XML Dispatch Processing.. .44
XML Dispatch Recognizers. .44
XML Dispatch Transports. .44
Configuring the jde.ini File for XML Dispatch.. .45
XML Dispatch Error Handling.. .47

Chapter 7
Understanding XML CallObject...49
XML CallObject. .49
XML CallObject Templates.. .49
XML CallObject Process.. .50
Formatting XML CallObject Documents.. .52

XML CallObject Document Format..52
Call Object.52
OnError Handling..53
Call Object Error Handling..53
Error Text.54
Multiple Requests per Document..54
ID/IDREF Support.54
Return NULL Values..55

Configuring the jde.ini File for XML CallObject. .55
XML CallObject Return Codes.. .57

Chapter 8
Understanding XML Transaction.... .. .59
XML Transaction... .59
XML Transaction Update Process... .59

PeopleSoft Proprietary and Confidential v

Contents

XML Transaction Data Request Process.. .61
XML Transaction jde.ini File Configuration.. .62

Chapter 9
Understanding XML List... .65
XML List. .65
List-Retrieval Engine Table Conversion Wrapper.. .66
XML List Process.. .66
XML List Requests.. .68
Using XML List Requests.. .68

Creating a List.69
Retrieving Data from a List.72
Deleting a List.73
Getting Column Information for a List.73

List-Retrieval Engine jde.ini File Configuration.. .74
XML List jde.ini File Configuration.. .74

Chapter 10
Processing Z Transactions... .75
Understanding Z Transactions.. .75
Naming the Transaction.. .75
Adding Records to the Inbound Interface Table. .76
Running an Update Process.. .76

Running an Input Batch Process..76
Running a Subsystem Job...77

Checking for Errors... .77
Confirming the Update.. .78
Purging Data from the Interface Table.. .79

Chapter 11
Using Flat Files...81
Understanding Flat Files.. .81
Formatting Flat Files.. .82
Setting Up Flat Files.. .82
Using the Flat File Conversion Program... .83

Forms Used to Convert Flat File Information..85
Defining the Flat File Cross Reference Table..85

vi PeopleSoft Proprietary and Confidential

Contents

Using a Business Function to Import Flat Files.. .86
Using APIs to Convert Flat Files... .87

Forms Used to Convert Flat File Information..88
Setting Up Flat File Encoding..88

Chapter 12
Using Events - Classic... .. .91
Understanding Events - Classic.. .91
Defining Events.. .92
Subscribing to Events.. .93
Configuring the jde.ini file for Events.. .94

[JDENET_KERNEL_DEF19]..94
[JDENET_KERNEL_DEF20]..94
[JDENET_KERNEL_DEF22]..94
[JDENET_KERNEL_DEF24]..94
[JDEITDRV]..95
[JDENET]..95

Using Reliable Event Delivery.. .96
Understanding Reliable Event Delivery..96
Configuring Your System for Reliable Event Delivery...97
Reliable Event Error Message..97
Minimizing Duplicate and Lost Events..97
Increasing Performance..98
Configuring the jde.ini File..99

Entering Events.. .100
Understanding Entering Events..100
Forms Used to Add Events...100
Adding a Single or Container Event.100
Changing the Status of an Event.103

Adding Logical Subscriber Records.. .103
Understanding Logical Subscribers.103
Forms Used to Add a Logical Subscriber.103
Adding a Logical Subscriber.104

Entering Subscription Information.. .104
Understanding Subscription Records..105
Forms Used to Enter Subscription Information..105
Entering a Subscription Record..105
Changing the Status of a Subscription..106

PeopleSoft Proprietary and Confidential vii

Contents

Chapter 13
Using Real-Time Events - Classic...107
Understanding Real-Time Events - Classic.. .107
Prerequisites.. .108
Processing Real-Time Events. .108
Defining Real-Time Events.. .109
Using Event Sequencing.. .109
Using Journaling.. .109
Configuring the jde.ini for Real-Time Events... .111
Generating Real-Time Events. .112

Understanding Real-Time Event Generation..112
Real-Time Event APIs..112
Example: Interoperability Event Interface Calls.113

Setting Up the OCM for Real-Time Events.. .116
Understanding the OCM for Real-Time Events..116
Forms Used to Set Up the OCM....117
Setting Up the OCM for Real-Time Events...117

Chapter 14
Using XAPI Events - Classic.... .. .119
Understanding XAPI Events - Classic. .119
Prerequisites.. .121
Defining XAPI Events.. .121
Subscribing to XAPI Events... .122
Setting Up the OCM for XAPI Events.. .122
Working with PeopleSoft EnterpriseOne and Third-Party XAPI Events.. .122

Understanding XAPI Event Generation and Third-Party Response..123
XAPI Outbound Request Process Flow..123
XAPI Outbound Request APIs..124
XAPI Outbound Request API Usage Sample Code...124
XAPI Outbound Request XML Code Sample.126
XAPI Outbound Request jde.ini File Configuration..128
XAPI Inbound Response Process Flow..128
XAPI Inbound Response Parsing APIs..129
XAPI Inbound Response Parsing API Usage Code Sample..130
XAPI Inbound Response Code Sample..131
XAPI Inbound Response jde.ini File Configuration..132
XAPI Client jde.ini File Configuration..133

Working with PeopleSoft EnterpriseOne-to-EnterpriseOne XAPI Events.. .134

viii PeopleSoft Proprietary and Confidential

Contents

Understanding PeopleSoft EnterpriseOne-to-EnterpriseOne XAPI Events..134
XAPI PeopleSoft EnterpriseOne-to-EnterpriseOne Process Flow..136
XAPI Outbound Request Generation APIs..137
XAPI Outbound Request Handling APIs..137
XAPI Outbound Request Parsing API Usage Sample Code...138
XAPI PeopleSoft EnterpriseOne Originator XML Sample Code...140
XAPI Inbound Response Generation APIs..141
XAPI Inbound Response Parsing API Usage Sample Code...141
XAPI Inbound Response from Originator System Sample Code...150
XAPI Inbound Response Handling APIs..151
XAPI Error Handling APIs.152
XAPI PeopleSoft EnterpriseOne-to-EnterpriseOne jde.ini File Configuration.152

Mapping the Business Function.. .153
Understanding Business Function Mapping..153
Forms Used to Map a Business Function or API..153
Mapping a business function or API..154

Chapter 15
Using Z Events - Classic... .157
Understanding Z Events - Classic.. .157
Prerequisites.. .157
Z Event Process Flow... .157
Z Event Sequencing.. .159
Vendor-Specific Outbound Functions.. .159
Working With Z Events.. .160

Understanding Z Event Processing..160
Enabling Z Event Processing..160
Updating Flat File Cross-Reference..160
Updating the Processing Log Table..160
Verifying that the Subsystem Job is Running..161
Purging Data from the Interface Table..161
Configuring the jde.ini File for Z Events..161

Setting Up Data Export Controls.. .162
Understanding Data Export Controls Records..162
Forms Used to Add a Data Export Controls Record..162
Adding a Data Export Control Record..162

PeopleSoft Proprietary and Confidential ix

Contents

Chapter 16
Using Events - Guaranteed....165
Understanding Events - Guaranteed.. .165
Processing Events.. .166
Understanding Events Processing.. .166

Event Aggregate..168
Logging Events.168

Defining Events.. .168
Understanding Events Definition.168
Forms Used to Enter Events..169
Adding a Single or Container Event..169

Establishing Subscriber and Subscription Information.. .171
Understanding Subscribers and Subscriptions..172
Forms Used to Add a Subscriber and Subscription Information..172
Adding a Subscriber.172
Adding a Subscription..174
Associating a Subscription with Subscribed Events.174
Associating a Subscription with Subscribed Environments.175

Creating MSMQ Queues.. .176
Prerequisites..176
Understanding MSMQ...176
Creating an MSMQ Real-Time Event Queue...176
Verifying Event Delivery..177

Creating MQSeries Queues.. .177
Prerequisites..177
Understanding MSMQ...177
Creating an MQSeries Real-Time Event Queue...177
Configuring WebSphere..178
Verifying Event Delivery..178

Chapter 17
Using Real-Time Events - Guaranteed... .179
Understanding Real-Time Events - Guaranteed.. .179
Generating Real-Time Events. .179

Understanding Real-Time Event Generation..179
Using Real-Time Event APIs..180
Interoperability Event Interface Calls Sample Code..180

x PeopleSoft Proprietary and Confidential

Contents

Chapter 18
Using XAPI Events - Guaranteed....185
Understanding XAPI Events - Guaranteed.. .185
Using PeopleSoft EnterpriseOne as a XAPI Originator. .187
Using PeopleSoft EnterpriseOne as a XAPI Executor. .189
Working with PeopleSoft EnterpriseOne and Third-Party Systems... .190

Understanding XAPI Processing between PeopleSoft EnterpriseOne and Third-Party Systems...190
XAPI Outbound Request APIs..190
XAPI Outbound Request API Usage Code Sample..191
XAPI Inbound Response APIs..193
XAPI Inbound Response API Usage Code Sample..193

Using PeopleSoft EnterpriseOne-to-Enterprise One Connectivity. .194
Understanding PeopleSoft EnterpriseOne-to-EnterpriseOne Connectivity.194
XAPI Outbound Request Handling APIs..196
XAPI Outbound Request Parsing API Usage Sample Code...196
XAPI Inbound Response Generation APIs..198
XAPI Inbound Response Parsing API Usage Sample Code...198
XAPI Error Handling APIs.207

Mapping a Business Function.. .207
Understanding how to Map a Business Function..207
Forms Used to Add Mapping Information..208
Adding Mapping Information..208

Chapter 19
Using Z Events - Guaranteed.... .. .211
Understanding Z Events - Guaranteed.. .211
Z Event Process Flow... .211
Vendor-Specific Outbound Functions.. .213
Working With Z Events.. .213

Configuring Z Events..213
Enabling Z Event Processing..214
Updating Flat File Cross-Reference..214
Updating the Processing Log Table..214
Verifying that the Subsystem Job is Running..214
Purging Data from the Interface Table..214
Synchronizing F47002 Records with F90701 Records..215

Setting Up Data Export Controls.. .215
Understanding Data Export Controls Records..215
Forms Used to Add a Data Export Controls Record..215

PeopleSoft Proprietary and Confidential xi

Contents

Adding a Data Export Control Record..215

Chapter 20
Using Batch Interfaces..... .217
PeopleSoft EnterpriseOne Interface Tables... .217

Structuring Interface Tables..217
Updating PeopleSoft EnterpriseOne Records..219
Retrieving PeopleSoft EnterpriseOne Records..219
Using the Revision Application..220
Purging Interface Table Information..220

Electronic Data Interface.. .220
Table Conversion.. .221
Output Stream Access UBEs... .221
Advanced Planning Agent Integration.. .221

Chapter 21
Using Open Data Access.... .223
Understanding Open Data Access.. .223
Installing ODA... .223
Working with Data Sources.. .225

Adding a Data Source..225
Modifying a Data Source..226
Deleting a Data Source..226
Configuring a Data Source..226
Connecting a Data Source..226

Working with ODA... .227
Manipulating Data..227
Using Keywords in the Connection String..229
Running a Query Using Microsoft Excel.231

Managing ODA Error Messages.. .232

Appendix A
Events Self-Diagnostic Utility Tool...237
Understanding the Events Self-Diagnostic Utility Tool. .237
Events Self-Diagnostic Utility Tool Process.. .237
Events Self-Diagnostic Utility Tool Components.. .238

Event Generator.238

xii PeopleSoft Proprietary and Confidential

Contents

Event Receiver.239
XML Comparator.239

Customizing the Tool. .239
Executing the Events Self-Diagnostic Tool. .239

Executing the Event Self-Diagnostic Tool.240
Start the Tool.240
Generate/Test Real-Time Event..241
Generate/Test Z Event.241
Test All Types of Events.241
Get Event List.241
Get Event Template..242
Subscription Services..242
Comprehensive System Analysis..242

Appendix B
Interoperability Interface Table Information... .243
Interoperability Interface Table Information.. .243

Appendix C
XML Format Examples (All Parameters)...247
Inbound Sales Order XML Format (All Parameters). .247
Outbound XML Request and Response Format (All Parameters). .254

Appendix D
Minimum Required Values Sample Code....259
Sales Order Minimum Required Values.. .259

Appendix E
XML Format Examples (Events)... .261
Example: Z Events XML Format.. .261
Real-Time Events Template.. .271

PeopleSoft Proprietary and Confidential xiii

Contents

Glossary of PeopleSoft Terms...... .277

Index297

xiv PeopleSoft Proprietary and Confidential

About This PeopleBook

PeopleBooks provide you with the information that you need to implement and use PeopleSoft applications.

This preface discusses:

• PeopleSoft application prerequisites.
• PeopleSoft application fundamentals.
• Documentation updates and printed documentation.
• Additional resources.
• Typographical conventions and visual cues.
• Comments and suggestions.
• Common elements in PeopleBooks.

Note. PeopleBooks document only page elements, such as fields and check boxes, that require additional
explanation. If a page element is not documented with the process or task in which it is used, then either
it requires no additional explanation or it is documented with common elements for the section, chapter,
PeopleBook, or product line. Elements that are common to all PeopleSoft applications are defined in this
preface.

PeopleSoft Application Prerequisites
To benefit fully from the information that is covered in these books, you should have a basic understanding
of how to use PeopleSoft applications.

You might also want to complete at least one PeopleSoft introductory training course, if applicable.

You should be familiar with navigating the system and adding, updating, and deleting information by using
PeopleSoft menus, and pages, forms, or windows. You should also be comfortable using the World Wide Web
and the Microsoft Windows or Windows NT graphical user interface.

These books do not review navigation and other basics. They present the information that you need to use the
system and implement your PeopleSoft applications most effectively.

PeopleSoft Application Fundamentals
Each application PeopleBook provides implementation and processing information for your PeopleSoft
applications. For some applications, additional, essential information describing the setup and design of your
system appears in a companion volume of documentation called the application fundamentals PeopleBook.
Most PeopleSoft product lines have a version of the application fundamentals PeopleBook. The preface of each
PeopleBook identifies the application fundamentals PeopleBooks that are associated with that PeopleBook.

PeopleSoft Proprietary and Confidential xv

General Preface

The application fundamentals PeopleBook consists of important topics that apply to many or all PeopleSoft
applications across one or more product lines. Whether you are implementing a single application, some
combination of applications within the product line, or the entire product line, you should be familiar with
the contents of the appropriate application fundamentals PeopleBooks. They provide the starting points
for fundamental implementation tasks.

Documentation Updates and Printed Documentation
This section discusses how to:

• Obtain documentation updates.

• Order printed documentation.

Obtaining Documentation Updates
You can find updates and additional documentation for this release, as well as previous releases, on the
PeopleSoft Customer Connection website. Through the Documentation section of PeopleSoft Customer
Connection, you can download files to add to your PeopleBook Library. You’ll find a variety of useful and
timely materials, including updates to the full PeopleSoft documentation that is delivered on your PeopleBooks
CD-ROM.

Important! Before you upgrade, you must check PeopleSoft Customer Connection for updates to the upgrade
instructions. PeopleSoft continually posts updates as the upgrade process is refined.

See Also
PeopleSoft Customer Connection, https://www.peoplesoft.com/corp/en/login.jsp

Ordering Printed Documentation
You can order printed, bound volumes of the complete PeopleSoft documentation that is delivered on your
PeopleBooks CD-ROM. PeopleSoft makes printed documentation available for each major release shortly
after the software is shipped. Customers and partners can order printed PeopleSoft documentation by using
any of these methods:

• Web
• Telephone
• Email

Web
From the Documentation section of the PeopleSoft Customer Connection website, access the PeopleBooks
Press website under the Ordering PeopleBooks topic. The PeopleBooks Press website is a joint venture
between PeopleSoft and MMA Partners, the book print vendor. Use a credit card, money order, cashier’s
check, or purchase order to place your order.

Telephone
Contact MMA Partners at 877 588 2525.

xvi PeopleSoft Proprietary and Confidential

General Preface

Email
Send email to MMA Partners at peoplesoftpress@mmapartner.com.

See Also
PeopleSoft Customer Connection, https://www.peoplesoft.com/corp/en/login.jsp

Additional Resources
The following resources are located on the PeopleSoft Customer Connection website:

Resource Navigation

Application maintenance information Updates + Fixes

Business process diagrams Support, Documentation, Business Process Maps

Interactive Services Repository Interactive Services Repository

Hardware and software requirements Implement, Optimize + Upgrade, Implementation Guide,
Implementation Documentation & Software, Hardware and
Software Requirements

Installation guides Implement, Optimize + Upgrade, Implementation Guide,
Implementation Documentation & Software, Installation
Guides and Notes

Integration information Implement, Optimize + Upgrade, Implementation Guide,
Implementation Documentation and Software, Pre-built
Integrations for PeopleSoft Enterprise and PeopleSoft
EnterpriseOne Applications

Minimum technical requirements (MTRs) (EnterpriseOne
only)

Implement, Optimize + Upgrade, Implementation Guide,
Supported Platforms

PeopleBook documentation updates Support, Documentation, Documentation Updates

PeopleSoft support policy Support, Support Policy

Prerelease notes Support, Documentation, Documentation Updates,
Category, Prerelease Notes

Product release roadmap Support, Roadmaps + Schedules

Release notes Support, Documentation, Documentation Updates,
Category, Release Notes

Release value proposition Support, Documentation, Documentation Updates,
Category, Release Value Proposition

Statement of direction Support, Documentation, Documentation Updates,
Category, Statement of Direction

PeopleSoft Proprietary and Confidential xvii

General Preface

Resource Navigation

Troubleshooting information Support, Troubleshooting

Upgrade documentation Support, Documentation, Upgrade Documentation and
Scripts

Typographical Conventions and Visual Cues
This section discusses:

• Typographical conventions.
• Visual cues.
• Country, region, and industry identifiers.
• Currency codes.

Typographical Conventions
This table contains the typographical conventions that are used in PeopleBooks:

Typographical Convention or Visual Cue Description

Bold Indicates PeopleCode function names, business function
names, event names, system function names, method
names, language constructs, and PeopleCode reserved
words that must be included literally in the function call.

Italics Indicates field values, emphasis, and PeopleSoft or other
book-length publication titles. In PeopleCode syntax,
italic items are placeholders for arguments that your
program must supply.

We also use italics when we refer to words as words or
letters as letters, as in the following: Enter the letterO.

KEY+KEY Indicates a key combination action. For example, a plus
sign (+) between keys means that you must hold down
the first key while you press the second key. For ALT+W,
hold down the ALT key while you press the W key.

Monospace font Indicates a PeopleCode program or other code example.

“ ” (quotation marks) Indicate chapter titles in cross-references and words that
are used differently from their intended meanings.

xviii PeopleSoft Proprietary and Confidential

General Preface

Typographical Convention or Visual Cue Description

. . . (ellipses) Indicate that the preceding item or series can be repeated
any number of times in PeopleCode syntax.

{ } (curly braces) Indicate a choice between two options in PeopleCode
syntax. Options are separated by a pipe (|).

[] (square brackets) Indicate optional items in PeopleCode syntax.

& (ampersand) When placed before a parameter in PeopleCode syntax,
an ampersand indicates that the parameter is an already
instantiated object.

Ampersands also precede all PeopleCode variables.

Visual Cues
PeopleBooks contain the following visual cues.

Notes
Notes indicate information that you should pay particular attention to as you work with the PeopleSoft system.

Note. Example of a note.

If the note is preceded by Important!, the note is crucial and includes information that concerns what you must
do for the system to function properly.

Important! Example of an important note.

Warnings
Warnings indicate crucial configuration considerations. Pay close attention to warning messages.

Warning! Example of a warning.

Cross-References
PeopleBooks provide cross-references either under the heading “See Also” or on a separate line preceded by
the word See. Cross-references lead to other documentation that is pertinent to the immediately preceding
documentation.

Country, Region, and Industry Identifiers
Information that applies only to a specific country, region, or industry is preceded by a standard identifier in
parentheses. This identifier typically appears at the beginning of a section heading, but it may also appear
at the beginning of a note or other text.

Example of a country-specific heading: “(FRA) Hiring an Employee”

PeopleSoft Proprietary and Confidential xix

General Preface

Example of a region-specific heading: “(Latin America) Setting Up Depreciation”

Country Identifiers
Countries are identified with the International Organization for Standardization (ISO) country code.

Region Identifiers
Regions are identified by the region name. The following region identifiers may appear in PeopleBooks:

• Asia Pacific
• Europe
• Latin America
• North America

Industry Identifiers
Industries are identified by the industry name or by an abbreviation for that industry. The following industry
identifiers may appear in PeopleBooks:

• USF (U.S. Federal)
• E&G (Education and Government)

Currency Codes
Monetary amounts are identified by the ISO currency code.

Comments and Suggestions
Your comments are important to us. We encourage you to tell us what you like, or what you would like to
see changed about PeopleBooks and other PeopleSoft reference and training materials. Please send your
suggestions to:

PeopleSoft Product Documentation Manager PeopleSoft, Inc. 4460 Hacienda Drive Pleasanton, CA 94588

Or send email comments to doc@peoplesoft.com.

While we cannot guarantee to answer every email message, we will pay careful attention to your comments
and suggestions.

Common Elements Used in PeopleBooks
Address Book Number Enter a unique number that identifies the master record for the entity. An

address book number can be the identifier for a customer, supplier, company,
employee, applicant, participant, tenant, location, and so on. Depending on the
application, the field on the form might refer to the address book number as
the customer number, supplier number, or company number, employee or
applicant id, participant number, and so on.

xx PeopleSoft Proprietary and Confidential

General Preface

As If Currency Code Enter the three-character code to specify the currency that you want to use
to view transaction amounts. This code allows you to view the transaction
amounts as if they were entered in the specified currency rather than the
foreign or domestic currency that was used when the transaction was originally
entered.

Batch Number Displays a number that identifies a group of transactions to be processed by
the system. On entry forms, you can assign the batch number or the system
can assign it through the Next Numbers program (P0002).

Batch Date Enter the date in which a batch is created. If you leave this field blank, the
system supplies the system date as the batch date.

Batch Status Displays a code from user-defined code (UDC) table 98/IC that indicates the
posting status of a batch. Values are:
Blank: Batch is unposted and pending approval.
A: The batch is approved for posting, has no errors and is in balance, but it
has not yet been posted.
D: The batch posted successfully.
E: The batch is in error. You must correct the batch before it can post.
P: The system is in the process of posting the batch. The batch is unavailable
until the posting process is complete. If errors occur during the post, the
batch status changes to E.
U: The batch is temporarily unavailable because someone is working with
it, or the batch appears to be in use because a power failure occurred while
the batch was open.

Branch/Plant Enter a code that identifies a separate entity as a warehouse location, job,
project, work center, branch, or plant in which distribution and manufacturing
activities occur. In some systems, this is called a business unit.

Business Unit Enter the alphanumeric code that identifies a separate entity within a
business for which you want to track costs. In some systems, this is called a
branch/plant.

Category Code Enter the code that represents a specific category code. Category codes are
user-defined codes that you customize to handle the tracking and reporting
requirements of your organization.

Company Enter a code that identifies a specific organization, fund, or other reporting
entity. The company code must already exist in the F0010 table and must
identify a reporting entity that has a complete balance sheet.

Currency Code Enter the three-character code that represents the currency of the transaction.
PeopleSoft EnterpriseOne provides currency codes that are recognized by
the International Organization for Standardization (ISO). The system stores
currency codes in the F0013 table.

Document Company Enter the company number associated with the document. This number, used
in conjunction with the document number, document type, and general ledger
date, uniquely identifies an original document.
If you assign next numbers by company and fiscal year, the system uses the
document company to retrieve the correct next number for that company.

PeopleSoft Proprietary and Confidential xxi

General Preface

If two or more original documents have the same document number and
document type, you can use the document company to display the document
that you want.

Document Number Displays a number that identifies the original document, which can be a
voucher, invoice, journal entry, or time sheet, and so on. On entry forms, you
can assign the original document number or the system can assign it through
the Next Numbers program.

Document Type Enter the two-character UDC, from UDC table 00/DT, that identifies the origin
and purpose of the transaction, such as a voucher, invoice, journal entry,
or time sheet. PeopleSoft EnterpriseOne reserves these prefixes for the
document types indicated:
P: Accounts payable documents.
R: Accounts receivable documents.
T: Time and pay documents.
I: Inventory documents.
O: Purchase order documents.
S: Sales order documents.

Effective Date Enter the date on which an address, item, transaction, or record becomes
active. The meaning of this field differs, depending on the program. For
example, the effective date can represent any of these dates:

• The date on which a change of address becomes effective.
• The date on which a lease becomes effective
• The date on which a price becomes effective.
• The date on which the currency exchange rate becomes effective.
• The date on which a tax rate becomes effective.

Fiscal Period and Fiscal
Year

Enter a number that identifies the general ledger period and year. For many
programs, you can leave these fields blank to use the current fiscal period and
year defined in the Company Names & Number program (P0010)

G/L Date (general ledger
date)

Enter the date that identifies the financial period to which a transaction will be
posted. The system compares the date that you enter on the transaction to the
fiscal date pattern assigned to the company to retrieve the appropriate fiscal
period number and year, as well as to perform date validations.

xxii PeopleSoft Proprietary and Confidential

PeopleSoft EnterpriseOne Preface

This preface discusses the PeopleSoft EnterpriseOne Interoperability PeopleBook.

PeopleSoft Products
This PeopleBook refers to this PeopleSoft product line: PeopleSoft EnterpriseOne Tools.

PeopleSoft Interoperability
This PeopleBook covers Interoperability, a member of the PeopleSoft EnterpriseOne Tools suite. PeopleSoft
Interoperability provides the capability for third-party systems to send information to PeopleSoft EnterpriseOne
and to retrieve information from PeopleSoft EnterpriseOne. This PeopleBook provides an overview of the
interoperability models and capabilities that PeopleSoft EnterpriseOne supports, and the chapters provide
information for using the models and capabilities.

PeopleSoft Proprietary and Confidential xxiii

Preface

xxiv PeopleSoft Proprietary and Confidential

CHAPTER 1

Getting Started with PeopleSoft Tools
Interoperability

This chapter provides an overview of preparing to use PeopleSoft EnterpriseOne Interoperability.

PeopleSoft Tools Interoperability Overview
Use interoperability to send information into or retrieve information from PeopleSoft EnterpriseOne. This
document identifies the interoperability models and capabilities that PeopleSoft EnterpriseOne supports.
Depending on which model and capability you use, you must configure the system so that you can send
information into or retrieve information from PeopleSoft EnterpriseOne. The chapters in this document
discuss format and set up requirements.

See Also
EnterpriseOne Tools 8.94 PeopleBook: Connectors

EnterpriseOne Tools 8.94 PeopleBook: PeopleSoft Programmer’s Guide for Adapter for MQSeries and
Adapter for MSMQ

Implementing Interoperability
In the planning phase of the implementation, take advantage of all PeopleSoft sources of information, including
the installation guides and troubleshooting information. A complete list of these resources appears in the
preface in About These PeopleBooks, with information about where to find the most current version of each.

PeopleSoft Proprietary and Confidential 1

Getting Started with PeopleSoft Tools Interoperability Chapter 1

2 PeopleSoft Proprietary and Confidential

CHAPTER 2

Understanding Interoperability

This chapter discusses:

• Interoperability
• Interoperability features
• Interoperability models and capabilities
• Selecting an interoperability model
• Other industry standard support

Interoperability
Interoperability is most often associated with software as a way to enable disparate software applications to
work together. For example, interoperability makes it possible for a company to use applications from different
vendors as if they were from a single vendor. Seamless sharing of function and information becomes possible.

Interoperability reduces or eliminates the problems of islands of automation. It enables business processes
to flow from one application to another. Interoperability enables one system to work with another, in near
real-time fashion, to share critical business information. Interoperability options become the glue between
systems and applications.

Interoperability Features
Full interoperability among systems makes the flow of data among the systems seamless to the user.
PeopleSoft EnterpriseOne provides a framework to mask the complexity of interoperability with external
systems, and to simplify interfacing with third-party packages.

The interoperability solution for PeopleSoft EnterpriseOne meets these three important business objectives:

• Flexibility, Options, and Choice
PeopleSoft provides EnterpriseOne-legacy, best-of-breed, customer management, reporting tools, and many
other types of applications and information. The developer can make the right choice for the particular
environment and needs.

• Investment Preservation
PeopleSoft EnterpriseOne can interface with the existing applications or applications you plan to use in the
future. You can use industry standard methods if the existing or new technologies support them, or you can
use PeopleSoft EnterpriseOne business logic to create this interoperability. Also, you will benefit from our
ongoing upgrades and improvements to that architecture.

PeopleSoft Proprietary and Confidential 3

Understanding Interoperability Chapter 2

• Manageability
PeopleSoft EnterpriseOne is designed to make the interoperability process easily manageable.

Benefits
Interoperability offers these benefits:

• Businesses can bring together applications and systems across an enterprise, irrespective of vendors.

• Collaborations can occur between trading partners to lower the cost of doing business or to increase
competitiveness.

• Multiple systems can be linked together to share information in a real-time manner, delivering time-sensitive
information to those who need it.

• Disparate solutions as the result of mergers or acquisitions can be quickly incorporated into the enterprise’s
information technology solution.

The PeopleSoft EnterpriseOne interoperability strategy includes a wide range of models and capabilities.

Interoperability Models and Capabilities
The PeopleSoft EnterpriseOne Interoperability matrix provides an overview of interoperability models that are
supported by PeopleSoft EnterpriseOne. The matrix shows the models, which are further divided into types
and into the capabilities that can be used with each model type. The model and model types are listed in the
left-hand column. Capabilities, which are ways to access PeopleSoft EnterpriseOne data, are columns in the
matrix. For each model type, you can read across the table to see what capabilities can be used with that model
type. PeopleSoft provides both interactive and batch capabilities. The capabilities are grouped by inbound,
outbound, and batch. An inbound capability is a request for data or a transaction initiated outside of PeopleSoft
EnterpriseOne. An outbound capability originates inside of PeopleSoft EnterpriseOne.

PeopleSoft EnterpriseOne Interoperability
This matrix shows the PeopleSoft EnterpriseOne models and the capabilities that each model supports:

Model

BSFN
Calls
(In)

XML
CallObj.,
XML List,
XML
Trans.
(In)

Z
Trans.
(In)

Flat
Files
(In)

Real-
Time
and
XAPI
Events
(Out)

Z
Events
(Out)

Generate
XML
Output
(Out)

Flat
Files
(Out)

Recom-
mended
for
Batch
(Out)

XPI

EnterpriseOne
XPI

Y List N Y Y Y Y Y N

Connectors

4 PeopleSoft Proprietary and Confidential

Chapter 2 Understanding Interoperability

Model

BSFN
Calls
(In)

XML
CallObj.,
XML List,
XML
Trans.
(In)

Z
Trans.
(In)

Flat
Files
(In)

Real-
Time
and
XAPI
Events
(Out)

Z
Events
(Out)

Generate
XML
Output
(Out)

Flat
Files
(Out)

Recom-
mended
for
Batch
(Out)

Dynamic
Java
Connector
(Java
Connector)

Y CO, Trans,
List

N N Y Y Y N N

JCA
Resource
Adapter

Y CO, Trans,
List

N N N N N N N

COM
Connector

Y CO, Trans,
List

N N Y Y Y N N

PeopleSoft
EnterpriseOne
Messaging
Adapters

Adapter for
MQSeries

Y CO, Trans Y N Y Y Y N Y

Adapter for
MSMQ

Y CO, Trans Y N Y Y Y N Y

Batch
Interfaces

Interface
Tables

Y N Y Y N N N N Y

PeopleSoft
EnterpriseOne
EDI

Y N Y Y N N N Y Y

Table
Conversions

Y N Y Y N N N Y Y

OSA (UBE) N N N N N N Y N Y

APAg/
Integration

N N Y N Y N Y N Y

Open Data
Access
(Supports
business view
and table
inquiries)

N N

PeopleSoft Proprietary and Confidential 5

Understanding Interoperability Chapter 2

Interoperability Capabilities
A capability is a way to transfer information into PeopleSoft EnterpriseOne or to retrieve information from
PeopleSoft EnterpriseOne. The interoperability matrix shows inbound and outbound capabilities and identifies
capabilities that are appropriate for batch processing. Inbound capabilities enable you to inquire about data and
update (add, change, or delete) data. With inquiry capabilities, you retrieve data for information purposes only.
For example, you might want to see prices or availability of an item. You can perform update capabilities on
an individual transaction basis or in a batch process, which consists of groups of transactions. An individual
transaction update involves updating a single record (for example, adding a purchase order or creating an
invoice). Batch processes, which are groups of transactions that typically involve updating multiple records,
are usually scheduled to occur at a specific time and are non-interactive. For example, you can upload 10,000
orders to the database at the end of the day or obtain all of the pricing information that has changed and send
that information to a web site at the end of the day.

The capabilities available for transferring information into and retrieving information from PeopleSoft
EnterpriseOne are described briefly in this chapter. Each capability is discussed in further detail in other
chapters within this guide.

Business Function Calls
Business function calls are core to PeopleSoft EnterpriseOne interoperability. Business functions encapsulate
transaction logic to perform specific tasks, such as journal entry transactions, depreciation calculations,
and sales order transactions.

PeopleSoft EnterpriseOne uses regular business functions and master business functions. A regular business
function performs simple tasks, such as tax calculation or account number validation. A master business
function (MBF) performs complex tasks and can call several regular business functions to perform those tasks.

See EnterpriseOne Tools 8.94 PeopleBook: Development Tools: APIs and Business Functions, “Business
Functions”.

XML
XML provides a flexible, standards-based way of sharing information and moving data among systems. XML
enables you to extend enterprise applications and collaborate with business partners and customers. You can
use XML CallObject and XML Transaction to update or retrieve PeopleSoft EnterpriseOne data. You can use
XML List to create an XML data file in the PeopleSoft EnterpriseOne system repository and then retrieve the
data in small chunks to avoid network traffic. PeopleSoft EnterpriseOne output is an XML document.

Z Transactions
Z transactions provide inbound capability to PeopleSoft EnterpriseOne that enables you to update PeopleSoft
EnterpriseOne data. PeopleSoft EnterpriseOne provides interface tables (Z tables) that support Z transaction
capability. You also can create interface tables.

Flat Files
Flat files (also known as user-defined formats) are text files that are usually stored on the workstation or server.
Flat files do not have relationships defined for them and typically use the Unicode character set. Data in a flat
file usually is stored as one continuous string of information. You can use flat files to import or export data
from applications that have no other means of interaction. For example, you might want to share information
between PeopleSoft EnterpriseOne and another system.

6 PeopleSoft Proprietary and Confidential

Chapter 2 Understanding Interoperability

Events
Events are notifications to third-party applications or end-users that a PeopleSoft EnterpriseOne business
transaction has occurred. PeopleSoft EnterpriseOne supports three kinds of events: Z events, real-time events,
and XAPI events. Event data is represented as an XML document.

Z events use interface tables and a batch process to retrieve transaction information and use a Z event generator
and the data export subsystem to manage the flow of the outbound data.

Real-time events can be generated from a server or a client. System calls (from a server) and client business
function calls (from a client) retrieve transaction information. The transaction information is distributed to
subscribers.

XAPI events are real-time events that require a response. A XAPI event is created in the same manner as a
real-time event, with additional data structure information for invoking a business function when the response
XML document is received.

Interoperability Models
A model is a way for third parties to connect to or access PeopleSoft EnterpriseOne. PeopleSoft EnterpriseOne
supports these five basic interoperability models:

• eXtended Process Integration (XPI)
• Connectors
• Messaging Adapters
• Batch Interfaces
• These models can be further categorized by type. Each model type supports one or more of the capabilities
for sending information into or retrieving information from the PeopleSoft EnterpriseOne database. The
Interoperability Models and Capabilities matrix shows the model types and the capabilities that each
model type supports.

XPI
XPI (eXtended Process Integration) provides the infrastructure that enables an enterprise to share data with
PeopleSoft and other applications, integrate business systems with partners, and retrieve data from legacy
systems.

Some benefits of using XPI include:

• Message delivery is guaranteed.
• Graphic tools exist for creating integrations and workflows.
• Out of the box integration points provide easy integration with PeopleSoft data.
• A common access point for security and permissions.
• Scalability is achieved by adding brokers and adapters.

For more information about using XPI, see the PeopleSoft EnterpriseOne XPI documentation on Customer
Connection.

PeopleSoft Proprietary and Confidential 7

Understanding Interoperability Chapter 2

Connectors
Connectors are point-to-point, component-based models that enable third-party applications and PeopleSoft
EnterpriseOne to share logic and data. PeopleSoft EnterpriseOne connector architecture includes Java and
COM connectors. The connectors accept inbound XML requests and expose business functions for reuse.
Output from the connectors is in the form of an XML document. The connectors include:

• Java
The PeopleSoft EnterpriseOne dynamic Java and Java connectors support real-time event processing. Java is
a portable language, so you can easily tie PeopleSoft EnterpriseOne functionality to Java applications.

• COM
The PeopleSoft EnterpriseOne COM connector solution is fully compliant with the Microsoft component
object model. You can easily tie PeopleSoft EnterpriseOne functionality to Visual Basic and VC++
applications. The COM connector also supports real-time event processing.

Some benefits of using connectors include:

• Scalability
• Multi-threaded capability

• Concurrent users

See EnterpriseOne Tools 8.94 PeopleBook: Connectors, “Getting Started with PeopleSoft Tools Connectors”.

Messaging Adapters
PeopleSoft EnterpriseOne provides messaging support for MQSeries and Microsoft Message Queuing
(MSMQ). MQSeries and MSMQ handle message queuing, message delivery, and transaction monitoring.
PeopleSoft EnterpriseOne uses these messaging systems to handle and pass requests for logic and data between
PeopleSoft EnterpriseOne and third-party systems.

Some of the benefits of using messaging adapters include:

• Reliable connections
• Guaranteed delivery
• Operations acknowledgement

See EnterpriseOne Tools 8.94 PeopleBook: PeopleSoft Programmer’s Guide for Adapter for MQSeries
and Adapter for MSMQ.

Batch Interfaces
Batch implies processing multiple transactions at the same time and usually involves movement of bulk
information. Batch processing is often scheduled and is non-interactive. PeopleSoft EnterpriseOne provides
several model types for batch processing, and each model type has one or more capabilities that enable you to
access PeopleSoft EnterpriseOne data. The model types include:

• Interface tables

• Electronic Data Exchange

• Table conversions

• Output Stream Access

• APAg/Integration

• Open Data Access

8 PeopleSoft Proprietary and Confidential

Chapter 2 Understanding Interoperability

Interface Tables
Interface tables provide point-to-point interoperability solutions for importing and exporting data. Interface
tables are also called Z tables. Interface tables are working files into which you place transaction information
to be processed into or out of PeopleSoft EnterpriseOne. In addition to the interface tables provided by
PeopleSoft EnterpriseOne, you can build interface tables. If you use interfaces tables to update PeopleSoft
EnterpriseOne data, the format of the data must be presented in the format defined by PeopleSoft
EnterpriseOne. If you use interface tables to retrieve PeopleSoft EnterpriseOne data, you use a batch process
that extracts the data from the applications tables.

Some of the benefits of using interface tables include:

• Defined data structure
• Identifiable fields
• Customizable interface tables

EDI
Electronic Data Interchange (EDI) provides a point-to-point interoperability solution for importing and
exporting data. EDI is the paperless computer-to-computer exchange of business transactions, such as
purchase orders and invoices, in a standard format with standard content. As such, it is an important part of an
electronic commerce strategy.

When computers exchange data using EDI, the data is transmitted in EDI standard format so it is recognizable
by other systems using the same EDI standard format. Companies that use EDI must have translator software
to convert the data from the EDI standard format to the format of their computer system.

The PeopleSoft EnterpriseOne Data Interface for Electronic Data Interchange system acts as an interface
between the PeopleSoft EnterpriseOne system data and the translator software. In addition to exchanging EDI
data, this data interface also can be used for general interoperability and electronic commerce needs where a
file-based interface meets the business requirements.

Some benefits of using the Data Interface for Electronic Data Interchange system include:

• Shorter fulfillment cycle.
• Increased information integrity through reduced manual data entry.
• Reduced manual clerical work.

EDI is particularly effective at sending information to multiple applications simultaneously.

See PeopleSoft EnterpriseOne Data Interface for Electronic Data Interchange 8.11 PeopleBook

Table Conversion
Table conversion provides a point-to-point interoperability solution for importing and exporting data. Table
conversion is a special form of Universal Batch Engine (UBE) that enables you to do high-speed manipulation
of data in tables. PeopleSoft EnterpriseOne has a table conversion utility that you can use to gather, format,
import, and export data. The table conversion tool enables you to transfer and copy data. You can also delete
records from tables. Table conversion enables you to use a non-PeopleSoft EnterpriseOne table to process, call
direct business functions, and give an output. For example, you might want to run a UBE that reads from a
PeopleSoft EnterpriseOne master file to populate a non-PeopleSoft EnterpriseOne table.

The table conversion utility can make use of any PeopleSoft EnterpriseOne table, business view, and text
file, or any table that is not a PeopleSoft EnterpriseOne table but resides in a database that is supported
by PeopleSoft EnterpriseOne, such as Oracle, Access, iSeries, or SQL Server. These non-PeopleSoft
EnterpriseOne tables are commonly referred to as foreign tables.

PeopleSoft Proprietary and Confidential 9

Understanding Interoperability Chapter 2

See EnterpriseOne Tools 8.94 PeopleBook: Development Tools: Tables and Business Views, “Preparing
Foreign Tables for Table Conversion”.

OSA
OSA (Output Stream Access) provides a point-to-point interoperability solution for exporting data from
UBEs. OSA enables you to set up an interface for PeopleSoft EnterpriseOne to pass data to another software
package, such as Microsoft Excel, for processing.

The benefits for using OSA include:

• The elimination of manually formatting output.

• The processing power of the target software program.

APAg/Integration
The PeopleSoft EnterpriseOne Advanced Planning Agent (APAg) is a tool for batch extraction, transforming,
and loading enterprise data. APAg supports access to data sources in the form of relational databases, flat file
format, and other data or message encoding such as XML. APAg also moves data from one place to another
and initiates tasks related to the movement of the data.

Benefits of using the APAg tool include:

• Ability to copy massive amounts of table data.
• Ability to efficiently and effectively handle initial data loads.

ODA
ODA (Open Data Access) provides the capability for you to extract PeopleSoft EnterpriseOne data (using
SQL statements) so that you can summarize information and generate reports. You can use ODA with any
of these desktop applications:

• Microsoft Query
• Microsoft Access
• Microsoft Excel
• ODBCTEST
• Crystal Report
• Microsoft Analysis Service

ODA sits between the front-end query and reporting applications and the PeopleSoft EnterpriseOne-configured
ODBC drivers.

The PeopleSoft EnterpriseOne database contains object and column names, specific data types, and security
rules that must be converted or applied so that the data is presented correctly. The specific data types and
rules include decimal shifting, Julian date, currency, media object, security, and user defined codes. In some
instances, ODA modifies the SQL SELECT statement, as well as the data, so that it appears correctly within
the selected application.

Some of the benefits of using ODA include:

• Read-only access to all PeopleSoft EnterpriseOne data, including the entire data dictionary.
• Use of the same security rules that you established for PeopleSoft EnterpriseOne.
• Ability to extract PeopleSoft EnterpriseOne data easily.

10 PeopleSoft Proprietary and Confidential

Chapter 2 Understanding Interoperability

See Chapter 21, “Using Open Data Access,” page 223.

Selecting an Interoperability Model
Select an interoperability model based on the business needs. This matrix can help you determine which
interoperability model best supports the interoperability requirements.

Model

Platforms
(Windows,

UNIX, iSeries)
Integration
Model

Best Fit
Programming
Languages

Critical
Technical
Skills for
Creating
Inbound

Transaction

Critical
Technical
Skills for
Creating
Outbound
Transactions

XPI

EnterpriseOne
XPI

SUN, AIX,
Windows

Broker Java XPI Toolset XPI Toolset,
Real-Time
Events, XAPI
Events

Connectors

Java Connector All Point-to-Point Java Java APIs,
GenJava

Real-Time
Events, XAPI
Events

COM Connector Windows Point-to-Point C/C++/VB COM, GenCOM Real-Time
Events, XAPI
Events

Messaging
Adapters

Adapter for
MQSeries

All Broker HTML, C/C++,
Java

MQSeries, XML Z-Tables,
Subsystem
Processing
(includes R00460,
Data Export
Controls, and so
on)

Adapter for
MSMQ

Windows Broker C/C++ MSMQ, XML Z-Tables,
Subsystem
Processing
(includes R00460,
Data Export
Controls, and so
on)

Batch Interfaces

Interface Tables All Point-to-Point Any Z-Tables, UBEs Custom Code

PeopleSoft Proprietary and Confidential 11

Understanding Interoperability Chapter 2

Model

Platforms
(Windows,

UNIX, iSeries)
Integration
Model

Best Fit
Programming
Languages

Critical
Technical
Skills for
Creating
Inbound

Transaction

Critical
Technical
Skills for
Creating
Outbound
Transactions

PeopleSoft
EnterpriseOne
EDI

All Point-to-Point Any, Flat Files Z-Tables, UBEs Custom Code

Table
Conversions

All Point-to-Point TC Table
Conversions

Table Conversion
Director/RDA

OSA (UBE) All Point-to-Point HTML, C/C++ NA RDA, Custom
Code

APAg/ Integration UNIX,Windows Point-to-Point Own Language APAg Tool, Z
Tables

APAg Tool,
Z-Tables

Open Data Access All Point-to-Point VB Custom code
or third-party
application
(queries only)

Custom code
or third-party
application
(queries only)

Other Industry Standard Support
PeopleSoft EnterpriseOne has a media object function that supports other industry standard functions, such as:

• Object Linking and Embedding (OLE) for the exchange of different data types.
• Dynamic Data Exchange (DDE) for static and dynamic links across applications.
• Binary Large Object (BLOB) for media object attachments within applications.
• Extended Messaging API (MAPI) for message exchange across differing mail and groupware applications.

12 PeopleSoft Proprietary and Confidential

CHAPTER 3

Using Business Function Calls

This chapter provides an overview of business function calls and discusses how to:

• Review API and business function documentation.
• Create business function documentation.
• Use PeopleSoft EnterpriseOne tools to find business functions.

Understanding Business Functions
A business function is an encapsulated set of business rules and logic that can be reused by multiple
applications. Business functions provide a common way to access the PeopleSoft EnterpriseOne database.
A business function accomplishes a specific task. Master business functions provide the logic and database
calls necessary to extend, edit, and commit the full transaction to the database. Third-party applications can
use master business functions for full PeopleSoft EnterpriseOne functionality, data validation, security,
and data integrity.

You can use master business functions to update master files (such as Address Book Master and Item Master)
or to update transaction files (such as sales orders and purchase orders). Generally, master file master business
functions, which access tables, are simpler than transaction file master business functions, which are specific to
a program. Transaction master business functions provide a common set of functions that contain all of the
necessary default values and editing for a transaction file. Transaction master business functions contain logic
that ensures the integrity of the transaction being inserted, updated, or deleted from the database.

For interoperability, you can use master file master business functions instead of table input and output.
Using master business functions enables you to perform updates to related tables using the master business
function instead of table event rules. In this case, the system does not use multiple records; instead, all edits
and actions are performed with one call.

Business functions are core for interoperability with PeopleSoft EnterpriseOne. If you build custom
integrations to interoperate with PeopleSoft EnterpriseOne, you must know which business functions to call
and how to call those business functions. You can use existing business functions, modify existing business
functions, or create custom business functions. If you are creating a custom business function, PeopleSoft
suggests that you find an existing business function that is similar to what you want to accomplish and use the
existing business function as a model.

Note. When an update or an Electronic Software Update (ESU) affects business functions, you might be
required to modify the custom integration.

See Also
EnterpriseOne Tools 8.94 PeopleBook: Development Tools: APIs and Business Functions, “Business
Functions,” Understanding Business Functions

PeopleSoft Proprietary and Confidential 13

Using Business Function Calls Chapter 3

Reviewing API and business function documentation
You can use PeopleSoft EnterpriseOne business functions and APIs in custom integrations. Business functions
groupings are:

• Master Business Functions

A collection of business functions that provide the logic and database calls that are necessary to extend, edit,
and commit the full transaction to the database. The design of master business functions enables them to be
called asynchronously and to send coded error messages back to calling applications.

• Major Business Functions

Components that encapsulate reusable logic common to many applications, such as date editing routines
and common multicurrency functions.

• Minor Business Functions

Components that perform complex logic for a specific instance or single application. Minor business
functions are used in PeopleSoft EnterpriseOne for processing that cannot be accomplished efficiently in
event rules or for logic that might be required in multiple places within a single application.

See Also
EnterpriseOne Tools 8.94 PeopleBook: Development Tools: APIs and Business Functions, “Working with
APIs”

Creating Business Function Documentation
Business function documentation explains what individual business functions do and how to use each business
function. You can generate information for all business functions, groups of business functions, or individual
business functions. The documentation for a business function includes information such as:

• Purpose.
• Parameters (the data structure).

• Explanation of individual parameter that indicate the input/output required and an explanation of return
values.

• Related tables (which tables are accessed).

• Related business functions (business functions that are called from within the functions itself).

• Special handling instructions.

See Also
EnterpriseOne Tools 8.94 PeopleBook: Development Tools: APIs and Business Functions, “Business
Functions,” Understanding Business Function Documentation

14 PeopleSoft Proprietary and Confidential

Chapter 3 Using Business Function Calls

Using PeopleSoft EnterpriseOne Tools to Find
Business Functions

If you can find a PeopleSoft EnterpriseOne application that is similar to what you need to do, you can use that
application as a model. The PeopleSoft EnterpriseOne Cross Application Development Tools menu (GH902)
provides several tools that you can use to determine what business functions a PeopleSoft EnterpriseOne
application uses and how the business function is used in the application. From the Cross Application
Development Tools menu, you can access:

• Object Management Workbench
• Cross Reference Facility
• AutoPilot Analyzer
• Debug Application

Using the Object Management Workbench
You can use the Object Management Workbench (OMW) to search for the business function object and
then review the C code.

See Also
EnterpriseOne Tools 8.94 PeopleBook: Object Management Workbench, “Understanding Object Management
Workbench”

Using the Cross Reference Facility
You can use the Cross Reference Facility to identify each instance for which a business function is used. The
Cross Reference program (P980011) is on the Cross Application Development Tools menu (GH902).

See Also
EnterpriseOne Tools 8.94 PeopleBook: Development Tools: Additional Tools and Topics, “Using Cross
Reference Facility”

Using the Analyzer Tool
You can use the PeopleSoft EnterpriseOne Analyzer Tool to capture and display information about the inputs
and outputs of every business function and database API call that is made for an EnterpriseOne application. To
use the Analyzer Tool, you must first capture the data and then import it into the Analyzer Tool.

See Also
EnterpriseOne Tools 8.94 PeopleBook: PeopleSoft Analyzer Tool, “Capturing Data for Analyzer Tool”

EnterpriseOne Tools 8.94 PeopleBook: PeopleSoft Analyzer Tool, “Importing Data for Analyzer Tool”

PeopleSoft Proprietary and Confidential 15

Using Business Function Calls Chapter 3

Using the Debug Application
Another option that you might consider for understanding a PeopleSoft EnterpriseOne application is to run a
PeopleSoft EnterpriseOne debugger. You can run the Event Rules Debugger to obtain named event rule and
table event rule information for a PeopleSoft EnterpriseOne application. You can use Microsoft Visual C++ to
debug business functions that are written in C. You can use these two tools together.

See Also
EnterpriseOne Tools 8.94 PeopleBook: Development Tools: Application Development, “Debugging
EnterpriseOne Applications,” Debugging Event Rules with the Event Rules Debugger

EnterpriseOne Tools 8.94 PeopleBook: Development Tools: Application Development, “Debugging
EnterpriseOne Applications,” Debugging Business Functions with Microsoft Visual C++

16 PeopleSoft Proprietary and Confidential

CHAPTER 4

Understanding XML

This chapter discusses:

• XML and PeopleSoft EnterpriseOne.
• XML document format.
• XML standards.
• System environment configuration.
• XML kernel troubleshooting.

XML and PeopleSoft EnterpriseOne
The PeopleSoft EnterpriseOne XML solution supports well-formed XML documents. This XML solution
supports UTF8 and UTF16 Unicode standards for inbound and outbound information. Outbound information
is supported in UTF8 Unicode. Inbound and outbound information is supported in UTF16 Unicode. The
PeopleSoft EnterpriseOne XML solution includes:

XML Solution Description

XMLDispatch Provides a single point of entry for all XML documents
coming into PeopleSoft EnterpriseOne and for responses.

XML Transformation System (XTS) Transforms an XML document that is not in the PeopleSoft
EnterpriseOne format into an XML document that can
be processed by PeopleSoft EnterpriseOne, and then
transforms the response back to the original XML format.

XML CallObject Enables you to call business functions.

XML Transaction Enables you to use a predefined transaction type (such as
JDEPOIN) to send information to or request information
from PeopleSoft EnterpriseOne. XML transaction uses
interface table functionality.

XML List Kernel Enables you to request and receive PeopleSoft
EnterpriseOne database information in chunks.

XML Service Kernel Enables you to request events from one PeopleSoft
EnterpriseOne system and receive a response from another
PeopleSoft EnterpriseOne system.

Some of the benefits of using XML include:

PeopleSoft Proprietary and Confidential 17

Understanding XML Chapter 4

• Scalable XML models that enable you to open multiple connections.
• Ability to use PeopleSoft EnterpriseOne messaging adapters, providing a reliable connection and
acknowledging operations.

• Exposure of business functions and interface tables.
• Ability to aggregate business function calls into one document, which reduces network traffic.
• Ability to manage session creation, validation, and tracking.

If you can create XML documents on the interoperability server, you can use XML for the interoperability
solution.

See Also
World Wide Web Consortium (W3C) XML, http://www.w3.org/XML/

Formatting XML Documents
This section provides an overview of XML document formatting for PeopleSoft EnterpriseOne and discusses
these elements:

• Type Element
• Establish Session

• Expire Session

• Terminate Session

• Explicit Transaction

• Implicit Transaction

• Prepare/Commit/Rollback

• Terminate Session

XML Document Format
When you send an XML document to PeopleSoft EnterpriseOne for processing, the document must be in
the XML format that is defined by PeopleSoft EnterpriseOne. After the document reaches the PeopleSoft
EnterpriseOne server, the system processes the document based on the document type. All XML documents
must contain these elements:

• One of these types:
- jdeRequestType
- jdeResponseType

• Establish Session
• Expire Session
• Terminate Session

In addition, you can use these optional elements:

• Explicit Transaction

18 PeopleSoft Proprietary and Confidential

Chapter 4 Understanding XML

• Implicit Transaction
• Prepare/Commit/Rollback

Type Element
The type element, which can be jdeRequest or jdeResponse, is the root element for all request documents
coming into the XML infrastructure. This element contains basic information about the execution environment.
These attributes form the jdeRequest and jdeResponse type element:

Attribute Description

Type Specifies the type of XML document request. Depending on the operation to be performed,
the jdeRequest type can be one of the these:

• Callmethod

• List

• Trans

• xapicallmethod

The jdeResponse type indicates an XML document coming from another PeopleSoft
EnterpriseOne system. The operation for jdeResponse is realTimeEvent.

Note. The xapicallmethod and realTimeEvent types are discussed in the Events section of this
document.

User Specifies the user name for user identification and validation.

Pwd Specifies the user password for user identification and validation.

Role Specifies the user role. If left blank the default value is *ALL

Environment Specifies the system environment.

Session Specifies the session ID. This attribute is optional.

Sessionidle Specifies the session time-out time. This attribute is optional.

Establish Session
You establish a session by setting the session attribute of the standard jdeRequest element. When the session
attribute is an empty string, a new session is started. On the server, the SessionManager singleton class creates
a new instance of a session object given the user name, password, and environment name. The session can be
reused before it expires to avoid the overhead of session initialization. You can specify the session ID in the
session attribute for an already established session in an earlier request.

<?xml version=’1.0’ ?>

<jdeRequest type=’callmethod’ user=’steve’ pwd=’xyz’

environment=’prod’ role=’*ALL’ session=’’ sessionidle=’1800’>

</jdeRequest>

Note. If you do not want to start a new session, then remove the session=’ ’ tag. This example is for starting a
new session.

PeopleSoft Proprietary and Confidential 19

Understanding XML Chapter 4

Expire Session
Session expiration is addressed by the sessionidle attribute of the standard jdeRequest element. This attribute,
when given on a session creation request, specifies the amount of time in seconds that this session is allowed to
be idle. If the SessionManager determines that a session has not had any requests processed in this amount of
time, it terminates the session and frees all associated resources. The session idle default value is 30 minutes.
The session idle time is defined in the XML document.

<?xml version=’1.0’?>

<jdeRequest type=’callmethod’ user=’steve’ pwd=’xyz’

environment=’prod’ role=’*ALL’ session=’’ sessionidle=’1800’>

</jdeRequest>

Explicit Transaction
Explicit database transactions are supported by another element, the startTransaction tag. The startTransaction
tag specifies whether transactions are to be manually or automatically committed. The startTransaction tag
element is an empty element, which means that all of the information is in the attributes.

<?xml version=’1.0’?>

<jdeRequest type=’callmethod’ user=’steve’ pwd=’xyz’ environment=’prod’

role=’*ALL’ session=’’>

</jdeRequest>

Implicit Transaction
An XML request is included in a transaction set when the name of a transaction set is referenced in its trans
attribute. Implicit start transactions can be included in the request by specifying the name of a transaction set
that has not previously been created. For an implicit start, the transaction set will be a manual commit set.

<?xml version=’1.0’?>

<jdeRequest type=’callmethod’ user=’steve’ pwd=’xyz’ environment=’prod’

role=’*ALL’ session=’’>

<callMethod name=’myfunc’ app=’P42101’ trans=’t1’>

<params>

<param name=’CostCtr’> 1001</param>

</params>

</callMethod>

</jdeRequest>

Prepare/Commit/Rollback
Manual transaction sets can be committed or rolled back. As part of a two-phase commit, they can be prepared
to commit. Prepare, commit, and rollback requests to the database are made by using the endTransaction
element. The transaction set is identified by the trans attribute. The action attribute indicates the action to
take on the transaction set. The value can be prepare, commit, or rollback. This element is always an empty
element, as shown by the forward slash.

It is recommended that you manage the session ID when doing manual commits and terminate the session
after the transaction is complete.

<?xml version=’1.0’?>

<jdeRequest type=’callmethod’ user=’steve’ pwd=’xyz’ environment=’prod’

20 PeopleSoft Proprietary and Confidential

Chapter 4 Understanding XML

role=’*ALL’ session=’’

<endTransaction trans=’t1’ action=’commit’/>

</jdeRequest>

Note. If startTransaction and endTransaction are in separate documents, one of these scenarios occurs:

The session attribute is not sent in the second document. In this case, the system uses the user ID, password,
and environment to match the previous session.

The session number from the response of the first document is sent in the session attribute of the documents
associated with the same transaction.

Terminate Session
Session termination is done by submitting an XML document to explicitly terminate the session. You must
specify the session to be terminated in the jdeRequest element tag.

<?xml version=’1.0’ ?>

<jdeRequest type=’callmethod’ user=’steve’ pwd=’xyz’ environment=’prod’

role=’*ALL’ session=5665.931961929.454’>

<endSession/>

</jdeRequest>

XML Standards
In addition to ensuring that your XML documents have the required format elements (jdeRequest or
jdeResponse Type, Establish Session, Expire Session, and Terminate Session), PeopleSoft EnterpriseOne has
standards for XML documents that are different from industry standards.

This section discusses:

• Decimal and comma separators
• Data usage

Decimal and Comma Separators
PeopleSoft EnterpriseOne uses the decimal and thousands separators differently than XML industry standards.
The decimal and thousands separators do not depend on use profile settings, jde.ini settings, or regional
settings for the computer. When you write XML documents to interface with PeopleSoft EnterpriseOne, you
must always use the decimal character (.) (period) as a decimal separator, and a comma (,) as a thousands
separator. The purpose of the separator standards is to achieve consistent interoperability policy and to
prevent data corruption.

Date Usage
Different components of the XML foundation use different format codes and APIs to format these dates:

• to XML date
• from XML date

• to JDEDATE

PeopleSoft Proprietary and Confidential 21

Understanding XML Chapter 4

• from JDEDATE

This table explains the formats that are used by each XML component supported by PeopleSoft EnterpriseOne:

Component Inbound Format Inbound Outcome Outbound Format
Outbound
Outcome

XMLCallObject F YYYYMD ESOSA YYYY/MM/DD

XMLTransaction F* User Preference ESOSA YYYY/MM/DD

XMLList B* User Preference NULL User Preference

UNRECOGNIZED STYLE ->class=MsoFootnoteText>* Component ignores the format code

Configuring the System Environment
Before you can use XML with PeopleSoft EnterpriseOne, you must ensure that the ICU_DATA system
environment variable is correctly defined on your PeopleSoft EnterpriseOne system. If the ICU_DATA
variable is not correctly defined, PeopleSoft EnterpriseOne produces this error message:

The default Unicode converter could not be found within the jdenet_n.log on the OneWorld Enterprise Server.

For PeopleSoft EnterpriseOne, the ICU conversion table, icu_data.dat, is generally located in
system/locale/xml. Use the appropriate setting for your platform.

This section discusses:

• UNIX
• iSeries
• WIN32

UNIX
For UNIX systems, the ICU_DATA path is based on the ICU_DATA environment variable. The UNIX
PeopleSoft EnterpriseOne user login script sets the ICU_DATA environment variable to the directory location
of the ICU resource file, incudata.dat. If the user login script does not set the ICU_DATA environment
variable, you must define the ICU_DATA variable with a trailing slash, for example:

Export ICU_DATA=$SYSTEM/locale/xml/

Where $SYSTEM represents your PeopleSoft EnterpriseOne install directory.

iSeries
For iSeries systems, the ICU_DATA path is set when the ICU 1.6 conversion function is first called by
the system. The system looks up Data Area BUILD_VER in the system library for the System Directory
setting. For example:

System Directory: B9_S

22 PeopleSoft Proprietary and Confidential

Chapter 4 Understanding XML

The system appends locale/xml to the path specified in the BUILD_VER, and then uses this path as the
ICU_DATA path. You must ensure the BUILD_VER data area is properly set to reflect the system directory
setting.

WIN32
For WIN32 systems, the ICU_DATA path is set when the ICU 1.6 conversion function is first called. This
logic is used on WIN32:

1. The system looks up the environment variable JDE_B9_ICU_DATA. If this environment is found, it
becomes the path for the conversion files.

2. The system looks for this section in the jde.ini file:

[XML]
ICUPath=<<install>>/system/locale/xml

If the ICUPath setting is found, it becomes the path for the conversion files.

3. If the system cannot find the ICUPath setting in the jde.ini file, the ICU_Path is:

EXECUTABLE_DIRECTORY/./system/locale/xml

The EXECUTABLE_DIRECTORY must be <<install>>/system/bin32.

Based on this logic, you usually do not need to set the JDE_B9_ICU_DATA ENVIRONMENT variable or
the jde.ini file. You need to set the jde.ini ICUPath only when the location of the icudata.dat is different
from system/locale/xml.

Note. The PeopleSoft EnterpriseOne client install sets the environment variable JDE_B9_ICU_DATA.

XML Kernel Troubleshooting
If one or more XML kernels are not working properly, use these troubleshooting guidelines to ensure that
your system is set up correctly:

• Check the kernel definition in the server jde.ini file.

Also check that the library name is correct for the platform on which you are running. Check the entry
function name.

• Check that the kernel is allowed to start.

Check the maxNumberOfProcesses and numberOfAutoStartProcesses values for the kernel in the server
jde.ini file. It is not necessary to auto start kernels. To work with a particular kernel, the allowed number of
processes should be one or more.

• If you have a large number of simultaneous requests that are made to a particular kernel type, increase
the number of allowed processes for that kernel.

This will not only reduce the turnaround time for requests but will also eliminate any Queue Full errors.

• If you are using XMLList kernel, check that the LREngine section is correctly set up in the server jde.ini
file and that the specified path exists.

Also, check that the PeopleSoft EnterpriseOne user has write permission to this location.

• Check that the XML document is a well-formed XML document.

To do this, use any XML editor or open the document in Microsoft Internet Explorer and check for errors.

PeopleSoft Proprietary and Confidential 23

Understanding XML Chapter 4

• Check that the root of the input XML document is jdeRequest.
All input XML documents should have jdeRequest as their root element.

• Check that valid user ID, password, and environment are provided in the XML document.
• Check that the request type in the XML document is correct. The allowed request types are callmethod, list,
and trans for XMLCallObject, XMLList, and XMLTransaction kernels, respectively.

24 PeopleSoft Proprietary and Confidential

CHAPTER 5

Understanding XML Transformation Service

This chapter discusses:

• XML Transformation Service. (XTS)
• XTS process.
• Building custom selectors.
• Configuring the jde.ini file for XTS.

XML Transformation Service
The PeopleSoft EnterpriseOne XML transformation system (XTS) uses extensible stylesheet language (XSL)
to transform XML documents to the format that is required by PeopleSoft EnterpriseOne. XTS also transforms
PeopleSoft EnterpriseOne response XML documents back to the XML format of the original request.

XTS is a multi-threaded Java process that runs as a PeopleSoft EnterpriseOne kernel process. Upon system
startup, the XTS kernel library loads a Java virtual machine (JVM). Once the JVM is loaded, the server proxy
is started. If you do not have JVM available on your server, you must install one. PeopleSoft EnterpriseOne
supports Java JVM version 1.3 and later.

XTS is available on all platforms that PeopleSoft EnterpriseOne supports.

XTS Processing
When the PeopleSoft EnterpriseOne XML Dispatch kernel receives an XML document that it does not
recognize, it sends the document to XTS for transformation. XTS reads the XSL, transforms the document to a
format that is compatible with PeopleSoft EnterpriseOne, and sends the document back to the XML Dispatch
kernel for processing. When the PeopleSoft EnterpriseOne response comes into XML Dispatch, XML Dispatch
remembers that the document needs to be transformed from the PeopleSoft EnterpriseOne XML format and
sends the document to XTS for transformation. XTS transforms the PeopleSoft EnterpriseOne XML document
back to your original XML format and sends the document to XML Dispatch for distribution to you.

PeopleSoft Proprietary and Confidential 25

Understanding XML Transformation Service Chapter 5

Native XML format is the XML format that is defined by PeopleSoft EnterpriseOne and is documented in
this guide. All XML documents coming into PeopleSoft EnterpriseOne must be in native XML format.
The PeopleSoft EnterpriseOne kernel processes (such as, XML CallObject, XML trans, XML list, and so
on) can only process XML documents that are in native format. As part of the XTS solution, PeopleSoft
EnterpriseOne provides a selector that determines whether a non-PeopleSoft EnterpriseOne XML document
can be transformed. A selector is code that looks at an XML document to see if it recognizes the document.
If the selector recognizes the XML document, the selector is able to associate the XML document with a
stylesheet that is provided for transformation. The selector is able to transform Version 1 XML format into
PeopleSoft EnterpriseOne native XML format. Version 1 XML format is XML format that is defined by
PeopleSoft EnterpriseOne but has been modified to be tool friendly. Native XML format uses a field name that
is preceded by param name. Version 1 XML format uses just the field name.

