
EnterpriseOne Tools 8.94
PeopleBook: Connectors

November 2004

EnterpriseOne Tools 8.94 PeopleBook: Connectors
SKU E1_TOOLS8.94TCN-B 1104
Copyright © 2004 PeopleSoft, Inc. All rights reserved.
All material contained in this documentation is proprietary and confidential to PeopleSoft, Inc. ("PeopleSoft"), protected
by copyright laws and subject to the nondisclosure provisions of the applicable PeopleSoft agreement. No part of this
documentation may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, including, but not
limited to, electronic, graphic, mechanical, photocopying, recording, or otherwise without the prior written permission of
PeopleSoft.

This documentation is subject to change without notice, and PeopleSoft does not warrant that the material contained in this
documentation is free of errors. Any errors found in this document should be reported to PeopleSoft in writing.

The copyrighted software that accompanies this document is licensed for use only in strict accordance with the applicable
license agreement which should be read carefully as it governs the terms of use of the software and this document, including the
disclosure thereof.
PeopleSoft, PeopleTools, PS/nVision, PeopleCode, PeopleBooks, PeopleTalk, and Vantive are registered trademarks, and Pure
Internet Architecture, Intelligent Context Manager, and The Real-Time Enterprise are trademarks of PeopleSoft, Inc. All other
company and product names may be trademarks of their respective owners. The information contained herein is subject to
change without notice.

Open Source Disclosure
PeopleSoft takes no responsibility for its use or distribution of any open source or shareware software or documentation and
disclaims any and all liability or damages resulting from use of said software or documentation. The following open source
software may be used in PeopleSoft products and the following disclaimers are provided.
Apache Software Foundation
This product includes software developed by the Apache Software Foundation (http://www.apache.org/). Copyright (c)
1999-2000 The Apache Software Foundation. All rights reserved.
THIS SOFTWARE IS PROVIDED "AS IS" ANDANY EXPRESSED OR IMPLIEDWARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIEDWARRANTIES OFMERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION
OR ITS CONTRIBUTORS BE LIABLE FOR ANYDIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
ANDONANY THEORYOF LIABILITY,WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OROTHERWISE) ARISING IN ANYWAYOUTOF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCHDAMAGE.
OpenSSL
Copyright (c) 1998-2003 The OpenSSL Project. All rights reserved.
THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT "AS IS" ANDANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIEDWARRANTIES OFMERCHANTABILITY
AND FITNESS FORA PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT
OR ITS CONTRIBUTORS BE LIABLE FOR ANYDIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
ANDONANY THEORYOF LIABILITY,WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OROTHERWISE) ARISING IN ANYWAYOUTOF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCHDAMAGE.
SSLeay
Copyright (c) 1995-1998 Eric Young. All rights reserved.
THIS SOFTWARE IS PROVIDED BY ERIC YOUNG "AS IS" ANDANY EXPRESS OR IMPLIEDWARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIEDWARRANTIES OFMERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOROR CONTRIBUTORS BE
LIABLE FORANYDIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED ANDONANY THEORYOF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANYWAYOUTOF THE USE OF THIS SOFTWARE, EVEN IF ADVISEDOF THE POSSIBILITY OF SUCH
DAMAGE.
Loki Library
Copyright (c) 2001 by Andrei Alexandrescu. This code accompanies the book:
Alexandrescu, Andrei. "Modern C++ Design: Generic Programming and Design Patterns Applied". Copyright (c) 2001.
Addison-Wesley. Permission to use, copy, modify, distribute and sell this software for any purpose is hereby granted without
fee, provided that the above copyright notice appear in all copies and that both that copyright notice and this permission notice
appear in supporting documentation.

Contents

General Preface
About This PeopleBookxi
PeopleSoft Application Prerequisites.. .xi
PeopleSoft Application Fundamentals.. .xi
Documentation Updates and Printed Documentation.. .xii

Obtaining Documentation Updates..xii
Ordering Printed Documentation..xii

Additional Resources.. .xiii
Typographical Conventions and Visual Cues.. .xiv

Typographical Conventions..xiv
Visual Cues..xv
Country, Region, and Industry Identifiers..xv
Currency Codes..xvi

Comments and Suggestions.. .xvi
Common Elements Used in PeopleBooks.. .xvi

Preface
Connectors Preface... .xix
PeopleSoft Products.. .xix
PeopleSoft Connectors. .xix
Additional Resources.. .xix

Chapter 1
Getting Started with PeopleSoft Tools Connectors... .1
PeopleSoft Tools Connectors Overview... .1
PeopleSoft Tools Connectors Implementation.. .2

Chapter 2
Understanding COM Interoperability...3
COM Interoperability. .3
PeopleSoft EnterpriseOne COM Interoperability. .3

COM Objects..4
COM Interoperability Usage...4

PeopleSoft Proprietary and Confidential iii

Contents

Chapter 3
Understanding PeopleSoft EnterpriseOne COM Server.. .7
PeopleSoft EnterpriseOne COM Server.. .7
COM Connector. .8
GenCOM Components.. .8

Understanding GenCOM...9
Installation Information..10
ProgID...10
Setting Up an Environment for GenCOM...10
Running GenCOM...12
Using GenCOM Output.14

COM Wrapper CheckVer.. .17
Running CheckVer..17

Chapter 4
Deploying the COM Server..... .19
Understanding COM Server Deployment. .19
DCOM Server Setup.. .20

Understanding DCOM Server Setup..20
Setting Up DCOM for a Server Environment..20
Setting Up Security on the COM Server..20
Setting Up the Identity as Interactive User..21
Setting Up DCOM for a Client Environment..21

COM Connector Installation.. .21
Installing COM Connector on a Non-PeopleSoft EnterpriseOne Client Environment.22

OCM Support for the COM Connector.. .23
BHVRCOM Using COM... .24
IJDETimeZone Interface.. .. .25
Inbound XML Requests Using COM Server. .26
COM Reliability. .26
COM Tracing and Logging.. .27

Resolving Tracing Issues..27

Chapter 5
Using COM Transactions...29
Understanding COM Interoperability Transactions.. .29

Outline for Calling Prepare and Commit.29
COM+ Two-Phase Commit Transaction..30

iv PeopleSoft Proprietary and Confidential

Contents

Setting Up the COM+ Environment.. .30
Running a COM+ Transactions.. .31

Understanding COM+ Transactions...31
Creating a Transactional Object.32
Creating a Transactional Client.35

Running a Distributed Transaction.. .36
Understanding COM+ Transaction..36
Creating MTStest for a Distributed Transaction..36
Creating ClientPrj for a Distributed Transaction..38
Registering the COM+ .dll.39

Chapter 6
Using COM Connector Events - Classic Events.. .41
Understanding COM Connector Events.. .41
Registering Components.. .42
Subscribing to Events.. .42
Logging COM Events.. .42
Implementing PeopleSoft EnterpriseOne Interfaces.. .42
Implementing a PeopleSoft EnterpriseOne Interface.. .43

Creating a COM+ Component..43
Logging on to the COM Connector.44
Subscribing to Events..48
Integrating with BizTalk..52
Adding a New Application..55
Installing the Event Class..55

Registering EventSink for Persistent Subscription.. .56

Chapter 7
Using COM Connector Events - Guaranteed Events.. .59
Understanding COM Connector Events.. .59
Registering Components.. .60
Subscribing to Events.. .60
Logging COM Events.. .60
Implementing PeopleSoft EnterpriseOne Interfaces.. .60
Implementing a PeopleSoft EnterpriseOne Interface.. .61

Creating a COM+ Component..61
Logging on to the COM Connector.62
Subscribing to an Event.68

PeopleSoft Proprietary and Confidential v

Contents

Integrating with BizTalk.77
Adding a New Application..81
Installing the Event Class..81

Registering EventSink for Persistent Subscription.. .81

Chapter 8
Understanding Java Interoperability Solution.. .85
Java Interoperability Solution.. .85

Chapter 9
Understanding the Dynamic Java Connector... .89
Dynamic Java Connector.. .89
Designing the Dynamic Java Connector. .90

Business Function Spec Metadata Introspection..90
Business Function Spec Metadata Validation..94
SpecImageConsole.95

Installing the Dynamic Java Connector. .98
Running the Dynamic Java Connector. .99

Calling a Business Function...99
BSFN Cache..100
Transaction Using the Dynamic Java Connector.100
OCM Support for the Dynamic Java Connector.101

Understanding User Session Management for the Dynamic Java Connector. .101
User Session Management for the Dynamic Java Connector.102
Inbound XML Request Using the Dynamic Java Connector.103
Logging for the Dynamic Java Connector.103
Exception Handling for the Dynamic Java Connector.104

Understanding Sample Applications.. .104
Sample Applications..104
Compiling the Sample Applications..105
Running the Sample Applications..106

Chapter 10
Understanding the Java Connector.... .107
Java Connector and PeopleSoft EnterpriseOne.. .107
Designing the Java Connector.. .109

GenJava..109

vi PeopleSoft Proprietary and Confidential

Contents

Java Versioning..110
GenJava Client Environment..111

Installing a Java Connector. .111
Running the Java Connector. .112

Using GenJava..112
Using GenJava Output.114
Transactions Using the Java Connector.117
Using BHVRCOM through the Java Connector.117
OCM Support for the Java Connector.118

User Session Management for the Java Connector. .119
Understanding User Session Management for the Java Connector.119
Inbound XML Request Using the Java Connector.120

Exception Handling for the Java Connector. .120
Understanding Exception Handling for the Java Connector.120
Fatal Exception..121
Recoverable Exception..121
Reject.121
Exception Details.121
Example: Java Connector Exception Handling Sample Code..124

Chapter 11
Using Java Connector Events - Classic Events.. .129
Understanding Java Connector Events.. .129
Developing the Java Client.. .131

Creating a Java Class to Implement an Interface..131
Creating a Java Client Application to Subscribe to an Event.132
Compiling the Java Client.134
Running the Java Client.134

Chapter 12
Using Java Connector Events - Guaranteed Events...137
Understanding Java Connector Events.. .137

Prerequisites..137
Developing a Java Connector Events Application.. .139

Understanding Java Connector Events Application Development.139
Introspection Operations..139
Asynchronous Event Sessions...141
Synchronous Event Sessions..143

PeopleSoft Proprietary and Confidential vii

Contents

Using the Sample Connector Events Client. .145
Understanding Connector Events Client Tool.146
Prerequisites for Using the Sample Connector Events Client.146
Using the Connector Events Client Tool.146
Building the Sample Connector Events Client.146
Configuring the Sample Connector Events Client.148
Running the Sample Connector Events Client..148

Chapter 13
Understanding J2EE Connector Architecture Resource Adapter.. .149
J2EE Connector Architecture Resource Adapter. .149
JCA 1.0 Specification Optional Features.. .150
Assembly and Components.. .152

Components..152
Deployment and Configuration.. .153

Security Permissions..153
jdeinterop.ini Settings..153
jdbj.ini Settings..153
jdelog.properties Settings..154
CLASSPATH Settings..154
Configurable Properties..154
Java Naming and Directory Interface Settings..155

Common Client Interface.. .155
Implementing the Common Client Interface..155

Signon Types.. .157
Container-Managed Signon..157
Component-Managed Signon...157

Subclasses.. .158
Input and Output Data.. .159
Logging.. .159
Exceptions.. .160
Samples.. .160

Prepare the Samples for Deployment...160
Deploy the Sample Applications..161
Deploy the Sample Applications to WebSphere 5.x.161
Run the Sample Applications..162

Checklist for Resolving Issues.. .163

viii PeopleSoft Proprietary and Confidential

Contents

Chapter 14
Understanding jdeinterop.ini..165
Settings for the jdeinterop.ini File. .165
[OCM].. .165
[CACHE].. .166
[JDENET].. .166
[SERVER].. .167
[SECURITY]... .167
[DEBUG].. .167
[INTEROP]. .169
[EVENTS] - Classic Events Delivery.. .169
[EVENTS] - Guaranteed Events Delivery.. .170
[JMSEVENTS] - Guaranteed Events Delivery.. .171

Chapter 15
Understanding jdelog.properties File... .173
Settings for the jdelog.properties File.. .173

Chapter 16
Understanding iJDEScript.. .175
iJDEScript. .175
iJDEScript Commands... .176

Build Command...176
Call Command...176
Define Command...176
Define! Command...177
Exit Command...177
Help Command...177
Import Command...178
Importlib Command..178
Interface Command...179
Library Command...179
Login Command...179
Logout Command....180
Opt Command...180
Rename Command...180
Say Command...181
Sub Command...181

PeopleSoft Proprietary and Confidential ix

Contents

System Command....182

Glossary of PeopleSoft Terms...... .183

Index203

x PeopleSoft Proprietary and Confidential

About This PeopleBook

PeopleBooks provide you with the information that you need to implement and use PeopleSoft applications.

This preface discusses:

• PeopleSoft application prerequisites.
• PeopleSoft application fundamentals.
• Documentation updates and printed documentation.
• Additional resources.
• Typographical conventions and visual cues.
• Comments and suggestions.
• Common elements in PeopleBooks.

Note. PeopleBooks document only page elements, such as fields and check boxes, that require additional
explanation. If a page element is not documented with the process or task in which it is used, then either
it requires no additional explanation or it is documented with common elements for the section, chapter,
PeopleBook, or product line. Elements that are common to all PeopleSoft applications are defined in this
preface.

PeopleSoft Application Prerequisites
To benefit fully from the information that is covered in these books, you should have a basic understanding
of how to use PeopleSoft applications.

You might also want to complete at least one PeopleSoft introductory training course, if applicable.

You should be familiar with navigating the system and adding, updating, and deleting information by using
PeopleSoft menus, and pages, forms, or windows. You should also be comfortable using the World Wide Web
and the Microsoft Windows or Windows NT graphical user interface.

These books do not review navigation and other basics. They present the information that you need to use the
system and implement your PeopleSoft applications most effectively.

PeopleSoft Application Fundamentals
Each application PeopleBook provides implementation and processing information for your PeopleSoft
applications. For some applications, additional, essential information describing the setup and design of your
system appears in a companion volume of documentation called the application fundamentals PeopleBook.
Most PeopleSoft product lines have a version of the application fundamentals PeopleBook. The preface of each
PeopleBook identifies the application fundamentals PeopleBooks that are associated with that PeopleBook.

PeopleSoft Proprietary and Confidential xi

General Preface

The application fundamentals PeopleBook consists of important topics that apply to many or all PeopleSoft
applications across one or more product lines. Whether you are implementing a single application, some
combination of applications within the product line, or the entire product line, you should be familiar with
the contents of the appropriate application fundamentals PeopleBooks. They provide the starting points
for fundamental implementation tasks.

Documentation Updates and Printed Documentation
This section discusses how to:

• Obtain documentation updates.

• Order printed documentation.

Obtaining Documentation Updates
You can find updates and additional documentation for this release, as well as previous releases, on the
PeopleSoft Customer Connection website. Through the Documentation section of PeopleSoft Customer
Connection, you can download files to add to your PeopleBook Library. You’ll find a variety of useful and
timely materials, including updates to the full PeopleSoft documentation that is delivered on your PeopleBooks
CD-ROM.

Important! Before you upgrade, you must check PeopleSoft Customer Connection for updates to the upgrade
instructions. PeopleSoft continually posts updates as the upgrade process is refined.

See Also
PeopleSoft Customer Connection, https://www.peoplesoft.com/corp/en/login.jsp

Ordering Printed Documentation
You can order printed, bound volumes of the complete PeopleSoft documentation that is delivered on your
PeopleBooks CD-ROM. PeopleSoft makes printed documentation available for each major release shortly
after the software is shipped. Customers and partners can order printed PeopleSoft documentation by using
any of these methods:

• Web
• Telephone
• Email

Web
From the Documentation section of the PeopleSoft Customer Connection website, access the PeopleBooks
Press website under the Ordering PeopleBooks topic. The PeopleBooks Press website is a joint venture
between PeopleSoft and MMA Partners, the book print vendor. Use a credit card, money order, cashier’s
check, or purchase order to place your order.

Telephone
Contact MMA Partners at 877 588 2525.

xii PeopleSoft Proprietary and Confidential

General Preface

Email
Send email to MMA Partners at peoplesoftpress@mmapartner.com.

See Also
PeopleSoft Customer Connection, https://www.peoplesoft.com/corp/en/login.jsp

Additional Resources
The following resources are located on the PeopleSoft Customer Connection website:

Resource Navigation

Application maintenance information Updates + Fixes

Business process diagrams Support, Documentation, Business Process Maps

Interactive Services Repository Interactive Services Repository

Hardware and software requirements Implement, Optimize + Upgrade, Implementation Guide,
Implementation Documentation & Software, Hardware and
Software Requirements

Installation guides Implement, Optimize + Upgrade, Implementation Guide,
Implementation Documentation & Software, Installation
Guides and Notes

Integration information Implement, Optimize + Upgrade, Implementation Guide,
Implementation Documentation and Software, Pre-built
Integrations for PeopleSoft Enterprise and PeopleSoft
EnterpriseOne Applications

Minimum technical requirements (MTRs) (EnterpriseOne
only)

Implement, Optimize + Upgrade, Implementation Guide,
Supported Platforms

PeopleBook documentation updates Support, Documentation, Documentation Updates

PeopleSoft support policy Support, Support Policy

Prerelease notes Support, Documentation, Documentation Updates,
Category, Prerelease Notes

Product release roadmap Support, Roadmaps + Schedules

Release notes Support, Documentation, Documentation Updates,
Category, Release Notes

Release value proposition Support, Documentation, Documentation Updates,
Category, Release Value Proposition

Statement of direction Support, Documentation, Documentation Updates,
Category, Statement of Direction

PeopleSoft Proprietary and Confidential xiii

General Preface

Resource Navigation

Troubleshooting information Support, Troubleshooting

Upgrade documentation Support, Documentation, Upgrade Documentation and
Scripts

Typographical Conventions and Visual Cues
This section discusses:

• Typographical conventions.
• Visual cues.
• Country, region, and industry identifiers.
• Currency codes.

Typographical Conventions
This table contains the typographical conventions that are used in PeopleBooks:

Typographical Convention or Visual Cue Description

Bold Indicates PeopleCode function names, business function
names, event names, system function names, method
names, language constructs, and PeopleCode reserved
words that must be included literally in the function call.

Italics Indicates field values, emphasis, and PeopleSoft or other
book-length publication titles. In PeopleCode syntax,
italic items are placeholders for arguments that your
program must supply.

We also use italics when we refer to words as words or
letters as letters, as in the following: Enter the letterO.

KEY+KEY Indicates a key combination action. For example, a plus
sign (+) between keys means that you must hold down
the first key while you press the second key. For ALT+W,
hold down the ALT key while you press the W key.

Monospace font Indicates a PeopleCode program or other code example.

“ ” (quotation marks) Indicate chapter titles in cross-references and words that
are used differently from their intended meanings.

xiv PeopleSoft Proprietary and Confidential

General Preface

Typographical Convention or Visual Cue Description

. . . (ellipses) Indicate that the preceding item or series can be repeated
any number of times in PeopleCode syntax.

{ } (curly braces) Indicate a choice between two options in PeopleCode
syntax. Options are separated by a pipe (|).

[] (square brackets) Indicate optional items in PeopleCode syntax.

& (ampersand) When placed before a parameter in PeopleCode syntax,
an ampersand indicates that the parameter is an already
instantiated object.

Ampersands also precede all PeopleCode variables.

Visual Cues
PeopleBooks contain the following visual cues.

Notes
Notes indicate information that you should pay particular attention to as you work with the PeopleSoft system.

Note. Example of a note.

If the note is preceded by Important!, the note is crucial and includes information that concerns what you must
do for the system to function properly.

Important! Example of an important note.

Warnings
Warnings indicate crucial configuration considerations. Pay close attention to warning messages.

Warning! Example of a warning.

Cross-References
PeopleBooks provide cross-references either under the heading “See Also” or on a separate line preceded by
the word See. Cross-references lead to other documentation that is pertinent to the immediately preceding
documentation.

Country, Region, and Industry Identifiers
Information that applies only to a specific country, region, or industry is preceded by a standard identifier in
parentheses. This identifier typically appears at the beginning of a section heading, but it may also appear
at the beginning of a note or other text.

Example of a country-specific heading: “(FRA) Hiring an Employee”

PeopleSoft Proprietary and Confidential xv

General Preface

Example of a region-specific heading: “(Latin America) Setting Up Depreciation”

Country Identifiers
Countries are identified with the International Organization for Standardization (ISO) country code.

Region Identifiers
Regions are identified by the region name. The following region identifiers may appear in PeopleBooks:

• Asia Pacific
• Europe
• Latin America
• North America

Industry Identifiers
Industries are identified by the industry name or by an abbreviation for that industry. The following industry
identifiers may appear in PeopleBooks:

• USF (U.S. Federal)
• E&G (Education and Government)

Currency Codes
Monetary amounts are identified by the ISO currency code.

Comments and Suggestions
Your comments are important to us. We encourage you to tell us what you like, or what you would like to
see changed about PeopleBooks and other PeopleSoft reference and training materials. Please send your
suggestions to:

PeopleSoft Product Documentation Manager PeopleSoft, Inc. 4460 Hacienda Drive Pleasanton, CA 94588

Or send email comments to doc@peoplesoft.com.

While we cannot guarantee to answer every email message, we will pay careful attention to your comments
and suggestions.

Common Elements Used in PeopleBooks
Address Book Number Enter a unique number that identifies the master record for the entity. An

address book number can be the identifier for a customer, supplier, company,
employee, applicant, participant, tenant, location, and so on. Depending on the
application, the field on the form might refer to the address book number as
the customer number, supplier number, or company number, employee or
applicant id, participant number, and so on.

xvi PeopleSoft Proprietary and Confidential

General Preface

As If Currency Code Enter the three-character code to specify the currency that you want to use
to view transaction amounts. This code allows you to view the transaction
amounts as if they were entered in the specified currency rather than the
foreign or domestic currency that was used when the transaction was originally
entered.

Batch Number Displays a number that identifies a group of transactions to be processed by
the system. On entry forms, you can assign the batch number or the system
can assign it through the Next Numbers program (P0002).

Batch Date Enter the date in which a batch is created. If you leave this field blank, the
system supplies the system date as the batch date.

Batch Status Displays a code from user-defined code (UDC) table 98/IC that indicates the
posting status of a batch. Values are:
Blank: Batch is unposted and pending approval.
A: The batch is approved for posting, has no errors and is in balance, but it
has not yet been posted.
D: The batch posted successfully.
E: The batch is in error. You must correct the batch before it can post.
P: The system is in the process of posting the batch. The batch is unavailable
until the posting process is complete. If errors occur during the post, the
batch status changes to E.
U: The batch is temporarily unavailable because someone is working with
it, or the batch appears to be in use because a power failure occurred while
the batch was open.

Branch/Plant Enter a code that identifies a separate entity as a warehouse location, job,
project, work center, branch, or plant in which distribution and manufacturing
activities occur. In some systems, this is called a business unit.

Business Unit Enter the alphanumeric code that identifies a separate entity within a
business for which you want to track costs. In some systems, this is called a
branch/plant.

Category Code Enter the code that represents a specific category code. Category codes are
user-defined codes that you customize to handle the tracking and reporting
requirements of your organization.

Company Enter a code that identifies a specific organization, fund, or other reporting
entity. The company code must already exist in the F0010 table and must
identify a reporting entity that has a complete balance sheet.

Currency Code Enter the three-character code that represents the currency of the transaction.
PeopleSoft EnterpriseOne provides currency codes that are recognized by
the International Organization for Standardization (ISO). The system stores
currency codes in the F0013 table.

Document Company Enter the company number associated with the document. This number, used
in conjunction with the document number, document type, and general ledger
date, uniquely identifies an original document.
If you assign next numbers by company and fiscal year, the system uses the
document company to retrieve the correct next number for that company.

PeopleSoft Proprietary and Confidential xvii

General Preface

If two or more original documents have the same document number and
document type, you can use the document company to display the document
that you want.

Document Number Displays a number that identifies the original document, which can be a
voucher, invoice, journal entry, or time sheet, and so on. On entry forms, you
can assign the original document number or the system can assign it through
the Next Numbers program.

Document Type Enter the two-character UDC, from UDC table 00/DT, that identifies the origin
and purpose of the transaction, such as a voucher, invoice, journal entry,
or time sheet. PeopleSoft EnterpriseOne reserves these prefixes for the
document types indicated:
P: Accounts payable documents.
R: Accounts receivable documents.
T: Time and pay documents.
I: Inventory documents.
O: Purchase order documents.
S: Sales order documents.

Effective Date Enter the date on which an address, item, transaction, or record becomes
active. The meaning of this field differs, depending on the program. For
example, the effective date can represent any of these dates:

• The date on which a change of address becomes effective.
• The date on which a lease becomes effective
• The date on which a price becomes effective.
• The date on which the currency exchange rate becomes effective.
• The date on which a tax rate becomes effective.

Fiscal Period and Fiscal
Year

Enter a number that identifies the general ledger period and year. For many
programs, you can leave these fields blank to use the current fiscal period and
year defined in the Company Names & Number program (P0010)

G/L Date (general ledger
date)

Enter the date that identifies the financial period to which a transaction will be
posted. The system compares the date that you enter on the transaction to the
fiscal date pattern assigned to the company to retrieve the appropriate fiscal
period number and year, as well as to perform date validations.

xviii PeopleSoft Proprietary and Confidential

Connectors Preface

This preface discusses the Connectors PeopleBook.

PeopleSoft Products
This PeopleBook refers to this PeopleSoft product line: PeopleSoft EnterpriseOne Tools.

PeopleSoft Connectors
This PeopleBook discusses Connectors, a member of the PeopleSoft EnterpriseOne Tools suite. Connectors
are point-to-point component-based models that enable third-party applications and PeopleSoft EnterpriseOne
to share logic and data. This PeopleBook provides an overview of the COM and Java connectors, and then
discusses in detail the functional capabilities of each connector.

Additional Resources
The EnterpriseOne Tools 8.94 Web Server Installation PeopleBook is located on Customer Connection. Use
this navigation:

Support, Documentation, Documentation Updates, Release (on the right side, under the Documentation
Updates by: heading), 8.94, EnterpriseOne, EnterpriseOne Tools

PeopleSoft Proprietary and Confidential xix

Preface

xx PeopleSoft Proprietary and Confidential

CHAPTER 1

Getting Started with PeopleSoft Tools Connectors

This chapter provides an overview of preparing to use connectors.

PeopleSoft Tools Connectors Overview
Connectors are point-to-point component-based models that enable third-party applications and PeopleSoft
EnterpriseOne to share logic and data. The PeopleSoft EnterpriseOne connector architecture includes Java and
Component Object Model (COM) connectors and provides:

• Access to business functions
• Session management
• Point of entry
• Connection pooling
• Inbound transaction functionality
• Outbound event functionality

Using connectors provides additional benefits, such as:

• Connectors are scalable
• Connectors provide multi-threading
• Connectors enable concurrent users

PeopleSoft EnterpriseOne supports the COM connector, a Java connector, and a dynamic Java connector.
The COM connector is fully compliant with the Microsoft Component Object Model. You can easily tie
PeopleSoft EnterpriseOne functionality to Visual Basic and VC++ applications. The Java connector is a
portable language, so you can easily tie PeopleSoft EnterpriseOne functionality to Java applications. The
dynamic Java connector provides the same type of functionality as the Java connector, but does not require you
to generate business functions.

The PeopleSoft EnterpriseOne connectors can receive and send XML documents. The connector architecture
provides the capability to expose C and Java APIs for XML documents. Some of the benefits of using
XML documents are:

• You can use XML documents to aggregate business function calls into one object, which reduces network
traffic.

• Because XML processing is based on the connector architecture, XML processing is scalable and multiple
connections can be opened.

• XML processing supports XML CallObject, XMLList, and XMLTrans.

PeopleSoft Proprietary and Confidential 1

Getting Started with PeopleSoft Tools Connectors Chapter 1

Choosing the Connector Solution
Use this list as a guideline to decide which connector is best for you:

• Identify the logic or data that you want to access in PeopleSoft EnterpriseOne.
• Decide whether you want to use business functions exposed through a connector directly or XML documents.

Then decide whether to use a COM connector or a Java connector. If you are using an application server, these
guidelines can help you decide which connector to select:

• If you are using Site Server, Commerce Server, or .NET, consider the COM connector.

• If you are using a J2EE-based application server, consider the Java connector.

• The Java connector supports Java Connector Architecture Resource Adapter (JCA).

See Also
EnterpriseOne Tools 8.94 PeopleBook: Interoperability, “Understanding Interoperability,” Interoperability

PeopleSoft Tools Connectors Implementation
In the planning phase of the implementation, take advantage of all PeopleSoft sources of information, including
the installation guides and troubleshooting information. A complete list of these resources appears in the
preface in About These PeopleBooks, with information about where to find the most current version of each.

To use a connector to retrieve data from or send data to PeopleSoft EnterpriseOne, you must have a valid
PeopleSoft EnterpriseOne user account.

2 PeopleSoft Proprietary and Confidential

CHAPTER 2

Understanding COM Interoperability

This chapter provides an overview of Component Object Model (COM) interoperability and PeopleSoft
EnterpriseOne COM Interoperability.

COM Interoperability
COM enables developers to build systems by assembling reusable components from different vendors. COM
provides logic and data sharing among disparate applications. COM is a binary interoperability specification
and communication convention for software components. It is a single-vendor technology that is available
on Microsoft platforms only. Since most independent software components are also self-contained, they
are frequently called objects or servers.

Being a binary specification, COM is inherently independent of programming languages. Unlike software
libraries or DLLs, which are compiled to specific language or linkage conventions, COM-based software
components are created ready to work with any COM client. For example, a Visual C++ application can use
COM objects created in Visual Basic, or a VBScript within an intranet web page to control a COM object
written in MicroFocus COBOL.

The COM connector provides a mechanism for executing business functions on the PeopleSoft EnterpriseOne
server. You use the GenCOM utility on the Microsoft Windows client to generate wrappers for objects. The
wrappers can be deployed on any machine. You can develop application code for the generated wrappers using
Visual Basic (VB) or C++. Once the objects change in the package, the connector communicates with the
PeopleSoft EnterpriseOne server for login, logoff, transactions, and for each business function execution call.
The COM connector also supports subscribe and publish functionality for PeopleSoft EnterpriseOne events.

Distributed Component Object Model (DCOM) enables COM objects in a distributed environment.

You can use COM+ transactions, which enable COM applications and third-party applications to take part in
distributed transactions.

PeopleSoft EnterpriseOne COM Interoperability
This section provides an overview about PeopleSoft EnterpriseOne COM interoperability and discusses:

• COM objects
• COM interoperability usage

PeopleSoft Proprietary and Confidential 3

Understanding COM Interoperability Chapter 2

Using COM, PeopleSoft EnterpriseOne exposes all master and major business functions through the interface
definition language (IDL) standard. With COM, PeopleSoft EnterpriseOne can pass logic and data requests to
other applications using COM wrappers. These wrappers provide common interoperability methods across
dissimilar systems. A wrapper is attached to each master and major business function and provides stubs
for third-party applications to access.

COM Objects
A business function is a logical collection of C functions and their associated data structures grouped together
to produce a unit of work. COM objects are wrappers around these business functions and data structures.

The interface provided by the COM wrappers has a one-to-one correspondence with the business functions.
For example, if within the system library a business function named B550001 exists, and within this business
function two C functions, named foo1 and foo2 exist with data structures for each function, named DS1
and DS2, the corresponding COM object would be:

Interface IDS1

{

}

Interface IDS2

{

}

Interface IB550001

{

HRESULT foo1 {IDS1 * param, IConnector* conn, long accessNumber);

HRESULT foo2 (IDS2 * param, IConnector* conn, long accessNumber);

}

Their associated program IDs (ProgID) would be:

IDS1 - jdeDS1.jdeDS1.1

IDS2 - jdeDS2.jdeDS2.1

IB550001 - jdeB550001.jdeB550001.1

COM Interoperability Usage
This illustration shows how the COM interoperability solution typically flows:

4 PeopleSoft Proprietary and Confidential

Chapter 2 Understanding COM Interoperability

Generate
GenCOM
wrappers

DLL/Class/IDL/tlb

Interoperability
Administrator

1

Interoperability
Developers

4

3
COM Server

Generated
Wrappers

Component
Architecture

2
Deploy

Interop Clients/Third-
party applications

Interoperability
Developers

5

6

PeopleSoft
EnterpriseOne

Application Suites
 Manufacturing
 Financial
 Dist./Logistics
 HR

Technology Layer
 OS/400
 NT
 UNIX

Communicate

Component
Architecture

7

COM interoperability solution

1. The administrator generates the COM wrappers.
2. The administrator deploys the COM objects to the COM server.
3. The COM server enables communication with the application server so that the generated COM objects
can be used in applications.

4. The COM objects are configured to communicate with the application server once the COM objects
are on the COM server.

5. The DLLs or IDLs from the generated COM objects are copied so that developers can use them.
6. The application developers create the applications.
7. The applications communicate with the COM server.

PeopleSoft Proprietary and Confidential 5

Understanding COM Interoperability Chapter 2

6 PeopleSoft Proprietary and Confidential

CHAPTER 3

Understanding PeopleSoft EnterpriseOne
COM Server

This chapter discusses:

• PeopleSoft EnterpriseOne COM server

• COM connector

• Generated COM (GenCOM) components

• COM Wrapper Version Checker (CheckVer)

PeopleSoft EnterpriseOne COM Server
The PeopleSoft EnterpriseOne COM server contains two parts:

• COM connector.
• Generated PeopleSoft EnterpriseOne COM components (wrappers).

This diagram shows the two parts of the COM server:

Generated
Business Functions

Wrappers
COM Connector

Connector

PeopleSoft
EnterpriseOne Interface

JDENET middleware access to
PeopleSoft EnterpriseOne

Parts of the COM server

PeopleSoft Proprietary and Confidential 7

Understanding PeopleSoft EnterpriseOne COM Server Chapter 3

COM Connector
The COM server provides an interface to PeopleSoft EnterpriseOne, executes business functions within valid
transactions, and provides error processing for interoperability clients. The main component of the COM
server is the COM connector. The COM connector provides COM components that interface with PeopleSoft
EnterpriseOne and hosts the business component DLL generated by the GenCOM tool. The COM connector
also provides the connector component that enables an interoperability client to log in and log out from
PeopleSoft EnterpriseOne. It manages all user sessions connected to the COM server. This table identifies the
binaries that combine to comprise the COM connector:

Binary Explanation

JDECOMConnector2.exe Primary interface for login and createBusinessObjects. Also maintains the created
users and business objects.

JDECOMMN.dll Interface for JDEMathNumeric and JDETimeZone.

Callobject.dll Internal to JDECOMConnector.exe.

Comlog.dll Used for logging, cache, and OCM lookup.

EventClass.dll PeopleSoft EnterpriseOne event class that is implemented to receive events.

EventListener.dll Receives events from the PeopleSoft EnterpriseOne server and publishes the events
to COM+ Events.

EventManager.dll Provides the interface for subscribe, unsubscribe, getList, and getTemplate for
events.

jdeunicode.dll The Unicode library, which is internal to PeopleSoft EnterpriseOne.

OneWorldInterfaceTx.dll Provides the interface for PeopleSoft EnterpriseOne transactions and COM+
two-phase commit transactions.

Xmlinterop.dll Contains the JDENET transport mechanism and the XMLRequest.

The JDECOMConnector2.idl defines the COM interfaces of the COM connector. JDECOMConnector2.idl is
available under the Include directory.

The COM connector is available with the PeopleSoft EnterpriseOne server and client install.

GenCOM Components
This section provides an overview of GenCOM and discusses:

• Installation information.
• ProgID.
• Setting up an environment for GenCOM.
• Running GenCOM.

8 PeopleSoft Proprietary and Confidential

Chapter 3 Understanding PeopleSoft EnterpriseOne COM Server

• Using GenCOM output.

Understanding GenCOM
GenCOM is a client tool that uses a multipass process to generate PeopleSoft EnterpriseOne COM
components. GenCOM is included in the client installation. The COM Generation Tool is in
<install>\system\bin32\GenCOM.exe.

GenCOM is a command line tool that reads a script file to determine which components to generate. GenCOM
uses an iJDEScript file as input to generate a COM DLL that is hosted by the COM connector. The iJDEScript
file specifies wrapper components for business functions. Once the generated wrapper components are
registered to the COM environment, they can be used to access business function functionality.

This illustration shows the process:

Emitter Tree

iJDEScript

GenCOM

1

4

PeopleSoft
EnterpriseOne

Client

2

PeopleSoft
EnterpriseOne

Server
3

Makefile6

COM Wrapper
Source

IDL

5

COM DLLs

7

Client Workstation Enterprise Server

GenCOM process

1. GenCOM reads the iJDEScript file.
2. GenCOM retrieves the metadata for the business functions specified in the iJDEScript file.
3. GenCOM resolves dependency on the data structure.
4. GenCOM creates an internal emitter tree for the library to be generated.
5. GenCOM reads each node of the internal emitter tree and generates the appropriate COM code.
6. GenCOM generates a make file.
7. GenCOM compiles and builds the COM DLL from the generated code.

PeopleSoft Proprietary and Confidential 9

Understanding PeopleSoft EnterpriseOne COM Server Chapter 3

See Chapter 16, “Understanding iJDEScript,” page 175.

Installation Information
Because the GenCOM application produces interfaces based on the package currently installed on the
machine, installation plans must be made on a site-by-site basis. The DLLs produced are business function
release-dependent and can be installed only on machines with the identical packages available.

The GenCOM output is COM servers in the form of DLLs. You can use these DLLs to create an interface
with the PeopleSoft EnterpriseOne system. You should not assume that a client has installed these servers
as part of the standard PeopleSoft EnterpriseOne installation. You should provide a full installation of any
of the servers the applications require.

ProgID
Each time GenCOM generates a wrapper, it creates a ProgID for each COM component. The ProgID
identifies the COM component in the registry. The ProgID is independent of PeopleSoft EnterpriseOne and is
based on the library and the interface specifications in the script file. The key, OneWorldRelease, contains
the PeopleSoft EnterpriseOne release and environment information. For example, if the library name is
AddressBook and the interface name is JDESalesOrderEntry, then the ProgID will be AddressBook.JDE
AddressBook. If GenCOM is run with environment DV9NIS2, then the OneWorldRelease key contains
DV9NIS2. If a type mismatch exists, you receive a warning.

The CompatibleEnvironment key remembers the list of PeopleSoft EnterpriseOne environments with which
the wrapper is compatible. If an environment is not on the list or is listed as incompatible, the COM client
receives an error message when trying to create the object with the environment.

This sample code illustrates the standard ProgID naming conventions:

HKEY CLASSES ROOT\

CLSID\{77454442-7941-44BB-9BCB-4253E80AC8B3)}

\InprocServer32 C:\B9\System\IDA\Samples\AddressBook\AddressBook.dll

\ProgID SalesOrderEntry.JDESalesOrderEntry

\VersionIndependentProgID AddressBook.JDEAddressBook

\OneWorldRelease DV9NIS2

\CompatibleEnvironment DV9NIS2

Setting Up an Environment for GenCOM
Setting up an Microsoft Windows NT client environment involves several steps. You should make sure
that these items are set up appropriately:

• Include directories

• Lib directories

• MSDev directories

• Paths

Example: Include Directories
< Directory where Microsoft SDK files are located>\include

Example: C:\ Program Files\Microsoft SDK\include

< Directory where Microsoft program files are located>\VC98\atl\include

10 PeopleSoft Proprietary and Confidential

Chapter 3 Understanding PeopleSoft EnterpriseOne COM Server

Example: C:\ Program Files\Microsoft Visual Studio\VC98\atl\include

< Directory where Microsoft program files are located>\VC98\mfc\include

Example: C:\Program Files\Microsoft Visual Studio\VC98\mfc\include

< Directory where Microsoft program files are located>\VC98\include

Example: C:\Program Files\Microsoft Visual Studio\VC98\include

< Directory where PeopleSoft EnterpriseOne is located and release either Master, Prod, or Pristine>\include

Example 1: D:\B9\MSTB9\include

Example 2: D:\B9\PROD\include

< Directory where PeopleSoft EnterpriseOne is located and release either Master, Prod, or Pristine>\includeV

Example: D:\B9\SYSTEM\includeV

< Directory where PeopleSoft EnterpriseOne is located and release either Master, Prod, or Pristine>\include

Example: D:\B9\SYSTEM\include

Example: Lib Directories
< Directory where Microsoft SDK files are located>\lib

Example: C:\ Program Files\Microsoft SDK\lib

< Directory where Microsoft program files are located >\VC98\mfc\lib

Example: C:\Program Files\Microsoft Visual Studio\VC98\mfc\lib

< Directory where Microsoft program files are located >\VC98\lib

Example: C:\Program Files\Microsoft Visual Studio\VC98\lib

< Directory where Microsoft program files are located >\Common\MSDev98\Bin

Example: C:\Program Files\Microsoft Visual Studio\Common\MSDev98\Bin

< Directory where PeopleSoft EnterpriseOne is located>\System\Lib32

Example: D:\B9\System\Lib32

Example: MSDev Directories
< Directory where Microsoft program files are located >\Common\MSDev98

Example: C:\Program Files\Microsoft Visual Studio\Common\MSDev98

< Directory where Microsoft DevStudio is located>\SharedIDE

Example: C:\Program Files\DevStudio\SharedIDE

Example: Paths
< Directory where Microsoft SDK files are located>\bin

Example: C:\ Program Files\Microsoft SDK\bin

< Directory where Windows NT is located>\System32

PeopleSoft Proprietary and Confidential 11

Understanding PeopleSoft EnterpriseOne COM Server Chapter 3

Example: C:\Winnt\System32

< Directory where Microsoft program files are located >\Common\Tools\Winnt

Example: C:\Program Files\Microsoft Visual Studio\Common\Tools\Winnt

< Directory where Microsoft program files are located >\Common\Msdev98\Bin

Example: C:\Program Files\Microsoft Visual Studio\Common\Msdev98\Bin

< Directory where Microsoft program files are located >\Common\Tools

Example: C:\Program Files\Microsoft Visual Studio\Common\Tools

< Directory where Microsoft program files are located >\Vc98\Bin

Example: C:\Program Files\Microsoft Visual Studio\Vc98\Bin

< Directory where Microsoft DevStudio is located>\SharedIDE\Bin\Ide

Example: C:\Program Files\DevStudio\SharedIDE\Bin\Ide

< Directory where Microsoft DevStudio is located>\SharedIDE\Bin

Example: C:\Program Files\DevStudio\SharedIDE\Bin

< Directory where PeopleSoft EnterpriseOne is located>\System\Bin32

Example: D:\B9\System\Bin32

In an Microsoft Windows NT environment, binaries are not compatible between the client and server machine.
Do not copy .dll files or .exe files compiled on an NT workstation to an NT server. The struct alignments
required by the PeopleSoft EnterpriseOne server and the PeopleSoft EnterpriseOne client are different.

Running GenCOM
You run GenCOM from the command line to expose objects through COM. In a development environment,
developers may run the COM Generation tool. In a production environment, a system administrator should
run the COM Generation Tool.

When you use GenCOM, use the iJDEScript scripting language to script code generation activities. The
syntax is:

GenCOM [options] [libraries]

For example, if you want to see available libraries that you can run GenCOM against, you enter the
commandC:\B9\System\Bin32>gencom /ListLibraries from the system command line.

To generate COM wrappers for Category 1 business functions in the CAEC library, enter this command
from the command line:

GenCOM /Cat 1 /UserID Devuser1 /Password Devuser1 /Environment ADEVHP02 CAEC

Options available for generation include:

Option Description

/? Lists the options available for generation.

/C++ <option> Provides GenCOMwith the compiler options you want to use in the generation of the
COM servers.

12 PeopleSoft Proprietary and Confidential

Chapter 3 Understanding PeopleSoft EnterpriseOne COM Server

Option Description

/Cat <category> Tells GenCOM to generate wrappers based on these categories:

master business functions

major business functions

minor business functions

uncategorized business functions

/CL <file> Tells GenCOMwhat compiler (.exe) to use for compilation.

/Cmd * Processes code generation commands from the console.

/Cmd <filename> Processes code generation commands from <filename>.

/Debug Builds debug information (.pdb and .bsc files) into the libraries so that the Visual Studio
debugger can access source information.

/EnvironmentID <env> Provides GenCOMwith the environment in which you want to sign in to PeopleSoft
EnterpriseOne.

/ErrFile <file> Provides GenCOMwith the filename to log errors produced by GenCOM during the
generation process, for example, errors.log.

/MIDL Provides GenCOMwith the MIDL compiler options you wish to use in the generation
of the COM servers.

/MTL <file> Tells which MIDL compiler (.exe) to use for compilation.

/ListLibraries Lists all the available libraries against which you can run GenCOM.

/MsgFile <file> Provides GenCOMwith the filename to log messages produced by GenCOM during the
generation process, for example, messages.log.

/NoBSFN Tells GenCOM not to create wrappers for business functions. This option is for generating
parameter sets only.

/NoCompile Tells GenCOM to generate the source files without compiling.

/NoDebug Optimizes libraries for space using the /O1 Visual C++ compiler option.

/Out <path> Provides GenCOMwith the directory path in which to place the output files, for example
C:\winnt\system32.

/OWRelease flag for
GenCOM

You can override the OWRelease information by activating this flag and typing a string
that specifies the version information. PeopleSoft recommends that you follow a naming
convention that is consistent throughout the implementation or use the default version
information that is generated by GenCOM.

/Password <password> Provides GenCOMwith the password with which you want to sign in to PeopleSoft
EnterpriseOne.

/Role Provides GenCOMwith the role with which you want to sign in to PeopleSoft
EnterpriseOne.

PeopleSoft Proprietary and Confidential 13

Understanding PeopleSoft EnterpriseOne COM Server Chapter 3

Option Description

/STA Generates STA components. (By default, all generated components are MTA and are
optimized for scalability and performance. /STA enables you to generate STA components
if you need them.)

/TempOut <path> Provides GenCOMwith the directory path in which to place temporary files needed for
the build process, for example, C:\temp.

/UserID <userid> Provides GenCOMwith the user name with which you wish to sign in to PeopleSoft
EnterpriseOne.

Using GenCOM Output
The output for GenCOM produces fully functional COM servers based on the library to which you generate
wrappers. Because you are interacting with the PeopleSoft EnterpriseOne system, you must follow security
and installation procedures to gain access to the system.

You must have a fully licensed copy of PeopleSoft EnterpriseOne properly installed on the target machine.
You must also sign in to the PeopleSoft EnterpriseOne environment. For the sign-in process, you use the
jdeCOMConnector interface.

Visual Basic
This code example demonstrates how to use a generated COM business function wrapper in Visual Basic. This
example creates business objects. Refer to the AddressBook sample included with the COM interoperability
software for a complete working example of this functionality.

Dim WithEvents OW As OneWorldInterface ’//OneWorldInterface

Dim conn As New Connector ’//COM Connector

Dim AB as JDEAddressBook ’//AddressBook

Dim phone as D0100032 ’//Data Source

Dim Mailing As D0100031 ’//Data Source

Dim AddressAs D0100033 ’//Data Source

Dim EffectiveDate As D0100019 ’//Data Source

DimParentAddress As D0100381 ’//Data Source

Dim sessionID As Long ’//server Session ID

Private Sub Form_Load()

sessionID=conn.Login("Foo", "Bar", "DV9NIS2", "*ALL")

Set OW = conn.CreateBusinessObject("OneWorld.FunctionHelper.1", sessionID)

Set AB = conn.CreateBusinessObject("AddressBook.JDEAddressBook", sessionID)

Set phone = AB.CreateGetPhoneParameterset

Set Mailing = AB.CreateGetMailingNameParameterset

SetAddress = AB.CreateGetEffectiveAddressParameterset

Set EffectiveDate = AB.CreateGetABEffectiveDateParameterset

Set ParentAddress = AB.CreateGetParentAddressParameterset

End Sub

Visual C++
This Visual C++ code example demonstrates how to create the connector and how to create a business
function on the COM server. This example creates an AddressBook business function and uses GenCOM
objects from C++.

