
PeopleSoft Enterprise CRM Advanced
Configurator 8.9 PeopleBook

June 2004

PeopleSoft Enterprise CRM Advanced Configurator 8.9 PeopleBook
SKU CRM89CFG-B 0604
Copyright © 2001 - 2004 PeopleSoft, Inc. All rights reserved.

All material contained in this documentation is proprietary and confidential to PeopleSoft, Inc. ("PeopleSoft"), protected by copyright laws and subject to
the nondisclosure provisions of the applicable PeopleSoft agreement. No part of this documentation may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, including, but not limited to, electronic, graphic, mechanical, photocopying, recording, or otherwise without
the prior written permission of PeopleSoft.

This documentation is subject to change without notice, and PeopleSoft does not warrant that the material contained in this documentation is free of errors.
Any errors found in this document should be reported to PeopleSoft in writing.

The copyrighted software that accompanies this document is licensed for use only in strict accordance with the applicable license agreement which should be
read carefully as it governs the terms of use of the software and this document, including the disclosure thereof.

PeopleSoft, PeopleTools, PS/nVision, PeopleCode, PeopleBooks, PeopleTalk, and Vantive are registered trademarks, and Pure Internet Architecture,
Intelligent Context Manager, and The Real-Time Enterprise are trademarks of PeopleSoft, Inc. All other company and product names may be trademarks of
their respective owners. The information contained herein is subject to change without notice.

Open Source Disclosure

PeopleSoft takes no responsibility for its use or distribution of any open source or shareware software or documentation and disclaims any and all liability or
damages resulting from use of said software or documentation. The following open source software may be used in PeopleSoft products and the following
disclaimers are provided.

Apache Software Foundation

This product includes software developed by the Apache Software Foundation (http://www.apache.org/). Copyright (c) 1999-2000 The Apache Software
Foundation. All rights reserved.

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE APACHE SOFTWARE FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

OpenSSL

Copyright (c) 1998-2003 The OpenSSL Project. All rights reserved.

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT "AS IS" AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE OpenSSL PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

SSLeay

Copyright (c) 1995-1998 Eric Young. All rights reserved.

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Loki Library

Copyright (c) 2001 by Andrei Alexandrescu. This code accompanies the book:

Alexandrescu, Andrei. "Modern C++ Design: Generic Programming and Design Patterns Applied". Copyright (c) 2001. Addison-Wesley. Permission to use,
copy, modify, distribute and sell this software for any purpose is hereby granted without fee, provided that the above copyright notice appear in all copies
and that both that copyright notice and this permission notice appear in supporting documentation.

Contents

General Preface
About This PeopleBookxxiii
PeopleSoft Application Prerequisites. .xxiii
PeopleSoft Application Fundamentals.xxiii
Related Documentation.xxiv

Obtaining Documentation Updates.xxiv
Ordering Printed Documentation.xxiv

Typographical Conventions and Visual Cues.. .xxv
Typographical Conventions..xxv
Visual Cues..xxvi
Country, Region, and Industry Identifiers.xxvi
Currency Codes..xxvii

Comments and Suggestions.. .xxvii
Common Elements in These PeopleBooks .. .xxvii

Preface
PeopleSoft Enterprise Advanced Configurator for CRM Preface... .xxix
PeopleSoft Enterprise Advanced Configurator 8.9 PeopleBook.. .xxix
PeopleSoft Enterprise Order Capture 8.9 PeopleBook..xxx

Part 1
Getting Started

Chapter 1
Getting Started with PeopleSoft Enterprise Advanced Configurator.. .3
Additional Documentation for Advanced Configurator.3
Testing and Administration Tools. .3
Advanced Configurator Architecture. .4
Configurator Interfaces.. .4
Advanced Configurator Implementation. .5

Implementing an Integrated Configurator Solution.6
Implementing a Standalone Configurator Solution.6

PeopleSoft Proprietary and Confidential iii

Contents

Chapter 2
Other Sources of Information.. .7

Part 2
Product Modeling with a Component Model

Chapter 3
Understanding Modeling... .11
Basic Model Concepts. .11

Visual Modeler.11
Visual Modeler Objects.12
Domain Members.14
Selection Points.14

Relationships Between Objects. .14
Requirement Constraint.18
Dynamic Default.19
Resource Constraint.20
Summation..20
Elimination.21
Comparison..21
Effectivity Dates..24

Expressions in Relationships. .25
Relationship Explanations..27
Relationship Properties. .28
Default Values Within Expressions..31
Quantities in Modeling. .32

Static Default Quantities.34
Dynamic Default Quantities.34
Multiple Selections on a Single Domain Member.34
Understanding Minimum and Maximum Selections and Limits.40
Domain Member Min/Max..41
Interaction between Default Quantities and Min/Max Settings at Run Time..42
Minimum Violation Explanation and Incomplete Configuration Explanation.43

Creating Parameterized Explanations.. .44
Optimizing Performance and Minimizing Model Maintenance..45
Using the Sample Models. .46
The Modeling Process.. .46
Model Tester. .47

iv PeopleSoft Proprietary and Confidential

Contents

Interfacing with Third-Party Tools. .47
Microsoft SQL Server, Oracle Databases, and IBM DB2..47
MacroMedia DreamWeaver.47
Source Control Interfaces..47

Chapter 4
Setting Up the Modeling Environment... .49
Common Elements in this Chapter.49
Connecting to Third-Party Software..50

Source Control Software..50
Database Interface Configuration.51
Configuring JNDIDBName.properties.52

Connecting to a Database from Visual Modeler. .53
Specify a Database Connection.54
Specify a Default Database..54

Getting Started with Visual Modeler.54
Model Structure View..55
Components and Files View..56
Properties Editor.56
Overview Window..57
Find Window..57

Understanding Project Files.57
Creating a New Project or Workspace..59
Specifying Model Project Settings.60
Adding a Project to Source Control.62

Importing and Exporting Models.63
Exporting a Model.63
Importing a Model.64

Compiling a Model.65
Using the Model Tester. .66
Internalizing Model Data.68

Chapter 5
Creating Objects for the Model.. .69
Creating a Class... .. .69
Deleting a Class. .70
Changing Class Structure. .71
Adding Class Attributes.72

PeopleSoft Proprietary and Confidential v

Contents

Creating Internal Domain Members.73
Creating a “None” Domain Member.73
Assigning Values to Attributes. .74
Inputting Date-Type Attributes Manually. .74
Setting Up Binding for External Domain Members. .. .75

Selecting a Primary Table.75
Filtering and Manipulating Table Data. .80
Storing a Dynamic Default Quantity in a Database.. .80
Retrieving Expression Values and Externs from a Database.. .81
Working with Selection Points. .81
Internalizing Data.85

Chapter 6
Creating Relationships Between Model Objects... .87
Preparing to Create Relationships. .87
Common Elements in this Chapter.87
Creating and Editing Expressions.. .88
Creating Externs.91
Creating a Relationship.93
Working with Relationships. .96

Editing Compatibility Constraints.98
Editing Requirement Constraints.99
Editing Dynamic Defaults.100
Editing Resource Constraints.101
Editing Summation Relationships.102
Editing Elimination Constraints.103
Editing Comparison Constraints.104

Creating Relationships Outside the Model with SQL Queries. .105

Chapter 7
Specifying Quantities on Selection Points... .109
Understanding Quantity Setup..109
Specifying the Number of Allowed Selections and Optional/Required.. .110
Specifying Single- or Multi-Select Control.111
Setting Quantity Limits on Domain Members. .112
Setting Default Selections and Quantities..114

Setting Explicit Default Choices and Quantities.115
Getting Default Selections and Quantities at Run Time Through Attributes.116

vi PeopleSoft Proprietary and Confidential

Contents

Defining the Dynamic Default Quantity for a Selection. .117
Attaching Metadata to Selection Points Using Attributes.118

Part 3
Product Modeling with Compound Models

Chapter 8
Understanding Compound Modeling... .123
Applications for Compound Models. .123
Compound Model Structure Types .. .123
Architecture. .126
Relationships in a Compound Model. .127
Modeling Strategy.. .128

Chapter 9
Working with Compound Models.. .129
Getting Started with Compound Models.129
Creating a Compound Modeling Project.130
Editing Project Settings.131
Creating a Configurable Component.132
Deleting a Configurable Component. .134
Rearranging Components in the Compound Model. .134
Adding and Removing a Component Model from the Project. .135
Editing Default Values. .137
Creating and Deleting Relationships Between Configurable Components. .138
Displaying a Compound Model Relationship. .141
Specifying Required Relationships.142
Editing Component Model Versions...144
Compiling, Running, and Testing a Compound Model.146
Team Modeling..146

Chapter 10
Standardizing Compound Model-Building.. .147
Creating and Editing Configurable Component Types..147
Creating and Editing Connection Point Types.. .150

PeopleSoft Proprietary and Confidential vii

Contents

Part 4
Application Extensions

Chapter 11
Client Operations Processor API... .155
Understanding the COP Java API.155

Choices..155
Decision Points and Domain Members.156

Application Classes. .157
ClientOperations..157
Configuration.158
ControlData.158
ControlItem..158
Choice..158
DMChoice..159
EVChoice..159
ItemFilter.159
ItemIterator.159
ExternVar.159
NumericData.160
Violation.160

Chapter 12
Using the COP Java API... .161
ClientOperations..161

Methods..161
Initializing the COP162
Releasing the COP..164
Processing and Displaying a Page164
Getting a ControlData Object.165
Specifying Delta-Pricing and Total-Pricing Requirements.168
Getting Other Display Information169
Verifying a Configuration.169

Configuration.169
Methods..170
Saving and Restoring a Configuration.170

ControlData. .171
Methods..171

viii PeopleSoft Proprietary and Confidential

Contents

Getting Display Information for a Decision Point and Its Domain Members.172
Getting the State of a Decision Point.173
Sorting and Filtering174
Handling Deleted Domain Members176

ControlItem..176
Methods..176
Getting Display Information for a Domain Member176
Getting the State of a Domain Member.177

Choice..180
DMChoice.. .180

Methods..181
Examining a DMChoice..181

EVChoice...181
Methods..181
Examining an EVChoice182

ItemFilter.182
Methods..182
Filtering Out Domain Members.182

ItemIterator. .183
ExternVar. .183
NumericData. .183
Violation.184

Chapter 13
Understanding the Configurator XML Interface... .185
Request-Response..185
Elements and Attributes. .185
Retrieving Model Information.. .186
Updating a Configuration Interactively.186
Retrieving Configuration Information..187
Copying a Configuration. .. .187
Using Batch Configuration Mode.. .188
Changing the Order Status of a Configuration.188
COP.dtd.188
Element-Attribute Trees.. .188

PeopleSoft Proprietary and Confidential ix

Contents

Chapter 14
Retrieving Model Information. .. .189
Elements and Attributes. .189
Version and Compile Version.. .189

Latest Version and Compile Version..189
Latest Compile Version..190

Error Messages..191
Decision Points. .192

All Decision Points.192
Public Decision Points.192

Chapter 15
Updating a Configuration... .195
Updating a Configuration. .195
Elements and Attributes. .196
Choices.. .196
Choices and Response.. .197

Chapter 16
Retrieving Configuration Information... .199
Understanding Configuration Information.. .199
Elements and Attributes. .200
Total Price. .201
Choices.. .201
Domain Member Data. .202

Every Decision Point.202
Selected Decision Points.204
Sorting Domain Members.205
Filtering Domain Members.207
Explanations..207
Attributes.210
Delta Price.215
Class..216
State and Quantity.217

Multi-Select Decision Points. .218
Global Explanations..219

Global Only.219
Global and Decision Point.220

x PeopleSoft Proprietary and Confidential

Contents

Numeric Values.. .221
All Values..221
Selected Values..221
Value (VL).222

Chapter 17
Retrieving Saved Configuration Information.. .227
Understanding Saved Configuration Information..227
Elements and Attributes. .228
The CONFIGURATION Element. .229
The CONFIG_DETAILS Element.230
The DELTA_INFO Element.231

Components.231
Compounds..232

The SECTION Element.233
Total Price. .234
Compound Violations. .234
Components..234
Choices.. .240
Choice Violations. .246
Component Violations. .247
Externs.248
Numeric Values.. .249
External Variables. .251

All Values..251
Selected Values..252

Configuration Attributes.252
Hierarchical Component Structure. .254
Connections..255
Completeness Information.. .256
Summary of Configuration Information Elements and Attributes. .. .257