Example: PeopleSoft EnterpriseOne Native XML Format
This sample code shows PeopleSoft EnterpriseOne native XML format:

<?xml version=1.0 encoding=UTF-8 ?>

<jdeRequest type="callmethod" user="JDE" pwd="JDE" environment="PRD733"

role="*ALL" session="">

<callMethod name="GetLocalComputerId" app="MSMQ" runOnError="no">

<params>

<param name="szMachineKey" id="2" />

</params>

<onError abort="yes" />

</callMethod>

- <callMethod name="F4211FSBeginDoc" app="MSMQ" runOnError="no">

<params>

<param name="mnCMJobNumber" id="1" />

<param name="cCMDocAction">A</param>

<param name="cCMProcessEdits">1</param>

<param name="szCMComputerID" idref="2" />

<param name="cCMUpdateWriteToWF">2</param>

<param name="szCMProgramID">MSMQ</param>

<param name="szCMVersion">MSMQ</param>

<param name="szOrderType">SQ</param>

<param name="szBusinessUnit">M30</param>

<param name="mnAddressNumber">4242</param>

<param name="szReference">2</param>

<param name="cApplyFreightYN">Y</param>

<param name="szCurrencyCode">CAD</param>

<param name="cWKSourceOfData" />

<param name="cWKProcMode">1</param>

<param name="mnWKSuppressProcess">0</param>

</params>

<onError abort="yes">

<callMethod name="F4211ClearWorkFile" app="MSMQ" runOnError="yes">

<params>

<param name="mnJobNo" idref="1" />

<param name="szComputerID" idref="2" />

<param name="mnFromLineNo">0</param>

<param name="mnThruLineNo">0</param>

26 PeopleSoft Proprietary and Confidential

Chapter 5 Understanding XML Transformation Service

<param name="cClearHeaderWF">2</param>

<param name="cClearDetailWF">2</param>

<param name="szProgramID">MSMQ</param>

<param name="szCMVersion">ZJDE0001</param>

</params>

</callMethod>

</onError>

</callMethod>

<callMethod name="F4211FSEditLine" app="MSMQ" runOnError="yes">

<params>

<param name="mnCMJobNo" idref="1" />

<param name="cCMLineAction">A</param>

<param name="cCMProcessEdits">1</param>

<param name="cCMWriteToWFFlag">2</param>

<param name="szCMComputerID" idref="2" />

<param name="mnLineNo">1</param>

<param name="szItemNo">1001</param>

<param name="mnQtyOrdered">5</param>

<param name="cSalesTaxableYN">N</param>

<param name="szTransactionUOM">EA</param>

<param name="szCMProgramID">1</param>

<param name="szCMVersion">ZJDE0001</param>

<param name="cWKSourceOfData" />

</params>

<onError abort="no" />

</callMethod>

<callMethod name="F4211FSEndDoc" app="MSMQ" runOnError="no">

<params>

<param name="mnCMJobNo" idref="1" />

<param name="szCMComputerID" idref="2" />

<param name="szCMProgramID">MSMQ</param>

<param name="szCMVersion">ZJDE0001</param>

<param name="cCMUseWorkFiles">2</param>

<param name="mnSalesOrderNo" id="3" />

<param name="szKeyCompany" id="4" />

<param name="mnOrderTotal" id="5" />

</params>

<onError abort="no">

<callMethod name="F4211ClearWorkFile" app="MSMQ" runOnError="yes">

<params>

<param name="mnJobNo" idref="1" />

<param name="szComputerID" idref="2" />

<param name="mnFromLineNo">0</param>

<param name="mnThruLineNo">0</param>

<param name="cClearHeaderWF">2</param>

<param name="cClearDetailWF">2</param>

<param name="szProgramID">MSMQ</param>

<param name="szCMVersion">ZJDE0001</param>

</params>

</callMethod>

PeopleSoft Proprietary and Confidential 27

Understanding XML Transformation Service Chapter 5

</onError>

</callMethod>

<returnParams failureDestination="error" runOnError="yes"

successDestination="success">

<param name="mnOrderNo" idref="3" />

<param name="szOrderCo" idref="4" />

<param name="mnWKOrderTotal" idref="5" />

</returnParams>

<onError abort="yes">

<callMethod name="F4211ClearWorkFile" app="MSMQ" runOnError="yes">

<params>

<param name="mnJobNo" idref="1" />

<param name="szComputerID" idref="2" />

<param name="mnFromLineNo">0</param>

<param name="mnThruLineNo">0</param>

<param name="cClearHeaderWF">2</param>

<param name="cClearDetailWF">2</param>

<param name="szProgramID">MSMQ</param>

<param name="szCMVersion">ZJDE0001</param>

</params>

</callMethod>

</onError>

</jdeRequest>

Example: PeopleSoft EnterpriseOne Version 1 XML Format
This sample code shows Version 1 XML format:

<?xml version=1.0 ?>

<intBPAPI>

<dsControl>

<dsLogin>

<User>JDESVR</User>

<Password>JDESVR</Password>

<Environment>ADEVNIS2</Environment>

<Session />

</dsLogin>

<dsAPI>

<Noun>jdeSalesOrder</Noun>

<Verb>Create</Verb>

<Version>1.1</Version>

</dsAPI>

<dsTranslation>

<InMap />

<OutMap />

</dsTranslation>

</dsControl>

<dsData>

<callMethod_GetLocalComputerId app="NetComm" runOnError="no">

<szMachineKey id="2" />

<onError_GetLocalComputerId abort="yes" />

28 PeopleSoft Proprietary and Confidential

Chapter 5 Understanding XML Transformation Service

</callMethod_GetLocalComputerId>

<callMethod_F4211FSBeginDoc app="NetComm" runOnError="no">

<mnCMJobNumber id="1" />

<cCMDocAction>A</cCMDocAction>

<cCMProcessEdits>1</cCMProcessEdits>

<szCMComputerID idref="2" />

<cCMUpdateWriteToWF>2</cCMUpdateWriteToWF>

<szCMProgramID>NetComm</szCMProgramID>

<szCMVersion>NetComm</szCMVersion>

<szOrderType>SQ</szOrderType>

<szBusinessUnit>M30</szBusinessUnit>

<mnAddressNumber>4242</mnAddressNumber>

<szReference>2</szReference>

<cApplyFreightYN>Y</cApplyFreightYN>

<szCurrencyCode>CAD</szCurrencyCode>

<cWKSourceOfData />

<cWKProcMode>1</cWKProcMode>

<mnWKSuppressProcess>0</mnWKSuppressProcess>

<onError_F4211FSBeginDoc abort="yes">

<callMethod_F4211ClearWorkFile app="NetComm" runOnError="yes">

<mnJobNo idref="1" />

<szComputerID idref="2" />

<mnFromLineNo>0</mnFromLineNo>

<mnThruLineNo>0</mnThruLineNo>

<cClearHeaderWF>2</cClearHeaderWF>

<cClearDetailWF>2</cClearDetailWF>

<szProgramID>NetComm</szProgramID>

<szCMVersion>ZJDE0001</szCMVersion>

</callMethod_F4211ClearWorkFile>

</onError_F4211FSBeginDoc>

</callMethod_F4211FSBeginDoc>

<callMethod_F4211FSEditLine app="NetComm" runOnError="yes">

<mnCMJobNo idref="1" />

<cCMLineAction>A</cCMLineAction>

<cCMProcessEdits>1</cCMProcessEdits>

<cCMWriteToWFFlag>2</cCMWriteToWFFlag>

<szCMComputerID idref="2" />

<mnLineNo>1</mnLineNo>

<szItemNo>1001</szItemNo>

<mnQtyOrdered>5</mnQtyOrdered>

<cSalesTaxableYN>N</cSalesTaxableYN>

<szTransactionUOM>EA</szTransactionUOM>

<szCMProgramID>1</szCMProgramID>

<szCMVersion>ZJDE0001</szCMVersion>

<cWKSourceOfData />

<onError_F4211FSEditLine abort="no" />

</callMethod_F4211FSEditLine>

<callMethod_F4211FSEndDoc app="NetComm" runOnError="no">

<mnCMJobNo idref="1" />

<szCMComputerID idref="2" />

PeopleSoft Proprietary and Confidential 29

Understanding XML Transformation Service Chapter 5

<szCMProgramID>NetComm</szCMProgramID>

<szCMVersion>ZJDE0001</szCMVersion>

<cCMUseWorkFiles>2</cCMUseWorkFiles>

<mnSalesOrderNo id="3" />

<szKeyCompany id="4" />

<mnOrderTotal id="5" />

<onError_F4211FSEndDoc abort="no">

<callMethod_F4211ClearWorkFile app="NetComm" runOnError="yes">

<mnJobNo idref="1" />

<szComputerID idref="2" />

<mnFromLineNo>0</mnFromLineNo>

<mnThruLineNo>0</mnThruLineNo>

<cClearHeaderWF>2</cClearHeaderWF>

<cClearDetailWF>2</cClearDetailWF>

<szProgramID>NetComm</szProgramID>

<szCMVersion>ZJDE0001</szCMVersion>

</callMethod_F4211ClearWorkFile>

</onError_F4211FSEndDoc>

</callMethod_F4211FSEndDoc>

<returnParams failureDestination="error" successDestination="success"

runOnError="yes">

<mnOrderNo idref="3" />

<szOrderCo idref="4" />

<mnWKOrderTotal idref="5" />

</returnParams>

<onError abort="yes">

<callMethod_F4211ClearWorkFile app="NetComm" runOnError="yes">

<mnJobNo idref="1" />

<szComputerID idref="2" />

<mnFromLineNo>0</mnFromLineNo>

<mnThruLineNo>0</mnThruLineNo>

<cClearHeaderWF>2</cClearHeaderWF>

<cClearDetailWF>2</cClearDetailWF>

<szProgramID>NetComm</szProgramID>

<szCMVersion>ZJDE0001</szCMVersion>

</callMethod_F4211ClearWorkFile>

</onError>

</dsData>

</intBPAPI>

Building a Custom Selector
You can build a selector to transform your XML format into PeopleSoft EnterpriseOne native XML format. If
you write a custom selector, include both request and response extensible stylesheet language transformation
(XSLT) documents.

30 PeopleSoft Proprietary and Confidential

Chapter 5 Understanding XML Transformation Service

Inside the Java file, the system uses two APIs to select templates. Use the boolean fetchTemplates API to
fetch the appropriate XSLT document for the request document. Public boolean fetchTemplates throws
IXTSMTemplateSelector.TemplateFetchException, XTSXMLParseException. This sample shows how
to use this API:

fetchTemplates(XTSDocument inXML, IXTSMSelectionInfo info)

Use the Public void fetchTemplates to fetch the appropriate XSLT document for the response document. Public
void fetchTemplates throws IXTSMTemplateSelector.TemplateFetchException.

fetchTemplates(IXTSMSelectionInfo info)

Note. Ensure that your custom selector is accessible in the ClassPath.

XTS APIs
When you write a custom selector, you can use these APIs to interface with PeopleSoft EnterpriseOne:

• IXTSMTemplateSelector

• IXTSMTemplateSelector.TemplateFetchException

Example: Creating a Selector
This code was written by PeopleSoft EnterpriseOne to build the Version 1 XML selector:

File: XTSMJDETemplateSelector.java

//

///

// Copyright (c) 2001 J.D. Edwards World Source Company

//

// This unpublished material is proprietary to PeopleSoft.

// All rights reserved. The methods and techniques

// described herein are considered trade secrets or are confidential.

// Reproduction or distribution, in whole or in part, is forbidden

// except by express written permission of PeopleSoft

//

///

package com.jdedwards.xts.xtsm;

import com.jdedwards.xts.xtsr.IXTSRepository;

import com.jdedwards.xts.xtsr.IXTSRKey;

import com.jdedwards.xts.xtsr.XTSRException;

import com.jdedwards.xts.xtsr.XTSRInvalidKeyStringException;

import com.jdedwards.xts.xtsr.XTSRInvalidKeyFieldException;

import com.jdedwards.xts.xtsr.XTSRKeyNotFoundException;

import com.jdedwards.xts.XTSDocument;

import com.jdedwards.xts.XTSFactory;

import com.jdedwards.xts.XTSLog;

import com.jdedwards.xts.XTSConfigurationException;

import com.jdedwards.xts.XTSXMLParseException;

import com.jdedwards.xts.xtsm.IXTSMTemplateSelector;

import com.jdedwards.xts.xtse.IXTSEngine;

import com.jdedwards.xts.xtse.IXTSECompiledProcessor;

import java.util.List;

PeopleSoft Proprietary and Confidential 31

Understanding XML Transformation Service Chapter 5

import org.w3c.dom.*;

/**

* This class is the PeopleSoft Template Selector. It recognizes

* PeopleSoft EnterpriseOne standard XML documents and returns the

* appropriate XSL stylesheets necessary for transformation.

*/

public class XTSMJDETemplateSelector implements IXTSMTemplateSelector

{

/** Class constructor. */

public XTSMJDETemplateSelector()

{

XTSLog.trace(XTSMJDETemplateSelector()’’, 3);

// get repository reference

XTSFactory factory = XTSFactory.getInstance();

m_repository = factory.createXTSRepository();

}

/**

* Fetch the appropriate XSLT documents and IXTSECompiledProcessors as

* indicated by the TPT stored in the <code>info</code> parameter.

* @param info - Selection Info that contains TPI and should be modified

* by the selector to specify transformation information.

* @exception IXTSMTemplateSelector.TemplateFetchException - thrown

* if an error occurs when extracting information from the

* inclement.

*/

public void fetchTemplates(IXTSMSelectionInfo info)

throws IXTSMTemplateSelector.TemplateFetchException

{

XTSLog.trace("XTSMJDETemplateSelector.fetchTemplates(XTSMSelectionResult)",

3);

NodeList nodes = info.getTPIElement().getElementsByTagName(JDE_TS_XTSR_KEY);

int numNodes = nodes.getLength();

for(int i = 0; i < numNodes; i++)

{

// extract key info & create a key

IXTSRKey key = createKeyFromNode((Element)nodes.item(i));

// fetch the doc and add it to the list

try

{

info.getXSLList().add(m_repository.fetch(key));

}

catch (XTSRKeyNotFoundException e)

{

throw new IXTSMTemplateSelector.TemplateFetchException(

"Selected XTSRKey not found in repository: "

+ JDE_TS_XTSR_KEY);

}

32 PeopleSoft Proprietary and Confidential

Chapter 5 Understanding XML Transformation Service

catch (XTSRException e)

{

throw new IXTSMTemplateSelector.TemplateFetchException(

"Unable to fetch the XSL document specified within ’"

+ JDE_TS_XTSR_KEY +

"’ from the XTSRepository");

}

}

}

/**

* Fetch the appropriate XSLT documents and compiled processors for

* the given document.

* @param inXML - the XTSDocument to try to recognize.

* @param info - Selection Info object to be modified by selector to

* indicate transformation information.

* @return - <code>true</code> if the selector has recognized the

* document and specified the appropriate selection info using

* <code>info</code>, <code>false</code> otherwise.

* @exception TemplateFetchException - thrown when an error occurs

* when trying to recognize the DOM.

* @exception XTSXMLParseException - thrown if <inXML> could not be

* parsed.

*/

public boolean fetchTemplates(XTSDocument inXML,

IXTSMSelectionInfo info)

throws IXTSMTemplateSelector.TemplateFetchException,

XTSXMLParseException

{

XTSLog.trace("XTSMJDETemplateSelector.fetchTemplates(Document, Element)", 3);

boolean recognized = false;

Document inDOM = inXML.getDOM();

// see if an XTSR key is specified within the document:

NodeList nodeList = inDOM.getElementsByTagName(JDE_XTSR_KEY);

if (nodeList.getLength() > 0)

{

try

{

// extract key info & create a key

IXTSRKey key = createKeyFromNode((Element)nodeList.item(0));

// add transformation path information to outElement

createNodeChildFromKey(info.getTPIElement(), key);

// fetch the doc and add it to the list

info.getXSLList().add(m_repository.fetch(key));

info.setResultXML(true);

info.setPathInfoStored(false);

PeopleSoft Proprietary and Confidential 33

Understanding XML Transformation Service Chapter 5

recognized = true;

}

catch (XTSRException e)

{

throw new IXTSMTemplateSelector.TemplateFetchException(

"Unable to fetch the XSL document specified within ’"

+ JDE_XTSR_KEY +

"’ from the XTSRepository");

}

catch (XTSRKeyNotFoundException e)

{

throw new IXTSMTemplateSelector.TemplateFetchException(

"Key specified in TPI not found in repository"

+ JDE_XTSR_KEY);

}

}

else // no XTSR key, so look for JDE information:

{

nodeList = inDOM.getElementsByTagName(JDE_INT_BPAPI);

if (nodeList.getLength() != 0)

{

// add transformation path information to outElement

createNodeChildFromKey(info.getTPIElement(), getVersion1toNativeKey());

// fetch the doc and add it to the list

info.getXSLList().add(getVersion1toNativeXSL());

info.setResultXML(true);

info.setPathInfoStored(true);

recognized = true;

}

}

return recognized;

}

/**

* Extracts XTSRKey information from the given node, and creates an

* instance of IXTSRKey based on that information.

* @return - the new IXTSRKey.

* @param element - Element that contains the key information.

* @exception XTSMUnrecognizedElementException - thrown if the

* Element format is unrecognized.

*/

protected IXTSRKey createKeyFromNode(Element element)

throws XTSMUnrecognizedElementException

{

XTSLog.trace("XTSMJDETemplateSelector.createKeyFromNode(Element)", 4);

IXTSRKey key = null;

boolean request = false;

boolean response = false;

if (element.getNodeName().equals(JDE_XTSR_KEY))

34 PeopleSoft Proprietary and Confidential

Chapter 5 Understanding XML Transformation Service

{

request = true;

}

else if (element.getNodeName().equals(JDE_TS_XTSR_KEY))

{

response = true;

}

if (request || response)

{

key = m_repository.createKey();

try

{

String keyString = element.getAttribute(JDE_XTSR_KEY_ATTRIBUTE);

key.setFieldsFromString(keyString);

if (key.getFieldValue(SUBTYPE_FIELD).length() == 0)

{

if (request)

{

key.setFieldValue(SUBTYPE_FIELD, SUBTYPE_REQUEST);

}

else

{

key.setFieldValue(SUBTYPE_FIELD, SUBTYPE_RESPONSE);

}

}

}

catch (XTSRInvalidKeyStringException e)

{

throw new XTSMUnrecognizedElementException(

"Specified ’" + JDE_XTSR_KEY +

"’ element format is invalid for this XTSRepository");

}

catch (XTSRInvalidKeyFieldException e)

{

throw new XTSConfigurationException(

"Specified ’" + SUBTYPE_FIELD +

"’ field name not supported by repository key");

}

}

return key;

}

/**

* Creates a node that contains the key fields values and appends it

* to the given parentNode.

* @param parentNode - Node to which the key information should be

* appended.

* @param key - Key information to store in the node.*/

protected void createNodeChildFromKey(Node parentNode, IXTSRKey key)

{

PeopleSoft Proprietary and Confidential 35

Understanding XML Transformation Service Chapter 5

XTSLog.trace("XTSMJDETemplateSelector.createKeyFromNode(Node,IXTSRKey)", 4);

try

{

IXTSRKey keyClone = key.getRepository().createKey();

keyClone.setFieldsFromString(key.getFieldsString());

// Do not store the sub type, clear it here:

keyClone.setFieldValue(SUBTYPE_FIELD, "");

// create new node and append it to the provided element:

Element element = (Element)parentNode.getOwnerDocument().createElement

(JDE_TS_XTSR_KEY);

element.setAttribute(JDE_XTSR_KEY_ATTRIBUTE, keyClone.getFieldsString());

parentNode.appendChild(element);

}

catch (XTSRInvalidKeyStringException e)

{

XTSLog.log("Unexpected ");

XTSLog.log(e);

throw new RuntimeException("Unexpected Exception: " + e.toString());

}

}

/**

* Returns the key of the stylesheet to use in converting

* PeopleSoft EnterpriseOne version 1 documents into EnterpriseOne native

* documents.

* @return - The key for the XSL stylesheet.

*/

protected IXTSRKey getVersion1toNativeKey()

{

XTSLog.trace("XTSMJDETemplateSelector.getVersion1toNativeKey()", 5);

if (null == m_version1ToNativeKey)

{

try

{

// create standard xsl XTSRKey:

m_version1ToNativeKey = m_repository.createKey();

m_version1ToNativeKey.setFieldsFromString(V1_TO_NATIVE_KEY);

}

catch (XTSRInvalidKeyStringException e)

{

String error = "XTSRKey necessary for JDE template selection is invalid: "

+ V1_TO_NATIVE_KEY;

XTSLog.log(error);

XTSLog.log(e);

throw new XTSConfigurationException(error);

}

}

return m_version1ToNativeKey;

36 PeopleSoft Proprietary and Confidential

Chapter 5 Understanding XML Transformation Service

}

/**

* Returns the XTSDocument which contains the XSL stylesheet for

* converting PeopleSoft EnterpriseOne version 1 documents into PeopleSoft

* EnterpriseOne native documents.

* @return - XTSDocument containing the XSL stylesheet.

*/

protected IXTSECompiledProcessor getVersion1toNativeXSL()

{

XTSLog.trace("XTSMJDETemplateSelector.getVersion1toNativeXSL()", 5);

if (null == m_version1ToNativeXSL)

{

XTSDocument xsl = null;

Try

{

xsl = m_repository.fetch(getVersion1toNativeKey());

IXTSEngine engine = XTSFactory.getInstance().createXTSEngine();

m_version1ToNativeXSL = engine.createCompiledProcessor(xsl);

}

catch (XTSRException e)

{

String error = "Unable to fetch selected template from the repository:";

XTSLog.log(error);

XTSLog.log(e);

throw new XTSConfigurationException(error + e.toString());

}

catch (XTSRKeyNotFoundException knfe)

{

String error = "Selected template XTSRKey not found in repository:";

XTSLog.log(error);

XTSLog.log(knfe);

throw new XTSConfigurationException(error + knfe.toString());

}

catch (XTSXMLParseException pe)

{

String error = "Invalid XSL document in repository";

XTSLog.log(error);

XTSLog.log(pe);

throw new XTSConfigurationException(error + pe.toString());

}

}

return m_version1ToNativeXSL;

}

/** Reference to the XTSRepository */

private IXTSRepository m_repository = null;

/** Key for converting version 1 documents to native documents. */

private IXTSRKey m_version1ToNativeKey = null;

PeopleSoft Proprietary and Confidential 37

Understanding XML Transformation Service Chapter 5

/** Compiled XSL Stylesheet for converting version 1 docs to

* native docs. */

private IXTSECompiledProcessor m_version1ToNativeXSL = null;

/** Field Value for the XTSRKey that indicates the document is an XSL doc */

private static final String DOC_TYPE_XSL = "XSL";

/** Element name that indicates the DOM is a Version 1 document */

private static final String JDE_INT_BPAPI = "intBPAPI";

/** Element name that indicates the DOM is a request and not a

* response or error. */

private static final String JDE_REQUEST = "jdeRequest";

/** Element name that indicates the DOM is a response */

private static final String RESPONSE = "jdeResponse";

/** Element name that specifies an XTSRKey to use in transforming

* the document. */

private static final String JDE_XTSR_KEY = "jdeXTSRKey";

/** The attribute of the <code>JDE_XTSR_KEY</code> element that

* stores the XTSRKey string value */

private static final String JDE_XTSR_KEY_ATTRIBUTE = "key";

/** XTSRKey field name that specifies the sub-type of the XML

* document. Normal values for the sub-type are defined by

* <code>SUBTYPE_REQUEST</code> and <code>SUBTYPE_RESPONSE</code> */

private static final String SUBTYPE_FIELD = "SUB_TYPE";

/** XTSRKey field name which specifies the type of the XML document.

* The normal value is defined by <code>DOC_TYPE_XSL</code> */

private static final String FIELD_TYPE = "TYPE";

/** XTSRKey field name which specifies the format (or owner) of the

* XML document. The normal value recognized by this selector is

* ’JDE’ */

private static final String FIELD_FORMAT = "FORMAT";

/** XTSRKey field name that specifies the particular transformation

* that the XSL document will perform. This selector uses

* ’V1_NATIVE’ for transformations between PeopleSoft EnterpriseOne Version 1

* XML documents and PeopleSoft EnterpriseOne native version documents. */

private static final String FIELD_ID = "ID";

/** The string representation of the XTSRKey for the XSL document to

* format PeopleSoft EnterpriseOne version 1 request documents into

* PeopleSoft EnterpriseOne native request documents. */

private static final String V1_TO_NATIVE_KEY = "XSL-JDE-V1_NATIVE-REQUEST";

38 PeopleSoft Proprietary and Confidential

Chapter 5 Understanding XML Transformation Service

/** XTSRKey field <code>SUBTYPE_FIELD</code> value that indicates

* the XSL document will transform jdeRequest documents. */

private static final String SUBTYPE_REQUEST = "REQUEST";

/** XTSRKey field <code>SUBTYPE_FIELD</code> value that indicates

* the XSL document will transform jdeResponse documents. */

private static final String SUBTYPE_RESPONSE = "RESPONSE";

/** Element name stored within the Transformation Path Information

* (TPI)that specifies the XTSRKey used to transform the document. */

private static final String JDE_TS_XTSR_KEY = "XTSJDETemplateKey";

private static class XTSMUnrecognizedElementException

extends IXTSMTemplateSelector.TemplateFetchException

{

public XTSMUnrecognizedElementException(String text)

{

super(text);

}

}

}

Configuring the jde.ini File for XTS
The XTS Kernel must be defined in the server jde.ini file. The name of the configuration file is retrieved from
the config_file system variable in the JVM. These property settings are part of a configuration file other than
jde.ini. The jde.ini file does not require any special configurations other than to define the XTS Kernel.

[JDENET_KERNEL_DEF23]
These setting are for a Microsoft Windows platform:

krnlName=JDEXTS KERNEL

dispatchDLLName=xtskrnl.dll

dispatchDLLFunction=_JDEK_DispatchXTSMessage@28

maxNumberOfProcesses=1

numberOfAutoStartProcesses=0

This table provides the different .dll extensions for other platforms:

Table Column Heading Dispatch DLL Name Dispatch DLL Function

iSeries XTSKRNL JDEK_DispatchXTS

HP9000B libxtskrnl.sl JDEK_DispatchXTS

SUN or RS6000 libxtskrnl.so JDEK_DispatchXTS

PeopleSoft Proprietary and Confidential 39

Understanding XML Transformation Service Chapter 5

Other jde.ini File settings include:

• [JDE_CG]
• [JDENET]
• [XTSRepository]

• [XTS]

[JDE_CG]
Update the CLASSPATH to include your custom class file that is provided in the XTSTemplateSelector2 in the
[XTS] section. This sample code shows the classpath setting:

CLASSPATH=<install-path>\system\Classes\xalan.jar;<install-path>\system

\Classes\xerces.jar;<install-path>\system\Classes_Kernel.jar;<install-path>

\system\Classes\XTS.jar; <install-path>\system\Classes\log4j.jar;

<install-path>\system\Classes

Note. Do not use $SYSTEM in your classpath. You must include the full name of the system directory.

[JDENET]
Configure this setting:

maxKernelRanges=24

Note. For the XTS kernel to run, set the maxKernelRanges setting to 23 or higher.

[XTSRepository]
Configure these settings

XSL-JDE-V1_NATIVE-REQUEST=ml.xsl

XSL-JDE-V1_NATIVE-RESPONSE=lm.xsl

Note. The first setting is the PeopleSoft EnterpriseOne default value that enables XSL to transform the request
document from Version 1 to native. The second settings is the PeopleSoft EnterpriseOne default value that
enables XSL to transform the response document from native to version 1.

You can provide your XSL files either at this location or any other location as long as your selector can find
and access your XSL. To add your XSL files to this location, use these naming convention, where Filename is
the name of your XSL documents:

XSL-JDE-Filename-REQUEST=

XSL-JDE-Filename-RESPONSE=

[XTS]
This is an example setting:

XTSTemplateSelector1=com.jdedwards.xts.xtsm.XTSMJDETemplateSelector

XTSTraceLevel=2

40 PeopleSoft Proprietary and Confidential

Chapter 5 Understanding XML Transformation Service

Note. The XTSTemplateSelector1 setting is the PeopleSoft EnterpriseOne default template selector for
providing XSL to transform between Version 1 and native format.

You can add your custom template selector to this section. For example, your template selector setting
could be defined as follows:

XTSTemplateSelector2=com.customer.CustomTemplateSelector

The XTSTraceLevel=2 setting defines the level of XTS logging.

PeopleSoft Proprietary and Confidential 41

Understanding XML Transformation Service Chapter 5

42 PeopleSoft Proprietary and Confidential

CHAPTER 6

Understanding XML Dispatch

This chapter discusses:

• XML Dispatch.
• XML Dispatch processing.
• XML Dispatch recognizers.
• XML Dispatch transports.
• Configuring the jde.ini file for XML dispatch.
• XML Dispatch error handling.

XML Dispatch
XML Dispatch is XML-based interoperability that runs as a PeopleSoft EnterpriseOne kernel process. The
XML Dispatch kernel is the central entry point for all XML documents. For incoming XML documents, XML
Dispatch identifies the kind of document that comes into PeopleSoft EnterpriseOne and sends the document to
the appropriate kernel for processing. If XML Dispatch does not recognize the document, XML Dispatch
sends the document to XTS to recognize and transform it into native PeopleSoft EnterpriseOne format. After
XTS transforms the document, the document is sent back to XML Dispatch to be sent to the appropriate kernel
for processing. For outgoing documents, XML Dispatch remembers whether the request document was
transformed into PeopleSoft EnterpriseOne native format. If the incoming request was transformed, then the
outgoing response document is sent to XTS for transformation from native PeopleSoft EnterpriseOne format
back into the format of the original request. After XTS transforms the document, the document is sent to XML
Dispatch to distribute to the originator.

The XML Dispatch kernel is able to route and load balance the XML documents. For example, if you have
many XML CallObject message types coming in at once, XML Dispatch tries to instantiate a new CallObject
kernel. You set up the number of instances that a kernel can have in the jde.ini file. For example, if you set
the number of instances for the CallObject kernel to five, if more than one CallObject document comes into
PeopleSoft EnterpriseOne, XML Dispatch sees that a particular kernel is busy and instantiates another one (up
to five instances). XML Dispatch is able to recognize new kernel definitions (such as XAPI) if the kernel is
defined in the jde.ini file. You are not required to change JDENET code when new kernels are added.

XML Dispatch is available on all platforms that are supported by PeopleSoft EnterpriseOne.

PeopleSoft Proprietary and Confidential 43

Understanding XML Dispatch Chapter 6

XML Dispatch Processing
XML Dispatch receives standard JDENET messages (in the form of XML documents) from a transport
driver or other jdenet_n. The communication between a transport and XML Dispatch is local inter-process
communication (IPC) using JDENET APIs. The communication between XML Dispatch and XTS and
between XML Dispatch and XML kernels can be either IPC or remote network using JDENET APIs.

XML Dispatch parses the XML document and sends the document to the appropriate PeopleSoft EnterpriseOne
kernel for processing.

XML Dispatch Recognizers
XML Dispatch uses recognizers to determine how to handle incoming and outgoing XML documents. If XML
Dispatch recognizes an incoming XML document as being in PeopleSoft EnterpriseOne native XML format,
the XML document is parsed and sent to the appropriate kernel. For outgoing documents, the recognizer
determines whether an XML document can be left as PeopleSoft EnterpriseOne native XML format or
whether it must be transformed.

You can add more than one recognizer to XML Dispatch to recognize different XML grammar. XML Dispatch
recognizes the these types:

• jdeRequest
• jdeResponse
• jdeWorkflow

The XML Dispatch recognizer raises DocIsRecognized exception on document identification to stop further
parsing.

You can write a recognizer that is able to recognize other types of XML documents. The specification for
the type is configured in the jde.ini file.

XML Dispatch Transports
As part of XML Dispatch, you can write a transport. Transports communicate with external systems using
mechanisms such as MQSeries, MSMQ, HTTP, TCP/IP, and so on. Transport processes must run on the same
machine as XML Dispatch. To develop a custom transport to communicate with PeopleSoft EnterpriseOne,
use these APIs:

• jdeTransportInit
• jdeTransportMessagePut
• jdeTransportMessageGet
• jdeTransportDoIExit

The transport APIs assume a polling model, which means calls to put or receive messages are given without
a time-out.

44 PeopleSoft Proprietary and Confidential

Chapter 6 Understanding XML Dispatch

Configuring the jde.ini File for XML Dispatch
The XML Dispatch kernel must be defined in the jde.ini file.

[JDENET_KERNEL_DEF22]
These settings are for a Microsoft Windows platform:

krnlName=XML DISPATCH KERNEL

dispatchDLLName=xmldispatch.dll

dispatchDLLFunction=_XMLDispatch@28

maxNumberOfProcesses=1

numberOfAutoStartProcesses=1

This table provides the different .dll extensions for other platforms.

Platform dispatchDLLName dispatchDLLFunction

iSeries XMLDSPATCH JDEK_XMLDispatch

HP9000 libxmldispatch.sl JDEK_XMLDispatch

SUN or RS6000 libxmldispatch.so JDEK_XMLDispatch

XML Dispatch uses the settings in the [XMLLookupInfo] section of the jde.ini file to route XML
documents to the corresponding XML kernels. The system uses three keywords (XMLRequestN,
XMLKernelMessageRangeN, and XMLKernelHostN) to map a pair that consists of an XML request and an
XML kernel. A description of the settings in the [XMLLookupInfo] section are explained in this table:

Setting Purpose

XMLRequestTypeN= Identifies the type of message to be processed.

XMLKernelMessageRangeN= A hard-coded number that identifies the kernel message
range.

XMLKernelHostNameN= The name of the host.

XMLKernelPortN= Value is 0 or 1. To indicate a local host, enter 0. To indicate
a remote host, enter 1.

XMLKernelRplyN= Value is 0 or 1, with 1 as the default value. A value of 0
indicates no reply is required. A value of 1 indicates a reply
should be returned to the originator.

Note. XMLKernelRplyN setting is not required for list,
callmethod, and trans. The reply setting is an implied 1,

XMLService does not send a response, and the setting for
XMLKernelReplyN should be zero (0).

Where N starts with 1, and multiple groups of these keys
can be in this section.

PeopleSoft Proprietary and Confidential 45

Understanding XML Dispatch Chapter 6

[XMLLookupInfo]
The [XMLLookupInfo] section should have six groupings, as illustrated in this example:

[XMLLookupInfo]

XMLRequestType1=list

XMLKernelMessageRange=5257

XMLKernelHostName1=local

XMLKernelPort1=0

XMLRequestType2=callmethod

XMLKernelMessageRange2=920

XMLKernelHostName2=local

XMLKernelPort2=0

XMLRequestType3=trans

XMLKernelMessageRange3=5001

XMLKernelHostName3=local

XMLKernelPort3=0

XMLRequestType4=JDEMSGWFINTEROP

XMLKernelMessageRange4=4003

XMLKernelHostName4=local

XMLKernelPort4=0

XMLKernelReply4=0

XMLRequestType5=xapicallmethod

XMLKernelMessageRange5=14251

XMLKernelHostName5=local

XMLKernelPort5=0

XMLKernelReply5=0

XMLRequestType6=realTimeEvent

XMLKernelMessageRange6=14251

XMLKernelHostName6=local

XMLKernelPort6=0

XMLKernelReply6=0

The XML Dispatch kernel uses these two additional settings:
[XML DISPATCH]

PollIntervalMillis=3000

[XTS]

ResponseTimeout=600

The PollIntervalMillis setting is the number of milliseconds that the XML Dispatch kernel sleeps during
inactivity when it is waiting on responses from other XML kernels such as XML CallObject. The lower this
value, the more CPU cycles the XML Dispatch kernel uses when waiting for responses.

The ResponseTimeout setting is the number of seconds that the XML Dispatch kernel waits for a response
from other XML kernels, such as CallObject) before giving up on the response.

46 PeopleSoft Proprietary and Confidential

Chapter 6 Understanding XML Dispatch

XML Dispatch Error Handling
XML Dispatch handles three types of errors. This table identifies the errors and how XML Dispatch handles
the error:

XML Dispatch Error How XMLDispatch Handles the Error

An error occurs while XML dispatch, XTS, and the XL
kernel processes are exchanging data. For example,
communication is broken.

XMLDispatch generates an error report, which is an XML
document that describes the error.

An error occurs while the parser or XTS is processing an
XML document. For example, a syntax error, an invalid
request, and so on.

XMLDispatch generates an error report that is based on the
error message that is generated by either the parser or XTS.

An error occurs while an XML kernel is processing an
XML document. For example, the user name is invalid, the
transaction is rolled back, and so on.

XMLDispatch uses XTS to transform the XML kernel
generated error report when necessary.

XML Dispatch sends generated error reports to the corresponding transport process.

PeopleSoft Proprietary and Confidential 47

Understanding XML Dispatch Chapter 6

48 PeopleSoft Proprietary and Confidential

CHAPTER 7

Understanding XML CallObject

This chapter discusses:

• XML CallObject.
• XML CallObject templates.
• XML CallObject processing.
• Formatting XML CallObject documents.
• Configuring the jde.ini file for XML Dispatch.
• XML CallObject return calls.

XML CallObject
XML CallObject is XML-based interoperability that runs as a PeopleSoft EnterpriseOne kernel process. You
can also use XML CallObject with a messaging adapter. Some features of XML CallObject include:

• The ability to make business function calls to PeopleSoft EnterpriseOne using XML documents.
• Business function templates and the ability to create your own templates.
• The ability to call multiple business functions using a single XML document.
• A simpler way of interfacing with PeopleSoft EnterpriseOne as compared to using COM or Java APIs.

XML CallObject Templates
XML CallObject provides a blank template that you can complete to make CallObject requests for a given
business function. You also have the option of creating your own custom XML documents.

To request an XML template for a given business function, you create an XML document that is a callMethod
request type. When you make a CallObject template request, the response is the template that has information
about all of the function parameters but is not populated with data values. The user, password, and session
attribute values are blank so that you can cache the response for later use.

A CallObject template request is an exception to the convention that a jdeRequest returns a jdeResponse.
Instead of data, you receive the template, which you use to make another CallMethod request. When you
request a CallObject template, the request for the template is the only request that can be made in the XML
document. The XML document must include the business function.

This example illustrates a request for a CallObject template:

PeopleSoft Proprietary and Confidential 49

Understanding XML CallObject Chapter 7

<?xml version=’1.0’ ?>

<jdeRequest type=’callmethod’ user=’steve’ pwd=’xyz’ environment=’prod’

role="*ALL" session=’’>

<callMethodTemplate name=’myfunc’ app=’P42101’/>

</jdeRequest>

This example illustrates a response to a CallObject template request. This response can then be filled in with
the appropriate information and sent back as a request.

<?xml version=’1.0’ ?>

<jdeRequest type=’callmethod’ user=’’ pwd=’’ environment=’prod’ role=’*ALL’

session=’’>

<callMethod name=’myfunc’ app=’P42101’>

<params>

<param name=’CostCtr’></param>

<param name=’ExpDate’></param>

<param name=’Quantity’></param>

</params>

</callMethod>

</jdeRequest>

XML CallObject Process
This diagram illustrates XML CallObject processing:

50 PeopleSoft Proprietary and Confidential

Chapter 7 Understanding XML CallObject

Input XML Document

Parse XML Document

Perform Session
Management

Load Business Function
Data Structure

Execute Business
Function

Handle Errors

Create XML Response

Response XML
Document

XML
CallObject

Kernel

EnterpriseOne
System

XML CallObject process flow

In summary:

• The PeopleSoft EnterpriseOne server receives an XML document.
• XML CallObject processes the message by parsing the XML document.
• The session manager validates the user and password.
• Each requested business function is called separately or within requested transaction boundaries until
all calls are processed.

PeopleSoft Proprietary and Confidential 51

Understanding XML CallObject Chapter 7

• Output data and error messages are merged with the data from the input XML document and a new response
document is created and sent to the originator.

Formatting XML CallObject Documents
This section provides an overview for formatting XML CallObject documents and discusses these elements:

• Call Object
• OnError Handling

• Call Object Error Handling

• Error Text
• Multiple Requests per Document

• ID/IDREF Support

• Return NULL Values

XML CallObject Document Format
Your XML document must have these elements at the beginning of the document:

• jdeRequest Type
• Establish Session
• Expire Session

Your XML document must end with Terminate Session.

Your XML CallObject document can also have these optional elements:

• Call Object
• On Error Handling
• Call Object Error Handling
• Error Text
• Multiple Requests per Document
• ID/IDREF Support
• Return NULL Values

Call Object
Tags are used to call business functions on the server.

This sample code shows how to use callObject:

<?xml version=’1.0’ ?>

<jdeRequest type=’callmethod’ user=’steve’ pwd=’xyz’ role=’*ALL’

environment=’prod’>

<callMethod name=’myfunc’ app=’P42101’>

52 PeopleSoft Proprietary and Confidential

Chapter 7 Understanding XML CallObject

<params>

<param name=’CostCtr’> 1001</param>

<param name=’ExpDate’>1999/10/31</param>

<param name=’Quantity’>12</param>

</params>

</callMethod>

</jdeRequest>

The callMethod element details which function to call and in what context it is being called. The name
attribute specifies which business function to call, and the app attribute enables the business function to
know who is calling it.

The params and param elements define the data structure of the business function. Each param element
describes one data structure member. The caller is only required to give the name attribute.

If no param element value is given for an input data structure member, then the value will be treated as if
it were NULL or zero.

OnError Handling
You can add an onError element to the callMethod request to take a specific action if an error occurs. The
onError tag can specify an abort attribute that specifies whether all subsequent requests should be skipped. The
allowed values are yes or no . A global onError tag can be specified as a child of the jdeRequest tag, which will
be executed if errors were encountered and no other onError tag with abort=’yes’ was executed. The global
onError tag should be the last request in the document.

<?xml version=’1.0’ ?>

<jdeRequest type=’callmethod’ user=’steve’ pwd=’xyz’ role=’*ALL’

environment=’prod’ session=’’>

<callMethod name=’myfunc’ app=’P42101’ trans=’t1’ runOnError=’yes’>

<params>

<param name=’CostCtr’> 1001</param>

</params>

<onError abort=’no’>

<endTransaction trans=’t1’ action=’rollback’/>

</onError>

</callMethod>

</jdeRequest>

Call Object Error Handling
System errors on a call object are reported in the returnCode element. The numeric code is returned in the code
attribute, and the corresponding text is returned as a child text node of the returnCode element. The standard
jdeCallObject return codes are used for the code attribute.

<?xml version=’1.0’ ?>

<jdeResponse type=’callmethod’ user=’steve’ pwd=’xyz’ role=’*ALL’

environment=’prod’ session=’’>

<callMethod name=’myfunc’ app=’P42101’ trans=’t1’>

<params>

<param name=’CostCtr’> 1001</param>

</params>

<returnCode code=’0’>Success</returnCode>

PeopleSoft Proprietary and Confidential 53

Understanding XML CallObject Chapter 7

</callMethod>

</jdeResponse>

Error Text
Business function error messages are returned in the errors element. Within the errors element, there can be
zero or more error elements that contain a code attribute for the error code and a child text node that contains
the error text. The name attribute describes the param element that is referred to by the error.

<?xml version=’1.0’ ?>

<jdeResponse type=’callmethod’ user=’steve’ pwd=’xyz’ role=’*ALL’

environment=’prod’ session=’’>

<callMethod name=’myfunc’ app=’P42101’ trans=’t1’>

<params>

<param name=’CostCtr’> 1001</param>

</params>

<returCode code=’2’>Errors</returnCode>

<errors>

<error code=’192’ name=’CostCtr’>Cost Center not valid</error>

</errors>

</callMethod>

</jdeResponse>

Multiple Requests per Document
You can include multiple requests in the XML document. Requests are not run if there have been any errors on
previous requests. If a request should be run, even if errors have occurred, then you can override the default
behavior by using the runOnError attribute on the request with a value of yes.

<?xml version=’1.0’ ?>

<jdeRequest type=’callmethod’ user=’steve’ pwd=’xyz’ role=’*ALL’

environment=’prod’ session=’’>

<callMethod name=’myfunc’ app=’P42101’ trans=’t1’ runOnError=’yes’>

<params>

<param name=’CostCtr’> 1001</param>

</params>

</callMethod>

</jdeRequest>

ID/IDREF Support
ID type attributes uniquely identify, by a string value, elements in a XML document. IDREF attributes enable
other elements to reference the specified element. An IDREF attribute must not be used in a document
before the ID it references is defined.

A param element can specify an ID attribute so that its output value from the callMethod request will be saved
and referred to later in another param element by an IDREF attribute. If a param element contains an IDREF
attribute, the value of the given parameter is used as the input value for the param element. For example, the
output value from referenced parameter is used instead of the value in the XML.

<?xml version=’1.0’ ?>

<jdeRequest type=’callmethod’ user=’steve’ pwd=’xyz’ role=’*ALL’

54 PeopleSoft Proprietary and Confidential

Chapter 7 Understanding XML CallObject

environment=’prod’ session=’’>

<callMethod name=’myfunc’ app=’P42101’ trans=’t1’ runOnError=’yes’>

<params>

<param name=’CostCtr’> 1001</param>

<param name=’Company1’ id=’c1’></param>

<param name=’Company2’ id=’c2’></param>

</params>

</callMethod>

<callMethod name=’myfunc2’ app=’P42101’ trans=’t1’ runOnError=’yes’>

<params>

<param name=’Company1’ idref=’c1’></param>

</params>

<returnParams><param idref=’c2’/></returnParams>

</callMethod>

</jdeRequest>

You can specify a special request tag called returnParams that can contain one or more param elements. If the
param elements contain IDREF attributes, then the referenced values are copied into the response.

Return NULL Values
If a parameter was not specified in the request document, it will not be returned in the response document
unless its value is non-blank or non-zero. This behavior can be modified by specifying the returnNullData
attribute on the callMethod element with a value of yes.

<?xml version=’1.0’ ?>

<jdeRequest type=’callmethod’ user=’’ pwd=’’ role=’*ALL’ environment=’prod’

session=’’>

<callMethod name=’myfunc’ app=’P42101’ returnNullData=’yes’>

<params>

<param name=’CostCtr’></param>

<param name=’ExpDate’></param>

<param name=’Quantity’></param>

</params>

</callMethod>

</jdeRequest>

Configuring the jde.ini File for XML CallObject
The XML CallObject kernel must be defined in the jde.ini file.

[JDENET_KERNEL_DEF6]
This examples illustrates settings for a Microsoft Windows platform:

krnlName=CALL OBJECT KERNEL

dispatchDLLName=XMLCallObj.dll

dispatchDLLFunction=_XMLCallObjectDispatch@28

maxNumberOfProcesses=1

PeopleSoft Proprietary and Confidential 55

Understanding XML CallObject Chapter 7

numberOfAutoStartProcesses=1

This table provides the different .dll extensions for other platforms:

Platform dispatchDLLName dispatchDLLFunction

iSeries XMLCALLOBJ XMLCallObjectDispatch

HP9000 libxmlcallobj.sl XMLCallObjectDispatch

SUN or RS6000 libxmlcallobj.so XMLCallObjectDispatch

Example: CallObject Request
This code sample shows a CallObject request:

<?xml version="1.0" encoding="utf-8" ?>

<jdeRequest pwd="JDE" type="callmethod" user="JDE" role="*ALL"

session="" environment="M7333NIS2" sessionidle="1800">

<callMethod app="XMLTest" name="AddressBookMasterMBF">

<params>

<param name="cActionCode">A</param>

<param name="cUpdateMasterFile">1</param>

<param name="mnAddressBookNumber" idref="ABNumber" />

<param name="szSearchType">C</param>

<param name="szAlphaName">bobs</param>

<param name="szMailingName">Bob’s Shrimp boats</param>

<param name="szAddressLine1">One Technology Way</param>

<param name="szPostalCode">80237</param>

<param name="szCity">Denver</param>

<param name="szCounty">Denver</param>

<param name="szState">CO</param>

<param name="szCountry">US</param>

<param name="cPayablesYNM">N</param>

<param name="cReceivablesYN">Y</param>

<param name="cEmployeeYN">N</param>

<param name="cUserCode">N</param>

<param name="cARAPNettingY">N</param>

<param name="jdDateEffective">01/23/2001</param>

<param name="szProgramId">EP01012</param>

<param name="mnAddNumParentOriginal">0</param>

<param name="szVersionconsolidated" idref=Version />

<param name="szCountryForPayroll">US</param>

</params>

</callMethod>

</jdeRequest>

Example: CallObject Response
This code sample shows a CallObject response:

<?xml version="1.0" encoding="UTF-8" ?>

56 PeopleSoft Proprietary and Confidential

Chapter 7 Understanding XML CallObject

<jdeResponse pwd="JDE" role="*ALL" type="callmethod" user="JDE"

session="2360.1049473980.6" environment="PDEVNIS2" sessionidle="1800">

<callMethod app="XMLTest" name="AddressBookMasterMBF">

<returnCode code="0" />

<params>

<param name="cActionCode">A</param>

<param name="cUpdateMasterFile">1</param>

<param name="mnAddressBookNumber">57322</param>

<param name="szSearchType">C</param>

<param name="szAlphaName">bobs</param>

<param name="szMailingName">Bob’s Shrimp boats</param>

<param name="szBusinessUnit">1</param>

<param name="szAddressLine1">One Technology Way</param>

<param name="szPostalCode">80237</param>

<param name="szCity">Denver</param>

<param name="szState">CO</param>

<param name="szCountry">US</param>

<param name="cPayablesYNM">N</param>

<param name="cReceivablesYN">Y</param>

<param name="cEmployeeYN">N</param>

<param name="cUserCode">N</param>

<param name="cARAPNettingY">N</param>

<param name="cAddressType3YN">N</param>

<param name="cAddressType4YN">N</param>

<param name="cAddressType5YN">N</param>

<param name="jdDateEffective"/>

<param name="szProgramId">EP01012</param>

<param name="szVersionconsolidated">ZJDE0001</param>

<param name="cEdiSuccessfullyProcess">0</param>

<param name="szCountryForPayroll">US</param>

</params>

</callMethod>

</jdeResponse>

XML CallObject Return Codes
This table provides XML CallObject return codes that can be returned from ThinNet APIs:

Code Description

0 XML request OK.

1 Root XML element is not a jdeRequest or jdeResponse.

PeopleSoft Proprietary and Confidential 57

Understanding XML CallObject Chapter 7

Code Description

2 The jdeRequest user identification is unknown. Check the user, password, and environment
attributes.

or

A callmethod request is missing the session attribute.

3 An XML parse error exists at line.

4 A fatal XML parse exists error at line.

5 An error occurred during parser initialization; the server is not configured correctly.

6 There is an unknown parse error.

7 The request session attribute is invalid.

8 The request type attribute is invalid.

9 The request type attribute is not given.

10 The request session attribute is invalid; the referenced process ’processid’ no longer exists.

11 The jdeRequest child element is invalid or unknown.

12 The environment ’Env name’ could not be initialized for user. Check user, password, and
environment attribute values.

13 The jdeXMLRequest parameter is invalid.

14 The connection to PeopleSoft EnterpriseOne failed.

15 The jdeXMLRequest send failed.

16 The jdeXMLResponse receive failed.

17 The jdeXMLResponse memory allocation failed.

99 An invalid BSFN name exists.

58 PeopleSoft Proprietary and Confidential

CHAPTER 8

Understanding XML Transaction

This chapter discusses:

• XML Transaction.
• XML Transaction update process.
• XML Transaction data request.
• XML Transaction jde.ini file configuration.

XML Transaction
XML Transaction is XML-based interoperability that runs as a PeopleSoft EnterpriseOne kernel process. You
also can use XML Transaction with a messaging adapter. XML Transaction interacts with interface tables
(Z tables) to update the database or to retrieve data. You can create one XML document that includes both
updates to and retrieval of data from PeopleSoft EnterpriseOne.

XML Transaction Update Process
To insert data into PeopleSoft EnterpriseOne, you use a formatted XML document. The XML document
includes a predefined transaction type, such as JDEPOIN. The XML document identifies one or more
PeopleSoft EnterpriseOne interface tables and lists all of the data (data type and actual data values) to
be updated.

This illustration shows the XML Transaction update process.

PeopleSoft Proprietary and Confidential 59

Understanding XML Transaction Chapter 8

Input XML Document

Parse XML Document

Perform Session
Management

Add Record to
Subsystem Data Queue

Handle Errors

Create XML Response

Response XML
Document

XML
Transaction

Kernel

EnterpriseOne
System

Insert Input Data to an
interface table

XML Transaction data update process flow

In summary:

• A request in the form of an XML document contains a list of the data for a predefined transaction type.
• XML Transaction parses the XML inbound document and inserts the data into a PeopleSoft EnterpriseOne
inbound interface table.

• XML Transaction adds a subsystem data queue record to inform the PeopleSoft EnterpriseOne subsystem
to process the added record.

60 PeopleSoft Proprietary and Confidential

Chapter 8 Understanding XML Transaction

• The system sends a response to the requestor indicating whether the insertion into the interface table and the
subsystem data queue addition were successful.

XML Transaction Data Request Process
To request data from PeopleSoft EnterpriseOne, you use a formatted XML document. The XML document
contains a transaction type, such as JDESOUT, and an index that identifies the data to be retrieved from the
interface tables. You supply a template to retrieve the specific data.

This illustration shows the XML Transaction data request and response process:

Input XML Document

Parse XML Document

Perform Session
Management

Handle Errors

Create XML Response

Response XML
Document

XML
Transaction

Kernel

EnterpriseOne
System

Retrieve Data

XML Transaction data request process flow

In summary:

PeopleSoft Proprietary and Confidential 61

Understanding XML Transaction Chapter 8

• A request in the form of an XML document contains the transaction type and an index of the requested data.
• XML Transaction parses the XML inbound document to get the transaction type and the index.
• XML Transaction retrieves the data from PeopleSoft EnterpriseOne and inserts the data into interface tables.
• XML Transaction creates a response in the form of an XML document.
The response is comprised of the interface table data records that match the transaction type and index. The
response also contains any error messages that might have occurred.

XML Transaction jde.ini File Configuration
The XML Transaction kernel must be defined in the jde.ini file.

[JDENET_KERNEL_DEF15]
These settings re for a Microsoft Windows platform:

krnlName=XML TRANSACTION KERNEL

dispatchDLLName=XMLTransactions.dll

dispatchDLLFunction=_XMLTransactionDispatch@28

maxNumberOfProcesses=1

numberOfAutoStartProcesses=1

This table provides the different .dll extensions for other platforms:

Platform dispatchDLLName dispatchDLLFunction

iSeries XMLTRANS XMLTransactionDispatch

HP9000 libxmltransactions.sl XMLTransactionDispatch

SUN or RS6000 libxmltransactions.so XMLTransactionDispatch

Example: Outbound Order Status XML Request & Response Format
The XML transaction data request is created by the outbound function and sent to the XML transaction API.
These code samples illustrate a sales order request and response.

The format in this XML Transaction request code sample returns all columns for the sales order header
and detail lines:

<?xml version=’1.0’ ?>

<jdeRequest type=’trans’ user=’user’ pwd=’password’ environment=’environment’

role=’*ALL’ session=’’ sessionidle=’300’

<transaction action=’transactionInfo’ type=’JDESOOUT’>

<key>

<column name=’EdiUserId’>value</column>

<column name=’EdiBatchNumber’>value</column>

<column name=’EdiTransactNumber’>value</column>

</key>

</transaction>

62 PeopleSoft Proprietary and Confidential

Chapter 8 Understanding XML Transaction

</jdeRequest>

This code sample shows the XML Transaction response:
<?xml version=’1.0’ encoding=’utf-8’ ?>

<jdeResponse type=’trans’ user=’user’ role=’*ALL’ session=’session1’

environment=’env’>

<transaction type=’JDESOOUT’ action=’transactionInfo’>

<returnCode code=’0’>XML Request OK</returnCode>

<key>

<column name=’EdiUserId’></column>

<column name=’EdiBatchNumber’></column>

<column name=’EdiTransactNumber’></column>

</key>

<table name=’F4201Z1’ type=’header’>

<column name=’EdiUserId’></column>

<column name=’EdiBatchNumber’></column>

</table>

<table name=’F4211Z1’ type=’detail’>

<column name=’EdiUserId’></column>

<column name=’EdiBatchNumber’></column>

</table>

<table name=’F49211Z1’ type=’additionalHeader’>

<WARNING>No record found</WARNING>

</table>

</transaction>

</jdeResponse>

PeopleSoft Proprietary and Confidential 63

Understanding XML Transaction Chapter 8

64 PeopleSoft Proprietary and Confidential

CHAPTER 9

Understanding XML List

This chapter discusses:

• XML List.
• List-Retrieval Engine table conversion wrapper.
• XML List process.
• XML List requests.
• XML List Retrieval Engine jde.ini file configuration.
• XML List jde.ini file configuration

XML List
XML List is XML-based interoperability that runs as a PeopleSoft EnterpriseOne kernel process. XML List
provides List/GetNext functionality that enables you to collect a list of records from PeopleSoft EnterpriseOne.
XML List is built on the PeopleSoft EnterpriseOne table conversion (TC) engine. XML List takes an XML
document as a request and returns an XML document with the requested data. A list can represent data in a
table, a business view, or data from a table conversion. Using data from a table conversion enables you to use
multiple tables. By sending an XML document, you can retrieve metadata for a list, create a list, retrieve a
chunk of data from a list, or delete a list. You can send the request through JDENet or third-party software
to perform any of the these operations:

• CreateList
• GetTemplate
• GetGroup
• DeleteList

XML List provides both trivial and non-trivial List/GetNext APIs. A trivial List/GetNext API performs simple
gets such as selecting data from a single table. A non-trivial API uses additional functionality such as event
rules. Each non-trivial List/GetNextBPAPI must have a table conversion designed for it. The data selection
and data sequencing can be defined in an XML request at runtime.

XML List provides a list-retrieval engine that enables you to create an XML data file in the system repository
and then retrieve the data in small chunks.

PeopleSoft Proprietary and Confidential 65

Understanding XML List Chapter 9

List-Retrieval Engine Table Conversion Wrapper
A list-retrieval engine is an optimized database engine that provides and manages access to XML repository
files. Each XML list repository file is a pair of index and data files with *.idb and *.ddb extensions. The .idb
file keeps an index that is generated on a data file, and the .ddb file keeps data that is generated by the table
conversion engine. TCWrapper is a system module that aggregates list-retrieval and list-processing APIs from
TCEngine and list-retrieval engine and provides a uniform access to the data for XML List.

XML List Process
This illustration shows the XML List process for both a trivial and non-trivial XML List request:

66 PeopleSoft Proprietary and Confidential

Chapter 9 Understanding XML List

Input XML Document

Parse XML Document

Perform Session
Management

Handle Errors

Create XML Response

Response XML
Document

XML
Transaction

Kernel

EnterpriseOne
System

Perform List Functions

JDENet

Java/COM Connectors
or ThinNet

XML List process flow

In summary:

• JDENet receives the XML document.
• JDENet passes the XML document to the XML List kernel.

PeopleSoft Proprietary and Confidential 67

Understanding XML List Chapter 9

• If the request is for CreateList or GetTemplate, XML List creates a session.
• If the request is a trivial request, XML List retrieves the data and creates a response message to send
to the requestor.

• If the request is a non-trivial request, XML List kernel passes the request to the appropriate API:
• GetTemplate
• CreateList
• GetGroup
• DeleteList
• A table conversion wrapper processes data retrieved as a result of a non-trivial request. The table conversion
wrapper aggregates list-retrieval and list-processing APIs from the table conversion engine and the
list-retrieval engine to provide a uniform access to the data.

XML List Requests
This section provides an overview about requests you can make using XML List and discusses:

• Creating a list.

• Retrieving data from a list.

• Deleting a list.

• Getting column information for a list.

Using XML List Requests
You can make any of these requests using XML List:

XML List Request Description

GetTemplate Send a request to retrieve metadata information for a list so that you can add data selection and
data sequencing to the CreateList request.

CreateList Send a request with TC/Table name along with data selection and sequencing. The response
is an XML document that has a handle and size that is associated with the created list in the
repository.

GetGroup Send a request to retrieve data from the generated list by the previous CreateList request.
GetGroup passes the handle value and range of records to be retrieved.

DeleteList Send a request to delete a list from the repository.

This illustration shows the various components in list operations:

68 PeopleSoft Proprietary and Confidential

Chapter 9 Understanding XML List

Table Conversion Wrapper

XML List Public APIs

XML List Kernel

List Retrieval Engine Table Conversion Engine

Index File
XML Data

File

XML List operations components

Creating a List
This code example illustrates using CreateList for an XML request with the TC Name/Table Name, and data
selection and sequencing. The system returns an XML response with a handle that is associated with the
created list:

<?xml version="1.0"?>

<jdeRequest type="list" user="JDE" pwd="JDE" environment="PRODHP01"

role=’*ALL’ session="" sessionidle="">

<ACTION TYPE="CreateList">

<TC_NAME VALUE=""/>

<TC_VERSION VALUE=""/>

<FORMAT VALUE="UT"/>

<RUNTIME_OPTIONS>

<DATA_SELECTION>

<CLAUSE TYPE="WHERE">

<COLUMN NAME="" TABLE="" INSTANCE="" ALIAS=""/>

<OPERATOR TYPE="EQ"/>

<OPERAND>

<COLUMN NAME="" TABLE="" INSTANCE="" ALIAS=""/>

<LITERAL VALUE=""/>

<LIST>

<LITERAL VALUE=""/>

</LIST>

<RANGE>

<LITERAL_FROM VALUE=""/>

<LITERAL_TO VALUE=""/>

PeopleSoft Proprietary and Confidential 69

Understanding XML List Chapter 9

</RANGE>

</OPERAND>

</CLAUSE>

<CLAUSE TYPE="OR">

<COLUMN NAME="" TABLE="" INSTANCE="" ALIAS=""/>

<OPERATOR TYPE="EQ"/>

<OPERAND>

<COLUMN NAME="" TABLE="" INSTANCE="" ALIAS=""/>

<LITERAL VALUE=""/>

<LIST>

<LITERAL VALUE=""/>

</LIST>

<RANGE>

<LITERAL_FROM VALUE=""/>

<LITERAL_TO VALUE=""/>

</RANGE>

</OPERAND>

</CLAUSE>

</DATA_SELECTION>

<DATA_SEQUENCING>

<DATA SORT="ASCENDING">

<COLUMN NAME="Product Code" TABLE="F0004" INSTANCE="" ALIAS=""/>

</DATA>

</DATA_SEQUENCING>

</RUNTIME_OPTIONS>

</ACTION>

</jdeRequest>

Either TC_NAME and TC_VERSION or TABLE_NAME and TABLE_TYPE must be defined in the request.
TABLE_TYPE can be one of these:

• OWTABLE
• OWVIEW
• FOREIGN_TABLE

The CLAUSE can be WHERE, OR, or AND to simulate an SQL statement.

You can specify the COLUMN NAME with any meaningful name to help recognize the real column name in
the table, which should be defined in ALIAS. The values of TABLE, INSTANCE, and ALIAS should be the
same as those in the XML response that is returned by a GetTemplate request. For example, if Column X is in
the data selection, it should be <COLUMN NAME=My column TABLE=F9999 INSTANCE=0 ALIAS=X/>
because information is returned by a GetTemplate request and is similar to this example:

<COLUMN NAME="X" ALIAS="X" TYPE="String" LENGTH="32" TABLE="F9999" INSTANCE="0">

The OPERATOR uses values of EQ, NE, LT, GT, LE, GE, IN, NI, BW (between) or NB.

The OPERAND node can contain one of the these supported element types:

• Column
• Literal
• List

70 PeopleSoft Proprietary and Confidential

Chapter 9 Understanding XML List

• Range

This XML node, which is a template fragment that should be used with only one of the supported elements,
shows the supported elements in the OPERAND node (in bold type):

<CLAUSE TYPE="WHERE">

<COLUMN NAME="UserDefinedCodes" TABLE="F0005" INSTANCE="" ALIAS="RT"/>

<OPERATOR TYPE="EQ"/>

<OPERAND>

<COLUMN NAME="" TABLE="" INSTANCE="" ALIAS="null"/>

<LITERAL VALUE="P4"/>

<RANGE>

</RANGE>

</OPERAND>

</CLAUSE>

These sample XML nodes show the operator type and the operand using the different supported elements.

If the operand is a COLUMN, populate the COLUMN element. For example:
<CLAUSE TYPE="WHERE">

<COLUMN NAME="DRSY" TABLE="F0005" INSTANCE="0" ALIAS="SY"/>

<OPERATOR TYPE="EQ"/>

<OPERAND>

<COLUMN NAME="DRRT" TABLE="F0005" INSTANCE="0" ALIAS="RT"/>

</OPERAND>

</CLAUSE>

If the operand is a LITERAL, populate the LITERAL element. For example:
<CLAUSE TYPE="WHERE">

<COLUMN NAME="DRSY" TABLE="F0005" INSTANCE="0" ALIAS="SY"/>

<OPERATOR TYPE="EQ"/>

<OPERAND>

<LITERAL VALUE="08"/>

</OPERAND>

</CLAUSE>

If the operand is a LIST, populate the element LIST. LIST should be used with IN or NI. For example:
<CLAUSE TYPE="WHERE">

<COLUMN NAME="DRSY" TABLE="F0005" INSTANCE="0" ALIAS="SY"/>

<OPERATOR TYPE="IN"/>

<OPERAND>

<LIST>

<LITERAL VALUE="08"/>

<LITERAL VALUE="09"/>

</LIST>

</OPERAND>

</CLAUSE>

If the operand is a RANGE, populate the element RANGE. RANGE should be used with BW or NB. For
example:

<CLAUSE TYPE="WHERE">

<COLUMN NAME="DRSY" TABLE="F0005" INSTANCE="0" ALIAS="SY"/>

<OPERATOR TYPE="BW"/>

<OPERAND>

PeopleSoft Proprietary and Confidential 71

Understanding XML List Chapter 9

<RANGE>

<LITERAL_FROM VALUE="08"/>

<LITERAL_TO VALUE="10"/>

</RANGE>

</OPERAND>

</CLAUSE>

The XML response for a CreateList request is similar to this:
<?xml version="1.0"?>

<jdeResponse type="list" session="5665.931961929.454">

<returnCode code="0">XMLRequest OK</returnCode>

<ACTION TYPE="CreateList">

<TABLE_NAME VALUE="F0005">

<HANDLE>"1r4670001"</HANDLE>

<SIZE>773</SIZE>

</ACTION>

</jdeResponse>

The value of HANDLE can be published and referenced in a GetGroup or DeleteList request.

Retrieving Data from a List
You can retrieve data from a list generated by a previous CreateList request by using a GetGroup request. The
HANDLE, FROM VALUE, and TO VALUE can be defined in the request:

<?xml version="1.0"?>

<jdeRequest type="list" user="JDE" pwd="JDE" role="*ALL" environment="PRODHP01">

<ACTION TYPE="GetGroup">

<HANDLE VALUE="lr4670001"/>

<FROM VALUE="10"/>

<TO VALUE="50"/>

</ACTION>

</jdeRequest>

The XML response lists records falling into the range specified. The default FROM value is the first record and
the default TO value is the last record in the list. For a GetGroup request for the whole list, no FROM and TO
values need to be specified. In this sample code, the response returns the records in the list from #10 to #50:

<?xml version="1.0"?>

<jdeResponse type="list">

<returnCode code="0">XMLRequest OK</returnCode>

<ACTION TYPE="GetGroup">

<HANDLE VALUE="lr4670001"/>

<FROM VALUE="10"/>

<TO VALUE="50"/>

<Format name="Standard"><Column name="X">abc</Column><Column name="Y">

edf</Column></Format>

00

</ACTION>

</jdeResponse>

72 PeopleSoft Proprietary and Confidential

Chapter 9 Understanding XML List

Deleting a List
A list can be deleted if all GetGroup requests are done:

<?xml version="1.0"?>

<jdeRequest type="list" user="JDE" pwd="JDE" role="*ALL" environment="PRODHP01">

<ACTION TYPE="DeleteList">

<HANDLE VALUE="lr4670001"/>

</ACTION>

</jdeRequest>

The list result defined in the HANDLE is deleted from the storage and a response with the status is returned to
the caller:

<?xml version="1.0"?>

<jdeResponse type="list">

<returnCode code="0">XMLRequest OK</returnCode>

<ACTION TYPE="DeleteList">

<HANDLE VALUE="lr4670001"/>

<STATUS>OK</STATUS>

</ACTION>

</jdeResponse>

Getting Column Information for a List
You can send a GetTemplate request to get the column information for a list so that data selection and
sequencing can be added to the CreateList request. If OUTPUT is defined in the TEMPLATE_TYPE, the
response is only for those columns in the XML output generated by a CreateList request based on the table
conversion. For a trivial table conversion, both templates should be the same. The default template type is
INPUT if no tag is specified.

<?xml version="1.0"?>

<jdeRequest type="list" user="JDE" pwd="JDE" role="*ALL"

environment="PRODHP01" session="" sessionidle="">

<ACTION TYPE="GetTemplate">

<TABLE_NAME VALUE="F0004"/>

<TABLE_TYPE VALUE="OWTABLE"/>

<TEMPLATE_TYPE VALUE="OUTPUT"/>

</ACTION>

</jdeRequest>

The response for the input template lists all of the columns with alias name, type and the length of the data
type, even though the length is only meaningful for the string type.

<?xml version="1.0"?>

<jdeResponse type="list" session="5665.931961929.454">

<returnCode code="0">XMLRequest OK</returnCode>

<ACTION TYPE="GetTemplate">

<TABLE_NAME VALUE="F0004"/>

<TABLE_TYPE VALUE="OWTABLE"/>

<TEMPLATE_TYPE VALUE="INPUT"/>

<COLUMN Name="Address" Alias="X" TYPE="String" LENGTH="32" TABLE="F9999"

INSTANCE="0">

</ACTION>

PeopleSoft Proprietary and Confidential 73

Understanding XML List Chapter 9

</jdeResponse>

List-Retrieval Engine jde.ini File Configuration
The list-retrieval engine uses a predefined folder as its system directory to keep and manage repository files.
This system directory should be configured in jde.ini file as follows:

[LREngine]

System=C:\output

Repository_Size=20 (allocates percentage of disk free space for XML list

repository)

Disk_Monitor=Yes (monitors free space on the disk)

Note. The engine uses the IFS file system on iSeries, so a corresponding system subsection must be set up.

The [SECURITY] section of the jde.ini file should also be configured. The default environment, password,
and user settings should be filled in for the engine to validate the default user and to initialize the default
environment.

XML List jde.ini File Configuration
The XML List kernel must be defined in the jde.ini file.

[JDENET_KERNEL_DEF16]
Use these settings for a Microsoft Windows platform:

krnlName=XML LIST

dispatchDLLName=xmllist.dll

dispatchDLLFunction=_XMLListDispatch@28

maxNumberOfProcesses=3

beginningMsgTypeRange=5257

endingMsgTypeRange=5512

newProcessThresholdRequest=0

numberOfAutoStartProcesses=1

This table provides the different .dll extensions for other platforms:

Platform dispatchDLLName dispatchDLLFunction

iSeries XMLLIST XMLListDispatch

HP9000 libxmllist.sl XMLListDispatch

SUN or RS6000 libxmllist.so XMLListDispatch

74 PeopleSoft Proprietary and Confidential

CHAPTER 10

Processing Z Transactions

This chapter provides an overview of Z Transactions and discusses how to:

• Name the transaction.
• Add records to the inbound interface table.
• Run an update process.
• Check for errors.
• Confirm the update (option, user supplied).
• Purge data from the interface table.

Understanding Z Transactions
Z transactions are non-PeopleSoft EnterpriseOne information that is properly formatted in the interface tables
(Z tables) for updating to the PeopleSoft EnterpriseOne database. Interface tables are working tables that
mirror PeopleSoft EnterpriseOne applications tables. PeopleSoft EnterpriseOne provides predefined interface
tables for some application transactions. You also can create your own interface tables as long as they are
formatted according to PeopleSoft EnterpriseOne standards.

You can process Z transactions into PeopleSoft EnterpriseOne one transaction at a time (referred to as a batch
of one), or you can place a large number of transactions into the interface table and then process all of the
transactions at one time (referred to as a true batch).

See Also
Appendix B, “Interoperability Interface Table Information,” page 243

Naming the Transaction
Z transaction types are defined in user-defined code 00/TT. If you create a new transaction, you must define
the transaction in user-defined code 00/TT. When you name a new transaction type, the name must start with
JDE and can be up to eight characters in length. These examples illustrate a proper transaction name:

• JDERR for Receipt Routing Transaction.
• JDEWO for Work Order Header Transaction.

PeopleSoft Proprietary and Confidential 75

Processing Z Transactions Chapter 10

Adding Records to the Inbound Interface Table
When you write your transaction to the appropriate interface table, you make the information available to
PeopleSoft EnterpriseOne for processing. Z transactions may be written directly to interface tables that are
already in the EnterpriseOne database format. This list shows some of the ways that you can add records to
the inbound interface tables:

• Create a flat file and then convert the flat file data into records in the interface table.

• Write an Application Programming Interface (API) using PeopleSoft EnterpriseOne-published APIs
to update the interface table.

• Use Electronic Data Interchange (EDI) to update the interface table.

• Place a message in an MQ Series or MSMQ messaging adapter.

• Use Structured Query Language (SQL) or stored procedures. You must be able to convert your records to the
PeopleSoft EnterpriseOne interface table format.

Important! If you are using a flat file to add records to the PeopleSoft EnterpriseOne interface tables, verify
that a version of the Inbound Flat File Conversion (R47002C) program exists for the transaction you are
trying to create.

Running an Update Process
You can process Z transactions in one of these ways:

• Run an input batch process, which enables you to place a large number of transactions into the interface
table and then process all of the transactions at one in batch mode.

• Run a subsystem job, which enables you to send transactions to PeopleSoft EnterpriseOne one at a time
without having to wait for completion to continue processing using the subsystem.

PeopleSoft EnterpriseOne provides input batch and input subsystem processes for some applications.