14 PeopleSoft Proprietary and Confidential

Chapter 3 Understanding PeopleSoft EnterpriseOne COM Server

#include <windows.h>

#include <stdio.h>

#include <objbase.h>

#include <comdef.h>

#include <wchar.h>

#include addressbook.h

#include AddressBook_i.c

#include jdecomconnector2.h

#include jdecomconnector2_i.c

#define IPhone ID0100032

#define IMailing ID0100031

#define IAddress ID0100033

#define IEffectiveDate ID0100019

#define IParentAddress ID0100381

#define SERVER OLESTR("COMSRV") //Change to the COM server.

#define ABNO 4242 //change this according to user input.

HRESULT CreateConnector(IConnector **ppConnector)

{

HRESULT hr = E_FAIL;

*ppConnector = 0;

//NOTE: Pass a COSERVERINFO struct to activate on a remote machine

COSERVERINFO csi = {0, SERVER, 0, 0};

MULTI_QI mqi = { &IID_IConnector, 0, 0 };

hr = CoCreateInstanceEx(CLSID_Connector, 0, CLSCTX_LOCAL_SERVER,

0, // &csi,

1, &mqi);

if(SUCCEEDED(hr) && SUCCEEDED(mqi.hr))

{

ppConnector = reinterpret_cast<IConnector*>(mqi.pItf);

}

return hr;

}

HRESULT Login(IConnector **pConnector, IOneWorldInterface **ow,

long *accessno)

{

HRESULT hr;

IDispatch *idsptch = 0;

printf("Login started\n");

bstr_t User(L "Foo "), PassWord(L"Bar "), Env("DV9NIS2");

hr = (*pConnector)->Login(User,PassWord,Env,accessno);

if(!SUCCEEDED(hr))

{

printf("Login failed with hr = %x",hr);

return E_FAIL;

PeopleSoft Proprietary and Confidential 15

Understanding PeopleSoft EnterpriseOne COM Server Chapter 3

}

_bstr_t bo("OneWorld_FunctionHelper.1");

hr=(*pConnector)->CreateBusinessObject(bo, *accessno, &idsptch);

if(!SUCCEEDED(hr)||(!ow))

{

Printf("CreateBusinessObject(OneWorld.FunctionHelper.1) failed

with hr %x",hr);

return E_FAIL;

}

hr=idsptch->QueryInterface(IID_IOneWorldInterface, (void **)ow);

if(!SUCCEEDED(hr)||(!ow))

}

Printf(QueryInterface for IOneWorldInterface failed with hr "%x",hr);

return E_FAIL

}

printf("Login completed \n");

return S_OK;

}

HRESULT UseAddressBook(IConnector *pConnector, IOneWorldInterface

*ow, long*accessno)

{

HRESULT hr;

IJDEAddressBook *ab;

IDispatch *idsptch;

IPhone *phone;

IMailing *Mailing;

IAddress *Address;

IEffectiveDate *EffectiveDate;

IParentAddress ParentAddress;

printf("Starting to use AddressBook\n");

_bstr_t bo("AddressBook.JDEAddressBook");

hr = pConnector->CreateBusinessObject(bo, *accessno, &idsptch);

hr = idsptch->QueryInterface(IID_IJDEAddressBook, (void **&ab);

if(!SUCCEEDED(hr)||(tab))

{

printf("CreateBusinessObject(AddressBook) has failed with hr %x",

hr);

return E_FAIL;

}

return S_OK;

}

This code creates the connector object and uses it to create a business function with its associated ParameterSet.
The code then calls a method, Foo1, on the business object with the ParameterSet, the connector, and the
access code returned by the act of logging on to the connector.

Int main(int argc, char *argv[])

{

HRESULT hr;

16 PeopleSoft Proprietary and Confidential

Chapter 3 Understanding PeopleSoft EnterpriseOne COM Server

IOneWorldInterface *ow;

long accessno;

IConnector *pConnector;

hr - CoInitializeEx(0, COINIT_MULTITHREADED);

if(SUCCEEDED(hr))

(

hr = CreateConnector(&pConnector);

if(SUCCEEDED(hr))

{

Login(&pConnector, &ow, &accessno);

//Do more processing with AddressBook and logoff at the end.

}

CoUninitialize();

}

COM Wrapper CheckVer
You can run CheckVer to verify whether a previously generated COM object is compatible with another
environment. Typically, a system administrator performs this task.

The XML files generated by GenCOM are the signatures of the objects generated against specific PeopleSoft
EnterpriseOne environments. These XML files can be used with CheckVer to verify that the wrappers on the
COM server are compatible with these environments.

When you introduce a new PeopleSoft EnterpriseOne environment, you run GenCOM against the new
environment by using the /NoCompile option. You also use the iJDEScript that you used to generate the
wrappers on the COM server to generate XML signature files for the objects in the new environment. Run
CheckVer on the COM server with the newly generated XML files to verify that the new environment is
compatible with wrappers on the COM server that was previously generated with a different environment.
CheckVer updates the registry settings for the wrapper on the COM server according to the result of the
compatibility test. If the new environment is incompatible, the COM client cannot create business objects with
the new environment.

Running CheckVer
CheckVer compares the XML signature file that is produced from GenCOM with the spec definitions on the
local PeopleSoft EnterpriseOne client machine. You can run CheckVer from the command line on the COM
server, or CheckVer can be run automatically as part of the GenCOM process.

To see the options that CheckVer provides, run this command from the command line:

c:\>CheckVer.exe -?

Syntax
CheckVer [option] <filename>

Example
CheckVer -r addressbook.xml

PeopleSoft Proprietary and Confidential 17

Understanding PeopleSoft EnterpriseOne COM Server Chapter 3

Options
-r -- CheckVer reports only whether the environment is compatible with the server. It does not update the
registry settings for the wrapper on the COM server with the result, and CheckVer does not validate the
wrapper DLL.

18 PeopleSoft Proprietary and Confidential

CHAPTER 4

Deploying the COM Server

This chapter provides an overview of COM server deployment and discusses:

• DCOM server set up.
• COM connector installation.
• OCM support for the COM connector.
• BHVRCOM using COM.
• IJDETimeZone interface.
• Inbound XML request using COM server.
• COM reliability.
• COM tracing and logging.

Understanding COM Server Deployment
The COM server uses socket-based middleware to access the PeopleSoft EnterpriseOne application server.
The jdeinterop.ini file must be configured to specify the PeopleSoft EnterpriseOne server. The COM server
reads the jdeinterop.ini file and opens the socket connection to the specified application server.

This diagram illustrates COM server deployment

Interop Client

Interop Client

Interop Client

Generated
Wrappers

Component
Architecture

Interop Server

JDENet
PeopleSoft

EnterpriseOne

COM server deployment

PeopleSoft Proprietary and Confidential 19

Deploying the COM Server Chapter 4

DCOM Server Setup
This section provides an overview of the DCOM server and discusses how to:

• Set up DCOM for a server environment.

• Set up security on the COM server.

• Set up the identity as interactive user.

• Set up DCOM for a client environment.

Understanding DCOM Server Setup
You can set up a DCOM server on an PeopleSoft EnterpriseOne server machine. DCOM enables COM objects
in a distributed environment. To ensure that the interoperability client works properly, you must set up DCOM
for both a server environment and for a client environment.

Setting Up DCOM for a Server Environment
Use these steps to set up DCOM for a server environment:

1. Run GenCOM on an PeopleSoft EnterpriseOne client machine, with these options:
gencom /out <path> /tempout <path> /cmd App.cmd
Because GenCOM is an PeopleSoft EnterpriseOne client-side only tool, you must perform this step
on a PeopleSoft EnterpriseOne client machine.

2. Copy the App.dll file and the App.tlb file generated by GenCOM to the COM server machine.
3. On the COM server machine, from the command line:
• Run jdecomconnector2.exe /RegServer.
• Run regsvr32 App.dll.
• Set the correct security level for jdecomconnector2.exe and App.dll.

Setting Up Security on the COM Server
Use these steps to set up security on the COM server:

1. From the Start menu, select Run.
2. Enter Dcomcnfg.exe.
3. On Distributed COM Configuration Properties, click the Default Security tab.
4. Click the Edit Default Button in Default Access Permissions group.
The Registry Value Permissions form appears. Some entries might already be present.

5. On Registry Value Permissions, click Add.
6. On Add Users and Groups, select the appropriate domain from the List Names From option.
7. Click Everyone, and then click Add.
Type of access should be Allow Access.

8. Click OK.

20 PeopleSoft Proprietary and Confidential

Chapter 4 Deploying the COM Server

Repeat Steps 4 through 7 for default launch permissions. No setup is required for default configuration
permissions.

Setting Up the Identity as Interactive User
Use these steps to set up the identity as interactive user:

1. Run DCOMCnfg.
2. On Distributed COM Configuration Properties, select JDECOMConnector2, and then click Properties.

3. On JDECOMConnector2Properties, click the Identity tab, and then select the interactive user option.

4. Click Apply to apply the change.

Note. You must perform this task every time you register the connector. If you copy the
JDECOMConnector2.exe using Explorer, Explorer reruns the registration, and you must repeat these steps.

To use Callbacks (Connection Points) with the COM solution, repeat the same procedure on the COM client
machine. Most of the shipped examples use Callbacks and require that you open the security on the client
machine.

Setting Up DCOM for a Client Environment
Use these steps to set up DCOM for a client environment:

1. From a DOS prompt on the DCOM client machine, run jdecomconnector2.exe /RegServer.

2. At the prompt, enter oleview.exe.

3. From the menu bar, select oleview.

4. Click View and select Expert Mode.

5. In the oleview window under Object Classes, double-click All Objects, and wait for all objects to appear.

6. Under All Objects, find and click Connector Class.

7. Click the Implementation tab on the right-side panel, and then click the local server and remove anything
that appears in the editing window.

8. On the Activation tab, select the Launch as Interactive User option.

9. In Remote Machine Name, enter the COM server machine name.

10. Repeat steps 5 through 8 for MathNumeric Class.

11. Start the DCOM client application.

Note. Client-only business functions are not reachable.

COM Connector Installation
This section discusses how to install the COM connector in a non-PeopleSoft EnterpriseOne client environment.

PeopleSoft Proprietary and Confidential 21

Deploying the COM Server Chapter 4

Installing COM Connector on a Non-PeopleSoft
EnterpriseOne Client Environment
Use these steps to install the COM connector on a non-PeopleSoft EnterpriseOne client machine:

1. Copy these files from the PeopleSoft EnterpriseOne server (system\bin32) to a directory on the desired
machine. For example, copy the files in c:\program files\PeopleSoft to a non-PeopleSoft EnterpriseOne
client machine.
• JDECOMConnector2.exe
• JDECOMMN.dll
• callobject.dll
• comlog.dll
• EventManager.dll
• OneWorldInterfaceTx.dll
• xmlinterop.dll
• jdel.dll
• jdethread.dll
• jdeunicode.dll
• ustdio.dll
• icuil8n.dll
• jdeinterop.ini to c:\(root directory)
• checkver.exe
• ICUUC.dll
• Icu\data*.*
• IXXML4C2_3.dll
• EventClass.dll
• EventListener.dll

2. Create a new directory Icu\data\ on the machine where the COM server is located. Copy all of the files
from the PeopleSoft EnterpriseOne server in folder system\Locale\xml*.* into Icu\data\ . Create a new
system variable, ICU_DATA, in the environment variables of the system properties and specify the path
to the Icu\data\ as the value.

3. Execute this command on the target location to register the COM connector components:

c:\programfiles\PeopleSoft\JDECOMConnector2.exe /RegServer

4. Run GenCOM on an PeopleSoft EnterpriseOne client machine and copy the output DLL and the wrapper
components (for example, wrapper.dll) to this directory:

c:\programfiles\PeopleSoft\wrapper.dll

5. Execute this command to register the COM wrapper components:

c:\programfiles\PeopleSoft\regsvr32wrapper.dll

6. Create the JDEinterop.ini file.

22 PeopleSoft Proprietary and Confidential

Chapter 4 Deploying the COM Server

Set the PeopleSoft EnterpriseOne server and port values to the PeopleSoft EnterpriseOne application server
with which you want the COM server to communicate.
The COM server is now ready.

To unregister the COM server, use the /unreserved option. For example:

c:\programfiles\PeopleSoft\JDECOMConnector2.exe /unreserved

To unregister the COM wrapper, use the /u option. For example:
c:\programfiles\PeopleSoft\regsvr32 /u wrapper.dll

See Also
Chapter 14, “Understanding jdeinterop.ini,” page 165

OCM Support for the COM Connector
You use Object Configuration Manager (OCM) to map business functions to a PeopleSoft EnterpriseOne
server so that the COM connector can access OCM to run business functions. You no longer configure the
jdeinterop.ini file to define the PeopleSoft EnterpriseOne server from which you want to execute business
functions. Using OCM support should result in increased performance, scalability, and load balancing. OCM
mapping enables the COM interoperability server to distribute the processes of the COM connector client to
various PeopleSoft EnterpriseOne servers’ requests, depending on the user, environment, and role name.

To take advantage of COM connector OCM support, the system administrator should:

• Get the GenCOM PeopleSoft EnterpriseOne 8.9 (or later) version and regenerate the business wrapper
function.

• Configure the OCM and map the business function on the enterprise server.
• Add these settings in the jdeinterop.ini configuration file.

[INTEROP]

Setting Explanation

EnterpriseServer = ntropt1 For COM events and backward compatibility.

SecurityServer = ntropt1 Validates the login.

Port = 6079 The port number.

The database administrator or PeopleSoft EnterpriseOne administrator can provide these settings for the
[OCM] section of the jdeinterop.ini configuration file. This information is used for database connectivity.

[OCM]

Setting Explanation

DSN=ODA ITTND17 The data source name from the system DSN of the ODBC setting.

OCMDatasource = COMOCM System data source for PeopleSoft EnterpriseOne client.

PeopleSoft Proprietary and Confidential 23

Deploying the COM Server Chapter 4

Setting Explanation

DBUser = JDE User for the data source connection.

DB Pwd = JDE Password for the data source connection.

Object Owner = SYS9 For UNIX platforms, this is the object owner in the [DB SYSTEM
SETTINGS].

Seperator=. For Oracle, SQL and UDB databases, the separator is a period (.); for
iSeries, the separator is a slash (/).

If you use a client machine, the settings can be found in the client jde.ini file. An example of the database
name and object owner is: JDE9.SYS9, where JDE9 is the database name and SYS9 is the object owner.

See Also
EnterpriseOne Tools 8.94 PeopleBook: Configurable Network Computing Implementation, “Object
Configuration Manager”

BHVRCOM Using COM
PeopleSoft EnterpriseOne clients use the BHVRCOM structure to control the execution of business functions.
A COM client can use the IBHVRCOM interface to set and get BHVRCOM values for business functions.
The interface definition is in the jdeconnector2.idl file.

This Visual Basic code demonstrates how to query the IBHVRCOM interface and pass values to business
functions:

Dim conn As New Connector ’//COM Connector

DIM WithEvents OW As OneWorldInterface ’//OneWorldInterface

Dim myBHVRCOM As IOneWorldBHVRCOM ’//BHVRCOM

Dim AB As JDEAddressBook ’// AddressBook

Dim phone As D0100032 ’//Data source

1 = conn.Login("JDE", "JDE", "M7332RS02")

Set OW = conn.CreateBusinessObject("OneWorld.FunctionHelper.1",1)

Set myBHVRCOM = OW ’// query the IOneWorldBHVRCOM interface

MyBHVRCOM.iBobMode = 8 ’// set BHVRCOM values

MyBHVRCOM.szApplication = "myApp"

MyBHVRCOM.szVersion = "myVersion"

Set AB = conn.CreateBusinessObject("AddressBook.JDEAddressBook",1)

Set phone = AB.CreateGetPhoneParameterset

Phone.mnAddressNumber = 1

AB.GetPhone phone, OW, conn, 1 ’// business function is executed with

the BHVRCOM values

This table explains some of the code:

24 PeopleSoft Proprietary and Confidential

Chapter 4 Deploying the COM Server

Code Explanation

myBHVRCOM.iBobMode= BobMode is the mode (add, update, delete) of the interactive application. Values
for BobMode are:

BOB_MODE_UNDEFINED = 0

BOB_MODE_SPECIAL = 1

BOB_MODE_ADD = 2

BOB_MODE_ADD_PRIMARY = 3

BOB_MODE_ADD_SPECIAL = 4

BOB_MODE_DELETE = 5

BOB_MODE_UPDATE = 6

BOB_MODE_UPDATE_SPECIAL = 7

BOB_MODE_INQUIRE = 8

BOB_MODE_COPY = 9

myBHVRCOM.szApplication= The value is the name of the interactive application.

MyBHYVRCOM.szVersion= The value is the version of the interactive application. This field can be used
for localizations of the applications.

IJDETimeZone Interface
To modify and display the JDEUTIME data type in the appropriate format, the COM client and GenCOM must
use the JDEUTIME APIs. Date and time information is displayed in a time based on the date and time that
is in the personal profile or a time zone specified by an application.

These steps, along with sample code, illustrate how to use the IJDETimeZone Interface.

• Create the IJDETimeZone interface.

MULTI_QI mqi = { &IID_IJDETimeZone, 0, 0 };

hr = CoCreateInstanceEx(CLSID_JDETimeZone, 0, CLSCTX_ALL, 0, 1, &mqi);

if (SUCCEEDED(hr) && SUCCEEDED(mqi.hr))

{

ppJdeTimeZone = reinterpret_cast<IJDETimeZone>(mqi.pItf);

}.

• Set the time for a time zone (UTC-5:30) for the data structure DXXXXXX.
If a time zone is not specified, the time is considered to be at UTC. If an invalid time zone string is
passed, then an error occurs.

DATE dt;

BSTR bstrUTC = SysAllocString(L"UTC-5:30");

pJDETimeZone->put_DateTime(bstrUTC,&dt);

DXXXXXX->put_jdOrderDate(pJDETimeZone);

PeopleSoft Proprietary and Confidential 25

Deploying the COM Server Chapter 4

• Get a time for a given time zone from PeopleSoft EnterpriseOne.
If a time zone string is not passed, the time and date stored in PeopleSoft EnterpriseOne, which is at UTC,
is returned. If an invalid time string is passed, then an error occurs.

DXXXXXX->get_jdOrderDate(pJDETimeZone);

DATE dt;

BSTR bstrUTC = SysAllocString(L"UTC-5:30");

pJDETimeZone->get_DateTime(bstrUTC,*dt);

XML File generated by GenCOM for IJDETimeZone
For each data item whose data type is JDEUTIME in the data structure DXXXXXX, GenCOM generates this
XML file:

<Signature environment="Environment Name">

<Interface name="Interface Name">

<Method name="BSFN">

<Param name="DXXXXXX" type="u" />

</Method>

</Interface>

</Signature>

Inbound XML Requests Using COM Server
You can use the COM connector to send inbound synchronous XML requests (such as XML CallObject, XML
List, and XML Transaction) to the PeopleSoft EnterpriseOne server. The COM connector uses XML APIs
to access the inbound XML requests.

COM Reliability
Graceful fail-over and fault tolerance mechanisms are important, especially for applications that require high
availability. The COM connector provides basic support for fault tolerance at the protocol level.

You should take additional precautions to provide further reliability. After you use the COM connector to enter
an order or execute a business function, the process should:

• Handle transaction failures.

Transactions can fail because of communication line failures. Sometimes transactions must be aborted
because of errors in input or deadlocks. These failures must be handled appropriately.

• Wait for the confirmation or success notification from the business function to ascertain that the call was
successfully committed.

• Query on the order entered to make sure that it has been committed to the database.

Due to high network traffic, a business function can properly execute, but the confirmation message
might not reach you.

26 PeopleSoft Proprietary and Confidential

Chapter 4 Deploying the COM Server

COM Tracing and Logging
You use COM tracing and logging to help you debug the COM applications. You use the jdeinterop.ini file
to configure tracing and logging settings. The logging format is similar to the PeopleSoft EnterpriseOne
logging format. For example, both logging formats include the Time Thread ID [User ID] and Description, as
illustrated:

Thu Mar 02 14:48:01 2000 294 [AR618238] Failed to Login to Environment <ADEVHPO2>

Errors are written to the JobFile and trace messages are written to the Debug File. When trace is enabled,
error messages go into both trace and error logs.

You can change the jdeinterop.ini settings while the connector is running by completing these the steps:

1. Modify the jdeinterop.ini file.

2. Right-click the Connector System Tray button.

3. Select the menu item ChangeIniSettings.

If an option in the jdeinterop.ini file does not have an entry, the default value is used.

Resolving Tracing Issues
Tracing affects performance. You do not need to use tracing unless you are debugging an application. If
performance is negatively affected, ensure that the tracing level is set to zero.

If no logs are generated, complete these steps:

• Ensure that you have specified the proper path in the ini file.
• Verify that disk space and the permissions on the file system are correct.
• Verify whether the default log files have been generated.
• Check the interop.log to see if any errors corresponding to logging have been generated.
• Check the interop.log file to see if the ini settings that are being used are the same as what you have specified
elsewhere.

PeopleSoft Proprietary and Confidential 27

Deploying the COM Server Chapter 4

28 PeopleSoft Proprietary and Confidential

CHAPTER 5

Using COM Transactions

This chapter provides an overview of COM Interoperability Transactions and discusses how to:

• Set Up the COM+ Environment.
• Run a COM+ Transactions.
• Run a Distributed Transaction.

Understanding COM Interoperability Transactions
COM interoperability transactions include COM connector prepare, commit, and rollback functionality. The
COM transaction interoperability solution supports these types of transactions:

• Auto commit transactions
• Manual commit transactions

A transaction can be started as auto commit or manual commit. In auto commit, PeopleSoft EnterpriseOne
automatically commits the transaction that has been started. If a transaction is started in manual commit, you
have to explicitly call prepare and commit functionality for the transaction to be committed.

The COM connector also supports manual commit. Typically, a transaction is started in manual commit
by calling BeginTransaction with the flag set to 1. Subsequent calls to prepare and commit commits the
transaction. The COM connector prepare and commit does not support distributed transactions that involve
transactions other than PeopleSoft EnterpriseOne.

Outline for Calling Prepare and Commit
This table provides an outline for calling prepare and commit:

Function Description

Dim soeOWInterface As OneWorldInterface Declare the OneWorldInterface.

soeOWInterface.BeginTransaction (accessNumber,
connector, txMode)

Start the transaction in manual commit by calling begin
transaction and setting the txMode to 1. 0 is for auto
commit.

//execute all BSFNs like the

//enddoc and other BSFNs

After a call to Begin Transaction is made, do all the
transactions that you want to enclose within this manual
commit before calling prepare.

PeopleSoft Proprietary and Confidential 29

Using COM Transactions Chapter 5

Function Description

soeOWInterface.Prepare Call prepare when all of the transactions are done.

soeOWInterface.Commit

(or)

soeOWInterface.RollBack

Call Commit to commit the transaction

(or)

Rollback to roll back the transaction if an error occurs.

The default timeout value for a manual transaction is 5 minutes. If you do not commit the transaction within
5 minutes, the transaction context is freed and the transaction is rolled back. You can change the default
timeout by setting the manual_timeout value in the [INTEROP] section of the jdeinterop.ini file. The value is
in milliseconds.

COM+ Two-Phase Commit Transaction
The COM connector can participate in distributed transactions. The COM connector’s ability to participate in
distributed transactions enables any application that uses the COM connector to participate in the two-phase
commit transaction. Applications that have the capability to participate in distributed transactions can also
use the COM connector.

Setting Up the COM+ Environment
Typically, when you use COM+ for two-phase commit, you must set up the environment for these three
computers:

• COM connector

• PeopleSoft EnterpriseOne server

• Database server

A distributed transaction coordinator (DTC) is expected to run on each of the machines. Before testing the
COM+ two-phase commit, you must make sure that the DTCs on each machine are correctly configured and
that the DTCs talk to each other.

This illustration shows the physical configuration:

30 PeopleSoft Proprietary and Confidential

Chapter 5 Using COM Transactions

Interop
Server

DTC

PeopleSoft
EnterpriseOne

Server

DTC

DTC

MS SQL -
PeopleSoft

EnterpriseOne
Data

COM+ Environment Configuration

Note. Typically, administrative rights are required for you to run the examples, which talk to DTCs on
different machines. For more information about setting up DTC and various configurations, refer to the
Microsoft documentation.

Running a COM+ Transactions
This section provides an overview of PeopleSoft EnterpriseOne participating in a COM+ transaction and
dicusses how to:

• Create a Transactional Object
• Create a Transactional Client

Understanding COM+ Transactions
This code outline explains how to develop code for COM connector and PeopleSoft EnterpriseOne
participation in COM+ transactions:

Code Explanation

Dim ow As OneWorldTx Declare new OneWorldTx.

Set ow = New OneWorldTx

ow.Initialize laccessNumber, connRole

Initialize the transaction by passing the access number
returned from a successful logon and the connector.

PeopleSoft Proprietary and Confidential 31

Using COM Transactions Chapter 5

Code Explanation

ow.BeginTransaction laccessNumber, connRole, 1 Start a transaction in Manual Commit.

1 Manual commit

0 Auto Commit

EditLine, EndDoc Do all the processing here likeBeginDoc.

GetObjectContext().SetComplete

or

GetObjectContext().SetAbort

UseSetComplete to commit the transaction through
DTC

or

useSetAbort to abort the transaction.

Note. In COM+, an AutoCommit attribute exists that implicitly commits a transaction if no errors exist.
This attribute is in the Component Services Administration tool. However, if an explicit call to SetAbort is
made, the transaction aborts.

These code examples show you how to create a sales order entry transactional object (SOETxObject) and a
sales order entry transactional client (SOETxClient). After you create the transactional object and transactional
client, you can run the transactions. Use these steps to run a sales order entry transaction in COM+ where the
COM connector and PeopleSoft EnterpriseOne participate:

1. Run the SOETxObject.
2. Run the SOETxClient.
3. Note the Sales Order Entry number that is displayed.
4. When the message box appears for Commit or Abort, select the appropriate action.
5. Verify in PeopleSoft EnterpriseOne whether the sales order has been entered. The sales order should be
entered only when committed.

Creating a Transactional Object
This sample code shows how to create a SalesOrderEntry transactional object (SOETxObject).

Public Sub run()

On Error GoTo errorhandler

Dim ow As OneWorldTx

Dim bhvr As IOneWorldBHVRCOM

Dim conn As New Connector ’// COM Connector

Dim connRole As IConnector2 ’// Connector Interface with Roles

Dim soeObject As JDESalesOrderEntry ’// SalesOrderEntry

Dim soeBeginDoc As D4200310H

Dim soeEndDoc As D4200310G

Dim soeEditLine As D4200310F

Dim soeClearWF As D4200310I

Dim s As String

32 PeopleSoft Proprietary and Confidential

Chapter 5 Using COM Transactions

Dim d As New MathNumeric

Dim mnQuanityOrdered As New MathNumeric

Dim mnUnitPrice As New MathNumeric

Dim response

Dim laccessNunber As Long

’ Name Information

Dim strComputerName As String

Dim lngNameLength As Long

Const WRITE_FLAG = "2"

Dim i As Boolean

Set connRole = conn

laccessNumber = connRole.Login("UserID", "PWD", "ENV", "ROLE")

Set ow = New OneWorldTx

ow.Initialize laccessNumber, connRole

’oneworld transaction initialized to manual

ow.BeginTransaction laccessNumber, connRole, 1

Set bhvr = ow

bhvr.szApplication = "COM+"

Set soeObject = connRole.CreateBusinessObject("SalesOrderEntry.

JDESalesOrderEntry", laccessNumber)

’ please change the progid to correct progId

Set soeBeginDoc = soeObject.CreateF4211FSBeginDocParameterset

Set soeEditLine = soeObject.CreateF4211FSEditLineParameterset

Set soeEndDoc = soeObject.CreateF4211FSEndDocParameterset

Set soeClearWF = soeObject.CreateF4211ClearWorkFileParameterset

’ Get computer name for use later

strComputerName = Space(30)

lngNameLength = 30

p_ret = GetComputerName(strComputerName, lngNameLength)

If p_ret <> 1 Then

MsgBox (GetComputerName failed!)

’End

Else

strComputerName = Mid(strComputerName, 1, lngNameLength)

End If

’ MsgBox (Create Biz Object Done!)

’//////////////BEGIN DOC//////////////

soeBeginDoc.Reset

soeBeginDoc.cCMDocAction = "A"

soeBeginDoc.cCMProcessEdits = "1"

soeBeginDoc.cCMUpdateWriteToWF = WRITE_FLAG

PeopleSoft Proprietary and Confidential 33

Using COM Transactions Chapter 5

soeBeginDoc.szCMProgramID = "VB"

soeBeginDoc.szCMVersion = "ZJDE0001"

soeBeginDoc.szOrderCo = "00200"

soeBeginDoc.szOrderType = "SO"

szBUnit = "M30"

soeBeginDoc.szBusinessUnit = Space(12 - Len(szBUnit)) + szBUnit

d = Val("4242")

soeBeginDoc.mnAddressNumber = d

soeBeginDoc.mnShipToNo = d

soeBeginDoc.jdOrderDate = Date

soeBeginDoc.cMode = "F"

soeBeginDoc.szUserID = "JDE"

soeBeginDoc.cRetrieveOrderNo = "1"

If strComputerName <> "" Then

soeBeginDoc.szCMComputerID = strComputerName

End If

’ MsgBox ("Before F4211FSBeginDoc")

soeObject.F4211FSBeginDoc soeBeginDoc, ow, connRole, laccessNumber

MsgBox Round(soeBeginDoc.mnOrderNo, 0)

’//////////EDIT LINE////////////

soeEditLine.mnCMJobNo = soeBeginDoc.mnCMJobNumber

orderNum = soeBeginDoc.mnOrderNo

soeEditLine.mnOrderNo = soeBeginDoc.mnOrderNo

soeEditLine.szBusinessUnit = soeBeginDoc.szBusinessUnit

soeEditLine.szCMComputerID = soeBeginDoc.szCMComputerID

soeEditLine.cCMWriteToWFFlag = WRITE_FLAG

soeEditLine.szOrderType = soeBeginDoc.szOrderType

’ Load items from UI into edit line structure

soeEditLine.szItemNo = "1001"

mnQuanlityOrdered = "2"

soeEditLine.mnQtyOrdered = mnQuanityOrdered

’ MsgBox ("Before F4211FSEditLine.")

’ Call business function

soeObject.F4211FSEditLine soeEditLine, ow, connRole, laccessNumber

’ MsgBox ("After F4211FSEditLine.")

’///////////////ENDDOC//////////////

soeEndDoc.mnCMJobNo = soeBeginDoc.mnCMJobNumber

soeEndDoc.mnSalesOrderNo = soeBeginDoc.mnOrderNo

soeEndDoc.szOrderType = soeBeginDoc.szOrderType

soeEndDoc.szCMComputerID = strComputerName

soeEndDoc.cCMUseWorkFiles = WRITE_FLAG

’Call business function

34 PeopleSoft Proprietary and Confidential

Chapter 5 Using COM Transactions

’MsgBox ("Before F4211FSEndDoc.")

soeObject.F4211FSEndDoc soeEndDoc, ow, connRole, laccessNumber

’MsgBox ("After F4211FSEndDoc.")

MsgBoxRes = MsgBox("Do you want to abort?", vbYesNo, "Transaction

Decision")

If MsgBoxRes = vbYes Then

GetObjectContext.SetAbort

Else

GetObjectContext.SetComplete

MsgBox ("Order Saved")

End If

’///////CLEAR WORK FILE////////////////

soeClearWF.cClearDetailWF = WRITE_FLAG

soeClearWF.cClearHeaderWF = WRITE_FLAG

soeClearWF.mnJobNo = soeBeginDoc.mnCMJobNumber

soeClearWF.szComputerID = strComputerName

’Call business function

’MsgBox ("Before F4211ClearWorkFile.")

ow.BeginTransaction laccessNumber, connRole, 0

soeObject.F4211ClearWorkFile soeClearWF, ow, connRole, laccessNumber

’MsgBox ("After F4211ClearWorkFile.")

Set soeObject = Nothing

Set soeBeginDoc = Nothing

Set soeEditLine = Nothing

Set soeEndDoc = Nothing

Set ow = Nothing

connRole.Logoff (laccessNumber)

Set connRole = Nothing

Exit Sub

errorhandler:

GetObjectContext().SetAbort

connRole.Logoff (laccessNumber)

Set ow = Nothing

End Sub

Creating a Transactional Client
This sample code shows how to create a SalesOrderEntry transactional client (SOETxClient).

’////SOETxClient////

Private Sub Form_Load()

Dim c As SOEClass2 ’// VB SOE transactional object

Set c = New SOEClass2

c.run

Set c = Nothing

End Sub

PeopleSoft Proprietary and Confidential 35

Using COM Transactions Chapter 5

Running a Distributed Transaction
This section provides an overview of PeopleSoft EnterpriseOne participating in a distributed transaction
and discusses how to:

• Create MTStest for a Distributed Transaction.

• Create ClientPrj for a Distributed Transaction.

• Register a New COM+ .dll.

Understanding COM+ Transaction
This sample code, called MTStest.vbp, shows how to create a distributed transaction using COM+. This
project contains these two classes:

• MTSTestClass, which queries and updates a test SQL database
• OWTxClass, which runs the Sales Order Entry

OWTxClass is almost identical to the previous SOETxObject, except that the message box for commit or
abort is no longer necessary.

MTStest.dll must be registered in the COM+ Component Services, and the transaction property should
be set to required; it might have been set already.

Create a sample SQL test database table SOE2PCTest. SOE2PCTest table has two columns, SONum and
LastSONum. The test selects the LastSONum and then updates the table by incrementing the previous value
by 1 when commit is called.

Sample code called ClientPrj.vbp will call the transactional object.

Both of the transactions are committed by the DTC when the SetComplete call is made. The DTC aborts the
transaction when the SetAbort call is made or if any part of the transaction fails.

Use these steps to run a sales order entry as a distributed transaction in COM+ where the COM connector,
PeopleSoft EnterpriseOne, and an SQL database participate.

1. Run the MTStest.vbp.
2. Run the ClientPrj.vbp.
3. Click the Call Database_ Test_ Method button.
4. Switch back to the MTStest and note the sales order number.
5. When a message box appears to Commit or Abort, select the appropriate action.
6. Verify in PeopleSoft EnterpriseOne whether the sales order has been entered. When the transaction is
aborted, the sales order should not be in PeopleSoft EnterpriseOne, and the test database should not
increment the count.

Creating MTStest for a Distributed Transaction
This code sample provides detail code for creating MTStest.

36 PeopleSoft Proprietary and Confidential

Chapter 5 Using COM Transactions

Note. This sample code has message box statements to help better understand the step-by-step flow of the
code. Since DTC is managing the transactions, it is necessary not to lock the tables for a long time. When
you use message boxes, you stop the program flow. When regression testing, you must remove all of the
message boxes. You can write to a log file instead.

Option Explicit

Public Function Database_Test_Method(_ByVal szConnect As String) As String

Dim stmt As String

On Error GoTo errhandler

Dim ctxObject As ObjectContext

Set ctxObject = GetObjectContext()

Dim MsgBoxRes

Dim cn As ADODB.Connection

Dim rsSelect As ADODB.Recordset

Dim rs As ADODB.Recordset

Set cn = New ADODB.Connection

With cn

.ConnectionTimeout = 10

.ConnectionString = szConnect

.Open

End With

’’’

’ SONUM and LASTSONUM are columns created in a database called ’

’ COMPLUS. ’

’ Database server is called soe2pctest. ’

’ LASTSONUM gets incremented when commit is used. ’

’ Change these values according to Database created ’

’’’

Set rs = New ADODB.Recordset

Set rsSelect = New ADODB.Recordset

rsSelect.Open "SELECT LASTSONUM FROM soe2pctest", cn, adOpenDynamic,

_ adLockReadOnly

Dim i As Integer

For i = 1 To 3

stmt = "Update SOE2PCTest set LASTSONUM=" & rsSelect(0).Value + 1& &

" where SONUM = 1"

cn.Execute stmt, 1, -1

rsSelect.Close

Dim c As OWTXClass

Set c = New OWTXClass

c.run

PeopleSoft Proprietary and Confidential 37

Using COM Transactions Chapter 5

Set c = Nothing

cn.Close

Set rs = Nothing

Set cn = Nothing

MsgBoxRes = MsgBox("Do you want to Commit?", vbYesNo, "Transaction

Decision")

If MsgBoxRes = vbYes Then

ctxObject.SetComplete

Else

ctxObject.SetAbort

End If

Next I

Exit Function

errhandler:

Err.Raise vbObjectError, "MTSTest.MTStest.Database_Test_Method", _

Err.Description

ctxObject.SetAbort

Exit Function

End Function

Creating ClientPrj for a Distributed Transaction
This code sample provides detail code for creating ClientPrj.

Note. This sample code has message box statements to help better understand the step-by-step flow of the
code. Since DTC is managing the transactions, it is necessary not to lock the tables for a long time. When
you use message boxes, you stop the program flow. When regression testing, you must remove all of the
message boxes. You can write to a log file instead.

Private Sub Command2_Click()

Dim szConnect As String

szConnect = "Driver={SQL Server};" & _

"Server=AServerName;Uid=UserID;Pwd=Passwd;Database=DBName"

’(NOTE: You may need to change the connection

’ information to connect to the database.)

Dim obj As Object

Set obj = CreateObject("MTStest.MTSTestClass")

MsgBox obj.Database_Test_Method(szConnect)

Set obj = Nothing

Unload Me

End Sub

Private Sub Form_Load()

38 PeopleSoft Proprietary and Confidential

Chapter 5 Using COM Transactions

Command2.Caption = "Call Database_Test_Method"

End Sub

Registering the COM+ .dll
A new COM+ dll (OneWorldinterfaceTx.dll) is provided to be used along with the COM connector to
participate in a two-phase commit. OneWorldInterfaceTx.dll must be registered with the COM+ component
services.

Use these steps to register OneWorldInterfaceTx.dll:

1. On the PC, navigate to COM+ Applications:
Control Panel > Administrative Tools > Component Services

2. Expand these buttons and folders:
Component Services > Computers > My Computer

3. Select COM+ Applications.
4. Right-click COM+ Applications, select New, and then select Application.
The COM Application Install Wizard appears.

5. On Install or Create a New Application, select Create an empty application and then click Next.
6. On Create Empty Application, enter the name of the application (OneWorldInterfaceTx) that you are
registering.

7. Select an Activation type, and then press Next.
8. On Set Application Identity, select Interactive User, and then click Next.
9. Click Finish to close the wizard.
10. On the PC, expand these folders:
COM+ Applications > OneWorldInterfaceTx

11. Select Components.
12. Right-click Components, select New, and then select Component.
13. The COM Component Install Wizard appears.
14. On Import or Install a Component, select Install New Component(s), and then click Next.
15. On Select New Files to Install, browse to the application (OneWorldInterfaceTx.dll) on the client install
directory or the COM interoperability server.

16. Add the application and then click Next.
17. Click Finish to close the wizard.
The application (OneWorldInterfaceTx.dll) is registered.

18. On the PC, expand the Components folder and then right-click the application (OneWorldInterfaceTx.dll)
you just registered.

19. Select Properties.
20. On OneWorldInterfaceTx Properties, click the Transactions tab.

PeopleSoft Proprietary and Confidential 39

Using COM Transactions Chapter 5

21. For the Transaction support field, select the Required option.
22. Click OK.
23. Close the component servers.

The COM connector should be registered using the method described in the chapter titled Installing COM
Connector on a Non-EnterpriseOne Client Environment.

The SalesOrderEntry and other wrapper dlls should be registered using the standard RegSvr32 command.

A new transactional object that is going to participate in the COM+ transactions (for example, SOEClass2.dll)
must be created and registered through the COM+ component services of the administrative tools. The
transactions property of this object should be set to Required. This transactional object will use the new
OneWorldInterfaceTx.dll for starting a transaction, executing a business function, and so on. The code outline
is explained in Case1: PeopleSoft EnterpriseOne Participates in COM+ Transaction. Detail sample code for
the SalesOrderEntry transaction object (SOETxObject) is provided.

After the transactional object is created, open a new VB sample SalesOrderEntry client and call the SOEClass2
object. The VB SOETxClient code is provided.

Two cases of the Sales Order Entry application are discussed. Case 1 is when PeopleSoft EnterpriseOne
participates in the COM+ transaction. Case 2 is when PeopleSoft EnterpriseOne participates in a distributed
transaction.

40 PeopleSoft Proprietary and Confidential

CHAPTER 6

Using COM Connector Events - Classic Events

This chapter provides an overview of COM connector events and discusses how to:

• Register components.
• Subscribe to events.
• Log COM events.
• Implement the PeopleSoft EnterpriseOne interface.
• Register EventSink for persistent subscription.

Note. This chapter is applicable only if you use classic event delivery. Classic event delivery is available when
you use PeopleSoft EnterpriseOne Tools 8.94 with PeopleSoft EnterpriseOne Applications 8.10 or earlier
releases of the PeopleSoft EnterpriseOne Applications.

Refer to the Guaranteed Events chapters if you use PeopleSoft EnterpriseOne Tools 8.94 with PeopleSoft
EnterpriseOne Applications 8.11.

Understanding COM Connector Events
The COM connector events solution uses Microsoft’s COM+ Events Service. COM+ Events Loosely Coupled
Events, which matches and connects publishers and subscribers, is part of the Microsoft Windows 2000
Component Services. The EventClass is a COM+ component that contains interfaces and methods that are
used by the publisher to initiate events. The EventClass manages the connection between publisher and
subscribers. PeopleSoft provides the EventClass.dll, which contains the IOWEvent interface. The COM
servers and COM clients must implement this interface so that when an event is initiated, this interface is
called by the COM+ Events Service and the implementation is executed. The implementation decides what the
delivered event and the event data should do. This implementation is COM server or COM client specific.

Note. You should have a basic understanding of the COM+ Events Service.

COM+ events supports Z events, real-time events, and XAPI events. COM+ Events Service is not dependent
on PeopleSoft EnterpriseOne setup for event generation.

See Also
Microsoft MSDN, http://msdn.microsoft.com/

EnterpriseOne Tools 8.94 PeopleBook: Interoperability, “Using Events - Classic”

EnterpriseOne Tools 8.94 PeopleBook: Interoperability, “Using Real-Time Events - Classic”

EnterpriseOne Tools 8.94 PeopleBook: Interoperability, “Using XAPI Events - Classic”

PeopleSoft Proprietary and Confidential 41

Using COM Connector Events - Classic Events Chapter 6

Registering Components
So that subscribers can find an event class and subscribe to it, the PeopleSoft EnterpriseOne event class must
be registered with COM+. In addition, COM+ requires a type library that describes the event interface and
methods so that subscribers and publishers can be properly matched and connected. The type library must
reside in or be accompanied by a self-registering DLL.

To register the PeopleSoft EnterpriseOne Events Class with COM+ Services, you must:

• Add a new COM+ application for the PeopleSoft EnterpriseOne event class.
• Install the PeopleSoft EnterpriseOne event class.

Note. Before you register the PeopleSoft EnterpriseOne Event Class with COM+ Services, set up the COM
server. The COM server can be set up on either an PeopleSoft EnterpriseOne machine or a non-PeopleSoft
EnterpriseOne machine (third-party machine), or both.

See Also
Chapter 4, “Deploying the COM Server,” COM Connector Installation, page 21

Subscribing to Events
The COM connector supports both persistent and transient event subscriptions from the PeopleSoft
EnterpriseOne server. The events are subscribed from the PeopleSoft EnterpriseOne server that is specified in
the [INTEROP] section of the jdeinterop.ini file. The events are received through the EventListener. The
EventListener runs as long as the COM connector is up and running. The COM connector runs as a small
globe in the bottom right corner of the Microsoft Windows taskbar.

You must also set up the [EVENTS] section of the jdeinterop.ini file.

Note. The COM connector does not support subscription of events from multiple PeopleSoft EnterpriseOne
servers.

Logging COM Events
Logging for COM events is entered in the interopDebug.log file. The error log is interop.log.

Implementing PeopleSoft EnterpriseOne Interfaces
This section discusses how to:

• Implement a PeopleSoft EnterpriseOne interface.
• Create a COM+ component.
• Log on to the COM connector.

42 PeopleSoft Proprietary and Confidential

Chapter 6 Using COM Connector Events - Classic Events

• Subscribe to an event.
• Integrate with BizTalk.
• Add a new application.
• Install the event class.

Implementing a PeopleSoft EnterpriseOne Interface
You must develop an object that implements the IOWEvent interface. For further discussion and for
code samples in this document, the name EventSink is used as the object name. The object that you
develop to implement the IOWEvent can have a different name. EventSink implements the IOWEvent
interface and the method within the interface, and then consumes the PeopleSoft EnterpriseOne event. The
EventSink implementation is client specific. EventSink receives the event from PeopleSoft EnterpriseOne by
implementing the interface specified in EventClass.

This outline shows how to develop an EventSink component:

Option Explicit

Implements IOWEvent

Public Event OneWorldEvent(ByVal EventName As String, ByVal Data As String)

Public Sub IOWEvent_OneWorldEvent(ByVal EventName As String, ByVal Data

As String)

’// Add code specific to the client implementation here

RaiseEvent OneWorldEvent(EventName, Data)

End Sub

This list outlines the steps for you to follow to use the EventManager library and MessageHandler Interface
to subscribe to events.

1. Log on to the connector.

Successful logon returns an access number.
2. Create the EventSink object.
3. Create the MessageHandler object.
4. Call methods on the MessageHandle for Subscribe, Unsubscribe, GetTemplate, and GetEventList for
the respective event.

5. To keep the session alive and not time out from receiving events, call the UpdateOutBoundSessionTime
method on the connector interface.
This method updates the user session time to the current time.

6. To subscribe to the events as persistent, register VB EventSink in the COM+ Component Services and add
the subscription for the EventClass.

Creating a COM+ Component
This sample code is for creating a COM+ component named EventSink.dll. EventSink implements the
EventClass interface IOWEvent(). You can use a name other than EventSink.

PeopleSoft Proprietary and Confidential 43

Using COM Connector Events - Classic Events Chapter 6

EventSink: OneWorldTransientEventSink.cls
This is the sample code for creating a COM+ component:

Option Explicit

Implements IOWEvent

Public Event OneWorldEvent(ByVal EventName As String, ByVal Data As

String)

Public Sub IOWEvent_OneWorldEvent(ByVal EventName As String, ByVal

Data As String)

Dim flsObject As New Scripting.FileSystemObject

Dim varEventFile As TextStream

Dim strEventFile As String

strEventFile = "C:\temp\eventDataPer.xml". ’ change this to a

valid directory

If Dir(strEventFile) = "" Then Set varEventFile =

flsObject.CreateTextFile(strEventFile, False, False)

Else

Set varEventFile = flsObject.OpenTextFile(strEventFile,

ForWriting, False)

End If

varEventFile.WriteLine Data

varEventFile.Close

RaiseEvent OneWorldEvent(EventName, Data)

End Sub

Logging on to the COM Connector
This sample code logs on to the COM connector, creates the MessageHandler object, and performs Subscribe,
Unsubscribe, GetTemplate, and GetList. Before executing the subscriber, use the Regsvr32 command
to register COMConnector.dll.

COMConnector: frmLogin.frm
This code sample shows logging on to the COM connector:

Option Explicit

Public bLoginEnv As Boolean

Private Sub cmdCancel_Click()

’set the global var to false

’to denote a failed login

bLoginEnv = False

Me.Hide

End Sub

Private Sub cmdOK_Click()

’check for correct password

44 PeopleSoft Proprietary and Confidential

Chapter 6 Using COM Connector Events - Classic Events

If txtUserName = "" Or txtenvironment = "" Then

bLoginEnv = False

MsgBox "Must Enter User Name and Environment to continue"

Else

bLoginEnv = True

Me.Hide

End If

End Sub

COMConnector Common.bas
This code sample shows creating the message handler:

Option Explicit

Dim conn As New Connector

Dim connRole As IConnector2

Dim messageHandler As New messageHandler

Dim mHandlerInterface As ImessageHandler

Dim lngAccessNumber As Long

Public Sub comm_Initialize()

Set connRole = conn

frmLogin.bLoginEnv = False

frmLogin.Show

While Not frmLogin.bLoginEnv

DoEvents

Wend

lngAccessNumber = connRole.Login(frmLogin.txtUserName,

frmLogin.txtPassword, frmLogin.txtenvironment, frmLogin.txtrole)

Set mHandlerInterface = messageHandler

End Sub

’ NOTE: the code in this module is particular to this prototype.