Chapter 18
Copying a Configuration.. .261
Elements and Attributes. .261
Copy and Response.. .261

PeopleSoft Proprietary and Confidential xi

Contents

Chapter 19
Using Batch Configuration Mode.263
Elements and Attributes. .263
Configuring a Component. .263
Configuring a Compound Configuration. .264
Saving a Configuration.265
Retrieving a Configuration.265

Chapter 20
Changing the Order Status of a Configuration... .267
Elements and Attributes. .267
Order Change and Response..267

Part 5
PeopleSoft CRM Order Capture Integration

Chapter 21
Understanding Integration with PeopleSoft CRM Order Capture.. .271
Integration with PeopleSoft Enterprise Order Capture Applications. .271

Insurance and Financial Products.271
Service Products.272

Security. .272

Chapter 22
Setting Up Integration... .273
Setting Up PeopleSoft Advanced Configurator for Integration. .273
Setting Up PeopleSoft CRM to Integrate with PeopleSoft Advanced Configurator .274

Page Used to Set Up Configurator Integration with PeopleSoft CRM...274
Associating Advanced Configurator Messaging Node and Enabling Debugging.275

Creating Advanced Configurator Schemas.. .276
Pages Used to Create Configurator Schemas..277
Understanding Configurator Schemas..277
Creating Schemas for External Solutions.278
Creating Schemas for Internal Solutions.279
Establishing Pricing Options.282
Specifying Request Details.285

xii PeopleSoft Proprietary and Confidential

Contents

Accessing the Advanced Configurator Solution from Within PeopleSoft CRM288
Accessing Advanced Configurator.288
Pages Used to Access Product Configuration.289
Sample Product Configuration.289
Viewing Configuration Details290

Part 6
Building a Custom User Interface

Chapter 23
Understanding the Run-Time System.... .295
Deployment Framework. .295
Advanced Configurator Web Components. .298
Sequential Application JSP Pages.. .299
Deploying a Web Application Based on a Single Component Model. .300

Optimizing Performance..300
Restore Policy.301

Deploying a Solution in a Mobile Environment. .301
Deploying a Web Application Based on a Compound Model. .302

Chapter 24
JSP and Page Templates... .305
The Midtier Framework. .305
Scope of the Servlet.307
Using JSP Processing.. .307
Writing JSP..308
Using Generated Java and Class Files.309

Chapter 25
Processing User Picks and Entries... .311
Understanding Run-Time Processing..311
Initializing the Web Client Processor..312
Processing User Picks and Entries. .313

Configuration Records..313
Attribute Records..314

Making COP Calls.314

PeopleSoft Proprietary and Confidential xiii

Contents

Using WCP Methods..315
Getting Decision or Selection Points.315
Getting and Processing Stored Configuration Records..315
Getting Model Name, Version, and Compile Version..316
Clearing Model State.316
Releasing the WCP..316

Chapter 26
Processing Configurator Form Controls in JSP Pages.. .317
Understanding Configurator Form Control Processing.. .317
Configurator JSP Page Flow..317
Processing Configurator Form Controls. .318

Pre-Process Form Page..318
Process Form Page..319
Constants Page..319
Start Form Page..319
Control Page..320
End Form Page..320

Using Configurator JSP Pages in a Solution.320

Chapter 27
Using JSP Templates for Form Controls. .. .323
Understanding Form Control Templates.323
Properties, Parameters, and Attributes. .324

Properties.324
Parameters.324
Attributes.324

Form Control Templates. .324
Using Configuration Form Control Templates. .339

Plugging Form Controls into the Application Page(s)340
Parameters in the Inclusion Set.342

Specifying the Solution’s Model and Locale Properties. .345
Specifying Solution Information Properties.347
Specifying Display Properties.348
Displaying Delta Information..348
Displaying Delta Pricing..349

Application Page Example. .350
Customizing a Form Control Template. .351

xiv PeopleSoft Proprietary and Confidential

Contents

Registering Custom Form Control Templates. .352
Example Custom Form Control Template. .352
Common Errors.354

Chapter 28
Using the Page Editor Extensions for Dreamweaver... .355
Understanding Dreamweaver Extensions..355

Advanced Configurator Run-Time Objects.355
Creating a Solution.356

Editing CalicoUI.properties. .. .357
Inserting a Configurator Run-Time Object. .358

Inserting a Form..358
Inserting a Button..358
Inserting a List.359
Inserting a Group..361
Inserting a Table.363
Inserting an Image...364
Inserting Why Help.367
Inserting a Numeric Data Object.368

Editing Properties of Advanced Configurator Objects. .369
Editing Forms and Buttons..370
Editing Lists, Groups, and Tables.370

Chapter 29
Compound Modeling... .371
Understanding the Compound Model at Run Time.. .371

Run-Time Capabilities.371
Architecture..372

Using Compound Model JSP Pages..373
Calling the Compound Model API. .375
Creating an Application from the Sample. .376

Viewing the Sample Application.376
Node-Hub-Circuit Services.377
Configurable Components.377
Relationships.378
Modeling Node-Hub-Circuit Services379
Configuring Node-Hub-Circuit Services.379
Creating a Compound Configuration.379

PeopleSoft Proprietary and Confidential xv

Contents

Reconfiguring a Compound Configuration.379
Obtaining the Configuration Delta.379

Part 7
Mobile Product Configuration

Chapter 30
Understanding Mobile Product Configuration. .. .383
Mobile Configuration. .383
Solution Package Contents. .384
Functional Components. .384
Data.. .384

Model Data.385
Site Support Data..385
Configuration Data.385

Solution Distribution and Installation. .385
Types of Models. .386
Mobile Configurator Packaging Tool. .386
Mobile Machine Requirements. .389
Package Maintenance.. .389

Controlling Field Version Use..389
Guidelines for Maintenance..389

Chapter 31
Mobile Solution Administration.. .391
Preparing a Solution for Packaging.. .391

Internalizing Model Data.392
Setting Configuration Restore Policy.393

Localizing Solution UI Files. .394
Customizing and Localizing the Mobile Configurator Client. .394

Customizing the Mobile Client.394
Localizing the Mobile Client.395

Integrating Mobile Configurator with ERP Systems.. .. .396
MTS Interfaces..397
Sample Implementations.397
Using the Transfer Service.397
Using Source Control.398

xvi PeopleSoft Proprietary and Confidential

Contents

Integrating Mobile Configurator with Microsoft COM-Compatible Applications. .398

Chapter 32
Creating and Maintaining Mobile Solutions... .399
Understanding the Packaging Tool.399
Setting the Application Root.400
Creating a New Solution Package.. .401
Adding a Model to the Solution Package..403
Setting End-User Installation Options..403
Modifying a Solution Package.. .404
Adding Non-Solution Files to the Solution Package.. .404
Accessing Package Properties. .404
Adding Annotation to the Package.. .404
Generating the Solution Package Installer. .404
Updating a Solution Package Installer.405
Updating Only the Model(s) of a Package.. .405
Printing Solution Package Content.406

Part 8
Advanced Configurator System Administration

Chapter 33
Understanding Advanced Configurator Administration.. .409

Chapter 34
Administration Tools.. .411
Administration Console. .411
Solution Tester. .414

Page Used to Test Solutions.414
Accessing the Solution Tester.417
Understanding the Output and Solution User Interface.418
Setting Configuration Solution Parameters.418

Model Tester. .419

PeopleSoft Proprietary and Confidential xvii

Contents

Chapter 35
Maintaining the Advanced Configurator System.... .421
Managing Model Versioning421
Loading Models.422
Managing the Configurator Server’s Memory Usage.. .423
Compressing Configuration Data.424
Using the Explanations.properties File. .425

Copying the Explanations.properties File.425
Searching for the Explanations.properties File.425

Compiling Models from the Command Line..426
Accessing and Using COPXML Servlet Statistics.426

Appendix A
Visual Modeler Expression Editor Functions... .429
Numeric Operators and Functions.. .429
Boolean Functions..432
Date Functions..434
String Functions.. .437

Appendix B
Creating and Adding User-Defined Functions. .. .439
Adding a User-Defined Function. .439
Implementing the UserFunction Interface.. .440
Methods..440
Exceptions..441
Editing UserFunctions.xml. .442
Using the Sample User-Defined Function getQuantity().444

Understanding the getQuantity() Sample Function.444
Setting Up getQuantity().445
Viewing getQuantity() Behavior.446

Appendix C
Advanced Configurator Form Controls. .. .449
Single-Select Group Form Control. .449
Multi-Select Group Form Control. .450
Single-Select Table Form Control. .451
Multi-Select List Form Control. .452

xviii PeopleSoft Proprietary and Confidential

Contents

Single-Select List Form Control. .452
Multi-Select Table Form Control. .453
Single-Select Image..454
Single-Select Image Table. .454
Application Why Help. .456
Form Control Why Help..456
Text Input Form Control.457
Numeric Data Form Control.457
Extern Entry. .458

Appendix D
Compound Model Properties File. .. .459
Properties Description. .459
File Text.460

Appendix E
Node-Circuit-Hub Service. .. .463
Description of Services. .463
XML Representation of Compound Structure Definition. .464

Appendix F
Mobile Configurator COM API... .467
PeopleSoft.MCfgProxy Methods.. .467

Start.467
Stop..467
Show..467
Hide..468
NewConfiguration(String sSolutionID).468
ReConfigure(String sXML).468
WaitForConfiguration(Integer nTimeout).469
IsConfigurationReady..469
GetConfiguration.469
SetLabelToString(Integer nLabelID, String NewLabel).470
StartCountdown(Integer nCountdownTimeInMins, Integer nWarnLeftTimeInMins, String
strWarnMessage, String strContinueLabel, String strStopLabel).470
StopCountdown..471

Sample Application Client Code.. .. .471

PeopleSoft Proprietary and Confidential xix

Contents

Appendix G
PCIF. .. .473
MODEL Element.473
DATABASE_REFERENCE Element. .475
CLASS Element. .476
CLASS_ATTRIBUTE Element. .477
DEFAULT_VALUE Element. .478
DOMAIN_MEMBER Element. .478
DM_ATTRIBUTE Element.479
STANDARD_QUERY Element. .479
PRIMARY_TABLE Element. .480
COLUMN Element.480
WHERE Element. .481
SECONDARY_TABLE Element. .481
JOIN Element. .481
ADVANCED_QUERY Element. .481
QUERY_TEXT Element. .482
SELECTION_POINT Element. .482
STATIC_DEFAULTS Element.484
STATIC_DEFAULT Element.485
SELECTION_POINT_MIN_QTY_SETTINGS Element. .485
DOMAIN_MEMBER_MIN_QTY_SETTINGS Element. .486
DOMAIN_MEMBER_MAX_QTY_SETTINGS Element. .487
DYNAMIC_DEFAULT Element. .487
EXPLANATION Element. .489
EXPRESSION Element.489
NOT_COMPATIBLE Element. .489
EXTERN Element. .490
EFFECTIVITY Element. .491
EFFECTIVEDATE Element. .491
COMMENT Element. .492
ARGUMENT Element.492
RHS_ARGUMENT Element.492
ROW Element.493
SET Element.. .493
VALUE Element.494
The CONSTRAINT_QUERY Element. .494
SQL_CLAUSE Element. .494
COMPATIBLE Element. .494
REQUIRED Element. .496

xx PeopleSoft Proprietary and Confidential

Contents

ELIMINATION Element. .497
COMPARISON Element.498
RESOURCE_CONSTRAINT Element.499
RESOURCE_PROVIDERS Element. .500
ATTRIBUTE Element. .500
RESOURCE_CONSUMERS Element.501
SELECTION_POINT_ATTRIBUTE Element.501
SUMMATION Element. .. .502
SUMMANDS Element. .502
TOTAL_ATTRIBUTE Element. .503

Appendix H
Element-Attribute Trees505
Complete COP XML.. .505

Without Attributes.505
With Attributes.506

Configurator XML Interface507
Request.507
Response..507

Appendix I
ISO Country and Currency Codes... .509
ISO Country Codes.. .509
ISO Currency Codes..518

Glossary of PeopleSoft Terms.... .529

Index .. .545

PeopleSoft Proprietary and Confidential xxi

Contents

xxii PeopleSoft Proprietary and Confidential

About This PeopleBook

PeopleBooks provide you with the information that you need to implement and use PeopleSoft applications.