Running an Input Batch Process
The input batch process enables you to place one or more records in an interface table and then run a UBE to
process all of the records at one time. You initiate the input batch process for an application that supports
inbound interoperability processing. When you select the input batch program, the program displays a version
list of report features. You can use an existing report version, change an existing report version, or add a report
version. You can change the processing options and data selection when you use a report version. The input
batch process program generates an audit report that lists the transactions that were processed, totals for the
number of processed transactions, and errors that occurred during processing.

76 PeopleSoft Proprietary and Confidential

Chapter 10 Processing Z Transactions

Running a Subsystem Job
Subsystem jobs are continuous jobs that process records from a data queue and run until you terminate the job.
Subsystem jobs read records one at a time for a subsystem table, retrieve information from that particular
record, and run a UBE or table conversion for each record. This triggers the inbound processor batch process
that processes that specific key. If required, a preprocessor runs from the inbound processor batch process
to establish key information that matches the interface table record to the original application record (for
example, the key to a cash receipt or purchase receipt). After processing the last record, instead of ending the
job, subsystem jobs wait for a specific period and then attempt to retrieve a new record. For each subsystem
job, multiple records can exist in the subsystem table.

You can schedule subsystem jobs.

You initiate a subsystem job in one of these ways:

Ways to Initiate Subsystem Jobs Explanation

Use a business function You can use the generic subsystem business function, Add Inbound Transaction to
Subsystem Queue (B0000175), for inbound transactions. This function writes a
record to the F986113 table to specify a batch process that needs to be awakened
in the subsystem. The business function also passes keys to the subsystem data
queue. The business function then starts processing the transaction.

Use the Solution Explorer You can use the Solution Explorer to initiate the input subsystem batch process
for an application that supports inbound interoperability processing. You
start the subsystem job as you would a regular batch job. Unlike other batch
jobs, subsystem jobs can only run on a server. Before processing, PeopleSoft
EnterpriseOne makes sure that limits for the subsystem job on the particular
server have not been exceeded. If limits have been exceeded, the subsystem job
will not be processed. To process your Z transaction in near real-time mode, start
the subsystem when you start your system. You will need to place your request in
the data queue before you write your transaction to the interface table.

Important! Instead of ending the job after the records have been processed, subsystem jobs look for new
data in the data queue. Subsystem jobs run until you terminate them.

See Also
EnterpriseOne Tools 8.94 PeopleBook: System Administration, “Using the Scheduler Application”

EnterpriseOne Tools 8.94 PeopleBook: System Administration, “Working with Servers,” Managing
EnterpriseOne Subsystems

Checking for Errors
The input batch process uses the data in the interface tables to update the appropriate PeopleSoft EnterpriseOne
application tables as dictated by the business logic. If the process encounters an error for the transaction, the
record is flagged in the processor audit trail report and error messages are sent to the employee work center in
the form of action messages. These action messages, when invoked, call a revision application that enables
you to make corrections to the interface table.

PeopleSoft Proprietary and Confidential 77

Processing Z Transactions Chapter 10

When you review the errors in the work center, you can link directly to the associated transaction in
the interface table to make corrections. You use a revision application to resubmit individual corrected
transactions for immediate processing, or you can correct all transaction errors and then resubmit them
all at once in a batch process.

The system flags all transactions that have been successfully updated to the live files as successfully processed
in the interface tables.

See Also
Chapter 20, “Using Batch Interfaces,” Using the Revision Application, page 220

Confirming the Update
This step is optional. If you use a business function, you can provide a confirmation function to alert you
that a transaction you sent into the PeopleSoft EnterpriseOne system been processed. When processing is
complete, PeopleSoft EnterpriseOne calls the function that is specified in the request to notify you of the status
of your process. The confirmation functions are written to your specifications, but you must use the PeopleSoft
EnterpriseOne defined data structure. Interoperability inbound confirmation functions are called from the
inbound processor batch program through the Call Vendor-Specific Function - Inbound business function.

The confirmation function is specific to a process and must accept these parameters:

User ID 11 characters

Batch Number 16 characters

Transaction Number 23 characters

Line Number Double

Successfully Processed 1 characters

The first four parameters are the keys (EDUS, EDBT, EDTN, EDLN) to the processed transaction. The last
full path of the library containing the function must be passed to the subsystem batch process that processes the
transaction. This information is passed through the inbound transaction subsystem data structure.

After the subsystem batch process finishes processing the transaction, it calls the inbound confirmation
function, passing the keys to the processed transaction and the notification about whether the transaction was
successfully processed. You include logic in your function to take appropriate action based on the success
or failure of the transaction.

If you create a transaction confirmation function, you can also use the function to perform any of these tasks:

78 PeopleSoft Proprietary and Confidential

Chapter 10 Processing Z Transactions

Task Explanation

Update your original transaction By creating a cross-reference between the original
transaction and the transaction written to the
interoperability table, you can access the original
transaction and update it as completed or at an error status.

Using the key returned to this function, you can access the
transaction that is written to the interoperability interface
table and retrieve any calculated or default information to
update your original transaction.

Run other non-PeopleSoft EnterpriseOne business
processes

If your transaction is complete, you might want to run
a business process that completes the transaction in the
non-PeopleSoft EnterpriseOne software.

Send messages to users You might want to inform your users of the status of their
original transactions.

Purging Data from the Interface Table
You should periodically purge records that have been successfully updated to the PeopleSoft EnterpriseOne
database from the interface tables.

See Also
Appendix B, “Interoperability Interface Table Information,” Interoperability Interface Table Information,
page 243

Chapter 20, “Using Batch Interfaces,” Purging Interface Table Information, page 220

PeopleSoft Proprietary and Confidential 79

Processing Z Transactions Chapter 10

80 PeopleSoft Proprietary and Confidential

CHAPTER 11

Using Flat Files

This chapter provides an overview of flat files and discusses how to:

• Format flat files.
• Set up flat files.
• Convert flat files using the Flat File Conversion program.
• Convert flat files using a business function.
• Convert flat files using APIs.

Understanding Flat Files
Flat files (also known as user-defined formats) are usually text files that are stored on your workstation or
server and typically use the ASCII character set. Because data in a flat file is stored as one continuous string of
information, flat files do not have relationships defined for them as relational database tables do. Flat files can
be used to import or export data from applications that have no other means of interaction. For example, you
might want to share information between PeopleSoft EnterpriseOne and another system. If the non-PeopleSoft
EnterpriseOne system does not support the same databases that PeopleSoft EnterpriseOne supports, then flat
files might be the only way to transfer data between the two systems.

When you use flat files to transfer data to PeopleSoft EnterpriseOne, the data must be converted to PeopleSoft
EnterpriseOne format before it can be updated to the live database. You can use PeopleSoft EnterpriseOne
interface tables along with a conversion program, electronic data interface (EDI), or table conversion to
format the flat file data. You can use EDI or table conversion to retrieve PeopleSoft EnterpriseOne data
for input to a flat file.

XPI and some PeopleSoft EnterpriseOne batch interfaces, such as the batch extraction programs, can accept flat
files and parse the information to data format. Typically, XPI uses the File I/O Adapter for flat file processing.

Note. PeopleSoft EnterpriseOne supports flat file conversion on the Windows platform only.

See Also
Chapter 20, “Using Batch Interfaces,” PeopleSoft EnterpriseOne Interface Tables, page 217

Appendix B, “Interoperability Interface Table Information,” Interoperability Interface Table Information,
page 243

EnterpriseOne Tools 8.94 PeopleBook: Development Tools: Tables and Business Views, “Preparing Foreign
Tables for Table Conversion”

Data Interface for Electronic Data Interchange

PeopleSoft Proprietary and Confidential 81

Using Flat Files Chapter 11

Formatting Flat Files
When you import data using PeopleSoft EnterpriseOne interface tables, the format for flat files can be
user-defined or character-delimited. This example illustrates a single database character record that has a
user-defined format with five columns (Last, First, Addr (address), City, and Phone):

Last First Addr City Phone Table Column Heading

Doe John 123 Main Any town 5551234 ← database record

The user-defined format example is a fixed-width column format in which all of the data for each column starts
in the same relative position in each row of data.

This is an example of the same data in a character-delimited format:

"Doe", "John", "123 Main", "Anytown", "5551234"

Setting Up Flat Files
The format of the record in the flat file must follow the format of the interface table. This means that every
column in the table must be in the flat file record and the columns must appear in the same order as the
interface table. Every field in the interface tables must be written to, even if the field is blank. Each field
must be enclosed by a symbol that marks the start and end of the field. Typically, this symbol is a double
quotation mark (“ “). In addition, each field must be separated from the next field with a field delimiter.
Typically, this separator value is a coma (,). However, any field delimiter and text qualifier may be used as
long as they do not interfere with the interpretation of the fields. You set the processing options on the
conversion program to define the text qualifiers and field delimiters. If you are receiving documents with
decimal numbers, you must use a placeholder (such as a period) to indicate the position of the decimal. You
define the placeholder in the User Preference table.

The first field value in a flat file record indicates the record type. In other words, the first field value indicates
into which interface table the conversion program should insert the record. Record type values are defined and
stored by the record type user defined code table (00/RD). The hard-coded values are:

• 1: Header
• 2: Detail
• 3: Additional Header
• 4: Additional Detail
• 5: SDQ
• 6: Address
• 7: Header Text
• 8: Detail Text

For example, suppose a record in the header table has this information (this example ignores table layout
standards):

82 PeopleSoft Proprietary and Confidential

Chapter 11 Using Flat Files

Record Type Name Address City Zip Code

1 Joe <Blank> Denver 80237

This is how the record in the flat file appears:

1, Joe,,Denver,80237

Note that "1" corresponds to a header record type, and the blank space corresponds to the <Blank> in the
Address column.

Dates must be in the format MM/DD/YY. Numeric fields must have a decimal as the place keeper. A comma
cannot be used.

Using the Flat File Conversion Program
If you have a Windows platform, you can use the Inbound Flat File Conversion program (R74002C) or the
Import Flat File To JDE File (B4700240) business function.

If you are on a Windows platform, you can use the Inbound Flat File Conversion program (R47002C) to import
flat files into PeopleSoft EnterpriseOne interface tables. You create a separate version of the Inbound Flat
File Conversion program for each interface table.

Note. To use the Inbound Flat File Conversion program, you must map a drive on your PC to the location of
the flat file.

This diagram shows the process for updating PeopleSoft EnterpriseOne interface tables using flat files:

Flat File

Flat File Conversion Program
Universal Batch Engine (R47002C)

PeopleSoft EnterpriseOne
Interface tables

Flat File Cross-reference
table (F47002)

Flat File Cross-reference
program (P47002)

Flat file conversion program process flow

PeopleSoft Proprietary and Confidential 83

Using Flat Files Chapter 11

You use the Flat File Cross-Reference program (P47002) to update the F47002 table. The conversion program
uses the F47002 table to determine which flat file from which to read based on the transaction type that is
being received. This list identifies some of the information that resides in the F47002 table:

• Transaction Type

The specific transaction type. The transaction type must be defined in UDC 00/TT.

• Direction Indicator

A code that indicates the direction of the transaction. The direction indicator code must be defined in
UDC 00/DN.

• Flat File Name
The path to the flat file on your Windows PC.

• Record Type
An identifier that marks transaction records as header, detail, and so on. The record type indicator must be
defined in UDC 00/RD.

• File Name
A valid PeopleSoft EnterpriseOne interface table.

The conversion program uses the Flat File Cross-Reference table to convert the flat file to the PeopleSoft
EnterpriseOne interface tables. The conversion program recognizes both the flat file it is reading from and the
record type within that flat file. Each flat file contains records of differing lengths based on the corresponding
interface table record.

The conversion program reads each record in the flat file and maps the record data into each field of the
interface table based on the text qualifiers and field delimiters specified in the flat file. All fields must
be correctly formatted for the conversion program to correctly interpret each field and move it to the
corresponding field in the appropriate inbound interface table.

The conversion program inserts the field data as one complete record in the interface table. If the conversion
program encounters an error while converting data, the interface table is not updated. Because the flat file
is an external object that is created by third-party software, the conversion program is not able to determine
which flat file data field is formatted incorrectly. You must determine what is wrong with the flat file. When
the conversion program successfully converts all data from the flat file to the interface tables, the conversion
program automatically deletes the flat file after the conversion. After the data is successfully converted
and if you set the processing option to start the next process in the conversion program, the conversion
program automatically runs the inbound processor batch process for that interface table. If you did not set
up the processing option to start the inbound processor batch program, you must manually run the Flat File
Conversion (R47002C) batch process.

If the flat file was not successfully processed, you can review the errors in the Employee Work Center, which
you can access from the Workflow Management menu (G02). After you correct the error condition, run
R47002C again.

84 PeopleSoft Proprietary and Confidential

Chapter 11 Using Flat Files

Forms Used to Convert Flat File Information
Form Name Form ID Navigation Usage

WorkWith Flat File
Cross-Reference

W47002A From an application that
supports flat file conversion,
open the Flat File
Cross-Reference Program.

Identify the transaction type.

Flat File Cross-Reference W47002B On Flat File Cross
Reference, select Define
from the Row menu.

Enter the name of the flat
file, define the record
types, and indicate the
PeopleSoft EnterpriseOne
destination file.

Defining the Flat File Cross Reference Table
Access the Flat File Cross Reference form.

Flat File Cross Reference form

Flat File Cross Reference

Flat File Name The name of the flat file. This includes the directory path where the flat
file exists.

PeopleSoft Proprietary and Confidential 85

Using Flat Files Chapter 11

Record Type The identifier that marks EDI transaction records as header and detail
information. This is an EDI function only.

Record Type Description A user-defined name or remark.

File Name The number of a specific table. For example, the Account Master table
name is F0901. See the Standards Manual on the programmers’ menu for
naming conventions.

Using a Business Function to Import Flat Files
If you are on a Windows platform, you can use the business function named Import Flat File To JDE File
(B4700240). Because of changes to server operating systems and the various ways that operating systems store
files, PeopleSoft EnterpriseOne only supports the business function when run from a Windows platform. If
you use the Import Flat File To JDE File (B4700240) business function, note these constraints:

• Transaction Type and Flat File Name fields must contain data.
• Only one character is allowed in the Record Type field.
• The maximum length per line is 4095 characters.
• The maximum record types are 40.
• Every line must have a record.
• The text qualifier cannot be the same as the column delimiter.

To ensure that flat file data is properly formatted before it is inserted into interface tables, the business function
uses the F98713 table to obtain primary index key information. Normally, the F98713 table is located under
the Default Business Data table mapping in the Object Configuration Manager. So that the business function
can find the F98713 table, you must take one of these actions:

• Map the F98713 table in the system data source.
• Ensure the F98713 table exists in the business data source.

Map the F98713 table in the System Data Source
To map the table in the system data source, add an OCM mapping that points the F98713 table to the central
objects data source.

Ensure the F98713 table Exists in the Business Data Source
If you generate the F98713 table in the business data source, you must ensure that file extensions on your PC
are hidden. To hide file extensions, complete these steps:

1. From Start/Settings/Control Panel/Folder Options, click the View tab.
2. Select the Hide file extension for known file types option, and then click OK.

You must also ensure that the Flat File Name field in the F47002 table has a file extension. For example:
C:\flatfiles\850.txt.

Flat File Conversion Error Messages
These two errors might occur when you use the business function to convert flat files:

86 PeopleSoft Proprietary and Confidential

Chapter 11 Using Flat Files

• 4363 Null Pointer
• 4377 Invalid Input Parameter

Both of the errors are internal problems within the business function.

These errors might occur as a result of problems with user setup or with the configurable network computing
(CNC) implementation:

• 0073 Invalid File Name
• 128J (filename) Insert Failed
• 3003 Open of File Unsuccessful
• 4569 Invalid Format

Using APIs to Convert Flat Files
In addition to the existing flat file APIs, PeopleSoft EnterpriseOne provides APIs for non-Unicode flat files.
The Unicode APIs are required when flat file data is written to or read by a process outside of PeopleSoft
EnterpriseOne. The PeopleSoft EnterpriseOne APIs, such as jdeFWrite() and jdeFRead(), do not convert flat
file data, which means that the default flat file I/O for character data is in Unicode. If you use PeopleSoft
EnterpriseOne-generated flat files and the recipient system is not expecting Unicode data, you will not be able
to read the flat file correctly. For example, if the recipient system is not Unicode enabled and the system is
expecting data in the Japanese Shift_JIS code page (or encoding), you will not be able to read the flat file
correctly. To enable the creation of the flat file in the Japanese Shift_JIS page, the application that creates the
flat file must be configured using the Unicode Flat File Encoding Configuration program (P93081). If the flat
file is a work file or debugging file and will be written and read by PeopleSoft EnterpriseOne only, the existing
flat file APIs should be used. For example, if the business function is doing some sort of caching in a flat
file, that flat file data does not need to be converted.

The PeopleSoft EnterpriseOne conversion to Unicode uses UCS-2 encoding in memory, or two bytes per
character (JCHAR), for representation of all character data. The character data that is passed to the output
flat file APIs needs to be in JCHAR (UCS-2). The input flat file APIs converts the character data from
a configured code page to UCS-2 and returns the character in JCHAR (or JCHAR string). The flat file
conversion APIs enable you to configure a code page for the flat file at runtime. You use P93081 to set up
the flat file code page. Flat file encoding is based on attributes such as application name, application version
name, user name, and environment name.

If no code page is specified in the configuration application, the APIs perform flat file I/O passing through
the data as it was input to the specific function. For example, jdeFWriteConvert() writes Unicode data and
no conversion is performed.

See Also
EnterpriseOne Tools 8.94 PeopleBook: Development Tools: Tables and Business Views, “Preparing Foreign
Tables for Table Conversion”

PeopleSoft Proprietary and Confidential 87

Using Flat Files Chapter 11

Forms Used to Convert Flat File Information
Form Name Form ID Navigation Usage

WorkWith Flat File
Encoding

W93081A From the fat client, select
System Administration
Tools (GH9011), System
Administration Tools,
User Management, User
Management Advanced and
Technical Operations,
Unicode Flat File Encoding
Configuration

Locate and review existing
Unicode flat file encoding
configurations.

Flat File Encoding Revision W93081B OnWorkWith Flat File
Encoding, click Add

Add or change Unicode flat
file encoding configuration
information.

WorkWith Flat File
Encoding

W93081A OnWorkWith Flat File
Encoding, click Find, select
your newly added Unicode
configuration record in the
detail area, and then select
Change Status from the
Rowmenu.

Activate or deactivate
a Unicode configuration
record.

Setting Up Flat File Encoding
Access the Unicode Flat File Encoding Configuration form from the fat client.

88 PeopleSoft Proprietary and Confidential

Chapter 11 Using Flat Files

Unicode Flat File Encoding Configuration form

Flat File Encoding Configuration

User / Role A profile that classifies users into groups for system security purposes. You
use group profiles to give the members of a group access to specific programs.
Some rules for creating a profile for a user class or group include:

• The name of the user class or group must begin with an asterisk (*) so that it
does not conflict with any system profiles.

• The User Class/Group field must be blank when you enter a new group
profile.

Environment For install applications, the environment name is also called the Plan Name
and uniquely identifies an upgrade environment for install/reinstall.
For environment or version applications, this is the path code that identifies the
location of the application or version specification data.

Program ID The number that identifies the batch or interactive program (batch or interactive
object). For example, the number of the Sales Order Entry interactive program
is P4210, and the number of the Print Invoices batch process report is R42565.

PeopleSoft Proprietary and Confidential 89

Using Flat Files Chapter 11

The program ID is a variable length value. It is assigned according to a
structured syntax in the form TSSXXX, where:

• T is an alphabetic character and identifies the type, such as P for Program,
R for Report, and so on.

For example, the value P in the number P4210 indicates that the object
is a program.

• SS are numeric characters and identify the system code.

For example, the value 42 in the number P4210 indicates that this program
belongs to system 42, which is the Sales Order Processing system.

• XXX (the remaining characters) are numeric and identify a unique program
or report.
For example, the value 10 in the number P4210 indicates that this is the
Sales Order Entry program.

Version A user-defined set of specifications that control how applications and reports
run. You use versions to group and save a set of user-defined processing option
values and data selection and sequencing options. Interactive versions are
associated with applications (usually as a menu selection). Batch versions
are associated with batch jobs or reports. To run a batch process, you must
select a version.

Encoding Name A code that indicates the name of the encoding that the system uses to produce
or consume flat files.

90 PeopleSoft Proprietary and Confidential

CHAPTER 12

Using Events - Classic

This chapter provides an overview of PeopleSoft EnterpriseOne events and discusses how to:

• Define events.
• Subscribe to events.
• Configure the jde.ini file for events.
• Use reliable event delivery.
• Enter events.
• Enter subscription information.

Note. This chapter is applicable only if you use classic events delivery. Classic event delivery is available
when you use PeopleSoft EnterpriseOne Tools 8.94 with PeopleSoft EnterpriseOne Applications 8.10 or earlier
releases of the PeopleSoft EnterpriseOne Applications.

Refer to the Guaranteed Events chapters if you use PeopleSoft EnterpriseOne Tools 8.94 with PeopleSoft
EnterpriseOne Applications 8.11.

Understanding Events - Classic
PeopleSoft event functionality provides an infrastructure that can capture PeopleSoft EnterpriseOne
transactions in various ways and provide real-time notification to third-party software, end users, and other
PeopleSoft systems, such as XPI and CRM.

PeopleSoft EnterpriseOne notifications are called events. The PeopleSoft EnterpriseOne event system
implements a publish/subscribe model. Events are delivered to subscribers in XML documents that contain
detailed information about the event. For example, when you enter a sales order into the system, the system
can automatically send the sales order information to a CRM or supply chain management application for
further processing. If your system is IBM, you can use MQSeries messaging to receive events. If your
system is Microsoft, you can use MSMQ messaging to receive events. MQSeries and MSMQ provide a
point-to-point interface with PeopleSoft EnterpriseOne. PeopleSoft EnterpriseOne supports three kinds of
events, as described in the table:

Type of Event Description

Z Events A service that uses interface table functionality to capture PeopleSoft EnterpriseOne
transactions and provide notification to third-party software, end-users, and other PeopleSoft
systems that have requested to be notified when certain transactions occur.

PeopleSoft Proprietary and Confidential 91

Using Events - Classic Chapter 12

Type of Event Description

Real-Time Events A service that uses system calls to capture PeopleSoft EnterpriseOne transactions as they occur
and provide notification to third-party software, end users, and other PeopleSoft systems that
have requested notification when certain transactions occur.

XAPI Events A service that uses system calls to capture PeopleSoft EnterpriseOne transactions as they occur
and then calls third-party software, end users, and other PeopleSoft systems that have requested
notification when the specified transactions occur to return a response. XAPI events can be
from PeopleSoft EnterpriseOne to a third-party system, from a third-party system to PeopleSoft
EnterpriseOne, or between two PeopleSoft EnterpriseOne systems.

The PeopleSoft EnterpriseOne event system consists of these modules:

• Event distributor
• Event generators
• Transport drivers

The event distributor is a PeopleSoft EnterpriseOne kernel process called the event notification (EVN) kernel.
The EVN kernel manages the subscribers and notifies them when an event occurs. The EVN kernel is shared
by Z events, real-time events, and XAPI events.

Event generators are processes or libraries capable of generating events. PeopleSoft EnterpriseOne provides
three default event generators:

• Z event generator, which generates Z events.
• Real-time event generator, which generates real-time events.
• XAPI event generator, which generates XAPI events.

Z events, real-time events, and XAPI events have slightly different XML documents.

The event distributor uses a transport driver to send events. PeopleSoft EnterpriseOne provides a default
transport driver that uses JDENET. The event distributor can also send event documents to designated
MQSeries or MSMQ outbound queues using MQSeries or MSMQ transport drivers. If you use MQSeries or
MSMQ transport drivers to receive events, you receive all events that are defined in the F90701 table.

Defining Events
When an event is generated, the IEO kernel reads the F90701 table for that event. If the specified event
category is different from the event category configured in the database, the system writes an error to the IEO
log file. If the database definition of the event is not found, the system writes this message to the IEO log.

Warning: table F90701 doesn’t exist. Some features will be turned off.

Note. When you update or modify the F90701 table, you must restart the server for the changes to become
effective.

92 PeopleSoft Proprietary and Confidential

Chapter 12 Using Events - Classic

Reducing Network Traffic
To reduce network traffic, real-time event processing sends only active events. If a single event is identified
as inactive in table F90701 and is part of an active container event, the CallObject kernel sends the active
container event and the active single events to the IEO and EVN kernels to create the XML and to distribute
to subscribers. Inactive single events that have been disabled by the CallObject kernel are embedded in the
container event but are not sent as separate single events.

The CallObject kernel debug log contains information about the inactive single events that are not created.
This is an example CallObject Kernel debug log message:

Inactive container event <event name> is not added to prevent bursting

This scenario illustrates the process:

• RTABHDR and RTABPHOUT are inactive single events.

• RTABEAOUT is an active single event.

• RTABOUT is an active container event that contains RTABHDR, RTABPHOUT, and RTABEAOUT.

• The business function creates these events:

- 1 RTABHDR event

- 2 RTABPHOUT events

- 5 RTABEAOUT events

• The RTABOUT container event and the five RTABEAOUT events are sent from the CallObject kernel to the
IEO and EVN kernels for processing and distribution to the subscriber. Inactive single events, RTABHDR
and RTABPHOUT, are not sent.

• The subscriber receives:

- 1 RTABOUT container event with all of the subdata structures that are defined in the single events
RTABHDR, RTABPHOUT, and RTABEAOUT.

- 5 RTABEAOUT single events.

Subscribing to Events
For XAPI events, you must update the F90702 table so that you can receive a response to your XAPI event.
Each XAPI event must have a logical subscriber, which you might have to set up. For Z and real-time events,
the system dynamically updates this table when the event is created. You can use the F90702 table to view the
persistent subscriptions for your Z and real-time events.

If the database table is missing, the system writes these messages to the IEO log:

CheckTableExists failed: invalid hEnv or hUser.

Warning: table F90702 doesn’t exist. Some features will be turned off.

PeopleSoft Proprietary and Confidential 93

Using Events - Classic Chapter 12

Configuring the jde.ini file for Events
The PeopleSoft EnterpriseOne server jde.ini file must be properly configured to support Z, real-time, and
XAPI event generation. You use a text editor to manually edit and verify specific settings in the PeopleSoft
EnterpriseOne server jde.ini file.

Note. If your enterprise contains more than one PeopleSoft EnterpriseOne server, you must ensure that each
server has the same settings for all logic, batch, and interoperability sections.

Use these kernel and [JDEITDRV] settings to configure the jde.ini file on your PeopleSoft EnterpriseOne
server. Configure the kernels that are appropriate for the type of event (Z, real-time, or XAPI) that you
want to generate.

Note. To determine which kernels you need to set and for other jde.ini settings for each specific type of event,
refer to the Configure the jde.ini File topics in the Events section of the Interoperability Guide.

[JDENET_KERNEL_DEF19]
Use these settings for a Windows Microsoft platform:

krnlName=EVN KERNEL

dispatchDLLName=jdeie.dll

dispatchDLLFunction=_JDEK_DispatchITMessage@28

maxNumberOfProcesses=1

numberOfAutoStartProcesses=0

[JDENET_KERNEL_DEF20]
Use these settings for a Microsoft Windows platform:

krnlName=IEO KERNEL

dispatchDLLName=jdeieo.dll

dispatchDLLFunction=_JDEK_DispatchIEOMessage@28

maxNumberOfProcesses=1

numberOfAutoStartProcesses=0

[JDENET_KERNEL_DEF22]
Use these settings for a Microsoft Windows platform:

krnlName=XML Dispatch KERNEL

dispatchDLLName=xmldispatch.dll

dispatchDLLFunction=_XMLDispatch@28

maxNumberOfProcesses=1

numberOfAutoStartProcesses=0

[JDENET_KERNEL_DEF24]
Use these settings for a Microsoft Windows platform:

krnlName=XML Service KERNEL

94 PeopleSoft Proprietary and Confidential

Chapter 12 Using Events - Classic

dispatchDLLName=xmlservice.dll

dispatchDLLFunction=_XMLServiceDispatch@28

maxNumberOfProcesses=1

numberOfAutoStartProcesses=0

[JDEITDRV]
Use these settings for a Microsoft Windows platform:

DrvCount=5

Drv1=Z:zdrv.dll

Drv2=RT:rtdrv.dll

Drv3=JDENET:jdetrdrv.dll

Drv4=MSMQ:msmqrtdrv.dll

Drv5=MQS:mqsrtdrv.dll

Note. You set event generation and transport drivers in the [JDEITDRV] section of the jde.ini file. You are not
required to set all of these drives. For example, if you do not use messaging transports, you would not use the
MSMQ and MQS settings. Be sure that you define DrvCount with the number of settings that you are using.

[JDENET]
This setting specifies the maximum number of JDENET kernels:

MaxKernelRanges=27

Note. You must set this value to encompass the total number of kernels that you defined.

This table shows the DLL and DRV settings for other platforms:

Table Column Heading iSeries HP9000 Sun or RS6000

EVN (19)
dispatchDLLName

JDEIE libjdeie.sl libjdeie.so

EVN (19)
dispatchDLLFunction

JDEK_DispatchITMessage JDEK_DispatchITMessage JDEK_DispatchITMessage

IEO (20)
dispatchDLLName

JDEIEO libjdeieo.sl libjdeieo.so

IEO (20)
dispatchDLLFunction

JDEK_
DispatchIEOMessage

JDEK_
DispatchIEOMessage

JDEK_
DispatchIEOMessage

XML Dispatch (22)
dispatchDLLName

XMLDSPATCH libxmldispatch.sl libxmldispatch.so

XML Dispatch (22)
dispatchDLLFunction

JDEK_XMLDispatch JDEK_XMLDispatch JDEK_XMLDispatch

XML Service (24)
dispatchDLLName

XMLSERVICE libxmlservice.sl libxmlservice.so

PeopleSoft Proprietary and Confidential 95

Using Events - Classic Chapter 12

Table Column Heading iSeries HP9000 Sun or RS6000

XML Service (24)
dispatchDLLFunction

JDEK_
XMLServiceDispatch

JDEK_
XMLServiceDispatch

JDEK_
XMLServiceDispatch

Drv1 RTDRV librtdrv.sl librtdrv.so

Drv2 ZDRV libzdrv.sl libzdrv.so

Drv3 JDETRDRV libjdetrdrv.sl libjdstrdrv.so

Drv4 MSMQRTDRV libmsmqrtdrv.sl libmsmqrtdrv.so

Drv5 MQSRTDRV libmqsrtdrv.sl libmqsrtdrv.so

Using Reliable Event Delivery
This section provides an overview of reliable event delivery and discusses:

• Reliable event delivery system configuration.
• Reliable event delivery error messages.
• Minimizing duplicate and lost events.

• Increasing performance.

Understanding Reliable Event Delivery
Reliable event delivery supports Z events, real-time events, and XAPI events. To use the Reliable Event
Delivery feature, you must define your events in database tables. You cannot define your events in the
jde.ini file.

The JDENET transport delivers Z events, real-time events, and XAPI events. Reliable event delivery ensures
recovery and delivery of an event when transport problems arise, including some network problems. These
scenarios identify circumstances for which events might be lost, but can be recovered and delivered:

• The JDENET process is down.
• JDENET fails to deliver because the network link between sender and receiver is permanently down.
• JDENET fails to deliver because the IPC buffer of the receiving kernel is full (sender and receiver are on
different boxes).

Note. Reliable delivery covers failures that are related only to the transport of the events. Reliable delivery
does not provide a once-and-only-once type of guarantee. Events might be lost and not recovered (or
duplicates might be redelivered) in the presence of process failures (client and server).

Real-time event delivery is reliable for transportation failures between the real-time API and the Java
connector, which includes IEO and EVN kernels. XAPI outbound event delivery is reliable for transportation
failures between the XAPI API and the Java connector, including the IEO and EVN kernels. Z event delivery
is reliable for transportation failures between the Z event generator and the Java connector.

96 PeopleSoft Proprietary and Confidential

Chapter 12 Using Events - Classic

The level of reliability is configurable based on whether the event is reliable or volatile. Volatile events are
events that might be lost if the network or process fails and delivery is not reliable. Reliable events could
be lost in the case of process failures only. You can configure the level of reliability for every event type.
The level of reliability depends on whether the event is a business critical event. For example, you might
configure an inquiry as volatile, because an inquiry is not a critical business event and you do not want the
system to continually look for the event should the event fail. You might configure a purchase order as reliable,
because this is a critical business event and you do want the system to continually look for the event and make
the transaction update. Volatile events offer better performance than reliable events, but delivery is not
reliable if the event is lost during transportation.

Real-time and XAPI events can be single, aggregate, or composite events. A composite event consists of single
events. The composite event and the single events that make up the composite event can have different levels
of reliability. For example, you register composite events as RTSOOUT with a level of reliability as reliable,
and you register single events as RTSOLINE with a level of reliability as volatile. The level of reliability
configured for RTSOOUT will not override the level of reliability that is configured for RTSOLINE. The
rationale for this is that the reliability of events is based on the event type. If you decide that single event
types are not important enough to configure as reliable delivery, then the single events that are created during
composite event creation should have the same level of reliability as other single events.

The APIs you use to create real-time and XAPI events are not affected by the level of reliability.

Configuring Your System for Reliable Event Delivery
To use the reliable event delivery feature, you must define your events in the F90701 table. Use the
Interoperability Event Definition (P90701) program to accomplish this task. On the Event Entry form, you must
set up the Threshold Timeout field and set the Reliable Delivery field to reliable (either Y or 1). The Timeout
Threshold field is in seconds and applies only to the reliable events for which an initial delivery attempt fails.
This field determines the maximum amount of time that has to pass from the event creation to the time when
the event is going to be discarded if not delivered successfully. Events with a threshold of zero never expire.

Two database tables, the F90704 table and the F90703 table, enable communication between the sender and
receiver. Event Protocol stores information that is associated with the protocol that delivers an event. Event
Link stores information that is associated with the reliable event for which initial delivery failed. These tables
are updated by the system when an event is created.

Note. Both the sender and receiver must access the same instances (the data sources are the same) of the
interoperability database tables.

Reliable Event Error Message
If the reliable event is not found, this message might be generated in the client, Callobject, IEO, and EVN logs:

RDEL0000045 - Could not open tables for reliable event delivery
(F90703 and F90704). Reliable event delivery will be disabled.

If you receive this error message, verify your events are defined in the F90701 table, that the Reliable Delivery
and Threshold Time fields are set up correctly, and that the Event Protocol and Event Link tables exist.

Minimizing Duplicate and Lost Events
The architecture for real-time events processing is changed from a fast request reply (FRR) protocol to
a three-way protocol. The three-way protocol enables the storage of event information in the F90703 and
F90704 tables. Also, both the Java connector and the COM connector can receive and recover real-time events.

This diagram shows the architecture for real-time event recovery using the three-way protocol:

PeopleSoft Proprietary and Confidential 97

Using Events - Classic Chapter 12

Callobject Enterprise Server XPI Apater

BSFN

F90703
&

F90704

3-way
Send

Event
API

IEO
Kernel

EVN
Kernel

Connector
3-way
Send

3-way
Send

3-way
Insert Failed
IEO Event

3-way
Insert Failed
EVN Event

3-way
Recover Failed

Connector Event

3-way Insert
Failed Connector

Event

3-way
Recover Failed

IEO Event

3-way
Recover

Failed EVN
Event

Three-way architecture for processing events

If the CallObject kernel is unable to communicate with the IEO kernel, the event API inserts the event
information into the F90703 and F90704 tables. The IEO kernel recovers the event information from the tables.

If communication between the IEO and EVN kernels fails, the IEO kernel inserts the information into the
F90703 and F90704 tables. The EVN kernel recovers the event information from the F90703 and F90704
tables.

If a communication failure between the EVN kernel and the connector occurs, event information is stored in
the F90703 and F90704 tables. Both the Java connector and the COM connector have the ability to recover
event information from the F90703 and F90704 tables.

Increasing Performance
To increase performance, the concept of a black list is introduced. The black list is a list of subscribers
that are not responding to the event message. The black list concept helps to increase performance by not
retransmitting to non-responsive subscribers.

If the EVN kernel cannot send an event to a subscriber, the subscriber is placed on the black list. When a
subscriber is placed on the black list, the EVN kernel inserts the event information to the F90703 and F90704
tables until the subscriber is removed from the black list. When the subscriber is removed from the black list,
the subscriber receives new event information from the EVN kernel and the connector recovers existing event
information from the F90703 and F90704 tables and sends this event information to the subscriber.

Subscribers can be placed on the black list in one of two ways:

• Voluntary

• Forced

Voluntary Black List
When a subscriber goes down and sends an unsubscribe message, the EVN kernel adds the subscriber to the
black list. No event information is sent to the subscriber until the user re-subscribes. The EVN kernel inserts
the event information into the F90703 and F90704 tables, and the information is recovered by the connector
once the subscriber re-subscribes. Information about adding and removing the subscriber from the black list
can be found in the EVN kernel debug log. These are example EVN kernel debug log messages:

98 PeopleSoft Proprietary and Confidential

Chapter 12 Using Events - Classic

• Added receiver <host name>:<port> to black list.
• Removed receiver <host name>:<port> from black list.

Forced Black List
When the EVN kernel sends an event that is defined as reliable to a subscriber, and the subscriber fails to
reply to the EVN kernel, the EVN kernel adds that subscriber to the forced black list, and inserts the event
information to the F90703 and F90704 tables. Settings that you configure in the jde.ini file determine how
many times the EVN kernel sends an event with no response from the subscriber before the subscriber is placed
on the black list, and the event information is stored in the database tables. You also configure jde.ini settings
that determine how often the system tries to revisit the subscriber to remove that subscriber from the black list.

Information about adding, revisiting, and removing a subscriber can be found in the EVN kernel error log.
These are example EVN kernel error log messages:

• Added receiver <host name>:<port> to force black list.

• Revisit receiver <host name>:<port> in force black list.

• Removed receiver <host name>:<port> from force black list.

More detail information about adding the subscriber to the black list can be found in the EVN kernel debug
log. This is an example EVN kernel debug log message: Added receiver <host name>:<port>
to forced black list, after 2
retries with 15 seconds of wait time.

Configuring the jde.ini File
For reliable event delivery, you must configure these sections and settings in the jde.ini File. These settings are
in addition to the settings discussed in the real-time and XAPI events chapters.

[INTEROPERABILITY]

Setting Typical Value Purpose

EnableBlacklist= 1 A value of 1 enables black list
capabilities. The default value is 0
(zero). If you use a value of 0 and
your system breaks, your system
performance can be affected.

MaxFailedAllowed= 1 Defines the number of failed attempts
that the EVN kernel makes to
the subscriber before placing the
subscriber on the black list. The
default value is 3.

ForceBlackListRevisitTime= 60 Defines how often the EVN kernel
will attempt to communicate with the
failed subscriber once the subscriber
is placed on the black list. The default
value is 300 seconds.

PeopleSoft Proprietary and Confidential 99

Using Events - Classic Chapter 12

[NETWORK QUEUE SETTINGS]

Setting Typical Value Purpose

JDENETTimeout= 60 Defines the time that the EVN kernel
waits for a response.

Note. You should have the same
number of JDENET processes as EVN
kernels.

Entering Events
This section provides an overview of entering events in the Interoperability Event Definition table and
discusses how to enter single and container events.

Understanding Entering Events
You use the Event Request Definition program (P90701) to add new single and container events and to
review your existing events. You add single events by event name. When you add a single event, you must
include a data structure. A container event contains either single events, aggregate events, or both. When
you add a container event, you define events, single events to be used individually, or data structures, single
events to be aggregated. You can change the information for single and container events. You can delete
single and container events. You can change the status of an event to active or non-active. If your system
has multiple environments, the event status is the same in all environments. You can use menu options to
access the subscriber information.

Note. A XAPI event is always a container event, and you must define data structures for XAPI events.

Forms Used to Add Events
Form Name Form ID Navigation Usage

Event Definition Workbench W90701A Enter P90701 in the Fast
Path.

Locate and review existing
single and container events.

Event Entry W90701D On Event Definition
Workbench, click Add.

Add or change a single or
container event.

Event Definition Detail W90701C Automatically appears when
you click OK on the Event
Entry form if you entered
Container in the Event
Category field for a real-time
event or if you entered XAPI
in the Event Type field.

Link single events to a
container event.

Adding a Single or Container Event
Access the Event Entry form.

100 PeopleSoft Proprietary and Confidential

Chapter 12 Using Events - Classic

Event Entry form

Event Name The name of the event (for example, JDERTSOOUT). Single events can be
part of other events.

Event Description The description of an event.

Event Type A value that represents the name of the event type (for example, the value RTE
denotes Real Time Event; the value ZFILE denotes Batch Upload Event).
If you are adding XAPI events, the system automatically completes the Event
Category field with Container and after you click OK, the Event Definition
Detail form appears. Complete the Data Structure and Data Description
fields, and then click OK.

Event Category The category of the event, for example, single event or event container.

Product Code A user defined code (98/SY) that identifies a system. Values include:
01: Address Book
03B: Accounts Receivable
04: Accounts Payable
09:: General Accounting
11: Multicurrency

PeopleSoft Proprietary and Confidential 101

Using Events - Classic Chapter 12

Reliable Delivery An option that specifies whether the system retransmits and stores failed
events. If you clear this option, the system does not retransmit or store
failed events. When you select this option, the additional processing might
negatively impact system performance. Values are:
1 or Y: Retransmit and store failed events.
0 or N: Do not retransmit or store failed events.
If you are using the Reliable Event Delivery feature, you must set the Reliable
Delivery field to reliable (1 or Y) and the Timeout Threshold field must be set.

Timeout Threshold The Timeout Threshold field is in seconds and applies only to the reliable
events for which an initial delivery attempt fails. This field determines the
maximum amount of time that has to pass from the event creation to the time
when the event will be discarded if not delivered successfully. Events with
a threshold of zero never expire.

Data Structure The name of the data structure that passes event information.
This field disappears if Container is the value of the Event Category field;
however, when you click OK, the Event Definition Detail form automatically
appears for you to enter data structure information.

Event Definition Detail
Access the Event Definition Detail form.

Event Definition Detail form

Event Data An option that enables you to define single, individual (composite) events for
a container event.

102 PeopleSoft Proprietary and Confidential

Chapter 12 Using Events - Classic

Data Structure Data An option that enables you to define aggregate events for the container event.
For XAPI events you must select the Data Structure Data option.

Changing the Status of an Event
Access the Event Definition Workbench form.

To change the status of an event:

1. Complete these fields:
• Event Name
• Description
• Event Type
• Product Code

2. Click the All Statuses option, and then click Find to display existing events.
3. In the detail area, select the event for which you want to change the status.
4. From the Row menu, select Change Status.
5. To view the status change, click Find.

Note. The status of the event is the same for all environments. If the event is active, that event is active for
all environments. If the event is non-active, that event is non-active for all environments.

Adding Logical Subscriber Records
This section provides an overview of the logical subscriber and discusses how to add a logical subscriber record.

Understanding Logical Subscribers
Use the Interoperability Event Subscription program (P90702) to add a logical subscriber. You can also view
and modify existing logical subscribers. The Interoperability Event Subscription table contains subscriber
information, such as the machine name and port number, and is read by EVN. If subscriber information is
missing for the XAPI event, the system generates the event but cannot deliver it.

Forms Used to Add a Logical Subscriber
Form Name Form ID Navigation Usage

Subscriber Workbench W90702A Enter P90702 in the Fast
Path.

Locate and review existing
subscription information.

WorkWith Logical
Subscriber

W90702D On Subscriber Workbench,
select Logical Subscriber
from the Form menu.

Review existing logical
subscribers.

Logical Subscriber Entry W90702B OnWorkWith Logical
Subscriber, click Add.

Add a logical subscriber.

PeopleSoft Proprietary and Confidential 103

Using Events - Classic Chapter 12

Adding a Logical Subscriber
Access the Logical Subscriber Entry form.

Logical Subscriber Entry form

Logical Subscriber Name A value that uniquely identifies a subscriber.
Do not use spaces in the logical subscriber name.

Event Transport Driver The name of the transport driver that delivers events to the subscriber (for
example, JDENET).

Host Name The name of the server that processes events for the subscriber.

Port Number A number that identifies the port where the subscriber service is running.

Subscriber Group A user-defined name that specifies how to deliver events for the subscriber.
For example, if you are using an XPI adapter, enter the name of the adapter.

Entering Subscription Information
This section provides an overview about subscription information and discusses how to:

• Add subscription records.

• Change the status of a subscription record.

104 PeopleSoft Proprietary and Confidential

Chapter 12 Using Events - Classic

Understanding Subscription Records
You use the Interoperability Event Subscription program (P90702) to add new subscription information for
XAPI events and to review and change existing subscription information. You can also add a subscription by
copying and then modifying an existing subscription, and you can delete subscriptions. You can access and
view your real-time and XAPI event definitions by selecting Event Definition from the Form menu. You can
also access and view Z events when you click the Z File Events button on the Subscriber Workbench form or
by selecting the Z File Events option on the Form menu.

Note. When you add to or modify the F90702 table, you must restart the server for the changes to become
effective.

Forms Used to Enter Subscription Information
Form Name Form ID Navigation Usage

Subscriber Workbench W90702A Enter P90702 in the Fast
Path.

Locate and review existing
subscription information.

Subscriber Entry W90702F On Subscriber Workbench,
click Add.

Add a subscription.

Entering a Subscription Record
Access the Logical Subscriber Entry form.

Subscriber Entry form

PeopleSoft Proprietary and Confidential 105

Using Events - Classic Chapter 12

Event Subscriber The user ID for a subscriber.

Event Environment A value that identifies the environment that the event is executed in.

Purpose A user defined name or remark.

Logical Subscriber Name A value that uniquely identifies a subscriber.

Event Type A value that represents the name of the event type (for example, the value RTE
denotes Real Time Event and the value ZFILE denotes Batch Upload Event).

Event Name The name of the event (for example, JDERTSOOUT). Single events are
part of other events.

Event Filter Name The system automatically enters Filter0.

Changing the Status of a Subscription
Access the Subscriber Workbench form.

To change the status of a subscription:

1. Complete these fields:
• Subscriber Name
• Purpose

2. Select the All Statuses option, and then click Find to display existing subscriptions.
3. In the detail area, select the event for which you want to change the status.
4. From the Row menu, select Change Status.
5. To view the status change, click Find.

106 PeopleSoft Proprietary and Confidential

CHAPTER 13

Using Real-Time Events - Classic

This chapter provides an overview about real-time events and discusses how to:

• Process real-time events.
• Define real-time events.
• Use event sequencing.
• Use journaling.
• Configure the jde.ini file for real-time events.
• Generating real-time events
• Setting up the OCM for real-time events.

Note. This chapter is applicable only if you use classic events delivery. Classic event delivery is available
when you use PeopleSoft EnterpriseOne Tools 8.94 with PeopleSoft EnterpriseOne Applications 8.10 or earlier
releases of the PeopleSoft EnterpriseOne Applications.

Refer to the Guaranteed Events chapters if you use PeopleSoft EnterpriseOne Tools 8.94 with PeopleSoft
EnterpriseOne Applications 8.11.

Understanding Real-Time Events - Classic
A real-time event is notification that a business transaction has occurred in PeopleSoft EnterpriseOne. You can
generate real-time events on the PeopleSoft EnterpriseOne server using an interface, such as HTML, WIN32,
and terminal servers. You can use real-time events for either synchronous and asynchronous processing.

An example of synchronous processing is an auction site that uses PeopleSoft EnterpriseOne as a back-end
solution can use real-time events to immediately update the database. For example, a user enters a new item for
auction, which triggers a transaction into PeopleSoft EnterpriseOne. The system captures the transaction and
sends a notification to an interoperability server, such as a Java connector, that communicates the information
to a web engine to update HTML pages so that all of the auction users can see the new item.

You can also use real-time event generation for asynchronous processing. For example, an online store
sends orders to different vendors (business to business), captures the transactions, and enters the orders into
the vendors’ systems. A user buys a book. Vendors enter a purchase order to the book publisher and send a
notification to the shipping company to pick up the book and deliver it. The book order itself can be completed
as a purchase order transaction with PeopleSoft EnterpriseOne, but the shipping request requires that the data
is packaged into a commonly agreed-upon format for the shipping company to process.

PeopleSoft Proprietary and Confidential 107

Using Real-Time Events - Classic Chapter 13

Prerequisites
Before you complete the tasks in this section:

• Enable security for the PeopleSoft EnterpriseOne server.

• Ensure that the default user under the [SECURITY] section of the PeopleSoft EnterpriseOne server jde.ini
file has a valid security record (that is, that the user is a valid PeopleSoft EnterpriseOne user).

Processing Real-Time Events
Real-time events use system calls that receive data from business functions that use PeopleSoft EnterpriseOne
data structures. Each real-time event has a unique ID that includes the PeopleSoft EnterpriseOne session ID.

Real-time event generation from a client consists of client business functions that call APIs and interfaces with
the server interoperability event observer (a kernel). Real-time event generation on the server side includes an
event observer interface (a set of system APIs) that triggers real-time events and an interoperability event
observer (a kernel). Then, the event observer kernel generates XML documents of the triggered real-time
events and sends them to an event distribution component. The event distribution component is the same one
that the system uses to send XML document notification to subscribers.

This diagram is a logical representation of the processes and data for real-time event generation:

Event
Notification

Kernel

4

JDENET

MQSeries
Transport

Driver

MSMQ
Transport Driver

Java Interop
Server

COM Interop
Server

Third-Party
IBM System

Third-Party
MS Windows

System

5

5

5

5

Event Generation

Event Distribution

PeopleSoft
EnterpriseOne

Client

Third-Party
Client

(BSFN)

Call Object
Kernel
(BSFN)

Interop
Event

Observer
Kernel

2

1

1

Client Server Side

XML 3

1

Real-time event process flow

In summary:

1. Event generation is triggered by business functions.

108 PeopleSoft Proprietary and Confidential

Chapter 13 Using Real-Time Events - Classic

You use the Object Configuration Manager (OCM) to map business functions to run on the PeopleSoft
EnterpriseOne server or to run locally. When a business function is mapped to run on the PeopleSoft
EnterpriseOne server, the business function calls the Interoperability Event Interface within the CallObject
kernel. The CallObject kernel sends the information to the Interoperability Event Observation (IEO). When
a real-time event is generated from a client, the client business function calls the appropriate API. The API
performs OCM lookup to determine where the IEO kernel is located, validates, filters, and formats the
data, and then sends the information to the IEO kernel.

2. The IEO kernel creates the real-time event and produces an XML document when the real-time event is
finalized.

3. The IEO kernel packages the XML document and passes the document to the Event Notification (EVN)
kernel.

4. The EVN kernel determines which transport driver should handle the event.
5. The transport driver distributes the event.

Note. If you use MQSeries or MSMQ transports, the transport drive writes system and function errors to
the JDE error log. The driver writes error messages and adds the error codes if available.

Defining Real-Time Events
You use the Interoperability Event Definition program (P90701) to define real-time events. After you define
your real-time event, be sure to activate the event by changing the status to active. If the event is not defined in
the F90701 table, the system call returns an error message.

Using Event Sequencing
When you define your real-time events, you indicate whether the event is reliable or volatile. If you define the
event as volatile, the system automatically provides event sequencing to guarantee that events are delivered in
the correct order. Volatile events are stamped using PeopleSoft EnterpriseOne Next Numbers features.

For sequencing of real-time events, the system call, jdeIEO_EventFinalize, retrieves the event number from
the real-time events sequencing bucket, and sends the number to the IEO kernel. The IEO kernel includes
the event number as part of the generated event. The IEO kernel sends the event to the EVN kernel. The
EVN kernel remembers the last shipped event and bases sequencing on the event number that is contained
in the received event.

Event sequencing does impact performance. You can turn off events sequencing. You can also define a timeout
value to tell the system to stop looking for a missed event when events are out of sequence. The flag and
timeout settings are in the [INTEROPERABILITY] section of the jde.ini file.

Using Journaling
Real-time events are journaled using the trace feature for the JDEDEBUG log files. You can turn on journaling
in the jde.ini file. Journaling occurs in two instances:

• A system call logs the parameter received and the APIs called.

PeopleSoft Proprietary and Confidential 109

Using Real-Time Events - Classic Chapter 13

• During the interoperability event observer process, the kernel logs additional debugging information.
The logging is controlled with the LEVEL key in the [INTEROPERABILITY] section.

[INTEROPERABILITY]
These are some possible values for the LEVEL key:

Key Section Description

LEVEL= The system writes specified interoperability event data to the
debug log file. You can specify one or more of the allowable
logging settings. Separate multiple values with a comma. For
example:

[INTEROPERABILITY]

LEVEL=EVENTS,DATA

Note. As with any logging operation, enabling any of these
settings can impact performance and cause extensive amounts of
data to be written.

EVENTS Use this value to log the flow of events in the IEO kernel.
Receiving event data and sending events are logged, but the
values of the event data are not logged. This is the default level.
If the LEVEL key is not present, it is identical to LEVEL=
EVENTS.

DATA Log values of the event data and flow of the events in the IEO
kernel. This level also includes all data logged with the EVENTS
switch.

PERF Log statistics about the number of events received and the time
period in which they are processed.

110 PeopleSoft Proprietary and Confidential

Chapter 13 Using Real-Time Events - Classic

Key Section Description

DOC Outbound XML documents are written in the temporary file on
disk. If the debug log is enabled, the document location is written
in the debug log. The location of the document depends on the
key value:

• If the value of the key TempFileDir in the Interoperability
section is set, the file is written to that location. For example:

• [INTEROPERABILITY] TempFileDir=C:\XML_
DOCUMENTS

• If the key TempFileDir is not set, files are written in the same
directory where JDE logs and debug logs are written.

Note. Setting the LEVEL=DOC key causes all real-time
events to be written to the disk, which can cause a significant
performance impact on the PeopleSoft EnterpriseOne server.
PeopleSoft suggests that you not use the LEVEL=DOC setting
in a production environment or for stress testing of the quality
assurance environment.

TRACE This switch traces execution of the IEO kernel and writes data in
the debug log. Because of the large amount of data that is logged,
use this level only for debugging purposes.

Note. The LEVEL=DOC setting is not affected by whether debug logs are enabled or disabled. All other
values under the LEVEL key (for example, TRACE) are affected by the debug log enable or disable setting.

You can also journal EVN documents by setting the SaveEVNDoc key in the [INTEROPERABILITY]
section of the jde.ini file. SaveEVNDoc is similar to LEVEL=DOC but applies to the EVN kernel instead
of the IEO kernel. The default value for SaveEVNDoc is zero (0), which means that EVN documents are
not saved. To save EVN documents, change the value to one (1). EVN documents are saved to the directory
where JDE logs and debug logs are written unless you specify a different directory. You can use TempFileDir
to specify a directory.

[INTEROPERABILITY]
You can configure these settings to log documents:

SaveEVNDoc=1

TempFileDir=C:\XML_Documents

Configuring the jde.ini for Real-Time Events
To generate real-time events, these sections of the PeopleSoft EnterpriseOne server jde.ini file must be
configured:

• [JDENET_KERNEL_DEF19]
• [JDENET_KERNEL_DEF20]
• [JDEITDRV]

PeopleSoft Proprietary and Confidential 111

Using Real-Time Events - Classic Chapter 13

• [JDENET]
• [INTEROPERABILITY]

Note. The settings for the kernels [JDEITDRV] and [JDENET] are defined in jde.ini File Configurations for
Events in the Interoperability Guide.

[INTEROPERABILITY]
Configure these settings:

SequenceTimeOut=XX

XMLElementSkipNullOrZero=x

The SequenceTimeOut setting is for sequencing of volatile events. The default value is 10 seconds.

Null strings and zeros are trimmed from real-time events. You can turn off this feature by entering a value of 0
(zero) for the XMLElementSkipNullOrZero settings.

Generating Real-Time Events
This section provides overview of real-time event generation, real-time event APIs, and example code for
events, and discusses how to set up the OCM for real-time events.

Understanding Real-Time Event Generation
Events can be one of these:

• Single event
Contains one partial event. Single events are useful if the receiver requires that events be generated per
system call. Can also be used with different event types.

• Aggregate event
Contains multiple partial events. Aggregate events are useful if the receiver requires a document that
contains multiple events. For example, a supply chain solution might want to provide the complete sales
order as one event that contains multiple partial events.

• Composite event
Contains only single events. Aggregate events are useful if the customer has multiple receivers, some that
require single events and some that require a complete event that is similar to an aggregate event.

Real-Time Event APIs
The system APIs are able to determine whether a system call is from a server or client. These APIs are
available for you to generate real-time events:

• jdeIEO_EventInit()
• jdeIEO_EventAdd()
• jdeIEO_EventFinalize()
• jdeIEO_CreateSingleEvent()

112 PeopleSoft Proprietary and Confidential

Chapter 13 Using Real-Time Events - Classic

• jdeIEO_IsEventTypeEnabled()

Example: Interoperability Event Interface Calls
This sample code illustrates how to create a single event:

1. Design the data structure to decide what values to provide to the real-time event.

typedef struct tagDSD55RTTEST

{

char szOrderCo[6];

char szBusinessUnit[13];

char szOrderType[3];

MATH_NUMERIC mnOrderNo;

MATH_NUMERIC mnLineNo;

JDEDATE jdRequestDate;

char szItemNo[27];

char szDescription1[31];

MATH_NUMERIC mnQtyOrdered;

MATH_NUMERIC mnUnitPrice;

MATH_NUMERIC mnUnitCost;

char szUserID[11];

} DSD55RTTEST, *LPDSD55RTTEST;

2. Define the data structure object in the business function header file.
3. Modify the business function source to call jdeIEO_CreateSingleEvent.

JDEBFRTN(ID) JDEBFWINAPI RealTimeEventsTest (LPBHVRCOM lpBhvrCom,

LPVOID lpVoid,

LPDSD55REALTIME lpDS)

{

/* Define Data Structure Object */

DSD55RTTEST zRTTest = {0};

IEO_EVENT_RETURN eEventReturn = eEventCallSuccess;

IEO_EVENT_ID szEventID ={0};

()Populate required members

/* Now call the API */

szEventID = jdeIEO_CreateSingleEvent { lpBhvrCom,

"RealTimeEventsTest",

"JDERTOUT",

"SalesOrder",

"D55RTTEST",

&zRTTest,

sizeof(zRTTest),

0,

&eEventReturn };

/* Error in jdeFeedCallObjectEvent is not a critical error

and should only be treated as a warning */

PeopleSoft Proprietary and Confidential 113

Using Real-Time Events - Classic Chapter 13

if(eEventReturn != eEventCallSuccess)

{

/* LOG the Warning and return */

return ER_WARNING;

This sample code illustrates how to create an aggregate event:

IEO_EVENT_RETURN cEventReturN = eEventCallSuccess;

IEO_EVENT_ID szEventID = jdeIEO_EventInit (pBhvrCom,

eEventAggregate,

"MyFunction1",

"JDESOOUT" //EventType for AggregateEvent

"EventScope1",

0,

&eEventReturn);

0

eEventReturn = jdeIEO_EventAdd (pBhvrCom,

szEventID,

"MyFunction2",

NULL,

"D55TEST01",

&zD55TEST01,

sizeof(zD55TEST01));

0

eEventReturn = jdeIEO_EventAdd (pBhvrCom,

szEventID,

"MyFunction3",

NULL,

"D55TEST02",

&zD55TEST02,

sizeof(zD55TEST02));

0

eEventReturn = jdeIEO_EventAdd (pBhvrCom,

EventID,

"MyFunction3",

NULL,

"D55TEST03",

&zD55TEST03,

sizeof(zD55TEST03));

0

eEventReturn = jdeIEO_EventFinalize (pBhvrCom,

EventID,

"MyFunction4");

This sample code illustrates how to create a composite event:
IEO_EVENT_RETURN eEventReturn = eEventCallSuccess;

IEO_EVENT_ID szEventID = jdeIEO_EventInit (pBhvrCom,eEventComposite,

114 PeopleSoft Proprietary and Confidential

Chapter 13 Using Real-Time Events - Classic

"MyFunction1",

"JDESOOUT"// EventType for CompositeEvent

"EventScope1",

0,

&eEventReturn);

0

eEventReturn = jdeIEO_EventAdd (pBhvrCom,

szEventID,

"MyFunction2",

"SODOCBEGIN", // EventType for SingleEvent

"D55TEST01",

&zD55TEST01,

sizeof(zD55TEST01));

0

eEventReturn = jdeIEO_EventAdd(pBhvrCom,

szEventID,

"MyFunction3",

"SOITEMADD", // Event Type for Single Event

"EventScope3",

"D55TEST02",

&zD55TEST02,

sizeof(zD55TEST02));

0

eEventReturn = jdeIEO_EventFinalize (pBhvrCom,

EventID,

"MyFunction4");

Errors that are returned by the system calls might not be critical enough to stop the business process. The
system flags non-critical errors as warnings and logs them in the log file. If the business function is on the
server, the warning is logged in the CallObject kernel log. If the business function is on a client, the warning
is logged in the client log file.

This sample code illustrates an XML file that shows a composite real-time event that consists of a call to the
business function F4211FSEditLine on 12/31/2000, arriving about noon, with the real-time event generated
at 12:00:01.000:

<?xml version=’1.0’ encoding=’utf-8’ ?>

<jdeResponse type=’realTimeEvent’ user=’JDE1214225’ session=’1234.786321234’

role=’*ALL’ environment=’XDEVNIS2’>

<header>

<eventVersion>1.0</eventVersion>

<type>JDESOOUT</type>

<scope>SalesOrder</scope>

<user>JDE1214225</user>

<application>P0101</application>

<version>XJDE101</version>

<sessionID>1234.786321234</sessionID>

<environment>XDEVNIS2</environment>

<host>HP9000B</host>

PeopleSoft Proprietary and Confidential 115

Using Real-Time Events - Classic Chapter 13

<eventID>HP9000B-1234-1231200012000100-JDE1214225-FFA123ECBBA123EC</eventID>

<date>12312000</date>

<time>120001000</time>

</header>

<body elementCount=’1’>

<PartialEvent name=’F4211FSEditLine’ type=’SOEDITLINE’ executionOrder=’1’

parameterCount=’12’>

szOrderCo type=’String’>JD Edwards</szOrderCo>

<szBusinessUnit type=’String’>Mountain Region</szBusinessUnit>

<szOrderType type=’String’>SO</szOrderType>

<mnOrderNo type=’MATH_NUMERIC’>13209847</mnOrderNo>

<mnLineNo type=’MATH_NUMERIC’>122</mnLineNo>

<jdRequestedDate type=’Date’>12312000</jdRequestedDate>

<szItemNo type=’String’12243234</szItemNo>

<szDescription type=’String’>Bicycle</szDescription>

<mnQtyOrdered type=’MATH_NUMERIC’>1</mnQtyOrdered>

<mnUnitPrice type=’MATH_NUMERIC’>249.99</mnUnitPrice>

<mnUnitCost type=’MATH_NUMERIC’>213.23</mnUnitCost>

<szUserID type=’String’>JDE1214225</szUserID>

</PartialEvent>

</body>

</jdeResponse>

Setting Up the OCM for Real-Time Events
This section provides an overview about OCM for real-time events and discusses how to set up the OCM.

Understanding the OCM for Real-Time Events
You configure the Object Configuration Manager (OCM) so that the system call can find the IEO kernel. If the
business function is mapped to a client, an error is returned to the client by the system call if the IEO kernel is
not found. If the business function is mapped to the server, the error is logged in the Callobject kernel jde.log.

When you configure the OCM, include a specific environment and ensure that no two duplicate mappings are
in active status at the same time.

If the OCM mapping is not correctly configured on the client, this message is written in the jde.log, and
the event is not be generated:

RT0000011 jdeIEO_EventInit: Unable to find the server

If the OCM mapping is not correctly configured on the server, no error message is generated. The system call
uses the local server as the location of the IEO kernel.

If the IEO kernel is not found on the machine that is configured in the OCM, this error might occur:
RT0000004 jdeIEO_EventInit: ReceiveMsg failed. Error = <error test>

See EnterpriseOne Tools 8.94 PeopleBook: Configurable Network Computing Implementation, “Object
Configuration Manager”.

116 PeopleSoft Proprietary and Confidential

Chapter 13 Using Real-Time Events - Classic

Forms Used to Set Up the OCM
Form Name Form ID Navigation Usage

Machine Search and Select W986110D From the fat client, enter
OCM in the Fast Path
Command Line.

Select the appropriate
machine name.

WorkWith Object Mappings W986110B OnMachine Search and
Select, select the appropriate
active environment.

Find and select the
appropriate environment.

Object Mapping Revisions W986110C OnWorkWith Object
Mappings, select the
appropriate active
environment in the detail
area.

Enter RTE in the Object
Type field.

Setting Up the OCM for Real-Time Events
Access the Object Mapping Revisions form.

Environment Name A name that uniquely identifies the environment.

Object Name The PeopleSoft EnterpriseOne object that you want to map. To create a default
map for all of an object type, enter the literal value DEFAULT into this field
and then enter an object type into the Object Type field.

Primary Data Source The name that identifies the data source.
Data sources are the building blocks that you use to set up a PeopleSoft
EnterpriseOne configuration. Data sources define all of the required databases
(where your tables reside) and all of the logic machines (where PeopleSoft
EnterpriseOne executes logic objects for your enterprise).

If PeopleSoft EnterpriseOne cannot find your primary data source or cannot
find the data item I your primary data source, it attempts to connect to your
secondary data source.

System Role A profile that classifies users into groups for system security purposes. You
use group profiles to give the members of a group access to specific programs.

On this form you can enter an individual user, a group name or the literal
value *PUBLIC.

Object Type The type of object with which you are working. For real-time events, the
object type is RTE. For XAPI events the object type is XAPI.

Data Source Mode Indicates whether to use the primary or secondary data source.

Allow QBE Use this flag to turn on row-level record locking for the data source.
You should have this flag turned on to help prevent database integrity issues.
JDEBASE middleware uses this flag to determine whether to use row-level
record locking.

PeopleSoft Proprietary and Confidential 117

Using Real-Time Events - Classic Chapter 13

118 PeopleSoft Proprietary and Confidential

CHAPTER 14

Using XAPI Events - Classic

This chapter provides an overview of XAPI events and discusses how to:

• Define XAPI events.
• Subscribe to XAPI events.
• Set up the OCM for XAPI events.
• Work with PeopleSoft EnterpriseOne and third-party XAPI events.
• Work with PeopleSoft EnterpriseOne-to-EnterpriseOne XAPI events.

Note. This chapter is applicable only if you use classic events delivery. Classic event delivery is available
when you use PeopleSoft EnterpriseOne Tools 8.94 with PeopleSoft EnterpriseOne Applications 8.10 or earlier
releases of the PeopleSoft EnterpriseOne Applications.

Refer to the Guaranteed Events chapters if you use PeopleSoft EnterpriseOne Tools 8.94 with PeopleSoft
EnterpriseOne Applications 8.11.

Understanding XAPI Events - Classic
XAPI is a PeopleSoft EnterpriseOne service that captures transactions as the transaction occurs, and then calls
third-party software, end-users, and other PeopleSoft systems to obtain a return response. A XAPI event is
very similar to a real-time event and uses the same infrastructure to send an event. The difference between a
real-time event and a XAPI event is that the subscriber to a XAPI event returns a reply to the originator. The
XAPI event contains a set of structured data that includes a unique XAPI event name and a business function to
be invoked upon return. Like real-time events, XAPI events can be generated on the PeopleSoft EnterpriseOne
server using any interface, such as HTML, WIN32, and terminal servers.

The XAPI structure sends outbound events and receives a reply from third-party systems. An event is
generated in PeopleSoft EnterpriseOne and sent to a third-party system for processing. The PeopleSoft
EnterpriseOne system is called the originator. The third-party system sends a response back to PeopleSoft
EnterpriseOne. The third-party system is called the executor.

The XAPI structure also provides complete request-reply connectivity between two PeopleSoft EnterpriseOne
systems. The PeopleSoft EnterpriseOne system that generates the event is called the Originator. The
PeopleSoft EnterpriseOne system that responds to the event is called the Executor.

PeopleSoft EnterpriseOne to Third-Party
This diagram shows a logical representation of the XAPI process from PeopleSoft EnterpriseOne to a
third-party system:

PeopleSoft Proprietary and Confidential 119

Using XAPI Events - Classic Chapter 14

XAPI
Originator

PeopleSoft
EnterpriseOne System

XAPI
Executor

Third-Party System

Request

Response

PeopleSoft EnterpriseOne to a third-party system XAPI event

In summary:

1. PeopleSoft EnterpriseOne, (XAPI originator) sends a request.
2. The request is sent to a third-party system.
3. The third-party system (XAPI executor) processes the request and sends a response back to the XAPI
originator.

Third-Party to PeopleSoft EnterpriseOne
This diagram shows a logical representation of the XAPI process from a third-party system to PeopleSoft
EnterpriseOne:

XAPI
Originator

PeopleSoft
EnterpriseOne System

XAPI
Executor

Third-Party System

Request

Response

Third-party system to PeopleSoft EnterpriseOne XAPI event

In summary:

1. The third-party system (XAPI originator) sends a request using the PeopleSoft EnterpriseOne XAPI
request form.

2. The request is sent to PeopleSoft EnterpriseOne.
3. PeopleSoft EnterpriseOne (XAPI executor) processes the request and sends a response back to the XAPI
originator.

120 PeopleSoft Proprietary and Confidential

Chapter 14 Using XAPI Events - Classic

PeopleSoft EnterpriseOne-to-PeopleSoft EnterpriseOne
This diagram shows a logical representation of the XAPI processing for two different PeopleSoft EnterpriseOne
systems communicating with each other:

XAPI
Originator

Peoplesoft
EnterpriseOne System

XAPI
Executor

PeopleSoft
EnterpriseOne System

Request

Response

PeopleSoft EnterpriseOne-to-EnterpriseOne XAPI event

In summary:

1. The first PeopleSoft EnterpriseOne system (XAPI originator) sends a request.

2. The request is sent to a second PeopleSoft EnterpriseOne system, which may share the same or different
environment as the first PeopleSoft EnterpriseOne system.

3. The second PeopleSoft EnterpriseOne system (XAPI executor) processes the request and sends a response
back to the first PeopleSoft EnterpriseOne system (XAPI originator).

4. The first PeopleSoft EnterpriseOne system (XAPI originator) processes the response.

Prerequisites
Before you complete the tasks in this section:

• Enable security for the PeopleSoft EnterpriseOne server.
• Ensure that the default user has a valid security record under the [SECURITY] section of the PeopleSoft
EnterpriseOne server jde.ini file (that is, that the user is a valid PeopleSoft EnterpriseOne user).

Defining XAPI Events
You use the Interoperability Event Definition (P90701) program to define XAPI events. When you define
XAPI events, the system automatically updates the Event Category field to Container. All XAPI events use the
data structure option. The system automatically adds the DXAPIROUTE data structure, which is required for
XAPI events. The DXAPIROUTE data structure contains the routing information that is to be returned to the
originating system. The jdeXAPI_Finalize API appends DXAPIROUTE data execution. After you define
your XAPI event, be sure to activate the event by changing the status.