’ Different code would be used in a production version to send

’ messages to PeopleSoft EnterpriseOne using PeopleSoft communication

’ prototocols

Public Sub SendSubscriptionToOneWorld(eventName As String,

oneworldevent As IOWEvent, mode As Long)

mHandlerInterface.SubscribeEvent lngAccessNumber, conn, eventName,

oneworldevent, mode

End Sub

Public Sub SendUnSubscribeToOneWorld(eventName As String,

oneworldevent As IOWEvent, mode As Long)

mHandlerInterface.UnSubscribeEvent lngAccessNumber, conn,

eventName, oneworldevent, mode

End Sub

Public Sub getEventListFromOneWorld(eventList As String)

mHandlerInterface.GetEventList lngAccessNumber, conn, eventList

End Sub

Public Sub getEventTemplateFromOneWorld(eventName As String,

eventTemplate As String)

PeopleSoft Proprietary and Confidential 45

Using COM Connector Events - Classic Events Chapter 6

mHandlerInterface.GetEventTemplate lngAccessNumber, eventName,

conn, eventTemplate

End Sub

COMConnector: SubscriptionManager
This code sample shows event subscription and unsubscribe:

Option Explicit

Private m_SubscribedEvents As Collection

Private Sub Class_Initialize()

Set m_SubscribedEvents = New Collection

comm_Initialize

End Sub

Public Sub GetEventList(eventList As String)

getEventListFromOneWorld eventList

End Sub

Public Sub CreateTransientSubscription(eventName As String,

oneworldevent As IOWEvent)

SubscribeToOneWorldEvent eventName, oneworldevent, 0

End Sub

Public Sub CreatePersistentSubscription(eventName As String,

oneworldevent As IOWEvent)

SubscribeToOneWorldEvent eventName, oneworldevent, 1

End Sub

Public Sub RemoveTransientSubscription(eventName As String,

oneworldevent As IOWEvent)

UnSubscribeToOneWorldEvent eventName, oneworldevent, 0

End Sub

Public Sub RemovePersistentSubscription(eventName As String,

oneworldevent As IOWEvent)

UnSubscribeToOneWorldEvent eventName, oneworldevent, 1

End Sub

Public Sub GetEventTemplate(eventName As String, eventTemplate As

String)

getEventTemplateFromOneWorld eventName, eventTemplate

End Sub

Public Sub SubscribeToOneWorldEvent(eventName As String, oneworldevent

As IOWEvent, mode As Long)

’Private Function SubscribeToOneWorldEvent(EventName As String) As

’Boolean we’ve already subscribed if the subscription is in our list

Dim alreadySubscribed As Boolean

alreadySubscribed = (CollectionContainsString

(m_SubscribedEvents,eventName) = True)

’ now do the right thing...

If (alreadySubscribed = False) Then

’ this instance of the COMConnector has not seen this event

46 PeopleSoft Proprietary and Confidential

Chapter 6 Using COM Connector Events - Classic Events

’ before, so add it to our list...

m_SubscribedEvents.Add (eventName)

’ and go ahead and subscribe to the event from PeopleSoft

’ EnterpriseOne

SendSubscriptionToOneWorld eventName, oneworldevent, mode

End If

’SubscribeToOneWorldEvent = alreadySubscribed

End Sub

Private Function CollectionContainsString(col As Collection, str As

String)

Dim colItem As Variant

For Each colItem In col

If (colItem = str) Then

CollectionContainsString = True

Exit Function

End If

Next

CollectionContainsString = False

End Function

Public Sub UnSubscribeToOneWorldEvent(eventName As String,

oneworldevent As IOWEvent, mode As Long)

Dim alreadySubscribed As Boolean

alreadySubscribed = (RemoveFromCollection(m_SubscribedEvents,

eventName))

If (alreadySubscribed = False) Then

MsgBox "Event Not Subscribed"

Else

’ and go ahead and subscribe to the event from

’ PeopleSoft EnterpriseOne

SendUnSubscribeToOneWorld eventName, oneworldevent, mode

End If

’ End If

End Sub

Private Function RemoveFromCollection(col As Collection, str As

String) Dim colItem As Variant

Dim count As Integer

count = 0

For Each colItem In col

count = count + 1

If (colItem = str) Then

col.Remove count

RemoveFromCollection = True

Exit Function

End If

Next

RemoveFromCollection = False

PeopleSoft Proprietary and Confidential 47

Using COM Connector Events - Classic Events Chapter 6

End Function

Subscribing to Events
Subscriber is the GUI that gets the EventsList, EventTemplate, Subscribe, and Unsubscribe. Subscriber is built
as a VB executable. Typical usage is to get the EventList first, which populates the option list with the events
that are supported by the PeopleSoft EnterpriseOne server. Select the event that needs to be subscribed from
the PeopleSoft EnterpriseOne server and the type of subscription. Click Subscribe to add a Subscription, or
click Unsubscribe to unsubscribe from the PeopleSoft EnterpriseOne server. The Subscribed events and the
Received events are depicted in separate boxes. The received event is displayed in the window on the right.
The event received can be integrated with BizTalk by choosing the Enable BizTalk Integration option. You
should have previously set up BizTalk; if not already installed, install the BizTalk Server 2000 Developer. If
the Module 1 tutorial in the BizTalk Server documentation runs properly, then the BizTalk Server is properly
installed. Before building the subscriber, you should use the Regsvr32 command to register EventSink.dll
and COMConnector.dll.

Subscriber: MainForm.frm
This code sample is for the GUI and the control buttons on the GUI. This code should be built along with the
BizTalk.cls, after registering the COMConnector.dll and MyEventSink.dll.

Option Explicit

’ ------------------------------ ** ---------------------------------

’ Member Variables

’ ------------------------------ ** ---------------------------------

Private m_SubscriptionManager As SubscriptionManager

Private WithEvents m_OneWorldTransientEventSink As

OneWorldTransientEventSink

Private Sub Combo1_Change()

End Sub

Private Sub Check1_Click()

End Sub

Private Sub btnClear_Click(Index As Integer)

lvwReceivedEvents.ListItems.Clear

End Sub

’---------------------------- ** ------------------------------------

’ GetEventTemplate

’---------------------------- ** ------------------------------------

Private Sub btnGetEventTemplate_Click()

Dim EventName As String

Dim EventTemplate As String

EventName = cEventList.List(cEventList.ListIndex)

m_SubscriptionManager.GetEventTemplate EventName, EventTemplate

Dim flsObject As New Scripting.FileSystemObject

Dim varTemplateFile As TextStream

Dim strTemplateFile As String

strTemplateFile = "C:\temp\event_template.xml"

If Dir(strTemplateFile) = "" Then

Set varTemplateFile = flsObject.CreateTextFile(strTemplateFile

48 PeopleSoft Proprietary and Confidential

Chapter 6 Using COM Connector Events - Classic Events

False, False)

Else

Set varTemplateFile = flsObject.OpenTextFile(strTemplateFile,

ForWriting, False)

End If

varTemplateFile.WriteLine EventTemplate

varTemplateFile.Close

wbEventData.Navigate "c:\temp\event_template.xml"

End Sub

’ ------------------------------ ** ---------------------------------

’ Event Handlers

’ ------------------------------ ** ---------------------------------

Private Sub Form_Load()

Set m_SubscriptionManager = New SubscriptionManager

Set m_OneWorldTransientEventSink = New OneWorldTransientEventSink

EnableBizTalkIntegrationGroup

End Sub

Private Sub m_OneWorldTransientEventSink_OneWorldEvent(ByVal EventName

As String, ByVal Data As String)

’ add the event name and payload to the list

Dim mTempItem As ListItem

Set mTempItem = lvwReceivedEvents.ListItems.Add()

mTempItem.Text = EventName

’mTempItem.SubItems(1) = Data

Dim flsObject As New Scripting.FileSystemObject

Dim varEventFile As TextStream

Dim strEventFile As String

strEventFile = "C:\temp\eventData.xml"

If Dir(strEventFile) = "" Then

Set varEventFile = flsObject.CreateTextFile(strEventFile,

False,False)

Else

Set varEventFile = flsObject.OpenTextFile(strEventFile,

ForWriting, False)

End If

varEventFile.WriteLine Data

varEventFile.Close

wbEventData.Navigate "c:\temp\eventdata.xml"

’ send the event to BizTalk (if it is enabled)

If (chkEnableBizTalkIntegration.Value = Checked) Then

Dim oBizTalk As BizTalk

Set oBizTalk = New BizTalk

PeopleSoft Proprietary and Confidential 49

Using COM Connector Events - Classic Events Chapter 6

oBizTalk.RunSchedule txtScheduleFile.Text, Data

End If

End Sub

’---------------------------- ** ------------------------------------

’ GetEventList

’---------------------------- ** - --------------------------------

Private Sub btnGetEventList_Click()

Dim events As String

Dim myValue As String

Dim myString As String

Set m_SubscriptionManager = New SubscriptionManager

m_SubscriptionManager.GetEventList events

cEventList.Clear

myString = events

Do Until events = ""

If InStr(1, myString, ":") > 0 Then

myValue = Left(myString, InStr(1, myString, ":") - 1)

myString = Mid(myString, InStr(1, myString, ":") + 1)

Else

myValue = myString

events = ""

End If

cEventList.AddItem myValue

Loop

cEventList.ListIndex = 0

End Sub

’---------------------------- ** ------------------------------------

’ Subscribe Event

’---------------------------- ** ------------------------------------

Private Sub btnSubscribe_Click()

’ subscribe to the named event.

Dim EventName As String

EventName = cEventList.List(cEventList.ListIndex)

If (chkPersist.Value = Checked) Then

m_SubscriptionManager.CreatePersistentSubscription EventName,

m_OneWorldTransientEventSink

Else

m_SubscriptionManager.CreateTransientSubscription EventName,

m_OneWorldTransientEventSink

End If

Dim mTempItem As ListItem

Set mTempItem = lvwSubscribedEvents.ListItems.Add()

mTempItem.Text = EventName

End Sub

’---------------------------- ** ------------------------------------

’ UnSubscribe Event

’---------------------------- ** ------------------------------------

Private Sub btnUnsubscribe_Click()

50 PeopleSoft Proprietary and Confidential

Chapter 6 Using COM Connector Events - Classic Events

Dim EventName As String

EventName = cEventList.List(cEventList.ListIndex)

Dim lstItem As ListItem

Dim count As Integer

Dim found As Boolean

count = 0

found = False

For Each lstItem In lvwSubscribedEvents.ListItems

count = count + 1

If lstItem = EventName Then

lvwSubscribedEvents.ListItems.remove (count)

GoTo remove

found = True

End If

Next

If found = False Then

MsgBox "Event Not Subscribed"

End If

remove: If (chkPersist.Value = Checked) Then

m_SubscriptionManager.RemovePersistentSubscription EventName,

m_OneWorldTransientEventSink

Else

m_SubscriptionManager.RemoveTransientSubscription EventName,

m_OneWorldTransientEventSink

End If

End Sub

Private Sub chkEnableBizTalkIntegration_Click()

EnableBizTalkIntegrationGroup

End Sub

’---------------------------- ** ------------------------------------

’ Clear the Received Events List

’---------------------------- ** ------------------------------------

Private Sub btnClear0_Click()

’ clear the events from the list

lvwReceivedEvents.ListItems.Clear

End Sub

Private Sub btnClose_Click()

Unload Me

End

End Sub

’ ------------------------------ ** ---------------------------------

’ Private Functions

’ ------------------------------ ** ---------------------------------

Private Sub Initialize()

’ Create the event sink

Set m_OneWorldTransientEventSink = New OneWorldTransientEventSink

End Sub

PeopleSoft Proprietary and Confidential 51

Using COM Connector Events - Classic Events Chapter 6

Private Sub EnableBizTalkIntegrationGroup()

Dim blnEnable As Boolean

blnEnable = (chkEnableBizTalkIntegration.Value = Checked)

lblScheduleFile.Enabled = blnEnable

txtScheduleFile.Enabled = blnEnable

End Sub

Integrating with BizTalk
This code is for the BizTalk integration for the received event.

Subscriber: BizTalk.cls
This code sample shows BizTalk subscription:

Option Explicit

’**

’***** ExecuteTutorial

’*****

’***** Purpose: This component is used to exercise

’***** the XLANG schedule portion of tutorial accompanying

’***** BizTalk Server (this is the Module 1 Tutorial).

’***** The component launches the specified schedule

’***** file and passes the data file specified

’***** to it using MSMQ.

’*****

’***** NOTE: the source code in this component is a direct

’***** adoption of the code found in the Module 1 Tutorial

’***** in the BizTalk Server 2000 documentation.

’***** The default location for the original version of this

’***** source is found in: C:\Program Files\Microsoft

’***** BizTalk Server\Tutorial\Schedule\Solution\

’***** ExecuteTutorial.vbp

’*****

’***** Inputs:

’***** Schedule File - Contains the Moniker used to

’***** launch the schedule

’***** Data File - Contains the location of the

’***** XML document to be passed to

’***** the schedule for processing.

’*****

’***** Outputs:

’***** Data File - Data file is passed to MSMQ

’***** for later retrieval by the schedule.

Private g_MSMTxDisp As MSMQ.MSMQTransactionDispenser

Private g_MSMQQueue As MSMQ.MSMQQueue

Private g_MSMQInfo As MSMQ.MSMQQueueInfo

Private g_CurSkedDir As String

Private g_CurDataDir As String

52 PeopleSoft Proprietary and Confidential

Chapter 6 Using COM Connector Events - Classic Events

Private Sub Class_Initialize()

Set g_MSMQInfo = CreateObject("MSMQ.MSMQQueueInfo")

Set g_MSMTxDisp = CreateObject("MSMQ.MSMQTransactionDispenser")

End Sub

Public Sub RunSchedule(ByVal strScheduleFile As String, ByVal

strData As String)

Dim objfs As New FileSystemObject

On Error GoTo cmdRunSked_Click_err

’Connect To MSMQ and Remove Any Existing Messages

PurgeMSMQ "DIRECT=OS:.\private$\ReceivePoReq"

’Send Selected message to MSMQ

ExecuteMSMQ "DIRECT=OS:.\private$\ReceivePoReq", strData

’Start Schedule which reads message from MSMQ

ExecuteSchedule strScheduleFile

Exit Sub

cmdRunSked_Click_err:

MsgBox Err.Description & vbCrLf & "Error: " & Err.Number & "

(0x" & Hex(Err.Number) & ")", vbCritical, "Error " & Err.Source

Err.Clear

End Sub

Private Sub PurgeMSMQ(ByVal strQueuePath As String)

Dim l_MSMQMsg As MSMQMessage

On Error GoTo Err_ConnectMSMQ

g_MSMQInfo.FormatName = strQueuePath

Set g_MSMQQueue = g_MSMQInfo.Open(MQ_RECEIVE_ACCESS, MQ_DENY_NONE)

On Error GoTo Err_PurgeMSMQ

Do

Set l_MSMQMsg = g_MSMQQueue.Receive(, , , 1)

Loop While Not l_MSMQMsg Is Nothing

Exit Sub

Err_ConnectMSMQ:

Err.Raise Err.Number, "Connecting To MSMQ", "Could Not Open the

MSMQ Queue """ & strQueuePath & ."""." & vbCrLf & vbCrLf &

Err.Description

Exit Sub

Err_PurgeMSMQ:

Err.Raise Err.Number, "Cleaning MSMQ", "Could Not Remove

Existing Messages from MSMQ Queue """ & strQueuePath & """." &

PeopleSoft Proprietary and Confidential 53

Using COM Connector Events - Classic Events Chapter 6

vbCrLf & vbCrLf & Err.Description

Exit Sub

End Sub

Private Sub ExecuteMSMQ(ByVal strQueuePath As String, DataToQueue

As String)

Dim QueueMsg As New MSMQMessage

Dim strData As String

Dim fSend As Boolean

Dim txt As TextStream

Dim mybyte() As Byte

On Error GoTo Err_SendMSMQ

g_MSMQInfo.FormatName = strQueuePath

Set g_MSMQQueue = g_MSMQInfo.Open(MQ_SEND_ACCESS, MQ_DENY_NONE)

mybyte = StrConv(DataToQueue, vbFromUnicode)

QueueMsg.Body = DataToQueue

Dim MSMQTx As Object

Set MSMQTx = g_MSMTxDisp.BeginTransaction

QueueMsg.send g_MSMQQueue, MSMQTx

MSMQTx.Commit

Set QueueMsg = Nothing

Set MSMQTx = Nothing

Exit Sub

Err_SendMSMQ:

Err.Raise Err.Number, "Sending Message To MSMQ", "Could Not

Send Message To MSMQ Queue """ & strQueuePath & """." & vbCrLf &

vbCrLf & Err.Description

Exit Sub

End Sub

Private Sub ExecuteSchedule(ByVal strSchedule)

Dim SendPAQ As Object

On Error GoTo Err_ExecSched

Set SendPAQ = GetObject(strSchedule)

If SendPAQ Is Nothing Then

Err.Raise vbObjectError + 1, , "Invalid Schedule Handle

Returned."

End If

Set SendPAQ = Nothing

Exit Sub

Err_ExecSched:

Err.Raise Err.Number, "Starting Schedule", "Could Not Launch

the XLANG Schedule" & vbCrLf & "Please verify the path to the

54 PeopleSoft Proprietary and Confidential

Chapter 6 Using COM Connector Events - Classic Events

SKX file and the path to the data are correct. Also make sure the

private queues have been created." & vbCrLf & vbCrLf &

Err.Description

Exit Sub

End Sub

Adding a New Application
From a Microsoft Windows 2000 machine, navigate to COM+ Applications (Control Panel > Administrative
Tools > Component Services), and then expand these buttons and folders:

Component Services > Computers > My Computer > COM+ Applications

To add a new application:

1. On Component Services, select COM+ Applications.
2. Right-click COM+ Applications, select New, and then select Application.
The COM Application Install Wizard appears. These steps apply to the wizard.

3. On Install or Create a New Application, select Create an empty application.
4. On Create Empty Application, enter the name of the application (for example, JDECOMConnectorEvents).
5. Select an option for Activation Type, and then click Next.
6. On Set Application Identity, select the Interactive User option, and then click Next.
7. Click Finish.

A new application, with the name you entered in Step 4, is added to COM+ Applications.

Installing the Event Class
On Component Services, expand the folder for the new application (for example, JDECOMConnectorEvents).

To install the event class:

1. On Component Services, select Components.
2. Right-click Components, select New, and then select Component.
The COM Component Install Wizard appears. These steps apply to the wizard.

3. On Import or Install a Component, select Install new event class(es).
4. On Select Files to Install, browse to the EventClass.dll on the Windows 2000 machine.
5. Select EventClass.dll, and then click Open.
Install new event class appears with information in these fields:
• Files to install
• Event classes found

6. Click Next, and then click Finish.

EventClass.dll is successfully added to Component Services.

PeopleSoft Proprietary and Confidential 55

Using COM Connector Events - Classic Events Chapter 6

Registering EventSink for Persistent Subscription
After you register an event class in the COM+ catalog, you can add subscribers to the event class and
subscriptions to the subscribers. For persistent event subscription:

• Add a new application for EventSink.

• Install the type library component for EventSink.

• Add a subscription.

Note. To add EventSink, follow the steps in the task To add a new application in the Connectors Guide.
The name of the application is EventSink, or a name that you prefer.

To install the EventSink component:

On Component Services, expand the folder for the new application (for example, EventSink).

1. Select Components.
2. Right-click Components, select New, and then select Component.
The COM Component Install Wizard appears. These steps are for the wizard.

3. On Import or Install a Component, select Install new component(s).
4. On Select Files to Install, browse to the EventSink.dll that you previously developed.
5. Select EventSink.dll, and then click Open.
Install new component appears with information in these fields:
• Files to install
• Event classes found

6. Click Next, and then click Finish.

EventSink.dll is successfully added to Component Services.

To add a subscription:

In COM+ Applications, expand these folders:

JDECOMConnectorEvents > Components > EventSink.OneWorldTransientEventSink

1. Select Subscription.

2. Right-click Subscription, select New, and then select Subscription.

The COM New Subscription Wizard appears. These steps apply to the wizard.

3. On Select Subscription Method(s), chose IOWEvent, and then click Next.

4. If appropriate, select the Use all interfaces for this component option.

5. On Select Event Class, select the event class (for example, PeopleSoft.EventClass.OneWorldEventClass.1),
and then press Next.

If multiple EventSink classes have implemented the event interface, then use all event classes that
implement that specified interface. If only one EventSink class has implemented the event interface, then
just select that specific class.

6. On Subscription Options, enter the name of the subscription (for example, MySubscription).

56 PeopleSoft Proprietary and Confidential

Chapter 6 Using COM Connector Events - Classic Events

7. In the Options area, select the Enable this subscription immediately option, and then click Next..
8. Click Finish.
A new subscription, with the name you entered in Step 6, is added to COM+ Services. You must define the
name of the event for the subscription.

9. Right-click the subscription (for example, MySubscription), and then select Properties.
10. On MySubscription Properties, click the Options tab.
11. Chose the Enabled option:
12. In the Filter criteria field, enter the name of the event for which you want a subscription.
Enter all of the events for which you want to subscribe. The filter criteria string supports relational
operations (=, ==, !, !=, ~, ~=, <>), nested parentheses, and logical words (AND, OR, and NOT); for
example:
EventName==’RTSOOUT’ OR EventName==RTPOOUT’

13. Click OK.

PeopleSoft Proprietary and Confidential 57

Using COM Connector Events - Classic Events Chapter 6

58 PeopleSoft Proprietary and Confidential

CHAPTER 7

Using COMConnector Events - Guaranteed Events

This chapter provides an overview of COM connector events and discusses how to:

• Register components.
• Subscribe to events.
• Log COM events.
• Implement the PeopleSoft EnterpriseOne interface.
• Register EventSink for persistent subscription.

Note. This chapter is applicable only if you use guaranteed event delivery. Guaranteed event delivery is
available when you use PeopleSoft EnterpriseOne Tools 8.94 with PeopleSoft EnterpriseOne Applications 8.11.

Refer to the Classic Events chapters if you use PeopleSoft EnterpriseOne Tools 8.94 with PeopleSoft
EnterpriseOne Applications 8.10 or earlier releases of the PeopleSoft EnterpriseOne Applications.

Understanding COM Connector Events
The COM connector events solution uses the Microsoft COM+ Events Service. COM+ Events Loosely
Coupled Events, which matches and connects publishers and subscribers, is part of the Microsoft Windows
2000 Component Services. The EventClass is a COM+ component that contains interfaces and methods that
are used by the publisher to initiate events. The EventClass manages the connection between publisher and
subscribers. PeopleSoft provides the EventClass.dll, which contains the IOWEvent interface. The COM
servers and COM clients must implement this interface so that when an event is initiated, this interface is
called by the COM+ Events Service and the implementation is executed. The implementation decides what the
delivered event and the event data should do. This implementation is COM server or COM client specific.

Note. You should have a basic understanding of the COM+ Events Service.

COM+ events supports Z events, real-time events, and XAPI events. COM+ Events Service is not dependent
on PeopleSoft EnterpriseOne setup for event generation.

See Also
Microsoft MSDN, http://www.msdn.microsoft.com/

EnterpriseOne Tools 8.94 PeopleBook: Interoperability, “Using Events - Guaranteed”

EnterpriseOne Tools 8.94 PeopleBook: Interoperability, “Using Real-Time Events - Guaranteed”

EnterpriseOne Tools 8.94 PeopleBook: Interoperability, “Using XAPI Events - Guaranteed”

PeopleSoft Proprietary and Confidential 59

Using COM Connector Events - Guaranteed Events Chapter 7

Registering Components
So that subscribers can find an event class and subscribe to it, the PeopleSoft EnterpriseOne event class must
be registered with COM+. In addition, COM+ requires a type library that describes the event interface and
methods so that subscribers and publishers can be properly matched and connected. The type library must
reside in or be accompanied by a self-registering DLL.

To register the PeopleSoft EnterpriseOne Events Class with COM+ Services, you must:

• Add a new COM+ application for the PeopleSoft EnterpriseOne event class.
• Install the PeopleSoft EnterpriseOne event class.

Note. Before you register the PeopleSoft EnterpriseOne Event Class with COM+ Services, set up the COM
server. The COM server can be set up on either a PeopleSoft EnterpriseOne machine or a non-PeopleSoft
EnterpriseOne machine (third-party machine), or both.

See Also
Chapter 4, “Deploying the COM Server,” COM Connector Installation, page 21

Subscribing to Events
The COM connector supports event subscriptions from PeopleSoft EnterpriseOne (PeopleSoft EnterpriseOne
server and Transaction server). The COM Connector connects to the PeopleSoft EnterpriseOne Transaction
server to receive its subscribed events. The events are received through the EventListener. The EventListener
runs as long as the COM connector is up and running. The COM connector runs as a small globe in the
bottom right corner of the Microsoft Windows taskbar.

You must set up the jdeinterop.ini file, including the [JMSEVENTS] section. Also, you must add the path
(not including the file name) to the appropriate jvm.dll file in the system’s PATH environment variable. For
connecting to an PeopleSoft EnterpriseOne Transaction server running in WebSphere, you must use the
jvm.dll provided by WebSphere. For WebLogic, you must use the jvm.dll corresponding to the JVM used
to run WebLogic.

Note. The COM connector does not support subscription of events from multiple PeopleSoft EnterpriseOne
Transaction servers.

Logging COM Events
Logging for COM events is entered in the interopDebug.log file. The error log is interop.log.

Implementing PeopleSoft EnterpriseOne Interfaces
This section provides an overview about implementing the PeopleSoft EnterpriseOne interface and discusses
how to:

60 PeopleSoft Proprietary and Confidential

Chapter 7 Using COM Connector Events - Guaranteed Events

• Create a COM+ component.
• Log on to the COM connector.
• Subscribe to an event.
• Integrate with BizTalk.
• Add a new application.
• Install the event class.

Implementing a PeopleSoft EnterpriseOne Interface
You must develop an object that implements the IOWEvent interface. For further discussion and for
code samples in this document, the name EventSink is used as the object name. The object that you
develop to implement the IOWEvent can have a different name. EventSink implements the IOWEvent
interface and the method within the interface, and then consumes the PeopleSoft EnterpriseOne event. The
EventSink implementation is client specific. EventSink receives the event from PeopleSoft EnterpriseOne by
implementing the interface specified in EventClass.

This code outline shows how to develop an EventSink component:

Option Explicit

Implements IOWEvent

Public Event OneWorldEvent(ByVal EventName As String, ByVal Data As String)

Public Sub IOWEvent_OneWorldEvent(ByVal EventName As String, ByVal Data

As String)

’// Add code specific to the client implementation here

RaiseEvent OneWorldEvent(EventName, Data)

End Sub

This list outlines the steps for you to follow to use the EventManager library and MessageHandler Interface
to subscribe to events.

1. Log on to the connector. Successful logon returns an access number.

2. Create the EventSink object.

3. Create the MessageHandler object.

4. Call methods on the MessageHandle for Subscribe, Unsubscribe, GetTemplate, and GetEventList for
the respective event.

5. To keep the session alive and not time out from receiving events, call the UpdateOutBoundSessionTime
method on the connector interface.

This method updates the user session time to the current time.

6. To subscribe to the events as persistent, register VB EventSink in the COM+ Component Services and add
the subscription for the EventClass.

Creating a COM+ Component
This sample code is for creating a COM+ component named EventSink.dll. EventSink implements the
EventClass interface IOWEvent(). You can use a name other than EventSink.

PeopleSoft Proprietary and Confidential 61

Using COM Connector Events - Guaranteed Events Chapter 7

EventSink: OneWorldTransientEventSink.cls
This code illustrates how to create a COM+ component:

Option Strict Off

Option Explicit On

<System.Runtime.InteropServices.ProgId

("OneWorldTransientEventSink_NET.OneWorldTransientEventSink")>

Public Class OneWorldTransientEventSink

Implements EventClass.IOWEvent

Public Event OneWorldEvent(ByVal EventName As String, ByVal

Data As String)

Public Sub IOWEvent_OneWorldEvent(ByVal EventName As String,

ByVal Data As String) Implements EventClass.IOWEvent.OneWorldEvent

Dim flsObject As New Scripting.FileSystemObject

Dim varEventFile As Scripting.TextStream

Dim strEventFile As String

strEventFile = "C:\temp\eventDataPer.xml"

’UPGRADE_WARNING: Dir has a new behavior. Click for more:

’ms-help://MS.VSCC.2003/commoner/redir/redirect.htm?keyword=

"vbup1041"’

If Dir(strEventFile) = "" Then

varEventFile = flsObject.CreateTextFile(strEventFile,

False, False)

Else

varEventFile = flsObject.OpenTextFile(strEventFile,

Scripting.IOMode.ForWriting, False)

End If

varEventFile.WriteLine(Data)

varEventFile.Close()

RaiseEvent OneWorldEvent(EventName, Data)

End Sub

End Class

Logging on to the COM Connector
This sample code logs on to the COM connector, creates the MessageHandler object, and performs Subscribe,
Unsubscribe, GetTemplate, and GetList. Before executing the subscriber, use the Regsvr32 command
to register COMConnector.dll.

COMConnector: frmLogin.frm
This code sample shows logging on to the COM connector:

Option Strict Off

Option Explicit On

Friend Class frmLogin

Inherits System.Windows.Forms.Form

62 PeopleSoft Proprietary and Confidential

Chapter 7 Using COM Connector Events - Guaranteed Events

Public bLoginEnv As Boolean

Private Sub cmdCancel_Click(ByVal eventSender As System.Object,

ByVal eventArgs As System.EventArgs) Handles cmdCancel.Click

’set the global var to false

’to denote a failed login

bLoginEnv = False

Me.Hide()

End Sub

Private Sub cmdOK_Click(ByVal eventSender As System.Object,

ByVal eventArgs As System.EventArgs) Handles cmdOK.Click

’check for correct password

If txtUserName.Text = "" Or txtenvironment.Text = "" Then

bLoginEnv = False

MsgBox("Must Enter User Name and Environment to

continue")

Else

bLoginEnv = True

Me.Hide()

End If

End Sub

End Class

COMConnector Common.bas
This code sample shows creating the message handler:

Option Strict Off

Option Explicit On

Module Common

Dim conn As New JDECOMCONNECTOR2Lib.Connector

Dim connRole As JDECOMCONNECTOR2Lib.IConnector2

’Dim messageHandler As New messageHandler

’Dim mHandlerInterface As ImessageHandler

Dim lngAccessNumber As Integer

Public Sub comm_Initialize()

connRole = conn

On Error GoTo errorHandler

frmLogin.DefInstance.bLoginEnv = False

frmLogin.DefInstance.Show()

While Not frmLogin.DefInstance.bLoginEnv

System.Windows.Forms.Application.DoEvents()

End While

lngAccessNumber = connRole.E1_Event_Login(frmLogin.

DefInstance.

txtUserName.Text, frmLogin.DefInstance.txtPassword.Text, frmLogin.

DefInstance.txtenvironment.Text, frmLogin.DefInstance.txtrole.Text)

’Debugging Purpose

’lngAccessNumber = connRole.E1_Event_Login("JP6849777",

PeopleSoft Proprietary and Confidential 63

Using COM Connector Events - Guaranteed Events Chapter 7

"PASSWORD", "TDEVNIS2", "*ALL")

connRole = conn

Exit Sub

errorHandler:

MsgBox("Login Failed. You can’t Use this Application")

End Sub

’ NOTE: the code in this module is particular to this prototype.

’ Different code is used in a production version to send messages to

’ PeopleSoft EnterpriseOne using PeopleSoft communication prototocols.

Public Sub SendSubscriptionToOneWorld(ByRef eventName As String,

ByRef oneworldevent As EventClass.IOWEvent, ByRef mode As Integer)

’mHandlerInterface.SubscribeEvent lngAccessNumber, conn,

eventName, oneworldevent, mode

On Error GoTo errorHandler

connRole.E1_Event_Subscribe(lngAccessNumber, oneworldevent)

Exit Sub

errorHandler:

MsgBox("Subscirbe Method Failed. You can’t Use this

Application")

End Sub

Public Sub SendUnSubscribeToOneWorld(ByRef eventName As String,

ByRef oneworldevent As EventClass.IOWEvent, ByRef mode As Integer)

On Error GoTo errorHandler

’mHandlerInterface.UnSubscribeEvent lngAccessNumber, conn,

eventName, oneworldevent, mode

connRole.E1_Event_UnSubscribe(lngAccessNumber)

Exit Sub

errorHandler:

MsgBox("UnSubscirbe Method Failed. You can’t Use this

Application")

End Sub

Public Sub SendLogoffToOneWorld()

’mHandlerInterface.SubscribeEvent lngAccessNumber, conn,

eventName, oneworldevent, mode

On Error GoTo errorHandler

connRole.E1_Event_Logoff(lngAccessNumber)

Exit Sub

errorHandler:

MsgBox("LogOff Method Failed. Terminate ComConnector

Process and End the Application")

End Sub

Public Sub getEventListFromOneWorld(ByRef eventList As String)

On Error GoTo errorHandler

’mHandlerInterface.GetEventList lngAccessNumber, conn,

eventList

eventList = connRole.E1_Event_GetEventList(lngAccessNumber)

Exit Sub

64 PeopleSoft Proprietary and Confidential

Chapter 7 Using COM Connector Events - Guaranteed Events

errorHandler:

MsgBox("GetEventList Method Failed. You can’t Use this

Application")

End Sub

Public Sub getEventTemplateFromOneWorld(ByRef eventName As

String, ByRef eventTemplate As String)

On Error GoTo errorHandler

’mHandlerInterface.GetEventTemplate lngAccessNumber,

eventName, conn, eventTemplate

Exit Sub

errorHandler:

MsgBox("GetEventTemplate Method Failed. You can’t Use this

Application")

End Sub

End Module

COMConnector: SubscriptionManager
This code sample shows event subscription and unsubscribe:

Option Strict Off

Option Explicit On

<System.Runtime.InteropServices.ProgId("SubscriptionManager_NET.

SubscriptionManager")> Public Class SubscriptionManager

’Private Const m_OneWorldEventCLSID = "{1E645180-6C93-4704-85C6-

57775E2ED2FC}"

Private m_SubscribedEvents As Collection

’UPGRADE_NOTE: Class_Initialize was upgraded to Class_Initialize_

Renamed. Click for more: ’ms-help://MS.VSCC.2003/commoner/redir/

redirect.htm?keyword="vbup1061"’

Private Sub Class_Initialize_Renamed()

m_SubscribedEvents = New Collection

comm_Initialize()

End Sub

Public Sub New()

MyBase.New()

Class_Initialize_Renamed()

End Sub

Public Sub GetEventList(ByRef eventList As String)

getEventListFromOneWorld(eventList)

End Sub

Public Sub Logoff()

SendLogoffToOneWorld()

End Sub

Public Sub CreateTransientSubscription(ByRef eventName As String,

ByRef oneworldevent As EventClass.IOWEvent)

SubscribeToOneWorldEvent(eventName, oneworldevent, 0)

PeopleSoft Proprietary and Confidential 65

Using COM Connector Events - Guaranteed Events Chapter 7

End Sub

Public Sub CreatePersistentSubscription(ByRef eventName As

String, ByRef oneworldevent As EventClass.IOWEvent)

SubscribeToOneWorldEvent(eventName, oneworldevent, 1)

End Sub

Public Sub RemoveTransientSubscription(ByRef eventName As String,

ByRef oneworldevent As EventClass.IOWEvent)

UnSubscribeToOneWorldEvent(eventName, oneworldevent, 0)

End Sub

Public Sub RemovePersistentSubscription(ByRef eventName As

String, ByRef oneworldevent As EventClass.IOWEvent)

UnSubscribeToOneWorldEvent(eventName, oneworldevent, 1)

End Sub

Public Sub GetEventTemplate(ByRef eventName As String, ByRef

eventTemplate As String)

getEventTemplateFromOneWorld(eventName, eventTemplate)

End Sub

Public Sub SubscribeToOneWorldEvent(ByRef eventName As String,

ByRef oneworldevent As EventClass.IOWEvent, ByRef mode As Integer)

’Private Function SubscribeToOneWorldEvent(EventName As

String) As Boolean

’ we’ve already subscribed if the subscription is in our

list

Dim alreadySubscribed As Boolean

’UPGRADE_WARNING: Couldn’t resolve default property of

object CollectionContainsString(). Click for more: ’ms-help:

//MS.VSCC.2003/commoner/redir/redirect.htm?keyword="vbup1037"’

alreadySubscribed = (CollectionContainsString

(m_SubscribedEvents, eventName) = True)

’ now do the right thing...

If (alreadySubscribed = False) Then

’ this instance of the COMConnector has not seen this

’ event before, so add it to our list...

m_SubscribedEvents.Add((eventName))

’ ...and go ahead and subscribe to the event from

PeopleSoft EntepriseOne

SendSubscriptionToOneWorld(eventName,

oneworldevent, mode)

End If

’SubscribeToOneWorldEvent = alreadySubscribed

End Sub

’UPGRADE_NOTE: str was upgraded to str_Renamed. Click for more:

’ms-help://MS.VSCC.2003/commoner/redir/redirect.htm?keyword="vbup1061"’

Private Function CollectionContainsString(ByRef col As

Collection, ByRef str_Renamed As String) As Object

Dim colItem As Object

66 PeopleSoft Proprietary and Confidential

Chapter 7 Using COM Connector Events - Guaranteed Events

For Each colItem In col

’UPGRADE_WARNING: Couldn’t resolve default

property of object colItem. Click for more: ’ms-help:

//MS.VSCC.2003/commoner/redir/redirect.htm?keyword="vbup1037"’

If (colItem = str_Renamed) Then

’UPGRADE_WARNING: Couldn’t resolve default

property of object CollectionContainsString. Click for more:

’ms-help://MS.VSCC.2003/commoner/redir/redirect.htm?keyword="vbup1037"’

CollectionContainsString = True

Exit Function

End If

Next colItem

’UPGRADE_WARNING: Couldn’t resolve default property of

object CollectionContainsString. Click for more:

’ms-help://MS.VSCC.2003/commoner/redir/redirect.htm?keyword="vbup1037"’

CollectionContainsString = False

End Function

Public Sub UnSubscribeToOneWorldEvent(ByRef eventName As String,

ByRef oneworldevent As EventClass.IOWEvent, ByRef mode As Integer)

Dim alreadySubscribed As Boolean

’alreadySubscribed = (CollectionContainsString

(m_SubscribedEvents.Item, eventName))

’ now do the right thing...

’If (alreadySubscribed = True) Then

’ this instance of the COMConnector has not seen this

event before, so

’ remove it from the list...

alreadySubscribed = (RemoveFromCollection

(m_SubscribedEvents, eventName))

If (alreadySubscribed = False) Then

MsgBox("Event Not Subscribed")

Else

’m_SubscribedEvents.Remove ()

’ ...and go ahead and subscribe to the event from

PeopleSoft EnterpriseOne

SendUnSubscribeToOneWorld(eventName, oneworldevent,

mode)

End If

’ End If

End Sub

’UPGRADE_NOTE: str was upgraded to str_Renamed. Click for more:

’ms-help://MS.VSCC.2003/commoner/redir/redirect.htm?keyword="vbup1061"’

Private Function RemoveFromCollection(ByRef col As Collection,

ByRef str_Renamed As String) As Object

Dim colItem As Object

PeopleSoft Proprietary and Confidential 67

Using COM Connector Events - Guaranteed Events Chapter 7

Dim count As Short

count = 0

For Each colItem In col

count = count + 1

’UPGRADE_WARNING: Couldn’t resolve default

property of object colItem. Click for more: ’ms-help:

//MS.VSCC.2003/commoner/redir/redirect.htm?keyword="vbup1037"’

If (colItem = str_Renamed) Then

col.Remove(count)

’UPGRADE_WARNING: Couldn’t resolve default

property of object RemoveFromCollection. Click for more:

’ms-help://MS.VSCC.2003/commoner/redir/redirect.htm?keyword="vbup1037"’

RemoveFromCollection = True

Exit Function

End If

Next colItem

’UPGRADE_WARNING: Couldn’t resolve default property of

object RemoveFromCollection. Click for more: ’ms-help:

//MS.VSCC.2003/commoner/redir/redirect.htm?keyword="vbup1037"’

RemoveFromCollection = False

End Function

End Class

Subscribing to an Event
Subscriber is the GUI that gets the EventsList, EventTemplate, Subscribe, and Unsubscribe. Subscriber is
built as a VB executable. Typical usage is to get the EventList first, which populates the list of options
with the events that are supported by the PeopleSoft EnterpriseOne server. Select the event that needs to be
subscribed from the PeopleSoft EnterpriseOne server and the type of subscription. Click Subscribe to add a
Subscription, or click Unsubscribe to unsubscribe from the PeopleSoft EnterpriseOne server. The Subscribed
events and the Received events are in separate boxes. The received event is displayed in the window on the
right. The event received can be integrated with BizTalk by choosing the Enable BizTalk Integration option.
You should have previously set up BizTalk; if not already installed, install the BizTalk Server 2000 Developer.
If the Module 1 tutorial in the BizTalk Server documentation runs properly, then the BizTalk Server is properly
installed. Before building the subscriber, you should use the Regsvr32 command to register EventSink.dll
and COMConnector.dll.

Subscriber: MainForm.frm
This code sample is for the GUI and the control buttons on the GUI. This code should be built along with the
BizTalk.cls, after registering the COMConnector.dll and MyEventSink.dll.

VERSION 5.00

Object = "{EAB22AC0-30C1-11CF-A7EB-0000C05BAE0B}#1.1#0"; "shdocvw.dll"

Object = "{831FDD16-0C5C-11D2-A9FC-0000F8754DA1}#2.0#0"; "mscomctl.ocx"

Begin VB.Form MainForm

Caption = "Subscriber Client"

ClientHeight = 7470

ClientLeft = 3555

ClientTop = 2820

ClientWidth = 11655

LinkTopic = "Form1"

68 PeopleSoft Proprietary and Confidential

Chapter 7 Using COM Connector Events - Guaranteed Events

ScaleHeight = 7470

ScaleWidth = 11655

Begin VB.Frame grpSubscribedEvents

Caption = "Subscribed Events"

Height = 2895

Index = 1

Left = 120

TabIndex = 17

Top = 2160

Width = 2775

Begin VB.CommandButton Command1

Caption = "Clear"

Height = 375

Left = 4560

TabIndex = 18

Top = 2280

Width = 975

End

Begin MSComctlLib.ListView lvwSubscribedEvents

Height = 1695

Left = 120

TabIndex = 19

Top = 360

Width = 2535

_ExtentX = 4471

_ExtentY = 2990

View = 2

LabelWrap = -1 ’True

HideSelection = -1 ’True

_Version = 393217

ForeColor = -2147483640

BackColor = -2147483643

BorderStyle = 1

Appearance = 1

NumItems = 2

BeginProperty ColumnHeader(1) {BDD1F052-858B-11D1-B16A-

00C0F0283628}

Key = "colEventName"

Text = "Event Name"

Object.Width = 2540

EndProperty

BeginProperty ColumnHeader(2) {BDD1F052-858B-11D1-B16A-

00C0F0283628}

SubItemIndex = 1

Key = "colData"

Text = "Data"

Object.Width = 6174

EndProperty

End

End

PeopleSoft Proprietary and Confidential 69

Using COM Connector Events - Guaranteed Events Chapter 7

Begin VB.CommandButton btnGetEventTemplate

Caption = "Get Template"

Height = 375

Left = 3720

TabIndex = 14

Top = 120

Width = 1455

End

Begin VB.CommandButton btnGetEventList

Caption = "Get Event List"

Height = 375

Left = 600

TabIndex = 13

Top = 120

Width = 1455

End

Begin SHDocVwCtl.WebBrowser wbEventData

Height = 6375

Left = 6240

TabIndex = 12

Top = 360

Width = 5175

ExtentX = 9128

ExtentY = 11245

ViewMode = 0

Offline = 0

Silent = 0

RegisterAsBrowser= 0

RegisterAsDropTarget= 1

AutoArrange = 0 ’False

NoClientEdge = 0 ’False

AlignLeft = 0 ’False

NoWebView = 0 ’False

HideFileNames = 0 ’False

SingleClick = 0 ’False

SingleSelection = 0 ’False

NoFolders = 0 ’False

Transparent = 0 ’False

ViewID = "{0057D0E0-3573-11CF-AE69-08002B2E1262}"

Location = ""

End

Begin VB.CheckBox chkEnableBizTalkIntegration

Caption = "Enable BizTalk Integration"

Height = 255

Left = 240

TabIndex = 8

Top = 5280

Width = 2535

End

Begin VB.Frame grpEnableBizTalkIntegration

70 PeopleSoft Proprietary and Confidential

Chapter 7 Using COM Connector Events - Guaranteed Events

Height = 975

Left = 120

TabIndex = 7

Top = 5640

Width = 5775

Begin VB.TextBox txtScheduleFile

Height = 375

Left = 1440

TabIndex = 10

Text = "sked:///\vbeventsdemo\Products\

VBCOMConnector\BizTalk\Buyer1.skx"

Top = 360

Width = 4095

End

Begin VB.Label lblScheduleFile

Alignment = 1 ’Right Justify

Caption = "Schedule File:"

Height = 255

Left = 240

TabIndex = 9

Top = 480

Width = 1095

End

End

Begin VB.CommandButton btnClose

Caption = "Close"

Height = 375

Left = 5760

TabIndex = 3

Top = 6960

Width = 975

End

Begin VB.Frame grpReceivedEvents

Caption = "Received Events"

Height = 2895

Index = 0

Left = 3000

TabIndex = 6

Top = 2160

Width = 2895

Begin VB.CommandButton btnClear

Caption = "Clear"

Height = 375

Index = 0

Left = 1680

TabIndex = 2

Top = 2280

Width = 975

End

Begin MSComctlLib.ListView lvwReceivedEvents

PeopleSoft Proprietary and Confidential 71

Using COM Connector Events - Guaranteed Events Chapter 7

Height = 1695

Left = 120

TabIndex = 1

Top = 360

Width = 2655

_ExtentX = 4683

_ExtentY = 2990

View = 2

LabelWrap = -1 ’True

HideSelection = -1 ’True

_Version = 393217

ForeColor = -2147483640

BackColor = -2147483643

BorderStyle = 1

Appearance = 1

NumItems = 2

BeginProperty ColumnHeader(1) {BDD1F052-858B-11D1-B16A-

00C0F0283628}

Key = "colEventName"

Text = "Event Name"

Object.Width = 2540

EndProperty

BeginProperty ColumnHeader(2) {BDD1F052-858B-11D1-B16A-

00C0F0283628}

SubItemIndex = 1

Key = "colData"

Text = "Data"

Object.Width = 6174

EndProperty

End

End

Begin VB.Frame grpSubscriptions

Caption = "Subscriptions"

Height = 1215

Left = 120

TabIndex = 4

Top = 720

Width = 5775

Begin VB.CheckBox chkPersist

Caption = "Persist"

Height = 255

Left = 1560

TabIndex = 16

Top = 840

Width = 975

End

Begin VB.ComboBox cEventList

Height = 315

Left = 1560

Sorted = -1 ’True

72 PeopleSoft Proprietary and Confidential

Chapter 7 Using COM Connector Events - Guaranteed Events

TabIndex = 15

Top = 360

Width = 2295

End

Begin VB.CommandButton btnUnsubscribe

Caption = "UnSubscribe"

Height = 375

Left = 4200

TabIndex = 11

Top = 720

Width = 1095

End

Begin VB.CommandButton btnSubscribe

Caption = "Subscribe"

Height = 375

Left = 4200

TabIndex = 0

Top = 240

Width = 1095

End

Begin VB.Label lblEventName

Alignment = 1 ’Right Justify

Caption = "Event Name:"

Height = 255

Left = 360

TabIndex = 5

Top = 360

Width = 1095

End

End

End

Attribute VB_Name = "MainForm"

Attribute VB_GlobalNameSpace = False

Attribute VB_Creatable = False

Attribute VB_PredeclaredId = True

Attribute VB_Exposed = False

Option Explicit

’ ------------------------------- ** ---------------------------------

’ Member Variables

’ ------------------------------- ** ---------------------------------

Private m_SubscriptionManager As SubscriptionManager

Private WithEvents m_OneWorldTransientEventSink As

OneWorldTransientEventSink

Attribute m_OneWorldTransientEventSink.VB_VarHelpID = -1

Private Sub Combo1_Change()

End Sub

Private Sub Check1_Click()

PeopleSoft Proprietary and Confidential 73

Using COM Connector Events - Guaranteed Events Chapter 7

End Sub

Private Sub btnClear_Click(Index As Integer)

lvwReceivedEvents.ListItems.Clear

End Sub

’----------------------------- ** -----------------------------------

’ GetEventTemplate

’----------------------------- ** -----------------------------------

Private Sub btnGetEventTemplate_Click()

Dim EventName As String

Dim EventTemplate As String

EventName = cEventList.List(cEventList.ListIndex)

’m_SubscriptionManager.GetEventTemplate EventName, EventTemplate

Dim flsObject As New Scripting.FileSystemObject

Dim varTemplateFile As TextStream

Dim strTemplateFile As String

strTemplateFile = "C:\temp\event_template.xml"

If Dir(strTemplateFile) = "" Then

Set varTemplateFile = flsObject.CreateTextFile

(strTemplateFile, False, False)

Else

Set varTemplateFile = flsObject.OpenTextFile

(strTemplateFile,ForWriting, False)

End If

varTemplateFile.WriteLine EventTemplate

varTemplateFile.Close

wbEventData.Navigate "c:\temp\event_template.xml"

End Sub

’ ------------------------------- ** --------------------------------

’ Event Handlers

’ ------------------------------- ** --------------------------------

Private Sub Form_Load()

Set m_SubscriptionManager = New SubscriptionManager

Set m_OneWorldTransientEventSink = New OneWorldTransientEventSink

’EnableBizTalkIntegrationGroup

End Sub

Private Sub m_OneWorldTransientEventSink_OneWorldEvent(ByVal EventName

As String, ByVal Data As String)

’ add the event name and payload to the list

Dim mTempItem As ListItem

Set mTempItem = lvwReceivedEvents.ListItems.Add()

mTempItem.Text = EventName

74 PeopleSoft Proprietary and Confidential

Chapter 7 Using COM Connector Events - Guaranteed Events

’mTempItem.SubItems(1) = Data

Dim flsObject As New Scripting.FileSystemObject

Dim varEventFile As TextStream

Dim strEventFile As String

strEventFile = "C:\temp\eventData.xml"

If Dir(strEventFile) = "" Then

Set varEventFile = flsObject.CreateTextFile(strEventFile,

False, False)

Else

Set varEventFile = flsObject.OpenTextFile(strEventFile,

ForWriting, False)

End If

varEventFile.WriteLine Data

varEventFile.Close

wbEventData.Navigate "c:\temp\eventdata.xml"

’ send the event to BizTalk (if it is enabled)

’If (chkEnableBizTalkIntegration.Value = Checked) Then

’Dim oBizTalk As BizTalk

’Set oBizTalk = New BizTalk

’oBizTalk.RunSchedule txtScheduleFile.Text, Data

’ End If

End Sub

’----------------------------- ** -----------------------------------

’ GetEventList

’----------------------------- ** -----------------------------------

Private Sub btnGetEventList_Click()

Dim events As String

Dim myValue As String

Dim myString As String

Set m_SubscriptionManager = New SubscriptionManager

m_SubscriptionManager.GetEventList events

cEventList.Clear

events = "RTSOOUT"

myString = events

’Do Until events = ""

’If InStr(1, myString, ":") > 0 Then

’ myValue = Left(myString, InStr(1, myString, ":") - 1)

’ myString = Mid(myString, InStr(1, myString, ":") + 1)

’Else

’ myValue = myString

’ events = ""

’End If

’cEventList.AddItem myValue

’ Loop

cEventList.AddItem myString

PeopleSoft Proprietary and Confidential 75

Using COM Connector Events - Guaranteed Events Chapter 7

cEventList.ListIndex = 0

End Sub

’----------------------------- ** -----------------------------------

’ Subscribe Event

’----------------------------- ** -----------------------------------

Private Sub btnSubscribe_Click()

’ subscribe to the named event.