This preface discusses:

• PeopleSoft application prerequisites.

• PeopleSoft application fundamentals.

• Related documentation.

• Typographical conventions and visual cues.

• Comments and suggestions.

• Common elements in PeopleBooks.

Note. PeopleBooks document only page elements that require additional explanation. If a page element
is not documented with the process or task in which it is used, then either it requires no additional
explanation or it is documented with common elements for the section, chapter, PeopleBook, or product
line. Elements that are common to all PeopleSoft applications are defined in this preface.

PeopleSoft Application Prerequisites
To benefit fully from the information that is covered in these books, you should have a basic
understanding of how to use PeopleSoft applications.

You might also want to complete at least one PeopleSoft introductory training course.

You should be familiar with navigating the system and adding, updating, and deleting information by
using PeopleSoft windows, menus, and pages. You should also be comfortable using the World Wide
Web and the Microsoft Windows or Windows NT graphical user interface.

These books do not review navigation and other basics. They present the information that you need
to use the system and implement your PeopleSoft applications most effectively.

PeopleSoft Application Fundamentals
Each application PeopleBook provides implementation and processing information for your PeopleSoft
database. However, additional, essential information describing the setup and design of your system
appears in a companion volume of documentation called the application fundamentals PeopleBook.
Each PeopleSoft product line has its own version of this documentation.

The application fundamentals PeopleBook consists of important topics that apply to many or all
PeopleSoft applications across a product line. Whether you are implementing a single application,
some combination of applications within the product line, or the entire product line, you should
be familiar with the contents of this central PeopleBook. It is the starting point for fundamentals,
such as setting up control tables and administering security.

PeopleSoft Proprietary and Confidential xxiii

General Preface

Related Documentation
This section discusses how to:

• Obtain documentation updates.

• Order printed documentation.

Obtaining Documentation Updates
You can find updates and additional documentation for this release, as well as previous releases,
on the PeopleSoft Customer Connection website. Through the Documentation section of
PeopleSoft Customer Connection, you can download files to add to your PeopleBook Library.
You’ll find a variety of useful and timely materials, including updates to the full PeopleSoft
documentation that is delivered on your PeopleBooks CD-ROM.

Important! Before you upgrade, you must check PeopleSoft Customer Connection for updates to the
upgrade instructions. PeopleSoft continually posts updates as the upgrade process is refined.

See Also

PeopleSoft Customer Connection, https://www.peoplesoft.com/corp/en/login.jsp

Ordering Printed Documentation
You can order printed, bound volumes of the complete PeopleSoft documentation that is delivered
on your PeopleBooks CD-ROM. PeopleSoft makes printed documentation available for each
major release shortly after the software is shipped. Customers and partners can order printed
PeopleSoft documentation by using any of these methods:

• Web

• Telephone

• Email

Web

From the Documentation section of the PeopleSoft Customer Connection website, access the
PeopleBooks Press website under the Ordering PeopleBooks topic. The PeopleBooks Press website
is a joint venture between PeopleSoft and MMA Partners, the book print vendor. Use a credit card,
money order, cashier’s check, or purchase order to place your order.

Telephone

Contact MMA Partners at 877 588 2525.

Email

Send email to MMA Partners at peoplesoftpress@mmapartner.com.

See Also

PeopleSoft Customer Connection, https://www.peoplesoft.com/corp/en/login.jsp

xxiv PeopleSoft Proprietary and Confidential

General Preface

Typographical Conventions and Visual Cues
This section discusses:

• Typographical conventions.

• Visual cues.

• Country, region, and industry identifiers.

• Currency codes.

Typographical Conventions
This table contains the typographical conventions that are used in PeopleBooks:

Typographical Convention or Visual Cue Description

Bold Indicates PeopleCode function names, method names,
language constructs, and PeopleCode reserved words that
must be included literally in the function call.

Italics Indicates field values, emphasis, and PeopleSoft or other
book-length publication titles. In PeopleCode syntax,
italic items are placeholders for arguments that your
program must supply.

We also use italics when we refer to words as words or
letters as letters, as in the following: Enter the letter O.

KEY+KEY Indicates a key combination action. For example, a plus
sign (+) between keys means that you must hold down
the first key while you press the second key. For ALT+W,
hold down the ALT key while you press the W key.

Monospace font Indicates a PeopleCode program or other code example.

“ ” (quotation marks) Indicate chapter titles in cross-references and words that
are used differently from their intended meanings.

. . . (ellipses) Indicate that the preceding item or series can be repeated
any number of times in PeopleCode syntax.

{ } (curly braces) Indicate a choice between two options in PeopleCode
syntax. Options are separated by a pipe (|).

PeopleSoft Proprietary and Confidential xxv

General Preface

Typographical Convention or Visual Cue Description

[] (square brackets) Indicate optional items in PeopleCode syntax.

& (ampersand) When placed before a parameter in PeopleCode syntax,
an ampersand indicates that the parameter is an already
instantiated object.

Ampersands also precede all PeopleCode variables.

Visual Cues
PeopleBooks contain the following visual cues.

Notes

Notes indicate information that you should pay particular attention to as you work with the PeopleSoft system.

Note. Example of a note.

If the note is preceded by Important!, the note is crucial and includes information that concerns
what you must do for the system to function properly.

Important! Example of an important note.

Warnings

Warnings indicate crucial configuration considerations. Pay close attention to warning messages.

Warning! Example of a warning.

Cross-References

PeopleBooks provide cross-references either under the heading “See Also” or on a separate
line preceded by the word See. Cross-references lead to other documentation that is
pertinent to the immediately preceding documentation.

Country, Region, and Industry Identifiers
Information that applies only to a specific country, region, or industry is preceded by a standard
identifier in parentheses. This identifier typically appears at the beginning of a section heading,
but it may also appear at the beginning of a note or other text.

Example of a country-specific heading: “(FRA) Hiring an Employee”

Example of a region-specific heading: “(Latin America) Setting Up Depreciation”

Country Identifiers

Countries are identified with the International Organization for Standardization (ISO) country code.

See About These PeopleBooks, “ISO Country and Currency Codes,” ISO Country Codes.

xxvi PeopleSoft Proprietary and Confidential

General Preface

Region Identifiers

Regions are identified by the region name. The following region identifiers may appear in PeopleBooks:

• Asia Pacific

• Europe

• Latin America

• North America

Industry Identifiers

Industries are identified by the industry name or by an abbreviation for that industry. The
following industry identifiers may appear in PeopleBooks:

• USF (U.S. Federal)

• E&G (Education and Government)

Currency Codes
Monetary amounts are identified by the ISO currency code.

See Appendix I, “ISO Country and Currency Codes,” ISO Currency Codes.

Comments and Suggestions
Your comments are important to us. We encourage you to tell us what you like, or what
you would like to see changed about PeopleBooks and other PeopleSoft reference and
training materials. Please send your suggestions to:

PeopleSoft Product Documentation Manager PeopleSoft, Inc. 4460 Hacienda Drive Pleasanton, CA 94588

Or send email comments to doc@peoplesoft.com.

While we cannot guarantee to answer every email message, we will pay careful attention
to your comments and suggestions.

Common Elements in These PeopleBooks
As of Date The last date for which a report or process includes data.

Business Unit An ID that represents a high-level organization of business information.
You can use a business unit to define regional or departmental
units within a larger organization.

Description Enter up to 30 characters of text.

Effective Date The date on which a table row becomes effective; the date that an action
begins. For example, to close out a ledger on June 30, the effective date
for the ledger closing would be July 1. This date also determines when

PeopleSoft Proprietary and Confidential xxvii

General Preface

you can view and change the information. Pages or panels and batch
processes that use the information use the current row.

Once, Always, and Don’t
Run

Select Once to run the request the next time the batch process runs. After the
batch process runs, the process frequency is automatically set to Don’t Run.

Select Always to run the request every time the batch process runs.

Select Don’t Run to ignore the request when the batch process runs.

Report Manager Click to access the Report List page, where you can view report content,
check the status of a report, and see content detail messages (which show
you a description of the report and the distribution list).

Process Monitor Click to access the Process List page, where you can view the
status of submitted process requests.

Run Click to access the Process Scheduler request page, where you can specify the
location where a process or job runs and the process output format.

Request ID An ID that represents a set of selection criteria for a report or process.

User ID An ID that represents the person who generates a transaction.

SetID An ID that represents a set of control table information, or TableSets.
TableSets enable you to share control table information and processing options
among business units. The goal is to minimize redundant data and system
maintenance tasks. When you assign a setID to a record group in a business
unit, you indicate that all of the tables in the record group are shared between
that business unit and any other business unit that also assigns that setID to
that record group. For example, you can define a group of common job codes
that are shared between several business units. Each business unit that shares
the job codes is assigned the same setID for that record group.

Short Description Enter up to 15 characters of text.

xxviii PeopleSoft Proprietary and Confidential

PeopleSoft Enterprise Advanced Configurator
for CRM Preface

This preface discusses:

• PeopleSoft Enterprise Advanced Configurator 8.9 PeopleBook.

• PeopleSoft Enterprise Order Capture 8.9 PeopleBook.

PeopleSoft Enterprise Advanced Configurator 8.9 PeopleBook
The PeopleSoft Enterprise Advanced Configurator 8.9 PeopleBook provides implementation and processing
information for the Advanced Configurator application. Information is organized into these topics:

• Getting Started provides an overview of the application’s basic concepts, capabilities,
implementation phases, and tools.

• Product Modeling with a Component Model explains how to build the central component of a configuration
implementation, the model, to represent a product or service, using PeopleSoft Visual Modeler.

• Product Modeling with a Compound Model explains how to represent a product or
service with parts that are themselves configurable.

• Application Extensions describes how to build specific functionality by calling or
extending Advanced Configurator Java APIs.

• PeopleSoft Enterprise Order Capture Integration describes how to set up Advanced Configurator for
configuration sessions from within the PeopleSoft Enterprise Order Capture application.

• Building a Custom User Interface details the front-end components that allow you to build a completely
custom configuration interface for hosting on an independent production environment.

• Mobile Product Configuration explains the capabilities of the mobile configuration components
and their setup and maintenance for a disconnected field user base.

• Advanced Configurator System Administration describes how to use the deployment and testing
tools to validate and maintain configuration implementations.

In addition to the core reference sections of this PeopleBook, there are six appendixes:

• Visual Modeler Expression Editor Functions lists the many operators and functions available
for writing expressions to describe model behavior.

• Creating and Adding User-Defined Functions is a tutorial for writing your own functions
for use in creating expressions for a model.

• Advanced Configurator Form Controls provides a reference for the HTML and JSP code that renders
each of the form controls available for a custom configuration interface.

• Compound Model Properties File provides a hard-copy reference for the compound model
properties file in two versions: annotated and non-annotated.

• Node-Circuit-Hub Service Sample Model describes a sample complex product (communications services)
offering that includes the XML representation of its compound structure definition

PeopleSoft Proprietary and Confidential xxix

Preface

• Mobile Configurator COM API is a developer’s reference for the classes and methods that allow a
Mobile Order Capture user to initiate a configuration session with Mobile Configurator.

There is a glossary of terms at the end of the book.

PeopleSoft Enterprise Order Capture 8.9 PeopleBook
Additional essential information describing the setup and design of your system appears in a companion
volume of documentation called PeopleSoft Enterprise Order Capture 8.9 PeopleBook.

The PeopleSoft Enterprise Order Capture 8.9 PeopleBook consists of topics that apply if you are
integrating PeopleSoft Enterprise Order Capture with Advanced Configurator.

xxx PeopleSoft Proprietary and Confidential

PART 1

Getting Started

Chapter 1
Getting Started with PeopleSoft Enterprise Advanced Configurator

Chapter 2
Other Sources of Information

CHAPTER 1

Getting Started with PeopleSoft Enterprise
Advanced Configurator

This chapter provides an overview of Advanced Configurator architecture and discusses:

• Additional documentation for Advanced Configurator.

• Testing and administration tools.

• Implementing a configuration solution.

• Other sources of information.

Additional Documentation for Advanced Configurator
This section lists the documentation for PeopleSoft Advanced Configurator that is available in the
Configurator installation and on PeopleSoft Customer Connection.

See Also

PeopleSoft Enterprise CRM 8.9 Installation Guide

PeopleSoft Advanced Configurator API Reference Guide

Testing and Administration Tools
This section discusses the tools available for testing and administration.