PeopleSoft Proprietary and Confidential 121

Using XAPI Events - Classic Chapter 14

See Chapter 12, “Using Events - Classic,” Defining Events, page 92.

Subscribing to XAPI Events
If you generate XAPI events, you must define a logical subscriber and set up XAPI event subscriber
information. The logical subscriber must exist before you can add XAPI event subscriber information. If
subscriber information is missing, the system generates the XAPI event but does not deliver it. You use the
Interoperability Event Subscription program (P90702) to define the logical subscriber and to set up XAPI
subscriber information. After you set up the XAPI subscriber, be sure to activate the subscriber by changing
the status.

See Chapter 12, “Using Events - Classic,” Subscribing to Events, page 93.

Setting Up the OCM for XAPI Events
If your interface to PeopleSoft EnterpriseOne is not a PeopleSoft EnterpriseOne client, you must configure
the OCM so that the system call can find the IEO kernel. When you configure the OCM, include a specific
environment and ensure that no two duplicate mappings are in active status at the same time.

To configure the OCM, access the Object Mapping Revisions form and enter XAPI in the Object Type field.
Configuring the OCM with the XAPI entry enables the system call to find the IEO kernel. If the OCM is not
properly configured, the system generates an error message. OCM error messages for XAPI events are the
same as the OCM error messages for real-time events.

See Chapter 13, “Using Real-Time Events - Classic,” Setting Up the OCM for Real-Time Events, page 116.

See EnterpriseOne Tools 8.94 PeopleBook: Configurable Network Computing Implementation, “Object
Configuration Manager”.

Working with PeopleSoft EnterpriseOne and
Third-Party XAPI Events

This section provides an overview of the XAPI event generation and response and discusses:

• XAPI outbound request process flow.

• XAPI outbound request APIs.

• XAPI outbound request API usage code sample.

• XAPI outbound request XML code sample.

• XAPI outbound request jde.ini file configuration.

• XAPI inbound response process flow.

• XAPI inbound response parsing APIs.

• XAPI inbound response parsing API usage code sample.

122 PeopleSoft Proprietary and Confidential

Chapter 14 Using XAPI Events - Classic

• XAPI inbound response sample code.
• XAPI inbound response jde.ini file configuration.
• XAPI client jde.ini file configuration.

Understanding XAPI Event Generation and Third-Party Response
The XAPI structure supports XAPI outbound event generation. XAPI outbound events are generated by the
XAPI originator exactly the same as real-time events.

The XAPI structure also provides for an inbound response. The XAPI inbound response happens after a XAPI
event is generated. The XAPI inbound response is handled by the third-party system. The third-party system,
the XAPI executor, processes the request (event) and returns a reply to the XAPI originator.

When the return XML document is received, it is routed to the XML Service kernel. The XML Service kernel
saves the XML document to disk, creates a unique handle, and then calls the callback business function that is
provided in the DXAPIROUTE XAPI method ID element in the XML document.

XAPI Outbound Request Process Flow
This diagram illustrates the flow for a XAPI outbound request that is sent to a third-party system:

PeopleSoft
EnterpriseOne

Client

Client BSFN

Call Object Kernel
(BSFN)

Interop Event
Observer Kernel

Event Notification
Kernel

JDENET

Java Interop
Server

COM Interop
Server

1

2

1

3

4

Client Server Side

XML

Event Generation

Event Distribution

XAPI request to a third-party system

In summary:

1. When a XAPI event is generated from a PeopleSoft EnterpriseOne client, the client business function calls
the appropriate API.
This API does an OCM lookup to determine where the IEO kernel is located. The API validates, filters,
and formats the data. When a XAPI event is generated from a PeopleSoft EnterpriseOne server, the
business function calls the interoperability event interface within the CallObject kernel. The data is sent
as a partial event to the IEO kernel.

PeopleSoft Proprietary and Confidential 123

Using XAPI Events - Classic Chapter 14

2. The IEO kernel creates the XAPI event and produces an XML document when the XAPI event is finalized.
3. The IEO kernel packages the XML document and passes the document to the EVN kernel.
4. The EVN kernel determines the transport driver that should handle the event, and JDENET distributes the
information to the subscribers.

Note. XAPI currently does not use MQSeries or MSMQ. All events that are defined in the F90701 table are
sent to you if you configure your system to receive events using MQSeries and MSMQ transport drivers.

XAPI Outbound Request APIs
These APIs are available for you to generate a XAPI call:

• jdeXAPI_Init
• jdeXAPI_Add
• jdeXAPI_Finalize
• jdeXAPI_Free
• jdeXAPI_SimpleSend
• jdeXAPI_ISCallTypeEnabled
• jdeXAPI_CALLS_ENABLED

XAPI Outbound Request API Usage Sample Code
This code sample illustrates how to create a XAPI outbound request:

#ifdef jdeXAPI_CALLS_ENABLED

XAPI_CALL_ID ulXAPICallID = 0;

XAPI_CALL_RETURN eXAPICallReturn = eEventCallSuccess;

#endif

DSD4205010A dsD4205010A = {0}; /*Query Header*/

DSD4205010B dsD4205010B = {0}; /*Query Detail*/

#ifdef jdeXAPI_CALLS_ENABLED

if(jdeXAPI_IsCallTypeEnabled(XAPIOPOUT) &&

jdeXAPI_IsCallTypeEnabled(XAPIOPIN))

{

bXAPIInUse = TRUE;

}

#endif

/*---*/

/* Call XAPIInit */

#ifdef jdeXAPI_CALLS_ENABLED

if(bXAPIInUse == TRUE)

{

ulXAPICallID = jdeXAPI_Init(lpBhvrCom,

"SendOrderPromiseRequest",

124 PeopleSoft Proprietary and Confidential

Chapter 14 Using XAPI Events - Classic

"XAPIOPOUT",

NULL,

&eXAPICallReturn);

if (eXAPICallReturn != eEventCallSuccess)

{

bExit = TRUE;

}

}

#endif

/*---*/

/* Adding Header Information */

#ifdef jdeXAPI_CALLS_ENABLED

if(bXAPIInUse == TRUE)

{

eXAPICallReturn = jdeXAPI_Add(lpBhvrCom,

ulXAPICallID,

"SendOrderPromiseRequest",

"D4205010A",

&dsD4205010A,

sizeof(DSD4205010A));

if (eXAPICallReturn != eEventCallSuccess)

{

bExit = TRUE;

}

}

#endif

/*---*/

/* Loading Detail Information */

#ifdef jdeXAPI_CALLS_ENABLED

if(bXAPIInUse == TRUE)

{

eXAPICallReturn = jdeXAPI_Add(lpBhvrCom,

ulXAPICallID,

"SendOrderPromiseRequest",

"D4205010B",

&dsD4205010B,

sizeof(DSD4205010B));

if (eXAPICallReturn != eEventCallSuccess)

{

bExit = TRUE;

}

}

#endif

#ifdef jdeXAPI_CALLS_ENABLED

if(bXAPIInUse == TRUE)

PeopleSoft Proprietary and Confidential 125

Using XAPI Events - Classic Chapter 14

/*---*/

/* Finalize */

{

eXAPICallReturn = jdeXAPI_Finalize(lpBhvrCom,

ulXAPICallID,

"SendOrderPromiseRequest",

"OrderPromiseCallback");

if (eXAPICallReturn != eEventCallSuccess)

{

bExit = TRUE;

}

}

#endif

#ifdef jdeXAPI_CALLS_ENABLED

if (eXAPICallReturn != eEventCallSuccess)

{

/*---*/

/* CleanUp */

if(bXAPIInUse == TRUE)

{

jdeXAPI_Free(lpBhvrCom,

ulXAPICallID,

"SendOrderPromiseRequest");

}

}

#endif

XAPI Outbound Request XML Code Sample
This code example shows the XML template for a XAPI outbound request:

xml version=1.0 encoding="utf-8" ?>

<jdeResponse type="realTimeEvent" user="KL5449350" role=’*ALL’

session="22558100.1004460662" subtype="XAPICall" environment="DV7333">

<event>

<header>

<eventVersion>1.0</eventVersion>

<type>XAPIOPOUT</type>

<user>KL5449350</user>

<application>APIDRV</application>

<version />

<sessionID>22558100.1004460662</sessionID>

<environment>DV7333</environment>

<host>DEN-PP6954083</host>

<sequenceID>DEN-PP6954083_1540_10302001095648_KL5449350_1</sequenceID>

<date>10302001</date>

<time>095649</time>

126 PeopleSoft Proprietary and Confidential

Chapter 14 Using XAPI Events - Classic

<scope />

<codepage>utf-8</codepage>

</header>

<body elementCount="3">

<detail date="10302001" name="APIDRVFunction" time="9:56:48" type= ""

DSTMPL="D4205010A" executionOrder="1" parameterCount="23">

<szRequestId type="String">1234567</szRequestId>

<szUserId type="String">TestUser</szUserId>

<szQueryMode type="String">Test</szQueryMode>

<szCustomerName type="String">John Doe</szCustomerName>

<mnCustomerId type="Double">12345</mnCustomerId>

<szCustomerGroup type="String">Group 1</szCustomerGroup>

<szAddress1 type="String">Line 1</szAddress1>

<szAddress2 type="String">Suite 1</szAddress2>

<szAddress3 type="String">123 E. Main</szAddress3>

<szPostalCode type="String">50001</szPostalCode>

<szCity type="String">Centennial</szCity>

<szCounty type="String">Arap</szCounty>

<szStateProvince type="String">CO</szStateProvince>

<szCountry type="String">US</szCountry>

<szBusinessObjective type="String" />

<mnTraceDepth type="Double">0</mnTraceDepth>

<mnPenaltyCostAdjustment type="Double">0</mnPenaltyCostAdjustment>

<szOrderNumber type="String">1000</szOrderNumber>

<nAllowBackorders type="Int">49</nAllowBackorders>

<nAllowSubstitution type="Int">48</nAllowSubstitution>

<nAllowPartialLineShip type="Int">49</nAllowPartialLineShip>

<nAllowPartialOrderShip type="Int">49</nAllowPartialOrderShip>

<nAllowMultisource type="Int">49</nAllowMultisource>

</detail>

<detail date="10302001" name="APIDRVFunction" time="9:56:49" type= ""

DSTMPL="D4205010B" executionOrder="2" parameterCount="17">

<mnLineNumber type="Double">1</mnLineNumber>

<mnCacheLineNumber type="Double">1</mnCacheLineNumber>

<mnItemNumber type="Double">2222</mnItemNumber>

<sz2ndItemNumber type="String">1234567</sz2ndItemNumber>

<sz3rdItemNumber type="String">2234567</sz3rdItemNumber>

<szOrderUnit type="String">123</szOrderUnit>

<mnOrderQuantity type="Double">12</mnOrderQuantity>

<szPlanningUnit type="String">ECL</szPlanningUnit>

<mnPlanningQuantity type="Double">12</mnPlanningQuantity>

<mnPlanningMultiple type="Double">1</mnPlanningMultiple>

<mnPlanningUnitPrice type="Double">1234</mnPlanningUnitPrice>

<jdRequestDate type="Date">10302001</jdRequestDate>

<szShippingGroup type="String">Ship Group</szShippingGroup>

<szMultiSource type="String">MS</szMultiSource>

<nAllowPartialLineShip type="Int">49</nAllowPartialLineShip>

<nAllowBackorders type="Int">49</nAllowBackorders>

<nAllowSubstitution type="Int">48</nAllowSubstitution>

</detail>

PeopleSoft Proprietary and Confidential 127

Using XAPI Events - Classic Chapter 14

/* DXAPIROUTE Routing Information */

<detail date="10302001" name="XAPICall time="09:56:49" type=""

DSTMPL="DXAPIROUTE"

executionOrder="3" parameterCount="4">

<ClientPort type="Int">6009</ClientPort>

<ClientIP type="Int">167810863</ClientIP>

<ClientMagicNumber type="Int">32781408</ClientMagicNumber>

<XAPIMethodID type="String">GetComputerID</XAPIMethodID>

</detail>

/* End of DXAPIROUT Routing Information */

</body>

</event>

</jdeResponse>

Routing Information
All XAPI events must include DXAPIROUTE in the XML file, as noted near the end of the XML code
sample. DXAPIROUTE contains the routing information that is to be returned to the originating client. The
jdeXAPI_Finalize API appends DXAPIROUTE data execution.

XAPI Outbound Request jde.ini File Configuration
To generate XAPI events, these sections of the PeopleSoft EnterpriseOne server jde.ini file must be configured:

• [JDENET_KERNEL_DEF19]

• [JDENET_KERNEL_DEF20]

• [JDEITDRV]

If the jde.ini file is not properly configured for XAPI events, this error message is written to the jde.log file:

XAPI Event [Event Name] cannot be subscribed. Must have XAPI Definition in the

INI file.

Make sure the XAPI event is defined in the F90701 table and that XAPI Executor information is defined
in the jde.ini file.

You can ignore this error message because XAPI subscription is persisted and cannot be unsubscribed:
Cannot unsubscribe XAPI event.

See Chapter 12, “Using Events - Classic,” Configuring the jde.ini file for Events, page 94.

XAPI Inbound Response Process Flow
This diagram illustrates the flow for a XAPI inbound response from a third-party system to the PeopleSoft
EnterpriseOne originating system:

128 PeopleSoft Proprietary and Confidential

Chapter 14 Using XAPI Events - Classic

EnterpriseOne
Client

Client BSFN

XML
Service
Kernel

Java Interop
Server

Com Interop
Server

5

2

3

Client Server Side

Call
Object Kernel

(BSFN)

Reply

Reply

Parsed
XML

Call
BSFN

XML

XML

6

4

1

XAPI response from a third-party system

In summary:

1. An inbound XML document is passed from a third-party system to the XML Service kernel.
2. The XML Service kernel creates a unique XML handle and stores the document on disk.
3. The XML Service kernel reads the XAPICallMethod attribute from the XML document and passes the
XML handle as the parameter to the specified business function.

4. The business function (XAPICallMethod) uses XML service APIs to read and parse the XML data into
PeopleSoft EnterpriseOne data.

5. The business function (XAPICallMethod) uses XML CallObject to send the reply to the originator.
6. A PeopleSoft EnterpriseOne client can poll for the XAPI response from the PeopleSoft EnterpriseOne
server.

XAPI Inbound Response Parsing APIs
These APIs are available for you to generate an inbound XAPI response:

• jdeXML_GetDSCount
• jdeXML_GetDSName
• jdeXML_ParseDS
• jdeXML_DeleteXML

PeopleSoft Proprietary and Confidential 129

Using XAPI Events - Classic Chapter 14

XAPI Inbound Response Parsing API Usage Code Sample
This code example illustrates how the business function uses the XML service APIs to read and parse the
XML data:

int iCurrentRecord;

int iHeaderCount;

DSD4205030A dsD4205030A = {0};

DSD4205030B dsD4205030B = {0};

#ifdef jdeXAPI_CALLS_ENABLED

if(jdeXAPI_IsCallTypeEnabled("XAPIOPOUT") &&

jdeXAPI_IsCallTypeEnabled("XAPIOPIN"))

{

iRecordCount = jdeXML_GetDSCount(lpDS->szXMLHandle);

if (iRecordCount > 0)

{

for (iCurrentRecord = 0; iCurrentRecord < iRecordCount;

iCurrentRecord++)

{

jdeXML_GetDSName(lpDS->szXMLHandle,

iCurrentRecord,

nidDSName);

if (jdestrcmp(nidDSName,(const char*)D4205030A) == 0)

{

jdeXML_ParseDS(lpDS->szXMLHandle,

iCurrentRecord,

&dsD4205030A,

sizeof(DSD4205030A));

}

else

{

jdeXML_ParseDS(lpDS->szXMLHandle,

iCurrentRecord,

&dsD4205030B,

sizeof(DSD4205030B));

}

}

}

if (iCurrentRecord == iRecordCount)

{

jdeXML_DeleteXML(lpDS->szXMLHandle);

}

}

#endif

130 PeopleSoft Proprietary and Confidential

Chapter 14 Using XAPI Events - Classic

XAPI Inbound Response Code Sample
This sample code shows an inbound XAPI response:

<?xml version="1.0" encoding="utf-8" ?>

<jdeRequest pwd="JDE" type="xapicallmethod" user="JDE" role=’*ALL’

session= "" ⇒
environment="DV7333" sessionidle="">

<header>

<eventVesrion>1.0</eventVesrion>

<type>XAPIOPIN</type>

<user>JDE</user>

<application>XPI</application>

<version />

<sessionID />

<environment>DEVXPINT</environment>

<host>denxpi7</host>

<sequenceID />

<date>09122001</date>

<time>094951</time>

<scope />

<codepage>utf-8</codepage>

</header>

<body elementCount="3">

<params type="D4205030A" executionOrder="1" parameterCount="24">

<param name="type" />

<param name="dateStamp" />

<param name="timeStamp" />

<param name="szRequestId">1|ZJDE0001</param>

<param name="szBusinessObjective">Maximize_Service</param>

<param name="mnResultNumber">0.0</param>

<param name="mnTotalCost">0.0</param>

<param name="mnTotalDeliveryCost">0.0</param>

<param name="mnTotalPrice">0.0</param>

<param name="mnTotalProfit">0.0</param>

<param name="mnTotalMargin">0.0</param>

<param name="mnTotalValue">0.0</param>

<param name="mnLatestLineDate">0.0</param>

<param name="mnNumberOfBackorders">0.0</param>

<param name="mnNumberOfSubstitutions">0.0</param>

<param name="mnOrderFillRate">0.0</param>

<param name="szErrorCode" />

<param name="szErrorDescription" />

<param name="szOrderNumber">3115|SO|00200</param>

<param name="nAllowPartialOrderShip">0</param>

<param name="nAllowMultisource">0</param>

<param name="nAllowBackorders">0</param>

<param name="nAllowSubstitution">0</param>

<param name="nAllowPartialLineShip">0</param>

</params>

PeopleSoft Proprietary and Confidential 131

Using XAPI Events - Classic Chapter 14

<params type="D4205030B" executionOrder="2" parameterCount="28">

<param name="type" />

<param name="dateStamp" />

<param name="timeStamp" />

<param name="mnLineNumber">1.0</param>

<param name="mnOriginalLineNumber">1.0</param>

<param name="mnCacheLineNumber">1.0</param>

<param name="mnRequestedItem">60011.0</param>

<param name="mnAvailableItem">60011.0</param>

<param name="mnAvailableAmount">25.0</param>

<param name="jdAvaiableDate">09/12/2001 00:00:00</param>

<param name="jdRequestedDate">09/10/2001 00:00:00</param>

<param name="jdPickDate">09/11/2001 00:00:00</param>

<param name="jdShipDate">09/11/2001 00:00:00</param>

<param name="szShipLocation" />

<param name="mnCost">0.0</param>

<param name="mnDeliveryCost">0.0</param>

<param name="mnPrice">0.0</param>

<param name="mnProfit">0.0</param>

<param name="mnMargin">0.0</param>

<param name="mnValue">0.0</param>

<param name="mnSubstitutionRatio">0.0</param>

<param name="szShippingGroup" />

<param name="szMultiSource" />

<param name="szErrorCode" />

<param name="szSuspectedCause" />

<param name="nAllowPartialOrderShip">0</param>

<param name="nAllowBackorders">0</param>

<param name="nAllowSubstitution">0</param>

</params>

<params type="DXAPIROUTE" executionOrder="3" parameterCount="7">

<param name="type" />

<param name="dateStamp">09/05/2001 00:00:00</param>

<param name="timeStamp">13:54:04</param>

<param name="ClientPort">6009</param>

<param name="ClientIP">168045665</param>

<param name="ClientMagicNumber">3</param>

<param name="XAPIMethodID">OrderPromiseCallback</param>

</params>

</body>

</jdeRequest>

XAPI Inbound Response jde.ini File Configuration
These sections of the PeopleSoft EnterpriseOne server jde.ini file must be configured for the XAPI response
portion of the XAPI structure:

• [JDENET_KERNEL_DEF22]
• [JDENET_KERNEL_DEF24]

132 PeopleSoft Proprietary and Confidential

Chapter 14 Using XAPI Events - Classic

• [XAPI]
• [XMLLookupInfo]

[XAPI]
Configure this setting:

XMLDirectory=c:\builds\bdev\log\

Note. The XML document directory (XMLDirectory) must be registered in the jde.ini file on the server
under the [XAPI] section in the XMLDirectory key. The key contains the directory on the server where
XML documents are to be stored.

[XMLLookupInfo]
Configure these settings:

XMLRequestType5=realTimeEvent

XMLKernelMessageRange5=14251

XMLKernelHostName5=local

XMLKernelPort5=0

XMLKernelReply5=0

See Chapter 13, “Using Real-Time Events - Classic,” Setting Up the OCM for Real-Time Events, page 116.

XAPI Client jde.ini File Configuration
If you are using a PeopleSoft EnterpriseOne client to generate XAPI events, you must define the Client
Dispatch kernel and [JDENET] sections of the client jde.ini file. If your interface to the PeopleSoft
EnterpriseOne server is other than a PeopleSoft EnterpriseOne client, these two settings are not required. The
settings enable the PeopleSoft EnterpriseOne client to poll for the XAPI response message from the PeopleSoft
EnterpriseOne server.

Use these settings to configure your PeopleSoft EnterpriseOne client jde.ini file.

[JDENET_KERNEL_DEF27]
Configure these settings:

krnlName=CLIENT DISPATCH KERNEL

dispatchDLLName=jdeuser.dll

dispatchDLLFunction=_JDENET_ClientDispatch

maxNumberOfProcesses=0

numberOfAutoStartProcesses=0

[JDENET]
Configure these settings

serviceNameListen=6004

serviceNameConnect=6004

maxKernelRanges=27

netTrace=0

PeopleSoft Proprietary and Confidential 133

Using XAPI Events - Classic Chapter 14

Note. The serviceNameListen and serviceNameConnect settings must be the same as the server’s settings. For
example, if your server jde.ini file has serviceNameListen=6005 and serviceNameConnect=6005, then your
PeopleSoft EnterpriseOne client jde.ini file must be serviceNameListen=6005 and serviceNameConnect=6005.

The value for maxKernelRanges setting should be the same value as the server.

Working with PeopleSoft EnterpriseOne-to-EnterpriseOne
XAPI Events

This section provides an overview of the PeopleSoft EnterpriseOne-to-EnterpriseOne XAPI events and
discusses:

• XAPI PeopleSoft EnterpriseOne-to-EnterpriseOne process flow.
• XAPI outbound request generation APIs.
• XAPI outbound request handling APIs.
• XAPI outbound request parsing API usage sample code.
• XAPI PeopleSoft EnterpriseOne originator XML sample code.
• XAPI inbound response generation APIs.
• XAPI inbound response parsing API usage sample code.
• XAPI response from originator system sample code.
• XAPI inbound response handling APIs.
• XAPI error handling APIs.
• XAPI PeopleSoft EnterpriseOne-to-EnterpriseOne jde.ini file configuration.

Understanding PeopleSoft EnterpriseOne-to-EnterpriseOne
XAPI Events
The XAPI structure provides the capability for two different PeopleSoft EnterpriseOne systems to
communicate with each other. The first PeopleSoft EnterpriseOne system (XAPI originator system) generates
a XAPI request (event). Instead of the request being distributed to a third-party system, JDENET sends the
request to a second PeopleSoft EnterpriseOne system.

You can use the reliable event delivery feature to process XAPI events.

Modifying Element Name for XML Documents
Before XAPI event processing, any document that was sent from PeopleSoft EnterpriseOne was considered to
be a response document, and any document coming in to PeopleSoft EnterpriseOne was considered to be a
request document. However, with XAPI, request documents are generated by the PeopleSoft EnterpriseOne
originating system and can be sent to a PeopleSoft EnterpriseOne executor system. Response documents
are generated and sent by the PeopleSoft EnterpriseOne executor system and received by the PeopleSoft
EnterpriseOne originating system. To support XAPI and to enable the XML dispatch kernel to distinguish
between a response and reply, PeopleSoft created these type attributes to be used with the jdeResponse element:

134 PeopleSoft Proprietary and Confidential

Chapter 14 Using XAPI Events - Classic

Attribute Type Explanation

jdeResponse=RealTimeEvent Use this element and attribute to identify a XAPI request from the PeopleSoft
EnterpriseOne originating system and sent to the PeopleSoft EnterpriseOne
executor system.

jdeResponse=xapicallmethod Use this element and attribute to identify a XAPI response from the PeopleSoft
EnterpriseOne executor system and sent to the PeopleSoft EnterpriseOne
originating system.

When the XMLDispatch kernel receives a document with the jdeResponse element and a RealTimeEvent or
xapicallmethod type attribute, XMLDispatch sends the document to the XML Service kernel. XML Service
can distinguish a response or a reply based on the type attribute that is associated with the jdeResponse
element and then processes the document appropriately.

Security for Originator and Executor
Access to the PeopleSoft EnterpriseOne originator and PeopleSoft EnterpriseOne executor systems is based on:

• User ID

• Password

• Environment

• Role

The PeopleSoft EnterpriseOne originating system verifies that the security information is valid and creates an
hUser object with an encrypted password to send to the PeopleSoft EnterpriseOne executor. Encryption APIs
(jdeEnchyper and jdeDecypher) are used to encrypt and decode the password. The security information is sent
in the XAPI request XML document.

Note. The user ID, password, environment, and role must be the same on both PeopleSoft EnterpriseOne
systems (originator and executor).

Error Processing for Originator and Executor
You might encounter these two types of errors during XAPI error processing between two PeopleSoft
EnterpriseOne systems:

Type of Error Explanation

Business-related errors The business function or the business function
specifications cannot be found.

System errors These errors occur in other parts of the system (for
example, message delivery failure).

The system handles XAPI error processing for business-related errors in this manner:

• XAPI logs the business-related errors in the PeopleSoft EnterpriseOne server log and these errors are
delivered as part of the XAPI reply.

• XAPI APIs parse business errors from the response document.
• XAPI logs all information available about the error in the PeopleSoft EnterpriseOne server log.

PeopleSoft Proprietary and Confidential 135

Using XAPI Events - Classic Chapter 14

XAPI PeopleSoft EnterpriseOne-to-EnterpriseOne Process Flow
This illustration shows a logical representation of the PeopleSoft EnterpriseOne-to-EnterpriseOne XAPI
process flow:

PeopleSoft
EnterpriseOne

Client

Events
XML

Dispatch

Client EnterpriseOne Server

Call
Object
Kernel

2

XAPI
Originator
System

XAPI

3

1

15

XML
Dispatch

XML
Service

13

12

11

14

Events

XML
Service

XAPI
Executor
System

5

4

CallObject
Kernel

XAPI

8

7 6

10 9

EnterpriseOne Server

PeopleSoft EnterpriseOne-to-EnterpriseOne process flow

In summary:

1. For the XAPI Originator System in the illustration, a business function calls the Interoperability Event
Interface within the CallObject kernel to send a request.

2. The business function uses XAPI APIs to create the XAPI request.
XAPI adds the callback function and sends the request to the events structure.

3. The IEO kernel creates the XAPI event in XML format and sends the XML document to the EVN kernel.
The EVN kernel ships the XML document to the XML Dispatch kernel of the second PeopleSoft
EnterpriseOne system. The XML document is shipped through JDENET using persistent subscription
information. A routing token that contains the sender’s server and port information is added. The message
type for the event must be RealTimeEvent.

4. For the XAPI Executor System in the illustration, the XML Dispatch kernel receives the XML package and
sends the event request and routing information to the XML Service kernel.

5. The XML Service kernel stores the XAPI request and creates a file handle for the XAPI request.
The XML kernel also creates XML based routing information, stores the routing information, and creates a
file handle for the routing information. The XML Service kernel uses the F907012 table to find the
business function that processes the request.

136 PeopleSoft Proprietary and Confidential

Chapter 14 Using XAPI Events - Classic

6. The XML Service kernel invokes the business function (in CallObject) with the XML request handle and
the routing information handle.

7. The business function uses XAPI APIs to parse and process the request. XAPI APIs load the XML
request into memory.

8. The business function processes the XAPI event request.
The business function also creates a XAPI response. The message type for the response must be
xapicallmethod. The XAPI response is in XML format. The business function also passes the routing
information handle.

9. The XAPI response originator sends the response and the routing information to the events structure.
10. The IEO kernel formats the XAPI response in XML format and sends the XML document to the EVN
kernel.
The EVN kernel uses direct routing to send the response and routing information to the XML Dispatch
kernel of the first PeopleSoft EnterpriseOne system (XAPI originator system). Direct routing means
sending the XAPI reply to the same request-originating server.

11. For the XAPI Originator System in the illustration, the XML Dispatch kernel receives the response XML
document and sends the response to the XML Service kernel.

12. The XML Service kernel stores the response document, creates a file handle, and invokes the callback
business function with the file handle.

13. The business function parses the response document using XAPI APIs (XAPI response handler).
XAPI APIs use the XML Service kernel to load the document into memory.

14. The business function uses XAPI APIs (CallObject kernel) to process the response.
15. The business function can poll for the XAPI response from the PeopleSoft EnterpriseOne server.

Note. You can send a request from one PeopleSoft EnterpriseOne system to another PeopleSoft EnterpriseOne
system for processing with no return reply. If you do not want a response, use the steps through step 8 without
processing the request. No response is generated.

XAPI Outbound Request Generation APIs
You use APIs to generate a XAPI request from the originator system. These APIs are the same as the APIs that
are identified in the XAPI Outbound Events section.

• jdeXAPI_SimpleSend
• jdeXAPI_Init
• jdeXAPI_Add
• jdeXAPI_Finalize
• jdeXAPI_Free

XAPI Outbound Request Handling APIs
The mapped business function use these APIs in the PeopleSoft EnterpriseOne executor system to retrieve
XML data from the outbound XAPI request document:

• jdeXMLRequest_GetDSCount
• jdeXMLRequest_GetDSName

PeopleSoft Proprietary and Confidential 137

Using XAPI Events - Classic Chapter 14

• jdeXMLRequest_ParseDS
• jdeXMLRequest_DeleteXML
• jdeXMLRequest_ParseNextDSByName
• jdeXMLRequest_PrepareDSListForIterationByName

XAPI Outbound Request Parsing API Usage Sample Code
This code example shows the API usage for generating a outbound request from the PeopleSoft EnterpriseOne
originator to the PeopleSoft EnterpriseOne executor:

API_System FunctionsSampleXAPIRequestParsingAPIUsage

Last Modified: | October 21, 2002

Example

int iXMLRecordCount = 0;

int iCurrentRecord = 0;

NID nidDSName;

ID idReturnValue = ER_SUCCESS;

ID idSORecordCount = ER_ERROR; /*Return Code*/

MATH_NUMERIC mnBatchNumber = {0};

unsigned long lBatchNumber = {0};

DSD4206030A dsD4206030A = {0};

/* CacheProcessInboundDemandRequest B4206030.c */

DSD4206000I dsD4206000I = {0};

/* Demand scheduling inbound DSTR */

iXMLRecordCount = jdeXMLRequest_GetDSCount(lpDS->szXMLHandle);

if(iXMLRecordCount > 0)

{

for (iCurrentRecord = 0; iCurrentRecord < iXMLRecordCount; iCurrentRecord++)

{

memset((void *)(&dsD4206000I), (int)(_J(’\0’)), sizeof(DSD4206000I));

memset((void *)(nidDSName), (int)(_J(’\0’)), sizeof(NID));

if(jdeXMLRequest_GetDSName(lpDS->szXMLHandle,

iCurrentRecord,

nidDSName))

{

/* Retrieving data*/

if (jdeStricmp(nidDSName, (const JCHAR *)_J("D40R0180B")) == 0)

{

if (jdeXMLRequest_ParseDS(lpDS->szXMLHandle,

iCurrentRecord,

&dsD4206000I,

sizeof(DSD4206000I)))

{

/* Get next number for the batch number of the

inbound INVRPT record*/

138 PeopleSoft Proprietary and Confidential

Chapter 14 Using XAPI Events - Classic

if (dsD4206000I.cInventoryAdvisement == _J(’1’))

{

lBatchNumber = JDB_GetInternalNextNumber();

LongToMathNumeric(lBatchNumber, &mnBatchNumber);

FormatMathNumeric(dsD4206000I.szBatch,&mnBatchNumber);

}

/* Setup cancel flag for pending delete record */

if (dsD4206000I.cPendingDelete == _J(’1’))

{ /* Flag set as 1 for any cancel demand record */

dsD4206000I.cCancelFlag = _J(’1’);

}

else

{ /* Flag set as 9 for any non cancel demand record */

dsD4206000I.cCancelFlag = _J(’9’);

}

/* Load parms for cache */

memset((void *)(&dsD4206030A), (int)(_J(’\0’)), sizeof(DSD4206030A));

I4206000_LoadParmsToCache(&dsD4206000I, &dsD4206030A);

MathCopy(&dsD4206030A.mnJobnumberA, lpmnJobNumber);

/* Add the DSTR to cache */

idReturnValue = jdeCallObject(_J("CacheProcessInboundDemandRequest") ,

(LPFNBHVR)NULL ,

lpBhvrCom ,

lpVoid ,

(LPVOID)&dsD4206030A,

(CALLMAP *) NULL,

(int) 0,

(JCHAR*)NULL ,

(JCHAR*)NULL ,

(int) 0);

/* Write XML DSTR to cache fail */

if (idReturnValue == ER_ERROR)

{

jdeErrorSet(lpBhvrCom, lpVoid, (ID) 0, _J(032E), (LPVOID) NULL);

}

}

else

{ /* warning XML parse fail */

jdeErrorSet(lpBhvrCom, lpVoid, (ID) 0, _J("40R46"), (LPVOID) NULL);

}

} /* end if */

}/* end if DS name */

}/* end for - looping all matching XML DSTR */

/* Ensure there is at least one record */

PeopleSoft Proprietary and Confidential 139

Using XAPI Events - Classic Chapter 14

idSORecordCount = ER_SUCCESS;

}/*if(iXMLRecordCount > 0) */

return idSORecordCount;

XAPI PeopleSoft EnterpriseOne Originator XML Sample Code
This sample code illustrates the XAPI request document from the PeopleSoft EnterpriseOne originator system
to the PeopleSoft EnterpriseOne executor system:

<?xml version="1.0" encoding="UTF-16" ?>

<jdeRequest pwd="4f3e65076f446c5d20666f4172536518435c" role="*ALL"

type="xapicallmethod" user="PP6954083" session="" environment="DV9NIS2"

responseCreator="XAPI">

<header>

<eventVersion>1.0</eventVersion>

<type>XAPIDEMO</type>

<user>PP6954083</user>

<role>*ALL</role>

<application />

<version />

<sessionID>35087181.1050101193</sessionID>

<environment>DV9NIS2</environment>

<host>DEN-PP6954083B</host>

<sequenceID>DEN-PP6954083B_3112_041120031647161</sequenceID>

<date>04112003</date>

<time>164716</time>

<scope />

<codepage>utf-8</codepage>

<instanceInfo>

<host>DEN-PP6954083B</host>

<port>6025</port>

<type>JDENET</type>

</instanceInfo>

</header>

<body elementCount="3">

<errors errorCount="4">

<error code="041H" type="BSFN ERROR" />

<error code="041I" type="BSFN ERROR" />

<error code="2597" type="BSFN ERROR" />

<error code="4136" type="BSFN ERROR" />

</errors>

<params type="D907001A" executionOrder="0" parameterCount="14">

<param name="szXMLHandle">DEN-PP6954083B_||_C:\builds\B9_SP0\log\

J3E9745EE032D-00000C28-00000001-00000000000000000000FFFF0A0396A3.xml</param>

<param name="mnAddressNumber">55617</param>

<param name="szNameAlpha">Pradip Pandey</param>

<param name="szNameMailing">Pradip K Pandey</param>

<param name="szAddressLine1" />

<param name="szAddressLine2" />

140 PeopleSoft Proprietary and Confidential

Chapter 14 Using XAPI Events - Classic

<param name="szZipCodePostal">80237</param>

<param name="szCity>Denver"</param>

<param name="szState">CO</param>

<param name="szCountry" />

<param name="mnAmountGross">100.00</param>

<param name="mnUnits">100.00</param>

<param name="jdDtForGLAndVouch1">2001/01/01</param>

<param name="cDefaultAddressLine1">9</param>

</params>

<params type="DXAPIROUTE" executionOrder="1" parameterCount="4">

<param name="ClientPort">6024</param>

<param name="ClientIP">168007331</param>

<param name="ClientMagicNumber">1</param>

<param name="XAPIMethodID">XAPITestResponse</param>

</params>

</body>

</jdeRequest>

XAPI Inbound Response Generation APIs
The PeopleSoft EnterpriseOne executor system uses these APIs to generate a response:

• jdeXAPIResponse_SimpleSend
• jdeXAPIResponse_Init
• jdeXAPIResponse_Add
• jdeXAPIResponse_Finalize
• jdeXAPIResponse_Free

XAPI Inbound Response Parsing API Usage Sample Code
This code example shows the API usage for generating an inbound reply from the PeopleSoft EnterpriseOne
executor to the PeopleSoft EnterpriseOne originator:

JDEBFRTN (ID) JDEBFWINAPI SendOrderPromiseRequest (LPBHVRCOM lpBhvrCom,

LPVOID lpVoid, LPDSD4205010 lpDS)

{

/**

Variable declarations

**/

char cPromisableLine = ’ ’;

int nHeaderBackOrderAllowed = ’ ’;

HUSER hUser ;

ID JDEDBResult = JDEDB_PASSED;

BOOL bExit = FALSE;

BOOL bB4001040Called = FALSE;

BOOL bXAPIInUse = FALSE;

BOOL bAtLeastOneDetail = FALSE;

#ifdef jdeXAPI_CALLS_ENABLED

PeopleSoft Proprietary and Confidential 141

Using XAPI Events - Classic Chapter 14

XAPI_CALL_ID ulXAPICallID = 0;

XAPI_CALL_RETURN eXAPICallReturn = eEventCallSuccess;

#endif

/**

* Declare structures

**/

DSD4001040 dsD4001040 = {0};

DSD4205020 dsD4205020 = {0};

DSD4205040 dsD4205040 = {0}; /* Header Info */

DSD4205050 dsD4205050 = {0}; /* Detail Info */

DSD4205010A dsD4205010A = {0}; /* Query Header */

DSD4205010B dsD4205010B = {0} /* Query Detail */

DSD0100042 dsD0100042 = {0};

LPDSD4205040H lpDSD4205040H = (LPDSD4205040H) NULL;

LPDSD4205050D lpDSD4205050D = (LPDSD4205050D) NULL;

/**

** Declare pointers

**/

/**

* Check for NULL pointers

**/

if ((lpBhvrCom == (LPBHVRCOM) NULL) ||

(lpVoid == (LPVOID) NULL) ||

(lpDS == (LPDSD4205010) NULL))

{

jdeErrorSet (lpBhvrCom, lpVoid, (ID) 0, "4363", (LPVOID) NULL);

return ER_ERROR;

}

/* Retrieving hUser */

JDEDBResult = JDB_InitBhvr (lpBhvrCom, &hUser, (char *)NULL,

JDEDB_COMMIT_AUTO) ;

if (JDEDBResult == JDEDB_FAILED)

{

jdeSetGBRError (lpBhvrCom, lpVoid, (ID) 0, "4363") ;

return ER_ERROR ;

}

/**

* Set pointers

**/

/**

* Main Processing

**/

/*---*/

/* Setting Up ErrorCode

*/

lpDS->cErrorCode = ’0’;

142 PeopleSoft Proprietary and Confidential

Chapter 14 Using XAPI Events - Classic

/*---*/

/* Determining if XAPI is ready to be used */

bXAPIInUse = FALSE;

#ifdef jdeXAPI_CALLS_ENABLED

if(jdeXAPI_IsCallTypeEnabled("XAPIOPOUT") &&

jdeXAPI_IsCallTypeEnabled("XAPIOPIN"))

{

bXAPIInUse = TRUE;

}

#endif

/*---*/

/* Data validation and default values. */

/* When Display Before Accept Mode is on, validate Key */

/* Information. Otherwise retrieve it from Header Record*/

if((lpDS->cDisplayBeforeAcceptMode == ’1’) &&

((MathZeroTest(&lpDS->mnOrderNumber) == 0) ||

(IsStringBlank(lpDS->szOrderType)) ||

(IsStringBlank(lpDS->szOrderCompany))))

{

bExit = TRUE;

}

else

{

MathCopy(&dsD4205040.mnOrderNumber,&lpDS->mnOrderNumber);

strncpy(dsD4205040.szOrderType,

lpDS->szOrderType,

sizeof(dsD4205040.szOrderType));

strncpy(dsD4205040.szComputerID,

lpDS->szOrderCompany,

sizeof(dsD4205040.szOrderCompany));

dsD4205040.cUseCacheOrWF = lpDS->cUseCacheOrWF;

strncpy(dsD4205040.szComputerID,

lpDS->szComputerID,

sizeof(dsD4205040.szComputerID));

MathCopy(&dsD4205040.mnJobNumber,&lpDS->mnJobNumber);

jdeCallObject("GetSalesOrderHeaderRecord",

NULL,

lpBhvrCom, lpVoid,

(LPVOID)&dsD4205040,

(CALLMAP *) NULL,

(int) 0,

(char *) NULL,

(char *) NULL,

(int) 0) ;

lpDSD4205040H = (LPDSD4205040H)jdeRemoveDataPtr(hUser,

PeopleSoft Proprietary and Confidential 143

Using XAPI Events - Classic Chapter 14

(ulong)dsD4205040.idHeaderRecord);

if (lpDSD4205040H == NULL)

{

bExit = TRUE;

}

}

/*---*/

/* Set error if we’re exiting at this point */

if (bExit == TRUE)

{

lpDS->cErrorCode = ’1’;

/* Sales Order Header Not Found */

strncpy(lpDS->szErrorMessageID,

"072T",

sizeof(lpDS->szErrorMessageID));

if (lpDS->cSuppressError != ’1’)

{

jdeErrorSet (lpBhvrCom, lpVoid, (ID) 0, "072T", (LPVOID) NULL);

}

}

/*---*/

/* Default Promising Flag is always 1 */

lpDS->cDefaultPromisingFlags = 1;

if (bExit == FALSE)

{

/*---*/

/* Call XAPIInit */

#ifdef jdeXAPI_CALLS_ENABLED

if(bXAPIInUse == TRUE)

{

ulXAPICallID = jdeXAPI_Init(lpBhvrCom,

SendOrderPromiseRequest,

"XAPIOPOUT",

NULL,

&eXAPICallReturn);

if (eXAPICallReturn != eEventCallSuccess)

{

bExit = TRUE;

}

}

#endif

if (bExit == FALSE)

{

/*--*/

/* Loading Header Information */

144 PeopleSoft Proprietary and Confidential

Chapter 14 Using XAPI Events - Classic

I4205010_PopulateQueryHeader(lpDS,&dsD4205010A

lpDSD4205040H,&dsD0100042,hUser,lpVoid,lpBhvrCom);

nHeaderBackOrderAllowed = dsD4205010A.nAllowBackorders;

/*---*/

/* Adding Header Information */

#ifdef jdeXAPI_CALLS_ENABLED

if(bXAPIInUse == TRUE)

{

eXAPICallReturn = jdeXAPI_Add(lpBhvrCom,

ulXAPICallID,

"SendOrderPromiseRequest",

"D4205010A",

&dsD4205010A,

sizeof(DSD4205010A));

if (eXAPICallReturn != eEventCallSuccess)

{

bExit = TRUE;

}

}

#endif

}

}

if (bExit == FALSE)

{

/*---*/

/* Loading Detail Information */

MathCopy(&dsD4205050.mnOrderNumber,&lpDS->mnOrderNumber);

strncpy(dsD4205050.szOrderType,lpDS->szOrderType,

sizeof(dsD4205050.szOrderType));

strncpy(dsD4205050.szOrderCompany,lpDS->szOrderCompany,

sizeof(dsD4205050.szOrderCompany));

dsD4205050.cUseCacheOrWF = lpDS->cUseCacheOrWF;

strncpy(dsD4205050.szComputerID,lpDS->szComputerID,

sizeof(dsD4205050.szComputerID));

MathCopy(&dsD4205050.mnJobNumber,&lpDS->mnJobNumber);

if (lpDSD4205040H->cActionCode != ’A’)

{

dsD4205050.cCheckTableAfterCache = ’1’;

}

else

{

dsD4205050.cCheckTableAfterCache = ’0’;

}

jdeCallObject("GetSalesOrderDetailRecordOP",

NULL,

lpBhvrCom, lpVoid,

(LPVOID)&dsD4205050,

(CALLMAP *) NULL,

PeopleSoft Proprietary and Confidential 145

Using XAPI Events - Classic Chapter 14

(int) 0, (char *) NULL,

(char *) NULL, (int) 0) ;

if (dsD4205050.cRecordFound != ’1’)

{

bExit = TRUE;

lpDS->cErrorCode = ’1’;

/* Sales Order Detail Not Found */

strncpy(lpDS->szErrorMessageID,"4162",

sizeof(lpDS->szErrorMessageID));

if (lpDS->cSuppressError != ’1’)

{

jdeErrorSet (lpBhvrCom, lpVoid, (ID) 0, "4162", (LPVOID) NULL);

}

}

while ((dsD4205050.cRecordFound == ’1’) && (bExit == FALSE))

{

lpDSD4205050D = (LPDSD4205050D)jdeRemoveDataPtr(hUser,

(ulong)dsD4205050.idDetailRecord);

/* Reset flags */

cPromisableLine = ’0’;

bB4001040Called = FALSE;

/*---*/

/* Evaluate the Record from F4211 (cDataSource = 2)*/

/* to find out if we should promise the line */

/* else find out from Order Promising Detail.*/

if(dsD4205050.cDataSource == ’1’)

{

if (lpDSD4205050D->cOPPromiseLineYN == ’Y’)

{

cPromisableLine = ’1’;

}

}

else if(dsD4205050.cDataSource == ’2’)

{

MathCopy (&dsD4001040.mnShortItemNumber,

&lpDSD4205050D->mnShortItemNumber);

strncpy (dsD4001040.szBranchPlant,

lpDSD4205050D->szBusinessUnit,

sizeof(dsD4001040.szBranchPlant));

jdeCallObject ("GetItemMasterDescUOM",

NULL,

lpBhvrCom, lpVoid,

(LPVOID)&dsD4001040,

(CALLMAP *) NULL,

(int) 0, (char *) NULL,

(char *) NULL, (int) 0) ;

146 PeopleSoft Proprietary and Confidential

Chapter 14 Using XAPI Events - Classic

bB4001040Called = TRUE;

cPromisableLine = I4205010_IsLinePromisable(lpBhvrCom,lpVoid,

hUser,lpDS,lpDSD4205050D, dsD4001040.cStockingType);

}

if (cPromisableLine == ’1’)

{

/* Set this flag if at least one promisable */

/* detail record exists. */

bAtLeastOneDetail = TRUE;

if (bB4001040Called == FALSE)

{

MathCopy (&dsD4001040.mnShortItemNumber,

&lpDSD4205050D->mnShortItemNumber);

strncpy (dsD4001040.szBranchPlant,

lpDSD4205050D->szBusinessUnit,

sizeof(dsD4001040.szBranchPlant));

jdeCallObject ("GetItemMasterDescUOM",

NULL,

lpBhvrCom, lpVoid,

(LPVOID)&dsD4001040,

(CALLMAP *) NULL,

(int) 0, (char *) NULL,

(char *) NULL, (int) 0) ;

}

I4205010_PopulateQueryDetail(lpDS,&dsD4205010B,

lpDSD4205050D,

&dsD4001040,

&dsD4205010A,

&dsD0100042,

cPromisableLine,

hUser,

lpVoid,

lpBhvrCom);

#ifdef jdeXAPI_CALLS_ENABLED

if(bXAPIInUse == TRUE)

{

eXAPICallReturn = jdeXAPI_Add(lpBhvrCom,

ulXAPICallID,

"SendOrderPromiseRequest",

"D4205010B",

&dsD4205010B,

sizeof(DSD4205010B));

if (eXAPICallReturn != eEventCallSuccess)

PeopleSoft Proprietary and Confidential 147

Using XAPI Events - Classic Chapter 14

{

bExit = TRUE;

}

}

#endif

}

/*---*/

/* Fetching the next Detail Record */

MathCopy(&dsD4205050.mnOrderNumber,&lpDS->mnOrderNumber);

strncpy(dsD4205050.szOrderType,lpDS->szOrderType,

sizeof(dsD4205050.szOrderType));

strncpy(dsD4205050.szOrderCompany,lpDS->szOrderCompany,

sizeof(dsD4205050.szOrderCompany));

dsD4205050.cUseCacheOrWF = lpDS->cUseCacheOrWF;

strncpy(dsD4205050.szComputerID,lpDS->szComputerID,

sizeof(dsD4205050.szComputerID));

MathCopy(&dsD4205050.mnJobNumber,&lpDS->mnJobNumber);

if (lpDSD4205040H->cActionCode != ’A’)

{

dsD4205050.cCheckTableAfterCache = ’1’;

}

else

{

dsD4205050.cCheckTableAfterCache = ’0’;

}

jdeCallObject("GetSalesOrderDetailRecordOP",

NULL,

lpBhvrCom, lpVoid,

(LPVOID)&dsD4205050,

(CALLMAP *) NULL,

(int) 0, (char *) NULL,

(char *) NULL, (int) 0) ;

}

if (!bAtLeastOneDetail)

{

bExit = TRUE;

lpDS->cErrorCode = ’1’;

/* Sales Order Detail Not Found */

strncpy(lpDS->szErrorMessageID,"4162",

sizeof(lpDS->szErrorMessageID));

if (lpDS->cSuppressError != ’1’)

{

jdeErrorSet (lpBhvrCom, lpVoid, (ID) 0, "4162", (LPVOID) NULL);

}

}

if (bExit == FALSE)

{

#ifdef jdeXAPI_CALLS_ENABLED

if(bXAPIInUse == TRUE)

148 PeopleSoft Proprietary and Confidential

Chapter 14 Using XAPI Events - Classic

{

eXAPICallReturn = jdeXAPI_Finalize(lpBhvrCom,

ulXAPICallID,

"SendOrderPromiseRequest",

"OrderPromiseCallback)";

if (eXAPICallReturn != eEventCallSuccess)

{

bExit = TRUE;

}

}

#endif

}

/*---*/

/* Call B4205020 in Add Mode */

if((bExit == FALSE) &&

(lpDS->cDisplayBeforeAcceptMode != ’1’) &&

(lpDS->cUseCacheOrWF == ’2’))

{

MathCopy(&dsD4205020.mnOrderNumber,&lpDS->mnOrderNumber);

strncpy(dsD4205020.szOrderType,lpDS->szOrderType,

sizeof(dsD4205020.szOrderType));

strncpy(dsD4205020.szOrderCompany,lpDS->szOrderCompany,

sizeof(dsD4205020.szOrderCompany));

strncpy(dsD4205020.szComputerID,lpDS->szComputerID,

sizeof(dsD4205020.szComputerID));

MathCopy(&dsD4205020.mnJobNumber,&lpDS->mnJobNumber);

jdeCallObject(MaintainOPWorkFile,

NULL,

lpBhvrCom, lpVoid,

(LPVOID)&dsD4205020,

(CALLMAP *) NULL,

(int) 0, (char *) NULL,

(char *) NULL, (int) 0) ;

}

}

/***

Function Clean Up

**/

#ifdef jdeXAPI_CALLS_ENABLED

if (eXAPICallReturn != eEventCallSuccess)

{

/*---*/

/* CleanUp */

if(bXAPIInUse == TRUE)

{

jdeXAPI_Free(lpBhvrCom,

ulXAPICallID,

PeopleSoft Proprietary and Confidential 149

Using XAPI Events - Classic Chapter 14

"SendOrderPromiseRequest");

}

lpDS->cErrorCode = ’1’;

/* System Error - no reasonable error messages exist. */

strncpy(lpDS->szErrorMessageID,"018Y",

sizeof(lpDS->szErrorMessageID));

if (lpDS->cSuppressError != ’1’)

{

jdeErrorSet (lpBhvrCom, lpVoid, (ID) 0, "018Y", (LPVOID) NULL);

}

}

#endif

if(lpDSD4205040H != (LPDSD4205040H)NULL)

{

jdeFree((void *)lpDSD4205040H);

}

if(lpDSD4205050D != (LPDSD4205050D)NULL)

{

jdeFree((void *)lpDSD4205050D);

}

return (ER_SUCCESS);

}

XAPI Inbound Response from Originator System Sample Code
The sample code illustrates the XAPI response document from the PeopleSoft EnterpriseOne executor system
to the PeopleSoft EnterpriseOne originator system:

<?xml version="1.0" encoding="UTF-16" ?>

<jdeResponse pwd="4f3e65076f446c5d20666f4172536518435c" role="*ALL"

type="realTimeEvent" user="PP6954083" session="35087181.1050101193"

environment="DV9NIS2" responseCreator="XAPI">

<event>

<header>

<eventVersion>1.0</eventVersion>

<type>XAPIDEMO</type>

<user>PP6954083</user>

<role>*ALL</role>

<application>P90701XT</application>

<version />

<sessionID>35087181.1050101193</sessionID>

<environment>DV9NIS2</environment>

<host>DEN-PP6954083B</host>

<sequenceID>DEN-PP6954083B_2864_041120031636402</sequenceID>

<date>04112003</date>

<time>164646</time>

<scope />

<codepage>utf-8</codepage>

150 PeopleSoft Proprietary and Confidential

Chapter 14 Using XAPI Events - Classic

<instanceInfo>

<host>DEN-PP6954083B</host>

<port>6025</port>

<type>JDENET</type>

</instanceInfo>

</header>

<body elementCount="2">

<detail date="04112003" name="XAPITestFunctionInitiateRequest"

time="16:39:54" type="" DSTMPL="D907001A" executionOrder="0"

parameterCount="14">

<szXMLHandle type="String" />

<szNameAlpha type="String">Pradip Pandey</szNameAlpha>

<szNameMailing type="String">Pradip K Pandey</szNameMailing>

<szAddressLine1 type="String" />

<szAddressLine2 type="String" />

<szZipCodePostal type="String">80237</szZipCodePostal>

<szCity type="String">Denver</szCity>

<szState type="String">CO</szState>

<szCountry type="String" />

<mnAmountGross type="Double">100.00</mnAmountGross>

<mnUnits type="Double">100.00</mnUnits>

<jdDtForGLAndVouch1 type="Date">2001/01/01</jdDtForGLAndVouch1>

<cDefaultAddressLine1 type="Character" />

</detail>

<detail date="04112003" name="XAPITestFunctionInitiateRequest"

time="16:39:54" type="" DSTMPL="DXAPIROUTE" executionOrder="1"

parameterCount="4">

<ClientPort type="Int">6024</ClientPort>

<ClientIP type="Int">168007331</ClientIP>

<ClientMagicNumber type="Int">1</ClientMagicNumber>

<XAPIMethodID type="String">XAPITestResponse</XAPIMethodID>

</detail>

</body>

</event>

</jdeResponse>

XAPI Inbound Response Handling APIs
The PeopleSoft EnterpriseOne originator system uses these APIs to retrieve XML data from the inbound XAPI
document and generate an inbound XAPI response:

• jdeXML_GetDSCount
• jdeXML_GetDSName
• jdeXML_ParseDS
• jdeXML_DeleteXML
• jdeXML_ParseNextDSByName
• jdeXML_PrepareDSListForIterationByName

PeopleSoft Proprietary and Confidential 151

Using XAPI Events - Classic Chapter 14

XAPI Error Handling APIs
The PeopleSoft EnterpriseOne executor system uses these error handling APIs:

• jdeXML_CheckSystemError

The check system error API is for system errors. It tells the PeopleSoft EnterpriseOne originator system that
a system error happened in the PeopleSoft EnterpriseOne executor system.

• jdeXML_GetErrorCount

• jdeXML_SetErrors

The get error count and set errors APIs are for business errors. These two APIs, when used together, find the
number of business errors and then send the errors to the BHVRCOM structure for you to resolve.

XAPI PeopleSoft EnterpriseOne-to-EnterpriseOne
jde.ini File Configuration
To generate XAPI events, these sections of the PeopleSoft EnterpriseOne server jde.ini file must be configured:

• [JDENET_KERNEL_DEF19]

• [JDENET_KERNEL_DEF20]

• [JDENET_KERNEL_DEF22]

• [JDENET_KERNEL_DEF24]

• [JDEITDRV]
• [XAPI] - XMLDirectory setting

• [XMLLookupInfo]

• [INTEROPERABILITY] - LEVEL setting

[XAPI]
Configure this setting:

XMLDirectory=c:\builds\bdev\log\

[XMLLookupInfo]
Configure these settings:

XMLRequestType5=XAPICallMethod

XMLKernelMessageRange5=14251

XMLKernelHostName5=local

XMLKernelPort5=0

XMLKernelReply5=0

XMLRequestType6=realTimeEvent

XMLKernelMessageRange6=14251

XMLKernelHostName6=local

XMLKernelPort6=0

XMLKernelReply6=0

152 PeopleSoft Proprietary and Confidential

Chapter 14 Using XAPI Events - Classic

[INTEROPERABILITY]
Configure this setting:

LEVEL=DOC

Note. The LEVEL setting is for logging the Event XML document in the PeopleSoft EnterpriseOne server
for debugging purposes.

Setting the LEVEL=DOC key causes all real-time events to be written to the disk, which can cause a significant
performance impact on the host server. PeopleSoft suggests that you not use the LEVEL=DOC setting in a
production environment or for stress testing of the QA environment.

If you are using a PeopleSoft EnterpriseOne client to generate XAPI events, you must define the Client
Dispatch kernel and [JDENET} sections of the client jde.ini file.

See Also
Chapter 12, “Using Events - Classic,” Configuring the jde.ini file for Events, page 94

Chapter 14, “Using XAPI Events - Classic,” XAPI Client jde.ini File Configuration, page 133

Mapping the Business Function
This section provides an overview about mapping business functions and APIs for PeopleSoft
EnterpriseOne-to-EnterpriseOne XAPI events, and discusses how to enter the mapping information.

Understanding Business Function Mapping
When the PeopleSoft EnterpriseOne executor system receives an event from the PeopleSoft EnterpriseOne
originator, it needs to know what business function or system API to invoke to process the request. You
must map the business function or system API to the XAPI event name. You map business functions and
system APIs in the F907012 table. You use the Event Request Definition program (P907012) to map business
functions and APIs.

If you are mapping business functions, you enter the name of the business function. If you map APIs, you
must enter the name of the API and the library where it is defined. In addition, the signature of the API must
be made common, similar to the business function.

Mapping business functions enables you to point a XAPI event to a business function or system API that you
wrote. You do not need to modify source code of a business function that PeopleSoft delivered to you.

Forms Used to Map a Business Function or API
Form Name Form ID Navigation Usage

WorkWith Definition W907012A Enter P907012 in the Fast
Path Command Line.

Locate and review existing
mappings.

Request Definition W907012B OnWorkWith Definition,
click Add.

Add or change business
function or API mapping for
a XAPI event.

PeopleSoft Proprietary and Confidential 153

Using XAPI Events - Classic Chapter 14

Mapping a business function or API
Access the Request Definition form.

Request Definition form

Event Name The name of the event (for example, JDERTSOOUT). Single events are
part of other events.

BSFN Definition An option that specifies the type of processing for an event.

API Definition An option that specifies the type of processing for an event.

When you select the API definition option, the DLL Name field appears
on the form.

Function Name The actual name of the function. It must follow standard ANSI C naming
conventions (for example, no space between words).

DLL Name Specifies the name of the database driver file. This file is specified in the
[DB SYSTEM SETTINGS] section of the enterprise server jde.ini file. The
file that you specify depends upon the platform and the database. Values for
specific machines and databases are:

DBDR: AS/400 to DB2/400

JDBNET: AS/400 to any other server DBMS

ibjdbnet.sl: HP9000 to DB2/400

libjdbnet.sl: HP9000 to Microsoft SQL Server

libora80.sl: HP9000 to Oracle (Version 8.0) UNIX

libjdbnet.so: RS6000 to DB2/400

libjdbnet.so: RS6000 to Microsoft SQL Server

libora73.so: RS6000 to Oracle (Version 7.3) UNIX

154 PeopleSoft Proprietary and Confidential

Chapter 14 Using XAPI Events - Classic

libora80.so: RS6000 to Oracle (Version 8.0) UNIX
jdbodbc.dll: Intel to AS/400
jdboci32.dll: Intel to Oracle (Version 7.2) NT
jdboci73.dll: Intel to Oracle (Version 7.3) NT
jdboci80.dll: Intel to Oracle (Version 8.0) NT
dbodbc.dll: Intel to SQL Server NT
jdbnet.dll: Digital Alpha to AS/400
jdboci32.dll: Digital Alpha to Oracle (Version 7.2) NT
jdboci73.dll: Digital Alpha to Oracle (Version 7.3) NT
jdboci80.dll: Digital Alpha to Oracle (Version 8.0) NT
dbodbc.dll: Digital Alpha to SQL Server NT

PeopleSoft Proprietary and Confidential 155

Using XAPI Events - Classic Chapter 14

156 PeopleSoft Proprietary and Confidential

CHAPTER 15

Using Z Events - Classic

This chapter provides overviews of the Z event process, Z event sequencing, vendor-specific outbound
functions, and discusses how to work with Z events.

Note. This chapter is applicable only if you use classic events delivery. Classic event delivery is available
when you use PeopleSoft EnterpriseOne Tools 8.94 with PeopleSoft EnterpriseOne Applications 8.10 or earlier
releases of the PeopleSoft EnterpriseOne Applications.

Refer to the Guaranteed Events chapters if you use PeopleSoft EnterpriseOne Tools 8.94 with PeopleSoft
EnterpriseOne Applications 8.11.

Understanding Z Events - Classic
A Z event is near real-time notification that an interoperability transaction has occurred. To generate Z events,
PeopleSoft EnterpriseOne uses the Z event generator and the existing interface table infrastructure. You can
use the existing PeopleSoft EnterpriseOne interface tables, or you can build customized interface tables as
long as the tables are created using PeopleSoft EnterpriseOne standards.

Z event XML documents use the PeopleSoft EnterpriseOne XML Response format. An example of the Z
event XML document can be found in Appendix E, XML Format Examples (Events). Different events
can have different table names and column names.

Prerequisites
Before you complete the tasks in this section:

• You must enable security for the PeopleSoft EnterpriseOne server.
• You must have a valid security record for the default user under the [SECURITY] section of the PeopleSoft
EnterpriseOne server jde.ini file (that is, the user must be a valid PeopleSoft EnterpriseOne user).

Z Event Process Flow
This diagram depicts a logical representation of the processes and data for Z event generation:

PeopleSoft Proprietary and Confidential 157

Using Z Events - Classic Chapter 15

Master BSNF Interface Table1

Subsystem Job
Master Table

Outbound
Subsystem Batch

Process

Data Export
Control Table

1

2

2

Z Event
Generator
(ZEVNG)

4

Processing Log
Table

Flat File Cross-
Reference Table

6

3

2
Event

Notification
Kernel

JDENET

MQSeries
Transport

Driver

MSMQ
Transport

Driver

Java Interop
Server

COM Interop
Server

Third-Party
IBM System

Third-Party
MS Windows

System

5

7

7

7

7

Event Generation

Event Distribution

Z event process flow

In summary:

1. When a PeopleSoft EnterpriseOne transaction occurs, the master business function writes the transaction
information in the appropriate interface table and sends an update record to the F986113 table.

2. A batch process monitors the F986113 table.

When the batch process finds a W status in the F986113 table, it notifies the Z event generator. The batch
process accesses the F0047 table to determine which Z-event generator to call.

3. The F47002 table provides a cross-reference between the transaction and the interface table where the
record is stored.

This information is used by the Z-event generator.

4. The Z-event generator retrieves the transaction information from the interface table and converts the
transaction information into an XML document using a PeopleSoft EnterpriseOne DTD.

5. The Z-event generator sends the event (in the form of an XML document) to the event notification kernel
for distribution.

6. After an event is successfully generated, the system updates the F0046 table.

A UBE purges information in the interface table based on information in the Processing Log table.

7. The event notification kernel sends the XML document to all subscribers.

158 PeopleSoft Proprietary and Confidential

Chapter 15 Using Z Events - Classic

Note. If you use MQSeries or MSMQ transports, the transport driver writes system and function errors to
the JDE error log. The driver writes error messages and adds the error codes, if available.

Z Event Sequencing
When you define your Z events, you indicate whether the event is reliable or volatile. If you define the event
as volatile, the system automatically provides event sequencing to guarantee that events are delivered in the
correct order. Volatile events are stamped using features of PeopleSoft EnterpriseOne Next Numbers.

For sequencing of Z events, ZEVG, the Z event generator, retrieves the next number from the Z event
sequencing bucket and sends the number to the EVN kernel for sequencing purposes. It is important to note
that PeopleSoft only guarantees the sequence for the particular type of event generator. This is due to the
inherent delays that are involved in the Z event processing; an event that occurred earlier can get a later
sequence number.

Event sequencing does affect performance. You can turn off events sequencing. You can also define a timeout
value to tell the system to stop looking for a missed event when events are out of sequence. The flag and
timeout settings are in the [INTEROPERABILITY] section of the jde.ini file.

Vendor-Specific Outbound Functions
The purpose of the vendor-specific outbound function is to pass the key fields for a record in the outbound
interface tables to a third-party system. With these keys, you can process information from the database record
into your third-party system. The generic Outbound Subsystem batch process calls the function.

Each vendor-specific function is specific to the transaction being processed. You must decide how the function
actually uses the database record information. Although the functions are written to your specifications, and
most likely are written outside of PeopleSoft EnterpriseOne, these functions must use the required PeopleSoft
EnterpriseOne defined data structure as illustrated in this table:

Data Item Required I/O Description

szUserId Y I User ID - 11 characters

szBatchNumber Y I Batch Number - 16 characters

szTransactionNumber Y I Transaction Number - 23 characters

mnLineNumber Y I Line Number - double

szTransactionType Y I Transaction Type - 9 characters

szDocumentType Y I Document Type - 3 characters

mnSequenceNumber Y I Sequence Number - double

PeopleSoft Proprietary and Confidential 159

Using Z Events - Classic Chapter 15

Working With Z Events
This section provides an overview of Z event processing and discusses how to add a data export control record.

Understanding Z Event Processing
To use Z events to retrieve information from PeopleSoft EnterpriseOne, perform these tasks:

• Enable the Z event.

• Update the Flat File Cross-Reference table.

• Set up data export controls.

• Update the Processing Log table.

• Verify that the subsystem is running.

• Purge data from the interface table.

Enabling Z Event Processing
You can enable or disable master business functions to write transaction information into interface tables and
the F986113 table. when a transaction occurs. All outbound master business functions that have the ability to
create interoperability transactions have processing options that control how the transaction is written. On
the Processing Options Interop tab, the first processing option is the transaction type for the interoperability
transaction. If you leave this processing option blank, the system does not perform outbound interoperability
processing. The second processing option controls whether the before image is written for a change transaction.
If this processing option is set to 1, the system writes before and after images of the transaction to the interface
table. If this processing option is not set, then the system writes only an after image to the interface table.

See Appendix B, “Interoperability Interface Table Information,” Interoperability Interface Table Information,
page 243.

Updating Flat File Cross-Reference
When you enable Z events, you also update the F47002 table. The transaction type that you entered in
the processing option maps to the F47002 table to determine which interface tables to use to retrieve the
information. You use the Flat File Cross-Reference program (P47002) to update the F47002 table.

Updating the Processing Log Table
The Z event generator uses the F0046 table. The F0046 table contains the keys to the interoperability
transaction along with a successfully processed column. The sequence number, transaction type, order type,
function name, and function library are obtained from the F0047 table. A vendor-specific record is sequentially
created in the F0046 table for every transaction that is processed by the Interoperability Generic Outbound
Subsystem (R00460) UBE or the Interoperability Generic Outbound Scheduler UBE (R00461).

For example, if three vendors have subscribed to a transaction using the F0047 table, the system creates three
records in the F0046 table, (one record for each transaction). If the vendor-specific object successfully
processed the transaction, the Processing Log record is updated with a Y in the successfully processed column.
You can use the Processing Log (P0046) program to determine whether a vendor-specific object correctly
processed the interoperability transaction.

A purging UBE that purges the interfaces tables runs based on information in the processing log table.

160 PeopleSoft Proprietary and Confidential

Chapter 15 Using Z Events - Classic

Data in the Processing Log table cannot be changed.

Verifying that the Subsystem Job is Running
When the application master business function adds a record to the F986113 table, the system starts a
subsystem job. Subsystem jobs are continuous jobs that process records from the F986113 table. You should
verify that the subsystem job is running.

Note. After the records are processed, instead of ending the job, subsystem jobs look for new data in the data
queue. Subsystem jobs run until you terminate them.

You can schedule subsystem jobs.

See EnterpriseOne Tools 8.94 PeopleBook: System Administration, “Working with Servers,” Managing
EnterpriseOne Subsystems.

See EnterpriseOne Tools 8.94 PeopleBook: System Administration, “Using the Scheduler Application”.

Purging Data from the Interface Table
After you receive the Z event, you should purge the data from the interface table. You can enter a purge
UBE in the F0046 table to purge the interface table.

See Chapter 20, “Using Batch Interfaces,” Purging Interface Table Information, page 220.

See Appendix B, “Interoperability Interface Table Information,” Interoperability Interface Table Information,
page 243.

Configuring the jde.ini File for Z Events
To generate Z events, you must configure these sections of the PeopleSoft EnterpriseOne server jde.ini file:

• [JDENET_KERNEL_DEF19]

• [JDEITDRV]
• [JDENET]
• [INTEROPERABILITY]

The settings for the EVN kernel, [JDEITDRV], and [JDENET] are defined in the jde.ini File Configurations
for Events section of this guide. You must configure settings for [INTEROPERABILITY].

[INTEROPERABILITY]
Configure these settings:

SequenceTimeOut=XX

XMLElementSkipNullOrZero=X

The SequenceTimeOut setting is for sequencing of volatile events. The value is in seconds.

Null strings and zeros are trimmed off Z events. You can turn off this feature by entering a value of 0 (zero) for
the XMLElementSkipNullOrZero setting.

PeopleSoft Proprietary and Confidential 161

Using Z Events - Classic Chapter 15

Setting Up Data Export Controls
This section provides an overview of setting up data export controls and discusses how to set up the record.

Understanding Data Export Controls Records
The generation of outbound data is controlled through the F0047 table. You use the Data Export Controls
program (P0047) to update the F0047 table. For each transaction type and order type, you must designate the Z
event generator that processes the outbound data. To send a given transaction type to more than one third-party
application, you associate the transaction type with each of the individual destinations by making separate
entries for each destination in the F0047 table. PeopleSoft suggests that you specify the name of a third-party
function that is called for each transaction as it occurs. Enough information is provided to notify you of the
transaction and give you the key values so that you can retrieve the transaction.

