PeopleSoft.

EnterpriseOne Tools 8.94
PeopleBook: Development Tools:
APIls and Business Functions

November 2004

EnterpriseOne Tools 8.94 PeopleBook: Development Tools: APIs and Business Functions
SKU E1_TOOLS8.94TBF-B 1104
Copyright © 2004 PeopleSoft, Inc. All rights reserved.

All material contained in this documentation is proprietary and confidential to PeopleSoft, Inc. ("PeopleSoft"), protected

by copyright laws and subject to the nondisclosure provisions of the applicable PeopleSoft agreement. No part of this
documentation may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, including, but not
limit?d Sto%electronic, graphic, mechanical, photocopying, recording, or otherwise without the prior written permission of
PeopleSoft.

This documentation is subject to change without notice, and PeopleSoft does not warrant that the material contained in this
documentation is free of errors. Any errors found in this document should be reported to PeopleSoft in writing.

The copyrighted software that accompanies this document is licensed for use only in strict accordance with the applicable
license agreement which should be read carefully as it governs the terms of use of the software and this document, including the
disclosure thereof.

PeopleSoft, PeopleTools, PS/nVision, PeopleCode, PeopleBooks, PeopleTalk, and Vantive are registered trademarks, and Pure
Internet Architecture, Intelligent Context Manager, and The Real-Time Enterprise are trademarks of PeopleSoft, Inc. All other
company and product names may be trademarks of their respective owners. The information contained herein is subject to
change without notice.

Open Source Disclosure

PeopleSoft takes no responsibility for its use or distribution of any open source or shareware software or documentation and
disclaims any and all liability or damages resulting from use of said software or documentation. The following open source
software may be used in PeopleSoft products and the following disclaimers are provided.

Apache Software Foundation

This product includes software developed by the Apache Software Foundation (http://www.apache.org/). Copyright (c)
1999-2000 The Apache Software Foundation. All rights reserved.

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING,

BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE ARE DISCLAIMED. INNO EVENT SHALL THE APACHE SOFTWARE FOUNDATION
ORITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,

OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

OpenSSL
Copyright (¢) 1998-2003 The OpenSSL Project. All rights reserved.

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT "AS IS" AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY

AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT
OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,

OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

SSLeay
Copyright (c) 1995-1998 Eric Young. All rights reserved.

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. INNO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Loki Library
Copyright (¢) 2001 by Andrei Alexandrescu. This code accompanies the book:

Alexandrescu, Andrei. "Modern C++ Design: Generic Programming and Design Patterns Applied". Copyright (c) 2001.
Addison-Wesley. Permission to use, copy, modify, distribute and sell this software for any purpose is hereby granted without
fee, provided that the above copyright notice appear in all copies and that both that copyright notice and this permission notice
appear in supporting documentation.

Contents

General Preface

About This PeopleBooKccoiiiiiiiiiiiii s maar e ix
PeopleSoft Application PrereqUISITES. ... e iX
PeopleSoft Application Fundamentals. e ieaeaaas iX
Documentation Updates and Printed Documentation. ... i e X
Obtaining Documentation Updates. e X
Ordering Printed DoCUMENtatioN. e e X
N (o 11 To T g F= 1 I =TT 10 o= Xi
Typographical Conventions and Visual CUES.oiueiii e e e eeeaaas Xii
Typographical CoNVENtIONS. ... e e e e ettt et e e e Xii
LY 4L | 1= xiii
Country, Region, and Industry Identifiers. Xiii
CUITENCY COUBS. ...ttt et e e e e e et e et e ettt e et et e e e Xiv
Comments and SUGGESTIONS.t e e Xiv
Common Elements Used in PeopleBooKS.o e Xiv
Preface
APls and Business Functions Preface............ccooiiiiiiiiiiiiii i e XVii
PEOPIESOft PrOQUCES. ... e e e XVii
PeopleSoft Tools APl and BUSINESS FUNCLONS.ot e e XVii
Chapter 1
Getting Started with PeopleSoft Tools APIs and Business Functions.......................cees. 1
PeopleSoft Tools APls and Business FUNCLONS OVEIVIEW. ... e aeeaeenes 1
PeopleSoft EnterpriseOne Tools Business Functions and APIs Implementation................................ 1
Chapter 2
WOorking With APIS.eeiiiii e r e ra s srnnnnes 3
UNerstanding AP LS. e e 3
e 3
ComMON LIbrary APIS. e s 3
DatADASE AP LS. ...t e 5
CalliNg APS. ... e 7

PeopleSoft Proprietary and Confidential iii

Contents

Calling an API from an External Business FUNCHON. ... e 7
Calling a Visual Basic Program from PeopleSoft EnterpriseOne Software........................coo. 9
Understanding the SAX Parser. e ettt e 9
B I LS T G = 1T S 9
Examples of SAX Parser USAQe.ooiuuii it e e e e e e e e 10
Example of @ SAX Parsing SEQUENCE.oiiii e 18
Understanding Caching. e et e 19
CaCNING. e 19
The JDECACHE AP St ...t e e et 20
Working With JDECACHE. e ettt et e ettt e 22
P O QUISIEES.\t 22
Understanding JDECACHE Standards.ooiiiiiiiii e e 22
Calling JDECACHE APIS. ...ttt e e e 23
SettiNg Up INAICES.o 24
INitializing the Cache.o e e e 26
Using an Index to Access the Cache. e 27
Using the jdeCachelnit/jJdeCacheTerminate RUlE. ...ttt 28
Using the Same Cache in Multiple Business Functions or Forms...............coooiiiiiiiiii .. 28
Working With JDECACHE CUISOIS.ttt ettt e et e e ettt e et e e e e aee eaeeaaes 28
OpeNiNg @ JDECACHE CUISO. ...ttt et e e e e e 29
Using the JDECACHE data Set.oouuiiiii e e 29
(8 oTo F= Y i1 g Yo T (= To7o o 31
DeletiNng RECOIAS.t e e e 31
Using the jdeCacheFetChPosition APl e 32
Using the jdeCacheFetchPositionByRef APo 32
RESEING the CUISOL. ... e e e 32
ClOSING the CUMSOT. . .ottt ettt e ettt e et e e ettt e ettt ettt e e e e a s 32
Using JDECACHE Multiple CUrsOor SUPPOIt.ui ettt et e e e e ee e aeas 32
Using JDECACHE Partial KeYS.cuuiiiii e e e e e 32
Chapter 3
BUSINESS FUNCHIONS. ... s r e s s s rraaanees s rnrnns 35
Understanding BUuSIiNESS FUNCHIONS. it e 35
Components of @ BUSINESS FUNCHON. e 35
How Distributed Business FUNCHONS WOTK. ..o e 38
C BUSINESS FUNCHONS. ...t e e e e e et et et aea s 39
Business FUNCLON EVENt RUIES. ... e e e 49
Working with Transaction Master Business FUNCLIONS. ... e 51
Creating Transaction Master Business FUNCLONS. e 53

iv PeopleSoft Proprietary and Confidential

Contents

Begin DOCUMENT. ... e e ettt et 55
o T 58
Edit DOCUM BN, e et ettt e e e 60
= o [N o o7 B g 1Y o | 61
(O 1= 07 To1 = 62
(O T Lot I 3 To Yo .41~ 3 | SO0 63
Building Transaction Master Business FUNCHONS. i e 63
SINGIE-RECOIA PrOCESSING. ...ttt et et 64
DOCUMENT PrOCESSING. e ettt ettt ettt e e et ettt ettt e e 65
Understanding Master File Master Business FUNCLIONS. ... e 65
MBF Information StruCtUre. e et 67
Master Business Function Impact on Performance.......... ..o e 68
Working with BUSINESS FUNCHIONS.t ettt e 69
PrErEQUISIEE. e 69
Creating @ CUSTOM DLL.o e ettt 69
Specifying a Custom DLL for a Custom Business Function..................cciiiiiii i 69
Working with Business FUNCHION BUIIAEr. e e caeaeas 70
Setting BUIld OPtiONS. . ..ottt et e 70
Using the Utility Programs. e e e e 71
Reading BUild OUIPUL. ... e e e e e e 71
RESOIVING EFTOrS.ttt e et et e e et e ettt et et 73
Understanding Business Function Processing Failovers............ .o 74
Building All BUSINESS FUNCHONS. ...ttt e e e e e e 74
Understanding Business Function Documentation...............oiiiii i e e 76
Creating Business Function Documentation. 76
Viewing Documentation from Business Function Documentation Viewer..................ccciiiats. 77
Appendix A
PeopleSoft EnterpriseOne APIS.........coviiiiiiiiiiiiiiiiiiiiiiiiiiiii s ssssaasss s nnnnnnns srnnnes 79
GENETAl APIS. . e e 79
o L=1 @7 Y= 1 7=T 10 o R 79
JAECEate GUIASIIING. . ..ot e et e e 80
o L1 TN o (0o 44T o =T ¢ 80
JABGUIATOS NG, . . oottt e e e e e e e e 81
J[o L= = g Tor Y7 o AT 75 82
o L1 LYo Y o) ATV) 7 84
JDB_TextSearchClearSeleCtion. e 85
JDB_TextSearchClearSEqUENCING.ttt ettt e et ettt et e et e e eaeieanas 86
JDB_TexXtSEarChCIOSEVIEW.ottt et ettt e et et 87

PeopleSoft Proprietary and Confidential %

Contents

JDB _TexXtSearChFEtCN. e 87
JDB_TextSearchOPENVIBW. e e e 88
JDB _TexXtSEarChSEIECE. e 89
JDB_TextSearchSetSelECtiON.oii e 90
JDB_TextSearchSetSeqUENCING.ui it e e e e e 92
TextSearChFUIINAEXING.o e et e et 93
TextSearchincrementindeXing.ot e 94
TextSearchINdeXCIEariNg. e e e e 96
TextSearchiNdeXOPtMIZINgG. e ettt 97
Media ObJECE APIS. e e 98
JABGT _ClOSETADIE.t e e e e e 98
jdeGT_DeleteData/jdeGT_DeleteDataKeyStr. e 99
jdeGT_FetchData/[deGT_FetchDataEX.ot e ee e eees 103
jdeGT InsertData/jdeGT _InsertDataKeyStr. 108
JAEGT _OPENTADIE. e e et e 112
jdeGT_SelectData/[deGT_SelectDataKeyStr. ... e 114
jdeGT_UpdateData/jdeGT_UpdateDataKeyStr..........oouuiiii e 118
jdeGTAddUpdate_AlIMOType/ jdeGTAddUpdate_AlIMOTypeKeyStr/ jdeGTAddUpdate _
AlIMOTYPEWItNLANG.o e e e e e e e et 122
jdeGTAddUpdate HTML/jdeGTAddUpdate HTMLKeYStr.........ccviiiniiiii i 126
jdeGTAddUpdate_Image/jdeGTAddUpdate _ImageKeyStr........ccoviiiiiiiii e 129
jdeGTAddUpdate OLE/jdeGTAddUpdate OLEKeEYStr.........c.oviiiiiiii e 133
jdeGTAddUpdate_Shortcut/[deGTAddUpdate _ShortcutKeyStr..............cooiiiiiiii i 136
jdeGTAddUpdate_Text/jdeGTAddUpdate TextKeyStr..........coveeiiiiiiii e eiiee e 140
jdeGTAddUpdate Vendor/jdeGTAddUpdate VendorKeyStr............coooviiiiiiiiiii i 143
jdeGTDelete_AlIHTML/jdeGTDelete AlIHTMLKEYStr.oooiii i e 147
jdeGTDelete_Allimage/jdeGTDelete_ AlllmageKeyStr........vviiiii i eee e 149
jdeGTDelete_AlIMOType/jdeGTDelete AIMOTYPESHT.vviiiiie e 152
jdeGTDelete_AlIOLE/jdeGTDelete_ AlIOLEKEYSHT.uuuee e e 155
jdeGTDelete_AlIShortcut/jdeGTDelete_AlIShortCutKeyStr..........c.vviiii i e 158
jdeGTDelete_AllText/j[deGTDelete AllTextKeyStr.........coooiiiiiiiii e 161
jdeGTDelete_AllVendor/jdeGTDelete AllVendorKeyStr..........oiiniiiiiii i 164
jdeGTDelete HTML/jdeGTDelete HTMLKEYSHI.uiieiiee et ee e 167
jdeGTDelete_Image/jdeGTDelete ImageKeyStr.........ooiriiiiii e 171
jdeGTDelete_ OLE/[deGTDelete_ OLEKEYSHI.t ee e eeees 174
jdeGTDelete_Shortcut/jdeGTDelete_ShortCutKeyStr.........c..vviiiiiiii e 178
jdeGTDelete_Text/jdeGTDelete TextKeyStr.o e 181
jdeGTDelete_Vendor/jdeGTDelete VendorKeyStr.........ooiniiiii e 185
J o LTl I =TTV 5 = - T 188
jdeGTGet_AlIMOType/jdeGTGet_ AlIMOTYPeKEYStr.ot 191

vi

PeopleSoft Proprietary and Confidential

Contents

jdeGTGet_GenericText/jdeGTGet_GenericTextKeyStr..........ooviiii e 195
jdeGTGet HTML/[deGTGet HTMLKEYSH. ... e 198
jdeGTGet_Image/jdeGTGet_ImageKeyStr.o e 202
jdeGTGet_OLE/[AeGTGEt OLEKEYSHI.ttt e et eee e eeees 205
jdeGTGet RTFText/j[deGTGet RTFTexXtKeYStr.o 209
jdeGTGet_Shortcut/jdeGTGet_ShortcutKeyStr. ... 212
jdeGTGet_Vendor/[deGTGet_VendorKeyYSHr.o e eeees 216
jdeGTGetCount/[deGTGetCoUNtKEYSIT. e 220
jdeValidateGTExist/jdeValidate GTEXIStWithKeyStr. 223
Messaging and Workflow APIS. e 227
DOSENAMESSAGEV3.ttt et e e 227
SAX INterface FUNCHONS.o e ettt et ettt a s 230
Structure Used With SAX Parser Interface FUNCLONS.cccoviiiiii e 230
XRCS INIENGING. ...ttt e e e e e e 230
XRCS getParser By Ty P, ittt ettt 230
XRCS_getParser (DOM ONIY).t et et e e e 231
XRCS _SECalIDACK. et e e 231
XRCS_setCallbackWithOption.t ettt ees 232
XRCS _ParSEXMLEFIIE. ... e e et et 233
XRCS ParSEXML St NG, ...ttt e e e e e e 234
XRC S O ParS e e e 234
XRCS_terminateENGine. e 234
Callback FUNCHONS. ...ttt et e e e et e et e e e e 235
ErrOrs @nd WV arningsS. ...ttt e e 235
Callback FUNCHON FOrmat 1. e e e e ettt 236
Callback FUNCHiON FOrmMat 2. e e e e e e 236
Callback FUNCHion Format 3. e e 237
Callback FUNCHON FOrmMat 4.o et e e e et 237
Callback Function Format 5.ooii i e 238
Glossary of PeopleSoft Terms.........ccccoviiiiiiiiiiiiii i i cr e s s e s a i nnnaeees 239
3 o =G 259

PeopleSoft Proprietary and Confidential vii

Contents

viii PeopleSoft Proprietary and Confidential

About This PeopleBook

PeopleBooks provide you with the information that you need to implement and use PeopleSoft applications.
This preface discusses:

» PeopleSoft application prerequisites.

* PeopleSoft application fundamentals.

* Documentation updates and printed documentation.
» Additional resources.

* Typographical conventions and visual cues.

+ Comments and suggestions.

+ Common elements in PeopleBooks.

Note. PeopleBooks document only page elements, such as fields and check boxes, that require additional
explanation. If a page element is not documented with the process or task in which it is used, then either
it requires no additional explanation or it is documented with common elements for the section, chapter,
PeopleBook, or product line. Elements that are common to all PeopleSoft applications are defined in this
preface.

PeopleSoft Application Prerequisites

To benefit fully from the information that is covered in these books, you should have a basic understanding
of how to use PeopleSoft applications.

You might also want to complete at least one PeopleSoft introductory training course, if applicable.

You should be familiar with navigating the system and adding, updating, and deleting information by using
PeopleSoft menus, and pages, forms, or windows. You should also be comfortable using the World Wide Web
and the Microsoft Windows or Windows NT graphical user interface.

These books do not review navigation and other basics. They present the information that you need to use the
system and implement your PeopleSoft applications most effectively.

PeopleSoft Application Fundamentals

Each application PeopleBook provides implementation and processing information for your PeopleSoft
applications. For some applications, additional, essential information describing the setup and design of your
system appears in a companion volume of documentation called the application fundamentals PeopleBook.
Most PeopleSoft product lines have a version of the application fundamentals PeopleBook. The preface of each
PeopleBook identifies the application fundamentals PeopleBooks that are associated with that PeopleBook.

PeopleSoft Proprietary and Confidential ix

General Preface

The application fundamentals PeopleBook consists of important topics that apply to many or all PeopleSoft
applications across one or more product lines. Whether you are implementing a single application, some
combination of applications within the product line, or the entire product line, you should be familiar with
the contents of the appropriate application fundamentals PeopleBooks. They provide the starting points
for fundamental implementation tasks.

Documentation Updates and Printed Documentation

This section discusses how to:

* Obtain documentation updates.

* Order printed documentation.

Obtaining Documentation Updates

You can find updates and additional documentation for this release, as well as previous releases, on the
PeopleSoft Customer Connection website. Through the Documentation section of PeopleSoft Customer
Connection, you can download files to add to your PeopleBook Library. You’ll find a variety of useful and
timely materials, including updates to the full PeopleSoft documentation that is delivered on your PeopleBooks
CD-ROM.

Important! Before you upgrade, you must check PeopleSoft Customer Connection for updates to the upgrade
instructions. PeopleSoft continually posts updates as the upgrade process is refined.

See Also

PeopleSoft Customer Connection, https://www.peoplesoft.com/corp/en/login.jsp

Ordering Printed Documentation

You can order printed, bound volumes of the complete PeopleSoft documentation that is delivered on your
PeopleBooks CD-ROM. PeopleSoft makes printed documentation available for each major release shortly

after the software is shipped. Customers and partners can order printed PeopleSoft documentation by using
any of these methods:

* Web
* Telephone

¢ Email

Web

From the Documentation section of the PeopleSoft Customer Connection website, access the PeopleBooks
Press website under the Ordering PeopleBooks topic. The PeopleBooks Press website is a joint venture
between PeopleSoft and MMA Partners, the book print vendor. Use a credit card, money order, cashier’s
check, or purchase order to place your order.

Telephone
Contact MMA Partners at 877 588 2525.

X PeopleSoft Proprietary and Confidential

Email

General Preface

Send email to MMA Partners at peoplesoftpress@mmapartner.com.

See Also

PeopleSoft Customer Connection, https://www.peoplesoft.com/corp/en/login.jsp

Additional Resources

The following resources are located on the PeopleSoft Customer Connection website:

Resource

Navigation

Application maintenance information

Updates + Fixes

Business process diagrams

Support, Documentation, Business Process Maps

Interactive Services Repository

Interactive Services Repository

Hardware and software requirements

Implement, Optimize + Upgrade, Implementation Guide,
Implementation Documentation & Software, Hardware and
Software Requirements

Installation guides

Implement, Optimize + Upgrade, Implementation Guide,
Implementation Documentation & Software, Installation
Guides and Notes

Integration information

Implement, Optimize + Upgrade, Implementation Guide,
Implementation Documentation and Software, Pre-built
Integrations for PeopleSoft Enterprise and PeopleSoft
EnterpriseOne Applications

Minimum technical requirements (MTRs) (EnterpriseOne
only)

Implement, Optimize + Upgrade, Implementation Guide,
Supported Platforms

PeopleBook documentation updates

Support, Documentation, Documentation Updates

PeopleSoft support policy

Support, Support Policy

Prerelease notes

Support, Documentation, Documentation Updates,
Category, Prerelease Notes

Product release roadmap

Support, Roadmaps + Schedules

Release notes

Support, Documentation, Documentation Updates,
Category, Release Notes

Release value proposition

Support, Documentation, Documentation Updates,
Category, Release Value Proposition

Statement of direction

Support, Documentation, Documentation Updates,
Category, Statement of Direction

PeopleSoft Proprietary and Confidential

Xi

General Preface

Resource Navigation
Troubleshooting information Support, Troubleshooting
Upgrade documentation Support, Documentation, Upgrade Documentation and
Scripts

Typographical Conventions and Visual Cues

This section discusses:

* Typographical conventions.
* Visual cues.
» Country, region, and industry identifiers.

* Currency codes.

Typographical Conventions

This table contains the typographical conventions that are used in PeopleBooks:

Typographical Convention or Visual Cue Description

Bold Indicates PeopleCode function names, business function
names, event names, system function names, method
names, language constructs, and PeopleCode reserved
words that must be included literally in the function call.

Italics Indicates field values, emphasis, and PeopleSoft or other
book-length publication titles. In PeopleCode syntax,
italic items are placeholders for arguments that your
program must supply.

We also use italics when we refer to words as words or
letters as letters, as in the following: Enter the letter O.

KEY+KEY Indicates a key combination action. For example, a plus
sign (+) between keys means that you must hold down
the first key while you press the second key. For ALT+W,
hold down the ALT key while you press the W key.

Monospace font Indicates a PeopleCode program or other code example.

733

(quotation marks) Indicate chapter titles in cross-references and words that
are used differently from their intended meanings.

Xii PeopleSoft Proprietary and Confidential

General Preface

Typographical Convention or Visual Cue Description

.. . (ellipses) Indicate that the preceding item or series can be repeated
any number of times in PeopleCode syntax.

{ } (curly braces) Indicate a choice between two options in PeopleCode
syntax. Options are separated by a pipe (|).

[1 (square brackets) Indicate optional items in PeopleCode syntax.

& (ampersand) When placed before a parameter in PeopleCode syntax,
an ampersand indicates that the parameter is an already
instantiated object.

Ampersands also precede all PeopleCode variables.

Visual Cues

PeopleBooks contain the following visual cues.

Notes

Notes indicate information that you should pay particular attention to as you work with the PeopleSoft system.

Note. Example of a note.

If the note is preceded by Important!, the note is crucial and includes information that concerns what you must
do for the system to function properly.

Important! Example of an important note.

Warnings

Warnings indicate crucial configuration considerations. Pay close attention to warning messages.

Warning! Example of a warning.

Cross-References

PeopleBooks provide cross-references either under the heading “See Also” or on a separate line preceded by
the word See. Cross-references lead to other documentation that is pertinent to the immediately preceding
documentation.

Country, Region, and Industry Identifiers

Information that applies only to a specific country, region, or industry is preceded by a standard identifier in
parentheses. This identifier typically appears at the beginning of a section heading, but it may also appear
at the beginning of a note or other text.

Example of a country-specific heading: “(FRA) Hiring an Employee”

PeopleSoft Proprietary and Confidential Xiii

General Preface

Example of a region-specific heading: “(Latin America) Setting Up Depreciation”

Country Identifiers

Countries are identified with the International Organization for Standardization (ISO) country code.

Region Identifiers

Regions are identified by the region name. The following region identifiers may appear in PeopleBooks:
* Asia Pacific

* Europe

* Latin America

* North America

Industry Identifiers

Industries are identified by the industry name or by an abbreviation for that industry. The following industry
identifiers may appear in PeopleBooks:

* USF (U.S. Federal)
* E&G (Education and Government)

Currency Codes

Monetary amounts are identified by the ISO currency code.

Comments and Suggestions

Your comments are important to us. We encourage you to tell us what you like, or what you would like to
see changed about PeopleBooks and other PeopleSoft reference and training materials. Please send your
suggestions to:

PeopleSoft Product Documentation Manager PeopleSoft, Inc. 4460 Hacienda Drive Pleasanton, CA 94588
Or send email comments to doc@peoplesoft.com.

While we cannot guarantee to answer every email message, we will pay careful attention to your comments
and suggestions.

Common Elements Used in PeopleBooks

Xiv

Address Book Number Enter a unique number that identifies the master record for the entity. An
address book number can be the identifier for a customer, supplier, company,
employee, applicant, participant, tenant, location, and so on. Depending on the
application, the field on the form might refer to the address book number as
the customer number, supplier number, or company number, employee or
applicant id, participant number, and so on.

PeopleSoft Proprietary and Confidential

As If Currency Code

Batch Number

Batch Date

Batch Status

Branch/Plant

Business Unit

Category Code

Company

Currency Code

Document Company

PeopleSoft Proprietary and Confidential

General Preface

Enter the three-character code to specify the currency that you want to use

to view transaction amounts. This code allows you to view the transaction
amounts as if they were entered in the specified currency rather than the
foreign or domestic currency that was used when the transaction was originally
entered.

Displays a number that identifies a group of transactions to be processed by
the system. On entry forms, you can assign the batch number or the system
can assign it through the Next Numbers program (P0002).

Enter the date in which a batch is created. If you leave this field blank, the
system supplies the system date as the batch date.

Displays a code from user-defined code (UDC) table 98/IC that indicates the
posting status of a batch. Values are:

Blank: Batch is unposted and pending approval.

A: The batch is approved for posting, has no errors and is in balance, but it
has not yet been posted.

D: The batch posted successfully.
E: The batch is in error. You must correct the batch before it can post.

P: The system is in the process of posting the batch. The batch is unavailable
until the posting process is complete. If errors occur during the post, the
batch status changes to E.

U: The batch is temporarily unavailable because someone is working with
it, or the batch appears to be in use because a power failure occurred while
the batch was open.

Enter a code that identifies a separate entity as a warehouse location, job,
project, work center, branch, or plant in which distribution and manufacturing
activities occur. In some systems, this is called a business unit.

Enter the alphanumeric code that identifies a separate entity within a
business for which you want to track costs. In some systems, this is called a
branch/plant.

Enter the code that represents a specific category code. Category codes are
user-defined codes that you customize to handle the tracking and reporting
requirements of your organization.

Enter a code that identifies a specific organization, fund, or other reporting
entity. The company code must already exist in the FO010 table and must
identify a reporting entity that has a complete balance sheet.

Enter the three-character code that represents the currency of the transaction.
PeopleSoft EnterpriseOne provides currency codes that are recognized by
the International Organization for Standardization (ISO). The system stores
currency codes in the FO013 table.

Enter the company number associated with the document. This number, used
in conjunction with the document number, document type, and general ledger
date, uniquely identifies an original document.

If you assign next numbers by company and fiscal year, the system uses the
document company to retrieve the correct next number for that company.

XV

General Preface

Document Number

Document Type

Effective Date

Fiscal Period and Fiscal
Year

G/L Date (general ledger
date)

XVi

If two or more original documents have the same document number and
document type, you can use the document company to display the document
that you want.

Displays a number that identifies the original document, which can be a
voucher, invoice, journal entry, or time sheet, and so on. On entry forms, you
can assign the original document number or the system can assign it through
the Next Numbers program.

Enter the two-character UDC, from UDC table 00/DT, that identifies the origin
and purpose of the transaction, such as a voucher, invoice, journal entry,

or time sheet. PeopleSoft EnterpriseOne reserves these prefixes for the
document types indicated:

P: Accounts payable documents.
R: Accounts receivable documents.
T: Time and pay documents.

I: Inventory documents.

O: Purchase order documents.

S: Sales order documents.

Enter the date on which an address, item, transaction, or record becomes
active. The meaning of this field differs, depending on the program. For
example, the effective date can represent any of these dates:

» The date on which a change of address becomes effective.

* The date on which a lease becomes effective

* The date on which a price becomes effective.

* The date on which the currency exchange rate becomes effective.

» The date on which a tax rate becomes effective.

Enter a number that identifies the general ledger period and year. For many
programs, you can leave these fields blank to use the current fiscal period and
year defined in the Company Names & Number program (P0010)

Enter the date that identifies the financial period to which a transaction will be
posted. The system compares the date that you enter on the transaction to the
fiscal date pattern assigned to the company to retrieve the appropriate fiscal
period number and year, as well as to perform date validations.

PeopleSoft Proprietary and Confidential

APIls and Business Functions Preface

This preface discusses the APIs and Business Functions PeopleBook.

PeopleSoft Products

This PeopleBook refers to this PeopleSoft product line: PeopleSoft EnterpriseOne Tools.

PeopleSoft Tools APl and Business Functions

This PeopleBook covers APIs and Business Functions, prepackaged code objects use by the PeopleSoft
EnterpriseOne Tools suite. Its chapters describe APIs and business functions in general, how to call them,
and how to create business functions using Business Function Builder.

PeopleSoft Proprietary and Confidential XVii

Preface

Xviii PeopleSoft Proprietary and Confidential

CHAPTER 1

Getting Started with PeopleSoft Tools APIs
and Business Functions

This chapter provides an overview of APIs and business functions.

PeopleSoft Tools APIs and Business Functions Overview

Use business functions to create complex, reusable routines in C. Business functions can call APIs directly,
and can in turn be invoked from event rules (ER).

Other Sources of Information

In the planning phase of the implementation, take advantage of all PeopleSoft sources of information, including
the installation guides and troubleshooting information. A complete list of these resources appears in the
preface in About These PeopleBooks, with information about where to find the most current version of each.

See Also
About These PeopleBooks Preface

PeopleSoft EnterpriseOne Tools Business Functions
and APIs Implementation

To use business functions with the PeopleSoft EnterpriseOne applications, these tasks must be completed first:

* You must have a valid PeopleSoft EnterpriseOne account.

Depending on how security has been configured, you might need one or more roles assigned to you so that
you can access Object Management Workbench (OMW), the PeopleSoft EnterpriseOne databases, and so
forth.

* OMW must be configured with transfer activity rules and allowed actions so that application development
can occur.

* At a minimum, you must have a default project in OMW to which you have been added in the role of
Developer.

PeopleSoft Proprietary and Confidential 1

Getting Started with PeopleSoft Tools APIs and Business Functions Chapter 1

2 PeopleSoft Proprietary and Confidential

CHAPTER 2

Working with APIs

This chapter provides an overview of the EnterpriseOne implementation of APIs and discusses how to call
APIs.

Understanding APIs

This section discusses APIs.

APls

APIs are routines that perform predefined tasks. PeopleSoft EnterpriseOne APIs make it easier for third-party
applications to interact with PeopleSoft EnterpriseOne software. These APIs are functions that you can use to
manipulate PeopleSoft EnterpriseOne data types, provide common functionality, and access the database.
Several categories of APIs exist, including the Common Library Routines and PeopleSoft EnterpriseOne
Database (JDEBASE) APIs.

Programing with APIs is useful for these reasons:

» No code modifications are required as functionality is upgraded.
* When a data structure changes, source modifications are minimal to nonexistent.

» Common functionality is provided through the APIs, and they are less prone to error.

When the code in an API changes, business functions typically only need to be recompiled and relinked.

Common Library APIs

The Common Library APIs, such as determining whether foreign currency is enabled, manipulating the date
format, retrieving link list information, or retrieving math numeric and date information, are specific to
PeopleSoft EnterpriseOne functionality. You can use these APIs to set up data by calling APIs and modifying
data after API calls. Some of the more commonly used categories of APIs include MATH NUMERIC,
JDEDATE, and LINKLIST. Other miscellaneous Common Library APIs are also available.

PeopleSoft EnterpriseOne provides the data types, MATH NUMERIC and JDEDATE, for use when creating
business functions. Because these data types might change, you must use the Common Library APIs provided
by PeopleSoft EnterpriseOne to manipulate the variables of these data types.

MATH_NUMERIC Data Type

The MATH NUMERIC data type exclusively represents all numeric values in PeopleSoft EnterpriseOne
software. The values of all numeric fields on a form or batch process are communicated to business functions
in the form of pointers to MATH NUMERIC data structures. MATH NUMERIC is used as a data dictionary
(DD) data type.

PeopleSoft Proprietary and Confidential 3

Working with APls

Chapter 2

The data type is defined as follows:

struct

{

tagMATH_NUMERIC

ZCHAR String [MAXLEN_ MATH_NUMERIC+1];/* Just the digits - no separators */

BYTE Sign; /* - 1if negative, 0x00 otherwise */

ZCHAR EditCode; /* The Data Dictionary edit code to Format for display=
*/

short nDecimalPosition; /* # of digits from right end of string to decimal=
point */

short nLength; /* The number of digits in s */

WORD wFlags; /* Processing Flags */

ZCHAR szCurrency [CURRENCY CODE_SIZE];/* The Currency Code */

short nCurrencyDecimals; /* The Number of Currency Decimals */

short nPrecision; /* The Data Dictionary Size */

bi

This table lists various elements:

MATH_NUMERIC Element Description
String Digits without separators
Sign A minus sign indicates the number is negative, otherwise the value is 0x00
EditCode Data dictionary edit code that formats the number for display
nDecimalPosition Number of digits from the right to place the decimal
nLength Number of digits in the string
wFlags Processing flags
szCurrency Currency code
nCurrencyDecimals Number of currency decimals
nPrecision Data dictionary size

JDEDATE Data Type

The JDEDATE data type exclusively represents all dates in PeopleSoft EnterpriseOne software. The values of
all date fields on a form or batch process are communicated to business functions in the form of pointers to
JDEDATE data structures. JDEDATE is used as a data dictionary data type.

This code sample illustrates defining the data type:

struct

{
short
short
short

}i

tagJDEDATE

nYear; ;
nMonth; ;
nDay;

typedef struct tagJDEDATE JDEDATE, FAR *LPJDEDATE;

PeopleSoft Proprietary and Confidential

Chapter 2 Working with APls

This table lists the elements in the JDEDATE data type:

JDEDATE Element Description
nYear Year (4 digits)
nMonth Month
nDay Day

Database APIs

PeopleSoft EnterpriseOne software supports multiple databases. An application can access data from a
number of databases.

Standards and Portability

These standards affect the development of relational databases:

» ANSI (American National Standards Institute) standard.
* X/OPEN (European body) standard.
* ISO (International Standards Institute) SQL standard.

Ideally, industry standards enable users to work identically with different relational database systems.
Although each major vendor supports industry standards, it also offers extensions to enhance the functionality
of the SQL language. Vendors also periodically release upgrades and new versions of their products.

These extensions and upgrades affect portability. Due to the industry impact of software development,
applications need a standard interface to databases that is not affected by differences between database
vendors. When a vendor provides a new release, the affect on existing applications should be minimal. To
solve many of these portability issues, many organizations use standard database interfaces called open
database connectivity (ODBC).

PeopleSoft EnterpriseOne ODBC

PeopleSoft EnterpriseOne ODBC enables you to use one set of functions to access multiple relational database
management systems. Consequently, you can develop and compile applications knowing that they can run

on a variety of database types with the correct database driver. Database drivers are installed that enable

the PeopleSoft EnterpriseOne ODBC interface to communicate with a specific database system using a
database driver.

The driver handles the I/O buffers to the database, which enables a programmer to write an application that
communicates with a generic data source. The database driver is responsible for processing the API request and
communicating with the correct data source. The application does not have to be recompiled to work with other
databases. If the application must perform the same operation with another database, a new driver is loaded.

A driver manager handles all application requests to the PeopleSoft EnterpriseOne database function call. The
driver manager processes the request or passes it to an appropriate driver.

PeopleSoft EnterpriseOne applications access data from heterogeneous databases, using the JDB API to
interface between the applications and multiple databases. Applications and business functions use the JDB
API to dynamically generate platform-specific SQL statements. JDB also supports additional features, such as
replication and cross-data source joins.

PeopleSoft Proprietary and Confidential 5

Working with APls

Chapter 2

Standard JDEBASE API Categories

You can use control and request level APIs to develop and test business functions. This table lists the
categories of JDEBASE APIs:

Category Description
Control Level Provides functions for initializing and terminating the database connection.
Request Level Provides functions for performing database transactions. The request level functions
perform these tasks:
+ Connect to and disconnect from tables and business views in the database.
+ Perform data manipulation operations of select, insert, update, and delete.
* Retrieve data with fetch commands.
Column Level Performs and modifies information for columns and tables.
Global Table/Column Provides the capability to create and manipulate column specifications.
Specifications

Connecting to a Database

To perform a request, the driver manager and driver must manage the information for the development
environment, each application connection, and the SQL statement. The pointers that return this information to
the application are called handles. The APIs must include these handles in each function call. Handles used by
the development environment include these handles:

Handle

Purpose

HENV

The environment handle contains information related to the current database connection and valid
connection handles. Every application connecting to the database must have an environment
handle. This handle is required to connect to a data source.

HUSER

The user handle contains information related to a specific connection. Each user handle has an
associated environment handle with it. A connection handle is required to connect to a data
source. If you are using transaction processing, initializing HUSER indicates the beginning of a
transaction.

HREQUEST

The request handle contains information related to a specific request to a data source. An
application must have a request handle before executing SQL statements. Each request handle is
associated with a user handle.

Understanding Database Communication Steps

Several APIs called in succession can perform these steps for database communication:

« Initialize communication with the database.

* Establish a connection to the specific data to access.

* Execute statements on the database.

¢ Release the connection to the database.

¢ Terminate communication with the database.

PeopleSoft Proprietary and Confidential

Chapter 2

Working with APls

This table lists some of the API levels and the communication handles and API names that are associated

with them:
API Level Communication Handles APl Name
Control level (application or test Environment handle JDB_InitEnv
driver)
Control level (application or test User handle (created) JDB_InitUser

driver)

Request level (business function)

User handle (retrieved)

JDB_InitBhvr

driver)

Request level (business function) Request handle JDB_OpenTable
Request level (business function) Request handle JDB_FetchKeyed()
Request level (business function) Request handle JDB_CloseTable
Request level (business function) User handle JDB_FreeBhvr
Control level (application or test User handle JDB_FreeUser
driver)

Control level (application or test Environment handle JDB_FreeEnv

Calling APIs

This section discusses how to:

e Call an API from an external business function.

* Call a Visual Basic program from PeopleSoft EnterpriseOne software.

Calling an API from an External Business Function

You can call APIs from external business functions. To call an API from an external business function, you
must first determine the function-calling convention of the .dll that you are going to use. It can be either
cdecl or stdcall. The code might change slightly depending on the calling convention. This information
should be included in the documentation for the .dll. If you do not know the calling convention of the .dll,
you can execute thedumpbincommand to determine the calling convention. Execute this command from

the MSDOS prompt window:

dumpbin /EXPORTS ExternalDll.DLL.

Dumpbin displays information about the dll. If the output contains function names preceded by _ and followed
by an @ sign with additional digits, the dll uses the stdcall calling convention; otherwise, it uses cdecl.

Stdcall Calling Convention

This example is standard code for Windows programs and is not specific to PeopleSoft EnterpriseOne software:

PeopleSoft Proprietary and Confidential 7

Working with APls Chapter 2

ifdef JDENV_PC

HINSTANCE hLibrary = LoadLibrary(_TEXT(YOUR_LIBRARY.DLL)); // substitute the name=
of the external dll

if (hLibrary)

{

// create a typedef for the function pointer based on the parameters and return=
type of the function to be called. This information can be obtained

// from the header file of the external dll. The name of the function to be called=
in the following code is StartInstallEngine. We create a typedef for

// a function pointer named PFNSTARTINSTALLENGINE. Its return type is BOOL. Its=
parameters are HUSER, LPCTSTR, LPCTSTR, LPTSTR & LPTSTR.

// Substitute these with parameter and return types for your particular API.
typedef BOOL (*PFNSTARTINSTALLENGINE) (HUSER, LPCTSTR, LPCTSTR, LPTSTR, LPTSTR) ;

// Now create a variable for your function pointer of the type you just created.—
Then make call to GetProcAddress function with the first

// parameter as the handle to the library you just loaded. The second parameter=

should be the name of the function you want to call prepended

// with an , and appended with an @ followed by the total number of bytes for=
your parameters. In this example, the total number of bytes in the

// parameters for StartInstallEngine is 20 (4 bytes for each parameter). The Get=
ProcAddress API will return a pointer to the function that you need to

// call.

PFNSTARTINSTALLENGINE lpfnStartInstallEngine = (PFNSTARTINSTALLENGINE) GetProc=

Address (hLibrary, _StartInstallEngine@20) ;

if (lpfnStartInstallEngine)

{

// Now call the API by passing in the requisite parameters.
lpfnStartInstallEngine (hUser, szObjectName, szVersionName, pszObjectText, szObject=
Type) ;

}

#endif

Cdecl Calling Convention

The process for using the cdecl calling convention is similar to the process for using the std calling convention.
They differ principally in the second parameter for GetProcAddress. Note the comments that precede that call.

ifdef JDENV_PC

HINSTANCE hLibrary = LoadLibrary(TEXT (YOUR _LIBRARY.DLL)); // substitute the name=
of the extermnal dll

if (hLibrary)

{

// create a typedef for the function pointer based on the parameters and return—=
type of the function to be called. This information can be obtained

// from the header file of the external dll. The name of the function to be called=
in the following code is StartInstallEngine. We create a typedef for

// a function pointer named PFNSTARTINSTALLENGINE. Its return type is BOOL. Its=
parameters are HUSER, LPCTSTR, LPCTSTR, LPTSTR & LPTSTR.

// Substitute these with parameter and return types for your particular API.
typedef BOOL (*PFNSTARTINSTALLENGINE) (HUSER, LPCTSTR, LPCTSTR, LPTSTR, LPTSTR);

// Now create a variable for your function pointer of the type you just created.=

8 PeopleSoft Proprietary and Confidential

Chapter 2 Working with APls

Then make call to GetProcAddress function with the first

// parameter as the handle to the library you just loaded. The second parameter—
should be the name of the function you want to call. In this

// case it will be StartInstallEngine only. The GetProcAddress API will return a=
pointer to the function that you need to call.

PFNSTARTINSTALLENGINE lpfnStartInstallEngine = (PFNSTARTINSTALLENGINE) GetProc=

Address (hLibrary, StartInstallEngine) ;

if (lpfnStartInstallEngine)

{

// Now call the API by passing in the requisite parameters.
lpfnStartInstallEngine (hUser, szObjectName, szVersionName, pszObjectText, szObject=
Type) ;

}

#endif

Note. These calls work only on a Windowsclientmachine. LoadLibrary and GetProcAddress are Windows
APIs. If the business function is compiled on aserver, the compile will fail.

Calling a Visual Basic Program from PeopleSoft
EnterpriseOne Software

You can call a Visual Basic program from a PeopleSoft EnterpriseOne business function and pass a parameter
from the Visual Basic program to the PeopleSoft EnterpriseOne business function using this process:

1. Write the Visual Basic program into a Visual Basic .dll that exports the function name of the program and
returns a parameter to the PeopleSoft EnterpriseOne business function.

2. Write a business function that loads the Visual Basic .dll using the win32 function LoadLibrary.

In the business function that you create, call the win32 function GetProcAddress to get the Visual Basic
function and call it.

See Also

EnterpriseOne Tools 8.94 PeopleBook: Configurable Network Computing Implementation, “Object
Configuration Manager”

Understanding the SAX Parser

This chapter discusses the SAX parser and provides examples for its use.

The SAX Parser

The SAX parser is one of two main parsers used for XML data. It is an events-based parser, as opposed to the
other XML parser, DOM, which is a tree-based parser. The Xerces product, from the Apache organization,
provides both XML parsers. The Xerces code is written in C++. To make XML parsing available to business
functions, a C-API interface, XercesWrapper, exists to provide access to both parsers. The design of the
parsers is quite different, and that provides advantages for each parser, depending on the intended usage.

PeopleSoft Proprietary and Confidential 9

Working with APls Chapter 2

10

The DOM parser reads the XML file and builds an internal model (DOM document tree) of that file in
memory. This has the advantage of enabling you to traverse the tree, retrieve parent-child relationships, and
revisit the same data multiple times. The disadvantages include high memory requirements for large XML
files. Also, the entire XML file must be read into memory before any of the data in the DOM document tree
can begin to be processed. The DOM parser can also be used to programmatically build a DOM document tree
in memory, and then write that tree to a file, in XML format.

The SAX parser reads an XML file and as each item is read, the parser passes that piece of data to callback
functions. This methodology has the advantage of enabling fast processing with minimal memory usage. Also,
the parsing can be stopped after a specific item has been found. The disadvantages include that the current
state of parsing must be maintained by the callback functions, and previous data items can not be revisited
without re-reading the XML file. Finally, the SAX parser is a read-only parser.

This is a typical sequence used for parsing an XML data file using the DOM parser:

Initialize the XercesWrapper, which in turn, initializes the Xerces code.
Initialize the DOM parser.
Parse the XML data file.

Retrieve a pointer to the root element of the DOM document tree.

wok wh =

Retrieve additional elements and data, by traversing the DOM document tree.
The callback functions are called whenever the specified events in the XML file are parsed.
Free all DOM elements that have been retrieved.

6
7. Free the DOM document tree.
8. Free the DOM parser.

9

Terminate the XercesWrapper interface, which in turn, closes the Xerces code.
This is a typical sequence used for parsing an XML data file, using the SAX parser:
Initialize the XercesWrapper, which in turn, initializes the Xerces code.
Initialize the SAX parser.

Set up various callback functions for specific parsing events.

Parse the XML data file.
Call the callback functions as each event in the XML file is parsed.

A

Within the callback functions, process the retrieved data and maintain a context for coordination between
callback functions.

Free the SAX parser.

~

8. Terminate the XercesWrapper interface, which in turn, closes the Xerces code.

Examples of SAX Parser Usage

Many of the initialization, parsing, and termination functions are the same for both SAX and DOM parsers.
The major difference is that the DOM parser returns a document handle which is then used with the traversing
and data retrieval functions. Those functions are not used with SAX. SAX does all of the data processing
within the user-defined callback functions. The callback functions are not used with DOM.

PeopleSoft Proprietary and Confidential

Chapter 2 Working with APls

The processing of SAX-parsed data items occurs within the callback functions. Typically, each callback
function maintains a context. The context can be passed to all callback functions and can be implemented
as a data structure. The context, plus the other data passed to the callback functions, enables each data item
to be processed appropriately.

Example Context Data Structure
This is a sample function which uses the SAX parser:

typedef struct tagParserCallbackvValues {
FILE *fp;
JCHAR *szIndentString;
int nIndentLevel;

} ZCALLBACK VALUES, *PCALLBACK VALUES;

Example Main Function
This is a sample context data structure:

/* SAX callbacks - display callback events into file */
int testcase read 15(JCHAR *m_infile, JCHAR *m outfile)
{

XRCS_Status XRCSStatus;

XRCS_hParser hParser;

ZCALLBACK _VALUES zCbValues;

PCALLBACK VALUES pCbValues = &zCbValues;

/* initialize context structure */
pCbvValues->fp = NULL;
pCbvValues->szIndentString = _J(" ") ;
pCbValues->nIndentLevel = 0;

/* open display file */
pCbValues->fp = jdeFopen(m outfile, J("w"));

if (pCbValues->fp != NULL)

XRCSStatus = XRCS_initEngine() ;
if (XRCSStatus != XRCS SUCCESS) {

return -1;

XRCSStatus = XRCS_getParserByType (&hParser, XRCS_SAX PARSER_TYPE) ;
if (XRCSStatus != XRCS SUCCESS) ({

return -1;

XRCSStatus = XRCS_ setCallback (hParser, XRCS CALLBACK START DOC,
(void *) cb startDoc Display, (void *) pCbValues) ;
if (XRCSStatus != XRCS SUCCESS) ({

return -1;

PeopleSoft Proprietary and Confidential 1"

Working with APls Chapter 2

/* set up callbacks for the SAX parser */

XRCSStatus = XRCS setCallback (hParser, XRCS_ CALLBACK END DOC,
(void *) cb_endDoc Display, (void *) pCbValues) ;

if (XRCSStatus != XRCS SUCCESS) {

return -1;

XRCSStatus = XRCS_ setCallback (hParser, XRCS CALLBACK START ELEM,
(void *) cb_startElement Display, (void *) pCbValues) ;
if (XRCSStatus != XRCS SUCCESS) {

return -1;

XRCSStatus = XRCS_ setCallback (hParser, XRCS CALLBACK END ELEM,
(void *) cb_endElement Display, (void *) pCbValues) ;
if (XRCSStatus != XRCS SUCCESS) {

return -1;

XRCSStatus = XRCS_setCallback (hParser, XRCS CALLBACK CHARACTERS,
(void *) cb_characters Display, (void *) pCbValues) ;
if (XRCSStatus != XRCS SUCCESS) {

return -1;

XRCSStatus = XRCS_ setCallback (hParser,

XRCS_CALLBACK IGNORABLE WHITESPACE,

(void *) cb_ignorableWhitespace Display, (void *) pCbValues) ;
if (XRCSStatus != XRCS_SUCCESS)

return -1;

XRCSStatus = XRCS_ setCallback (hParser, XRCS CALLBACK FATAL ERROR,
(void *) cb_fatalError Display, (void *) pCbValues) ;
if (XRCSStatus != XRCS_SUCCESS)

return -1;

XRCSStatus = XRCS setCallback (hParser, XRCS CALLBACK ERROR,
(void *) cb_error Display, (void *) pCbValues) ;
if (XRCSStatus != XRCS_SUCCESS)

return -1;

XRCSStatus = XRCS_ setCallback (hParser, XRCS CALLBACK WARNING,
(void *) cb_warning Display, (void *) pCbValues) ;
if (XRCSStatus != XRCS_SUCCESS)

return -1;

12 PeopleSoft Proprietary and Confidential

Chapter 2

Working with APls

/* now do the actual parsing */
XRCSStatus = XRCS parseXMLFile (hParser,m infile, NULL) ;
if (XRCSStatus != XRCS_SUCCESS) {

return -1;

XRCSStatus = XRCS_freeParser (hParser) ;
XRCSStatus = XRCS terminateEngine() ;

/* close display file */
jdeFclose (pCbValues->£fp) ;

}

else

{

/* could not open display file */

return -1;

return 0;

Example Callback Functions

These are sample callback functions:

/* callbacks for display of SAX parser events */
XRCS CallbackStatus cb startDoc Display(void *pContext)

{

PCALLBACK VALUES pCbValues = (PCALLBACK VALUES) pContext;

indentNewLine (pCbValues) ;
jdeFprintf (pCbValues->fp, _J("START DOCUMENT")) ;
return(XRCS_ CB CONTINUE) ;

XRCS CallbackStatus cb_endDoc Display(void *pContext)

{

PCALLBACK_VALUES pCbValues = (PCALLBACK VALUES) pContext;

indentNewLine (pCbValues) ;

jdeFprintf (pCbValues->fp, J("END DOCUMENT")) ;
indentNewLine (pCbValues) ;

return(XRCS_CB_CONTINUE) ;

XRCS CallbackStatus cb startElement Display(void *pContext,
const JCHAR *gzUri,
const JCHAR *szLocalname,

PeopleSoft Proprietary and Confidential 13

Working with APls Chapter 2

const JCHAR *szQname,
unsigned int nNumAttrs,
const XRCS ATTR_INFO *pAttributes)

PCALLBACK VALUES pCbValues = (PCALLBACK VALUES) pContext;
unsigned int nAttrNum;
const XRCS ATTR_ INFO * thisAttr = NULL;

pCbValues->nIndentLevel++;

/* display element name */

indentNewLine (pCbValues) ;

jdeFprintf (pCbValues->fp, J("ELEMENT: ")) ;
if (jdeStrlen(szLocalname) != 0)

{

jdeFprintf (pCbvalues->fp, J("<%1s"), szLocalname) ;

}

else
{
jdeFprintf (pCbValues->fp, J("<%1ls"), szQname) ;
}
/* display attributes */
if (nNumAttrs > 0U)

{

for (nAttrNum = 0U; nAttrNum < nNumAttrs; nAttrNum++)
{

thisAttr = &pAttributes [nAttrNum];

/* display attrribute name */

indentNewLine (pCbValues) ;

jdeFprintf (pCbvalues->fp, J(" ATTR: ")) ;

if (jdeStrlen(thisAttr->szAttrLocalname) != 0)

{

jdeFprintf (pCbvalues->fp, _J("%1s"),
thisAttr->szAttrLocalname) ;

}

else
{
jdeFprintf (pCbValues->fp, J("%$1ls"), thisAttr->szAttrQname) ;
}
/* display attribute value */
jdeFprintf (pCbvalues->fp, J(" \""));
jdeFprintf (pCbValues->fp, J("%$1ls"), thisAttr->szAttrValue);
jdeFprintf (pCbValues->fp, _J("\""));
}
indentNewLine (pCbValues) ;
}
/* display close of element name */
jdeFprintf (pCbValues->fp, J(">"));
return(XRCS_CB_CONTINUE) ;

14 PeopleSoft Proprietary and Confidential

Chapter 2 Working with APls

XRCS_CallbackStatus cb_endElement Display Terminate (void *pContext,
const JCHAR *gzUri,
const JCHAR *szLocalname,

const JCHAR *szQname)
PCALLBACK VALUES pCbValues = (PCALLBACK VALUES) pContext;

indentNewLine (pCbValues) ;
jdeFprintf (pCbvalues->fp, J("END _ELM: ")) ;

if (jdeStrlen(szLocalname) != 0)
{
jdeFprintf (pCbValues->fp, J("</%$1ls>"), szLocalname) ;
}
else
{
jdeFprintf (pCbvValues->fp, J("</%$1ls>"), szQname) ;
}

pCbValues->nIndentLevel--;
return(XRCS CB_TERMINATE) ;

XRCS CallbackStatus cb endElement Display(void *pContext,
const JCHAR *szUri,
const JCHAR *gzLocalname,
const JCHAR *szQname)

PCALLBACK_VALUES pCbValues = (PCALLBACK VALUES) pContext;

indentNewLine (pCbValues) ;
jdeFprintf (pCbValues->fp, J("END ELM: ")) ;

if (jdeStrlen(szLocalname) != 0)
{
jdeFprintf (pCbValues->fp, J("</%1ls>"), szLocalname) ;
}
else
{
jdeFprintf (pCbValues->fp, J("</%$ls>"), szQname);

}

pCbValues->nIndentLevel--;
return(XRCS CB CONTINUE) ;

XRCS_ CallbackStatus cb _warning Display(void *pContext,
XRCS_CallbackType eCallbackType,
int nLineNum,
int nColNum,
const JCHAR *szPublicId,
const JCHAR *szSystemId,
const JCHAR *szMessage)

PeopleSoft Proprietary and Confidential 15

Working with APls Chapter 2

PCALLBACK VALUES pCbValues = (PCALLBACK VALUES) pContext;

indentNewLine (pCbValues) ;
jdeFprintf (pCbValues->fp, J("Warning: ")) ;

jdeFprintf (pCbValues->fp, J(" %1ls (%1ls) - %1ls found at Column %d
Line %d"), szSystemId, szPublicId, szMessage, nColNum, nLineNum) ;

return(XRCS_CB_CONTINUE) ;

XRCS CallbackStatus cb error Display(void *pContext,
XRCS CallbackType eCallbackType,
int nLineNum,
int nColNum,
const JCHAR *gzPublicId,
const JCHAR *szSystemld,
const JCHAR *szMessage)

PCALLBACK VALUES pCbValues = (PCALLBACK VALUES) pContext;

indentNewLine (pCbValues) ;
jdeFprintf (pCbvalues->fp, J("Error: "));

jdeFprintf (pCbValues->fp, J(" %1ls (%1ls) - %ls found at Column %d
Line %d"), szSystemId, szPublicId, szMessage, nColNum, nLineNum) ;

return(XRCS_CB_CONTINUE) ;

XRCS CallbackStatus cb_ fatalError Display(void *pContext,
XRCS CallbackType eCallbackType,
int nLineNum,
int nColNum,
const JCHAR *gzPublicId,
const JCHAR *szSystemld,
const JCHAR *szMessage)

PCALLBACK_VALUES pCbValues = (PCALLBACK VALUES) pContext;

indentNewLine (pCbValues) ;

jdeFprintf (pCbValues->fp, J("Fatal Error: "));

jdeFprintf (pCbValues->fp, J(" %1ls (%1ls) - %1ls found at Column %d Line %d"),
szSystemId, szPublicId, szMessage, nColNum, nLineNum) ;

return(XRCS_CB_TERMINATE) ;

XRCS_CallbackStatus cb_characters Display(void *pContext,
const JCHAR *szText)

PCALLBACK VALUES pCbValues = (PCALLBACK VALUES) pContext;
int nTextLen;
int nTextRemaining;

int nTextPieceLen;

16 PeopleSoft Proprietary and Confidential

Chapter 2

int nTextStartPosition;

jdeStrlen(szText)
indentNewLine (pCbValues) ;

nTextLen =

jdeFprintf (pCbValues->fp,
if

{

(hasPrintingChars(szText,

/* initial gquote */
jdeFprintf (pCbValues->fp,

/* actual text,

_J("CHARS:

Working with APls

"))
nTextLen) == TRUE)
_J("\""), szText);

output in blocks of 10000 characters */

/* jdeFprintf will not work with very large strings */

nTextLen;
0;

(nTextRemaining > 0)

nTextRemaining =
nTextStartPosition =

while

{

if

nTextPiecelLen

}

else

{

nTextPiecelLen =

}

jdeFprintf (pCbValues->fp,

(JCHAR *)

nTextRemaining -=

(nTextRemaining > 10000)

10000;

nTextRemaining;

_J("%$.*1s"), nTextPieceLen,

& (szText [nTextStartPosition])) ;

nTextPiecelLen;

nTextStartPosition += nTextPiecelLen;

}
/* trailing quote */
jdeFprintf (pCbValues->fp,

}

return(XRCS_CB_CONTINUE) ;

_J("\""),

szText) ;

XRCS CallbackStatus cb ignorableWhitespace Display(void *pContext,

const JCHAR *szText)

PCALLBACK VALUES pCbValues =
int nTextLen;

nTextLen = jdeStrlen(szText)
indentNewLine (pCbValues) ;
jdeFprintf (pCbValues->fp,
if

{

(hasPrintingChars (szText,
jdeFprintf (pCbValues->fp,

}

return(XRCS_CB_CONTINUE) ;

PeopleSoft Proprietary and Confidential

_J("IGNORABLE WHITESPACE:

_J("\"%ls\""),

(PCALLBACK VALUES) pContext;

7

"))

nTextLen) TRUE)

szText) ;

17

Working with APls Chapter 2

void indentNewLine (PCALLBACK VALUES pCbValues)

{

int nIndent = 0;

jdeFprintf (pCbvValues->fp,
_J("\n"));

while (nIndent < pCbValues->nIndentLevel)

{
jdeFprintf (pCbValues->fp, J("%1ls"), pCbValues->szIndentString) ;
nIndent++;

BOOL hasPrintingChars(const JCHAR *szText, int nTextLen)

{

BOOL bHasPrinting = FALSE;

int nText = 0;

/* true if contains any printing characters */
/* false if all blanks or control characters */

while (nText < nTextLen)

{

if (szText [nText] > J(' '))

{

bHasPrinting = TRUE;

break;

}

nText++;

}

return(bHasPrinting) ;

Example of a SAX Parsing Sequence

This is an example of the sequence of callback functions called, for an example string of XML data. Before
parsing, these callback functions were set up:

* cb_startAllElements for start-of-element event type.

* cb_endAllElements for end-of-element event type.

* cb_startElementl for start-of-element, with optional name specified as "elapsedTime."
* cb_endElement1 for end-of-element, with optional name specified as "elapsedTime."

* cb_chars for characters event type.

* cb_allCharacters for characters, with optional setting for characters after elements.

» cb_fatalError for fatal-error event type.

The example XML string to be parsed is:

18 PeopleSoft Proprietary and Confidential

Chapter 2 Working with APls

<main>startMain<elapsedTime>123</elapsedTime>endMain</main>
This callback sequence results from parsing this XML string:

* cb_startAllElements for main.