Configurator includes two tools to help you validate your model and its associated solution. The
Solution Tester and the Model Tester provide valuable troubleshooting information. Solutions
require updating to reflect changes in the product or service.

Note. The Administration Tool can help you track and manage versions as well as
service, compile, and run models remotely.

See Also

Part 8, “Advanced Configurator System Administration,” page 407

PeopleSoft Proprietary and Confidential 3

Getting Started with PeopleSoft Enterprise Advanced Configurator Chapter 1

Advanced Configurator Architecture
This section describes the basic elements of Advanced Configurator architecture:

• Application server

• Web server

• Relational databases

Application Server

The application server, such as BEA WebLogic , has three "tiers" within it: dynamic
presentation logic, business logic, and database abstraction.

• Dynamic presentation

This tier is used to process any presentation content that is determined at run time. It is conditional
based upon user actions and selections, and can be personalized.

• Business logic

This tier houses the Configurator models and other product components.

• Database abstraction

This tier contains calls to the database so that designers do not need to know which specific database
is being used. It also maintains connections to any databases that might be utilized.

After the dynamic content is processed by these "tiers," it is then passed to the web
server for display in the browser.

Web Server

Web servers are used as the static presentation tier. A web server displays static HTML pages and
images. It also displays the HTML results of the processed Java Server Pages (JSPs) after the
application and database servers have compiled the dynamic information.

Relational Databases

The relational databases contain any external data that you use in product models. Examples of these
might be third-party product tables, catalogs, or marketing information. This data can be refreshed without
requiring business logic to change. This allows for a flexible and maintainable system.

Configurator Interfaces
The PeopleSoft Advanced Configurator interacts with industry-standard applications commonly used
for web development and deployment. Java 2 Enterprise Edition compliance and BEA™ WebLogic®
application certification combine to provide a fast, scalable, and secure configuration service.

PeopleSoft Advanced Configurator interacts within a multi-tier structure called the Lightning
Architecture™ that is based on Java 2 Enterprise Edition (J2EE) technology.

The following diagrams the architecture of Advanced Configurator.

4 PeopleSoft Proprietary and Confidential

Chapter 1 Getting Started with PeopleSoft Enterprise Advanced Configurator

Runtime
Problem
(RTP)

Loadable
 Engine
Problem

(LEP)

Design Time

Admin

UI Design
(Dreamweaver)

Corporate Data
(Domain

Members,
customer schema)

HTML/JSP

Visual Modeler
GCL

Problem

Model Source

Configurator Link
& Compile

Why-Help

Scheme
and Data

Configurator
Data Manager

Configurator
Engine

Java

Client
Operations
Processor

OOP
Extension

Java

Web Client
Processor

JSP/HTML

Deploy/Link-Compile Deploy/Run-Time

Advanced Configurator Architecture

Advanced Configurator Implementation
This section discusses:

• Implementing an integrated Configurator solution.

• Implementing a standalone Configurator solution.

• Other sources of information.

PeopleSoft Proprietary and Confidential 5

Getting Started with PeopleSoft Enterprise Advanced Configurator Chapter 1

Implementing an Integrated Configurator Solution
If you intend for users to configure the product from within a PeopleSoft CRM application, you
do not need to create a user interface (although it is still an option). PeopleSoft CRM pages
can provide the user interface for you, requiring only that you specify the pages’ data content.
Optionally, you can create a custom user interface using JSP.

Step Reference

1. Install Configurator and set it up for integration. (For
integration with PeopleSoft CRM Order Capture).

PeopleSoft Enterprise CRM 8.9 Installation Guide

2. Build a model of the product(s) or service(s) using the
PeopleSoft Visual Modeler.

Part 2, “Product Modeling with a Component Model,”
page 9 and Part 3, “Product Modeling with Compound
Models,” page 121

3. Deploy the solution files to the production environment
using the Advanced Configurator Administration
console.

Part 8, “Advanced Configurator System Administration,”
page 407

4. Set up the solution schema. Part 5, “PeopleSoft CRM Order Capture Integration,”
page 269

Implementing a Standalone Configurator Solution
A solution that runs on PeopleSoft Advanced Configurator independent of other PeopleSoft applications
requires a custom User Interface in addition to the configuration model. Advanced Configurator is also
extensible, and the solution may include Java implementations of the Configurator interfaces.

Step Reference

1. Build a model of the product(s) or service(s) using the
PeopleSoft Visual Modeler.

• Part 2, “Product Modeling with a Component Model,”
page 9

• Part 3, “Product Modeling with Compound Models,”
page 121

2. Build a UI. Create the JavaServer Pages for the User
Interface using the provided templates and, if desired,
Dreamweaver extensions.

Part 6, “Building a Custom User Interface,” page 293

3. Write Java extensions for any custom functions and
modify the JSP pages as needed.

Part 4, “Application Extensions,” page 153
Also consult the PeopleSoft Advanced Configurator
API Reference Guide in your server installation root\
bea\weblogic81\config\CalicoDomain\applications
\CalicoApp\calico\apidocs.

4. Deploy the solution files to the production environment
using the Configurator Administration Console.

Part 8, “Advanced Configurator System Administration,”
page 407

5. Install the Mobile Configurator Packaging Tool
and clients on the appropriate machines if you are
deploying the Mobile Configurator client, then package
and distribute the solution to mobile users.

PeopleSoft Enterprise CRM 8.9 Installation Guide

Part 7, “Mobile Product Configuration,” page 381

6 PeopleSoft Proprietary and Confidential

CHAPTER 2

Other Sources of Information

In the planning phase of your implementation, take advantage of all PeopleSoft sources of information,
including the installation guides, table-loading sequences, data models, and business process maps. A
complete list of these resources appears in the preface in the PeopleSoft Enterprise CRM 8.9 Application
Fundamentals PeopleBook, with information about where to find the most current version of each.

See Also

PeopleSoft Enterprise Order Capture 8.9 PeopleBook

PeopleSoft Proprietary and Confidential 7

Other Sources of Information Chapter 2

8 PeopleSoft Proprietary and Confidential

PART 2

Product Modeling with a Component Model

Chapter 3
Understanding Modeling

Chapter 4
Setting Up the Modeling Environment

Chapter 5
Creating Objects for the Model

Chapter 6
Creating Relationships Between Model Objects

Chapter 7
Specifying Quantities on Selection Points

CHAPTER 3

Understanding Modeling

This chapter discusses:

• Basic model concepts.

• Relationships between objects

• Relationship properties.

• Expressions in relationships.

• Default values within expressions.

• Quantities in Modeling.

• Creating parameterized explanations.

• Optimizing performance and minimizing model maintenance

• Using the sample models.

• The modeling process.

• Model Tester.

• Interfacing with third-party tools.

Basic Model Concepts
The PeopleSoft Visual Modeler is a graphical hierarchical modeling tool for designing complex configuration
solutions. You use it to create a model of a product or a service that then serves as the “blueprint” for
specifying actual instances of the product or service that are customized to a customer’s needs.

Advanced Configurator models represent products and services using three concepts:

• The hierarchy—a logical structure that identifies and organizes its components.

• Relationships—how the components relate to each another and interact.

• Components—a product’s parts are represented by classes, attributes, domain members, and selection points.

Visual Modeler
Advanced Configurator technology supports configuration modeling and run-time configuration processing.

Using the concepts of hierarchy, components, and relationships, Visual Modeler allows you
to describe even complex products and services:

• Uses a multi-paned window to simplify model navigation and the creation of
classes, attributes, and relationships.

PeopleSoft Proprietary and Confidential 11

Understanding Modeling Chapter 3

• Uses a “no programming” paradigm.

All modeling is accomplished through drag-and-drop operations and table selections.

• Integrates easily with existing customer data.

• Provides support for team development.

• Separates the UI design from the product modeling problem.

Modelers don’t need to create a UI in order to test their model logic.

Model data can be defined in the model (internal data), or obtained from a relational database.

The Configurator engine uses a compiled version of the Visual Modeler model to process
user picks, ensuring a valid configuration at run-time.

In this document, a general reference to the Advanced Configurator includes both
design-time and run-time components.

You can use Visual Modeler stand-alone or with the Advanced Configurator engine. The
Visual Modeler interface uses common hierarchical concepts:

• A model is built from objects. An object is a functional component such as a class,
attribute, relationship, or domain member.

• A class is a group or category of like things; for example, products or services.

A class defines common attributes such as color, weight, power requirements, or price.

• A class hierarchy applies a hierarchical organization to a group of classes.

Attributes are defined on a class. A new class that inherits attributes from an existing “ancestor” class
is a “subclass” or “child.” The nearest ancestor class is referred to as the “parent.”

• A class member, or “domain member” is an instance of a class that assigns specific values to class attributes.

• A relationship, such as compatibility or incompatibility, can be defined between classes
or class attributes, and between selection points.

Visual Modeler Objects
Visual Modeler employs standard object-oriented principles for class and inheritance. A model
includes an automatically generated Root class, and any classes, subclasses, domain members,
and relationships that you define. Inheritance moves from left to right, such that child classes
and domain members inherit attributes from parent classes. Hierarchical modeling makes a large
configuration task more approachable. Classes can be grouped in meaningful ways, and inheritance
capabilities can greatly reduce the work of explicit value assignment.

The compiled model provides basic configuration functionality. To visually organize the display of
controls at run time, use DreamWeaver with the Advanced Configurator Extensions. Using DreamWeaver
reduces the need to hand-code JSP pages. Model functionality can be further extended with custom
Java code that manipulates the controls and options displayed at run time.

Object Properties and Attributes

All Visual Modeler objects (classes, domain members, or relationships) have properties, also referred
to as system properties. Classes can have both properties and attributes.

• Properties are part of the object definition and cannot be removed.

12 PeopleSoft Proprietary and Confidential

Chapter 3 Understanding Modeling

For example, classes, domain members, and relationships all have a Name property. You supply
a string to define this property. A property setting is specific to an object.

• Attributes can be thought of as optional user-defined extensions to a class description.

Attributes can be changed or deleted at any time. Attributes are inherited by subclasses. Domain
members assign values to attributes, creating an instance of a class.

Classes and Class Attributes

A class is a group of related objects—items or characteristics a user can order, specify, or require.

• The Root class is a special class defined in every model.

It behaves like any other class, except it can’t be deleted and can’t have domain members.

• Any number of attributes can be added to a class.

Attributes can be of type Boolean, Float, Int, String, and Date. User-defined class attributes
appear on all subclasses and subsequent domain members.

• Class attributes can be assigned default values only in the class on which they are defined
(class attribute values cannot be altered in subclasses).

An attribute value can be assigned on a domain member instance as well.

• The Internal flag is a class property that determines whether internal domain members will be used, or
if domain members will be obtained from a database. A list of class properties follows.

• When external domain members are used, an attribute must exist for each column pulled from the database.
This includes the Name. The name defined when the class was created exists internally, so it is not
available if the Internal attribute is set to False. (Attribute names should begin with a letter. Attribute
names starting with “_” and “$” are reserved for use by the Advanced Configurator system.)

Visual Modeler supplies the following default properties for each class:

Name (String) The class name specified at creation.

File Name (String) The file name specified at creation. Although the class name
you see in the Visual Modeler can be changed interactively, the
corresponding file name cannot be changed.

Internal (Boolean) Default is True, implying that domain members are internal (defined within
the model). If this property is set to False, the SQL Query dialog will
be displayed. A model can combine both internal and external domain
member data, although not within a single class.

SQL Query Only displayed if Internal is set to False. Click on the Edit button to
raise the Primary Table dialog. This dialog allows you to specify the data
source, the table used, and the columns accessed.

You must consider the effect of inheritance principles as you build a model. Click anywhere in
the Model Structure View to ensure focus on the modeling area.

See Chapter 5, “Creating Objects for the Model,” Creating a Class, page 69.

PeopleSoft Proprietary and Confidential 13

Understanding Modeling Chapter 3

Domain Members
A domain member is an instance of a class that describes a particular item, service, or decision. Domain
members assign values to class attributes. A class can have either internal or external domain members,
but the Internal flag determines the source of the domain members used in the model.

Internal Domain Members

If a domain member is internal, values are assigned as part of the domain member definition. An internal domain
member has only one property: its name. A domain member can instantiate attributes from the parent class.

See Chapter 5, “Creating Objects for the Model,” Creating Internal Domain Members, page 73.