Forms Used to Add a Data Export Controls Record
Form Name Form ID Navigation Usage

Work with Data Export
Controls

W0047A From a application that
supports event generation,
open the Data Export
Controls Program

An alternative way to access
the Data Export Controls
Program is to enter P0047 in
the Fast Path command line

View existing data export
control records.

Data Export Control
Revisions

W0047C OnWork with Data Export
Controls, click Add.

Add a new data export
control record.

Adding a Data Export Control Record
Access the Data Export Control Revisions form.

To set up Data Export Controls:

1. Complete these fields:

• Transaction

• Order Type

2. For each detail row, enter one of these, depending on your platform:

• Function Name

Windows NT: _CallOnUpdate@36

UNIX: CallOnUpdate

iSeries: CallOnUpdate

162 PeopleSoft Proprietary and Confidential

Chapter 15 Using Z Events - Classic

• Function Library
Windows NT: EnterpriseOne Bin32 Path\zevg.dll
UNIX(HP): EnterpriseOne Bin32 Path\libzevg.sl
UNIX(AIX, SUN): EnterpriseOne Bin32 Path\libzevg.so
iSeries: EnterpriseOne Bin32 Path\ZEVG

• Enter 1 in the Execute For Add column to generate an event for an add/insert.
Complete the same process as appropriate for update, delete, and inquiry.

• Enter 1 in the Launch Immediately column to launch the object from the Outbound Subsystem batch
process.
This column does not affect the Outbound Scheduler batch process.
The system automatically increments the Sequence field for each line.

PeopleSoft Proprietary and Confidential 163

Using Z Events - Classic Chapter 15

164 PeopleSoft Proprietary and Confidential

CHAPTER 16

Using Events - Guaranteed

This chapter provides an overview of PeopleSoft EnterpriseOne events and discusses:

• Processing events
• Defining events
• Subscribing to events
• Creating MSMQ queues
• Crating MQSeries queues

Note. This chapter is applicable only if you use guaranteed events delivery. Guaranteed event delivery is
available when you use PeopleSoft EnterpriseOne Tools 8.94 with PeopleSoft EnterpriseOne Applications 8.11.

Refer to the Classic Events chapters if you use PeopleSoft EnterpriseOne Tools 8.94 with PeopleSoft
EnterpriseOne Applications 8.10 or earlier releases of the PeopleSoft EnterpriseOne Applications.

Understanding Events - Guaranteed
PeopleSoft event functionality provides an infrastructure that can capture PeopleSoft EnterpriseOne
transactions in various ways and provide real-time notification to third-party software, end users, and other
PeopleSoft systems, such as XPI and CRM.

PeopleSoft EnterpriseOne notifications are called events. The PeopleSoft EnterpriseOne event system
implements a publish and subscribe model. Events are delivered to subscribers in XML documents that
contain detailed information about the event. For example, when a sales order is entered into the system, the
sales order information can be automatically sent to a CRM or supply chain management application to be
further processed. If your system is IBM, you can use MQSeries messaging to receive events. If your system is
Microsoft, you can use MSMQ messaging to receive events. MQSeries and MSMQ provide a point-to-point
interface with PeopleSoft EnterpriseOne.

PeopleSoft EnterpriseOne supports these three kinds of events:

Event Category Purpose Generation Mechanism Response Capability

Real-Time Event To provide requested
notification to third-party
software, end-users, and
other PeopleSoft systems
when certain transactions
occur.

System calls No

PeopleSoft Proprietary and Confidential 165

Using Events - Guaranteed Chapter 16

Event Category Purpose Generation Mechanism Response Capability

XAPI Event To provide requested
notification to third-party
software, end-users, and
other PeopleSoft systems
when certain transactions
occur and to provide a
response.

System calls Yes

Z Event To provide requested
notification to third-party
software, end-users, and
other PeopleSoft systems
when certain transactions
occur.

Interface tables and system
calls

No

Processing Events
This section provides an overview of the architecture for processing events and discusses:

• Aggregating events
• Logging events

Understanding Events Processing
This diagram provides an overview of the PeopleSoft EnterpriseOne events architecture:

166 PeopleSoft Proprietary and Confidential

Chapter 16 Using Events - Guaranteed

EnterpriseOne
Server

Subscriber
(Java Connector,

MQ Series,
and so on)

J2EE Application Server

CallObject Kernel

BSFN Event API

Subscriber
JMS Queue

F90710
Event

Transfer
Table

Event
(Data)

5

Event
(Data)

3

Event
(XML)

7

EnterpriseOne
Transaction Server

Event
(XML)

6Event Trigger

4

EnterpriseOne
Web Server

BSFN
Request

2

EnterpriseOne
HTML Client

BSFN
Request

1

Events architecture overview (Guaranteed events)

In summary, this is the general sequence that happens for an event to be published:

1. An HTML client user executes a business function request.

This request is sent to the PeopleSoft EnterpriseOne Web server.

2. The Web server forwards the request to a CallObject kernel on the PeopleSoft EnterpriseOne server.

3. The CallObject kernel executes the business function, which calls the Event API to send the event data to
the F90710 table.

If the event is a Z event, the data sent to the F90710 table is in its final XML format.

4. A trigger message is sent to the PeopleSoft EnterpriseOne Transaction server that indicates that a new
event is in the F90710 table.

5. The transaction server retrieves the event data from the F90710 table and, for real-time and XAPI events,
converts it to an XML document in the appropriate format

PeopleSoft Proprietary and Confidential 167

Using Events - Guaranteed Chapter 16

6. The Transaction server routes the event to the subscriber queues for each subscriber that has established
an active subscription for that event.

7. When a subscriber connects to the Transaction server, it receives all the events that exist in its subscription
queue at that time.

Note. XAPI and Z events require additional information for event processing, which is discussed in the
respective XAPI and Z event chapters.

Event Aggregate
Events are classified as either a single event or a container event. A single event can contain a single data
structure. A container event can contain one or more single events or one or more data structures. You cannot
define a container event using both single events and data structures for that specific container event. For
example, RTSOHDR and RTSODTL are usually defined as single real-time events that represent the data
structures in the header and detail areas of a sales order. RTSOOUT is usually defined as a container real-time
event that contains both RTSOHDR and RTSODTL.

Logging Events
Real-time and XAPI events do not exist in their XML form until they are processed by the Transaction
server. Therefore, it is not possible to log the XML event on the PeopleSoft EnterpriseOne server side.
However, if debugging is selected, the debug log file for the CallObject kernel that generates the event displays
jdeIEO_EventFinalize called for XX, where XX is an integer that represents the number of times
that jdeIEO_EventFinalize has been called in that kernel.

If you select debug logging for the Transaction server, the Transaction server debug log file displays Sending
event: followed by the event data, including the full XML content of the event when the Transaction
server processes an event. There is one of these messages for every active subscriber that has an active
subscription to the event.

If you use the dynamic Java connector graphical subscription application, you have the capability of sending
the XML content of all received events to a specified directory.

See EnterpriseOne Tools 8.94 PeopleBook: Connectors, “Using Java Connector Events - Guaranteed Events”.

Defining Events
This section provides an overview of entering events in the F90701 table and discusses how to define and
activate single and container events.

Understanding Events Definition
You use the Interoperability Event Definition program (P90701A) to define each real-time and XAPI event
in PeopleSoft EnterpriseOne. You use a separate process to define Z events, which is documented in the Z
Events - Guaranteed chapter.

168 PeopleSoft Proprietary and Confidential

Chapter 16 Using Events - Guaranteed

Every real-time or XAPI event that you use in your system must have an associated record in the F90705
table. The F90705 table enables each event to be activated or deactivated for each environment in your system.
When you create a new event, select the Create Activation Record option. When you add a new environment
to your system, you must run the Populate Event Activation Status Table UBE (R90705) to create event
activation records for existing events. The Populate Event Activation Status Table UBE is described in the
PeopleSoft EnterpriseOne Server Installation Guide.

After you define a new event, you must refresh the cache of active events on the Transaction server. You
can refresh the active events cache while the Transaction server is running. If the Transaction server is not
running when this operation is performed, it automatically refreshes its cache when it is brought back to
operational status.

See Also
Chapter 19, “Using Z Events - Guaranteed,” page 211

Forms Used to Enter Events
Form Name Form ID Navigation Usage

Event Definition Workbench W90701AA Type P90701A on the
Fast Path.

Locate and review existing
single and container events.

Event Entry W90701AD On Event Definition
Workbench, click Add.

Add or change a single or
container event.

Event Definition Detail W90701AC Automatically appears when
you click OK on the Event
Entry form if you entered
Container in the Event
Category field for a real-time
event or if you entered XAPI
in the Event Type field.

Link single events or data
structures to a container
event.

Event Activation by
Environment

W90701AG On Event Definition
Workbench, select Event
Activation from the Form
menu.

Locate and review existing
environments and event
types.

Add Event Activation by
Environment

W90701AH On Event Activation by
Environment, click Add.

To activate an event on a
specific environment.

Adding a Single or Container Event
Access the Event Entry form.

PeopleSoft Proprietary and Confidential 169

Using Events - Guaranteed Chapter 16

Event Entry form

Event Type The name of the event (for example RTSOOUT, which is the usual event type
for a real-time sales order event).

Create Activation Records An option that causes newly defined events to have an associated record in the
F90705 table, which enables each event to be activated or deactivated for each
environment in your system. You must select this option for every event that
you intend to use in your system.

Event Description The description of an event.

Event Category A value that represents the name of the event type. Use RTE for real-time
events or XAPI for XAPI events.

Event Aggregate Indicates whether an event is a single event or a container event.

Product Code An optional field that indicates to which PeopleSoft EnterpriseOne system the
event is associated.

Data Structure The name of the data structure that passes event information.
This field disappears if Container is the value of the Event Aggregate field;
however, when you click OK, the Event Definition Detail form automatically
appears for you to enter data structure information.

170 PeopleSoft Proprietary and Confidential

Chapter 16 Using Events - Guaranteed

Event Definition Detail
Access the Event Definition Detail form.

Event Definition Detail form

Event Data An option that enables you to define single individual events for a container
event.

Data Structure Data An option that enables you to define aggregate events for the container event.
For XAPI events, you must select the Data Structure Data option.

Activating an Event
Access the Add Event Activation by Environment form

Environment Your operating environment, such as Windows 2000, Windows NT, UNIX,
iSeries, and so on.

Refreshing the Transaction server cache of active events
Access the Event Definition Workbench form.

To refresh the cache of active events with the Transaction server running, select Refresh Event Cache from
the Form menu.

Establishing Subscriber and Subscription Information
This section provides an overview of subscriber and subscription information and discusses how to:

PeopleSoft Proprietary and Confidential 171

Using Events - Guaranteed Chapter 16

• Add a subscriber
• Add subscription information

Understanding Subscribers and Subscriptions
You use the Interoperability Event Subscription program (P90702A) to establish subscribers and to add
subscriptions. After you add a subscriber, you must activate it. If your subscriber is inactive, you will not
receive any events even if you have active subscriptions. You activate subscribers on the Event Subscribers
form by selecting the subscriber, and then selecting Change Status from the Row menu.

Each subscriber can have one or more subscriptions. Each subscription can be associated with one or more
subscribed events and subscribed environments. Each subscription that you want to use must be activated.
You activate subscriptions on the Event Subscriptions form by selecting the subscription, and then selecting
Change Status from the Row menu.

Any time you make a change to a subscriber, including the associated subscriptions, your must refresh the
subscriber cache on the PeopleSoft EnterpriseOne and the Transaction servers for the changes to become
effective. You can refresh your running system from the Event Subscribers form by selecting Refresh Sub
Cache from the Form menu.

Forms Used to Add a Subscriber and Subscription Information
Form Name Form ID Navigation Usage

Event Subscribers W90702AA Type P90702A on the
Fast Path.

Locate and review existing
subscribers.

Add Event Subscriber W90702AB On Event Subscribers,
click Add.

Add or change a subscriber.

Event Subscriptions W90702AD Select a subscriber in the
detail area of the Event
Subscribers form, and then
select Event Subscriptions
from the Row menu.

Locate and review existing
subscriptions for a
subscriber.

Add Event Subscription W90702AE On Event Subscriptions,
click Add.

Add new subscription
information.

Subscribed Events W90702AG On the Event Subscriptions
form, select the subscription
information in the detail area,
and then select Subscribed
Events from the Row menu.

Associate a subscription
with an event.

Subscribed Environments W90702AF On the Event Subscriptions
form, select the subscription
information in the detail area,
and then select Subscribed
Env from the Row menu.

Associate a subscription
with an environment.

Adding a Subscriber
Access the Add Event Subscriber form.

172 PeopleSoft Proprietary and Confidential

Chapter 16 Using Events - Guaranteed

Add Event Subscriber form

Subscriber The PeopleSoft EnterpriseOne user ID for the user who is to receive the
subscribed events.

Subscriber Description A description of the subscriber.

Transport Type Describes through which mechanism the subscriber receives events. Valid
transport types are:

• COMCONN: COM Connector
• JAVACONN: Java Connector (including XPI)
• JDENET: For XAPI requests

Additional fields appear on the Add Subscriber Event form. In the Host
Name field, enter the name of the server that processes events for the
subscriber. In the Port Number field, enter the port where the subscriber
service is running. In the Connection Timeout field, enter the time in
milliseconds after which the event connection is considered timed out.

• MQSQ: IBM MQSeries

PeopleSoft Proprietary and Confidential 173

Using Events - Guaranteed Chapter 16

Additional fields appear on the Add Subscriber Event form. In the
Connection Factory JNDI field, enter the MQ Series Connection Factory
JNDI name. In the Queue Name field, enter the MQ Series Queue name
for your subscriber

• MSMQ: Microsoft Message Queue

Additional fields appear on the Add Subscriber Event form. In the Queue
Label field, enter the MSMQ Queue Label. In the Queue Name field, enter
the MSMQ Queue Name

Adding a Subscription
Access the Add Event Subscription form.

Add Event Subscription form

Subscriber The PeopleSoft EnterpriseOne user ID for the user who is to receive the
subscribed events.

Subscription Name A unique name for the subscription.

Subscription Description A description of the subscription.

Associating a Subscription with Subscribed Events
Access the Subscribed Events form.

174 PeopleSoft Proprietary and Confidential

Chapter 16 Using Events - Guaranteed

Subscribed Events form

Event Type The name of the event.

Associating a Subscription with Subscribed Environments
Access the Subscribed Environments form.

Subscribed Environments form

PeopleSoft Proprietary and Confidential 175

Using Events - Guaranteed Chapter 16

Environment The PeopleSoft EnterpriseOne environment with which the subscription is
associated. Each subscription can be associated with any number of valid
environments.

Creating MSMQ Queues
This section provides an overview about MSMQ and discusses:

• Creating an MSMQ real-time event queue.
• Verifying event delivery.

Prerequisites
Before you complete this task:

• MSMQ is installed on your system.
• WebSphere is installed on your system.

Understanding MSMQ
You can use Microsoft message queueing to subscribe to and receive events. After you create the events queue
for MSMQ, you must add the queue name as a subscriber, using Interoperability Event Subscription program
(P90702A). The queue name must be in MSMQ direct format, which includes your machine name or IP
address, depending on which protocol you use. Naming conventions for MSMQ direct format queue names
are discussed on Microsoft’s web page.

After you create the queue and set up the subscriber information, you should verify event delivery. MSMQ
RTEII, a server-only feature, is an extension of COMConnector.

See Also
“Platform SDK: Message Queuing, ” http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msmq
/msmq_about_queues_41tf.asp

Creating an MSMQ Real-Time Event Queue
Use these steps to configure MSMQ:

1. From the Control Panel, select Administrative Tools, and then select Computer Manage.
2. On the Computer Management Console, navigate to Services and Applications, and then open Message
Queuing.

3. Open Private Queue, right-click the Private Queue folder, select New, and then Private Queue.

Note. You can create the events queue under Public Queue if you prefer. These steps apply to creating the
events queue regardless of whether you create it in the Private Queue folder or the Public Queue folder.

4. In Queue Name, select a meaningful queue name, for example, RTE-TEST.
5. If the events queue is used in a transactional environment, select the Transactional option, and then
click OK..

176 PeopleSoft Proprietary and Confidential

Chapter 16 Using Events - Guaranteed

Your new queue appears in the Private or Public Queue folder.
6. Right-click your newly created events queue and select properties.
7. In the Label field, enter a meaningful queue label name; for example, E1Outbound, and then click OK.

Verifying Event Delivery
Use these steps to verify event delivery:

1. Start your COMConnector on your enterprise server side.

Note. Do not start your COMConnector on your client side.

2. On your enterprise server, in the MSMQ Computer Management, select the queue that you configured to
receive PeopleSoft EnterpriseOne events.

3. To see if any events are in the queue, click the queue messages under queue name and select Action
then Refresh in the Computer Management menu.

4. Double-click any messages that are in the queue.
A menu displays the message content up to the first 256 bytes.

Creating MQSeries Queues
This section provides an overview about MQSeries and discusses:

• Creating an MQSeries real-time event queue.

• Configuring WebSphere.

• Verifying event delivery.

Prerequisites
Before you complete this task:

• MQSeries is installed on your system with PTF CSD04.
• WebSphere is installed on your system.

Understanding MSMQ
You can use IBM’s message queueing to subscribe to and receive events. After you create the events queue
for MQSeries and WebSphere, you must add the queue name as a subscriber, using the Interoperability
Event Subscription program (P90702A).

After you create the queue and set up the subscriber information, you should verify event delivery.

Creating an MQSeries Real-Time Event Queue
Use these steps to configure MQSeries:

1. Open the MQSeries Explorer and navigate to the MQSeries queue manager

PeopleSoft Proprietary and Confidential 177

Using Events - Guaranteed Chapter 16

The default MQSeries manager is typically named QM_<hostname>.
2. Under the queue manager, select the Queues folder.
This shows any existing queues hosted by this queue manager.

3. To create the queue for delivery of PeopleSoft EnterpriseOne events, select Action, New, Local Queue
on the MQSeries Explorer.

Note. On Create Local Queue, enter a meaningful queue name, for example, RTE-TEST.

4. To make the queue persistent, select the Persistent option for the Default Persistence field.
The default settings should be sufficient for the remaining configuration values.

Configuring WebSphere
Use these steps to configure WebSphere:

1. Login in to the WebSphere Administration Console.
2. Select the subscriber that is using MQSeries to receive PeopleSoft EnterpriseOne events, using MQ
Series as the delivery transport for the subscriber.
You might need to create the subscriber.

3. To select the transport parameters for the MQ Series subscriber, enter the JNDI names of the queue
connection factory and the MQSeries queue that you previously created.

4. Save the configuration changes and refresh the values on the server.

Verifying Event Delivery
Use these steps to verify event delivery:

1. In the MQSeries Explorer, select the queue you configured to receive PeopleSoft EnterpriseOne events.

Note. To see if any events are in the queue, click the refresh button on the explorer window. The Current
Depth column shows the number of messages in the queue. You might have to scroll right in the explorer
window to see this column.

2. If there are messages in the queue, right-click the queue.
3. To see the messages in the queue, select Browse Message in the pop-up menu.

Note. PeopleSoft EnterpriseOne sends the event XML to an MQSeries queue, not the serialized object
send to subscriber queues serviced by the Java connector.

178 PeopleSoft Proprietary and Confidential

CHAPTER 17

Using Real-Time Events - Guaranteed

This chapter provides an overview about real-time events, lists the APIs that are available for generating
real-time events, and provides code samples for creating single, aggregate, and composite events.

Note. This chapter is applicable only if you use guaranteed events delivery. Guaranteed event delivery is
available when you use PeopleSoft EnterpriseOne Tools 8.94 with PeopleSoft EnterpriseOne Applications 8.11.

Refer to the Classic Events chapters if you use PeopleSoft EnterpriseOne Tools 8.94 with PeopleSoft
EnterpriseOne Applications 8.10 or earlier releases of PeopleSoft EnterpriseOne applications.

Understanding Real-Time Events - Guaranteed
A real-time event is a notification that a business transaction has occurred in PeopleSoft EnterpriseOne.
You can use a PeopleSoft EnterpriseOne HTML client to generate a real-time event on the PeopleSoft
EnterpriseOne server. Real-time events can be used for both synchronous and asynchronous processing.

An example of synchronous processing is to use real-time events to update an auction site that uses
PeopleSoft EnterpriseOne as a back-end. A user enters a new item for auction, which triggers a transaction
into the PeopleSoft EnterpriseOne system. The system captures the transaction and sends a notification to
an interoperability server that communicates the information to a web engine to update the HTML pages so
that all of the auction users can see the new item.

You can also use real-time event generation for asynchronous processing. For example, an online store sends
orders to different vendors (business to business), captures the transactions, and enters the orders into the
vendors’ systems. A user buys a book. The vendor enters a purchase order to the book publisher and sends a
notification to the shipping company to pick up the book and deliver it. The book order can be completed as a
purchase order transaction with PeopleSoft EnterpriseOne, but the shipping request requires that the data is
packaged into a commonly agreed-upon format for the shipping company to process.

Generating Real-Time Events
This section provides overviews about creating real-time events and discusses:

• Real-time event APIs.
• Example code for creating events.
• OCM configuration.

Understanding Real-Time Event Generation
Events can be one of these:

PeopleSoft Proprietary and Confidential 179

Using Real-Time Events - Guaranteed Chapter 17

• Single Event
Contains one partial event. A single event is useful if the receiver requires that events be generated per
system call. You can also use single events with different event types.

• Aggregate Event
Contains multiple partial events. An aggregate event is useful if the receiver requires a document that
contains multiple events. For example, a supply chain solution might want the complete sales order provided
as one event that contains multiple partial events.

• Composite Event
Contains only single events. Composite events are useful if the customer has multiple receivers, some
requiring single events and some requiring a complete event similar to an aggregate event.

Using Real-Time Event APIs
These APIs are available for you to generate real-time events:

• jdeIEO_EventInit

• jdeIEO_EventAdd

• jdeIEO_EventFinalize

• jdeIEO_CreateSingleEvent

• jdeIEO_IsEventTypeEnabled

Interoperability Event Interface Calls Sample Code
These steps and the accompanying example code illustrate how to create a single event:

1. Design the data structure for the real-time event.

typedef struct tagDSD55RTTEST

{

char szOrderCo[6];

char szBusinessUnit[13];

char szOrderType[3];

MATH_NUMERIC mnOrderNo;

MATH_NUMERIC mnLineNo;

JDEDATE jdRequestDate;

char szItemNo[27];

char szDescription1[31];

MATH_NUMERIC mnQtyOrdered;

MATH_NUMERIC mnUnitPrice;

MATH_NUMERIC mnUnitCost;

char szUserID[11];

} DSD55RTTEST, *LPDSD55RTTEST;

2. Define the data structure object in the business function header file.

3. Modify the business function source to call jdeIEO_CreateSingleEvent.

JDEBFRTN(ID) JDEBFWINAPI RealTimeEventsTest (LPBHVRCOM lpBhvrCom,

LPVOID lpVoid, LPDSD55REALTIME lpDS)

180 PeopleSoft Proprietary and Confidential

Chapter 17 Using Real-Time Events - Guaranteed

{

/* Define Data Structure Object */

DSD55RTTEST zRTTest = {0};

IEO_EVENT_RETURN eEventReturn = eEventCallSuccess;

IEO_EVENT_ID szEventID ={0};

()Populate required members

/* Now call the API */

szEventID = jdeIEO_CreateSingleEvent { lpBhvrCom,

"RealTimeEventsTest",

"JDERTOUT",

"SalesOrder",

"D55RTTEST",

&zRTTest,

sizeof(zRTTest),

0,

&eEventReturn };

/* Error in jdeFeedCallObjectEvent is not a critical error

and should only be treated as a warning */

if(eEventReturn != eEventCallSuccess)

{

/* LOG the Warning and return */

return ER_WARNING;

This sample code illustrates how to create an aggregate event:

IEO_EVENT_RETURN cEventReturN = eEventCallSuccess;

IEO_EVENT_ID szEventID = jdeIEO_EventInit (pBhvrCom,

eEventAggregate,

"MyFunction1",

"JDESOOUT" //EventType for AggregateEvent

"EventScope1",

0,

&eEventReturn);

0

eEventReturn = jdeIEO_EventAdd (pBhvrCom,

szEventID,

"MyFunction2",

NULL,

"D55TEST01",

&zD55TEST01,

sizeof(zD55TEST01));

0

eEventReturn = jdeIEO_EventAdd (pBhvrCom,

szEventID,

"MyFunction3",

NULL,

PeopleSoft Proprietary and Confidential 181

Using Real-Time Events - Guaranteed Chapter 17

"D55TEST02",

&zD55TEST02,

sizeof(zD55TEST02));

0

eEventReturn = jdeIEO_EventAdd (pBhvrCom,

EventID,

"MyFunction3",

NULL,

"D55TEST03",

&zD55TEST03,

sizeof(zD55TEST03));

0

eEventReturn = jdeIEO_EventFinalize (pBhvrCom,

"EventID,

MyFunction4");

This sample code illustrates how to create a composite event:
IEO_EVENT_RETURN eEventReturn = eEventCallSuccess;

IEO_EVENT_ID szEventID = jdeIEO_EventInit (pBhvrCom,

eEventComposite,

"MyFunction1",

"JDESOOUT" // EventType for CompositeEvent

"EventScope1",

0,

&eEventReturn);

0

eEventReturn = jdeIEO_EventAdd (pBhvrCom,

szEventID,

"MyFunction2",

"SODOCBEGIN", // EventType for SingleEvent

"D55TEST01",

&zD55TEST01,

sizeof(zD55TEST01));

0

eEventReturn = jdeIEO_EventAdd (pBhvrCom,

szEventID,

"MyFunction3",

"SOITEMADD", // Event Type for Single Event

"EventScope3",

"D55TEST02",

&zD55TEST02,

sizeof(zD55TEST02));

0

eEventReturn = jdeIEO_EventFinalize (pBhvrCom,

EventID,

182 PeopleSoft Proprietary and Confidential

Chapter 17 Using Real-Time Events - Guaranteed

"MyFunction4");

Errors that are returned by the system calls might not be critical enough to stop the business process. the
system flags non-critical errors as warnings and logs them in the log file.

PeopleSoft Proprietary and Confidential 183

Using Real-Time Events - Guaranteed Chapter 17

184 PeopleSoft Proprietary and Confidential

CHAPTER 18

Using XAPI Events - Guaranteed

This chapter provides an overview of XAPI events and discusses how to:

• Use PeopleSoft EnterpriseOne as a XAPI originator.
• Use PeopleSoft EnterpriseOne as a XAPI executor.
• Work with PeopleSoft EnterpriseOne and third-party systems.
• Use PeopleSoft EnterpriseOne-to-EnterpriseOne connectivity.
• Map a business function.

Note. This chapter is applicable only if you use guaranteed events delivery. Guaranteed event delivery is
available when you use PeopleSoft EnterpriseOne Tools 8.94 with PeopleSoft EnterpriseOne Applications 8.11.

Refer to the Classic Events chapters if you use PeopleSoft EnterpriseOne Tools 8.94 with PeopleSoft
EnterpriseOne Applications 8.10 or earlier releases of PeopleSoft EnterpriseOne applications.

Understanding XAPI Events - Guaranteed
XAPI is a PeopleSoft EnterpriseOne service that captures transactions as the transaction occurs and then calls
third-party software, end users, and other PeopleSoft systems to obtain a return response. A XAPI event is
very similar to a real-time event and uses the same infrastructure to send an event. The difference between a
real-time event and a XAPI event is that the subscriber to a XAPI event returns a reply to the originator. The
XAPI event contains a set of structured data that includes a unique XAPI event name and a business function to
be invoked upon return. Like real-time events, XAPI events can be generated on a PeopleSoft EnterpriseOne
server using a PeopleSoft EnterpriseOne HTML client. XAPI events also can be generated by a third-party
system and sent to a PeopleSoft EnterpriseOne system for a response.

The XAPI structure sends outbound events and receives replies. An event is first generated by the XAPI
originator and then sent to a separate system, the XAPI executor, for processing. The XAPI executor then
sends a response back to the XAPI originator. The XAPI structure provides for these three possibilities of
originator and executor combinations:

• PeopleSoft EnterpriseOne to third-party.
• Third-party to PeopleSoft EnterpriseOne.
• PeopleSoft EnterpriseOne to PeopleSoft EnterpriseOne.

When you use PeopleSoft EnterpriseOne-to-EnterpriseOne events processing, you must map business
functions and APIs.

PeopleSoft EnterpriseOne to Third-Party
This diagram shows a logical representation of the XAPI process from PeopleSoft EnterpriseOne to a
third-party system:

PeopleSoft Proprietary and Confidential 185

Using XAPI Events - Guaranteed Chapter 18

XAPI
Originator

PeopleSoft
EnterpriseOne System

XAPI
Executor

Third-Party System

Request

Response

PeopleSoft EnterpriseOne to a third-party system XAPI event

In summary:

1. PeopleSoft EnterpriseOne (XAPI originator) sends a request.
2. The request is sent to a third-party system.
3. The third-party system (XAPI executor) processes the request and sends a response back to the XAPI
originator.

Third-Party to PeopleSoft EnterpriseOne
This diagram shows a logical representation of the XAPI process from a third-party system to PeopleSoft
EnterpriseOne:

XAPI
Originator

PeopleSoft
EnterpriseOne System

XAPI
Executor

Third-Party System

Request

Response

Third-party system to PeopleSoft EnterpriseOne XAPI event

In summary:

1. The third-party system (XAPI originator) sends a request using the PeopleSoft EnterpriseOne XAPI
request form.

2. The request is sent to PeopleSoft EnterpriseOne.
3. PeopleSoft EnterpriseOne (XAPI executor) processes the request and sends a response back to the XAPI
originator.

186 PeopleSoft Proprietary and Confidential

Chapter 18 Using XAPI Events - Guaranteed

PeopleSoft EnterpriseOne-to-EnterpriseOne
This diagram shows a logical representation of the XAPI process from one PeopleSoft EnterpriseOne system
to another PeopleSoft EnterpriseOne system:

XAPI
Originator

Peoplesoft
EnterpriseOne System

XAPI
Executor

PeopleSoft
EnterpriseOne System

Request

Response

PeopleSoft EnterpriseOne-to-EnterpriseOne XAPI event

In summary:

1. The first PeopleSoft EnterpriseOne system (XAPI originator) sends a request.

2. The request is sent to a second PeopleSoft EnterpriseOne system, which might share the same or different
environment as the first PeopleSoft EnterpriseOne system.

3. The second PeopleSoft EnterpriseOne system (XAPI executor) processes the request and sends a response
back to the first PeopleSoft EnterpriseOne system (XAPI originator).

4. The first PeopleSoft EnterpriseOne system (XAPI originator) processes the response.

Using PeopleSoft EnterpriseOne as a XAPI Originator
This diagram illustrates the flow of a XAPI event when PeopleSoft EnterpriseOne functions as the XAPI
originator:

PeopleSoft Proprietary and Confidential 187

Using XAPI Events - Guaranteed Chapter 18

PeopleSoft EnterpriseOne
Server

CallObject Kernel

BSFN

File
System

6

8

PeopleSoft
EnterpriseOne

Client

1

XAPI
Executor

XML
Dispatch
Kernel

XAPI
Response

XML
Service
Kernel

7

5

4

PeopleSoft
EnterpriseOne

Transaction Server

9

2

XAPI
Request

3

PeopleSoft EnterpriseOne as XAPI originator

In summary:

1. Within the Sending the XAPI Request area in the illustration, a PeopleSoft EnterpriseOne client calls a
business function on the PeopleSoft EnterpriseOne server.

2. The business function uses XAPI APIs to create the XAPI request.

The CallObject kernel in which the XAPI APIs are executing creates the XAPI request data, adding the
callback function. If the XAPI executor is another PeopleSoft EnterpriseOne system, the host and port
of the PeopleSoft EnterpriseOne server that is functioning as the XAPI originator is added to the data.
The data is then sent to the Transaction server.

3. The Transaction server sends the document to the subscriber, which is the XAPI executor.

If the XAPI executor is another PeopleSoft EnterpriseOne system, the document is sent through JDENET.

4. Within the Receiving the XAPI Response area in the illustration, the XAPI XML response document is
sent by the XAPI executor through JDENET to the XML Dispatch kernel of the XAPI executor.

5. The XML Dispatch kernel receives the response XML document and sends the response to the XML
Service kernel.

6. The XML Service kernel stores the response document and creates a file handle.

7. The XML Service kernel invokes the callback business function with the file handle.

188 PeopleSoft Proprietary and Confidential

Chapter 18 Using XAPI Events - Guaranteed

8. The business function parses the response document using XAPI APIs, which use the XML Service
kernel to load the document into memory.

9. The business function uses XAPI APIs to process the response and send it to the PeopleSoft EnterpriseOne
client.

Using PeopleSoft EnterpriseOne as a XAPI Executor
This diagram illustrates the flow of a XAPI event when PeopleSoft EnterpriseOne functions as the XAPI
executor.

EnterpriseOne
Server

CallObject Kernel

BSFN

File
System

XAPI Response

1

XAPI
Originator

XML
Service
Kernel

XML
Dispatch
Kernel 5

2

EnterpriseOne
Transaction Server

7

3

4

6

XAPI
Request

PeopleSoft EnterpriseOne as XAPI executor

In summary:

1. Within the Receiving the XAPI Request area of the illustration, the XAPI originator sends the XAPI XML
request document to the XML Dispatch kernel through JDENET.

2. The XML Dispatch kernel receives the document and sends the event request and routing information
to the XML Service kernel.

3. The XML Service kernel stores the document and creates a file handle for the XAPI request.
The XML kernel also creates XML-based routing information. The XML Service kernel uses the F907012
table to find the business function that will process the request.

4. The XML Service kernel invokes the business function with the XML request handle and the routing
information handle.

5. The business function uses XAPI APIs to parse and process the document. XAPI APIs load the XAPI
XML request document into memory.

6. The business function processes the XAPI event request.

PeopleSoft Proprietary and Confidential 189

Using XAPI Events - Guaranteed Chapter 18

The business function also creates a XAPI response. The message type for the response must be
xapicallmethod. The business function also passes the routing information handle.

7. Within the Sending the XAPI Response area of the illustration, the business function uses XAPI APIs to
send the XAPI response data including the routing information, to the Transaction server.

8. The Transaction server creates the XAPI XML response document and uses the routing information to send
the response document to the XAPI originator.
If the XAPI originator is another PeopleSoft EnterpriseOne system, the document is sent through JDENET.

Working with PeopleSoft EnterpriseOne and
Third-Party Systems

This section provides an overview of the XAPI event generation and response and discusses:

• XAPI outbound request APIs.
• XAPI outbound request API usage code samples.
• XAPIInbound response APIs.
• XAPI inbound response API usage code samples.

See Also
EnterpriseOne Tools 8.94 PeopleBook: Development Tools: APIs and Business Functions, “PeopleSoft
EnterpriseOne APIs”

Understanding XAPI Processing between PeopleSoft
EnterpriseOne and Third-Party Systems
You can use XAPI processing to capture PeopleSoft EnterpriseOne transactions as the transaction occurs, and
then call third-party software to obtain a return response. In this scenario, PeopleSoft EnterpriseOne is the
originator, and the third-party system is the executor.

XAPI Outbound Request APIs
These APIs are available for you to generate a XAPI outbound request:

• jdeXAPI_Init

• jdeXAPI_Add

• jdeXAPI_Finalize

• jdeXAPI_Free

• jdeXAPI_SimpleSend

• jdeXAPI_ISCallTypeEnabled

• jdeXAPI_CALLS_ENABLED

190 PeopleSoft Proprietary and Confidential

Chapter 18 Using XAPI Events - Guaranteed

XAPI Outbound Request API Usage Code Sample
This code sample illustrates how to create a XAPI outbound request:

#ifdef jdeXAPI_CALLS_ENABLED

XAPI_CALL_ID ulXAPICallID = 0;

XAPI_CALL_RETURN eXAPICallReturn = eEventCallSuccess;

#endif

DSD4205010A dsD4205010A = {0}; /*Query Header*/

DSD4205010B dsD4205010B = {0}; /*Query Detail*/

#ifdef jdeXAPI_CALLS_ENABLED

if(jdeXAPI_IsCallTypeEnabled("XAPIOPOUT") &&

jdeXAPI_IsCallTypeEnabled("XAPIOPIN"))

{

bXAPIInUse = TRUE;

}

#endif

/*---*/

/* Call XAPIInit */

#ifdef jdeXAPI_CALLS_ENABLED

if(bXAPIInUse == TRUE)

{

ulXAPICallID = jdeXAPI_Init(lpBhvrCom,

"SendOrderPromiseRequest",

"XAPIOPOUT",

NULL,

&eXAPICallReturn);

if (eXAPICallReturn != eEventCallSuccess)

{

bExit = TRUE;

}

}

#endif

/*---*/

/* Adding Header Information */

#ifdef jdeXAPI_CALLS_ENABLED

if(bXAPIInUse == TRUE)

{

eXAPICallReturn = jdeXAPI_Add(lpBhvrCom,

ulXAPICallID,

"SendOrderPromiseRequest",

"D4205010A",

&dsD4205010A,

sizeof(DSD4205010A));

if (eXAPICallReturn != eEventCallSuccess)

{

PeopleSoft Proprietary and Confidential 191

Using XAPI Events - Guaranteed Chapter 18

bExit = TRUE;

}

}

#endif

/*---*/

/* Loading Detail Information */

#ifdef jdeXAPI_CALLS_ENABLED

if(bXAPIInUse == TRUE)

{

eXAPICallReturn = jdeXAPI_Add(lpBhvrCom,

ulXAPICallID,

"SendOrderPromiseRequest",

"D4205010B",

&dsD4205010B,

sizeof(DSD4205010B));

if (eXAPICallReturn != eEventCallSuccess)

{

bExit = TRUE;

}

}

#endif

#ifdef jdeXAPI_CALLS_ENABLED

if(bXAPIInUse == TRUE)

/*---*/

/* Finalize */

{

eXAPICallReturn = jdeXAPI_Finalize(lpBhvrCom,

ulXAPICallID,

"SendOrderPromiseRequest",

"OrderPromiseCallback");

if (eXAPICallReturn != eEventCallSuccess)

{

bExit = TRUE;

}

}

#endif

#ifdef jdeXAPI_CALLS_ENABLED

if (eXAPICallReturn != eEventCallSuccess)

{

/*---*/

/* CleanUp */

if(bXAPIInUse == TRUE)

{

jdeXAPI_Free(lpBhvrCom,

ulXAPICallID,

"SendOrderPromiseRequest");

}

192 PeopleSoft Proprietary and Confidential

Chapter 18 Using XAPI Events - Guaranteed

}

#endif

XAPI Inbound Response APIs
These APIs are available for you to read an inbound XAPI response:

• jdeXML_GetDSCount
• jdeXML_GetDSName
• jdeXML_ParseDS
• jdeXML_DeleteXML

XAPI Inbound Response API Usage Code Sample
This code sample illustrates how the business function uses the XML Service APIs to read and parse the
XML data:

int iCurrentRecord;

int iHeaderCount;

DSD4205030A dsD4205030A = {0};

DSD4205030B dsD4205030B = {0};

#ifdef jdeXAPI_CALLS_ENABLED

if(jdeXAPI_IsCallTypeEnabled("XAPIOPOUT") &&

jdeXAPI_IsCallTypeEnabled("XAPIOPIN"))

{

iRecordCount = jdeXML_GetDSCount(lpDS->szXMLHandle);

if (iRecordCount > 0)

{

for (iCurrentRecord = 0; iCurrentRecord < iRecordCount;

iCurrentRecord++)

{

jdeXML_GetDSName(lpDS->szXMLHandle,

iCurrentRecord,

nidDSName);

if (jdestrcmp(nidDSName,(const char*)D4205030A) == 0)

{

jdeXML_ParseDS(lpDS->szXMLHandle,

iCurrentRecord,

&dsD4205030A,

sizeof(DSD4205030A));

}

else

{

jdeXML_ParseDS(lpDS->szXMLHandle,

iCurrentRecord,

&dsD4205030B,

sizeof(DSD4205030B));

}

PeopleSoft Proprietary and Confidential 193

Using XAPI Events - Guaranteed Chapter 18

}

}

if (iCurrentRecord == iRecordCount)

{

jdeXML_DeleteXML(lpDS->szXMLHandle);

}

}

#endif

Using PeopleSoft EnterpriseOne-to-Enterprise
One Connectivity

This section provides an overview of the PeopleSoft EnterpriseOne-to-EnterpriseOne connectivity for XAPI
events and discusses:

• XAPI outbound request handling APIs.
• XAPI outbound request parsing API usage sample code.
• XAPI inbound response generation APIs.
• XAPI inbound response parsing API usage sample code.
• XAPI error handling APIs.

See Also
EnterpriseOne Tools 8.94 PeopleBook: Development Tools: APIs and Business Functions, “PeopleSoft
EnterpriseOne APIs”

Understanding PeopleSoft EnterpriseOne-to-EnterpriseOne
Connectivity
The XAPI structure provides the capability for two different PeopleSoft EnterpriseOne systems to
communicate with each other. The first PeopleSoft EnterpriseOne system (XAPI originator) generates a XAPI
request (event). Instead of the request being distributed to a third-party system, JDENET sends the request
to a second PeopleSoft EnterpriseOne system. A PeopleSoft EnterpriseOne to PeopleSoft EnterpriseOne
XAPI event must be sent through a subscriber with the JDENET transport type. The second PeopleSoft
EnterpriseOne system (XAPI executor) processes the event and returns a response to the first PeopleSoft
EnterpriseOne system (XAPI originator).

Modify Element Name for XML Documents
Before XAPI event processing, any document that was sent from PeopleSoft EnterpriseOne was considered to
be a response document, and any document coming in to PeopleSoft EnterpriseOne was considered to be a
request document. However, with XAPI, request documents are generated by the PeopleSoft EnterpriseOne
originating system and can be sent to a PeopleSoft EnterpriseOne executor system. Response documents are
generated and sent out by the PeopleSoft EnterpriseOne executor system and received by the PeopleSoft
EnterpriseOne originating system. To support XAPI and to enable the XML dispatch kernel to be able to
distinguish between a response and reply, PeopleSoft created these type attributes to be used with the
jdeResponse element:

194 PeopleSoft Proprietary and Confidential

Chapter 18 Using XAPI Events - Guaranteed

Element and Type Attribute Description

jdeResponse=RealTimeEvent Use this element and attribute to identify a XAPI request that is sent from
the PeopleSoft EnterpriseOne originating system and sent to the PeopleSoft
EnterpriseOne executor system.

jdeResponse=xapicallmethod Use this element and attribute to identify a XAPI response that is sent from the
PeopleSoft EnterpriseOne executor system and sent to the PeopleSoft EnterpriseOne
originating system.

When the XML Dispatch kernel receives a document with the jdeResponse element and a RealTimeEvent or
xapicallmethod type attribute, XML Dispatch sends the document to the XML Service kernel. XML Service
can distinguish a response or a reply based on the type attribute that is associated with the jdeResponse
element and then processes the document appropriately.

Security for Originator and Executor
Access to the PeopleSoft EnterpriseOne originator and PeopleSoft EnterpriseOne executor systems is based on:

• Security token
• Environment
• Role

The PeopleSoft EnterpriseOne originating system verifies that the security information is valid and creates an
hUser object with an encrypted token to send to the PeopleSoft EnterpriseOne executor. Encryption APIs
(jdeEncypher and jdeDecypher) are used to encrypt and decode the password. The security information is sent
in the XAPI request XML document.

Note. The user ID, password, environment, and role must be the same on both PeopleSoft EnterpriseOne
systems (originator and executor).

Error Processing for Originator and Executor
You might encounter these two errors during XAPI error processing between two PeopleSoft EnterpriseOne
systems:

Type of Error Explanation

Business-related errors The business function or the business function specs cannot be found.

System errors These errors occur in other parts of the system (for example, message delivery failure).

The system handles XAPI error processing for business-related errors in these ways:

• XAPI logs business-related errors in the PeopleSoft EnterpriseOne server log, and the errors are delivered as
part of the XAPI reply

• XAPI APIs parse business errors from the response document.
• XAPI logs all information that is available about the error in the PeopleSoft EnterpriseOne server log.

PeopleSoft Proprietary and Confidential 195

Using XAPI Events - Guaranteed Chapter 18

XAPI Outbound Request Handling APIs
These outbound request handling APIs are available for you to generate a PeopleSoft
EnterpriseOne-to-EnterpriseOne XAPI outbound request:

• jdeXMLRequest_GetDSCount
• jdeXMLRequest_GetDSName
• jdeXMLRequest_ParseDS
• jdeXMLRequest_DeleteXML
• jdeXMLRequest_ParseNextDSByName
• jdeXMLRequest_PrepareDSListForIterationByName

XAPI Outbound Request Parsing API Usage Sample Code
This code sample shows the API usage for parsing an outbound request by the PeopleSoft EnterpriseOne
XAPI executor:

API_System FunctionsSampleXAPIRequestParsingAPIUsage

Last Modified: | October 21, 2002

Example

int iXMLRecordCount = 0;

int iCurrentRecord = 0;

NID nidDSName;

ID idReturnValue = ER_SUCCESS;

ID idSORecordCount = ER_ERROR; /*Return Code*/

MATH_NUMERIC mnBatchNumber = {0};

unsigned long lBatchNumber = {0};

DSD4206030A dsD4206030A = {0};

/* CacheProcessInboundDemandRequest B4206030.c */

DSD4206000I dsD4206000I = {0};

/* Demand scheduling inbound DSTR */

iXMLRecordCount = jdeXMLRequest_GetDSCount(lpDS->szXMLHandle);

if(iXMLRecordCount > 0)

{

for (iCurrentRecord = 0; iCurrentRecord < iXMLRecordCount; iCurrentRecord++)

{

memset((void *)(&dsD4206000I), (int)(_J(’\0’)), sizeof(DSD4206000I));

memset((void *)(nidDSName), (int)(_J(’\0’)), sizeof(NID));

if(jdeXMLRequest_GetDSName(lpDS->szXMLHandle,

iCurrentRecord,

nidDSName))

{

/* Retrieving data*/

if (jdeStricmp(nidDSName, (const JCHAR *)_J("D40R0180B")) == 0)

{

if (jdeXMLRequest_ParseDS(lpDS->szXMLHandle,

iCurrentRecord,

196 PeopleSoft Proprietary and Confidential

Chapter 18 Using XAPI Events - Guaranteed

&dsD4206000I,

sizeof(DSD4206000I)))

{

/* Get next number for the batch number of the

inbound INVRPT record*/

if (dsD4206000I.cInventoryAdvisement == _J(’1’))

{

lBatchNumber = JDB_GetInternalNextNumber();

LongToMathNumeric(lBatchNumber, &mnBatchNumber);

FormatMathNumeric(dsD4206000I.szBatch,&mnBatchNumber);

}

/* Setup cancel flag for pending delete record */

if (dsD4206000I.cPendingDelete == _J(’1’))

{ /* Flag set as 1 for any cancel demand record */

dsD4206000I.cCancelFlag = _J(’1’);

}

else

{ /* Flag set as 9 for any non cancel demand record */

dsD4206000I.cCancelFlag = _J(’9’);

}

/* Load parms for cache */

memset((void *)(&dsD4206030A), (int)(_J(’\0’)), sizeof(DSD4206030A));

I4206000_LoadParmsToCache(&dsD4206000I, &dsD4206030A);

MathCopy(&dsD4206030A.mnJobnumberA, lpmnJobNumber);

/* Add the DSTR to cache */

idReturnValue = jdeCallObject(_J("CacheProcessInboundDemandRequest") ,

(LPFNBHVR)NULL ,

lpBhvrCom ,

lpVoid ,

(LPVOID)&dsD4206030A,

(CALLMAP *) NULL,

(int) 0,

(JCHAR*)NULL ,

(JCHAR*)NULL ,

(int) 0);

/* Write XML DSTR to cache fail */

if (idReturnValue == ER_ERROR)

{

jdeErrorSet(lpBhvrCom, lpVoid, (ID) 0, _J(032E), (LPVOID) NULL);

}

}

else

{ /* warning XML parse fail */

jdeErrorSet(lpBhvrCom, lpVoid, (ID) 0, _J("40R46"), (LPVOID) NULL);

}

} /* end if */

PeopleSoft Proprietary and Confidential 197

Using XAPI Events - Guaranteed Chapter 18

}/* end if DS name */

}/* end for - looping all matching XML DSTR */

/* Ensure there is at least one record */

idSORecordCount = ER_SUCCESS;

}/*if(iXMLRecordCount > 0) */

return idSORecordCount;

XAPI Inbound Response Generation APIs
These outbound request handling APIs are available for you to generate a PeopleSoft
EnterpriseOne-to-EnterpriseOne XAPI outbound request:

• jdeXAPIResponse_SimpleSend
• jdeXAPIResponse_Init
• jdeXAPIResponse_Add
• jdeXAPIResponse_Finalize
• jdeXAPIResponse_Free

XAPI Inbound Response Parsing API Usage Sample Code
This code sample shows the API usage for generating an inbound response from the PeopleSoft EnterpriseOne
XAPI executor to the PeopleSoft EnterpriseOne originator:

JDEBFRTN (ID) JDEBFWINAPI SendOrderPromiseRequest (LPBHVRCOM lpBhvrCom,

LPVOID lpVoid, LPDSD4205010 lpDS)

{

/**

* Variable declarations

**/

char cPromisableLine = ’ ’;

int nHeaderBackOrderAllowed = ’ ’;

HUSER hUser;

ID JDEDBResult = JDEDB_PASSED;

BOOL bExit = FALSE;

BOOL bB4001040Called = FALSE;

BOOL bXAPIInUse = FALSE;

BOOL bAtLeastOneDetail = FALSE;

#ifdef jdeXAPI_CALLS_ENABLED

XAPI_CALL_ID ulXAPICallID = 0;

XAPI_CALL_RETURN eXAPICallReturn = eEventCallSuccess;

#endif

/**

* Declare structures

**/

DSD4001040 dsD4001040 = {0};

DSD4205020 dsD4205020 = {0};

198 PeopleSoft Proprietary and Confidential

Chapter 18 Using XAPI Events - Guaranteed

DSD4205040 dsD4205040 = {0}; /* Header Info */

DSD4205050 dsD4205050 = {0}; /* Detail Info */

DSD4205010A dsD4205010A = {0}; /* Query Header */

DSD4205010B dsD4205010B = {0} /* Query Detail */

DSD0100042 dsD0100042 = {0};

LPDSD4205040H lpDSD4205040H = (LPDSD4205040H) NULL;

LPDSD4205050D lpDSD4205050D = (LPDSD4205050D) NULL;

/**

* Declare pointers

**/

/**

* Check for NULL pointers

**/

if ((lpBhvrCom == (LPBHVRCOM) NULL) ||

(lpVoid == (LPVOID) NULL) ||

(lpDS == (LPDSD4205010) NULL))

{

jdeErrorSet (lpBhvrCom, lpVoid, (ID) 0, "4363", (LPVOID) NULL);

return ER_ERROR;

}

/* Retrieving hUser */

JDEDBResult = JDB_InitBhvr (lpBhvrCom, &hUser, (char *)NULL,

JDEDB_COMMIT_AUTO) ;

if (JDEDBResult == JDEDB_FAILED)

{

jdeSetGBRError (lpBhvrCom, lpVoid, (ID) 0, "4363") ;

return ER_ERROR ;

}

/**

* Set pointers

**/

/**

* Main Processing

**/

/*---*/

/* Setting Up ErrorCode

*/

lpDS->cErrorCode = ’0’;

/*---*/

/* Determining if XAPI is ready to be used */

bXAPIInUse = FALSE;

#ifdef jdeXAPI_CALLS_ENABLED

if(jdeXAPI_IsCallTypeEnabled("XAPIOPOUT") &&

jdeXAPI_IsCallTypeEnabled("XAPIOPIN"))

{

PeopleSoft Proprietary and Confidential 199

Using XAPI Events - Guaranteed Chapter 18

bXAPIInUse = TRUE;

}

#endif

/*--*/

/* Data validation and default values. */

/* When Display Before Accept Mode is on, validate Key */

/* Information. Otherwise retrieve it from Header Record*/

if((lpDS->cDisplayBeforeAcceptMode == ’1’) &&

((MathZeroTest(&lpDS->mnOrderNumber) == 0) ||

(IsStringBlank(lpDS->szOrderType)) ||

(IsStringBlank(lpDS->szOrderCompany))))

{

bExit = TRUE;

}

else

{

MathCopy(&dsD4205040.mnOrderNumber,&lpDS->mnOrderNumber);

strncpy(dsD4205040.szOrderType,

lpDS->szOrderType,

sizeof(dsD4205040.szOrderType));

strncpy(dsD4205040.szComputerID,

lpDS->szOrderCompany,

sizeof(dsD4205040.szOrderCompany));

dsD4205040.cUseCacheOrWF = lpDS->cUseCacheOrWF;

strncpy(dsD4205040.szComputerID,

lpDS->szComputerID,

sizeof(dsD4205040.szComputerID));

MathCopy(&dsD4205040.mnJobNumber,&lpDS->mnJobNumber);

jdeCallObject("GetSalesOrderHeaderRecord",

NULL,

lpBhvrCom, lpVoid,

(LPVOID)&dsD4205040,

(CALLMAP *) NULL,

(int) 0,

(char *) NULL,

(char *) NULL,

(int) 0) ;

lpDSD4205040H = (LPDSD4205040H)jdeRemoveDataPtr(hUser,

(ulong)dsD4205040.idHeaderRecord);

if (lpDSD4205040H == NULL)

{

bExit = TRUE;

}

}

/*---*/

200 PeopleSoft Proprietary and Confidential

Chapter 18 Using XAPI Events - Guaranteed

/* Set error if exiting at this point */

if (bExit == TRUE)

{

lpDS->cErrorCode = ’1’;

/* Sales Order Header Not Found */

strncpy(lpDS->szErrorMessageID,

"072T",

sizeof(lpDS->szErrorMessageID));

if (lpDS->cSuppressError != ’1’)

{

jdeErrorSet (lpBhvrCom, lpVoid, (ID) 0, "072T", (LPVOID) NULL);

}

}

/*---*/

/* Default Promising Flag is always 1 */

lpDS->cDefaultPromisingFlags = 1;

if (bExit == FALSE)

{

/*---*/

/* Call XAPIInit */

#ifdef jdeXAPI_CALLS_ENABLED

if(bXAPIInUse == TRUE)

{

ulXAPICallID = jdeXAPI_Init(lpBhvrCom,

SendOrderPromiseRequest,

"XAPIOPOUT",

NULL,

&eXAPICallReturn);

if (eXAPICallReturn != eEventCallSuccess)

{

bExit = TRUE;

}

}

#endif

if (bExit == FALSE)

{

/*--*/

/* Loading Header Information */

I4205010_PopulateQueryHeader(lpDS,&dsD4205010A

lpDSD4205040H,&dsD0100042,hUser,lpVoid,lpBhvrCom);

nHeaderBackOrderAllowed = dsD4205010A.nAllowBackorders;

/*---*/

/* Adding Header Information */

#ifdef jdeXAPI_CALLS_ENABLED

if(bXAPIInUse == TRUE)

{

eXAPICallReturn = jdeXAPI_Add(lpBhvrCom,

PeopleSoft Proprietary and Confidential 201

Using XAPI Events - Guaranteed Chapter 18

ulXAPICallID,

"SendOrderPromiseRequest",

"D4205010A",

&dsD4205010A,

sizeof(DSD4205010A));

if (eXAPICallReturn != eEventCallSuccess)

{

bExit = TRUE;

}

}

#endif

}

}

if (bExit == FALSE)

{

/*---*/

/* Loading Detail Information */

MathCopy(&dsD4205050.mnOrderNumber,&lpDS->mnOrderNumber);

strncpy(dsD4205050.szOrderType,lpDS->szOrderType,

sizeof(dsD4205050.szOrderType));

strncpy(dsD4205050.szOrderCompany,lpDS->szOrderCompany,

sizeof(dsD4205050.szOrderCompany));

dsD4205050.cUseCacheOrWF = lpDS->cUseCacheOrWF;

strncpy(dsD4205050.szComputerID,lpDS->szComputerID,

sizeof(dsD4205050.szComputerID));

MathCopy(&dsD4205050.mnJobNumber,&lpDS->mnJobNumber);

if (lpDSD4205040H->cActionCode != ’A’)

{

dsD4205050.cCheckTableAfterCache = ’1’;

}

else

{

dsD4205050.cCheckTableAfterCache = ’0’;

}

jdeCallObject("GetSalesOrderDetailRecordOP",

NULL,

lpBhvrCom, lpVoid,

(LPVOID)&dsD4205050,

(CALLMAP *) NULL,

(int) 0, (char *) NULL,

(char *) NULL, (int) 0) ;

if (dsD4205050.cRecordFound != ’1’)

{

bExit = TRUE;

lpDS->cErrorCode = ’1’;

/* Sales Order Detail Not Found */

strncpy(lpDS->szErrorMessageID,"4162",

202 PeopleSoft Proprietary and Confidential

Chapter 18 Using XAPI Events - Guaranteed

sizeof(lpDS->szErrorMessageID));

if (lpDS->cSuppressError != ’1’)

{

jdeErrorSet (lpBhvrCom, lpVoid, (ID) 0, "4162", (LPVOID) NULL);

}

}

while ((dsD4205050.cRecordFound == ’1’) && (bExit == FALSE))

{

lpDSD4205050D = (LPDSD4205050D)jdeRemoveDataPtr(hUser,

(ulong)dsD4205050.idDetailRecord);

/* Reset flags */

cPromisableLine = ’0’;

bB4001040Called = FALSE;

/*---*/

/* Evaluate the Record from F4211 (cDataSource = 2)*/

/* to find out if we should promise the line */

/* else find out from Order Promising Detail. */

if(dsD4205050.cDataSource == ’1’)

{

if (lpDSD4205050D->cOPPromiseLineYN == ’Y’)

{

cPromisableLine = ’1’;

}

}

else if(dsD4205050.cDataSource == ’2’)

{

MathCopy (&dsD4001040.mnShortItemNumber,

&lpDSD4205050D->mnShortItemNumber);

strncpy (dsD4001040.szBranchPlant,

lpDSD4205050D->szBusinessUnit,

sizeof(dsD4001040.szBranchPlant));

jdeCallObject ("GetItemMasterDescUOM",

NULL,

lpBhvrCom, lpVoid,

(LPVOID)&dsD4001040,

(CALLMAP *) NULL,

(int) 0, (char *) NULL,

(char *) NULL, (int) 0) ;

bB4001040Called = TRUE;

cPromisableLine = I4205010_IsLinePromisable(lpBhvrCom,lpVoid,

hUser,lpDS,lpDSD4205050D, dsD4001040.cStockingType);

}

if (cPromisableLine == ’1’)

{

PeopleSoft Proprietary and Confidential 203

Using XAPI Events - Guaranteed Chapter 18

/* Set this flag if at least one promisable */

/* detail record exists. */

bAtLeastOneDetail = TRUE;

if (bB4001040Called == FALSE)

{

MathCopy (&dsD4001040.mnShortItemNumber,

&lpDSD4205050D->mnShortItemNumber);

strncpy (dsD4001040.szBranchPlant,

lpDSD4205050D->szBusinessUnit,

sizeof(dsD4001040.szBranchPlant));

jdeCallObject ("GetItemMasterDescUOM",

NULL,

lpBhvrCom, lpVoid,

(LPVOID)&dsD4001040,

(CALLMAP *) NULL,

(int) 0, (char *) NULL,

(char *) NULL, (int) 0) ;

}

I4205010_PopulateQueryDetail(lpDS,&dsD4205010B,

lpDSD4205050D,

&dsD4001040,

&dsD4205010A,

&dsD0100042,

cPromisableLine,

hUser,

lpVoid,

lpBhvrCom);

#ifdef jdeXAPI_CALLS_ENABLED

if(bXAPIInUse == TRUE)

{

eXAPICallReturn = jdeXAPI_Add(lpBhvrCom,

ulXAPICallID,

"SendOrderPromiseRequest",

"D4205010B",

&dsD4205010B,

sizeof(DSD4205010B));

if (eXAPICallReturn != eEventCallSuccess)

{

bExit = TRUE;

}

}

#endif

}

/*---*/

/* Fetching the next Detail Record */

204 PeopleSoft Proprietary and Confidential

Chapter 18 Using XAPI Events - Guaranteed

MathCopy(&dsD4205050.mnOrderNumber,&lpDS->mnOrderNumber);

strncpy(dsD4205050.szOrderType,lpDS->szOrderType,

sizeof(dsD4205050.szOrderType));

strncpy(dsD4205050.szOrderCompany,lpDS->szOrderCompany,

sizeof(dsD4205050.szOrderCompany));

dsD4205050.cUseCacheOrWF = lpDS->cUseCacheOrWF;

strncpy(dsD4205050.szComputerID,lpDS->szComputerID,

sizeof(dsD4205050.szComputerID));

MathCopy(&dsD4205050.mnJobNumber,&lpDS->mnJobNumber);

if (lpDSD4205040H->cActionCode != ’A’)

{

dsD4205050.cCheckTableAfterCache = ’1’;

}

else

{

dsD4205050.cCheckTableAfterCache = ’0’;

}

jdeCallObject("GetSalesOrderDetailRecordOP",

NULL,

lpBhvrCom, lpVoid,

(LPVOID)&dsD4205050,

(CALLMAP *) NULL,

(int) 0, (char *) NULL,

(char *) NULL, (int) 0) ;

}

if (!bAtLeastOneDetail)

{

bExit = TRUE;

lpDS->cErrorCode = ’1’;

/* Sales Order Detail Not Found */

strncpy(lpDS->szErrorMessageID,"4162",

sizeof(lpDS->szErrorMessageID));

if (lpDS->cSuppressError != ’1’)

{

jdeErrorSet (lpBhvrCom, lpVoid, (ID) 0, "4162", (LPVOID) NULL);

}

}

if (bExit == FALSE)

{

#ifdef jdeXAPI_CALLS_ENABLED

if(bXAPIInUse == TRUE)

{

eXAPICallReturn = jdeXAPI_Finalize(lpBhvrCom,

ulXAPICallID,

"SendOrderPromiseRequest",

"OrderPromiseCallback)";

if (eXAPICallReturn != eEventCallSuccess)

{

bExit = TRUE;

}

PeopleSoft Proprietary and Confidential 205

Using XAPI Events - Guaranteed Chapter 18

}

#endif

}

/*---*/

/* Call B4205020 in Add Mode */

if((bExit == FALSE) &&

(lpDS->cDisplayBeforeAcceptMode != ’1’) &&

(lpDS->cUseCacheOrWF == ’2’))

{

MathCopy(&dsD4205020.mnOrderNumber,&lpDS->mnOrderNumber);

strncpy(dsD4205020.szOrderType,lpDS->szOrderType,

sizeof(dsD4205020.szOrderType));

strncpy(dsD4205020.szOrderCompany,lpDS->szOrderCompany,

sizeof(dsD4205020.szOrderCompany));

strncpy(dsD4205020.szComputerID,lpDS->szComputerID,

sizeof(dsD4205020.szComputerID));

MathCopy(&dsD4205020.mnJobNumber,&lpDS->mnJobNumber);

jdeCallObject(MaintainOPWorkFile,

NULL,

lpBhvrCom, lpVoid,

(LPVOID)&dsD4205020,

(CALLMAP *) NULL,

(int) 0, (char *) NULL,

(char *) NULL, (int) 0) ;

}

}

/***

* Function Clean Up

**/

#ifdef jdeXAPI_CALLS_ENABLED

if (eXAPICallReturn != eEventCallSuccess)

{

/*---*/

/* CleanUp */

if(bXAPIInUse == TRUE)

{

jdeXAPI_Free(lpBhvrCom,

ulXAPICallID,

"SendOrderPromiseRequest");

}

lpDS->cErrorCode = ’1’;

/* System Error - no reasonable error messages exist. */

strncpy(lpDS->szErrorMessageID,"018Y",

sizeof(lpDS->szErrorMessageID));

if (lpDS->cSuppressError != ’1’)

{

206 PeopleSoft Proprietary and Confidential

Chapter 18 Using XAPI Events - Guaranteed

jdeErrorSet (lpBhvrCom, lpVoid, (ID) 0, "018Y", (LPVOID) NULL);

}

}

#endif

if(lpDSD4205040H != (LPDSD4205040H)NULL)

{

jdeFree((void *)lpDSD4205040H);

}

if(lpDSD4205050D != (LPDSD4205050D)NULL)

{

jdeFree((void *)lpDSD4205050D);

}

return (ER_SUCCESS);

}

XAPI Error Handling APIs
These APIs are used for error handling in the XAPI executor system.

• jdeXML_CheckSystemError

The check system error API is for system errors. It tells the PeopleSoft EnterpriseOne originator system that
a system error occurred in the PeopleSoft EnterpriseOne executor system:

• jdeXML_GetErrorCount
• jdeXML_SetErrors

The get error count and set errors APIs are for business errors. These two APIs, when used together, find the
number of business errors and then send the errors to the BHVRCOM structure for you to resolve.

Mapping a Business Function
This section provides an overview of mapping business functions or APIs when you use PeopleSoft
EnterpriseOne-to-EnterpriseOne events, and discusses how to enter handler information.

Understanding how to Map a Business Function
When the PeopleSoft EnterpriseOne executor system receives an event from the PeopleSoft EnterpriseOne
originator, the PeopleSoft EnterpriseOne executor needs to know what business function or system API to
invoke to process the request. You must map the business function or system API to the XAPI event name.
You map business functions and system APIs in the F907012 table. You use the Event Request Definition
program (P907012) to map business functions and APIs.

If you are mapping business functions, you enter the name of the business function. If you are mapping APIs,
you must enter the name of the API and the library where it is defined. In addition, the signature of the API
must be made common, similar to the business function.

Mapping business functions enables you to point a XAPI event to a business function or system API that you
wrote. You do not need to modify source code of a business function that PeopleSoft delivered to you.

PeopleSoft Proprietary and Confidential 207

Using XAPI Events - Guaranteed Chapter 18

Forms Used to Add Mapping Information
Form Name Form ID Navigation Usage

WorkWith Definition W907012A Enter P907012 in the Fast
Path Command Line.

Locate and review existing
mappings.

Request Definition W907012B OnWorkWith Definition,
click Add

Add or change business
function or API mapping for
the XAPI event.

Adding Mapping Information
Access the Request Definition form.

Event Name The name of the event (for example JDERTSOOUT). Some events are part of
other events.

BSFN Definition An option that specifies the type of processing for an event.

API Definition An option that specifies the type of processing for an event.
When you select the API definition option, the DLL Name field appears
on the form.

Function Name The actual name of the function. It must follow standard ANSI C naming
conventions (for example, no space between words).

DLL Name Specifies the name of the database driver file. This file is specified in the
[DB SYSTEM SETTINGS] section of the enterprise server jde.ini file. The
file you specify depends upon the platform and the database. Values for
specific machines and databases are:
DBDR: AS/400 to DB2/400
JDBNET: AS/400 to any other server DBMS
libjdbnet.sl: HP9000 to DB2/400
libjdbnet.sl: HP9000 to Microsoft SQL Server
libora80.sl: HP9000 to Oracle (Version 8.0) UNIX
libjdbnet.so: RS6000 to DB2/400
libjdbnet.so: RS6000 to Microsoft SQL Server
libora73.so: RS6000 to Oracle (Version 7.3) UNIX
libora80.so: RS6000 to Oracle (Version 8.0) UNIX
jdbodbc.dll: Intel to AS/400 =
jdboci32.dll: Intel to Oracle (Version 7.2) NT
jdboci73.dll: Intel to Oracle (Version 7.3) NT
dboci80.dll: Intel to Oracle (Version 8.0) NT
dbodbc.dll: Intel to SQL Server NT
jdbnet.dll: Digital Alpha to AS/400
jdboci32.dll: Digital Alpha to Oracle (Version 7.2)

208 PeopleSoft Proprietary and Confidential

Chapter 18 Using XAPI Events - Guaranteed

dboci73.dll: Digital Alpha to Oracle (Version 7.3)
jdboci80.dll: Digital Alpha to Oracle (Version 8.0)
jdbodbc.dll: Digital Alpha to SQL Server NT

PeopleSoft Proprietary and Confidential 209

Using XAPI Events - Guaranteed Chapter 18

210 PeopleSoft Proprietary and Confidential

CHAPTER 19

Using Z Events - Guaranteed

This chapter provides overviews of the Z event process and vendor-specific outbound functions, and discusses
how to work with Z events.

Note. This chapter is applicable only if you use guaranteed events delivery. Guaranteed event delivery is
available when you use PeopleSoft EnterpriseOne Tools 8.94 with PeopleSoft EnterpriseOne Applications 8.11.

Refer to the Classic Events chapters if you use PeopleSoft EnterpriseOne Tools 8.94 with PeopleSoft
EnterpriseOne Applications 8.10 or earlier releases of PeopleSoft EnterpriseOne applications.

Understanding Z Events - Guaranteed
A Z event is near real-time notification that an interoperability transaction has occurred. To generate Z events,
PeopleSoft EnterpriseOne uses the Z event generator and the existing interface table infrastructure. You can
use the existing PeopleSoft EnterpriseOne interface tables, or you can build customized interface tables as
long as the tables are created using PeopleSoft EnterpriseOne standards.

Z Event Process Flow
This diagram shows Z event processing. The diagram expands on the system diagram provided in the Using
Events - Guaranteed Overview chapter. This diagram details the processing that the CallObject kernel does
during Z event processing. In the System Overview diagram, the BSFN uses the Event API, all within the
CallObject kernel and in turn place the event data into the F90710 table. For Z events, additional processing
occurs within the CallObject kernel before the event is placed into the F90701 table. Z events that are
placed in the F90710 table are already in XML format (unlike real-time and XAPI events, which only have
raw event data in the table).

PeopleSoft Proprietary and Confidential 211

Using Z Events - Guaranteed Chapter 19

EnterpriseOne
Server

CallObject Kernel

Event API

Subsystem Job
Master Table

(F986113)

5
Z Event

Generator
(ZEVG)

BSFN

Outbound
Subsystem

Batch Process

2

EnterpriseOne
Web Server

BSFN
Request

1

2

Data Export
Control Table

(F0047)

2

Interface
Table

1
4

Processing
Log Table
(F0046)

Flat File Cross-
Reference Table

(F47002)

6 3

Event Transfer
Table

(F90710)

Event
(XML)

7

Z event processing

In summary:

1. When a PeopleSoft EnterpriseOne transaction occurs, the master business function writes the transaction
information in the appropriate interface table and sends an update record to the F986113 table.

2. A batch process monitors the F986113 table. When the batch process finds a W status in the F986113
table, it notifies the Z Event Generator (ZEVG), which is part of the CallObject kernel. The batch process
looks in the F0047 table to determine which Z-event generator to call.