Dim EventName As String

EventName = cEventList.List(cEventList.ListIndex)

If (chkPersist.Value = Checked) Then

m_SubscriptionManager.CreatePersistentSubscription EventName,

m_OneWorldTransientEventSink

Else

m_SubscriptionManager.CreateTransientSubscription EventName,

m_OneWorldTransientEventSink

End If

Dim mTempItem As ListItem

Set mTempItem = lvwSubscribedEvents.ListItems.Add()

mTempItem.Text = EventName

End Sub

’---------------------------- ** ----------------------------------

’ UnSubscribe Event

’---------------------------- ** ----------------------------------

Private Sub btnUnsubscribe_Click()

Dim EventName As String

EventName = cEventList.List(cEventList.ListIndex)

Dim lstItem As ListItem

Dim count As Integer

Dim found As Boolean

count = 0

found = False

For Each lstItem In lvwSubscribedEvents.ListItems

count = count + 1

If lstItem = EventName Then

lvwSubscribedEvents.ListItems.remove (count)

GoTo remove

found = True

End If

Next

If found = False Then

MsgBox "Event Not Subscribed"

End If

remove: If (chkPersist.Value = Checked) Then

m_SubscriptionManager.RemovePersistentSubscription EventName,

m_OneWorldTransientEventSink

Else

m_SubscriptionManager.RemoveTransientSubscription EventName,

m_OneWorldTransientEventSink

76 PeopleSoft Proprietary and Confidential

Chapter 7 Using COM Connector Events - Guaranteed Events

End If

End Sub

Private Sub chkEnableBizTalkIntegration_Click()

’EnableBizTalkIntegrationGroup

End Sub

’---------------------------- ** ------------------------------------

’ Clear the Received Events List

’---------------------------- ** ------------------------------------

Private Sub btnClear0_Click()

’ clear the events from the list

lvwReceivedEvents.ListItems.Clear

End Sub

Private Sub btnClose_Click()

m_SubscriptionManager.Logoff

Unload Me

End

End Sub

’ ------------------------------ ** ---------------------------------

’ Private Functions

’ ------------------------------ ** ---------------------------------

Private Sub Initialize()

’ Create the event sink

Set m_OneWorldTransientEventSink = New OneWorldTransientEventSink

End Sub

Private Sub EnableBizTalkIntegrationGroup()

’Dim blnEnable As Boolean

’blnEnable = (chkEnableBizTalkIntegration.Value = Checked)

’lblScheduleFile.Enabled = blnEnable

’txtScheduleFile.Enabled = blnEnable

End Sub

Integrating with BizTalk
This code is for the BizTalk integration for the received event.

Subscriber: BizTalk.cls
This code sample shows BizTalk subscription:

VERSION 1.0 CLASS

BEGIN

MultiUse = -1 ’True

Persistable = 0 ’NotPersistable

DataBindingBehavior = 0 ’vbNone

DataSourceBehavior = 0 ’vbNone

PeopleSoft Proprietary and Confidential 77

Using COM Connector Events - Guaranteed Events Chapter 7

MTSTransactionMode = 0 ’NotAnMTSObject

END

Attribute VB_Name = "BizTalk"

Attribute VB_GlobalNameSpace = False

Attribute VB_Creatable = True

Attribute VB_PredeclaredId = False

Attribute VB_Exposed = False

Option Explicit

’**

’***** ExecuteTutorial

’*****

’***** Purpose: This component is used to exercise

’***** the XLANG schedule portion of tutorial accompanying

’***** BizTalk Server (this is the Module 1 Tutorial).

’***** The component launches the specified schedule

’***** file and passes the data file specified

’***** to it using MSMQ.

’*****

’***** NOTE: the source code in this component is a direct

’***** adoption of the code found in the Module 1

’***** Tutorial in the BizTalk Server 2000 documentation.

’***** The default location for the original version of this

’***** source is found in: C:\Program Files\Microsoft

’***** BizTalk Server\Tutorial\Schedule\Solution\

’***** ExecuteTutorial.vbp

’*****

’***** Inputs:

’***** Schedule File - Contains the Moniker used to

’***** launch the schedule

’***** Data File - Contains the location of the

’***** XML document to be passed to

’***** the schedule for processing.

’*****

’***** Outputs:

’***** Data File - Data file is passed to MSMQ

’***** for later retrieval by the schedule.

Private g_MSMTxDisp As MSMQ.MSMQTransactionDispenser

Private g_MSMQQueue As MSMQ.MSMQQueue

Private g_MSMQInfo As MSMQ.MSMQQueueInfo

Private g_CurSkedDir As String

Private g_CurDataDir As String

Private Sub Class_Initialize()

Set g_MSMQInfo = CreateObject("MSMQ.MSMQQueueInfo")

Set g_MSMTxDisp = CreateObject("MSMQ.MSMQTransactionDispenser")

End Sub

Public Sub RunSchedule(ByVal strScheduleFile As String, ByVal

78 PeopleSoft Proprietary and Confidential

Chapter 7 Using COM Connector Events - Guaranteed Events

strData As String)

Dim objfs As New FileSystemObject

On Error GoTo cmdRunSked_Click_err

’Connect To MSMQ and Remove Any Existing Messages

PurgeMSMQ "DIRECT=OS:.\private$\ReceivePoReq"

’Send Selected message to MSMQ

ExecuteMSMQ "DIRECT=OS:.\private$\ReceivePoReq", strData

’Start Schedule which reads message from MSMQ

ExecuteSchedule strScheduleFile

Exit Sub

cmdRunSked_Click_err:

MsgBox Err.Description & vbCrLf & "Error: " & Err.Number & "

(0x" & Hex(Err.Number) & ")", vbCritical, "Error " & Err.Source

Err.Clear

End Sub

Private Sub PurgeMSMQ(ByVal strQueuePath As String)

Dim l_MSMQMsg As MSMQMessage

On Error GoTo Err_ConnectMSMQ

g_MSMQInfo.FormatName = strQueuePath

Set g_MSMQQueue = g_MSMQInfo.Open(MQ_RECEIVE_ACCESS, MQ_DENY_NONE)

On Error GoTo Err_PurgeMSMQ

Do

Set l_MSMQMsg = g_MSMQQueue.Receive(, , , 1)

Loop While Not l_MSMQMsg Is Nothing

Exit Sub

Err_ConnectMSMQ:

Err.Raise Err.Number, "Connecting To MSMQ", "Could Not Open the

MSMQ Queue """ & strQueuePath & """." & vbCrLf & vbCrLf &

Err.Description

Exit Sub

Err_PurgeMSMQ:

Err.Raise Err.Number, "Cleaning MSMQ", "Could Not Remove

Existing Messages from MSMQ Queue """ & strQueuePath & """." &

vbCrLf & vbCrLf & Err.Description

Exit Sub

End Sub

Private Sub ExecuteMSMQ(ByVal strQueuePath As String, DataToQueue

As String)

PeopleSoft Proprietary and Confidential 79

Using COM Connector Events - Guaranteed Events Chapter 7

Dim QueueMsg As New MSMQMessage

Dim strData As String

Dim fSend As Boolean

Dim txt As TextStream

Dim mybyte() As Byte

On Error GoTo Err_SendMSMQ

g_MSMQInfo.FormatName = strQueuePath

Set g_MSMQQueue = g_MSMQInfo.Open(MQ_SEND_ACCESS, MQ_DENY_NONE)

mybyte = StrConv(DataToQueue, vbFromUnicode)

QueueMsg.Body = DataToQueue

Dim MSMQTx As Object

Set MSMQTx = g_MSMTxDisp.BeginTransaction

QueueMsg.Send g_MSMQQueue, MSMQTx

MSMQTx.Commit

Set QueueMsg = Nothing

Set MSMQTx = Nothing

Exit Sub

Err_SendMSMQ:

Err.Raise Err.Number, "Sending Message To MSMQ", "Could Not

Send Message To MSMQ Queue """ & strQueuePath & """." & vbCrLf &

vbCrLf & Err.Description

Exit Sub

End Sub

Private Sub ExecuteSchedule(ByVal strSchedule)

Dim SendPAQ As Object

On Error GoTo Err_ExecSched

Set SendPAQ = GetObject(strSchedule)

If SendPAQ Is Nothing Then

Err.Raise vbObjectError + 1, , "Invalid Schedule Handle

Returned."

End If

Set SendPAQ = Nothing

Exit Sub

Err_ExecSched:

Err.Raise Err.Number, "Starting Schedule", "Could Not Launch

the XLANG Schedule" & vbCrLf & "Please verify the path to the SKX

file and the path to the data are correct. Also make sure the private

queues have been created." & vbCrLf & vbCrLf & Err.Description

Exit Sub

End Sub

80 PeopleSoft Proprietary and Confidential

Chapter 7 Using COM Connector Events - Guaranteed Events

Adding a New Application
From the Microsoft Windows 2000 machine, navigate to COM+ Applications (Control Panel > Administrative
Tools > Component Services), and then expand these buttons and folders:

Component Services > Computers > My Computer > COM+ Applications

To add a new application:

1. On Component Services, select COM+ Applications.
2. Right-click COM+ Applications, select New, and then select Application.
The COM Application Install Wizard appears. These steps apply to the wizard.

3. On Install or Create a New Application, select Create an empty application.
4. On Create Empty Application, enter the name of the application (for example, JDECOMConnectorEvents).
5. Select an option for Activation Type, and then click Next.
6. On Set Application Identity, select the Interactive User option, and then click Next.
7. Click Finish.

A new application, with the name you entered in Step 4, is added to COM+ Applications.

Installing the Event Class
On Component Services, expand the folder for the new application (for example, JDECOMConnectorEvents).

To install the event class:

1. On Component Services, select Components.
2. Right-click Components, select New, and then select Component.
The COM Component Install Wizard appears. These steps apply to the wizard.

3. On Import or Install a Component, select Install new event class(es).
4. On Select Files to Install, browse to the EventClass.dll on the Microsoft Windows 2000 machine.
5. Select EventClass.dll, and then click Open.
Install new event class appears with information in these fields:
• Files to install
• Event classes found

6. Click Next, and then click Finish.

EventClass.dll is successfully added to Component Services.

Registering EventSink for Persistent Subscription
After you register an event class in the COM+ catalog, you can add subscribers to the event class and
subscriptions to the subscribers. For persistent event subscription:

• Add a new application for EventSink.

PeopleSoft Proprietary and Confidential 81

Using COM Connector Events - Guaranteed Events Chapter 7

• Install the type library component for EventSink.
• Add a subscription.

Note. To add EventSink, follow the steps in the task To add a new application in the Connectors Guide.
The name of the application is EventSink, or a name that you prefer.

To install the EventSink component:

On Component Services, expand the folder for the new application (for example, EventSink).

1. Select Components.

2. Right-click Components, select New, and then select Component.

The COM Component Install Wizard appears. These steps are for the wizard.

3. On Import or Install a Component, select Install new component(s).

4. On Select Files to Install, browse to the EventSink.dll that you previously developed.

5. Select EventSink.dll, and then click Open.

Install new component appears with information in these fields:

• Files to install

• Event classes found

6. Click Next, and then click Finish.

EventSink.dll is successfully added to Component Services.

To add a subscription:

In COM+ Applications, expand these folders:

JDECOMConnectorEvents > Components > EventSink.OneWorldTransientEventSink

1. Select Subscription.
2. Right-click Subscription, select New, and then select Subscription.
The COM New Subscription Wizard appears. These steps apply to the wizard.

3. On Select Subscription Method(s), chose IOWEvent, and then click Next.
4. If appropriate, select the Use all interfaces for this component option.
5. On Select Event Class, select the event class (for example, PeopleSoft.EventClass.OneWorldEventClass.1),
and then press Next.
If multiple EventSink classes have implemented the event interface, then use all event classes that
implement that specified interface. If only one EventSink class has implemented the event interface, then
just select that specific class.

6. On Subscription Options, enter the name of the subscription (for example, MySubscription).
7. In the Options area, select the Enable this subscription immediately option, and then click Next.
8. Click Finish.
A new subscription, with the name you entered in Step 6, is added to COM+ Services. You must define the
name of the event for the subscription.

9. Right-click the subscription (for example, MySubscription), and then select Properties.

82 PeopleSoft Proprietary and Confidential

Chapter 7 Using COM Connector Events - Guaranteed Events

10. On MySubscription Properties, click the Options tab.
11. Chose the Enabled option:
12. In the Filter criteria field, enter the name of the event for which you want a subscription.
Enter all of the events for which you want to subscribe. The filter criteria string supports relational
operations (=, ==, !, !=, ~, ~=, <>), nested parentheses, and logical words (AND, OR, and NOT); for
example:
EventName==’RTSOOUT’ OR EventName==RTPOOUT’

13. Click OK.

PeopleSoft Proprietary and Confidential 83

Using COM Connector Events - Guaranteed Events Chapter 7

84 PeopleSoft Proprietary and Confidential

CHAPTER 8

Understanding Java Interoperability Solution

This chapter provides an overview of the Java interoperability solution.

Java Interoperability Solution
The PeopleSoft EnterpriseOne Java interoperability solution enables you to write Java applications that
interact with the PeopleSoft EnterpriseOne system. The Java interoperability solution includes these types of
connectors:

• Dynamic Java connector.
• Java connector.
• Java Connector Architecture (JCA) resource adapter.

The initial Java interoperability solution provided by PeopleSoft is the Java connector. The Java connector
generates a Java wrapper object around the PeopleSoft EnterpriseOne business function and data structure. A
Java application calls the business functions from the Java wrapper object.

The dynamic Java connector is an enhancement to the Java connector. The dynamic Java connector enables
Java applications to dynamically call business functions without generating business function wrappers.
The dynamic Java connector ensures that the Java business function is compatible with the server spec.
The dynamic Java connector makes it much easier for the Java application to switch between PeopleSoft
EnterpriseOne environments.

The JCA resource adapter is a thin layer built on top of the dynamic Java connector and provides standard APIs
required by the Java connector architecture. The core functionality for the JCA resource adapter is to interact
with PeopleSoft EnterpriseOne, and this functionality is leveraged to the dynamic Java connector. Each
connector has a complete set of APIs that enable Java applications to interact with PeopleSoft EnterpriseOne.

This diagram shows how a Java application interacts with PeopleSoft EnterpriseOne through a connector:

PeopleSoft Proprietary and Confidential 85

Understanding Java Interoperability Solution Chapter 8

Java Application
(standalone Java
application, J2EE

application, and so on)

Java Connector
JCA Resource

Adapter

Dynamic Java Connector

Java CallObject

Java ThinNet

PeopleSoft
EnterpriseOne

Java Application interaction with PeopleSoft EnterpriseOne

Generally, each connector provides public interfaces (or APIs) for these services that can be used by a Java
application:

Service Description

Security Management Handles security access to the PeopleSoft EnterpriseOne
system.

User Session Management Manages the user session pooling.

Business Function Calls How the Java application calls business functions.

Transaction Management Manages the transaction process to the PeopleSoft
EnterpriseOne system.

Error Handling Provides the appropriate exceptions to the connector user to
easily handle error scenarios.

Both the Java connector and the dynamic Java connector support the processing of outbound events.

86 PeopleSoft Proprietary and Confidential

Chapter 8 Understanding Java Interoperability Solution

Note. If this is the first implementation of a Java connector, you should consider the dynamic Java connector
instead of the Java connector. The functional capabilities are the same. The advantage of implementing the
dynamic Java connector is that you are not required to generate wrappers.

PeopleSoft Proprietary and Confidential 87

Understanding Java Interoperability Solution Chapter 8

88 PeopleSoft Proprietary and Confidential

CHAPTER 9

Understanding the Dynamic Java Connector

This chapter provides an overview of the dynamic Java connector and discusses:

• Designing the dynamic Java connector.
• Installing the dynamic Java connector.
• Running the dynamic Java connector.
• User session management for the dynamic Java connector.
• Sample applications.

Dynamic Java Connector
The dynamic Java connector enables a Java application to call a business function. Compared to the Java
connector, the dynamic Java connector has these distinguishing features:

• Dynamically introspects business function metadata.

The business function metadata is introspected from the PeopleSoft EnterpriseOne server during application
design time by using connector APIs without pre-generating business function wrappers.

• Dynamically calls business functions without pre-generating business function wrappers.

Since there is no local storage of business function spec metadata, the business function used by the dynamic
Java connector is always compatible with the server spec metadata.

• Easily switches from one environment to another environment.

The Java application can run on any environment that is compatible to the environment on which the
Java application was designed.

The dynamic Java connector provides these services:

• For application design, the dynamic Java connector permits client programs to introspect business function
specification metadata.

• For application deployment, the dynamic Java connector validates whether a client application can run
through a certain PeopleSoft EnterpriseOne server.

• For application runtime, the dynamic Java connector provides an interface that permits the connector client
to call the business function on the PeopleSoft EnterpriseOne server.

Each server is described in detail in corresponding sections of this guide.

PeopleSoft Proprietary and Confidential 89

Understanding the Dynamic Java Connector Chapter 9

Designing the Dynamic Java Connector
This section provides considerations for designing the dynamic Java connector and discusses:

• Business function spec metadata introspection.

• Business function spec metadata validation.

• SpecImage console.

Business Function Spec Metadata Introspection
To call a business function method, you need to know the business function methods that are available to be
called, and you need to know about the business function metadata. This list provides examples of metadata:

• Business function method (such as F4211BeginDoc).
• The module name (C file name) to which a business function method belongs (such as B123456).
• Description of the business function method (such as sales order).
• Data structure template name that is associated with a business function method (such as D123456).
• The attributes for all of the data items (parameters) in a business function method, such as
name=szMnAddressbookNumber, itemID=1, data type=Math_Numeric, length=48, requiredType="Yes",
IOType="INOUT".

In the dynamic Java connector, metadata is represented by the BSFNMethod and BSFNParameter interfaces.

BSFNMethod
The BSFNMethod interface defines APIs that enable you to retrieve metadata related to the business function
method. The BSFNMethod interface defines these APIs:

• public String getName();
• public String getDSTemplateName();
• public String getBSFNName();
• public String getDescription();
• public BSFNParameter getParameter(String paraName);
• public BSFNParameter[] getParameters();
• public String getFormatString();
• public ExecutableMethod createExecutable();
• public boolean equals(Object anotherBSFNMethod);
• public void setEqualTo(BSFNMethod anotherBSFNMethod);
• public String getVersion();
• public void setVersion(String version);

BSFNParameter
The BSFNParameter interface defines APIs that enable you to retrieve metadata related to the data structure of
the business function. The BSFNParameter interface defines these APIs:

90 PeopleSoft Proprietary and Confidential

Chapter 9 Understanding the Dynamic Java Connector

• public int getItemID();
• public String getName();
• public int getLength();
• public IOType getIOType();
• public RequiredType getRequiredType();
• public BSFNDataType get DataType();

BSFNSpecSource
You can write a program to retrieve business function method metadata through an interface called
BSFNSpecSource. The BSFNSpecSource interface defines these APIs:

• Public BSFNMethod getBSFNMethod(String methodName) throws SpecFailureException
• Public BSFNMethod[] getBSFNMethods() throws SpecFailureException

The class that implements the BSFNSpecSource interface reads the business function method metadata
from an external physical repository and creates the BSFNMethod object. AbstractBSFNSpecSource is an
abstract implementation of BSFNSpecSource provided by the dynamic Java connector. All customized
implementations of BSFNSpecSource should be a subclass of this class. OneWorldBSFNSpecSource is the
default implementation of AbstractBSFNSpecSource.

This illustration shows the BSFNSpecSource, BSFNMethod, and BSFNParameter relationships:

Client

BSNFMethod
getName();
getDSTemplate();
getBSFNName();
getFormatString();
getParameters();
...

<<Interface>>
BSFNSpecSource

BSNFParameter
getName();
getItemID();
getDataType();
getLength();
getIOType();
getRequiredType();

Spec Source
Image (XML)

Image
BSFNSpecSource

OneWorld
BSFNSpecSource

PeopleSoft
EnterpriseOne

Server

Dynamic Connector

 getBSFNMethod (bsfnMethodName)
 listBSFNMethods()

Relationships among BSFNSpecSource, BSFNMethod, and BSFNParameter

This code example shows how to retrieve the BSFN spec from BSFNSpecSource:

//Step 1: Create a new BSFNSpecSource

PeopleSoft Proprietary and Confidential 91

Understanding the Dynamic Java Connector Chapter 9

BSFNSpecSource specSource = null;

int sessionID = Connector.getInstance().login("user", "pwd", "env",

"role");

specSource = new OneWorldBSFNSpecSource(sessionID);

// or specSource = new ImageBSFNSpecSource("SSI.xml");

//Step 2: Get BSFNMethod by name from specSource

BSFNMethod method = specSource.getBSFNMethod("GetEffectiveAddress");

//Step 3: Introspect BSFNMethod metadata

method.getName();

...

BSFNParameter[] paraList = method.getParameters();

for (int I=0; I<paraList.length;i++) {

BSFNParameter para = paraList[i];

para.getName();

para.getDataType();

...

}

SpecDictionary
A BSFNSpecSource can contain thousands of business function methods. The dynamic Java connector
provides an interface to properly categorize and organize business function methods. Without proper
categorization and organization, it is difficult to navigate and find the proper business function method. To
solve this problem, the dynamic Java connector provides an interface called SpecDictionary, which provides
these services:

• Categorizes business function methods in a hierarchy.
• Masks the BSFNSpecSource and limits the number of business function methods a client can view.

The entry of SpecDictionary is called a context. A context is a set of name-to-object bindings. Every context
has an associated naming convention. A context provides a lookup operation that returns the object. The
dynamic Java connector provides these two concrete classes that implement the SpecDictionary:

• OneWorldSpecDictionary, which gets the hierarchy information from the PeopleSoft EnterpriseOne database.
OneWorldSpecDictionary categorizes business function methods as DLL library - C file name - C function
name.

• ImagespecDictionary, which gets the hierarchy information from Spec Dictionary Image, which is an
XML file.

Like BSFNSpecSource, third-party programs can store the spec dictionary information in their proprietary
format, but they need to implement their own specDictionary to read the proprietary spec.

This diagram shows the relationship between SpecDictionary and BSFNSpecSource:

92 PeopleSoft Proprietary and Confidential

Chapter 9 Understanding the Dynamic Java Connector

Client

Context
getName();
get Description()
getSubContext("F42
11BeginDoc")
...

<<Interface>>
SpecDictionary

BSNFMethod
getName();
getDSTemplate();
getBSFNName();
getFormatString();
getParameters();
...

getinitialContext ()
lookupContext("CFIN")
lookupSpec("CFIN.B123.F123")
getspecs();
...

Image
SpecDictionary

 OneWorld
SpecDictionary

OneWorld
BSFNSpecSource

Dynamic
Connector

Customized
SpecDictionary

Customized
Dictionary

SpecDictionary
Image (XML)

PeopleSoft
EnterpriseOne

Database

PeopleSoft
EnterpriseOne

Server

SpecSource Image
(XML)

Image
BSFNSpecSource

<<Interface>>
BSFNSpecSource

bindSpecSource()
getBoundSpec()

Relationship between SpecDictionary and BSFNSpecSource

This example code shows how to use SpecDictionary and BSFNSpecSource to browse and lookup information:

BSFNSpecSource specSource = null;

SpecDictionary specDictionary = null;

//Step 1: Create a SpecDictionary

int sessionID = Connector.getInstance().login("user", "pwd", "env",

"role");

specDictionary = new OneworldSpecDictionary(sessionID);

// or specDictionary = new ImagespecDictionary("dict.xml");

//Step 2: Bind the SpecDictionary to a SpecSource

specDictionary.bindSpecSource(specSource);

//Step 3a: Lookup the BSFNMethod by giving the full path

BSFNMethod method =(BSFNMEthod) specDictionary.getSpec

("CFIN.F4211.F4211BeginDoc"));

PeopleSoft Proprietary and Confidential 93

Understanding the Dynamic Java Connector Chapter 9

//Step 3b: or navigate through the dictionary and get the context

attributes

Context initContext = specDictionary.getInitialContext();

Context[] subContextList = initContext.getSubcontexts();

for (int I=0;I<subContextList>.length; I++) {

Context subContext=subContext[i];

subContext.getName();

subContext.getDescription();

method=(BSFNMethod)subContext.getBoundSpecContent();

...

}

Business Function Spec Metadata Validation
If the dynamic Java connector program calls a business function from OneWorldBSFNSpecSource, you do not
need to validate the business function metadata. The business function metadata in OneWorldBSFNSpecSource
is always the same as the business function metadata that is on the PeopleSoft EnterpriseOne server where
the business function runs. You must ensure that all input parameters are set correctly, according to
OneWorldBSFNSpecSource.

If the dynamic Java connector program calls a business function from a spec source other than
OneWorldBSFNSpecSource (such as ImageBSFNSpecSource or a custom business function spec source), the
business function metadata that is in the local spec source might not be compatible with the business function
metadata that is on the PeopleSoft EnterpriseOne server where the business function runs. Local business
function spec metadata can be validated during these conditions:

Condition Explanation

Deploy Time The dynamic Java connector program validates the local
spec source against the PeopleSoft EnterpriseOne server
spec source before run time. You should perform this
validation, as all business functions in the local spec source
are validated. The program can be redesigned before it is
shipped.

Run Time The dynamic Java connector validates the program based
on the local spec design when running business functions.
During this condition, only the business function that is
called is validated. Run time validations should be treated
as error handling when incompatible business function
specs are found.

The dynamic Java connector provides two ways to validate business function spec metadata during deploy
time: SpecImageValidator APIs and SpecImageConsole command line.

The APIs for SpecImageValidator are:

• public SpecImageValidator(BSFNSpecSource srcSpecSource).
• public ValidationResultSet validate(SpecDictionary dictionary) throws SpecFailureException.
• public ValidationResultSet validate(SpecDictionary dictionary, String path) throws SpecFailureException.
• public ValidationResultSet validate(BSFNSpecSource dstSpecSource) throws SpecFailureException.
• public ValidationResultSet validate(BSFNSpecSource dstSpecSource, String bsfnMethodName).

94 PeopleSoft Proprietary and Confidential

Chapter 9 Understanding the Dynamic Java Connector

Note. If the SpecImageConsole command line is used, the dynamic Java connector can only validate
business function spec metadata from ImageBSFNSpecSource; custom business function spec sources
cannot be validated.

SpecImageConsole
You can use the SpecImageConsole command line to generate, update, validate and synchronize spec images.

Generate Spec Image
You use the spec image console to generate or regenerate a spec image. This information is useful for
generating or regenerating a spec image.

Usage
java com.jdedwards.system.connector.dynamic.util.SpecImageConsole /Generate [Other Options]

Options
/UserName <user> (required)

/Password <pwd> (required)

/Env <environment> (required)

/Role <role> (required)

/ImageStub <stub file> (required)

/ImageType <image type [SSI|SDI|ALL]> (optional, default is ALL)

/ErrorFile <error file> (optional, default is System.err)

/OutputFile <output file> (optional, default is System.out)

Explanation
Log on to PeopleSoft EnterpriseOne with <user>, <pwd>, <environment>, and <role>.

Load the spec image stub from <stub file>.

Generate the spec image with the image type <image type>.

The spec image is written to the <output file> (or System.out if /OutputFile not present).

Error messages are written to the <error file> (or System.err if /ErrorFile not present).

Example
java com.jdedwards.system.connector.dynamic.util.SpecImageConsole

/Generate /ImageStub image_stub.xml /ImageType SDI /OutputFile

image.xml /ErrorFile err.log

Update Spec Image
You use the spec image console to update or change a spec image. This information is useful for updating a
spec image.

PeopleSoft Proprietary and Confidential 95

Understanding the Dynamic Java Connector Chapter 9

Usage
java com.jdedwards.system.connector.dynamic.util.SpecImageConsole /Update [Other Options]

Options
/UserName <user> (required)

/Password <pwd> (required)

/Env <environment> (required)

/Role <role> (required)

/SSI <SSI file> (required)

/SDI <SDI file> (optional)

/AddSpec <BSFNSpec name> (for example, F4211BeginDoc; optional)

/AddContext <full Context name> (for example, CFIN.B3100010 or CFIN.B3100010.F4211BeginDoc;
optional)

/RemoveSpec <BSFNSpec name> (for example, F4211BeginDoc; optional)

/RemoveContext <full Context name> (for example, CFIN.B3100010 or CFIN.B3100010.F4211BeginDoc;
optional)

Explanation
Log on to PeopleSoft EnterpriseOne with <user>, <pwd>, <environment>, and <role>.

Load the <SDI file> (If option /SDI not present, then load <SSI file>) add/remove the context and BSFN spec
that is specified as <full Context name> and <BSFNSpec name>.

Example
This example shows how to update the Spec Dictionary Image (sdi.xml) and the Spec Content Image
(SSI.xml). The example adds Context CFIN.B00100, removes Context CFIN.B001002, adds Spec
F4211BeginDoc, and removes Spec F4311BeginDoc.

java com.jdedwards.system.connector.dynamic.util.SpecImageConsole

/Update /SDI sdi.xml /SSI ssi.xml /addContext CFIN.B001001

/removeContext CFIN.B001002 /addSpec F4211BeginDoc /removeSpec

F4311BeginDoc

Validate Spec Image
You use the spec image console to validate the spec image against the PeopleSoft EnterpriseOne server. This
information is useful for validating a spec image.

Usage
java com.jdedwards.system.connector.dynamic.util.SpecImageConsole /Validate [Other Options]

Options
/UserName <user> (required)

/Password <pwd> (required)

96 PeopleSoft Proprietary and Confidential

Chapter 9 Understanding the Dynamic Java Connector

/Env <environment> (required)

/Role <role> (required)

/SSI <SSI file> (required)

/SDI <SDI file> (optional)

/OutputFile (optional, default to System.out)

Explanation
Log on to PeopleSoft EnterpriseOne with <user>, <pwd>, <environment>, and <role>.

If option /SDI is present, validate all the BSFNSpec that bind to the <SDI file>. If /SDI is not present, validate
all the BSFNSpec in the <SSI file>.

The spec image is written to the <output file> (or System.out if /OutputFile is not present).

Example
This example shows how to validate spec image using ssi.xml as the SpecDictionary and sdi.xml as the
SpecSource. The example writes the validation result to validateResult.log.

java com.jdedwards.system.connector.dynamic.util.SpecImageConsole

/Validate /SDI sdi.xml /SSI ssi.xml /OutputFile validateResult.log

Synchronize Spec Image
You use the spec image console to synchronize the spec image with the PeopleSoft EnterpriseOne server. This
information is useful for validating a spec image.

Usage
java com.jdedwards.system.connector.dynamic.util.SpecImageConsole /Synchronize [Other Options]

Options
/UserName <user> (required)

/Password <pwd> (required)

/Env <environment> (required)

/Role <role> (required)

/SSI <SSI file> (required)

/SDI <SDI file> (optional)

/ErrorFile <err file>(optional, default to System.err)

Explanation
Log on to PeopleSoft EnterpriseOne with <user>, <pwd>, <environment>, and <role>.

If option /SDI present, synchronize all the BSFNSpec that bind to the <SDI file>. If /SDI is not present,
synchronize all the BSFNSpec in the <SSI file>.

The new spec image is written to the <SSI file>. Error messages are written to <err file> (or System.err if
/ErrorFile is not present).

PeopleSoft Proprietary and Confidential 97

Understanding the Dynamic Java Connector Chapter 9

Example
This example shows how to synchronize the spec source image, ssi.xml:

java com.jdedwards.system.connector.dynamic.util.SpecImageConsole

/Synchronize /SSI ssi.xml

Installing the Dynamic Java Connector
These steps show how to install dynamic connector components so that you can run a dynamic Java connector
application.

1. Copy these files from the PeopleSoft EnterpriseOne server to a directory on the machine that you want
to use:
• Connector.jar

• kernel.jar
• jdeutil.jar
• database.jar
• log4j.jar
• xerces.jar
• jdeinterop.ini

• jdbj.ini
• jdelog.properties

• JDBC drivers (obtain the JDBC drivers from the database vendor)

For example, you might copy the files to this directory on the machine:

C:\PeopleSoft\Interop

2. Add these files to the CLASSPATH:

• Connector.jar

• kernel.jar
• jdeutil.jar
• database.jar
• log4j.jar
• xerces.jar
• JDBC drivers

3. Add the path where the jdelog.properties, jdeinterop.ini, and jdbj.ini files are located into CLASSPATH.

4. Edit jdeinterop.ini, jdelog.properties, and jdbj.ini for proper settings.

98 PeopleSoft Proprietary and Confidential

Chapter 9 Understanding the Dynamic Java Connector

Running the Dynamic Java Connector
This section discusses:r

• Calling a business function.

• BSFN cache.
• Transaction using the dynamic Java connector.

• OCM support for the dynamic Java connector.

Calling a Business Function
If you know the business function name and the parameters (data items) associated with the business function,
you can use the dynamic Java connector to call the business function. The dynamic Java connector does not
require pre-generated wrappers. This code sample shows you how to use the dynamic Java connector to
call a business function:

// Step 1: Login

int sessionID = Connector.getInstance().login("user", "pwd", "env",

"role");

// Pre-condition: create the SpecDictionary or BSFNSpecSource

// Step 2: Lookup the BSFN method from SpecDictionary or BSFNSpecSource

BSFNMethod bsfnMethod = (BSFNMethod)specSource.getBSFNMethod

("Get EffectiveAddress");

// Step 3: create the executable method from the BSFN metadata

ExecutableMethod addressbook = bsfnMethod.createExecutable();

try {

// Step 4: Set parameter values

addressbook.setValue("mnAddressNumber", "1");

// Step 5: Execute the business function

BSFNExecutionWarning warning = addressbook.execute(sessionID);

// Step 6: Get return parameter values

System.out.println("szNamealpha"= + addressbook.getValueString

("szNamealpha"));

// Get the warnings if any

if (warning.hasWarnings()){

String warningMsgs[] = warning.getWarningMessages();

for (int i=0;i<warningMsgs.length;i++){

System.out.println(warningMsgs[i]);

}

}

}catch (SystemException e) {

//SystemException is thrown when system crash, this is a fatal

//error and must be caught

System.exit(1);

PeopleSoft Proprietary and Confidential 99

Understanding the Dynamic Java Connector Chapter 9

} catch (ApplicationException e){

// ApplicationException is thrown when business function

// execution fail, this is RuntimeException and thus can be

// unchecked. But it is strongly recommend to catch this

// exception

} finally {

//Log off and shut down connector if necessary

connector.logoff(sessionID);

connector.shutDown();

}

The dynamic Java connector permits you to use hash tables to input parameter values. This example code
illustrates how to use the Hashtable class to input parameter values:

Map input = new Hashtable();

input.put("mnAddressNumber", String.valueOf(addressNo));

addressbook.setValues(input);

The dynamic Java connector permits you to use hash tables to retrieve output values. This example code
illustrates how to use the Hashtable class to retrieve output values:

Map output = addressbook.getValues();

System.out.println("szNamealpha=" + output.getValueString("szNamealpha"));

BSFN Cache
The dynamic Java connector fetches a business function spec from a SpecSource (PeopleSoft EnterpriseOne
server or an XML repository) to create an executable method. To reduce some of the overhead for creating
executable methods during run business functions, the Java connector caches the executable methods after
they are created.

If OneWorldSpecSource is used as SpecSource, the dynamic Java connector gets the most current business
function spec from the PeopleSoft EnterpriseOne server the first time the business function is called. The cache
is destructed after the connector is shutdown. This cache mechanism expedites business function execution by
eliminating the overhead of retrieving the business function spec for every business function call.

The duration of the cache can be configured in the jdeinterop.ini file. You can configure the setting to balance
the speed of the business function execution and the update of the business function spec.

Transaction Using the Dynamic Java Connector
You use the dynamic Java connector to do an PeopleSoft EnterpriseOne transaction in either automatic or
manual mode. This example code for a purchase order entry transaction shows the steps for using the dynamic
Java connector in manual mode.

int sessionID = Connector.getInstance().login("user", "pwd", "env",

"role");

UserSession userSession = Connector.getInstance().getUserSession

(ses sionID);

boolean isManulCommit;

//set isManualCommit as true or false

//Step 1: create OneWorldTransaction

OneworldTransaction transaction = userSession.createOneworldTransaction

(isManualCommit);

100 PeopleSoft Proprietary and Confidential

Chapter 9 Understanding the Dynamic Java Connector

// Step2: create the Purchase Order Entry executable methods (such as

// poeBeginDoc, poeEditLine, poeEndDoc) from the BSFN metadata.

//Step 3: begin the transaction

transaction.begin();

//Step 4: run BSFNs in this transaction

//set poeBeginDoc input parameters (code not provided)

BSFNExecutionWarning warning = poeBeginDoc.execute(transaction);

//set poeEditLine input parameters (code not provided)

BSFNExecutionWarning warning = poeEditLine.execute(transaction);

//set poeEndDocinput parameters (code not provided)

BSFNExecutionWarning warning = poeEndDoc.execute(transaction);

//Step 5: Commit or rollback transaction

transaction.commit();

//or transaction.rollback();

OCM Support for the Dynamic Java Connector
You use Object Configuration Manager (OCM) to map business functions to an enterprise server so that the
dynamic Java connector can access OCM to run business functions. You no longer configure the jdeinterop.ini
file to define the enterprise server from which you want to execute business functions. Using OCM support
should result in an increase in performance, scalability, and load balancing. The Java interoperability server
distributes the processes of the Java client to various enterprise servers depending on user, environment, and
role. To take advantage of dynamic Java connector OCM support:

• Configure the OCM and map the business function on different enterprise servers.
• Set OCMEnabled=true in jdeinterop.ini.
• Configure the settings in jdeinterop.ini regarding the bootstrap data source with the OCM configuration.

Ensure that OCMEnabled is set in the OCM section of the jdeinterop.ini configuration file.

Understanding User Session Management for the
Dynamic Java Connector

This section discusses:

• User session management for the dynamic Java connector.
• Inbound XML request using the dynamic Java connector.
• Logging for the dynamic Java connector.
• Exception handling for the dynamic Java connector.

PeopleSoft Proprietary and Confidential 101

Understanding the Dynamic Java Connector Chapter 9

User Session Management for the Dynamic Java Connector
When the connector user successfully signs on, a valid user session is allocated to that user signon. The user
session has status for two types of connector operations, one is for inbound business function calls, and the
other is for outbound real-time events. The connector monitors the status of the user session and uses the
time out settings in the jdeinterop.ini file to stop the user session when a time out setting has been reached.
The connector looks at the these settings:

jdeinterop.ini File Section Setting Explanation

[CACHE] UserSession The maximum connector idle time for
an inbound business function call.

[INTEROP] manual_timeout The maximum idle time for a manual
transaction.

[EVENTS] outbound_timeout The maximum value of connector idle
time for receiving outbound events.

The values for the settings are in milliseconds. A value of zero (0) indicates infinite time out. The settings are
defined in the jdeinterop.ini section of this guide.

If an inbound user session times out, that user session cannot be used to execute a business function call.
Likewise, if an outbound user session times out, that user session cannot be used for events. When both
inbound and outbound sessions time out, the user session is removed from the connector. Since each user
session has a corresponding handle in the PeopleSoft EnterpriseOne server, you should explicitly call a
connector API to log off the user session. The API log off releases the handle in the PeopleSoft EnterpriseOne
server when the user session is no longer used.

This sample code shows how to retrieve and manage a user session:

// Login

int sessionID = Connector.getInstance().login("user", "pwd", "env",

"role");

// Use the sessionID. If InvalidSessionException is caught, user session

is not valid any more

//Check the status of the usersession

UserSession session;

try{

session=Connector.getInstance().getUserSession(sessionID);

}catch(InvalidSessionException ex){

System.out.println("Invalid user session");

}

if(session.isInboundTimedout()){

System.out.println("User session inbound is timed out");

}

if(session.isOutboundTimedout()){

System.out.println("User session outbound is timed out");

}

//Log off and shut down connector to release user session from the

102 PeopleSoft Proprietary and Confidential

Chapter 9 Understanding the Dynamic Java Connector

server

connector.logoff(sessionID);

connector.shutDown();

Inbound XML Request Using the Dynamic Java Connector
You use the dynamic Java connector to send inbound synchronous XML requests (such as XML CallObject
and XML List) to the PeopleSoft EnterpriseOne server.

This sample code shows how to use the dynamic Java connector to execute an inbound XML request:

String xmlDoc;

//or byte[] xmlDoc

//Load a String or byte[] into xmlDoc;

String requestResult;

try {

XMLRequest xmlRequest = new XMLRequest(hostname, port, xmlDoc);

requestResult = xmlRequest.execute();

} catch (IOException e) {

System.out.println("Error in XML request");

}

//... handle requestResult.

See EnterpriseOne Tools 8.94 PeopleBook: Interoperability, “Understanding XML CallObject”.

See EnterpriseOne Tools 8.94 PeopleBook: Interoperability, “Understanding XML Transaction”.

See EnterpriseOne Tools 8.94 PeopleBook: Interoperability, “Understanding XML List”.

Logging for the Dynamic Java Connector
Dynamic Java connector logging is built on top of Apache Open Source Project Log4j. Log4j supports five
levels of logging, as listed in order of severity, from less to more:

• DEBUG
• INFO
• WARNING
• ERROR
• FATAL

The dynamic Java connector provides these APIs, located in ConnectorLog.java, to support logging
information:

• public static void debug(Object source).
• public static void info(Object source).
• public static void warn(Object source).
• public static void warn(Object source, Throwable err).
• public static void error(Object source, Throwable err).
• public static void error(Object source).

PeopleSoft Proprietary and Confidential 103

Understanding the Dynamic Java Connector Chapter 9

• public static void fatal(Object source).
• public static void fatal(Object source, Throwable err).

Log properties (such as log file location, level of log messages to show in log file, and so on) are set in
jdelog.properties. The jdelog.properties settings provide flexibility for dynamic Java connector applications to
log messages. For example, you might set log level to ERROR or FATAL for a production environment or to
DEBUG for a development or test environment.

Exception Handling for the Dynamic Java Connector
The dynamic Java connector error handling design provides flexibility for you to decide how to handle
application-level errors. The dynamic Java connector provides these two types of exceptions to handle errors:

• ApplicationException
This is the super class of all exceptions that result from application errors, such as
InvalidConfigurationException (invalid INI settings), InvalidLoginException (invalid login),
InvalidDataTypeException (invalid BSFN data type), and so on. The ApplicationException is a runtime
exception. It is up to the client program to catch this type of exception.

• SystemException
This is the super class of all exceptions that result from system errors, such as ServerFailureException
(server down or connection failure), BSFNLookupFailureException (unable to find BSFN information in
PeopleSoft EnterpriseOne tables), and SpecFailureException (unable to connect to Spec Source). It is up to
the client program to catch this type of exception.

Understanding Sample Applications
This section discusses:

• Sample applications
• Compiling the sample applications
• Running the sample applications

Sample Applications
These applications are shipped with the dynamic Java connector in their Java source form:

Application Description

Address Book Queries an AddressBook entry.

Events Subscribes to events.

Manual Commit Performs a local transaction using a Purchase Order Entry application.

Purchase Order Enters a purchase order.

Sales Order Enters a sales order.

104 PeopleSoft Proprietary and Confidential

Chapter 9 Understanding the Dynamic Java Connector

Before you use the sample applications:

• Create a directory for the sample applications (for example, C:\connectorsamples).