* cb_chars for startMain.

* cb_allCharacters for startMain.

* cb_startAllElements for elapsedTime.
* cb_startElementl for elapsedTime.

* cb_chars for /23.

* cb_allCharacters for /23.

* cb_endAllElements for elapsedTime.
* cb_endElementl1 for elapsedTime.

* cb_allCharacters for endMain.

* cb_endAllElements for main.

* cb_fatalError is not called while parsing this example XML string.

Understanding Caching

This chapter discusses caching and the JDECACHE API.

Caching

Caching is a process that stores a local copy of frequently accessed content of remote objects. Caching can
improve performance. EnterpriseOne software caches information in these ways:

* The system automatically caches some tables, such as those associated with constants, when it reads them
from the database at startup.

It caches these tables to a user’s workstation or to a server for faster data access and retrieval.
* Individual applications can be enabled to use cache.

JDECACHE APIs enable the server or workstation memory to be used as temporary storage.

JDECACHE is a component of JDEKRNL that can hold any type of indexed data that the application needs
to store in memory, regardless of the platform on which the application is running; therefore, an entire table
can be read from a database and stored in memory. No limitations exist regarding the type of data, size of
data, or number of data caches that an application can have, other than the limitations of the computer on
which it is running. Both fixed-length and variable-length records are supported. To use JDECACHE on any
supported platform, you need to know only a simple set of API calls.

Data handled by JDECACHE is in RAM. Therefore, ensure that you really need to use JDECACHE. If
you use JDECACHE, design the records and indices carefully. Minimize the number of records that you
store in JDECACHE because PeopleSoft EnterpriseOne software and various other applications need this
memory as well.

PeopleSoft Proprietary and Confidential 19

Working with APls Chapter 2

20

JDECACHE supports multiple cursors, multiple indexes, and partial keys processing. JDECACHE is flexible
in terms of positioning within the cache for data manipulation, which improves performance by reducing
searching within the cache.

The JDB environment creates, manages, and destroys the JDECACHE environment. Each cache that you use
within the JDECACHE environment is associated with a JDB user. Therefore, you must call JDB_InitBhvr
API before you call any of the JDECACHE APIs.

When to Use JDECACHE
Here is a scenario that highlights when an application might use the JDECACHE APIs.

You use workfiles when an application must store records that a user enters in a detail area until OK processing
is activated upon theButton Clickedevent. On OK processing, all records must be simultaneously updated to
the database. This is similar to transaction processing. For example, in the detail area of purchase order detail,
if a user enters 30 lines of information and then decides to cancel the transaction, all records in the workfile are
deleted and nothing is written to the database. As the user exits each detail row, editing takes place for each
field, and then that record is written to the workfile.

If you implement this situation without using workfiles, irreversible updates to database tables occur when the
user exits each row. Using workfiles enables you to limit updates to tables so that they only occur on OK
button processing, and they are included in a transaction boundary. The workfile defines a data boundary for
the grid for processing purposes. This is useful when multiple applications or processes (such as business
functions) must access the data in the workfile for updates and calculations.

Using cache might increase performance in some cases. You can use JDECACHE to store in memory the
records that the user enters in one purchase order. The number of records that you store depends on the cache
buffer size for each record, the local memory size, the location in which the business function that you use
runs (for example, server or workstation), and so on. Typically, you should not store more than 1000 records.
For example, do not cache the entire Address Book table in memory.

Performance Considerations
Follow these guidelines to get the best JDECACHE performance:

» Cache as few records as possible.
» The fewer columns (segments) that you use, the faster the search, insert, and delete actions occur.

In some cases, the system might have to compare each column before it determines whether to go further in
the cache.

» The fewer records in the cache, the faster all operations proceed.

The JDECACHE API set

You use a set of public APIs to interact with JDECACHE. You must understand how the JIDECACHE APIs are
organized to implement them effectively.

JDECACHE Management APls
You can manage cache using the JDECACHE management APIs for these purposes:

* Setting up the cache.
* Clearing the cache.

* Terminating the cache.

PeopleSoft Proprietary and Confidential

Chapter 2 Working with APls

Use the jdeCacheGetNumRecords and jdeCacheGetNumCursors APIs to retrieve cache statistics. They
are only passed the HCACHE handle. All other JDECACHE management APIs should always be passed
these handles:

* HUSER
+ HCACHE

These two handles are essential for cache identification and cache management.
The set of JDECACHE management APIs consist of these APIs:

+ jdeCachelnit

*» jdeCachelnitMultipleIndex

* jdeCachelnitUser

+ jdeCachelnitMultipleIndexUser
+ jdeCacheGetNumRecords

* jdeCacheGetNumCursors

+ jdeCacheClear

» jdeCacheTerminate

+ jdeCacheTerminateAll

The jdeCachelnit and jdeCachelnitMultipleIndex APIs initialize the cache uniquely per user. Therefore,

if a user logs in to the software and then runs two sessions of the same application simultaneously, the two
application sessions will share the same cache. Consequently, if the first application deletes a record from the
cache, the second application cannot access the record. Conversely, if two users log in to the software and then
run the same application simultaneously, the two application sessions have different caches. Consequently,

if the first application deletes a record from its cache, the second application will still be able to access the
record in its own cache.

The jdeCachelnitUser and jdeCachelnitMultipleIndexUser APIs initialize the cache uniquely per
application. Therefore, if a user logs in to the software and then runs two sessions of the same application
simultaneously, the two application sessions will have different caches. Consequently, if the first application
deletes a record from its cache, the second application can still access the record in its own cache.

JDECACHE Manipulation APIs

You can use the JDECACHE manipulation APIs for retrieving and manipulating the data in the cache. Each
API implements a cursor that acts as pointer to a record that is currently being manipulated. This cursor is
essential for navigation within the cache. JDECACHE manipulation APIs should be passed handles of
these types:

+ HCACHE
Identifies the cache that is being worked.
+ HIDECURSOR

Identifies the position in the cache that is being worked.
The set of JDECACHE manipulation APIs contain these APIs:

* jdeCacheOpenCursor
+ jdeCacheResetCursor

PeopleSoft Proprietary and Confidential 21

Working with APls Chapter 2

+ jdeCacheAdd

+ jdeCacheFetch

+ jdeCacheFetchPosition

+ jdeCacheUpdate

+ jdeCacheDelete

+ jdeCacheDeleteAll

+ jdeCacheCloseCursor

+ jdeCacheFetchPositionByRef
+ jdeCacheSetIndex

+ jdeCacheGetIndex

Working with JDECACHE

22

This chapter provides an overview of JDECACHE standards and discusses how to:

» Call IDECACHE APIs.

* Set up indices.

* Initialize the cache.

» Use an index to access the cache.

* Use the jdeCachelnit/jdeCacheTerminate rule.

» Use the same cache in multiple business functions or forms.

Prerequisites

Before you can use JDECACHE, you must initialize a cache. You must define an index before you initialize a
cache. The index specifies to the cache which fields in a record are used to uniquely identify a cache record.
You must create a separate cache for each group of data that an index references.

Understanding JDECACHE Standards

It is recommended that you apply several standards when using JDECACHE. This section discusses the
standards for business functions and programming.

The cache business function name should follow the standard naming convention for business functions.
Cache Business Function Source Description

These standards apply to source descriptions for cache business functions:

* The cache business function description must follow the business function description standards.
» The first word must be the noun, Cache.

* The second word must be the verb, Process.

PeopleSoft Proprietary and Confidential

Chapter 2 Working with APls

* For an individual cache function, the words following Process should describe the cache. For a common
cache function, the words following Process should describe the group to which the individual cache
functions belong.

These standards apply to cache business function descriptions:

« If the source file contains an individual function, the function name must match the source name.

» If the source file contains a group of cache functions, the individual function names must follow the same
standards as the Cache Business Function Source Description standards.

Cache Programming Standards
A variety of cache programming standards apply:

* General standards.

* Cache termination instead of clearing.

* Cache name.

» Cache data structure definition.

* Data structure standard data items.

* Cache action code standards.

» Group cache business function header file.

 Individual cache business function header file.

Calling JDECACHE APIs

JDECHACHE APIs must be called in a certain order. This list defines the order in which the
JDECACHE-related APIs must be called:

Call JDB_InitBhvr.

Create index or indices.

Call jdeCachelnit or jdeCachelnitMultipleIndex.
Call jdeCacheAdd.

Call jdeCacheOpenCursor.

Call JDECACHE Operations.

At JDECACHE Operations, the actual JDECACHE APIs can be called in any order. The operations in this list
of IDECACHE operations can occur in any order:

* jdeCacheFetch

* jdeCacheOpenCursor (the second cursor)
* jdeCacheFetchPosition

* jdeCacheUpdate

* jdeCacheDelete

* jdeCacheDeleteAll

* jdeCacheResetCursor

SN

* jdeCacheCloseCursor (if the second cursor is opened)

PeopleSoft Proprietary and Confidential 23

Working with APls Chapter 2

24

» jdeCacheCloseCursor
» jdeCacheTerminate
* JDB_FreeBhvr

Setting Up Indices

To store or retrieve any data in JDECACHE, you must set up at least one index that consists of at least one
column. The index is limited to a maximum of 25 columns (which are called segments) in the index structure.
Use the data type provided to tell the cache manager what the index looks like. You must provide the number
of columns (segments) in the index and the offset and size of each column in the data structure. To maximize
performance, minimize the number of segments.

This code is the definition of the structure that holds index information:

#define JDECM_MAX UM_SEGMENTS 25
struct _JDECMKeySegment

short int nOffset; /* Offset from beginning of structure in bytes */
short int nSize; /* Size of data item in bytes */
int idDataType; /* EVDT_MATH NUMERIC or EVDT STRING*/

} JDECMKEYSEGMENT ;
struct _JDECMKeyStruct

short int nNumSegments;

JDECMKEYSEGMENT CacheKey [JDECM_MAX NUM SEGMENTS] ;
} JDECMINDEXSTRUCT;

Observe these rules when you create indices in JDECACHE:

» Always declare the index structure as an array that holds one element for single indexes.

Declare the index structure as an array that holds more than one element for multiple indexes. You can
create an unlimited number of indexes.

* Always use memset () for the index structure.

When you use memset () for multiple indexes, multiply the size of the index structure by the total number
of indexes.

» Always assign as elements the number of segments that correspond to the number of columns that you
have in the CacheKey array.

* Always use of fsetof () to indicate the offset of a column in the structure that contains the columns.

This example illustrates a single index with multiple fields:
/* Example of single index with multiple fields.*/
JDECMINDEXSTRUCT Index[1] = {0};
memset (&dsCache, 0x00, sizeof (dsCache)) ;
/* Initialize cache. */
Index->nNumSegments=5;
Index->CacheKey[0] .nOffset=offsetof (DSCACHE, szEdiUserId) ;
Index->CacheKey[0] .nSize=DIM (dsCache.szEdiUserId) ;
Index->CacheKey [0] .idDataType=EVDT STRING;
Index->CacheKey[1l] .nOffset=offsetof (DSCACHE, szEdiBatchNumber) ;
Index->CacheKey[1l] .nSize=DIM(dsCache.szEdiBatchNumber) ;

PeopleSoft Proprietary and Confidential

Chapter 2

Index->CacheKey [1]
Index->CacheKey[2]
Index->CacheKey[2]
Index->CacheKey[2]
Index->CacheKey [3]
Index->CacheKey [3]
Index->CacheKey [3]
Index->CacheKey [4]
Index->CacheKey [4]
Index->CacheKey [4]

.nSize

.idDataType=EVDT_ STRING;
.nOffset=offsetof (DSCACHE, szEdiTransactNumber) ;
.nSize=DIM(dsCache.szEdiTransactNumber) ;
.idDataType=EVDT STRING;
.nOffset=offsetof (DSCACHE, mnEdiLineNumber) ;
.nSize=sizeof (dsCache.mnEdiLineNumber) ;
.idDataType:EVDT_MATH_NUMERIC;
.nOffset=offsetof (DSCACHE.cErrorCode) ;

= 1;

.idDataType=EVDT CHAR

The flag, idDataType, indicates the data type of the particular key.

This example illustrates a cache with multiple indices and multiple fields:

Memset (jdecmIndex, 0x00, sizeof (JDECMINDEXSTRUCT) *2) ;

jdecmIndex [0] .
jdecmIndex [0
jdecmIndex [0
jdecmIndex [0
jdecmIndex [0
jdecmIndex [0
jdecmIndex [0
jdecmIndex [0
jdecmIndex [0
jdecmIndex [0

1.
1.
1.
1.
1.
1.
1.
1.
1.
jdecmIndex [0] .
jdecmIndex[0] .
jdecmIndex [0] .
jdecmIndex[0] .
jdecmIndex[0] .
jdecmIndex[0] .
jdecmIndex [0] .
jdecmIndex [0] .
jdecmIndex [0] .
jdecmIndex[0] .

nKeyID=1;

nNumSegments=6;

CacheKey [0]
CacheKey [0]
CacheKey [0]
CacheKey [1]
CacheKey [1]
CacheKey [1]
CacheKey [2]
CacheKey [2]
CacheKey [2]
CacheKey [3]
CacheKey [3]
CacheKey [3]
CacheKey [4]
CacheKey [4]
CacheKey [4]
CacheKey [5]
CacheKey [5]
CacheKey [5]

.nOffset=o0ffsetof (I1000042,szCostCenter) ;
.nSize=DIM(dsI1000042.szCostCenter) ;
.idDataType=EVDT STRING;
.nOffset=o0ffsetof (I1000042, szObjectAccount) ;
.nSize=DIM(dsI1000042.sz0bjectAccount) ;
.idDataType=EVDT_ STRING;
.nOffset=0ffsetof (11000042, szSubsidiary) ;
.nSize=DIM(dsI1000042.szSubsidiary) ;
.idDataType=EVDT STRING;
.nOffset=o0ffsetof (I1000042, szSubledger) ;
.nSize=DIM(dsI1000042.szSubledger) ;
.idDataType=EVDT_ STRING;
.nOffset=offsetof (I1000042, szSubledgerType) ;
.nSize=1;

.idDataType=EVDT STRING;
.nOffset=o0ffsetof (I1000042, szCurrencyCodeFrom) ;
.nSize=DIM(dsI1000042.szCurrencyCodeFrom) ;
.idDataType=EVDT_ STRING;

dkhkkkhkkhkkhkkkkhkkkkdkkxhkkxkkkxkkxkx KREY 2 khkkkkhkkhkkhkhkkhkhkhkkhhkkhkkhhkdhkhkkhhdkhkhkkrhkkhx*

jdecmIndex[1
jdecmIndex[1

1.
1.
jdecmIndex[1] .
jdecmIndex[1] .
jdecmIndex[1] .
jdecmIndex[1] .
jdecmIndex[1] .
jdecmIndex[1] .
jdecmIndex[1] .
jdecmIndex[1] .
jdecmIndex[0] .
jdecmIndex[1] .
jdecmIndex[1] .
jdecmIndex[1] .

nKeyID=2;

nNumSegments=7;

CacheKey [0]
CacheKey [0]
CacheKey [0]
CacheKey [1]
CacheKey [1]
CacheKey [1]
CacheKey [2]
CacheKey [2]
CacheKey [2]
CacheKey [3]
CacheKey [3]
CacheKey [3]

PeopleSoft Proprietary and Confidential

.nOffset=o0ffsetof (I1000042, szEliminationGroup) ;
.nSize=DIM(dsI1000042.szEliminationGroup) ;
.idDataType=EVDT_ STRING;
.nOffset=offsetof (I1000042, szCostCenter) ;
.nSize=DIM(dsI1000042.szCostCenter) ;
.idDataType=EVDT STRING;
.nOffset=o0ffsetof (I1000042, szObjectAccout) ;
.nSize=DIM(dsI1000042.sz0bjectAccount) ;
.idDataType=EVDT_ STRING;
.nOffset=0ffsetof (11000042, szSubsidiary) ;
.nSize=DIM(dsI1000042.szSubsidiary) ;
.idDataType=EVDT STRING;

Working with APls

25

Working with APls Chapter 2

jdecmIndex [1] .CacheKey [4] .nOffset=0ffsetof (11000042, szSubledger) ;
jdecmIndex[1] .CacheKey[4] .nSize=DIM(dsI1000042.szSubledger) ;
jdecmIndex[1] .CacheKey [4] .idDataType=EVDT_STRING;

jdecmIndex[1] .CacheKey [5] .nOffset=0ffsetof (I1000042, szSubledgerType) ;
jdecmIndex[1] .CacheKey [5] .nSize=1;
jdecmIndex[1] .CacheKey [5] .idDataType=EVDT_ STRING;

jdecmIndex [1] .CacheKey [6] .nOffset=0ffsetof (11000042, szCurrencyCodeFrom) ;
jdecmIndex[0] .CacheKey[6] .nSize=DIM(dsI1000042.szCurrencyCodeFrom) ;
jdecmIndex [0] .CacheKey [6] .idDataType=EVDT_STRING;

Initializing the Cache

After you set up the index or indices, call jdeCachelnit or jdeCachelnitMultipleIndex to initialize (create)
the cache. Pass a unique cache name so that JIDECACHE can identify the cache. Pass the index to this API so
that the JDECACHE knows how to reference the data that will be stored in the cache. Because each cache
must be associated with a user, you must also pass the user handle obtained from the call to JDB_InitUser.
This API returns an HCACHE handle to the cache that IDECACHE creates. This handle appears in every
subsequent JDECACHE API to identify the cache.

The keys in the index must be identical for every jdeCachelnit and jdeCachelnitMultipleIndex call for
that cache until it is terminated. The keys in the index must correspond in number, order, and type for that
index each time that it is used.

After the cache has been initialized successfully, JIDECACHE operations can take place using the JDECACHE
APIs. The cache handle obtained from jdeCachelnit must be passed for every JDECACHE operation.
JDECACHE makes an internal Index Definition Structure that accesses the cache when it is populated.

Example: Index Definition Structure
In this scenario, assume that each record that the cache stores has this structure:

int nlntl

JCHAR cLetterl
JCHAR cLetter2
JCHAR cLetter3
JCHAR szArray (5)

The next step is to determine which values to use to index each record in the cache uniquely. In this example,
assume that these values are required:

e nIntl
* cLetterl
* cLetter3

Pass that information to jdeCachelnit, and JDECACHE creates this Index Definition Structure for internal
use. The Index Definition Structure is for STRUCT letters:

26 PeopleSoft Proprietary and Confidential

Chapter 2 Working with APls

Index Key No. Index Key Offset Index Key Offset
Index Key #1 0 INTEGER
Index Key #2 4 JCHAR
Index Key #3 6 JCHAR

Example of an index definition structure

Using an Index to Access the Cache

When you use an index to access the cache, the keys in the index that are sent to the API must correspond to
the keys of the index used in the call to jdeCachelnit for that cache in number, order, offset positions, and
type. Therefore, if a field that was used in the index passed to jdeCachelnit offsets position 99, it must also
offset position 99 in the index structure that passed to JDECACHE access API.

You should use the same index structure that was used for the call to jdeCachelnit whenever you call an API
that requires an index structure.

The next example illustrates why the index offsets must be specified for the jdeCachelnit and how they are
used when a record is to be retrieved from the cache. It describes how the passed key is used in conjunction
with the JDECACHE internal index definition structure to access cache records.

Example: JDECACHE Internal Index Definition Structure

In this example, assume that the user is looking for a record that matches these index key values:

JDECACHE accesses the values that you pass in the structure at the byte offsets that were defined in the
call to jdeCachelnit.

JDECACHE compares the values 1, c, and i that it retrieves from the passed structure to the corresponding
values in each of the cache records at the corresponding byte offset. The cache records are stored as the
structures that were inserted into the cache by jdeCacheAdd, which is the same structure as the one you pass
first. The structure that matches the passed key is the second structure to which HCUR1 points.

You should never create a smaller structure that contains just the key to access the cache. Unlike most indexing
systems, JDECACHE does not store a cache record’s index separately from the actual cache record. This

is because JDECACHE deals with memory-resident data and is designed to be as memory-conservative as
possible. Therefore, IDECACHE does not waste memory by storing an extra structure for the sole purpose of
indexing. Instead, a JDECACHE record has a dual purpose of index storage and data storage. This means that,
when you retrieve a record from JDECACHE using a key, the key should be contained in a structure that is of
the same type as the structure that is used to store the record in the cache.

Do not use any key structure to access the cache other than the one for which offsets that were defined in the
index passed to jdeCachelnit. The structure that contains the keys when accessing a cache should be the
same structure that is used to store the cache records.

PeopleSoft Proprietary and Confidential 27

Working with APls Chapter 2

If jdeCachelnit is called twice with the same cache name and the same user handle without an intermediate
call to jdeCacheTerminate, the cache that was initialized using the first jdeCachelnit will be retained.
Always call jdeCachelnit with the same index each time that you call it with the same cache name. If you call
jdeCachelnit for the same cache with a different index, none of the JDECACHE APIs will work.

The key for searches must always use the same structure type that stores cache records.

Using the jdeCachelnit/jdeCacheTerminate Rule

For every jdeCachelnit or jdeCachelnitMultipleIndex, a corresponding jdeCacheTerminate must
exist, except instances in which the same cache is used across business functions or forms. In this
case, all unterminated jdeCachelnit or jdeCachelnitMultipleIndex calls must be terminated with a
jdeCacheTerminateAll.

A jdeCacheTerminate call terminates the most recent corresponding jdeCachelnit. This means that

the same cache can be used in nested business functions. In each function, perform a jdeCachelnit that
passes the cache name. Before exiting that function, call jdeCacheTerminate. This does not destroy the
cache. Instead, it destroys the association between the cache and the passed HCACHE handle. The cache is
completely destroyed from memory only when the number of jdeCacheTerminate calls matches the number
of jdeCachelnit calls. In contrast, one call to jdeCacheTerminateAll destroys the cache from memory
regardless of the number of jdeCachelnit or jdeCacheIlnitMultipleIndex calls or jdeCacheTerminate calls.

Using the Same Cache in Multiple Business Functions or Forms

If the same cache is required for two or more business functions or forms, call jdeCachelnit in the first
business function or form, and add data to it. After exiting that business function or form, do not call
jdeCacheTerminate because this removes the cache from memory. Instead, in the subsequent business
functions or forms, call jdeCachelnit again with the same index and cache name as in the initial call to
jdeCachelnit. Because the cache was not terminated the first time, JDECACHE looks for a cache with the
same name and assigns that to you. Because the cache already has records in it, you do not need to refresh it.
You can proceed with normal cache operations on that cache.

If a cache is initialized multiple times across business functions or forms, use jdeCacheTerminateAll to
terminate all instances of the cache that were initialized. The name of the cache that corresponds to the
HCACHE passed to this API will be used to determine the cache to destroy. Use this API when you do not
want to call jdeCacheTerminate for the number of times that jdeCachelnit was called. If you move from one
form or business function to another when you initialize the same cache across business functions or forms,
you will lose the HCACHE because it is a local variable. To share the same cache across business functions or
forms, do not call jdeCacheTerminate when you exit a form or business function if you intend to use the
same cache in another form or business function.

Working with JDECACHE Cursors

28

JDECACHE Cursors (JDECACHE Cursor Manager) is a component of JDECACHE that implements a
JDECACHE cursor for record retrieval and update. A JDECACHE cursor is a pointer to a record in a user’s
cache. The record after the record in which the cursor is currently pointing is the next record that will be
retrieved from the cache upon calling a cache fetch API.

This section discusses how to:

* Open a JDECACHE cursor.

PeopleSoft Proprietary and Confidential

Chapter 2 Working with APls

» Use the JDECACHE data set.

» Update records.

* Delete records.

» Use the jdeCacheFetchPostion API.

» Use the jdeCacheFetchPostionByRef API.
* Reset the cursor.

* Close the cursor.

» Use JDECACHE multiple cursor support.

» Use JDECACHE partial keys.

Opening a JDECACHE Cursor

Manipulating the JDECACHE data is cursor-dependent. Before the JDECACHE data manipulation APIs will
work, a cursor must be opened. A cursor must be opened to obtain a cursor handle of the type HHDECURSOR,
which must, in turn, be passed to all of the JDECACHE data manipulation APIs (with the exception of the
jdeCacheAdd API). HHDECURSOR is the data type for the cursor handle. It must be passed to every API for
JDECACHE data manipulation except jdeCacheAdd.

To open the cursor, call the jdeCacheOpenCursor API. A call to this API also makes possible the calls to all
the data manipulation APIs (except for jdeCacheAdd). If you do not open the cursor, these APIs willnotwork.
With this call, the cursor opens a JDECACHE data set, within which it will work. This API opens the data
set, but does not fetch any data. This means that the cache must be initialized by a call to jdeCachelnit and
populated by a call to jdeCacheAdd before a cursor can be opened.

You can obtain multiple cursors to a cache by calling jdeCacheOpenCursor and passing different
HIDECURSOR handles. In a multiple cursor environment, all the cursors are independent of each other.

When you are finished working with the cursor, you must deactivate it or close it by calling the
jdeCacheCloseCursor API, and passing an HIDECURSOR handle that corresponds to the HHDECURSOR
handle that was passed to the jdeCacheOpenCursor. When a cursor is closed, it cannot be used again
until it is opened by a call to jdeCacheOpenCursor.

Using the JDECACHE data set

The JDECACHE data set includes all of the records from the current position of the cursor to the end of the set
of sequenced records. Thus, if a cursor is in the middle of the data set, none of the records in the cache prior to
the current position of the cursor is considered part of the data set. The JDECACHE data set consists of the
cache records sequenced in ascending order of the given index keys. This means that the order in which the
records have been placed in JDECACHE is not necessarily the order in which JDECACHE Cursors retrieves
them. JDECACHE Cursors retrieves records in a sequential ascending order of the index keys. A forward
movement by the cursor reduces the size of the data set during sequential retrievals. When the cursor advances
past the last record in the data set, a failure is returned.

This example illustrates the creation of a JDECACHE cache and a JDECACHE data set:

PeopleSoft Proprietary and Confidential 29

Working with APls

30

Chapter 2

jdeCacheinit(HCACHEL,...,"CACHE",..)=

jdeCacheAdd(HCACHE1,"ADC",..)=

jdeCacheAdd(HCACHEL,"BAC",..)=

jdeCacheAdd(HCACHEL,"ADC",..)=

jdeCacheAdd(HCACHEL,...,"ADA",..)=

HCUR1

Y

CACHE1

CACHE1

ADC

CACHE1

ADC

BAC

CACHE1

AAC

ADC

BAC

CACHE1

AAC

ADA

ADC

BAC

CACHE1

AAC

jdeCacheOpenCursor(HCACHE1,&HCUR1,..)=

ADA

ADC

BAC

Example of JDECACHE cache and data set creation

Cursor-Advancing APIs

Cursor-advancing JDECACHE fetch APIs implement the fundamental concepts of a cursor. The

cursor-advancing API set consists of APIs that advance the cursor to the next record in the JDECACHE data
set before fetching a record from JDECACHE. jdeCacheFetch and jdeCacheFetchPosition are examples of

cursor-advancing fetch APIs.

PeopleSoft Proprietary and Confidential

Chapter 2 Working with APls

A call to jdeCacheFetch first positions the cursor at the next record in the JDECACHE data set before
retrieving it. JDECACHE Cursors also enable calls to position the cursor at a specific record within the data
set. To do this, you call the jdeCacheFetchPosition API, which advances the cursor to the record that
matches the given key before retrieving it.

You can use a combination of cursor-advancing fetch APIs if you need a sequential fetch of records starting
from a certain position. Call jdeCacheFetchPosition, passing the key of the record from which you want to
start retrieving. This advances the cursor to the desired location in the data set and retrieves the record. All
subsequent calls to jdeCacheFetch will fetch records starting from the current cursor position in the data set
until the end of the data set, or until the program stops for another reason.

Non-Cursor-Advancing APls

Non-cursor-advancing JDECACHE cursor APIs do not advance the cursor before retrieving a record. Instead,
they keep the cursor pointing to the retrieved record. jdeCacheUpdate and jdeCacheDelete are examples of
non-cursor-advancing fetch APIs.

Updating Records

If you want to update a specific record with a key that you know, call jdeCacheFetchPosition, passing the
known key, to position the cursor at the location of the record that matches the key. Because the cursor is
already pointing to the desired location, call jdeCacheUpdate, passing the same HIDECURSOR that you used
in the call to jdeCacheFetchPosition.

If the index key changes, cache re-sorts the records, and the cursor points to the updated location. However,
when you call jdeCacheFetch, the system retrieves the next record in the updated set. Consequently, the system
might not retrieve the correct record because the changed index key caused the order of the records to change.

To update a sequential number of records, make a call to jdeCacheFetchPosition to return to the beginning of
the sequence, if necessary. Then call jdeCacheUpdate, passing the same HIDECURSOR that you used in the
call to jdeCacheFetchPosition. This call updates only the record to which the cursor is pointing. To update
the rest of the records in the sequence, call jdeCacheFetch repeatedly, passing the same HIDECURSOR that
you used in the call to jdeCacheFetchPosition, until you get to the end of the sequence. A sequential update
will not work correctly if you have changed any index key value. However, a sequential update will work
correctly if you are updating a value that is not an index key.

Deleting Records

If you want to delete a specific record with a known key, first call jdeCacheFetchPosition to point the cursor
to the location of the record that matches the key. Next, call jdeCacheDelete, to remove the record from cache.
Pass jdeCacheDelete the same HIDECURSOR that you used when you called jdeCacheFetchPosition. After
deleting a record, use jdeCacheFetch to retrieve the record that followed the now-deleted record. This
process works only when you call jdeCacheDelete.

You can also delete a specific record by calling jdeCacheDeleteAll and passing it the full key with the specific
record to be deleted. In this case, jdeCacheFetch will not work following jdeCacheDeleteAll, although you
can work around this condition with jdeCacheFetchPosition or jdeCacheResetCursor.

To delete a sequential set of records, first call jdeCacheFetchPosition to point the cursor to the first record in
the set or call jdeCacheDeleteAll to delete the first record in the set. Then, call jdeCacheDelete sequentially.
In this case, jdeCacheFetch will not work following jdeCacheDeleteAll, although you can work around this
condition with jdeCacheFetchPosition or jdeCacheResetCursor.

If you want to delete records that match a partial key, call jdeCacheDeleteAll and pass it a partial key. The
system deletes all of the records that match the partial key. After you call this API, jdeCacheFetch does
not work.

PeopleSoft Proprietary and Confidential 31

Working with APls Chapter 2

32

Using the jdeCacheFetchPosition API

The jdeCacheFetchPosition API searches for a specific record in the data set; therefore, it requires a specific
key. This API can perform full and partial key searches.

Note. If you pass 0 for the number of keys, the system assumes that you want to perform a full key search.

Using the jdeCacheFetchPositionByRef API

The jdeCacheFetchPositionByRef API returns the address of a data set. The API finds the one record in
cache and returns a reference (pointer) to the data. jdeCacheFetchPositionByRef retrieves a single, large
block of data that is stored in cache. If the cache is empty or has more than one record, this API fails.

Resetting the Cursor

JDECACHE cursors supports multiple cursors, as well as an unlimited number of cursor oscillations within the
data set. This means that the cursor can shuttle from beginning to end for an unlimited number of times. The
cursor moves forward only. To reset the cursor (move the cursor back to the beginning of the data set), you
must make a call to the jdeCacheResetCursor API to get a fresh JDECACHE data set.

You can also reset a cursor to a specific position that is outside of the current data set by calling the
jdeCacheFetchPosition API.

Closing the Cursor

When you no longer need the cursor, call jdeCacheCloseCursor to close it. This call closes both the data
set and the cursor. Any subsequent call to any JDECACHE API passing the closed HIDECURSOR without
having called jdeCacheOpenCursor will fail.

Although opening a JDECACHE Cursor for a long period of time requires no overhead, to release the memory
that it requires, you should close the cursor as soon as you no longer need it.

Using JDECACHE Multiple Cursor Support

JDECACHE supports multiple open cursors. Each cache enables up to 100 open cursors to access it at the
same time.

JDECACHE multiple cursors are designed to enable two or more asynchronously processing business
functions to use one cache. Asynchronously processing business functions can open cursors to access the
cache with relative positions within the cache that are independent of each other. A cursor movement by one
business function does not affect any other open cursor.

Some EnterpriseOne software applications groups restrict the use of multiple cursors. For example, use
multiple cursors only if you have a need for them. Additionally, do not use two cursors to point to the same
record at the same time unless both cursors are fetching the record.

Using JDECACHE Partial Keys

A JDECACHE partial key is a subset of a IDECACHE key that is ordered in the same way as the defined
index, beginning with the first key in the defined index. For example, for a defined index of N keys, the partial
key is the subset of the keys 1, 2, 3, 4...N-1 in that specific order. The order is critical. Partial key components
must appear in the same order as the key components in the index. (The index is passed to jdeCachelnit.)

PeopleSoft Proprietary and Confidential

Chapter 2 Working with APls

For example, suppose that an index is defined as a structure containing the fields in this order: A, B, C, D, E.
The partial keys that can be synthesized from this index are this, in order: A, AB, ABC, ABCD. The previous
set is the only set of partial keys that can be synthesized for the defined index: A, B, C, D, E.

A JDECACHE partial key implements the JDECACHE cursor. When you implement the JDECACHE partial
key, consider that the JDECACHE cursor works within a JDECACHE data set, which comprises the records
within the cacheordered bythe defined index,the full index. 1f you call a jdeCacheFetchPosition API and pass
the partial key, the JDECACHE cursor activates and points to the first record in the JDECACHE data set that
matches the partial key. If a jdeCacheFetchPosition API was called, subsequent calls to jdeCacheFetch
will fetch all of the records in the data set that succeed the fetched recordro the end of the data set. The cursor
doesnotstop on the last record that matches the partial key, but continues on to fetch the next record using
the next call to jdeCacheFetch, even if it does not match the partial key. When a partial key is sent to
jdeCacheFetchPosition, it merely indicates from where the JDECACHE begins fetching. Because the records
in the JDECACHE data set are always ordered, the fetch always retrieves all of the records that satisfy the
partial key first.

JDECACHE knows that you are passing a partial key because the fourth parameter to jdeCacheFetchPosition
indicates the number of key fields that are in the key being sent to the API. If the number of key fields is less
than the keys that were indicated when jdeCachelnit was called, then it is a partial key. Suppose the number
of keys is N so that JDECACHE uses the first N key fields to make comparisons in order to achieve the partial
key functionality. If jdeCacheFetchPosition is called with a number of keys that is greater than the number
specified on the call to jdeCachelnit, an error is returned.

To delete a partial key, you must make a call to jdeCacheDeleteAll. This call deletes all of the records that
match the partial key. To indicate to JDECACHE the partial keys that you are using, pass the number of
key fields to this API.

Verify that the actual number of key fields in the structure corresponds to the numeric value that describes the
number of keys that must be sent to either jdeCacheFetchPosition or jdeCacheDeleteAll.

PeopleSoft Proprietary and Confidential 33

Working with APls Chapter 2

34 PeopleSoft Proprietary and Confidential

CHAPTER 3

Business Functions

This chapter discusses both C business functions and named event rules, and includes information about master
business functions, Business Function Builder, and business function documentation.

Understanding Business Functions

You can use business functions to enhance PeopleSoft EnterpriseOne applications by grouping related business
logic. Journal Entry Transactions, Calculating Depreciation, and Sales Order Transactions are examples
of business functions.

You can create business functions using one of these methods:

» Event rules scripting language.

The business functions that you create using the event rules scripting language are referred to as Business
Function Event Rules (also called Named Event Rules (NERs)). If possible, use NERs for the business
functions. In some instances, C business functions might better suit the needs.

* C programming code.

PeopleSoft EnterpriseOne software creates a shell into which you insert logic using C. You use C business
functions mainly for caching, but they can also be used for these objects:

Batch error level messaging.

Large functions.

C business functions work better for large functions (as determined by the group). If you have a large
function, you can break the code up into smaller individual functions and call them from the larger function.

Functions for which performance is critical.

Complex select statements.

After you create business functions, you can attach them to PeopleSoft EnterpriseOne applications to provide
additional power, flexibility, and control. You can attach tables and functions to a business function. You
must add related tables and functions to the business function object to generate the code for the source

and header files. Because the source code for NERs is generated into C, you use the same procedures for
debugging both C and NERs.

Components of a Business Function

The process of creating a business function produces several components. The Object Management Workbench
(OMW) is the entry point for the tools that create the components. These components are created:

PeopleSoft Proprietary and Confidential 35

Business Functions Chapter 3

36

Component Where Created

Business Function Specifications OMW

Business Function Design

Data Structure Specifications OMW

Data Structure Design Tool

.Cfile Generated in Business Function Design
Modified with the IDE

.H file Generated in Business Function Design
Modified with the IDE

The DLLs are divided into categories. This distribution provides better separation between the major
functional groups, such as tools, financials, manufacturing, distribution, and so on. Most business functions
are organized into a consolidated DLL based on their system code. For example, a financials business function
with system code 01 belongs in CFIN.DLL.

Follow these guidelines when you add or modify business functions:

Create a custom parent DLL unless you are adding a PeopleSoft EnterpriseOne business function.

Assign a parent DLL to the business functions based on the system code defined in UDC table H92/PL.
If no DLL is assigned for the system code in which the business function is created, use CCUSTOM,
where CUSTOM is the 7-character version of the company name. You can change the DLL after the
business function is created.

When you write business function code, ensure that all calls to other business functions use the jdeCallObject
protocol.

Linker errors might occur if you do not use jdeCallObject and you attempt to call a business function in a
different DLL. A linker error prevents the function call from working.

Note. If you change the DLL for a business function, go to C:\B9\System\Bin32\BusBuild.exe, select the old
DLL file where the business function was, and select Build from the Build menu to rebuild the file.

This table lists some of the DLLs for which Business Function Builder manages the builds:

DLL Name Functional Group
CAEC Architecture
CALLBSFN Consolidate BSFN Library
CBUSPART Business Partner
CCONVERT Conversion Business Functions
CCORE Core Business Functions
CCRIN Cross Industry Application

PeopleSoft Proprietary and Confidential

Chapter 3

Business Functions

DLL Name Functional Group
CDBASE Tools - Database
CDDICT Tools - Data Dictionary
CDESIGN Design Business Functions
CDIST Distribution
CFIN Financials
CHRM Human Resources
CINSTALL Tools Install
CINV Inventory
CLOC Localization
CLOG Logistics Functions
CMFG Manufacturing
CMFGlI Manufacturing - Modification BFs
CMFGBASE Manufacturing Base Functions
COBIJLIB Tools - Object Librarian
COBLIB Busbuild Functions
COPBASE Distribution/Logistic Base Functions
CRES Resource Scheduling
CRUNTIME Tools - Run Time
CSALES Sales Order
CTOOL Tools - Design Tools
CTRAN Transportation
CTRANS Tools - Translations
CWARE Warehouse
CWRKFLOW Tools - Workflow
JDBTRG1 Table Trigger Library 1
JDBTRG2 Table Trigger Library 2
JDBTRG3 Table Trigger Library 3

PeopleSoft Proprietary and Confidential

37

Business Functions Chapter 3

DLL Name Functional Group
JDBTRG4 Table Trigger Library 4
JDBTRIG Parent DLL for Database Triggers

Note. Do not use table triggers for regular business functions.

How Distributed Business Functions Work

OMW manages these three main components that make up NERs or business functions:
* Object Name

The Object Name is the actual source file.
* Function Name

The name of the business function or event rule.

Note. Any business function, whether it uses C or NERs as its source language, must have a defined data
structure to send or receive parameters to or from applications. You can create a DSTR data structure
object, or choose an existing object type to work with in OMW. You can also create data structures for
text substitution messages. Additionally, you can attach notes, such as an explanation of use, to any data
structure or data item within the structure.

* DLL Name
The DLL is a dynamic link library.

When a business function is called, the Object Configuration Manager (OCM) determines where to run the
business function. After the system maps a business function to a server, calls from that business function
cannot be mapped back to the workstation.

This flowchart illustrates how distributed business functions work:

38 PeopleSoft Proprietary and Confidential

Chapter 3

Business Functions

.DLL

CFIN.DLL

OCM
Map by object name

Objects Names.C

Validate_AAl
B0O00001.C _completely
BO1.....
BO3..... _
BOA4..... Validate AAl
BO9.....

Function Names

B000064.C

.C

Function
Function
|-Function

Validate AAI
_completely

Validate AAI

_completely

Return
Validate_AAl

Return
|_SET_ERROR

Return

Distributed business function

See Also

EnterpriseOne Tools 8.94 PeopleBook: Configurable Network Computing Implementation, “Object

Configuration Manager”

C Business Functions

PeopleSoft EnterpriseOne software contains two types of business functions: NERs and C business functions.
C business functions are written in C programming language and are used to perform functions that are not
available in NERs. C business functions include both a header file (.h) and a source file (.c).

Header File Sections

This table describes the major sections of a business function header file:

PeopleSoft Proprietary and Confidential

39

Business Functions

Chapter 3

Section

What It Includes

Description and Guidelines

Header File Comment

* Header file name
* Description

* History

* Programmer

* SAR number

* Copyright information

Comments that the input process of the
Business Function Source Librarian
builds.

The programmer name and SAR
number are manually updated by the
programmer.

Table Header Inclusions

Include statements for header files
associated with tables that are directly
accessed by this business function.

Table header files include definitions
for the fields in a table and the ID of
the table itself.

External Business Function Header

Include statements for headers

External function calls with

Inclusions associated with externally defined jdeCallObject are included to
business functions that are directly use the predefined data structures.
accessed by this business function.

Global Definitions Global constants used by the business | Use global definitions sparingly. They

function.

include symbolic names that you enter
in uppercase; words are separated by
an underscore character.

Structure Type Definitions

Data structure definitions for internal
processing.

To prevent naming conflicts, define
this structure using structure names
that are prefixed by the source file
name.

DS Template Type Definition

Data structure type definitions
generated by Business Function
Design.

Symbolic constants for the data
structure generated by Business
Function Design.

Modify this structure through OMW.

Source Preprocessor

» Undefines JDEBFRTN ifitis
already defined.

¢ Checks for how to define
JDEBFRTN.

* Defines JDEBFRTN.

Ensures that the business function
declaration and prototype are properly
defined for the environment and
source file, including this header.

Business Function Prototype

Prototypes for all business functions in
the source file.

Defines the business functions in the
source file, the parameters that are
passed to them, and the type of value
that they return.

Internal Function Prototype

Prototypes for all internal functions
that are required to support business
functions within this source file.

Defines the internal functions that are
associated with the business functions
in the source file, the parameters that
are passed to each internal function,
and the type of value that they return.

40

PeopleSoft Proprietary and Confidential

Chapter 3 Business Functions

Example: Business Function Header File

Assume that Business Function Design created this header file. This file contains only the required components
in a business function header file:

Header File Begin

/***

* Header File: B99TEST.h

*

* Description: test Header File

* History:

* Date Programmer SAR# - Description

* Author 10/14/2003 DEMO Unknown - Created

* Copyright (c) 1994 PeopleSoft, Inc., 2003

* This unpublished material is proprietary to PeopleSoft, Inc.

* All rights reserved. The methods and techniques described

* herein are considered trade secrets and/or confidential. Reproduction

* or distribution, in whole or in part, is forbidden except by express

* written permission of PeopleSoft, Inc.
**/
#ifndef BO99TEST H

#define B99TEST H
/***
* Table Header Inclusions
**/
/***
* External Business Function Header Inclusions
**/
/***
* Global Definitions
**/
/***
* Structure Definitions
**/
/***
* DS Template Type Definitions
**/
/***

* TYPEDEF for Data Structure

* Template Name: Test Data Structure

* Template ID: D59TEST

* Generated: Tue Oct 14 16:53:08 2003

* DO NOT EDIT THE FOLLOWING TYPEDEF

* To make modifications, use the EnterpriseOne Data Structure

* Tool to Generate a revised version, and paste from

PeopleSoft Proprietary and Confidential 41

Business Functions

42

* the clipboard.

*

**************************************/

#ifndef DATASTRUCTURE D59TEST
#define DATASTRUCTURE D59TEST
typedef struct tagDSD59TEST

{

JCHAR cEverestEventPoint01;
JCHAR szNameAlpha [41] ;
MATH NUMERIC mnAmountField;

} DSD59TEST, *LPDSD59TEST;

#define IDERRcEverestEventPointO0l 1 1L
#define IDERRszNameAlpha 2 2L
#define IDERRmnAmountField 3 3L
#endif

/***

* Source Preprocessor Definitions
**/
#if defined (JDEBFRTN)
#undef JDEBFRTN
#endif
#if defined (WIN32)
#if defined (WIN32)

#define JDEBFRTN(r) _ declspec(dllexport) r
#else

#define JDEBFRTN(r) _ declspec(dllimport) r
#endif
#else
#define JDEBFRTN(r) r
#endif

/***

* Business Function Prototypes
**/
JDEBFRTN (ID) JDEBFWINAPI F0101lTest

(LPBHVRCOM lpBhvrCom, LPVOID lpVoid, LPDSD0100018 1pDS) ;

/***

* Internal Function Prototypes
**/
#endif /* _ B99TEST H */

Header File End

This table describes the contents of the various lines in the header file:

Chapter 3

Header File Line Where Input Description
Header File OMW Verify the name of the business
function header file.
Description OMW Verify the description.

PeopleSoft Proprietary and Confidential

Chapter 3

Business Functions

Header File Line

Where Input

Description

History

IDE

Manually update the modification log
with the programmer name and the
appropriate SAR number.

#ifndef

Business Function Design

Symbolic constant prevents the
contents from being included multiple
times.

Table Header Inclusion

Business Function Design

When business functions access tables,
related tables are input and Business
Function Design generates an include
statement for the table header file.

Inclusions

External Business Function Header

Business Function Design

No external business functions for this
application.

Global Definitions

IDE

Constants and definitions for

the business function. It is not
recommended that you use this
block. Global variables are not
recommended. Global definitions go
in .c not .h.

Structure Definitions

IDE

Data structures for passing
information between business
functions, internal functions, and
database APIs.

TYPEDEEF for Data Structure

Business Function Design

Data structure type definition. Used
to pass information between an
application or report and a business
function. The programmer places it
on the clipboard and pastes it in the
header file. Its components include:

« Comment Block, which describes
the data structure.

* Preprocessor Directives, which
ensure that the data type is defined
only once.

 Typedef, which defines the new data
type.
 #define, which contains the ID to be

used in processing if the related data
structure element is in error.

 #endif, which ends the definition of
the data structure type definition and
its related information.

PeopleSoft Proprietary and Confidential

43

Business Functions

Chapter 3

Header File Line

Where Input

Description

Source Preprocessor Definitions

Business Function Design

All business function header files
contain this section to ensure that the
business function is prototyped and
declared based on where this header is
included.

Business Function Prototype

Business Function Design

Used for prototypes of the business
function.

CheckForInAddMode

JDEBFRTN(ID) JDEBFWINAPI

Business Function Design

Business Function Standard

All business functions share the

same return type and parameter data
types. Only the function name and the
data structure number vary between
business functions.

Parameters include:

* LPBHVRCOM

Pointer to a data structure used
for communicating with business
functions. Values include an
environment handle.

* LPVOID

Pointer to a void data structure.
Currently used for error processing;
will be used for security in the
future.

» LPDS#H#HHH

Pointer to a data structure containing
information that is passed between
the business function and the
application or report that invoked it.
This number is generated through
Object Librarian.

* JDEBFRTN(ID)JDEBFWINAPI

All business functions will be
declared with this return type. It
ensures that they are exported and
imported properly.

Parameter names ([pBhvrCom, IpVoid,
and IpDS) will be the same for all
business functions.

Internal Function Prototypes

Business Function Design

Internal function prototypes required
to support the business functions in
this source file.

44

PeopleSoft Proprietary and Confidential

Chapter 3

Source File Sections

Business Functions

OMW builds a template for the business function source file. The business function source file consists of
several major sections, as described in this table:

Section

What It Includes

Description

Source File Comment Block

* Source file name
* Description

* History

* Programmer

* Date

* SAR Number

» Description

» Copyright information

Built from the information in the
Business Function Design Tool.

The programmer manually updates the
programmer name and SAR number.

Notes Comment Block

Any additional relevant notes
concerning the business function
source.

Document complex algorithms used,
how the business functions in the
source relate to each other, and so on.

Business Function Comment Block

 Business function name
* Description

* Description list of the parameters

Business Function Source Code

Source code for the business function.

Internal Function Comment Block

* Function name
* Notes
e Returns

e Parameters

Copy these blocks and place the values
in the specified sections to describe the
internal function. Follow the comment
block with internal function source
code.

Internal Function Source Code

Source code for the internal function
described in the comment block.

The business function developer enters
this code as needed. A populated
internal function comment block must
precede this code.

Example: Business Function Source File

Assume that Business Function Design created this source file called Check for In Add Mode. It contains the
minimum components required in a business function source file. The source code in the Main Processing

section is entered manually, and varies from business function to business function. All other components are
generated by Business Function Design.

#include <jde.h>

#define b98sa001_c

/***

* Source File:

PeopleSoft Proprietary and Confidential

B98SA001.c

45

Business Functions Chapter 3

*

* Description: Check for In Add Mode Source File

**/

**/

#include <b98sa001.h>

/**

* Business Function: CheckForInAddMode

*

* Description: Check for In Add Mode

*

* Parameters:

* LPBHVRCOM 1pBhvrCom Business Function Communications

* LPVOID lpvoid Void Parameter - DO NOT USE!

* LPDSD98SA0011 1pDS Parameter Data Structure Pointer
*

***/

JDEBFRTN (ID) JDEBFWINAPI CheckForInAddMode (LPBHVRCOM lpBhvrCom, LPVOID lpVoid,=
LPDSD98SA0011 1pDS)

{

/**

* Variable declarations

**/

/**

* Declare structures

**/

/**

* Declare pointers

**/

/**

* Check for NULL pointers

**/

if ((lpBhvrCom == NULL) ||
(1pvoid == NULL) ||
(1pDS == NULL))

jdeSetGBRError (lpBhvrCom, lpvVoid, (ID) 0, _J("4363"));
return CONTINUE GBR;

/**
* Set pointers

**/

/**

46 PeopleSoft Proprietary and Confidential

Chapter 3

* Main Processing

Business Functions

**/

if (lpBhvrCom->iBobMode == BOB MODE ADD)
{

lpDS->cEverestEventPoint0l = _J('1’);
}
else
{

1pDS->cEverestEventPoint01

return (BHVR_SUCCESS) ;

Il
[
o

/* Internal function comment block */

/**

* Function: IXXXXXXX a
*

* Notes:

*

* Returns:

*

* Parameters:

// Replace "xxxxxxx" with source file number

// and "a" with the function name

**/

The lines that appear in the source file are described in this table:

Source File Line

Where Input

Description and Guidelines

#include <jde.h>

Business Function Design

Includes all base PeopleSoft
EnterpriseOne definitions.

#define b98sa001 ¢

Business Function Design

Ensures that related header file
definitions are correctly created for
this source file.

Source File OMW Verifies the information in the
file comment section. Enter the
programmer’s name, SAR number,
and description.

#include <B98SA001.h> oMW Includes the header file for this

application.

Business Function

Business Function Design

Verifies the name and description in
the business function comment block.

PeopleSoft Proprietary and Confidential

47

Business Functions

48

Chapter 3

Source File Line

Where Input

Description and Guidelines

JDEBFRTN(ID) JDEBFWINAPI

Business Function Design

Includes the header of a business

CheckForInAddMode function declaration.

(LPBHVRCOM IpBhvrCom,

LPVOID IpVoid,

LPDS104438 IpDS)

Variable declarations IDE Declares variables that are local to the
business function.

Declare structures IDE Declares local data structures to
communicate between business
functions, internal functions, and the
database.

Declare pointers IDE Declares pointers.

Check for NULL pointers Business Function Design Business Function Standard

Verifies that all communication
structures between an application and
the business function are valid.

jdeErrorSet (IpBhvrCom, IpVoid, (ID)
0, J("4363"), LPVOID) NULL);

return ER_ERROR;

Business Function Design

Sets the standard error to be returned
to the calling application when any of
the communication data structures are
invalid.

Set pointers IDE Declares and assigns appropriate
values to pointers.

Main Processing IDE Provides main functionality for a
business function.

Function Clean Up IDE Frees any dynamically allocated
memory.

Internal function comment block IDE Defines internal functions that are

required to support the business
function. They should follow the same
C coding standards. A comment block
is required for each internal function
and should be formatted correctly.

Use the MATH_NUMERIC data type exclusively to represent all numeric values in PeopleSoft EnterpriseOne
software. The values of all numeric fields on a form or batch process are communicated to business functions
in the form of pointers to MATH_NUMERIC data structures. MATH _NUMERIC is used as a data dictionary

(DD) data type.

PeopleSoft Proprietary and Confidential

Chapter 3 Business Functions

Business Function Event Rules

A NER is a business function object for which the source language is event rules instead of C. You create a
NER using the event rules scripting language. This scripting language is platform-independent and is stored in
a database as a PeopleSoft EnterpriseOne software object. NERs are modular. That is, they can be reused in
multiple places by multiple programs. This modularity reduces rework and enables you to reuse code.

Not all chunks of code should be packaged in a business function module. For example, when code is so
specific that it applies only to a particular program, and it is not reused by any other programs, you should
leave it in one place instead of packaging it in a business function. You can attach all the logic on a hidden
control (Button Clicked event) and use a system function to process the logic as needed.

An example of a NER is N3201030. This business function creates generic text and Work Order detail
records (for the F4802 table) for a configured work order. Based on the structure of the sales order in the
F3296 table, the configured segments for the item on the passed work order and all lower level segments are
included in the generic text.

This example illustrates the function as it appears in Event Rules Design:

Named Event Rule Begin

!/

// Convert the related sales order number into a math numeric. If that fails
// exit the function

//

String, Convert String to Numberic

If VA evt cErrorCode is equal to "1"

!/

// Validate that the work order item is a configured item.
//

F4102 Get Item Manufacturing Information

If VA evt cStockingType is not equal to "C"

And BF cSsuppressErrorMessages is not equal to "1"

BF szErrorMessageID = "3743"

Else

BF szErrorMessagelID = " "

//

// Delete all existing "A" records from F4802 for this work order.
//

VA evt cWODetailRecordType = "A"

F4802.Delete

F4802.Close

//

// Get the segment delimiter from configurator constants.

//

F3293 Get Configurator Constant Row

If VA evt cSegmentDelimiter is less than or equal to <Blank>
VA evt_cSegmentDelimiter - /

End If

//

F3296 .0pen

F3296.Select

If SV File IO Status is equal to CO SUCCESS

PeopleSoft Proprietary and Confidential 49

Business Functions Chapter 3

50

F3296.FetchNext

//

// Retrieve the F3296 record of the work order item. and determine its key

// sequence by parsing ATSQ looking for the last occurrence of "1". The substring
// of ATSQ to this point becomes the key for finding the lower level configured
// strings

//

If VA evt_mnCurrentSOLine is equal to BF mnRelatedSalesOrderLineNumber

// Get the corresponding record from F32943. Process the results of that fetch
// through B3200600 to add the parent work order configuration to the work order
// generic text.

F32943.FetchSingle

If SV File IO_Status is equal to CO SUCCESS

VA evt_szConfiguredString = concat ([VA evt ConfiguredStringSegment01l],

[VA evt ConfiguredStringSegment02])

Confg String Format Segments Cache

End If

//

// Find the last level in ATSQ that is not "00". Note that the first three

// characters represent the SO Line Number to the left of the decimal.

Example:

// SO Line 13.001 will have the ATSQ characters "013". Each configured item can—=
have

// 99 lower-level P-Rule items and a total of ten levels. Therefore every pair
// thereafter is tested.

//

VA evt mnSequencePosition - 1

While VA evt mnSequencePosition is less than "23"

And VA evt_ szCharacterPair is not equal to "00"

VA evt_mnSequencePosition - [VA evt_mnSequencePosition] + 2

VA evt szCharacterPair = substr([VA evt szTempATSQ], [VA evt mnSequencePostion], 2)
End While

VA evt szParentATSQ = substr([VA evt szTempATSQ],0, [VA evt _mnSequencePosition])
//

// For each record in F3296 for the related sales order, find those with the same
// key substring of ATSQ. Retrieve the associated record from F32943 if

// available and pass the configured string to N3200600 for addition to the work

// order generic text.

//
F3296.FetchNext
Wile SV File IO Status is equal to CO SUCCESS

VA evt szChildATSQ = substr([VA evt szTempATSQ],0, [VA evt_mnSequencePosition]}
If VA evt_szChildATSQ is equal to VA evt_ szParentATSQ

F32943.FetchSingle

If SV File IO Status is equal to CO SUCCESS

VA evt szCongifuredString = concat ([VA evt ConfiguredStringSegment01l],

[VA evt ConfiguredStringSegment02])

Confg String Format Segments Cache

End If

End If

PeopleSoft Proprietary and Confidential

Chapter 3 Business Functions

F3296 .FetchNext

End Whil

F32943.Close

!/

// Unload segments cache into the work order generic text. B3200600 Mode 6
Confg String Format Segments Cache

//

End If

End If

F3296.Close

//

End If

Else

// The related sales order number is invalid. Return an error.
If BF cSuppressErrorMessages is not equal to "1"

Set NER Error ("0002", BF SzRelatedSalesOrderNumber)

End If

End Ir

Named Event Rule End

Working with Transaction Master Business Functions

Transaction master business functions provide a common set of functions that contain all of the necessary
default values and editing for a transaction table in which records depend on each other. Transaction master
business functions contain logic that ensures the integrity of the transaction being inserted, updated, or deleted
from the database. Event flow breaks up logic. You use cache APIs to store records that are being processed.
You should consider using a transaction master business function in these situations:

* You accept transaction file records from a non-PeopleSoft EnterpriseOne source.

* Multiple applications update the same transaction file.

These transaction tables are examples of candidates for transaction master business functions:
» The F0911 table accepts updates across application suites, as well as external sources.

» The F06116 table accepts updates from batch, interactive, and external sources.

A master business function (MBF) can be called from several different applications. Rather than duplicating
the processing options for the MBF on each application, you typically create a separate processing option
template for these processing options. You can use interactive versions to set up different versions of the MBF
processing options. Various calling programs then pass the version name to the version parameter of BeginDoc.

From within BeginDoc, the business function AllocatePO VersionData can be called to retrieve the processing
options by version name. The processing options needed by other modules can be written to the header cache
and accessed later, rather than calling AllocatePOVersionData multiple times.

The cache structure stores all lines of the transaction. Transaction lines are written to the cache after they have
been edited. The EndDoc module then reads the cache to update the database.

This table describes the components of the header section:

PeopleSoft Proprietary and Confidential 51

Business Functions

52

Chapter 3

Field Description Field Key Type Size
Job Number JOBS Num
Document Action ACTN Char 1
Processing Options
Currency Flag CYCR Char 1
Business View Fields
Work Fields
This table explains the fields:
Field Description Purpose

Job Number

A unique system-assigned number assigned when the
BeginDoc module starts the job. This distinguishes
transactions in the cache for each job on the workstation
that is using the cache. Use next number 00/4 for the

job number. If you are using a unique cache name
(Dxxxxxxxxx[job number]), you do not necessarily need the
job number field stored in the cache for a key because you
would only be working with one transaction per cache. You
can, therefore, use any field as the key to the cache.