3. The F47002 table provides a cross-reference between the transaction and the interface table where the
record is stored. This information is used by the Z-event generator.

4. The Z-event generator retrieves the transaction information from the interface table and converts the
transaction information into an XML document using a PeopleSoft EnterpriseOne DTD.

5. The Z-event generator sends the event (in the form of an XML document) to the event API for distribution.
6. After an event is successfully generated, the successfully generated column in the F0046 table is updated.
A UBE purges information in the interface table based on information in the F0046 table.

7. The Event API sends the XML document to the F90710 table, where it is retrieved by the Transaction
server and routed to a subscriber.

212 PeopleSoft Proprietary and Confidential

Chapter 19 Using Z Events - Guaranteed

Vendor-Specific Outbound Functions
The purpose of the vendor-specific outbound function is to pass the key fields for a record in the outbound
interface tables to a third-party system. With these keys, you can process information from the database record
into your third-party system. The generic outbound subsystem batch process calls the function.

Each vendor-specific function is specific to the transaction being processed. You must decide how the function
actually uses the database record information. Although the functions are written to your specifications, and
most likely are written outside of PeopleSoft EnterpriseOne, these functions must use the required PeopleSoft
EnterpriseOne defined data structure:

Data Item Required I/O Description

szUserId Y I User ID - 11 characters

szBatchNumber Y I Batch Number - 16
characters

szTransactionNumber Y I Transaction Number - 23
characters

mnLineNumber Y I Line Number - double

szTransactionType Y I Transaction Type - 9
characters

szDocumentType Y I Document Type - 3
characters

mnSequenceNumber Y I Sequence Number - double

Working With Z Events
This section provides an overview about Z event configuration and discusses how to add a data export control
record.

Configuring Z Events
To generate Z events, complete these tasks:

• Enable the Z event.
• Update the Flat File Cross-Reference table.
• Set up data export controls.
• Update the Processing Log table.
• Verify the subsystem job is running.
• Purge data fro the interface table.
• Synchronize F47002 records with F90701 records.

PeopleSoft Proprietary and Confidential 213

Using Z Events - Guaranteed Chapter 19

Enabling Z Event Processing
You can enable or disable master business functions to write transaction information into interface tables and
the F986113 table when a transaction occurs. All outbound master business functions that have the ability to
create interoperability transactions have processing options that control how the transaction is written. On
the Processing Options Interop tab, the first processing option is the transaction type for the interoperability
transaction. If you leave this processing option blank, the system does not perform outbound interoperability
processing. The second processing option controls whether the before image is written for a change transaction.
If this processing option is set to 1, before and after images of the transaction are written to the interface table.
If this processing option is not set, then only an after image is written to the interface table.

Updating Flat File Cross-Reference
When you enable Z events, you also update the F47002 table. The transaction type that you entered in the
processing option maps to the F47002 table to determine in which interface tables to store the information
from the transaction. You use the Flat File Cross-Reference program (P47002) to update the F47002 table.

Updating the Processing Log Table
The Z event generator uses the F0046 table. The F0046 table contains the keys to the interoperability
transaction along with a successfully processed column. The sequence number, transaction type, order type,
function name, and function library are obtained from the F0047 table. A vendor-specific record is sequentially
created in the F0046 table for every transaction processed by the Interoperability Generic Outbound Subsystem
(R00460) UBE or the Interoperability Generic Outbound Scheduler UBE (R00461). For example, if three
vendors have subscribed to a transaction using the F0047 table, three records are created in the F0046 table, one
record for each transaction. If the vendor-specific object successfully processed the transaction, the Processing
Log record is updated with a Y in the successfully processed column. You can use the Processing Log (P0046)
program to determine whether a vendor-specific object processed the interoperability transaction correctly.

A purging UBE that purges the interfaces tables runs based on information in the processing log table.

Data in the Processing Log table cannot be changed.

Verifying that the Subsystem Job is Running
When the application master business function adds a record to the F986113 table, a subsystem job is started.
Subsystem jobs are continuous jobs that process records from the Subsystem Job Master table. You should
verify that the subsystem job is running.

Note. After the records are processed, instead of ending the job, subsystem jobs look for new data in the data
queue. Subsystem jobs run until you terminate them.

You can schedule subsystem jobs.

See EnterpriseOne Tools 8.94 PeopleBook: System Administration, “Working with Servers,” Managing
EnterpriseOne Subsystems.

See EnterpriseOne Tools 8.94 PeopleBook: System Administration, “Using the Scheduler Application,”
Understanding the Scheduler Application.

Purging Data from the Interface Table
After you receive the Z event, you should purge the data from the interface table. You can enter a purge UBE
in the Processing Log table to purge the interface table.

214 PeopleSoft Proprietary and Confidential

Chapter 19 Using Z Events - Guaranteed

See Appendix B, “Interoperability Interface Table Information,” page 243.

See Chapter 20, “Using Batch Interfaces,” Purging Interface Table Information, page 220.

Synchronizing F47002 Records with F90701 Records
Z events that are automatically created write records to the F90701 table. If you have existing Z events defined
and are upgrading to an 8.11 or later release, you can run the Populate Event Activation Status Table UBE
(R90705) to create the associated F90701 table records for the pre-existing Z event definitions.

Setting Up Data Export Controls
This section provides an overview of setting up data export controls and discusses setting up the record.

Understanding Data Export Controls Records
The generation of outbound data is controlled through the F0047 table. You use the Data Export Controls
program (P0047) to update the F0047 table. For each transaction type and order type, you must designate
the Z event generator that will process the outbound data. To send a given transaction type to more than one
third-party application, you associate the transaction type with each of the individual destinations by making
separate entries in the F0047 table for each destination. PeopleSoft suggests that you specify the name of a
third-party function that is called for each transaction as it occurs. Enough information is provided to notify
you of the transaction and give you the key values so that you can retrieve the transaction.

Forms Used to Add a Data Export Controls Record
Form Name Form ID Navigation Usage

Work with Data Export
Controls

W0047A From an application that
supports event generation,
open the Data Export
Controls program

An alternate way to access
the Data Export Controls
Program is to enter P0047 in
the Fast Path command line

View existing data export
control records.

Data Export Control
Revisions

W0047C OnWork with Data Export
Controls, click Add.

Add a new data export
control record.

Adding a Data Export Control Record
Access the Data Export Control Revisions form.

To set up Data Export Controls :

1. Complete these fields:
• Transaction
• Order Type

2. For each detail row, enter one of these, depending on your platform:

PeopleSoft Proprietary and Confidential 215

Using Z Events - Guaranteed Chapter 19

• Function Name
Windows NT: _CallOnUpdate@36
UNIX: CallOnUpdate
iSeries: CallOnUpdate

• Function Library
Windows NT: EnterpriseOne Bin32 Path\zevg.dll
UNIX(HP): EnterpriseOne Bin32 Path\libzevg.sl
UNIX(AIX, SUN): EnterpriseOne Bin32 Path\libzevg.so
iSeries: EnterpriseOne Bin32 Path\ZEVG

• Enter 1 in the Execute For Add column to generate an event for an add or insert.
Complete the same process as appropriate for update, delete, and inquiry.

• Enter 1 in the Launch Immediately column to launch the object from the Outbound Subsystem batch
process.
This column does not affect the Outbound Scheduler batch process.
The system automatically increments the Sequence field for each line.

216 PeopleSoft Proprietary and Confidential

CHAPTER 20

Using Batch Interfaces

This chapter discusses:

• PeopleSoft EnterpriseOne interface tables.
• Electronic Data Interface.
• Table conversions.
• Output Stream Access UBEs
• Advanced Planning Agent integration

PeopleSoft EnterpriseOne Interface Tables
An interface table (also called a Z table) is a working table where non-PeopleSoft EnterpriseOne information
can be stored and then processed into PeopleSoft EnterpriseOne. You can also use interface tables to retrieve
PeopleSoft EnterpriseOne data. PeopleSoft EnterpriseOne interface tables mirror PeopleSoft EnterpriseOne
application tables.

PeopleSoft EnterpriseOne provides predefined interface tables for some applications. You can also create your
own interface tables as long as your interface table is formatted in accordance with PeopleSoft EnterpriseOne
standards.

If you receive an error message when the interface table is processed, you can use a revision application
to make corrections to the data and then reprocess the data in batch or transaction mode. After you have
successfully processed the data in the interface table, you should run a purge application to remove all records
from the interface table and to any remove secondary interface tables from the system.

Note. You usually use a batch interface to collect transactions over a period of time and then process all of
the transactions at once.

Structuring Interface Tables
Each PeopleSoft EnterpriseOne transaction uses a set of interface tables. Some files share a common set
of interface tables. The interface table name is based on the PeopleSoft EnterpriseOne application table
name and has Z1 as a suffix. For example, if the application table is the F4211 table, the interface table
is the F4211Z1 table.

Use the these guidelines to determine the based-on table:

• Inbound is based on the application table that is updated with data from the interface table.
• Outbound is based on the application table that has data extracted from it and placed in the interface table.

PeopleSoft Proprietary and Confidential 217

Using Batch Interfaces Chapter 20

Both the inbound and outbound directions of an internal transaction within a system use a single set of interface
tables. For example, for a sales order in the Sales Order system, the inbound customer order (850) and the
outbound order acknowledgment (855) share a set of interface tables.

If the interface table is used for both inbound and outbound transactions, the based-on table should be the
same application table. In the Sales Order example with an inbound customer order and an outbound order
acknowledgment, the detail interface table is based on the F4211 table.

If the interface table exceeds 250 columns or has a record length greater than 1968, an additional interface table
is needed for the remaining columns. Columns in the additional interface table should contain infrequently
used data. The additional interface table is named after the primary interface table with a letter, starting with A,
after the Z1 suffix. For example, if the primary interface table is F4211Z1, the additional table is F4211Z1A.

The beginning of the table has these columns, which act as control fields:

• User ID (EDUS) (key field)

• Batch Number (EDBT) (key field)

• Transaction Number (EDTN) (key field)

• Line Number (EDLN) (key field)

• Document Type (EDCT)

• Transaction Type (TYTN)

• Translation Format (EDFT)

• Transmission Date (EDDT)

• Direction Indicator (DRIN)

• Number of Detail Lines (EDDL)

• Processed (EDSP)

• Trading Partner ID (PNID)

• Action Code (TNAC)

You must use the key structure previously discussed.

The end of the table has the these columns, which are reserved for user and audit fields:

• User Reserved Code (URCD)

• User Reserved Date (URDT)

• User Reserved Amount (URAT)

• User Reserved Number (URAB)

• User Reserved Reference (URRF)

• Transaction Originator (TORG)

• User ID (USER)
• Program ID (PID)

• Work Station ID (JOBN)

• Date Updated (UPMJ)

• Time of Day (TDAY)

218 PeopleSoft Proprietary and Confidential

Chapter 20 Using Batch Interfaces

The middle of the table has all of the columns from the based-on application table, excluding user reserved
and audit field columns. An exception to this is when the interface table is near the 250-column limit or the
1968-record length limit. In this case, columns from the application table that most likely will not be needed
should be excluded.

Prefixes for the table columns are SY for the header and SZ for the detail.

Change or match interface tables, such as a cash receipt or purchase receipt, might require additional columns
that correspond to user input capable controls on an interactive form.

A header table is not required for every transaction.

Note. If you create custom interface tables, use the structure and format described in this chapter.

Updating PeopleSoft EnterpriseOne Records
You use interface tables to import non-PeopleSoft EnterpriseOne transactions into the live PeopleSoft
EnterpriseOne database. These non-PeopleSoft EnterpriseOne transactions are referred to as Z transactions.
Inbound interface tables are based on the PeopleSoft EnterpriseOne application table where the transaction is
stored. Once records are correctly updated to the appropriate interface table, you can update the record to
the PeopleSoft EnterpriseOne database.

See Also
Chapter 10, “Processing Z Transactions,” page 75

Retrieving PeopleSoft EnterpriseOne Records
You can use interface tables to retrieve information from PeopleSoft EnterpriseOne. Outbound interface tables
are based on the PeopleSoft EnterpriseOne application table from where the data is extracted. You can
retrieve records from PeopleSoft EnterpriseOne by running an extraction batch process, by using a subsystem
business function, or by generating a Z event.

Running an Extraction Batch Process
You copy the records from the PeopleSoft EnterpriseOne application tables to the PeopleSoft EnterpriseOne
outbound interface tables using the extraction batch process that is specifically set up for the type of document
you are sending.

You initiate the extraction batch process for applications that support extraction batch processing. The
extraction batch process displays a version list of report features. You can run an existing version, change an
existing version, or add a version. You can also change the processing options and data selection options for
that version to fit your needs.

When you run the extraction batch process, the program retrieves data from the PeopleSoft EnterpriseOne
application tables for the transaction and copies the data into the outbound interface tables. The system
also generates an audit report that lists the records that completed successfully. Errors are placed on the
audit report and also sent to the employee work center. You can use a revisions application to correct errors
in the interface table records.

Subsystem Business Function
You can use the generic outbound subsystem business function, Add Transaction To Subsystem Queue
(B0000176), to write a record to the subsystem data queue to specify a batch process that needs to be awakened
in the subsystem. This business function starts processing of a batch of one (single transaction). The business
function also passes keys to the subsystem data queue.

PeopleSoft Proprietary and Confidential 219

Using Batch Interfaces Chapter 20

The data structure for the outbound transaction is:

• Line Number (EDLN)

• Transaction Type (TYTN)

• Document Type (DCTO)

• Action Code (TNAC)

See Also
Chapter 15, “Using Z Events - Classic,” page 157

Chapter 19, “Using Z Events - Guaranteed,” page 211

Using the Revision Application
You use the revision application to add, delete, edit, and review transactions in the interface tables. You can
use a revision application to correct the record in error. After you make a change to the interface table, you run
the process again. You can continue to make corrections and rerun the transaction process until the program
completes without errors. The name is based on the detail interface table. For example, if the tables for Sales
Order Entry are F4201Z1 and F4211Z1, the revision application is P4211Z1. The revisions application can call
the appropriate purge named event rule to delete records from the interface table.

Purging Interface Table Information
You should run a purge batch process periodically after you have successfully processed the data in the
interface tables. The purge batch process should have one or two sections; the number of sections depends on
the interface tables. The purge batch process calls the purge named event rule (NER). The name of the purge
batch process is based on the revisions application with a P suffix. For example, if the revisions application
is P4211Z1, the purge batch process is R4211Z1P.

Purge NERs have two modes:

• Header mode, which deletes the header record and all associated records in independent tables.
• Detail mode, which deletes the detail record and all associated records in dependent tables.

The purge NER is named after the purge batch process. Only eight characters are allowed for the NER name.
If the name has nine characters using these standards, remove the P suffix. For example, if the purge batch
process is R4211Z1P, the purge NER is N4211Z1P.

When a before image for net change is deleted, the corresponding after image is also deleted. When an after
image is deleted, the corresponding before image is also deleted.

Electronic Data Interface
The PeopleSoft EnterpriseOne Data Interface for Electronic Data Interchange (EDI) system acts as an interface
between the PeopleSoft EnterpriseOne system data and the translator software. In addition to exchanging EDI
data, this data interface can also be used for general interoperability and electronic commerce needs where a
file-based interface meets the business requirements.

220 PeopleSoft Proprietary and Confidential

Chapter 20 Using Batch Interfaces

See Also
PeopleSoft EnterpriseOne Data Interface for Electronic Data Interchange 8.11 PeopleBook

Table Conversion
Table conversion is a special form of Universal Batch Engine (UBE) that enables you to do high-speed
manipulation of data in tables. PeopleSoft EnterpriseOne has a table conversion utility that you can use to
gather, format, export, and import enterprise data. The table conversion tool enables you to transfer and copy
data and to delete records from tables.

See Also
EnterpriseOne Tools 8.94 PeopleBook: Development Tools: Tables and Business Views, “Understanding
Table Conversion”

Output Stream Access UBEs
If you have set up an Output Stream Access (OSA) interface, you can pass PeopleSoft EnterpriseOne data
to another software program for processing and formatting. OSA can use its own set of commands or it
can use an XML library.

Advanced Planning Agent Integration
The PeopleSoft EnterpriseOne Advanced Planning Agent (APAg) is a tool for batch extracting, transforming,
and loading of data. APAg supports access to data sources in the form of relational databases, flat file format,
and other data or message encoding, such as XML. APAg also moves data from one place to another and
initiates tasks related to the movement of the data.

PeopleSoft Proprietary and Confidential 221

Using Batch Interfaces Chapter 20

222 PeopleSoft Proprietary and Confidential

CHAPTER 21

Using Open Data Access

This chapter provides an overview of the Open Data Access (ODA) ODBC driver and discusses how to:

• Install ODA.
• Work with data sources.
• Work with ODA.
• Manage ODA error messages.

Understanding Open Data Access
The PeopleSoft EnterpriseOne Open Data Access ODBC driver is a read-only driver that is compliant with
version 2.5 or higher. Front-end Windows query and reporting tools can use ODA to access the PeopleSoft
EnterpriseOne database. ODA supports these front-end tools:

• Microsoft Query
• Microsoft Access
• Microsoft Excel
• ODBCTEST
• Crystal Reports
• Microsoft Analysis Service (not certified)

ODA sits between the front-end Query and Reporting tool and the PeopleSoft EnterpriseOne-configured
ODBC drivers.

Installing ODA
To access PeopleSoft EnterpriseOne data with the ODA ODBC driver, your system must meet the minimum
technical requirements (MTR) for PeopleSoft EnterpriseOne. MTRs are updated for each release and
are available on Customer Connect. Before you install ODA, ensure that your system meets the specified
hardware and software requirements.

Hardware Requirements
Hardware requirements include:

• IBM-compatible personal computer.

PeopleSoft Proprietary and Confidential 223

Using Open Data Access Chapter 21

• Hard disk with 6 MB of free disk space.
• At least 16 MB of random access memory (RAM).

Software Requirements
Software requirements include:

• PeopleSoft EnterpriseOne.
• PeopleSoft EnterpriseOne Open Data Access driver (JDEOWODA.dll).
• The 32-bit ODBC Driver Manager, version 3.0 or later (ODBC32.dll).
This file is included with the ODBC Database Drivers.

• Microsoft Windows 95 or later, or Windows NT 4.0 or later

Note. The use of the ODA ODBC driver by 16-bit applications on Windows 95 is not supported.

ODBC Component Files
The PeopleSoft EnterpriseOne installation installs the components required by ODBC database drivers. You
might also find these additional files:

File File Name

ODADriver JDEOWODA.DLL

ODADriver Help JDEOWODA.HLP

Release Notes README.TXT

Note. OLEDB is a driver for SQL Server. However, OLEDB data source is not supported for ODA. If you are
using ODA with SQL Server, use ODBC to set up your data source.

ODA Driver Architecture
The PeopleSoft EnterpriseOne ODA ODBC driver architecture has five components:

Component Description

Application A front-end Query and Reporting tool that calls the ODA
driver to access data from the PeopleSoft EnterpriseOne
database.

Manager Loads and unloads drivers on behalf of an application.
Processes ODBC calls or passes them to the ODA driver.

PeopleSoft EnterpriseOne ODADriver Passes some of the ODBC requests directly to the vendor’s
ODBC driver. If specific data types for PeopleSoft
EnterpriseOne are used, then the SQL SELECT statement
is modified before sending it to the vendor’s ODBC driver.
After the data is returned from the vendor’s ODBC driver,
the PeopleSoft EnterpriseOne ODAODBC driver might
need to manipulate the data so that it displays correctly in
the application.

224 PeopleSoft Proprietary and Confidential

Chapter 21 Using Open Data Access

Component Description

Vendor Driver Processes ODBC function calls and submits SQL requests
to the specific data source. If necessary, the driver modifies
an application’s request so that the request conforms to the
syntax supported by the associated DBMS.

Data Source The data that you want to access, as well as the operating
system, DBMS, and network platform for the data.

Working with Data Sources
This section provides an overview of data sources and discusses how to

• Add a data source.

• Modify a data source.

• Delete a data source.

• Configure a data source.

• Connect a data source.

Although the ODA driver is automatically registered as part of the installation process, you might need to add
a driver data source. You can also add a file data source or a system data source. A system data source can
be used by more than one user on the same machine. A system data source is a data source that you have
set up with a system data source name (DSN). The system DSN can also be used by a system-wide service,
which can then gain access to the data source even if no user is logged on to the machine. You can delete
any of the data sources.

After you add a data source, you must configure and connect it. You can modify the configuration and
connection setting for an existing data source. For example, you can configure the ODA driver so that you can
view currency data in the correct format.

If you use Oracle, you must create another ODBC DSN, named OneWorld ODA Ora, so that you can access
the Oracle data source through ODA. Specific information for doing this is included in the online release notes.

You can customize the list of functions that are enabled in ODA. Advanced configuration is optional. If you
choose not to customize the list of functions enabled in ODA, the system uses a default list of settings.

You access the ODBC button from the Control Panel on your Windows workstation. When you click the
ODBC button, a User Data Sources dialog box appears.

Adding a Data Source
After you add the data source, you must configure it and connect it. This table explains how to navigate on the
User Data Sources dialog box to add a data source:

PeopleSoft Proprietary and Confidential 225

Using Open Data Access Chapter 21

Function Navigation on User Data Sources dialog box

Add an ODADriver Data Structure On the User Data Sources dialog box, click Add. On Add
Data Source, select the PeopleSoft EnterpriseOne Open
Data Access driver from the Installed ODBC Drivers list,
and then click Finish.

Add a File Data Source On the User Data Sources dialog box, click the DSN tab.
On File Data Sources, click Add. On Add Data Source,
select the PeopleSoft EnterpriseOne Open Data Access
driver from the Installed ODBCDrivers list, and then click
Finish.

Add a System Data Source On the User Data Sources dialog box, click the System
DSN tab, and then click Add. On system Data Sources,
click Add. On Add Data Source, select the PeopleSoft
EnterpriseOne Open Data Access driver from the Installed
ODBCDrivers list, and then click Finish.

Modifying a Data Source
You can modify an existing data source. After you access the appropriate data source, select Configure
and then modify the existing configuration settings.

Deleting a Data Source
To delete a data source, access the appropriate data source, select remove, and click Yes to confirm the delete.

Configuring a Data Source
To modify an existing data source, access the appropriate data source type and then select a data source from
the available list. Click Configure. When you add a data structure, the Configure Data Source tab appears.
Enter this information, and then click O:.

Field Name Description

Data Source Name Specify the name for the PeopleSoft EnterpriseOne Open Data Access driver.

Description Specify the description of the driver that you are adding. The Description entry cannot
exceed 79 characters.

Connecting a Data Source
After the data source is configured, the Connect form appears. You can also select one or more table and
business view display Options. On the Connect form, select one or more of these options:

226 PeopleSoft Proprietary and Confidential

Chapter 21 Using Open Data Access

Option Name Description

Convert User Defined Codes Select this option to return the associated description of the user-defined
field instead of the user-defined code. The associated description is more
descriptive because it is a text description instead of a code that is used for
the user-defined code. The default is to display the associated description
instead of the user-defined code.

Convert Currency Values Select this option to convert currency fields to the correct values.

Use Long Table or Business View Names Select this option to view long table or view names.

Use Long Column Names Select this option to view long column names

Tables Only Select this option to view only PeopleSoft EnterpriseOne tables.

Business Views Only Select this option to view only PeopleSoft EnterpriseOne business views.

Tables and Business Views Select this option to view both PeopleSoft EnterpriseOne tables and
PeopleSoft EnterpriseOne business views.

Working with ODA
This section discusses how to:

• Manipulate data.
• Use keywords in the connection string.
• Run a query using Microsoft Excel.

Manipulating Data
The PeopleSoft EnterpriseOne database contains object and column names, specific data types and security
rules that must be converted or applied so that the data is presented correctly. The specific data types and
rules include decimal shifting, Julian date, currency, media object, security, and user-defined codes. In some
instances, ODA modifies the SQL SELECT statement, as well as the data, so that it appears correctly within
the chosen tool. Once the ODA driver is properly installed and an ODBC data source is established, you can
use the functionality of the ODA driver. When a SQL connection is established, the environment of the
current connection is stored in the system as the database name. SQLGetInfo can access this value later or
it can be used for future connections.

You can use these specific PeopleSoft EnterpriseOne features with PeopleSoft EnterpriseOne ODA:

PeopleSoft Proprietary and Confidential 227

Using Open Data Access Chapter 21

Feature Description

Long Table and Business View Names Long table and business view names enable you to see a descriptive name
when you view an object list. You can use either the descriptive names
or the original PeopleSoft EnterpriseOne object name in the SELECT
statement.

Note: This option might not be available for all third-party products (for
example, ShowCase STRATEGY products prior to the 2.0 release or
Crystal Reports) because the long names contain special characters that are
not handled correctly by these tools.

Long Column Names Long column names enable you to see a descriptive name when viewing
any columns list. You can still use either the descriptive names or the
original PeopleSoft EnterpriseOne column name. For example, you can
use either of these statements to retrieve information from the F0101 table:

• SELECT ABAN8 from the F0101 table.

• SELECT AddressNumber from the F0101 table.

Julian Date Julian date modifies all references to Julian date columns to convert
the date to an SQL-92 standard date. The PeopleSoft EnterpriseOne
Julian date is converted to a standard date value that can be used in date
calculations. This feature enables you to use duration or other date
calculations in both the SELECT (result data), WHERE, and HAVING
clauses and the ORDER BY clause.

The SQL SELECT statement is modified to before a data calculation to
convert the PeopleSoft EnterpriseOne Julian date column to a standard
date. The modification to the SQL SELECT statement is based on
the data source that is being accessed because of driver differences in
handling date calculations. If the original column value is zero, the date
conversion results in a date value of 1899-12-31. To remove these values,
this condition should be added to theWHERE clause in the SELECT
statement, where DATECOL is the PeopleSoft EnterpriseOne Julian date
column:

DATECOL <> {d ‘1899-12-31’}

Decimal Shifting All references to decimal-shifted columns are modified to shift the decimal
point to cause the result data to be correct. This feature enables SQL
statements that contain complex expressions, aggregates, and filtering to
run and return accurate results.

The SQL SELECT statement is modified to divide the column by the
appropriate number of decimal places so that the data is returned correctly
and to make compare operators work for filtering.

228 PeopleSoft Proprietary and Confidential

Chapter 21 Using Open Data Access

Feature Description

Currency Currency columns are limited to single-column references in the selected
columns list. Returned data is converted using the standard PeopleSoft
EnterpriseOne currency conversion routines. All other references to the
currency column in the SQL statement are passed through to the native
driver. You must understand how the currency column is used to make
effective use of filtering.

Before selected columns are returned, the PeopleSoft EnterpriseOne
Open Data Access driver converts any currency columns to the correct
value. Currency columns used in the WHERE or HAVING clause are
processed based on the non-converted currency value. Currency columns
in the GROUP BY or ORDER BY clause are grouped and sorted by the
non-converted currency value.

Media Object The Media object column, TXVC, in the F00165 table storage is limited to
single-column references in the selected columns list. ODA returns media
data in plain text or rich text format (RTF) and truncates other binary
data, such as an image. The size limitation of the text or RTF is 30,000
characters, and text will be truncated when it reaches this limitation.

Column Security When column security is active, any reference to restricted columns
causes an error to be returned when the SELECT statement is examined,
including the use of * (asterisk-selecting all columns) in the select clause,
as defined by the SQL-92 standards. You will receive an error if you are
not authorized for all of the columns in the table.

Row Security When row security is active, the statement is modified to include the
appropriate WHERE clause for filtering secured rows. You will only see
rows that you are authorized to access along with getting accurate results
using aggregate functions-for example, SUM or AVG.

User Defined Codes When user-defined codes (UDCs) are enabled, you see the associated
description instead of the internal code when the column data is returned.
This processing affects only the returned data and has no effect on the
other parts of the Select statement (for example, Where, Order By and so
on). This is an optional setting that can be configured when you set up the
driver.

Before the UDC is returned to you, the PeopleSoft EnterpriseOne Open
Data Access driver converts the code to the associated description. The
UDC columns used in theWHERE or HAVING clause are selected
based on the non-converted code and the UDC columns referenced in
the GROUP BY and ORDER BY clause are grouped and sorted by the
non-converted code.

Using Keywords in the Connection String
This section discusses keywords that you can use in a connection string when you write your own database
applications.

You can use C programming language to write database applications that directly invoke SQL APIs that are
supported by ODA, such as SQLDriverConnect and SQLBrowseConnect. This table lists keywords that you
use in the connection string when you write your own database applications:

PeopleSoft Proprietary and Confidential 229

Using Open Data Access Chapter 21

Key Value Description Input Connection
String

Output Connection
String

CONVERTUDC Y or N (default value
is N)

Convert UDC or not Optional. If not in
the connection string,
load from INI/registry
settings (PeopleSoft
EnterpriseOne ODA
DSN settings).

From the input
string or INI/registry
settings.

CONVERT
CURRENCY

Y or N (default value
is N)

Convert currency or
not

Optional. If not in
the connection string,
load from INI/registry
settings (PeopleSoft
EnterpriseOne ODA
DSN settings).

From the input
string or INI/registry
settings.

SHIFTDECIMALS Y or N (default value
is Y)

Use decimal shift or
not

Optional. If not in
the connection string,
load from INI/registry
settings (PeopleSoft
EnterpriseOne ODA
DSN settings).

From the input
string or INI/registry
settings.

CONVERTJULIAN
DATES

Y or N (default value
is Y)

Convert Julian dates
or not

Optional. If not in
the connection string,
load from INI/registry
settings (PeopleSoft
EnterpriseOne ODA
DSN settings).

From the input
string or INI/registry
settings.

DISPLAYOPTIONS 0/1/2 (no default
value)

Display TBLE, BSFN
or both

Optional. If not in
the connection string,
load from INI/registry
settings (PeopleSoft
EnterpriseOne ODA
DSN settings).

From the input
string or INI/registry
settings.

LONGTABLE
NAMES

Y or N (default value
is Y)

Use long names for
tables or not

Optional. If not in
the connection string,
load from INI/registry
settings (PeopleSoft
EnterpriseOne ODA
DSN settings).

From the input
string or INI/registry
settings.

LONGCOLUMN
NAMES

Y or N (default value
is Y)

Use long names for
columns or not

Optional. If not in
the connection string,
load from INI/registry
settings (PeopleSoft
EnterpriseOne ODA
DSN settings).

From the input
string or INI/registry
settings.

UID <string> User ID Required by
JDEDriverConnect
(SQL_DRIVER_
NOPROMPT).

The same as the input
if not overwritten by
OW login.

230 PeopleSoft Proprietary and Confidential

Chapter 21 Using Open Data Access

PWD <string> Password Required by
JDEDriverConnect
(SQL_DRIVER_
NOPROMPT).

The same as the input
if not overwritten by
OW login.

ENVIRONMENT <string> Environment Required by
JDEDriverConnect
(SQL_DRIVER_
NOPROMPT).

The same as the input
if not overwritten by
OW login.

DBQ <string> The same as the
ENVIRONMENT

Work as
ENVIRONMENT,
if ENVIRONMENT
not specified.

Removed if
ENVIRONMENT
exists.

DSN <string> Data source Optional. Uses
DEFAULT if invalid.

Overwritten by login.

If you use the Microsoft Analysis Service tool, you can use connection string keywords to create a new data
source. Use this example to write a connection string:

DSN=OneWorld ODA;DBQ=ADEVHP02;

Running a Query Using Microsoft Excel
This section discusses how to use Microsoft Excel to create and run a query.

To run a query using Microsoft Excel:

1. From the Data menu, select Get External Data.
2. Select Create New Query.
3. On the Databases tab, select the appropriate data source (for example, PeopleSoft EnterpriseOne Local
or PeopleSoft EnterpriseOne ODA).
Because Excel uses file data sources, the ODA data source you set up in the 32-bit ODBC Administrator
does not appear on the list of databases. You should create a File-type Data Source by selecting New Data
Source and then follow the procedures for setting up a data source.
When you select the ODA data source, you might need to log on to PeopleSoft EnterpriseOne to use the
ODA driver. Once you log on, you will not see the Solution Explorer because it is only activated so that the
ODA driver can check security and environment mappings.
The Excel Query Wizard displays a list of available tables in the PeopleSoft EnterpriseOne data source.
Expanding any table name shows the available columns or fields in each table. If you are using the ODA
driver, you see long descriptions of each field (for example, DateUpdated). If not, you see the alpha codes
for the fields (for example ABUPMJ).

4. To translate field and column names from the PeopleSoft EnterpriseOne alpha codes, use the F9202 table.
Select all rows and sort (on FRDTAI) to create a cross-reference.
The first two letters of all PeopleSoft EnterpriseOne column names are the application code, and the
remaining letters are in this table as a suffix.

5. Finish building your query with Query Wizard and save the query.

PeopleSoft Proprietary and Confidential 231

Using Open Data Access Chapter 21

6. Run your query and review it in Excel or MicroSoft Query.
After you run a query from Excel, if you view the results using Microsoft Query, results are returned
quickly. MicroSoft Query selects a page at a time. If you are working with a large result set, you should
close PeopleSoft EnterpriseOne and any applications that require a lot of memory so that you can more
quickly navigate through the records. If you convert the query results directly into a spreadsheet instead of
into Microsoft Query, the process might take significantly longer, and you cannot view the results until
the entire file builds.

To verify the outcome of each query, you should run each one first using the non-ODA PeopleSoft
EnterpriseOne data source and then use the ODA data source and compare the results.

Managing ODA Error Messages
This section discusses error messages that you might receive.

PeopleSoft EnterpriseOne Open Data Access driver sends error messages. The messages are placed in
the ODBC error message queue where the application can retrieve them using the standard ODBC error
mechanism. The PeopleSoft EnterpriseOne messages look like this:

[J.D. Edwards][OneWorldODA Driver]MESSAGE TEXT

This is a list of the errors that you can receive from the driver:

Error Message Description

Configuration Request Error This error might occur when you add a new data source if
you do not provide enough information for the driver and it
cannot show a configuration dialog.

You must either pass enough information to the driver or
allow the driver to prompt for more information.

Option Value Changed This is an informational message that occurs when you
attempt to set a connection or statement option to a value
that the driver does not accept. The driver then changes the
value to an acceptable default value and uses this message
to let you know that the value has changed.

The PeopleSoft EnterpriseOne Open Data Access driver
changes values in these areas:

Setting the row set size to a value other than one. The driver
currently only supports single-row row sets.

Setting the login time out to a value other than zero. The
driver currently only supports zero in this option, which
means, timeout disabled.

Data Source Name Is Not Valid The data source you entered is not a valid ODBC data
source name. This error occurs when you are adding a
new data source or configuring an existing data source.
You must enter a name that follows the ODBC data source
naming convention.

232 PeopleSoft Proprietary and Confidential

Chapter 21 Using Open Data Access

Data Source Does Not Exist This error occurs when you attempt to use a data source that
does not exist. You must enter the name of an existing data
source. If you get this error when you attempt to connect
to a data source, you might need to create a default data
source.

Unable to Allocate Memory The PeopleSoft EnterpriseOne Open Data Access driver
was not able to allocate enough memory to continue.
You must close some applications and try the operation
again. Make sure that you meet the minimum system
requirements.

Invalid Type of Request You attempted to use a configuration option that is
unknown to the driver. The driver supports these options
when configuring data sources:

• Adding a data source

• Configuring a data source

• Removing a data source

Data Truncated The conversion of column data resulted in a truncation of
the value. You should allocate more room for the column
data to avoid this informational message.

Syntax Error or Access Violation The statement contained a syntax error and no further
information is available.

Unable to Display Connection Dialog The driver encountered an error when attempting to display
the connection dialog.

Cross System Joins Not Supported This error occurs in one of two situations:

• You referenced tables that are contained on multiple
systems in the PeopleSoft EnterpriseOne environment.
The PeopleSoft EnterpriseOne Open Data Access driver
currently supports tables that are referenced on a single
system.

• You referenced a business view that contains multiple
tables that reside on multiple systems.

You must make sure that you are referencing tables on a
single system or a business view that contains tables on a
single system.

Unable to Connect to the PeopleSoft EnterpriseOne
Environment

The driver could not establish a connection to the
PeopleSoft EnterpriseOne environment. This connection is
required before a successful connection can be made to this
driver.

Internal Data Conversion Error The driver encountered an unknown error during data
conversion.

Internal Execution Error The driver experienced an unexpected error during a
statement execution.

PeopleSoft Proprietary and Confidential 233

Using Open Data Access Chapter 21

User Defined Code Columns Can Only Be in Simple
Column References

A user attempted to use a User Defined Code column in
a complex expression. The PeopleSoft Enterprise Open
Data Access driver only allows such columns to be simple
references.

Currency Columns Can Only Be in Simple Column
References

A user attempted to use a Currency column in a complex
expression. The PeopleSoft EnterpriseOne Open Data
Access driver only allows such columns to be simple
references.

Media Object Columns Can Only Be in Simple Column
References

A user attempted to use a Media Object column in a
complex expression. The PeopleSoft EnterpriseOne Open
Data Access driver only allows such columns to be simple
references.

Column Security Violation You attempted to use a column you are not authorized to
use. You must remove references to those columns that are
secured.

Invalid Cursor State You attempted an operation that was not valid for the state
that the driver is in, for example:

• You attempted to bind a column prior to preparing or
executing a statement.

• You attempted to execute a statement while there are
pending results.

• You attempted to get data from the driver prior to
preparing or executing a statement.

• You attempted to prepare a statement while there are
pending results.

Invalid Column Number You attempted to access a column that was not part of the
statements results.

Driver Does Not Support the Requested Conversion An attempt was made to convert a column to a data type
not supported by the PeopleSoft EnterpriseOne Open Data
Access driver.

Invalid Date or Time String An attempt to convert a character column to a date, time, or
timestamp value failed because the character column did
not contain a valid format.

Invalid Numeric String An attempt to convert a character column to a numeric
value failed because the character column did not contain a
valid numeric value.

Numeric Value Out of Range An attempt to convert a column to a numeric value failed
because the output data type could not accommodate the
value in the column. You should use the default data type or
select a data type that can accommodate the column value.

234 PeopleSoft Proprietary and Confidential

Chapter 21 Using Open Data Access

Data Returned for One or More Columns was Truncated An attempt to convert a column to a numeric value caused a
truncation of decimal digits. The output data type could not
accommodate the value in the column. You should use the
default data type or select a data type that can accommodate
the column value.

The Data Cannot be Converted An attempt to convert a column value failed because the
input type could not be converted to output type. You
should use the default data type.

Statement Must Be a SELECT The PeopleSoft EnterpriseOne Open Data Access driver is
read-only and allows only SELECT statements.

Attempt to Fetch Before the First Row An attempt was made to fetch before the beginning of
results. The attempt resulted in the first row set being
fetched.

Option Value Changed An attempt was made to set a connection, statement,
or scroll options to a value that was not allowed. The
PeopleSoft EnterpriseOne Open Data Access driver
substituted a similar value.

Fractional Truncation An attempt to convert a column to a numeric value
succeeded with a loss of fractional digits because the output
data type could not accommodate the value in the column.
You should use the default data type or select a data type
that can accommodate the column value.

Driver Not Capable An attempt was made to set a connection, statement, or
scroll option that the driver does not allow.

Multiple Business Views Referenced An attempt was made to reference more than one business
view in a single SELECT statement. The PeopleSoft
EnterpriseOne Open Data Access driver restricts the
SELECT statement to contain only one business view.

Unable to Open Table or Business View The PeopleSoft EnterpriseOne Open Data Access driver
was unable to locate the table or business view in the
PeopleSoft EnterpriseOne database or could not get
information pertaining to the table or business view.

Server Connection Failed The PeopleSoft EnterpriseOne Open Data Access
driver was unable to establish a connection to the server
referenced by the tables or business view in the SELECT
statement.

Business View Contains Invalid Join The Business View definition contains a join condition that
could not be processed by the PeopleSoft EnterpriseOne
Open Data Access driver.

Business View Contains Unsupported UNION Operator The Business View definition contains the UNION
operator, which could not be processed by the PeopleSoft
EnterpriseOne Open Data Access driver.

PeopleSoft Proprietary and Confidential 235

Using Open Data Access Chapter 21

236 PeopleSoft Proprietary and Confidential

APPENDIX A

Events Self-Diagnostic Utility Tool

This appendix provides overviews of the Events Self-Diagnostic Utility Tool process, tool component, tool
customization, and tool execution.

Understanding the Events Self-Diagnostic Utility Tool
The Events Self-Diagnostic Utility Tool supports Z events and real-time events. Normally, your system
administrator runs the Self-Diagnostic Utility Tool to verify that your events infrastructure features are
functional. The Self-Diagnostic Utility Tool can be used on these platforms:

• Windows 2000 and NT
• iSeries
• HP
• Sun
• AIX

The Events Self-Diagnostic Utility Tool analyzes the infrastructure of an event and reports configuration,
kernel, and network problems that are detected as the event is processed through your system. You can use the
tool to perform a comprehensive analysis, or you can configure the tool to perform an analysis that is specific
for your needs. The Events Self-Diagnostic Tool uses the XML comparator to compare XML documents to
detect the presence of any data corruption in event information. The tool also suggests actions that you can
take to resolve problems. You can run this tool on either a server or a client or both.

Events Self-Diagnostic Utility Tool Process
After an event is generated at the call object API on the server or the application API on the client, problems
that cause the event to fail can occur. This list identifies problems that might occur:

• The jde.ini file has a configuration error.
• The ZEVG library is unavailable or the IEO or EVN kernel process is down.
• Subscribers and supported events have not loaded successfully.
• One or more of the kernels involved in the event delivery is corrupting the event information.
• The network link between any or all of the components involved in this infrastructure is permanently down.

PeopleSoft Proprietary and Confidential 237

Events Self-Diagnostic Utility Tool Appendix A

When the Events Self-Diagnostic Tool detects a problem, the tool sends messages to you explaining the
problem and suggesting resolutions and also logs the error in the appropriate log files. The message that is
sent to you indicates which log files you should review. This list provides some examples of how the Events
Self-Diagnostic Tool detects problems:

• Performs an in-depth interoperability-oriented analysis of the jde.ini file.

• Reads the F90701 table to determine whether the event is defined.

• Reads the F90702 to determine whether the persistent subscription/un-subscription request, which is sent to
the EVN kernel by the tool, is successful.

• Reads the Object Configuration Manager to find the location of the IEO kernel.

In this process, the tool ensures there is only one active entry for the RTE object.

• Checks inter-connectivity within events infrastructure by sending self-diagnostic connectivity message calls.

• Generates self-diagnostic events to test different services that are offered by the infrastructure and to verify
event information against possible data corruption.

Note. This list is general and not all-inclusive.

Events Self-Diagnostic Utility Tool Components
The Events Self-Diagnostic Utility Tool consists of three components:

• Event generator
• Event receiver
• XML comparator

Event Generator
The Events Self-Diagnostic Utility Tool starts with an event generator process. During startup, the event
generator performs basic background analysis of the events infrastructure, which include:

• Verification of interoperability specific sections of the jde.ini file.

• Verification of real-time events definition.

• Inter-component connectivity check within the events infrastructure.

If startup is successful, the event generator tests different features offered by the events infrastructure. These
features include generating and testing different types of events, listing the valid events, checking the
event template, and testing subscription information. You can run one or more of these tests by using one
of these methods:

• Running the test against an existing configuration file that you previously set up.
• Running the test against a new configuration file, which you will set up.
• Selecting options and executing the test from the command line menu of the tool.

238 PeopleSoft Proprietary and Confidential

Appendix A Events Self-Diagnostic Utility Tool

After successful generation of a self-diagnostic event, the event is passed through the event infrastructure
system. To test the accuracy of the event information that is being conveyed through the system, the event
generator attaches an additional packet, in the form of XML stream, to the event. The diagnostic XML packet
contains information about the event. At each stage of communication, each kernel (or component) verifies the
event information by comparing standard message packets with the self-diagnostic XML packet. The kernel
(or component) logs the result of this comparison at each point of comparison in respective log files. The
accuracy of the information in template requests is tested the same way.

Event Receiver
The event receiver acts as a NULL transport driver that subscribes itself for self-diagnostic events during EVN
kernel startup. The event receiver compares and verifies the XML documents contained in the received
self-diagnostic events. The event receiver logs the result of this comparison in the EVN kernel log file.

XML Comparator
The event generator uses the XML comparator tool to test the accuracy of event information or of an event
template request that is being passed through the system. The XML comparator compares any two given XML
documents for equivalency, similarity, or both. To perform the comparison, the XML comparator requires
three XML documents. Two of the documents are the actual XML documents to be compared. The third
document is an exclusion XML document that contains nodes that are to be ignored during the comparison of
the two given XML documents.

Customizing the Tool
When you select the Customize Tool option from the Interface menu, the tool prompts you to provide a new
file name or to use an existing configuration file (one that you previously created using this tool). The tests
(actions) and options for each test are the same tests that are discussed previously.

To use an existing configuration file (an XML file that you previously created), type the filename at the prompt
and press Enter or Return. This action starts the diagnosis against your previously built configuration file.

To create a new configuration file, type a filename using XML as the extension, and then press Enter or Return.
The tool offers the same tests that are on the Command Line Execution menu. You can select one or more
tests by using a comma to separate the test numbers.

Executing the Events Self-Diagnostic Tool
This section provides overviews of each of the self-diagnostic tests that you can run when you execute the
Events Self-Diagnostic Tool

PeopleSoft Proprietary and Confidential 239

Events Self-Diagnostic Utility Tool Appendix A

Executing the Event Self-Diagnostic Tool
To use the Event Self-Diagnostic Tool, you must have a valid PeopleSoft EnterpriseOne user ID, password,
environment, and role. If you are using the tool from a PeopleSoft EnterpriseOne server and you do not
supply this information as parameters, the user name, password, environment, and role information is read
from the security section of the server jde.ini file. If you are using a client, you must enter a valid PeopleSoft
EnterpriseOne user name, password, environment, and role. If you do not enter this information, the tool stops.
If you are generating events from a client, you must also have a valid OCM mapping for RTE or Z events to a
valid server. Before you run the Events Self-Diagnostic Tool:

• Ensure PORTTEST runs successfully on your system.
• Ensure that one instance of the IEO and EVN kernel is running.
• Ensure self-diagnostic events are defined in the F90701) table.

Start the Tool
To start the Events Self-Diagnostic Tool on the PeopleSoft EnterpriseOne Server, double-click the executable
file at this location: $system\bin32\sdtool.exe

Or you can pass parameters, for example:
$system\bin32\sdtool.exe username password environment role

To start the tool from the client side, you must include these parameters: $system\bin32\sdtool.exe
username password environment role

Note. $system refers to the path where the application is installed on your system.

The Events Self-Diagnostic Tool accesses the Security section of the jde.ini file for a valid user name, password,
environment, and role. Upon startup, the tool analyzes the jde.ini file, verifies that events are defined, and
checks the inter-component connectivity within the events infrastructure. As the tool analyzes each of these
areas, it provides you with feedback about what is being analyzed and whether the analysis was successful.

If the tool detects a problem in any one of the startup areas, the tool terminates the diagnosis and sends you a
message that explains the problem encountered and suggesting actions for resolving the problem.

After successful startup, you have a choice of creating and using a customized configuration file or using the
command line of the tool to run the diagnosis. The Customized Tool option enables you to build and save a
diagnostic test to a file so that you can run that test as often as needed without having to reenter information
into the tool. When you use the Command Line Execution option, you must enter the test information when
the tool prompts you. When you run tests from the command line, the Interface menu always follows the
results statements so that you can run another test or exit the tool.

Whether you select Option 1, Customize(d) Tool, or Option 2, Command Line Execution, the tests that
the tool performs are the same.

You can select one or more tests by typing the number that is associated with the test at the prompt and then
pressing Enter or Return. For multiple tests, separate the number of the test with a comma (,). Some of the
tests provide further options. At the prompt, you enter one or more options, using a comma to separate
multiple options. The tool performs the test and provides feedback to you indicating success or failure. If
the test failed, the tool provides feedback that tells you that the test failed and identifies the logs you should
review for more information.

240 PeopleSoft Proprietary and Confidential

Appendix A Events Self-Diagnostic Utility Tool

Generate/Test Real-Time Event
When you select Action 1, Generate/Test Real Time Event(s), the tool displays the real-time event types from
which you select one or more real-time event types to test.

The tool generates the real-time event you requested and attaches a self-diagnostic XML document to the
event. The event contents are verified for any data corruption against the attached XML document at each
kernel in the events infrastructure and event receiver transport driver. You receive a message indicating
whether the event was successfully generated. You also receive this feedback message: Please see log
files corresponding to IEO and EVN for any present
event data corruption. This message tells you to look at the log files to determine whether an XML
document mismatch occurred. The tool also provides a final message that indicates that the tool has completed
the analysis for that action, and then it returns you to the tool interface menu.

Generate/Test Z Event
When you select Action 2, Generate/Test Z Event, the tool displays another set of options. You can test a
simulated Z event and you can test a Z event that uses the actual interface tables (Z tables). If you test a
simulated Z event, the tool generates a simulated Z event and attaches a self-diagnostic XML document to the
event. The event contents are verified for any data corruption against the attached XML document at the EVN
kernel and event receiver transport driver. You receive a message indicating whether the event was successfully
generated. You also receive this feedback message: Please see log files corresponding
to EVN for any present data
corruption. This message tells you to look at the EVN log file to determine whether an XML document
mismatch occurred. The tool also provides a final message that indicates that the self-diagnostic tool has
completed the analysis for the action, and then it returns you to the tool interface menu.

If you generate an actual Z event, you must have a valid UBE and you must set up the appropriate interface
tables. The tool asks you for your user name, batch number, transaction number, line number, transaction type,
document type, and sequence number. The tool uses the live interface tables (Z tables) for this test. When you
request an actual Z event, the tool generates the Z event but does not include a self-diagnostic XML document.
The EVN kernel returns a message that indicates whether the event was successful. Because no self-diagnostic
XML document exists, the tool cannot diagnose data corruption.

Test All Types of Events
When you select Action 3 (Test all types of events) from the Execution menu, the tool tests all of the real-time
events (single, aggregate, and composite) and both Z events (simulated and actual). Action 3 is the same as
Action 1 (all three options) and Action 2 (both options) combined. For the real-time events and the simulated
Z event, the tool generates the event and attaches a self-diagnostic XML document to the event so that any
data corruption can be detected. If you select this action, you must have a valid UBE and you must set up
appropriate interface tables. If you run this test but do not have actual Z event data, you can abort that portion
of the test by entering Exit when the tool asks for the Z event information.

The tool sends the event information to the IEO and EVN kernels, and the kernels return messages indicating
whether each event was successful.

Get Event List
When you select Action 4, Get Event List (List of events supported) from the Execution menu, the tool
immediately runs the test.

PeopleSoft Proprietary and Confidential 241

Events Self-Diagnostic Utility Tool Appendix A

The tool sends a getEventList request to the EVN kernel. The EVN kernel responds with the list of event
names that you have defined. To validate that the list is complete, the tool checks the list for the presence of
self-diagnostic event names. The tool provides a list of the events to you along with a message indicating
whether the test was successful.

Get Event Template
When you select Action 5, Get Event Template, the tool displays the real-time event types that have a template
associated with them.

The tool generates the template request and attaches a self-diagnostic XML document to the request. The
template request is verified for any data corruption against the attached XML document at each kernel in the
events infrastructure and event generator. The tool provides feedback that the template request was successful
and that the template data was validated against the XML packet. If the test fails, the tool provides a message
that indicates the reason for the failure.

Subscription Services
When you select Action 6, Subscription Services, the tool displays a set of options for the type of subscription
service to be tested.

When you select the Persistent Subscribe option, the tool sends a persistent subscription request for a registered
self-diagnostic event to the EVN kernel. The tool verifies the list of subscribers that are maintained in a file
or from the database table (depending on how your system is configured), and then sends you a message
indicating whether the test was successful.

When you chose the Persistent Unsubscribe option, the tool sends a persistent un-subscription request for
a registered self-diagnostic event to the EVN kernel. The tool verifies that the subscription is no longer in
the file or database table (depending on how your system is configured), and then sends you a message
indicating whether the test was successful.

When you select the Non-Persistent Subscribe option, the tool sends a non-persistent subscription request for a
registered self-diagnostic event to the EVN kernel. The tool verifies the list of subscribers that is kept by the
EVN kernel, and then sends you a message indicating whether the test was successful.

When you select the Non-Persistent Unsubscribe option, the tool sends a non-persistent un-subscription request
for a registered self-diagnostic event to the EVN kernel. The tool verifies the subscription is no longer in EVN,
and then sends you a message indicating whether the test was successful.

Comprehensive System Analysis
When you select Action 7, Comprehensive System Analysis, the tool performs all of the tests and provides
messages to you indicating whether each test was successful.

242 PeopleSoft Proprietary and Confidential

APPENDIX B

Interoperability Interface Table Information

This appendix provides information about PeopleSoft EnterpriseOne applications that have interoperability
features.

Interoperability Interface Table Information
This section provides a table that lists applications that have interoperability features.

Program

Interface
Table (Z
table)

Input
Subsystem
Batch
Process

Input
Processor
Batch
Process

Extraction
Batch
Process

Revisions
Program

Purge
Batch
Process

Program
with POs

Financials NA NA NA NA NA NA NA

Address Book F0101Z2 R01010Z -
ZJDE0002

R01010Z -
ZJDE0001

NA P0101Z1 R0101Z1P P0100041

Customer
Master

F03012Z1 R03010Z -
ZJDE0002

R03010Z -
ZJDE0001

NA P0301Z1 R0101Z1P P0100042

Supplier
Master

F0401Z1 R04010Z -
ZJDE0002

R04010Z -
ZJDE0001

NA P0401Z1 R0101Z1P P0100043

A/R Invoice F03B11Z1,
F0911Z1,
F0911Z1T

R03B11Z1I R03B11Z1I
- ZJDE0001

NA P03B11Z1 R03B11Z1P NA

A/P Invoice F0411Z1,
F0911Z1

R04110Z -
ZJDE0002

R04110Z -
ZJDE0001

NA P0411Z1 R0411Z1P NA

Payment
Order with
Remittance

F0413Z1,
F0414Z1

NA NA NA P0413Z1 R0413Z1 P0413M

Journal Entry F0911Z1,
F0911Z1T

R09110Z -
ZJDE0005

R09110Z -
ZJDE0002

NA P0911Z1 R0911Z1P NA

Fixed Asset
Master

F1201Z1,
F1217Z1

R1201Z1I -
XJDE0002

R1201Z1I -
XJDE0001

R1201Z1X P1201Z1 R1201Z1P P1201

Account
Balance

F0902Z1 NA NA NA P0902Z1 R0902ZP NA

PeopleSoft Proprietary and Confidential 243

Interoperability Interface Table Information Appendix B

Program

Interface
Table (Z
table)

Input
Subsystem
Batch
Process

Input
Processor
Batch
Process

Extraction
Batch
Process

Revisions
Program

Purge
Batch
Process

Program
with POs

Batch Cash
Receipts

F03B13Z1 NA R03B13Z1I
- ZJDE0001

NA NA

HRM NA NA NA NA NA NA NA

Payroll Time
Entry

F06116Z1 R05116Z1I R05116Z1I -
ZJDE0001

NA P05116Z1 R05116Z1P NA

Distribution NA NA NA NA NA NA NA

Purchase
Order

F4301Z1,
F4311Z1

R4311Z1I -
XJDE0002

R4311Z1I -
XJDE0001

NA P4311Z1 R4301Z1P P4310

Outbound
Purchase
Receipts

F43121Z1 NA NA NA P43121Z1 R43121Z1P P4312

Receipt
Routing

F43092Z1 R43092Z1I -
XJDE0002

R43092Z1I -
ZJDE0001

NA P43092Z1 R43092Z1P P43250

Outbound
Sales Order

F4201Z1,
F4211Z1,
F49211Z1

NA NA NA P4211Z1 R4211Z1P P4210

Outbound
Shipment
Confirmation

F4201Z1,
F4211Z1,
F49211Z1

NA NA NA P4211Z1 R4211Z1P P4205

Logistics NA NA NA NA NA NA NA

Cycle Counts F4141Z1 R4141Z1I R4141Z1I -
ZJDE0001

NA P4141Z1 R4141Z1P NA

ItemMaster F4101Z1,
F4101Z1A

R4101Z1I R4101Z1I -
ZJDE0001

NA P4101Z1 NA P4101

Item Cost F4105Z1 NA R4105Z1I -
XJDE0001

NA P4105Z1 R4105Z1P P4105

Warehouse
Confirmations
(Suggestions)

F4611Z1 R4611Z1I R4611Z1I -
ZJDE0001

NA P4611Z1 R4611Z1P NA

Manufact-
uring

NA NA NA NA NA NA NA

Work Order
Header

F4801Z1 UseWork
Order
Completions

UseWork
Order
Completions

R4101Z1O P4801Z1 R4801Z1P P48013

244 PeopleSoft Proprietary and Confidential

Appendix B Interoperability Interface Table Information

Program

Interface
Table (Z
table)

Input
Subsystem
Batch
Process

Input
Processor
Batch
Process

Extraction
Batch
Process

Revisions
Program

Purge
Batch
Process

Program
with POs

Work Order
Parts List

F3111Z1 Use
Planning
Messages

Use
Planning
Messages

NA P4801Z1 R3111Z1P P3111

Work Order
Routing

F3112Z1 Use
Planning
Messages

Use
Planning
Messages

R4801Z2X P4801Z1 R3112Z1P P3112

Work Order
Employee
Time Entry

F31122Z1 R31122Z1I -
XJDE0002

R31122Z1I -
XJDE0001

NA P31122Z1 R31122Z1 P311221

Work Order
Inventory
Issues

F3111Z1 R31113Z1I -
ZJDE0002

R31113Z1I -
ZJDE0001

NA P3111Z1 R3111Z1P NA

Work Order
Completions

F4801Z1 R31114Z1I -
XJDE0002

R31114Z1I -
XJDE0001

NA P4801Z1 R4801Z1P NA

Super
Backflush

F3112Z1 R31123Z1I R31123Z1I -
ZJDE0001

NA P3112Z1 R3112Z1P NA

Bill of
Material

F3002Z1 R3002Z1I -
ZJDE0002

R3002Z1I -
ZJDE0001

NA P3002Z1 R3002Z1P P3002

Routing
Master

F3003Z1 R3003Z1I -
ZJDE0002

R3003Z1I -
ZJDE0001

NA P3003Z1 R3003Z1P P3003

Work Center
Master

F30006Z1 R30006Z1I -
ZJDE0002

R30006Z1I -
ZJDE0001

NA P30006Z1 R30006Z1P P3006

Work Day
Calendar

F0007Z1 R0007Z1I -
XJDE0002

R0007Z1I -
XJDE0001

NA P0007Z1 R0007Z1P P00071

Planning
Messages

F3411Z1 R3411Z1I -
ZJDE0002

R3411Z1I -
ZJDE0001

NA P3411Z1 R3411Z1P NA

Detail
Forecast

F3460Z1 R3460Z1I -
XJDE0002

R3460Z1I -
XJDE0001

NA P3460Z1 R3460Z1P P3460,
R3465,
R34650
(Each done
individually)

Kanban
Transactions

F30161Z1 R30161Z1I -
XJDE0002

R30161Z1I -
XJDE0001

NA P30161Z1 R30161Z1P NA

PeopleSoft Proprietary and Confidential 245

Interoperability Interface Table Information Appendix B

246 PeopleSoft Proprietary and Confidential

APPENDIX C

XML Format Examples (All Parameters)

The appendix provides XML code examples for specific formats for:

• Inbound sales order.
• Outbound customer request and response.

Inbound Sales Order XML Format (All Parameters)
This section provides example code for an inbound sales order. This sample code shows the XML format
with all of the parameters.

"<?xml version=’1.0’?>

<jdeRequest type=’callmethod’ user=’userid’ pwd=’password’

environment=’environment’ role=’*ALL’>

<callMethod name=’GetLocalComputerId’ app=’NetCommerce’ runOnError=’no’>

<params>

<param name=’szMachineKey’id=’2’></param>

<params>

<callMethod>

<callMethod name=’F4211FSBeginDoc’ app=’NetCommerce’ runOnError=’no’>

<params>

<param name=’mnCMJobNumber’ id=’j1’></param>

<param name=’cCMDocAction’>A</param>

<param name=’cCMProcessEdits’>1</param> (1 = Full)

<param name=’szCMComputerID’ idref=’c2’></param>

<param name=’cCMErrorConditions’>value</param> (1=Warnings, 2=Errors)

<param name=’cCMUpdateWriteToWF’>value</param> (1=wf,2=cache)

<param name=’szCMProgramID’>value</param>

<param name=’szCMVersion’>value</param>

<param name=’szOrderCo’<value</param>

<param name=’mnOrderNo’>value</param>

<param name=’szOrderType’>value</param> (If blank def Proc Opt)

<param name=’szBusinessUnit’>value</param> (If blank def Proc Opt)

<param name=’szOriginalOrderCo’>value</param> (used copy/blanket function)

<param name=’szOriginalOrderNo’>value</param> (used copy/blanket function)

<param name=’szOriginalOrderType’>value</param> (used copy/blanket function)

<param name=’mnAddressNumber’>value</param> (Required if ship to = 0)

<param name=’mnShipToNo’>value</param> (Required if sold to = 0)

<param name=’jdRequestedDate’>value</param>

<param name=’jdOrderDate’>value</param>

PeopleSoft Proprietary and Confidential 247

XML Format Examples (All Parameters) Appendix C

<param name=’jdPromisedDate’>value</param>

<param name=’jdCancelDate’>value</param>

<param name=’szReference’>value</param>

<param name=’szDeliveryInstructions1’>value</param>

<param name=’szDeliveryInstructions2’>value</param>

<param name=’szPrintMesg’>value</param>

<param name=’szPaymentTerm’>value</param>

<param name=’cPaymentInstrument’>value</param>

<param name=’szAdjustmentSchedule’>value</param>

<param name=’mnTradeDiscount’>value</param>

<param name=’szTaxExplanationCode’>value</param>

<param name=’szTaxArea’>value</param>

<param name=’szCertificate’>value</param>

<param name=’cAssociatedText’>value</param>

<param name=’szHoldOrdersCode’>value</param>

<param name=’cPricePickListYN’>value</param>

<param name=’mnInvoiceCopies’>value</param>

<param name=’mnBuyerNumber’>value</param>

<param name=’mnCarrier’>value</param>

<param name=’szRouteCode’>value</param>

<param name=’szStopCode’>value</param>

<param name=’szZoneNumber’>value</param>

<param name=’szFreightHandlingCode’>value</param>

<param name=’cApplyFreightYN’>value</param>

<param name=’mnCommissionCode1’>value</param>

<param name=’mnCommissionRate1’>value</param>

<param name=’mnCommissionCode2’>value</param>

<param name=’mnCommissionRate2’>value</param>

<param name=’szWeightDisplayUOM’>value</param>

<param name=’szVolumeDisplayUOM’>value</param>

<param name=’szAuthorizationNo’>value</param>

<param name=’szCreditBankAcctNo’>value</param>

<param name=’jdCreditBankExpiredDate’>value</param>

<param name=’cMode’>value</param>

<param name=’szCurrencyCode’>value</param>

<param name=’mnExchangeRate’>value</param>

<param name=’szOrderedBy’>value</param>

<param name=’szOrderTakenBy’>value</param>

<param name=’szUserReservedCode’>value</param>

<param name=’jdUserReservedDate’>value</param>

<param name=’mnUserReservedAmnt’>value</param>

<param name=’mnUserReservedNo’>value</param>

<param name=’szUserReservedRef’>value</param>

<param name=’jdDateUpdated’>value</param>

<param name=’szUserID’>value</param>

<param name=’szWKBaseCurrency’>value</param>

<param name=’cWKAdvancedPricingYN’>value</param>

<param name=’szWKCreditMesg’>value</param>

<param name=’szWKTempCreditMesg’>value</param>

<param name=’cWKInvalidSalesOrderNo’>value</param>

248 PeopleSoft Proprietary and Confidential

Appendix C XML Format Examples (All Parameters)

<param name=’cWKSourceOfData’>blank</param> (Required, blank = parms)

<param name=’cWKProcMode’>blank</param> (blank = reg order)

<param name=’mnWKSuppressProcess’>0</param> (0 = def, 2=P/O)

<param name=’mnSODDocNo’>value</param>

<param name=’szSODDocType’>value</param>

<param name=’szSODOrderCo’>value</param>

<param name=’mnTriangulationRateFrom’>value</param>

<param name=’mnTriangulationRateTo’>value</param>

<param name=’cCurrencyConversionMethod’>value</param>

<param name=’cRetrieveOrderNo’>value</param>

<param name=’szPricingGroup’>value</param>

<param name=’cCommitInvInED’>value</param>

<param name=’cSpotRateAllowed’>value</param>

<param name=’cGenericChar2_EV02’>value</param>

<param name=’szGenericString1_DL01’>value</param>

<param name=’szGenericString2_DL02’>value</param>

<param name=’mnGenericMathNumeric1_MATH01’>value</param>

<param name=’mnGenericMathNumeric2_MATH02’>value</param>

<param name=’szLongAddressNumberShipto’>value</param>

<param name=’szLongAddressNumber’>value</param>

<param name=’mnProcessID’>value</param>

<param name=’mnTransactionID’>value</param>

</params>

<onError abort=’yes’>\

<callMethod name=’F4211ClearWorkFile’ app=’NetCommerce’ runOnError=’yes’>

<params>

<param name=’mnJobNo’ idref=’j1’></param>

<param name=’szComputerID’ idref=’c2’></param>

<param name=’mnFromLineNo’>value</param>

<param name=’mnThruLineNo’>value</param>

<param name=’cClearHeaderWF’>value</param>

<param name=’cClearDetailWF’>value</param>

<param name=’szProgramID’>value</param>

<param name=’mnWKRelatedOrderProcess’>value</param>

<param name=’szCMVersion’>value</param>

<param name=’cGenericChar1_EV01’>value</param>

<param name=’szGenericString1_DL01’>value</param>

<param name=’mnSODRelatedJobNumber’>value</param>

<param name=’mnProcessID’ >value</param>

<param name=’mnTransactionID’>value</param>

</params>

</callMethod>

</onError>

</callMethod>

<callMethod name=’F4211FSEditLine’app=’NetCommerce’ runOnError=’yes’> (each line)

<params>

<param name=’mnCMJobNo’ idref=’j1’></param>

<param name=’cCMLineAction’>value</param>

<param name=’cCMProcessEdits’>value</param>

<param name=’cCMWriteToWFFlag’>value</param>

PeopleSoft Proprietary and Confidential 249

XML Format Examples (All Parameters) Appendix C

<param name=’cCMRecdWrittenToWF’>value</param>

<param name=’szCMComputerID’ idref=’c2’></param>

<param name=’cCMErrorConditions’>value</param>

<param name=’szOrderCo’>value</param>

<param name=’mnOrderNo’>value</param>

<param name=’szOrderType’>value</param>

<param name=’mnLineNo’>value</param>

<param name=’szBusinessUnit’>value</param>

<param name=’mnShipToNo’>value</param>

<param name=’jdRequestedDate’>value</param>

<param name=’jdPromisedDate’>value</param>

<param name=’jdCancelDate’>value</param>

<param name=’jdPromisedDlvryDate’>value</param>

<param name=’szItemNo’>value</param>

<param name=’szLocation’>value</param>

<param name=’szLotNo’>value</param>

<param name=’szDescription1’>value</param>

<param name=’szDescription2’>value</param>

<param name=’szLineType’>value</param>

<param name=’szLastStatus’>value</param>

<param name=’szNextStatus’>value</param>

<param name=’mnQtyOrdered’>value</param>

<param name=’mnQtyShipped’>value</param>

<param name=’mnQtyBackordered’>value</param>

<param name=’mnQtyCanceled’>value</param>

<param name=’mnExtendedPrice’>value</param>

<param name=’mnExtendedCost’>value</param>

<param name=’szPrintMesg’>value</param>

<param name=’cPaymentInstrument’>value</param>

<param name=’szAdjustmentSchedule’>value</param>

<param name=’cSalesTaxableYN’>value</param>

<param name=’cAssociatedText’>value</param>

<param name=’szTransactionUOM’>value</param>

<param name=’szPricingUOM’>value</param>

<param name=’mnItemWeight’>value</param>

<param name=’szWeightUOM’>value</param>

<param name=’mnForeignUnitPrice’>value</param>

<param name=’mnForeignExtPrice’>value</param>

<param name=’mnForeignUnitCost’>value</param>

<param name=’mnForeignExtCost’>value</param>

<param name=’szPricingCategoryLevel’>value</param>

<param name=’mnDiscountFactor’>value</param>

<param name=’mnCMLineNo’>value</param>

<param name=’szCMProgramID’>value</param>

<param name=’szCMVersion’>value</param>

<param name=’mnSupplierNo’>value</param>

<param name=’szRelatedKitItemNo’>value</param>

<param name=’mnKitMasterLineNo’>value</param>

<param name=’mnComponentLineNo’>value</param>

<param name=’mnRelatedKitComponent’>value</param>

250 PeopleSoft Proprietary and Confidential

Appendix C XML Format Examples (All Parameters)

<param name=’mnNoOfCpntPerParent’>value</param>

<param name=’cOverridePrice’>value</param>

<param name=’cOverrideCost’>value</param>

<param name=’szUserID’>value</param>

<param name=’jdDateUpdated’>value</param>

<param name=’mnWKOrderTotal’>value</param>

<param name=’mnWKForeignOrderTotal’>value</param>

<param name=’mnWKTotalCost’>value</param>

<param name=’mnWKForeignTotalCost’>value</param>

<param name=’cWKProcessingType’>value</param>

<param name=’cWKSourceOfData’>value</param>

<param name=’cWKCheckAvailability’>value</param>

<param name=’mnLastLineNoAssigned’>value</param>

<param name=’cStockingType’>value</param>

<param name=’szOriginalOrderKeyCo’>value</param>

<param name=’szOriginalOrderNo’>value</param>

<param name=’szOriginalOrderType’>value</param>

<param name=’mnOriginalOrderLineNo’>value</param>

<param name=’cParentItmMethdOfPriceCalcn’>value</param>

<param name=’szLandedCost’>value</param>

<param name=’mnWKSuppressProcess’>value</param>

<param name=’mnShortItemNo’>value</param>

<param name=’mnWKRelatedOrderProcess’>value</param>

<param name=’mnSODLineNo’>value</param>

<param name=’mnPriceAdjRevLevel’>value</param>

<param name=’szSalesOrderFlags’>value</param>

<param name=’mnSODDocNo’>value</param>

<param name=’szSODDocType’>value</param>

<param name=’szSODOrderCo’>value</param>

<param name=’szTransferOrderToBranch’>value</param>

<param name=’mnDomesticDetachedAdj’>value</param>

<param name=’mnForeignDetachedAdj’>value</param>

<param name=’mnSODWFLineNo’>value</param>

<param name=’szGeneric2CharString’>value</param>

<param name=’mnTOEPOExchangeRate’>value</param>

<param name=’szTOEPOCurrencyCode’>value</param>

<param name=’mnDRPKeyId’>value</param>

<param name=’mnSoldToCust’>value</param>

<param name=’szF4201BranchPlant’>value</param>

<param name=’szSoldToCurrencyCode’>value</param>

<param name=’cConsolidationFlag’>value</param>

<param name=’jdPriceEffectiveDate’>value</param>

<param name=’mnWOWFLineNo’>value</param>

<param name=’mnLineNoIncrement’>value</param>

<param name=’mnParentWFLineNo’>value</param>

<param name=’cStatusInWarehouse’>value</param>

<param name=’cBypassCommitments’>value</param>

<param name=’szProductSource’>value</param>

<param name=’szProductSourceType’>value</param>

<param name=’mnSequenceNumber’>value</param>

PeopleSoft Proprietary and Confidential 251

XML Format Examples (All Parameters) Appendix C

<param name=’szAgreementNumber’>value</param>

<param name=’mnAgreementSupplement’>value</param>

<param name=’mnAgreementsFound’>value</param>

<param name=’szModeOfTransport’>value</param>

<param name=’szDutyStatus’>value</param>

<param name=’szLineofBusiness’>value</param>

<param name=’jdPromisedShip’>value</param>

<param name=’szEndUse’>value</param>

<param name=’mnTOEPOExchangeRate’>value</param>

<param name=’szPriceCode1’>value</param>

<param name=’szPriceCode2’>value</param>

<param name=’szPriceCode3’>value</param>

<param name=’szItemFlashMessage’>value</param>

<param name=’szCompanyKeyRelated’>value</param>

<param name=’szRelatedPoSoNumber’>value</param>

<param name=’szRelatedOrderType’>value</param>

<param name=’mnRelatedPoSoLineNo’>value</param>

<param name=’cGenericChar3’>value</param>

<param name=’mnProfitMargin’>value</param>

<param name=’mnQuantityAvailable’>value</param>

<param name=’cRequestScheduleFlag’>value</param>

<param name=’cOrderProcessType’>value</param>

<param name=’cGenericChar2’>value</param>

<param name=’mnSODRelatedJobNumber’>value</param>

<param name=’szGenericString’>value</param>

<param name=’mnCarrier’>value</param>

<param name=’szGenericString2_DL02’>value</param>

<param name=’mnGenericMathNumeric1_MATH01’>value</param>

<param name=’mnGenericMathNumeric2_MATH02’>value</param>

<param name=’mnItemVolume_ITVL’>value</param>

<param name=’szVolumeUOM_VLUM’>value</param>

<param name=’szRevenueBusinessUnit’>value</param>

<param name=’szCustomerPO_VR01’>value</param>

<param name=’szReference2Vendor_VR02’>value</param>

<param name=’mnProcessID’>value</param>

<param name=’mnTransactionID’>value</param>

</params>

<onError abort=’no’>\

</onError>

</callMethod>

<callMethod name=’F4211FSEndDoc’ app=’NetCommerce’ runOnError=’no’>

<params>

<param name=’mnCMJobNo’ idref=’j1’></param>

<param name=’mnSalesOrderNo’>value</param>

<param name=’szCMComputerID’ idref=’2’></param>

<param name=’cCMErrorCondition’>value</param>

<param name=’szOrderType’>value</param>

<param name=’szKeyCompany’>value</param>

<param name=’mnOrderTotal’>value</param>

<param name=’mnForeignOrderTotal’>value</param>

252 PeopleSoft Proprietary and Confidential

Appendix C XML Format Examples (All Parameters)

<param name=’szBaseCurrencyCode’>value</param>

<param name=’szProgramID’>value</param>

<param name=’szWorkstationID’>value</param>

<param name=’szCMProgramID’>value</param>

<param name=’szCMVersion’>value</param>

<param name=’mnTimeOfDay’>value</param>

<param name=’mnTotalCost’>value</param>

<param name=’mnForeignTotalCost’>value</param>

<param name=’cSuppressRlvBlnktFlag’>value</param>

<param name=’cWKSkipProcOptions’>value</param> (Skip Proc Opt, 1="Yes")

<param name=’mnWKRelatedOrderProcess’>value</param>

<param name=’cCMUseWorkFiles’>value</param>(Req,Work File="1", Cache ="2")

<param name=’mnEDIDocNo’>value</param>

<param name=’szEDIKeyCo’>value</param>

<param name=’szEDIDocType’>value</param>

<param name=’cCMProcessEdits’>value</param>

<param name=’cGenericChar2’>value</param>

<param name=’mnSODRelatedJobNumber’>value</param>

<param name=’cGenericChar1_EV01’>value</param>

<param name=’mnGenericMathNumeric2_MATH02’>value</param>

<param name=’szGenericString1_DL01’>value</param>

<param name=’szGenericString2_DL02’>value</param>

<param name=’mnProcessID’>value</param>

<param name=’mnTransactionID’>value</param>

<params/>

<onError abort=’no’>\

<callMethod name=’F4211ClearWorkFile’ app=’NetCommerce’ runOnError=’yes’>

<params>

<param name=’mnJobNo’ idref=’j1’></param>

<param name=’szComputerID’ idref=’2’></param>

<param name=’mnFromLineNo’>value</param>

<param name=’mnThruLineNo’>value</param>

<param name=’cClearHeaderWF’>value</param>

<param name=’cClearDetailWF’>value</param>

<param name=’szProgramID’>value</param>

<param name=’mnWKRelatedOrderProcess’>value</param>

<param name=’szCMVersion’>value</param>

<param name=’cGenericChar1_EV01’>value</param>

<param name=’szGenericString1_DL01’>value</param>

<param name=’mnSODRelatedJobNumber’>value</param>

<param name=’mnProcessID’>value</param>

<param name=’mnTransactionID’>value</param>

</params>

</callMethod>

</onError>

</callMethod>

<returnParams version=’value’ messagetype=’messsage name’

failureDestination=’queuename’ successDestination=’queuename>

<param name=’long description’ idref=’value’/param>

</returnParams>

PeopleSoft Proprietary and Confidential 253

XML Format Examples (All Parameters) Appendix C

<onError>

<callMethod name=’F4211ClearWorkFile’ app=’NetCommerce’ runOnError=’yes’>

<params>

<param name=’mnJobNo’ idref=’j1’></param>

<param name=’szComputerID’ idref=’2’></param>

<param name=’mnFromLineNo’>value</param>

<param name=’mnThruLineNo’>value</param>

<param name=’cClearHeaderWF’>value</param>

<param name=’cClearDetailWF’>value</param>

<param name=’szProgramID’>value</param>

<param name=’mnWKRelatedOrderProcess’>value</param>

<param name=’szCMVersion’>value</param>

<param name=’cGenericChar1_EV01’>value</param>

<param name=’szGenericString1_DL01’>value</param>

<param name=’mnProcessID’>value</param>

<param name=’mnTransactionID’>value</param>

</params>

</callMethod>

</onError>

</jdeRequest>

Outbound XML Request and Response Format
(All Parameters)

This section provides example request and response code that illustrate the outbound XML Format with all
of the parameters.