• Install a Java Development Kit (JDK) version 1.3 or higher. Be sure to install a full JDK and not the Java
Runtime Environment (JRE).

See Chapter 9, “Understanding the Dynamic Java Connector,” Installing the Dynamic Java Connector,
page 98.

• Set the JAVA_HOME environment variable to the JDK parent directory.
• Configure the jdeinterop.ini, jdelog.properties, and jdbj.ini files and place the files in the directory you
created for the sample applications (for example, C:\connectorsamples).

Note. You can download the JDK from the Sun Microsystems website (java.sun.com/j2se).

Compiling the Sample Applications
The sample applications are shipped in their Java source form, which provides the usage of the dynamic Java
connector API. You must compile these sample applications in the environment before you can run them.
Use these steps to compile the sample applications:

1. Locate the connector_samples_src.jar file.

This file is on the PeopleSoft EnterpriseOne Java Server CD, under the system/classes/samples directory.
2. Unzip the entire contents of the connector_samples_src.jar file into the directory you created (for example,
C:\connectorsamples).

The .jar file is a traditional .zip file with the Java .jar extension. The .jar file contains all of the sample
application source files (.java files). All of the .jar files that you need for both compiling and running the
sample applications are in the system/classes directory on the PeopleSoft EnterpriseOne Java Server CD.

3. Compile the samples.

To compile the samples, you need the Connector.jar and the kernel.jar files. This compile script assumes
that you are in the parent directory where you extracted the sample application .jar file contents, and that
you have copied the necessary .jar files to that parent directory. The compile script assumes that you are
going to compile all of the applications at once. Enter this compile script as a single, continuous line in the
command prompt window. Alternatively, you can edit the buildDynConSamples.bat batch file (located
in the system/classes/samples folder) to perform the same function.

javac -classpath .;../Connector.jar;../kernel.jar

com/jdedwards/system/connector/dyamic/sample/*.java

com/jdedwards/system/connector/dynamic/sample/addressbook/*.java

com/jdedwards/system/connector/dyamic/sample/events/*.java

com/jdedwards/system/connector/dynamic/sample/manualCommit/*.java

com/jdedwards/system/connector/dynamic/sample/purchaseorder/*.java

com/jdedwards/system/connector/dyamic/sample/salesorder/*.java

com/jdedwards/system/connector/dynamic/sample/specconsole/*.java

com/jdedwards/system/connector/sample/utctime/*.java

com/jdedwards/system/connector/dynamic/sample/util/*.java

PeopleSoft Proprietary and Confidential 105

Understanding the Dynamic Java Connector Chapter 9

Running the Sample Applications
After you compile the sample applications, you can run them. The .jar files used in this script, and the
jdeinterop.ini and jdelog.properties files, must be in the directory that you created (C:\connectorsamples). To
run any of the sample applications, enter this script in a command prompt window in the C:\connectorsamples
directory:

java

-classpath ; /Connector.jar; /database.jar; /jdeutil.jar;

/kernel.jar;

/log4j.jar; /xerces.jar;(JDBC driver .jar files);(path to

jdeinterop.ini, jdbj.ini, and jdelog.properties files)

(sample application main class name)

Execute the script as a single, continuous command. All of the .jar files listed after the -classpath argument
must be kept together with no spaces (except after the -classpath word itself). The sample application main
class name for each sample application is listed in this table. For several of the applications, a dialog box
(requesting the PeopleSoft EnterpriseOne credentials) appears. Be sure to use all capital letters when you
enter the credentials.

Sample Application Main Class Name

Address Book com.jdedwards.system.connector.dynamic.sample.addressbook.AddressbookClient

Events com.jdedwards.system.connector.dynamic.sample.events.SinkFrame

Manual Commit com.jdedwards.system.connector.dynamic.sample.manualCommit.PurchaseOrderEntryClient

Purchase Order com.jdedwards.system.connector.dynamic.sample.purchaseorder.PurchaseOrderEntryClient

Sales Order com.jdedwards.system.connector.dynamic.sample.salesorder.SalesOrderEntryClient

106 PeopleSoft Proprietary and Confidential

CHAPTER 10

Understanding the Java Connector

This chapter provides an overview of the Java connector and discusses:

• Designing the Java connector.
• Installing the Java connector.
• Running the Java connector.
• User session management for the Java connector.
• Exception handling for the Java connector.

Note. If this is the first implementation of a Java connector, PeopleSoft suggests you consider the dynamic
Java connector instead of the Java connector. The functionality is the same. The advantage of implementing
the dynamic Java connector is that you are not required to generate wrappers

Java Connector and PeopleSoft EnterpriseOne
A business function is a logical collection of C functions and their associated data structures grouped together
to produce a unit of work. PeopleSoft EnterpriseOne Java objects are wrappers, implemented in Java, around
these business functions and data structures.

The method that a Java wrapper provides has a one-to-one correspondence with business functions. Because
all methods must be defined in a Java class, a library must be defined in the corresponding iJDEScript file.

For example, if library A contains business function B550001, and within this business function two C
functions exist, named foo1 and foo2, with data structures for each function named DS1 and DS2, then
the corresponding Java class would be as follows:

Public class A

{

public int foo1(DS 1 param, OneWorldInterface ow,

Connector c, int handle)

{

0

}

public int foo2(DS2 param, OneWorldInterface ow,

Connector c, int handle)

{

0

}

public DS1 Createfoo1ParameterSet()

{

0

PeopleSoft Proprietary and Confidential 107

Understanding the Java Connector Chapter 10

}

public DS2 Createfoo2ParameterSet()

{

0

}

}

For each business function X, a method CreateXParameterSet exists in the class that returns a class for the data
structure used by the business function.

Each data structure has a corresponding Java class, and each element in the data structure has a get and a set
method. For example, if DS1 has element A as a char, the DS1 Java class is as follows:

Public class DS1

{

public void setA()

{

...

}

public char getA()

{

...

}

}

The data structure can contain two kinds of compound objects, JDEDate and JDEMathnumeric, in addition to
the primitive data types. The two Java classes JDEDate and JDEMathnumeric are defined respectively.

JDEDate
This table provides JDEDate methods and a description of the method:

Method Description

JDEDate() Construct a JDEDate.

getDay() Get the day of the date.

getMonth() Get the month of the date.

getYear() Get the year of the date.

setDay(short) Set the day of the date.

setMonth(short) Set the month of the date.

setYear (short) Set the year of the date.

JDEMathNumeric
This table shows the JDEMathNumeric methods and provides a description of each method:

108 PeopleSoft Proprietary and Confidential

Chapter 10 Understanding the Java Connector

Method Description

getValue() Return the value as a string (for example, -12345.6789).

setValue(String strValue) Set the value from a string (for example, -12345.6789).

getCurrencyDecimals() Get the currency decimal positions.

setCurrencyDecimals(int aValue) Set the currency decimal positions.

getCurrencyCode() Get the currency code.

setCurrencyCode(String aValue) Set the currency code.

getDecimalPosition() Get the decimal position.

isNegative() Test if the value is negative.

reset() Reset all the internal values.

To set the value of a member in a MathNumeric type in a data structure, use the method setValue(String) in
JDEMathNumeric class. For example, if mnAddressBook is a member in the data structure, then a class should
exist for the data structure with the public method getmnAddressBook, which returns a JDEMathNumeric
object. Then you use DS.getmnAddressBook().setValue(1) to set the mnAddressBook value to
1 in the data structure.

Designing the Java Connector
This section covers considerations for designing the Java connector solution and discusses:

• GenJava
• Java versioning
• GenJava client environment

GenJava
PeopleSoft provides a Java generation tool, GenJava, that you run to expose business functions through
Java. A system administrator usually runs GenJava.

When you run GenJava, you specify a library of business functions to wrap, for example CAEC. GenJava
creates Java class files for all the business functions and associated data structures. GenJava also compiles the
business functions, generates Java docs, and packages them to two JAR files, one for Java classes and one
for Java documents. For example, if the library is JDEAddressBook, you see JDEAddressBookInterop.jar
and JDEAddressBookInteropDoc.jar in either the B9\system\classes directory or any directory redirected
by GenJava.

PeopleSoft Proprietary and Confidential 109

Understanding the Java Connector Chapter 10

Java Versioning
Business object wrappers that are generated for one environment might not be compatible with another
environment. Versioning prevents you from creating Java business objects unless the environment used at
logon is the same as the environment used to generate the wrappers or the environment is compatible with the
business objects. You can use the Java Wrapper Version Checker (CheckVer) to verify that business object
wrappers are compatible with new environments.

Migrating from Previous Releases
Previously generated business object wrappers are compatible with the new versioning code; you do not need
to regenerate them. However, in order to use them, CheckVer must be run, even for the environment used to
create the wrappers. The repository setting in the [INTEROP] section of the ini file must point to the directory
containing the jar files of generated business object wrappers. For example:

[INTEROP]

repository=c:\foo\bar\repository

The repository directory should contain only jar files for generated business object libraries.

Java Connector Static and Dynamic Modes
A Java interoperability client can be configured statically or dynamically. Static mode is the normal mode of
operation and should be used by most client code. Dynamic mode is better suited for developing tools based
on Java interoperability. The two modes can be used simultaneously in the same process. The granularity is
at the business object library (jar file) level. No matter which mode is used, it is necessary for the jar files
to be placed in the repository directory.

To use static mode for a given business object library, ensure that the jar file is in both the classpath and
repository directory for the client process.

To use dynamic mode for a given business object library, ensure that the jar file is in the repository directory
but not in the classpath. Dynamic mode is for Java interoperability clients with client code that has no direct
use of the business objects. In dynamic mode, business objects may only be used by the classes in the
java.lang.reflect package. Dynamic mode enables client code to refresh, add, or remove business object
libraries while in operation. These operations are accomplished using the methods in the OneWorldVersion
class (for example, generate a new business object library (or regenerate an existing library) using GenJava).
Use the CheckVer tool to establish the compatible environments for the business objects in the library. Add
the jar file to the repository directory. Finally, the client code must instantiate a OneWorldVersion object,
and call the refreshLibrary method. To remove a business object library, remove it from the repository and
call the refreshLibrary method.

After a library is refreshed, all newly created business objects use the new definition. Business objects created
before the refresh use the old definition. No limit exists for the number of simultaneous business object library
versions. The old library definitions remain in the virtual machine until no more references to the old business
objects exist, which can significantly affect memory use in the virtual machine.

Using the Java Wrapper Version Checker (CheckVer)
CheckVer is a Java class and should not be confused with the CheckVer.exe that is a part of the COM
interoperability solution. You run CheckVer to verify whether a previously generated Java business object
library is compatible with another environment. Typically, the system administrator performs this task. The
XML files generated by GenJava are the signatures of the objects generated against specific PeopleSoft
EnterpriseOne environments. These XML files can be used with CheckVer to verify that the wrappers in a
previously generated jar file are compatible with the environment.

110 PeopleSoft Proprietary and Confidential

Chapter 10 Understanding the Java Connector

When you introduce a new PeopleSoft EnterpriseOne environment, you run GenJava against the new
environment by using the /XMLOnly option. You also use the iJDEScript that you used to generate the
wrappers to generate XML signature files for the objects in the new environment. Run CheckVer with the
new XML files and previously generated jar files to verify that the new environment is compatible with the
wrappers. CheckVer updates the jar file according to the result of the compatibility test. A Java client using
the jar file can be dynamically updated to the new compatibility information, using the OneWorldVersion
interface. If the new environment is incompatible, the client is not allowed to create business objects with
the new environment.

Running CheckVer (GenJava)
CheckVer takes two arguments, the jar file name and the XML file name. CheckVer requires that the
Connector.jar, kernel.jar, xalan.jar, and xerces.jar files be in the CLASSPATH. This can be done either with the
CLASSPATH environment variable or from the command line.

Syntax
Java com.jdedwards.system.connector.CheckVer [jarfile] [xmlfile]

Example
Java com.jdedwards.system.connector.CheckVer JDEAddressBookInterop.jar JDEAddressBook.xml

GenJava Client Environment
When you set up a client environment for GenJava, ensure the PATH environment variable and the
CLASSPATH environment variable are set up correctly.

PATH
<bin directory for JDK>

Example: c:\jdk1.2.2\bin

CLASSPATH
<Directory where PeopleSoft EnterpriseOne is located>\System\classes\kernel.jar

<Directory where PeopleSoft EnterpriseOne is located>\System\classes\Connector.jar

<Directory where PeopleSoft EnterpriseOne is located>\System\classes\xalan.jar

<Directory where PeopleSoft EnterpriseOne is located>\System\classes\xerces.jar

Installing a Java Connector
These steps show how to install Java connector components so that you can run a Java connector application.

1. Copy these files from the enterprise server to a directory on the desired machine. For example, copy
these files to c:\PeopleSoft\Interop on the machine:
• kernel.jar
• connector.jar
• jdeinterop.ini

PeopleSoft Proprietary and Confidential 111

Understanding the Java Connector Chapter 10

• xalan.jar
• xerces.jar
• database.jar
• Log4j.jar
• jdelog.properties
• JDBC driver (you need to get JDBC driver from the vendor)

2. Add these files to the CLASSPATH:
• kernel.jar
• jdeutil.jar
• connector.jar
• database.jar
• log4j.jar
• xerces.jar
• JDBC driver

3. Add the path where the jdelog.properties and jdeinterop.ini files are located into CLASSPATH.
4. Create a separate repository directory for business object.jar files.
5. Run GenJava on the client machine and copy the output jar file (for example, JDEAddressBook.jar)
to this directory.

6. Depending on whether you want the library in static mode or dynamic mode, put the business object.jar file
in the CLASSPATH.

Running the Java Connector
This section covers runtime considerations for the Java connector and discusses:

• Using GenJava
• Using GenJava output

• Transactions Using the Java connector

Using GenJava
The Java generator tool, GenJava, provides access to business functions by generating Java interfaces for
business functions. GenJava includes these components:

• GenJava.exe
• Emitter framework
• JDEIDAJavaEmitter.dll

You use iJDEScript scripting language to script code generation activities when you use GenJava.

112 PeopleSoft Proprietary and Confidential

Chapter 10 Understanding the Java Connector

Running GenJava
You run GenJava from the command line. There are several options available for generation. GenJava is
located in <install>\system\bin32.

Syntax
GenJava [options] [libraries]

Options
You can use these options when running GenJava:

Option Description

/? Lists the options available for generation.

/Cat <category> Generates only <category> function wrappers. Supports these categories:

/’1/’ - Master Business Functions

/’2/’ - Major Business Functions

/’3/’ - Minor Business Functions

/’-/’ - Uncategorized Business Functions

/Cmd * Processes code generation commands from the console.

/Cmd <filename> Processes code generation commands from <filename>.

/Compiler <file> Uses <file> to compile Java files.

/D name value Defines a macro value.

/EnvironmentID <env> Uses <env> to sign on to PeopleSoft EnterpriseOne.

/ListLibraries Lists the available libraries that you can use for GenJava.

/MsgFile <file> Provides GenJava with the file name to log messages produced by GenJava during the
generation process; for example, messages.log.

/NoBSFN Tells GenJava not to create wrappers for business functions. This option is for
generating parameter sets only.

/Out <path> Provides GenJava with the directory (path) in which to place the output files; for
example, C:\winnt\system32.

/Password <password> Provides GenJava with the password with which you want to sign on to PeopleSoft
EnterpriseOne.

/Role Provides GenJava with the role with which you want to sign on to PeopleSoft
EnterpriseOne.

/TempOut <path> Provides GenJava with the directory (path) in which to place temporary files needed for
the build process; for example, C:\temp.

PeopleSoft Proprietary and Confidential 113

Understanding the Java Connector Chapter 10

Option Description

/UserID <userid> Provides GenJava with the user name that you use to sign on to PeopleSoft
EnterpriseOne.

/XMLOnly Generates only the XML file.

You can also use GenJava by running it with a JDEScript file, such as:

GenJava /cmd AddressBook.cmd

This command prompts a sign-in window for you to enter the user ID, password, role, and environment. The
AddressBook.cmd is:

define library JDEAddressBook

login

library JDEAddressBook

library JDEAddressBook

interface AddressBook

interface AddressBook

import B0100031

import B0100019

import B0100032

import B0100002

import B0100033

build

logout

GenJava generates the wrappers in Java for all business functions imported in the script file.

Generate Java Wrappers
This command generates Java wrappers for Category 1 business functions in the CAEC library:

GenJava /Cat 1 /UserID Devuser1 /Password Devuser1 /Environment ADEVHP02 CAEC

You must use the correct information (including user ID, password, role, and environment) to log on to
PeopleSoft EnterpriseOne.

Using GenJava Output
The output for GenJava produces fully functional Java objects based on the library you use to
generate wrappers. GenJava packages these objects in a single jar file such as XXXXInterop.jar or
XXXXInteropDoc.jar, where XXXX is the library name defined in the script file or from the command line.
For example, JDEAddressBookInterop.jar is created for the AddressBook.cmd. The default location for the jar
file is under B9/System/classes, but it can be somewhere else if you run GenJava using /Out value. This jar file
must be deployed to the machine that uses those wrappers. To import any wrapper object and class, the jar
file must be added to the CLASSPATH. Because you are interacting with PeopleSoft EnterpriseOne, three
components, Connector.jar, kernel.jar, and jdeinterop.ini file, must be deployed to the machine.

XXXXInteropDoc.jar is the compressed format of all the Java documents (html files) for all the classes
generated by GenJava.unjar. You can also unzip the jar file to see the APIs that can be called in these classes.

All Java client applications must:

114 PeopleSoft Proprietary and Confidential

Chapter 10 Understanding the Java Connector

1. Initialize a com.jdedwards.system.connector.Connector.
2. Sign in to PeopleSoft EnterpriseOne using a valid user ID, password, role, and environment name. The
environment must be valid on the EnterpriseOne server.

3. Get the OneWorldInterface object reference by calling Connector.CreateBusinessObject with an object
name, such as Connector::OneWorldInterface.

4. Get the object reference for the wrapper for the business function generated by GenJava, for example
AddressBook. The object name passed into Connector.CreateBusinessObject should be Library (Java
package) Name:Object Name, such as JDEAddressBook:AddressBook.

5. Call CreateXXXParameterSet on the wrapper object for any data structure XXX.
6. Set the needed value in the data structure.
7. Call the business function with the data structure variable as a parameter. Check the return value. The
return value can be one of these:
Successful = 0
Warning = 1
Error = 2

8. Process the data returned by the business function.
9. Disconnect from PeopleSoft EnterpriseOne.

These examples illustrate how to use a generated Java business function wrapper in a Java application.

import com.jdedwards.system.connector.*;

import com.jdedwards.application.interop.jdeaddressbook.*;

public class abclient

{

public static void main (String[] args) {

Connector connectorProxy = null;

OneWorldInterface ow;

AddressBook ab;

D0100033 ds;

sessionID=0;

1. connectorProxy = new Connector();

try {

2. sessionID = connectorProxy.Login("FOO", "BAR", "PDEVHPO2");

System.out.printIn("Log in successfully");

} catch (reject r) {

System.out.printIn("got reject exception");

String s = r.reason;

System.out.printIn(s);

System.exit(1);

} catch (Exception e) {

System.out.printIn("got other exception");

e.printStackTrace();

System.exit(1);

}

try {

3. ow = (OneWorldInterface)connectorProxy.CreateBusiness Object

("Connector:: OneWorldInterface", sessionID)

PeopleSoft Proprietary and Confidential 115

Understanding the Java Connector Chapter 10

System.out.printIn("got OneWorldInterface");

} catch (reject r){

String s = r.reason;

System.out.printIn(s);

return;

}

//create AddressBook object

try {

4. ab = (AddressBook)connectorProxy.CreateBusinessObject

("JDEAddressBook:: AddressBook", sessionID)

System.out.printIn("got AddressBook");

} catch (reject r) {

String s = r.reason;

System.out.printIn(s);

return;

}

// get data structure D0100033

5. ds = ab.CreateGetEffectiveAddressParameterSet();

// set addressbook number value in D0100033

6. ds.getmnAddressNumber().setValue("1")

// get address information

int i = 0;

try {

7. i = ab.GetEffectiveAddress(ds, ow, connectorProxy; sessionID);

} catch (reject e) { System.out.printIn(e.reason); }

if (i!=2){

String alphaname = ds.getszNamealpha();

String address = ds.getszAddressLine1();

String zipcode = ds.getszZipCodePostal();

String city = ds.getszCity();

String county = ds.getszCountyAddress();

String state = ds.getszState();

String country = ds.getszCountry();

If (i==1){

System.out.printIn("warning count is"

+ow.GetWarningCount());

for (int j = 0; j<ow.GetWarningCount(); j++) {

String s = ow.GetWarningAt(j);

System.out.printIn("warning" + j +";"+ s)

}

}

} else {

for (int j = 0; j<ow.GetErrorCount(); j++){

String s = ow.GetErrorAt(j);

System.out.printIn("error" + j + ";" + s);

}

System.out.printIn("BSFN error");

//log off

8. connectorProxy.Logoff(1);

} // end main

116 PeopleSoft Proprietary and Confidential

Chapter 10 Understanding the Java Connector

} // end abclient

Transactions Using the Java Connector
Transactions are a way to update the PeopleSoft EnterpriseOne database. You can use the Java connector to do
a transaction in either auto mode or manual mode. When you use auto transaction mode, the transaction is
immediately committed after the business function call is completed. The transaction is set to the auto commit
mode by the system. When you use manual transaction mode, the transaction is started by explicitly calling
BeginTransaction in OWInterface, and the transaction is committed (or rolled back) by calling Commit
(or Rollback) in OWInterface.

Note. The PeopleSoft EnterpriseOne transaction is not really a two-phase commit. You need to manually roll
back the transaction when the commit statement is reached.

This example shows a basic manual commit transaction:

import com.jdedwards.system.connector.*;

public class ConnectorDemo {

public static void main(String argv[]) {

OWInterface ow;

try {

Connector con = new Connector();

int accessnumber = con.login("User","Password","Env","Role");

ow = (OneWorldInterface)

con.CreateBusinessObject("Connector::OneWorldInterface", l);

// ... handle the message

ow.BeginTransaction(con, accessNumber);

soe.F4211FSBeginDoc(soeBeginDoc,ow, con, accessnumber);

soe.F4211FSEditLineDoc(soeEditLine,ow, con, accessnumber);

soe.F4211FSEditLineDoc(soeEditLine,ow, con, accessnumber);

soe.F4211FSEndDoc(soeEndDoc,ow, con, accessnumber);

ow.Commit();

}catch (Exception e) {

ow.rollback();

}

}

Using BHVRCOM through the Java Connector
You use the BHVRCOM structure to control the execution of business functions. You use the Java connector
to call methods in the OWInterface class to set and pass the BHVRCOM fields to business functions on the
server. This table shows the business function methods and the BHVRCOM fields:

Business Function Method BHVRCOM Field

setBOBMode(int bobMode) IBobMode

setAPPName(StringaName) szApplication

PeopleSoft Proprietary and Confidential 117

Understanding the Java Connector Chapter 10

Business Function Method BHVRCOM Field

setUserName(String aName) szUser

setDatabaseChanged(Boolean value) bDataBaseChange

This Java code demonstrates how to query the IBHVRCOM interface and pass values to business functions:

...

ow = (OneWorldInterface)

connectorProxy.CreateBusinessObject("Connector::OneWorld Interface", l);

ab=(AddressBook)connectorProxy.CreateBusinessObject

("JDEAddress Book::Address Book", l);

ds.getmnAddressNumber().setValue("1");

ow.setAppName("AddressbookApp");

ow.setBOBMode(8);

ow.setUserName("Java Connector");

ow. SetDatabaseChanged(false);

i = ab.GetEffectiveAddress(ds, ow, connectorProxy, l);

...

OCM Support for the Java Connector
You use Object Configuration Manager (OCM) to map business functions to an enterprise server so that the
Java connector can access OCM to run business functions. You no longer configure the jdeinterop.ini file to
define the enterprise server from which you want to execute business functions. Using OCM support should
result in an increase in performance, scalability, and load balancing. The Java interoperability server distributes
the processes of the Java client to various enterprise servers depending on user, environment, and role. To
take advantage of Java connector OCM support:

• Use a B9 or later version of GenJava to regenerate the business wrapper function.

• Configure the OCM and map the business function on different enterprise servers.

• Set OCMEnabled=true in jdeinterop.ini.

• Configure the settings in jdeinterop.ini regarding the bootstrap data source with the OCM configuration.

Ensure that these settings in the jdeinterop.ini configuration file are set:

jdeinterop.ini File Section Required Settings

OCM OCMEnabled

JDBj-BOOTSTRAP SESSION user, password, environment, and role

JDBj-BOOTSTRAP DATA SOURCE name, databaseType, server, database, serverPort,
physicalDatabase, library, owner

[JDBj-JDBC DRIVERS] ORACLE, iSeries, SQLSERVER, UDB

[JDBj-ORACLE] tns

118 PeopleSoft Proprietary and Confidential

Chapter 10 Understanding the Java Connector

User Session Management for the Java Connector
This section provides an overview of managing the user session for the Java connector and discusses inbound
XML requests using the Java connector.

Understanding User Session Management for the
Java Connector
When the connector user successfully signs on, a valid user session is allocated to that user signon. The
user session has status for two types of connector operations: one for inbound business function calls and
the other for outbound real-time events. The connector monitors the status of the user session, and uses the
timeout settings in the jdeinterop.ini file to stop the user session when a timeout setting has been reached.
The connector looks at these settings:

jdeinterop.ini File Section Setting Explanation

[CACHE] UserSession The maximum connector idle time for an inbound
business function call.

[INTEROP] manual_timeout The maximum idle time for a manual transaction.

[EVENTS] outbound_timeout The maximum value of connector idle time for receiving
outbound events.

The value for the settings is in milliseconds. A value of zero (0) indicates infinite timeout. The settings are
defined in the jdeinterop.ini section of this guide.

If an inbound user session times out, that user session cannot be used to execute a business function call.
Likewise, if an outbound user session times out, that user session cannot be used for events. When both
inbound and outbound sessions time out, the user session is removed from the connector. Since each user
session has a corresponding handle in the EnterpriseOne server, PeopleSoft highly recommends that you
explicitly call a connector API to log off the user session to release the handle in the EnterpriseOne server
when the user session is no longer used.

This sample codes shows how to retrieve and manage a user session:

// Login

int sessionID = Connector.getInstance().login("user", "pwd", "env", "role");

// Use the sessionID. If InvalidSessionException is caught, user

session is not valid any more

//Check the status of the usersession

UserSession session;

try{

session=Connector.getInstance().getUserSession(sessionID);

}catch(InvalidSessionException ex){

System.out.println("Invalid user session");

}

if(session.isInboundTimedout()){

System.out.println("User session inbound is timed out");

PeopleSoft Proprietary and Confidential 119

Understanding the Java Connector Chapter 10

}

if(session.isOutboundTimedout()){

System.out.println("User session outbound is timed out");

}

//Log off and shut down connector to release user session from the server

connector.logoff(sessionID);

connector.shutDown();

Inbound XML Request Using the Java Connector
You use the Java connector to send inbound synchronous XML requests (such as XML CallObject and
XML List) to the EnterpriseOne server. The Java connector has an API that it calls to send XML documents
to JDENET.

This example code shows how to use the Java connector to execute an inbound XML request:

Connector conn = new Connector();

//login into OW

String xmlDoc;

//or byte[] xmlDoc

//Load a String or byte[] into xmlDoc;

String requestResult = conn.executeXMLRequest(xmlDoc);

//handle requestResult.

See EnterpriseOne Tools 8.94 PeopleBook: Interoperability, “Understanding XML CallObject”.

See EnterpriseOne Tools 8.94 PeopleBook: Interoperability, “Understanding XML Transaction”.

See EnterpriseOne Tools 8.94 PeopleBook: Interoperability, “Understanding XML List”.

Exception Handling for the Java Connector
This section provides an overview for exception handling for the Java connector and discusses:

• Fatal exception
• Recoverable exception
• Reject
• Exception details

This section also provides sample code for Java connector exception handling.

Understanding Exception Handling for the Java Connector
When you run the Java connector or the GenJava tool, the program might encounter a condition that causes
unexpected results or system failure. When the program does not perform as expected, an error occurs;
or, using Java terminology, an exception is thrown. In Java, the system, classes, and programs can throw
exceptions. You can write code to catch exceptions. Catching an exception involves dealing with the exception
conditions so that the program will not crash.

120 PeopleSoft Proprietary and Confidential

Chapter 10 Understanding the Java Connector

All exceptions in the connector and GenJava code inherit from the reject class. The program needs to catch
only the reject exception conditions for the methods that throw exceptions. To help minimize manual
intervention, PeopleSoft created the FatalException class and the RecoverableException class so that you can
provide a recovery action in the program for some exceptions.

Fatal Exception
FatalException class conditions are unlikely or impossible to resolve without manual intervention. If you
catch fatal exception conditions in the program, you can include a string message that indicates the condition
that occurred. You use the getMessage method from the java.lang.Throwable class to retrieve fatal exception
messages from the program. The system uses the INTEROP category to log fatal exception conditions
to the jas.log file.

Recoverable Exception
You can provide the capability for the system to possibly resolve an exception condition by catching
RecoverableException (and children) class conditions in the program. The children of recoverable exception
conditions indicate through their class names the category of the exception and include a sting message in the
constructor to provide more exception details. You use the getMessage method from the java.lang.Throwable
class to retrieve recoverable exception messages from the program. The system uses the INTEROP category to
log recoverable exception conditions to the jasdebug.log file. You can clear recoverable exception messages
through the DEBUG flag in the jdeinterop.ini file. The flag is either true or false.

Reject
The method signature for each of the methods listed in this table indicates that the method only throws
reject, even though the exceptions thrown in each method’s code are children of the reject class. Even if you
decide to catch all of the exceptions listed in Exception Details table (which follows), you will also need to
catch reject as the last in the series of connector-related catch statements because of the method signatures’
stated throws clause.

Exception Details
The methods that throw exceptions in each of the main public classes of the connector (Connector,
OneWorldInterface, EventSource, and GenJava-created business object code) are detailed in this table. The
information in this table is also available in the Javadoc for the connector, which is in the ConnectorDoc.jar file.

Class Method Exception Condition Possible Action

Connector Login CallObjectRetryException The error code returned by
CallObject is TIMEOUT or
RETRY_NEEDED

Retry Login method

CallObjectIgnoreException The error code returned
by CallOjbect is
NOERROR, ALREADY_
EXECUTED, or
BAD_ERRORPACKETS

Ignore this exception

FatalException The error code returned
by CallObject is any other
error code

*

PeopleSoft Proprietary and Confidential 121

Understanding the Java Connector Chapter 10

Class Method Exception Condition Possible Action

CreateBusiness
Object

NotLoggedInException The user is not currently
logged in to PeopleSoft
EnterpriseOne

Log in through Connector
class

FatalException A Java reflection
exception is thrown or the
PeopleSoft EnterpriseOne
environment is not in sync
with the business function
wrapper

*

OneWorld
Interface

GetNextError NoMoreDataException Error index reaches the end
of the array

End the loop searching for
the next error

GetNextWarning NoMoreDataException Warning index reaches the
end of the array

End the loop searching for
the next warning

Commit InvalidMethodCall
Exception

This method is called
before PrepareToCommit()
is called

Call the
PrepareToCommit()
method

CallObjectRetryException The error code returned by
CallObject is TIMEOUT or
RETRY_NEEDED

Retry Commit method

CallObjectIgnoreException The error code returned
by CallObject is
NOERROR, ALREADY_
EXECUTED, or
BAD_ERRORPACKETS

Ignore this exception

FatalException The error code returned
by CallObject is any other
error code

*

Rollback CallObjectRetryException The error code returned by
CallObject is TIMEOUT or
RETRY_NEEDED

Retry Rollback method

CallObjectIgnoreException The error code returned
by CallObject is
NOERROR, ALREADY_
EXECUTED, or
BAD_ERRORPACKETS

Ignore this exception

FatalException The error code returned
by CallObject is any other
error code

*

PrepareToCommit CallObjectRetryException The error code returned by
CallObject is TIMEOUT or
RETRY_NEEDED

Retry PrepareToCommit
method

122 PeopleSoft Proprietary and Confidential

Chapter 10 Understanding the Java Connector

Class Method Exception Condition Possible Action

CallObjectIgnoreException The error code returned
by CallObject is
NOERROR, ALREADY_
EXECUTED, or
BAD_ERRORPACKETS

Ignore this exception

FatalException The error code returned
by CallObject is any other
error code

*

ExecuteBSFN NotLoggedInException The user is not currently
logged in to PeopleSoft
EnterpriseOne

Log in through Connector
class

CallObjectRetryException The error code returned by
CallObject is TIMEOUT or
RETRY_NEEDED

Retry ExecuteBSFN
method

CallObjectIgnoreException The error code returned
by CallObject is
NOERROR, ALREADY_
EXECUTED, or
BAD_ERRORPACKETS

Ignore this exception

FatalException The error code returned
by CallObject is any other
error code

*

Event
Source

EventSource
(Constructor)

FatalException The connector cannot listen
on the given port

*

addListener NotLoggedInException The user is not currently
logged in to PeopleSoft
EnterpriseOne

Log in through Connector
class

FatalException The subscription fails *

removeListener NotLoggedInException The user is not currently
logged in to PeopleSoft
EnterpriseOne

Log in through Connector
class

FatalException The unsubscription fails *

updateSession NotLoggedInException The user is not currently
logged in to PeopleSoft
EnterpriseOne

Log in through Connector
class

getEventTemplate NotLoggedInException The user is not currently
logged in to PeopleSoft
EnterpriseOne

Log in through Connector
class

FatalException A JdeNetException is
thrown

*

PeopleSoft Proprietary and Confidential 123

Understanding the Java Connector Chapter 10

Class Method Exception Condition Possible Action

getEventTypes NotLoggedInException The user is not currently
logged on to PeopleSoft
EnterpriseOne

Log in through Connector
class

FatalException A JdeNetException is
thrown

*

GenJava-
created
Data
Structures

setString
<parameter>
methods

StringTooLongException The value set for the
parameter is too long

Reset the parameter using
a shorter length

For FatalException conditions, you can send the exception message, which can be retried by using the
getMessage method, to the system administrator. Alternatively, you can prompt the system administrator
to look in the jas.log file for more details about the exception. It is unlikely that the program can recover
associated system or connector errors during runtime.

Example: Java Connector Exception Handling Sample Code
This code illustrates some of the features of the enhanced connector exception handling. The bold-faced
items indicate specific exception-handling code.

import com.jdedwards.system.connector.*;

import com.jdedwards.application.interop.jdeaddressbook.*;

public class AddressClient {

public static void main(String[] args) {

if (args.length != 1) {

System.out.println("Must supply a city to query for AddressBook");

System.exit(-1);

}

Connector connectorProxy = null;

OneWorldInterface ow = null;

AddressBook ab = null;

D0100033 ds = null;

int accessNumber = 0;

connectorProxy = new Connector();

try {

accessNumber = connectorProxy.Login("FOO", "BAR", "PDEVHP02");

System.out.println("Logged in successfully");

} catch (CallObjectIgnoreException e) {

// do nothing

} catch (CallObjectRetryException e) {

// try one more time

try {

accessNumber = connectorProxy.Login("FOO", "BAR", "PDEVHP02");

System.out.println("Logged in successfully");

} catch (CallObjectIgnoreException ex) {

124 PeopleSoft Proprietary and Confidential

Chapter 10 Understanding the Java Connector

// do nothing

} catch (CallObjectRetryException ex) {

System.out.println("EXCEPTION: : + ex.toString());

System.out.println(Nested Exception: +

ex.getChainedException().toString());

System.out.println("Refer to the jasdebug.log file for more

details.");

System.exit(-1);

} catch (FatalException ex) {

System.out.println("Fatal Exception during login:" +

ex.toString());

System.out.println("Refer to the jas.log file for more

details.");

System.exit(-1);

} catch (reject r) {

System.out.println("Java Connector Exception: " + r.reason);

System.exit(-1);

}

} catch (FatalException e) {

System.out.println("Fatal Exception during login: " +

e.toString());

System.out.println("Refer to the jas.log file for more details.");

System.exit(-1);

} catch (reject r) {

/* This should not happen, as the Java Connector code

* now only throws one of the reject child objects.

* The documentation indicates which methods throw which

* reject child exception objects. All methods continue

* to have a signature of throws reject, however, for

* backwards compatibility (to not break existing client code).

*/

System.out.println("Java Connector Exception: " + r.reason);

System.exit(-1);

}

try {

ow = (OneWorldInterface)connectorProxy.CreateBusinessObject

("Connector::OneWorldInterface", accessNumber);

System.out.println("Got OneWorldInterface");

} catch (FatalException e) {

System.out.println("Fatal Exception during OneWorldInterface

creation: " + e.toString());

System.out.println("Refer to the jas.log file for more details.");

System.exit(-1);

} catch (reject r) {

System.out.println("Java Connector Exception: " + r.reason);

System.exit(-1);

}

try {

PeopleSoft Proprietary and Confidential 125

Understanding the Java Connector Chapter 10

ab = (AddressBook)connectorProxy.CreateBusinessObject

(JDEAddressBook::AddressBook, accessNumber);

System.out.println("Got AddressBook");

} catch (FatalException e) {

System.out.println("Fatal Exception during OneWorldInterface

creation: " + e.toString());

System.out.println("Refer to the jas.log file for more details.");

System.exit(-1);

} catch (reject r) {

System.out.println("Java Connector Exception: " + r.reason);

System.exit(-1);

}

ds = ab.CreateGetEffectiveAddressParameterSet();

ds.getmnAddressNumber().setValue("1");

try {

ds.setszCity(args[0]);

} catch(StringTooLongException e) {

System.out.println("Cannot set a city with length of " +

args[0].length());

System.exit(-1);

} catch (reject r) {

System.out.println("Java Connector Exception: " + r.reason);

System.exit(-1);

}

int i=0;

try {

i = ab.GetEffectiveAddress(ds, ow, connectorProxy, accessNumber);

} catch (CallObjectIgnoreException e) {

// do nothing

} catch (CallObjectRetryException e) {

// try one more time

try {

i = ab.GetEffectiveAddress(ds, ow, connectorProxy, accessNumber);

} catch (CallObjectIgnoreException ex) {

// do nothing

} catch (CallObjectRetryException ex) {

// don’t try again after second try

System.out.println("EXCEPTION: " + ex.toString());

System.out.println("Nested Exception: " +

ex.getChainedException().toString());

System.out.println("Refer to the jasdebug.log file for more

details.");

System.exit(-1);

} catch (FatalException ex) {

System.out.println("Fatal Exception during AddressBook

126 PeopleSoft Proprietary and Confidential

Chapter 10 Understanding the Java Connector

retrieval: " + ex.toString());

System.out.println("Refer to the jas.log file for more

details.");

System.exit(-1);

} catch (reject r) {

System.out.println("Java Connector Exception: " + r.reason);

System.exit(-1);

}

} catch (FatalException e) {

System.out.println("Fatal Exception during AddressBook

retrieval: " + e.toString());

System.out.println("Refer to the jas.log file for more details.");

System.exit(-1);

} catch (reject r) {

System.out.println("Java Connector Exception: " + r.reason);

System.exit(-1);

}

String alphaname = ds.getszNamealpha();

String address = ds.getszAddressLine1();

// get other AddressBook parameters that you want...

if (i == 1) { // business function warning

System.out.println("Warning count is " + ow.GetWarningCount());

for (int j=0; j<ow.GetWarningCount(); j++) {

} System.out.println("Warning " + j + ": " + ow.GetWarningAt(j));

} else if (i == 2) { // business function error

for (int j=0; j<ow.GetErrorCount(); j++) {

System.out.println("Error " + j + ": " + ow.GetErrorAt(j));

}

}

connectorProxy.Logoff(accessNumber);

}

}

PeopleSoft Proprietary and Confidential 127

Understanding the Java Connector Chapter 10

128 PeopleSoft Proprietary and Confidential

CHAPTER 11

Using Java Connector Events - Classic Events

This chapter provides an overview of Java connector events and discusses how to develop the Java client
to use the Java connector event source.

Note. This chapter is applicable only if you use classic event delivery. Classic event delivery is available when
you use PeopleSoft EnterpriseOne Tools 8.94 with PeopleSoft EnterpriseOne Applications 8.10 or earlier
releases of the PeopleSoft EnterpriseOne Applications.

Refer to the Guaranteed Events chapters if you use PeopleSoft EnterpriseOne Tools 8.94 with PeopleSoft
EnterpriseOne Applications 8.11.

Understanding Java Connector Events
The Java connector outbound event source architecture enables Java clients to use either the Java connector
or the dynamic Java connector to subscribe to various transaction types in PeopleSoft EnterpriseOne and
receive notification upon completion of those transactions. For example, a client can subscribe to the
event JDESOOUT and then receive notification when a sales order transaction is complete in PeopleSoft
EnterpriseOne.

This diagram illustrates the subscription and notification process:

PeopleSoft Proprietary and Confidential 129

Using Java Connector Events - Classic Events Chapter 11

Event Subscriber

Java Connector
Dynamic Java Connector

Event Listener

Event Distribution

Event Generation

Enterprise Server

1

2

3 4

5

Subscription and notification process

1. PeopleSoft EnterpriseOne clients create different types of EventListeners.

2. PeopleSoft EnterpriseOne clients subscribe to various event types with the Java connector.

3. When the Java connector receives a subscription for a given event, it subscribes to the same event type
with the event distribution kernel.

4. PeopleSoft EnterpriseOne events originate from the real-time events kernel or from callback functions in
Uses.
When the event distribution kernel receives an event to which the Java connector has subscribed, it
sends the event to the Java connector.

5. The Java connector sends the event to all subscribers for that event.

The EventListener callback function is executed to receive the subscribed event.

130 PeopleSoft Proprietary and Confidential

Chapter 11 Using Java Connector Events - Classic Events

Note. The outbound events architecture is the same for the Java connector and the dynamic Java
connector. The difference is that corresponding package location for the dynamic Java connector is
comjdedwards.system.connector.dynamic.* and com.jdedwards.system.connector.dynamic.events.*.

For purposes of discussion in this document, the Java connector is used to illustrate the outbound events
architecture. Special notes are added to discuss any API differences between the Java connector and
dynamic Java connector.

Do not mix the usage of APIs from the two connectors in one application.

Developing the Java Client
You use the Java connector outbound event source to subscribe to an outbound event. This list identifies the
tasks for setting up and using the Java client to subscribe to PeopleSoft EnterpriseOne transaction types
and notify you upon completion of the transaction:

• Create a Java class to implement an interface.
• Create a Java client application to subscribe to an event.
• Compile the Java client.
• Run the Java client.

Creating a Java Class to Implement an Interface
You create a Java class to implement an interface to PeopleSoft EnterpriseOne. Depending on the purpose for
which you are using the Java class, implement one of these interfaces:

• com.jdedwards.system.connector.events.CountedListener
Implement this interface if you want to know the subscription count, when the subscription count is reached,
and when the subscribed event is dropped.

• com.jdedwards.system.connector.events.PersistentListener
Implement this interface if you want the real-time event kernel to persist the subscription when the kernel
goes down and comes up, and the connection to the Java connector is reestablished.

• com.jdedwards.system.connector.events.EventListener
Implement this interface for most other situations.

No matter which interface you implement, the implementation Java class must contain these five methods:

//set the event type to subscribe

void setEventType(String type);

String getEventType();

//stop/start the event coming in the Java connector

void setPause(boolean pause);

boolean isPaused();

//the callback function when the event arrives

void onOneWorldEvent(EventObject event);

PeopleSoft Proprietary and Confidential 131

Using Java Connector Events - Classic Events Chapter 11

Creating a Java Client Application to Subscribe to an Event
You create a Java client application to subscribe to an event. The Java client application must:

1. Create a new instance of the Connector class.
2. Use the connector object to verify the client’s user ID, password, and environment, and then log the
client into PeopleSoft EnterpriseOne.

3. Do one of these:
• For Java connector, create an EventSource object by calling the CreateBusinessObject method of the
Connector class, passing in an Events::EventSource string identifier.

• For dynamic Java connector, Get EventSource instance by using this command:

com.jdedwards.system.connector.dynamic.connector.events.EventSource.

getInstance()

4. Create an EventListener object.
5. Specify the specific event type to which to subscribe.
6. Register the EventListener object with the EventSrc object.
7. Develop a callback function.
When the subscribed to event arrives, the EventListener calls this callback function. This step is optional.

Example: Using the Java Client to Subscribe to an Event Using the Java Connector
Outbound Event Source
This example illustrates how to write code for a Java client to subscribe to an event using the Java connector
outbound event source.

import java.io.*;

import javax.swing.*;

import com.jdedwards.system.connector.*;

import com.jdedwards.system.connector.events.EventListener;

/**

* The event source client application

*/

class EventClient

{

private Connector m_connector = null;

private int m_Access = 0;

private EventSource m_theSource = null;

private Listener m_listener = null;

public static void main(String argv[]) {

try

{

// 1.

m_connector = new Connector();

// 2.

132 PeopleSoft Proprietary and Confidential

Chapter 11 Using Java Connector Events - Classic Events

m_Access = m_connector.Login("user", "password",

"environment", "role");

// 3.

// passing in an "Events::EventSource" string identifier.

m_theSource = (EventSource)m_connector.CreateBusiness

Object("Events:: EventSource", m_Access);

// 4.

m_listener = new ListenerImpl(this);

// 5.

m_listener.setType("JDESOOUT");

// 6.

m_theSource.addListener(m_listener, m_Access);

}

catch(Exception e)

{

System.out.println(e.toString());

System.out.println(e.getMessage());

e.printStackTrace();

}

}

// 7.

public synchronized void executeCallBack(EventObject event){

System.out.println("Getting the event:"+event.getData());

//execute the call back function;

}

}

/**

* The EventListener interface is the means by which events are

* delivered to the client by the Java connector.

* The client must implement an EventListener object

*/

public class ListenerImpl implements EventListener

{

String m_eventType;

boolean m_paused = false;

EventClient m_client;

/** Creates new Listener */

public ListenerImpl()

{

}

public ListenerImpl(EventClient client)

{ this.m_client=client;

}

PeopleSoft Proprietary and Confidential 133

Using Java Connector Events - Classic Events Chapter 11

public synchronized String getEventType()

{

return m_eventType;

}

public void setEventType(java.lang.String eventType)

{

this.m_eventType = eventType;

}

public synchronized boolean isPaused()

{

return m_paused;

}

public synchronized void setPause(boolean pause)

{

m_paused = pause;

}

public synchronized void onOneWorldEvent(EventObject p1)

{

System.out.println("Received event: " + p1.getType());

// if the arrival event is the one that client subscribes,

// the EventListner can trigger the call back function in the client

if (p1.getType().equalsIgnoreCase(m_eventType)) {

m_client.executeCallBack(p1);

}

}

}

Compiling the Java Client
To compile the Java client, use this command:

set JAVA_HOME = <the path of JDK>

set OneWorld_HOME = <the installation path>

set CLASSPATH=%OneWorld_HOME%\system\classes\Kernel.jar

set CLASSPATH=%CLASSPATH%;%OneWorld_HOME%\system\classes\Connector.jar

set CLASSPATH=%CLASSPATH%;%OneWorld_Home%\system\classes\log4j.jar

set CLASSPATH=%CLASSPATH%;%OneWorld_HOME%\system\classes\xalan.jar

set CLASSPATH=%CLASSPATH%;%OneWorld_HOME%\system\classes\xerces.jar

%JAVA_HOME%\bin\javac -classpath %CLASSPATH% EventClient.java

EventListenerImpl

Running the Java Client
To run the Java client, use this command:

set JAVA_HOME = <the path of JDK>

set OneWorld_HOME = <the installation path>

set CLASSPATH=%OneWorld_HOME%\system\classes\Kernel.jar

134 PeopleSoft Proprietary and Confidential

Chapter 11 Using Java Connector Events - Classic Events

set CLASSPATH=%CLASSPATH%;%OneWorld_HOME%\system\classes\Connector.jar

set CLASSPATH=%CLASSPATH%;%OneWorld_Home%\system\classes\log4j.jar

set CLASSPATH=%CLASSPATH%;%OneWorld_HOME%\system\classes\xalan.jar

set CLASSPATH=%CLASSPATH%;%OneWorld_HOME%\system\classes\xerces.jar

%JAVA_HOME%\bin\java -classpath %cp%

EventClient

PeopleSoft Proprietary and Confidential 135

Using Java Connector Events - Classic Events Chapter 11

136 PeopleSoft Proprietary and Confidential

CHAPTER 12

Using Java Connector Events - Guaranteed Events

This chapter provides an overview of Java connector events and discusses how to:

• Develop a Java connector events application.
• Use the Sample connector events client.