Document Action

The action for the document. Values are:

« Aorl=Add
* Cor2=Change
* D=Delete

Processing Options

Processing option values were read in using
AllocatePOVersionData, and are needed in other
modules of the MBF.

Currency Flag

A system value that indicates whether currency is on and
what method of currency conversion is used (N, Y, or Z).

Business View Fields

The fields required for processing the transaction and
writing it to the database. All fields in the record format
that are not saved in the header cache will be initialized
when the record is added to the database using the APIs.

Work Fields

Fields that are not part of the business view (BV), but are
needed for editing and updating the transaction.

For example, Last Line Number is the last line number
written to the detail cache. It will be stored at the header
level, and retrieved and incremented by the MBF. The
incremented line number will be passed to the header cache
and stored for the next transaction.

PeopleSoft Proprietary and Confidential

Chapter 3

Business Functions

This table describes the components of the detail section:

Field Description Field Key Type Size

Job Number JOBS Char 8

Line Number (Application-specific) Num

Line Action ACTN Char 1

Business View Fields

Work Fields

This table explains the fields:
Field Description Purpose

Job Number A unique number assigned when the BeginDoc module
starts the job. This distinguishes transactions in the cache
for each job on the client that is using the cache. If you are
using a unique cache name (Dxxxxxxxxx/job number]), you
do not necessarily need to store the job number field in the
cache for a key because you work with only one transaction
per cache. You can, therefore, use line number only as the
key to the cache.

Line Number The number used to uniquely identify lines in the detail
cache. This line number can also eventually be assigned
to the transaction when it is written to the database. The
transaction lines are written to the detail cache only if they
are error-free.

Line Action The action for the transaction line. Values are:
« Aorl=Add
* Cor2=Change
* D=Delete

Business View Fields Fields required for processing the transaction that will be
written to the database. All fields in the record format that
are not saved in the detail cache will be initialized when the
record is added to database using the APIs.

Work Fields Fields that are not part of the business view, but are needed
for editing and updating the transaction line.

Creating Transaction Master Business Functions

These flowcharts illustrate how transaction master business functions are built.

PeopleSoft Proprietary and Confidential

53

Business Functions Chapter 3

First, you create the individual business functions using several basic components:

Building transaction master business functions

Next, you combine the business functions into a DLL:

Combining business functions into a .DLL

You typically use these basic components to create a master business function as described by this table:

54 PeopleSoft Proprietary and Confidential

Chapter 3 Business Functions

Component Purpose
Begin Document Called when all header information has been entered. Creates initial header if it has not
already been created. Can also include default values, editing, and processing options
(POs).
Edit Line Called when all line information has been entered. Creates cache for detail

information if it has not already been created.

Edit Document Called when ready to commit the transaction. Processes any remaining document edits
and verifies that all records are valid to commit.

End Document Called when you need to commit the transaction. Processes all records in the header
and detail cache, performs /O, and deletes caches.

Clear Cache Called when you are ready to delete all cache records. Deletes header and detail cache
records.

Begin Document

Begin Document has this format:
FxxxxxBeginDocument

The Begin Document component performs these tasks:

* Inserts default information and edits information in the header, including data dictionary defaults and
UDC editing.

* Fetches information from the database, if necessary, to ensure that the selected document action can take
place.

* Validates and processes information that is common to all records.
» Writes the record to header cache if no errors exist.

* Contains all header cache information that is common to all detail records. This improves performance by
eliminating the need to use all the detail records to perform the same validations and table I/O.

» Updates the header cache with the new information when information in the header fields changes and Begin
Document has previously been called.

Special Logic or Processing Required

On the initial call, the function assigns the job number. To retrieve the job number, this function calls
X0010GetNextNumber with a system code of 00 and an index number of 04. If called again, Begin Document
passes the job number that was previously assigned; therefore, it does not need to assign another job number.

Hook Up Tips
Keep these tips in mind when calling Begin Document:

* You must call a function at least once before calling Edit Line.

* If errors occur during validation of the header field when the function is called, call the function again to
verify that errors have been cleared before calling Edit Line.

+ If this function might be called multiple times from different events, include it on a hidden button on an
application to reduce duplicate code and ensure consistency. This button might then be called from focus on

PeopleSoft Proprietary and Confidential 55

Business Functions Chapter 3

grid because the user is then adding or deleting detail records, and is finished adding header information. In
case of a Copy in which the user does not use the grid, this button might also be called on OK button.

* Calling a button from an asynchronous event breaks the asynchronous flow and forces the button to be
processed in synchronous mode (inline).

Common Parameters

This table describes the common parameters for Begin Document:

Name Alias 110 Description
Job Number JOBS /0 Pass Job Number created
in Begin Document,

if previously called;
otherwise, pass zeros and
assign a job number.

Document Action ACTN 1 Aorl=Add
Cor2=Change
D =Delete

This is the action of the
entire Document, not the
individual detail lines. For
example, you might modify
a few detail lines in Edit
Line, add a few detail lines
in Edit Line, and delete a
few detail lines in Edit Line,
but the Document Action in
Begin Document would be
Change.

Process Edits EVO01 I Optional
0 =No Edits
Any Other = Full Edits

Note. The GUI interface
usually uses the partial edit,
and the batch interface uses
the full edit. If you leave this
parameter blank, the default

option is full edits.
ErrorConditions EV02 O Blank = No Errors

1 = Warning

2 = Error
Version VERS I This field is required if this

MBEF is using versions.

56 PeopleSoft Proprietary and Confidential

Chapter 3

Business Functions

Name

Alias

/10

Description

Header Field One

skeskeoskosk

1/0

Pass in all the header fields
that are common to the
entire document. Begin
Document processes all of
these fields and validates
them, data dictionary edits,
UDC editing, default values,
and so on. Begin document
might also fetch to the table
to validate that records
matching these header fields
exist for Delete and Change,
or do not exist for Add.

Header Field Two

skskoskosk

I/0

skokokosk

I/O

Header Field XX

skskoskook

/O

Work Field / Processing
Flag One

skeskeoskosk

List any work fields that the
program needs. These could
be flags for processing,
dates to validate, and so on.
These fields might or might
not be used. For example,
currency control might be
saved in the header cache so
that all detail records would
either use currency or not.

Work Field / Processing
Flag One

skeskeoskosk

Work Field / Processing
Flag One

Application-Specific Parameters

Application-specific parameters must perform these tasks:

* List the fields that are needed to process header-level information.

* List any work fields that are needed to perform edits.

* List all POs that are needed to process header-level information.

PeopleSoft Proprietary and Confidential

57

Business Functions Chapter 3

58

Edit Line
Edit Line has this format:
FxxxxxEditLine

The Edit Line component performs these tasks:
* Validates all user input, performs calculations, and retrieves default information.

Edit Line is normally called for every record that is fetched. It performs the edits for that one record in the file.
* Reads header cache records for default values.
e On an ADD, enters default information in blank columns, such as address book information.

The default values might come from any of these objects:

- Another column in the line.

A process performed on a column sent in the line.
- A PO.
A saved value from the header record that was determined in the Begin Document module.

- A DD default value.

* Edits columns for correct information.
This includes interdependent editing between columns. Also performs UDC and DD edits.
* Writes record to the detail cache if no errors occurred.

If the record already exists in the work file, the line in the work file will be retrieved and updated with the
changes. If a record is deleted from the grid in direct mode, and the record does not exist in the database, the
record will be removed from the detail cache. If the record exists in the database, the action code for the
record will be changed to delete, and the record will be stored in the detail cache until file processing in
End Doc.

Special Logic or Processing Required

Depending on the type of document being processed, different editing and inserting of default values takes
place. An example would be vouchers and invoices processed through the journal entry MBF. The tax
calculator is only called for vouchers. Depending on the event processing required, the process edit flag
determines the editing that occurs. For example, in an interactive program, when the Grid Record is Fetched
event runs, Partial Edits might be performed to retrieve descriptions, default values, and so on. When the Row
is Exited and Changed event runs, Full Edits might be performed to validate all user input.

Typical Uses and Hookup

In interactive applications, Edit Line is typically called on Grid Record is Fetched or Row is Exited and
Change (Asynch). In batch applications, Edit Line is typically called in the Do section of the group, columnar,
or tabular section.

Common Parameters

This table describes the common parameters for Edit Line:

PeopleSoft Proprietary and Confidential

Business Functions

Name

Alias

/10

Description

Job Number

JOBS

Used as key or to create a
unique name for the cache
or work file. Retrieved from
Begin Document.

Line Number

LNID

I/O

The unique number
identifying the transaction
line. Can also be used as the
line number in the Detail
Cache.

Line Action

ACTN

Aorl=Add
Cor 2 =Change
D or 3 =Delete

Process Edits (optional)

EVO01

0=No Edits
1 = Full Edits
2 = Partial Edits

Note. GUI interface
typically uses the partial
edit, and the batch interface
typically uses the full edit.
If you leave this parameter
blank, the default edit is
Full.

Error Conditions

ERRC

0=No Errors
1 = Warning
2 = Error

Update Or Write to Work
File

EV02

1 = Write or update records
to the work file, or do both.

Record Written to Work File

EVO03

1/0

1 = A record is written to the
work file. This reduces I/O
calls to the work file.

Blank = No record is written
to the work file.

Detail Field One

skokokosk

I/O

Pass in all the Detail

fields that will be edited.
Typically, these are the
grid record fields. Edit
Line provides validation,
data dictionary edits, UDC
editing, default values, and
SO on.

Detail Field Two

skskoskosk

1/0

PeopleSoft Proprietary and Confidential

59

Business Functions Chapter 3

Name Alias 110 Description

Detail Field XX HoHAK 1/0

Work Field / Processing oAk I List any work fields that

Flag One the program needs. These
fields could be flags for
processing, dates to validate,
and so on.

Work Field / Processing sk ok I

Flag One

Work Field / Processing oAk I

Flag One

Edit Document

The Edit Document component performs these tasks:
» Reads cache records if multiple line editing is required.
» Reads header cache record if header information is needed.

» Performs cross-dependency edits involving multiple lines in a document. For example, Edit Document
processes all records to ensure that percentages total 100 percent, and it ensures that the last record does not
contain certain information.

Special Logic or Processing Required

Depending on the type of document that you are processing, different logic is executed. For example, vouchers
and invoices are processed through the journal entry edit object, although the balancing is different for these
document types.

Hook Up Tips
Edit Document is typically used in this fashion:

* Call the function at least once after calling Edit Line and before End Document.

* If errors occur during validation, call the function again to verify that errors have been cleared before
calling End Document.

* Call this function on the OK Button Clicked event so that, if errors do occur, they are corrected before
the user exits the application.

Common Parameters

This table describes the common parameters for Edit Document:

60 PeopleSoft Proprietary and Confidential

Chapter 3 Business Functions

Name Alias /10 Description
Job Number JOBS I Retrieved from Begin
Document
ErrorConditions EVO01 O Blank = No Errors
1 = Warning
2 = Error

Application-Specific Parameters

Because all records have been added in Begin Document or Edit Line, and because any information needed to
process the entire document is in cache, few parameters are needed in this function.

End Document
End Document has this format:
FxxxxxEndDocument
The End Document component performs these tasks:

» Assigns a next number to the document.

For vouchers, you should do this before calling journal entry edit object, but not before the voucher has been
balanced and is ready to be added to the database. By placing this module on the before add/delete/update
events, the document passes all edits before running this event.

» Reads cache records.

* On an ADD, writes new rows to the table.

* On a CHG, retrieves and updates existing rows.

* On a DEL, deletes rows from the table.

» Adds information and updates associated tables.
For example, it adds and updates these objects:

Manual checks associated with vouchers.

Address Book vouchered YTD columns in Address Book.

Address, phones, and who’s who information for Address Book.

Batch header.

* Clears the cache for that document and any work fields after all updates are completed successfully.
» Summarizes documents, if designated in a processing option, as it writes to the database.
» Reads work file through an alternate means and writes the records at a control break.

* Performs currency conversion.
Hook-Up Tips

This function is typically called on OK button Post Button Clicked, and it is hooked up Asynch. In the C
code, after the insert or update to the database is successful, call Clear Cache to clear the cache.

PeopleSoft Proprietary and Confidential 61

Business Functions Chapter 3

62

Common Parameters

This table describes the common parameters for End Document:

Name Alias /10 Description
Job Number JOBS I Retrieved from Begin
Document
Computer ID CTID I Retrieved from

GetAuditInfo(B9800100) in
application (optional)

Error Conditions EVO01 O Blank = No errors
1 = Warning
2 =Error
Program ID PID I Usually hard-coded

Application-Specific Parameters
Use application-specific parameters in End Document to perform these tasks:

* List the fields that are needed to process update or writes, such as Time and Date Stamp fields.
* List any work fields that are needed to perform updates or writes.

* List all POs that are needed to process updates or writes.

Clear Cache
Clear Cache has this format:
FxxxxxClearCache
The Clear Cache component removes the records from the header and detail cache.
Special Logic or Processing Required

If a unique cache name is selected as the naming convention for the cache (Dxxxxxxxx[Job Number]), then use
the cache API jdeCacheTerminateAll to destroy the cache.

Common Parameters

This table describes the common parameters for Clear Cache:

Name Alias 110 Description

Job Number JOBS | Indicates the job number of
the transaction that you want
to clear. This job number
should have been returned
from BeginDoc.

PeopleSoft Proprietary and Confidential

Chapter 3

Business Functions

Name

Alias

/10

Description

Clear Header

EVO01

Indicates whether the header
cache should be cleared.

1 = clear cache

Clear Detail

EV02

Indicates whether the detail
cache should be cleared

1 = clear cache

Line Number From
(Optional)

LNID

Indicates where to begin
clearing records in the detail
cache. If this line is blank,
the system begins clearing
from the first record.

Line Number Thru
(Optional)

NLIN

Indicates where to stop
clearing records in the detail
cache. If this line is blank,
the system deletes to the end
of the cache.

Cancel Document

Cancel Document has this format:

FxxxxxxCancelDoc

The optional Cancel Document component is used primarily with the Cancel button to close files, clear the
cache, and so on. Cancel Document is an application-specific function that provides basic function cleanup.

Special Logic or Processing Required

This function is application-specific.

Common Parameter

This table describes the common parameter for Cancel Document:

Name

Alias

/10

Description

Job Number

JOBS

The job number of the
transaction that you want to
clear. This number should
have been returned from
BeginDoc.

Building Transaction Master Business Functions

This chapter discusses using single-record processing and document processing to implement transaction

master business functions.

PeopleSoft Proprietary and Confidential

63

Business Functions Chapter 3

64

Single-Record Processing

This section provides an interactive and a batch program flow example for single-record processing.

Interactive Program Flow Example

This is an example of an implementing transaction master business functions during single-record processing
in an interactive application:

1. Post Dialog is Initialized (optional)
Call Begin Document.
2. Set Focus on Grid
Row is Exited and Changed or Row is Exited and Changed ASYNC
Call Edit Line.
4. Delete Grid Record Verify- After
Call Edit Line to perform delete for one record.
Call Edit Document to perform deletes on a group of records.
5. OK Button Clicked
Call Begin Doc.
Call Edit Document.
6. OK Post Button Clicked
Call End Document.

Master Business Functions usually perform all table I/O for the given table. Therefore, these actions must
be disabled:

* Add Grid Record to DB - before
Suppress Add.

* Update Grid Record to DB - before
Suppress Update.

* Delete Grid Record to DB - before
Suppress Delete.

Batch Program Flow Example

This is an example of an implementing transaction master business functions during single-record processing
in a batch application:

1. Do Section of Report Header.
Call Begin Document.

2. Do Section of the Group Section.
Call Edit Line.

3. Do Section of a Conditional Section (optional).
Call Edit Document.

4. Do Section of Report Footer.

PeopleSoft Proprietary and Confidential

Chapter 3

Business Functions

Call End Document.

Document Processing

This section provides an interactive program flow example for document processing.

Program Flow Example

This is an example of an implementing transaction master business functions during document processing
in an interactive application:

L.

Dialog is Initialized

Call Open Batch Edit Object module.
Grid is Entered

Call Begin Document Edit Object module.
Row is Exited

Call Edit Line Edit Object module.

OK Button Clicked

Call Edit Document Edit Object module.
Before Add from Database or Before Delete from Database
Suppress Add/Delete.

Call End Document Edit Object module.
Cancel Button Clicked

Call Close Batch Edit Object module.

Understanding Master File Master Business Functions

Master business functions (MBFs) enable calling programs to process certain predefined transactions. An
MBF encapsulates the required logic, enforces data integrity, and insulates the calling programs from the
database structures. Use MBFs for these reasons:

To create reusable, application-specific code.

To reduce duplicated code.

To ensure that hookup is consistent.

To support interoperability models.

To enable processing to be distributed through OCM.

To design event-driven architecture.

MBFs are typically used for multiline business transactions such as journal entries or purchase orders.
However, certain master files also require MBF support due to their complexity, importance, or maintenance

requirements from external parties. The requirements for maintaining master files are different from those for
multiline business transactions.

PeopleSoft Proprietary and Confidential

65

Business Functions Chapter 3

66

Generally, master file MBFs are much simpler than multiline business transaction MBFs. Transaction MBFs
are specific to a program, while master file MBFs access a table multiple times.

For interoperability, master file MBFs can be used instead of table I/O. This enables you to perform updates to
related tables using the business function instead of table event rules. Multiple records are not used; instead,
all edits and actions are performed with one call.

In their basic form, master file MBFs have these characteristics:

Characteristic Description

Single call Generally, you can make one call to an MBF to edit, add, update, or delete a master file
record. An edit-only option is available also.

Single data structure The fields required to make the request and provide all the necessary values are in
one data structure. The data fields should correspond directly with columns in the
associated master file.

No cache Because each master file record is independent of the others, caching is unnecessary.
The information provided with each call and the current condition of the database
provides all of the information that the MBF needs to perform the requested function.

Normal error handling As with other MBFs, master file MBFs must be capable of executing both in
interactive and batch environments. Therefore, the calling program must determine
the delivery mechanism of the errors.

Inquiry feature To enable external systems to be insulated from the PeopleSoft EnterpriseOne
database, an inquiry option is included. This enables an external system to use the
same interface to access descriptive information about a master file key as it uses to
maintain it.

Effect on applications For PeopleSoft EnterpriseOne applications, the effect of implementing a master file
MBEF should be minimal. Consider and follow several standards before implementing

a master file MBF.

Master file applications use the system to process all I/O for find/browse forms. This enables you to use all of
the search capabilities of the software.

You should design all master file applications so that all fix/inspect forms are independent of each other. Each
fix/inspect form can use the system to fetch the record, and all edits and updates occur using the master file
MBEF. This independent design has these major benefits:

« [t organizes the application in a way that simplifies edits involving dependent fields across multiple forms.

* It enables consistent implementation of modeless processing for all master file applications and all forms
within these applications.

Certain circumstances might justify deviation from this simple model. These circumstances are:

» Extremely large file formats

When the number of columns in the master file plus the required control fields in the call data structure
exceed technical limitations for data structures, the MBF can be split. You can split the MBF into one MBF
that handles base data and performs all adds and deletes, and one or more MBFs that enable the calling
program to update additional data when the base data has been established. In this case, it is usually logical
to split it, regardless of the technical limitation. For example, assuming that the customer master file
exceeded the data structure limitation, you would use these two MBFs to process the file:

PeopleSoft Proprietary and Confidential

Chapter 3

Business Functions

F0301ProcessMasterData
F0301ProcessBillingData

In this example, the FO301ProcessMasterData function processes the base data, and the
F0301ProcessBillingData function updates additional data.

Subordinate detail files

Information can exist in addition to the primary master file that has been normalized to enable for a
one-to-many relationship. Designing the Master File MBF strictly on the basis of how the database is
designed translates into three calls. Including at least one occurrence of a detail relationship in the data
structure of a Master File MBF is valid. This inclusion enables users to establish reasonably complete master
file information using a simple interface to meet simple needs. Street addresses and phone numbers within
Address Book are a good example. Customers expect that they can create an address book record by calling
a simple address book API with basic identifying information, the street address, and a phone number.

MBF Information Structure

This section discusses the parameters of the MBF information structure.

Standard Parameters for Single-Record Master Business Functions

This table describes the standard parameters for single-record MBFs:

Required
Name Alias /10 /Optional Description

Action Code ACTN |1 Required A =Add.

I=Inquiry.

C = Change.

D =Delete.

S = Same as except (the record is the same except for what

the user changes).
Update Master |EV01 |1 Optional 0 =No update; edit only (default).
File

1 = Update performed.
Process Edits EV02 |I Optional 1 = All Edits (default).

2 = Partial Edits (no data dictionary (DD)).
Suppress Error | SUPPS |1 Optional 1 = Error messages are suppressed.
Messages

0 =Process errors normally (default).
Error Message | DTAI | O Optional Returns error code.
ID
Version VERS |1 Future The default value is XJDEOOO1.

Application-Specific Control Parameters (Example: Address Book)

This table describes the application-specific parameters for Address Book:

PeopleSoft Proprietary and Confidential 67

Business Functions Chapter 3

68

Required
Name Alias /0 /Optional Description
Address Book | ANS /0 Optional For additions, AN8 is optional. For all other action codes,
Number this parameter is required.
Same as except | AN8 I Optional Required for S = Action Cod.e The record is the same except
for what the user changes.

Application Parameters (Example: Address Book)

This table describes the application parameters for Address Book:

Name Alias 110 Required/Optional
Alpha Name ALPH /0 Required
Long Address Number | ALKY /0 Optional
Search Type AT1 I Required
Mailing Name MLMN I Required
Address Line 1 ADDI1 I Optional
City CTY1 I Optional
State ADDS I Optional
Postal Code ADDZ I Optional

Master Business Function Impact on Performance

Performance issues might occur regardless of how you handle large-format tables. Two options for improving
performance are:

» Group data logically to enable data structures to be smaller and easier for the user to implement.

This configuration does, however, force the user to make multiple calls to add or update an entire record
in a table.

¢ Use a data structure that enables 300 fields.

This configuration is cumbersome to implement, and the user can choose not to apply all of the fields.

Through different interfaces, the user can add additional data later. Most processes dictate that part of the
data be added immediately, while related data can be added later. For example, the user might define a
customer master record but wait until a later date to define the customer’s billing instructions. Therefore,
you should choose the first option of splitting MBFs so that one MBF handles base data and one MBF
handles additional data.

PeopleSoft Proprietary and Confidential

Chapter 3 Business Functions

Working with Business Functions

Every business function must follow a defined structure and form. Every line of code must conform to the
PeopleSoft EnterpriseOne business function programming standards. Creating a business function involves
these overall tasks:

» Use Object Management Workbench (OMW) to build business function data structures.
* Use OMW to build business function source and header files.
* Build and add type definitions for data structures to the header file.

Business function DLLs are consolidated. Therefore, you need to build each of the custom business functions
into a custom DLL that you create. This process ensures that the custom business functions remain separate
from PeopleSoft EnterpriseOne business functions. The build program reviews the F9860 table to verify that
the custom DLL exists.

When you create a custom business function, you need to specify one of the custom DLLs. If you do not, the
build process builds the custom business function into the PeopleSoft EnterpriseOne CCUSTOM.DLL, where
CUSTOM is the seven-character name of the company, which is the default.

Prerequisite

Create a data structure.

Creating a Custom DLL
To create a custom DLL :

1. In OMW, create a new Business Function Library.
2. In Windows, run BusBuild.exe.
Typically, this file is located in ..\B9\System\Bin32\.
3. Rebuild all libraries by selecting Build, Rebuild Libraries in OMW.

This process takes several minutes.

Specifying a Custom DLL for a Custom Business Function
To specify a custom DLL for a custom business function :

1. In Business Function Design Aid, enter the custom DLL name in the Parent DLL field.

Note. You can also change the business function location if necessary.

2. Run the build for the business function.

PeopleSoft Proprietary and Confidential 69

Business Functions Chapter 3

Working with Business Function Builder

70

Use Business Function Builder to build business function code into a DLL. You can build C business functions,
Named Event Rules (NERs), and table event rules. The process that occurs when you run Business Function
Builder to build business functions includes compiling and linking. Compiling involves creating a business
function object. Linking makes the object part of a DLL.

Note. Link All does not compile any business functions; it only links each DLL.

You usually use Business Function Builder to build a single business function. Whenever you create source
code changes to a business function, you must build the business function to test it.

Build Output displays the results of the build. When the build is finished, the message ***Build
Finished*** appears at the bottom of Build Output. The text after this line indicates whether the build was
successful. If the build was successful, you can test the business function. Otherwise, you must correct any
problems and rerun the build process.

The system creates a work directory when any object is built. This directory is in the destination directory that
you specified, such as C:\b7\appl pgfiwork\buildlog.txt. This directory contains error and information logs.
The Buildlog contains the same information as the Build Output form in Business Function Builder.

Setting Build Options

Use options on the Build menu to control how and when the consolidated business function is built. This table
describes the available options:

Option Result

Build Generates a makefile, compiles the selected business functions, and links the functions into the
current consolidated DLL. Rebuilds only those components that are out of date.

Compile Generates a makefile and compiles the selected business functions. The application does not link
the functions into the current consolidated DLL.

ANSI Check Reviews the selected business function for ANSI compatibility.

Link Generates a makefile for each consolidated DLL and then builds each consolidated DLL. The
application does not compile any of the selected business functions.

Link All Generates a makefile for each consolidated DLL and then builds each consolidated DLL and links
it to all business functions that are called. The application does not compile any of the selected
business functions.

Rebuild Libraries Rebuilds the consolidated DLL and static libraries from the .obj files.

Build All Links and compiles all objects within each DLL.

Stop Build Stops the build from finishing. The existing consolidated DLL remains intact.

Suppress Output Limits the text that appears in Build Output.

Browse Info Cl}lelgaritgs browse information when compiling business functions. Clear this option to expedite
the build.

PeopleSoft Proprietary and Confidential

Chapter 3 Business Functions

Option Result

Precompiled Header | Creates a precompiled header when compiling a business function. When compiling multiple
business functions, the Business Function Builder generally compiles faster if it uses a
precompiled header.

Debug Info Generates debug information when compiling. The Visual C++ can debug any function that was
built with debug information. Clear this option to expedite the build.

Full Bind Resolves all of the external runtime references for each PeopleSoft EnterpriseOne consolidated
DLL.

Using the Utility Programs

The Tool menu contains several utility programs that assist in the build process. This table lists those utilities:

Utility Purpose

Synchronize JDEBLC You run the Synchronize JDEBLC program to reorganize PeopleSoft EnterpriseOne
business functions into new DLL groupings. This program synchronizes DLL field
for the local IDEBLC parent specification table with the parent DLL in the F9860
table. Use this program with caution. You typically use this program only if you have
manually dragged business function DLLs from a recent package build and you are
experiencing failures in the business function load library.

Dumpbin You run the Dumpbin program to verify whether a particular business function built
successfully. This program displays all the business functions that were built into the
selected consolidated DLL.

PDB (Program DeBug file) You receive a CVPACK fatal error when one of the object files that you are trying to

Scan link is incorrectly compiled with PDB information. To resolve this problem, you can
use the PDB Scan to identify any object fields that were built with PDB information.
Recompile any business functions that the PDB Scan reports.

Reading Build Output

Build Output consists of a series of sections that display important information about the status of a build.
You can use this information to determine whether the build completed successfully and to troubleshoot
problems if errors occurred during the build.

Makefile Section

The makefile section indicates where Business Function Builder generated the makefile for a particular

build. Business Function Builder generates one makefile for each DLL that it builds. A Generating Makefile
statement should always appears for each DLL that you are building. If the makefile statement does not appear,
then an error occurred. To resolve the error, you must complete these tasks:

* Verify that the local object directory exists.

* Verify that the permissions for the local object directory and the makefile are correct.

PeopleSoft Proprietary and Confidential 71

Business Functions Chapter 3

Begin DLL Section

Begin DLL indicates that Business Function Builder is building a particular DLL. For example, assume
that the previous section begins with* ****CDIST*****_ A Begin DLL section appears for each DLL
that you are building.

Compile Section

Before it build DLLs, Business Function Builder compiles the business functions in the DLLs first. The system
displays a sequential list of each business function that the Business Function Builder attempts to compile.
During the compilation process, these events might occur:

* Compiler Warning

When a compiler warning occurs, Business Function Builder displays warning CXXXX (where XXXX

is a number) and a brief description of the warning. To review information about the warning, search for
the CXXXX value in Visual C++ online help. Warnings usually do not prevent the business function from
compiling successfully. However, you can select the Warnings As Errors option in the Global Build form so
that the business function will not build if any warnings occur.

» Compiler Error

When a compiler error occurs, Business Function Builder displays error CXXXX (where XXXX is a
number) and a brief description of the error. To review extended information about the error, search for
the CXXXX value in Visual C++ online help. Because errors prevent the business function from compiling
successfully, you must resolve them.

Link Section

After Business Function Builder has compiled the business functions for a DLL, it links them. This linking
process creates the .1ib and .dll files for the DLL. During linking, these events might occur:

* Linker Warning

When a linker warning occurs, Business Function Builder displays warning LNKXXXX (where XXXX
is a number) and a brief description of the warning. To review information about the warning, search for
the LNKXXXX value in the Visual C++ helps. Warnings usually do not prevent the business function from
linking successfully. You can select the Warnings As Errors option in the Global Build form so that the
DLL will not build if it has any warnings occur.

e Linker Error

When a linker error occurs, Business Function Builder displays error LNKXXXX (where XXXX is a
number) and a brief description of the error. To review extended information about the error, search for
the LNKXXXX value in the Visual C++ helps. If a nonfatal error occurs, Business Function Builder still
creates the DLL. However, Business Function Builder notes that the DLL was built with errors. If a fatal
error occurs, Business Function Builder does not build the DLL.

Rebase Section

The Rebase Section displays information about rebasing. Rebase fine-tunes the performance of DLLs so that
they load faster. Rebase does this by changing the desired load address for the DLL so that the system loader
does not have to relocate the image. The system automatically reads the entire DLL and also updates fixes,
debug information, checksum information, and time stamp values.

72 PeopleSoft Proprietary and Confidential

Chapter 3 Business Functions

Summary Section

The Summary Section contains the most important information about the build. This section indicates whether
the build is successful. The summary section begins with *****Build Finished*****, Business Function
Builder also displays a summary report for each DLL that you attempted to build. This report includes

this information:

* The number of warnings.
* The number of errors.

e Whether the DLL build is successful.

Resolving Errors

You can use Business Function Builder tools to help you resolve errors. If you notice any unresolved external
errors during a business function build, the consolidated DLL still builds, and the software should run
normally. However, it cannot execute any unresolved business function.

Use the dumpbin tool to verify that a particular business function is present in a consolidated DLL. If a business
function is present, its name appears in the dumpbin output, followed by a nonzero number in parentheses.

Use the PDB scan to resolve the CVPACK fatal error. The CVPACK error occurs when the Business Function
Builder attempts to link an object file that was built with PDB (Program DeBug file) information. The PDB
scan finds the problem object file. You must then recompile the problem object file on the machine with

the Business Function Builder.

If a business function is compiled using Visual C++, it will not work properly. You can use PDB scan to
identify any business functions that have been built outside of Business Function Builder. Use Business
Function Builder to rebuild these functions so that they work properly.

If one of the DLLs is out of synch, you must rebuild it using the Build option. This generates a makefile
and then relinks all the business functions within it.

The Synchronize JDEBLC option from the Business Function Builder Tools menu corrects any misplaced or
incorrectly-built business functions. This option reviews the server DLLs and determines whether the local
workstation specifications match those of the server. If they do not, then Business Function Builder will
rebuild the business functions in the correct DLL on the server and relink them.

The Build Log contains these sections:

Section Description

Build Header This section defines the configuration for a specific build, including the source path, foundation
path, and destination path.

Build Messages This section displays the compile and link activity. During a compile, a line is output for each
business function that was compiled Any compile errors are reported as error cxxxx. During the
link part, business function builder outputs the text Creating library This text might
be followed by linker warnings or errors.

Build Summary The last section of the build summarizes the build for each DLL. This summary is in the form x
error (s), xwarnings (y). The summary indicates the status of the build. If you have no
warnings and no errors, then the build was successful. If the summary reports an error, search the
log for the worderrorto determine the source of the error. Typical build errors are syntax errors
and missing files.

PeopleSoft Proprietary and Confidential 73

Business Functions Chapter 3

74

Understanding Business Function Processing Failovers

In some instances in which a business function fails to process correctly, the software can attempt to recover and
reprocess the transaction. The system recognizes two principle failure states: process failure and system failure.

A process failure occurs when a jdenet_k process aborts abnormally. For a process failure, the software server
processing launches a new jdenet k process and continues processing.

A system failure occurs when all the server processing fails, the machine itself is down, or the client cannot
reach the server because of network problems. For a system failure, business function processing must

be rerouted either to a secondary server or to the local client. The system uses this process to attempt to
recover from this state:

* When the call to the server fails, the system attempts to reconnect to the server.
* If reconnect succeeds and no cache exists, the system reruns the business function on the server.
If a cache does exist, the system forces the user out of the application.
* Ifreconnect fails and no cache exists, the system switches to a secondary server or to the local client.

If a cache does exist, the system forces the user out of the application.

After one module switches, all subsequent modules switch to the new location.

Building All Business Functions

You can use Build All to build all business functions. Build All performs the same operations as global link,
and it recompiles all of the objects within each DLL. A system administrator usually runs Build All. Build All
processes can take a long time. To run Build All, you must access BusBuild.

To build all business functions:

1. In Windows, run BusBuild.exe.
Typically, this file is located in ..\B9\system\Bin32\.

2. In BusBuild, start the mass build by selecting Build, Build Al
Select one of these options for Build Mode:
* Debug

A build that includes debug information. After you perform a build, you can debug the built business
function using the Visual C debugger.

» Optimize

A build that does not include debug information. Optimized builds generally cannot be debugged
using the Visual C debugger.

* Performance Build

A build that is the same as an optimized build except that it includes information that helps developers
measure the performance of business functions. Only PeopleSoft developers should select this option.

4. Complete the Source Directory field.

Use this field to specify where the business function source resides. Business function source includes
all .c, .h, named event rules, and table event rules. Full packages usually have all business function
sources. These are the options for location:

PeopleSoft Proprietary and Confidential

Chapter 3

Business Functions

Local

All business function source is on the local machine.

Path Code

All business function source is in the path specified by the selected path code.
Package

The All business function source is in the path specified by the selected package. If a package is built
correctly, it typically contains all required business function sources. Generally, you should use Package
for the location.

Pick Directory

All business function source is stored in another directory on the file server. You specify the directory.

Complete the Foundation Directory field.

Use this field to specify the foundation to use for this build. The foundation that you choose is the
foundation on which you expect these business functions to run. These are the options for this field:

Local
The recommended foundation is the local PeopleSoft EnterpriseOne foundation.
Foundation

The foundation table lists all registered PeopleSoft EnterpriseOne foundations. Choose a foundation
from this table.

Pick Directory

The PeopleSoft EnterpriseOne foundation exists in a directory on the file server. You specify the
directory. PeopleSoft EnterpriseOne recommends this location.

Complete the Output Destination Directory field.

Use this field to specify the location for the output of the build. The build output includes the file types:
DLL, .LIB, .OBJ, and LOG. The location options are the same as those for Source Directory. Generally,
you should choose Package because it is a more stable snapshot of business function source.

Select any of these options:

Treat Warnings As Errors

If you select this option, Business Function Builder does not build a business function if it encounters
any warnings.

Clear Output Destination Before Build

If you select this option, Business Function Builder deletes the contents of the bin32, 1ib32 and obj output
directories before it builds all business functions.

Select Which DLLs to Build

If you clear this option, Business Function Builder builds all DLLs. If you select this option, you can
click the Select button and choose which business function DLLs you want to build. Select this option
if you want to build one or two DLLs. If you build only a subset of all DLLs, verify that the Clear
Output Destination Before Build option is cleared.

Stop Level

You can select the error level at which the build stops. You can ignore errors if you want to continue
building despite them. You can specify that the build process stop if a DLL contains errors. You can
stop on the first compile error.

PeopleSoft Proprietary and Confidential 75

Business Functions Chapter 3

* Generate Missing Source Report

If you select this option, Business Function Builder generates a report in the work directory of the
destination. This report is called NoSource.txt. It contains business function source file names that do
not have a .c file but do have a record in the F9860 table. To resolve the information in this report, you
can produce the correct .c file for the business function, or you can delete the source file from the F9860
table. It is recommended that you select this option.

e Generate ER Source

If you select this option, Business Function Builder generates NER and table event rule source before
building business functions.

* Verify Check-in

If you select this option, the system builds only objects checked in to a specified path code. A log file,
Notchkdn.txt, is written to the same directory as Nosource.txt. Objects that are not checked in to the path
code will be listed in this log and in Buildlog.txt.

Select the From RDB option to generate work from any path code. If this option is cleared, the business
function builder assumes that the event rules source can be generated from the source directory specification
files.

If you are troubleshooting a build initiated by Package Build, then the previous settings should already be set
to the correct values. In this case, click Build to rebuild the problem DLLs.

Note. You can also run this build by selecting the Build BSFN option on in a package build.

Understanding Business Function Documentation

76

Business function documentation explains what individual business functions do and how they should be used.
The documentation for a business function should include this type of information:

* Purpose.
» Parameters (the data structure used).

* Descriptions for each parameter that indicate required input and output, and explain return values.

Related tables (the table accessed).
» Related business functions (business functions called from within the functions itself).

* Special handling instructions.

You use Business Function Design and Data Structure Design to document the business functions.

Creating Business Function Documentation
You can create business function documentation for several levels, including these:

* Business Function Notes

Documentation for the specific business function that you are using.
* Data Structure Notes

Notes about the data structure for the business function.

¢ Parameter Notes

PeopleSoft Proprietary and Confidential

Chapter 3 Business Functions

Notes about the actual parameters in the data structure.

Generating business function documentation provides you with an online list of information about business
functions that you can view through the Business Function Documentation Viewer (P98ABSFN). Typically,
the system administrator performs this task because generating the business function documentation for all

business functions takes considerable time. If you create new business function documentation, you need to
regenerate the business function documentation for that business function only.

Run UBE R98ABSFN, batch version XJDE0OOOI to generate all business function documentation. The
system creates a hypertext markup language (HTML) link for each business function for which you generated
documentation. It also creates an Index HTML file. These HTML files appear in the output queue directory.

Viewing Documentation from Business Function
Documentation Viewer

You can use Business Function Documentation Viewer to view documentation for all business functions
or selected business functions. After you generate the report, use the Business Function Documentation
Viewer (P9SABSFN) to display the information. It is suggested that you use this method to view business
function documentation.

The Business Function Documentation form contains the HTML index that you generated. To view the entire
index or choose specific functions, click the appropriate letter in the index. Double-click a business function to
view documentation that is specific to that function.

The media object loads the HTML index of the business functions based on a media object queue. In the media
object queue table, a queue named Business Function Doc is defined.

This queue must point to the directory in which the business function HTML files are located. The system
administrator usually generates the documentation for all business functions. Because the generation process
places the documentation files in the local directory, the administrator must then copy the files to a central
directory on the deployment server. The files must be copied to the media object queue for media object
business function notes. If you are using the standalone version of the software, this path is usually the output
directory from the Network Queue Settings section of the jde.ini file. If this entry is not in the jde.ini file, it is
in the print queue directory in the PeopleSoft EnterpriseOne software directory.

PeopleSoft Proprietary and Confidential 77

Business Functions Chapter 3

78 PeopleSoft Proprietary and Confidential

APPENDIX A

PeopleSoft EnterpriseOne APIs

This appendix describes the public APIs available for PeopleSoft EnterpriseOne.

General APlIs

This section discusses APIs that can used in a number of different PeopleSoft EnterpriseOne systems.

jdeCreateGuid
Syntax

void jdeCreateGuid (JDEGUIDBIN *pGuid)

Description

jdeCreateGuid generates a GUID, also known as a UUID. A GUID is a 128 bits long, but is often represented
by a 36 character string. This API generates the 128 bit, binary representation.

Parameters

Parameter Description
pGuid Destination pointer for generated GUID.
Example

JDEGUIDBIN zGUID = {0};

jdeCreateGuid (&zGUID) ;

See Also

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeCreateGuidString, page 80
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGuidCompare, page 80
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGuidToString, page 81

PeopleSoft Proprietary and Confidential 79

PeopleSoft EnterpriseOne APls Appendix A

jdeCreateGuidString
Syntax

void jdeCreateGuidString (JDEGUIDSTR szGuid)

Description

jdeCreateGuidString generates a GUID (Globally Unique IDentifier) also known as a UUID
(Universally Unique IDentifier) and returns the string representation. A GUID is a 128 bits long, but
is often represented by a 36 character string. This API generates the string representation, such as
4C32C69E-4D33-11D8-B299-72E2054054ES.

Parameters

Parameter Description
JDEGUIDSTR szGuid Destination pointer for generated GUID string.
Example

JDEGUIDSTR szGUID = {0};
jdeCreateGuidString (szGUID) ;

jdePrintf (_J("Generated GUID: %1ls\n"), szGUID);

See Also

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeCreateGuid, page 79
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGuidCompare, page 80
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGuidToString, page 81

jdeGuidCompare
Syntax

int jdeGuidCompare (
JDEGUIDBIN *pG1,
JDEGUIDBIN *pG2
)

Description

The GUIDs (Globally Unique IDentifier) generated by jdeCreateGuid can be ordered lexicographically. This
API provides a lexicographical comparison of two GUIDs.

80 PeopleSoft Proprietary and Confidential

Appendix A

PeopleSoft EnterpriseOne APIs

Parameters
Parameter Description
JDEGUIDBIN *pG1 First GUID to compare.
JDEGUIDBIN *pG2 Second GUID to compare.
Returns

An integer. The values are:

Value
Description
1
pG1>pG2
0
pG1 and pG2 point to identical GUID representations.
-1
pGl<pG2
Example
JDEGUIDBIN zGUID1 = {0};
JDEGUIDBIN zGUID2 = {0};
jdeCreateGuid (&zGUID1) ;
jdeCreateGuid (&zGUID2) ;
if (jdeGuidCompare (&zGUID1, &zGUID2) == 0)
{
jdePrintf (J("GUIDs are equivalent\n"));
}
See Also

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeCreateGuid, page 79

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeCreateGuidString, page 80

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGuidToString, page 81

jdeGuidToString
Syntax

void jdeGuidToString (

JDEGUIDSTR szDestStr,
JDEGUIDBIN zGuid
)

PeopleSoft Proprietary and Confidential

81

PeopleSoft EnterpriseOne APls Appendix A

82

Description

jdeCreateGuid generates a 36-character string representation for the 128-bit binary representation
of a GUID (Globally Unique IDentifier) that is passed in to it. This is an example of a GUID:
4C32C69E-4D33-11D8-B299-72E2054054ES.

Parameters

Parameter Description
JDEGUIDSTR szDestStr Destination pointer for GUID string.
JDEGUIDBIN zGuid Structure containing source GUID.
Example

JDEGUIDBIN zGUID1 = {0
JDEGUIDSTR szGUID2 = {

}i
0};
jdeCreateGuid (&zGUID1) ;

jdeGuidToString (szGUID2, zGUID1) ;

jdePrintf (_J("String representation: %1ls\n"), szGUID2);

See Also

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeCreateGuid, page 79
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeCreateGuidString, page 80
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGuidCompare, page 80

jdeEncryptWKey
Syntax

int JjdeEncryptWKey (
BYTE *outbuf,
int *poutlen,
JCHAR *inbuf,
int inlen,
JCHAR *encryptkey,
int keylen,
int type
)

Description

jdeEncryptWKey performs encryption with input JCHAR string data and JCHAR encrypt key string, and
then returns encrypted bytes and length. The maximum length of JCHAR encrypt key is 16, and the minimum
length of JCHAR encrypt key is 4. A TripleDES algorithm is implemented currently.

PeopleSoft Proprietary and Confidential

Appendix A

PeopleSoft EnterpriseOne APIs

Parameters
Parameter Description

outbuf Output. The number of encrypted bytes. If NULL, this API will fail.

poutlen Output. The length of encrypted bytes.

inbuf Input. JCHAR string data. If inbuf'string data is NULL or has a length of zero, this API
will fail. However, if inbufis a blank space string with length greater than zero, the
API will encrypt the string as a valid JCHAR string.

inlen Input. The length of JCHAR string data.

encryptkey Input. JCHAR string encrypt key. If encryptkey is NULL, has a length of zero, or just a
single blank space, this API will fail.

keylen Input. The length of the JCHAR encrypt key string.

type Input. The type of encryption algorithm.

Returns

This API returns these values:

Value
Description
1
JDEENCRYTT_SUCCESS. Indicates the API was successful.
0
JDEENCRYPT FAILURE. Indicates the API failed.
Example

/* Declare variables associated with jdeEncryptWKey */

* declare example data
*
***/
JCHAR EKey[32]=_J("12345678") ;
EKeyLen=8;
EData[1024]=_J("TESTDATA") ;
EDatalen=8;
EncryptedData[1024]={0};
EncryptedLen;
type=eEVPTripleDES;
iRet;

int
JCHAR
int
BYTE
int
int

int

iRet=jdeEncryptWKey (EncryptedData, &EncryptedLen, EData, EDatalLen, EKey, EKey=
Len, type) ;
if (iRet!= JDEENCRYPT_SUCCESS)

{

PeopleSoft Proprietary and Confidential 83

PeopleSoft EnterpriseOne APls

84

Appendix A

jdePrintf ("jdeEncryptWKey failed\n") ;
} /* END IF */

jdeDecryptWKey

Syntax

int jdeDecryptWKey (JCHAR *outbuf,

Description

int *poutlen,

BYTE *inbuf,

int inlen,

JCHAR *encryptkey,
int keylen,

int type

)

jdeDecryptWKey performs decryption with input encrypted data bytes and JCHAR encrypt key string, and
then return decrypted JCHAR string with its length. The TripleDES algorithm is used.

Parameters
Parameter Description
outbuf Output. Decrypted JCHAR string. If null, the API fails.
poutlen Output. Length of decrypted JCHAR string.
inbuf Input. Encrypted bytes. If null or the length is zero, the API fails.
inlen Input. Length of encrypted bytes.
encryptkey Input. JCHAR string encrypt key. Minimum length is 4; maximum length is 16. If the
length is zero or it contains only a blank space, the API fails.
keylen Input. Length of JCHAR encrypt key string.
type Input. Type of encryption algorithm.
Returns

This API can return these values:

Value

Description

JDEENCRYPT SUCCESS. Indicates the API succeeded.

JDEENCRYPT FAILURE. Indicates the API failed.

PeopleSoft Proprietary and Confidential

Appendix A

PeopleSoft EnterpriseOne APIs

Example

/* Declare variables associated with jdeEncryptWKey */

* declare example data

*

***/

JCHAR EKey [32]=_J("12345678") ;
int EKeyLen=8;
JCHAR EData[1024]= J("TESTDATA") ;
int EDatalLen=8;
BYTE EncryptedData[1024]1={0};
int EncryptedLen;
int type=eEVPTripleDES;
int iRet;
JCHAR DecryptedData[1024]1={0};

int DecryptedLen;

iRet=jdeEncryptWKey (EncryptedData, &EncryptedLen, EData, EDatalLen, EKey, EKey=
Len, type) ;
if (iRet!= JDEENCRYPT_ SUCCESS)
{
jdePrintf ("jdeEncryptWKey failed\n") ;
} /* END IF */

iRet=jdeDecryptWKey (DecryptedData, &DecryptedLen, EncryptedData, Encrypted=
Len, EKey, EKeyLen, type) ;
if (iRet!= JDEENCRYPT SUCCESS)
{
jdePrintf ("jdeDecryptWKey failed\n") ;
} /* END IF */

JDB_TextSearchClearSelection
Syntax

JDERTN (JDEDB_RESULT) JDEWINAPI JDB TextSearchClearSelection (HREQUEST hRequest) ;

Description

This API clears all select criteria for text searches.

Parameters

Parameter Description

hRequest Input, required. The request handle that defines the context in which the text search

selection criteria are to be cleared.

PeopleSoft Proprietary and Confidential

85

PeopleSoft EnterpriseOne APls Appendix A

Returns

This API can return these values:

Value
Description

JDEDB_PASSED

The selection criteria we cleared successfully.

JDEDB_FAILED

The selection criteria were not cleared.

Example

JDBDB_RESULT nResult;

nResult = JDB TextSearchClearSelection (hRequest) ;

JDB_TextSearchClearSequencing
Syntax

JDERTN (JDEDB_RESULT) JDEWINAPI JDB TextSearchClearSequencing (HREQUEST hRequestO;

Description

This API clears all sequencing criteria for text searches.

Parameters
Parameter Description
hRequest Input, required. The request handle that defines the context in which the text search
sequencing criteria are to be cleared.
Returns

This API can return these values:

Value
Description

JDEDB PASSED

The sequencing criteria we cleared successfully.

JDEDB_FAILED

The sequencing criteria were not cleared.

86 PeopleSoft Proprietary and Confidential

Appendix A PeopleSoft EnterpriseOne APIs

Example

JDBDB_RESULT nResult;

nResult = JDB_ TextSearchClearSequencing (hRequest) ;

JDB_ TextSearchCloseView
Syntax

JDERTN (JDEDB_RESULT) JDEWINAPI JDB TextSearchCloseView (HREQUEST hRequest) ;

Description

This API closes a business view that was opened for text searches.

Parameters
Parameter Description
hRequest Input, required. The request handle that defines the context in which the business
view is to be closed.
Returns

This API can return these values:

Value
Description

JDEDB_PASSED

The business view was closed successfully.

JDEDB_FAILED

The business view was not closed.

Example

DBDB_RESULT nResult;

nResult = JDB_TextSearchCloseView (hRequest) ;

JDB_TextSearchFetch
Syntax

JDERTN (JDEDB_RESULT) JDEWINAPI JDB_TeXtSearChFetch(
HREQUEST hRequest,
void FAR * IpValue,

void FAR * gscore,

PeopleSoft Proprietary and Confidential 87

PeopleSoft EnterpriseOne APls

88

void FAR * summary,
int nLock

)i

Description

This API fetches a row of text search results.

Parameters
Parameter Description

hRequest Input, required. The request handle that defines the context in which the text search
was issued.

IpValue Output, required. The business view data structure where the text search results
are stored.

summary Output, required. The summary that describes the context of the match in the text
search results.

nLock Input, required. Not used.

Returns

This API can return these values:

Value
Description

JDEDB PASSED

The text search results were fetched successfully.

JDEDB_FAILED

The search results were not fetched.

Example

DSV0101C value; /* User-defined struct */
MATH_NUMERIC mnScore;

JCHAR szSummary[256] = { 0 };
JDBDB_RESULT nResult;

nResult = JDB TextSearchFetch (hRequest, &value, &mnScore, szSummary, O0);

JDB_TextSearchOpenView
Syntax

JDERTN (JDEDB_RESULT) JDEWINAPI JDB TextSearchOpenView (
HUSER hUser,
NID szBob,
JCHAR * IpszDataSource,

PeopleSoft Proprietary and Confidential

Appendix A

Appendix A

PeopleSoft EnterpriseOne APIs

HREQUEST * hRequest

Description

)i

This API opens a business view for text searches. You must call this API before issuing any text searches.

Parameters
Parameter Description

hUser Input, required. The user handle that defines the context in which to open the business
view.

szBob Input, required. The business view that defines the data and media objects to include in
the text search index.

IpszDataSource Input, required. The data source that defines the location of the data and media objects
to search.

hRequest Output, required. The request handle to use for subsequent text search operations.

Returns

This API can return these values:

Value

Description

JDEDB PASSED

The business view was opened successfully.

JDEDB_FAILED

The business view was not opened.

Example
NID szBob = _J("V0101C");
JCHAR * lpszDataSource = J("My Business Data");

HREQUEST hRequest =
JDBDB_RESULT nResult;

nResult =

JDB_TextSearchOpenView (hUser,

NULL;

szBob, lpszDataSource, &hRequest) ;

JDB_TextSearchSelect

Syntax

JDERTN (JDEDB_RESULT)

PeopleSoft Proprietary and Confidential

JDEWINAPI JDB TextSearchSelect (

HREQUEST hRequest,

const JCHAR * IpKeyWordsValue,
JDB_TEXTSEARCH VALUE_TYPE nValueType,
JDB_TEXTSEARCH_ KEYWORD_OPTION nKeyOption

89

PeopleSoft EnterpriseOne APls Appendix A

90

Description

This API issues a text search. You must open a business view with JDB_TextSearchOpenView before
you use this API to issue a text search.

Parameters
Parameter Description

hRequest Input, required. The request handle that defines the context in which to issue the
text search.

IpKeyWordsValue Input, required. The keywords or Verity Query Language (VQL) string for the text
search.

nValueType Input, required.JDB_ TEXTSEARCH VALUE TYPE KEYWORDS =
IpKeyWordsValue is a keywords string. JDB. TEXTSEARCH VALUE TYPE VQL
= IpKeyWordsValue is a VQL string.

nKeyOption Input, required. A bitmap that indicates how to treat keywords. You can use either or
UﬁhOfﬂwseVduesJDB_TEXTSEARCH_KEYWORD_OPT_CASE_SENSITIVE
= match text using case sensitivity.JDB_TEXTSEARCH KEYWORD_ OPT _
SIMILARITY = match similar words.

Returns

This API can return these values:

Value
Description

JDEDB PASSED

The text search was issued successfully.

JDEDB_FAILED

The text search was not issued.

Example

JDBDB_RESULT nResult;

nResult = JDB TextSearchSelect (hRequest, _J("financial company"), JDB_ TEXTSEARCH =
VALUE TYPE KEYWORDS, JDB_TEXTSEARCH KEYWORD OPT_ SIMILARITY) ;

JDB_TextSearchSetSelection
Syntax

JDERTN (JDEDB_RESULT) JDEWINAPT JDB_TeXtSearchSetSeleCtion(
HREQUEST hRequest,
LPNEWSELECT IpSelect,

ushort nNum,

PeopleSoft Proprietary and Confidential

Appendix A PeopleSoft EnterpriseOne APIs

JDEDB_SET nSet
)i

Description

This API sets the selection criteria for a text search.

Parameters
Parameter Description

hRequest Input, required. The request handle that defines the context to which the text search
selection criteria is to be applied.

IpSelect Input, required. The text search selection criteria.

nNum Input, required. The number of selection fields.

nSet Input, required. JDEDB_SET REPLACE = replace the existing selection
criteria. JDEDB_SET_APPEND = append to the existing selection criteria.

Returns

This API can return these values:

Value
Description

JDEDB_PASSED

The text search selection criteria were set successfully.

JDEDB FAILED

The text search selection criteria were not set.

Example

NEWSELECTSTRUCT lpSelect[1];
JCHAR szTemp [10] ;
MATH_NUMERIC mnTemp;
JDBDB_RESULT nResult;

/* Populate the select structure. */

jdeNIDcpy (1pSelect [0] .Iteml.szDict, NID ANS) ;
jdeNIDcpy (1pSelect [0] .Iteml.szTable, NID F0101) ;
lpSelect [0] .Iteml.idInstance = 0;

lpSelect [0]

lpSelect [0] .nCmp = JDEDB_CMP_EQ;
lpSelect [0] .nAndOr = JDEDB_ANDOR_AND;
jdeSprintf (szTemp, J("%d"), 4100);

ParseNumericString (&mnTemp, szTemp) ;

.nValues = 1;

lpSelect [0] .1pValue = &mnTemp;
lpSelect [0] .nParen = JDEDB_PAREN_ NONE;

PeopleSoft Proprietary and Confidential 91

PeopleSoft EnterpriseOne APls Appendix A

nResult = JDB TextSearchSetSelection (hRequest,
lpSelect, 1, JDEDB SET REPLACE) ;

JDB_TextSearchSetSequencing
Syntax

JDERTN (JDEDB_RESULT) JDEWINAPI JDB TextSearchSetSequencing (
HREQUEST hRequest,
LPSORT lpSSort,
ushort nNum,
JDEDB_SET nSet
)

Description

This API sets the sequencing criteria for a text search.

Parameters
Parameter Description

hRequest Input, required. The request handle that defines the context to which the text search
selection criteria is to be applied.

IpSort Input, required. The text search sequencing criteria.

nNum Input, required. The number of sort fields.

nSet Input, required. JDEDB_ SET REPLACE =replace the existing sequencing
criteria. JDEDB_ SET_APPEND = append to the existing sequencing criteria.

Returns

This API can return these values:

Value
Description

JDEDB_PASSED

The text search sequencing criteria were set successfully.

JDEDB_FAILED

The text search sequencing criteria were not set.

Example

SORTSTRUCT lpSort[2];
JDBDB_RESULT nRe sult;

/* Populate the sort structure. */
jdeNIDcpy (1pSort [0] .Item.szDict, NID ANS8) ;

92 PeopleSoft Proprietary and Confidential

Appendix A PeopleSoft EnterpriseOne APIs

lpSort [0] .Item.idInstance = 0;
jdeNIDcpy (1pSort [0] .Item.szTable, NID F0101) ;
lpSort [0] .nSort = JDEDB_SORT_ASC;

jdeNIDcpy (1pSort [1] .Item.szDict, NID ALPH) ;
lpSort [1] .Item.idInstance = 0;
jdeNIDcpy (1lpSort [1] .Item.szTable, NID F0101);
lpSort [1] .nSort = JDEDB_SORT_ASC;

nResult = JDB TextSearchSetSequencing (hRequest, lpSort, 2, JDEDB_SET REPLACE) ;

TextSearchFullindexing
Syntax

JDERTN (TEXTSEARCH INDEXING RESULT) JDEWINAPI TextSearchFullIndexing(
HUSER IpUser,
JCHAR* IpszDataSource,
JCHAR* lpszBusinessView
)i

Description

This API builds a text search index which is an indexed copy of PeopleSoft EnterpriseOne data and media
objects that is optimized for text searches.

Parameters
Parameter Description

IpUser Input, required. The user handle that defines the context in which to build the text
search index.

IpszDataSource Input, required. The data source that defines the location of the data to include in
the text search index.

IpszBusinessView Input, required. The business view that defines the data and media objects to include in
the text search index.

Additional Notes

The full text search index build leaves the existing index intact (if one exists) for the duration of the build
process. Doing so ensures that searches remain functional throughout the course of the build. When the text
search index build is complete, this API clears the previous text search index build instance.

Returns

This API can return these values:

PeopleSoft Proprietary and Confidential 93

PeopleSoft EnterpriseOne APls

Appendix A

Value

Description

TEXTSEARCH INDEXING
SUCCESS

The full text search index build completed successfully.

TEXTSEARCH INDEXING

FAIL
The full text search index build failed.
Example
TEXTSEARCH INDEXING RESULT nResult;
nResult = TextSearchFullIndexing(lpUser, J("My Business Data Source"), J=
("voio01c")) ;

TextSearchincrementindexing

Syntax

JDERTN (TEXTSEARCH INDEXING RESULT) JDEWINAPI TextSearchIncrementIndexing (

Description

HUSER lIpUser,

JCHAR* lpszBusinessView,
JCHAR* IpszDataSourceOverride,
TEXTSEARCH INDEX MODE mode,
LPKEYINFO IpKeyInfo,

short nKeys

)

This API performs an incremental text search index build which modifies an existing text search index to
reflect a change to a single row of PeopleSoft EnterpriseOne data or attached media objects.

94

PeopleSoft Proprietary and Confidential

Appendix A PeopleSoft EnterpriseOne APIs
Parameters
Parameter Description
IpUser Input, required. The user handle that defines the context in which to modify the
text search index.
IpszBusinessView Input, required. The business view that defines the data and media objects to include in

the text search index.