Request
This format returns all columns for the F0101Z2 table:

<?xml version=’1.0’ ?>

<jdeRequest type=’trans’ user=’user’ pwd=’password’ environment=’environment’

role=’*ALL’ session=’’ sessionidle=’300’>

<transaction action=’transactionInfo’ type=’JDEAB’>

<key>

<column name=’EdiUserId’>value</column>

<column name=’EdiBatchNumber’>value</column>

<column name=’EdiTransactNumber’>value</column>

</key>

</transaction>

</jdeRequest>

Response
This sample code shows the response for the request:

<?xml version=’1.0’ encoding=’utf-8’ ?>

<jdeResponse type=’trans’ user=’user’ session=’session’ environment=’env’>

254 PeopleSoft Proprietary and Confidential

Appendix C XML Format Examples (All Parameters)

<transaction type=’JDEAB’ action=’transactionInfo’>

<returnCode code=’0’>XML Request OK</returnCode>

<key>

<column name=’EdiUserId’></column>

<column name=’EdiBatchNumber’></column>

</key>

<table name=’F0101Z2’ type=’detail’>

<column name=’EdiUserId’></column>

<column name=’EdiBatchNumber’></column>

<column name=’EdiTransactNumber’></column>

<column name=’EdiLineNumber’></column>

<column name=’EdiDocumentType’></column>

<column name=’TypeTransaction’></column>

<column name=’EdiTranslationFormat’></column>

<column name=’EdiTransmissionDate’></column>

<column name=’DirectionIndicator’></column>

<column name=’EdiDetailLinesProcess’></column>

<column name=’EdiSuccessfullyProcess’></column>

<column name=’TradingPartnerId’></column>

<column name=’TransactionAction’></column>

<column name=’AddressNumber’></column>

<column name=’AlternateAddressKey’></column>

<column name=’TaxId’></column>

<column name=’NameAlpha’></column>

<column name=’DescripCompressed’></column>

<column name=’CostCenter’></column>

<column name=’StandardIndustryCode’></column>

<column name=’LanguagePreference’>< /column>

<column name=’AddressType1’></column>

<column name=’CreditMessage’></column>

<column name=’PersonCorporationCode’></column>

<column name=’AddressType2’></column>

<column name=’AddressType3’></column>

<column name=’AddressType4’></column>

<column name=’AddressTypeReceivables’></column>

<column name=’AddressType5’></column>

<column name=’AddressTypePayables’></column>

<column name=’AddTypeCode4Purch’></column>

<column name=’MiscCode3’></column>

<column name=’AddressTypeEmployee’></column>

<column name=’SubledgerInactiveCode’></column>

<column name=’DateBeginningEffective’></column>

<column name=’AddressNumber1st’></column>

<column name=’AddressNumber2nd’></column>

<column name=’AddressNumber3rd’></column>

<column name=’AddressNumber4th’></column>

<column name=’AddressNumber6th’></column>

<column name=’AddressNumber5th’></column>

<column name=’ReportCodeAddBook001’></column>

<column name=’ReportCodeAddBook002’></column>

PeopleSoft Proprietary and Confidential 255

XML Format Examples (All Parameters) Appendix C

<column name=’ReportCodeAddBook003’></column>

<column name=’ReportCodeAddBook004’></column>

<column name=’ReportCodeAddBook005’></column>

<column name=’ReportCodeAddBook006’></column>

<column name=’ReportCodeAddBook007’></column>

<column name=’ReportCodeAddBook008’></column>

<column name=’ReportCodeAddBook009’></column>

<column name=’ReportCodeAddBook010’></column>

<column name=’ReportCodeAddBook011’></column>

<column name=’ReportCodeAddBook012’></column>

<column name=’ReportCodeAddBook013’></column>

<column name=’ReportCodeAddBook014’></column>

<column name=’ReportCodeAddBook015’></column>

<column name=’ReportCodeAddBook016’></column>

<column name=’ReportCodeAddBook017’></column>

<column name=’ReportCodeAddBook018’></column>

<column name=’ReportCodeAddBook019’></column>

<column name=’ReportCodeAddBook020’></column>

<column name=’CategoryCodeAddressBook2’></column>

<column name=’CategoryCodeAddressBk22’></column>

<column name=’CategoryCodeAddressBk23’></column>

<column name=’CategoryCodeAddressBk24’></column>

<column name=’CategoryCodeAddressBk25’></column>

<column name=’CategoryCodeAddressBk26’></column>

<column name=’CategoryCodeAddressBk27’></column>

<column name=’CategoryCodeAddressBk28’></column>

<column name=’CategoryCodeAddressBk29’></column>

<column name=’CategoryCodeAddressBk30’></column>

<column name=’GlBankAccount’></column>

<column name=’TimeScheduledIn’></column>

<column name=’DateScheduledIn’></column>

<column name=’ActionMessageControl’></column>

<column name=’NameRemark’></column>

<column name=’CertificateTaxExempt’></column>

<column name=’TaxId2’></column>

<column name=’Kanjialpha’></column>

<column name=’UserReservedCode’></column>

<column name=’UserReservedDate’></column>

<column name=’UserReservedAmount’></column>

<column name=’UserReservedNumber’></column>

<column name=’UserReservedReference’></column>

<column name=’NameMailing’></column>

<column name=’SecondaryMailingName’></column>

<column name=’AddressLine1’></column>

<column name=’AddressLine2’></column>

<column name=’AddressLine3’></column>

<column name=’AddressLine4’></column>

<column name=’ZipCodePostal’></column>

<column name=’City’></column>

<column name=’Country’></column>

256 PeopleSoft Proprietary and Confidential

Appendix C XML Format Examples (All Parameters)

<column name=’State’></column>

<column name=’CountyAddress’></column>

<column name=’PhoneAreaCode1’></column>

<column name=’PhoneNumber’></column>

<column name=’PhoneNumberTyp1’></column>

<column name=’PhoneAreaCode2’></column>

<column name=’PhoneNumber1’></column>

<column name=’PhoneNumberTyp2’></column>

<column name=’TransactionOriginator’></column>

<column name=’UserId’></column>

<column name=’ProgramId’></column>

<column name=’WorkStationId’></column>

<column name=’DateUpdated’></column>

<column name=’TimeOfDay’></column>

<column name=’TimeLastUpdated’></column>

</table>

</transaction>

</jdeResponse>

PeopleSoft Proprietary and Confidential 257

XML Format Examples (All Parameters) Appendix C

258 PeopleSoft Proprietary and Confidential

APPENDIX D

Minimum Required Values Sample Code

This appendix provides XML sample code for a sales order entry.

Sales Order Minimum Required Values
This sales order entry example shows the minimum required parameters. PeopleSoft EnterpriseOne
recommends that you start with the minimum required values and test them to ensure your system is working.
After you are confident the minimum required values are working properly, you can add other values.

<?xml version="1.0" encoding="utf-8" ?>

<jdeRequest type="callmethod" user="JDE" pwd="JDE" role="*ALL"

environment="PRD733">

<callMethod name="GetLocalComputerId" app="NetComm" runOnError="no">

<params>

<param name="szMachineKey" id="2" />

</params>

<onError abort="yes"/>

</callMethod>

<callMethod name="F4211FSBeginDoc" app="NetComm" runOnError="no">

<params>

<param name="szCMComputerID" idref="2"/>

<param name="szOrderType">S4</param>

<param name="szBusinessUnit">M30</param>

<param name="mnAddressNumber">4242</param>

</params>

<onError abort="yes">

<callMethod name="F4211ClearWorkFile" app="NetComm" runOnError="yes">

<params>

<param name="mnJobNo" idref="1"/>

<param name="szComputerID" idref="2"/>

<param name="cClearHeaderWF">2</param>

<param name="cClearDetailWF">2</param>

</params>

</callMethod>

</onError>

</callMethod>

<callMethod name="F4211FSEditLine" app="NetComm" runOnError="yes">

<params>

<param name="mnCMJobNo" idref="1"/>

<param name="szCMComputerID" idref="2"/>

PeopleSoft Proprietary and Confidential 259

Minimum Required Values Sample Code Appendix D

<param name="szBusinessUnit">M30</param>

<param name="szItemNo">1001</param>

</params>

<onError abort="no"/>

</callMethod>

<callMethod name="F4211FSEndDoc" app="NetComm" runOnError="no">

<params>

<param name="mnCMJobNo" idref="1"/>

<param name="szCMComputerID" idref="2"/>

</params>

<onError abort="no">

<callMethod name="F4211ClearWorkFile" app="NetComm" runOnError="yes">

<params>

<param name="mnJobNo" idref="1"/>

<param name="szComputerID" idref="2"/>

<param name="mnFromLineNo">0</param>

<param name="mnThruLineNo">0</param>

<param name="cClearHeaderWF">2</param>

<param name="cClearDetailWF">2</param>

<param name="szProgramID">NetComm</param>

<param name="szCMVersion">ZJDE0001</param>

</params>

</callMethod>

</onError>

</callMethod>

<returnParams failureDestination="ERROR.Q" successDestination="SUCCESS.Q"

runOnError="yes"/>

<onError abort="yes">

<callMethod name="F4211ClearWorkFile" app="NetComm" runOnError="yes">

<params>

<param name="mnJobNo" idref="1"/>

<param name="szComputerID" idref="2"/>

<param name="mnFromLineNo">0</param>

<param name="mnThruLineNo">0</param>

<param name="cClearHeaderWF">2</param>

<param name="cClearDetailWF">2</param>

<param name="szProgramID">NetComm</param>

<param name="szCMVersion">ZJDE0001</param>

</params>

</callMethod>

</onError>

</jdeRequest>

260 PeopleSoft Proprietary and Confidential

APPENDIX E

XML Format Examples (Events)

This appendix provides sample code for:

• Z Events XML format.
• Real-time events template.

Example: Z Events XML Format
This section illustrates a Z file event XML document.

<?xml version=’1.0’ encoding=’utf-8’>

<jdeResponse type=’trans’ user=’JDE’ role=’*ALL’ environment=’XDEVNIS2’>

<transaction type=’JDESC’ action=’transactionInfo’>

<returnCode code=’0’>XML Request OK</returnCode>

<key>

<EdiUserId>KW6803955</EdiUserId>

<EdiBatchNumber>16319</EdiBatchNumber>

<EdiTransactNumber>106053</EdiTransactNumber>

</key>

<F4201Z1 type=’header’>

<EdiUserId>KW6803955</EdiUserId>

<EdiBatchNumber>16319</EdiBatchNumber>

<EdiTransactNumber>106053</EdiTransactNumber>

<EdiLineNumber>1.000</EdiLineNumber>

<EdiDocumentType>SO</EdiDocumentType>

<TypeTransaction>JDESC</TypeTransaction>

<EdiTranslationFormat> </EdiTranslationFormat>

<EdiTransmissionDate> </EdiTransmissionDate>

<DirectionIndicator>2</DirectionIndicator>

<EdiDetailLinesProcess>0</EdiDetailLinesProcess>

<EdiSuccessfullyProcess>Y</EdiSuccessfullyProcess>

<TradingPartnerId> </TradingPartnerId>

<TransactionAction>UA</TransctionAction>

<CompanyKeyOrderNo>00200</CompanyKeyOrderNo>

<DocumentOrderInvoiceF>6559</DocumentOrderInvoiceF>

<OrderType>SO</OrderType>

<OrderSuffix>000</OrderSuffix>

<CostCenter> M30</CostCenter>

<Company>00200</Company>

PeopleSoft Proprietary and Confidential 261

XML Format Examples (Events) Appendix E

<CompanyKeyOriginal> </CompanyKeyOriginal>

<OriginalPoSoNumber> </OriginalPoSoNumber>

<OriginalOrderType> </OriginalOrderType>

<CompanyKeyRelated> </CompanyKeyRelated>

<RelatedPoSoNumber> </RelatedPoSoNumber>

<RelatedOrderType> </RelatedOrderType>

<AddressNumber>4242</AddressNumber>

<AddressNumberShipTo>4242</AddressNumberShipTo>

<AddressNumberParent>4242</AddressNumberParent>

<DateRequestedJulian>2005/05/05</DateRequestedJulian>

<DateTransactionJulian>2005/05/05</DateTransactionJulian>

<PromisedDeliveryDate>2005/05/05</PromisedDeliveryDate>

<DateOriginalPromise>2005/05/05</DateOriginalPromise>

<ActualDeliveryDate></ActualDeliveryDate>

<CancelDate></CancelDate>

<DatePriceEffectiveDate>2005/05/05</DatePriceEffectiveDate>

<DatePromisedPickJu>2005/05/05</DatePromisedPickJu>

<DatePromisedShipJu></DatePromisedShipJu>

<Reference1> </Reference1>

<Reference2Vendor> </Reference2Vendor>

<DeliveryInstructLine1> </DeliveryInstructLine1>

<DeliveryInstructLine2> </DeliveryInstructLine2>

<PrintMessage1> </PrintMessage1>

<PaymentTermsCode01> </PaymentTermsCode01>

<PaymentInstrumentA> </PaymentInstrumentA>

<PriceAdjustmentScheduleN>

</PriceAdjustmentScheduleN>

<PricingGroup>PREFER</PricingGroup>

<DiscountTrade>.000</DiscountTrade>

<PercentRetainage1>.000</PercentRetainage1>

<TaxArea1>DEN</TaxArea1>

<TaxExplanationCode1>S</TaxExplanationCode1>

<CertificateTaxExempt> </CertificateTaxExempt>

<AssociatedText> </AssociatedText>

<PriorityProcessing>0</PriorityProcessing>

<BackordersAllowedYN>Y</BackordersAllowedYN>

<SubstitutesAllowedYN>Y</SubstitutesAllowedYN>

<HoldOrdersCode> </HoldOrdersCode>

<PricePickListYN>Y</PricePickListYN>

<InvoiceCopies>0</InvoiceCopies>

<NatureOfTransaction> </NatureOfTransction>

<BuyerNumber>0</BuyerNumber>

<Carrier>0</Carrier>

<ModeOfTransport> </ModeOfTransport>

<ConditionsOfTransport> </ConditionsOfTransport>

<RouteCode> </RouteCode>

<StopCode> </StopCode>

<ZoneNumber> </ZoneNumber>

<ContainerID> </ContainerID>

<FreightHandlingCode> </FreightHandlingcode>

262 PeopleSoft Proprietary and Confidential

Appendix E XML Format Examples (Events)

<ApplyFreightYN>Y</ApplyFreightYN>

<ApplyFreight> </ApplyFreight>

<FreightCalculatedYN> </FreightCalculatedYN>

<MergeOrdersYN> </MergeOrdersYN>

<CommissionCode1>6001</CommissionCode1>

<RateCommission1>5.000</RateCommission1>

<CommissionCode2>0</CommissionCode2>

<RateCommission2>.000</RateCommission2>

<ReasonCode> </ReasonCode>

<PostQuantities> </PostQuantities>

<AmountOrderGross>134.97</AmountOrderGross>

<AmountTotalCost>.00</AmountTotalCost>

<UnitOfMeasureWhtDisp> </UnitOfMeasureWhtDisp>

<UnitOfMeasureVolDisp> </UnitOfMeasureVolDisp>

<AuthorizationNoCredit> </AuthorizationNoCredit>

<AcctNoCrBank> </AcctNoCrBank>

<DateExpired></DateExpired>

<SubledgerInactiveCode> </SubledgerInactiveCode>

<CorrespondenceMethod> </CorrespondenceMethod>

<CurrencyMode>F</CurrencyMode>

<CurrencyCodeFrom>BEF</CurrencyCodeFrom>

<CurrencyConverRateOv>33.8180588</CurrencyConverRateOv>

<LanguagePreference>E</LanguagePreference>

<AmountForeignOpen>4564.42</AmountForeignOpen

<AmountForeignTotalC>.00</AmountForeignTotalC>

<OrderedBy> </OrderedBy>

<OrderTakenBy> </OrderTakenBy>

<UserReservedCode> </UserReservedCode>

<UserReservedDate> </UserReservedDate>

<UserReservedAmount>.00</UserReservedAmount>

<UserReservedNumber>0</UserReservedNumber>

<UserReservedReference> </UserReservedReference>

<UserId>KW6803955</UserId>

<ProgramId> </ProgramId>

<WorkStationId>ST15</WorkStationId>

<DateUpdated>2000/08/22</DatedUpdated>

<TimeOfDay>134435</TimeOfDay>

</F4201Z1>

<F4211Z1 type=’detail’>

<EdiUserId>KW6803955</EdiUserId>

<EdiBatchNumber>16319</EdiBatchNumber>

<EdiTransactNumber>106053</EdiTransactNumber>

<EdiLineNumber>1.000</EdiLineNumber>

<EdiDocumentType>SO</EdiDocumentType>

<TypeTransaction>JDESC</TypeTransaction>

<EdiTranslationFormat> </EdiTranslationFormat>

<EdiTransmissionDate></EdiTransmissionDate>

<DirectionIndicator>2</DirectionIndicator>

<EdiDetailLinesProcess>0</EdiDetailLinesProcess>

<EdiSuccessfullyProcess>N</EdiSuccessfullyProcess>

PeopleSoft Proprietary and Confidential 263

XML Format Examples (Events) Appendix E

<TradingPartnerId> </TradingPartnerId>

<TransactionAction>UA</TransactionAction>

<CompanyKeyOrderNo>00200</CompanyKeyOrderNo>

<DocumentOrderInvoiceE>6559</DocumentOrderInvoiceE>

<OrderType>SO</OrderType>

<LineNumber>1.000</LineNumber>

<OrderSuffix>000</OrderSuffix>

<CostCenter> M30</CostCenter>

<Company>00200</Company>

<CompanyKeyOriginal> </CompanyKeyOriginal>

<OriginalPoSoNumber> </OriginalPoSoNumber>

<OriginalOrderType> </OriginalOrderType>

<OriginalLineNumber>.000</OriginalLineNumber>

<CompanyKeyRelated> </CompanyKeyRelated>

<RelatedPoSoNumber> </RelatedPoSoNumber>

<RelatedOrderType> </RelatedOrderType>

<RelatedPoSoLineNo>.000</RelatedPoSoLineNo>

<ContractNumberDistributi> </ContractNumberDistributi>

<ContractSupplementDistri>0</ContractSupplementDistri>

<ContractBalancesUpdatedY> </ContractBalancesUpdatedY>

<AddressNumber>4242</AddressNumber>

<AddressNumberShipTo>4242</AddressNumberShipTo>

<AddressNumberParent>4242</AddressNumberParent>

<DateRequestedJulian>2005/05/05</DateRequestedJulian>

<DateTransactionJulian>2005/05/05</DateTransactionJulian>

<PromisedDeliveryDate>2005/05/05</PromisedDeliveryDate>

<DateOriginalPromised>2005/05/05</DateOriginalPromised>

<ActualDeliveryDate></ActualDeliveryDate>

<DateInvoiceJulian></DateInvoiceJulian>

<CancelDate></CancelDate>

<DtForGLAndVouch1></DtForGLAndVouch1>

<DateReleaseJulian>2005/05/05</DateReleaseJulian>

<DatePriceEffectiveDate>2005/05/05</DatePriceEffectiveDate>

<DatePromisedPickJu>2005/05/05</DatePromisedPickJu>

<DatePromisedShipJu></DatePromisedShipJu>

<Reference1> </Reference1>

<Reference2Vendor> </Reference2Vendor>

<IdentifierShortItem>60003</IdentifierShortItem>

<Identifier2ndItem>1001</Identifier2ndItem>

<Identifier3rdItem>1001</Identifier3rdItem>

<Location> </Location>

<Lot> </Lot>

<FromGrade> </FromGrade>

<ThruGrade> </ThruGrade>

<FromPotency>.000</FromPotency>

<ThruPotency>.000</ThruPotency>

<DaysPastExpiration>0</DaysPastExpiration>

<DescriptionLine1>Bike Rack - Trunk Mount</DescriptionLine1>

<DescriptionLine2> </DescriptionLine2>

<LineType>S</LineType>

264 PeopleSoft Proprietary and Confidential

Appendix E XML Format Examples (Events)

<StatusCodeNext>540</StatusCodeNext>

<StatusCodeLast>520</StatusCodeLast>

<CostCenterHeader> M30</CostCenterHeader>

<ItemNumberRelatedKit> </ItemNumberRelatedKit>

<LineNumberKitMaster>.000</LineNumberKitMaster>

<ComponentNumber>.0</ComponentNumber>

<RelatedKitComponent>0</RelatedKitComponent>

<NumbOfCpntPerParent>0</NumbOfCpntPerParent>

<SalesReportingCode1> </SalesReportingCode1>

<SalesReportingCode2> </SalesReportingCode2>

<SalesReportingCode3> </SalesReportingCode3>

<SalesReportingCode4> </SalesReportingCode4>

<SalesReportingCode5> </SalesReportingCode5>

<PurchasingReportCode1> </PurchasingReportCode1>

<PurchasingReportCode2> </PurchasingReportCode2>

<PurchasingReportCode3> </PurchasingReportCode3>

<PurchasingReportCode4> </PurchasingReportCode4>

<PurchasingReportCode5> </PurchasingReportCode5>

<UnitOfMeasureAsInput>EA</UnitOfMeasureAsInput>

<UnitsTransactionQty>3</UnitsTransactionQty>

<UnitsQuantityShipped>3</UnitsQuantityShipped>

<UnitsQuanBackorHeld>0</UnitsQuanBackorHeld>

<UnitsQuantityCanceled>0</UnitsQuantityCanceled>

<UnitsQuantityFuture>0</UnitsQuantityFuture>

<UnitsOpenQuantity>0</UnitsOpenQuantity>

<QuantityShippedToDate>0</QuantityShippedToDate>

<QuantityRelieved>0</QuantityRelieved>

<CommittedHS>S</CommittedHS>

<OtherQuantity12> </OtherQuantity12>

<AmtPricePerUnit2>44.9900</AmtPricePerUnit2>

<AmountExtendedPrice>134.97</AmountExtendedPrice>

<AmountOpen1>.00</AmountOpen1>

<PriceOverrideCode> </PriceOverrideCode>

<TemporaryPriceYN> </TemporaryPriceYN>

<UnitOfMeasureEntUP>EA</UnitOfMeasureEntUP>

<AmtListPricePerUnit>44.9900</AmtListPricePerUnit>

<AmountUnitCost>32.1000</AmountUnitCost>

<AmountExtendedCost>96.30</AmountExtendedCost>

<CostOverrideCode> </CostOverrideCode>

<ExtendedCostTransfer>.0000</ExtendedCostTransfer>

<PrintMessage1> </PrintMessage1>

<PaymentTermsCode01> </PaymentTermsCode01>

<PaymentInstrumentA> </PaymentInstrumentA>

<BasedonDate> </BasedonDate>

<DiscountTrade>.000</DiscountTrade>

<TradeDiscountOld>.0000</TradeDiscountOld>

<PriceAdjustmentScheduleN> </PriceAdjustmentScheduleN>

<PricingCategory> </PricingCategory>

<PricingCategoryLevel1> </PricingCategoryLevel1>

<DiscountFactor>1.0000</DiscountFactor>

PeopleSoft Proprietary and Confidential 265

XML Format Examples (Events) Appendix E

<DiscountFactorTypeOr> </DiscountFactorTypeOr>

<DiscntApplicationType> </DiscntApplicationType>

<DiscountCash>.000</DiscountCash>

<CompanyKey> </CompanyKey>

<DocVoucherInvoiceE>0</DocVoucherInvoiceE>

<DocumentType> </DocumentType>

<OriginalDocumentNo>0</OriginalDocumentNo>

<OriginalDocumentType> </OriginalDocumentType>

<DocumentCompanyOriginal> </DocumentCompanyOriginal>

<PickSlipNumber>0</PickSlipNumber>

<DeliveryNumber>0</DeliveryNumber>

<PromotionNumber> </PromotionNumber>

<DraftNumber>0</DraftNumber>

<TaxableYN>N</TaxableYN>

<TaxArea1>DEN</TaxArea1>

<TaxExplanationCode1>S</TaxExplanationCode1>

<AssociatedText> </AssociatedText>

<PriorityProcessing>0</PriroityProcessing>

<ResolutionCodeBC> </ResolutionCodeBC>

<BackordersAllowedYN>Y</BackordersAllowedYN>

<SubstitutesAllowedYN>Y</SubstitutesAllowedYN>

<PartialShipmentsAllowY>Y</PartialShipmentsAllowY>

<LineofBusiness> </LineofBusiness>

<EndUse> </EndUse>

<DutyStatus> </DutyStatus>

<CommodityCode> </CommodityCode>

<NatureOfTransction> </NatureOfTransaction>

<PrimaryLastVendorNo>4343</PrimaryLastVendorNo>

<BuyerNumber>8444</BuyerNumber>

<Carrier>0</Carrier>

<ModeOfTransport> </ModeOfTransport>

<ConditionsOfTransport> </ConditionsOfTransport>

<RouteCode> </RouteCode>

<StopCode> </StopCode>

<ZoneNumber> </ZoneNumber>

<ContainerID> </ContainerID>

<FreightHandlingCode> </FreightHandlingCode>

<ApplyFreightYN>Y</ApplyFreightYN>

<ApplyFreight> </ApplyFreight>

<FreightCalculatedYN> </FreightCalculatedYN>

<RateCodeFreightMisc> </RateCodeFreightMisc>

<RateTypeFreightMisc> </RateTypeFreightMisc>

<ShippingCommodityClass> </ShippingCommodityClass>

<ShippingConditionsCode> </ShippingConditionsCode>

<SerialNumberLot> </SerialNumberLot>

<UnitOfMeasurePrimary>EA</UnitOfMeasurePrimary>

<UnitsPrimaryQtyOrder>3</UnitsPrimaryQtyOrder>

<UnitOfMeasureSecondary>EA</UnitOfMeasureSecondary>

<UnitsSecondaryQtyOr>3</UnitsSecondaryQtyOr>

<UnitOfMeasurePricing>EA</UnitOfMeasurePricing>

266 PeopleSoft Proprietary and Confidential

Appendix E XML Format Examples (Events)

<AmountUnitWeight>240.0000</AmountUnitWeight>

<WeightUnitOfMeasure>OZ</WeightUnitOfMeasure>

<AmountUnitVolume>6.7500</AmountUnitVolume>

<VolumeUnitOfMeasure>FC</VolumeUnitOfMeasure>

<RepriceBasketPriceCat> </RepriceBasketPriceCat>

<OrderRepriceCategory> </OrderRepriceCategory>

<OrderRepricedIndicator> </OrderRepricedIndicator>

<InventoryCostingMeth>07</InventoryCostingMeth>

<AllocatedByLot> </AllocatedByLot>

<GlClass>IN30</GlClass>

<Century>20</Century>

<FiscalYear1>5</FiscalYear1>

<LineStatus> </LineStatus>

<SalesOrderStatus01> </SalesOrderStatus01>

<SalesOrderStatus02> </SalesOrderStatus02>

<SalesOrderStatus03> </SalesOrderStatus03>

<SalesOrderStatus04> </SalesOrderStatus04>

<SalesOrderStatus05> </SalesOrderStatus05>

<SalesOrderStatus06> </SalesOrderStatus06>

<SalesOrderStatus07> </SalesOrderStatus07>

<SalesOrderStatus08> </SalesOrderStatus08>

<SalesOrderStatus09> </SalesOrderStatus09>

<SalesOrderStatus10> </SalesOrderStatus10>

<SalesOrderStatus11> </SalesOrderStatus11>

<SalesOrderStatus12> </SalesOrderStatus12>

<SalesOrderStatus13> </SalesOrderStatus13>

<SalesOrderStatus14> </SalesOrderStatus14>

<SalesOrderStatus15> </SalesOrderStatus15>

<Salesperson1>6001</Salesperson1>

<SalespersonCommission1>5.000</SalespersonCommission1>

<Salesperson2>0</Salesperson2>

<SalespersonCommission2>.000</SalespersonCommission2>

<ApplyCommissionYN>Y</ApplyCommissionYN>

<CommissionCategory> </CommissionCategory>

<ReasonCode> </ReasonCode>

<GrossWeight>.0000</GrossWeight>

<UnitOfMeasureGrossWt> </UnitOfMeasureGrossWt>

<AcctNoInputMode> </AcctNoInputMode>

<AccountId> </AccountId>

<PurchasingCostCenter> </PurchasingCostCenter>

<ObjectAccount> </ObjectAccount>

<Subsidiary> </Subsidiary>

<LedgerType> </LedgerType>

<Subledger> </Subledger>

<SubledgerType> </SubledgerType>

<CodeLocationTaxStat> </CodeLocationTaxStat>

<PriceCode1> </PriceCode1>

<PriceCode2> </PriceCode2>

<PriceCode3> </PriceCode3>

<StatusInWarehouse> </StatusInWarehouse>

PeopleSoft Proprietary and Confidential 267

XML Format Examples (Events) Appendix E

<WoOrderFreezeCode> </WoOrderFreezeCode>

<CorrespondenceMethod> </CorrespondenceMethod>

<CurrencyCodeFrom>BEF</CurrencyCodeFrom>

<CurrencyConverRateOv>33.8180588</CurrencyConverRateOV>

<AmountListPriceForeign>1521.4745</AmountListPriceForeign>

<AmtForPricePerUnit>1521.4745</AmtForPricePerUnit>

<AmountForeignExtPrice>4564.42</AmountForeignExtPrice>

<AmountForeignUnitCost>1085.5597</AmountForeignUnitCost>

<AmountForeignExtCost>3256.68</AmountForeignExtCost>

<UserReservedCode> </UserReservedCode>

<UserReservedDate></UserReservedDate>

<UserReservedAmount>.00</UserReservedAmount>

<UserReservedNumber>0</UserReservedNumber>

<UserReservedReference> </UserReservedReference>

<TransactionOriginator>KW6803955</TransactionOriginator>

<UserId>KW6803955</UserId>

<ProgramId>XMLtest</ProgramId>

<WorkStationId>STI5</WorkStationId>

<DateUpdated>2000/08/22</DateUpdated>

<TimeOfDay>134435</TimeOfDay>

</F4211Z1>

<F49211Z1 type=’additionalHeader’>

<EdiUserId>KW6803955</EdiUserId>

<EdiBatchNumber>16319</EdiBatchNumber>

<EdiTransactNumber>106053<EdiTransactNumber>

<EdiLineNumber>1.000</EdiLineNumber>

<EdiDocumentType>SO</EdiDocumentType>

<TypeTransaction>JDESC</TypeTransaction>

<EdiTranslationFormat> </EdiTranslationFormat>

<EdiTransmissionDate></EdiTransmissionDate>

<DirectionIndicator>2</DirectionIndicator>

<EdiDetailLinesProcess>0</EditDetailLinesProcess>

<EdiSuccessfullyProcess>N</EdiSuccessfullyProcess>

<TradingPartnerId> </TradingPartnerId>

<TransactionAction>UA</TransactionAction>

<DocumentOrderInvoiceE>6559</DocumentOrderInvoiceE>

<OrderType>SO</OrderType>

<CompanyKeyOrderNo>00200</CompanyKeyOrderNo>

<LineNumber>1.000</LineNumber>

<CostCenterTrip> </CostCenterTrip>

<TripNumber>0</TripNumber>

<DateLoaded> </DateLoaded>

<DispatchGrp> </DispatchGrp>

<BulkPackedFlag>P</BulkPackedFlag>

<Distance>0</Distance>

<UnitOfMeasure> </UnitOfMeasure>

<DeferredEntriesFlag> </DeferredEntriesFlag>

<AmountDeferredCost>.0000</AmountDeferredCost>

<AmountForeignDeferredCos>.0000</AmountForeignDeferredCos>

<AmountDeferredRevenue>.0000</AmountDeferredRevenue>

268 PeopleSoft Proprietary and Confidential

Appendix E XML Format Examples (Events)

<AmountForeignDeferredRe>.0000</AmountForeignDeferredRe>

<AaiTableNumber>0</AaiTableNumber>

<ScheduledInvoiceDate></ScheduledInvoiceDate>

<InvoiceCycleCode> </InvoiceCycleCode>

<LoadConfirmDate></LoadConfirmDate>

<TimeLoad>0</TimeLoad>

<DeliveryConfirmDate></DelieveryConfirmDate>

<UnitsPrimaryCommittedQua>0</UnitsPrimaryCommittedQua>

<UnitofMeasureCommittedQu> <UnitofMeasureCommittedQu>

<Temperature>.00</Temperature>

<StrappingTemperatureUnit> </StrappingTemperatureUnit>

<Density>.00</Density>

<DensityTypeAtStandardTem> </DensityTypeAtStandardTem>

<DensityTemperature>.00</DensityTemperature>

<DensityTemperatureUnit> </DensityTemperatureUnit>

<VolumeCorrectionFactors>.0000</VolumeCorrectionFactors>

<PriceatAmbiantorStandard>A</PriceatAmbiantorStandard>

<PricingBasedOnDate> </PricingBasedOnDate>

<UnitsInvoiceQuantity>0</UnitsInvoiceQuantity>

<StockTotalinPrimaryUOM>0</StockTotalinPrimaryUOM>

<UnitofMeasure6> </UnitofMeasure6>

<AmbientResult>0</AmbientResult>

<UnitofMeasure3> </UnitofMeasure3>

<WeightResult>0</WeightResult>

<UnitofMeasure5> </UnitofMeasure5>

<VendorFreightCalculatedY> </VendorFreightCalculatedY>

<CustomerFreightCalculate> </CustomerFreightCalculate>

<AmountCustomerFreightCha>.0000</AmountCustomerFreightCha>

<AmountVendorFreightCharg>.0000</AmountVendorFreightCharg>

<PrimaryVehicleId> </PrimaryVehicleId>

<RegistrationLicenseNumber> </RegistrationLicenseNumber>

<CostCenterArDefault> </CostCenterArDefault>

<FlightNumber> </FlightNumber>

<Destination> </Destination>

<AircraftType> </AircraftType>

<Origin> /Orign>

<TimeElapsed>0</TimeElapsed>

<ShipmentNumberB73>0</ShipmentNumberB73>

<AddressNumberIssued>6074</AddressNumberIssued>

<PaymentTermsCode01> </PaymentTermsCode01>

<DocVoucherInvoiceF>0</DocVoucherInvoiceF>

<DocumentType> </DocumentType>

<CompanyKey> </CompanyKey>

<CurrencyConverRateOv>-1.0000000</CurrencyConverRateOv>

<CurrencyCodeFrom> </CurrencyCodeFrom>

<TaxArea1>DEN</TaxArea1>

<TaxExplanationCode1> </TaxExplanationCode1>

<ForeignDomesticFlag> </ForeignDomesticFlag>

<FuelingPort> </FuelingPort>

<RegistrationIdentificati> </RegistrationIdentificati>

PeopleSoft Proprietary and Confidential 269

XML Format Examples (Events) Appendix E

<DeliveryLocationN> </DeliveryLocationN>

<AuthorizationName> </AuthorizationName>

<NameAlpha> </NameAlpha>

<MeterTicket1> <MeterTicket1>

<UnitsBeginningThroughput>0</UnitsBeginningThroughput>

<ClosingReading1>0</ClosingReading1>

<MeterTicket2> </MeterTicket2>

<UnitsBeginningThroughpu2>0</UnitsBeginningThroughpu2>

<ClosingReading2>0</ClosingReading2>

<MeterTicket3> </MeterTicket3>

<UnitsBeginningThroughpu3>0</UnitsBeginningThroughpu3>

<ClosingReading3>0</ClosingReading3>

<DataArrival></DateArrival>

<TimeArrival>0</TimeArrival>

<DateDeparture></DateDeparture>

<TimeDeparture>0</TimeDeparture>

<DateStartJobJulian></DateStartJobJulian>

<TimeBeginningHHMM>0</TimeBeginningHHMM>

<DateEnding></DateEnding>

<TimeStopHHMM>0</TimeStopHHMM>

<FutureUse01> </FutureUse01>

<FutureUse02> </FutureUse02>

<FutureUse03> </FutureUse03>

<FutureUse04> </FutureUse04>

<FutureUse05> </FutureUse05>

<FutureUseCode> </FutureUseCode>

<FutureUseQuantity>0</FutureUseQuantity>

<FutureUseDate></FutureUseDate>

<FutureUseUnitofMeasure> </FutureUseUnitofMeasure>

<UserReservedCode> </UserReservedCode>

<UserReservedDate> </UserReservedDate>

<UserReservedAmount>00</UserReservedAmount>

<UserReservedNumber>0<UserReservedNumber>

<UserReservedReference> </UserReservedReference>

<TransactionOriginator> </TransactionOriginator>

<UserId>KW6803955</UserId>

<ProgramId>XMLtest</ProgramId>

<WorkStationId>ST15</WorkStationId>

<DateUpdated>2000/08/22</DateUpdated.

<TimeOfDay>134435</TimeOfDay>

</F49211Z1>

</transaction>

</jdeResponse>

270 PeopleSoft Proprietary and Confidential

Appendix E XML Format Examples (Events)

Real-Time Events Template
This section provides an example of the real-time events template. The example template might not correspond
to the exact event that your application uses. Your event might include values that are not in the example
template.

The event must be described in the jdeResponse type element. The attribute type is always realTimeEvent.
The attributes for user and environment always correspond to the user name and environment that generated
the event.

<?xml version="1.0" encoding="utf-8" ?>

<jdeResponse type="realTimeEvent" user="" role="*ALL"

session="28980548.1019684006" environment="">

<event>

<header>

Code for the header information follows. <eventVersion> is always 1.0, <type> corresponds to the event type,
<application> corresponds to the application that created the event, and <version> to the version of the
application. The <session ID> is unique for every event. The <scope> is the value of the argument scope that
was sent to the real-time event API during creation of the event. The <codepage>element is for encoding of
the elements. In the sample, utf-8 is used. The remaining header elements are self-explanatory.

<eventVersion>1.0</eventVersion>

<type>RTSOOUT</type>

<user />

<application />

<version />

<sessionID />

<environment />

<host />

<sequenceID />

<date />

<time />

<scope />

<codepage>utf-8</codepage>

</header>

The body contains details that describe one data structure for each element. The body contains the date
of creation, the name of the file that is creating the data structure, time of creation, and the DSTMPL
name of the PeopleSoft EnterpriseOne data structure. Type is type of partial event (added as an argument
to jdeIEO-EventAdd), executionOrder increases in the real generated event from 1 to elementCount,
and parameterCount is the number of fields in the data structure. In this example code, there are three
data structures: D34A1050C, D4202150C, and D4202150B. Each data structure is followed by detail
elements. When you create an event, the element value is the value of the field, for example: <szNameAlpha
type=String>ABC</szNameAlpha >

<body elementCount="3">

<detail date="" name="" time="" type="" DSTMPL="D34A1050C"

executionOrder="" parameterCount="25">

<szNameAlpha type="String"/>

<mnParentAddressNumber type="Double"/>

<szSecondItemNumber type="String"/>

PeopleSoft Proprietary and Confidential 271

XML Format Examples (Events) Appendix E

<szThirdItemNumber type="String"/>

<cPriorityProcessing type="Character"/>

<cBackOrdersAllowed type="Character"/>

<cOrderShippedFlag type="Character"/>

<cTransferDirectShipFlag type="Character"/>

<cCommitted type="Character"/>

<mnDaysBeforeExpiration type="Double"/>

<szPurchaseCategoryCode1 type="String"/>

<szPurchaseCategoryCode2 type="String"/>

<szPurchaseCategoryCode3 type="String"/>

<szPurchaseCategoryCode4 type="String"/>

<szRelatedOrderNumber type="String"/>

<szRelatedOrderType type="String"/>

<szRelatedOrderKeyCompany type="String"/>

<szPlanningUnitOfMeasure type="String"/>

<mnPlanningQuantity type="Double"/>

<cAPSFlag type="Character"/>

<cAPSSupplyDemandFlag type="Character"/>

<jdDateUpdated type="Date"/>

<mnTimeUpdated type="Double"/>

<szShipComplete type="String"/>

<mnRelatedOrderLineNumber type="Double"/>

</detail>

<detail date="" name="" time="" type="" DSTMPL="D4202150C"

executionOrder="" parameterCount="94">

<cOrderAction type="Character"/>

<szOrderType type="String"/>

<szOrderCompany type="String"/>

<mnLineNumber type="Double"/>

<szDetailBranchPlant type="String"/>

<mnShipToAddressNumber type="Double"/>

<jdTransactionDate type="Date"/>

<jdRequestedDate type="Date"/>

<jdScheduledPickDate type="Date"/>

<jdPromisedShipDate type="Date"/>

<jdPromisedDeliveryDate type="Date"/>

<jdCancelDate type="Date"/>

<jdPriceEffectiveDate type="Date"/>

<mnQuantityOrdered type="Double"/>

<mnQuantityShipped type="Double"/>

<mnQuantityBackOrdered type="Double"/>

<mnQuantityCanceled type="Double"/>

<szTransactionUnitOfMeasure type="String"/>

<mnUnitPrice type="Double"/>

<mnExtendedPrice type="Double"/>

<mnForeignUnitPrice type="Double"/>

<mnForeignExtPrice type="Double"/>

<cPriceOverrideCode type="Character"/>

<cTaxableYN type="Character"/>

<szPriceAdjustmentSchedule type="String"/>

272 PeopleSoft Proprietary and Confidential

Appendix E XML Format Examples (Events)

<mnDiscountPercentage type="Double"/>

<szPaymentTerms type="String"/>

<cPaymentInstrument type="Character"/>

<szCurrencyCode type="String"/>

<szItemNumber type="String"/>

<mnShortItemNumber type="Double"/>

<szDescriptionLine1 type="String"/>

<szDescriptionLine2 type="String"/>

<szLineType type="String"/>

<szLastStatus type="String"/>

<szNextStatus type="String"/>

<szLocation type="String"/>

<szLot type="String"/>

<szLineofBusiness type="String"/>

<szEndUse type="String"/>

<szDutyStatus type="String"/>

<szPrintMessage1 type="String"/>

<szFreightHandlingCode type="String"/>

<mnItemWeight type="Double"/>

<szWeightUnitOfMeasure type="String"/>

<szModeOfTransport type="String"/>

<mnCarrier type="Double"/>

<szSubledger type="String"/>

<cSubledgerType type="Character"/>

<szPriceCode1 type="String"/>

<szPriceCode2 type="String"/>

<szPriceCode3 type="String"/>

<szSalesReportingCode1 type="String"/>

<szSalesReportingCode2 type="String"/>

<szSalesReportingCode3 type="String"/>

<szSalesReportingCode4 type="String"/>

<szSalesReportingCode5 type="String"/>

<szOriginalPoSoNumber type="String"/>

<szOriginalOrderType type="String"/>

<szOriginalOrderCompany type="String"/>

<mnOriginalOrderLineNumber type="Double"/>

<jdDateUpdated type="Date"/>

<mnTimeOfDay type="Double"/>

<mnPickSlipNumber type="Double"/>

<mnInvoiceDocNumber type="Double"/>

<szInvoiceDocType type="String"/>

<szInvoceDocCompany type="String"/>

<szUserReservedCode type="String"/>

<jdUserReservedDate type="Date"/>

<mnUserReservedNumber type="Double"/>

<mnUserReservedAmount type="Double"/>

<szUserReservedReference type="String"/>

<mnUnitCost type="Double"/>

<mnExtendedCost type="Double"/>

<mnForeignUnitCost type="Double"/>

PeopleSoft Proprietary and Confidential 273

XML Format Examples (Events) Appendix E

<mnForeignExtCost type="Double"/>

<mnOrderNumber type="Double"/>

<szSupplierReference type="String"/>

<jdOriginalPromisdDate type="Date"/>

<mnAdjustmentRevisionLevel type="Double"/>

<mnLastIndex type="Double"/>

<szRelatedPoSoNumber type="String"/>

<szRelatedOrderType type="String"/>

<szRelatedOrderCompany type="String"/>

<mnRelatedPoSoLineNo type="Double"/>

<szPricingUnitOfMeasure type="String"/>

<szTaxArea type="String"/>

<szTaxExplanationCode type="String"/>

<szPartnerItemNo type="String"/>

<szCatalogItem type="String"/>

<szUPCNumber type="String"/>

<szShipToDescriptive type="String"/>

<szSoldToDescriptive type="String"/>

<szProductItem type="String"/>

</detail>

<detail date="" name="" time="" type="" DSTMPL="D4202150B"

executionOrder="" parameterCount="66">

<cOrderAction type="Character"/>

<mnOrderNumber type="Double"/>

<szOrderType type="String"/>

<szOrderCompany type="String"/>

<szHeaderBranchPlant type="String"/>

<szCompany type="String"/>

<szOriginalPoSoNumber type="String"/>

<szOrderedBy type="String"/>

<szOrderTakenBy type="String"/>

<mnSoldToAddressNumber type="Double"/>

<szSoldToNameMailing type="String"/>

<szSoldToAddressLine1 type="String"/>

<szSoldToAddressLine2 type="String"/>

<szSoldToAddressLine3 type="String"/>

<szSoldToAddressLine4 type="String"/>

<szSoldToZipCode type="String"/>

<szSoldToCity type="String"/>

<szSoldToCounty type="String"/>

<szSoldToState type="String"/>

<szSoldToCountry type="String"/>

<mnShipToAddressNumber type="Double"/>

<szShipToNameMailing type="String"/>

<szShipToAddressLine1 type="String"/>

<szShipToAddressLine2 type="String"/>

<szShipToAddressLine3 type="String"/>

<szShipToAddressLine4 type="String"/>

<szShipToZipCode type="String"/>

<szShipToCity type="String"/>

274 PeopleSoft Proprietary and Confidential

Appendix E XML Format Examples (Events)

<szShipToCounty type="String"/>

<szShipToState type="String"/>

<szShipToCountry type="String"/>

<jdTransactionDate type="Date"/>

<jdRequestedDate type="Date"/>

<jdCancelDate type="Date"/>

<szReference type="String"/>

<szDeliveryInstructLine1 type="String"/>

<szDeliveryInstructLine2 type="String"/>

<szPrintMessage type="String"/>

<szFreightHandlingCode type="String"/>

<mnCommissionCode1 type="Double"/>

<mnCommissionCode2 type="Double"/>

<mnRateCommission1 type="Double"/>

<mnRateCommission2 type="Double"/>

<mnDiscountTrade type="Double"/>

<szPaymentTerms type="String"/>

<cPaymentInstrument type="Character"/>

<szCurrencyCode type="String"/>

<mnCurrencyConverRate type="Double"/>

<szTaxArea type="String"/>

<szTaxExplanationCode type="String"/>

<mnOrderTotal type="Double"/>

<mnForeignOrderTotal type="Double"/>

<szUserReservedCode type="String"/>

<jdUserReservedDate type="Date"/>

<mnUserReservedAmount type="Double"/>

<mnUserReservedNumber type="Double"/>

<szUserReservedReference type="String"/>

<szHoldCode type="String"/>

<cQuoteFlag type="Character"/>

<jdScheduledPickDate type="Date"/>

<jdPromisedShipDate type="Date"/>

<jdOriginalPromisdDate type="Date"/>

<cCurrencyMode type="Character"/>

<szShipToDescriptive type="String"/>

<szSoldToDescriptive type="String"/>

<cPublishToXPIxFlag type="Character"/>

</detail>

</body>

</event>

</jdeResponse>

This table shows the mapping between PeopleSoft EnterpriseOne types and events:

PeopleSoft EnterpriseOne Event

CHAR Character

STRING String

PeopleSoft Proprietary and Confidential 275

XML Format Examples (Events) Appendix E

PeopleSoft EnterpriseOne Event

MATH_numeric Double

JDEDATE Dat

SHORT Int

INT Int

USHORT Int

LONG Long

ULONG Long

ID Long

ID2 Long

BOOL BOOL

276 PeopleSoft Proprietary and Confidential

Glossary of PeopleSoft Terms

absence entitlement This element defines rules for granting paid time off for valid absences, such as sick
time, vacation, and maternity leave. An absence entitlement element defines the
entitlement amount, frequency, and entitlement period.

absence take This element defines the conditions that must be met before a payee is entitled
to take paid time off.

academic career In PeopleSoft Enterprise Campus Solutions, all course work that a student undertakes
at an academic institution and that is grouped in a single student record. For example,
a university that has an undergraduate school, a graduate school, and various
professional schools might define several academic careers—an undergraduate career,
a graduate career, and separate careers for each professional school (law school,
medical school, dental school, and so on).

academic institution In PeopleSoft Enterprise Campus Solutions, an entity (such as a university or college)
that is independent of other similar entities and that has its own set of rules and
business processes.

academic organization In PeopleSoft Enterprise Campus Solutions, an entity that is part of the administrative
structure within an academic institution. At the lowest level, an academic organization
might be an academic department. At the highest level, an academic organization can
represent a division.

academic plan In PeopleSoft Enterprise Campus Solutions, an area of study—such as a major, minor,
or specialization—that exists within an academic program or academic career.

academic program In PeopleSoft Enterprise Campus Solutions, the entity to which a student applies and is
admitted and from which the student graduates.

accounting class In PeopleSoft Enterprise Performance Management, the accounting class defines how
a resource is treated for generally accepted accounting practices. The Inventory
class indicates whether a resource becomes part of a balance sheet account, such as
inventory or fixed assets, while the Non-inventory class indicates that the resource is
treated as an expense of the period during which it occurs.

accounting date The accounting date indicates when a transaction is recognized, as opposed to the date
the transaction actually occurred. The accounting date and transaction date can be the
same. The accounting date determines the period in the general ledger to which the
transaction is to be posted. You can only select an accounting date that falls within an
open period in the ledger to which you are posting. The accounting date for an item
is normally the invoice date.

accounting split The accounting split method indicates how expenses are allocated or divided among
one or more sets of accounting ChartFields.

accumulator You use an accumulator to store cumulative values of defined items as they are
processed. You can accumulate a single value over time or multiple values over
time. For example, an accumulator could consist of all voluntary deductions, or all
company deductions, enabling you to accumulate amounts. It allows total flexibility
for time periods and values accumulated.

action reason The reason an employee’s job or employment information is updated. The action
reason is entered in two parts: a personnel action, such as a promotion, termination, or
change from one pay group to another—and a reason for that action. Action reasons
are used by PeopleSoft Human Resources, PeopleSoft Benefits Administration,

PeopleSoft Proprietary and Confidential 277

Glossary

PeopleSoft Stock Administration, and the COBRAAdministration feature of the
Base Benefits business process.

action template In PeopleSoft Receivables, outlines a set of escalating actions that the system or user
performs based on the period of time that a customer or item has been in an action
plan for a specific condition.

activity In PeopleSoft Enterprise LearningManagement, an instance of a catalog item
(sometimes called a class) that is available for enrollment. The activity defines
such things as the costs that are associated with the offering, enrollment limits and
deadlines, and waitlisting capacities.

In PeopleSoft Enterprise Performance Management, the work of an organization and
the aggregation of actions that are used for activity-based costing.

In PeopleSoft Project Costing, the unit of work that provides a further breakdown of
projects—usually into specific tasks.

In PeopleSoft Workflow, a specific transaction that you might need to perform in a
business process. Because it consists of the steps that are used to perform a transaction,
it is also known as a step map.

address usage In PeopleSoft Enterprise Campus Solutions, a grouping of address types defining the
order in which the address types are used. For example, you might define an address
usage code to process addresses in the following order: billing address, dormitory
address, home address, and then work address.

adjustment calendar In PeopleSoft Enterprise Campus Solutions, the adjustment calendar controls how a
particular charge is adjusted on a student’s account when the student drops classes
or withdraws from a term. The charge adjustment is based on how much time has
elapsed from a predetermined date, and it is determined as a percentage of the original
charge amount.

administrative function In PeopleSoft Enterprise Campus Solutions, a particular functional area that processes
checklists, communication, and comments. The administrative function identifies
which variable data is added to a person’s checklist or communication record when a
specific checklist code, communication category, or comment is assigned to the
student. This key data enables you to trace that checklist, communication, or comment
back to a specific processing event in a functional area.

admit type In PeopleSoft Enterprise Campus Solutions, a designation used to distinguish
first-year applications from transfer applications.

agreement In PeopleSoft eSettlements, provides a way to group and specify processing options,
such as payment terms, pay from a bank, and notifications by a buyer and supplier
location combination.

allocation rule In PeopleSoft Enterprise Incentive Management, an expression within compensation
plans that enables the system to assign transactions to nodes and participants. During
transaction allocation, the allocation engine traverses the compensation structure
from the current node to the root node, checking each node for plans that contain
allocation rules.

alternate account A feature in PeopleSoft General Ledger that enables you to create a statutory chart
of accounts and enter statutory account transactions at the detail transaction level, as
required for recording and reporting by some national governments.

analysis database In PeopleSoft Enterprise Campus Solutions, database tables that store large amounts
of student information that may not appear in standard report formats. The analysis
database tables contain keys for all objects in a report that an application program can
use to reference other student-record objects that are not contained in the printed
report. For instance, the analysis database contains data on courses that are considered
for satisfying a requirement but that are rejected. It also contains information on

278 PeopleSoft Proprietary and Confidential

Glossary

courses captured by global limits. An analysis database is used in PeopleSoft
Enterprise Academic Advisement.

AR specialist Abbreviation for receivables specialist. In PeopleSoft Receivables, an individual in
who tracks and resolves deductions and disputed items.

arbitration plan In PeopleSoft Enterprise Pricer, defines how price rules are to be applied to the base
price when the transaction is priced.

assessment rule In PeopleSoft Receivables, a user-defined rule that the system uses to evaluate the
condition of a customer’s account or of individual items to determine whether to
generate a follow-up action.

asset class An asset group used for reporting purposes. It can be used in conjunction with the asset
category to refine asset classification.

attribute/value pair In PeopleSoft Directory Interface, relates the data that makes up an entry in the
directory information tree.

audience In PeopleSoft Enterprise Campus Solutions, a segment of the database that relates
to an initiative, or a membership organization that is based on constituent attributes
rather than a dues-paying structure. Examples of audiences include the Class of ’65
and Undergraduate Arts & Sciences.

authentication server A server that is set up to verify users of the system.

base time period In PeopleSoft Business Planning, the lowest level time period in a calendar.

benchmark job In PeopleSoft Workforce Analytics, a benchmark job is a job code for which there is
corresponding salary survey data from published, third-party sources.

billing career In PeopleSoft Enterprise Campus Solutions, the one career under which other careers
are grouped for billing purposes if a student is active simultaneously in multiple
careers.

bio bit or bio brief In PeopleSoft Enterprise Campus Solutions, a report that summarizes information
stored in the system about a particular constituent. You can generate standard or
specialized reports.

book In PeopleSoft Asset Management, used for storing financial and tax information, such
as costs, depreciation attributes, and retirement information on assets.

branch A tree node that rolls up to nodes above it in the hierarchy, as defined in PeopleSoft
Tree Manager.

budgetary account only An account used by the system only and not by users; this type of account does
not accept transactions. You can only budget with this account. Formerly called
“system-maintained account.”

budget check In commitment control, the processing of source transactions against control budget
ledgers, to see if they pass, fail, or pass with a warning.

budget control In commitment control, budget control ensures that commitments and expenditures
don’t exceed budgets. It enables you to track transactions against corresponding
budgets and terminate a document’s cycle if the defined budget conditions are not met.
For example, you can prevent a purchase order from being dispatched to a vendor if
there are insufficient funds in the related budget to support it.

budget period The interval of time (such as 12 months or 4 quarters) into which a period is divided
for budgetary and reporting purposes. The ChartField allows maximum flexibility to
define operational accounting time periods without restriction to only one calendar.

PeopleSoft Proprietary and Confidential 279

Glossary

business event In PeopleSoft Receivables, defines the processing characteristics for the Receivable
Update process for a draft activity.

In PeopleSoft Sales Incentive Management, an original business transaction or activity
that may justify the creation of a PeopleSoft Enterprise Incentive Management event
(a sale, for example).

business unit A corporation or a subset of a corporation that is independent with regard to one or
more operational or accounting functions.

buyer In PeopleSoft eSettlements, an organization (or business unit, as opposed to an
individual) that transacts with suppliers (vendors) within the system. A buyer creates
payments for purchases that are made in the system.

campus In PeopleSoft Enterprise Campus Solutions, an entity that is usually associated with
a distinct physical administrative unit, that belongs to a single academic institution,
that uses a unique course catalog, and that produces a common transcript for students
within the same academic career.

catalog item In PeopleSoft Enterprise LearningManagement, a specific topic that a learner can
study and have tracked. For example, “Introduction to Microsoft Word.” A catalog
item contains general information about the topic and includes a course code,
description, categorization, keywords, and delivery methods. A catalog item can
have one or more learning activities.

catalog map In PeopleSoft Catalog Management, translates values from the catalog source data to
the format of the company’s catalog.

catalog partner In PeopleSoft Catalog Management, shares responsibility with the enterprise catalog
manager for maintaining catalog content.

categorization Associates partner offerings with catalog offerings and groups them into enterprise
catalog categories.

category In PeopleSoft Enterprise Campus Solutions, a broad grouping to which specific
comments or communications (contexts) are assigned. Category codes are also linked
to 3C access groups so that you can assign data-entry or view-only privileges across
functions.

channel In PeopleSoft MultiChannel Framework, email, chat, voice (computer telephone
integration [CTI]), or a generic event.

ChartField A field that stores a chart of accounts, resources, and so on, depending on the
PeopleSoft application. ChartField values represent individual account numbers,
department codes, and so forth.

ChartField balancing You can require specific ChartFields to match up (balance) on the debit and the credit
side of a transaction.

ChartField combination edit The process of editing journal lines for valid ChartField combinations based on
user-defined rules.

ChartKey One or more fields that uniquely identify each row in a table. Some tables contain only
one field as the key, while others require a combination.

checkbook In PeopleSoft Promotions Management, enables you to view financial data (such as
planned, incurred, and actual amounts) that is related to funds and trade promotions.

checklist code In PeopleSoft Enterprise Campus Solutions, a code that represents a list of planned
or completed action items that can be assigned to a staff member, volunteer, or unit.
Checklists enable you to view all action assignments on one page.

280 PeopleSoft Proprietary and Confidential

Glossary

class In PeopleSoft Enterprise Campus Solutions, a specific offering of a course component
within an academic term.

See also course.

Class ChartField A ChartField value that identifies a unique appropriation budget key when you
combine it with a fund, department ID, and program code, as well as a budget period.
Formerly called sub-classification.

clearance In PeopleSoft Enterprise Campus Solutions, the period of time during which a
constituent in PeopleSoft Contributor Relations is approved for involvement in an
initiative or an action. Clearances are used to prevent development officers from
making multiple requests to a constituent during the same time period.

clone In PeopleCode, to make a unique copy. In contrast, to copymay mean making a
new reference to an object, so if the underlying object is changed, both the copy and
the original change.

cohort In PeopleSoft Enterprise Campus Solutions, the highest level of the three-level
classification structure that you define for enrollment management. You can define a
cohort level, link it to other levels, and set enrollment target numbers for it.

See also populationand division.

collection To make a set of documents available for searching in Verity, you must first create
at least one collection. A collection is set of directories and files that allow search
application users to use the Verity search engine to quickly find and display source
documents that match search criteria. A collection is a set of statistics and pointers
to the source documents, stored in a proprietary format on a file server. Because a
collection can only store information for a single location, PeopleSoft maintains a set
of collections (one per language code) for each search index object.

collection rule In PeopleSoft Receivables, a user-defined rule that defines actions to take for a
customer based on both the amount and the number of days past due for outstanding
balances.

comm key See communication key.

communication key In PeopleSoft Enterprise Campus Solutions, a single code for entering a combination
of communication category, communication context, communication method,
communication direction, and standard letter code. Communication keys (also called
comm keys or speed keys) can be created for background processes as well as for
specific users.

compensation object In PeopleSoft Enterprise Incentive Management, a node within a compensation
structure. Compensation objects are the building blocks that make up a compensation
structure’s hierarchical representation.

compensation structure In PeopleSoft Enterprise Incentive Management, a hierarchical relationship of
compensation objects that represents the compensation-related relationship between
the objects.

condition In PeopleSoft Receivables, occurs when there is a change of status for a customer’s
account, such as reaching a credit limit or exceeding a user-defined balance due.

configuration parameter
catalog

Used to configure an external system with PeopleSoft. For example, a configuration
parameter catalog might set up configuration and communication parameters for an
external server.

configuration plan In PeopleSoft Enterprise Incentive Management, configuration plans hold allocation
information for common variables (not incentive rules) and are attached to a node
without a participant. Configuration plans are not processed by transactions.

PeopleSoft Proprietary and Confidential 281

Glossary

constituents In PeopleSoft Enterprise Campus Solutions, friends, alumni, organizations,
foundations, or other entities affiliated with the institution, and about which the
institution maintains information. The constituent types delivered with PeopleSoft
Enterprise Contributor Relations Solutions are based on those defined by the Council
for the Advancement and Support of Education (CASE).

content reference Content references are pointers to content registered in the portal registry. These are
typically either URLs or iScripts. Content references fall into three categories: target
content, templates, and template pagelets.

context In PeopleCode, determines which buffer fields can be contextually referenced and
which is the current row of data on each scroll level when a PeopleCode program
is running.

In PeopleSoft Enterprise Campus Solutions, a specific instance of a comment or
communication. One or more contexts are assigned to a category, which you link to
3C access groups so that you can assign data-entry or view-only privileges across
functions.

In PeopleSoft Enterprise Incentive Management, a mechanism that is used to
determine the scope of a processing run. PeopleSoft Enterprise Incentive Management
uses three types of context: plan, period, and run-level.

control table Stores information that controls the processing of an application. This type of
processing might be consistent throughout an organization, or it might be used only by
portions of the organization for more limited sharing of data.

cost profile A combination of a receipt cost method, a cost flow, and a deplete cost method. A
profile is associated with a cost book and determines how items in that book are
valued, as well as how the material movement of the item is valued for the book.

cost row A cost transaction and amount for a set of ChartFields.

course In PeopleSoft Enterprise Campus Solutions, a course that is offered by a school and
that is typically described in a course catalog. A course has a standard syllabus and
credit level; however, these may be modified at the class level. Courses can contain
multiple components such as lecture, discussion, and lab.

See also class.

course share set In PeopleSoft Enterprise Campus Solutions, a tag that defines a set of requirement
groups that can share courses. Course share sets are used in PeopleSoft Enterprise
Academic Advisement.

current learning In PeopleSoft Enterprise LearningManagement, a self-service repository for all of a
learner’s in-progress learning activities and programs.

data acquisition In PeopleSoft Enterprise Incentive Management, the process during which raw
business transactions are acquired from external source systems and fed into the
operational data store (ODS).

data elements Data elements, at their simplest level, define a subset of data and the rules by which
to group them.

For Workforce Analytics, data elements are rules that tell the system what measures to
retrieve about your workforce groups.

dataset A data grouping that enables role-based filtering and distribution of data. You can
limit the range and quantity of data that is displayed for a user by associating dataset
rules with user roles. The result of dataset rules is a set of data that is appropriate
for the user’s roles.

delivery method In PeopleSoft Enterprise LearningManagement, identifies the primary type of
delivery method in which a particular learning activity is offered. Also provides

282 PeopleSoft Proprietary and Confidential

Glossary

default values for the learning activity, such as cost and language. This is primarily
used to help learners search the catalog for the type of delivery from which they learn
best. Because PeopleSoft Enterprise LearningManagement is a blended learning
system, it does not enforce the delivery method.

In PeopleSoft Supply Chain Management, identifies the method by which goods are
shipped to their destinations (such as truck, air, rail, and so on). The delivery method is
specified when creating shipment schedules.

delivery method type In PeopleSoft Enterprise LearningManagement, identifies how learning activities can
be delivered—for example, through online learning, classroom instruction, seminars,
books, and so forth—in an organization. The type determines whether the delivery
method includes scheduled components.

directory information tree In PeopleSoft Directory Interface, the representation of a directory’s hierarchical
structure.

division In PeopleSoft Enterprise Campus Solutions, the lowest level of the three-level
classification structure that you define in PeopleSoft Enterprise Recruiting and
Admissions for enrollment management. You can define a division level, link it to
other levels, and set enrollment target numbers for it.