Note. This chapter is applicable only if you use guaranteed events delivery. Guaranteed event delivery is
available when you use PeopleSoft EnterpriseOne Tools 8.94 with PeopleSoft EnterpriseOne Applications 8.11.

Refer to the Classic Events chapters if you use PeopleSoft EnterpriseOne Tools 8.94 with PeopleSoft
EnterpriseOne Applications 8.10 or earlier releases of the PeopleSoft EnterpriseOne Applications.

Understanding Java Connector Events
The Java connector provides a set of APIs that you can use to receive events when you establish a subscriber
in PeopleSoft EnterpriseOne with a JAVACONN transport type. When using the events portion of the Java
connector, you connect directly to the PeopleSoft EnterpriseOne Transaction server to receive events that
have been placed in the subscriber queue.

Note. When you use the events portion of the Java connector, you do not call any business functions on
the PeopleSoft EnterpriseOne server. This implies that the events portion of the Java connector is not
specific to the Java connector or dynamic Java connector. Therefore, the term Java connector is used
throughout this chapter even though the APIs and the sample code reside in subpackages underneath the
com.jdedwards.system.connector.dynamic package. All classes for the Java connector and the dynamic Java
connector (not including the sample applications) reside in the Connector.jar file. Putting the Connector.jar file
on the CLASSPATH is sufficient for working with either Java connector and the events operations.

Prerequisites
Whether you are developing a Java connector events application or using the sample Java connector events
client, these prerequisites must exist on the machine running the events application or client sample:

• A Java Development Kit (JDK) that corresponds to the version of the JDK under which the PeopleSoft
EnterpriseOne Transaction server is running.

For example, when connecting to an PeopleSoft EnterpriseOne Transaction server hosted on WebSphere,
you must run the Java connector events client or application using the same IBM JDK. Generally, the IBM
JDK is located in <WebSphere installation directory>/java).

• An installation of IBM WebSphere MQ, if the PeopleSoft EnterpriseOne Transaction Server is hosted
on WebSphere.

This software comes installed as part of the installation of many different WebSphere-related software,
including the WebSphere Application Client.

PeopleSoft Proprietary and Confidential 137

Using Java Connector Events - Guaranteed Events Chapter 12

• A completed set of configured files for the environment:
- jdeinterop.ini
- jdbj.ini
- jdelog.properties

• A JAVA_HOME environment variable that points to this JDK.
• A PATH environment variable that includes the entry, %JAVA_HOME%\bin, which assumes that
JAVA_HOME has already been defined.

Additional prerequisites are required to compile and run the application or client.

• These .jar files must be on the CLASSPATH:
- connector.jar
- database.jar
- kernel.jar
- jdeutil.jar
- log4j.jar

The files can be found at <Windows client installation directory>\system\classes on the generation machine
that is used for the PeopleSoft EnterpriseOne environment to which you are connecting.

• These files must be copied from the Transaction server’s installation directory:
- Common_JAR.jar
- EventProcessor_EJB.jar

The files that you place on the CLASSPATH must be the exact same files that are on the
Transaction server installation directory. The files are typically located in <Transaction Server
installation>\EventProcessor\app\EventProcessor.ear.

• The JDBC driver files that correspond to the database to which you are connecting.

• The directory location for these files:

- jdeinterop.ini

- jdbj.ini
- jdelog.properties

The files must all be in the same directory. It is important to note that you put the directory in the
CLASSPATH without the file names, so there is just one entry for these three files. Also, this entry must end
in a slash (/), indicating that it is a directory entry and not a file name.

• If you connect to a Transaction server hosted on WebSphere, you also need these files:
- bootstrap.jar
- j2ee.jar
- lmproxy.jar
- urlprotocols.jar
- ecutils.jar
- messagingClient.jar

138 PeopleSoft Proprietary and Confidential

Chapter 12 Using Java Connector Events - Guaranteed Events

- naming.jar
- namingclient.jar

The files are typically located in the <WebSphere installation directory>/lib folder. Additionally, you must
put the <WebSphere installation directory>)/properties directory entry in the CLASSPATH, without an
ending slash (/).

• If you connect to a Transaction server hosted on WebLogic, you also need these files:

- j2ee.jar
- wljmsclient.jar

- wlclient.jar

The files are typically located in the <WebLogic installation directory>/server/lib folder.

Developing a Java Connector Events Application
This section provides an overview of Java connector events application development and discusses:

• Introspection operations
• Asynchronous event sessions
• Synchronous event sessions

Understanding Java Connector Events Application Development
This list identifies the steps that you use when you write a Java class that serves as a Java connector subscriber.
The steps are further explained in the code samples in this section.

• Instantiate a connector object.

• Login through the connector to the PeopleSoft EnterpriseOne system.

• Instantiate an EventService object (not required for introspection operations).

• Perform introspection operations (optional).

• Create a session and receive events (optional).

• Logoff from PeopleSoft EnterpriseOne.

• Shut the connector down.

You can create two types of Event Sessions, asynchronous and synchronous, to receive events through the Java
connector.

Introspection Operations
The Java Connector Events API enables you to perform several introspection requests as provided in the
Event IntrospectionApp.java code sample.

EventIntrospectionApp.java
This sample code shows example introspection requests:

PeopleSoft Proprietary and Confidential 139

Using Java Connector Events - Guaranteed Events Chapter 12

import java.util.LinkedList;

import com.jdedwards.system.connector.dynamic.Connector;

import com.jdedwards.system.connector.dynamic.newevents.EventService;

Sample Java Connector Events Introspection application.
public class EventIntrospectionApp {

public static void main(String[] args) {

try {

// Instantiate a Connector object

Connector con = Connector.getInstance();

// Login through the Connector

int sessionID = con.login("username", "password",

"environment", "role");

Get the list of all events in EnterpriseOne. This list is returned as a LinkedList of Strings.
LinkedList list = EventService.getEventList(sessionID);

Get the template for a particular event type. This is returned as an XML template in a single String object.
String template = EventService.getEventTemplate(sessionID, "category",

"type", "environment");

Get the list of all subscriptions for the user associated with the given sessionID. This is returned as a LinkedList
of com.peoplesoft.pt.e1.common.events.connectorsvc.Subscription objects. This Subscription class is located
in the Common_JAR.jar file.

LinkedList subs = EventService.getSubscriptions(sessionID);

// Logoff the user from PeopleSoft EnterpriseOne

con.logoff(sessionID);

// Shut the Connector down

con.shutDown();

} catch (Exception e) {

e.printStackTrace();

System.exit(-1);

}

System.exit(0);

}

}

140 PeopleSoft Proprietary and Confidential

Chapter 12 Using Java Connector Events - Guaranteed Events

Asynchronous Event Sessions
With an asynchronous event session, you must create a listener class to receive events and process them
according to the requirements for the event data. Once you create the listener class, you register an instance of
that class with the asynchronous event session that you request. The details of these steps are listed in the
MyListener.java and EventAsyncApp.java sample programs.

Additionally, the MyListener.java sample code shows that since the Asynchronous Event Session is created
in CLIENT_ACKNOWLEDGE mode (illustrated in EventAsyncApp.java), the EventObject must be
acknowledged to let the Transaction server know that you received the event.

MyListener.java
This sample code for the listener class not only shows the single onEvent(EventObject) method that the listener
must implement, but it also shows what data you can get from the EventObject.

import javax.jms.IllegalStateException;

import com.jdedwards.base.datatypes.JDECalendar;

import com.jdedwards.system.connector.dynamic.SystemException;

import com.jdedwards.system.connector.dynamic.newevents.EventListener;

import com.jdedwards.system.connector.dynamic.newevents.EventObject;

Sample implementation of a Java Connector Asynchronous Event SessionListener.
public class MyListener implements EventListener {

Permits the listener to receive an event when it has been delivered from the Transaction Server.

@param event the event
public void onEvent(EventObject event) {

Do some processing here with the event that is sent by the Transaction Server. The onEvent(EventObject)
method is called once for every event that is delivered.

*The event category: "RTE", "XAPI", or "ZFILE".
String category = event.getCategory();

The event type, such as "RTSOOUT".
String type = event.getType();

The PeopleSoft EnterpriseOne environment in which the event was generated.
String environment = event.getEnvironment();

PeopleSoft Proprietary and Confidential 141

Using Java Connector Events - Guaranteed Events Chapter 12

The global sequence number of the event.
long sequenceNumber = event.getSequenceNumber();

The date and time stamp of the event.
JDECalendar date = event.getDateTime();

The XML content of the event as a single String object.*/
String xmlPayload = event.getXMLPayload();

If you created an EventSession with CLIENT_ACKNOWLEDGE mode, you must acknowledge each message
you receive. Otherwise the event will be redelivered according to the Transaction Server JMS Provider’s logic.

try {

event.acknowledge();

} catch (IllegalStateException e) {

This Exception will be thrown if the session associated with this event has already been closed.
} catch (SystemException e) {

This Exception will be thrown if the original event could not be acknowledged (duplicate event delivery is
likely in this scenario).

}

}

}

EventAsyncApp.java
The asynchronous-specific calls in this asynchronous event application (AsyncEventApp.java) are illustrated in
this code sample. Between the eventSession.start and the eventSession.stop method calls, you would normally
solicit user input or wait for some type of intervention to let the class know that event delivery needs to stop.

import com.jdedwards.system.connector.dynamic.Connector;

import com.jdedwards.system.connector.dynamic.newevents.AsyncEventSession;

import com.jdedwards.system.connector.dynamic.newevents.EventService;

import com.jdedwards.system.connector.dynamic.newevents.EventSession;

Sample Java Connector Asynchronous Event application
public class EventAsyncApp {

public static void main(String[] args) {

try {

142 PeopleSoft Proprietary and Confidential

Chapter 12 Using Java Connector Events - Guaranteed Events

Instantiate a Connector object
Connector con = Connector.getInstance();

Login through the Connector to EnterpriseOne
int sessionID = con.login("username", "password",

"environment", "role");

Instantiate an EventService object
EventService service = EventService.getInstance();

Create a synchronous event session in CLIENT_ACKNOWLEDGE mode.
AsyncEventSession eventSession = service.getAsyncEventSession

(sessionID, EventSession.CLIENT_ACKNOWLEDGE);

Register a listener object which you have created
eventSession.registerListener(new MyListener());

Start the delivery of events to the listener
eventSession.start();

Stop the delivery of events to the listener. Note that you can continuously alternate between calls to start() and
stop() as long as you do not call the close() method.

eventSession.stop();

Close the event session. No other operations on the event session are possible at this point.
eventSession.close();

Logoff the user from PeopleSoft EnterpriseOne
con.logoff(sessionID);

Shut the Connector down
con.shutDown();

} catch (Exception e) {

e.printStackTrace();

System.exit(-1);

}

System.exit(0);

}

}

Synchronous Event Sessions
With synchronous event sessions, you receive only one event at a time. No listener class is involved with this
type of session.

PeopleSoft Proprietary and Confidential 143

Using Java Connector Events - Guaranteed Events Chapter 12

EventSyncApp.java
The three ways to receive an event, along with an explanation of functionality, are illustrated in
this EventSyncApp.java class sample code. This sample code uses the AUTO_ACKNOWLEDGE
acknowledgement mode:

import com.jdedwards.system.connector.dynamic.Connector;

import com.jdedwards.system.connector.dynamic.newevents.EventObject;

import com.jdedwards.system.connector.dynamic.newevents.EventService;

import com.jdedwards.system.connector.dynamic.newevents.EventSession;

import com.jdedwards.system.connector.dynamic.newevents.SyncEventSession;

Sample Java Connector Synchronous Events application.
public class EventSyncApp {

public static void main(String[] args) {

try {

Instantiate a Connector object
Connector con = Connector.getInstance();

Login from the Connector to PeopleSoft EnterpriseOne
int sessionID = con.login("username", "password",

"environment", "role");

Instantiate an EventService object
EventService service = EventService.getInstance();

Create a synchronous event session in AUTO_ACKNOWLEDGE mode
SyncEventSession eventSession =

service.getSyncEventSession(sessionID,

EventSession.AUTO_ACKNOWLEDGE);

Start the delivery of events
eventSession.start();

The receive() method will not return control to the caller until an event is delivered.
EventObject event1 = eventSession.receive();

Do some processing of the event data here. Refer to the sample class (MyListener.java) for a list of the
methods that can be called on the EventObject class.

The receive(long timeout) method will return control to the caller if the timeout value (in milliseconds) elapses
without an event being delivered. Of course, if an event is delivered before the timeout value elapses, the
EventObject will be returned to the caller.

EventObject event2 = eventSession.receive(5000);

144 PeopleSoft Proprietary and Confidential

Chapter 12 Using Java Connector Events - Guaranteed Events

Do some processing of the event data here. Refer to the sample ’MyListener.java’ class for a list of the
methods that can be called on the EventObject class.

The receiveNoWait() method either immediately returns an EventObject to the caller if an event is waiting to
be delivered or returns null if no event is waiting.

EventObject event3 = eventSession.receiveNoWait();

Do some processing of the event data here. Refer to the sample ’MyListener.java’ class for a list of the
methods that can be called on the EventObjectclass.

Stop the delivery of events. Note that you can continuously alternate between calls to start() and stop() as long
as you do not call the close() method.

eventSession.stop();

Close the event session. No other operations on the event session are possible at this point.
eventSession.close();

Logoff the user from PeopleSoft EnterpriseOne
con.logoff(sessionID);

Shut the Connector down
con.shutDown();

} catch (Exception e) {

e.printStackTrace();

System.exit(-1);

}

System.exit(0);

}

}

Using the Sample Connector Events Client
This section provides an overview of connector events client tool and discusses:

1. Using the Connector Events Client tool.

2. Building the sample connector events client.

3. Configuring the sample connector events client.

4. Running the sample connector events client.

PeopleSoft Proprietary and Confidential 145

Using Java Connector Events - Guaranteed Events Chapter 12

Understanding Connector Events Client Tool
The connector events client is a Java-based graphical tool that enables you to log in to PeopleSoft
EnterpriseOne and receive events that you have subscribed to from the PeopleSoft EnterpriseOne Transaction
server. This tool enables all possible event operations, including all of the introspection requests as well as the
creation of both asynchronous and synchronous event sessions.

Prerequisites for Using the Sample Connector Events Client
In addition to meeting the requirements listed in the Prerequisites for Using Events section, you must also
verify:

• The Transaction server is running.
• The user ID that you use to log in to the tool is a user ID that is an active subscriber with at least one
active subscription.

• You have configured these files as explained in this section.
- buildDynConNewEventDriver_server_type.bat
- runDynConNewEventDriver_ server_type.bat
- setDynConNewEventDriver_ server_type.bat files

where server_type refers to the type of server (WebLogic or WebSphere) that hosts the Transaction server.

Using the Connector Events Client Tool
You sign in to the connector events client tool through the login window. Once you have successfully signed
in, you can perform any of the introspection operations without creating an event session. All error messages
are displayed in the bottom pane. If you receive an error message that is not explained sufficiently, you can
look in the debug log file of the tool to obtain more information.

The buttons that enable you to create a new event session prohibit you from entering an invalid sequence or
combination (such as starting event delivery without opening a session). Once you start receiving events,
the event sequence numbers for received events appear in the Event List window. If you select on any event
sequence number, the event details for that event appear in the Event Data window. Additionally, the XML
content for all received events is automatically created as an XML file in the tool’s log directory, regardless of
whether you select the sequence number for the event.

To use the tool, you must build, configure, and then run the tool. The tool is shipped to you as source code so
that you can inspect the usage of the connector events APIs. You can find the entire source code in a single
jar file: connector_samples_src.jar. This file should be located in the <Windows client generation machine
installation directory>/system/classes/samples folder.

Building the Sample Connector Events Client
This section provides steps for building the sample connector events client.

To build the Sample Connector Events Client
Use these steps to build the sample connector events client:

1. Create a C:\ConnectorEventsClient directory.

If a directory with this name already exists, rename the existing directory before you create a new directory.
2. Create these subdirectories under the ConnectorEventsClient directory:

146 PeopleSoft Proprietary and Confidential

Chapter 12 Using Java Connector Events - Guaranteed Events

• classes
• config
• lib
• logs
• src

3. Use WinZip to open the file named connector_samples_src.jar that is in the <Windows Client Generation
Machine Installation Directory>/system/classes/samples folder.

4. Extract the contents of the connector_samples_src.jar file to the C:\ConnectorEventsClient\src folder,
making sure to use the complete path information for each file.

5. Copy these files:

File From Location To Location

buildDynConNewEventDriver_server_
type.bat, runDynConNewEventDriver_
server_type.bat,
setDynConNewEventDriverEnv_
server_type.bat

Note. Replace the text <server_type>
with the type of server (WebSphere
or WebLogic, in all lower case) that is
hosting the Transaction server.

<Windows Client Generation
Machine Installation Directory>
/system/classes/samples

C:\ConnectorEventClient

Connector.jar, database.jar, jdeutil.jar,
kernel.jar, log4j.jar

<Windows Client Generation
Machine Installation
Director>)/system/classes

C:\ConnectorEventClient\lib

Common_JAR.jar, EventProcessor_
EJB.jar

These files must be copied from
the PeopleSoft EnterpriseOne
Transaction server. They must be
identical to the ones running on
that server.

C:\ConnectorEventClient\lib

JDBC driver files This is specific to the database
package and installation
location.

C:\ConnectorEventClient\lib

6. For connecting to a Transaction server hosted on WebSphere, verify that these items are in the locations
given in the setDynConNewEventDriverEnv_websphere.bat file.
Change the values in that file to match the directory structure if it is different than the default value.

PeopleSoft Proprietary and Confidential 147

Using Java Connector Events - Guaranteed Events Chapter 12

Batch File Setting Default Value Description

WAS_HOME C:\WebSphere\Express\AppServer The AppServer directory located
within theWebSphere installation.

MQ_HOME C:\Program Files\IBM\WebSphere
MQ

The installation location of
IBMWebSphere MQ. This
should be installed as part of the
WebSphere Application Client
install and should also have a
separate entry in the Add/Remove
Programs application listed as IBM
WebSphere MQ.

7. For connecting to a Transaction server hosted on WebLogic, verify that these items are in the locations
given in the setDynConNewEventDriverEnv_weblogic.bat file.

Change the values in that file to match the directory structure if it is different than the default value.

Batch File Setting Default Value Description

WLS_HOME C:\bea\weblogic81 TheWebLogic installation folder

JAVA_HOME C:\bea\jdk141_03 The folder inside theWebLogic
installation directory that contains
the JDK used to run theWebLogic
server.

J2EE_HOME C:\j2sdkee1.3.1 The folder inside theWebLogic
installation directory that contains
the j2ee.jar file.

8. Open a command window and navigate to the C:\ConnectorEventsClient directory.
9. Type buildDynConNewEventDriver_server_type.bat and press ENTER.
To verify that the operation was successful, check that there are several .class files in the
C:\ConnectorEventsClient\classes\com\jdedwards\system\connector\dynamic\sample\newevents directory.

Configuring the Sample Connector Events Client
The jdeinterop.ini, jdbj.ini, and jdelog.properties files must be edited for the values that are correct for the
environment. These files are inside the C:\ConnectorEventClient\lib folder.

Running the Sample Connector Events Client
Navigate to the C:\ConnectorEventsClient directory.

1. Double-click on the runDynConNewEventDriver_server_type.bat file.
2. On the Java Connector PeopleSoft EnterpriseOne signon window, type the PeopleSoft EnterpriseOne
credentials, and then select the OK button.

3. The terms that are used in the tool are the same terms that were discussed in the Developing a Java
Connector Events application section of this chapter.

148 PeopleSoft Proprietary and Confidential

CHAPTER 13

Understanding J2EE Connector Architecture
Resource Adapter

This chapter discusses:

• J2EE Connector Architecture Resource Adapter.

• JCA 1.0 Specification optional features.

• Assembly and components.

• Deployment and configuration.

• Common client interface.

• Signon types.

• Subclasses.
• Input and output data.

• Logging.
• Exceptions.
• Samples.
• Checklist for resolving issues.

J2EE Connector Architecture Resource Adapter
The PeopleSoft EnterpriseOne J2EE Connector Architecture (JCA) resource adapter enables Java2 Platform,
Enterprise Edition (J2EE) components to use a standard interface to connect to the PeopleSoft EnterpriseOne
system. A resource adapter is a system-level software driver that enables J2EE components to communicate
with a back-end enterprise information system (EIS) through a JCA-compliant application server when
a resource adapter for the specific EIS is deployed to the server. J2EE components consist of Servlets,
JavaServer Pages (JSPs), and Enterprise JavaBeans (EJBs).

J2EE components and applications built with J2EE components can execute business functions through the
PeopleSoft EnterpriseOne JCA resource adapter. PeopleSoft EnterpriseOne business functions are accessed
through the JCA standard client interface, the Common Client Interface (CCI). The PeopleSoft EnterpriseOne
JCA resource adapter is fully compliant to the Java2 Platform, Enterprise Edition (J2EE) JCA 1.0 Specification
and should work with any application server that is J2EE 1.3 certified.

Note. Some application servers are known to not be J2EE 1.3 certified but they support some J2EE 1.3
features, including JCA 1.0. Check with the application server vendor to determine whether the application
server supports JCA1.0.

PeopleSoft Proprietary and Confidential 149

Understanding J2EE Connector Architecture Resource Adapter Chapter 13

See Also
J2EE Connector Architecture, http://java.sun.com/j2ee/connector/

JCA 1.0 Specification Optional Features
The JCA 1.0 Specification identifies optional features for developing a resource adapter. This table addresses
the level of support that the PeopleSoft EnterpriseOne JCA resource adapter provides for the optional features
identified in the JCA 1.0 Specification.

Feature Level of Support

Transactions The PeopleSoft EnterpriseOne JCA resource adapter is classified as an
XA Transaction resource adapter. The PeopleSoft EnterpriseOne JCA
resource adapter permits either no transactions during business function
calls, transactions local to PeopleSoft EnterpriseOne during those same
calls (local transaction), and one-phase commit (1PC) XA transactions
(transactions that span multiple enterprise information systems).

Client Interface The PeopleSoft EnterpriseOne JCA resource adapter supports the
optional common client interface (CCI), which is modeled after the Java
Database Connectivity (JDBC) client API. This relatively simple Java API
should significantly reduce the learning curve for using the PeopleSoft
EnterpriseOne JCA resource adapter.

Reauthentication The PeopleSoft EnterpriseOne JCA resource adapter does not support
the switching of a set of PeopleSoft EnterpriseOne user credentials on an
existing PeopleSoft EnterpriseOne user session. User credentials are usually
a concern of the application server and should not affect client development.

Input/Output Records The PeopleSoft EnterpriseOne JCA resource adapter supports the
MappedRecord interface, which is a data type of key-value pairs. The
MappedRecord interface is further discussed in the Input/Output Data
section of this document. The CCI interfaces IndexedRecord and ResultSet
are not supported as they are not relevant to the type of output from business
functions.

Authentication The PeopleSoft EnterpriseOne JCA resource adapter supports
BasicPassword authentication, which indicates to the application server how
to handle container-managed signon. The resource adapter does not support
any other form of authentication, such as Kerberos authentication through
the GenericCredential interface. The Signon Types section of this document
provides more information about authentication with the resource adapter.

150 PeopleSoft Proprietary and Confidential

Chapter 13 Understanding J2EE Connector Architecture Resource Adapter

Feature Level of Support

ManagedConnectionFactory Properties The JCA Specification identifies these properties as standard; however,
these properties are optional properties for the ManagedConnectionFactory
class, which is the main class configured with PeopleSoft EnterpriseOne
specific properties during deployment of the resource adapter:

• ServerName

• PortNumber

• UserName

• Password

• ConnectionURL

The PeopleSoft EnterpriseOne JCA resource adapter supports the UserName
and Password properties, as the other properties are either irrelevant
properties or are configured elsewhere in the resource adapter. The
Deployment Settings section of this document addresses other properties
that are defined by the PeopleSoft EnterpriseOne JCA resource adapter.

Note. The deployment tool of the particular J2EE application server might
list these properties as configurable for the resource adapter. The PeopleSoft
EnterpriseOne JCA resource adapter does not use values that you assign to
these properties (other than that for UserName and Password).

Number of Deployed Resource Adapters The JCA Specification allows for the possibility of deploying the same
resource adapter multiple times on a given application server. This provides
for potential connectivity to multiple versions of the same EIS for a one
resource adapter-to-many-EIS version ratio. The PeopleSoft EnterpriseOne
JCA resource adapter supports the deployment of only one PeopleSoft
EnterpriseOne JCA resource adapter per application server (essentially one
resource adapter per virtual machine).

Note. You can install different JCA resource adapters (those other than for
PeopleSoft EnterpriseOne) on the same application server.

Non-Managed Scenario The PeopleSoft EnterpriseOne JCA resource adapter must be used with an
application server or an application client. If you want to access PeopleSoft
EnterpriseOne business functions through Java outside of an application
server or application client, you should use the Java connector directly.

See Also
JCA Java documentation (APIs), http://java.sun.com/j2ee/apidocs-1_0-fr/api/index.html

PeopleSoft Proprietary and Confidential 151

Understanding J2EE Connector Architecture Resource Adapter Chapter 13

Assembly and Components
The packaging of a resource adapter is defined in the JCA 1.0 Specification. However, because some
application servers require additions to the standard Resource Adapter Archive (RAR) file, it is not possible to
distribute a single RAR file that can be deployed to all application servers. Consult the application server
documentation for instructions on how to use the assembly tool and to understand what additional components
might be required for a resource adapter to be operational with the application server. Typically, an additional
deployment descriptor is required. Additional information required by an application server is usually for
performance tuning and for configuration settings.

Components
A RAR file is a file that is in Java Archive (JAR) File Format with a .rar extension instead of a .jar extension.
The file structure for a RAR file is:

• /META-INF/ra.xml

• /<all necessary JAR files>

The ra.xml file is the standard resource adapter deployment descriptor and must be put in the META-INF
directory of the RAR file. The ra.xml file must be named exactly ra.xml. The ra.xml file for the PeopleSoft
EnterpriseOne JCA resource adapter is provided in the system/classes/samples directory on the PeopleSoft
EnterpriseOne CD. All other JAR files go in the root directory of the RAR file. The JAR files are provided in
the system/classes directory on the same CD. The required resource adapter JAR files include:

• owra.jar.
• Connector.jar.
• database.jar.
• jdeutil.jar.
• kernel.jar.
• log4j.jar.
• xerces.jar.
• JDBC driver .jar files supplied by the database vendor.

Note. Only use the versions of these JAR files that come with the PeopleSoft EnterpriseOne distribution.

When the RAR file is finally created, the META-INF directory of the RAR file might contain a Manifest.mf
file. The Java JAR tool usually creates the Manifest.mf file automatically. The Manifest.mf file complies with
the JAR file format, and it is acceptable for the Manifest.mf file to be in the RAR file.

152 PeopleSoft Proprietary and Confidential

Chapter 13 Understanding J2EE Connector Architecture Resource Adapter

Deployment and Configuration
The methods and tools for configuring and deploying a resource adapter vary between application servers
and even between versions of the same application server. Consult the application server documentation for
information about how to configure and deploy a resource adapter. Two separate methods exist for deploying a
resource adapter. The first method is deploying the resource adapter as a standalone resource adapter. This
permits all applications deployed on the application server to access the same resource adapter. The second
method involves packaging the resource adapter within an enterprise application (EAR) file. This permits only
those components in the EAR file to have access to the resource adapter. The sample applications provided
with the PeopleSoft EnterpriseOne JCA resource adapter use the second method.

Additional settings required for the PeopleSoft EnterpriseOne JCA resource adapter to be deployed and
to operate correctly include:

• Security permissions.
• jdeinterop.ini settings.
• jdbj.ini settings.
• jdelog.properties settings.
• CLASSPATH settings.
• Configurable properties.
• Java naming directory interface settings.

Note. Only one PeopleSoft EnterpriseOne JCA resource adapter can be deployed in standalone mode
per application server.

Security Permissions
The JCA 1.0 Specification defines the standard Java security permissions that must be granted to all resource
adapters by an application server. The PeopleSoft EnterpriseOne JCA resource adapter needs additional
security permissions to operate. These permissions are listed in the deployment descriptor (ra.xml file). Most
application servers dynamically grant these permissions to the resource adapter during deployment. Some
application servers have other methods of granting the resource adapter additional permissions, including
modifying a Java security policy file, which might require that you restart the application server to take effect.

If the application server does not dynamically grant the security permissions to a resource adapter based on
the contents of the deployment descriptor, you need to grant the resource adapter the permissions listed
in the security-permission-spec elements of the deployment descriptor. If the application server throws a
SecurityException while running an application associated with the PeopleSoft EnterpriseOne JCA Resource
Adapter, it is possible that the necessary security permissions are not being granted to the resource adapter.

jdeinterop.ini Settings
Because the resource adapter is built on top of the Java connector, it is necessary to configure the appropriate
settings in the jdeinterop.ini file to make the Java connector operational. The resource adapter introduces no
new settings into the jdeinterop.ini file.

jdbj.ini Settings
You must set up the jdbj.ini file.

PeopleSoft Proprietary and Confidential 153

Understanding J2EE Connector Architecture Resource Adapter Chapter 13

See Appendix D, Parameters and Values for the jdbj.ini File in the PeopleSoft EnterpriseOne Tools 8.93 Web
Server Installation PeopleBook

jdelog.properties Settings
The JCA 1.0 Specification permits resource adapter-specific logging messages to be sent to a separate log file,
which can be configured according to the application server (see the application server documentation). The
messages that are sent to this log file are redundant to and are a subset of the messages that are sent to the log
file defined in the jdelog.properties file. This redundancy is an intentional PeopleSoft EnterpriseOne JCA
resource adapter design decision for this reason:

The JCA logging mechanism does not provide a method for logging messages from the connector on which the
resource adapter is built. The logging properties file permits all logging messages from the connector as well
as the resource adapter to be logged in a central location.

CLASSPATH Settings
The PeopleSoft EnterpriseOne JCA resource adapter requires that the complete path to the jdelog.properties
file be placed in the server’s CLASSPATH. This path cannot include the name of the file, and the path must
end with a slash, which designates that the last item in the path is a directory and not a file. The name of the
properties file is required to be jdelog.properties. The logging mechanism looks for the logging properties file
in all directories in the CLASSPATH.

The JDBC driver for the PeopleSoft EnterpriseOne database must be in the server’s CLASSPATH so that the
proper database connections can be made.

Note. Some servers require all of the JAR files within the resource adapter RAR file to be placed in the
server’s CLASSPATH. If you encounter a NoClassDefFoundError while running a Web application that is
using the resource adapter, try putting all of these JAR files in the server’s CLASSPATH and restarting the
server. Consult the server documentation for further ClassLoader issues.

Configurable Properties
The PeopleSoft EnterpriseOne JCA resource adapter deployment descriptor (ra.xml file) contains properties
that must be assigned values specific to the environment. This table identifies the configurable properties
and describes the information required.

Property Required Information

owVersion The version of PeopleSoft EnterpriseOne to which the resource adapter connects. This property
is for display purposes only and can contain any value. The value you enter in this property is not
validated against the PeopleSoft EnterpriseOne installation.

username Use this property for an PeopleSoft EnterpriseOne user when neither the container nor the
application supplies a set of PeopleSoft EnterpriseOne user credentials.

password Use this property for an PeopleSoft EnterpriseOne user when neither the container nor the
application supplies a set of PeopleSoft EnterpriseOne user credentials.

154 PeopleSoft Proprietary and Confidential

Chapter 13 Understanding J2EE Connector Architecture Resource Adapter

Property Required Information

environment It is possible in a resource adapter web application to map a user’s web credentials to a set of
PeopleSoft EnterpriseOne user credentials. This mapping, which is called container-managed
signon, prevents the user from having to present different credentials multiple times while using
a single web application.

Container-managed signon maps a given user name and password to an PeopleSoft
EnterpriseOne user name and password. Container-managed sign-on mapping is specific to
each application server.

For PeopleSoft EnterpriseOne, the environment property is used to add a valid PeopleSoft
EnterpriseOne environment to the user name and password mapped by the application server,
which permits proper PeopleSoft EnterpriseOne signon. If you use container-managed signon,
you must assign a value to this property.

role In addition to user name, password, and environment, PeopleSoft EnterpriseOne signon requires
a role. The role property has a default value of *ALL, which enables the user to assume all valid
roles for the PeopleSoft EnterpriseOne user name. You do not need to assign a value for role
if this is the value you want to use.

Consult the documentation for the application server to determine if other deployment settings are required.

Java Naming and Directory Interface Settings
For communication between the web application and the PeopleSoft EnterpriseOne JCA resource adapter, the
web application must perform a Java Naming and Directory Interface (JNDI) lookup of the ConnectionFactory
of the resource adapter. You are allowed to configure multiple ConnectionFactory instances for each resource
adapter. This permits setting different values for the configurable properties listed in the previous section. The
web application obtains an PeopleSoft EnterpriseOne connection and interacts with PeopleSoft EnterpriseOne
through the ConnectionFactory. The method of assigning a JNDI name to the ConnectionFactory for the
PeopleSoft EnterpriseOne JCA resource adapter is specific to and documented by the application server.

When you add a ConnectionFactory through the application server, you are provided with a method for
assigning values to the configurable properties for each ConnectionFactory.

Common Client Interface
The Common Client Interface (CCI) is the JCA-recommended client API for all resource adapters. The
PeopleSoft EnterpriseOne JCA resource adapter provides an implementation of CCI as the client interface.

Implementing the Common Client Interface
This example code shows how to implement a CCI for the PeopleSoft EnterpriseOne JCA resource adapter.
In the example code, the elements in quotes have descriptive names and must have values valid to the
environment in a real Java class. The line numbers in the example code are not part of the code but are
for reference in subsequent paragraphs.

import com.jdedwards.system.connector..dynamic.jcaplugin.

ImageBSFNInteractionSpecImpl;

import com.jdedwards.system.jca.cci.ConnectionSpecImpl;

PeopleSoft Proprietary and Confidential 155

Understanding J2EE Connector Architecture Resource Adapter Chapter 13

import javax.naming.Context;

import javax.naming.InitialContext;

import javax.naming.NamingException;

import javax.resource.ResourceException;

import javax.resource.cci.Connection;

import javax.resource.cci.ConnectionFactory;

import javax.resource.cci.Interaction;

import javax.resource.cci.MappedRecord;

import javax.resource.cci.RecordFactory;

import javax.resource.cci.ResourceWarning;

public class SomeClass {

public void someMethod() {

try {

// get the naming context

Context nc = new InitialContext();

// lookup the connection factory

ConnectionFactory conFact = (ConnectionFactory)nc.lookup("Resource

Adapter JNDI Name");

//1. create a ConnectionSpec

ConnectionSpecImpl conSpec = new ConnectionSpecImpl("username",

"password", "environment", "role");

//2. get the Connection to PeopleSoft EnterpriseOne

Connection con = conFact.getConnection(conSpec);

// create an Interaction

Interaction ix = con.createInteraction();

// create and populate the InteractionSpec

OWBSFNInteractionSpecImpl ixSpec = new OWBSFNInteractionSpecImpl();

ixSpec.setBusinessFunction("Business Function Name");

// get a RecordFactory

RecordFactory rf = conFact.getRecordFactory();

//3. create the input MappedRecord

MappedRecord inputRecord = rf.createMappedRecord("any descriptive

name");

//4. populate the input MappedRecord with the input values

inputRecord.put("Business Function Parameter Name",

" Business Function Parameter Value");

//5. execute the Business Function, putting the results in the output

// MappedRecord

156 PeopleSoft Proprietary and Confidential

Chapter 13 Understanding J2EE Connector Architecture Resource Adapter

MappedRecord outputRecord = (MappedRecord)ix.execute(ixSpec, inputRecord);

// get results

Object value = outputRecord.get("Business Function Parameter Name");

// get Business Function warnings, if any

ResourceWarning warning = ix.getWarnings();

// close the Interaction

ix.close();

// close the Connection

con.close();

} catch (ResourceException e) {

// handle resource adapter-related Exceptions here

} catch (NamingException e) {

// handle JNDI-related Exceptions here

}

}

}

Signon Types
The PeopleSoft EnterpriseOne JCA resource adapter provides these types of PeopleSoft EnterpriseOne signons:

• Container-managed signon
• Component-managed signon

Container-Managed Signon
When container-managed signon is used, the application server maps a web application user to a given
PeopleSoft EnterpriseOne user. In this case, PeopleSoft EnterpriseOne user credentials are not provided in the
CCI code. If you use container-managed signon, line 1 of the example code would not exist, as you do not need
to create an instance of the ConnectionSpecImpl class. Line 2 of the example code would be changed to this:

Connection con = conFact.getConnection();

Component-Managed Signon
When component-managed signon is used, the code provides specific PeopleSoft EnterpriseOne credentials
(either through coding specific credentials or by obtaining PeopleSoft EnterpriseOne credentials through
user entry in the web application) to the PeopleSoft EnterpriseOne JCA resource adapter for PeopleSoft
EnterpriseOne signon. In the example code, lines 1 and 2 illustrate component-managed signon. In line
1 of the example code, an instance of the ConnectionSpecImpl class is first created with the PeopleSoft
EnterpriseOne user credentials. That instance is then passed to the getConnection method.

Component-managed signon is also known as application-managed signon.

PeopleSoft Proprietary and Confidential 157

Understanding J2EE Connector Architecture Resource Adapter Chapter 13

Subclasses
The import statements at the top of the example code illustrate that most of the classes that you use to interact
with the PeopleSoft EnterpriseOne JCA resource adapter are JCA classes (those classes in the javax.resource
package and sub-packages) and not PeopleSoft-specific implementations of JCA interfaces. PeopleSoft
software provides these implementation classes:

• ConnectionSpecImpl

• xxxxInteractionSpecImpl

The ConnectionSpecImpl class supplies the required PeopleSoft EnterpriseOne user credentials to the
getConnection method. The ConnectionSpecImpl class is one of the signon types. Line 1 in the example code
shows how to use the ConnectionSpecImpl class.

The purpose of the xxxxInteractionspecImpl class is to establish the necessary business function
information before execution in PeopleSoft EnterpriseOne. The xxxxInteractionSpecImpl classes vary,
depending on the type of business function spec source. The business function spec source is a file or
location that describes a business function. Each implementation class, which is a concrete class of the
javax.resource.cci.InteractionSpec interface, includes methods that set values. These setter methods must be
called and given values before executing the business function through the resource adapter.

ImageBSFNInteractionSpecImpl
The ImageBSFNInteractionSpecImpl implementation class gets the business function spec from an XML
image file, which must be generated by the dynamic Java connector beforehand.

Class: com.jdedwards.system.connector.dynamic.jcaplugin.ImageBSFNInteractionSpecImpl

Method: setBusinessFunction(String value)

Sets the exact name of the business function.

Method: setImageFilename(String value)

Sets the complete path and filename of the dynamic Java connector PeopleSoft EnterpriseOne spec image that
contains the definition of the corresponding business function.

OWBSFNInteractionSpecImpl
The OWBSFNInteractionSpecImpl implementation class gets the business function spec directly from a
call to PeopleSoft EnterpriseOne. This method might take a little longer to execute a business function the
first time the business function is called. The business function is stored in memory, and execution should
be quicker in subsequent calls.

Class: com.jdedwards.system.connector.dynamic.jcaplugin.OWBSFNInteractionSpecImpl

Method: setBusinessFunction(String value)

Sets the exact name of the business function.

158 PeopleSoft Proprietary and Confidential

Chapter 13 Understanding J2EE Connector Architecture Resource Adapter

Input and Output Data
The MappedRecordImpl class handles both sending input data to the resource adapter and receiving the output
data that is the result of executing the business function. Lines 3 and 4 of the example code illustrate inputting
data, and line 5 illustrates obtaining the output data. A MappedRecord is a correlation of key/value pairs. The
key represents the exact business function parameter name, and value defines the key.

Input data for values can be supplied in one of these ways:

• Use a string.
• Use a native Java data type.

The PeopleSoft EnterpriseOne JCA resource adapter examines the input data on a parameter-by-parameter
basis. If the input data type is string, the resource adapter attempts to convert the input data to the appropriate
Java data type for the specified parameter. If both the actual parameter type and the input data are string, the
resource adapter passes the input data through unchanged. If the input parameter is a native Java data type, the
resource adapter passes the input data through unchanged.

If the native Java data type is incorrect or if the parameter name is invalid for the given business function, the
resource adapter throws an exception.

This table lists the business function types and their corresponding native Java data type:

PeopleSoft EnterpriseOne Data
Type Native Java Data Type

ID java.lang.Integer

char (length of only 1) java.lang.Character

JDEDATE java.util.Date

Calendar com.jdedwards.base.datatypes.JDECalendar (located in Kernel.jar file)

MATH_NUMERIC com.jdedwards.system.lib.MathNumericImpl (located in Kernel.jar file)

char (variable length) java.lang.String

The output of all business functions result in the data in the MappedRecordImpl being in the native Java data
types. If you prefer only string-formatted output, you can make this call on the output MappedRecordImpl
for each parameter retrieved:

String value = outputRecord.get("parameter name").toString();

Logging
Message logging for the PeopleSoft EnterpriseOne JCA resource adapter is controlled by the jdelog.properties
file.

PeopleSoft Proprietary and Confidential 159

Understanding J2EE Connector Architecture Resource Adapter Chapter 13

Exceptions
The parent Exception class for all exceptions thrown by the PeopleSoft EnterpriseOne JCA resource adapter
is javax.resource.ResourceException.

See Also
JCA Javadoc, http://java.sun.com/j2ee/apidocs-1_0-fr/api/index.html

Samples
The samples supplied with the resource adapter illustrate how to use the resource adapter’s API, as well as
the JCA API, and how to demonstrate the functionality of the resource adapter. Address Book Query, Sales
Order Entry, and Purchase Order Entry are included samples. The source code along with the compiled classes
are delivered on the PeopleSoft EnterpriseOne Java Server CD in the system/classes/samples directory in the
JCASamples.ear file and the JCASamples_WebSphere.ear file, which includes WebSphere 5.x-specific
deployment files.

The sample applications consist of a group of servlets, which provide the HTML for the display of the samples,
and a group of stateful session Enterprise JavaBeans (EJBs) that access the PeopleSoft EnterpriseOne JCA
resource adapter. The resource adapter is bundled inside the .ear files and is only available to the sample
applications when deployed to the application server.

Prepare the Samples for Deployment
These customizations must be performed to the .ear file before it can function correctly.

• JDBC driver .jar file.

• Configuration files.

• Samples for the application server.

JDBC Driver .jar File
The JDBC driver .jar file supplied by the PeopleSoft EnterpriseOne database vendor must be packaged inside
the .ear file. Since the .ear file is in a Zip format, you can use a Zip program to add the necessary files. Place
the JDBC driver .jar files in the root directory of the .ear file (no path for those files). The CLASSPATH in
the manifest.mf file on the .ear file includes the expected filenames for the JDBC .jar files for three database
vendors without actually being included in the driver files themselves:

• SQL Server: msbase.jar, msutil.jar, mssqlserver.jar

• Oracle: classes 12.jar

• DB2: jt400.jar

If the file names of the JDBC driver .jar files are different, add those file names to the manifest.mf file that is
located inside the meta-inf directory of the JCA Samples RAR.rar file within the sample application.ear file
you are using. Be sure to preserve the meta-inf path for the manifest.mf file when you add it back into the file.

Configuration Files
You must configure these files:

160 PeopleSoft Proprietary and Confidential

Chapter 13 Understanding J2EE Connector Architecture Resource Adapter

• jdbj.ini
• jdeinterop.ini
• jdelog.properties.

These configuration files are in the config directory of the sample application EAR file. After you customize
the settings, be sure to place the files back into the EAR file in the config directory.

Samples for the Application Server
A generic JCASamples.ear file and a WebSphere 5.x-specific JCASamples_websphere.ear file are provided.
The application server might need additional information for some of the components contained in the EAR
file. This is a list of the sample components:

• JCASamplesEJB.jar

A JAR file that contains the Enterprise JavaBean (EJB) classes used by the samples.

• JCASamplesRAR.rar

A rar file that contains only the resource adapter deployment descriptor. The dependent JAR files for
the resource adapter are contained in the parent directory of the EAR file, as they need to be used by
the entire application.

• JCASamplesWeb.war

A WAR file containing the servlets for the sample applications.

If you use the generic JCASamples.ear file to deeply the sample applications to the application server, and they
do not operate correctly, you might need to unpack each of the files individually (.ear, .jar, .rar, and .war files)
and repack them with the application server’s assembly tool. This step usually enables the tool to place new
files and information in existing files that enable the application to operate correctly for that application server.

Deploy the Sample Applications
These general steps must be completed for deploying the sample applications to any application server:

• Start the application server.
• Start the administrative console (whatever application that ships with the application server that enables
you to deploy applications).

• Install the enterprise application.
• Add a connection factory for the resource adapter with a JNDI name of OneWorldJCAAdapter (with that
exact spelling).

• Restart the application server.

The application server may require additional steps not listed here (see the application server documentation
for deploying enterprise applications).

Deploy the Sample Applications to WebSphere 5.x
Use these steps to deploy the sample applications on WebSphere 5.x:

1. Start WebSphere.
2. Start the WebSphere Administrative Console.
3. Log on to the WebSphere Application Server Administrative Console using any ID.

PeopleSoft Proprietary and Confidential 161

Understanding J2EE Connector Architecture Resource Adapter Chapter 13

4. On the WebSphere Administrative Console, expand the applications node on the left side of the screen,
and then click the Install New Applications link.
Preparing for the Application Installation appears on the right side of the screen.

5. In the Preparing for the application installation portion of the screen, click Browse, and then select
JCASamples_WebSphere.ear file.

6. Click Next.
Continue to click Next on all successive screens until the final Summary screen presents a Finish button
at the bottom of the screen. Accept the default values provided on each of the screens without altering
any of them.

7. On the final Summary screen, click Finish.
WebSphere automatically generates the necessary EJB deployment code.

8. At the bottom of the screen, after the notice that the Application JCA samples installed successfully, click
the Save to Master Configuration link.
A Message box (indicating that changes have been made to the local configuration) and an Enterprise
Application Save section that includes a Save to Master Configuration box appear.

9. In the Save to Master Configuration box, click the Save button.
You are returned to the main screen.

10. On the left side of the main screen, click the Enterprise Applications link from the menu.
A list of the installed applications appears on the right side of the screen.

11. On the right side of the screen, click JCASamples from the list that appears under Enterprise Applications.
12. In the Related Items area at the bottom of the next screen, click the Connector Modules link.
13. On Connector Modules, click JCASamplesRAR.rar.
14. On the screen with a Configuration tab, scroll to the Additional Properties area and click the Resource
Adapter link.

15. On the next screen with a Configuration tab, scroll to the Additional Properties area, and then click the
J2C Connection Factories link.

16. On the J2C Connection Factories screen, click the New button to establish a new J2C Connection Factory.
17. Under the Configuration tab on the New screen, enter any value for the Name field and
OneWorldJCAAdapter for the JNDI name.
The value you enter for the Name field is used for display purposes only.

18. Scroll to the bottom of the screen, and then click the OK button.
19. In the Message box at the top of J2C Connection Factories screen, click the Save link.
20. In the Save to Master Configuration area on the Save screen, click the Save button.
21. From the menu bar (at the top of the screen), click Logout.
22. Stop and restart the sever to make the application is available to run.