IpszDataSourceOverride

Input, optional. The data source that defines the location of the data to include in
the text search index. If this is not provided, the AP uses the OCM to determine
the data source.

mode Input, required. The operation to perform: TEXTSEARCH INDEX INSERT,
TEXTSEARCH_INDEX UPDATE, or TEXTSEARCH_INDEX DELETE.

IpKeylInfo Input, required. The primary key data that defines the row to modify in the text search
index.

nKeys Input, required. The number of keys defined in [pKeylInfo.

Additional Notes

This API provides a mechanism to keep text search indices synchronized with changes to the corresponding
PeopleSoft EnterpriseOne data and media objects. However, incremental builds reduce the efficiency of text
searches. It is recommended that administrators schedule regular full text search index builds or optimizations
in conjunction with applications that call this API.

Returns

This API can return these values:

Value

Description

SUCCESS

TEXTSEARCH_INDEXING _

The incremental text search index build completed successfully.

FAIL

TEXTSEARCH INDEXING

The incremental text search index build failed.

Example

LPKEYINFO lpKeyInfo;

JCHAR szTemp [10] ;

MATH NUMERIC mnTemp;

TEXTSEARCH INDEXING RESULT nResult;

/* Populate the key information. */

jdeSprintf (szTemp,

_J("sd"), 4100);

ParseNumericString (&mnTemp, szTemp) ;

PeopleSoft Proprietary and Confidential

95

PeopleSoft EnterpriseOne APls Appendix A

lpKeyInfo = (LPKEYINFO)jdeAlloc (COMM POOL, sizeof (KEYINFO), MEM ZEROINIT) ;
jdeNIDcpy (1pKeyInfo[0] .szDict, NID_ANS) ;

jdeNIDcpy (1pKeyInfo[0] .szTable, NID F0101) ;

0;

lpKeyInfo[0] .1pJdDEValue = &mnTemp;

lpKeyInfo[0] .idInstance

nResult = TextSearchIncrementIndexing(lpUser, J("V0101C"), NULL, TEXTSEARCH INDEX =
INSERT, lpKeyInfo, (short)1l);

TextSearchindexClearing
Syntax

JDERTN (TEXTSEARCH_INDEXING RESULT) JDEWINAPI TextSearchIndexClearing (
HUSER IpUser,
JCHAR* IpszDataSourceName,
JCHAR* IpszBusinessView
) ;

Description

This API clears a text search index build. Text searches do not work on a text search index that has been cleared.

Parameters
Parameter Description

IpUser Input, required. The user handle that defines the context in which to modify the
text search index.

IpszDataSource Input, required. The data source that defines the location of the data included in
the text search index.

IpszBusinessView Input, required. The business view that defines the data and media objects to include in
the text search index.

Additional Notes

Clear a text search index when users no longer need to issue text searches against it. Clearing a text search
index releases the system resources associated with it.

Returns

This API can return these values:

Value
Description

TEXTSEARCH_INDEXING _
SUCCESS

The incremental text search clear completed successfully.

96 PeopleSoft Proprietary and Confidential

Appendix A

PeopleSoft EnterpriseOne APIs

Value
Description
TEXTSEARCH_INDEXING _
FAIL
The incremental text search clear failed.
Example

TEXTSEARCH INDEXING RESULT nResult;

nResult = TextSearchIndexClearing(lpUser, _J("My Business Data Source"), J=

("voio01lc")) ;

TextSearchindexOptimizing

Syntax

JDERTN (TEXTSEARCH INDEXING RESULT) JDEWINAPI TextSearchIndexOptimizing (

Description

HUSER lpUser,

JCHAR* IpszDataSourceName,
JCHAR* lpszBusinessView
)i

This API optimizes a text search index build which reorganizes an existing text search index to facilitate

faster text searches.

Parameters
Parameter Description

IpUser Input, required. The user handle that defines the context in which to optimize the
text search index.

IpszDataSource Input, required. The data source that defines the location of the data included in
the text search index.

IpszBusinessView Input, required. The business view that defines the data and media objects included in
the text search index.

Additional Notes

Incremental text search index builds reduce the efficiency of text searches. Optimizing text search index
reorganizes the data modified by incremental builds in order to improve text search performance.

Returns

This API can return these values:

PeopleSoft Proprietary and Confidential

97

PeopleSoft EnterpriseOne APls Appendix A
Value
Description
TEXTSEARCH INDEXING
SUCCESS
The text search index optimization completed successfully.
TEXTSEARCH INDEXING
FAIL
The text search index optimization failed.
Example
TEXTSEARCH INDEXING RESULT nResult;
nResult = TextSearchIndexOptimizing(lpUser, J("My Business Data Source"), J=

("volio01c")) ;

Media Object APIs

This section discusses media object APIs.

jdeGT_CloseTable

Syntax

JDERTN (JDEDB_RESULT) JDEWINAPI jdeGT CloseTable (HREQUEST hRequestGT) ;

Description

This function closes the FO0165 table and releases the table handle. This API must be invoked after the
jdeGT_OpenTable() API is used.

Parameters

Parameter Description
hRequestGT Input, required. GT table handle to be closed and released.
Returns

This API can return these values:

98

PeopleSoft Proprietary and Confidential

Appendix A

PeopleSoft EnterpriseOne APIs

Value
Description
JDEDB_PASSED
Indicates the API succeeded.
JDEDB_FAILED
Indicates the API failed.
Example
JDEDB_RESULT JDBReturn = JDEDB PASSED;
HREQUEST hRequestGT = NULL;
HUSER hUser = NULL;
JCHAR szFromDatasource [51] = _J("Business Data - Adev7330");
JCHAR szObjectName [11] = _J("");
JDBReturn = JDB_InitBhvr (.., &hUser);

JDBReturn = jdeGT_OpenTable (hUser, szFromDatasource, szObjectName,

if (JDBReturn == JDEDB_PASSED)

{

jdeGT CloseTable (hRequestGT) ;
JDB_FreeBhvr (hUser) ;

return;

See Also

&hRequestGT) ;

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGT DeleteData/jdeGT DeleteDataKeyStr, page 99
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGT FetchData/jdeGT FetchDataEx, page 103

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGT InsertData/jdeGT InsertDataKeyStr, page 108

Appendix A, “PeopleSoft EnterpriseOne APIs,” ideGT:OpenTable, page_112

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGT SelectData/jdeGT SelectDataKeyStr, page 114

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGT UpdateData/jdeGT UpdateDataKeyStr, page 118

jdeGT_DeleteData/jdeGT_DeleteDataKeyStr
Syntax

JDERTN(JDEDB_RESULT) JDEWINAPI jdeGT_DeleteData(
HREQUEST hRequestGT,
PJSTR pszOjbectName,
LPVOID 1pMODSKey,
int nSeq
)
JDERTN(JDEDB_RESULT) JDEWINAPI jdeGT_DeleteDataKeyStr(

PeopleSoft Proprietary and Confidential

99

PeopleSoft EnterpriseOne APls

100

Description

Appendix A

HREQUEST hRequestGT,
PJSTR pszOjbectName,
PJSTR pszGTKeyStr,
int nSeqg

) ;

This function deletes a record in the FO0165 table.

Parameters
Parameter Description

hRequestGT Input, required. GT table handle to be closed and released.

pszObjectName Input, required. GT data structure name.

IpMODSKey Input, required. GT data structure with data loaded (use in jdeGT_SelectData). This
data is formatted into the string for TXKY.

pszGTKeyStr Input, required. GT-formatted string from the GT data structure (use in
jdeGT_SelectDataKeyStr).

Returns

This API can return these values:

Value

Description

JDEDB PASSED

Indicates the API succeeded.

JDEDB_FAILED

Indicates the API failed.

Additional Notes

Invoke this API after using the jdeGT_OpenTable() API. This API is used for multiple access of the table

within one function scope.

This table describes the MODATA (or LPMODATA) data structure definition:

Data Type Data Description Note
int nSeq Sequence number form MOSEQN.
MOTYPE nMOType Media object type.
JCHAR szUser[11] User name.
JDEDATE jdDate Date updated.

PeopleSoft Proprietary and Confidential

Appendix A

PeopleSoft EnterpriseOne APIs

Data Type Data Description Note

MATH_NUMERIC mnTime Time updated.

BOOL bRTFData TRUE =RTF Text FALSE = Plain
Text or others

JCHAR szItemName[GT ITNMSIZE] Item name

JCHAR szQueueName[GT QUESIZE]

JCHAR szFileName[GT FILESIZE]

PJSTR pData Allocate memory for text and shortcut
media object type.

This table describes the MOTYPE definition:
Define Type Note
OBJ _JDEALL All media object types

OBJ_RTFTEXT

Text media object.

OBJ_JDEIMAGE

Image media object.

OBJ_JDEOLE

OLE media object.

OBJ_MISCJDESHORTCUT

Shortcut media object.

OBJ_MISIMAGEVENDOR

Third-party vendor.

OBJ_MISCHTML

HTML/URL/File media object.

Example

This is the first of two examples for this API:

JDEDB_RESULT JDBReturn = JDEDB_PASSED;

HREQUEST
HUSER
JCHAR
JCHAR
JCHAR
JCHAR
LPMODATA

szLang[3] =
1pGTData

JDBReturn = JDB_InitBhvr(..,

JDBReturn = jdeGT OpenTable

szFromDatasource [51] =

szObjectName [11] =

szFormatKey [255] =
J(mm);
NULL;

hRequestGT = NULL;
hUser = NULL;

_J("ABGT") ;
J(nln);

&hUser) ;

(hUser,

if (JDBReturn == JDEDB_PASSED)

{

JDBReturn = jdeGT SelectDataKeyStr (hRequest, szObjectName, szFormatKey,

PeopleSoft Proprietary and Confidential

szFromDatasource,

_J("Business Data - Adev7330");

szObjectName, &hRequestGT) ;

sz=

101

PeopleSoft EnterpriseOne APls Appendix A

Lang,
OBJ_JDEOLE) ;

if (JDBReturn == JDEDB_PASSED)
{
JDBReturn = jdeGT FetchData (hRequest, 1lpGTData, FALSE;
while (JDBReturn = JDEDB_PASSED)
{
jdeGT DeleteDataKeyStr (hRequest, szObjectName, szFormatKey, lpGTData->nSeq) ;
jdeGTFreeMOData (1pGTData, 1) ;
JDBReturn = jdeGT FetchData (hRequest, 1pGTData, FALSE;

jdeGTFreeMOData (1pGTData, 1) ;
jdeGT CloseTable (hRequestGT) ;
JDB_FreeBhvr (hUser) ;

return;

This is the second example for this API:
JDEDB_RESULT JDBReturn = JDEDB_PASSED;

HREQUEST hRequestGT = NULL;

HUSER hUser = NULL;

JCHAR szFromDatasource [51] = _J("Business Data - Adev7330");
JCHAR szObjectName [11] = J("ABGT") ;

DSABGT dsAbGT = {0};

JCHAR szLang[3] = J("");

LPMODATA 1pGTData = NULL;
JDBReturn = JDB InitBhvr (.., &hUser);
ParseNumericString (dsAbGT.mnAddressNumber, J("1"));

JDBReturn = jdeGT OpenTable (hUser, szFromDatasource, szObjectName, &hRequestGT) ;
if (JDBReturn == JDEDB_PASSED)

JDBReturn = jdeGT SelectData (hRequest, szObjectName, &dsAbGT, szLang, OBJ =
JDEOLE) ;

}

if (JDBReturn == JDEDB_PASSED)

{

JDBReturn = jdeGT FetchData (hRequest, lpGTData, FALSE;
while (JDBReturn = JDEDB_PASSED)

{

jdeGT DeleteData (hRequest, szObjectName, &dsAbGT, 1lpGTData->nSeq) ;
jdeGTFreeMOData (1pGTData, 1) ;

102 PeopleSoft Proprietary and Confidential

Appendix A PeopleSoft EnterpriseOne APIs

JDBReturn = jdeGT FetchData (hRequest, 1pGTData, FALSE;

jdeGTFreeMOData (1pGTData, 1) ;
jdeGT_CloseTable (hRequestGT) ;
JDB_FreeBhvr (hUser) ;

return;

See Also

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGT CloseTable, page 98

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGT FetchData/jdeGT FetchDataEx, page 103
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGT InsertData/jdeGT InsertDataKeyStr, page 108
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGT OpenTable, page 112

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGT SelectData/jdeGT SelectDataKeyStr, page 114
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGT UpdateData/jdeGT UpdateDataKeyStr, page 118

jdeGT_FetchData/jdeGT_FetchDataEx
Syntax

JDERTN (JDEDB_RESULT) JDEWINAPI jdeGT_FetchData (
HREQUEST hRequestGT,
LPMODATA *1pMOData
BOOL bConvRTFText

)i

JDERTN (JDEDB_RESULT) JDEWINAPI jdeGT_FetchDataEx (
HREQUEST hRequestGT,
JCHAR *szObjectName,
JCHAR *szGTKey,
LPMODATA *IpMOData
BOOL bConvRTFText
)i

Description

This function retrieves one record from the FO0165 table.

PeopleSoft Proprietary and Confidential 103

PeopleSoft EnterpriseOne APls

Appendix A

Parameters

Parameter Description
hRequestGT Input, required. GT table handle to be closed and released.
szObjectName Output. Object name (OBNM)-character array.
szGTKey Output. Generic text key in the string format (TXKY)-character array.
*IpMOData Output. Allocated memory for data.
bCovRTFText Input. TRUE = Convert any RTF text to plain text.

Additional Notes

Invoke this API after using the jdeGT_OpenTable() API. This API is used for multiple access of the table
with one function scope.

This table describes the MODATA (or LOMODATA) data structure definition:

Data Type Data Description Note

int nSeq Sequence number form MOSEQN.

MOTYPE nMOType Media object type.

JCHAR szUser[11] User name.

JDEDATE jdDate Date updated.

MATH_NUMERIC mnTime Time updated.

BOOL bRTFData TRUE =RTF Text FALSE = Plain
Text or others

JCHAR szItemName[GT _ITNMSIZE] Item name

JCHAR szQueueName[GT QUESIZE]

JCHAR szFileName[GT FILESIZE]

PJSTR pData Allocate memory for text and shortcut

media object type.

This table describes the MOTYPE definition:

Define Type Note
OBJ JDEALL All media object types
OBJ RTFTEXT Text media object.
OBJ _JDEIMAGE Image media object.

104

PeopleSoft Proprietary and Confidential

Appendix A

PeopleSoft EnterpriseOne APIs

Define Type

Note

OBJ_JDEOLE

OLE media object.

OBJ_MISCJDESHORTCUT

Shortcut media object.

OBJ_MISIMAGEVENDOR

Third-party vendor.

OBJ MISCHTML

HTML/URL/File media object.

Returns

This API can return these values:

Value

Description

JDEDB_PASSED

Indicates the API succeeded.

JDEDB FAILED

Indicates the API failed.

Example

This is the first of three examples for this API:

JDEDB_RESULT JDBReturn

JDEDB_PASSED;

HREQUEST hRequestGT = NULL;
HUSER hUser = NULL;
JCHAR szFromDatasource [51] = J("Business Data - Adev7330");
JCHAR szObjectName [11] = J("ABGT") ;
JCHAR szFormatKey [255] = J("1");
JCHAR szLang[3] = J("");
LPMODATA 1pGTData = NULL;
JDBReturn = JDB_InitBhvr (.., &hUser);
JDBReturn = jdeGT_OpenTable (hUser, szFromDatasource, szObjectName, &hRequestGT) ;
if (JDBReturn == JDEDB_PASSED)

JDBReturn = jdeGT_SelectDataKeyStr (hRequest, szObjectName, szFormatKey, sz=
Lang,

OBJ_ JDEOLE) ;

if (JDBReturn == JDEDB_PASSED)

JDBReturn = jdeGT_FetchData (hRequest, lpGTData, FALSE;

while (JDBReturn = JDEDB_PASSED)

{

PeopleSoft Proprietary and Confidential

105

PeopleSoft EnterpriseOne APls Appendix A

106

jdeGT DeleteDataKeyStr (hRequest, szObjectName, szFormatKey, 1lpGTData->nSeq) ;
jdeGTFreeMOData (1pGTData, 1) ;
JDBReturn = jdeGT_FetchData (hRequest, 1lpGTData, FALSE;

jdeGTFreeMOData (1lpGTData, 1) ;
jdeGT _CloseTable (hRequestGT) ;
JDB_FreeBhvr (hUser) ;

return;

This is the second example of this API:

JDEDB_RESULT JDBReturn = JDEDB_PASSED;

HREQUEST hRequestGT = NULL;

HUSER hUser = NULL;

JCHAR szFromDatasource [51] = _J("Business Data - Adev7330");
JCHAR szObjectName [11] = J("ABGT") ;

DSABGT dsAbGT = {0};

JCHAR szLang[3] = _J("");

LPMODATA 1pGTData = NULL;
JDBReturn = JDB_InitBhvr (.., &hUser);
ParseNumericString (dsAbGT.mnAddressNumber, _J("1"));

JDBReturn = jdeGT_OpenTable (hUser, szFromDatasource, szObjectName, &hRequestGT) ;
if (JDBReturn == JDEDB_PASSED)

JDBReturn = jdeGT SelectData (hRequest, szObjectName, &dsAbGT, szLang, OBJ =
JDEOLE) ;

}

if (JDBReturn == JDEDB_PASSED)
{
JDBReturn = jdeGT FetchData (hRequest, 1lpGTData, FALSE;
while (JDBReturn = JDEDB_PASSED)
{
jdeGT DeleteData (hRequest, szObjectName, &dsAbGT, lpGTData->nSeq) ;
jdeGTFreeMOData (1pGTData, 1) ;
JDBReturn = jdeGT FetchData (hRequest, 1lpGTData, FALSE;

jdeGTFreeMOData (1pGTData, 1) ;
jdeGT CloseTable (hRequestGT) ;
JDB_FreeBhvr (hUser) ;

return;

PeopleSoft Proprietary and Confidential

Appendix A

This is the third example of this API:
JDEDB_RESULT JDBReturn = JDEDB_ PASSED;

HREQUEST hRequestGT = NULL;
HUSER hUser = NULL;
LPMODATA 1pGTData = NULL;
JCHAR szGTKey [256] = _J("");
JCHAR szObjName[11] = J("");

JDBReturn = JDB_InitBhvr (lpBhvrCom, &hUser, (JCHAR *)

JDEDB_COMMIT AUTO

)i
if (lpDS->idHRequestGT == NULL)

{

JDBReturn = jdeGT_OpenTable (hUser, 1lpDS->szFromDatasource,

1lpDS->szObjectName, &hRequestGT) ;

PeopleSoft EnterpriseOne APIs

1pDS->idHRequestGT = (ID) jdeStoreDataPtr (hUser, hRequestGT) ;
else
{
hRequestGT = (HREQUEST) jdeRetrieveDataPtr (hUser, lpDS->idHRequestGT) ;

if (hRequstGT)

{

JDBReturn = jdeGT_SelectData (hRequest, 1pDS->szObjectName,

NULL, 1lpDS->szLang, OBJ JDEOLE) ;
if (JDBReturn == JDEDB_PASSED)

JDBReturn = jdeGT_FetchDataEx (hRequest, szObjName,
if (JDBReturn = JDEDB_PASSED)

{

jdeStrncpy (1pDS->szGTKeyData, szGTKey, 255);
jdeStrncpy (1lpDS->szTextData, lpGTData->pData, 255);
jdeGTFreeMOData (1pGTData, 1) ;

else

{

jdeRemoveDataPtr (hUser, lpDS->idHRequestGT) ;
1lpDS->idHRequestGT = O0OL;

}

else

{

jdeRemoveDataPtr (hUser, lpDS->idHRequestGT) ;
1lpDS->idHRequestGT = O0OL;

if (hRequestGT && lpDS->idHRequestGT == 0)

jdeGT CloseTable (hRequestGT) ;

JDB_FreeBhvr (hUser) ;

return;

PeopleSoft Proprietary and Confidential

1lpGTData, TRUE) ;

107

PeopleSoft EnterpriseOne APls

See Also

Appendix A

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGT CloseTable, page 98

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGT DeleteData/jdeGT DeleteDataKeyStr, page 99

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGT InsertData/jdeGT InsertDataKeyStr, page 108

Appendix A, “PeopleSoft EnterpriseOne APIs,” ideGT:OpenTable, page_l 12

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGT SelectData/jdeGT SelectDataKeyStr, page 114

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGT UpdateData/jdeGT UpdateDataKeyStr, page 118

jdeGT _InsertData/jdeGT_InsertDataKeyStr

Syntax

JDERTN (JDEDB_RESULT) JDEWINAPI jdeGT InsertData (

JDERTN (JDEDB_RESULT)

Description

HREQUEST hRequestGT,
PJSTR pszOjbectName,
LPVOID I1pMODSKey,
int nSeq,

PJSTR pszGTLang,
LPMODATA IpMOData

)

JDEWINAPI jdeGT_ InsertDataKeyStr(

HREQUEST hRequestGT,
PJSTR pszOjbectName,
PJSTR pszGTKeyStr,
int nSeq,

PJSTR pszGTLang,
LPMODATA IpMOData

)

This function inserts a record into the FO0165 table.

108

PeopleSoft Proprietary and Confidential

Appendix A PeopleSoft EnterpriseOne APIs
Parameters
Parameter Description

hRequestGT Input, required. GT table handle to be closed and released.

pszObjectName Input, required. GT data structure name.

IpMODSKey Input, required. GT data structure with data loaded (use in jdeGT_SelectData). This
data is formatted into the string for TXKY.

pszGTKeyStr Input, required. GT formatted string from GT data structure (use in
jdeGT_SelectDataKeyStr).

nSeq Input, required. Sequence number for primary key.

pszGTLang Input. Language code to be updated.

IpMOData Input, required. Data to be updated.

Additional Notes

Invoke this API after using the jdeGT_OpenTable() API. This API is used for multiple access of the table

with one function scope.

This table describes the MODATA (or *LPMODATA) data structure definition:

Data Type Data Description Note

int nSeq Sequence number form MOSEQN.

MOTYPE nMOType Media object type.

JCHAR szUser[11] User name.

JDEDATE jdDate Date updated.

MATH_NUMERIC mnTime Time updated.

BOOL bRTFData TRUE =RTF Text FALSE = Plain
Text or others

JCHAR szItemName[GT_ITNMSIZE] Item name

JCHAR szQueueName[GT QUESIZE]

JCHAR szFileName[GT FILESIZE]

PJSTR pData Allocate memory for text and shortcut
media object type.

This table describes the MOTYPE definition:

PeopleSoft Proprietary and Confidential

109

PeopleSoft EnterpriseOne APls

Appendix A

Define Type

Note

OBJ _JDEALL

All media object types

OBJ_RTFTEXT

Text media object.

OBJ_JDEIMAGE

Image media object.

OBJ_JDEOLE

OLE media object.

OBJ_MISCIDESHORTCUT

Shortcut media object.

OBJ_MISIMAGEVENDOR

Third-party vendor.

OBJ MISCHTML

HTML/URL/File media object.

Returns

This API can return these values:

Value

Description

JDEDB_PASSED

Indicates the API succeeded.

JDEDB_FAILED

Indicates the API failed.

Example
This is the first of two examples for this API:

JDEDB_RESULT JDBReturn =
HREQUEST hRequestGT =
HUSER hUser = NULL;
JCHAR
JCHAR
JCHAR
JCHAR
LPMODATA
MODATA
JCHAR

JDEDB_PASSED;
NULL;

szFromDatasource [51] =
szObjectName [11] = J("ABGT");

szFormatKey [255] = J("1");
J(nn),.
NULL;

{o};

szLang [3] =
1pGTData =
dsGTNewData =
szText [255] =
JDBReturn = JDB_InitBhvr (.., &hUser);
JDBReturn =
if (JDBReturn

{

jdeGT OpenTable (hUser,
JDEDB_PASSED)

JDBReturn = jdeGT SelectDataKeyStr

Lang,

110

szFromDatasource,

(hRequest,

_J("Business Data - Adev7330");

_J("New Text to be inserted");

szObjectName, &hRequestGT) ;

szObjectName, szFormatKey, sz=

OBJ JDEALL) ;

PeopleSoft Proprietary and Confidential

Appendix A

PeopleSoft EnterpriseOne APIs

if (JDBReturn == JDEDB_PASSED)
{
JDBReturn = jdeGT_FetchData (hRequest, lpGTData, FALSE;
if (JDBReturn != JDEDB_PASSED)
{
dsGTNewData.nSeq = 1;
dsGTNewData.nMOType = OBJ_RTFTEXT;
dsGTNewData.pData = szText;
jdeStrcpy (dsGTNewData.szItemName, J("New Text"));
jdeGT InsertDataKeyStr (hRequest, szObjectName, szFormatKey, 1, szLang, &ds=
GTNewData) ;
}
else
{
jdeGTFreeMOData (1pGTData, 1) ;
}
}
jdeGT CloseTable (hRequestGT) ;
JDB_FreeBhvr (hUser) ;
return;
This is the second example for this API:
JDEDB_RESULT JDBReturn = JDEDB PASSED;
HREQUEST hRequestGT = NULL;
HUSER hUser = NULL;
JCHAR szFromDatasource [51] = J("Business Data - Adev7330");
JCHAR szObjectName [11] = J("ABGT") ;
DSABGT dsAbGT = {0};
JCHAR szLang[3] = J("");
LPMODATA 1pGTData = NULL;
MODATA dsGTNewData = {0};
JCHAR szText [255] = J("New Text to be inserted");
JDBReturn = JDB_InitBhvr (.., &hUser);
ParseNumericString (dsAbGT.mnAddressNumber, J("1"));
JDBReturn = jdeGT_OpenTable (hUser, szFromDatasource, szObjectName, &hRequestGT) ;
if (JDBReturn == JDEDB_PASSED)
{
JDBReturn = jdeGT_SelectData (hRequest, szObjectName, &dsAbGT, szLang, OBJ =
JDEALL) ;

}

PeopleSoft Proprietary and Confidential

1M1

PeopleSoft EnterpriseOne APls Appendix A

if (JDBReturn == JDEDB_PASSED)
JDBReturn = jdeGT_FetchData (hRequest, 1lpGTData, FALSE;
if (JDBReturn != JDEDB_PASSED)

dsGTNewData.nSeqg = 1;
dsGTNewData.nMOType = OBJ_ RTFTEXT;
dsGTNewData.pData = szText;
jdeStrcpy (dsGTNewData.szItemName, _J("New Text")) ;
jdeGT InsertData (hRequest, szObjectName, &dsAbGT, 1, szLang, &dsGTNewData) ;

}

else

{

jdeGTFreeMOData (1pGTData, 1) ;

jdeGT CloseTable (hRequestGT) ;
JDB_FreeBhvr (hUser) ;

return;

See Also

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGT CloseTable, page 98

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGT DeleteData/jdeGT_DeleteDataKeyStr, page 99
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGT FetchData/jdeGT FetchDataEx, page 103
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGT OpenTable, page 112

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGT SelectData/jdeGT SelectDataKeyStr, page 114
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGT UpdateData/jdeGT UpdateDataKeyStr, page 118

jdeGT_OpenTable
Syntax

JDERTN (JDEDB_RESULT) JDEWINAPI jdeGT_OpenTable (
HUSER hUser,
PJSTR pszDataSource,
PJSTR pszObjectName,
HREQUEST *hRequestGT
) ;

Description

This function enables the FO0165 table to be opened based on the object name or data source. It must be
used first if the related functions are to be used. This API is used for multiple access of the table within
one function scope.

112 PeopleSoft Proprietary and Confidential

Appendix A PeopleSoft EnterpriseOne APIs

Parameters
Parameter Description

hUser Input, required. User handle.

pszDataSource Input. If empty, use the default data source from the pszObejctName. Data source
has precedence over the object name.

pszObjectName Input, required if pszDatasource is empty.

hRequestGT Output. If open table fails, NULL pointer is returned; otherwise, a pointer to the
handle is returned.

Returns

This API can return these values:

Value
Description

JDEDB PASSED

Indicates the API succeeded.

JDEDB_FAILED
Indicates the API failed.

Example
This is the first of two examples for this API, and it demonstrates using data source:

JDEDB_RESULT JDBReturn = JDEDB PASSED;

HREQUEST hRequestGT = NULL;

HUSER hUser = NULL;

JCHAR szFromDatasource [51] = _J("Business Data - Adev7330");
JCHAR szObjectName [11] = _J("");

JDBReturn = JDB_InitBhvr (.., &hUser);

JDBReturn = jdeGT OpenTable (hUser, szFromDatasource, szObjectName,
if (JDBReturn == JDEDB_PASSED)

{

jdeGT_CloseTable (hRequestGT) ;
JDB_FreeBhvr (hUser) ;

return;

This example demonstrates using object name:

PeopleSoft Proprietary and Confidential

&hRequestGT) ;

113

PeopleSoft EnterpriseOne APls

114

JDEDB_RESULT JDBReturn = JDEDB PASSED;

HREQUEST hRequestGT = NULL;

HUSER hUser = NULL;

JCHAR szFromDatasource [51] = J(" ");
JCHAR szObjectName [11] = J("ABGT") ;
JDBReturn = JDB InitBhvr (.., &hUser);

JDBReturn = jdeGT_OpenTable (hUser, szFromDatasource,

if (JDBReturn == JDEDB_PASSED)

{

jdeGT CloseTable (hRequestGT) ;
JDB_FreeBhvr (hUser) ;

return;

See Also

Appendix A

szObjectName, &hRequestGT) ;

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGT OpenTable, page 112

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGT DeleteData/jdeGT DeleteDataKeyStr, page 99

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGT FetchData/jdeGT FetchDataEx, page 103

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGT InsertData/jdeGT InsertDataKeyStr, page 108

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGT SelectData/jdeGT SelectDataKeyStr, page 114

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGT UpdateData/jdeGT UpdateDataKeyStr, page 118

jdeGT_SelectData/jdeGT_SelectDataKeyStr

Syntax

JDERTN (JDEDB_RESULT) JDEWINAPI jdeGT_SelectData (
HREQUEST hRequestGT,
PJSTR pszOjbectName,
LPVOID pdsGTKeyDS,
PJSTR pszLang,
MOTYPE nMOType
) ;

JDERTN (JDEDB_RESULT) JDEWINAPI jdeGT_SelectDataKeyStr (
HREQUEST hRequestGT,
PJSTR pszOjbectName,
PJSTR pszGTKeyStr,
PJSTR pszLang,
MOTYPE nMOType
)i

PeopleSoft Proprietary and Confidential

Appendix A

Description

PeopleSoft EnterpriseOne APIs

This function enables a data selection to be applied against the FO0165 table.

Parameters

Parameter Description
hRequestGT Input, required. GT table handle to be closed and released.
pszObjectName Input, required. GT data structure name.
pszLang Input. Language code.
nMOType Input, required. Media object type.

Additional Notes

Invoke this API after using the jdeGT _OpenTable() APIL. This API is used for multiple access of the table

with one function scope.

This table describes the MODATA (or LPMODATA) data structure definition:

Data Type Data Description Note

int nSeq Sequence number form MOSEQN.

MOTYPE nMOType Media object type.

JCHAR szUser[11] User name.

JDEDATE jdDate Date updated.

MATH_NUMERIC mnTime Time updated.

BOOL bRTFData TRUE =RTF Text FALSE = Plain
Text or others

JCHAR szItemName[GT ITNMSIZE] Item name

JCHAR szQueueName[GT QUESIZE]

JCHAR szFileName[GT FILESIZE]

PJSTR pData Allocate memory for text and shortcut

media object type.

This table describes the MOTYPE definition:

Define Type

Note

OBJ JDEALL

All media object types

OBJ RTFTEXT

Text media object.

PeopleSoft Proprietary and Confidential

115

PeopleSoft EnterpriseOne APls

Appendix A

Define Type

Note

OBJ_JDEIMAGE

Image media object.

OBJ _JDEOLE

OLE media object.

OBJ_MISCIDESHORTCUT

Shortcut media object.

OBJ_MISIMAGEVENDOR

Third-party vendor.

OBJ MISCHTML

HTML/URL/File media object.

Returns

This API can return these values:

Value

Description

JDEDB_PASSED

Indicates the API succeeded.

JDEDB_FAILED

Indicates the API failed.

Example

This is the first of two examples describing how to use this API:

JDEDB_RESULT JDBReturn = JDEDB PASSED;
HREQUEST hRequestGT = NULL;

HUSER hUser = NULL;

JCHAR
JCHAR
JCHAR
JCHAR
LPMODATA

szObjectName [11] = _J("ABGT");
szFormatKey [255] = J("1");
szLang[3] = J("");

1pGTDhata = NULL;

JDBReturn = JDB InitBhvr (.., &hUser);

JDBReturn = jdeGT_OpenTable (hUser,
if (JDBReturn == JDEDB_PASSED)

{

JDBReturn = jdeGT SelectDataKeyStr
Lang,

if (JDBReturn == JDEDB_PASSED)

{

JDBReturn = jdeGT_ FetchData (hRequest,

116

szFromDatasource,

(hRequest,

1pGTData,

szFromDatasource [51] = J("Business Data - Adev7330");

szObjectName, &hRequestGT) ;

szObjectName, szFormatKey, sz=

OBJ_ JDEOLE) ;

FALSE;

PeopleSoft Proprietary and Confidential

Appendix A

while (JDBReturn = JDEDB_PASSED)

{

jdeGT DeleteDataKeyStr (hRequest, szObjectName,

jdeGTFreeMOData (1pGTData, 1) ;
JDBReturn = jdeGT_FetchData (hRequest,

jdeGTFreeMOData (1pGTData, 1);
jdeGT CloseTable (hRequestGT) ;
JDB_FreeBhvr (hUser) ;

return;

This is the second example of how to use this API:
JDEDB_RESULT JDBReturn = JDEDB_PASSED;
HREQUEST hRequestGT = NULL;

HUSER hUser = NULL;

JCHAR szFromDatasource [51] = _J("Business Data

JCHAR szObjectName [11] = _J("ABGT") ;
DSABGT dsAbGT = {0};

JCHAR szLang[3] = J("");

LPMODATA 1pGTData = NULL;

JDBReturn = JDB_InitBhvr (.., &hUser);

ParseNumericString (dsAbGT.mnAddressNumber,

JDBReturn = jdeGT OpenTable (hUser, szFromDatasource,

if (JDBReturn == JDEDB_PASSED)

{

1pGTData,

_J("l"));

PeopleSoft EnterpriseOne APIs

szFormatKey,

FALSE;

- Adev7330") ;

szObjectName,

1pGTData->nSeq) ;

&hRequestGT) ;

JDBReturn = jdeGT SelectData (hRequest, szObjectName, &dsAbGT, szLang, OBJ =

JDEOLE) ;

}

if (JDBReturn == JDEDB_PASSED)

JDBReturn = jdeGT FetchData (hRequest, 1lpGTData,

while (JDBReturn = JDEDB_PASSED)

{

jdeGT DeleteData (hRequest, szObjectName,

jdeGTFreeMOData (1lpGTData, 1) ;

JDBReturn = jdeGT_FetchData (hRequest,

jdeGTFreeMOData (1lpGTData, 1) ;
jdeGT_CloseTable (hRequestGT) ;
JDB_FreeBhvr (hUser) ;

PeopleSoft Proprietary and Confidential

1pGTData,

&dsADbLGT,

FALSE;

FALSE;

1pGTDhata->nSeq) ;

117

PeopleSoft EnterpriseOne APls Appendix A

118

return;

See Also

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGT CloseTable, page 98

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGT DeleteData/jdeGT DeleteDataKeyStr, page 99
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGT FetchData/jdeGT FetchDataEx, page 103
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGT InsertData/jdeGT InsertDataKeyStr, page 108
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGT OpenTable, page 112

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGT UpdateData/jdeGT UpdateDataKeyStr, page 118

jdeGT_UpdateData/jdeGT_UpdateDataKeyStr
Syntax

JDERTN (JDEDB_RESULT) JDEWINAPI jdeGT_UpdateData (
HREQUEST hRequestGT,
PJSTR pszOjbectName,
LPVOID I1pMODSKey,

int nSeq,

PJSTR pszGTLang,
LPMODATA IpMOData
) ;

JDERTN (JDEDB_RESULT) JDEWINAPI jdeGT UpdateDataKeyStr (
HREQUEST hRequestGT,
PJSTR pszOjbectName,
PJSTR pszGTKeyStr,
int nSeq,
PJSTR pszGTLang,
LPMODATA IpMOData
)i

Description

This function updates an existing record in the FO0165 table.

PeopleSoft Proprietary and Confidential

Appendix A PeopleSoft EnterpriseOne APIs
Parameters
Parameter Description
hRequestGT Input, required. GT table handle to be closed and release.
pszObjectName Input, required. GT data structure name.
IpMODSKey Input, required. GT data structure with data loaded (use in jdeGT_SelectData). This
data is formatted into the string for TXKY.
nSeq Input, required. Sequence number for primary key.
pszGTLang. Input. Language code to be updated.
IpMOData Input, required. Data to be updated.

Additional Notes

Invoke this API after using the jdeGT_OpenTable() API. This API is used for multiple access of the table

with one function scope.

This table describes the MODATA (or LPMODATA) data structure definition:

Data Type Data Description Note

int nSeq Sequence number form MOSEQN.

MOTYPE nMOType Media object type.

JCHAR szUser[11] User name.

JDEDATE jdDate Date updated.

MATH_NUMERIC mnTime Time updated.

BOOL bRTFData TRUE =RTF Text FALSE = Plain
Text or others

JCHAR szItemName[GT ITNMSIZE] Item name

JCHAR szQueueName[GT QUESIZE]

JCHAR szFileName[GT_ FILESIZE]

PJSTR pData Allocate memory for text and shortcut

media object type.

This table describes the MOTYPE definition:

Define Type

Note

OBJ JDEALL

All media object types

OBJ _RTFTEXT

Text media object.

PeopleSoft Proprietary and Confidential

119

PeopleSoft EnterpriseOne APls

Appendix A

Define Type

Note

OBJ_JDEIMAGE

Image media object.

OBJ _JDEOLE

OLE media object.

OBJ_MISCIDESHORTCUT

Shortcut media object.

OBJ_MISIMAGEVENDOR

Third-party vendor.

OBJ MISCHTML

HTML/URL/File media object.

Returns

This API can return these values:

Value
Description
JDEDB_PASSED
Indicates the API succeeded.
JDEDB_FAILED
Indicates the API failed.
Example
This is the first of two examples describing how to use this API:
JDEDB_RESULT JDBReturn = JDEDB PASSED;
HREQUEST hRequestGT = NULL;
HUSER hUser = NULL;
JCHAR szFromDatasource [51] = J("Business Data - Adev7330");
JCHAR szObjectName [11] = _J("ABGT");
JCHAR szFormatKey [255] = _J("l”);
JCHAR szLang[3] = J("");

LPMODATA 1pGTData = NULL;

JDBReturn = JDB_InitBhvr (.., &hUser);

JDBReturn = jdeGT OpenTable (hUser, szFromDatasource, szObjectName, &hRequestGT) ;

if (JDBReturn == JDEDB_PASSED)

{

JDBReturn = jdeGT SelectDataKeyStr
Lang,

if (JDBReturn == JDEDB_PASSED)

{

120

(hRequest, szObjectName, szFormatKey, sz=

OBJ_RTFTEXT) ;

PeopleSoft Proprietary and Confidential

Appendix A

JDBReturn =
if (JDBReturn

{

jdeGT_FetchData (hRequest,
JDEDB_PASSED)

jdeFree (1pGTData->pData) ;

1pGTData->pDhata =
jdeStrcpy (1pGTData->pData,

jdeAlloc (COMMON POOL,
_J("New Text

1pGTData,

PeopleSoft EnterpriseOne APIs

FALSE;

255*sizeof (JCHAR) , MEM_ZEROINIT) ;

to be inserted");

jdeGT UpdateDataKeyStr (hRequest, szObjectName, szFormatKey, lpGTData->nSeq,=
szLang,
1pGTData) ;
jdeGTFreeMOData (1pGTData, 1) ;
}
}
jdeGT CloseTable (hRequestGT) ;
JDB_FreeBhvr (hUser) ;
return;
This is the second example describing how to use this API:
JDEDB_RESULT JDBReturn = JDEDB PASSED;
HREQUEST hRequestGT = NULL;
HUSER hUser = NULL;
JCHAR szFromDatasource [51] = J("Business Data - Adev7330");
JCHAR szObjectName [11] = J("ABGT") ;
DSABGT dsAbGT = {0};
JCHAR szLang[3] = J("");
LPMODATA 1pGTData = NULL;
JDBReturn = JDB_InitBhvr (.., &hUser);

ParseNumericString (dsAbGT.mnAddressNumber, J("1"));
JDBReturn = jdeGT_OpenTable (hUser, szFromDatasource, szObjectName, &hRequestGT) ;
if (JDBReturn == JDEDB_PASSED)

JDBReturn = jdeGT SelectData (hRequest, szObjectName, &dsAbGT, szLang, OBJ =
RTFTEXT) ;
if (JDBReturn == JDEDB_PASSED)

JDBReturn = jdeGT_FetchData (hRequest, 1lpGTData, FALSE;

if (JDBReturn == JDEDB_PASSED)

{

jdeFree (1pGTData->pData) ;

lpGTDhata->pData = jdeAlloc (COMMON_ POOL,

PeopleSoft Proprietary and Confidential

255*sizeof (JCHAR) , MEM_ZEROINIT) ;

121

PeopleSoft EnterpriseOne APls

Appendix A

jdeStrcpy (1pGTData->pData, J("New Text to be inserted");

jdeGT UpdateData (hRequest, szObjectName,
1pGTData) ;
jdeGTFreeMOData (1pGTData, 1) ;

jdeGT_CloseTable (hRequestGT) ;
JDB_FreeBhvr (hUser) ;

return;

See Also

1lpGTData->nSeq, szlLang,

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGT UpdateData/jdeGT UpdateDataKeyStr, page 118

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGT DeleteData/jdeGT DeleteDataKeyStr, page 99

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGT FetchData/jdeGT FetchDataEx, page 103

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGT InsertData/jdeGT InsertDataKeyStr, page 108

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGT OpenTable, page 112

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGT SelectData/jdeGT SelectDataKeyStr, page 114

jdeGTAddUpdate AlIMOType/ jdeGTAddUpdate _
AlIMOTypeKeyStr/ jdeGTAddUpdate_AlIMOTypeWithLang

Syntax

JDERTN (JDEDB_RESULT)

JDERTN (JDEDB_RESULT)

JDERTN (JDEDB_RESULT)

JDEWINAPI jdeGTAddUpdate AllMOType (

PJSTR szObjectName,
LPVOID IpMODSKey,
LPMODATA pMOData,
long 1TotalRec

)i

JDEWINAPI jdeGTAddUpdate Al1MOTypeKeyStr (

PJSTR szObjectName,
PJSTR pszMOKeyStr,
LPMODATA pMOData,
long l1TotalRec

)i

JDEWINAPI jdeGTAddUpdate Al1lMOTypeWithLang (

PJSTR szObjectName,
LPVOID I1pMODSKey,
PJSTR szLanguage,
LPMODATA pMOData,
long l1TotalRec

)i

PeopleSoft Proprietary and Confidential

Appendix A

Description

This function adds or updates all record types to the FO0165 table.

PeopleSoft EnterpriseOne APIs

Parameters
Parameter Description
szOjectName Input, required. GT data structure name. Primary unique key.
IpMODSKey Input, required. GT data structure with valid data. The data within the GT data
structure is formatted into a string used for TXKY
pszMOKeyStr Input, required. Formatted string used for TXKY.
szLanguage Input. Language code.
pMOData Input, required. Array of data structure that stores the data to be updated.
ITotalRec Input, required. Indicates the number of array elements in pMOData.

Additional Notes

Parameter pData in MODATA must contain a valid pointer to update the text or shortcut media object type.

This table describes the MODATA (or *LPMODATA) data structure definition:

Data Type Data Description Note

int nSeq Sequence number form MOSEQN.

MOTYPE nMOType Media object type.

JCHAR szUser[11] User name.

JDEDATE jdDate Date updated.

MATH_NUMERIC mnTime Time updated.

BOOL bRTFData TRUE =RTF Text FALSE = Plain
Text or others

JCHAR szItemName[GT ITNMSIZE] Item name

JCHAR szQueueName[GT QUESIZE]

JCHAR szFileName[GT FILESIZE]

PJSTR pData Allocate memory for text and shortcut

media object type.

This table describes the MOTYPE definition:

PeopleSoft Proprietary and Confidential

123

PeopleSoft EnterpriseOne APls Appendix A

Define Type Note
OBJ JDEALL All media object types
OBJ_RTFTEXT Text media object.
OBJ JDEIMAGE Image media object.
OBJ_JDEOLE OLE media object.
OBJ_MISCIDESHORTCUT Shortcut media object.
OBJ_MISIMAGEVENDOR Third-party vendor.
OBJ MISCHTML HTML/URL/File media object.

Returns

This API can return these values:

Value
Description

JDEDB_PASSED

Indicates the API succeeded.

JDEDB_FAILED

Indicates the API failed.

Example
This is the first of two examples demonstrating how to use this API:

JDEDB_RESULT JDBReturn = JDEDB PASSED;
LPMODATA pMOData = NULL;
long lTotalRec = 0;

JDBReturn = jdeGTGet AllMOTypeKeyStr (J("ABGT"), _J("1"), &pMOData, &lTotalRec);
if (JDBReturn == JDEDB PASSED && pMOData && lTotalRec > 0)
{

jdeGTAddUpdate Al1MOTypeKeyStr(J("ABGT") , _J("1"), pMOData, lTotalRec)

jdeFreeMOData (pMOData, lTotalRec)

return;

This is the second example demonstrating how to use this API:
JDEDB_RESULT JDBReturn = JDEDB PASSED;
LPMODATA pMOData = NULL;
long 1TotalRec = 0;
DSABGT dsABGT = {0};

124 PeopleSoft Proprietary and Confidential

Appendix A PeopleSoft EnterpriseOne APIs

ParseNumericString (&dsABGT.mnAddressNumber, _J("1"));

JDBReturn = jdeGTGet AllMOType(J("ABGT"), &dsABGT, &pMOData, &lTotalRec) ;
if (JDBReturn == JDEDB PASSED && pMOData && lTotalRec > 0)
{

jdeGTAddUpdate Al11MOType(J("ABGT") , &dsABGT, pMOData, lTotalRec)

jdeFreeMOData (pMOData, lTotalRec)

return;

See Also
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate HTML/jdeGTAddUpdate HTMLKeyStr,

page 126
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate Image/jdeGTAddUpdate ImageKeyStr,

page 129
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate OLE/jdeGTAddUpdate OLEKeyStr,

page 133

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate Shortcut/jdeGTAddUpdate
ShortcutKeyStr, page 136

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate Text/jdeGTAddUpdate TextKeyStr,

page 140
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate Vendor/jdeGTAddUpdate VendorKeyStr,

page 143
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete AIHTML/jdeGTDelete AIIHTMLKeyStr,

page 147
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete Alllmage/jdeGTDelete AlllmageKeyStr,

page 149
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete AIIMOType/jdeGTDelete AIIMOTypeStr,

page 152

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete AIIOLE/jdeGTDelete AIIOLEKeyStr, page 155
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AllShortcut/jdeGTDelete AllShortcutKeyStr,
page 158

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AllText/jdeGTDelete AllTextKeyStr, page 161
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete AllVendor/jdeGTDelete AllVendorKeyStr,
page 164

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTFreeMOData, page 188

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet AIMOType/jdeGTGet AIIMOTypeKeyStr,

page 191
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet GenericText/jdeGTGet GenericTextKeyStr,

page 195

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet HTML/jdeGTGet HTMLKeyStr, page 198
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet Image/jdeGTGet ImageKeyStr, page 202
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet OLE/jdeGTGet OLEKeyStr, page 205

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet RTFText/jdeGTGet RTFTextKeyStr, page 209
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet Shortcut/jdeGTGet ShortcutKeyStr, page 212
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet Vendor/jdeGTGet VendorKeyStr, page 216
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGetCount/jdeGTGetCountKeyStr, page 220

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeValidateGTExist/jde ValidateGTExistWithKeyStr, page 223

PeopleSoft Proprietary and Confidential 125

PeopleSoft EnterpriseOne APls

Appendix A

jdeGTAddUpdate_HTML/jdeGTAddUpdate_ HTMLKeyStr

Syntax

JDERTN (JDEDB_RESULT)

JDERTN (JDEDB_RESULT)

Description

JDEWINAPI jdeGTAddUpdate HTML (

PJSTR szObjectName,
LPVOID 1pMODSKey,
LPMODATA pMOData,
long l1TotalRec

)

JDEWINAPI jdeGTAddUpdate HTMLKeyStr (

PJSTR szObjectName,
PJSTR pszMOKeyStr,
LPMODATA pMOData,
long l1TotalRec

)

This function adds or updates HTML, URL, and File record types to the FO0165 table.

Parameters
Parameter Description
szObjectName Input, required. GT data structure name. Primary unique key.
IpMODSKey Input, required. GT data structure with valid data. The data within the GT data
structure is formatted into a string used for TXKY.
pszMOKeyStr Input, required. Formatted string used for TXKY.
pMOData Input, required. Array of data structures that stores the data to be updated.
ITotalRec Input, required. Indicates the number of array elements in pMOData.

Additional Notes

Parameter pData in MODATA must contain a valid pointer to update the text or shortcut media object type.
This table describes the MODATA (or *LPMODATA) data structure definition:

Data Type Data Description Note
int nSeq Sequence number form MOSEQN.
MOTYPE nMOType Media object type.
JCHAR szUser[11] User name.
JDEDATE jdDate Date updated.
MATH NUMERIC mnTime Time updated.

126

PeopleSoft Proprietary and Confidential

Appendix A

PeopleSoft EnterpriseOne APIs
Data Type Data Description Note
BOOL bRTFData TRUE = RTF Text FALSE = Plain
Text or others
JCHAR szItemName[GT _ITNMSIZE] Item name
JCHAR szQueueName[GT QUESIZE]
JCHAR szFileName[GT FILESIZE]
PJSTR pData Allocate memory for text and shortcut
media object type.

This table describes the MOTYPE definition:

Define Type Note
OBJ JDEALL All media object types
OBJ RTFTEXT Text media object.
OBJ_JDEIMAGE Image media object.
OBJ JDEOLE OLE media object.

OBJ_MISCJDESHORTCUT

Shortcut media object.

OBJ_MISIMAGEVENDOR

Third-party vendor.

OBJ_MISCHTML

HTML/URL/File media object.

Returns

This API can return these values:

Value

Description

JDEDB PASSED

Indicates the API succeeded.

JDEDB_FAILED

Indicates the API failed.

Example

This is the first of two examples that demonstrate how to use this API:

JDEDB_RESULT JDBReturn

= JDEDB_PASSED;

LPMODATA pMOData = NULL;

long 1TotalRec = 0;

PeopleSoft Proprietary and Confidential

127

PeopleSoft EnterpriseOne APls

128

Appendix A
JDBReturn = jdeGTGet AllMOTypeKeyStr (J("ABGT"), _J("1"), &pMOData, &lTotalRec) ;
if (JDBReturn == JDEDB_PASSED && pMOData && lTotalRec > 0)
{
jdeGTAddUpdate HTMLKeyStr(J("ABGT") , _J("1"), pMOData, lTotalRec)

jdeFreeMOData (pMOData, 1lTotalRec)

return;

This is the second example of how to use this API:

JDEDB_RESULT JDBReturn = JDEDB PASSED;
LPMODATA pMOData = NULL;

long lTotalRec = 0;

DSABGT dsABGT = {0};

ParseNumericString (&dsABGT.mnAddressNumber, _J("1"));

JDBReturn = jdeGTGet AllMOType(J("ABGT"), &dsABGT, &pMOData, &lTotalRec) ;
if (JDBReturn == JDEDB_PASSED && pMOData && lTotalRec > 0)
{
jdeGTAddUpdate HTML (J("ABGT") , &dsABGT, pMOData, lTotalRec)
jdeFreeMOData (pMOData, 1lTotalRec)

return;

PeopleSoft Proprietary and Confidential

Appendix A PeopleSoft EnterpriseOne APIs

See Also

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate AIIMOType/ jdeGTAddUpdate
AlIMOTypeKeyStr/ jdeGTAddUpdate AIIMOTypeWithl.ang, page 122

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate Image/jdeGTAddUpdate ImageKeyStr,

page 129
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate OLE/jdeGTAddUpdate OLEKeyStr,

page 133

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate Shortcut/jdeGTAddUpdate
ShortcutKeyStr, page 136

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate Text/jdeGTAddUpdate TextKeyStr,

page 140
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate Vendor/jdeGTAddUpdate VendorKeyStr,

page 143
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AIHTML/jdeGTDelete AIIHTMLKeyStr,

page 147
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete Alllmage/jdeGTDelete AlllmageKeyStr,

page 149
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete AIIMOType/jdeGTDelete AIIMOTypeStr,

page 152

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete AIIOLE/jdeGTDelete AIIOLEKeyStr, page 155
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete AllShortcut/jdeGTDelete AllShortcutKeyStr,
page 158

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AllText/jdeGTDelete AllTextKeyStr, page 161
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AllVendor/jdeGTDelete AllVendorKeyStr,
page 164

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTFreeMOData, page 188

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet AIIMOType/jdeGTGet AIIMOTypeKeyStr,

page 191
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet GenericText/jdeGTGet GenericTextKeyStr,

page 195

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet HTML/jdeGTGet HTMLKeyStr, page 198
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet Image/jdeGTGet ImageKeyStr, page 202
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet OLE/jdeGTGet OLEKeyStr, page 205

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet RTFText/jdeGTGet RTFTextKeyStr, page 209
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet Shortcut/jdeGTGet ShortcutKeyStr, page 212
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet Vendor/jdeGTGet VendorKeyStr, page 216
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGetCount/jdeGTGetCountKeyStr, page 220

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeValidate GTExist/jdeValidate GTExistWithKeyStr, page 223

jdeGTAddUpdate Image/jdeGTAddUpdate ImageKeyStr
Syntax

JDERTN (JDEDB_RESULT) JDEWINAPI jdeGTAddUpdate Image (
PJSTR szObjectName,
LPVOID 1pMODSKey,
LPMODATA pMOData,
long l1TotalRec
)

JDERTN (JDEDB_RESULT) JDEWINAPI jdeGTAddUpdate ImageKeyStr (
PJSTR szObjectName,
PJSTR pszMOKeyStr,
LPMODATA pMOData,

PeopleSoft Proprietary and Confidential 129

PeopleSoft EnterpriseOne APls

Description

This function adds or updates image record types to the FO0165 table.

long lTotalRec) ;

Appendix A

Parameters
Parameter Description
szObjectName Input, required. GT data structure name. Primary unique key.
IpMODSKey Input, required. GT data structure with valid data. The data within the GT data
structure is formatted into a string used for TXKY.
pszMOKeyStr Input, required. Formatted string used for TXKY.
pMOData Input, required. Array of data structures that stores the data to be updated.
ITotalRec Input, required. Indicates the number of array elements in pMOData.

Additional Notes

Parameter pData in MODATA must contain a valid pointer to update the text or shortcut media object type.

This table describes the MODATA (or *LPMODATA) data structure definition:

Data Type Data Description Note

int nSeq Sequence number form MOSEQN.

MOTYPE nMOType Media object type.

JCHAR szUser[11] User name.

JDEDATE jdDate Date updated.

MATH_ NUMERIC mnTime Time updated.

BOOL bRTFData TRUE = RTF Text FALSE = Plain
Text or others

JCHAR szltemName[GT ITNMSIZE] Item name

JCHAR szQueueName[GT QUESIZE]

JCHAR szFileName[GT FILESIZE]

PJSTR pData Allocate memory for text and shortcut

media object type.

This table describes the MOTYPE definition:

130

PeopleSoft Proprietary and Confidential

Appendix A

PeopleSoft EnterpriseOne APIs

Define Type Note
OBJ JDEALL All media object types
OBJ_RTFTEXT Text media object.
OBJ_JDEIMAGE Image media object.
OBJ_JDEOLE OLE media object.
OBJ_MISCJDESHORTCUT Shortcut media object.

OBJ_MISIMAGEVENDOR

Third-party vendor.

OBJ MISCHTML

HTML/URL/File media object.

Returns

This API can return these values:

Value

Description

JDEDB_PASSED

Indicates the API succeeded.

JDEDB FAILED

Indicates the API failed.

Example

This is the first of two examples that demonstrate how to use this API:

JDEDB_RESULT JDBReturn = JDEDB PASSED;

LPMODATA pMOData = NULL;
long lTotalRec = 0;

JDBReturn = jdeGTGet Al1MOTypeKeyStr (J("ABGT"), _J("1"), &pMOData,
if (JDBReturn == JDEDB PASSED && pMOData && lTotalRec > 0)
{
jdeGTAddUpdate ImageKeyStr (_J("ABGT") _J("1"), pMOData, lTotalRec)

jdeFreeMOData (pMOData, lTotalRec)

return;

This is the second example of how to use this API:
JDEDB_RESULT JDBReturn = JDEDB_ PASSED;

LPMODATA pMOData = NULL;
long 1TotalRec = 0;
DSABGT dsABGT = {0};

PeopleSoft Proprietary and Confidential

&lTotalRec) ;

131

PeopleSoft EnterpriseOne APls Appendix A

132

ParseNumericString (&dsABGT.mnAddressNumber, J("1"));

JDBReturn = jdeGTGet Al1lMOType(J("ABGT"), &dsABGT, &pMOData, &lTotalRec) ;
if (JDBReturn == JDEDB PASSED && pMOData && lTotalRec > 0)

{

jdeGTAddUpdate Image(J("ABGT") , &dsABGT, pMOData, lTotalRec)
jdeFreeMOData (pMOData, lTotalRec)

return;

See Also

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate AIIMOType/ jdeGTAddUpdate
AlIMOTypeKeyStr/ jdeGTAddUpdate AlIMOTypeWithLang, page 122

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate HTML/jdeGTAddUpdate HTMLKeyStr,

page 126
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate OLE/jdeGTAddUpdate OLEKeyStr,

page 133

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate Shortcut/jdeGTAddUpdate
ShortcutKeyStr, page 136

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate Text/jdeGTAddUpdate TextKeyStr,

page 140
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate Vendor/jdeGTAddUpdate VendorKeyStr,

page 143
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete AIHTML/jdeGTDelete AIIHTMLKeyStr,

page 147
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete Alllmage/jdeGTDelete AlllmageKeyStr,

page 149
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete AlIMOType/jdeGTDelete AIIMOTypeStr,

page 152

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AIIOLE/jdeGTDelete AIIOLEKeyStr, page 155
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AllShortcut/jdeGTDelete AllShortcutKeyStr,
page 158

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete AllText/jJdeGTDelete AllTextKeyStr, page 161
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AllVendor/jdeGTDelete AllVendorKeyStr,
page 164

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTFreeMOData, page 188

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet AlIMOType/jdeGTGet AlIMOTypeKeyStr,

page 191
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet GenericText/jdeGTGet GenericTextKeyStr,

page 195

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet HTML/jdeGTGet HTMLKeyStr, page 198
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet Image/jdeGTGet ImageKeyStr, page 202
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet OLE/jdeGTGet OLEKeyStr, page 205

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet RTFText/jdeGTGet RTFTextKeyStr, page 209
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet Shortcut/jdeGTGet ShortcutKeyStr, page 212
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet Vendor/jdeGTGet VendorKeyStr, page 216
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGetCount/jdeGTGetCountKeyStr, page 220

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeValidateGTExist/jdeValidateGTExistWithKeyStr, page 223

PeopleSoft Proprietary and Confidential

Appendix A

PeopleSoft EnterpriseOne APIs

jdeGTAddUpdate _OLE/jdeGTAddUpdate OLEKeyStr

Syntax

JDERTN (JDEDB_RESULT) JDEWINAPI jdeGTAddUpdate OLE (

PJSTR szObjectName,
LPVOID 1pMODSKey,
LPMODATA pMOData,
long 1lTotalRec

)

JDERTN (JDEDB_RESULT) JDEWINAPI jdeGTAddUpdate OLEKeyStr (

Description

PJSTR szObjectName,
PJSTR pszMOKeyStr,
LPMODATA pMOData,
long 1lTotalRec

)

This function adds or updates OLE record types to the FO0165 table.