See also population and cohort.

document sequencing A flexible method that sequentially numbers the financial transactions (for example,
bills, purchase orders, invoices, and payments) in the system for statutory reporting
and for tracking commercial transaction activity.

dynamic detail tree A tree that takes its detail values—dynamic details—directly from a table in the
database, rather than from a range of values that are entered by the user.

edit table A table in the database that has its own record definition, such as the Department table.
As fields are entered into a PeopleSoft application, they can be validated against an
edit table to ensure data integrity throughout the system.

effective date Amethod of dating information in PeopleSoft applications. You can predate
information to add historical data to your system, or postdate information in order to
enter it before it actually goes into effect. By using effective dates, you don’t delete
values; you enter a new value with a current effective date.

EIM ledger Abbreviation for Enterprise Incentive Management ledger. In PeopleSoft Enterprise
Incentive Management, an object to handle incremental result gathering within the
scope of a participant. The ledger captures a result set with all of the appropriate traces
to the data origin and to the processing steps of which it is a result.

elimination set In PeopleSoft General Ledger, a related group of intercompany accounts that is
processed during consolidations.

entry event In PeopleSoft General Ledger, Receivables, Payables, Purchasing, and Billing, a
business process that generates multiple debits and credits resulting from single
transactions to produce standard, supplemental accounting entries.

equitization In PeopleSoft General Ledger, a business process that enables parent companies to
calculate the net income of subsidiaries on a monthly basis and adjust that amount
to increase the investment amount and equity income amount before performing
consolidations.

equity item limit In PeopleSoft Enterprise Campus Solutions, the amounts of funds set by the institution
to be awarded with discretionary or gift funds. The limit could be reduced by amounts
equal to such things as expected family contribution (EFC) or parent contribution.
Students are packaged by Equity Item Type Groups and Related Equity Item Types.
This limit can be used to assure that similar student populations are packaged equally.

PeopleSoft Proprietary and Confidential 283

Glossary

event A predefined point either in the Component Processor flow or in the program flow.
As each point is encountered, the event activates each component, triggering any
PeopleCode program that is associated with that component and that event. Examples
of events are FieldChange, SavePreChange, and RowDelete.

In PeopleSoft Human Resources, also refers to an incident that affects benefits
eligibility.

event propagation process In PeopleSoft Sales Incentive Management, a process that determines, through logic,
the propagation of an original PeopleSoft Enterprise Incentive Management event and
creates a derivative (duplicate) of the original event to be processed by other objects.
Sales Incentive Management uses this mechanism to implement splits, roll-ups, and so
on. Event propagation determines who receives the credit.

exception In PeopleSoft Receivables, an item that either is a deduction or is in dispute.

exclusive pricing In PeopleSoft Order Management, a type of arbitration plan that is associated with a
price rule. Exclusive pricing is used to price sales order transactions.

fact In PeopleSoft applications, facts are numeric data values from fields from a source
database as well as an analytic application. A fact can be anything you want to measure
your business by, for example, revenue, actual, budget data, or sales numbers. A
fact is stored on a fact table.

financial aid term In PeopleSoft Enterprise Campus Solutions, a combination of a period of time that the
school determines as an instructional accounting period and an academic career. It
is created and defined during the setup process. Only terms eligible for financial aid
are set up for each financial aid career.

forecast item A logical entity with a unique set of descriptive demand and forecast data that is used
as the basis to forecast demand. You create forecast items for a wide range of uses, but
they ultimately represent things that you buy, sell, or use in your organization and for
which you require a predictable usage.

fund In PeopleSoft Promotions Management, a budget that can be used to fund promotional
activity. There are four funding methods: top down, fixed accrual, rolling accrual, and
zero-based accrual.

gap In PeopleSoft Enterprise Campus Solutions, an artificial figure that sets aside an
amount of unmet financial aid need that is not funded with Title IV funds. A gap can
be used to prevent fully funding any student to conserve funds, or it can be used to
preserve unmet financial aid need so that institutional funds can be awarded.

generic process type In PeopleSoft Process Scheduler, process types are identified by a generic process
type. For example, the generic process type SQR includes all SQR process types,
such as SQR process and SQR report.

gift table In PeopleSoft Enterprise Campus Solutions, a table or so-called donor pyramid
describing the number and size of gifts that you expect will be needed to successfully
complete the campaign in PeopleSoft Contributor Relations. The gift table enables
you to estimate the number of donors and prospects that you need at each gift level
to reach the campaign goal.

GL business unit Abbreviation for general ledger business unit. A unit in an organization that is an
independent entity for accounting purposes. It maintains its own set of accounting
books.

See also business unit.

GL entry template Abbreviation for general ledger entry template. In PeopleSoft Enterprise Campus
Solutions, a template that defines how a particular item is sent to the general ledger.
An item-type maps to the general ledger, and the GL entry template can involve
multiple general ledger accounts. The entry to the general ledger is further controlled

284 PeopleSoft Proprietary and Confidential

Glossary

by high-level flags that control the summarization and the type of accounting—that is,
accrual or cash.

GL Interface process Abbreviation forGeneral Ledger Interface process. In PeopleSoft Enterprise Campus
Solutions, a process that is used to send transactions from PeopleSoft Enterprise
Student Financials to the general ledger. Item types are mapped to specific general
ledger accounts, enabling transactions to move to the general ledger when the GL
Interface process is run.

group In PeopleSoft Billing and Receivables, a posting entity that comprises one or more
transactions (items, deposits, payments, transfers, matches, or write-offs).

In PeopleSoft Human Resources Management and Supply Chain Management, any
set of records that are associated under a single name or variable to run calculations
in PeopleSoft business processes. In PeopleSoft Time and Labor, for example,
employees are placed in groups for time reporting purposes.

incentive object In PeopleSoft Enterprise Incentive Management, the incentive-related objects that
define and support the PeopleSoft Enterprise Incentive Management calculation
process and results, such as plan templates, plans, results data, user interaction objects,
and so on.

incentive rule In PeopleSoft Sales Incentive Management, the commands that act on transactions and
turn them into compensation. A rule is one part in the process of turning a transaction
into compensation.

incur In PeopleSoft Promotions Management, to become liable for a promotional payment.
In other words, you owe that amount to a customer for promotional activities.

initiative In PeopleSoft Enterprise Campus Solutions, the basis from which all advancement
plans are executed. It is an organized effort targeting a specific constituency, and it can
occur over a specified period of time with specific purposes and goals. An initiative
can be a campaign, an event, an organized volunteer effort, a membership drive, or
any other type of effort defined by the institution. Initiatives can be multipart, and
they can be related to other initiatives. This enables you to track individual parts of an
initiative, as well as entire initiatives.

inquiry access In PeopleSoft Enterprise Campus Solutions, a type of security access that permits the
user only to view data.

See also update access.

institution In PeopleSoft Enterprise Campus Solutions, an entity (such as a university or college)
that is independent of other similar entities and that has its own set of rules and
business processes.

item In PeopleSoft Inventory, a tangible commodity that is stored in a business unit
(shipped from a warehouse).

In PeopleSoft Demand Planning, Inventory Policy Planning, and Supply Planning, a
noninventory item that is designated as being used for planning purposes only. It can
represent a family or group of inventory items. It can have a planning bill of material
(BOM) or planning routing, and it can exist as a component on a planning BOM. A
planning item cannot be specified on a production or engineering BOM or routing,
and it cannot be used as a component in a production. The quantity on hand will
never be maintained.

In PeopleSoft Receivables, an individual receivable. An item can be an invoice, a
credit memo, a debit memo, a write-off, or an adjustment.

item shuffle In PeopleSoft Enterprise Campus Solutions, a process that enables you to change a
payment allocation without having to reverse the payment.

PeopleSoft Proprietary and Confidential 285

Glossary

joint communication In PeopleSoft Enterprise Campus Solutions, one letter that is addressed jointly to two
people. For example, a letter might be addressed to both Mr. Sudhir Awat and Ms.
Samantha Mortelli. A relationship must be established between the two individuals in
the database, and at least one of the individuals must have an ID in the database.

keyword In PeopleSoft Enterprise Campus Solutions, a term that you link to particular elements
within PeopleSoft Student Financials, Financial Aid, and Contributor Relations.
You can use keywords as search criteria that enable you to locate specific records in
a search dialog box.

KPI An abbreviation for key performance indicator. A high-level measurement of how well
an organization is doing in achieving critical success factors. This defines the data
value or calculation upon which an assessment is determined.

LDIF file Abbreviation for Lightweight Directory Access Protocol (LDAP) Data Interchange
Format file. Contains discrepancies between PeopleSoft data and directory data.

learner group In PeopleSoft Enterprise LearningManagement, a group of learners who are linked
to the same learning environment. Members of the learner group can share the same
attributes, such as the same department or job code. Learner groups are used to control
access to and enrollment in learning activities and programs. They are also used to
perform group enrollments and mass enrollments in the back office.

learning components In PeopleSoft Enterprise LearningManagement, the foundational building blocks
of learning activities. PeopleSoft Enterprise Learning Management supports six
basic types of learning components: web-based, session, webcast, test, survey, and
assignment. One or more of these learning component types compose a single
learning activity.

learning environment In PeopleSoft Enterprise LearningManagement, identifies a set of categories and
catalog items that can be made available to learner groups. Also defines the default
values that are assigned to the learning activities and programs that are created within a
particular learning environment. Learning environments provide a way to partition the
catalog so that learners see only those items that are relevant to them.

learning history In PeopleSoft Enterprise LearningManagement, a self-service repository for all of a
learner’s completed learning activities and programs.

ledger mapping You use ledger mapping to relate expense data from general ledger accounts to
resource objects. Multiple ledger line items can be mapped to one or more resource
IDs. You can also use ledger mapping to map dollar amounts (referred to as rates)
to business units. You can map the amounts in two different ways: an actual amount
that represents actual costs of the accounting period, or a budgeted amount that can be
used to calculate the capacity rates as well as budgeted model results. In PeopleSoft
Enterprise Warehouse, you can map general ledger accounts to the EW Ledger table.

library section In PeopleSoft Enterprise Incentive Management, a section that is defined in a plan (or
template) and that is available for other plans to share. Changes to a library section are
reflected in all plans that use it.

linked section In PeopleSoft Enterprise Incentive Management, a section that is defined in a plan
template but appears in a plan. Changes to linked sections propagate to plans using
that section.

linked variable In PeopleSoft Enterprise Incentive Management, a variable that is defined and
maintained in a plan template and that also appears in a plan. Changes to linked
variables propagate to plans using that variable.

LMS Abbreviation for learning management system. In PeopleSoft Enterprise Campus
Solutions, LMS is a PeopleSoft Student Records feature that provides a common set
of interoperability standards that enable the sharing of instructional content and data
between learning and administrative environments.

286 PeopleSoft Proprietary and Confidential

Glossary

load In PeopleSoft Inventory, identifies a group of goods that are shipped together. Load
management is a feature of PeopleSoft Inventory that is used to track the weight, the
volume, and the destination of a shipment.

local functionality In PeopleSoft HRMS, the set of information that is available for a specific country.
You can access this information when you click the appropriate country flag in the
global window, or when you access it by a local country menu.

location Locations enable you to indicate the different types of addresses—for a company, for
example, one address to receive bills, another for shipping, a third for postal deliveries,
and a separate street address. Each address has a different location number. The
primary location—indicated by a 1—is the address you use most often and may be
different from the main address.

logistical task In PeopleSoft Services Procurement, an administrative task that is related to hiring
a service provider. Logistical tasks are linked to the service type on the work order
so that different types of services can have different logistical tasks. Logistical tasks
include both preapproval tasks (such as assigning a new badge or ordering a new
laptop) and postapproval tasks (such as scheduling orientation or setting up the service
provider email). The logistical tasks can be mandatory or optional. Mandatory
preapproval tasks must be completed before the work order is approved. Mandatory
postapproval tasks, on the other hand, must be completed before a work order is
released to a service provider.

market template In PeopleSoft Enterprise Incentive Management, additional functionality that is
specific to a given market or industry and is built on top of a product category.

mass change In PeopleSoft Enterprise Campus Solutions, mass change is a SQL generator that can
be used to create specialized functionality. Using mass change, you can set up a
series of Insert, Update, or Delete SQL statements to perform business functions that
are specific to the institution.

See also 3C engine.

match group In PeopleSoft Receivables, a group of receivables items and matching offset items.
The system creates match groups by using user-defined matching criteria for selected
field values.

MCF server Abbreviation for PeopleSoft MultiChannel Framework server. Comprises the
universal queue server and the MCF log server. Both processes are started whenMCF
Servers is selected in an application server domain configuration.

merchandising activity In PeopleSoft Promotions Management, a specific discount type that is associated with
a trade promotion (such as off-invoice, billback or rebate, or lump-sum payment) that
defines the performance that is required to receive the discount. In the industry, you
may know this as an offer, a discount, a merchandising event, an event, or a tactic.

meta-SQL Meta-SQL constructs expand into platform-specific Structured Query Language
(SQL) substrings. They are used in functions that pass SQL strings, such as in SQL
objects, the SQLExec function, and PeopleSoft Application Engine programs.

metastring Metastrings are special expressions included in SQL string literals. The metastrings,
prefixed with a percent (%) symbol, are included directly in the string literals. They
expand at run time into an appropriate substring for the current database platform.

multibook In PeopleSoft General Ledger, multiple ledgers having multiple-base currencies that
are defined for a business unit, with the option to post a single transaction to all base
currencies (all ledgers) or to only one of those base currencies (ledgers).

multicurrency The ability to process transactions in a currency other than the business unit’s base
currency.

PeopleSoft Proprietary and Confidential 287

Glossary

national allowance In PeopleSoft Promotions Management, a promotion at the corporate level that is
funded by nondiscretionary dollars. In the industry, you may know this as a national
promotion, a corporate promotion, or a corporate discount.

need In PeopleSoft Enterprise Campus Solutions, the difference between the cost of
attendance (COA) and the expected family contribution (EFC). It is the gap between
the cost of attending the school and the student’s resources. The financial aid package
is based on the amount of financial need. The process of determining a student’s
need is called need analysis.

node-oriented tree A tree that is based on a detail structure, but the detail values are not used.

pagelet Each block of content on the home page is called a pagelet. These pagelets display
summary information within a small rectangular area on the page. The pagelet provide
users with a snapshot of their most relevant PeopleSoft and non-PeopleSoft content.

participant In PeopleSoft Enterprise Incentive Management, participants are recipients of the
incentive compensation calculation process.

participant object Each participant object may be related to one or more compensation objects.

See also compensation object.

partner A company that supplies products or services that are resold or purchased by the
enterprise.

pay cycle In PeopleSoft Payables, a set of rules that define the criteria by which it should select
scheduled payments for payment creation.

payment shuffle In PeopleSoft Enterprise Campus Solutions, a process allowing payments that have
been previously posted to a student’s account to be automatically reapplied when a
higher priority payment is posted or the payment allocation definition is changed.

pending item In PeopleSoft Receivables, an individual receivable (such as an invoice, a credit
memo, or a write-off) that has been entered in or created by the system, but hasn’t
been posted.

PeopleCode PeopleCode is a proprietary language, executed by the PeopleSoft application
processor. PeopleCode generates results based upon existing data or user actions. By
using business interlink objects, external services are available to all PeopleSoft
applications wherever PeopleCode can be executed.

PeopleCode event An action that a user takes upon an object, usually a record field, that is referenced
within a PeopleSoft page.

PeopleSoft Internet
Architecture

The fundamental architecture on which PeopleSoft 8 applications are constructed,
consisting of a relational database management system (RDBMS), an application
server, a web server, and a browser.

performance measurement In PeopleSoft Enterprise Incentive Management, a variable used to store data (similar
to an aggregator, but without a predefined formula) within the scope of an incentive
plan. Performance measures are associated with a plan calendar, territory, and
participant. Performance measurements are used for quota calculation and reporting.

period context In PeopleSoft Enterprise Incentive Management, because a participant typically
uses the same compensation plan for multiple periods, the period context associates
a plan context with a specific calendar period and fiscal year. The period context
references the associated plan context, thus forming a chain. Each plan context has a
corresponding set of period contexts.

person of interest A person about whom the organization maintains information but who is not part of
the workforce.

288 PeopleSoft Proprietary and Confidential

Glossary

personal portfolio In PeopleSoft Enterprise Campus Solutions, the user-accessible menu item that
contains an individual’s name, address, telephone number, and other personal
information.

plan In PeopleSoft Sales Incentive Management, a collection of allocation rules, variables,
steps, sections, and incentive rules that instruct the PeopleSoft Enterprise Incentive
Management engine in how to process transactions.

plan context In PeopleSoft Enterprise Incentive Management, correlates a participant with
the compensation plan and node to which the participant is assigned, enabling
the PeopleSoft Enterprise Incentive Management system to find anything that is
associated with the node and that is required to perform compensation processing.
Each participant, node, and plan combination represents a unique plan context—if
three participants are on a compensation structure, each has a different plan context.
Configuration plans are identified by plan contexts and are associated with the
participants that refer to them.

plan template In PeopleSoft Enterprise Incentive Management, the base from which a plan is created.
A plan template contains common sections and variables that are inherited by all plans
that are created from the template. A template may contain steps and sections that
are not visible in the plan definition.

planned learning In PeopleSoft Enterprise LearningManagement, a self-service repository for all of
a learner’s planned learning activities and programs.

planning instance In PeopleSoft Supply Planning, a set of data (business units, items, supplies, and
demands) constituting the inputs and outputs of a supply plan.

population In PeopleSoft Enterprise Campus Solutions, the middle level of the three-level
classification structure that you define in PeopleSoft Enterprise Recruiting and
Admissions for enrollment management. You can define a population level, link it to
other levels, and set enrollment target numbers for it.

See also division and cohort.

portal registry In PeopleSoft applications, the portal registry is a tree-like structure in which content
references are organized, classified, and registered. It is a central repository that
defines both the structure and content of a portal through a hierarchical, tree-like
structure of folders useful for organizing and securing content references.

price list In PeopleSoft Enterprise Pricer, enables you to select products and conditions for
which the price list applies to a transaction. During a transaction, the system either
determines the product price based on the predefined search hierarchy for the
transaction or uses the product’s lowest price on any associated, active price lists. This
price is used as the basis for any further discounts and surcharges.

price rule In PeopleSoft Enterprise Pricer, defines the conditions that must be met for
adjustments to be applied to the base price. Multiple rules can apply when conditions
of each rule are met.

price rule condition In PeopleSoft Enterprise Pricer, selects the price-by fields, the values for the price-by
fields, and the operator that determines how the price-by fields are related to the
transaction.

price rule key In PeopleSoft Enterprise Pricer, defines the fields that are available to define price rule
conditions (which are used to match a transaction) on the price rule.

primacy number In PeopleSoft Enterprise Campus Solutions, a number that the system uses to prioritize
financial aid applications when students are enrolled in multiple academic careers and
academic programs at the same time. The Consolidate Academic Statistics process
uses the primacy number indicated for both the career and program at the institutional
level to determine a student’s primary career and program. The system also uses the

PeopleSoft Proprietary and Confidential 289

Glossary

number to determine the primary student attribute value that is used when you extract
data to report on cohorts. The lowest number takes precedence.

primary name type In PeopleSoft Enterprise Campus Solutions, the name type that is used to link the name
stored at the highest level within the system to the lower-level set of names that an
individual provides.

process category In PeopleSoft Process Scheduler, processes that are grouped for server load balancing
and prioritization.

process group In PeopleSoft Financials, a group of application processes (performed in a defined
order) that users can initiate in real time, directly from a transaction entry page.

process definition Process definitions define each run request.

process instance A unique number that identifies each process request. This value is automatically
incremented and assigned to each requested process when the process is submitted to
run.

process job You can link process definitions into a job request and process each request serially
or in parallel. You can also initiate subsequent processes based on the return code
from each prior request.

process request A single run request, such as a Structured Query Report (SQR), a COBOL or
Application Engine program, or a Crystal report that you run through PeopleSoft
Process Scheduler.

process run control A PeopleTools variable used to retain PeopleSoft Process Scheduler values needed
at runtime for all requests that reference a run control ID. Do not confuse these with
application run controls, which may be defined with the same run control ID, but only
contain information specific to a given application process request.

product category In PeopleSoft Enterprise Incentive Management, indicates an application in the
Enterprise Incentive Management suite of products. Each transaction in the PeopleSoft
Enterprise Incentive Management system is associated with a product category.

programs In PeopleSoft Enterprise LearningManagement, a high-level grouping that guides the
learner along a specific learning path through sections of catalog items. PeopleSoft
Enterprise Learning Systems provides two types of programs—curricula and
certifications.

progress log In PeopleSoft Services Procurement, tracks deliverable-based projects. This is similar
to the time sheet in function and process. The service provider contact uses the
progress log to record and submit progress on deliverables. The progress can be logged
by the activity that is performed, by the percentage of work that is completed, or by the
completion of milestone activities that are defined for the project.

project transaction In PeopleSoft Project Costing, an individual transaction line that represents a cost,
time, budget, or other transaction row.

promotion In PeopleSoft Promotions Management, a trade promotion, which is typically funded
from trade dollars and used by consumer products manufacturers to increase sales
volume.

prospects In PeopleSoft Enterprise Campus Solutions, students who are interested in applying to
the institution.

In PeopleSoft Enterprise Contributor Relations, individuals and organizations that are
most likely to make substantial financial commitments or other types of commitments
to the institution.

publishing In PeopleSoft Enterprise Incentive Management, a stage in processing that makes
incentive-related results available to participants.

290 PeopleSoft Proprietary and Confidential

Glossary

rating components In PeopleSoft Enterprise Campus Solutions, variables used with the Equation Editor to
retrieve specified populations.

record group A set of logically and functionally related control tables and views. Record groups
help enable TableSet sharing, which eliminates redundant data entry. Record groups
ensure that TableSet sharing is applied consistently across all related tables and views.

record input VAT flag Abbreviation for record input value-added tax flag. Within PeopleSoft Purchasing,
Payables, and General Ledger, this flag indicates that you are recording input VAT
on the transaction. This flag, in conjunction with the record output VAT flag, is used
to determine the accounting entries created for a transaction and to determine how a
transaction is reported on the VAT return. For all cases within Purchasing and Payables
where VAT information is tracked on a transaction, this flag is set to Yes. This flag
is not used in PeopleSoft Order Management, Billing, or Receivables, where it is
assumed that you are always recording only output VAT, or in PeopleSoft Expenses,
where it is assumed that you are always recording only input VAT.

record output VAT flag Abbreviation for record output value-added tax flag.

See record input VAT flag.

recname The name of a record that is used to determine the associated field to match a value
or set of values.

recognition In PeopleSoft Enterprise Campus Solutions, the recognition type indicates whether
the PeopleSoft Enterprise Contributor Relations donor is the primary donor of a
commitment or shares the credit for a donation. Primary donors receive hard credit that
must total 100 percent. Donors that share the credit are given soft credit. Institutions
can also define other share recognition-type values such as memo credit or vehicle
credit.

reference data In PeopleSoft Sales Incentive Management, system objects that represent the sales
organization, such as territories, participants, products, customers, channels, and so on.

reference object In PeopleSoft Enterprise Incentive Management, this dimension-type object further
defines the business. Reference objects can have their own hierarchy (for example,
product tree, customer tree, industry tree, and geography tree).

reference transaction In commitment control, a reference transaction is a source transaction that is
referenced by a higher-level (and usually later) source transaction, in order to
automatically reverse all or part of the referenced transaction’s budget-checked
amount. This avoids duplicate postings during the sequential entry of the transaction at
different commitment levels. For example, the amount of an encumbrance transaction
(such as a purchase order) will, when checked and recorded against a budget, cause
the system to concurrently reference and relieve all or part of the amount of a
corresponding pre-encumbrance transaction, such as a purchase requisition.

regional sourcing In PeopleSoft Purchasing, provides the infrastructure to maintain, display, and select
an appropriate vendor and vendor pricing structure that is based on a regional sourcing
model where the multiple ship to locations are grouped. Sourcing may occur at a
level higher than the ship to location.

relationship object In PeopleSoft Enterprise Incentive Management, these objects further define a
compensation structure to resolve transactions by establishing associations between
compensation objects and business objects.

remote data source data Data that is extracted from a separate database and migrated into the local database.

REN server Abbreviation for real-time event notification server in PeopleSoft MultiChannel
Framework.

requester In PeopleSoft eSettlements, an individual who requests goods or services and whose
ID appears on the various procurement pages that reference purchase orders.

PeopleSoft Proprietary and Confidential 291

Glossary

reversal indicator In PeopleSoft Enterprise Campus Solutions, an indicator that denotes when a
particular payment has been reversed, usually because of insufficient funds.

role Describes how people fit into PeopleSoft Workflow. A role is a class of users who
perform the same type of work, such as clerks or managers. Your business rules
typically specify what user role needs to do an activity.

role user A PeopleSoft Workflow user. A person’s role user ID serves much the same purpose as
a user ID does in other parts of the system. PeopleSoft Workflow uses role user IDs
to determine how to route worklist items to users (through an email address, for
example) and to track the roles that users play in the workflow. Role users do not need
PeopleSoft user IDs.

roll up In a tree, to roll up is to total sums based on the information hierarchy.

run control A run control is a type of online page that is used to begin a process, such as the
batch processing of a payroll run. Run control pages generally start a program that
manipulates data.

run control ID A unique ID to associate each user with his or her own run control table entries.

run-level context In PeopleSoft Enterprise Incentive Management, associates a particular run (and batch
ID) with a period context and plan context. Every plan context that participates in a run
has a separate run-level context. Because a run cannot span periods, only one run-level
context is associated with each plan context.

search query You use this set of objects to pass a query string and operators to the search engine.
The search index returns a set of matching results with keys to the source documents.

search/match In PeopleSoft Enterprise Campus Solutions and PeopleSoft Enterprise Human
Resources Management Solutions, a feature that enables you to search for and identify
duplicate records in the database.

seasonal address In PeopleSoft Enterprise Campus Solutions, an address that recurs for the same length
of time at the same time of year each year until adjusted or deleted.

section In PeopleSoft Enterprise Incentive Management, a collection of incentive rules that
operate on transactions of a specific type. Sections enable plans to be segmented to
process logical events in different sections.

security event In commitment control, security events trigger security authorization checking, such
as budget entries, transfers, and adjustments; exception overrides and notifications;
and inquiries.

serial genealogy In PeopleSoft Manufacturing, the ability to track the composition of a specific,
serial-controlled item.

serial in production In PeopleSoft Manufacturing, enables the tracing of serial information for
manufactured items. This is maintained in the ItemMaster record.

service impact In PeopleSoft Enterprise Campus Solutions, the resulting action triggered by a service
indicator. For example, a service indicator that reflects nonpayment of account
balances by a student might result in a service impact that prohibits registration for
classes.

service indicator In PeopleSoft Enterprise Campus Solutions, indicates services that may be either
withheld or provided to an individual. Negative service indicators indicate holds that
prevent the individual from receiving specified services, such as check-cashing
privileges or registration for classes. Positive service indicators designate special
services that are provided to the individual, such as front-of-line service or special
services for disabled students.

292 PeopleSoft Proprietary and Confidential

Glossary

session In PeopleSoft Enterprise Campus Solutions, time elements that subdivide a term into
multiple time periods during which classes are offered. In PeopleSoft Contributor
Relations, a session is the means of validating gift, pledge, membership, or adjustment
data entry . It controls access to the data entered by a specific user ID. Sessions are
balanced, queued, and then posted to the institution’s financial system. Sessions must
be posted to enter a matching gift or pledge payment, to make an adjustment, or to
process giving clubs or acknowledgements.

In PeopleSoft Enterprise LearningManagement, a single meeting day of an activity
(that is, the period of time between start and finish times within a day). The session
stores the specific date, location, meeting time, and instructor. Sessions are used for
scheduled training.

session template In PeopleSoft Enterprise LearningManagement, enables you to set up common
activity characteristics that may be reused while scheduling a PeopleSoft Enterprise
Learning Management activity—characteristics such as days of the week, start and
end times, facility and room assignments, instructors, and equipment. A session
pattern template can be attached to an activity that is being scheduled. Attaching a
template to an activity causes all of the default template information to populate
the activity session pattern.

setup relationship In PeopleSoft Enterprise Incentive Management, a relationship object type that
associates a configuration plan with any structure node.

share driver expression In PeopleSoft Business Planning, a named planning method similar to a driver
expression, but which you can set up globally for shared use within a single planning
application or to be shared between multiple planning applications through PeopleSoft
Enterprise Warehouse.

single signon With single signon, users can, after being authenticated by a PeopleSoft application
server, access a second PeopleSoft application server without entering a user ID or
password.

source key process In PeopleSoft Enterprise Campus Solutions, a process that relates a particular
transaction to the source of the charge or financial aid. On selected pages, you can drill
down into particular charges.

source transaction In commitment control, any transaction generated in a PeopleSoft or third-party
application that is integrated with commitment control and which can be checked
against commitment control budgets. For example, a pre-encumbrance, encumbrance,
expenditure, recognized revenue, or collected revenue transaction.

speed key See communication key.

SpeedChart A user-defined shorthand key that designates several ChartKeys to be used for voucher
entry. Percentages can optionally be related to each ChartKey in a SpeedChart
definition.

SpeedType A code representing a combination of ChartField values. SpeedTypes simplify the
entry of ChartFields commonly used together.

staging Amethod of consolidating selected partner offerings with the offerings from the
enterprise’s other partners.

standard letter code In PeopleSoft Enterprise Campus Solutions, a standard letter code used to identify
each letter template available for use in mail merge functions. Every letter generated in
the system must have a standard letter code identification.

statutory account Account required by a regulatory authority for recording and reporting financial
results. In PeopleSoft, this is equivalent to the Alternate Account (ALTACCT)
ChartField.

PeopleSoft Proprietary and Confidential 293

Glossary

step In PeopleSoft Sales Incentive Management, a collection of sections in a plan. Each
step corresponds to a step in the job run.

storage level In PeopleSoft Inventory, identifies the level of a material storage location. Material
storage locations are made up of a business unit, a storage area, and a storage level.
You can set up to four storage levels.

subcustomer qualifier A value that groups customers into a division for which you can generate detailed
history, aging, events, and profiles.

Summary ChartField You use summary ChartFields to create summary ledgers that roll up detail amounts
based on specific detail values or on selected tree nodes. When detail values are
summarized using tree nodes, summary ChartFields must be used in the summary
ledger data record to accommodate the maximum length of a node name (20
characters).

summary ledger An accounting feature used primarily in allocations, inquiries, and PS/nVision
reporting to store combined account balances from detail ledgers. Summary ledgers
increase speed and efficiency of reporting by eliminating the need to summarize
detail ledger balances each time a report is requested. Instead, detail balances are
summarized in a background process according to user-specified criteria and stored on
summary ledgers. The summary ledgers are then accessed directly for reporting.

summary time period In PeopleSoft Business Planning, any time period (other than a base time period) that is
an aggregate of other time periods, including other summary time periods and base
time periods, such as quarter and year total.

summary tree A tree used to roll up accounts for each type of report in summary ledgers. Summary
trees enable you to define trees on trees. In a summary tree, the detail values are really
nodes on a detail tree or another summary tree (known as the basis tree). A summary
tree structure specifies the details on which the summary trees are to be built.

syndicate To distribute a production version of the enterprise catalog to partners.

system function In PeopleSoft Receivables, an activity that defines how the system generates
accounting entries for the general ledger.

TableSet Ameans of sharing similar sets of values in control tables, where the actual data values
are different but the structure of the tables is the same.

TableSet sharing Shared data that is stored in many tables that are based on the same TableSets. Tables
that use TableSet sharing contain the SETID field as an additional key or unique
identifier.

target currency The value of the entry currency or currencies converted to a single currency for budget
viewing and inquiry purposes.

tax authority In PeopleSoft Enterprise Campus Solutions, a user-defined element that combines a
description and percentage of a tax with an account type, an item type, and a service
impact.

template A template is HTML code associated with a web page. It defines the layout of
the page and also where to get HTML for each part of the page. In PeopleSoft, you
use templates to build a page by combining HTML from a number of sources. For
a PeopleSoft portal, all templates must be registered in the portal registry, and each
content reference must be assigned a template.

territory In PeopleSoft Sales Incentive Management, hierarchical relationships of business
objects, including regions, products, customers, industries, and participants.

3C engine Abbreviation forCommunications, Checklists, and Comments engine. In PeopleSoft
Enterprise Campus Solutions, the 3C engine enables you to automate business
processes that involve additions, deletions, and updates to communications, checklists,

294 PeopleSoft Proprietary and Confidential

Glossary

and comments. You define events and triggers to engage the engine, which runs
the mass change and processes the 3C records (for individuals or organizations)
immediately and automatically from within business processes.

3C group Abbreviation for Communications, Checklists, and Comments group. In PeopleSoft
Enterprise Campus Solutions, a method of assigning or restricting access privileges. A
3C group enables you to group specific communication categories, checklist codes,
and comment categories. You can then assign the group inquiry-only access or update
access, as appropriate.

TimeSpan A relative period, such as year-to-date or current period, that can be used in various
PeopleSoft General Ledger functions and reports when a rolling time frame, rather
than a specific date, is required. TimeSpans can also be used with flexible formulas in
PeopleSoft Projects.

trace usage In PeopleSoft Manufacturing, enables the control of which components will be traced
during the manufacturing process. Serial- and lot-controlled components can be
traced. This is maintained in the ItemMaster record.

transaction allocation In PeopleSoft Enterprise Incentive Management, the process of identifying the owner
of a transaction. When a raw transaction from a batch is allocated to a plan context,
the transaction is duplicated in the PeopleSoft Enterprise Incentive Management
transaction tables.

transaction state In PeopleSoft Enterprise Incentive Management, a value assigned by an incentive
rule to a transaction. Transaction states enable sections to process only transactions
that are at a specific stage in system processing. After being successfully processed,
transactions may be promoted to the next transaction state and “picked up” by a
different section for further processing.

Translate table A system edit table that stores codes and translate values for the miscellaneous fields in
the database that do not warrant individual edit tables of their own.

tree The graphical hierarchy in PeopleSoft systems that displays the relationship between
all accounting units (for example, corporate divisions, projects, reporting groups,
account numbers) and determines roll-up hierarchies.

tuition lock In PeopleSoft Enterprise Campus Solutions, a feature in the Tuition Calculation
process that enables you to specify a point in a term after which students are charged a
minimum (or locked) fee amount. Students are charged the locked fee amount even if
they later drop classes and take less than the normal load level for that tuition charge.

unclaimed transaction In PeopleSoft Enterprise Incentive Management, a transaction that is not claimed
by a node or participant after the allocation process has completed, usually due to
missing or incomplete data. Unclaimed transactions may be manually assigned to the
appropriate node or participant by a compensation administrator.

universal navigation header Every PeopleSoft portal includes the universal navigation header, intended to appear at
the top of every page as long as the user is signed on to the portal. In addition to
providing access to the standard navigation buttons (like Home, Favorites, and signoff)
the universal navigation header can also display a welcome message for each user.

update access In PeopleSoft Enterprise Campus Solutions, a type of security access that permits the
user to edit and update data.

See also inquiry access.

user interaction object In PeopleSoft Sales Incentive Management, used to define the reporting components
and reports that a participant can access in his or her context. All Sales Incentive
Management user interface objects and reports are registered as user interaction
objects. User interaction objects can be linked to a compensation structure node
through a compensation relationship object (individually or as groups).

PeopleSoft Proprietary and Confidential 295

Glossary

variable In PeopleSoft Sales Incentive Management, the intermediate results of calculations.
Variables hold the calculation results and are then inputs to other calculations.
Variables can be plan variables that persist beyond the run of an engine or local
variables that exist only during the processing of a section.

VAT exception Abbreviation for value-added tax exception. A temporary or permanent exemption
from paying VAT that is granted to an organization. This terms refers to both VAT
exoneration and VAT suspension.

VAT exempt Abbreviation for value-added tax exempt. Describes goods and services that are not
subject to VAT. Organizations that supply exempt goods or services are unable to
recover the related input VAT. This is also referred to as exempt without recovery.

VAT exoneration Abbreviation for value-added tax exoneration. An organization that has been granted a
permanent exemption from paying VAT due to the nature of that organization.

VAT suspension Abbreviation for value-added tax suspension. An organization that has been granted a
temporary exemption from paying VAT.

warehouse A PeopleSoft data warehouse that consists of predefined ETL maps, data warehouse
tools, and DataMart definitions.

work order In PeopleSoft Services Procurement, enables an enterprise to create resource-based
and deliverable-based transactions that specify the basic terms and conditions for
hiring a specific service provider. When a service provider is hired, the service
provider logs time or progress against the work order.

worker A person who is part of the workforce; an employee or a contingent worker.

workset A group of people and organizations that are linked together as a set. You can use
worksets to simultaneously retrieve the data for a group of people and organizations
and work with the information on a single page.

worksheet Away of presenting data through a PeopleSoft Business Analysis Modeler interface
that enables users to do in-depth analysis using pivoting tables, charts, notes, and
history information.

worklist The automated to-do list that PeopleSoft Workflow creates. From the worklist, you
can directly access the pages you need to perform the next action, and then return to
the worklist for another item.

XML schema An XML definition that standardizes the representation of application messages,
component interfaces, or business interlinks.

yield by operation In PeopleSoft Manufacturing, the ability to plan the loss of a manufactured item on an
operation-by-operation basis.

zero-rated VAT Abbreviation for zero-rated value-added tax. AVAT transaction with a VAT code that
has a tax percent of zero. Used to track taxable VAT activity where no actual VAT
amount is charged. Organizations that supply zero-rated goods and services can still
recover the related input VAT. This is also referred to as exempt with recovery.

296 PeopleSoft Proprietary and Confidential

Index

A
add a container event
classic events 100
guaranteed events 169

add a data source for open data access 225
add a single event
classic events 100
guaranteed events 169

adding records to interface tables 76
additional documentation xvi
advanced planning agent (APAg)
overview 10, 221

APIs
classic real-time events 112
classic XAPI events
EnterpriseOne and third-party
request 124
EnterpriseOne and third-party
response 129
EnterpriseOne-to-EnterpriseOne
executor error handling 152
EnterpriseOne-to-EnterpriseOne
inbound response 151
EnterpriseOne-to-EnterpriseOne
inbound response generation 141,
198
EnterpriseOne-to-EnterpriseOne
outbound request handling 137
EnterpriseOne-to-EnterpriseOne
request generation 137

flat files 87
guaranteed real-time events 180
guaranteed XAPI events
EnterpriseOne and third-party
request 190
EnterpriseOne and third-party
response 193
EnterpriseOne-to-EnterpriseOne
executor error handling 207
EnterpriseOne-to-EnterpriseOne
outbound request handling 196

XML XTS 31
application fundamentals xv

B
batch interface model types
advanced planning agent 221
electronic data interface (EDI) 220
interface tables 217
output stream access (OSA) UBEs 221
table conversion 221

batch interfaces, overview 8, 217
benefits 4
black list, classic events 98, 99
business function calls
defined 13
finding the right business function 14,
15, 16
overview 6

C
call object 52
call object error handling 53
call object error text 54
callobject 49
callobject process 50
capabilities 4, 6
business function calls 6, 13
events 7
flat files 6
XML 6
XPI 7
Z transactions 6, 75

classic events
aggregate event 112, 114
change event status 100
composite event 112, 114
creating logical subscriber 103
defining 92, 100
real-time 109
XAPI 121

environment 100
event sequencing 109
generating real-time events 112
jde.ini configurations 94
journaling 109
network traffic 93
OCM configuration for events 116, 122
overview 91

PeopleSoft Proprietary and Confidential 297

Index

real-time event APIs 112
real-time events 107
jde.ini configurations 111
process 108

reliable delivery 96
error message 97
forced black list 99
minimize duplicate events 97
minimize lost events 97
performance 98
system configurations 97
voluntary black list 98

single event 112, 113
subscription 93, 103, 105, 122
XAPI element name for XML
documents 134
XAPI EnterpriseOne and third-party
client jde.ini 133
inbound response APIs 129
inbound response jde.ini
configuration 132
inbound response process 128
outbound request APIs 124
outbound request jde.ini
configuration 128
outbound request process 123
overview 123

XAPI EnterpriseOne to third-party 119
XAPI EnterpriseOne-to-
EnterpriseOne 121
executor error handling APIs 152
inbound response generation
APIs 141
inbound response handling APIs 151
jde.ini configuration 152
mapping a business function 153
mapping APIs 153
originator and executor 134
originator and executor security 135
outbound request generation
APIs 137
outbound request handling APIs 137
overview 134
process 136

XAPI events 119
XAPI routing information 128
XAPI third-party to EnterpriseOne 120
Z event
sequencing 159

Z events 157

enabling outbound processing 160
flat file cross reference 160
jde.ini configurations 161
process 157
purging data from interface
tables 161
setting up data export controls 162
updating processing log table 160
vendor-specific functions 159

comments, submitting xx
common elements xx
configure a data source for open data
access 226
connect a data source for open data
access 226
connectors
overview 8

contact information xx
copying data into outbound interface
tables 219
creating a composite event for guaranteed
events 182
creating a logical subscriber
guaranteed events 172

creating an aggregate event for guaranteed
events 181
creating business function
documentation 14
cross reference facility
find a business function 15

cross-references xix
Customer Connection website xvi

D
Data Export Control table (F0047) 160,
162, 214, 215
Data Export Controls program
(P0047) 162, 215
debug tools, find a business function 16
defining events
classic events 92, 100
real-time 109
XAPI 121

guaranteed event delivery 168
delete a data source for open data
access 226
delete interface table data 79
documentation
printed xvi
related xvi

298 PeopleSoft Proprietary and Confidential

Index

updates xvi

E
EDI
overview 220

EDI, overview 9
enabling Z event processing 160, 214
EnterpriseOne-to-EnterpriseOne originator
XML sample code 140
error codes for XML callobject 57
error handling
XML dispatch 47

establish session
XML element 19

Event Activation Status table
(F90705) 169
Event Request Definition (P90701) 100
Event Request Definition program
(P907012) 153
Event Request Definition table
(F907012) 153
events 91, 165
See Also classic events; guaranteed
events

overview 7
events self-diagnostic test
real-time event 241

events self-diagnostic tool
all events 241
comprehensive system analysis 242
customize 239
event list 241
event template 242
starting 240
subscription services 242
Z event 241

events self-diagnostic utility tool 237
components 238
event generator component 238
event receiver component 239
executing the tool 240
process overview 237
XML comparator component 239

example code
classic real-time events
interoperability event interface
calls 113, 114

classic XAPI events
EnterpriseOne and third-party inbound
response parsing API usage 130

EnterpriseOne and third-party inbound
response XML 131
EnterpriseOne and third-party
outbound request API usage 124
EnterpriseOne and third-party
outbound request XML 126
EnterpriseOne-to-EnterpriseOne
inbound response 150
EnterpriseOne-to-EnterpriseOne
inbound response parsing API
usage 141
EnterpriseOne-to-EnterpriseOne
originator XML 140
EnterpriseOne-toEnterpriseOne
outbound request parsing API usage
from originator 138

create an XML list 69
delete data from an XML list 73
get column information for an XML
list 73
guaranteed events
creating a composite event 182
creating an aggregate event 181

guaranteed real-time events
interoperability event interface
calls 180

guaranteed XAPI events
EnterpriseOne and third-party inbound
response API usage 193
EnterpriseOne and third-party
outbound request API usage 191
EnterpriseOne-to-EnterpriseOne
inbound response parsing API
usage 198
EnterpriseOne-to-EnterpriseOne
outbound request parsing API
usage 196

minimum required values 259
retrieving data using XML list 72
XML callobject request 56
XML callobject response 56
XML format
events 261
inbound sales order 247
real-time events template 271
request and response 254
Z events 261

XML transaction request and
response 62

expire session

PeopleSoft Proprietary and Confidential 299

Index

XML element 20
explicit transaction
XML element 20

extraction batch process 219

F
F0046 table 160, 161, 214
F0047 table 160, 162, 214, 215
F47002 table 160, 214
F90701 table 215
F907012 table 153
F90702 table 105
F90705 table 169
F986113 table 160, 161, 214
features 3
finding the right business function
create business function documentation

14
review API documentation 14
review business function
documentation 14
use autopilot analyzer tool 15
use cross reference facility 15
use debug tools 16
use existing application as model 15
use object management workbench 15
using an existing application as a
model 15

flat file cross reference for Z events 160,
214
Flat File Cross-Reference program
(P47002) 160, 214
Flat File Cross-Reference table
(F47002) 160, 214
flat file encoding 88
flat files
business function 86
errors 86
inbound flat file conversion program 83
overview 6, 81
setup 82

forced black list for classic event
delivery 99
formats
flat files 82

G
glossary 277
guaranteed events

aggregate event 180
aggregate events 168
associate subscription with subscribed
environment 175
associate subscription with subscribed
events 174
composite events 180
creating logical subscriber 172
creating MQSeries queue 177
configure WebSphere 178
verifying delivery 178

creating MSMQ queue 176
verifying delivery 177

defining 168
EnterpriseOne as XAPI executor
process flow 189

EnterpriseOne as XAPI originator
process flow 187

generating real-time events 179
journaling 168
logging events 168
overview 165
process flow 166
real-time event APIs 180
real-time events 179
single event 180
subscription 172, 174
XAPI element name for XML
documents 194
XAPI EnterpriseOne and
third-party 185, 190
inbound response APIs 193
outbound request APIs 190

XAPI EnterpriseOne-to-
EnterpriseOne 187
executor error handling APIs 207
inbound response generation
APIs 198
mapping a business function 207
mapping APIs 207
originator and executor error
processing 195
originator and executor security 195
outbound request handling APIs 196
overview 194

XAPI events 185
XAPI third-party to EnterpriseOne 186
Z events 211
enabling outbound processing 214
flat file cross reference 214

300 PeopleSoft Proprietary and Confidential

Index

process 211
purging data from interface
tables 214
setting up data export controls 215
subsystem job 214
synchronizing F47002 records with
F90701 records 215
updating processing log table 214
vendor-specific functions 213

I
ID/IDREF support 54
implicit transaction
XML element 20

import flat files
APIs 87
business function 86

inbound processing using interface
tables 219
inbound response API usage EnterpriseOne
and third-party sample code 130, 193
inbound response API usage
EnterpriseOne-to-EnterpriseOne
sample code 141, 198
inbound response XML EnterpriseOne and
third-party sample code 131
inbound response XML EnterpriseOne-to-
EnterpriseOne sample code 150
inbound sales order XML format sample
code 247
increasing performance for classic event
delivery 98
industry standard support 12
interface table
list of processes 243

interface tables
adding records 76
extraction batch process 219
inbound processing 219
outbound processing 219
overview 9, 217
purge data 79
purge records 220
revision application 220
structure 217

interoperability
benefits 4
capabilities 4, 6
features 3
industry standard support 12

model
selecting 11

models 4, 7
overview 3

Interoperability Event Definition program
(P90701A) 168
Interoperability Event Definition table
(F90701) 215
interoperability event interface calls sample
code for classic events 113, 114
interoperability event interface calls sample
code for guaranteed events 180
Interoperability Event Subscription
(P90702) 103, 105
Interoperability Event Subscription
program (P90702) 172
Interoperability Generic Outbound
Scheduler UBE (R00461) 160, 214
Interoperability Generic Outbound
Subsystem UBE (R00460 214
Interoperability Generic Outbound
Subsystem UBE (R00460) 160
Interoperability Subscriber Enrollment
(F90702) 105

J
jde.ini configurations for classic events 94
jde.ini configurations for classic real-time
events 111
jde.ini configurations for classic XAPI
EnterpriseOne and third-party inbound
response 132
jde.ini configurations for classic XAPI
EnterpriseOne and third-party outbound
request 128
jde.ini configurations for classic Z
events 161
jde.ini configurations for EnterpriseOne
and third-party XAPI client 133
jde.ini configurations for reliable
events 99
jde.ini file settings
classic events 94
classic real-time events 111
classic XAPI EnterpriseOne and
third-party
inbound response 132
outbound request 128

classic XAPI EnterpriseOne-to-
EnterpriseOne

PeopleSoft Proprietary and Confidential 301

Index

event generation 152
classic XAPI events
EnterpriseOne and third-party client
settings 133

list-retrieval engine 74
reliable events 99
XML callobject 55
XML dispatch 45
XML list 74
XML transaction 62
XML XTS 39
Z events 161

jdeRequest type
XML element 19

jdeResponse type
XML element 19

K
keywords in the connection string for open
data access 229

L
logical subscriber 103
See Also subscribing to events

M
messaging adapters
overview 8

minimizing duplicate and lost events for
classic event delivery 97
minimum required values sample
code 259
MMA Partners xvi
models 4, 7
advanced planning agent (APAg) 10
batch interfaces 8, 217
connectors 8
EDI 9
interface tables 9
messaging adapters 8
open data access (ODA) 10
output stream access (OSA) 10
table conversion 9

modify a data source for open data
access 226
modify interface table records 220
MQSeries queue for guaranteed
events 177, 178
WebSphere configurations 178

MSMQ queue for guaranteed events 176,
177
multiple requests per document 54

N
name Z transactions 75
notes xix

O
object management workbench
find a business function 15

OCM
for classic real-time events 116
for classic XAPI events 122

ODA 223
See Also open data access

on error handling 53
open data access
add a data source 225
business view names 227
column security 227
configure a data source 226
connect a data source 226
connection string keywords 229
currency 227
decimal shifting 227
delete a data source 226
driver architecture 224
error messages 232
hardware requirements 223
Julian date 227
long column names 227
long table names 227
media object 227
modify a data source 226
ODBC component files 224
overview 223
row security 227
run Excel query 231
software requirements 224
user defined codes 227

open data access (ODA)
overview 10

open data access error messages
access violation 232
attempt to fetch before the first row

232
business view contains invalid join

232

302 PeopleSoft Proprietary and Confidential

Index

business view contains unsupported
union operator 232
column security violation 232
configuration request error 232
cross system joins not supported 232
currency columns can only be simple
column references 232
data cannot be converted 232
data returned for one or more columns
was truncated 232
data source does not exist 232
data source name not valid 232
data truncated 232
driver does not support requested
conversion 232
driver not capable 232
fractional truncation 232
internal data conversion error 232
internal execution error 232
invalid column number 232
invalid cursor state 232
invalid date/time string 232
invalid numeric string 232
invalid request type 232
media object columns can only be simple
column references 232
multiple business views referenced 232
numeric value out of range 232
option value changed 232
server connection failed 232
statement must be a select 232
syntax error 232
unable to allocate memory 232
unable to connect to the EnterpriseOne
environment 232
unable to display connection dialog

232
unable to open business view 232
unable to open table 232
user defined code columns can only be
simple column references 232

outbound batch
subsystem business function 219

outbound processing using interface
tables 219
outbound request API usage EnterpriseOne
and third-party sample code 124, 191
outbound request parsing API usage XAPI
EnterpriseOne-to-EnterpriseOne sample
code 138, 196

outbound request XML EnterpriseOne and
third-party sample code 126
outbound XML request and response format
sample code 254
output stream access (OSA)
overview 10

output stream access (OSA) UBEs
overview 221

overview 3
batch interfaces 8
business function calls 6
classic events 91
real-time events 107
XAPI EnterpriseOne and
third-party 123
XAPI EnterpriseOne-to-
EnterpriseOne 134
XAPI events 119
Z events 157

connectors 8
events 7
flat files 6, 81
guaranteed events 165
real-time events 179
XAPI EnterpriseOne-to-
EnterpriseOne 194
XAPI events 185
Z events 211

messaging adapters 8
open data access 223
XML 6
XPI 7
Z transactions 6

P
P0046 program 160, 214
P0047 program 162, 215
P47002 program 160, 214
P90701 program 100
P907012 program 153
P90701A program 168
P90702 program 103, 105
PeopleBooks
ordering xvi

PeopleCode, typographical
conventions xviii
PeopleSoft application fundamentals xv
Populate Event Activation Status Table
UBE (R90705) 169, 215
prepare/commit/rollback

PeopleSoft Proprietary and Confidential 303

Index

XML element 20
prerequisites xv
printed documentation xvi
Processing Log program (P0046) 160,
214
Processing Log table (F0046) 160, 161,
214
processing log table updates 160, 214
processing real-time events
classic events 108

processing Z events
classic events 157
guaranteed events 211

R
R00460 UBE 160, 214
R00461 UBE 160, 214
R90705 UBE 169, 215
real-time events 107, 179
See Also classic events; guaranteed
events

real-time events template sample
code 271
related documentation xvi
reliable event delivery classic events error
messages 97
reliable event delivery classic events forced
black list 99
reliable event delivery classic events
increase performance 98
reliable event delivery classic events
minimizing duplicate and lost events 97
reliable event delivery classic events system
configurations 97
reliable event delivery classic events
voluntary black list 98
reliable event delivery for classic
events 96
reliable event delivery jde.ini
configurations 99
return NULL values 55
reviewing API and business function
documentation 14
run a subsystem job 77
run an input batch process 76

S
selector 30
self-diagnostic utility tool 237

See Also events self-diagnostic utility
tool

setting up interface tables 217
structure for interface tables 217
subscribing to events
classic event delivery 105
classic events 93, 103
XAPI 122

guaranteed events 172, 174
associating subscription with
subscribed environments 175
associating subscription with
subscribed events 174

Subsystem Job Master table
(F986113) 160, 161, 214
suggestions, submitting xx
system configuration
reliable event delivery 97

T
table conversion
overview 9, 221

terminate session
XML element 21

terms 277
Transformation Service 25
See Also XML XTS

troubleshooting
XML kernels 23

typographical conventions xviii

U
unicode 88
updating the database 76
updating the EnterpriseOne database 76
using Microsoft Except with open data
access 231

V
vendor-specific outbound functions for Z
events 159, 213
visual cues xix
voluntary black list for classic events 98

W
warnings xix
WebSphere configurations
guaranteed events 178

304 PeopleSoft Proprietary and Confidential

Index

X
XAPI events 119, 185
See Also classic events; guaranteed
events

XML
APIs for XTS 31
callobject
errors 57

dispatch kernel 43
kernel troubleshooting 23
overview 6
recognizers for XML Dispatch 44
transports for XML dispatch 44
XML dispatch processing 44
XTS 25, 30
See Also build selector

XTS processing 25
XML and EnterpriseOne 17
XML callobject 49
jde.ini file settings 55
process 50
templates 49

XML dispatch
jde.ini file settings 45

XML documents
EnterpriseOne date standards 21
EnterpriseOne separator standards 21
EnterpriseOne standards 21
formatting 18
callobject 52

XML element
call object
error text 54

XML elements
call object 52
callobject 52
error handling 53
ID/IDREF support 54
multiple requests per document 54
on error handling 53
return null values 55

establish session 19
expire session 20
explicit transaction 20
implicit transaction 20
jdeRequest 19
jdeResponse 19
prepare/commit/rollback 20
terminate session 21

XML example
EnterpriseOne version 1 format 28
native EnterpriseOne format 26
selector creating 31

XML list 65
creating a list 69
deleting a list 73
get column information for a list 73
jde.ini file settings 74
list retrieval engine table conversion
wrapper 66
process 66
requests 68
retrieve data from a list 72

XML list-retrieval engine
jde.ini file settings 74

XML standards
creating documents for
EnterpriseOne 21
date 21
separators 21

XML system environment settings 22
XML system settings
iSeries 22
UNIX 22
windows and NT 23

XML transaction 59
data request process 61
jde.ini file settings 62
update process 59

XPI
overview 7

XTS
jde.ini file settings 39

Z
Z event XML format sample code 261
Z events 157, 211
See Also classic events; guaranteed
events

subsystem job 161
Z table 76
See Also interface table

Z tables 9
Z transaction
adding records to interface tables 76
input batch process 76
subsystem job 76
update confirmation 78
updating EnterpriseOne 76

PeopleSoft Proprietary and Confidential 305

Index

updating the database 76
Z transaction, check for errors 77
Z transactions 219
naming 75
overview 6, 75
processing 75
subsystem jobs 77

306 PeopleSoft Proprietary and Confidential

	toc
	Open Source Disclosure
	Contents
	About This PeopleBook
	PeopleSoft Application Prerequisites
	PeopleSoft Application Fundamentals
	Documentation Updates and Printed Documentation
	Obtaining Documentation Updates
	Ordering Printed Documentation
	Web
	Telephone
	Email

	Additional Resources
	Typographical Conventions and Visual Cues
	Typographical Conventions
	Visual Cues
	Notes
	Warnings
	Cross-References

	Country, Region, and Industry Identifiers
	Country Identifiers
	Region Identifiers
	Industry Identifiers

	Currency Codes

	Comments and Suggestions
	Common Elements Used in PeopleBooks
	PeopleSoft EnterpriseOne Preface
	PeopleSoft Products
	PeopleSoft Interoperability

	Getting Started with PeopleSoft Tools Interoperability
	PeopleSoft Tools Interoperability Overview
	Implementing Interoperability

	Understanding Interoperability
	Interoperability
	Interoperability Features
	Benefits

	Interoperability Models and Capabilities
	PeopleSoft EnterpriseOne Interoperability
	Interoperability Capabilities
	Business Function Calls
	XML
	Z Transactions
	Flat Files
	Events

	Interoperability Models
	XPI
	Connectors
	Messaging Adapters
	Batch Interfaces
	Interface Tables
	EDI
	Table Conversion
	OSA
	APAg/Integration
	ODA

	Selecting an Interoperability Model
	Other Industry Standard Support

	Using Business Function Calls
	Understanding Business Functions
	Reviewing API and business function documentation
	Creating Business Function Documentation
	Using PeopleSoft EnterpriseOne Tools to Find Business Functions
	Using the Object Management Workbench
	Using the Cross Reference Facility
	Using the Analyzer Tool
	Using the Debug Application

	Understanding XML
	XML and PeopleSoft EnterpriseOne
	Formatting XML Documents
	XML Document Format
	Type Element
	Establish Session
	Expire Session
	Explicit Transaction
	Implicit Transaction
	Prepare/Commit/Rollback
	Terminate Session

	XML Standards
	Decimal and Comma Separators
	Date Usage

	Configuring the System Environment
	UNIX
	iSeries
	WIN32

	XML Kernel Troubleshooting

	Understanding XML Transformation Service
	XML Transformation Service
	XTS Processing
	Example: PeopleSoft EnterpriseOne Native XML Format
	Example: PeopleSoft EnterpriseOne Version 1 XML Format

	Building a Custom Selector
	XTS APIs
	Example: Creating a Selector

	Configuring the jde.ini File for XTS
	[JDENET_KERNEL_DEF23]
	[JDE_CG]
	[JDENET]
	[XTSRepository]
	[XTS]

	Understanding XML Dispatch
	XML Dispatch
	XML Dispatch Processing
	XML Dispatch Recognizers
	XML Dispatch Transports
	Configuring the jde.ini File for XML Dispatch
	[JDENET_KERNEL_DEF22]
	[XMLLookupInfo]

	XML Dispatch Error Handling

	Understanding XML CallObject
	XML CallObject
	XML CallObject Templates
	XML CallObject Process
	Formatting XML CallObject Documents
	XML CallObject Document Format
	Call Object
	OnError Handling
	Call Object Error Handling
	Error Text
	Multiple Requests per Document
	ID/IDREF Support
	Return NULL Values

	Configuring the jde.ini File for XML CallObject
	[JDENET_KERNEL_DEF6]
	Example: CallObject Request
	Example: CallObject Response

	XML CallObject Return Codes

	Understanding XML Transaction
	XML Transaction
	XML Transaction Update Process
	XML Transaction Data Request Process
	XML Transaction jde.ini File Configuration
	[JDENET_KERNEL_DEF15]
	Example: Outbound Order Status XML Request & Response Format

	Understanding XML List
	XML List
	List-Retrieval Engine Table Conversion Wrapper
	XML List Process
	XML List Requests
	Using XML List Requests
	Creating a List
	Retrieving Data from a List
	Deleting a List
	Getting Column Information for a List

	List-Retrieval Engine jde.ini File Configuration
	XML List jde.ini File Configuration
	[JDENET_KERNEL_DEF16]

	Processing Z Transactions
	Understanding Z Transactions
	Naming the Transaction
	Adding Records to the Inbound Interface Table
	Running an Update Process
	Running an Input Batch Process
	Running a Subsystem Job

	Checking for Errors
	Confirming the Update
	Purging Data from the Interface Table

	Using Flat Files
	Understanding Flat Files
	Formatting Flat Files
	Setting Up Flat Files
	Using the Flat File Conversion Program
	Forms Used to Convert Flat File Information
	Defining the Flat File Cross Reference Table
	Flat File Cross Reference

	Using a Business Function to Import Flat Files
	Map the F98713 table in the System Data Source
	Ensure the F98713 table Exists in the Business Data Source
	Flat File Conversion Error Messages

	Using APIs to Convert Flat Files
	Forms Used to Convert Flat File Information
	Setting Up Flat File Encoding
	Flat File Encoding Configuration

	Using Events - Classic
	Understanding Events - Classic
	Defining Events
	Reducing Network Traffic

	Subscribing to Events
	Configuring the jde.ini file for Events
	[JDENET_KERNEL_DEF19]
	[JDENET_KERNEL_DEF20]
	[JDENET_KERNEL_DEF22]
	[JDENET_KERNEL_DEF24]
	[JDEITDRV]
	[JDENET]

	Using Reliable Event Delivery
	Understanding Reliable Event Delivery
	Configuring Your System for Reliable Event Delivery
	Reliable Event Error Message
	Minimizing Duplicate and Lost Events
	Increasing Performance
	Voluntary Black List
	Forced Black List

	Configuring the jde.ini File
	[INTEROPERABILITY]
	[NETWORK QUEUE SETTINGS]

	Entering Events
	Understanding Entering Events
	Forms Used to Add Events
	Adding a Single or Container Event
	Event Definition Detail

	Changing the Status of an Event

	Adding Logical Subscriber Records
	Understanding Logical Subscribers
	Forms Used to Add a Logical Subscriber
	Adding a Logical Subscriber

	Entering Subscription Information
	Understanding Subscription Records
	Forms Used to Enter Subscription Information
	Entering a Subscription Record
	Changing the Status of a Subscription

	Using Real-Time Events - Classic
	Understanding Real-Time Events - Classic
	Prerequisites
	Processing Real-Time Events
	Defining Real-Time Events
	Using Event Sequencing
	Using Journaling
	[INTEROPERABILITY]
	[INTEROPERABILITY]

	Configuring the jde.ini for Real-Time Events
	[INTEROPERABILITY]

	Generating Real-Time Events
	Understanding Real-Time Event Generation
	Real-Time Event APIs
	Example: Interoperability Event Interface Calls

	Setting Up the OCM for Real-Time Events
	Understanding the OCM for Real-Time Events
	Forms Used to Set Up the OCM
	Setting Up the OCM for Real-Time Events

	Using XAPI Events - Classic
	Understanding XAPI Events - Classic
	PeopleSoft EnterpriseOne to Third-Party
	Third-Party to PeopleSoft EnterpriseOne
	PeopleSoft EnterpriseOne-to-PeopleSoft EnterpriseOne

	Prerequisites
	Defining XAPI Events
	Subscribing to XAPI Events
	Setting Up the OCM for XAPI Events
	Working with PeopleSoft EnterpriseOne and Third-Party XAPI Event
	Understanding XAPI Event Generation and Third-Party Response
	XAPI Outbound Request Process Flow
	XAPI Outbound Request APIs
	XAPI Outbound Request API Usage Sample Code
	XAPI Outbound Request XML Code Sample
	Routing Information

	XAPI Outbound Request jde.ini File Configuration
	XAPI Inbound Response Process Flow
	XAPI Inbound Response Parsing APIs
	XAPI Inbound Response Parsing API Usage Code Sample
	XAPI Inbound Response Code Sample
	XAPI Inbound Response jde.ini File Configuration
	[XAPI]
	[XMLLookupInfo]

	XAPI Client jde.ini File Configuration
	[JDENET_KERNEL_DEF27]
	[JDENET]

	Working with PeopleSoft EnterpriseOne-to-EnterpriseOne XAPI Even
	Understanding PeopleSoft EnterpriseOne-to-EnterpriseOne XAPI Eve
	Modifying Element Name for XML Documents
	Security for Originator and Executor
	Error Processing for Originator and Executor

	XAPI PeopleSoft EnterpriseOne-to-EnterpriseOne Process Flow
	XAPI Outbound Request Generation APIs
	XAPI Outbound Request Handling APIs
	XAPI Outbound Request Parsing API Usage Sample Code
	XAPI PeopleSoft EnterpriseOne Originator XML Sample Code
	XAPI Inbound Response Generation APIs
	XAPI Inbound Response Parsing API Usage Sample Code
	XAPI Inbound Response from Originator System Sample Code
	XAPI Inbound Response Handling APIs
	XAPI Error Handling APIs
	XAPI PeopleSoft EnterpriseOne-to-EnterpriseOne jde.ini File Conf
	[XAPI]
	[XMLLookupInfo]
	[INTEROPERABILITY]

	Mapping the Business Function
	Understanding Business Function Mapping
	Forms Used to Map a Business Function or API
	Mapping a business function or API

	Using Z Events - Classic
	Understanding Z Events - Classic
	Prerequisites
	Z Event Process Flow
	Z Event Sequencing
	Vendor-Specific Outbound Functions
	Working With Z Events
	Understanding Z Event Processing
	Enabling Z Event Processing
	Updating Flat File Cross-Reference
	Updating the Processing Log Table
	Verifying that the Subsystem Job is Running
	Purging Data from the Interface Table
	Configuring the jde.ini File for Z Events
	[INTEROPERABILITY]

	Setting Up Data Export Controls
	Understanding Data Export Controls Records
	Forms Used to Add a Data Export Controls Record
	Adding a Data Export Control Record

	Using Events - Guaranteed
	Understanding Events - Guaranteed
	Processing Events
	Understanding Events Processing
	Event Aggregate
	Logging Events

	Defining Events
	Understanding Events Definition
	Forms Used to Enter Events
	Adding a Single or Container Event
	Event Definition Detail
	Activating an Event
	Refreshing the Transaction server cache of active events

	Establishing Subscriber and Subscription Information
	Understanding Subscribers and Subscriptions
	Forms Used to Add a Subscriber and Subscription Information
	Adding a Subscriber
	Adding a Subscription
	Associating a Subscription with Subscribed Events
	Associating a Subscription with Subscribed Environments

	Creating MSMQ Queues
	Prerequisites
	Understanding MSMQ
	Creating an MSMQ Real-Time Event Queue
	Verifying Event Delivery

	Creating MQSeries Queues
	Prerequisites
	Understanding MSMQ
	Creating an MQSeries Real-Time Event Queue
	Configuring WebSphere
	Verifying Event Delivery

	Using Real-Time Events - Guaranteed
	Understanding Real-Time Events - Guaranteed
	Generating Real-Time Events
	Understanding Real-Time Event Generation
	Using Real-Time Event APIs
	Interoperability Event Interface Calls Sample Code

	Using XAPI Events - Guaranteed
	Understanding XAPI Events - Guaranteed
	PeopleSoft EnterpriseOne to Third-Party
	Third-Party to PeopleSoft EnterpriseOne
	PeopleSoft EnterpriseOne-to-EnterpriseOne

	Using PeopleSoft EnterpriseOne as a XAPI Originator
	Using PeopleSoft EnterpriseOne as a XAPI Executor
	Working with PeopleSoft EnterpriseOne and Third-Party Systems
	Understanding XAPI Processing between PeopleSoft EnterpriseOne a
	XAPI Outbound Request APIs
	XAPI Outbound Request API Usage Code Sample
	XAPI Inbound Response APIs
	XAPI Inbound Response API Usage Code Sample

	Using PeopleSoft EnterpriseOne-to-Enterprise One Connectivity
	Understanding PeopleSoft EnterpriseOne-to-EnterpriseOne Connecti
	Modify Element Name for XML Documents
	Security for Originator and Executor
	Error Processing for Originator and Executor

	XAPI Outbound Request Handling APIs
	XAPI Outbound Request Parsing API Usage Sample Code
	XAPI Inbound Response Generation APIs
	XAPI Inbound Response Parsing API Usage Sample Code
	XAPI Error Handling APIs

	Mapping a Business Function
	Understanding how to Map a Business Function
	Forms Used to Add Mapping Information
	Adding Mapping Information

	Using Z Events - Guaranteed
	Understanding Z Events - Guaranteed
	Z Event Process Flow
	Vendor-Specific Outbound Functions
	Working With Z Events
	Configuring Z Events
	Enabling Z Event Processing
	Updating Flat File Cross-Reference
	Updating the Processing Log Table
	Verifying that the Subsystem Job is Running
	Purging Data from the Interface Table
	Synchronizing F47002 Records with F90701 Records

	Setting Up Data Export Controls
	Understanding Data Export Controls Records
	Forms Used to Add a Data Export Controls Record
	Adding a Data Export Control Record

	Using Batch Interfaces
	PeopleSoft EnterpriseOne Interface Tables
	Structuring Interface Tables
	Updating PeopleSoft EnterpriseOne Records
	Retrieving PeopleSoft EnterpriseOne Records
	Running an Extraction Batch Process
	Subsystem Business Function

	Using the Revision Application
	Purging Interface Table Information

	Electronic Data Interface
	Table Conversion
	Output Stream Access UBEs
	Advanced Planning Agent Integration

	Using Open Data Access
	Understanding Open Data Access
	Installing ODA
	Hardware Requirements
	Software Requirements
	ODBC Component Files
	ODA Driver Architecture

	Working with Data Sources
	Adding a Data Source
	Modifying a Data Source
	Deleting a Data Source
	Configuring a Data Source
	Connecting a Data Source

	Working with ODA
	Manipulating Data
	Using Keywords in the Connection String
	Running a Query Using Microsoft Excel

	Managing ODA Error Messages

	Events Self-Diagnostic Utility Tool
	Understanding the Events Self-Diagnostic Utility Tool
	Events Self-Diagnostic Utility Tool Process
	Events Self-Diagnostic Utility Tool Components
	Event Generator
	Event Receiver
	XML Comparator

	Customizing the Tool
	Executing the Events Self-Diagnostic Tool
	Executing the Event Self-Diagnostic Tool
	Start the Tool
	Generate/Test Real-Time Event
	Generate/Test Z Event
	Test All Types of Events
	Get Event List
	Get Event Template
	Subscription Services
	Comprehensive System Analysis

	Interoperability Interface Table Information
	Interoperability Interface Table Information

	XML Format Examples (All Parameters)
	Inbound Sales Order XML Format (All Parameters)
	Outbound XML Request and Response Format (All Parameters)
	Request
	Response

	Minimum Required Values Sample Code
	Sales Order Minimum Required Values

	XML Format Examples (Events)
	Example: Z Events XML Format
	Real-Time Events Template

	Glossary of PeopleSoft Terms
	Index