Run the Sample Applications
After you configure and deploy the sample applications, you can run each of the sample applications,
provided that the PeopleSoft EnterpriseOne Server you are accessing is operational. Use these URLs to
access the samples:

162 PeopleSoft Proprietary and Confidential

Chapter 13 Understanding J2EE Connector Architecture Resource Adapter

• AddressBook Query: http://<app http://<app server name>|<app server port>/JCASamplesWeb/ABLogin
• SalesOrder Entry: http://<app server name>|<app server port>/JCASamples Web/SOLogin
• PurchaseOrder Entry: http://<app server name>|<app server port>/JCASamplesWeb/POLogin

Checklist for Resolving Issues
If your system is not working, use this checklist to ensure you have the proper setup:

• The directory location of the jdelog.properties file must be in the server’s CLASSPATH.

For example, if the jdelog.properties file is in this location:

C:\JCA\logs\jdelog.properties

you must have this entry in the server’s CLASSPATH:

C:/JCA/logs/
Be sure to include a slash at the end of the path to indicate that logs is a directory and not a file. When you
make a change to the server’s CLASSPATH, you must restart the server.

• Some servers read the <security-permission-spec> element of the resource adapter’s deployment descriptor
(the ra.xml file) and dynamically grant the resource adapter the security permissions listed in those elements.

If you are executing a resource adapter-based application and experience a java.xxx.xxxPermission
Exception, you have to manually add the contents of the <security-permission-spec> elements to the server’s
policy file. Consult the server’s documentation for the location and format for editing the policy file. You
should be able to simply copy and paste the elements into the server’s policy file. Any changes to the
policy generally require a server restart to take effect.

If you make the changes and still experience Permission Exceptions, you might need to move some of the
permission elements that you copied from the resource adapter domain in the policy file to the default
domain in the policy file. This is because the resource adapter classes, especially if present in the server’s
CLASSPATH, might reside in the default domain and not the resource adapter domain.

PeopleSoft Proprietary and Confidential 163

Understanding J2EE Connector Architecture Resource Adapter Chapter 13

164 PeopleSoft Proprietary and Confidential

CHAPTER 14

Understanding jdeinterop.ini

This chapter provides an overview of the jdeinterop.ini file and discusses the settings for these sections:

• OCM
• Cache
• JDENET
• Server
• Security
• Debug
• Interop
• Events - Classic events delivery method

• Events - Guaranteed events delivery method

• JMSEVENTS – Guaranteed events delivery method

Note. If you are using Java interoperability connectors, you must also set up jdbj.ini file sections.

See Also
Appendix D: Parameter and Values for the jdbj.ini File in the EnterpriseOne Tools 8.94 Web Server Installation
PeopleBook

Settings for the jdeinterop.ini File
The jdeinterop.ini file includes settings the server might need. The default location for the file isc:\; however,
you can configure this location. This section details the settings found in the jdeinterop.ini file. Information
is organized by section, for example [JDENET].

Note. Unless otherwise indicated, the sections and the settings in the sections are for both the classic and
guaranteed event delivery methods.

[OCM]
The [OCM] settings are used only by the COM connector.

PeopleSoft Proprietary and Confidential 165

Understanding jdeinterop.ini Chapter 14

Setting Typical Value Purpose

DSN= ODA ITTND17 The data source name from the system DSN of the
ODBC setting.

OCMDatasource= COMOCM System data source for PeopleSoft EnterpriseOne
client.

DB User= jde User for the data source connection.

DB Pwd= jde Password for the data source connection.

Object Owner= sysb9 For UNIX platforms, this is the object owner in the
[DB SYSTEM SETTINGS].

Seperator= . Separator used in SQL query.

For Oracle, SQL, and UDB databases, the
separator is period (.); for iSeries, the separator is
a slash (/).

This setting is used only by the dynamic Java connector.

Setting Typical Value Purpose

OCMEnabled= True Select or clear OCM inside the Java connector. A
value of true indicates selected.

[CACHE]
The [CACHE] settings are used only by the Java interoperability connectors.

Setting Typical Value Purpose

UserSession= 0 Time out value (in milliseconds) for the dynamic
Java connector user session. A zero (0) indicates
infinite time out.

SpecExpire= 30000000 Maximum time (in milliseconds) that the dynamic
Java connector keeps the fetched spec in the cache.

[JDENET]
The [JDENET] settings are used by COM and Java connectors.

166 PeopleSoft Proprietary and Confidential

Chapter 14 Understanding jdeinterop.ini

Setting Typical Value Purpose

enterpriseServerTimeout= 90000 Timeout value for a request to the PeopleSoft
EnterpriseOne enterprise server.

maxPoolSize= 30 JDENET socket connection pool size.

serviceNameConnect= 6004 Port number used by the PeopleSoft EnterpriseOne
security server. This setting is used only by the Java
connector.

[SERVER]
The [SERVER] settings are used by COM and Java connectors.

Setting Typical Value Purpose

glossaryTextServer= JDED:6010 The PeopleSoft EnterpriseOne enterprise server
and port that provide glossary text information.

codePage= 1252 The encoding scheme, such as:

1252 English andWestern European.

932 Japanese.

950 Traditional Chinese.

936 Simplified Chinese.

949 Korean.

[SECURITY]
The [SECURITY] settings are used by COM and Java connectors.

Setting Typical Value Purpose

NumServers= 1 Number of security servers set.

SecurityServer= JDED The PeopleSoft EnterpriseOne security server. This
setting is used only by the Java connector.

[DEBUG]
The [DEBUG] settings are used only by the COM connector.

PeopleSoft Proprietary and Confidential 167

Understanding jdeinterop.ini Chapter 14

Setting Typical Value Purpose

JobFile= c:\Interop.log Location of error file.

DebugFile= c:\InteropDebug.log Location of debug file.

log= c:\net.log Location of log file.

debugLevel= 0 - 12 Defines the level of tracing provided by the COM
connector and the CallObject component in the
specified log file, in the COM server only.

0 None: Logging is turned off and only errors are
written to the JobFile.

2 Errors (error messages).

4 System Errors (exception messages).

6 Warning Information.

8 Min Trace (Key operations; for example, Login,
Logoff, Business Function calls).

10 Trouble Shooting Information (Help).

12 Complete Debug Information (Logs
everything).

Note. The odd values are reserved for future levels
to be added.

You typically do not need to use tracing. However,
tracing is useful for debugging.

netTraceLevel= 0 Defines the level of tracing provided by the
ThinNet component in the specified log file, in the
COM server only.

0 No trace.

1 Record process ID, thread ID, and the available
socket status when a new connection is added and
the socket pool is searched.

2 Includes the information in trace level 1 and also
traces every call made in the Connection Manager
class.

3 Includes all information in trace level 2, and also
traces getPort calls and getHost calls.

Note. You typically do not need to use tracing.
However, tracing is useful for debugging.

168 PeopleSoft Proprietary and Confidential

Chapter 14 Understanding jdeinterop.ini

[INTEROP]
The [INTEROP] settings are used by COM and Java connectors.

Setting Typical Value Purpose

enterpriseServer= JDED The PeopleSoft EnterpriseOne server.

port= 6010 The port number of the PeopleSoft EnterpriseOne
server.

manual_timout= 300000 The time-out value for a transaction in manual
commit mode.

Repository c:\PeopleSoft\ Interop\repository Points to the location of the repository directory
containing business object libraries (generated JAR
files).

SettingTime= 60000 (Java Connector)

10 (COMConnector)

Enables the connector to access and retreive event
information from the F90703 and F90704 tables.
Defines the time for the connector applications to
start up before the connector starts recovering an
event.

For Java connector, this value is milliseconds.

For COM connector, this value is seconds.

RecoveryInterval= 10000 (Java Connector)

60 (COMConnector)

Enables the connector to access and retreive event
information from the F90703 and F90704 tables.
Defines the time for the connector applications to
start up before the connector starts recovering an
event.

For Java connector, this value is milliseconds.

For COM connector, this value is seconds.

[EVENTS] - Classic Events Delivery
The [EVENTS] settings are used by COM and Java connectors. Use this [EVENTS] section only if you are
using classic events delivery.

PeopleSoft Proprietary and Confidential 169

Understanding jdeinterop.ini Chapter 14

Setting Typical Value Purpose

port= 6002 The socket port number where the EventListener
receives the events from the PeopleSoft
EnterpriseOne server. This port should not be used
by any other resource. Also, the port should not
be changed dynamically when the connector is
running, as this causes subsequent subscriptions to
be lost.

ListenerMaxConnection= 10 The maximum number of connections allowed
by the EventListener. The default number of
connections is 10, but you can change this number.
The maximum number of connections allowed is 64.

ListenerMaxQueueEntry= 10 The maximum number of events that the
EventListener can hold before processing by the
EventManager. The default number of events for the
queue is 10, but you can change this number. The
maximum number of events that can be held in the
queue is 100.

Outbound_timeout 1200000 Maximum number of milliseconds that the
EventManager waits before unsubscribing the
transient event from the PeopleSoft EnterpriseOne
server.

[EVENTS] - Guaranteed Events Delivery
Use the [EVENTS] settings for COM and Java connectors. Use this [EVENTS] section settings only if
you are using guaranteed events delivery.

For the guaranteed event delivery method, this section contains two values. These values are determined by
whether the Java connector application is connecting to an PeopleSoft EnterpriseOne Transaction server
installed on WebSphere or WebLogic.

WebSphere
Use these settings if the COM or Java connection is through WebSphere, and you are using guaranteed events:

• initialContextFactory=com.ibm.websphere.naming.WsnInitialContextFactory
• jndiProviderURL=corbaloc::<server_name:server_port/NameServiceServerRoot

Replace <server_name:server_port> with actual values relevant to the WebSphere server. A common
value for the server_port for WebSphere is 9810, but consult the WebSphere administrator to confirm
this port value.

WebLogic
Use these settings if the COM or Java connection is through WebLogic, and you are using guaranteed events:

• initialContextFactory=weblogic.jndi.WLInitialContextFactory
• jndiProviderURL=t3://<server_name:server_port>

170 PeopleSoft Proprietary and Confidential

Chapter 14 Understanding jdeinterop.ini

Replace <server_name:server_port> with actual values relevant to the WebLogic server. A common value
for the server_port for WebLogic is 7001, but consult the WebLogic administrator to confirm this port value.

[JMSEVENTS] - Guaranteed Events Delivery
Use this section only if you use a COM connector and the guaranteed events delivery method.

This section has a single setting, CLASSPATH. Note that you must include the full directory path of each file,
separating each file by a semicolon. For example, CLASSPATH=connector.jar;database.jar;kernel.jar.

These files can be found in the <PeopleSoft EnterpriseOne Windows client installation
directory>\system\classes folder:

• connector.jar
• database.jar
• kernel.jar
• log4j.jar
• jdeutil.jar

These files can be found on the <Transaction server installation directory>\EventProcessor\app folder:

• Common_JAR.jar
• EventProcessor_EJB.jar

Note. The files on the client side and Transaction server side must always match. This is important if the
Transaction server is updated.

• The path to the directory where the jdeinterop.ini, jdbj.ini, and jdelog.properties files exist, which must
all be in one directory.

This CLASSPATH entry must end with a slash (\), which indicates it is a directory name and not a file name.
• The full path to the JDBC driver files, including the filenames.

WebSphere
If you use WebSphere for the Java connection, you must include additional files. Note that IBM WebSphere
MQ is normally included as part of other WebSphere applications, including the WebSphere Application Client.

These files are normally located in the <IBM WebSphere MQ installation directory>/Java/lib folder:

• com.ibm.mqjms.jar
• com.ibm.mq.jar
• com.ibm.mqbind.jar

These files are normally in the <WebSphere installation directory>\lib folder:

• bootstrap.jar
• j2ee.jar
• Improxy.jar

PeopleSoft Proprietary and Confidential 171

Understanding jdeinterop.ini Chapter 14

• urlprotocols.jar
• ecutils.jar
• messagingClient.jar
• naming.jar
• namingclient.jar

You must also include the <WebSphere installation directory>/properties directory in the CLASSPATH.

WebLogic
If you use WebLogic for the Java connection, you must include additional files.

These files are normally located in the <WebLogic installation directory>/server/lib folder:

• wljmsclient.jar
• wlclient.jar

172 PeopleSoft Proprietary and Confidential

CHAPTER 15

Understanding jdelog.properties File

This chapter discusses the settings for the jdelog.properties file and provides a sample configuration file
for root configuration.

Settings for the jdelog.properties File
The logging utility in the dynamic Java connector, the Java connector, and Java connector Architecture (JCA)
is built on top of Apache Open Source Project Log4j. The jdelog.properties file defines the settings for the
logging configuration. The jdelog.properties file should be physically located in CLASSPATH.

These settings provide a sample configuration file for root configuration:

• Root configuration.
jdelog.rootLogger=DEBUG,JDELOG,JASLOG
jdelog.loggerFactory=com.jdedwards.base.logging.log4j.JdeLoggerFactory
jdelog.reloadInterval=60

• File handler for root log.
jdelog.handler.JDELOG=com.jdedwards.base.logging.log4j.FileHandler
jdelog.handler.JDELOG.File=\\jderoot.log
jdelog.handler.JDELOG.Level=ERROR
jdelog.handler.JDELOG.Append=TRUE
jdelog.handler.JDELOG.MaxBackupIndex=1
jdelog.handler.JDELOG.MaxFileSize=10MB
jdelog.handler.JDELOG.format=com.jdedwards.base.logging.log4j.DefaultFormat

• File handler setting for jas log.
jdelog.handler.JASLOG=com.jdedwards.base.logging.log4j.FileHandler
jdelog.handler.JASLOG.File=\\jas.log
jdelog.handler.JASLOG.Level=ERROR
jdelog.handler.JASLOG.Append=TRUE
jdelog.handler.JASLOG.MaxBackupIndex=1
jdelog.handler.JASLOG.MaxFileSize=10MB
jdelog.handler.JASLOG.format=com.jdedwards.base.logging.log4j.DefaultFormat

PeopleSoft Proprietary and Confidential 173

Understanding jdelog.properties File Chapter 15

• File handler setting for jasdebug log.
jdelog.Debug=DEBUG, jasdebug
jdelog.handler.jasdebug=com.jdedwards.base.logging.log4j.FileHandler
jdelog.handler.jasdebug.File=\\jasdebug.log
jdelog.handler.jasdebug.Level=DEBUG

See Also
Log4j Project, Apache Jakarta Project, http://logging.apache.org/log4j/docs/index.html

174 PeopleSoft Proprietary and Confidential

CHAPTER 16

Understanding iJDEScript

This chapter discusses iJDEScript and the iJDEScript commands.

iJDEScript
GenCOM and GenJava use a scripting language called iJDEScript that enables you to script code generation
activities. Other than a few small differences, the scripting language is the same for these generators. You
can use iJDEScript to:

• Rename business function libraries or select different business functions to create a custom interface;
for example:
library MyTestLibrary
interface MytestInterface
import B4200310 F4211FSEditLine
import B000042
This example selects the single business functions B4200310 F4211FSEditLine and B000042 for exposure.

• Use PeopleSoft EnterpriseOne object aliases for more meaningful names.
• Select business functions to expose; for example:
library MyAnotherLibrary
importlib CAEC
importlib CRUNTIME 1
This example selects all of the business functions in the CAEC and CRUNTIME 1 libraries for exposure.

iJDEScript scripts have a simple syntax:

comments begin with # and proceed to the end of line

whitespace is ignored

login

importlib CAEC

build

PeopleSoft Proprietary and Confidential 175

Understanding iJDEScript Chapter 16

iJDEScript Commands
iJDEScript supports a standard set of commands. These commands vary slightly for GenCOM and GenJava.
These variations are indicated in these command descriptions:

Build Command
The build command tells the generator to generate code for all defined interfaces and to build the appropriate
libraries.

When the build command is complete, the interface definitions are released. Using the build command again
only generates code for interfaces defined after the last build command.

Syntax
This is an example of the syntax:

build

Call Command
The call command tells the generator to evaluate a subroutine with the given parameters. Parameters appear
within the subroutine in order as special macros named %1%, %2%, and so on.

Syntax
This is an example of the syntax:

call sub [param [...]]

Example
This is an example:

login

call GenerateLib CAEC

call GenerateLib CALLBSFN

build

logout

Define Command
The define command tells the generator to optionally define a macro expansion. The value is expanded
first, and then stored as the expansion of macro name. If name already has an expansion, the generator
ignores this command.

Syntax
This is an example of the syntax:

define name value

Example
This is an example:

176 PeopleSoft Proprietary and Confidential

Chapter 16 Understanding iJDEScript

define val1 This is a test

define val2 %val1%!

define val2 This is ignored

say %val2%

generates the output

This is a test

Define! Command
The define! command tells the generator to define a macro expansion. The value is expanded first, and
then stored as the expansion of macro name. If name already has an expansion, the generator replaces the
current expansion with the new expansion.

Syntax
This is an example of the syntax:

define name value

Example
This is an example:

define val1 This is a test

define val2 %val1%!

define! val2 This is not ignored

say %val2%

generates the output

This is not ignored

Exit Command
The exit command tells the generator to exit the current subroutine or command file.

Syntax
This is an example of the syntax:

exit

Help Command
The help command requests help information from the generator on all available commands. Syntax
information and a brief description are presented for each command. If command is specified, only help for
command is provided.

Syntax
This is an example of the syntax:

help [command]

PeopleSoft Proprietary and Confidential 177

Understanding iJDEScript Chapter 16

Import Command
The import command tells the generator to retrieve the specification of a function or group of business
functions from the database and add them to the current interface definition. If only the business function
name is specified, all functions from the specified business-function are retrieved and added to the current
interface definition. If a function name is specified, only that function is retrieved and added to the current
interface definition.

The alias option enables you to rename the function within the interface definition. The implementation still
uses the original name when invoking the business function; however, the function is exposed as name
through the interface.

Syntax
This is an example of the syntax:

import business-function [function [alias name]]

Example
This is an example:

library General

interface ReleaseMgmt

Load GetReleaseAndVersion from B9800890; call it GetRV in

ReleaseMgmt

import B4200310 F4211FSEditLine alias GetRV

Load all functions from B000042

import B000042

Importlib Command
The importlib command tells the generator to import all business functions from the specified PeopleSoft
EnterpriseOne library, such as CAEC or CALLBSFN, into the current library definition. Each business
function group results in the definition of an interface with the same name as the business function group and
exposes as methods the functions within that group.

The category parameters enables you to restrict the import to one or more specific categories (1, 2, 3 and
-; see the /Cat command line option).

Syntax
This is an example of the syntax:

importlib library [category [...]]

Example
This is an example:

library JDECOMInterfaceCAECCat1

Load all category 1 functions from CAEC

importlib CAEC 1

build

178 PeopleSoft Proprietary and Confidential

Chapter 16 Understanding iJDEScript

Interface Command
The interface command tells the generator to begin the definition of an interface. All business functions
retrieved using subsequent import commands become members of this interface.

Syntax for COM
This is an example of the syntax:

interface interface [ProgID prog-id] [vi-prog-id]

COM Example
This is an example:

interface ReleaseMgmt ProgID SOA.ReleaseMgmt.5 SOA.ReleaseMgmt

import B4200310 F4211FSEditLine

Library Command
The library command tells the generator that subsequent interface and import commands will generate
definitions that belong in the library (DLL) named name. If the parameterset tag is also supplied, the library is
used solely for parameterset definitions.

Note. When the library command without the parameter set tag is evaluated, parametersets for subsequent
interface and import commands appear in that library until a library command with the parameterset tag is
evaluated.

Syntax
This is an example of the syntax:

library name [parameterset]

Example
This is an example:

library Lib1

library Lib1Params parameterset

Parametersets for CALLBSFN go in Lib1Params, but the

business function interfaces go in Lib1

importlib CALLBSFN 2 3

Login Command
The login command tells the generator to log on to PeopleSoft EnterpriseOne. If user, password, environment,
and role are not specified, the user is prompted for the information.

Syntax
This is an example of the syntax:

login [user password environment role]

PeopleSoft Proprietary and Confidential 179

Understanding iJDEScript Chapter 16

Example
This is an example:

login me mypassword demo

Logout Command
The logout command tells the generator to log off of PeopleSoft EnterpriseOne.

Syntax
This is an example of the syntax:

logout

Opt Command
The opt command tells the generator to set the value of a generator command line parameter. The option
parameter should not begin with the usual /. The value parameter does not undergo macro expansion.

Syntax
This is an example of the syntax:

opt option value

Example
This is an example:

Do not generate business function interfaces, only

parameterset interfaces

opt NoBSFN

Rename Command
The rename command tells the generator to rename an interface or a method within an interface. If a method is
renamed, the correct business function is still called to build the implementation, but the method is exposed
through the interface with a different name.

Syntax
This is an example of the syntax:

rename interface new

rename interface method new

Example
This is an example:

library Lib1

importlib CALLBSFN

rename B000042 BatchControl

rename BatchControl FSOpenBatch Open

180 PeopleSoft Proprietary and Confidential

Chapter 16 Understanding iJDEScript

rename BatchControl FSCloseBatch Close

Say Command
The say command tells the generator to display a message on the console.

Syntax
This is an example of the syntax:

say message

Example
This is an example:

say This is a test (%OwRelease%)

generate the output

This is a test (B9)

Sub Command
The sub command creates a subroutine definition. The call command may be used to invoke the subroutine.
Parameters passed to the subroutine are as special macros named %1%, %2%, and so on.

Syntax
This is an example of the syntax:

sub name

commands

end

Example
This is an example:

sub GenerateLibrary

define source %1%

library JDECOMInterface%source%Cat1

importlib %source% 1

Create a library of category 2 business functions in source

opt NoBSFN

library JDECOMInterface%source%Cat2

importlib %source% 2

Create a library of category 3 business functions in source

library JDECOMInterface%source%Cat3

importlib %source% 3

system del /q c:\temp*.*

build

Move the libraries to a staging area

system mkdir d:\build

system mkdir d:\build\Cat1

system mkdir d:\build\Cat2

PeopleSoft Proprietary and Confidential 181

Understanding iJDEScript Chapter 16

system mkdir d:\build\Cat3

system move JDECOMInterface%source%Cat1.* d:\build\Cat1

system move JDECOMInterface%source%Cat2.* d:\build\Cat2

system move JDECOMInterface%source%Cat3.* d:\build\Cat3

end

call GenerateLibrary CAEC

System Command
The system command tells the generator to evaluate a command in the shell.

Syntax
This is an example of the syntax:

system command

Example
This is an example:

say This is a test

generates the output

This is a test

182 PeopleSoft Proprietary and Confidential

Glossary of PeopleSoft Terms

absence entitlement This element defines rules for granting paid time off for valid absences, such as sick
time, vacation, and maternity leave. An absence entitlement element defines the
entitlement amount, frequency, and entitlement period.

absence take This element defines the conditions that must be met before a payee is entitled
to take paid time off.

academic career In PeopleSoft Enterprise Campus Solutions, all course work that a student undertakes
at an academic institution and that is grouped in a single student record. For example,
a university that has an undergraduate school, a graduate school, and various
professional schools might define several academic careers—an undergraduate career,
a graduate career, and separate careers for each professional school (law school,
medical school, dental school, and so on).

academic institution In PeopleSoft Enterprise Campus Solutions, an entity (such as a university or college)
that is independent of other similar entities and that has its own set of rules and
business processes.

academic organization In PeopleSoft Enterprise Campus Solutions, an entity that is part of the administrative
structure within an academic institution. At the lowest level, an academic organization
might be an academic department. At the highest level, an academic organization can
represent a division.

academic plan In PeopleSoft Enterprise Campus Solutions, an area of study—such as a major, minor,
or specialization—that exists within an academic program or academic career.

academic program In PeopleSoft Enterprise Campus Solutions, the entity to which a student applies and is
admitted and from which the student graduates.

accounting class In PeopleSoft Enterprise Performance Management, the accounting class defines how
a resource is treated for generally accepted accounting practices. The Inventory
class indicates whether a resource becomes part of a balance sheet account, such as
inventory or fixed assets, while the Non-inventory class indicates that the resource is
treated as an expense of the period during which it occurs.

accounting date The accounting date indicates when a transaction is recognized, as opposed to the date
the transaction actually occurred. The accounting date and transaction date can be the
same. The accounting date determines the period in the general ledger to which the
transaction is to be posted. You can only select an accounting date that falls within an
open period in the ledger to which you are posting. The accounting date for an item
is normally the invoice date.

accounting split The accounting split method indicates how expenses are allocated or divided among
one or more sets of accounting ChartFields.

accumulator You use an accumulator to store cumulative values of defined items as they are
processed. You can accumulate a single value over time or multiple values over
time. For example, an accumulator could consist of all voluntary deductions, or all
company deductions, enabling you to accumulate amounts. It allows total flexibility
for time periods and values accumulated.

action reason The reason an employee’s job or employment information is updated. The action
reason is entered in two parts: a personnel action, such as a promotion, termination, or
change from one pay group to another—and a reason for that action. Action reasons
are used by PeopleSoft Human Resources, PeopleSoft Benefits Administration,

PeopleSoft Proprietary and Confidential 183

Glossary

PeopleSoft Stock Administration, and the COBRAAdministration feature of the
Base Benefits business process.

action template In PeopleSoft Receivables, outlines a set of escalating actions that the system or user
performs based on the period of time that a customer or item has been in an action
plan for a specific condition.

activity In PeopleSoft Enterprise LearningManagement, an instance of a catalog item
(sometimes called a class) that is available for enrollment. The activity defines
such things as the costs that are associated with the offering, enrollment limits and
deadlines, and waitlisting capacities.

In PeopleSoft Enterprise Performance Management, the work of an organization and
the aggregation of actions that are used for activity-based costing.

In PeopleSoft Project Costing, the unit of work that provides a further breakdown of
projects—usually into specific tasks.

In PeopleSoft Workflow, a specific transaction that you might need to perform in a
business process. Because it consists of the steps that are used to perform a transaction,
it is also known as a step map.

address usage In PeopleSoft Enterprise Campus Solutions, a grouping of address types defining the
order in which the address types are used. For example, you might define an address
usage code to process addresses in the following order: billing address, dormitory
address, home address, and then work address.

adjustment calendar In PeopleSoft Enterprise Campus Solutions, the adjustment calendar controls how a
particular charge is adjusted on a student’s account when the student drops classes
or withdraws from a term. The charge adjustment is based on how much time has
elapsed from a predetermined date, and it is determined as a percentage of the original
charge amount.

administrative function In PeopleSoft Enterprise Campus Solutions, a particular functional area that processes
checklists, communication, and comments. The administrative function identifies
which variable data is added to a person’s checklist or communication record when a
specific checklist code, communication category, or comment is assigned to the
student. This key data enables you to trace that checklist, communication, or comment
back to a specific processing event in a functional area.

admit type In PeopleSoft Enterprise Campus Solutions, a designation used to distinguish
first-year applications from transfer applications.

agreement In PeopleSoft eSettlements, provides a way to group and specify processing options,
such as payment terms, pay from a bank, and notifications by a buyer and supplier
location combination.

allocation rule In PeopleSoft Enterprise Incentive Management, an expression within compensation
plans that enables the system to assign transactions to nodes and participants. During
transaction allocation, the allocation engine traverses the compensation structure
from the current node to the root node, checking each node for plans that contain
allocation rules.

alternate account A feature in PeopleSoft General Ledger that enables you to create a statutory chart
of accounts and enter statutory account transactions at the detail transaction level, as
required for recording and reporting by some national governments.

analysis database In PeopleSoft Enterprise Campus Solutions, database tables that store large amounts
of student information that may not appear in standard report formats. The analysis
database tables contain keys for all objects in a report that an application program can
use to reference other student-record objects that are not contained in the printed
report. For instance, the analysis database contains data on courses that are considered
for satisfying a requirement but that are rejected. It also contains information on

184 PeopleSoft Proprietary and Confidential

Glossary

courses captured by global limits. An analysis database is used in PeopleSoft
Enterprise Academic Advisement.

AR specialist Abbreviation for receivables specialist. In PeopleSoft Receivables, an individual in
who tracks and resolves deductions and disputed items.

arbitration plan In PeopleSoft Enterprise Pricer, defines how price rules are to be applied to the base
price when the transaction is priced.

assessment rule In PeopleSoft Receivables, a user-defined rule that the system uses to evaluate the
condition of a customer’s account or of individual items to determine whether to
generate a follow-up action.

asset class An asset group used for reporting purposes. It can be used in conjunction with the asset
category to refine asset classification.

attribute/value pair In PeopleSoft Directory Interface, relates the data that makes up an entry in the
directory information tree.

audience In PeopleSoft Enterprise Campus Solutions, a segment of the database that relates
to an initiative, or a membership organization that is based on constituent attributes
rather than a dues-paying structure. Examples of audiences include the Class of ’65
and Undergraduate Arts & Sciences.

authentication server A server that is set up to verify users of the system.

base time period In PeopleSoft Business Planning, the lowest level time period in a calendar.

benchmark job In PeopleSoft Workforce Analytics, a benchmark job is a job code for which there is
corresponding salary survey data from published, third-party sources.

billing career In PeopleSoft Enterprise Campus Solutions, the one career under which other careers
are grouped for billing purposes if a student is active simultaneously in multiple
careers.

bio bit or bio brief In PeopleSoft Enterprise Campus Solutions, a report that summarizes information
stored in the system about a particular constituent. You can generate standard or
specialized reports.

book In PeopleSoft Asset Management, used for storing financial and tax information, such
as costs, depreciation attributes, and retirement information on assets.

branch A tree node that rolls up to nodes above it in the hierarchy, as defined in PeopleSoft
Tree Manager.

budgetary account only An account used by the system only and not by users; this type of account does
not accept transactions. You can only budget with this account. Formerly called
“system-maintained account.”

budget check In commitment control, the processing of source transactions against control budget
ledgers, to see if they pass, fail, or pass with a warning.

budget control In commitment control, budget control ensures that commitments and expenditures
don’t exceed budgets. It enables you to track transactions against corresponding
budgets and terminate a document’s cycle if the defined budget conditions are not met.
For example, you can prevent a purchase order from being dispatched to a vendor if
there are insufficient funds in the related budget to support it.

budget period The interval of time (such as 12 months or 4 quarters) into which a period is divided
for budgetary and reporting purposes. The ChartField allows maximum flexibility to
define operational accounting time periods without restriction to only one calendar.

PeopleSoft Proprietary and Confidential 185

Glossary

business event In PeopleSoft Receivables, defines the processing characteristics for the Receivable
Update process for a draft activity.

In PeopleSoft Sales Incentive Management, an original business transaction or activity
that may justify the creation of a PeopleSoft Enterprise Incentive Management event
(a sale, for example).

business unit A corporation or a subset of a corporation that is independent with regard to one or
more operational or accounting functions.

buyer In PeopleSoft eSettlements, an organization (or business unit, as opposed to an
individual) that transacts with suppliers (vendors) within the system. A buyer creates
payments for purchases that are made in the system.

campus In PeopleSoft Enterprise Campus Solutions, an entity that is usually associated with
a distinct physical administrative unit, that belongs to a single academic institution,
that uses a unique course catalog, and that produces a common transcript for students
within the same academic career.

catalog item In PeopleSoft Enterprise LearningManagement, a specific topic that a learner can
study and have tracked. For example, “Introduction to Microsoft Word.” A catalog
item contains general information about the topic and includes a course code,
description, categorization, keywords, and delivery methods. A catalog item can
have one or more learning activities.

catalog map In PeopleSoft Catalog Management, translates values from the catalog source data to
the format of the company’s catalog.

catalog partner In PeopleSoft Catalog Management, shares responsibility with the enterprise catalog
manager for maintaining catalog content.

categorization Associates partner offerings with catalog offerings and groups them into enterprise
catalog categories.

category In PeopleSoft Enterprise Campus Solutions, a broad grouping to which specific
comments or communications (contexts) are assigned. Category codes are also linked
to 3C access groups so that you can assign data-entry or view-only privileges across
functions.

channel In PeopleSoft MultiChannel Framework, email, chat, voice (computer telephone
integration [CTI]), or a generic event.

ChartField A field that stores a chart of accounts, resources, and so on, depending on the
PeopleSoft application. ChartField values represent individual account numbers,
department codes, and so forth.

ChartField balancing You can require specific ChartFields to match up (balance) on the debit and the credit
side of a transaction.

ChartField combination edit The process of editing journal lines for valid ChartField combinations based on
user-defined rules.

ChartKey One or more fields that uniquely identify each row in a table. Some tables contain only
one field as the key, while others require a combination.

checkbook In PeopleSoft Promotions Management, enables you to view financial data (such as
planned, incurred, and actual amounts) that is related to funds and trade promotions.

checklist code In PeopleSoft Enterprise Campus Solutions, a code that represents a list of planned
or completed action items that can be assigned to a staff member, volunteer, or unit.
Checklists enable you to view all action assignments on one page.

186 PeopleSoft Proprietary and Confidential

Glossary

class In PeopleSoft Enterprise Campus Solutions, a specific offering of a course component
within an academic term.

See also course.

Class ChartField A ChartField value that identifies a unique appropriation budget key when you
combine it with a fund, department ID, and program code, as well as a budget period.
Formerly called sub-classification.

clearance In PeopleSoft Enterprise Campus Solutions, the period of time during which a
constituent in PeopleSoft Contributor Relations is approved for involvement in an
initiative or an action. Clearances are used to prevent development officers from
making multiple requests to a constituent during the same time period.

clone In PeopleCode, to make a unique copy. In contrast, to copymay mean making a
new reference to an object, so if the underlying object is changed, both the copy and
the original change.

cohort In PeopleSoft Enterprise Campus Solutions, the highest level of the three-level
classification structure that you define for enrollment management. You can define a
cohort level, link it to other levels, and set enrollment target numbers for it.

See also populationand division.

collection To make a set of documents available for searching in Verity, you must first create
at least one collection. A collection is set of directories and files that allow search
application users to use the Verity search engine to quickly find and display source
documents that match search criteria. A collection is a set of statistics and pointers
to the source documents, stored in a proprietary format on a file server. Because a
collection can only store information for a single location, PeopleSoft maintains a set
of collections (one per language code) for each search index object.

collection rule In PeopleSoft Receivables, a user-defined rule that defines actions to take for a
customer based on both the amount and the number of days past due for outstanding
balances.

comm key See communication key.

communication key In PeopleSoft Enterprise Campus Solutions, a single code for entering a combination
of communication category, communication context, communication method,
communication direction, and standard letter code. Communication keys (also called
comm keys or speed keys) can be created for background processes as well as for
specific users.

compensation object In PeopleSoft Enterprise Incentive Management, a node within a compensation
structure. Compensation objects are the building blocks that make up a compensation
structure’s hierarchical representation.

compensation structure In PeopleSoft Enterprise Incentive Management, a hierarchical relationship of
compensation objects that represents the compensation-related relationship between
the objects.

condition In PeopleSoft Receivables, occurs when there is a change of status for a customer’s
account, such as reaching a credit limit or exceeding a user-defined balance due.

configuration parameter
catalog

Used to configure an external system with PeopleSoft. For example, a configuration
parameter catalog might set up configuration and communication parameters for an
external server.

configuration plan In PeopleSoft Enterprise Incentive Management, configuration plans hold allocation
information for common variables (not incentive rules) and are attached to a node
without a participant. Configuration plans are not processed by transactions.

PeopleSoft Proprietary and Confidential 187

Glossary

constituents In PeopleSoft Enterprise Campus Solutions, friends, alumni, organizations,
foundations, or other entities affiliated with the institution, and about which the
institution maintains information. The constituent types delivered with PeopleSoft
Enterprise Contributor Relations Solutions are based on those defined by the Council
for the Advancement and Support of Education (CASE).

content reference Content references are pointers to content registered in the portal registry. These are
typically either URLs or iScripts. Content references fall into three categories: target
content, templates, and template pagelets.

context In PeopleCode, determines which buffer fields can be contextually referenced and
which is the current row of data on each scroll level when a PeopleCode program
is running.

In PeopleSoft Enterprise Campus Solutions, a specific instance of a comment or
communication. One or more contexts are assigned to a category, which you link to
3C access groups so that you can assign data-entry or view-only privileges across
functions.

In PeopleSoft Enterprise Incentive Management, a mechanism that is used to
determine the scope of a processing run. PeopleSoft Enterprise Incentive Management
uses three types of context: plan, period, and run-level.

control table Stores information that controls the processing of an application. This type of
processing might be consistent throughout an organization, or it might be used only by
portions of the organization for more limited sharing of data.

cost profile A combination of a receipt cost method, a cost flow, and a deplete cost method. A
profile is associated with a cost book and determines how items in that book are
valued, as well as how the material movement of the item is valued for the book.

cost row A cost transaction and amount for a set of ChartFields.

course In PeopleSoft Enterprise Campus Solutions, a course that is offered by a school and
that is typically described in a course catalog. A course has a standard syllabus and
credit level; however, these may be modified at the class level. Courses can contain
multiple components such as lecture, discussion, and lab.

See also class.

course share set In PeopleSoft Enterprise Campus Solutions, a tag that defines a set of requirement
groups that can share courses. Course share sets are used in PeopleSoft Enterprise
Academic Advisement.

current learning In PeopleSoft Enterprise LearningManagement, a self-service repository for all of a
learner’s in-progress learning activities and programs.

data acquisition In PeopleSoft Enterprise Incentive Management, the process during which raw
business transactions are acquired from external source systems and fed into the
operational data store (ODS).

data elements Data elements, at their simplest level, define a subset of data and the rules by which
to group them.

For Workforce Analytics, data elements are rules that tell the system what measures to
retrieve about your workforce groups.

dataset A data grouping that enables role-based filtering and distribution of data. You can
limit the range and quantity of data that is displayed for a user by associating dataset
rules with user roles. The result of dataset rules is a set of data that is appropriate
for the user’s roles.

delivery method In PeopleSoft Enterprise LearningManagement, identifies the primary type of
delivery method in which a particular learning activity is offered. Also provides

188 PeopleSoft Proprietary and Confidential

Glossary

default values for the learning activity, such as cost and language. This is primarily
used to help learners search the catalog for the type of delivery from which they learn
best. Because PeopleSoft Enterprise LearningManagement is a blended learning
system, it does not enforce the delivery method.

In PeopleSoft Supply Chain Management, identifies the method by which goods are
shipped to their destinations (such as truck, air, rail, and so on). The delivery method is
specified when creating shipment schedules.

delivery method type In PeopleSoft Enterprise LearningManagement, identifies how learning activities can
be delivered—for example, through online learning, classroom instruction, seminars,
books, and so forth—in an organization. The type determines whether the delivery
method includes scheduled components.

directory information tree In PeopleSoft Directory Interface, the representation of a directory’s hierarchical
structure.

division In PeopleSoft Enterprise Campus Solutions, the lowest level of the three-level
classification structure that you define in PeopleSoft Enterprise Recruiting and
Admissions for enrollment management. You can define a division level, link it to
other levels, and set enrollment target numbers for it.

See also population and cohort.

document sequencing A flexible method that sequentially numbers the financial transactions (for example,
bills, purchase orders, invoices, and payments) in the system for statutory reporting
and for tracking commercial transaction activity.

dynamic detail tree A tree that takes its detail values—dynamic details—directly from a table in the
database, rather than from a range of values that are entered by the user.

edit table A table in the database that has its own record definition, such as the Department table.
As fields are entered into a PeopleSoft application, they can be validated against an
edit table to ensure data integrity throughout the system.

effective date Amethod of dating information in PeopleSoft applications. You can predate
information to add historical data to your system, or postdate information in order to
enter it before it actually goes into effect. By using effective dates, you don’t delete
values; you enter a new value with a current effective date.

EIM ledger Abbreviation for Enterprise Incentive Management ledger. In PeopleSoft Enterprise
Incentive Management, an object to handle incremental result gathering within the
scope of a participant. The ledger captures a result set with all of the appropriate traces
to the data origin and to the processing steps of which it is a result.

elimination set In PeopleSoft General Ledger, a related group of intercompany accounts that is
processed during consolidations.

entry event In PeopleSoft General Ledger, Receivables, Payables, Purchasing, and Billing, a
business process that generates multiple debits and credits resulting from single
transactions to produce standard, supplemental accounting entries.

equitization In PeopleSoft General Ledger, a business process that enables parent companies to
calculate the net income of subsidiaries on a monthly basis and adjust that amount
to increase the investment amount and equity income amount before performing
consolidations.

equity item limit In PeopleSoft Enterprise Campus Solutions, the amounts of funds set by the institution
to be awarded with discretionary or gift funds. The limit could be reduced by amounts
equal to such things as expected family contribution (EFC) or parent contribution.
Students are packaged by Equity Item Type Groups and Related Equity Item Types.
This limit can be used to assure that similar student populations are packaged equally.

PeopleSoft Proprietary and Confidential 189

Glossary

event A predefined point either in the Component Processor flow or in the program flow.
As each point is encountered, the event activates each component, triggering any
PeopleCode program that is associated with that component and that event. Examples
of events are FieldChange, SavePreChange, and RowDelete.

In PeopleSoft Human Resources, also refers to an incident that affects benefits
eligibility.

event propagation process In PeopleSoft Sales Incentive Management, a process that determines, through logic,
the propagation of an original PeopleSoft Enterprise Incentive Management event and
creates a derivative (duplicate) of the original event to be processed by other objects.
Sales Incentive Management uses this mechanism to implement splits, roll-ups, and so
on. Event propagation determines who receives the credit.

exception In PeopleSoft Receivables, an item that either is a deduction or is in dispute.

exclusive pricing In PeopleSoft Order Management, a type of arbitration plan that is associated with a
price rule. Exclusive pricing is used to price sales order transactions.

fact In PeopleSoft applications, facts are numeric data values from fields from a source
database as well as an analytic application. A fact can be anything you want to measure
your business by, for example, revenue, actual, budget data, or sales numbers. A
fact is stored on a fact table.

financial aid term In PeopleSoft Enterprise Campus Solutions, a combination of a period of time that the
school determines as an instructional accounting period and an academic career. It
is created and defined during the setup process. Only terms eligible for financial aid
are set up for each financial aid career.

forecast item A logical entity with a unique set of descriptive demand and forecast data that is used
as the basis to forecast demand. You create forecast items for a wide range of uses, but
they ultimately represent things that you buy, sell, or use in your organization and for
which you require a predictable usage.

fund In PeopleSoft Promotions Management, a budget that can be used to fund promotional
activity. There are four funding methods: top down, fixed accrual, rolling accrual, and
zero-based accrual.

gap In PeopleSoft Enterprise Campus Solutions, an artificial figure that sets aside an
amount of unmet financial aid need that is not funded with Title IV funds. A gap can
be used to prevent fully funding any student to conserve funds, or it can be used to
preserve unmet financial aid need so that institutional funds can be awarded.

generic process type In PeopleSoft Process Scheduler, process types are identified by a generic process
type. For example, the generic process type SQR includes all SQR process types,
such as SQR process and SQR report.

gift table In PeopleSoft Enterprise Campus Solutions, a table or so-called donor pyramid
describing the number and size of gifts that you expect will be needed to successfully
complete the campaign in PeopleSoft Contributor Relations. The gift table enables
you to estimate the number of donors and prospects that you need at each gift level
to reach the campaign goal.

GL business unit Abbreviation for general ledger business unit. A unit in an organization that is an
independent entity for accounting purposes. It maintains its own set of accounting
books.

See also business unit.

GL entry template Abbreviation for general ledger entry template. In PeopleSoft Enterprise Campus
Solutions, a template that defines how a particular item is sent to the general ledger.
An item-type maps to the general ledger, and the GL entry template can involve
multiple general ledger accounts. The entry to the general ledger is further controlled

190 PeopleSoft Proprietary and Confidential

Glossary

by high-level flags that control the summarization and the type of accounting—that is,
accrual or cash.

GL Interface process Abbreviation forGeneral Ledger Interface process. In PeopleSoft Enterprise Campus
Solutions, a process that is used to send transactions from PeopleSoft Enterprise
Student Financials to the general ledger. Item types are mapped to specific general
ledger accounts, enabling transactions to move to the general ledger when the GL
Interface process is run.

group In PeopleSoft Billing and Receivables, a posting entity that comprises one or more
transactions (items, deposits, payments, transfers, matches, or write-offs).

In PeopleSoft Human Resources Management and Supply Chain Management, any
set of records that are associated under a single name or variable to run calculations
in PeopleSoft business processes. In PeopleSoft Time and Labor, for example,
employees are placed in groups for time reporting purposes.

incentive object In PeopleSoft Enterprise Incentive Management, the incentive-related objects that
define and support the PeopleSoft Enterprise Incentive Management calculation
process and results, such as plan templates, plans, results data, user interaction objects,
and so on.

incentive rule In PeopleSoft Sales Incentive Management, the commands that act on transactions and
turn them into compensation. A rule is one part in the process of turning a transaction
into compensation.

incur In PeopleSoft Promotions Management, to become liable for a promotional payment.
In other words, you owe that amount to a customer for promotional activities.

initiative In PeopleSoft Enterprise Campus Solutions, the basis from which all advancement
plans are executed. It is an organized effort targeting a specific constituency, and it can
occur over a specified period of time with specific purposes and goals. An initiative
can be a campaign, an event, an organized volunteer effort, a membership drive, or
any other type of effort defined by the institution. Initiatives can be multipart, and
they can be related to other initiatives. This enables you to track individual parts of an
initiative, as well as entire initiatives.

inquiry access In PeopleSoft Enterprise Campus Solutions, a type of security access that permits the
user only to view data.

See also update access.

institution In PeopleSoft Enterprise Campus Solutions, an entity (such as a university or college)
that is independent of other similar entities and that has its own set of rules and
business processes.

item In PeopleSoft Inventory, a tangible commodity that is stored in a business unit
(shipped from a warehouse).

In PeopleSoft Demand Planning, Inventory Policy Planning, and Supply Planning, a
noninventory item that is designated as being used for planning purposes only. It can
represent a family or group of inventory items. It can have a planning bill of material
(BOM) or planning routing, and it can exist as a component on a planning BOM. A
planning item cannot be specified on a production or engineering BOM or routing,
and it cannot be used as a component in a production. The quantity on hand will
never be maintained.

In PeopleSoft Receivables, an individual receivable. An item can be an invoice, a
credit memo, a debit memo, a write-off, or an adjustment.

item shuffle In PeopleSoft Enterprise Campus Solutions, a process that enables you to change a
payment allocation without having to reverse the payment.

PeopleSoft Proprietary and Confidential 191

Glossary

joint communication In PeopleSoft Enterprise Campus Solutions, one letter that is addressed jointly to two
people. For example, a letter might be addressed to both Mr. Sudhir Awat and Ms.
Samantha Mortelli. A relationship must be established between the two individuals in
the database, and at least one of the individuals must have an ID in the database.

keyword In PeopleSoft Enterprise Campus Solutions, a term that you link to particular elements
within PeopleSoft Student Financials, Financial Aid, and Contributor Relations.
You can use keywords as search criteria that enable you to locate specific records in
a search dialog box.

KPI An abbreviation for key performance indicator. A high-level measurement of how well
an organization is doing in achieving critical success factors. This defines the data
value or calculation upon which an assessment is determined.