Parameters
Parameter Description
szObjectName Input, required. GT data structure name. Primary unique key.
IpMODSKey Input, required. GT data structure with valid data. The data within the GT data
structure is formatted into a string used for TXKY.
pszMOKeyStr Input, required. Formatted string used for TXKY.
pMOData Input, required. Array of data structures that stores the data to be updated.
ITotalRec Input, required. Indicates the number of array elements in pMOData.

Additional Notes

Parameter pData in MODATA must contain a valid pointer to update the text or shortcut media object type.
This table describes the MODATA (or *LPMODATA) data structure definition:

Data Type Data Description Note
int nSeq Sequence number form MOSEQN.
MOTYPE nMOType Media object type.
JCHAR szUser[11] User name.
JDEDATE jdDate Date updated.
MATH_NUMERIC mnTime Time updated.

PeopleSoft Proprietary and Confidential

133

PeopleSoft EnterpriseOne APls Appendix A

Data Type Data Description Note

BOOL bRTFData TRUE =RTF Text FALSE = Plain
Text or others

JCHAR szItemName[GT_ITNMSIZE)] Item name

JCHAR szQueueName[GT QUESIZE]

JCHAR szFileName[GT_FILESIZE]

PJSTR pData Allocate memory for text and shortcut
media object type.

This table describes the MOTYPE definition:

Define Type Note
OBJ JDEALL All media object types
OBJ RTFTEXT Text media object.
OBJ _JDEIMAGE Image media object.
OBJ JDEOLE OLE media object.
OBJ MISCIDESHORTCUT Shortcut media object.
OBJ _MISIMAGEVENDOR Third-party vendor.
OBJ MISCHTML HTML/URL/File media object.

Returns

This API can return these values:

Value
Description

JDEDB PASSED

Indicates the API succeeded.

JDEDB_FAILED

Indicates the API failed.

Example
This is the first of two examples that demonstrate how to use this API:

JDEDB_RESULT JDBReturn = JDEDB_ PASSED;
LPMODATA pMOData = NULL;
long 1TotalRec = 0;

134 PeopleSoft Proprietary and Confidential

Appendix A PeopleSoft EnterpriseOne APIs

JDBReturn = jdeGTGet AllMOTypeKeyStr (J("ABGT"), _J("1"), &pMOData, &lTotalRec);
if (JDBReturn == JDEDB_PASSED && pMOData && 1TotalRec > 0)
{

jdeGTAddUpdate OLEKeyStr(J("ABGT") , _J("1"), pMOData, lTotalRec)

jdeFreeMOData (pMOData, lTotalRec)

return;

This is the second example of how to use this API:
JDEDB_RESULT JDBReturn = JDEDB_PASSED;
LPMODATA pMOData = NULL;
long lTotalRec = 0;

DSABGT dsABGT = {0};

ParseNumericString (&dsABGT.mnAddressNumber, _J("1"));

JDBReturn = jdeGTGet AllMOType(J("ABGT"), &dsABGT, &pMOData, &lTotalRec) ;
if (JDBReturn == JDEDB_PASSED && pMOData && lTotalRec > 0)
{

jdeGTAddUpdate OLE(J("ABGT") , &dsABGT, pMOData, lTotalRec)

jdeFreeMOData (pMOData, lTotalRec)

return;

PeopleSoft Proprietary and Confidential 135

PeopleSoft EnterpriseOne APls Appendix A

136

See Also

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate AIIMOType/ jdeGTAddUpdate
AlIMOTypeKeyStr/ jdeGTAddUpdate AIIMOTypeWithl.ang, page 122

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate HTML/jdeGTAddUpdate HTMLKeyStr,

page 126
Appendix A, “PeopleSoft EnterpriseOne APIs,” jJdeGTAddUpdate Image/jdeGTAddUpdate ImageKeyStr,

page 129

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate Shortcut/jdeGTAddUpdate
ShortcutKeyStr, page 136

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate Text/jdeGTAddUpdate TextKeyStr,

page 140
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate Vendor/jdeGTAddUpdate VendorKeyStr,

page 143

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AIHTML/jdeGTDelete AIHTMLKeyStr,
page 147

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete Alllmage/jdeGTDelete AlllmageKeyStr,
page 149

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AIMOType/jdeGTDelete AIIMOTypeStr,
page 152

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AIIOLE/jdeGTDelete AIIOLEKeyStr, page 155
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AllShortcut/jdeGTDelete AllShortcutKeyStr,
page 158

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AllText/jdeGTDelete AllTextKeyStr, page 161
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AllVendor/jdeGTDelete AllVendorKeyStr,
page 164

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTFreeMOData, page 188

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet AlIMOType/jdeGTGet AIIMOTypeKeyStr,

page 191

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet GenericText/jdeGTGet GenericTextKeyStr,

page 195

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet HTML/jdeGTGet HTMLKeyStr, page 198
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet Image/jdeGTGet ImageKeyStr, page 202
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet OLE/jdeGTGet OLEKeyStr, page 205

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet RTFText/jdeGTGet RTFTextKeyStr, page 209
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet Shortcut/jdeGTGet ShortcutKeyStr, page 212
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet Vendor/jdeGTGet VendorKeyStr, page 216
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGetCount/jdeGTGetCountKeyStr, page 220

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeValidateGTExist/jdeValidate GTExistWithKeyStr, page 223

jdeGTAddUpdate_Shortcut/jdeGTAddUpdate ShortcutKeyStr
Syntax

JDERTN (JDEDB_RESULT) JDEWINAPI jdeGTAddUpdate Shortcut (
PJSTR szObjectName,
LPVOID I1pMODSKey,
LPMODATA pMOData,
long lTotalRec
)i
JDERTN (JDEDB_RESULT) JDEWINAPI jdeGTAddUpdate ShortcutKeyStr (
PJSTR szObjectName,
PJSTR pszMOKeyStr,
LPMODATA pMOData,

PeopleSoft Proprietary and Confidential

Appendix A

Description

This function adds or updates Shortcut record types to the FO0165 table.

long l1TotalRec
) ;

PeopleSoft EnterpriseOne APIs

Parameters
Parameter Description
szObjectName Input, required. GT data structure name. Primary unique key.
IpMODSKey Input, required. GT data structure with valid data. The data within the GT data
structure is formatted into a string used for TXKY.
pszMOKeyStr Input, required. Formatted string used for TXKY.
pMOData Input, required. Array of data structures that stores the data to be updated.
ITotalRec Input, required. Indicates the number of array elements in pMOData.

Additional Notes

Parameter pData in MODATA must contain a valid pointer to update the text or shortcut media object type.

This table describes the MODATA (or *LPMODATA) data structure definition:

Data Type Data Description Note

int nSeq Sequence number form MOSEQN.

MOTYPE nMOType Media object type.

JCHAR szUser[11] User name.

JDEDATE jdDate Date updated.

MATH_NUMERIC mnTime Time updated.

BOOL bRTFData TRUE =RTF Text FALSE = Plain
Text or others

JCHAR szItemName[GT ITNMSIZE] Item name

JCHAR szQueueName[GT QUESIZE]

JCHAR szFileName[GT FILESIZE]

PJSTR pData Allocate memory for text and shortcut

media object type.

This table describes the MOTYPE definition:

PeopleSoft Proprietary and Confidential

137

PeopleSoft EnterpriseOne APls Appendix A
Define Type Note
OBJ JDEALL All media object types
OBJ_RTFTEXT Text media object.
OBJ JDEIMAGE Image media object.
OBJ_JDEOLE OLE media object.
OBJ_MISCIDESHORTCUT Shortcut media object.
OBJ_MISIMAGEVENDOR Third-party vendor.
OBJ MISCHTML HTML/URL/File media object.
Returns
This API can return these values:
Value
Description
JDEDB_PASSED
Indicates the API succeeded.
JDEDB_FAILED
Indicates the API failed.
Example
This is the first of two examples that demonstrate how to use this API:
JDEDB_RESULT JDBReturn = JDEDB PASSED;
LPMODATA pMOData = NULL;
long lTotalRec = 0;
JDBReturn = jdeGTGet AllMOTypeKeyStr (J("ABGT"), _J("1"), &pMOData, &lTotalRec);
if (JDBReturn == JDEDB PASSED && pMOData && lTotalRec > 0)
{
jdeGTAddUpdate_ ShortcutKeyStr(J("ABGT") , _J("1"), pMOData, lTotalRec)

jdeFreeMOData (pMOData, lTotalRec)

return;

This is the second example of how to use this API:
JDEDB_RESULT JDBReturn = JDEDB_PASSED;

LPMODATA pMOData = NULL;
long 1TotalRec = 0;
DSABGT dsABGT = {0};

138

PeopleSoft Proprietary and Confidential

Appendix A PeopleSoft EnterpriseOne APIs
ParseNumericString (&dsABGT.mnAddressNumber, _J("1"));
JDBReturn = jdeGTGet AllMOType(J("ABGT"), &dsABGT, &pMOData, &lTotalRec) ;
if (JDBReturn == JDEDB PASSED && pMOData && lTotalRec > 0)
{
jdeGTAddUpdate Shortcut (_J("ABGT") , &dsABGT, pMOData, lTotalRec)
jdeFreeMOData (pMOData, lTotalRec)
}
return;
See Also

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate AlIMOType/ jdeGTAddUpdate

AlIMOTypeKeyStr/ jdeGTAddUpdate AIIMOTypeWithLang, page 122

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate HTML/jdeGTAddUpdate HTMLKeyStr,

page 126
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate Image/jdeGTAddUpdate ImageKeyStr,

page 129
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate OLE/jdeGTAddUpdate OLEKeyStr,

page 133
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate Text/jdeGTAddUpdate TextKeyStr,

page 140
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate Vendor/jdeGTAddUpdate VendorKeyStr,

page 143

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete AIHTML/jdeGTDelete AIIHTMLKeyStr,

page 147
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete Alllmage/jdeGTDelete AlllmageKeyStr,

page 149
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete AIIMOType/jdeGTDelete AIIMOTypeStr,

page 152
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete AIIOLE/jdeGTDelete AIIOLEKeyStr, page 155

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AllShortcut/jdeGTDelete AllShortcutKeyStr,

page 158
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AllText/jdeGTDelete AllTextKeyStr, page 161

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete AllVendor/jdeGTDelete AllVendorKeyStr,

page 164
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTFreeMOData, page 188

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet AIMOType/jdeGTGet AIIMOTypeKeyStr,

page 191
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet GenericText/jdeGTGet GenericTextKeyStr,

page 195
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet HTML/jdeGTGet HTMLKeyStr, page 198

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet Image/jdeGTGet ImageKeyStr, page 202

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet OLE/jdeGTGet OLEKeyStr, page 205

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet RTFText/jdeGTGet RTFTextKeyStr, page 209

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet Shortcut/jdeGTGet ShortcutKeyStr, page 212

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet Vendor/jdeGTGet VendorKeyStr, page 216

Appendix A, “PeopleSoft EnterpriseOne APIs.” JdeGTGetCount/jdeGTGetCountKeyStr, page 220

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeValidate GTExist/jde Validate GTExistWithKeyStr, page 223

PeopleSoft Proprietary and Confidential 139

PeopleSoft EnterpriseOne APls

Appendix A

jdeGTAddUpdate_Text/jdeGTAddUpdate TextKeyStr

Syntax

JDERTN (JDEDB_RESULT)

JDERTN (JDEDB_RESULT)

Description

JDEWINAPI jdeGTAddUpdate Text (

PJSTR szObjectName,
LPVOID 1pMODSKey,
LPMODATA pMOData,
long l1TotalRec

)

JDEWINAPI jdeGTAddUpdate TextKeyStr (

PJSTR szObjectName,
PJSTR pszMOKeyStr,
LPMODATA pMOData,
long l1TotalRec

)

This function adds or updates text record types to the FO0165 table.

Parameters
Parameter Description
szObjectName Input, required. GT data structure name. Primary unique key.
IpMODSKey Input, required. GT data structure with valid data. The data within the GT data
structure is formatted into a string used for TXKY.
pszMOKeyStr Input, required. Formatted string used for TXKY.
pMOData Input, required. Array of data structures that stores the data to be updated.
ITotalRec Input, required. Indicates the number of array elements in pMOData.

Additional Notes

Parameter pData in MODATA must contain a valid pointer to update the text or shortcut media object type.
This table describes the MODATA (or *LPMODATA) data structure definition:

Data Type Data Description Note
int nSeq Sequence number form MOSEQN.
MOTYPE nMOType Media object type.
JCHAR szUser[11] User name.
JDEDATE jdDate Date updated.
MATH NUMERIC mnTime Time updated.

140

PeopleSoft Proprietary and Confidential

Appendix A

PeopleSoft EnterpriseOne APIs
Data Type Data Description Note
BOOL bRTFData TRUE = RTF Text FALSE = Plain
Text or others
JCHAR szItemName[GT _ITNMSIZE] Item name
JCHAR szQueueName[GT QUESIZE]
JCHAR szFileName[GT FILESIZE]
PJSTR pData Allocate memory for text and shortcut
media object type.

This table describes the MOTYPE definition:

Define Type Note
OBJ JDEALL All media object types
OBJ RTFTEXT Text media object.
OBJ_JDEIMAGE Image media object.
OBJ JDEOLE OLE media object.

OBJ_MISCJDESHORTCUT

Shortcut media object.

OBJ_MISIMAGEVENDOR

Third-party vendor.

OBJ_MISCHTML

HTML/URL/File media object.

Returns

The API can return these values:

Value

Description

JDEDB PASSED

Indicates the API succeeded.

JDEDB_FAILED

Indicates the API failed.

Example

This is the first of two examples that demonstrate how to use this API:

JDEDB_RESULT JDBReturn

= JDEDB_PASSED;

LPMODATA pMOData = NULL;

long 1TotalRec = 0;

PeopleSoft Proprietary and Confidential

141

PeopleSoft EnterpriseOne APls

142

Appendix A
JDBReturn = jdeGTGet AllMOTypeKeyStr (J("ABGT"), _J("1"), &pMOData, &lTotalRec) ;
if (JDBReturn == JDEDB_PASSED && pMOData && lTotalRec > 0)
{
jdeGTAddUpdate TextKeyStr(J("ABGT") , _J("1"), pMOData, lTotalRec)

jdeFreeMOData (pMOData, 1lTotalRec)

return;

This is the second example of how to use this API:

JDEDB_RESULT JDBReturn = JDEDB PASSED;
LPMODATA pMOData = NULL;

long lTotalRec = 0;

DSABGT dsABGT = {0};

ParseNumericString (&dsABGT.mnAddressNumber, _J("1"));

JDBReturn = jdeGTGet AllMOType(J("ABGT"), &dsABGT, &pMOData, &lTotalRec) ;
if (JDBReturn == JDEDB_PASSED && pMOData && lTotalRec > 0)
{

jdeGTAddUpdate Text (J("ABGT") , &dsABGT, pMOData, lTotalRec)

jdeFreeMOData (pMOData, lTotalRec)

return;

PeopleSoft Proprietary and Confidential

Appendix A PeopleSoft EnterpriseOne APIs

See Also

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate AIIMOType/ jdeGTAddUpdate
AlIMOTypeKeyStr/ jdeGTAddUpdate AIIMOTypeWithl.ang, page 122

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate HTML/jdeGTAddUpdate HTMLKeyStr,

page 126
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate Image/jdeGTAddUpdate ImageKeyStr,

page 129
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate OLE/jdeGTAddUpdate OLEKeyStr,

page 133

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate Shortcut/jdeGTAddUpdate
ShortcutKeyStr, page 136

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate Vendor/jdeGTAddUpdate VendorKeyStr,

page 143
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AIHTML/jdeGTDelete AIIHTMLKeyStr,

page 147
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete Alllmage/jdeGTDelete AlllmageKeyStr,

page 149
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete AIIMOType/jdeGTDelete AIIMOTypeStr,

page 152

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AIIOLE/jdeGTDelete AIIOLEKeyStr, page 155
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete AllShortcut/jdeGTDelete AllShortcutKeyStr,
page 158

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AllText/jdeGTDelete AllTextKeyStr, page 161
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AllVendor/jdeGTDelete AllVendorKeyStr,
page 164

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTFreeMOData, page 188

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet AIIMOType/jdeGTGet AIIMOTypeKeyStr,

page 191

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet GenericText/jdeGTGet GenericTextKeyStr,

page 195

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet HTML/jdeGTGet HTMLKeyStr, page 198
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet Image/jdeGTGet ImageKeyStr, page 202
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet OLE/jdeGTGet OLEKeyStr, page 205

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet RTFText/jdeGTGet RTFTextKeyStr, page 209
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet Shortcut/jdeGTGet ShortcutKeyStr, page 212
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet Vendor/jdeGTGet VendorKeyStr, page 216
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGetCount/jdeGTGetCountKeyStr, page 220

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeValidate GTExist/jdeValidate GTExistWithKeyStr, page 223

jdeGTAddUpdate Vendor/jdeGTAddUpdate VendorKeyStr
Syntax

JDERTN (JDEDB_RESULT) JDEWINAPI jdeGTAddUpdate Vendor (
PJSTR szObjectName,
LPVOID 1pMODSKey,
LPMODATA pMOData,
long l1TotalRec
)

JDERTN (JDEDB_RESULT) JDEWINAPI jdeGTAddUpdate VendorKeyStr (
PJSTR szObjectName,
PJSTR pszMOKeyStr,
LPMODATA pMOData,

PeopleSoft Proprietary and Confidential 143

PeopleSoft EnterpriseOne APls

Description

long l1TotalRec
)i

Appendix A

This function adds or updates vendor or third-party software record types to the FOO165 table.

Parameters
Parameter Description
szObjectName Input, required. GT data structure name. Primary unique key.
IpMODSKey Input, required. GT data structure with valid data. The data within the GT data
structure is formatted into a string used for TXKY.
pszMOKeyStr Input, required. Formatted string used for TXKY.
pMOData Input, required. Array of data structures that stores the data to be updated.
ITotalRec Input, required. Indicates the number of array elements in pMOData.

Additional Notes

Parameter pData in MODATA must contain a valid pointer to update the text or shortcut media object type.

This table describes the MODATA (or *LPMODATA) data structure definition:

Data Type Data Description Note

int nSeq Sequence number form MOSEQN.

MOTYPE nMOType Media object type.

JCHAR szUser[11] User name.

JDEDATE jdDate Date updated.

MATH NUMERIC mnTime Time updated.

BOOL bRTFData TRUE =RTF Text FALSE = Plain
Text or others

JCHAR szltemName[GT ITNMSIZE] Item name

JCHAR szQueueName[GT QUESIZE]

JCHAR szFileName[GT FILESIZE]

PJSTR pData Allocate memory for text and shortcut

media object type.

This table describes the MOTYPE definition:

144

PeopleSoft Proprietary and Confidential

Appendix A

PeopleSoft EnterpriseOne APIs

Define Type Note
OBJ JDEALL All media object types
OBJ_RTFTEXT Text media object.
OBJ_JDEIMAGE Image media object.
OBJ_JDEOLE OLE media object.
OBJ_MISCJDESHORTCUT Shortcut media object.

OBJ_MISIMAGEVENDOR

Third-party vendor.

OBJ MISCHTML

HTML/URL/File media object.

Returns

The API can return these values:

Value

Description

JDEDB_PASSED

Indicates the API succeeded.

JDEDB FAILED

Indicates the API failed.

Example

This is the first of two examples that demonstrate how to use this API:

JDEDB_RESULT JDBReturn = JDEDB PASSED;

LPMODATA pMOData = NULL;
long lTotalRec = 0;

JDBReturn = jdeGTGet Al1MOTypeKeyStr (J("ABGT"), _J("1"), &pMOData,
if (JDBReturn == JDEDB PASSED && pMOData && lTotalRec > 0)
{
jdeGTAddUpdate VendorKeyStr(_J("ABGT") , _J("1"), pMOData, lTotalRec)

jdeFreeMOData (pMOData, lTotalRec)

return;

This is the second example of how to use this API:
JDEDB_RESULT JDBReturn = JDEDB_ PASSED;

LPMODATA pMOData = NULL;
long 1TotalRec = 0;
DSABGT dsABGT = {0};

PeopleSoft Proprietary and Confidential

&lTotalRec) ;

145

PeopleSoft EnterpriseOne APls Appendix A

146

ParseNumericString (&dsABGT.mnAddressNumber, J("1"));

JDBReturn = jdeGTGet Al1lMOType(J("ABGT"), &dsABGT, &pMOData, &lTotalRec) ;
if (JDBReturn == JDEDB PASSED && pMOData && lTotalRec > 0)
{

jdeGTAddUpdate Vendor (_ J("ABGT") , &dsABGT, pMOData, lTotalRec)

jdeFreeMOData (pMOData, lTotalRec)

return;

See Also

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate AIIMOType/ jdeGTAddUpdate
AlIMOTypeKeyStr/ jdeGTAddUpdate AlIMOTypeWithLang, page 122

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate HTML/jdeGTAddUpdate HTMLKeyStr,

page 126
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate Image/jdeGTAddUpdate ImageKeyStr,

page 129
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate OLE/jdeGTAddUpdate OLEKeyStr,

page 133

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate Shortcut/jdeGTAddUpdate
ShortcutKeyStr, page 136

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate Text/jdeGTAddUpdate TextKeyStr,

page 140
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete AIHTML/jdeGTDelete AIIHTMLKeyStr,

page 147
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete Alllmage/jdeGTDelete AlllmageKeyStr,

page 149
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete AlIMOType/jdeGTDelete AIIMOTypeStr,

page 152

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AIIOLE/jdeGTDelete AIIOLEKeyStr, page 155
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AllShortcut/jdeGTDelete AllShortcutKeyStr,
page 158

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete AllText/jJdeGTDelete AllTextKeyStr, page 161
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AllVendor/jdeGTDelete AllVendorKeyStr,
page 164

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTFreeMOData, page 188

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet AlIMOType/jdeGTGet AlIMOTypeKeyStr,

page 191
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet GenericText/jdeGTGet GenericTextKeyStr,

page 195

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet HTML/jdeGTGet HTMLKeyStr, page 198
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet Image/jdeGTGet ImageKeyStr, page 202
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet OLE/jdeGTGet OLEKeyStr, page 205

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet RTFText/jdeGTGet RTFTextKeyStr, page 209
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet Shortcut/jdeGTGet ShortcutKeyStr, page 212
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet Vendor/jdeGTGet VendorKeyStr, page 216
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGetCount/jdeGTGetCountKeyStr, page 220

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeValidateGTExist/jdeValidateGTExistWithKeyStr, page 223

PeopleSoft Proprietary and Confidential

Appendix A PeopleSoft EnterpriseOne APIs

jdeGTDelete_AIIHTML/jdeGTDelete_AlIIHTMLKeyStr
Syntax

JDERTN(JDEDB_RESULT) JDEWINAPI jdeGTDelete_AllHTML(
PJSTR szObjectName,
LPVOID 1pMODSKey
)

JDERTN (JDEDB_RESULT) JDEWINAPI jdeGTDelete Al11HTMLKeyStr (
PJSTR szObjectName,
PJSTR pszMOKeyStr
)

Description

This function deletes all HTML, URL, and File record types in the FO0165 table based on object name
(OBNM) and object keys (TXKY).

Parameters
Parameter Description
szObjectName Input, required. GT data structure name. Primary unique key.
IpMODSKey Input, required. GT data structure with valid data. The data within the GT data
structure is formatted into a string used for TXKY.
pszMOKeyStr Input, required. Formatted string used for TXKY.

Additional Notes
This table describes the MODATA (or *LPMODATA) data structure definition:

Data Type Data Description Note

int nSeq Sequence number form MOSEQN.

MOTYPE nMOType Media object type.

JCHAR szUser[11] User name.

JDEDATE jdDate Date updated.

MATH_NUMERIC mnTime Time updated.

BOOL bRTFData TRUE =RTF Text FALSE = Plain
Text or others

JCHAR szItemName[GT ITNMSIZE] Item name

JCHAR szQueueName[GT QUESIZE]

PeopleSoft Proprietary and Confidential

147

PeopleSoft EnterpriseOne APls

Appendix A

Data Type Data Description Note
JCHAR szFileName[GT_FILESIZE]
PJSTR pData Allocate memory for text and shortcut
media object type.
This table describes the MOTYPE definition:
Define Type Note
OBJ JDEALL All media object types
OBJ RTFTEXT Text media object.
OBJ JDEIMAGE Image media object.
OBJ JDEOLE OLE media object.
OBJ MISCJDESHORTCUT Shortcut media object.
OBJ _MISIMAGEVENDOR Third-party vendor.
OBJ MISCHTML HTML/URL/File media object.

Returns

This API can return these values:

Value

Description

JDEDB PASSED

Indicates the API succeeded.

JDEDB_FAILED

Indicates the API failed.

Example

This is the first of two examples that demonstrate how to use this API:

JDEDB_RESULT JDBReturn = JDEDB PASSED;

JDBReturn = J("imy) ;

jdeGTDelete Al1HTMLKeyStr (_J("ABGT") ,

return;

This is the second example of how to use this API:
JDEDB_RESULT JDBReturn = JDEDB PASSED;
DSABGT dsABGT = {0};

148 PeopleSoft Proprietary and Confidential

Appendix A PeopleSoft EnterpriseOne APIs

ParseNumericString (&dsABGT.mnAddressNumber, J("1"));
JDBReturn = jdeGTDelete Al1HTML(_J("ABGT") , &dsABGT) ;

return;

See Also

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate AlIMOType/ jdeGTAddUpdate
AlIMOTypeKeyStr/ jdeGTAddUpdate AIIMOTypeWithLang, page 122

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate HTML/jdeGTAddUpdate HTMLKeyStr,

page 126
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate Image/jdeGTAddUpdate ImageKeyStr,

page 129
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate OLE/jdeGTAddUpdate OLEKeyStr,

page 133

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate Shortcut/jdeGTAddUpdate
ShortcutKeyStr, page 136

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate Text/jdeGTAddUpdate TextKeyStr,

page 140
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate Vendor/jdeGTAddUpdate VendorKeyStr,

page 143
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete Alllmage/jdeGTDelete AlllmageKeyStr,

page 149
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete AIIMOType/jdeGTDelete AIIMOTypeStr,

page 152

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AIIOLE/jdeGTDelete AIIOLEKeyStr, page 155
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AllShortcut/jJdeGTDelete AllShortcutKeyStr,
page 158

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete AllText/jdeGTDelete AllTextKeyStr, page 161
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete AllVendor/jdeGTDelete AllVendorKeyStr,
page 164

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTFreeMOData, page 188

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet AIMOType/jdeGTGet AIIMOTypeKeyStr,

page 191
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet GenericText/jJdeGTGet GenericTextKeyStr,

page 195

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet HTML/jdeGTGet HTMLKeyStr, page 198
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet Image/jdeGTGet ImageKeyStr, page 202
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet OLE/jdeGTGet OLEKeyStr, page 205

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet RTFText/jdeGTGet RTFTextKeyStr, page 209
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet Shortcut/jdeGTGet ShortcutKeyStr, page 212
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet Vendor/jdeGTGet VendorKeyStr, page 216
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGetCount/jdeGTGetCountKeyStr, page 220

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeValidateGTExist/jde ValidateGTExistWithKeyStr, page 223

jdeGTDelete_Allimage/jdeGTDelete_AllimageKeyStr
Syntax

JDERTN(JDEDB_RESULT) JDEWINAPT jdeGTDelete_AllImage(
PJSTR szObjectName,
LPVOID 1pMODSKey

PeopleSoft Proprietary and Confidential 149

PeopleSoft EnterpriseOne APls

JDERTN (JDEDB_RESULT)

Description

)i

JDEWINAPI jdeGTDelete AllImageKeyStr (

PJSTR szObjectName,
PJSTR pszMOKeyStr
)i

Appendix A

This function deletes all image record types in the FO0165 table based on object name (BNM) and object

keys (TXKY).

Parameters
Parameter Description
szObjectName Input, required. GT data structure name. Primary unique key.
IpMODSKey Input, required. GT data structure with valid data. The data within the GT data
structure is formatted into a string used for TXKY.
pszMOKeyStr Input, required. Formatted string used for TXKY.

Additional Notes

This table describes the MODATA (or *)LPMODATA) data structure definition:

Data Type Data Description Note

int nSeq Sequence number form MOSEQN.

MOTYPE nMOType Media object type.

JCHAR szUser[11] User name.

JDEDATE jdDate Date updated.

MATH NUMERIC mnTime Time updated.

BOOL bRTFData TRUE = RTF Text FALSE = Plain
Text or others

JCHAR szItemName[GT_ITNMSIZE] Item name

JCHAR szQueueName[GT_QUESIZE]

JCHAR szFileName[GT FILESIZE]

PJSTR pData Allocate memory for text and shortcut

media object type.

This table describes the MOTYPE definition:

150

PeopleSoft Proprietary and Confidential

Appendix A PeopleSoft EnterpriseOne APIs

Define Type Note
OBJ JDEALL All media object types
OBJ_RTFTEXT Text media object.
OBJ_JDEIMAGE Image media object.
OBJ_JDEOLE OLE media object.
OBJ_MISCJDESHORTCUT Shortcut media object.
OBJ_MISIMAGEVENDOR Third-party vendor.
OBJ MISCHTML HTML/URL/File media object.

Returns

This API can return these values:

Value
Description

JDEDB_PASSED

Indicates the API succeeded.

JDEDB FAILED

Indicates the API failed.

Example
This is the first of two examples demonstrating how to use this API:

JDEDB_RESULT JDBReturn = JDEDB PASSED;
JDBReturn = jdeGTDelete AllImageKeyStr (_ J("ABGT") , _J("1"));

return;

This is the second example of how to use this API:
JDEDB_RESULT JDBReturn = JDEDB_PASSED;
DSABGT dsABGT = {0};
ParseNumericString (&dsABGT.mnAddressNumber, J("1"));

JDBReturn = jdeGTDelete AllImage(J("ABGT") , &dsABGT) ;

return;

PeopleSoft Proprietary and Confidential 151

PeopleSoft EnterpriseOne APls Appendix A

See Also

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate AIIMOType/ jdeGTAddUpdate
AlIMOTypeKeyStr/ jdeGTAddUpdate AIIMOTypeWithl.ang, page 122

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate HTML/jdeGTAddUpdate HTMLKeyStr,

page 126
Appendix A, “PeopleSoft EnterpriseOne APIs,” jJdeGTAddUpdate Image/jdeGTAddUpdate ImageKeyStr,

page 129
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate OLE/jdeGTAddUpdate OLEKeyStr,

page 133

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate Shortcut/jdeGTAddUpdate
ShortcutKeyStr, page 136

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate Text/jdeGTAddUpdate TextKeyStr,

page 140
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate Vendor/jdeGTAddUpdate VendorKeyStr,

page 143
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AIHTML/jdeGTDelete AIHTMLKeyStr,

page 147
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AIMOType/jdeGTDelete AIIMOTypeStr,

page 152

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AIIOLE/jdeGTDelete AIIOLEKeyStr, page 155
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AllShortcut/jdeGTDelete AllShortcutKeyStr,
page 158

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AllText/jdeGTDelete AllTextKeyStr, page 161
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AllVendor/jdeGTDelete AllVendorKeyStr,
page 164

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTFreeMOData, page 188

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet AlIMOType/jdeGTGet AIIMOTypeKeyStr,

page 191

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet GenericText/jdeGTGet GenericTextKeyStr,

page 195

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet HTML/jdeGTGet HTMLKeyStr, page 198
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet Image/jdeGTGet ImageKeyStr, page 202
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet OLE/jdeGTGet OLEKeyStr, page 205

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet RTFText/jdeGTGet RTFTextKeyStr, page 209
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet Shortcut/jdeGTGet ShortcutKeyStr, page 212
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet Vendor/jdeGTGet VendorKeyStr, page 216
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGetCount/jdeGTGetCountKeyStr, page 220

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeValidateGTExist/jdeValidate GTExistWithKeyStr, page 223

jdeGTDelete_AlIMOType/jdeGTDelete_AIIMOTypeStr
Syntax

JDERTN (JDEDB_RESULT) JDEWINAPI jdeGTDelete Al1MOType (
PJSTR szObjectName,
LPVOID 1pMODSKey
)

JDERTN (JDEDB_RESULT) JDEWINAPI jdeGTDelete Al1MOTypeKeyStr (
PJSTR szObjectName,
PJSTR pszMOKeyStr
) ;

152 PeopleSoft Proprietary and Confidential

Appendix A

Description

PeopleSoft EnterpriseOne APIs

This function deletes all media object record types in the FO0165 table based on object name (OBNM)

and object keys (TXKY).

Parameters
Parameter Description
szObjectName Input, required. GT data structure name. Primary unique key.
IpMODSKey Input, required. GT data structure with valid data. The data within the GT data
structure is formatted into a string used for TXKY.
pszMOKeyStr Input, required. Formatted string used for TXKY.

Additional Notes

This table describes the MODATA (or *LPMODATA) data structure definition:

Data Type Data Description Note

int nSeq Sequence number form MOSEQN.

MOTYPE nMOType Media object type.

JCHAR szUser[11] User name.

JDEDATE jdDate Date updated.

MATH_NUMERIC mnTime Time updated.

BOOL bRTFData TRUE =RTF Text FALSE = Plain
Text or others

JCHAR szItemName[GT ITNMSIZE] Item name

JCHAR szQueueName[GT QUESIZE]

JCHAR szFileName[GT FILESIZE]

PJSTR pData Allocate memory for text and shortcut
media object type.

This table describes the MOTYPE definition:
Define Type Note
OBJ JDEALL All media object types

OBJ_RTFTEXT

Text media object.

OBJ_JDEIMAGE

Image media object.

OBJ_JDEOLE

OLE media object.

PeopleSoft Proprietary and Confidential

153

PeopleSoft EnterpriseOne APls

Appendix A

Define Type Note
OBJ_MISCIDESHORTCUT Shortcut media object.
OBJ_MISIMAGEVENDOR Third-party vendor.

OBJ MISCHTML HTML/URL/File media object.

Returns

This API can return these values:

Value
Description

JDEDB_PASSED

Indicates the API succeeded.

JDEDB_FAILED

Indicates the API failed.

Example
This is the first of two examples that demonstrate how to use this API:

JDEDB_RESULT JDBReturn = JDEDB PASSED;
JDBReturn = jdeGTDelete AllMOTypeKeyStr(_J("ABGT") , _J("1"));

return;

This is the second example of how to use this API:
JDEDB_RESULT JDBReturn = JDEDB PASSED;
DSABGT dsABGT = {0};
ParseNumericString (&dsABGT.mnAddressNumber, J("1"));
JDBReturn = jdeGTDelete Al1MOType (_J("ABGT")

, &dsABGT) ;

return;

154 PeopleSoft Proprietary and Confidential

Appendix A PeopleSoft EnterpriseOne APIs

See Also

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate AIIMOType/ jdeGTAddUpdate
AlIMOTypeKeyStr/ jdeGTAddUpdate AIIMOTypeWithl.ang, page 122

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate HTML/jdeGTAddUpdate HTMLKeyStr,

page 126
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate Image/jdeGTAddUpdate ImageKeyStr,

page 129
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate OLE/jdeGTAddUpdate OLEKeyStr,

page 133

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate Shortcut/jdeGTAddUpdate
ShortcutKeyStr, page 136

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate Text/jdeGTAddUpdate TextKeyStr,

page 140
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate Vendor/jJdeGTAddUpdate VendorKeyStr,

page 143
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AIHTML/jdeGTDelete AIIHTMLKeyStr,

page 147
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete Alllmage/jdeGTDelete AlllmageKeyStr,

page 149

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete AIIOLE/jdeGTDelete AIIOLEKeyStr, page 155
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete AllShortcut/jdeGTDelete AllShortcutKeyStr,
page 158

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AllText/jdeGTDelete AllTextKeyStr, page 161
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AllVendor/jdeGTDelete AllVendorKeyStr,
page 164

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTFreeMOData, page 188

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet AIIMOType/jdeGTGet AIIMOTypeKeyStr,

page 191
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet GenericText/jdeGTGet GenericTextKeyStr,

page 195

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet HTML/jdeGTGet HTMLKeyStr, page 198
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet Image/jdeGTGet ImageKeyStr, page 202
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet OLE/jdeGTGet OLEKeyStr, page 205

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet RTFText/jdeGTGet RTFTextKeyStr, page 209
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet Shortcut/jdeGTGet ShortcutKeyStr, page 212
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet Vendor/jdeGTGet VendorKeyStr, page 216
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGetCount/jdeGTGetCountKeyStr, page 220

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeValidate GTExist/jdeValidate GTExistWithKeyStr, page 223

jdeGTDelete AIIOLE/jdeGTDelete AIIOLEKeyStr
Syntax

JDERTN(JDEDB_RESULT) JDEWINAPT jdeGTDelete_AllOLE(
PJSTR szObjectName,
LPVOID 1pMODSKey
)i

JDERTN (JDEDB_RESULT) JDEWINAPI jdeGTDelete Al11OLEKeyStr (
PJSTR szObjectName,
PJSTR pszMOKeyStr
)

PeopleSoft Proprietary and Confidential 155

PeopleSoft EnterpriseOne APls

156

Description

Appendix A

This function deletes all OLE record types in the FO0165 table based on object name (BNM) and object

keys (TXKY).

Parameters
Parameter Description
szObjectName Input, required. GT data structure name. Primary unique key.
IpMODSKey Input, required. GT data structure with valid data. The data within the GT data
structure is formatted into a string used for TXKY.
pszMOKeyStr Input, required. Formatted string used for TXKY.

Additional Notes

This table describes the MODATA (or *LPMODATA) data structure definition:

Data Type Data Description Note

int nSeq Sequence number form MOSEQN.

MOTYPE nMOType Media object type.

JCHAR szUser[11] User name.

JDEDATE jdDate Date updated.

MATH NUMERIC mnTime Time updated.

BOOL bRTFData TRUE = RTF Text FALSE = Plain
Text or others

JCHAR szltemName[GT ITNMSIZE] Item name

JCHAR szQueueName[GT_QUESIZE]

JCHAR szFileName[GT FILESIZE]

PJSTR pData Allocate memory for text and shortcut

media object type.

This table describes the MOTYPE definition:

Define Type

Note

OBJ _JDEALL

All media object types

OBJ_RTFTEXT

Text media object.

OBJ_JDEIMAGE

Image media object.

OBJ_JDEOLE

OLE media object.

PeopleSoft Proprietary and Confidential

Appendix A

PeopleSoft EnterpriseOne APIs

Define Type

Note

OBJ_MISCJDESHORTCUT

Shortcut media object.

OBJ_MISIMAGEVENDOR

Third-party vendor.

OBJ MISCHTML

HTML/URL/File media object.

Returns

This API can return these values:

Value

Description

JDEDB_PASSED

Indicates the API succeeded.

JDEDB FAILED

Indicates the API failed.

Example

This is the first of two examples that demonstrate how to use this API:

JDEDB_RESULT JDBReturn

JDEDB_PASSED;

JDBReturn = jdeGTDelete Al1lOLEKeyStr(J("ABGT") _J(m1im));
return;

This is the second example of how to use this API:
JDEDB_RESULT JDBReturn = JDEDB_PASSED;
DSABGT dsABGT = {0};
ParseNumericString (&dsABGT.mnAddressNumber, J("1"));
JDBReturn = jdeGTDelete AL1OLE(J("ABGT") , &dsABGT) ;
return;

PeopleSoft Proprietary and Confidential

157

PeopleSoft EnterpriseOne APls Appendix A

158

See Also

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate AIIMOType/ jdeGTAddUpdate
AlIMOTypeKeyStr/ jdeGTAddUpdate AIIMOTypeWithl.ang, page 122

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate HTML/jdeGTAddUpdate HTMLKeyStr,

page 126
Appendix A, “PeopleSoft EnterpriseOne APIs,” jJdeGTAddUpdate Image/jdeGTAddUpdate ImageKeyStr,

page 129
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate OLE/jdeGTAddUpdate OLEKeyStr,

page 133

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate Shortcut/jdeGTAddUpdate
ShortcutKeyStr, page 136

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate Text/jdeGTAddUpdate TextKeyStr,

page 140
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate Vendor/jdeGTAddUpdate VendorKeyStr,

page 143
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AIHTML/jdeGTDelete AIHTMLKeyStr,

page 147
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete Alllmage/jdeGTDelete AlllmageKeyStr,

page 149
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AIMOType/jdeGTDelete AIIMOTypeStr,

page 152
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AllShortcut/jdeGTDelete AllShortcutKeyStr,

page 158

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AllText/jdeGTDelete AllTextKeyStr, page 161
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AllVendor/jdeGTDelete AllVendorKeyStr,
page 164

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTFreeMOData, page 188

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet AlIMOType/jdeGTGet AIIMOTypeKeyStr,

page 191
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet GenericText/jdeGTGet GenericTextKeyStr,

page 195

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet HTML/jdeGTGet HTMLKeyStr, page 198
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet Image/jdeGTGet ImageKeyStr, page 202
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet OLE/jdeGTGet OLEKeyStr, page 205

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet RTFText/jdeGTGet RTFTextKeyStr, page 209
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet Shortcut/jdeGTGet ShortcutKeyStr, page 212
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet Vendor/jdeGTGet VendorKeyStr, page 216
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGetCount/jdeGTGetCountKeyStr, page 220

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeValidateGTExist/jdeValidate GTExistWithKeyStr, page 223

jdeGTDelete_AllShortcut/jdeGTDelete AllShortcutKeyStr
Syntax

JDERTN (JDEDB_RESULT) JDEWINAPI jdeGTDelete AllShortcut (
PJSTR szObjectName,
LPVOID 1pMODSKey
)
JDERTN (JDEDB_RESULT) JDEWINAPI jdeGTDelete AllShortcutKeyStr (
PJSTR szObjectName,
PJSTR pszMOKeyStr
) ;

PeopleSoft Proprietary and Confidential

Appendix A

Description

PeopleSoft EnterpriseOne APIs

This function deletes all shortcut record types in the FO0165 table based on object name (OBNM) and object

keys (TXKY).

Parameters
Parameter Description
szObjectName Input, required. GT data structure name. Primary unique key.
IpMODSKey Input, required. GT data structure with valid data. The data within the GT data
structure is formatted into a string used for TXKY.
pszMOKeyStr Input, required. Formatted string used for TXKY.

Additional Notes

This table describes the MODATA (or *LPMODATA) data structure definition:

Data Type Data Description Note

int nSeq Sequence number form MOSEQN.

MOTYPE nMOType Media object type.

JCHAR szUser[11] User name.

JDEDATE jdDate Date updated.

MATH_NUMERIC mnTime Time updated.

BOOL bRTFData TRUE =RTF Text FALSE = Plain
Text or others

JCHAR szItemName[GT ITNMSIZE] Item name

JCHAR szQueueName[GT QUESIZE]

JCHAR szFileName[GT FILESIZE]

PJSTR pData Allocate memory for text and shortcut
media object type.

This table describes the MOTYPE definition:
Define Type Note

OBJ JDEALL All media object types

OBJ_RTFTEXT Text media object.

OBJ _JDEIMAGE Image media object.

OBJ_JDEOLE OLE media object.

PeopleSoft Proprietary and Confidential

159

PeopleSoft EnterpriseOne APls Appendix A

Define Type Note
OBJ_MISCIDESHORTCUT Shortcut media object.
OBJ_MISIMAGEVENDOR Third-party vendor.

OBJ MISCHTML HTML/URL/File media object.

Returns

This API can return these values:

Value
Description

JDEDB_PASSED

Indicates the API succeeded.

JDEDB_FAILED

Indicates the API failed.

Example
This is the first of two examples that demonstrate how to use this API:

JDEDB_RESULT JDBReturn = JDEDB PASSED;
JDBReturn = jdeGTDelete AllShortcutKeyStr(J("ABGT") , _J("1"));

return;

This is the second example of how to use this API:
JDEDB_RESULT JDBReturn = JDEDB_PASSED;
DSABGT dsABGT = {0};
ParseNumericString (&dsABGT.mnAddressNumber, J("1"));
JDBReturn = jdeGTDelete AllShortcut (_J("ABGT")

, &dsABGT) ;

return;

160 PeopleSoft Proprietary and Confidential

Appendix A PeopleSoft EnterpriseOne APIs

See Also

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate AIIMOType/ jdeGTAddUpdate
AlIMOTypeKeyStr/ jdeGTAddUpdate AIIMOTypeWithl.ang, page 122

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate HTML/jdeGTAddUpdate HTMLKeyStr,

page 126
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate Image/jdeGTAddUpdate ImageKeyStr,

page 129
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate OLE/jdeGTAddUpdate OLEKeyStr,

page 133

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate Shortcut/jdeGTAddUpdate
ShortcutKeyStr, page 136

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate Text/jdeGTAddUpdate TextKeyStr,

page 140
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate Vendor/jJdeGTAddUpdate VendorKeyStr,

page 143
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AIHTML/jdeGTDelete AIIHTMLKeyStr,

page 147
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete Alllmage/jdeGTDelete AlllmageKeyStr,

page 149
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete AIIMOType/jdeGTDelete AIIMOTypeStr,

page 152

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AIIOLE/jdeGTDelete AIIOLEKeyStr, page 155
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AllText/jdeGTDelete AllTextKeyStr, page 161
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AllVendor/jdeGTDelete AllVendorKeyStr,
page 164

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTFreeMOData, page 188

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet AIIMOType/jdeGTGet AIIMOTypeKeyStr,

page 191
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet GenericText/jdeGTGet GenericTextKeyStr,

page 195

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet HTML/jdeGTGet HTMLKeyStr, page 198
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet Image/jdeGTGet ImageKeyStr, page 202
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet OLE/jdeGTGet OLEKeyStr, page 205

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet RTFText/jdeGTGet RTFTextKeyStr, page 209
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet Shortcut/jdeGTGet ShortcutKeyStr, page 212
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet Vendor/jdeGTGet VendorKeyStr, page 216
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGetCount/jdeGTGetCountKeyStr, page 220

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeValidate GTExist/jdeValidate GTExistWithKeyStr, page 223

jdeGTDelete_AllText/jdeGTDelete AllTextKeyStr
Syntax

JDERTN (JDEDB_RESULT) JDEWINAPI jdeGTDelete AllText (
PJSTR szObjectName,
LPVOID 1pMODSKey
)i

JDERTN (JDEDB_RESULT) JDEWINAPI jdeGTDelete AllTextKeyStr (
PJSTR szObjectName,
PJSTR pszMOKeyStr
)

PeopleSoft Proprietary and Confidential 161

PeopleSoft EnterpriseOne APls

162

Description

Appendix A

This function deletes all text record types in the FO0165 table based on object name (OBNM) and object

keys (TXKY).

Parameters
Parameter Description
szObjectName Input, required. GT data structure name. Primary unique key.
IpMODSKey Input, required. GT data structure with valid data. The data within the GT data
structure is formatted into a string used for TXKY.
pszMOKeyStr Input, required. Formatted string used for TXKY.

Additional Notes

This table describes the MODATA (or *LPMODATA) data structure definition:

Data Type Data Description Note

int nSeq Sequence number form MOSEQN.

MOTYPE nMOType Media object type.

JCHAR szUser[11] User name.

JDEDATE jdDate Date updated.

MATH NUMERIC mnTime Time updated.

BOOL bRTFData TRUE = RTF Text FALSE = Plain
Text or others

JCHAR szltemName[GT ITNMSIZE] Item name

JCHAR szQueueName[GT_QUESIZE]

JCHAR szFileName[GT FILESIZE]

PJSTR pData Allocate memory for text and shortcut

media object type.

This table describes the MOTYPE definition:

Define Type

Note

OBJ _JDEALL

All media object types

OBJ_RTFTEXT

Text media object.

OBJ_JDEIMAGE

Image media object.

OBJ_JDEOLE

OLE media object.

PeopleSoft Proprietary and Confidential

Appendix A PeopleSoft EnterpriseOne APIs

Define Type Note
OBJ_MISCJDESHORTCUT Shortcut media object.
OBJ_MISIMAGEVENDOR Third-party vendor.

OBJ _MISCHTML HTML/URL/File media object.

Returns

This API can return these values:

Value
Description

JDEDB_PASSED

Indicates the API succeeded.

JDEDB FAILED

Indicates the API failed.

Example
This is the first of two examples that demonstrate how to use this API:

JDEDB_RESULT JDBReturn = JDEDB PASSED;
JDBReturn = jdeGTDelete AllTextKeyStr(J("ABGT") , _J("1"));

return;

This is the second example of how to use this API:
JDEDB_RESULT JDBReturn = JDEDB_PASSED;
DSABGT dsABGT = {0};
ParseNumericString (&dsABGT.mnAddressNumber, J("1"));
JDBReturn = jdeGTDelete AllText (_J("ABGT")

, &dsABGT) ;

return;

PeopleSoft Proprietary and Confidential 163

PeopleSoft EnterpriseOne APls Appendix A

164

See Also

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate AIIMOType/ jdeGTAddUpdate
AlIMOTypeKeyStr/ jdeGTAddUpdate AIIMOTypeWithl.ang, page 122

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate HTML/jdeGTAddUpdate HTMLKeyStr,

page 126
Appendix A, “PeopleSoft EnterpriseOne APIs,” jJdeGTAddUpdate Image/jdeGTAddUpdate ImageKeyStr,

page 129
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate OLE/jdeGTAddUpdate OLEKeyStr,

page 133

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate Shortcut/jdeGTAddUpdate
ShortcutKeyStr, page 136

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate Text/jdeGTAddUpdate TextKeyStr,

page 140
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate Vendor/jdeGTAddUpdate VendorKeyStr,

page 143
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AIHTML/jdeGTDelete AIHTMLKeyStr,

page 147
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete Alllmage/jdeGTDelete AlllmageKeyStr,

page 149
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AIMOType/jdeGTDelete AIIMOTypeStr,

page 152
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AIIOLE/jdeGTDelete AIIOLEKeyStr, page 155
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AllShortcut/jdeGTDelete AllShortcutKeyStr,

page 158
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AllVendor/jdeGTDelete AllVendorKeyStr,

page 164

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTFreeMOData, page 188

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet AlIMOType/jdeGTGet AIIMOTypeKeyStr,
page 191

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet GenericText/jdeGTGet GenericTextKeyStr,
page 195

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet HTML/jdeGTGet HTMLKeyStr, page 198
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet Image/jdeGTGet ImageKeyStr, page 202
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet OLE/jdeGTGet OLEKeyStr, page 205
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet RTFText/jdeGTGet RTFTextKeyStr, page 209
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet Shortcut/jdeGTGet ShortcutKeyStr, page 212
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet Vendor/jdeGTGet VendorKeyStr, page 216
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGetCount/jdeGTGetCountKeyStr, page 220
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeValidateGTExist/jdeValidate GTExistWithKeyStr, page 223

jdeGTDelete_AllVendor/jdeGTDelete AllVendorKeyStr
Syntax

JDERTN(JDEDB_RESULT) JDEWINAPI jdeGTDelete_AllVendor(
PJSTR szObjectName,
LPVOID 1pMODSKey
)

JDERTN (JDEDB_RESULT) JDEWINAPI jdeGTDelete AllVendorKeyStr (
PJSTR szObjectName,
PJSTR pszMOKeyStr
) ;

PeopleSoft Proprietary and Confidential

Appendix A

Description

PeopleSoft EnterpriseOne APIs

This function deletes all vendor or third-party software record types in the FO0165 table based on object
name (OBNM) and object keys (TXKY).

Parameters
Parameter Description
szObjectName Input, required. GT data structure name. Primary unique key.
IpMODSKey Input, required. GT data structure with valid data. The data within the GT data
structure is formatted into a string used for TXKY.
pszMOKeyStr Input, required. Formatted string used for TXKY.

Additional Notes

This table describes the MODATA (or *LPMODATA) data structure definition:

Data Type Data Description Note

int nSeq Sequence number form MOSEQN.

MOTYPE nMOType Media object type.

JCHAR szUser[11] User name.

JDEDATE jdDate Date updated.

MATH_NUMERIC mnTime Time updated.

BOOL bRTFData TRUE =RTF Text FALSE = Plain
Text or others

JCHAR szItemName[GT ITNMSIZE] Item name

JCHAR szQueueName[GT QUESIZE]

JCHAR szFileName[GT FILESIZE]

PJSTR pData Allocate memory for text and shortcut
media object type.

This table describes the MOTYPE definition:
Define Type Note

OBJ JDEALL All media object types

OBJ_RTFTEXT Text media object.

OBJ _JDEIMAGE Image media object.

OBJ_JDEOLE OLE media object.

PeopleSoft Proprietary and Confidential

165

PeopleSoft EnterpriseOne APls

Appendix A

Define Type Note
OBJ_MISCIDESHORTCUT Shortcut media object.
OBJ_MISIMAGEVENDOR Third-party vendor.

OBJ MISCHTML HTML/URL/File media object.

Returns

This API can return these values:

Value
Description

JDEDB_PASSED

Indicates the API succeeded.

JDEDB_FAILED

Indicates the API failed.

Example
This is the first of two examples that demonstrate how to use this API:

JDEDB_RESULT JDBReturn = JDEDB PASSED;
JDBReturn = jdeGTDelete AllVendorKeyStr(_J("ABGT") , _J("1"));

return;

This is the second example of how to use this API:
JDEDB_RESULT JDBReturn = JDEDB PASSED;
DSABGT dsABGT = {0};
ParseNumericString (&dsABGT.mnAddressNumber, J("1"));

JDBReturn = jdeGTDelete AllVendor _J("ABGT") , &dsABGT) ;

return;

166 PeopleSoft Proprietary and Confidential

Appendix A PeopleSoft EnterpriseOne APIs

See Also

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate AIIMOType/ jdeGTAddUpdate
AlIMOTypeKeyStr/ jdeGTAddUpdate AIIMOTypeWithl.ang, page 122

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate HTML/jdeGTAddUpdate HTMLKeyStr,

page 126
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate Image/jdeGTAddUpdate ImageKeyStr,

page 129
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate OLE/jdeGTAddUpdate OLEKeyStr,

page 133

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate Shortcut/jdeGTAddUpdate
ShortcutKeyStr, page 136

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate Text/jdeGTAddUpdate TextKeyStr,

page 140
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate Vendor/jJdeGTAddUpdate VendorKeyStr,

page 143
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AIHTML/jdeGTDelete AIIHTMLKeyStr,

page 147
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete Alllmage/jdeGTDelete AlllmageKeyStr,

page 149
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete AIIMOType/jdeGTDelete AIIMOTypeStr,

page 152

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AIIOLE/jdeGTDelete AIIOLEKeyStr, page 155
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete AllShortcut/jdeGTDelete AllShortcutKeyStr,
page 158

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AllText/jdeGTDelete AllTextKeyStr, page 161
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTFreeMOData, page 188

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet AIIMOType/jdeGTGet AIIMOTypeKeyStr,

page 191

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet GenericText/jdeGTGet GenericTextKeyStr,

page 195

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet HTML/jdeGTGet HTMLKeyStr, page 198
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet Image/jdeGTGet ImageKeyStr, page 202
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet OLE/jdeGTGet OLEKeyStr, page 205

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet RTFText/jdeGTGet RTFTextKeyStr, page 209
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet Shortcut/jdeGTGet ShortcutKeyStr, page 212
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet Vendor/jdeGTGet VendorKeyStr, page 216
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGetCount/jdeGTGetCountKeyStr, page 220

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeValidate GTExist/jdeValidate GTExistWithKeyStr, page 223

jdeGTDelete_ HTML/jdeGTDelete_ HTMLKeyStr
Syntax

JDERTN(JDEDB_RESULT) JDEWINAPT jdeGTDelete_HTML(
PJSTR szObjectName,
LPVOID I1pMODSKey,
LPMODATA pMOData,
long l1TotalRec
)
JDERTN(JDEDB_RESULT) JDEWINAPT jdeGTDelete_HTMLKeyStr(
PJSTR szObjectName,
PJSTR pszMOKeyStr,
LPMODATA pMOData,

PeopleSoft Proprietary and Confidential 167

PeopleSoft EnterpriseOne APls

long l1TotalRec
)i

Appendix A

Description
This function deletes specific HTML, URL and file record types from the FO0165 table based on the pMOData
parameter.
Parameters
Parameter Description
szOjectName Input, required. GT data structure name. Primary unique key.
IpMODSKey Input, required. GT data structure with valid data. The data within the GT data
structure is formatted into a string used for TXKY
pszMOKeyStr Input, required. Formatted string used for TXKY.
pMOData Input, required. Array of data structure that stores the data to be deleted.
ITotalRec Input, required. Indicates the number of array elements in pMOData.

Additional Notes

This table describes the MODATA (or *LPMODATA) data structure definition:

Data Type Data Description Note

int nSeq Sequence number form MOSEQN.

MOTYPE nMOType Media object type.

JCHAR szUser[11] User name.

JDEDATE jdDate Date updated.

MATH NUMERIC mnTime Time updated.

BOOL bRTFData TRUE = RTF Text FALSE = Plain
Text or others

JCHAR szItemName[GT_ITNMSIZE] Item name

JCHAR szQueueName[GT QUESIZE]

JCHAR szFileName[GT FILESIZE]

PJSTR pData Allocate memory for text and shortcut

media object type.

This table describes the MOTYPE definition:

168

PeopleSoft Proprietary and Confidential

Appendix A PeopleSoft EnterpriseOne APIs

Define Type Note
OBJ JDEALL All media object types
OBJ_RTFTEXT Text media object.
OBJ_JDEIMAGE Image media object.
OBJ_JDEOLE OLE media object.
OBJ_MISCJDESHORTCUT Shortcut media object.
OBJ_MISIMAGEVENDOR Third-party vendor.
OBJ MISCHTML HTML/URL/File media object.

Returns

This API can return these values:

Value
Description

JDEDB_PASSED

Indicates the API succeeded.

JDEDB FAILED

Indicates the API failed.