External Domain Members

External domain members populate the model based on the SQL Query defined for the class. Values extracted
from a database are assigned to a corresponding class attribute. External domain members can be internalized
using the menu command Project, Internalize Model. This tool is primarily for use when you need to package
a model with its data, such as for transfer and setup at an off-line location for support and testing.

See Chapter 5, “Creating Objects for the Model,” Setting Up Binding for External Domain Members, page 75.

Selection Points
A selection point is an object in the model that will be exposed at run time. A class or a class
attribute can become a selection point (sometimes referred to as a decision point). Only selection
points shown in the model structure view are available for display at run time.

In addition, a selection point:

• May or may not be visible and selectable at run time.

• May or may not be required to satisfy the run-time completeness check.

By default, a selection point is created for every leaf class that participates in a relationship.

It also participates in all relationships that refer to the original parent class. If a relationship is made directly
between a selection point and another object, that relationship is confined to the selection point.

Relationships Between Objects
The relationships you can define between objects in Visual Modeler are:

• Compatibility constraints

• Requirement constraints

• Dynamic defaults

• Resource constraints

• Summation

• Elimination

• Comparison

14 PeopleSoft Proprietary and Confidential

Chapter 3 Understanding Modeling

Compatibility

A non-directional compatibility constraint explicitly identifies all valid combinations and eliminates all
other possibilities. Consider the example of an eyeglass product in which Sport frames are compatible with
plasticShatterproof lenses. Thus, a pick on either Sport or plasticShatterproof eliminates all other choices.
The single remaining choice will be computer-selected if the control is not optional.

Note. Any options not explicitly marked as compatible are assumed to be incompatible.
There is no neutral state in a compatibility constraint.

Directional Compatibility

A directional compatibility constraint has a left-hand side (LHS) and a right-hand side (RHS). It
identifies compatible combinations, and eliminates all other selections. In the relationship editor,
the constraint is expressed in a table with a directional bar separating the LHS arguments from the
RHS arguments. The bar indicates that the combined LHS selections are compatible with one of
the RHS items; the RHS items are considered separate and unrelated.

• At run time, the constraint can’t eliminate all incompatible items until a pick or a computer
selection is made on all but one of the controls. In other words, given N columns in the constraint,
the constraint is not “bound” until a user or computer pick is made on N-1 controls. Then the
remaining pick is calculated and all incompatible items are eliminated.

• If a RHS object is optional, elimination will occur but a computer selection cannot be made. If the RHS
object is required and there is only one valid selection on the RHS, it will be computer-selected.

• Do not use directional compatibility if any RHS object is multi-select. A directional compatibility
cannot eliminate items from a multi-select control. Since nothing is eliminated, nothing is
computer-selected so the constraint has no effect. If a RHS argument is set to multi-select,
you will see the following message at compile time:

multi-select decision point <nameSelection> in RHS of directional compatibility⇒

constraint <constraintName> will be ignored

The following figure shows and example of relationship dialog settings and the HTML
result of a directional compatibility:

PeopleSoft Proprietary and Confidential 15

Understanding Modeling Chapter 3

Directional compatibility

Non-Compatibility

A non-compatible constraint enumerates all invalid combinations. If any member of an invalid combination is
selected, all members are eliminated. This is true for both single- and multiple-select controls.

• If a control is not optional and only one option remains, that option will be computer-selected.

• Generally, in a non-compatibility constraint, when there are more than two arguments in a constraint (that is,
more than two columns in a relationship editor table), the full set of eliminations will not appear unless there is
a user pick or a computer-selection for all but one selection. In other words, given N columns in the constraint,
the constraint is not “bound” until a user or computer pick is made on N-1 controls. Then the remaining pick
is calculated and all incompatible items are eliminated. In some cases, however, it’s possible for fewer than
N-1 selections to cause eliminations to appear. For example, in a three-column, non-compatibility constraint,
if a value from the first column along with a value from the second column are incompatible with every
value from the third remaining column (and that column is a required selection), then selecting the value
from the first column will eliminate the corresponding value from the second column (since the additional
selection of the value from the second column would eliminate all selections for the third column).

Directional Non-Compatibility

A directional, non-compatible constraint evaluates a pick and then eliminates all the incompatible items.
In the relationship editor, the constraint is expressed in a table with a directional bar separating the LHS
arguments from the RHS arguments. Row by row, the combined LHS selections are incompatible with
one of the RHS items. The RHS items are separate and unrelated as shown in the figure.

16 PeopleSoft Proprietary and Confidential

Chapter 3 Understanding Modeling

Relationship dialog for a non-directional compatibility

Because RHS items are unrelated, a directional non-compatibility is equivalent to many
constraints. For example, row 3 equates to:

• Caleb and Carol are incompatible with Amigo.

• Caleb and Carol are incompatible with Blazer.

• Caleb and Carol are incompatible with Anteater.

• Caleb and Carol are incompatible with Bird.

Expressions in the Left-Hand Side of the Relationship

Using expressions in the LHS of the relationship lets you to constrain against values that aren’t
known until run time. Since expressions name variables whose values are input at run time through
user- or database input, by using expressions you can describe a condition or set of conditions that
result in a desired default selection or quantity on a selection, or both.

For example, a model for financial services product offers differing plans based on the customer’s marital
status and the spouse’s age. You can use an expressions on the LHS for a requirement constraint to determines
whether the customer or their spouse is older and thus which partner is considered the principal applicant.
The selection “Main applicant” is computer-selected if the customer is older than the spouse.

PeopleSoft Proprietary and Confidential 17

Understanding Modeling Chapter 3

Requirement constraint: If “Married” is selected, and the result of the expressionfxAge is greater
than fxSpouseAge, then “Main Applicant” is selected.

The example illustrates the two capabilities that using expressions in the LHS of a relationship allow you:

• Eliminate items (in the case of a compatibility constraint) and require items (in the
case of a requirement constraint),

• Define a range of values that default a selection.

• Describe conditions that default a selection that can’t be known at design time,
especially in the case of external data.

In defining a range of values, you can describe the lower limit, the upper limit, or both. In addition,
you can use more than one expression to define the default conditions.

Requirement Constraint
A requirement constraint makes a computer selection on items that meet the LHS criteria. The figure below
shows a simple Requirement, where selecting “photogray” causes “glass” to be computer-selected.

Requirement constraints have these characteristics:

• Requirement constraint behavior is unaffected by optional/required status on a selection point.

• If an RHS control is single-select, the selection is made and the rest of the items are eliminated. In the
multi-select case, the computer selections on the RHS are made, but no eliminations occur.

• Given the constraint shown in the figure, if the RHS item “glass” is eliminated (by a different
constraint), then the LHS item “photogray” will also be eliminated.

• Externs can be used on the LHS and the RHS of a requirement constraint.

18 PeopleSoft Proprietary and Confidential

Chapter 3 Understanding Modeling

Requirement constraint

When the Requirement is written on a Selection Point, you can define default quantities on the selections.
If the Selection Point has Quantity property set to True, settings appear in the column.

Requirement constraint with quantity settings

See Chapter 6, “Creating Relationships Between Model Objects,” Editing Requirement Constraints, page 99.

Dynamic Default
As mentioned earlier, a Dynamic Default is not a true constraint because it is not considered in the
model verification process. There are some similar traits, however. A Dynamic Default is directional.
When the LHS criteria is met, a computer-select occurs on the item on the RHS, provided it is available
and selecting it will not cause a violation. The RHS can have multiple arguments (multiple columns in
the relationship table), in which case a default pick can be made on each control.

See Chapter 6, “Creating Relationships Between Model Objects,” Editing Dynamic Defaults, page 100.

A dynamic default has these characteristics:

• If a default item has been eliminated, nothing is done.

• Once the default pick exists, any constraint reference to the item can eliminate it. There
is no violation when a Dynamic Default is superseded.

The following figure shows a simple default with two rows. Each LHS argument has a different pick
on the RHS. “Plastic” picks “anti-scratch,” and “plasticShatterproof” picks “anti-reflective.”

PeopleSoft Proprietary and Confidential 19

Understanding Modeling Chapter 3

• As with Requirement constraints, when the default is written on a selection point, you can define quantities
for the selection. If the selection point flag Quantity is set to True, settings appear in the column.

Dynamic default relationship

Dynamic default with quantity settings

Resource Constraint
A Resource constraint evaluates numeric attribute values. A constraint designates one or more
provider attributes and one or more consumer attributes. If the sum of the consumers exceeds the
sum of the providers, a conflict occurs and an explanation, if defined, is displayed at the page
level. This behavior can also be achieved with a numeric Comparison.

See Chapter 6, “Creating Relationships Between Model Objects,” Editing Resource Constraints, page 101.

Summation
The summation relationship adds the value of numeric attributes. The sum can be displayed at run
time. The summation relationship does not affect model verification.

See Chapter 6, “Creating Relationships Between Model Objects,” Editing Summation Relationships, page 102.

20 PeopleSoft Proprietary and Confidential

Chapter 3 Understanding Modeling

Elimination
An elimination compares a specific attribute value on a selection point with the value of a numeric, boolean,
string, or date expression. The following figure shows an elimination where domain members of the selection
point “HardDriveSelection” are eliminated if the value of the selected hard drive’s Watts attribute exceeds the
value passed in by externExpression. An explanation appears at the page level when the constraint is violated.

Elimination of numeric types

See Chapter 6, “Creating Relationships Between Model Objects,” Editing Elimination Constraints, page 103.

Comparison
Advanced Configurator supports comparison relationships for the four data types string, numeric, boolean,
and date. If the comparison is False, a conflict occurs, and an explanation, if defined, appears at the page
level. Because comparisons operate on expressions, it does not pick or eliminate domain members.

A numeric comparison compares the value of one numeric expression with the value of another; a boolean
comparison compares boolean values; a string comparison, strings; and a date comparison, dates. Or, you can
compare the value of an expression with a constant rather than an expression with the “to the constant” option.

The figures illustrate examples of a string, numeric, and boolean comparison.

See Chapter 6, “Creating Relationships Between Model Objects,” Editing Comparison Constraints, page 104.

PeopleSoft Proprietary and Confidential 21

Understanding Modeling Chapter 3

String comparison relationship

22 PeopleSoft Proprietary and Confidential

Chapter 3 Understanding Modeling

Numeric comparison relationship

PeopleSoft Proprietary and Confidential 23

Understanding Modeling Chapter 3

Boolean comparison relationship

Effectivity Dates
Relationships and comparisons have optional date of effectivity ranges to indicate when they are
to be considered active and thus used in a configuration session. With effectivity dates, you can
define constraints and defaults that apply only during special sale periods, holiday periods, or other
times when the valid or suggested configuration is slightly different.

In contrast, expressions and summations do not have effectivity dates because their results may
be used in other, active relationships and expressions, and may be displayed on the UI. You can
set effectivity dates on compatibility and incompatibility constraints, dynamic defaults, resource
and requirement constraints, comparisons, and eliminations.

Effectivity dates are set in the relationship’s table editor using the Effectivity dialog.
Click the Edit button to open the dialog.

24 PeopleSoft Proprietary and Confidential

Chapter 3 Understanding Modeling

Effectivity in the property editor and in its dialog

You can enter multiple date ranges by clicking the Add button.

At run time, the server’s system date or a specific solve date is compared to the date ranges specified
on each of the relationships in the model. If it falls within any date range specified on a relationship,
then that relationship will be included in the configuration session. As soon as the Configurator
engine detects at least one valid range on a relationship, it will cease further comparison against any
remaining date range rows and the relationship will be enabled. If the date entered at run time does not
fall within any date range specified on a relationship, then that relationship is disabled. Relationships
that have no date ranges specified are considered to always be enabled.

Active relationships will be executed and propagated, and their results returned to the
end-user UI. Disabled relationships will not be executed or participate in propagation, nor
will they interact in any way with the configuration.

Any date can be entered at run time, however, if no date value is entered, the current date will be used.

To facilitate model testing, Visual Modeler allows you to specify a date to use as the solve date, so
that when the model is run, the engine will use that date rather than the system date or a specified
date. The model test solve date is set in the Projects Settings dialog. In addition, the Model Tester
itself lets you change the solve date without recompiling the model.

Setting the compile effectivity date for testing in the Projects Settings dialog

Expressions in Relationships
Note that every expression you create appears at the bottom of the Model Tester with its current value.
This will help you determine what is happening when you test your model.