LDIF file Abbreviation for Lightweight Directory Access Protocol (LDAP) Data Interchange
Format file. Contains discrepancies between PeopleSoft data and directory data.

learner group In PeopleSoft Enterprise LearningManagement, a group of learners who are linked
to the same learning environment. Members of the learner group can share the same
attributes, such as the same department or job code. Learner groups are used to control
access to and enrollment in learning activities and programs. They are also used to
perform group enrollments and mass enrollments in the back office.

learning components In PeopleSoft Enterprise LearningManagement, the foundational building blocks
of learning activities. PeopleSoft Enterprise Learning Management supports six
basic types of learning components: web-based, session, webcast, test, survey, and
assignment. One or more of these learning component types compose a single
learning activity.

learning environment In PeopleSoft Enterprise LearningManagement, identifies a set of categories and
catalog items that can be made available to learner groups. Also defines the default
values that are assigned to the learning activities and programs that are created within a
particular learning environment. Learning environments provide a way to partition the
catalog so that learners see only those items that are relevant to them.

learning history In PeopleSoft Enterprise LearningManagement, a self-service repository for all of a
learner’s completed learning activities and programs.

ledger mapping You use ledger mapping to relate expense data from general ledger accounts to
resource objects. Multiple ledger line items can be mapped to one or more resource
IDs. You can also use ledger mapping to map dollar amounts (referred to as rates)
to business units. You can map the amounts in two different ways: an actual amount
that represents actual costs of the accounting period, or a budgeted amount that can be
used to calculate the capacity rates as well as budgeted model results. In PeopleSoft
Enterprise Warehouse, you can map general ledger accounts to the EW Ledger table.

library section In PeopleSoft Enterprise Incentive Management, a section that is defined in a plan (or
template) and that is available for other plans to share. Changes to a library section are
reflected in all plans that use it.

linked section In PeopleSoft Enterprise Incentive Management, a section that is defined in a plan
template but appears in a plan. Changes to linked sections propagate to plans using
that section.

linked variable In PeopleSoft Enterprise Incentive Management, a variable that is defined and
maintained in a plan template and that also appears in a plan. Changes to linked
variables propagate to plans using that variable.

LMS Abbreviation for learning management system. In PeopleSoft Enterprise Campus
Solutions, LMS is a PeopleSoft Student Records feature that provides a common set
of interoperability standards that enable the sharing of instructional content and data
between learning and administrative environments.

192 PeopleSoft Proprietary and Confidential

Glossary

load In PeopleSoft Inventory, identifies a group of goods that are shipped together. Load
management is a feature of PeopleSoft Inventory that is used to track the weight, the
volume, and the destination of a shipment.

local functionality In PeopleSoft HRMS, the set of information that is available for a specific country.
You can access this information when you click the appropriate country flag in the
global window, or when you access it by a local country menu.

location Locations enable you to indicate the different types of addresses—for a company, for
example, one address to receive bills, another for shipping, a third for postal deliveries,
and a separate street address. Each address has a different location number. The
primary location—indicated by a 1—is the address you use most often and may be
different from the main address.

logistical task In PeopleSoft Services Procurement, an administrative task that is related to hiring
a service provider. Logistical tasks are linked to the service type on the work order
so that different types of services can have different logistical tasks. Logistical tasks
include both preapproval tasks (such as assigning a new badge or ordering a new
laptop) and postapproval tasks (such as scheduling orientation or setting up the service
provider email). The logistical tasks can be mandatory or optional. Mandatory
preapproval tasks must be completed before the work order is approved. Mandatory
postapproval tasks, on the other hand, must be completed before a work order is
released to a service provider.

market template In PeopleSoft Enterprise Incentive Management, additional functionality that is
specific to a given market or industry and is built on top of a product category.

mass change In PeopleSoft Enterprise Campus Solutions, mass change is a SQL generator that can
be used to create specialized functionality. Using mass change, you can set up a
series of Insert, Update, or Delete SQL statements to perform business functions that
are specific to the institution.

See also 3C engine.

match group In PeopleSoft Receivables, a group of receivables items and matching offset items.
The system creates match groups by using user-defined matching criteria for selected
field values.

MCF server Abbreviation for PeopleSoft MultiChannel Framework server. Comprises the
universal queue server and the MCF log server. Both processes are started whenMCF
Servers is selected in an application server domain configuration.

merchandising activity In PeopleSoft Promotions Management, a specific discount type that is associated with
a trade promotion (such as off-invoice, billback or rebate, or lump-sum payment) that
defines the performance that is required to receive the discount. In the industry, you
may know this as an offer, a discount, a merchandising event, an event, or a tactic.

meta-SQL Meta-SQL constructs expand into platform-specific Structured Query Language
(SQL) substrings. They are used in functions that pass SQL strings, such as in SQL
objects, the SQLExec function, and PeopleSoft Application Engine programs.

metastring Metastrings are special expressions included in SQL string literals. The metastrings,
prefixed with a percent (%) symbol, are included directly in the string literals. They
expand at run time into an appropriate substring for the current database platform.

multibook In PeopleSoft General Ledger, multiple ledgers having multiple-base currencies that
are defined for a business unit, with the option to post a single transaction to all base
currencies (all ledgers) or to only one of those base currencies (ledgers).

multicurrency The ability to process transactions in a currency other than the business unit’s base
currency.

PeopleSoft Proprietary and Confidential 193

Glossary

national allowance In PeopleSoft Promotions Management, a promotion at the corporate level that is
funded by nondiscretionary dollars. In the industry, you may know this as a national
promotion, a corporate promotion, or a corporate discount.

need In PeopleSoft Enterprise Campus Solutions, the difference between the cost of
attendance (COA) and the expected family contribution (EFC). It is the gap between
the cost of attending the school and the student’s resources. The financial aid package
is based on the amount of financial need. The process of determining a student’s
need is called need analysis.

node-oriented tree A tree that is based on a detail structure, but the detail values are not used.

pagelet Each block of content on the home page is called a pagelet. These pagelets display
summary information within a small rectangular area on the page. The pagelet provide
users with a snapshot of their most relevant PeopleSoft and non-PeopleSoft content.

participant In PeopleSoft Enterprise Incentive Management, participants are recipients of the
incentive compensation calculation process.

participant object Each participant object may be related to one or more compensation objects.

See also compensation object.

partner A company that supplies products or services that are resold or purchased by the
enterprise.

pay cycle In PeopleSoft Payables, a set of rules that define the criteria by which it should select
scheduled payments for payment creation.

payment shuffle In PeopleSoft Enterprise Campus Solutions, a process allowing payments that have
been previously posted to a student’s account to be automatically reapplied when a
higher priority payment is posted or the payment allocation definition is changed.

pending item In PeopleSoft Receivables, an individual receivable (such as an invoice, a credit
memo, or a write-off) that has been entered in or created by the system, but hasn’t
been posted.

PeopleCode PeopleCode is a proprietary language, executed by the PeopleSoft application
processor. PeopleCode generates results based upon existing data or user actions. By
using business interlink objects, external services are available to all PeopleSoft
applications wherever PeopleCode can be executed.

PeopleCode event An action that a user takes upon an object, usually a record field, that is referenced
within a PeopleSoft page.

PeopleSoft Internet
Architecture

The fundamental architecture on which PeopleSoft 8 applications are constructed,
consisting of a relational database management system (RDBMS), an application
server, a web server, and a browser.

performance measurement In PeopleSoft Enterprise Incentive Management, a variable used to store data (similar
to an aggregator, but without a predefined formula) within the scope of an incentive
plan. Performance measures are associated with a plan calendar, territory, and
participant. Performance measurements are used for quota calculation and reporting.

period context In PeopleSoft Enterprise Incentive Management, because a participant typically
uses the same compensation plan for multiple periods, the period context associates
a plan context with a specific calendar period and fiscal year. The period context
references the associated plan context, thus forming a chain. Each plan context has a
corresponding set of period contexts.

person of interest A person about whom the organization maintains information but who is not part of
the workforce.

194 PeopleSoft Proprietary and Confidential

Glossary

personal portfolio In PeopleSoft Enterprise Campus Solutions, the user-accessible menu item that
contains an individual’s name, address, telephone number, and other personal
information.

plan In PeopleSoft Sales Incentive Management, a collection of allocation rules, variables,
steps, sections, and incentive rules that instruct the PeopleSoft Enterprise Incentive
Management engine in how to process transactions.

plan context In PeopleSoft Enterprise Incentive Management, correlates a participant with
the compensation plan and node to which the participant is assigned, enabling
the PeopleSoft Enterprise Incentive Management system to find anything that is
associated with the node and that is required to perform compensation processing.
Each participant, node, and plan combination represents a unique plan context—if
three participants are on a compensation structure, each has a different plan context.
Configuration plans are identified by plan contexts and are associated with the
participants that refer to them.

plan template In PeopleSoft Enterprise Incentive Management, the base from which a plan is created.
A plan template contains common sections and variables that are inherited by all plans
that are created from the template. A template may contain steps and sections that
are not visible in the plan definition.

planned learning In PeopleSoft Enterprise LearningManagement, a self-service repository for all of
a learner’s planned learning activities and programs.

planning instance In PeopleSoft Supply Planning, a set of data (business units, items, supplies, and
demands) constituting the inputs and outputs of a supply plan.

population In PeopleSoft Enterprise Campus Solutions, the middle level of the three-level
classification structure that you define in PeopleSoft Enterprise Recruiting and
Admissions for enrollment management. You can define a population level, link it to
other levels, and set enrollment target numbers for it.

See also division and cohort.

portal registry In PeopleSoft applications, the portal registry is a tree-like structure in which content
references are organized, classified, and registered. It is a central repository that
defines both the structure and content of a portal through a hierarchical, tree-like
structure of folders useful for organizing and securing content references.

price list In PeopleSoft Enterprise Pricer, enables you to select products and conditions for
which the price list applies to a transaction. During a transaction, the system either
determines the product price based on the predefined search hierarchy for the
transaction or uses the product’s lowest price on any associated, active price lists. This
price is used as the basis for any further discounts and surcharges.

price rule In PeopleSoft Enterprise Pricer, defines the conditions that must be met for
adjustments to be applied to the base price. Multiple rules can apply when conditions
of each rule are met.

price rule condition In PeopleSoft Enterprise Pricer, selects the price-by fields, the values for the price-by
fields, and the operator that determines how the price-by fields are related to the
transaction.

price rule key In PeopleSoft Enterprise Pricer, defines the fields that are available to define price rule
conditions (which are used to match a transaction) on the price rule.

primacy number In PeopleSoft Enterprise Campus Solutions, a number that the system uses to prioritize
financial aid applications when students are enrolled in multiple academic careers and
academic programs at the same time. The Consolidate Academic Statistics process
uses the primacy number indicated for both the career and program at the institutional
level to determine a student’s primary career and program. The system also uses the

PeopleSoft Proprietary and Confidential 195

Glossary

number to determine the primary student attribute value that is used when you extract
data to report on cohorts. The lowest number takes precedence.

primary name type In PeopleSoft Enterprise Campus Solutions, the name type that is used to link the name
stored at the highest level within the system to the lower-level set of names that an
individual provides.

process category In PeopleSoft Process Scheduler, processes that are grouped for server load balancing
and prioritization.

process group In PeopleSoft Financials, a group of application processes (performed in a defined
order) that users can initiate in real time, directly from a transaction entry page.

process definition Process definitions define each run request.

process instance A unique number that identifies each process request. This value is automatically
incremented and assigned to each requested process when the process is submitted to
run.

process job You can link process definitions into a job request and process each request serially
or in parallel. You can also initiate subsequent processes based on the return code
from each prior request.

process request A single run request, such as a Structured Query Report (SQR), a COBOL or
Application Engine program, or a Crystal report that you run through PeopleSoft
Process Scheduler.

process run control A PeopleTools variable used to retain PeopleSoft Process Scheduler values needed
at runtime for all requests that reference a run control ID. Do not confuse these with
application run controls, which may be defined with the same run control ID, but only
contain information specific to a given application process request.

product category In PeopleSoft Enterprise Incentive Management, indicates an application in the
Enterprise Incentive Management suite of products. Each transaction in the PeopleSoft
Enterprise Incentive Management system is associated with a product category.

programs In PeopleSoft Enterprise LearningManagement, a high-level grouping that guides the
learner along a specific learning path through sections of catalog items. PeopleSoft
Enterprise Learning Systems provides two types of programs—curricula and
certifications.

progress log In PeopleSoft Services Procurement, tracks deliverable-based projects. This is similar
to the time sheet in function and process. The service provider contact uses the
progress log to record and submit progress on deliverables. The progress can be logged
by the activity that is performed, by the percentage of work that is completed, or by the
completion of milestone activities that are defined for the project.

project transaction In PeopleSoft Project Costing, an individual transaction line that represents a cost,
time, budget, or other transaction row.

promotion In PeopleSoft Promotions Management, a trade promotion, which is typically funded
from trade dollars and used by consumer products manufacturers to increase sales
volume.

prospects In PeopleSoft Enterprise Campus Solutions, students who are interested in applying to
the institution.

In PeopleSoft Enterprise Contributor Relations, individuals and organizations that are
most likely to make substantial financial commitments or other types of commitments
to the institution.

publishing In PeopleSoft Enterprise Incentive Management, a stage in processing that makes
incentive-related results available to participants.

196 PeopleSoft Proprietary and Confidential

Glossary

rating components In PeopleSoft Enterprise Campus Solutions, variables used with the Equation Editor to
retrieve specified populations.

record group A set of logically and functionally related control tables and views. Record groups
help enable TableSet sharing, which eliminates redundant data entry. Record groups
ensure that TableSet sharing is applied consistently across all related tables and views.

record input VAT flag Abbreviation for record input value-added tax flag. Within PeopleSoft Purchasing,
Payables, and General Ledger, this flag indicates that you are recording input VAT
on the transaction. This flag, in conjunction with the record output VAT flag, is used
to determine the accounting entries created for a transaction and to determine how a
transaction is reported on the VAT return. For all cases within Purchasing and Payables
where VAT information is tracked on a transaction, this flag is set to Yes. This flag
is not used in PeopleSoft Order Management, Billing, or Receivables, where it is
assumed that you are always recording only output VAT, or in PeopleSoft Expenses,
where it is assumed that you are always recording only input VAT.

record output VAT flag Abbreviation for record output value-added tax flag.

See record input VAT flag.

recname The name of a record that is used to determine the associated field to match a value
or set of values.

recognition In PeopleSoft Enterprise Campus Solutions, the recognition type indicates whether
the PeopleSoft Enterprise Contributor Relations donor is the primary donor of a
commitment or shares the credit for a donation. Primary donors receive hard credit that
must total 100 percent. Donors that share the credit are given soft credit. Institutions
can also define other share recognition-type values such as memo credit or vehicle
credit.

reference data In PeopleSoft Sales Incentive Management, system objects that represent the sales
organization, such as territories, participants, products, customers, channels, and so on.

reference object In PeopleSoft Enterprise Incentive Management, this dimension-type object further
defines the business. Reference objects can have their own hierarchy (for example,
product tree, customer tree, industry tree, and geography tree).

reference transaction In commitment control, a reference transaction is a source transaction that is
referenced by a higher-level (and usually later) source transaction, in order to
automatically reverse all or part of the referenced transaction’s budget-checked
amount. This avoids duplicate postings during the sequential entry of the transaction at
different commitment levels. For example, the amount of an encumbrance transaction
(such as a purchase order) will, when checked and recorded against a budget, cause
the system to concurrently reference and relieve all or part of the amount of a
corresponding pre-encumbrance transaction, such as a purchase requisition.

regional sourcing In PeopleSoft Purchasing, provides the infrastructure to maintain, display, and select
an appropriate vendor and vendor pricing structure that is based on a regional sourcing
model where the multiple ship to locations are grouped. Sourcing may occur at a
level higher than the ship to location.

relationship object In PeopleSoft Enterprise Incentive Management, these objects further define a
compensation structure to resolve transactions by establishing associations between
compensation objects and business objects.

remote data source data Data that is extracted from a separate database and migrated into the local database.

REN server Abbreviation for real-time event notification server in PeopleSoft MultiChannel
Framework.

requester In PeopleSoft eSettlements, an individual who requests goods or services and whose
ID appears on the various procurement pages that reference purchase orders.

PeopleSoft Proprietary and Confidential 197

Glossary

reversal indicator In PeopleSoft Enterprise Campus Solutions, an indicator that denotes when a
particular payment has been reversed, usually because of insufficient funds.

role Describes how people fit into PeopleSoft Workflow. A role is a class of users who
perform the same type of work, such as clerks or managers. Your business rules
typically specify what user role needs to do an activity.

role user A PeopleSoft Workflow user. A person’s role user ID serves much the same purpose as
a user ID does in other parts of the system. PeopleSoft Workflow uses role user IDs
to determine how to route worklist items to users (through an email address, for
example) and to track the roles that users play in the workflow. Role users do not need
PeopleSoft user IDs.

roll up In a tree, to roll up is to total sums based on the information hierarchy.

run control A run control is a type of online page that is used to begin a process, such as the
batch processing of a payroll run. Run control pages generally start a program that
manipulates data.

run control ID A unique ID to associate each user with his or her own run control table entries.

run-level context In PeopleSoft Enterprise Incentive Management, associates a particular run (and batch
ID) with a period context and plan context. Every plan context that participates in a run
has a separate run-level context. Because a run cannot span periods, only one run-level
context is associated with each plan context.

search query You use this set of objects to pass a query string and operators to the search engine.
The search index returns a set of matching results with keys to the source documents.

search/match In PeopleSoft Enterprise Campus Solutions and PeopleSoft Enterprise Human
Resources Management Solutions, a feature that enables you to search for and identify
duplicate records in the database.

seasonal address In PeopleSoft Enterprise Campus Solutions, an address that recurs for the same length
of time at the same time of year each year until adjusted or deleted.

section In PeopleSoft Enterprise Incentive Management, a collection of incentive rules that
operate on transactions of a specific type. Sections enable plans to be segmented to
process logical events in different sections.

security event In commitment control, security events trigger security authorization checking, such
as budget entries, transfers, and adjustments; exception overrides and notifications;
and inquiries.

serial genealogy In PeopleSoft Manufacturing, the ability to track the composition of a specific,
serial-controlled item.

serial in production In PeopleSoft Manufacturing, enables the tracing of serial information for
manufactured items. This is maintained in the ItemMaster record.

service impact In PeopleSoft Enterprise Campus Solutions, the resulting action triggered by a service
indicator. For example, a service indicator that reflects nonpayment of account
balances by a student might result in a service impact that prohibits registration for
classes.

service indicator In PeopleSoft Enterprise Campus Solutions, indicates services that may be either
withheld or provided to an individual. Negative service indicators indicate holds that
prevent the individual from receiving specified services, such as check-cashing
privileges or registration for classes. Positive service indicators designate special
services that are provided to the individual, such as front-of-line service or special
services for disabled students.

198 PeopleSoft Proprietary and Confidential

Glossary

session In PeopleSoft Enterprise Campus Solutions, time elements that subdivide a term into
multiple time periods during which classes are offered. In PeopleSoft Contributor
Relations, a session is the means of validating gift, pledge, membership, or adjustment
data entry . It controls access to the data entered by a specific user ID. Sessions are
balanced, queued, and then posted to the institution’s financial system. Sessions must
be posted to enter a matching gift or pledge payment, to make an adjustment, or to
process giving clubs or acknowledgements.

In PeopleSoft Enterprise LearningManagement, a single meeting day of an activity
(that is, the period of time between start and finish times within a day). The session
stores the specific date, location, meeting time, and instructor. Sessions are used for
scheduled training.

session template In PeopleSoft Enterprise LearningManagement, enables you to set up common
activity characteristics that may be reused while scheduling a PeopleSoft Enterprise
Learning Management activity—characteristics such as days of the week, start and
end times, facility and room assignments, instructors, and equipment. A session
pattern template can be attached to an activity that is being scheduled. Attaching a
template to an activity causes all of the default template information to populate
the activity session pattern.

setup relationship In PeopleSoft Enterprise Incentive Management, a relationship object type that
associates a configuration plan with any structure node.

share driver expression In PeopleSoft Business Planning, a named planning method similar to a driver
expression, but which you can set up globally for shared use within a single planning
application or to be shared between multiple planning applications through PeopleSoft
Enterprise Warehouse.

single signon With single signon, users can, after being authenticated by a PeopleSoft application
server, access a second PeopleSoft application server without entering a user ID or
password.

source key process In PeopleSoft Enterprise Campus Solutions, a process that relates a particular
transaction to the source of the charge or financial aid. On selected pages, you can drill
down into particular charges.

source transaction In commitment control, any transaction generated in a PeopleSoft or third-party
application that is integrated with commitment control and which can be checked
against commitment control budgets. For example, a pre-encumbrance, encumbrance,
expenditure, recognized revenue, or collected revenue transaction.

speed key See communication key.

SpeedChart A user-defined shorthand key that designates several ChartKeys to be used for voucher
entry. Percentages can optionally be related to each ChartKey in a SpeedChart
definition.

SpeedType A code representing a combination of ChartField values. SpeedTypes simplify the
entry of ChartFields commonly used together.

staging Amethod of consolidating selected partner offerings with the offerings from the
enterprise’s other partners.

standard letter code In PeopleSoft Enterprise Campus Solutions, a standard letter code used to identify
each letter template available for use in mail merge functions. Every letter generated in
the system must have a standard letter code identification.

statutory account Account required by a regulatory authority for recording and reporting financial
results. In PeopleSoft, this is equivalent to the Alternate Account (ALTACCT)
ChartField.

PeopleSoft Proprietary and Confidential 199

Glossary

step In PeopleSoft Sales Incentive Management, a collection of sections in a plan. Each
step corresponds to a step in the job run.

storage level In PeopleSoft Inventory, identifies the level of a material storage location. Material
storage locations are made up of a business unit, a storage area, and a storage level.
You can set up to four storage levels.

subcustomer qualifier A value that groups customers into a division for which you can generate detailed
history, aging, events, and profiles.

Summary ChartField You use summary ChartFields to create summary ledgers that roll up detail amounts
based on specific detail values or on selected tree nodes. When detail values are
summarized using tree nodes, summary ChartFields must be used in the summary
ledger data record to accommodate the maximum length of a node name (20
characters).

summary ledger An accounting feature used primarily in allocations, inquiries, and PS/nVision
reporting to store combined account balances from detail ledgers. Summary ledgers
increase speed and efficiency of reporting by eliminating the need to summarize
detail ledger balances each time a report is requested. Instead, detail balances are
summarized in a background process according to user-specified criteria and stored on
summary ledgers. The summary ledgers are then accessed directly for reporting.

summary time period In PeopleSoft Business Planning, any time period (other than a base time period) that is
an aggregate of other time periods, including other summary time periods and base
time periods, such as quarter and year total.

summary tree A tree used to roll up accounts for each type of report in summary ledgers. Summary
trees enable you to define trees on trees. In a summary tree, the detail values are really
nodes on a detail tree or another summary tree (known as the basis tree). A summary
tree structure specifies the details on which the summary trees are to be built.

syndicate To distribute a production version of the enterprise catalog to partners.

system function In PeopleSoft Receivables, an activity that defines how the system generates
accounting entries for the general ledger.

TableSet Ameans of sharing similar sets of values in control tables, where the actual data values
are different but the structure of the tables is the same.

TableSet sharing Shared data that is stored in many tables that are based on the same TableSets. Tables
that use TableSet sharing contain the SETID field as an additional key or unique
identifier.

target currency The value of the entry currency or currencies converted to a single currency for budget
viewing and inquiry purposes.

tax authority In PeopleSoft Enterprise Campus Solutions, a user-defined element that combines a
description and percentage of a tax with an account type, an item type, and a service
impact.

template A template is HTML code associated with a web page. It defines the layout of
the page and also where to get HTML for each part of the page. In PeopleSoft, you
use templates to build a page by combining HTML from a number of sources. For
a PeopleSoft portal, all templates must be registered in the portal registry, and each
content reference must be assigned a template.

territory In PeopleSoft Sales Incentive Management, hierarchical relationships of business
objects, including regions, products, customers, industries, and participants.

3C engine Abbreviation forCommunications, Checklists, and Comments engine. In PeopleSoft
Enterprise Campus Solutions, the 3C engine enables you to automate business
processes that involve additions, deletions, and updates to communications, checklists,

200 PeopleSoft Proprietary and Confidential

Glossary

and comments. You define events and triggers to engage the engine, which runs
the mass change and processes the 3C records (for individuals or organizations)
immediately and automatically from within business processes.

3C group Abbreviation for Communications, Checklists, and Comments group. In PeopleSoft
Enterprise Campus Solutions, a method of assigning or restricting access privileges. A
3C group enables you to group specific communication categories, checklist codes,
and comment categories. You can then assign the group inquiry-only access or update
access, as appropriate.

TimeSpan A relative period, such as year-to-date or current period, that can be used in various
PeopleSoft General Ledger functions and reports when a rolling time frame, rather
than a specific date, is required. TimeSpans can also be used with flexible formulas in
PeopleSoft Projects.

trace usage In PeopleSoft Manufacturing, enables the control of which components will be traced
during the manufacturing process. Serial- and lot-controlled components can be
traced. This is maintained in the ItemMaster record.

transaction allocation In PeopleSoft Enterprise Incentive Management, the process of identifying the owner
of a transaction. When a raw transaction from a batch is allocated to a plan context,
the transaction is duplicated in the PeopleSoft Enterprise Incentive Management
transaction tables.

transaction state In PeopleSoft Enterprise Incentive Management, a value assigned by an incentive
rule to a transaction. Transaction states enable sections to process only transactions
that are at a specific stage in system processing. After being successfully processed,
transactions may be promoted to the next transaction state and “picked up” by a
different section for further processing.

Translate table A system edit table that stores codes and translate values for the miscellaneous fields in
the database that do not warrant individual edit tables of their own.

tree The graphical hierarchy in PeopleSoft systems that displays the relationship between
all accounting units (for example, corporate divisions, projects, reporting groups,
account numbers) and determines roll-up hierarchies.

tuition lock In PeopleSoft Enterprise Campus Solutions, a feature in the Tuition Calculation
process that enables you to specify a point in a term after which students are charged a
minimum (or locked) fee amount. Students are charged the locked fee amount even if
they later drop classes and take less than the normal load level for that tuition charge.

unclaimed transaction In PeopleSoft Enterprise Incentive Management, a transaction that is not claimed
by a node or participant after the allocation process has completed, usually due to
missing or incomplete data. Unclaimed transactions may be manually assigned to the
appropriate node or participant by a compensation administrator.

universal navigation header Every PeopleSoft portal includes the universal navigation header, intended to appear at
the top of every page as long as the user is signed on to the portal. In addition to
providing access to the standard navigation buttons (like Home, Favorites, and signoff)
the universal navigation header can also display a welcome message for each user.

update access In PeopleSoft Enterprise Campus Solutions, a type of security access that permits the
user to edit and update data.

See also inquiry access.

user interaction object In PeopleSoft Sales Incentive Management, used to define the reporting components
and reports that a participant can access in his or her context. All Sales Incentive
Management user interface objects and reports are registered as user interaction
objects. User interaction objects can be linked to a compensation structure node
through a compensation relationship object (individually or as groups).

PeopleSoft Proprietary and Confidential 201

Glossary

variable In PeopleSoft Sales Incentive Management, the intermediate results of calculations.
Variables hold the calculation results and are then inputs to other calculations.
Variables can be plan variables that persist beyond the run of an engine or local
variables that exist only during the processing of a section.

VAT exception Abbreviation for value-added tax exception. A temporary or permanent exemption
from paying VAT that is granted to an organization. This terms refers to both VAT
exoneration and VAT suspension.

VAT exempt Abbreviation for value-added tax exempt. Describes goods and services that are not
subject to VAT. Organizations that supply exempt goods or services are unable to
recover the related input VAT. This is also referred to as exempt without recovery.

VAT exoneration Abbreviation for value-added tax exoneration. An organization that has been granted a
permanent exemption from paying VAT due to the nature of that organization.

VAT suspension Abbreviation for value-added tax suspension. An organization that has been granted a
temporary exemption from paying VAT.

warehouse A PeopleSoft data warehouse that consists of predefined ETL maps, data warehouse
tools, and DataMart definitions.

work order In PeopleSoft Services Procurement, enables an enterprise to create resource-based
and deliverable-based transactions that specify the basic terms and conditions for
hiring a specific service provider. When a service provider is hired, the service
provider logs time or progress against the work order.

worker A person who is part of the workforce; an employee or a contingent worker.

workset A group of people and organizations that are linked together as a set. You can use
worksets to simultaneously retrieve the data for a group of people and organizations
and work with the information on a single page.

worksheet Away of presenting data through a PeopleSoft Business Analysis Modeler interface
that enables users to do in-depth analysis using pivoting tables, charts, notes, and
history information.

worklist The automated to-do list that PeopleSoft Workflow creates. From the worklist, you
can directly access the pages you need to perform the next action, and then return to
the worklist for another item.

XML schema An XML definition that standardizes the representation of application messages,
component interfaces, or business interlinks.

yield by operation In PeopleSoft Manufacturing, the ability to plan the loss of a manufactured item on an
operation-by-operation basis.

zero-rated VAT Abbreviation for zero-rated value-added tax. AVAT transaction with a VAT code that
has a tax percent of zero. Used to track taxable VAT activity where no actual VAT
amount is charged. Organizations that supply zero-rated goods and services can still
recover the related input VAT. This is also referred to as exempt with recovery.

202 PeopleSoft Proprietary and Confidential

Index

A
adding new application for COM classic
events 55
adding new application for COM
guaranteed events 81
additional documentation xii
application fundamentals xi
auto commit
Java connector 117

automatic transaction
dynamic Java connector 100

B
BHVRCOM
COM 24
Java connector 117

BizTalk
classic events 52
guaranteed events 77

BizTalk sample code 52, 77
BSFN cache
dynamic Java connector 100

BSFNMethod
dynamic Java connector 90

BSFNParameter
dynamic Java connector 90

BSFNSpecSource
dynamic Java connector 91

business function
dynamic Java connector 99
using BHVRCOM 117
validating spec metadata 94

business function metadata
dynamic Java connector 90

C
cache
dynamic Java connector 100

CheckVer
COM 17
Java 110, 111
Java connector
migrating from previous release 110

running GenJava CheckVer 112
choosing a connector 2

classic events
BizTalk 52
COM 41
installing event class 55
registering a component 56
subscribe to 42, 48

COM component
new application 55

COM+ 43
compile Java client 134
Java 129
implement an interface 131

logging on to COM connector 44
registering components
COM 42

run Java client 134
setting up Java client 131
subscription 132

classpath settings
resource adapter 154

code sample
classic events
BizTalk 52
COM connector log on 44
COM+ component 44
create message handler 45
subscriber 48
subscription 46

guaranteed events
BizTalk 77
COM connector log on 62
COM+ component 62
create message handler 63
subscriber 68
subscription 65

COM
BHVRCOM 24
CheckVer 17
running 17

classic events 41
EnterpriseOne interface 42, 43
installing event class 55
new application 55
registering a component 56
subscribe to 42, 48

PeopleSoft Proprietary and Confidential 203

Index

guaranteed events 59
EnterpriseOne interface 60, 61
installing event class 81
new application 81
registering a component 81
subscribe to 60, 68

IJDETimeZone 25
inbound XML request 26
installation 21, 22
interoperability process flow 4
logging
classic events 42
guaranteed events 60

logging on to
classic events 44
guaranteed events 62

objects 4
OCM support 23
overview 3
prepare and commit transaction 29
registering components
classic events 42
guaranteed events 60

reliability 26
server 7, 8
server deployment 19
tracing
resolving issues 27

tracing and logging 27
COM connector login sample code 44
COM transactions 29
auto commit 29
calling prepare and commit 29
manual commit 29

COM+
classic events 43
guaranteed events 61

COM+ component creation sample
code 44, 62
Com+ two-phase commit transaction 30
COMConnector login sample code 62
comments, submitting xvi
common client interface
resource adapter 155

common elements xvi
configurable properties
resource adapter 154

configure Java static and dynamic
modes 110
configuring events client tool

Java guaranteed events 148
connectors overview 1
contact information xvi
cross-references xv
Customer Connection website xii

D
data
resource adapter 159

DCOM
client environment 21
identity 21
server 20
security 20

design considerations
dynamic Java connector 90
Java connector 109

distributed transaction
COM+ 36

distributed transaction sample code 36,
38
documentation
printed xii
related xii
updates xii

dynamic Java connector 89
BSFN cache 100
BSFNMethod 90
BSFNParameter 90
BSFNSpecSource 91
business function 99
business function metadata 90
design considerations 90
exception handling 104
generate spec image 95
inbound XML request 103
installation 98
logging 103
OCM support 101
overview 89
running 99
SpecDictionary 92
synchronize spec image 97
transactions 100
update spec image 95
user session management 101, 102
validate spec image 96

dynamic mode configuration
Java connector 110

204 PeopleSoft Proprietary and Confidential

Index

E
EnterpriseOne interface
COM
classic events 42, 43
guaranteed events 60, 61

error handling
dynamic Java connector 104
Java connector 120

event subscription sample code 46, 65
events 41, 59
See Also classic events; guaranteed
events

events client tool
Java guaranteed events 145, 146
prerequisites 146

events subscription
COM classic events 42, 48
COM guaranteed events 60

exception handling
dynamic Java connector 104
exception details 121
fatal exception 121
Java connector 120
recoverable exception 121
reject 121
resource adapter 160

G
GenCOM 8, 9
business function
using C++ 14
using Visual Basic 14

environment
include directories 10
lib directories 11
MSDev directories 11
paths 11

environment setup 10
installation 10
options 12
output 14
ProgID 10
running 12
syntax 12

GenJava
environment 111
classpath 111
path 111

options 113

overview 109
running 112, 113
syntax 113

GenJava CheckVer
CheckVer
running 111

GenJava output 114
glossary 183
guaranteed events
asynchronous events 141
BizTalk 77
COM 59
installing event class 81
registering a component 81
subscribe to 60, 68

COM component
new application 81

COM+ 61
introspection operations for Java 139
Java 137
prerequisites 137

Java events client tool 145, 146
building 146
configuring 148
running 148
using 146

Java events client tool prerequisites 146
logging on to COM connector 62
registering components
COM 60

setting up Java client 139
synchronous events 143

I
identity
COM 21

iJDEScript 175
iJDEScript commands 176
build 176
call 176
define 176
define! 177
exit 177
help 177
import 178
importlib 178
interface 179
library 179
login 179
logout 180

PeopleSoft Proprietary and Confidential 205

Index

opt 180
rename 180
say 181
sub 181
system 182

IJDETimeZone
COM 25

ImageBSFNInteractionSpecImpl 158
implement an interface
Java classic events 131

include directories
GenCOM 10

installation
COM connector 21, 22
dynamic Java connector 98
Java connector 111

installing event class for COM classic
events 55
installing event class for COM guaranteed
events 81
interoperability
COM 3
COM process flow 4
Java connector 85
Java process flow 85

issues resolution
resource adapter 163

J
Java connector 107
BHVRCOM 117
CheckVer 110
classic events 129
design considerations 109
exception handling 120
guaranteed events 137
inbound XML request 120
installation 111
interoperability process flow 85
JDEDate 108
JDEMathNumeric 108
OCM support 118
overview 107
running GenJava 112, 113
subscribing to classic events 132
transaction 117
user session management 119
versioning 110
static and dynamic modes 110

Java connector architecture resource
adapter
overview 149

Java connector exception handling
exception details 121
fatal errors 121
recoverable errors 121
reject 121

Java exception handling sample code 124
Java wrapper version checker 110
JDEDate
Java 108

jdeinterop
resource adapter 153

jdeinterop.ini 165
section settings
[CACHE] 166
[DEBUG] 167
[EVENTS] (classic event
delivery) 169
[EVENTS] (guaranteed events
delivery) 170
[INTEROP] 23, 169
[JDENET] 166
[JMSEVENTS] (guaranteed events
delivery) 171
[OCM] 24, 165
[SECURITY] 167
[SERVER] 167

jdelog.properties 173
resource adapter 154

JDEMathNumeric
Java 108

JNDI
resource adapter 155

L
lib directories
GenCOM 11

logging
COM 27
dynamic Java connector 103
resource adapter 159

M
manual commit
Java connector 117

manual transaction
dynamic Java connector 100

206 PeopleSoft Proprietary and Confidential

Index

message handle sample code 63
message handler sample code 45
messages
dynamic Java connector 103

MMA Partners xii
MSDEV directories
GenCOM 11

N
notes xv

O
OCM support
COM connector 23
dynamic Java connector 101
Java connector 118

overview
COM 3
connectors 1
dynamic Java connector 89
GenJava 109
iJDEScript 175
Java connector 107
Java connector architecture resource
adapter 149
jdeinterop.ini 165
jdelog.properties 173

OWBSFNInteractionSpecImpl 158

P
paths
GenCOM 11

PeopleBooks
ordering xii

PeopleCode, typographical
conventions xiv
PeopleSoft application fundamentals xi
prepare and commit transaction
COM 29

prerequisites xi
printed documentation xii

R
registering components
COM
classic events 42, 56
guaranteed events 60, 81

related documentation xii
reliability

COM 26
resolving tracing issues
COM 27

resource adapter 149
assembly 152
classpath settings 154
common client interface 155
components 152
configurable properties 154
configuration 153
deployment 153
exceptions 160
features 150
input and output data 159
JCA 1.0 specification 150
jdeinterop settings 153
jdelog.properties 154
JNDI 155
samples 160
deploying 161
deploying to WebSphere 161
preparing 160
running 162

security permissions 153
signon types 157
component-managed signon 157
container-managed signon 157

subclasses 158
troubleshooting 163

running CheckVer
COM 17
Java 111

running events client tool
Java guaranteed events 148

running GenJava 112, 113

S
sample applications
compiling 105
running 106
shipped 104

sample code
COM business function wrapper 14
COM IJDETimeZone 25
COM query IBHVRCOM 24
common client interface 155
distributed transaction 36
creating ClientPrj 38

guaranteed events
introspection 139

PeopleSoft Proprietary and Confidential 207

Index

listener 141
receive events 144

Java connector exception handling 124
sales order entry transactional client 35
sales order entry transactional object 32
subscribe to classic event
Java 132

using BHVRCOM 118
security
COM 20

server
COM 7
GenCOM 9

COM connector 8
DCOM 20

signon types
resource adapter 157

spec image
dynamic Java connector 95, 96, 97

SpecDictionary
dynamic Java connector 92

static mode configuration
Java connector 110

subscribe to classic event sample
code 132
suggestions, submitting xvi

T
terms 183
tracing
COM 27

tracing and logging
COM
classic events 42
guaranteed events 60

transactional client sample code 35
transactional object sample code 32
transactions
COM connector 29
COM+ 31
COM+ environment 30
dynamic Java connector 100
Java connector 117
registering COM+ 39

troubleshooting
resource adapter 163

typographical conventions xiv

U
user session management
dynamic Java connector 101, 102
Java connector 119

using events client tool
Java guaranteed events 146

V
versioning
Java connector 110

visual cues xv

W
warnings xv

X
xception handling
Java connector 120

XML request
COM 26
dynamic Java connector 103
using Java connector 120

208 PeopleSoft Proprietary and Confidential

	toc
	Open Source Disclosure
	Contents
	About This PeopleBook
	PeopleSoft Application Prerequisites
	PeopleSoft Application Fundamentals
	Documentation Updates and Printed Documentation
	Obtaining Documentation Updates
	Ordering Printed Documentation
	Web
	Telephone
	Email

	Additional Resources
	Typographical Conventions and Visual Cues
	Typographical Conventions
	Visual Cues
	Notes
	Warnings
	Cross-References

	Country, Region, and Industry Identifiers
	Country Identifiers
	Region Identifiers
	Industry Identifiers

	Currency Codes

	Comments and Suggestions
	Common Elements Used in PeopleBooks
	Connectors Preface
	PeopleSoft Products
	PeopleSoft Connectors
	Additional Resources

	Getting Started with PeopleSoft Tools Connectors
	PeopleSoft Tools Connectors Overview
	Choosing the Connector Solution

	PeopleSoft Tools Connectors Implementation

	Understanding COM Interoperability
	COM Interoperability
	PeopleSoft EnterpriseOne COM Interoperability
	COM Objects
	COM Interoperability Usage

	Understanding PeopleSoft EnterpriseOne COM Server
	PeopleSoft EnterpriseOne COM Server
	COM Connector
	GenCOM Components
	Understanding GenCOM
	Installation Information
	ProgID
	Setting Up an Environment for GenCOM
	Example: Include Directories
	Example: Lib Directories
	Example: MSDev Directories
	Example: Paths

	Running GenCOM
	Using GenCOM Output
	Visual Basic
	Visual C++

	COM Wrapper CheckVer
	Running CheckVer
	Syntax
	Example
	Options

	Deploying the COM Server
	Understanding COM Server Deployment
	DCOM Server Setup
	Understanding DCOM Server Setup
	Setting Up DCOM for a Server Environment
	Setting Up Security on the COM Server
	Setting Up the Identity as Interactive User
	Setting Up DCOM for a Client Environment

	COM Connector Installation
	Installing COM Connector on a Non-PeopleSoft EnterpriseOne Clien

	OCM Support for the COM Connector
	[INTEROP]
	[OCM]

	BHVRCOM Using COM
	IJDETimeZone Interface
	XML File generated by GenCOM for IJDETimeZone

	Inbound XML Requests Using COM Server
	COM Reliability
	COM Tracing and Logging
	Resolving Tracing Issues

	Using COM Transactions
	Understanding COM Interoperability Transactions
	Outline for Calling Prepare and Commit
	COM+ Two-Phase Commit Transaction

	Setting Up the COM+ Environment
	Running a COM+ Transactions
	Understanding COM+ Transactions
	Creating a Transactional Object
	Creating a Transactional Client

	Running a Distributed Transaction
	Understanding COM+ Transaction
	Creating MTStest for a Distributed Transaction
	Creating ClientPrj for a Distributed Transaction
	Registering the COM+ .dll

	Using COM Connector Events - Classic Events
	Understanding COM Connector Events
	Registering Components
	Subscribing to Events
	Logging COM Events
	Implementing PeopleSoft EnterpriseOne Interfaces
	Implementing a PeopleSoft EnterpriseOne Interface
	Creating a COM+ Component
	EventSink: OneWorldTransientEventSink.cls

	Logging on to the COM Connector
	COMConnector: frmLogin.frm
	COMConnector Common.bas
	COMConnector: SubscriptionManager

	Subscribing to Events
	Subscriber: MainForm.frm

	Integrating with BizTalk
	Subscriber: BizTalk.cls

	Adding a New Application
	Installing the Event Class

	Registering EventSink for Persistent Subscription

	Using COM Connector Events - Guaranteed Events
	Understanding COM Connector Events
	Registering Components
	Subscribing to Events
	Logging COM Events
	Implementing PeopleSoft EnterpriseOne Interfaces
	Implementing a PeopleSoft EnterpriseOne Interface
	Creating a COM+ Component
	EventSink: OneWorldTransientEventSink.cls

	Logging on to the COM Connector
	COMConnector: frmLogin.frm
	COMConnector Common.bas
	COMConnector: SubscriptionManager

	Subscribing to an Event
	Subscriber: MainForm.frm

	Integrating with BizTalk
	Subscriber: BizTalk.cls

	Adding a New Application
	Installing the Event Class

	Registering EventSink for Persistent Subscription

	Understanding Java Interoperability Solution
	Java Interoperability Solution

	Understanding the Dynamic Java Connector
	Dynamic Java Connector
	Designing the Dynamic Java Connector
	Business Function Spec Metadata Introspection
	BSFNMethod
	BSFNParameter
	BSFNSpecSource
	SpecDictionary

	Business Function Spec Metadata Validation
	SpecImageConsole
	Generate Spec Image
	Usage
	Options
	Explanation
	Example
	Update Spec Image
	Usage
	Options
	Explanation
	Example
	Validate Spec Image
	Usage
	Options
	Explanation
	Example
	Synchronize Spec Image
	Usage
	Options
	Explanation
	Example

	Installing the Dynamic Java Connector
	Running the Dynamic Java Connector
	Calling a Business Function
	BSFN Cache
	Transaction Using the Dynamic Java Connector
	OCM Support for the Dynamic Java Connector

	Understanding User Session Management for the Dynamic Java Conne
	User Session Management for the Dynamic Java Connector
	Inbound XML Request Using the Dynamic Java Connector
	Logging for the Dynamic Java Connector
	Exception Handling for the Dynamic Java Connector

	Understanding Sample Applications
	Sample Applications
	Compiling the Sample Applications
	Running the Sample Applications

	Understanding the Java Connector
	Java Connector and PeopleSoft EnterpriseOne
	JDEDate
	JDEMathNumeric

	Designing the Java Connector
	GenJava
	Java Versioning
	Migrating from Previous Releases
	Java Connector Static and Dynamic Modes
	Using the Java Wrapper Version Checker (CheckVer)
	Running CheckVer (GenJava)
	Syntax
	Example

	GenJava Client Environment
	PATH
	CLASSPATH

	Installing a Java Connector
	Running the Java Connector
	Using GenJava
	Running GenJava
	Syntax
	Options
	Generate Java Wrappers

	Using GenJava Output
	Transactions Using the Java Connector
	Using BHVRCOM through the Java Connector
	OCM Support for the Java Connector

	User Session Management for the Java Connector
	Understanding User Session Management for the Java Connector
	Inbound XML Request Using the Java Connector

	Exception Handling for the Java Connector
	Understanding Exception Handling for the Java Connector
	Fatal Exception
	Recoverable Exception
	Reject
	Exception Details
	Example: Java Connector Exception Handling Sample Code

	Using Java Connector Events - Classic Events
	Understanding Java Connector Events
	Developing the Java Client
	Creating a Java Class to Implement an Interface
	Creating a Java Client Application to Subscribe to an Event
	Example: Using the Java Client to Subscribe to an Event Using th

	Compiling the Java Client
	Running the Java Client

	Using Java Connector Events - Guaranteed Events
	Understanding Java Connector Events
	Prerequisites

	Developing a Java Connector Events Application
	Understanding Java Connector Events Application Development
	Introspection Operations
	EventIntrospectionApp.java

	Asynchronous Event Sessions
	MyListener.java
	EventAsyncApp.java

	Synchronous Event Sessions
	EventSyncApp.java

	Using the Sample Connector Events Client
	Understanding Connector Events Client Tool
	Prerequisites for Using the Sample Connector Events Client
	Using the Connector Events Client Tool
	Building the Sample Connector Events Client
	To build the Sample Connector Events Client

	Configuring the Sample Connector Events Client
	Running the Sample Connector Events Client

	Understanding J2EE Connector Architecture Resource Adapter
	J2EE Connector Architecture Resource Adapter
	JCA 1.0 Specification Optional Features
	Assembly and Components
	Components

	Deployment and Configuration
	Security Permissions
	jdeinterop.ini Settings
	jdbj.ini Settings
	jdelog.properties Settings
	CLASSPATH Settings
	Configurable Properties
	Java Naming and Directory Interface Settings

	Common Client Interface
	Implementing the Common Client Interface

	Signon Types
	Container-Managed Signon
	Component-Managed Signon

	Subclasses
	ImageBSFNInteractionSpecImpl
	OWBSFNInteractionSpecImpl

	Input and Output Data
	Logging
	Exceptions
	Samples
	Prepare the Samples for Deployment
	JDBC Driver .jar File
	Configuration Files
	Samples for the Application Server

	Deploy the Sample Applications
	Deploy the Sample Applications to WebSphere 5.x
	Run the Sample Applications

	Checklist for Resolving Issues

	Understanding jdeinterop.ini
	Settings for the jdeinterop.ini File
	[OCM]
	[CACHE]
	[JDENET]
	[SERVER]
	[SECURITY]
	[DEBUG]
	[INTEROP]
	[EVENTS] - Classic Events Delivery
	[EVENTS] - Guaranteed Events Delivery
	WebSphere
	WebLogic

	[JMSEVENTS] - Guaranteed Events Delivery
	WebSphere
	WebLogic

	Understanding jdelog.properties File
	Settings for the jdelog.properties File

	Understanding iJDEScript
	iJDEScript
	iJDEScript Commands
	Build Command
	Syntax

	Call Command
	Syntax
	Example

	Define Command
	Syntax
	Example

	Define! Command
	Syntax
	Example

	Exit Command
	Syntax

	Help Command
	Syntax

	Import Command
	Syntax
	Example

	Importlib Command
	Syntax
	Example

	Interface Command
	Syntax for COM
	COM Example

	Library Command
	Syntax
	Example

	Login Command
	Syntax
	Example

	Logout Command
	Syntax

	Opt Command
	Syntax
	Example

	Rename Command
	Syntax
	Example

	Say Command
	Syntax
	Example

	Sub Command
	Syntax
	Example

	System Command
	Syntax
	Example

	Glossary of PeopleSoft Terms
	Index