Example
This is the first of two examples that demonstrate how to use this API:

JDEDB_RESULT JDBReturn = JDEDB PASSED;
LPMODATA pMOData = NULL;
long lTotalRec = 0;

JDBReturn = jdeGTGet AllMOTypeKeyStr (J("ABGT"), _J("1"), &pMOData, &lTotalRec) ;
if (JDBReturn == JDEDB PASSED && pMOData && lTotalRec > 0)
{

jdeGTDelete HTMLKeyStr (J("ABGT") , _J("1"), pMOData, lTotalRec)

jdeFreeMOData (pMOData, lTotalRec)

return;

This is the second example of how to use this API:
JDEDB_RESULT JDBReturn = JDEDB PASSED;
LPMODATA pMOData = NULL;
long 1TotalRec = 0;

DSABGT dsABGT = {0};

PeopleSoft Proprietary and Confidential 169

PeopleSoft EnterpriseOne APls Appendix A

170

ParseNumericString (&dsABGT.mnAddressNumber, J("1"));

JDBReturn = jdeGTGet Al1lMOType(J("ABGT"), &dsABGT, &pMOData, &lTotalRec) ;
if (JDBReturn == JDEDB PASSED && pMOData && lTotalRec > 0)
{

jdeGTDelete HTML(_ J ("ABGT") , &dsABGT, pMOData, lTotalRec)

jdeFreeMOData (pMOData, lTotalRec)

return;

See Also

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate AIIMOType/ jdeGTAddUpdate
AlIMOTypeKeyStr/ jdeGTAddUpdate AlIMOTypeWithLang, page 122

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate HTML/jdeGTAddUpdate HTMLKeyStr,

page 126
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate Image/jdeGTAddUpdate ImageKeyStr,

page 129
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate OLE/jdeGTAddUpdate OLEKeyStr,

page 133

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate Shortcut/jdeGTAddUpdate
ShortcutKeyStr, page 136

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate Text/jdeGTAddUpdate TextKeyStr,

page 140
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate Vendor/jdeGTAddUpdate VendorKeyStr,

page 143
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete AIHTML/jdeGTDelete AIIHTMLKeyStr,

page 147
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete Alllmage/jdeGTDelete AlllmageKeyStr,

page 149
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete AlIMOType/jdeGTDelete AIIMOTypeStr,

page 152

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AIIOLE/jdeGTDelete AIIOLEKeyStr, page 155
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AllShortcut/jdeGTDelete AllShortcutKeyStr,
page 158

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete AllText/jJdeGTDelete AllTextKeyStr, page 161
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AllVendor/jdeGTDelete AllVendorKeyStr,
page 164

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTFreeMOData, page 188

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet AlIMOType/jdeGTGet AIIMOTypeKeyStr,

page 191
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet GenericText/jdeGTGet GenericTextKeyStr,

page 195

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet HTML/jdeGTGet HTMLKeyStr, page 198
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet Image/jdeGTGet ImageKeyStr, page 202
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet OLE/jdeGTGet OLEKeyStr, page 205

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet RTFText/jdeGTGet RTFTextKeyStr, page 209
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet Shortcut/jdeGTGet ShortcutKeyStr, page 212
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet Vendor/jdeGTGet VendorKeyStr, page 216
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGetCount/jdeGTGetCountKeyStr, page 220

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeValidateGTExist/jdeValidateGTExistWithKeyStr, page 223

PeopleSoft Proprietary and Confidential

Appendix A

PeopleSoft EnterpriseOne APIs

jdeGTDelete_Image/jdeGTDelete_ImageKeyStr

Syntax

JDERTN (JDEDB_RESULT) JDEWINAPI jdeGTDelete Image (

PJSTR szObjectName,
LPVOID 1pMODSKey,
LPMODATA pMOData,
long l1TotalRec

)

JDERTN (JDEDB_RESULT) JDEWINAPI jdeGTDelete ImageKeyStr (

Description

PJSTR szObjectName,
PJSTR pszMOKeyStr,
LPMODATA pMOData,
long l1TotalRec

)

This function deletes specific image record types from the FO0165 table based on the pMOData parameter.

Parameters
Parameter Description
szOjectName Input, required. GT data structure name. Primary unique key.
IpMODSKey Input, required. GT data structure with valid data. The data within the GT data
structure is formatted into a string used for TXKY
pszMOKeyStr Input, required. Formatted string used for TXKY.
pMOData Input, required. Array of data structure that stores the data to be deleted.
ITotalRec Input, required. Indicates the number of array elements in pMOData.

Additional Notes

This table describes the MODATA (or *LPMODATA) data structure definition:

Data Type Data Description Note

int nSeq Sequence number form MOSEQN.

MOTYPE nMOType Media object type.

JCHAR szUser[11] User name.

JDEDATE jdDate Date updated.

MATH_NUMERIC mnTime Time updated.

BOOL bRTFData TRUE = RTF Text FALSE = Plain
Text or others

PeopleSoft Proprietary and Confidential

171

PeopleSoft EnterpriseOne APls

172

Appendix A

Data Type Data Description Note
JCHAR szltemName[GT ITNMSIZE] Item name
JCHAR szQueueName[GT QUESIZE]
JCHAR szFileName[GT FILESIZE]
PJSTR pData Allocate memory for text and shortcut

media object type.

This table describes the MOTYPE definition:

Define Type

Note

OBJ _JDEALL

All media object types

OBJ_RTFTEXT

Text media object.

OBJ_JDEIMAGE

Image media object.

OBJ_JDEOLE

OLE media object.

OBJ_MISCIDESHORTCUT

Shortcut media object.

OBJ_MISIMAGEVENDOR

Third-party vendor.

OBJ_MISCHTML

HTML/URL/File media object.

Returns

This API can return these values:

Value
Description

JDEDB_PASSED

Indicates the API succeeded.

JDEDB_FAILED

Indicates the API failed.

Example
This is the first of two examples that demonstrate how to use this API:

JDEDB_RESULT JDBReturn = JDEDB_PASSED;
LPMODATA pMOData = NULL;
long 1TotalRec = 0;

JDBReturn = jdeGTGet AllMOTypeKeyStr (J("ABGT"), _J("1"), &pMOData, &lTotalRec);
if (JDBReturn == JDEDB_ PASSED && pMOData && lTotalRec > 0)

{

PeopleSoft Proprietary and Confidential

Appendix A

jdeGTDelete ImageKeyStr(J("ABGT")
jdeFreeMOData (pMOData, lTotalRec)

return;

This is the second example of how to use this API:
JDEDB_RESULT JDBReturn = JDEDB_PASSED;
LPMODATA pMOData = NULL;

1TotalRec = 0;

DSABGT dsABGT = {0};

long

ParseNumericString (&dsABGT.mnAddressNumber,

JDBReturn =

if

{
jdeGTDelete Image(J("ABGT")

jdeFreeMOData (pMOData, lTotalRec)

return;

PeopleSoft Proprietary and Confidential

jdeGTGet Al1MOType (J("ABGT"),
(JDBReturn == JDEDB PASSED && pMOData && lTotalRec > 0)

, &dsABGT, pMOData,

PeopleSoft EnterpriseOne APIs

, _J("1"), pMOData, lTotalRec)

_J("l"));

&dsABGT, &pMOData, &lTotalRec);

1TotalRec)

173

PeopleSoft EnterpriseOne APls Appendix A

174

See Also

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate AIIMOType/ jdeGTAddUpdate
AlIMOTypeKeyStr/ jdeGTAddUpdate AIIMOTypeWithl.ang, page 122

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate HTML/jdeGTAddUpdate HTMLKeyStr,

page 126
Appendix A, “PeopleSoft EnterpriseOne APIs,” jJdeGTAddUpdate Image/jdeGTAddUpdate ImageKeyStr,

page 129
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate OLE/jdeGTAddUpdate OLEKeyStr,

page 133

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate Shortcut/jdeGTAddUpdate
ShortcutKeyStr, page 136

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate Text/jdeGTAddUpdate TextKeyStr,

page 140
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate Vendor/jdeGTAddUpdate VendorKeyStr,

page 143
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AIHTML/jdeGTDelete AIHTMLKeyStr,

page 147
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete Alllmage/jdeGTDelete AlllmageKeyStr,

page 149
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AIMOType/jdeGTDelete AIIMOTypeStr,

page 152

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AIIOLE/jdeGTDelete AIIOLEKeyStr, page 155
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AllShortcut/jdeGTDelete AllShortcutKeyStr,
page 158

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AllText/jdeGTDelete AllTextKeyStr, page 161
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AllVendor/jdeGTDelete AllVendorKeyStr,
page 164

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTFreeMOData, page 188

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet AlIMOType/jdeGTGet AIIMOTypeKeyStr,

page 191
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet GenericText/jdeGTGet GenericTextKeyStr,

page 195
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet HTML/jdeGTGet HTMLKeyStr, page 198

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet Image/jdeGTGet ImageKeyStr, page 202
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet OLE/jdeGTGet OLEKeyStr, page 205

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet RTFText/jdeGTGet RTFTextKeyStr, page 209
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet Shortcut/jdeGTGet ShortcutKeyStr, page 212
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet Vendor/jdeGTGet VendorKeyStr, page 216
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGetCount/jdeGTGetCountKeyStr, page 220

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeValidateGTExist/jdeValidate GTExistWithKeyStr, page 223

jdeGTDelete_ OLE/jdeGTDelete OLEKeyStr
Syntax

JDERTN (JDEDB_RESULT) JDEWINAPI jdeGTDelete OLE (
PJSTR szObjectName,
LPVOID I1pMODSKey,
LPMODATA pMOData,
long l1TotalRec
)i

JDERTN (JDEDB_RESULT) JDEWINAPI jdeGTDelete OLEKeyStr (
PJSTR szObjectName,

PeopleSoft Proprietary and Confidential

Appendix A

Description

PJSTR pszMOKeyStr,
LPMODATA pMOData,
long 1TotalRec

) ;

PeopleSoft EnterpriseOne APIs

This function deletes specific OLE record types from the FO0165 table based on pMOData.

Parameters
Parameter Description
szOjectName Input, required. GT data structure name. Primary unique key.
IpMODSKey Input, required. GT data structure with valid data. The data within the GT data
structure is formatted into a string used for TXKY
pszMOKeyStr Input, required. Formatted string used for TXKY.
pMOData Input, required. Array of data structure that stores the data to be deleted.
ITotalRec Input, required. Indicates the number of array elements in pMOData.

Additional Notes

This table describes the MODATA (or *LPMODATA) data structure definition:

media object type.

Data Type Data Description Note

int nSeq Sequence number form MOSEQN.

MOTYPE nMOType Media object type.

JCHAR szUser[11] User name.

JDEDATE jdDate Date updated.

MATH_NUMERIC mnTime Time updated.

BOOL bRTFData TRUE =RTF Text FALSE = Plain
Text or others

JCHAR szltemName[GT ITNMSIZE] Item name

JCHAR szQueueName[GT QUESIZE]

JCHAR szFileName[GT FILESIZE]

PJSTR pData Allocate memory for text and shortcut

This table describes the MOTYPE definition:

PeopleSoft Proprietary and Confidential

175

PeopleSoft EnterpriseOne APls Appendix A

Define Type Note
OBJ JDEALL All media object types
OBJ_RTFTEXT Text media object.
OBJ JDEIMAGE Image media object.
OBJ_JDEOLE OLE media object.
OBJ_MISCIDESHORTCUT Shortcut media object.
OBJ_MISIMAGEVENDOR Third-party vendor.
OBJ MISCHTML HTML/URL/File media object.

Returns

This API can return these values:

Value
Description

JDEDB_PASSED

Indicates the API succeeded.

JDEDB_FAILED

Indicates the API failed.

Example
This is the first of two examples that demonstrate how to use this API:

JDEDB_RESULT JDBReturn = JDEDB PASSED;
LPMODATA pMOData = NULL;
long lTotalRec = 0;

JDBReturn = jdeGTGet AllMOTypeKeyStr (J("ABGT"), _J("1"), &pMOData, &lTotalRec);
if (JDBReturn == JDEDB PASSED && pMOData && lTotalRec > 0)
{

jdeGTDelete OLEKeyStr(J("ABGT") , _J("1"), pMOData, lTotalRec)

jdeFreeMOData (pMOData, lTotalRec)

return;

This is the second example of how to use this API:
JDEDB_RESULT JDBReturn = JDEDB PASSED;
LPMODATA pMOData = NULL;
long 1TotalRec = 0;

DSABGT dsABGT = {0};

176 PeopleSoft Proprietary and Confidential

Appendix A PeopleSoft EnterpriseOne APIs

ParseNumericString (&dsABGT.mnAddressNumber, _J("1"));

JDBReturn = jdeGTGet AllMOType(J("ABGT"), &dsABGT, &pMOData, &lTotalRec) ;
if (JDBReturn == JDEDB PASSED && pMOData && lTotalRec > 0)
{

jdeGTDelete OLE(_ J("ABGT") , &dsABGT, pMOData, lTotalRec)

jdeFreeMOData (pMOData, lTotalRec)

return;

See Also

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate AlIMOType/ jdeGTAddUpdate
AlIMOTypeKeyStr/ jdeGTAddUpdate AIIMOTypeWithLang, page 122

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate HTML/jdeGTAddUpdate HTMLKeyStr,

page 126
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate Image/jdeGTAddUpdate ImageKeyStr,

page 129
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate OLE/jdeGTAddUpdate OLEKeyStr,

page 133

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate Shortcut/jdeGTAddUpdate
ShortcutKeyStr, page 136

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate Text/jdeGTAddUpdate TextKeyStr,

page 140
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate Vendor/jdeGTAddUpdate VendorKeyStr,

page 143
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete AIHTML/jdeGTDelete AIIHTMLKeyStr,

page 147
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete Alllmage/jdeGTDelete AlllmageKeyStr,

page 149
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete AIIMOType/jdeGTDelete AIIMOTypeStr,

page 152

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete AIIOLE/jdeGTDelete AIIOLEKeyStr, page 155
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AllShortcut/jdeGTDelete AllShortcutKeyStr,
page 158

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AllText/jdeGTDelete AllTextKeyStr, page 161
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete AllVendor/jdeGTDelete AllVendorKeyStr,
page 164

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTFreeMOData, page 188

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet AIMOType/jdeGTGet AIIMOTypeKeyStr,

page 191
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet GenericText/jJdeGTGet GenericTextKeyStr,

page 195

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet HTML/jdeGTGet HTMLKeyStr, page 198
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet Image/jdeGTGet ImageKeyStr, page 202
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet OLE/jdeGTGet OLEKeyStr, page 205

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet RTFText/jdeGTGet RTFTextKeyStr, page 209
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet Shortcut/jdeGTGet ShortcutKeyStr, page 212
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet Vendor/jdeGTGet VendorKeyStr, page 216
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGetCount/jdeGTGetCountKeyStr, page 220

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeValidateGTExist/jde ValidateGTExistWithKeyStr, page 223

PeopleSoft Proprietary and Confidential 177

PeopleSoft EnterpriseOne APls Appendix A

jdeGTDelete_Shortcut/jdeGTDelete_ShortcutKeyStr
Syntax

JDERTN (JDEDB_RESULT) JDEWINAPI jdeGTDelete Shortcut (
PJSTR szObjectName,
LPVOID 1pMODSKey,
LPMODATA pMOData,
long l1TotalRec
)

JDERTN (JDEDB_RESULT) JDEWINAPI jdeGTDelete_ShortcutKeyStr(
PJSTR szObjectName,
PJSTR pszMOKeyStr,
LPMODATA pMOData,
long l1TotalRec
)

Description

This function deletes specific shortcut record types from the FO0165 table based on the pMOData parameter.

Parameters
Parameter Description
szOjectName Input, required. GT data structure name. Primary unique key.
IpMODSKey Input, required. GT data structure with valid data. The data within the GT data
structure is formatted into a string used for TXKY
pszMOKeyStr Input, required. Formatted string used for TXKY.
pMOData Input, required. Array of data structure that stores the data to be deleted.
ITotalRec Input, required. Indicates the number of array elements in pMOData.

Additional Notes
This table describes the MODATA (or *)LPMODATA) data structure definition:

Data Type Data Description Note

int nSeq Sequence number form MOSEQN.

MOTYPE nMOType Media object type.

JCHAR szUser[11] User name.

JDEDATE jdDate Date updated.

MATH NUMERIC mnTime Time updated.

BOOL bRTFData TRUE = RTF Text FALSE = Plain
Text or others

178 PeopleSoft Proprietary and Confidential

Appendix A PeopleSoft EnterpriseOne APIs

Data Type Data Description Note
JCHAR szItemName[GT ITNMSIZE] Item name
JCHAR szQueueName[GT QUESIZE]
JCHAR szFileName[GT_ FILESIZE]
PJSTR pData Allocate memory for text and shortcut
media object type.

This table describes the MOTYPE definition:

Define Type Note
OBJ_JDEALL All media object types
OBJ_RTFTEXT Text media object.
OBJ_JDEIMAGE Image media object.
OBJ_JDEOLE OLE media object.
OBJ_MISCJDESHORTCUT Shortcut media object.
OBJ MISIMAGEVENDOR Third-party vendor.
OBJ MISCHTML HTML/URL/File media object.

Returns

This API can return these values:

Value
Description

JDEDB_PASSED

Indicates the API succeeded.

JDEDB_FAILED

Indicates the API failed.

Example
This is the first of two examples that demonstrate how to use this API:

JDEDB_RESULT JDBReturn = JDEDB_PASSED;
LPMODATA pMOData = NULL;
long 1TotalRec = O0;

JDBReturn = jdeGTGet AllMOTypeKeyStr (J("ABGT"), _J("1"), &pMOData, &lTotalRec) ;
if (JDBReturn == JDEDB PASSED && pMOData && lTotalRec > 0)

{

PeopleSoft Proprietary and Confidential 179

PeopleSoft EnterpriseOne APls

180

jdeGTDelete ShortcutKeyStr(J("ABGT") , _J("1"), pMOData, lTotalRec)
jdeFreeMOData (pMOData, lTotalRec)

return;

This is the second example of how to use this API:

JDEDB_RESULT JDBReturn = JDEDB_PASSED;
LPMODATA pMOData = NULL;

long 1TotalRec = 0;

DSABGT dsABGT = {0};

ParseNumericString (&dsABGT.mnAddressNumber, J("1"));

JDBReturn = jdeGTGet AllMOType(J("ABGT"), &dsABGT, &pMOData, &lTotalRec) ;
if (JDBReturn == JDEDB PASSED && pMOData && lTotalRec > 0)
{

jdeGTDelete Shortcut (_J("ABGT") , &dsABGT, pMOData, lTotalRec)

jdeFreeMOData (pMOData, lTotalRec)

return;

Appendix A

PeopleSoft Proprietary and Confidential

Appendix A PeopleSoft EnterpriseOne APIs

See Also

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate AIIMOType/ jdeGTAddUpdate
AlIMOTypeKeyStr/ jdeGTAddUpdate AIIMOTypeWithl.ang, page 122

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate HTML/jdeGTAddUpdate HTMLKeyStr,

page 126
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate Image/jdeGTAddUpdate ImageKeyStr,

page 129
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate OLE/jdeGTAddUpdate OLEKeyStr,

page 133

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate Shortcut/jdeGTAddUpdate
ShortcutKeyStr, page 136

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate Text/jdeGTAddUpdate TextKeyStr,

page 140
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate Vendor/jJdeGTAddUpdate VendorKeyStr,

page 143
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AIHTML/jdeGTDelete AIIHTMLKeyStr,

page 147
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete Alllmage/jdeGTDelete AlllmageKeyStr,

page 149
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete AIIMOType/jdeGTDelete AIIMOTypeStr,

page 152

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete AIIOLE/jdeGTDelete AIIOLEKeyStr, page 155
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete AllShortcut/jdeGTDelete AllShortcutKeyStr,
page 158

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AllText/jdeGTDelete AllTextKeyStr, page 161
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AllVendor/jdeGTDelete AllVendorKeyStr,
page 164

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTFreeMOData, page 188

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet ALIMOType/jdeGTGet AIIMOTypeKeyStr,

page 191
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet GenericText/jdeGTGet GenericTextKeyStr,

page 195
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet HTML/jdeGTGet HTMLKeyStr, page 198

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet Image/jdeGTGet ImageKeyStr, page 202
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet OLE/jdeGTGet OLEKeyStr, page 205

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet RTFText/jdeGTGet RTFTextKeyStr, page 209
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet Shortcut/jdeGTGet ShortcutKeyStr, page 212
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet Vendor/jdeGTGet VendorKeyStr, page 216
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGetCount/jdeGTGetCountKeyStr, page 220

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeValidate GTExist/jde Validate GTExistWithKeyStr, page 223

jdeGTDelete_Text/jdeGTDelete TextKeyStr
Syntax

JDERTN (JDEDB_RESULT) JDEWINAPI jdeGTDelete Text (
PJSTR szObjectName,
LPVOID 1pMODSKey,
LPMODATA pMOData,
long l1TotalRec
)

JDERTN (JDEDB_RESULT) JDEWINAPI jdeGTDelete TextKeyStr(
PJSTR szObjectName,

PeopleSoft Proprietary and Confidential 181

PeopleSoft EnterpriseOne APls

Description

Appendix A

PJSTR pszMOKeyStr,
LPMODATA pMOData,
long 1TotalRec

) ;

This function deletes a specific record type from the FO0165 table based on pMOData.

Parameters
Parameter Description
szOjectName Input, required. GT data structure name. Primary unique key.
IpMODSKey Input, required. GT data structure with valid data. The data within the GT data
structure is formatted into a string used for TXKY
pszMOKeyStr Input, required. Formatted string used for TXKY.
pMOData Input, required. Array of data structure that stores the data to be deleted.
ITotalRec Input, required. Indicates the number of array elements in pMOData.

Additional Notes

This table describes the MODATA (or *LPMODATA) data structure definition:

Data Type Data Description Note

int nSeq Sequence number form MOSEQN.

MOTYPE nMOType Media object type.

JCHAR szUser[11] User name.

JDEDATE jdDate Date updated.

MATH NUMERIC mnTime Time updated.

BOOL bRTFData TRUE =RTF Text FALSE = Plain
Text or others

JCHAR szltemName[GT ITNMSIZE] Item name

JCHAR szQueueName[GT QUESIZE]

JCHAR szFileName[GT FILESIZE]

PJSTR pData Allocate memory for text and shortcut

media object type.

This table describes the MOTYPE definition:

182

PeopleSoft Proprietary and Confidential

Appendix A PeopleSoft EnterpriseOne APIs

Define Type Note
OBJ JDEALL All media object types
OBJ_RTFTEXT Text media object.
OBJ_JDEIMAGE Image media object.
OBJ_JDEOLE OLE media object.
OBJ_MISCJDESHORTCUT Shortcut media object.
OBJ_MISIMAGEVENDOR Third-party vendor.
OBJ MISCHTML HTML/URL/File media object.

Returns

This API can return these values:

Value
Description

JDEDB_PASSED

Indicates the API succeeded.

JDEDB FAILED

Indicates the API failed.

Example
This is the first of two examples that demonstrate how to use this API:

JDEDB_RESULT JDBReturn = JDEDB PASSED;
LPMODATA pMOData = NULL;
long lTotalRec = 0;

JDBReturn = jdeGTGet AllMOTypeKeyStr (J("ABGT"), _J("1"), &pMOData, &lTotalRec) ;
if (JDBReturn == JDEDB PASSED && pMOData && lTotalRec > 0)
{

jdeGTDelete TextKeyStr(J("ABGT") , _J("1"), pMOData, lTotalRec)

jdeFreeMOData (pMOData, lTotalRec)

return;

This is the second example of how to use this API:
JDEDB_RESULT JDBReturn = JDEDB PASSED;
LPMODATA pMOData = NULL;
long 1TotalRec = 0;

DSABGT dsABGT = {0};

PeopleSoft Proprietary and Confidential 183

PeopleSoft EnterpriseOne APls Appendix A

184

ParseNumericString (&dsABGT.mnAddressNumber, J("1"));

JDBReturn = jdeGTGet Al1lMOType(J("ABGT"), &dsABGT, &pMOData, &lTotalRec) ;
if (JDBReturn == JDEDB PASSED && pMOData && lTotalRec > 0)
{

jdeGTDelete Text (_J("ABGT") , &dsABGT, pMOData, lTotalRec)

jdeFreeMOData (pMOData, lTotalRec)

return;

See Also

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate AIIMOType/ jdeGTAddUpdate
AlIMOTypeKeyStr/ jdeGTAddUpdate AlIMOTypeWithLang, page 122

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate HTML/jdeGTAddUpdate HTMLKeyStr,

page 126
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate Image/jdeGTAddUpdate ImageKeyStr,

page 129
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate OLE/jdeGTAddUpdate OLEKeyStr,

page 133

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate Shortcut/jdeGTAddUpdate
ShortcutKeyStr, page 136

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate Text/jdeGTAddUpdate TextKeyStr,

page 140
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate Vendor/jdeGTAddUpdate VendorKeyStr,

page 143
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete AIHTML/jdeGTDelete AIIHTMLKeyStr,

page 147
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete Alllmage/jdeGTDelete AlllmageKeyStr,

page 149
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete AlIMOType/jdeGTDelete AIIMOTypeStr,

page 152

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AIIOLE/jdeGTDelete AIIOLEKeyStr, page 155
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AllShortcut/jdeGTDelete AllShortcutKeyStr,
page 158

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete AllText/jJdeGTDelete AllTextKeyStr, page 161
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AllVendor/jdeGTDelete AllVendorKeyStr,
page 164

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTFreeMOData, page 188

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet AlIMOType/jdeGTGet AIIMOTypeKeyStr,

page 191
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet GenericText/jdeGTGet GenericTextKeyStr,

page 195

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet HTML/jdeGTGet HTMLKeyStr, page 198
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet Image/jdeGTGet ImageKeyStr, page 202
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet OLE/jdeGTGet OLEKeyStr, page 205

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet RTFText/jdeGTGet RTFTextKeyStr, page 209
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet Shortcut/jdeGTGet ShortcutKeyStr, page 212
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet Vendor/jdeGTGet VendorKeyStr, page 216
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGetCount/jdeGTGetCountKeyStr, page 220

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeValidateGTExist/jdeValidateGTExistWithKeyStr, page 223

PeopleSoft Proprietary and Confidential

Appendix A

PeopleSoft EnterpriseOne APIs

jdeGTDelete_Vendor/jdeGTDelete_VendorKeyStr

Syntax

JDERTN (JDEDB_RESULT) JDEWINAPI jdeGTDelete Vendor (

PJSTR szObjectName,
LPVOID 1pMODSKey,
LPMODATA pMOData,
long l1TotalRec

)

JDERTN (JDEDB_RESULT) JDEWINAPI jdeGTDelete VendorKeyStr (

Description

PJSTR szObjectName,
PJSTR pszMOKeyStr,
LPMODATA pMOData,
long l1TotalRec

)

This function deletes specific vendors or third-party software record types from the FO0165 table based

on the pMOData parameter.

Parameters
Parameter Description
szOjectName Input, required. GT data structure name. Primary unique key.
IpMODSKey Input, required. GT data structure with valid data. The data within the GT data
structure is formatted into a string used for TXKY
pszMOKeyStr Input, required. Formatted string used for TXKY.
pMOData Input, required. Array of data structure that stores the data to be deleted.
ITotalRec Input, required. Indicates the number of array elements in pMOData.

Additional Notes

This table describes the MODATA (or *LPMODATA) data structure definition:

Data Type Data Description Note

int nSeq Sequence number form MOSEQN.

MOTYPE nMOType Media object type.

JCHAR szUser[11] User name.

JDEDATE jdDate Date updated.

MATH_NUMERIC mnTime Time updated.

BOOL bRTFData TRUE = RTF Text FALSE = Plain
Text or others

PeopleSoft Proprietary and Confidential

185

PeopleSoft EnterpriseOne APls

186

Appendix A

Data Type Data Description Note
JCHAR szltemName[GT ITNMSIZE] Item name
JCHAR szQueueName[GT QUESIZE]
JCHAR szFileName[GT FILESIZE]
PJSTR pData Allocate memory for text and shortcut

media object type.

This table describes the MOTYPE definition:

Define Type

Note

OBJ _JDEALL

All media object types

OBJ_RTFTEXT

Text media object.

OBJ_JDEIMAGE

Image media object.

OBJ_JDEOLE

OLE media object.

OBJ_MISCIDESHORTCUT

Shortcut media object.

OBJ_MISIMAGEVENDOR

Third-party vendor.

OBJ_MISCHTML

HTML/URL/File media object.

Returns

This API can return these values:

Value
Description

JDEDB_PASSED

Indicates the API succeeded.

JDEDB_FAILED

Indicates the API failed.

Example
This is the first of two examples that demonstrate how to use this API:

JDEDB_RESULT JDBReturn = JDEDB_PASSED;
LPMODATA pMOData = NULL;
long 1TotalRec = 0;

JDBReturn = jdeGTGet AllMOTypeKeyStr (J("ABGT"), _J("1"), &pMOData, &lTotalRec);
if (JDBReturn == JDEDB_ PASSED && pMOData && lTotalRec > 0)

{

PeopleSoft Proprietary and Confidential

Appendix A

PeopleSoft EnterpriseOne APIs

jdeGTDelete VendorKeyStr(J("ABGT") , J("1"), pMOData, lTotalRec)

jdeFreeMOData (pMOData, lTotalRec)

return;

This is the second example of how to use this API:
JDEDB_RESULT JDBReturn = JDEDB_PASSED;
LPMODATA pMOData = NULL;
long 1TotalRec = 0;

DSABGT dsABGT = {0};

ParseNumericString (&dsABGT.mnAddressNumber, _J("1"));

JDBReturn = jdeGTGet AllMOType(J("ABGT"), &dsABGT, &pMOData, &lTotalRec) ;
if (JDBReturn == JDEDB PASSED && pMOData && lTotalRec > 0)
{

jdeGTDelete Vendor (J("ABGT") , &dsABGT, pMOData, lTotalRec)

jdeFreeMOData (pMOData, lTotalRec)

return;

PeopleSoft Proprietary and Confidential

187

PeopleSoft EnterpriseOne APls Appendix A

188

See Also

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate AIIMOType/ jdeGTAddUpdate
AlIMOTypeKeyStr/ jdeGTAddUpdate AIIMOTypeWithl.ang, page 122

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate HTML/jdeGTAddUpdate HTMLKeyStr,

page 126
Appendix A, “PeopleSoft EnterpriseOne APIs,” jJdeGTAddUpdate Image/jdeGTAddUpdate ImageKeyStr,

page 129
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate OLE/jdeGTAddUpdate OLEKeyStr,

page 133

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate Shortcut/jdeGTAddUpdate
ShortcutKeyStr, page 136

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate Text/jdeGTAddUpdate TextKeyStr,

page 140
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate Vendor/jdeGTAddUpdate VendorKeyStr,

page 143
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AIHTML/jdeGTDelete AIHTMLKeyStr,

page 147
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete Alllmage/jdeGTDelete AlllmageKeyStr,

page 149
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AIMOType/jdeGTDelete AIIMOTypeStr,

page 152

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AIIOLE/jdeGTDelete AIIOLEKeyStr, page 155
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AllShortcut/jdeGTDelete AllShortcutKeyStr,
page 158

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AllText/jdeGTDelete AllTextKeyStr, page 161
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AllVendor/jdeGTDelete AllVendorKeyStr,
page 164

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTFreeMOData, page 188

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet AlIMOType/jdeGTGet AIIMOTypeKeyStr,

page 191
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet GenericText/jdeGTGet GenericTextKeyStr,

page 195

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet HTML/jdeGTGet HTMLKeyStr, page 198
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet Image/jdeGTGet ImageKeyStr, page 202
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet OLE/jdeGTGet OLEKeyStr, page 205

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet RTFText/jdeGTGet RTFTextKeyStr, page 209
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet Shortcut/jdeGTGet ShortcutKeyStr, page 212
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet Vendor/jdeGTGet VendorKeyStr, page 216
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGetCount/jdeGTGetCountKeyStr, page 220

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeValidateGTExist/jdeValidate GTExistWithKeyStr, page 223

jdeGTFreeMOData
Syntax

JDERTN (void) JDEWINAPI jdeGTFreeMOData (
LPMODATA 1pMOData,
long 1NumOfRec
)i

Description

This function frees the memory pointer of the allocated array of the MODATA structure. It also frees any
memory pointer of the pData member in MODATA.

PeopleSoft Proprietary and Confidential

Appendix A PeopleSoft EnterpriseOne APIs
Parameters
Parameter Description
IpMOData Input, required. Allocate memory of the array of pointer to MODATA structure. The
memory is freed along with any pData pointer.
INumOfRec Input, required. The number of elements in the array pointer.

Additional Notes

This table describes the MODATA (or *LPMODATA) data structure definition:

Data Type Data Description Note

int nSeq Sequence number form MOSEQN.

MOTYPE nMOType Media object type.

JCHAR szUser[11] User name.

JDEDATE jdDate Date updated.

MATH_NUMERIC mnTime Time updated.

BOOL bRTFData TRUE =RTF Text FALSE = Plain
Text or others

JCHAR szItemName[GT ITNMSIZE] Item name

JCHAR szQueueName[GT QUESIZE]

JCHAR szFileName[GT FILESIZE]

PJSTR pData Allocate memory for text and shortcut

media object type.

This table describes the MOTYPE definition:

Define Type Note
OBJ JDEALL All media object types
OBJ RTFTEXT Text media object.
OBJ_JDEIMAGE Image media object.
OBJ JDEOLE OLE media object.
OBJ_ MISCIDESHORTCUT Shortcut media object.

OBJ_MISIMAGEVENDOR

Third-party vendor.

OBJ_MISCHTML

HTML/URL/File media object.

PeopleSoft Proprietary and Confidential

189

PeopleSoft EnterpriseOne APls

190

Example
This is the first of two examples that demonstrate how to use this API:
JDEDB_RESULT JDBReturn = JDEDB PASSED;
LPMODATA pMOData = NULL;
long lTotalRec = 0;
JDBReturn = jdeGTGet AllMOTypeKeyStr (J("ABGT"), J("1"), &pMOData, &lTotalRec);
if (JDBReturn == JDEDB PASSED && pMOData && lTotalRec > 0)
{
jdeGTDelete TextKeyStr(J("ABGT") , J("1"), pMOData, lTotalRec)

jdeFreeMOData (pMOData, lTotalRec)

return;

This is the second example of how to use this API:
JDEDB_RESULT JDBReturn = JDEDB_PASSED;
LPMODATA pMOData = NULL;
long 1TotalRec = 0;

DSABGT dsABGT = {0};

ParseNumericString (&dsABGT.mnAddressNumber, J("1"));

JDBReturn = jdeGTGet AllMOType(J("ABGT"), &dsABGT, &pMOData, &lTotalRec) ;
if (JDBReturn == JDEDB PASSED && pMOData && lTotalRec > 0)
{

jdeGTDelete Text (J("ABGT") , &dsABGT, pMOData, lTotalRec)

jdeFreeMOData (pMOData, lTotalRec)

return;

PeopleSoft Proprietary and Confidential

Appendix A

Appendix A PeopleSoft EnterpriseOne APIs

See Also

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate AIIMOType/ jdeGTAddUpdate
AlIMOTypeKeyStr/ jdeGTAddUpdate AIIMOTypeWithl.ang, page 122

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate HTML/jdeGTAddUpdate HTMLKeyStr,

page 126
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate Image/jdeGTAddUpdate ImageKeyStr,

page 129
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate OLE/jdeGTAddUpdate OLEKeyStr,

page 133

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate Shortcut/jdeGTAddUpdate
ShortcutKeyStr, page 136

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate Text/jdeGTAddUpdate TextKeyStr,

page 140
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate Vendor/jJdeGTAddUpdate VendorKeyStr,

page 143
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AIHTML/jdeGTDelete AIIHTMLKeyStr,

page 147
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete Alllmage/jdeGTDelete AlllmageKeyStr,

page 149
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete AIIMOType/jdeGTDelete AIIMOTypeStr,

page 152

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete AIIOLE/jdeGTDelete AIIOLEKeyStr, page 155
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete AllShortcut/jdeGTDelete AllShortcutKeyStr,
page 158

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AllText/jdeGTDelete AllTextKeyStr, page 161
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AllVendor/jdeGTDelete AllVendorKeyStr,
page 164

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet AIIMOType/jdeGTGet AIIMOTypeKeyStr,

page 191

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet GenericText/jdeGTGet GenericTextKeyStr,

page 195

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet HTML/jdeGTGet HTMLKeyStr, page 198
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet Image/jdeGTGet ImageKeyStr, page 202
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet OLE/jdeGTGet OLEKeyStr, page 205

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet RTFText/jdeGTGet RTFTextKeyStr, page 209
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet Shortcut/jdeGTGet ShortcutKeyStr, page 212
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet Vendor/jdeGTGet VendorKeyStr, page 216
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGetCount/jdeGTGetCountKeyStr, page 220

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeValidate GTExist/jdeValidate GTExistWithKeyStr, page 223

jdeGTGet_AlIMOType/jdeGTGet_AlIMOTypeKeyStr
Syntax

JDERTN (JDEDB_RESULT) JDEWINAPI jdeGTGet Al1MOType (
PJSTR szObjectName,
LPVOID 1pMODSKey,
LPMODATA pMOData,
long l1TotalRec
)

JDERTN (JDEDB_RESULT) JDEWINAPI jdeGTGet AllMOTypeKeyStr (
PJSTR szObjectName,
PJSTR pszMOKeyStr,

PeopleSoft Proprietary and Confidential 191

PeopleSoft EnterpriseOne APls

Description

LPMODATA pMOData,
long l1TotalRec
) ;

This function retrieves all record types from the FO0165 table.

Appendix A

Parameters
Parameter Description
szOjectName Input, required. GT data structure name. Primary unique key.
IpMODSKey Input, required. GT data structure with valid data. The data within the GT data
structure is formatted into a string used for TXKY
pszMOKeyStr Input, required. Formatted string used for TXKY.
pMOData Input, required. Array of data structure that stores the data to be deleted.
ITotalRec Input, required. Indicates the number of array elements in pMOData.

Additional Notes

This table describes the MODATA (or *LPMODATA) data structure definition:

Data Type Data Description Note

int nSeq Sequence number form MOSEQN.

MOTYPE nMOType Media object type.

JCHAR szUser[11] User name.

JDEDATE jdDate Date updated.

MATH_ NUMERIC mnTime Time updated.

BOOL bRTFData TRUE = RTF Text FALSE = Plain
Text or others

JCHAR szltemName[GT ITNMSIZE] Item name

JCHAR szQueueName[GT QUESIZE]

JCHAR szFileName[GT FILESIZE]

PJSTR pData Allocate memory for text and shortcut

media object type.

This table describes the MOTYPE definition:

192

PeopleSoft Proprietary and Confidential

Appendix A PeopleSoft EnterpriseOne APIs

Define Type Note
OBJ JDEALL All media object types
OBJ_RTFTEXT Text media object.
OBJ_JDEIMAGE Image media object.
OBJ_JDEOLE OLE media object.
OBJ_MISCJDESHORTCUT Shortcut media object.
OBJ_MISIMAGEVENDOR Third-party vendor.
OBJ MISCHTML HTML/URL/File media object.

Returns

This API can return these values:

Value
Description

JDEDB_PASSED

Indicates the API succeeded.

JDEDB FAILED

Indicates the API failed.

Example
This is the first of two examples that demonstrate how to use this API:

JDEDB_RESULT JDBReturn = JDEDB PASSED;
LPMODATA pMOData = NULL;
long lTotalRec = 0;

JDBReturn = jdeGTGet AllMOTypeKeyStr (J("ABGT"), _J("1"), &pMOData, &lTotalRec) ;
if (JDBReturn == JDEDB PASSED && pMOData && lTotalRec > 0)

{

jdeFreeMOData (pMOData, lTotalRec) ;

return;

This is the second example of how to use this API:
JDEDB_RESULT JDBReturn = JDEDB_PASSED;
LPMODATA pMOData = NULL;
long 1TotalRec = 0;

DSABGT dsABGT = {0};

PeopleSoft Proprietary and Confidential 193

PeopleSoft EnterpriseOne APls Appendix A

194

ParseNumericString (&dsABGT.mnAddressNumber, J("1"));

JDBReturn = jdeGTGet AllMOType(J("ABGT"), &dsABGT, &pMOData, &lTotalRec);
if (JDBReturn == JDEDB PASSED && pMOData && lTotalRec > 0)

{

jdeFreeMOData (pMOData, lTotalRec) ;

}

return;

See Also

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate AlIMOType/ jdeGTAddUpdate
AlIMOTypeKeyStr/ jdeGTAddUpdate AlIMOTypeWithl.ang, page 122

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate HTML/jdeGTAddUpdate HTMLKeyStr,

page 126
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate Image/jdeGTAddUpdate ImageKeyStr,

page 129
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate OLE/jdeGTAddUpdate OLEKeyStr,

page 133

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate Shortcut/jdeGTAddUpdate
ShortcutKeyStr, page 136

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate Text/jdeGTAddUpdate TextKeyStr,

page 140
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate Vendor/jdeGTAddUpdate VendorKeyStr,

page 143
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AIIHTML/jdeGTDelete AIIHTMLKeyStr,

page 147
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete Alllmage/jdeGTDelete AlllmageKeyStr,

page 149
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AIIMOType/jdeGTDelete AIIMOTypeStr,

page 152

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete AIIOLE/jdeGTDelete AIOLEKeyStr, page 155
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete AllShortcut/jdeGTDelete AllShortcutKeyStr,
page 158

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AllText/jdeGTDelete AllTextKeyStr, page 161
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AllVendor/jdeGTDelete AllVendorKeyStr,
page 164

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTFreeMOData, page 188

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet GenericText/jdeGTGet GenericTextKeyStr,

page 195

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet HTML/jdeGTGet HTMLKeyStr, page 198
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet Image/jdeGTGet ImageKeyStr, page 202
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet OLE/jdeGTGet OLEKeyStr, page 205

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet RTFText/jdeGTGet RTFTextKeyStr, page 209
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet Shortcut/jdeGTGet ShortcutKeyStr, page 212
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet Vendor/jdeGTGet VendorKeyStr, page 216
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGetCount/jdeGTGetCountKeyStr, page 220

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeValidateGTExist/jdeValidateGTExistWithKeyStr, page 223

PeopleSoft Proprietary and Confidential

Appendix A

PeopleSoft EnterpriseOne APIs

jdeGTGet_GenericText/jdeGTGet_GenericTextKeyStr

Syntax

JDERTN (JDEDB_RESULT) JDEWINAPI jdeGTGet GenericText (

PJSTR szObjectName,
LPVOID 1pMODSKey,
int nSeq,

LPMODATA pMOData,
long l1TotalRec

)

JDERTN (JDEDB_RESULT) JDEWINAPI jdeGTGet_ GenericTextKeyStr (

PJSTR szObjectName,
PJSTR pszMOKeyStr,
int nSeq,

LPMODATA pMOData,
long l1TotalRec

)

Description
This function retrieves the text record type from the FO0165 table and converts the retrieved RTF text to
plain text.
Parameters
Parameter Description
szOjectName Input, required. GT data structure name. Primary unique key.
IpMODSKey Input, required. GT data structure with valid data. The data within the GT data
structure is formatted into a string used for TXKY
pszMOKeyStr Input, required. Formatted string used for TXKY.
pMOData Input, required. Array of data structure that stores the data to be deleted.
ITotalRec Input, required. Indicates the number of array elements in pMOData.

Additional Notes

This table describes the MODATA (or *LPMODATA) data structure definition:

Data Type Data Description Note
int nSeq Sequence number form MOSEQN.
MOTYPE nMOType Media object type.
JCHAR szUser[11] User name.
JDEDATE jdDate Date updated.
MATH_NUMERIC mnTime Time updated.

PeopleSoft Proprietary and Confidential

195

PeopleSoft EnterpriseOne APls Appendix A

Data Type Data Description Note

BOOL bRTFData TRUE =RTF Text FALSE = Plain
Text or others

JCHAR szItemName[GT_ITNMSIZE)] Item name

JCHAR szQueueName[GT QUESIZE]

JCHAR szFileName[GT_FILESIZE]

PJSTR pData Allocate memory for text and shortcut
media object type.

This table describes the MOTYPE definition:

Define Type Note
OBJ JDEALL All media object types
OBJ RTFTEXT Text media object.
OBJ _JDEIMAGE Image media object.
OBJ JDEOLE OLE media object.
OBJ MISCIDESHORTCUT Shortcut media object.
OBJ _MISIMAGEVENDOR Third-party vendor.
OBJ MISCHTML HTML/URL/File media object.

Returns

This API can return these values:

Value
Description

JDEDB PASSED

Indicates the API succeeded.

JDEDB_FAILED

Indicates the API failed.

Example
This is the first of two examples that demonstrate how to use this API:

JDEDB_RESULT JDBReturn = JDEDB_ PASSED;
LPMODATA pMOData = NULL;
long 1TotalRec = 0;

196 PeopleSoft Proprietary and Confidential

Appendix A PeopleSoft EnterpriseOne APIs

JDBReturn = jdeGTGet GenericTextKeyStr (J("ABGT"), _J("1"), 0, &pMOData, &lTotal=
Rec) ;
if (JDBReturn == JDEDB PASSED && pMOData && lTotalRec > 0)

jdeGTDelete TextKeyStr(J("ABGT") , _J("1"), pMOData, lTotalRec);

jdeFreeMOData (pMOData, lTotalRec) ;

return;

This is the second example of how to use this API:
JDEDB_RESULT JDBReturn = JDEDB PASSED;
LPMODATA pMOData = NULL;
long 1TotalRec = O;

DSABGT dsABGT = {0};

ParseNumericString (&dsABGT.mnAddressNumber, J("1"));

JDBReturn = jdeGTGet GenericText (_J("ABGT"), &dsABGT, 0, &pMOData, &lTotalRec);
if (JDBReturn == JDEDB PASSED && pMOData && lTotalRec > 0)
{

jdeGTDelete Text (J("ABGT") , &dsABGT, pMOData, lTotalRec);

jdeFreeMOData (pMOData, lTotalRec) ;

return;

PeopleSoft Proprietary and Confidential 197

PeopleSoft EnterpriseOne APls Appendix A

198

See Also

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate AIIMOType/ jdeGTAddUpdate
AlIMOTypeKeyStr/ jdeGTAddUpdate AIIMOTypeWithl.ang, page 122

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate HTML/jdeGTAddUpdate HTMLKeyStr,

page 126
Appendix A, “PeopleSoft EnterpriseOne APIs,” jJdeGTAddUpdate Image/jdeGTAddUpdate ImageKeyStr,

page 129
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate OLE/jdeGTAddUpdate OLEKeyStr,

page 133

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate Shortcut/jdeGTAddUpdate
ShortcutKeyStr, page 136

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate Text/jdeGTAddUpdate TextKeyStr,

page 140
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate Vendor/jdeGTAddUpdate VendorKeyStr,

page 143
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AIHTML/jdeGTDelete AIHTMLKeyStr,

page 147
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete Alllmage/jdeGTDelete AlllmageKeyStr,

page 149
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AIMOType/jdeGTDelete AIIMOTypeStr,

page 152

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AIIOLE/jdeGTDelete AIIOLEKeyStr, page 155
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AllShortcut/jdeGTDelete AllShortcutKeyStr,
page 158

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AllText/jdeGTDelete AllTextKeyStr, page 161
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AllVendor/jdeGTDelete AllVendorKeyStr,
page 164

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTFreeMOData, page 188

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet AlIMOType/jdeGTGet AIIMOTypeKeyStr,

page 191

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet HTML/jdeGTGet HTMLKeyStr, page 198
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet Image/jdeGTGet ImageKeyStr, page 202
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet OLE/jdeGTGet OLEKeyStr, page 205

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet RTFText/jdeGTGet RTFTextKeyStr, page 209
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet Shortcut/jdeGTGet ShortcutKeyStr, page 212
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet Vendor/jdeGTGet VendorKeyStr, page 216
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGetCount/jdeGTGetCountKeyStr, page 220

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeValidateGTExist/jdeValidate GTExistWithKeyStr, page 223

jdeGTGet_HTML/jdeGTGet_ HTMLKeyStr
Syntax

JDERTN(JDEDB_RESULT) JDEWINAPI jdeGTGet_HTML(
PJSTR szObjectName,
LPVOID I1pMODSKey,
int nSeq,
LPMODATA pMOData,

long lTotalRec
) ;

JDERTN (JDEDB_RESULT) JDEWINAPI jdeGTGet HTMLKeyStr (
PJSTR szObjectName,
PJSTR pszMOKeyStr,

PeopleSoft Proprietary and Confidential

Appendix A

Description

int nSeq,
LPMODATA pMOData,
long 1TotalRec

) ;

PeopleSoft EnterpriseOne APIs

This function retrieves the HTML, URL, and file record type from the FOO165 table.

Parameters
Parameter Description
szOjectName Input, required. GT data structure name. Primary unique key.
IpMODSKey Input, required. GT data structure with valid data. The data within the GT data
structure is formatted into a string used for TXKY
pszMOKeyStr Input, required. Formatted string used for TXKY.
pMOData Input, required. Array of data structure that stores the data to be deleted.
ITotalRec Input, required. Indicates the number of array elements in pMOData.

Additional Notes

This table describes the MODATA (or *LPMODATA) data structure definition:

media object type.

Data Type Data Description Note

int nSeq Sequence number form MOSEQN.

MOTYPE nMOType Media object type.

JCHAR szUser[11] User name.

JDEDATE jdDate Date updated.

MATH_NUMERIC mnTime Time updated.

BOOL bRTFData TRUE =RTF Text FALSE = Plain
Text or others

JCHAR szltemName[GT ITNMSIZE] Item name

JCHAR szQueueName[GT QUESIZE]

JCHAR szFileName[GT FILESIZE]

PJSTR pData Allocate memory for text and shortcut

This table describes the MOTYPE definition:

PeopleSoft Proprietary and Confidential

199

PeopleSoft EnterpriseOne APls

200

Appendix A

Define Type

Note

OBJ _JDEALL

All media object types

OBJ_RTFTEXT

Text media object.

OBJ_JDEIMAGE

Image media object.

OBJ_JDEOLE

OLE media object.

OBJ_MISCIDESHORTCUT

Shortcut media object.

OBJ_MISIMAGEVENDOR

Third-party vendor.

OBJ MISCHTML

HTML/URL/File media object.

Returns

This API can return these values:

Value

Description

JDEDB_PASSED

Indicates the API succeeded.

JDEDB_FAILED

Indicates the API failed.

Example

This is the first of two examples that demonstrate how to use this API:

JDEDB_RESULT JDBReturn = JDEDB PASSED;
LPMODATA pMOData = NULL;
long lTotalRec = 0;

JDBReturn = jdeGTGet HTMLKeyStr (J("ABGT"), _J("1"), 0, &pMOData, &lTotalRec);

if (JDBReturn == JDEDB PASSED && pMOData && lTotalRec > 0)

{

jdeGTDelete_HTMLKeyStr(_J("ABGT")
jdeFreeMOData (pMOData, lTotalRec)

return;

JDEDB_RESULT JDBReturn = JDEDB PASSED;
LPMODATA pMOData = NULL;

long 1TotalRec = 0;

DSABGT dsABGT = {0};

, _J("1"), pMOData, lTotalRec)

ParseNumericString (&dsABGT.mnAddressNumber, J("1"));

PeopleSoft Proprietary and Confidential

Appendix A PeopleSoft EnterpriseOne APIs

JDBReturn = jdeGTGet HTML(_J("ABGT"), &dsABGT, 0, &pMOData, &lTotalRec) ;
if (JDBReturn == JDEDB PASSED && pMOData && lTotalRec > 0)

{

jdeGTDelete HTML(J("ABGT") , &dsABGT, pMOData, lTotalRec)
jdeFreeMOData (pMOData, lTotalRec)

}

return;

See Also

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate AIIMOType/ jdeGTAddUpdate
AlIMOTypeKeyStr/ jdeGTAddUpdate AlIMOTypeWithl.ang, page 122

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate HTML/jdeGTAddUpdate HTMLKeyStr,

page 126
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate Image/jdeGTAddUpdate ImageKeyStr,

page 129
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate OLE/jdeGTAddUpdate OLEKeyStr,

page 133

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate Shortcut/jdeGTAddUpdate
ShortcutKeyStr, page 136

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate Text/jdeGTAddUpdate TextKeyStr,

page 140
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate Vendor/jdeGTAddUpdate VendorKeyStr,

page 143
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AIIHTML/jdeGTDelete AIIHTMLKeyStr,

page 147
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete Alllmage/jdeGTDelete AlllmageKeyStr,

page 149
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AIIMOType/jdeGTDelete AIIMOTypeStr,

page 152

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete AIIOLE/jdeGTDelete AIIOLEKeyStr, page 155
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete AllShortcut/jdeGTDelete AllShortcutKeyStr,
page 158

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AllText/jdeGTDelete AllTextKeyStr, page 161
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AllVendor/jdeGTDelete AllVendorKeyStr,
page 164

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTFreeMOData, page 188

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet AIIMOType/jdeGTGet AIIMOTypeKeyStr,

page 191
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet GenericText/jdeGTGet GenericTextKeyStr,

page 195

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet Image/jdeGTGet ImageKeyStr, page 202
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet OLE/jdeGTGet OLEKeyStr, page 205

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet RTFText/jdeGTGet RTFTextKeyStr, page 209
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet Shortcut/jdeGTGet ShortcutKeyStr, page 212
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet Vendor/jdeGTGet VendorKeyStr, page 216
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGetCount/jdeGTGetCountKeyStr, page 220

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeValidateGTExist/jde ValidateGTExistWithKeyStr, page 223

PeopleSoft Proprietary and Confidential 201

PeopleSoft EnterpriseOne APls Appendix A

jdeGTGet_Image/jdeGTGet_ImageKeyStr
Syntax

JDERTN (JDEDB_RESULT) JDEWINAPI jdeGTGe t_Image (
PJSTR szObjectName,
LPVOID 1pMODSKey,
int nSeq,
LPMODATA pMOData,
long lTotalRec
)

JDERTN (JDEDB_RESULT) JDEWINAPI jdeGTGet ImageKeyStr (
PJSTR szObjectName,
PJSTR pszMOKeyStr,
int nSeq,
LPMODATA pMOData,
long l1TotalRec
) ;

Description

This function retrieves the image record type from the FO0165 table.

Parameters
Parameter Description
szOjectName Input, required. GT data structure name. Primary unique key.
IpMODSKey Input, required. GT data structure with valid data. The data within the GT data
structure is formatted into a string used for TXKY
pszMOKeyStr Input, required. Formatted string used for TXKY.
pMOData Input, required. Array of data structure that stores the data to be deleted.
ITotalRec Input, required. Indicates the number of array elements in pMOData.

Additional Notes
This table describes the MODATA (or *LPMODATA) data structure definition:

Data Type Data Description Note
int nSeq Sequence number form MOSEQN.
MOTYPE nMOType Media object type.
JCHAR szUser[11] User name.
JDEDATE jdDate Date updated.
MATH NUMERIC mnTime Time updated.

202 PeopleSoft Proprietary and Confidential

Appendix A

PeopleSoft EnterpriseOne APIs
Data Type Data Description Note
BOOL bRTFData TRUE = RTF Text FALSE = Plain
Text or others
JCHAR szItemName[GT _ITNMSIZE] Item name
JCHAR szQueueName[GT QUESIZE]
JCHAR szFileName[GT FILESIZE]
PJSTR pData Allocate memory for text and shortcut
media object type.

This table describes the MOTYPE definition:

Define Type Note
OBJ JDEALL All media object types
OBJ RTFTEXT Text media object.
OBJ_JDEIMAGE Image media object.
OBJ JDEOLE OLE media object.

OBJ_MISCJDESHORTCUT

Shortcut media object.

OBJ_MISIMAGEVENDOR

Third-party vendor.

OBJ_MISCHTML

HTML/URL/File media object.

Returns

This API can return these values:

Value

Description

JDEDB PASSED

Indicates the API succeeded.

JDEDB_FAILED

Indicates the API failed.

Example

This is the first of two examples that demonstrate how to use this API:

JDEDB_RESULT JDBReturn

= JDEDB_PASSED;

LPMODATA pMOData = NULL;

long 1TotalRec = 0;

PeopleSoft Proprietary and Confidential

203

PeopleSoft EnterpriseOne APls Appendix A

JDBReturn = jdeGTGet ImageKeyStr (J("ABGT"), _J("1"), 0, &pMOData, &lTotalRec) ;
if (JDBReturn == JDEDB_PASSED && pMOData && lTotalRec > 0)
{

jdeGTDelete ImageKeyStr(J("ABGT") , J("1"), pMOData, lTotalRec);

jdeFreeMOData (pMOData, 1lTotalRec) ;

return;

This is the second example of how to use this API:
JDEDB_RESULT JDBReturn = JDEDB_PASSED;
LPMODATA pMOData = NULL;
long lTotalRec = 0;

DSABGT dsABGT = {0};

ParseNumericString (&dsABGT.mnAddressNumber, _J("1"));

JDBReturn = jdeGTGet Image(J("ABGT"), &dsABGT, 0, &pMOData, &lTotalRec) ;
if (JDBReturn == JDEDB_PASSED && pMOData && lTotalRec > 0)
{

jdeGTDelete Image(J("ABGT") , &dsABGT, pMOData, lTotalRec);

jdeFreeMOData (pMOData, 1lTotalRec) ;

return;

204 PeopleSoft Proprietary and Confidential

Appendix A PeopleSoft EnterpriseOne APIs

See Also

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate AIIMOType/ jdeGTAddUpdate
AlIMOTypeKeyStr/ jdeGTAddUpdate AIIMOTypeWithl.ang, page 122

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate HTML/jdeGTAddUpdate HTMLKeyStr,

page 126
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate Image/jdeGTAddUpdate ImageKeyStr,

page 129
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate OLE/jdeGTAddUpdate OLEKeyStr,

page 133

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate Shortcut/jdeGTAddUpdate
ShortcutKeyStr, page 136

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate Text/jdeGTAddUpdate TextKeyStr,

page 140
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate Vendor/jJdeGTAddUpdate VendorKeyStr,

page 143
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AIHTML/jdeGTDelete AIIHTMLKeyStr,

page 147
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete Alllmage/jdeGTDelete AlllmageKeyStr,

page 149
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete AIIMOType/jdeGTDelete AIIMOTypeStr,

page 152

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete AIIOLE/jdeGTDelete AIIOLEKeyStr, page 155
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete AllShortcut/jdeGTDelete AllShortcutKeyStr,
page 158

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AllText/jdeGTDelete AllTextKeyStr, page 161
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AllVendor/jdeGTDelete AllVendorKeyStr,
page 164

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTFreeMOData, page 188

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet ALIMOType/jdeGTGet AIIMOTypeKeyStr,

page 191
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet GenericText/jdeGTGet GenericTextKeyStr,

page 195

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet HTML/jdeGTGet HTMLKeyStr, page 198
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet OLE/jdeGTGet OLEKeyStr, page 205

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet RTFText/jdeGTGet RTFTextKeyStr, page 209
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet Shortcut/jdeGTGet ShortcutKeyStr, page 212
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet Vendor/jdeGTGet VendorKeyStr, page 216
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGetCount/jdeGTGetCountKeyStr, page 220

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeValidate GTExist/jdeValidate GTExistWithKeyStr, page 223

jdeGTGet_OLE/jdeGTGet_OLEKeyStr
Syntax

JDERTN (JDEDB_RESULT) JDEWINAPI jdeGTGet OLE (
PJSTR szObjectName,
LPVOID 1pMODSKey,
int nSeq,
LPMODATA pMOData,

long l1TotalRec
) ;

JDERTN (JDEDB_RESULT) JDEWINAPI jdeGTGet OLEKeyStr (
PJSTR szObjectName,

PeopleSoft Proprietary and Confidential 205

PeopleSoft EnterpriseOne APls

206

Description

This function retrieves the OLE record type from the FO0165 table.