Expressions will evaluate without selections or user entries. If a referenced object does not have a user
selection or user-entered value, the default value for the object will be used. If you don’t want the
expression to evaluate, you can use the “bnd()” function around the participating objects.

PeopleSoft Proprietary and Confidential 25

Understanding Modeling Chapter 3

Note. The model will still verify as true when expression values are missing or incomplete.
Because an unbound constraint is never evaluated, no conflict is generated. Use the “bnd()”
function with any objects that you want to remain optional.

A pick can be a user pick, None on a single-select, default picks, or computer-selections. This is a limiting
factor if you want to use multi-selects or if you want items to be optional. This example shows a workaround
for the multi-select case, where an extra domain member No Thanks has been added and is selected by default.

This figure also demonstrates explanations for relationships that use expressions. The total exceeds the budget
amount specified, so a message is displayed at the top and the configuration evaluates to false.

Expression behavior and display at run time

26 PeopleSoft Proprietary and Confidential

Chapter 3 Understanding Modeling

Note. Advanced Configurator doesn’t support date constants in expressions. Rather than using a
constant, use the function date, toDate, or intToDate to generate the date.

For example, instead of

dateToInt(2002-10-24)

use one of these:

dateToInt(intToDate(20021024))

dateToInt(toDate("2002-10-24"))

dateToInt(date(2002,10,24))

Relationship Explanations
The relationship editors for constraints have a field named Explanations. For Compatibility and Requirement
constraints, it appears on the Info View tab. For all others it is at the top of the form.

The Explanations field allows you to specify a message for display at run time. The explanation
will only be displayed if the constraint is violated. (Text entered in the Explanations field is
passed to the “Why Help” control if one is implemented for the page.)

• If the constraint is a Compatibility or Requirement constraint, the explanation will appear on all
control(s) participating in the constraint and also at the page level.

• If the constraint is a Resource constraint, Elimination, or Comparison, the message appears at the
page level only. In the Model Tester, this is at the top of the model.

• A parameter can be used to display the name of the pick as part of the explanation. The parameter
format is $(N:$NAME). You can also show other values besides the name by replacing $NAME
with an attribute value or one of a list of provided parameters. If the domain members are external,
you must refer to the database column name instead of an attribute name.

N is a number corresponding to a column in the relationship table. The left-most column
is 0 and the number increments as you count to the right.

See Chapter 3, “Understanding Modeling,” Creating Parameterized Explanations, page 44.

PeopleSoft Proprietary and Confidential 27

Understanding Modeling Chapter 3

Explanation field with parameters

Relationship Properties
Depending on their type, relationships can have these properties:

• Enabled

• Exclusive

• Format

• Effectivity Date

• Levels

28 PeopleSoft Proprietary and Confidential

Chapter 3 Understanding Modeling

Enabled

All relationships have the Enabled property. When Enabled is True (the default) the
relationship is included in the model at compile time. If Enabled is False, the relationship is
ignored. This setting is useful for testing relationships.

Exclusive

The Requirement constraint has a special field named Exclusive. Setting Exclusive to True means that a
control will be reserved for the RHS element in a Requirement constraint. You must define a separate
constraint for each selection point that requires a reserved RHS selection. At compile time, the selection point
for the RHS argument will be “cloned” for each constraint that requires it. In this manner, a selection on the
RHS can make a pick on the reserved control without eliminating that option for other constraints.

Requirement constraint exclusive property

Format

Constraints can be stored in three formats. The format can be selected as shown in the figure.

Possible format options

Internal In the Internal format, the constraint is stored in the .cms file
specified when it was created.

SQL Query Structured Query Language (SQL) query constraints offer an alternative to
constraint relationships built and maintained within the model.

For example, the standard approach to defining a compatibility constraint
between a Chassis and a Drive type is to manually enter and match the

PeopleSoft Proprietary and Confidential 29

Understanding Modeling Chapter 3

Chassis types with their compatible (or incompatible) Drive types. If
compatibilities change, the relationship must be edited.

This approach, although easy to use, can prove difficult to maintain
if relationships change often.

For example, if a manufacturing change causes a formerly incompatible
Desktop Chassis to be compatible with the 40G Drive, you would need to
edit the constraint to reflect this new relationship. For products that change
often, you can use the SQL query feature, which removes the constraint
definition from the model altogether and places it in a database.

See Chapter 6, “Creating Relationships Between Model Objects,” Creating
Relationships Outside the Model with SQL Queries, page 105.

DB Table When you select the DB Table option, the constraint information is saved
to a table. The DB Table option can be used only for a constraint that
operates on external data only; it will not work if any of the participating
classes are using internally defined data. By default, a table with the same
name as the constraint is stored in the current database. An additional
Database row appears in the properties editor. You can specify a different
database provided you have the proper ODBC driver set up for it.

Requirement constraint exclusive property

Effectivity Date

Relationships and comparisons can be set to participate in a configuration session only during one or more
specified time periods. The Effectivity property allows you to enter one or more “From” and “To” date
ranges. If the configuration session’s “solve date,” taken from the end-user’s system, falls within one
of the specified ranges, the relationship or comparison is made available for the session.

By default, relationships and comparisons have a single effective date with the range 1/1/1900 to 12/31/2099.

Levels

A constraint can have an arbitrary level number assigned to each argument. The level number is only
returned when an item is eliminated, including when it is in violation. JSP page designers can use
the level number to decide when to suppress display of certain selections.

To set a level, click the its Edit button in the Relationship properties editor to raise the Levels dialog.
Select an argument, then click the dialog Edit button to change the level.

30 PeopleSoft Proprietary and Confidential

Chapter 3 Understanding Modeling

Levels dialog

In the Model Tester, if the Show Elimination Level option is checked, the lowest level
number for an eliminated item will be displayed. If no elimination level was defined for a
selection, the Model Tester automatically returns 1.

Default Values Within Expressions
At run time, expressions are not evaluated until all the arguments used in the expression are bound.
For selection points, binding occurs when a selection has been made; for an extern, when a value has
been applied. However, preferred behavior is that expressions are evaluated all of the time unless
there is a specific reason to delay evaluation until all arguments are bound.

In order to enable testing when there are unbound arguments, expressions use the defined
default value for unbound arguments.

Default values allow an expression to evaluate regardless of whether all of the arguments are bound.
However, if you don’t want the expression to evaluate unless particular arguments are bound, use the
bnd() function within the expression. The bnd() function returns the value of the first bound argument
or a “not bound” status if none of the arguments are bound. If bnd() is used within an expression
and it returns the “not bound” status, the expression will not evaluate.

Example: The following expression always evaluates and returns a result even if the
selection points don’t yet have selections:

SP1:attr1 + SP2:attr2

To cause the expression not to evaluate unless arguments are bound, use the bnd() function within it:

SP1:attr1 + bnd(SP2:attr2)

You can also use the bnd()function in cases where a different, non-bound value is required:

SP1:attr1 / bnd(SP2:attr2, 1)

In this case, the bnd()function is used to return the value “1” for the numeric attribute
of SP2, if SP2 is not yet bound.

PeopleSoft Proprietary and Confidential 31

Understanding Modeling Chapter 3

Quantities in Modeling
In a model, you can define quantities on a selection point and quantities for a selected domain member
that allow you to implement a wide variety of quantity-dependent business logic.

Advanced Configurator quantity functionality lets you:

• Control how many different items on a control can be selected (single- and multi-select). The
user or computer can select either ItemA1 or ItemA2, but not both. Or, the user can select
any number of items in the control, up to the number displayed.

• Control the quantity of the domain members themselves. The user or the computer
can select one or more of ItemA1.

• Do both of the above in combination:

- One or more of ItemA1 and ItemA2.

- One or more of ItemA1 and just one of ItemA2.

- One of ItemA1.

- One or more of ItemA2.

• Specify default selections based on quantities—if the user selects three of ItemA1,
then select ItemB1 (or 3 of ItemB1, if desired).

• Specify default quantities based on selections—if ItemA1 is selected, then select three
of ItemB2 (and ItemB3 and ItemC1, if desired).

• Limit or specify the number of items a user can select within a selection point. For example, the
user can select up to three of ItemA3, and no more than one of ItemA4.

• Set up minimum default quantities to ensure that enough of ItemA3 is ordered when it is selected.

• Ensure that enough of ItemA3 is ordered when the user selects ItemB2 in another selection
point, which requires a specific quantity of ItemA3.

• Use an expression to calculate the required quantity of an item that is dependent on user input.

• Determine item quantities based on domain member values.

Advanced Configurator default quantity definitions allow you to build flexibility into quantity determination
for domain members that takes into account both predetermined quantity requirements and their
interaction with run-time conditions. The following illustrates the problem:

32 PeopleSoft Proprietary and Confidential

Chapter 3 Understanding Modeling

Domain Member
What is the Final Quantity?

4

3

2

5

Default quantity if picked, set in model

Design Time Run Time

Dynamic Default A Pick 1

Dynamic Default B Pick 2

Dynamic Default C Pick 3

Quantity determination in response to run-time events

Advanced Configurator lets you set limits on the final quantities, whatever quantity choices the end-user makes:

Domain Member
What is the Final Quantity?

Requirement constraint A Pick 1

4

3

2

5

6

7

Requirement constraint B Pick 2

Default quantity if picked, set in model

Design Time Run Time

Dynamic Default A Pick 3

Dynamic Default B Pick 4

Min/Max quantity, set in model

Dynamic process of determining the final quantity of a selected domain member

You must be able to set limits on the quantity of each domain member, yet allow for quantities
that result from run-time processes, such as constraints and user entries. In addition, you may
need to take into account quantities defined for its selection point.

Defining quantities in models depends on these basic concepts:

• Quantity defaults for individual domain members control how many of the selected
item is chosen—2 of ItemA, or 0 of ItemB.

• A quantity defined for an entire control—in the model represented by the selection
point—determines how many of the control’s items can be selected. If the quantity is one, it
is a single-select control; more than one, a multi-select control.

PeopleSoft Proprietary and Confidential 33

Understanding Modeling Chapter 3

• You can set default quantities at design time whose default values do not change during run
time, acting as absolute values for calculating a final quantity that takes into account quantities
generated by run time events such as user picks and constraints.

Static Default Quantities
The quantity of the selection DomainMemberX can be affected by static default quantities–the
default value you assign to it during modeling. An example is the quantities assigned
automatically when a domain member is selected.

For example, in a network model, NodeY always requires at least two Routers, more if certain other
components are selected in combinations determined by various constraints. By setting a static
default of 2 on the NodeY domain member, and giving it a Quantity Policy of MIN, you can ensure
that if it is selected, it will be ordered in a quantity of at least 2. Static default information for a
selection point is applied whenever a dynamic default or Requirement constraint selects any domain
member of that selection point, provided there are no user selections.

In addition, if the other nodes in the Node selection point—NodeX and NodeZ—have the same MIN(2)
requirement, you can set the Use Quantity Policy for all Domain Members option as a “blanket” default.

See Also

Chapter 3, “Understanding Modeling,” Interaction between Default Quantities and
Min/Max Settings at Run Time, page 42

Dynamic Default Quantities
The value of dynamic default quantities is determined at run time in response to expressions
or dynamic default constraints. Expressions can be included in a quantity policy—Overridable
f(x), Min of f(x), Max of f(x), and Sum f(x).

The Requirement constraint and Dynamic Default relationships select domain members in response to user or
computer picks during run time. Quantity for the default-selected domain member is 1, unless you specify a
new quantity and a new quantity policy. Quantities are defined on the table editor for the relationship.

A dynamic quantity definition would be needed in the case of a computer model. The model specifies by a
dynamic default that when BoardA is selected, the Advanced Configurator should select FanA as well.
Thus, a computer-select occurs for FanA, with a quantity of 1. (This computer-select occurs unless the
selection causes a conflict with another selection that is either required or user-selected.) However, BoardB
requires 2 of a different fan, FanB, so quantity must be added to the default definition of the BoardB/FanB
requirement. In the relationship editor, the constraint’s RHS for BoardB would be Min of 2 for FanB.

Only selection points with Quantity = True are settable.

Multiple Selections on a Single Domain Member
When there is the potential for multiple default selections on the same domain member, you must set up
contingent definitions at design time that correctly calculate the final quantity no matter what or how
many of the domain members are selected in response to run-time criteria. An example is a network
model that contains server boxes requiring chassis. The chassis type (domain member) and quantity
depend on the number of slots the server requires, as one chassis provides two slots and the other chassis
provides four. When the user selects the desired server boxes, the proper chassis type(s), in the required
number, are default-selected. In such a case, the quantity of chassis’ can be the largest of the default
quantities (minimum value), it can be summed, or it can be a combination of the two.