PJSTR pszMOKeyStr,
int nSeq,
LPMODATA pMOData,
long 1TotalRec

) ;

Appendix A

Parameters
Parameter Description
szOjectName Input, required. GT data structure name. Primary unique key.
IpMODSKey Input, required. GT data structure with valid data. The data within the GT data
structure is formatted into a string used for TXKY
pszMOKeyStr Input, required. Formatted string used for TXKY.
pMOData Input, required. Array of data structure that stores the data to be deleted.
ITotalRec Input, required. Indicates the number of array elements in pMOData.

Additional Notes

This table describes the MODATA (or *LPMODATA) data structure definition:

Data Type Data Description Note

int nSeq Sequence number form MOSEQN.

MOTYPE nMOType Media object type.

JCHAR szUser[11] User name.

JDEDATE jdDate Date updated.

MATH_NUMERIC mnTime Time updated.

BOOL bRTFData TRUE =RTF Text FALSE = Plain
Text or others

JCHAR szItemName[GT ITNMSIZE] Item name

JCHAR szQueueName[GT QUESIZE]

JCHAR szFileName[GT FILESIZE]

PJSTR pData Allocate memory for text and shortcut

media object type.

This table describes the MOTYPE definition:

PeopleSoft Proprietary and Confidential

Appendix A PeopleSoft EnterpriseOne APIs

Define Type Note
OBJ JDEALL All media object types
OBJ_RTFTEXT Text media object.
OBJ_JDEIMAGE Image media object.
OBJ_JDEOLE OLE media object.
OBJ_MISCJDESHORTCUT Shortcut media object.
OBJ_MISIMAGEVENDOR Third-party vendor.
OBJ MISCHTML HTML/URL/File media object.

Returns

This API can return these values:

Value
Description

JDEDB_PASSED

Indicates the API succeeded.

JDEDB FAILED

Indicates the API failed.

Example
This is the first of two examples that demonstrate how to use this API:

JDEDB_RESULT JDBReturn = JDEDB PASSED;
LPMODATA pMOData = NULL;
long lTotalRec = 0;

JDBReturn = jdeGTGet OLEKeyStr (J("ABGT"), _J("1"), 0, &pMOData, &lTotalRec);
if (JDBReturn == JDEDB PASSED && pMOData && lTotalRec > 0)
{

jdeGTDelete OLEKeyStr(J("ABGT") , _J("1"), pMOData, lTotalRec) ;

jdeFreeMOData (pMOData, lTotalRec) ;

return;

This is the second example of how to use this API:
JDEDB_RESULT JDBReturn = JDEDB PASSED;
LPMODATA pMOData = NULL;
long 1TotalRec = 0;

DSABGT dsABGT = {0};

PeopleSoft Proprietary and Confidential 207

PeopleSoft EnterpriseOne APls Appendix A

208

ParseNumericString (&dsABGT.mnAddressNumber, J("1"));

JDBReturn = jdeGTGet OLE(J("ABGT"), &dsABGT, 0, &pMOData, &lTotalRec) ;
if (JDBReturn == JDEDB PASSED && pMOData && lTotalRec > 0)
{

jdeGTDelete OLE(_ J("ABGT") , &dsABGT, pMOData, lTotalRec);

jdeFreeMOData (pMOData, lTotalRec) ;

return;

See Also

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate AIIMOType/ jdeGTAddUpdate
AlIMOTypeKeyStr/ jdeGTAddUpdate AlIMOTypeWithLang, page 122

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate HTML/jdeGTAddUpdate HTMLKeyStr,

page 126
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate Image/jdeGTAddUpdate ImageKeyStr,

page 129
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate OLE/jdeGTAddUpdate OLEKeyStr,

page 133

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate Shortcut/jdeGTAddUpdate
ShortcutKeyStr, page 136

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate Text/jdeGTAddUpdate TextKeyStr,

page 140
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate Vendor/jdeGTAddUpdate VendorKeyStr,

page 143
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete AIHTML/jdeGTDelete AIIHTMLKeyStr,

page 147
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete Alllmage/jdeGTDelete AlllmageKeyStr,

page 149
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete AlIMOType/jdeGTDelete AIIMOTypeStr,

page 152

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AIIOLE/jdeGTDelete AIIOLEKeyStr, page 155
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AllShortcut/jdeGTDelete AllShortcutKeyStr,
page 158

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete AllText/jJdeGTDelete AllTextKeyStr, page 161
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AllVendor/jdeGTDelete AllVendorKeyStr,
page 164

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTFreeMOData, page 188

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet AlIMOType/jdeGTGet AIIMOTypeKeyStr,

page 191
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet GenericText/jdeGTGet GenericTextKeyStr,

page 195

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet HTML/jdeGTGet HTMLKeyStr, page 198
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet Image/jdeGTGet ImageKeyStr, page 202
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet RTFText/jdeGTGet RTFTextKeyStr, page 209
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet Shortcut/jdeGTGet ShortcutKeyStr, page 212
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet Vendor/jdeGTGet VendorKeyStr, page 216
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGetCount/jdeGTGetCountKeyStr, page 220

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeValidateGTExist/jdeValidateGTExistWithKeyStr, page 223

PeopleSoft Proprietary and Confidential

Appendix A

PeopleSoft EnterpriseOne APIs

jdeGTGet_RTFText/jdeGTGet_RTFTextKeyStr

Syntax

JDERTN (JDEDB_RESULT) JDEWINAPI jdeGTGet RTFText (

PJSTR szObjectName,
LPVOID 1pMODSKey,
int nSeq,

LPMODATA pMOData,
long l1TotalRec

)

JDERTN (JDEDB_RESULT) JDEWINAPI jdeGTGet RTFTextKeyStr (

Description

PJSTR szObjectName,
PJSTR pszMOKeyStr,
int nSeq,

LPMODATA pMOData,
long l1TotalRec

)

This function retrieves the text record type from the FO0165 table and does not affect the RTF text.

Parameters
Parameter Description
szOjectName Input, required. GT data structure name. Primary unique key.
Parameter Description
IpMODSKey Input, required. GT data structure with valid data. The data within the GT data
structure is formatted into a string used for TXKY
pszMOKeyStr Input, required. Formatted string used for TXKY.
pMOData Input, required. Array of data structure that stores the data to be deleted.
ITotalRec Input, required. Indicates the number of array elements in pMOData.

Additional Notes

This table describes the MODATA (or *LPMODATA) data structure definition:

Data Type Data Description Note
int nSeq Sequence number form MOSEQN.
MOTYPE nMOType Media object type.
JCHAR szUser[11] User name.
JDEDATE jdDate Date updated.

PeopleSoft Proprietary and Confidential

209

PeopleSoft EnterpriseOne APls

210

Appendix A

Data Type Data Description Note

MATH NUMERIC mnTime Time updated.

BOOL bRTFData TRUE = RTF Text FALSE = Plain
Text or others

JCHAR szltemName[GT ITNMSIZE] Item name

JCHAR szQueueName[GT QUESIZE]

JCHAR szFileName[GT FILESIZE]

PJSTR pData Allocate memory for text and shortcut

media object type.

This table describes the MOTYPE definition:

Define Type

Note

OBJ _JDEALL

All media object types

OBJ_RTFTEXT

Text media object.

OBJ_JDEIMAGE

Image media object.

OBJ_JDEOLE

OLE media object.

OBJ_MISCIDESHORTCUT

Shortcut media object.

OBJ_MISIMAGEVENDOR

Third-party vendor.

OBJ_MISCHTML

HTML/URL/File media object.

Returns

This API can return these values:

Value

Description

JDEDB_PASSED

Indicates the API succeeded.

JDEDB_FAILED

Indicates the API failed.

Example

This is the first of two examples that demonstrate how to use this API:

JDEDB_RESULT JDBReturn =
LPMODATA pMOData = NULL;

JDEDB_PASSED;

PeopleSoft Proprietary and Confidential

Appendix A PeopleSoft EnterpriseOne APIs

long 1TotalRec = 0;

JDBReturn = jdeGTGet RTFTextKeyStr (_J("ABGT"), _J("1"), 0, &pMOData, &lTotalRec);
if (JDBReturn == JDEDB PASSED && pMOData && lTotalRec > 0)
{

jdeGTDelete TextKeyStr(J("ABGT") , J("1"), pMOData, lTotalRec);

jdeFreeMOData (pMOData, lTotalRec) ;

return;

This is the second example of how to use this API:
JDEDB_RESULT JDBReturn = JDEDB PASSED;
LPMODATA pMOData = NULL;
long 1TotalRec = 0;

DSABGT dsABGT = {0};

ParseNumericString (&dsABGT.mnAddressNumber, J("1"));

JDBReturn = jdeGTGet RTFText (J("ABGT"), &dsABGT, 0, &pMOData, &lTotalRec);
if (JDBReturn == JDEDB PASSED && pMOData && lTotalRec > 0)
{

jdeGTDelete Text (J("ABGT") , &dsABGT, pMOData, lTotalRec);

jdeFreeMOData (pMOData, lTotalRec) ;

return;

PeopleSoft Proprietary and Confidential 211

PeopleSoft EnterpriseOne APls Appendix A

212

See Also

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate AIIMOType/ jdeGTAddUpdate
AlIMOTypeKeyStr/ jdeGTAddUpdate AIIMOTypeWithl.ang, page 122

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate HTML/jdeGTAddUpdate HTMLKeyStr,

page 126
Appendix A, “PeopleSoft EnterpriseOne APIs,” jJdeGTAddUpdate Image/jdeGTAddUpdate ImageKeyStr,

page 129

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate OLE/jdeGTAddUpdate OLEKeyStr,
page 133

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate Shortcut/jdeGTAddUpdate
ShortcutKeyStr, page 136

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate Text/jdeGTAddUpdate TextKeyStr,
page 140

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate Vendor/jdeGTAddUpdate VendorKeyStr,

page 143
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AIHTML/jdeGTDelete AIHTMLKeyStr,

page 147
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete Alllmage/jdeGTDelete AlllmageKeyStr,

page 149
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AIMOType/jdeGTDelete AIIMOTypeStr,

page 152

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AIIOLE/jdeGTDelete AIIOLEKeyStr, page 155
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AllShortcut/jdeGTDelete AllShortcutKeyStr,
page 158

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AllText/jdeGTDelete AllTextKeyStr, page 161
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AllVendor/jdeGTDelete AllVendorKeyStr,
page 164

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTFreeMOData, page 188

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet AlIMOType/jdeGTGet AIIMOTypeKeyStr,

page 191

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet GenericText/jdeGTGet GenericTextKeyStr,

page 195

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet HTML/jdeGTGet HTMLKeyStr, page 198
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet Image/jdeGTGet ImageKeyStr, page 202
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet OLE/jdeGTGet OLEKeyStr, page 205

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet Shortcut/jdeGTGet ShortcutKeyStr, page 212
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet Vendor/jdeGTGet VendorKeyStr, page 216
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGetCount/jdeGTGetCountKeyStr, page 220

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeValidateGTExist/jdeValidate GTExistWithKeyStr, page 223

jdeGTGet_Shortcut/jdeGTGet_ShortcutKeyStr
Syntax

JDERTN (JDEDB_RESULT) JDEWINAPI jdeGTGet Shortcut (
PJSTR szObjectName,
LPVOID I1pMODSKey,
int nSeq,
LPMODATA pMOData,

long lTotalRec
) ;

JDERTN (JDEDB_RESULT) JDEWINAPI jdeGTGet ShortcutKeyStr (
PJSTR szObjectName,

PeopleSoft Proprietary and Confidential

Appendix A

Description

This function retrieves the shortcut record type from the FO0165 table.

PJSTR pszMOKeyStr,
int nSegq,
LPMODATA pMOData,
long 1TotalRec

)

PeopleSoft EnterpriseOne APIs

Parameters
Parameter Description
szOjectName Input, required. GT data structure name. Primary unique key.
Parameter Description
IpMODSKey Input, required. GT data structure with valid data. The data within the GT data
structure is formatted into a string used for TXKY
pszMOKeyStr Input, required. Formatted string used for TXKY.
pMOData Input, required. Array of data structure that stores the data to be deleted.
ITotalRec Input, required. Indicates the number of array elements in pMOData.

Additional Notes

This table describes the MODATA (or *LPMODATA) data structure definition:

Data Type Data Description Note

int nSeq Sequence number form MOSEQN.

MOTYPE nMOType Media object type.

JCHAR szUser[11] User name.

JDEDATE jdDate Date updated.

MATH_NUMERIC mnTime Time updated.

BOOL bRTFData TRUE = RTF Text FALSE = Plain
Text or others

JCHAR szItemName[GT ITNMSIZE] Item name

JCHAR szQueueName[GT QUESIZE]

JCHAR szFileName[GT FILESIZE]

PJSTR pData Allocate memory for text and shortcut

media object type.

PeopleSoft Proprietary and Confidential

213

PeopleSoft EnterpriseOne APls Appendix A

214

This table describes the MOTYPE definition:

Define Type Note
OBJ JDEALL All media object types
OBJ RTFTEXT Text media object.
OBJ JDEIMAGE Image media object.
OBJ JDEOLE OLE media object.
OBJ MISCJDESHORTCUT Shortcut media object.
OBJ MISIMAGEVENDOR Third-party vendor.
OBJ_MISCHTML HTML/URL/File media object.

Returns

This API can return these values:

Value
Description

JDEDB PASSED

Indicates the API succeeded.

JDEDB_FAILED

Indicates the API failed.

Example
This is the first of two examples that demonstrate how to use this API:

JDEDB_RESULT JDBReturn = JDEDB PASSED;
LPMODATA pMOData = NULL;
long lTotalRec = 0;

JDBReturn = jdeGTGet ShortcutKeyStr (J("ABGT"), _J("1"), 0, &pMOData, &lTotalRec);
if (JDBReturn == JDEDB PASSED && pMOData && lTotalRec > 0)
{

jdeGTDelete ShortcutKeyStr(J("ABGT") , J("1"), pMOData, lTotalRec) ;

jdeFreeMOData (pMOData, lTotalRec) ;

return;

This is the second example of how to use this API:
JDEDB_RESULT JDBReturn = JDEDB_PASSED;
LPMODATA pMOData = NULL;

PeopleSoft Proprietary and Confidential

Appendix A PeopleSoft EnterpriseOne APIs

long 1TotalRec =

7

0
DSABGT dsABGT = {0};

ParseNumericString (&dsABGT.mnAddressNumber, J("1"));

JDBReturn = jdeGTGet Shortcut(J("ABGT"), &dsABGT, 0, &pMOData, &lTotalRec) ;
if (JDBReturn == JDEDB PASSED && pMOData && lTotalRec > 0)
jdeGTDelete Shortcut(_J("ABGT") , &dsABGT, pMOData, lTotalRec) ;

jdeFreeMOData (pMOData, lTotalRec) ;

return;

PeopleSoft Proprietary and Confidential 215

PeopleSoft EnterpriseOne APls Appendix A

216

See Also

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate AIIMOType/ jdeGTAddUpdate
AlIMOTypeKeyStr/ jdeGTAddUpdate AIIMOTypeWithl.ang, page 122

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate HTML/jdeGTAddUpdate HTMLKeyStr,

page 126
Appendix A, “PeopleSoft EnterpriseOne APIs,” jJdeGTAddUpdate Image/jdeGTAddUpdate ImageKeyStr,

page 129
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate OLE/jdeGTAddUpdate OLEKeyStr,

page 133

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate Shortcut/jdeGTAddUpdate
ShortcutKeyStr, page 136

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate Text/jdeGTAddUpdate TextKeyStr,

page 140
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate Vendor/jdeGTAddUpdate VendorKeyStr,

page 143
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AIHTML/jdeGTDelete AIHTMLKeyStr,

page 147
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete Alllmage/jdeGTDelete AlllmageKeyStr,

page 149
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AIMOType/jdeGTDelete AIIMOTypeStr,

page 152

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AIIOLE/jdeGTDelete AIIOLEKeyStr, page 155
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AllShortcut/jdeGTDelete AllShortcutKeyStr,
page 158

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AllText/jdeGTDelete AllTextKeyStr, page 161
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AllVendor/jdeGTDelete AllVendorKeyStr,
page 164

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTFreeMOData, page 188

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet AlIMOType/jdeGTGet AIIMOTypeKeyStr,

page 191
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet GenericText/jdeGTGet GenericTextKeyStr,

page 195

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet HTML/jdeGTGet HTMLKeyStr, page 198
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet Image/jdeGTGet ImageKeyStr, page 202
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet OLE/jdeGTGet OLEKeyStr, page 205

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet RTFText/jdeGTGet RTFTextKeyStr, page 209
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet Vendor/jdeGTGet VendorKeyStr, page 216
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGetCount/jdeGTGetCountKeyStr, page 220

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeValidateGTExist/jdeValidate GTExistWithKeyStr, page 223

jdeGTGet_Vendor/jdeGTGet_VendorKeyStr
Syntax

JDERTN (JDEDB_RESULT) JDEWINAPI jdeGTGet Vendor (
PJSTR szObjectName,
LPVOID I1pMODSKey,
int nSeq,
LPMODATA pMOData,

long lTotalRec
) ;

JDERTN (JDEDB_RESULT) JDEWINAPI jdeGTGet VendorKeyStr (
PJSTR szObjectName,

PeopleSoft Proprietary and Confidential

Appendix A PeopleSoft EnterpriseOne APIs

PJSTR pszMOKeyStr,
int nSegq,
LPMODATA pMOData,
long 1TotalRec

)

Description

This function retrieves the vendor record type from the FO0165 table.

Parameters
Parameter Description
szOjectName Input, required. GT data structure name. Primary unique key.
IpMODSKey Input, required. GT data structure with valid data. The data within the GT data
structure is formatted into a string used for TXKY
pszMOKeyStr Input, required. Formatted string used for TXKY.
pMOData Input, required. Array of data structure that stores the data to be deleted.
ITotalRec Input, required. Indicates the number of array elements in pMOData.

Additional Notes
This table describes the MODATA (or *LPMODATA) data structure definition:

Data Type Data Description Note

int nSeq Sequence number form MOSEQN.

MOTYPE nMOType Media object type.

JCHAR szUser[11] User name.

JDEDATE jdDate Date updated.

MATH_NUMERIC mnTime Time updated.

BOOL bRTFData TRUE =RTF Text FALSE = Plain
Text or others

JCHAR szItemName[GT ITNMSIZE] Item name

JCHAR szQueueName[GT QUESIZE]

JCHAR szFileName[GT FILESIZE]

PJSTR pData Allocate memory for text and shortcut
media object type.

This table describes the MOTYPE definition:

PeopleSoft Proprietary and Confidential 217

PeopleSoft EnterpriseOne APls Appendix A
Define Type Note
OBJ JDEALL All media object types
OBJ_RTFTEXT Text media object.
OBJ JDEIMAGE Image media object.
OBJ_JDEOLE OLE media object.
OBJ_MISCIDESHORTCUT Shortcut media object.
OBJ_MISIMAGEVENDOR Third-party vendor.
OBJ MISCHTML HTML/URL/File media object.
Returns
This API can return these values:
Value
Description
JDEDB_PASSED
Indicates the API succeeded.
JDEDB_FAILED
Indicates the API failed.
Example
This is the first of two examples that demonstrate how to use this API:
JDEDB_RESULT JDBReturn = JDEDB PASSED;
LPMODATA pMOData = NULL;
long 1TotalRec = O0;
JDBReturn = jdeGTGet VendorKeyStr (J("ABGT"), _J("1"), 0, &pMOData, &lTotalRec);

if (JDBReturn == JDEDB PASSED && pMOData && lTotalRec > 0)

{

jdeGTDelete_VendorKeyStr (_J ("ABGT")
jdeFreeMOData (pMOData, lTotalRec) ;

return;

This is the second example of how to use this API:
JDEDB_RESULT JDBReturn = JDEDB_PASSED;

LPMODATA pMOData = NULL;
long 1TotalRec = 0;
DSABGT dsABGT = {0};

218

, _J("1"), pMOData, lTotalRec);

PeopleSoft Proprietary and Confidential

Appendix A PeopleSoft EnterpriseOne APIs

ParseNumericString (&dsABGT.mnAddressNumber, _J("1"));

JDBReturn = jdeGTGet Vendor (J("ABGT"), &dsABGT, 0, &pMOData, &lTotalRec) ;
if (JDBReturn == JDEDB PASSED && pMOData && lTotalRec > 0)

{

jdeGTDelete Vendor (J("ABGT") , &dsABGT, pMOData, lTotalRec);
jdeFreeMOData (pMOData, lTotalRec) ;

return;

See Also

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate AlIMOType/ jdeGTAddUpdate
AlIMOTypeKeyStr/ jdeGTAddUpdate AIIMOTypeWithLang, page 122

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate HTML/jdeGTAddUpdate HTMLKeyStr,

page 126
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate Image/jdeGTAddUpdate ImageKeyStr,

page 129
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate OLE/jdeGTAddUpdate OLEKeyStr,

page 133

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate Shortcut/jdeGTAddUpdate
ShortcutKeyStr, page 136

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate Text/jdeGTAddUpdate TextKeyStr,

page 140
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate Vendor/jdeGTAddUpdate VendorKeyStr,

page 143
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete AIHTML/jdeGTDelete AIIHTMLKeyStr,

page 147
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete Alllmage/jdeGTDelete AlllmageKeyStr,

page 149
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete AIIMOType/jdeGTDelete AIIMOTypeStr,

page 152

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete AIIOLE/jdeGTDelete AIIOLEKeyStr, page 155
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AllShortcut/jdeGTDelete AllShortcutKeyStr,
page 158

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AllText/jdeGTDelete AllTextKeyStr, page 161
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete AllVendor/jdeGTDelete AllVendorKeyStr,
page 164

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTFreeMOData, page 188

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet AIMOType/jdeGTGet AIIMOTypeKeyStr,

page 191
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet GenericText/jJdeGTGet GenericTextKeyStr,

page 195

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet HTML/jdeGTGet HTMLKeyStr, page 198
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet Image/jdeGTGet ImageKeyStr, page 202
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet OLE/jdeGTGet OLEKeyStr, page 205

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet RTFText/jdeGTGet RTFTextKeyStr, page 209
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet Shortcut/jdeGTGet ShortcutKeyStr, page 212
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGetCount/jdeGTGetCountKeyStr, page 220

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeValidateGTExist/jde ValidateGTExistWithKeyStr, page 223

PeopleSoft Proprietary and Confidential 219

PeopleSoft EnterpriseOne APls Appendix A

jdeGTGetCount/jdeGTGetCountKeyStr
Syntax

JDERTN (long) JDEWINAPI jdeGTGetCount (
PJSTR szObjectName,
LPVOID 1pMODSKey,
MOTYPE nMOType
)

JDERTN (long) JDEWINAPI jdeGTGetCountKeyStr (
PJSTR szObjectName,
PJSTR pszMOKeyStr,
MOTYPE nMOType
) ;

Description

This function retrieves the number of media object records the FO0165 table.

Parameters
Parameter Description
szOjectName Input, required. GT data structure name. Primary unique key.
IpMODSKey Input, required. GT data structure with valid data. The data within the GT data
structure is formatted into a string used for TXKY
pszMOKeyStr Input, required. Formatted string used for TXKY.
pMOType Input, required. Media object type.

Additional Notes
This table describes the MODATA (or *LPMODATA) data structure definition:

Data Type Data Description Note

int nSeq Sequence number form MOSEQN.

MOTYPE nMOType Media object type.

JCHAR szUser[11] User name.

JDEDATE jdDate Date updated.

MATH NUMERIC mnTime Time updated.

BOOL bRTFData TRUE =RTF Text FALSE = Plain
Text or others

JCHAR szltemName[GT ITNMSIZE] Item name

JCHAR szQueueName[GT QUESIZE]

220 PeopleSoft Proprietary and Confidential

Appendix A PeopleSoft EnterpriseOne APIs

Data Type Data Description Note
JCHAR szFileName[GT_FILESIZE]
PJSTR pData Allocate memory for text and shortcut
media object type.

This table describes the MOTYPE definition:

Define Type Note
OBJ JDEALL All media object types
OBJ RTFTEXT Text media object.
OBJ JDEIMAGE Image media object.
OBJ JDEOLE OLE media object.
OBJ MISCJDESHORTCUT Shortcut media object.
OBJ _MISIMAGEVENDOR Third-party vendor.
OBJ_MISCHTML HTML/URL/File media object.

Returns

This API can return these values:

Value
Description
>0
Number of records found.
<
Either no records exist or the API failed.
Example

This is the first of two examples that demonstrate how to use this API:

long l1lTotalRecFound = 0;
BOOL bSuccess = TRUE;

1TotalRecFound = jdevalidateGTExist (_J("ABGT") , &dsABGT, OBJ RTFTEXT) ;
if (lTotalRecFound > 0)

{

bSuccess = TRUE;

}

else

{

PeopleSoft Proprietary and Confidential 221

PeopleSoft EnterpriseOne APls Appendix A

bSuccess = FALSE;

return;

This is the second example of how to use this API:
long 1lTotalRecFound = 0;
DSABGT dsABGT = {0};
BOOL bSuccess = TRUE;

ParseNumericString (&dsABGT.mnAddressNumber, J("1"));

lTotalRecFound = jdevalidateGTExist (_J ("ABGT")
if (lTotalRecFound > 0)

{

, &dsABGT, OBJ_ RTFTEXT) ;

bSuccess = TRUE;

}

else

{

bSuccess = FALSE;

return;

222 PeopleSoft Proprietary and Confidential

Appendix A PeopleSoft EnterpriseOne APIs

See Also

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate AIIMOType/ jdeGTAddUpdate
AlIMOTypeKeyStr/ jdeGTAddUpdate AIIMOTypeWithl.ang, page 122

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate HTML/jdeGTAddUpdate HTMLKeyStr,

page 126
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate Image/jdeGTAddUpdate ImageKeyStr,

page 129
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate OLE/jdeGTAddUpdate OLEKeyStr,

page 133

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate Shortcut/jdeGTAddUpdate
ShortcutKeyStr, page 136

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate Text/jdeGTAddUpdate TextKeyStr,

page 140
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate Vendor/jJdeGTAddUpdate VendorKeyStr,

page 143
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AIHTML/jdeGTDelete AIIHTMLKeyStr,

page 147
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete Alllmage/jdeGTDelete AlllmageKeyStr,

page 149
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete AIIMOType/jdeGTDelete AIIMOTypeStr,

page 152

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete AIIOLE/jdeGTDelete AIIOLEKeyStr, page 155
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete AllShortcut/jdeGTDelete AllShortcutKeyStr,
page 158

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AllText/jdeGTDelete AllTextKeyStr, page 161
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AllVendor/jdeGTDelete AllVendorKeyStr,
page 164

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTFreeMOData, page 188

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet ALIMOType/jdeGTGet AIIMOTypeKeyStr,

page 191

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet GenericText/jdeGTGet GenericTextKeyStr,

page 195

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet HTML/jdeGTGet HTMLKeyStr, page 198
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet Image/jdeGTGet ImageKeyStr, page 202
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet OLE/jdeGTGet OLEKeyStr, page 205

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet RTFText/jdeGTGet RTFTextKeyStr, page 209
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet Shortcut/jdeGTGet ShortcutKeyStr, page 212
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet Vendor/jdeGTGet VendorKeyStr, page 216
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeValidate GTExist/jdeValidate GTExistWithKeyStr, page 223

jdeValidateGTEXxist/jdeValidateGTExistWithKeyStr
Syntax

JDERTN (long) JDEWINAPI jdeValidateGTExist (
PJSTR szObjectName,
LPVOID 1pMODSKey,
MOTYPE nMOType
)
JDERTN (long) JDEWINAPI jdeValidateGTExistWithKeyStr (
PJSTR szObjectName,
PJSTR pszMOKeyStr,
MOTYPE nMOType

PeopleSoft Proprietary and Confidential 223

PeopleSoft EnterpriseOne APls

Description

Appendix A

This function checks whether any media object records exist in FO0165 table.

Parameters
Parameter Description
szOjectName Input, required. GT data structure name. Primary unique key.
IpMODSKey Input, required. GT data structure with valid data. The data within the GT data
structure is formatted into a string used for TXKY
pszMOKeyStr Input, required. Formatted string used for TXKY.
pMOType Input, required. Media object type.

Additional Notes

This table describes the MODATA (or *LPMODATA) data structure definition:

Data Type Data Description Note

int nSeq Sequence number form MOSEQN.

MOTYPE nMOType Media object type.

JCHAR szUser[11] User name.

JDEDATE jdDate Date updated.

MATH_NUMERIC mnTime Time updated.

BOOL bRTFData TRUE =RTF Text FALSE = Plain
Text or others

JCHAR szItemName[GT _ITNMSIZE] Item name

JCHAR szQueueName[GT QUESIZE]

JCHAR szFileName[GT FILESIZE]

PJSTR pData Allocate memory for text and shortcut

media object type.

This table describes the MOTYPE definition:

Define Type

Note

OBJ JDEALL

All media object types

OBJ RTFTEXT

Text media object.

224

PeopleSoft Proprietary and Confidential

Appendix A PeopleSoft EnterpriseOne APIs

Define Type Note
OBJ_JDEIMAGE Image media object.
OBJ_JDEOLE OLE media object.
OBJ_MISCJDESHORTCUT Shortcut media object.
OBJ_MISIMAGEVENDOR Third-party vendor.
OBJ MISCHTML HTML/URL/File media object.

Returns

This API can return these values:

Value
Description

JDEDB_PASSED

Indicates the API succeeded.

JDEDB_FAILED
Indicates the API failed.

Example
This is the first of two examples that demonstrate how to use this API:

JDEDB_RESULT JDBReturn = JDEDB PASSED;
BOOL bSuccess = TRUE;

JDBReturn = jdeValidateGTExistWithKeyStr (J("ABGT") , J("1"), OBJ JDEALL) ;
if (JDBReturn == JDEDB_PASSED)

{

bSuccess = TRUE;

}

else

{

bSuccess = FALSE;

return;

This is the second example of how to use this API:
JDEDB_RESULT JDBReturn = JDEDB_PASSED;
DSABGT dsABGT = {0};

BOOL bSuccess = TRUE;

ParseNumericString (&dsABGT.mnAddressNumber, J("1")) ;

PeopleSoft Proprietary and Confidential 225

PeopleSoft EnterpriseOne APls Appendix A

226

JDBReturn = jdevalidateGTExist (_J ("ABGT") , &dsABGT, OBJ JDEALL) ;
if (JDBReturn == JDEDB_PASSED)

{

bSuccess = TRUE;

}

else

{

bSuccess = FALSE;

}

return;

See Also

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate AIIMOType/ jdeGTAddUpdate
AlIMOTypeKeyStr/ jdeGTAddUpdate AlIMOTypeWithLang, page 122

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate HTML/jdeGTAddUpdate HTMLKeyStr,

page 126
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate Image/jdeGTAddUpdate ImageKeyStr,

page 129
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate OLE/jdeGTAddUpdate OLEKeyStr,

page 133

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTAddUpdate Shortcut/jdeGTAddUpdate
ShortcutKeyStr, page 136

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate Text/jdeGTAddUpdate TextKeyStr,

page 140
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTAddUpdate Vendor/jdeGTAddUpdate VendorKeyStr,

page 143
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete AIHTML/jdeGTDelete AIIHTMLKeyStr,

page 147
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete Alllmage/jdeGTDelete AlllmageKeyStr,

page 149
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete AlIMOType/jdeGTDelete AIIMOTypeStr,

page 152

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AIIOLE/jdeGTDelete AIIOLEKeyStr, page 155
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AllShortcut/jdeGTDelete AllShortcutKeyStr,
page 158

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTDelete AllText/jJdeGTDelete AllTextKeyStr, page 161
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTDelete AllVendor/jdeGTDelete AllVendorKeyStr,
page 164

Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTFreeMOData, page 188

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet AlIMOType/jdeGTGet AIIMOTypeKeyStr,

page 191
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet GenericText/jdeGTGet GenericTextKeyStr,

page 195

Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet HTML/jdeGTGet HTMLKeyStr, page 198
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet Image/jdeGTGet ImageKeyStr, page 202
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet OLE/jdeGTGet OLEKeyStr, page 205
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet RTFText/jdeGTGet RTFTextKeyStr, page 209
Appendix A, “PeopleSoft EnterpriseOne APIs.” jdeGTGet Shortcut/jdeGTGet ShortcutKeyStr, page 212
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGet Vendor/jdeGTGet VendorKeyStr, page 216
Appendix A, “PeopleSoft EnterpriseOne APIs,” jdeGTGetCount/jdeGTGetCountKeyStr, page 220

PeopleSoft Proprietary and Confidential

Appendix A PeopleSoft EnterpriseOne APIs

Messaging and Workflow APls

This section discusses APIs for systems that use messaging and workflow such as WorkCenter.

DoSendMessagev3
Syntax

MSGPRTO_RTN (JDEDB_RESULT) DoSendMessageV3 (
HUSER hUser,
Recipient * to,
Recipient * cc,
Recipient * bcc,
const JCHAR * pSubject,
const JCHAR * pText,
int numActiveMsg,
const ACTIVE MSG INFO V3 * pActiveMsgArray,
const MSG _TEMPLATE INFO * pTemplateSub,
const JCHAR * mediaObjectName,
const JCHAR * mediaObjectKey,
const JCHAR * pMailBox
)

Description

This API sends an email, internal or external, based on the recipient’s preference.

PeopleSoft Proprietary and Confidential 227

PeopleSoft EnterpriseOne APls

228

Appendix A

Parameters
Parameter Description
HUSER hUser Input, required. The user handle that defines the context in which to send the message.

Recipient * fo

Input, required. The ID of the primary individual, group, mailbox, and so forth to
whom the message is to be delivered.

Recipient * cc

Input, required. The ID of the individual, group, mailbox, and so forth to whom a
courtesy copy of the message is to be delivered.

Recipient * bcc

Input, required. The ID of the individual, group, mailbox, and so forth to whom a blind
courtesy copy of the message is to be delivered.

const JCHAR * pSubject Input, optional. The text to write to the subject line for the email.

const JCHAR * pText Input, optional. The text to write to the main body for the email.

int numActiveMsg Input, required. The number of interconnects to specific forms required.

const Input, optional. Array holding the shortcuts. NULL is a value.

ACTIVE MSG INFO V3*

pActiveMsgArray

const Input, optional. A specific text substitution template.

MSG _TEMPLATE INFO

* pTemplateSub

const JCHAR * Input, optional. A specific media object used to send the attachment. NULL and

mediaObjectName <blank> are values.

const JCHAR * Input, optional. The key of the media object used to send the attachment.

mediaObjectKey

const JCHAR * pMailBox Input, optional. The internal WorkCenter mailbox to which to deliver the email (used
only for PPAT).

Example

JDEBFRTN (ID)
LPDSDCRM1 1pDS)

JCHAR buffer[1000] =

JDEDB_RESULT rc
Recipient to =
Recipient cc =
HUSER hUser =

JDB_InitBhvr (1pBhvrCom,

jdeUTime Format

JDEBFWINAPI functionCRMTestl

(LPBHVRCOM 1pBhvrCom, LPVOID lpVoid,=

{o};

- JDEDB_PASSED;
{o};

{o};

NULL;
MSG_TEMPLATE_INFO zTemplateInfo =

{ o}
&hUser, (JCHAR *)NULL, JDEDB_COMMIT_AUTO);

(buffer, (LPJDEUTIME)&lpDS->DateEntered, NULL) ;

/*Create TO smtp recipient*/

PeopleSoft Proprietary and Confidential

Appendix A PeopleSoft EnterpriseOne APIs

to.recipientType = RECIPIENT TYPE SMTP;
to.smtp = J("employee@peoplesoft.com") ;

/*Create CC contact recipient*/
cc.recipientType = RECIPIENT TYPE CONTACT;
LongToMathNumeric (1001, &cc.an8);
LongToMathNumeric (0, &cc.idln);

/*Create a template sub with dditem LM1234%*/

zTemplateInfo.ddName = (JCHAR*)jdeAlloc(COMMON POOL , (sizeof(NID)) * sizeof=
(JCHAR) ,MEM_ZEROINIT) ;

jdeNIDcpy (zTemplateInfo.ddName , J("LM1234"));

zTemplateInfo.nbParam = 6;

zTemplateInfo.valueArray = (RT_VALUE*) jdeAlloc (COMMON POOL, (sizeof (RT_ VALUE)=
* 6) , MEM ZEROINIT | MEM_RESIZEABLE) ;

zTemplateInfo.valueArray[0] .evdtType = 2;

zTemplateInfo.valueArray[0] .value = jdemalloc (sizeof (JCHAR) * (jdeStrlen(J=
("1m)) + 1))

jdeStrncpyTerminate (zTemplateInfo.valueArray[0] .value , (LPVOID) J("1") , jde=
Strlen(J("1")) + 1);

zTemplateInfo.valueArray[1l] .evdtType = 2;

zTemplateInfo.valueArray[1l] .value = jdemalloc (sizeof (JCHAR) * (jdeStrlen(J=
("2")) + 1));

jdeStrncpyTerminate (zTemplateInfo.valueArray[1l] .value , (LPVOID) J("2") , jde=
Strlen(J("2")) + 1);

zTemplateInfo.valueArray[2] .evdtType = 2;

zTemplateInfo.valueArray[2] .value = jdemalloc (sizeof (JCHAR) * (jdeStrlen(J=
("3m)) + 1))

jdeStrncpyTerminate (zTemplateInfo.valueArray[2] .value , (LPVOID) J("3") , jde=
Strlen(J("3")) + 1);

zTemplateInfo.valueArray[3] .evdtType = 2;

zTemplateInfo.valueArray[3] .value = jdemalloc (sizeof (JCHAR) * (jdeStrlen(J=
("mam)) + 1));

jdeStrncpyTerminate (zTemplateInfo.valueArray[3] .value , (LPVOID) J("4") , jde=
Strlen(_J("4")) + 1);

zTemplateInfo.valueArray [4] .evdtType = 2;

zTemplateInfo.valueArray[4] .value = jdemalloc (sizeof (JCHAR) * (jdeStrlen(J=
("s")) + 1))

jdeStrncpyTerminate (zTemplateInfo.valueArray[4] .value , (LPVOID) _J("5") , jde=
Strlen(_J("5")) + 1);

zTemplateInfo.valueArray[5] .evdtType = 2;
zTemplateInfo.valueArray[5] .value = jdemalloc (sizeof (JCHAR) *

(jdeStrlen(J("e")) + 1));
jdeStrncpyTerminate (zTemplateInfo.valueArray[5] .value , (LPVOID) _J("6") , jde=
Strlen(_J("6")) + 1);

rc = DoSendMessageV3 (

hUser, /*HUSER* /
&to, /*to*/
&cc, /*cc*/

PeopleSoft Proprietary and Confidential 229

PeopleSoft EnterpriseOne APls Appendix A

NULL, /*bce*/

buffer, /*subject*/

buffer, /*messageText*/

0, /*numActiveMsg number of shortcuts*/

NULL, /*pActiveMsgArray optional, NULL allowed */
&zTemplateInfo, /*pTemplateSub optional, NULL allowed */

NULL, /*mediaObjectName optional, NULL or <blank> allowed */
NULL, /*mediaObjectKey optional, NULL or <blank> allowed */
NULL) ; /*pMailBox optional, only used for PPAT */

FreeActiveMsgTemplate (&zTemplateInfo) ;
return (ER_SUCCESS) ;

SAX Interface Functions

This section describes the SAX Parser interface functions.

Structure Used With SAX Parser Interface Functions

Syntax

This structure is used to pass attribute data to the start-element callback functions:
typedef struct tagXRCS Attr Info XRCS ATTR_INFO;
struct tagXRCS Attr Info {

const JCHAR *gzAttrLocalname;

const JCHAR *gszAttrQname;

const JCHAR *szAttrValue;

}i

XRCS_initEngine
Syntax

XRCS Status XRCS initEngine (void) ;

Description

This function performs a one-time initialization of the XercesWrapper and the Xerces parsing code. It must be
the first XercesWrapper function called from the client code.

XRCS_getParserByType
Syntax

XRCS getParserByType (
XRCS_hParser* phParser,
XRCS ParserType eParserType
)

230 PeopleSoft Proprietary and Confidential

Appendix A PeopleSoft EnterpriseOne APIs

Description

This function initializes a SAX or DOM parser, and returns a handle to it.

Parameters

Parameter Description
phParser A valid pointer to a parser handle (address IN, handle OUT).
eParserType A type of parser (DOM or SAX), specified by enum value (IN).

XRCS_getParser (DOM only)
Syntax

XRCS_Status XRCS getParser (XRCS hParser* phParser) ;

Description

This function initializes a DOM parser, and returns a handle to it. Do not use this function for the SAX parser.
Instead, use XRCS_getParserByType with the type set to XRCS SAX PARSER TYPE.

Parameters

Parameter Description

phParser A valid pointer to a parser handle (address IN, handle OUT).

XRCS_setCallback

Syntax
XRCS_Status XRCS_ setCallback(const XRCS hParser hParser,
XRCS CallbackType eCallbackType, void *pCallbackFunction,

void *pContext)

Description

This function sets up the given callback function for the given SAX parsing event. The function prototype of
the callback function must correspond to the type of callback. The callback function must be cast to (void
*). The context pointer must be cast to (void *). The context pointer typically points to a user-defined data
structure, where the callback functions can maintain the state of the parsing. The context pointer may be set
to NULL if it is not needed.

You can set up multiple callback functions for the same parsing event type. However, the order in which they
are called cannot be specified.

PeopleSoft Proprietary and Confidential 231

PeopleSoft EnterpriseOne APls

232

Appendix A

Parameters

Parameter Description
hParser Input. A valid parser handle.
eCallbackType Input. A type of callback, specified by enum value.
pCallbackFunction Input. A pointer to callback function.
pContext A pointer to be passed to the callback function.

XRCS_setCallbackWithOption

Syntax

XRCS_Status XRCS_setCallbackWithOption (

Description

const XRCS_hParser hParser,

XRCS CallbackType eCallbackType,
void * pCallbackFunction,

void * pContext,

XRCS CallbackOptionType eOptionType,
void * OptionValue

)i

This function is the same as XRCS _setCallback, with the ability to specify an option. The type of option that
may be specified is based upon the type of parsing event. Some types of options require a value, in which
case the value should always be cast to (void *). If no value is required, a NULL can be used. The system
currently supports two types of options.

For the start-of-element and end-of-element event types, an optional, specified local name may be passed in.
This option type is identified by the enum value, XRCS CBOPT ELEM LOCAL NAME. The option value

would be a null-terminated string (JCHAR *) for the element name. The callback function will be triggered
only when the local name for the element matches the passed-in name.

For the characters event type, you have the option to retrieve the text following the end of an element. The
option type is identified by the enum value, XRCS CBOPT CHARS AFTER ELEM. The option value

is ignored, so you should set it to NULL. For typical XML data, the characters after the end of an element
are just white space and carriage returns and so do not provide any useful information. On the other hand,
XML display documents could have useful display information after the end of an element. The default is to
ignore any text following the end of an element.

PeopleSoft Proprietary and Confidential

Appendix A PeopleSoft EnterpriseOne APIs

Parameters

Parameter Description
hParser Input. A valid parser handle.
eCallbackType Input. A type of callback, specified by enum value.
pCallbackFunction Input. A pointer to callback function.
pContext Input. A pointer to be passed to the callback function.
eOptionType Input. A type of option, specified by enum value.
pOptionValue Input. A value for the option. Not all options require a value.

XRCS_parseXMLFile
Syntax

XRCS Status JDEWINAPI XRCS parseXMLFile (
const XRCS hParser hParser,
const JCHAR* szFileName,
XRCS_hDocument* phDoc
)i

Description

This function parses the given XML file. It is used for both SAX and DOM parsers. For the SAX parser, the
document handle pointer is not used, so it must be passed in as NULL. Certain error conditions could cause a
process crash if the document handle pointer is not set to NULL for the SAX parser.

The SAX parser will stop parsing the XML text whenever:
» The end of the XML text has been reached.

* A callback has requested to terminate parsing (using its return code).

» The SAX parser encounters a fatal error.

In the first case, the parse function returns XRCS SUCCESS. In the last two, the parse function returns
XRCS_ERROR.

After the callback functions have been set up, the XML parse functions may be called multiple times. Multiple
calls might be useful for parsing multiple XML files while using the same group of callback functions.

Parameters
Parameter Description
hParser Input. A valid parser handle.
szFileName Input. The XML data file to be parsed.
phDoc Input. A pointer to a DOM document handle. For SAX, pass in NULL.

PeopleSoft Proprietary and Confidential 233

PeopleSoft EnterpriseOne APls Appendix A

XRCS_parseXMLString
Syntax

XRCS_Status JDEWINAPI XRCS parseXMLString(
XRCS hParser hParser,
const JCHAR* szXMLString,
XRCS_hDocument* phDoc
)

Description

This function is the same as XRCS_parseXMULFile, with the only difference being the source of the XML text.

Parameters
Parameter Description
hParser Input. A valid parser handle.
szXMLString Input. An XML text string to be parsed.
phDoc Input. A pointer to a DOM document handle. For SAX, pass in NULL

XRCS _freeParser

Syntax
XRCS Status XRCS_freeParser(XRCS hParser #Parser);

Description

This function frees the resources that are used by the parser.

Parameters

Parameter Description

hParser Input. A valid parser handle.

XRCS_terminateEngine
Syntax

XRCS_Status XRCS_ terminateEngine (void) ;

Description

This function performs a one-time cleanup of resources used by XercesWrapper and Xerces parsers. It
must be the last function called from the client code.

234 PeopleSoft Proprietary and Confidential

Appendix A PeopleSoft EnterpriseOne APIs

Callback Functions

Because the available data is different for each event type, the callback functions have specified parameter lists
(function prototypes), based upon the associated type of SAX parsing event. All callback functions receive the
context pointer, which was set up before parsing begins. Additional parameters correspond to the type of event.

All values passed into the callback functions must be considered temporary. If the data needs to be kept, it
should be copied elsewhere. Data should never be saved using a reference pointer to the passed-in data. Also,
the passed-in data must never be modified. That memory, used to pass data into the callback functions, will
either be freed or reused upon return from the callback function.

All callback functions return an enum value, which indicates whether the parsing should continue or terminate.
Whenever a callback function requests a termination, the XML parsing will stop, and the parse function
itself will return an error code.

The context pointer must always be cast to (void *). The callback function must always be cast to (void *).
Without the (void *) casts, the code will work on most systems. However, it will not build on Linux systems
without the explicit casts.

Errors and Warnings

Description

After a parser fatal error, the parse function returns an error status, regardless of whether the callback functions
return "continue" or "terminate." When the SAX parser encounters a fatal error, it first calls the fatal error
callbacks, and then stops parsing.

If multiple fatal-error callbacks are set up, returning the "terminate" return code will skip the remaining
callbacks and stop parsing immediately. If multiple fatal-error callbacks are set up, returning the "continue"
return code will enable the remaining callbacks to run, and then stop parsing. If only one fatal-error callback is
set up, then the return code does not matter because parsing will always stop after that callback finishes.

The SAX parser interface project did not change the threading capabilities of the XercesWrapper code. It uses
the same initialization code as the DOM parser. Both parsers are not completely thread-safe, particularly for
initialization and termination. The calling functions are responsible for all thread control.

If the MS Windows VC++ build uses the /W4 switch (warning level 4), the system will issue compiler warnings
for the callback function casting, in the calls to XRCS_setCallback and XRCS_setCallbackWithOption.
The /W4 switch appears to be the default for business function builds. To eliminate the warnings, add this
block of code before the first call to XRCS_setCallback or XRCS_setCallbackWithOption. The block of
code can be placed in a header file, if multiple files setting up callbacks exist:

#ifdef JDENV_PC

/* Do not display warning for callback functions -- ignore warning

* for conversion of function pointer to data pointer (void *).

* Compiler normally displays this warning when using /W4 warnings level.
*/

#pragma warning (disable:4054)

#endif

PeopleSoft Proprietary and Confidential 235

PeopleSoft EnterpriseOne APls Appendix A

236

Callback Function Format 1
Syntax

XRCS_CallbackStatus (* PCALLBACK FORMAT1) (void *pContext) ;

Description

This is the function prototype of callback functions, which is used by event types for start and end of documents.

Parameters

Parameter Description

pContext Input. A pointer to the context, which was specified during setup.

Callback Function Format 2
Syntax

XRCS CallbackStatus (* PCALLBACK FORMAT2) (
void * pContext,
const JCHAR * gszUri,
const JCHAR * szLocalname,
const JCHAR * szQname,
unsigned int nNumAttrs,
const XRCS_ATTR_INFO * pAttributes
)

Description

This is the function prototype of callback functions, which is used by the event type for start of an element.
The attribute information is returned in an array. If no attribute information exists, the number of elements is
set to zero, and the array pointer is set to NULL.

Each element of the attribute array consists of the data structure XRCS_ATTR_INFO. That structure contains
three null-terminated strings: one for the local name of the attribute, one for the qualified name of the attribute,
and one for the value of the attribute.

Parameters
Parameter Description
pContext Input. A pointer to the context, which was specified during setup.
szUri Input. A null-terminated string for URI (namespace).
szLocalname Input. A null-terminated string for local name.
szQname Input. A null-terminated string for qualified name.
nNumAttrs Input. The number of elements in the array of attribute information.
pAttributes Input. An array of attribute information.

PeopleSoft Proprietary and Confidential

Appendix A PeopleSoft EnterpriseOne APIs

Callback Function Format 3
Syntax

XRCS_CallbackStatus (* PCALLBACK FORMAT3) (
void * pContext,
const JCHAR * szUri,
const JCHAR * szLocalname,
const JCHAR * szQname
)i

Description

This is the function prototype of callback functions, which is used by the event type for end of element.

Parameters

Parameter Description
pContext Input. A pointer to the context, which was specified during setup.
szUri Input. A null-terminated string for URI (namespace).
szLocalname Input. A null-terminated string for local name.
szQname Input. A null-terminated string for qualified name.

Callback Function Format 4
Syntax

XRCS CallbackStatus (* PCALLBACK FORMAT4) (
void * pContext,
const JCHAR * szText
)i

Description

This is the function prototype of callback functions, which is used by event types for characters and ignorable
white space. For the event type of the characters, the complete character string is returned, even if the SAX
parser returns it to the XercesWrapper code as a series of partial strings.

The event for ignorable white space occurs only when using schemas and other special features. This
version of the SAX parser interface does not include a method to set up schemas. Therefore, any callback
functions which are set up for ignorable white space will never be called. After schema-setup is added

in a later version, the ignorable white space callbacks will be called. Without schemas, all text is returned
using the event type for the characters.

PeopleSoft Proprietary and Confidential 237

PeopleSoft EnterpriseOne APls Appendix A

Parameters

Parameter Description
pContext Input. A pointer to the context, which was specified during setup.
szText Input. A null-terminated character string.

Callback Function Format 5
Syntax

XRCS CallbackStatus (* PCALLBACK FORMAT5) (
void * pContext,
XRCS CallbackType eCallbackType,
int nLineNum,
int nColNum,
const JCHAR * szPublicId,
const JCHAR * szSystemId,
const JCHAR * szMessage
)

Description

This is the function prototype of callback functions, which is used by event types for warnings, errors, and
fatal errors. The enum for callback type makes it possible for one callback function to handle all three error
types. The line and column numbers are approximate, and may point to the position following the actual error.
That is because the SAX parser may have already moved its pointers to the next element, before an error is
encountered with the current element.

The XML file name is usually found in either szPublicld or szSystemld. The other one is usually an empty
(zero-length) string. The error message text (szMessage) is sometimes an empty (zero-length) string.

Parameters
Parameter Description
pContext Input. A pointer to the context, which was specified during setup.
eCallbackType Input. An enum indicating type of error event.
nLineNum Input. A line number where error occurred.
nColNum Input. The column number where error occurred.
szPublicld Input. The null-terminated name of XML file.
szSystemld Input. The null-terminated name of XML file.
szMessage Input. The null-terminated text of error message.

238 PeopleSoft Proprietary and Confidential

Glossary of PeopleSoft Terms

absence entitlement

absence take

academic career

academic institution

academic organization

academic plan

academic program

accounting class

accounting date

accounting split

accumulator

action reason

PeopleSoft Proprietary and Confidential

This element defines rules for granting paid time off for valid absences, such as sick
time, vacation, and maternity leave. An absence entitlement element defines the
entitlement amount, frequency, and entitlement period.

This element defines the conditions that must be met before a payee is entitled
to take paid time off.

In PeopleSoft Enterprise Campus Solutions, all course work that a student undertakes
at an academic institution and that is grouped in a single student record. For example,
a university that has an undergraduate school, a graduate school, and various
professional schools might define several academic careers—an undergraduate career,
a graduate career, and separate careers for each professional school (Ilaw school,
medical school, dental school, and so on).

In PeopleSoft Enterprise Campus Solutions, an entity (such as a university or college)
that is independent of other similar entities and that has its own set of rules and
business processes.

In PeopleSoft Enterprise Campus Solutions, an entity that is part of the administrative
structure within an academic institution. At the lowest level, an academic organization
might be an academic department. At the highest level, an academic organization can
represent a division.

In PeopleSoft Enterprise Campus Solutions, an area of study—such as a major, minor,
or specialization—that exists within an academic program or academic career.

In PeopleSoft Enterprise Campus Solutions, the entity to which a student applies and is
admitted and from which the student graduates.

In PeopleSoft Enterprise Performance Management, the accounting class defines how
aresource is treated for generally accepted accounting practices. The Inventory

class indicates whether a resource becomes part of a balance sheet account, such as
inventory or fixed assets, while the Non-inventory class indicates that the resource is
treated as an expense of the period during which it occurs.

The accounting date indicates when a transaction is recognized, as opposed to the date
the transaction actually occurred. The accounting date and transaction date can be the
same. The accounting date determines the period in the general ledger to which the
transaction is to be posted. You can only select an accounting date that falls within an
open period in the ledger to which you are posting. The accounting date for an item

is normally the invoice date.

The accounting split method indicates how expenses are allocated or divided among
one or more sets of accounting ChartFields.

You use an accumulator to store cumulative values of defined items as they are
processed. You can accumulate a single value over time or multiple values over
time. For example, an accumulator could consist of all voluntary deductions, or all
company deductions, enabling you to accumulate amounts. It allows total flexibility
for time periods and values accumulated.

The reason an employee’s job or employment information is updated. The action
reason is entered in two parts: a personnel action, such as a promotion, termination, or
change from one pay group to another—and a reason for that action. Action reasons
are used by PeopleSoft Human Resources, PeopleSoft Benefits Administration,

239

Glossary

action template

activity

address usage

adjustment calendar

administrative function

admit type

agreement

allocation rule

alternate account

analysis database

240

PeopleSoft Stock Administration, and the COBRA Administration feature of the
Base Benefits business process.

In PeopleSoft Receivables, outlines a set of escalating actions that the system or user
performs based on the period of time that a customer or item has been in an action
plan for a specific condition.

In PeopleSoft Enterprise Learning Management, an instance of a catalog item
(sometimes called a class) that is available for enrollment. The activity defines
such things as the costs that are associated with the offering, enrollment limits and
deadlines, and waitlisting capacities.

In PeopleSoft Enterprise Performance Management, the work of an organization and
the aggregation of actions that are used for activity-based costing.

In PeopleSoft Project Costing, the unit of work that provides a further breakdown of
projects—usually into specific tasks.

In PeopleSoft Workflow, a specific transaction that you might need to perform in a
business process. Because it consists of the steps that are used to perform a transaction,
it is also known as a step map.

In PeopleSoft Enterprise Campus Solutions, a grouping of address types defining the
order in which the address types are used. For example, you might define an address
usage code to process addresses in the following order: billing address, dormitory
address, home address, and then work address.

In PeopleSoft Enterprise Campus Solutions, the adjustment calendar controls how a
particular charge is adjusted on a student’s account when the student drops classes

or withdraws from a term. The charge adjustment is based on how much time has
elapsed from a predetermined date, and it is determined as a percentage of the original
charge amount.

In PeopleSoft Enterprise Campus Solutions, a particular functional area that processes
checklists, communication, and comments. The administrative function identifies
which variable data is added to a person’s checklist or communication record when a
specific checklist code, communication category, or comment is assigned to the
student. This key data enables you to trace that checklist, communication, or comment
back to a specific processing event in a functional area.

In PeopleSoft Enterprise Campus Solutions, a designation used to distinguish
first-year applications from transfer applications.

In PeopleSoft eSettlements, provides a way to group and specify processing options,
such as payment terms, pay from a bank, and notifications by a buyer and supplier
location combination.

In PeopleSoft Enterprise Incentive Management, an expression within compensation
plans that enables the system to assign transactions to nodes and participants. During
transaction allocation, the allocation engine traverses the compensation structure
from the current node to the root node, checking each node for plans that contain
allocation rules.

A feature in PeopleSoft General Ledger that enables you to create a statutory chart
of accounts and enter statutory account transactions at the detail transaction level, as
required for recording and reporting by some national governments.

In PeopleSoft Enterprise Campus Solutions, database tables that store large amounts
of student information that may not appear in standard report formats. The analysis
database tables contain keys for all objects in a report that an application program can
use to reference other student-record objects that are not contained in the printed
report. For instance, the analysis database contains data on courses that are considered
for satisfying a requirement but that are rejected. It also contains information on

PeopleSoft Proprietary and Confidential

AR specialist

arbitration plan

assessment rule

asset class

attribute/value pair

audience

authentication server
base time period

benchmark job

billing career

bio bit or bio brief

book

branch

budgetary account only

budget check

budget control

budget period

PeopleSoft Proprietary and Confidential

Glossary

courses captured by global limits. An analysis database is used in PeopleSoft
Enterprise Academic Advisement.

Abbreviation for receivables specialist. In PeopleSoft Receivables, an individual in
who tracks and resolves deductions and disputed items.

In PeopleSoft Enterprise Pricer, defines how price rules are to be applied to the base
price when the transaction is priced.

In PeopleSoft Receivables, a user-defined rule that the system uses to evaluate the
condition of a customer’s account or of individual items to determine whether to
generate a follow-up action.

An asset group used for reporting purposes. It can be used in conjunction with the asset
category to refine asset classification.

In PeopleSoft Directory Interface, relates the data that makes up an entry in the
directory information tree.

In PeopleSoft Enterprise Campus Solutions, a segment of the database that relates
to an initiative, or a membership organization that is based on constituent attributes
rather than a dues-paying structure. Examples of audiences include the Class of *65
and Undergraduate Arts & Sciences.

A server that is set up to verify users of the system.
In PeopleSoft Business Planning, the lowest level time period in a calendar.

In PeopleSoft Workforce Analytics, a benchmark job is a job code for which there is
corresponding salary survey data from published, third-party sources.

In PeopleSoft Enterprise Campus Solutions, the one career under which other careers
are grouped for billing purposes if a student is active simultaneously in multiple
careers.

In PeopleSoft Enterprise Campus Solutions, a report that summarizes information
stored in the system about a particular constituent. You can generate standard or
specialized reports.