34 PeopleSoft Proprietary and Confidential

Chapter 3 Understanding Modeling

Order of Evaluation

When a domain member has multiple default quantities, the Advanced Configurator
evaluates the selections in a predetermined order.

Step 1—Default quantities for the domain members are evaluated first to arrive at a single
value according to the policy: the least value (Min of); the greatest (Max of), and total
(Sum). These are specified in the relationship editor:

Relationship editor showing quantity settings for BoardA

Step 2—The domain member’s static Min/Max setting, if any, is applied: adjust up to the minimum
value (Min of), adjust down to the maximum value (Max of), total (Sum). If Overridable is the policy,
this step is not performed. Policies are specified in the Defaults editor:

Default editor and static default settings

PeopleSoft Proprietary and Confidential 35

Understanding Modeling Chapter 3

Step 3—If Use Base Quantity Policy for All Domain Members is specified, it is applied against the
result of Step 2 in the same way as the domain member’s static policy.

Default editor and dynamic default settings

Step 4—Step 3 yields the final calculated value. If a user enters a value, it overrides this value.

Example 1: Taking the largest quantity of the selected domain members

At Design Time

If you need to define default quantities for domain member A on a selection point so that the final quantity after run-time
selections was at least n, the settings in the defaults editor are:

ADefault = MIN(2)

(The default minimum quantity for domain member A when a run-time selection is NOT made, or when a selection IS
made but is less than n. Static default.)

AUser = MIN(x)

(The default minimum quantity for domain member A when the user selects A and enters a quantity for it (using a control
with quantity). It differs from ADefault = MIN(n) in that the default quantity is left to the user.)

ADynamicDefault(B) = MIN(3)

ADynamicDefault(C) = MIN(5)

(The default minimum quantity for A when domain member B or C is picked by an expression or constraint triggered
during run time.)

36 PeopleSoft Proprietary and Confidential

Chapter 3 Understanding Modeling

Example 1: Taking the largest quantity of the selected domain members

Steps in calculating the final quantity:

• Selections are made.

• The run-time quantities for each A selection are compared and the largest is applied against the static default ADefault
= MIN(2).

• If it is equal to or greater than 2, the run-time value will be A’s final quantity; if not, ADefault = MIN(2) is applied, and
A’s final quantity is 2.

At Run Time:

If the user picks none, then A = 2.

If the user picks B, then A = 3.

If the user picks C, then A = 5.

If the user picks B and C, then A = 5.

If the user picks A [4] and B, then A = 4.

If the user picks A [4] and C, then A = 5.

Example 2: Taking the sum of the selected item(s)

At Design Time

Using the SUM policy, you can specify that the final quantity of a selected item is the sum of its default-selected
quantities. As in the previous example, you can ensure that if no items are selected during run time, A will nonetheless be
assigned a quantity value (ADefault).

ADefault = MIN(2)

(The default minimum quantity for domain member A when a run-time selection is NOT made, or when a selection IS
made but is less than n. Static default.)

AUser = MIN(x)

(The default minimum quantity for domain member A when the user selects A and enters a quantity for it (using a control
with quantity). It differs from ADefault = MIN(n) in that the default quantity is left to the user.)

ADynamicDefault(B) = MIN(3)

ADynamicDefault(C) = MIN(5)

(The default minimum quantity for A when domain member B or C is picked by an expression or constraint triggered
during run time.)

PeopleSoft Proprietary and Confidential 37

Understanding Modeling Chapter 3

Example 2: Taking the sum of the selected item(s)

Steps in calculating the final quantity:

• Selections are made.

• The quantities of each A selection are totaled.

• The total is applied against the static default ADefault = MIN(2).

• If it satisfies static default policy, the run-time sum is A’s final quantity; if not, ADefault = MIN(2) is applied.

At Run Time:

If the user picks none, then A = 2.

If the user picks A, then A = 2.

If the user picks B, then A = 3.

If the user picks C, then A = 5.

If the user picks B and C, then A = 8.

If the user picks A and B, then A = 3.

If the user picks A [4] and B, then A = 4.

If the user picks A [1] and C, then A = 5.

38 PeopleSoft Proprietary and Confidential

Chapter 3 Understanding Modeling

Example 3: Figuring quantities using attribute values and expressions

At Design Time

A’s final quantity can be based on an attribute value or one derived from an expression. For example, using attributes to
define Min/Max limits allows you to specify quantity limits on a per-domain member basis for external data. Expressions
in defaults allow you to determine the quantity to default dynamically based on an external parameter, such as a value
entered via an extern or an equation. Similarly, expressions in Min/Max limits enforce dynamic quantity limits.

The following example’s definitions includes a dynamic default on domain member A that is the sum of all the values of
the A_Needed attribute of the B domain members selected.

ADefault = MIN(2)

(The default minimum quantity for domain member A when a run-time selection is NOT made, or when a selection IS
made but is less than n. Static default.)

AUser = MIN(x)

(The default minimum quantity for domain member A when the user selects A and enters a quantity for it (using a control
with quantity). It differs from ADefault = MIN(n) in that the default quantity is left to the user.)

ADynamicDefault(B) = SUM(B:A_Needed)

(The default quantity for A when domain member B is picked during run time. The quantity is the value of B’s attribute
A_Needed. The SUM policy indicates that the value is to be added to any other default value for A in calculating A’s
final quantity.)

ADynamicDefault(C) = SUM(5)

(As above, with the value predetermined at design time to be 5.)

ADynamicDefault(D) = MIN(exp_name)

(The default quantity for A when domain member D is picked during run time. The quantity is the value of an expression
defined in the Expression editor. The MIN policy indicates that the final value must be equal to or larger than the value
given by the expression.)

(exp_name) = 3

B1, A_Needed = 1

(An instance of B where the attribute A_Needed has a specific value.)

B2, A_Needed = 2

B3, A_Needed = 3

B4, A_Needed = 4

PeopleSoft Proprietary and Confidential 39

Understanding Modeling Chapter 3

Example 3: Figuring quantities using attribute values and expressions

Steps in calculating the final quantity:

• Selections are made.

• Add the values for ItemA’s SUM policy selections.

• Take any values with MAX policies and compare them against the specified MIN values, including the static default
ADefault = MIN(2) to check that the run-time value satisfies the minimum quantity requirements.

• If the MIN requirements are met, apply the calculated run-time quantity. If MIN requirements are not met, apply the
quantities specified for the MIN defaults.

At Run Time:

If the user picks B1, then A = 1.

If the user picks B2, then A = 2.

If the user picks B1 and C, then A = 6.

If the user picks B4 and C, then A = 9.

If the user picks A[4] and B3, then A = 4.

If the user picks A[3} and B4, then A = 4.

If the user picks A and D, then A = 3.

If the user picks B1 and D, then A = 3.

If the user picks B2 and C and D, then A = 7.

Understanding Minimum and Maximum Selections and Limits
Advanced Configurator allows you to set constraints based on the minimum and maximum quantity entered
for domain members and on the minimum and maximum number of selections made within a selection point.

Min/Max limits can be specified on these Visual Modeler objects:

• Selection points

• Domain members

Selection Point Min/Max

Min/Max limits on a selection point determines whether its control is single-select or multi-select,
and if multi-select, how many of the domain members can be selected.

You can use any of the following to input min/max limits:

• An absolute number (for a static, known check).

• A database reference.

• A reference to an expression defined elsewhere in the model.

40 PeopleSoft Proprietary and Confidential

Chapter 3 Understanding Modeling

Note. With dynamic inputs such as the result from a database query or an expression, it is possible for a
single-select control to be re-specified a multi-select control during a configuration session when the SP Max
changes from 1 to >1. When the Max limit is specified in this way, the control will behave like a multi-select
that is limited to a single selection, versus a true single-select. Limitations that apply to multi-select selection
points will apply even when the maximum number of selections is one. For instance, multi-selects do not
allow violation explanation substitutions, and there are limitations on how they can be used in constraints.

Selection point Min/Max

Domain Member Min/Max
Min and Max limits on domain members determine how many of each domain member can be ordered if selected.

Values for domain member Min and Max limits are input from:

• An absolute number entered by the modeler.

• A reference to an expression.

• A domain member attribute whose type is Int or Float.

PeopleSoft Proprietary and Confidential 41

Understanding Modeling Chapter 3

Domain member Min/Max

Note. The Min/Max function applies to the number of selections on a selection point that can be
specified at the selection point level or the quantity that can be entered for a selected domain member
at the domain member level, or both. It is a separate function from the Min of and Max of quantity
policies of the Default Quantity functionality described in the previous section.

Interaction between Default Quantities and Min
/Max Settings at Run Time
Min/Max settings add another aspect to the run-time process of determining final
quantities on selected domain members.

When a selection point has both default quantity properties and Min/Max properties
defined on it, specific run-time behaviors apply.

The Quantity policy—the manner in which to apply the default value—for a static default can
be either Overridable, MIN, MAX, or SUM. If MIN, MAX or SUM is specified, then the static
default is used in conjunction with any dynamic defaults and requirement constraints that select the
same domain member. By default, the Quantity Policy for a static default is Overridable (meaning,
“do not apply the value if run time selections assign a quantity”).

42 PeopleSoft Proprietary and Confidential

Chapter 3 Understanding Modeling

The quantity policy applied to the domain members of a selection point

Static default information for a selection point is applied whenever a dynamic default or a requirement
constraint selects any domain member of that selection point and there are no user-selects. A static
default on a specific domain member applies only to that domain member.

Default quantities, whether static or dynamic, are not applied if they would cause any constraint to be in violation.

Ultimately, a user-specified quantity overrides any quantities specified by static defaults, or
assigned by dynamic defaults during run time. Advanced Configurator allows the user to enter
a quantity even if it violates a constraint, a quantity default, or min/max settings. However,
the appropriate violation explanation will be displayed.

Note. When you use the Model Tester, you may observe that when you attempt to undo or back out
of a configuration pick sequence, all picks on the control disappear rather than just the expected last
pick. This occurs because the Configuration Engine is stateless; it receives all picks at one time, at
each submission, and doesn’t know which was the last pick. By turning off Auto-Submit when you
test the selection point on the Model Tester, you can observe true run-time behavior.

Minimum Violation Explanation and Incomplete
Configuration Explanation
Advanced Configurator distinguishes between two very similar violation circumstances
involving quantities on a selection point.

The project setting “Incomplete Configuration Explanation” is similar to the Min/Max violation
explanation in that it alerts the user of a non-valid configuration condition.

These two explanations differ in the circumstances in which they are presented.

PeopleSoft Proprietary and Confidential 43

Understanding Modeling Chapter 3

If a completeness check operation is requested, the Incomplete Configuration Explanation is shown
when no selections have been made on a required selection point.

If selections have been made on the selection point, but the number of selections doesn’t satisfy
the minimum value specified, the selection point Minimum Selection Explanation will be
shown rather than the Incomplete Configuration Explanation.

See Also

Chapter 4, “Setting Up the Modeling Environment,” Specifying Model Project Settings, page 60

Creating Parameterized Explanations
Advanced Configurator allows you to offer specific information to users when their picks
violate a constraint based on a numeric relationship. Using the parameters representing objects
such as maximum quantity allowed, you can write a violation explanation that describes the
violation more specifically than does a generic text message.

You can include parameters in the Explanation fields of all constraint editors, and in
the SP and DM Min/Max editor dialogs.

You can also represent external objects.

If the control is single-select, you can parameterize an explanation specific to the domain members in violation.
Parameter substitution can not resolve the domain members in multi-select controls, so use on multi-select
controls is limited to the selection point level Min and Max Value, selection point Name, or an expression value.

General syntax is:

$(replacement_specification)

replacement_specification is either

n:attribute_identifier or expr:expression_identifier.

n is the positional identifier for the class within the relationship (0 – n left to right in the relationship).

Note. Use n = 0 for SP Min/Max and DP Min/Max explanations.

attribute_identifier is a class attribute name or one of the reserved names from the list in the table
below. If the objects are external, you must refer to the database column name instead of an attribute name.

expression_identifier is an expression name.

The following table describes the reserved parameters and indicates whether each is
available for single- and multi-select controls.