In PeopleSoft Asset Management, used for storing financial and tax information, such
as costs, depreciation attributes, and retirement information on assets.

A tree node that rolls up to nodes above it in the hierarchy, as defined in PeopleSoft
Tree Manager.

An account used by the system only and not by users; this type of account does
not accept transactions. You can only budget with this account. Formerly called
“system-maintained account.”

In commitment control, the processing of source transactions against control budget
ledgers, to see if they pass, fail, or pass with a warning.

In commitment control, budget control ensures that commitments and expenditures
don’t exceed budgets. It enables you to track transactions against corresponding
budgets and terminate a document’s cycle if the defined budget conditions are not met.
For example, you can prevent a purchase order from being dispatched to a vendor if
there are insufficient funds in the related budget to support it.

The interval of time (such as 12 months or 4 quarters) into which a period is divided
for budgetary and reporting purposes. The ChartField allows maximum flexibility to
define operational accounting time periods without restriction to only one calendar.

241

business event

business unit

buyer

campus

catalog item

catalog map

catalog partner

categorization

category

channel

ChartField

ChartField balancing

ChartField combination edit

ChartKey

checkbook

checklist code

In PeopleSoft Receivables, defines the processing characteristics for the Receivable
Update process for a draft activity.

In PeopleSoft Sales Incentive Management, an original business transaction or activity
that may justify the creation of a PeopleSoft Enterprise Incentive Management event
(a sale, for example).

A corporation or a subset of a corporation that is independent with regard to one or
more operational or accounting functions.

In PeopleSoft eSettlements, an organization (or business unit, as opposed to an
individual) that transacts with suppliers (vendors) within the system. A buyer creates
payments for purchases that are made in the system.

In PeopleSoft Enterprise Campus Solutions, an entity that is usually associated with
a distinct physical administrative unit, that belongs to a single academic institution,
that uses a unique course catalog, and that produces a common transcript for students
within the same academic career.

In PeopleSoft Enterprise Learning Management, a specific topic that a learner can
study and have tracked. For example, “Introduction to Microsoft Word.” A catalog
item contains general information about the topic and includes a course code,
description, categorization, keywords, and delivery methods. A catalog item can
have one or more learning activities.

In PeopleSoft Catalog Management, translates values from the catalog source data to
the format of the company’s catalog.

In PeopleSoft Catalog Management, shares responsibility with the enterprise catalog
manager for maintaining catalog content.

Associates partner offerings with catalog offerings and groups them into enterprise
catalog categories.

In PeopleSoft Enterprise Campus Solutions, a broad grouping to which specific
comments or communications (contexts) are assigned. Category codes are also linked
to 3C access groups so that you can assign data-entry or view-only privileges across
functions.

In PeopleSoft MultiChannel Framework, email, chat, voice (computer telephone
integration [CTI]), or a generic event.

A field that stores a chart of accounts, resources, and so on, depending on the
PeopleSoft application. ChartField values represent individual account numbers,
department codes, and so forth.

You can require specific ChartFields to match up (balance) on the debit and the credit
side of a transaction.

The process of editing journal lines for valid ChartField combinations based on
user-defined rules.

One or more fields that uniquely identify each row in a table. Some tables contain only
one field as the key, while others require a combination.

In PeopleSoft Promotions Management, enables you to view financial data (such as
planned, incurred, and actual amounts) that is related to funds and trade promotions.

In PeopleSoft Enterprise Campus Solutions, a code that represents a list of planned
or completed action items that can be assigned to a staff member, volunteer, or unit.
Checklists enable you to view all action assignments on one page.

PeopleSoft Proprietary and Confidential

class

Class ChartField

clearance

clone

cohort

collection

collection rule

comm key

communication key

compensation object

compensation structure

condition

configuration parameter
catalog

configuration plan

PeopleSoft Proprietary and Confidential

Glossary

In PeopleSoft Enterprise Campus Solutions, a specific offering of a course component
within an academic term.

See also course.

A ChartField value that identifies a unique appropriation budget key when you
combine it with a fund, department ID, and program code, as well as a budget period.
Formerly called sub-classification.

In PeopleSoft Enterprise Campus Solutions, the period of time during which a
constituent in PeopleSoft Contributor Relations is approved for involvement in an
initiative or an action. Clearances are used to prevent development officers from
making multiple requests to a constituent during the same time period.

In PeopleCode, to make a unique copy. In contrast, to copy may mean making a
new reference to an object, so if the underlying object is changed, both the copy and
the original change.

In PeopleSoft Enterprise Campus Solutions, the highest level of the three-level
classification structure that you define for enrollment management. You can define a
cohort level, link it to other levels, and set enrollment target numbers for it.

See also populationand division.

To make a set of documents available for searching in Verity, you must first create

at least one collection. A collection is set of directories and files that allow search
application users to use the Verity search engine to quickly find and display source
documents that match search criteria. A collection is a set of statistics and pointers

to the source documents, stored in a proprietary format on a file server. Because a
collection can only store information for a single location, PeopleSoft maintains a set
of collections (one per language code) for each search index object.

In PeopleSoft Receivables, a user-defined rule that defines actions to take for a
customer based on both the amount and the number of days past due for outstanding
balances.

See communication key.

In PeopleSoft Enterprise Campus Solutions, a single code for entering a combination
of communication category, communication context, communication method,
communication direction, and standard letter code. Communication keys (also called
comm keys or speed keys) can be created for background processes as well as for
specific users.

In PeopleSoft Enterprise Incentive Management, a node within a compensation
structure. Compensation objects are the building blocks that make up a compensation
structure’s hierarchical representation.

In PeopleSoft Enterprise Incentive Management, a hierarchical relationship of
compensation objects that represents the compensation-related relationship between
the objects.

In PeopleSoft Receivables, occurs when there is a change of status for a customer’s
account, such as reaching a credit limit or exceeding a user-defined balance due.

Used to configure an external system with PeopleSoft. For example, a configuration
parameter catalog might set up configuration and communication parameters for an
external server.

In PeopleSoft Enterprise Incentive Management, configuration plans hold allocation
information for common variables (not incentive rules) and are attached to a node
without a participant. Configuration plans are not processed by transactions.

243

Glossary

244

constituents

content reference

context

control table

cost profile

cost row

course

course share set

current learning

data acquisition

data elements

dataset

delivery method

In PeopleSoft Enterprise Campus Solutions, friends, alumni, organizations,
foundations, or other entities affiliated with the institution, and about which the
institution maintains information. The constituent types delivered with PeopleSoft
Enterprise Contributor Relations Solutions are based on those defined by the Council
for the Advancement and Support of Education (CASE).

Content references are pointers to content registered in the portal registry. These are
typically either URLs or iScripts. Content references fall into three categories: target
content, templates, and template pagelets.

In PeopleCode, determines which buffer fields can be contextually referenced and
which is the current row of data on each scroll level when a PeopleCode program
is running.

In PeopleSoft Enterprise Campus Solutions, a specific instance of a comment or
communication. One or more contexts are assigned to a category, which you link to
3C access groups so that you can assign data-entry or view-only privileges across
functions.

In PeopleSoft Enterprise Incentive Management, a mechanism that is used to
determine the scope of a processing run. PeopleSoft Enterprise Incentive Management
uses three types of context: plan, period, and run-level.

Stores information that controls the processing of an application. This type of
processing might be consistent throughout an organization, or it might be used only by
portions of the organization for more limited sharing of data.

A combination of a receipt cost method, a cost flow, and a deplete cost method. A
profile is associated with a cost book and determines how items in that book are
valued, as well as how the material movement of the item is valued for the book.

A cost transaction and amount for a set of ChartFields.

In PeopleSoft Enterprise Campus Solutions, a course that is offered by a school and
that is typically described in a course catalog. A course has a standard syllabus and
credit level; however, these may be modified at the class level. Courses can contain
multiple components such as lecture, discussion, and lab.

See also class.

In PeopleSoft Enterprise Campus Solutions, a tag that defines a set of requirement
groups that can share courses. Course share sets are used in PeopleSoft Enterprise
Academic Advisement.

In PeopleSoft Enterprise Learning Management, a self-service repository for all of a
learner’s in-progress learning activities and programs.

In PeopleSoft Enterprise Incentive Management, the process during which raw
business transactions are acquired from external source systems and fed into the
operational data store (ODS).

Data elements, at their simplest level, define a subset of data and the rules by which
to group them.

For Workforce Analytics, data elements are rules that tell the system what measures to
retrieve about your workforce groups.

A data grouping that enables role-based filtering and distribution of data. You can
limit the range and quantity of data that is displayed for a user by associating dataset
rules with user roles. The result of dataset rules is a set of data that is appropriate

for the user’s roles.

In PeopleSoft Enterprise Learning Management, identifies the primary type of
delivery method in which a particular learning activity is offered. Also provides

PeopleSoft Proprietary and Confidential

delivery method type

directory information tree

division

document sequencing

dynamic detail tree

edit table

effective date

EIM ledger

elimination set

entry event

equitization

equity item limit

PeopleSoft Proprietary and Confidential

Glossary

default values for the learning activity, such as cost and language. This is primarily
used to help learners search the catalog for the type of delivery from which they learn
best. Because PeopleSoft Enterprise Learning Management is a blended learning
system, it does not enforce the delivery method.

In PeopleSoft Supply Chain Management, identifies the method by which goods are
shipped to their destinations (such as truck, air, rail, and so on). The delivery method is
specified when creating shipment schedules.

In PeopleSoft Enterprise Learning Management, identifies how learning activities can
be delivered—for example, through online learning, classroom instruction, seminars,
books, and so forth—in an organization. The type determines whether the delivery
method includes scheduled components.

In PeopleSoft Directory Interface, the representation of a directory’s hierarchical
structure.

In PeopleSoft Enterprise Campus Solutions, the lowest level of the three-level
classification structure that you define in PeopleSoft Enterprise Recruiting and
Admissions for enrollment management. You can define a division level, link it to
other levels, and set enrollment target numbers for it.

See also population and cohort.

A flexible method that sequentially numbers the financial transactions (for example,
bills, purchase orders, invoices, and payments) in the system for statutory reporting
and for tracking commercial transaction activity.

A tree that takes its detail values—dynamic details—directly from a table in the
database, rather than from a range of values that are entered by the user.

A table in the database that has its own record definition, such as the Department table.
As fields are entered into a PeopleSoft application, they can be validated against an
edit table to ensure data integrity throughout the system.

A method of dating information in PeopleSoft applications. You can predate
information to add historical data to your system, or postdate information in order to
enter it before it actually goes into effect. By using effective dates, you don’t delete
values; you enter a new value with a current effective date.

Abbreviation for Enterprise Incentive Management ledger. In PeopleSoft Enterprise
Incentive Management, an object to handle incremental result gathering within the
scope of a participant. The ledger captures a result set with all of the appropriate traces
to the data origin and to the processing steps of which it is a result.

In PeopleSoft General Ledger, a related group of intercompany accounts that is
processed during consolidations.

In PeopleSoft General Ledger, Receivables, Payables, Purchasing, and Billing, a
business process that generates multiple debits and credits resulting from single
transactions to produce standard, supplemental accounting entries.

In PeopleSoft General Ledger, a business process that enables parent companies to
calculate the net income of subsidiaries on a monthly basis and adjust that amount
to increase the investment amount and equity income amount before performing
consolidations.

In PeopleSoft Enterprise Campus Solutions, the amounts of funds set by the institution
to be awarded with discretionary or gift funds. The limit could be reduced by amounts
equal to such things as expected family contribution (EFC) or parent contribution.
Students are packaged by Equity Item Type Groups and Related Equity Item Types.
This limit can be used to assure that similar student populations are packaged equally.

245

Glossary

246

event

event propagation process

exception

exclusive pricing

fact

financial aid term

forecast item

fund

gap

generic process type

gift table

GL business unit

GL entry template

A predefined point either in the Component Processor flow or in the program flow.
As each point is encountered, the event activates each component, triggering any
PeopleCode program that is associated with that component and that event. Examples
of events are FieldChange, SavePreChange, and RowDelete.

In PeopleSoft Human Resources, also refers to an incident that affects benefits
eligibility.

In PeopleSoft Sales Incentive Management, a process that determines, through logic,
the propagation of an original PeopleSoft Enterprise Incentive Management event and
creates a derivative (duplicate) of the original event to be processed by other objects.
Sales Incentive Management uses this mechanism to implement splits, roll-ups, and so
on. Event propagation determines who receives the credit.

In PeopleSoft Receivables, an item that either is a deduction or is in dispute.

In PeopleSoft Order Management, a type of arbitration plan that is associated with a
price rule. Exclusive pricing is used to price sales order transactions.

In PeopleSoft applications, facts are numeric data values from fields from a source
database as well as an analytic application. A fact can be anything you want to measure
your business by, for example, revenue, actual, budget data, or sales numbers. A

fact is stored on a fact table.

In PeopleSoft Enterprise Campus Solutions, a combination of a period of time that the
school determines as an instructional accounting period and an academic career. It

is created and defined during the setup process. Only terms eligible for financial aid
are set up for each financial aid career.

A logical entity with a unique set of descriptive demand and forecast data that is used
as the basis to forecast demand. You create forecast items for a wide range of uses, but
they ultimately represent things that you buy, sell, or use in your organization and for
which you require a predictable usage.

In PeopleSoft Promotions Management, a budget that can be used to fund promotional
activity. There are four funding methods: top down, fixed accrual, rolling accrual, and
zero-based accrual.

In PeopleSoft Enterprise Campus Solutions, an artificial figure that sets aside an
amount of unmet financial aid need that is not funded with Title IV funds. A gap can
be used to prevent fully funding any student to conserve funds, or it can be used to
preserve unmet financial aid need so that institutional funds can be awarded.

In PeopleSoft Process Scheduler, process types are identified by a generic process
type. For example, the generic process type SQR includes all SQR process types,
such as SQR process and SQR report.

In PeopleSoft Enterprise Campus Solutions, a table or so-called donor pyramid
describing the number and size of gifts that you expect will be needed to successfully
complete the campaign in PeopleSoft Contributor Relations. The gift table enables
you to estimate the number of donors and prospects that you need at each gift level

to reach the campaign goal.

Abbreviation for general ledger business unit. A unit in an organization that is an
independent entity for accounting purposes. It maintains its own set of accounting
books.

See also business unit.

Abbreviation for general ledger entry template. In PeopleSoft Enterprise Campus
Solutions, a template that defines how a particular item is sent to the general ledger.
An item-type maps to the general ledger, and the GL entry template can involve
multiple general ledger accounts. The entry to the general ledger is further controlled

PeopleSoft Proprietary and Confidential

GL Interface process

group

incentive object

incentive rule

incur

initiative

inquiry access

institution

item

item shuffle

PeopleSoft Proprietary and Confidential

Glossary

by high-level flags that control the summarization and the type of accounting—that is,
accrual or cash.

Abbreviation for General Ledger Interface process. In PeopleSoft Enterprise Campus
Solutions, a process that is used to send transactions from PeopleSoft Enterprise
Student Financials to the general ledger. Item types are mapped to specific general
ledger accounts, enabling transactions to move to the general ledger when the GL
Interface process is run.

In PeopleSoft Billing and Receivables, a posting entity that comprises one or more
transactions (items, deposits, payments, transfers, matches, or write-offs).

In PeopleSoft Human Resources Management and Supply Chain Management, any
set of records that are associated under a single name or variable to run calculations
in PeopleSoft business processes. In PeopleSoft Time and Labor, for example,
employees are placed in groups for time reporting purposes.

In PeopleSoft Enterprise Incentive Management, the incentive-related objects that
define and support the PeopleSoft Enterprise Incentive Management calculation
process and results, such as plan templates, plans, results data, user interaction objects,
and so on.

In PeopleSoft Sales Incentive Management, the commands that act on transactions and
turn them into compensation. A rule is one part in the process of turning a transaction
into compensation.

In PeopleSoft Promotions Management, to become liable for a promotional payment.
In other words, you owe that amount to a customer for promotional activities.

In PeopleSoft Enterprise Campus Solutions, the basis from which all advancement
plans are executed. It is an organized effort targeting a specific constituency, and it can
occur over a specified period of time with specific purposes and goals. An initiative
can be a campaign, an event, an organized volunteer effort, a membership drive, or
any other type of effort defined by the institution. Initiatives can be multipart, and
they can be related to other initiatives. This enables you to track individual parts of an
initiative, as well as entire initiatives.

In PeopleSoft Enterprise Campus Solutions, a type of security access that permits the
user only to view data.

See also update access.

In PeopleSoft Enterprise Campus Solutions, an entity (such as a university or college)
that is independent of other similar entities and that has its own set of rules and
business processes.

In PeopleSoft Inventory, a tangible commodity that is stored in a business unit
(shipped from a warehouse).

In PeopleSoft Demand Planning, Inventory Policy Planning, and Supply Planning, a
noninventory item that is designated as being used for planning purposes only. It can
represent a family or group of inventory items. It can have a planning bill of material
(BOM) or planning routing, and it can exist as a component on a planning BOM. A
planning item cannot be specified on a production or engineering BOM or routing,
and it cannot be used as a component in a production. The quantity on hand will
never be maintained.

In PeopleSoft Receivables, an individual receivable. An item can be an invoice, a
credit memo, a debit memo, a write-off, or an adjustment.

In PeopleSoft Enterprise Campus Solutions, a process that enables you to change a
payment allocation without having to reverse the payment.

247

Glossary

joint communication In PeopleSoft Enterprise Campus Solutions, one letter that is addressed jointly to two
people. For example, a letter might be addressed to both Mr. Sudhir Awat and Ms.
Samantha Mortelli. A relationship must be established between the two individuals in
the database, and at least one of the individuals must have an ID in the database.

keyword In PeopleSoft Enterprise Campus Solutions, a term that you link to particular elements
within PeopleSoft Student Financials, Financial Aid, and Contributor Relations.
You can use keywords as search criteria that enable you to locate specific records in
a search dialog box.

KPI An abbreviation for key performance indicator. A high-level measurement of how well
an organization is doing in achieving critical success factors. This defines the data
value or calculation upon which an assessment is determined.

LDIF file Abbreviation for Lightweight Directory Access Protocol (LDAP) Data Interchange
Format file. Contains discrepancies between PeopleSoft data and directory data.

learner group In PeopleSoft Enterprise Learning Management, a group of learners who are linked
to the same learning environment. Members of the learner group can share the same
attributes, such as the same department or job code. Learner groups are used to control
access to and enrollment in learning activities and programs. They are also used to
perform group enrollments and mass enrollments in the back office.

learning components In PeopleSoft Enterprise Learning Management, the foundational building blocks
of learning activities. PeopleSoft Enterprise Learning Management supports six
basic types of learning components: web-based, session, webcast, test, survey, and
assignment. One or more of these learning component types compose a single
learning activity.

learning environment In PeopleSoft Enterprise Learning Management, identifies a set of categories and
catalog items that can be made available to learner groups. Also defines the default
values that are assigned to the learning activities and programs that are created within a
particular learning environment. Learning environments provide a way to partition the
catalog so that learners see only those items that are relevant to them.

learning history In PeopleSoft Enterprise Learning Management, a self-service repository for all of a
learner’s completed learning activities and programs.

ledger mapping You use ledger mapping to relate expense data from general ledger accounts to
resource objects. Multiple ledger line items can be mapped to one or more resource
IDs. You can also use ledger mapping to map dollar amounts (referred to as rates)
to business units. You can map the amounts in two different ways: an actual amount
that represents actual costs of the accounting period, or a budgeted amount that can be
used to calculate the capacity rates as well as budgeted model results. In PeopleSoft
Enterprise Warehouse, you can map general ledger accounts to the EW Ledger table.

library section In PeopleSoft Enterprise Incentive Management, a section that is defined in a plan (or
template) and that is available for other plans to share. Changes to a library section are
reflected in all plans that use it.

linked section In PeopleSoft Enterprise Incentive Management, a section that is defined in a plan
template but appears in a plan. Changes to linked sections propagate to plans using
that section.

linked variable In PeopleSoft Enterprise Incentive Management, a variable that is defined and
maintained in a plan template and that also appears in a plan. Changes to linked
variables propagate to plans using that variable.

LMS Abbreviation for learning management system. In PeopleSoft Enterprise Campus
Solutions, LMS is a PeopleSoft Student Records feature that provides a common set
of interoperability standards that enable the sharing of instructional content and data
between learning and administrative environments.

248 PeopleSoft Proprietary and Confidential

load

local functionality

location

logistical task

market template

mass change

match group

MCEF server

merchandising activity

meta-SQL

metastring

multibook

multicurrency

PeopleSoft Proprietary and Confidential

Glossary

In PeopleSoft Inventory, identifies a group of goods that are shipped together. Load
management is a feature of PeopleSoft Inventory that is used to track the weight, the
volume, and the destination of a shipment.

In PeopleSoft HRMS, the set of information that is available for a specific country.
You can access this information when you click the appropriate country flag in the
global window, or when you access it by a local country menu.

Locations enable you to indicate the different types of addresses—for a company, for
example, one address to receive bills, another for shipping, a third for postal deliveries,
and a separate street address. Each address has a different location number. The
primary location—indicated by a /—is the address you use most often and may be
different from the main address.

In PeopleSoft Services Procurement, an administrative task that is related to hiring

a service provider. Logistical tasks are linked to the service type on the work order

so that different types of services can have different logistical tasks. Logistical tasks
include both preapproval tasks (such as assigning a new badge or ordering a new
laptop) and postapproval tasks (such as scheduling orientation or setting up the service
provider email). The logistical tasks can be mandatory or optional. Mandatory
preapproval tasks must be completed before the work order is approved. Mandatory
postapproval tasks, on the other hand, must be completed before a work order is
released to a service provider.

In PeopleSoft Enterprise Incentive Management, additional functionality that is
specific to a given market or industry and is built on top of a product category.

In PeopleSoft Enterprise Campus Solutions, mass change is a SQL generator that can
be used to create specialized functionality. Using mass change, you can set up a
series of Insert, Update, or Delete SQL statements to perform business functions that
are specific to the institution.

See also 3C engine.

In PeopleSoft Receivables, a group of receivables items and matching offset items.
The system creates match groups by using user-defined matching criteria for selected
field values.

Abbreviation for PeopleSoft MultiChannel Framework server. Comprises the
universal queue server and the MCF log server. Both processes are started when MCF
Servers is selected in an application server domain configuration.

In PeopleSoft Promotions Management, a specific discount type that is associated with
a trade promotion (such as off-invoice, billback or rebate, or lump-sum payment) that
defines the performance that is required to receive the discount. In the industry, you
may know this as an offer, a discount, a merchandising event, an event, or a tactic.

Meta-SQL constructs expand into platform-specific Structured Query Language
(SQL) substrings. They are used in functions that pass SQL strings, such as in SQL
objects, the SQLExec function, and PeopleSoft Application Engine programs.

Metastrings are special expressions included in SQL string literals. The metastrings,
prefixed with a percent (%) symbol, are included directly in the string literals. They
expand at run time into an appropriate substring for the current database platform.

In PeopleSoft General Ledger, multiple ledgers having multiple-base currencies that
are defined for a business unit, with the option to post a single transaction to all base
currencies (all ledgers) or to only one of those base currencies (ledgers).

The ability to process transactions in a currency other than the business unit’s base
currency.

249

Glossary

250

national allowance

need

node-oriented tree

pagelet

participant

participant object

partner

pay cycle

payment shuffle

pending item

PeopleCode

PeopleCode event

PeopleSoft Internet
Architecture

performance measurement

period context

person of interest

In PeopleSoft Promotions Management, a promotion at the corporate level that is
funded by nondiscretionary dollars. In the industry, you may know this as a national
promotion, a corporate promotion, or a corporate discount.

In PeopleSoft Enterprise Campus Solutions, the difference between the cost of
attendance (COA) and the expected family contribution (EFC). It is the gap between
the cost of attending the school and the student’s resources. The financial aid package
is based on the amount of financial need. The process of determining a student’s

need is called need analysis.

A tree that is based on a detail structure, but the detail values are not used.

Each block of content on the home page is called a pagelet. These pagelets display
summary information within a small rectangular area on the page. The pagelet provide
users with a snapshot of their most relevant PeopleSoft and non-PeopleSoft content.

In PeopleSoft Enterprise Incentive Management, participants are recipients of the
incentive compensation calculation process.

Each participant object may be related to one or more compensation objects.

See also compensation object.

A company that supplies products or services that are resold or purchased by the
enterprise.

In PeopleSoft Payables, a set of rules that define the criteria by which it should select
scheduled payments for payment creation.

In PeopleSoft Enterprise Campus Solutions, a process allowing payments that have
been previously posted to a student’s account to be automatically reapplied when a
higher priority payment is posted or the payment allocation definition is changed.

In PeopleSoft Receivables, an individual receivable (such as an invoice, a credit
memo, or a write-off) that has been entered in or created by the system, but hasn’t
been posted.

PeopleCode is a proprictary language, executed by the PeopleSoft application
processor. PeopleCode generates results based upon existing data or user actions. By
using business interlink objects, external services are available to all PeopleSoft
applications wherever PeopleCode can be executed.

An action that a user takes upon an object, usually a record field, that is referenced
within a PeopleSoft page.

The fundamental architecture on which PeopleSoft 8 applications are constructed,
consisting of a relational database management system (RDBMS), an application
server, a web server, and a browser.

In PeopleSoft Enterprise Incentive Management, a variable used to store data (similar
to an aggregator, but without a predefined formula) within the scope of an incentive
plan. Performance measures are associated with a plan calendar, territory, and
participant. Performance measurements are used for quota calculation and reporting.

In PeopleSoft Enterprise Incentive Management, because a participant typically
uses the same compensation plan for multiple periods, the period context associates
a plan context with a specific calendar period and fiscal year. The period context
references the associated plan context, thus forming a chain. Each plan context has a
corresponding set of period contexts.

A person about whom the organization maintains information but who is not part of
the workforce.

PeopleSoft Proprietary and Confidential

personal portfolio

plan

plan context

plan template

planned learning

planning instance

population

portal registry

price list

price rule

price rule condition

price rule key

primacy number

PeopleSoft Proprietary and Confidential

Glossary

In PeopleSoft Enterprise Campus Solutions, the user-accessible menu item that
contains an individual’s name, address, telephone number, and other personal
information.

In PeopleSoft Sales Incentive Management, a collection of allocation rules, variables,
steps, sections, and incentive rules that instruct the PeopleSoft Enterprise Incentive
Management engine in how to process transactions.

In PeopleSoft Enterprise Incentive Management, correlates a participant with

the compensation plan and node to which the participant is assigned, enabling

the PeopleSoft Enterprise Incentive Management system to find anything that is
associated with the node and that is required to perform compensation processing.
Each participant, node, and plan combination represents a unique plan context—if
three participants are on a compensation structure, each has a different plan context.
Configuration plans are identified by plan contexts and are associated with the
participants that refer to them.

In PeopleSoft Enterprise Incentive Management, the base from which a plan is created.
A plan template contains common sections and variables that are inherited by all plans
that are created from the template. A template may contain steps and sections that

are not visible in the plan definition.

In PeopleSoft Enterprise Learning Management, a self-service repository for all of
a learner’s planned learning activities and programs.

In PeopleSoft Supply Planning, a set of data (business units, items, supplies, and
demands) constituting the inputs and outputs of a supply plan.

In PeopleSoft Enterprise Campus Solutions, the middle level of the three-level
classification structure that you define in PeopleSoft Enterprise Recruiting and
Admissions for enrollment management. You can define a population level, link it to
other levels, and set enrollment target numbers for it.

See also division and cohort.

In PeopleSoft applications, the portal registry is a tree-like structure in which content
references are organized, classified, and registered. It is a central repository that
defines both the structure and content of a portal through a hierarchical, tree-like
structure of folders useful for organizing and securing content references.

In PeopleSoft Enterprise Pricer, enables you to select products and conditions for
which the price list applies to a transaction. During a transaction, the system either
determines the product price based on the predefined search hierarchy for the
transaction or uses the product’s lowest price on any associated, active price lists. This
price is used as the basis for any further discounts and surcharges.

In PeopleSoft Enterprise Pricer, defines the conditions that must be met for
adjustments to be applied to the base price. Multiple rules can apply when conditions
of each rule are met.

In PeopleSoft Enterprise Pricer, selects the price-by fields, the values for the price-by
fields, and the operator that determines how the price-by fields are related to the
transaction.

In PeopleSoft Enterprise Pricer, defines the fields that are available to define price rule
conditions (which are used to match a transaction) on the price rule.

In PeopleSoft Enterprise Campus Solutions, a number that the system uses to prioritize
financial aid applications when students are enrolled in multiple academic careers and
academic programs at the same time. The Consolidate Academic Statistics process
uses the primacy number indicated for both the career and program at the institutional
level to determine a student’s primary career and program. The system also uses the

251

Glossary

252

primary name type

process category

process group

process definition

process instance

process job

process request

process run control

product category

programs

progress log

project transaction

promotion

prospects

publishing

number to determine the primary student attribute value that is used when you extract
data to report on cohorts. The lowest number takes precedence.

In PeopleSoft Enterprise Campus Solutions, the name type that is used to link the name
stored at the highest level within the system to the lower-level set of names that an
individual provides.

In PeopleSoft Process Scheduler, processes that are grouped for server load balancing
and prioritization.

In PeopleSoft Financials, a group of application processes (performed in a defined
order) that users can initiate in real time, directly from a transaction entry page.

Process definitions define each run request.

A unique number that identifies each process request. This value is automatically
incremented and assigned to each requested process when the process is submitted to
run.

You can link process definitions into a job request and process each request serially
or in parallel. You can also initiate subsequent processes based on the return code
from each prior request.

A single run request, such as a Structured Query Report (SQR), a COBOL or
Application Engine program, or a Crystal report that you run through PeopleSoft
Process Scheduler.

A PeopleTools variable used to retain PeopleSoft Process Scheduler values needed

at runtime for all requests that reference a run control ID. Do not confuse these with
application run controls, which may be defined with the same run control ID, but only
contain information specific to a given application process request.

In PeopleSoft Enterprise Incentive Management, indicates an application in the
Enterprise Incentive Management suite of products. Each transaction in the PeopleSoft
Enterprise Incentive Management system is associated with a product category.

In PeopleSoft Enterprise Learning Management, a high-level grouping that guides the
learner along a specific learning path through sections of catalog items. PeopleSoft
Enterprise Learning Systems provides two types of programs—curricula and
certifications.

In PeopleSoft Services Procurement, tracks deliverable-based projects. This is similar
to the time sheet in function and process. The service provider contact uses the
progress log to record and submit progress on deliverables. The progress can be logged
by the activity that is performed, by the percentage of work that is completed, or by the
completion of milestone activities that are defined for the project.

In PeopleSoft Project Costing, an individual transaction line that represents a cost,
time, budget, or other transaction row.

In PeopleSoft Promotions Management, a trade promotion, which is typically funded
from trade dollars and used by consumer products manufacturers to increase sales
volume.

In PeopleSoft Enterprise Campus Solutions, students who are interested in applying to
the institution.

In PeopleSoft Enterprise Contributor Relations, individuals and organizations that are
most likely to make substantial financial commitments or other types of commitments
to the institution.

In PeopleSoft Enterprise Incentive Management, a stage in processing that makes
incentive-related results available to participants.

PeopleSoft Proprietary and Confidential

rating components

record group

record input VAT flag

record output VAT flag

recname

recognition

reference data

reference object

reference transaction

regional sourcing

relationship object

remote data source data

REN server

requester

PeopleSoft Proprietary and Confidential

Glossary

In PeopleSoft Enterprise Campus Solutions, variables used with the Equation Editor to
retrieve specified populations.

A set of logically and functionally related control tables and views. Record groups
help enable TableSet sharing, which eliminates redundant data entry. Record groups
ensure that TableSet sharing is applied consistently across all related tables and views.

Abbreviation for record input value-added tax flag. Within PeopleSoft Purchasing,
Payables, and General Ledger, this flag indicates that you are recording input VAT

on the transaction. This flag, in conjunction with the record output VAT flag, is used

to determine the accounting entries created for a transaction and to determine how a
transaction is reported on the VAT return. For all cases within Purchasing and Payables
where VAT information is tracked on a transaction, this flag is set to Yes. This flag

is not used in PeopleSoft Order Management, Billing, or Receivables, where it is
assumed that you are always recording only output VAT, or in PeopleSoft Expenses,
where it is assumed that you are always recording only input VAT.

Abbreviation for record output value-added tax flag.

See record input VAT flag.

The name of a record that is used to determine the associated field to match a value
or set of values.

In PeopleSoft Enterprise Campus Solutions, the recognition type indicates whether

the PeopleSoft Enterprise Contributor Relations donor is the primary donor of a
commitment or shares the credit for a donation. Primary donors receive hard credit that
must total 100 percent. Donors that share the credit are given soft credit. Institutions
can also define other share recognition-type values such as memo credit or vehicle
credit.

In PeopleSoft Sales Incentive Management, system objects that represent the sales
organization, such as territories, participants, products, customers, channels, and so on.

In PeopleSoft Enterprise Incentive Management, this dimension-type object further
defines the business. Reference objects can have their own hierarchy (for example,
product tree, customer tree, industry tree, and geography tree).

In commitment control, a reference transaction is a source transaction that is
referenced by a higher-level (and usually later) source transaction, in order to
automatically reverse all or part of the referenced transaction’s budget-checked
amount. This avoids duplicate postings during the sequential entry of the transaction at
different commitment levels. For example, the amount of an encumbrance transaction
(such as a purchase order) will, when checked and recorded against a budget, cause

the system to concurrently reference and relieve all or part of the amount of a
corresponding pre-encumbrance transaction, such as a purchase requisition.

In PeopleSoft Purchasing, provides the infrastructure to maintain, display, and select
an appropriate vendor and vendor pricing structure that is based on a regional sourcing
model where the multiple ship to locations are grouped. Sourcing may occur ata

level higher than the ship to location.

In PeopleSoft Enterprise Incentive Management, these objects further define a
compensation structure to resolve transactions by establishing associations between
compensation objects and business objects.

Data that is extracted from a separate database and migrated into the local database.

Abbreviation for real-time event notification server in PeopleSoft MultiChannel
Framework.

In PeopleSoft eSettlements, an individual who requests goods or services and whose
ID appears on the various procurement pages that reference purchase orders.

253

reversal indicator

role

role user

roll up

run control

run control ID

run-level context

search query

search/match

seasonal address

section

security event

serial genealogy

serial in production

service impact

service indicator

In PeopleSoft Enterprise Campus Solutions, an indicator that denotes when a
particular payment has been reversed, usually because of insufficient funds.

Describes how people fit into PeopleSoft Workflow. A role is a class of users who
perform the same type of work, such as clerks or managers. Your business rules
typically specify what user role needs to do an activity.

A PeopleSoft Workflow user. A person’s role user ID serves much the same purpose as
auser ID does in other parts of the system. PeopleSoft Workflow uses role user IDs

to determine how to route worklist items to users (through an email address, for
example) and to track the roles that users play in the workflow. Role users do not need
PeopleSoft user IDs.

In a tree, to roll up is to total sums based on the information hierarchy.

A run control is a type of online page that is used to begin a process, such as the
batch processing of a payroll run. Run control pages generally start a program that
manipulates data.

A unique ID to associate each user with his or her own run control table entries.

In PeopleSoft Enterprise Incentive Management, associates a particular run (and batch
ID) with a period context and plan context. Every plan context that participates in a run
has a separate run-level context. Because a run cannot span periods, only one run-level
context is associated with each plan context.

You use this set of objects to pass a query string and operators to the search engine.
The search index returns a set of matching results with keys to the source documents.

In PeopleSoft Enterprise Campus Solutions and PeopleSoft Enterprise Human
Resources Management Solutions, a feature that enables you to search for and identify
duplicate records in the database.

In PeopleSoft Enterprise Campus Solutions, an address that recurs for the same length
of time at the same time of year each year until adjusted or deleted.

In PeopleSoft Enterprise Incentive Management, a collection of incentive rules that
operate on transactions of a specific type. Sections enable plans to be segmented to
process logical events in different sections.

In commitment control, security events trigger security authorization checking, such
as budget entries, transfers, and adjustments; exception overrides and notifications;
and inquiries.

In PeopleSoft Manufacturing, the ability to track the composition of a specific,
serial-controlled item.

In PeopleSoft Manufacturing, enables the tracing of serial information for
manufactured items. This is maintained in the Item Master record.

In PeopleSoft Enterprise Campus Solutions, the resulting action triggered by a service
indicator. For example, a service indicator that reflects nonpayment of account
balances by a student might result in a service impact that prohibits registration for
classes.

In PeopleSoft Enterprise Campus Solutions, indicates services that may be either
withheld or provided to an individual. Negative service indicators indicate holds that
prevent the individual from receiving specified services, such as check-cashing
privileges or registration for classes. Positive service indicators designate special
services that are provided to the individual, such as front-of-line service or special
services for disabled students.

PeopleSoft Proprietary and Confidential

session

session template

setup relationship

share driver expression

single signon

source key process

source transaction

speed key
SpeedChart

SpeedType

staging

standard letter code

statutory account

PeopleSoft Proprietary and Confidential

Glossary

In PeopleSoft Enterprise Campus Solutions, time elements that subdivide a term into
multiple time periods during which classes are offered. In PeopleSoft Contributor
Relations, a session is the means of validating gift, pledge, membership, or adjustment
data entry . It controls access to the data entered by a specific user ID. Sessions are
balanced, queued, and then posted to the institution’s financial system. Sessions must
be posted to enter a matching gift or pledge payment, to make an adjustment, or to
process giving clubs or acknowledgements.

In PeopleSoft Enterprise Learning Management, a single meeting day of an activity
(that is, the period of time between start and finish times within a day). The session
stores the specific date, location, meeting time, and instructor. Sessions are used for
scheduled training.

In PeopleSoft Enterprise Learning Management, enables you to set up common
activity characteristics that may be reused while scheduling a PeopleSoft Enterprise
Learning Management activity—characteristics such as days of the week, start and
end times, facility and room assignments, instructors, and equipment. A session
pattern template can be attached to an activity that is being scheduled. Attaching a
template to an activity causes all of the default template information to populate

the activity session pattern.

In PeopleSoft Enterprise Incentive Management, a relationship object type that
associates a configuration plan with any structure node.

In PeopleSoft Business Planning, a named planning method similar to a driver
expression, but which you can set up globally for shared use within a single planning
application or to be shared between multiple planning applications through PeopleSoft
Enterprise Warehouse.

With single signon, users can, after being authenticated by a PeopleSoft application
server, access a second PeopleSoft application server without entering a user ID or
password.

In PeopleSoft Enterprise Campus Solutions, a process that relates a particular
transaction to the source of the charge or financial aid. On selected pages, you can drill
down into particular charges.

In commitment control, any transaction generated in a PeopleSoft or third-party
application that is integrated with commitment control and which can be checked
against commitment control budgets. For example, a pre-encumbrance, encumbrance,
expenditure, recognized revenue, or collected revenue transaction.

See communication key.

A user-defined shorthand key that designates several ChartKeys to be used for voucher
entry. Percentages can optionally be related to each ChartKey in a SpeedChart
definition.

A code representing a combination of ChartField values. SpeedTypes simplify the
entry of ChartFields commonly used together.

A method of consolidating selected partner offerings with the offerings from the
enterprise’s other partners.

In PeopleSoft Enterprise Campus Solutions, a standard letter code used to identify
each letter template available for use in mail merge functions. Every letter generated in
the system must have a standard letter code identification.

Account required by a regulatory authority for recording and reporting financial
results. In PeopleSoft, this is equivalent to the Alternate Account (ALTACCT)
ChartField.

255

Glossary

256

step

storage level

subcustomer qualifier

Summary ChartField

summary ledger

summary time period

summary tree

syndicate

system function

TableSet

TableSet sharing

target currency

tax authority

template

territory

3C engine

In PeopleSoft Sales Incentive Management, a collection of sections in a plan. Each
step corresponds to a step in the job run.

In PeopleSoft Inventory, identifies the level of a material storage location. Material
storage locations are made up of a business unit, a storage area, and a storage level.
You can set up to four storage levels.

A value that groups customers into a division for which you can generate detailed
history, aging, events, and profiles.

You use summary ChartFields to create summary ledgers that roll up detail amounts
based on specific detail values or on selected tree nodes. When detail values are
summarized using tree nodes, summary ChartFields must be used in the summary
ledger data record to accommodate the maximum length of a node name (20
characters).

An accounting feature used primarily in allocations, inquiries, and PS/nVision
reporting to store combined account balances from detail ledgers. Summary ledgers
increase speed and efficiency of reporting by eliminating the need to summarize

detail ledger balances each time a report is requested. Instead, detail balances are
summarized in a background process according to user-specified criteria and stored on
summary ledgers. The summary ledgers are then accessed directly for reporting.

In PeopleSoft Business Planning, any time period (other than a base time period) that is
an aggregate of other time periods, including other summary time periods and base
time periods, such as quarter and year total.

A tree used to roll up accounts for each type of report in summary ledgers. Summary
trees enable you to define trees on trees. In a summary tree, the detail values are really
nodes on a detail tree or another summary tree (known as the basis tree). A summary
tree structure specifies the details on which the summary trees are to be built.

To distribute a production version of the enterprise catalog to partners.

In PeopleSoft Receivables, an activity that defines how the system generates
accounting entries for the general ledger.

A means of sharing similar sets of values in control tables, where the actual data values
are different but the structure of the tables is the same.

Shared data that is stored in many tables that are based on the same TableSets. Tables
that use TableSet sharing contain the SETID field as an additional key or unique
identifier.

The value of the entry currency or currencies converted to a single currency for budget
viewing and inquiry purposes.

In PeopleSoft Enterprise Campus Solutions, a user-defined element that combines a
description and percentage of a tax with an account type, an item type, and a service
impact.

A template is HTML code associated with a web page. It defines the layout of

the page and also where to get HTML for each part of the page. In PeopleSoft, you
use templates to build a page by combining HTML from a number of sources. For

a PeopleSoft portal, all templates must be registered in the portal registry, and each
content reference must be assigned a template.

In PeopleSoft Sales Incentive Management, hierarchical relationships of business
objects, including regions, products, customers, industries, and participants.

Abbreviation for Communications, Checklists, and Comments engine. In PeopleSoft
Enterprise Campus Solutions, the 3C engine enables you to automate business
processes that involve additions, deletions, and updates to communications, checklists,

PeopleSoft Proprietary and Confidential

3C group

TimeSpan

trace usage

transaction allocation

transaction state

Translate table

tree

tuition lock

unclaimed transaction

universal navigation header

update access

user interaction object

PeopleSoft Proprietary and Confidential

Glossary

and comments. You define events and triggers to engage the engine, which runs
the mass change and processes the 3C records (for individuals or organizations)
immediately and automatically from within business processes.

Abbreviation for Communications, Checklists, and Comments group. In PeopleSoft
Enterprise Campus Solutions, a method of assigning or restricting access privileges. A
3C group enables you to group specific communication categories, checklist codes,
and comment categories. You can then assign the group inquiry-only access or update
access, as appropriate.

A relative period, such as year-to-date or current period, that can be used in various
PeopleSoft General Ledger functions and reports when a rolling time frame, rather
than a specific date, is required. TimeSpans can also be used with flexible formulas in
PeopleSoft Projects.

In PeopleSoft Manufacturing, enables the control of which components will be traced
during the manufacturing process. Serial- and lot-controlled components can be
traced. This is maintained in the Item Master record.

In PeopleSoft Enterprise Incentive Management, the process of identifying the owner
of a transaction. When a raw transaction from a batch is allocated to a plan context,
the transaction is duplicated in the PeopleSoft Enterprise Incentive Management
transaction tables.

In PeopleSoft Enterprise Incentive Management, a value assigned by an incentive
rule to a transaction. Transaction states enable sections to process only transactions
that are at a specific stage in system processing. After being successfully processed,
transactions may be promoted to the next transaction state and “picked up” by a
different section for further processing.

A system edit table that stores codes and translate values for the miscellaneous fields in
the database that do not warrant individual edit tables of their own.

The graphical hierarchy in PeopleSoft systems that displays the relationship between
all accounting units (for example, corporate divisions, projects, reporting groups,
account numbers) and determines roll-up hierarchies.

In PeopleSoft Enterprise Campus Solutions, a feature in the Tuition Calculation
process that enables you to specify a point in a term after which students are charged a
minimum (or locked) fee amount. Students are charged the locked fee amount even if
they later drop classes and take less than the normal load level for that tuition charge.

In PeopleSoft Enterprise Incentive Management, a transaction that is not claimed

by a node or participant after the allocation process has completed, usually due to
missing or incomplete data. Unclaimed transactions may be manually assigned to the
appropriate node or participant by a compensation administrator.

Every PeopleSoft portal includes the universal navigation header, intended to appear at
the top of every page as long as the user is signed on to the portal. In addition to
providing access to the standard navigation buttons (like Home, Favorites, and signoff)
the universal navigation header can also display a welcome message for each user.

In PeopleSoft Enterprise Campus Solutions, a type of security access that permits the
user to edit and update data.

See also inquiry access.

In PeopleSoft Sales Incentive Management, used to define the reporting components
and reports that a participant can access in his or her context. All Sales Incentive
Management user interface objects and reports are registered as user interaction
objects. User interaction objects can be linked to a compensation structure node
through a compensation relationship object (individually or as groups).

257

variable

VAT exception

VAT exempt

VAT exoneration

VAT suspension

warehouse

work order

worker

workset

worksheet

worklist

XML schema

yield by operation

zero-rated VAT

In PeopleSoft Sales Incentive Management, the intermediate results of calculations.
Variables hold the calculation results and are then inputs to other calculations.
Variables can be plan variables that persist beyond the run of an engine or local
variables that exist only during the processing of a section.

Abbreviation for value-added tax exception. A temporary or permanent exemption
from paying VAT that is granted to an organization. This terms refers to both VAT
exoneration and VAT suspension.

Abbreviation for value-added tax exempt. Describes goods and services that are not
subject to VAT. Organizations that supply exempt goods or services are unable to
recover the related input VAT. This is also referred to as exempt without recovery.

Abbreviation for value-added tax exoneration. An organization that has been granted a
permanent exemption from paying VAT due to the nature of that organization.

Abbreviation for value-added tax suspension. An organization that has been granted a
temporary exemption from paying VAT.

A PeopleSoft data warehouse that consists of predefined ETL maps, data warehouse
tools, and DataMart definitions.

In PeopleSoft Services Procurement, enables an enterprise to create resource-based
and deliverable-based transactions that specify the basic terms and conditions for
hiring a specific service provider. When a service provider is hired, the service
provider logs time or progress against the work order.

A person who is part of the workforce; an employee or a contingent worker.

A group of people and organizations that are linked together as a set. You can use
worksets to simultaneously retrieve the data for a group of people and organizations
and work with the information on a single page.

A way of presenting data through a PeopleSoft Business Analysis Modeler interface
that enables users to do in-depth analysis using pivoting tables, charts, notes, and
history information.

The automated to-do list that PeopleSoft Workflow creates. From the worklist, you
can directly access the pages you need to perform the next action, and then return to
the worklist for another item.

An XML definition that standardizes the representation of application messages,
component interfaces, or business interlinks.

In PeopleSoft Manufacturing, the ability to plan the loss of a manufactured item on an
operation-by-operation basis.

Abbreviation for zero-rated value-added tax. A VAT transaction with a VAT code that
has a tax percent of zero. Used to track taxable VAT activity where no actual VAT
amount is charged. Organizations that supply zero-rated goods and services can still
recover the related input VAT. This is also referred to as exempt with recovery.

PeopleSoft Proprietary and Confidential

Index

additional documentation x
API, common library 3
API, database 5

API, JDEBASE 6
application fundamentals ix

Business Function Builder, DLLs 36
business functions
calling APIs from 7
creating C business functions 39
creating event rule business
functions 49

caches
calling JDECACHE APIs 23
retrieving data from 24
using cache business functions 22
using programming standards 23
callback functions 13
Cdecl 8
comments, submitting xiv
common elements Xiv
contact information Xiv
cross-references xiii
cursor, cache
closing 32
moving 30
opening 29
resetting 32
Customer Connection website X

data structures

JDEDATE 4
MATH NUMERIC 3
DLLs 36
documentation

printed x

related x

updates x

DOM parser 10

PeopleSoft Proprietary and Confidential

glossary 239

handles 6

JDB_InitUser API 26

JDEB_InitBhvr API 23

JDECACHE API 19

jdeCacheAdd API 23, 27,29
jdeCacheCloseCursor API 29, 32
jdeCacheDelete API 31
jdeCacheDeleteAll API 31
jdeCacheFetch API 30
jdeCacheFetchPosition API 30, 31, 32
jdeCacheFetchPositionByRef API 32
JdeCacheGETNumCursors API 21
jdeCacheGetNumRecords API 21
jdeCachelnit API 21, 26, 27, 28
jdeCachelnitMultipleIndex 26
jdeCachelnitMultipleIndex API 21, 26
jdeCACHEINITMultipleIndex API 23
jdeCachelnitMultipleIndexUser API 21
jdeCachelnitUser AP1 21
jdeCacheOpenCursor API 23, 29
jdeCacheResetCursor API 32
jdeCacheTerminate API 28
jdeCacheTerminateALL API 28
jdeCacheUpdate API 31

jdeCachlnit APT 23

JDEDATE 4

JDEKRNL 19

MATH _NUMERIC 3
MMA Partners x

notes xiii

ODBC 5

259

Index

260

parsers
DOM 9

SAX 9

PeopleBooks

ordering x

PeopleCode, typographical
conventions Xii

PeopleSoft application fundamentals
prerequisites ix

printed documentation X

related documentation x

SAX parser 9
Stdcall 7
suggestions, submitting xiv

terms 239
typographical conventions xii

Visual Basic program 9
visual cues xiii

warnings Xxiii

XercesWrapper 9

X

PeopleSoft Proprietary and Confidential

	toc
	Open Source Disclosure
	Contents
	About This PeopleBook
	PeopleSoft Application Prerequisites
	PeopleSoft Application Fundamentals
	Documentation Updates and Printed Documentation
	Obtaining Documentation Updates
	Ordering Printed Documentation
	Web
	Telephone
	Email

	Additional Resources
	Typographical Conventions and Visual Cues
	Typographical Conventions
	Visual Cues
	Notes
	Warnings
	Cross-References

	Country, Region, and Industry Identifiers
	Country Identifiers
	Region Identifiers
	Industry Identifiers

	Currency Codes

	Comments and Suggestions
	Common Elements Used in PeopleBooks
	APIs and Business Functions Preface
	PeopleSoft Products
	PeopleSoft Tools API and Business Functions

	Getting Started with PeopleSoft Tools APIs and Business Function
	PeopleSoft Tools APIs and Business Functions Overview
	Other Sources of Information

	PeopleSoft EnterpriseOne Tools Business Functions and APIs Imple

	Working with APIs
	Understanding APIs
	APIs
	Common Library APIs
	MATH_NUMERIC Data Type
	JDEDATE Data Type

	Database APIs
	Standards and Portability
	PeopleSoft EnterpriseOne ODBC
	Standard JDEBASE API Categories
	Connecting to a Database
	Understanding Database Communication Steps

	Calling APIs
	Calling an API from an External Business Function
	Stdcall Calling Convention
	Cdecl Calling Convention

	Calling a Visual Basic Program from PeopleSoft EnterpriseOne Sof

	Understanding the SAX Parser
	The SAX Parser
	Examples of SAX Parser Usage
	Example Context Data Structure
	Example Main Function
	Example Callback Functions

	Example of a SAX Parsing Sequence

	Understanding Caching
	Caching
	When to Use JDECACHE
	Performance Considerations

	The JDECACHE API set
	JDECACHE Management APIs
	JDECACHE Manipulation APIs

	Working with JDECACHE
	Prerequisites
	Understanding JDECACHE Standards
	Cache Business Function Source Description
	Cache Programming Standards

	Calling JDECACHE APIs
	Setting Up Indices
	Initializing the Cache
	Example: Index Definition Structure

	Using an Index to Access the Cache
	Example: JDECACHE Internal Index Definition Structure

	Using the jdeCacheInit/jdeCacheTerminate Rule
	Using the Same Cache in Multiple Business Functions or Forms

	Working with JDECACHE Cursors
	Opening a JDECACHE Cursor
	Using the JDECACHE data set
	Cursor-Advancing APIs
	Non-Cursor-Advancing APIs

	Updating Records
	Deleting Records
	Using the jdeCacheFetchPosition API
	Using the jdeCacheFetchPositionByRef API
	Resetting the Cursor
	Closing the Cursor
	Using JDECACHE Multiple Cursor Support
	Using JDECACHE Partial Keys

	Business Functions
	Understanding Business Functions
	Components of a Business Function
	How Distributed Business Functions Work
	C Business Functions
	Header File Sections
	Example: Business Function Header File
	Source File Sections
	Example: Business Function Source File

	Business Function Event Rules

	Working with Transaction Master Business Functions
	Creating Transaction Master Business Functions
	Begin Document
	Special Logic or Processing Required
	Hook Up Tips
	Common Parameters
	Application-Specific Parameters

	Edit Line
	Special Logic or Processing Required
	Typical Uses and Hookup
	Common Parameters

	Edit Document
	Special Logic or Processing Required
	Hook Up Tips
	Common Parameters
	Application-Specific Parameters

	End Document
	Hook-Up Tips
	Common Parameters
	Application-Specific Parameters

	Clear Cache
	Special Logic or Processing Required
	Common Parameters

	Cancel Document
	Special Logic or Processing Required
	Common Parameter

	Building Transaction Master Business Functions
	Single-Record Processing
	Interactive Program Flow Example
	Batch Program Flow Example

	Document Processing
	Program Flow Example

	Understanding Master File Master Business Functions
	MBF Information Structure
	Standard Parameters for Single-Record Master Business Functions
	Application-Specific Control Parameters (Example: Address Book)
	Application Parameters (Example: Address Book)

	Master Business Function Impact on Performance

	Working with Business Functions
	Prerequisite
	Creating a Custom DLL
	Specifying a Custom DLL for a Custom Business Function

	Working with Business Function Builder
	Setting Build Options
	Using the Utility Programs
	Reading Build Output
	Makefile Section
	Begin DLL Section
	Compile Section
	Link Section
	Rebase Section
	Summary Section

	Resolving Errors
	Understanding Business Function Processing Failovers
	Building All Business Functions

	Understanding Business Function Documentation
	Creating Business Function Documentation
	Viewing Documentation from Business Function Documentation Viewe

	PeopleSoft EnterpriseOne APIs
	General APIs
	jdeCreateGuid
	jdeCreateGuidString
	jdeGuidCompare
	jdeGuidToString
	jdeEncryptWKey
	jdeDecryptWKey
	JDB_TextSearchClearSelection
	JDB_TextSearchClearSequencing
	JDB_TextSearchCloseView
	JDB_TextSearchFetch
	JDB_TextSearchOpenView
	JDB_TextSearchSelect
	JDB_TextSearchSetSelection
	JDB_TextSearchSetSequencing
	TextSearchFullIndexing
	Additional Notes

	TextSearchIncrementIndexing
	Additional Notes

	TextSearchIndexClearing
	Additional Notes

	TextSearchIndexOptimizing
	Additional Notes

	Media Object APIs
	jdeGT_CloseTable
	jdeGT_DeleteData/jdeGT_DeleteDataKeyStr
	Additional Notes

	jdeGT_FetchData/jdeGT_FetchDataEx
	Additional Notes

	jdeGT_InsertData/jdeGT_InsertDataKeyStr
	Additional Notes

	jdeGT_OpenTable
	jdeGT_SelectData/jdeGT_SelectDataKeyStr
	Additional Notes

	jdeGT_UpdateData/jdeGT_UpdateDataKeyStr
	Additional Notes

	jdeGTAddUpdate_AllMOType/ jdeGTAddUpdate_AllMOTypeKeyStr/ jdeGTA
	Additional Notes

	jdeGTAddUpdate_HTML/jdeGTAddUpdate_HTMLKeyStr
	Additional Notes

	jdeGTAddUpdate_Image/jdeGTAddUpdate_ImageKeyStr
	Additional Notes

	jdeGTAddUpdate_OLE/jdeGTAddUpdate_OLEKeyStr
	Additional Notes

	jdeGTAddUpdate_Shortcut/jdeGTAddUpdate_ShortcutKeyStr
	Additional Notes

	jdeGTAddUpdate_Text/jdeGTAddUpdate_TextKeyStr
	Additional Notes

	jdeGTAddUpdate_Vendor/jdeGTAddUpdate_VendorKeyStr
	Additional Notes

	jdeGTDelete_AllHTML/jdeGTDelete_AllHTMLKeyStr
	Additional Notes

	jdeGTDelete_AllImage/jdeGTDelete_AllImageKeyStr
	Additional Notes

	jdeGTDelete_AllMOType/jdeGTDelete_AllMOTypeStr
	Additional Notes

	jdeGTDelete_AllOLE/jdeGTDelete_AllOLEKeyStr
	Additional Notes

	jdeGTDelete_AllShortcut/jdeGTDelete_AllShortcutKeyStr
	Additional Notes

	jdeGTDelete_AllText/jdeGTDelete_AllTextKeyStr
	Additional Notes

	jdeGTDelete_AllVendor/jdeGTDelete_AllVendorKeyStr
	Additional Notes

	jdeGTDelete_HTML/jdeGTDelete_HTMLKeyStr
	Additional Notes

	jdeGTDelete_Image/jdeGTDelete_ImageKeyStr
	Additional Notes

	jdeGTDelete_OLE/jdeGTDelete_OLEKeyStr
	Additional Notes

	jdeGTDelete_Shortcut/jdeGTDelete_ShortcutKeyStr
	Additional Notes

	jdeGTDelete_Text/jdeGTDelete_TextKeyStr
	Additional Notes

	jdeGTDelete_Vendor/jdeGTDelete_VendorKeyStr
	Additional Notes

	jdeGTFreeMOData
	Additional Notes

	jdeGTGet_AllMOType/jdeGTGet_AllMOTypeKeyStr
	Additional Notes

	jdeGTGet_GenericText/jdeGTGet_GenericTextKeyStr
	Additional Notes

	jdeGTGet_HTML/jdeGTGet_HTMLKeyStr
	Additional Notes

	jdeGTGet_Image/jdeGTGet_ImageKeyStr
	Additional Notes

	jdeGTGet_OLE/jdeGTGet_OLEKeyStr
	Additional Notes

	jdeGTGet_RTFText/jdeGTGet_RTFTextKeyStr
	Additional Notes

	jdeGTGet_Shortcut/jdeGTGet_ShortcutKeyStr
	Additional Notes

	jdeGTGet_Vendor/jdeGTGet_VendorKeyStr
	Additional Notes

	jdeGTGetCount/jdeGTGetCountKeyStr
	Additional Notes

	jdeValidateGTExist/jdeValidateGTExistWithKeyStr
	Additional Notes

	Messaging and Workflow APIs
	DoSendMessagev3

	SAX Interface Functions
	Structure Used With SAX Parser Interface Functions
	XRCS_initEngine
	XRCS_getParserByType
	XRCS_getParser (DOM only)
	XRCS_setCallback
	XRCS_setCallbackWithOption
	XRCS_parseXMLFile
	XRCS_parseXMLString
	XRCS_freeParser
	XRCS_terminateEngine

	Callback Functions
	Errors and Warnings
	Callback Function Format 1
	Callback Function Format 2
	Callback Function Format 3
	Callback Function Format 4
	Callback Function Format 5

	Glossary of PeopleSoft Terms
	Index