Note. Please observe letter case as shown in the syntax column for each variable (expression
and attribute names are lower case; all others are upper case).

Parameter name Syntax Single-select control Multi-select control

Selection point name $(n:$DPNAME) yes yes

44 PeopleSoft Proprietary and Confidential

Chapter 3 Understanding Modeling

Parameter name Syntax Single-select control Multi-select control

Selection point Min Value $(n:$MINCHOICES) yes yes

Selection point Max Value $(n:$MAXCHOICES) yes yes

Domain member name $(n:$NAME) yes no

Current number of
selections made in the
Selection Point

$(n:$CHOICES) yes no

Selected domain member
Min Value

$(n:$MINQTY) yes no

Selected domain member
Max Value

$(n:$MAXQTY) yes no

Selected domain member
quantity

$(n:$QTY) yes no

Domain member attribute
value

$(n:attributename) yes no

Expression value $(expr:exprname) yes yes

For example, in a requirement constraint, messages are:

Explanation syntax The selected base requires the $(1:Description) power cord
and $(2:Description) chassis.

Run-time display The selected base requires the Z40-15 power cord and the 8R_KU chassis.

In another example, in a DP Min, messages are:

Explanation syntax The value of $(0:$DPNAME) must be between $(expr:refract_min)
and $(expr:refract_max).

Run-time display The value of LensRefraction must be between 1.0 and 4.0.

Optimizing Performance and Minimizing Model Maintenance
To improve performance and minimize effort expended on maintaining a model, consider these tips:

• Plan your model hierarchy so that you can use attributes efficiently.

• Stabilize attribute names, class names, and selection point names before creating constraints or expressions.

• If a model uses numerous multi-select controls, it is possible for constraints against the same
control to conflict with other constraints to the point that all items on a control are eliminated.
The following practices can reduce the occurrence of this problem:

PeopleSoft Proprietary and Confidential 45

Understanding Modeling Chapter 3

- Articulate the class hierarchy to a greater degree. If a multi-select control contains many domain
members that are known to conflict, create subclasses and group the domain members in compatible
sets. Alternatively, separate single-select and multi-select items.

- Write more constraints. Instead of writing a single large constraint with many columns
and rows, write more specific classes and constraints.

• Do not use a directional compatibility constraint if a multi-select is on the right-hand side. A
directional compatibility with a multi-select on the RHS is ignored because every combination
is considered valid. If a multi-select is required on the RHS, write the constraint as a directional
non-compatibility constraint or a Requirement constraint.

• If possible, use a Requirement constraint instead of a Compatibility constraint. Because a Requirement
constraint does not eliminate, there is less chance of conflicts between constraints.

• For all directional constraints (compatible, non-compatible, requirement, and dynamic default),
if there are multiple arguments on the RHS, there is no explicit relationship between them. So,
instead of writing multiple constraints against a single class, it is more convenient to write
a single constraint with multiple arguments on the RHS.

Using the Sample Models
Visual Modeler is shipped with these example models:

• A component model called Sample, which you can load by choosing the Sample button
in the Visual Modeler launch screen.

• A telecommunications compound model called TelcoSampleCompoundModel, containing three
component models TelcoComp, TelcoCompCircuit, and TelcoCompHub.

The Modeling Process
Defining a robust model of a product or service requires some or all of these steps:

1. Use Visual Modeler to:

• Build a class structure that represents data relationships in a configuration problem.

• Define class attributes, create domain members, and provide attribute values in the model, or bring in
domain members and attribute values from an external source, such as a database or the user.

• Write relationships between classes and class attributes on a component model.

• Specify quantities for default selections and define quantity behaviors that calculate a quantity at run time.

• If supported version control software is available and connected in the Visual Modeler, you can
interact with the version control software at any time during model development.

• If you are building a compound model, create configurable components and associate each with
a component model, then create the relationships between the component models.

2. Connect to the Configurator engine to compile the model and launch the Model Tester.

3. In the Model Tester, verify that relationships work properly on run-time controls.

46 PeopleSoft Proprietary and Confidential

Chapter 3 Understanding Modeling

4. Using model information from the Visual Modeler source, use PeopleSoft Extensions for DreamWeaver
to develop JSP pages or use those provided with PeopleSoft Order Capture.

See Also

Part 5, “PeopleSoft CRM Order Capture Integration,” page 269

Part 6, “Building a Custom User Interface,” page 293

Model Tester
Included with the Visual Modeler install is a web-based test tool that renders the selection points in a
pre-formatted form when you compile and run the model. Using it, you can test most facets of model
behavior without building your own test UI. The Model Tester lets you verify the validity and behavior
of relationships, data input and handling, error recognition, and control behavior.

See Chapter 4, “Setting Up the Modeling Environment,” Using the Model Tester, page 66.

Interfacing with Third-Party Tools
This section lists Advanced Configurator interfaces with industry-standard applications.

Microsoft SQL Server, Oracle Databases, and IBM DB2
Visual Modeler can query tables in Microsoft® SQL Server™, Oracle™, or IBM® DB2® databases.
In addition to obtaining domain members from a database, you can write model constraint information
to a database table, or read constraint information from a database.

MacroMedia DreamWeaver
Visual Modeler creates an XML file that contains information about the model that can be used
to lay out controls at run time. Advanced Configurator provides extensions to MacroMedia®
DreamWeaver® so that you can use this information to create JSP pages.

See Chapter 28, “Using the Page Editor Extensions for Dreamweaver,” page 355.

Source Control Interfaces
The Visual Modeler uses a standard Microsoft interface to access compatible configuration
management software. Microsoft® Visual SourceSafe™, Rational ClearCase®, and
Merant™ PVCS are verified as being compatible.

See Chapter 4, “Setting Up the Modeling Environment,” Source Control Software, page 50.

PeopleSoft Proprietary and Confidential 47

Understanding Modeling Chapter 3

48 PeopleSoft Proprietary and Confidential

CHAPTER 4

Setting Up the Modeling Environment

This chapter discusses:

• Connecting to third-party software.

• Connecting to a database from Visual Modeler.

• Getting started with Visual Modeler.

• Understanding project files.

• Importing and exporting models.

• Compiling a model.

• Using the Model Tester.

• Interfacing with third-party tools.

Common Elements in this Chapter
Opens the Overview Window.

Save and compile the model.

Compile and run the model.

Opens the Viewer dialog, which contains the Find tab, where objects are listed.

and
Standard Windows “show and hide” indicator buttons. Appear in the
model structure view to control display of hierarchy items. Also indicate
that the domain members of the node are internal.

In the model structure view, this icon appears next to external domain members.
Internal domain members are indicated by the plus and minus symbols.

Add button for the component properties table. Adds rows—properties—to
a class or subclass.

Add button for the component properties table. Adds a row—properties—for
defining attributes on selection points.

PeopleSoft Proprietary and Confidential 49

Setting Up the Modeling Environment Chapter 4

Connecting to Third-Party Software
This section discusses setup procedures for:

• Source control software.

• Database interface configuration.

• Connecting to a database from Visual Modeler.

Source Control Software
The Visual Modeler supports the latest version of the Microsoft Source Control (MSC)
interface. . An installed source control application that complies with the correct MSC
version is shown as an option in the Visual Modeler.

1. Create or obtain a user account and login for your source control tool.

2. In Visual Modeler, go to Tools, Options, then click the Source Control tab.

3. Choose a provider from the “Source Control Provider to Use” drop down. This drop down
displays MSC-compatible applications installed on your system.

Optionally, select the source control options best suited to your project:

Option Explanation

Get files when opening the workspace. Automatically get the latest versions of all .cms files in
this project whenever a workspace is opened.

Check in files when closing the workspace If this option is checked, you must remember to save
before closing the workspace. If files are saved before
the workspace closes, the all files will be checked in. If
unsaved files are open when the workspace is closed,
the files will be checked in, but any files previously not
saved will be checked out again.

Prompt to add files when inserted When a .cms file is inserted into the project, prompt to
add the file to source control.

Perform background status updates Not all source control tools support this option. If
background status updating is supported, the IDE can
change the appearance of a file in the File View when
a file under source control is altered by an external
checkin.

Use dialog for checkout Specify that a comment dialog automatically appears
when a file is checked out.

Add new projects to source control Automatically add new projects (.csp file) to source
control.

Automatically add new files to source control Automatically add new .cms files to source control.

4. Enter the source control login name in the Login field, then click OK. You will be notified
that the provider change will not take effect until you restart the Visual Modeler. The changes
will be available when the Visual Modeler is restarted.

50 PeopleSoft Proprietary and Confidential

Chapter 4 Setting Up the Modeling Environment

Once the source control tool is selected, it is possible to set Advanced options. Select Tools, Options
then click the Source Control tab. Click the Advanced button. An Options window appears. Consult
your source control documentation for information on the options displayed.

Database Interface Configuration
Advanced Configurator supports Microsoft SQL Server, Oracle, IBM DB2 database connections.

Note. If your database is Oracle, you must install an Oracle client on the machine where Visual Modeler is
installed. Your system will then have the Oracle ODBC Driver, which ensures compatibility with Oracle.

Before proceeding, you need certain system information:

• The database name, username/login, and password. Consult your database administrator for login and
password information. At a minimum, you must have read and write permission for the database.

• The name (machine ID) of the machine that the database server resides on, and the port it uses.

• The name of the machine that WebLogic is installed on, and the port it uses. If the defaults were
accepted during Advanced Configurator installation, the default port number is 7777.

The Visual Modeler relies on the ODBC Data Source Administrator for connection information. Setting
up an ODBC data source allows you to view external domain members in the Visual Modeler.

See Chapter 4, “Setting Up the Modeling Environment,” Connecting to a Database from Visual Modeler, page 53.

To compile a model, Advanced Configurator uses the Java Naming and Directory Interface (JNDI)
Database connection. This connection requires customizing two properties files.

See Chapter 4, “Setting Up the Modeling Environment,” Configuring JNDIDBName.properties, page 52.

Configuring an ODBC Data Source for Microsoft SQL Server

Use the Windows data source wizard to configure an ODBC data source.

To connect Advanced Configurator to Microsoft SQL Server:

1. Open My Computer, Control Panel, Administrative Tools, and Data Sources.

2. Click the Add button.

3. Select a driver from the list, then click Finish. The data source connection dialog appears.

4. Enter the indicated information in the fields. Choose a name carefully. The name is case-sensitive, and it will
be used to identify the data source both in the properties files and in the Visual Modeler database interface.

5. Click Finish. The authentication dialog appears.

6. Select an authentication option. If a password is not required, click “With Windows NT
authentication of the login ID”, then click Next.

If the database has a login and password, click “With SQL Server authentication using a login
ID and password entered by the user,” then click “Connect to SQL Server to obtain default
settings for the additional configuration options.” Enter the database login and password, then
click Next. The remaining screens address DSN Configuration options that are not critical for
the connection. Click Next, then on the last screen click Finish.

7. Configure JNDIDBName.properties.

See Chapter 4, “Setting Up the Modeling Environment,” Configuring JNDIDBName.properties, page 52.

PeopleSoft Proprietary and Confidential 51

Setting Up the Modeling Environment Chapter 4

Configuring an ODBC Data Source for Oracle

Use the Windows data source wizard to configure an ODBC data source.

To connect Advanced Configurator to an Oracle data source:

1. Open My Computer, Control Panel, Administrative Tools, and then Data Sources.

2. Click the Add button.

3. Select a driver from the list, then click Finish. The data source connection dialog appears.

4. Enter the indicated information in the fields. Choose a name carefully. The name is case-sensitive, and it
will be used to identify the data source both in the properties files and in the Visual Modeler database
interface. In most cases it is appropriate to accept the default settings for Database Options, Application
Options, and Translation Options. Consult your database administrator. Click OK.

5. Configure JNDIDBName.properties.

See Chapter 4, “Setting Up the Modeling Environment,” Configuring JNDIDBName.properties, page 52.

Configuring an ODBC Data Source for IBM DB2

To connect Advanced Configurator to an IBM DB2 data source:

1. Launch the IBM DB2 setup tool (Programs, IBM DB2, Set-up Tools, Configuration Assistant).

2. Select Selected, Add Database Using Wizard. The wizard appears.

3. In window 1, Source, select Manually configure a connection to a databaseand click Next.

4. In window 2, Protocol, select your protocol.

5. In window 3, assign the appropriate values to the fields.

6. In window 4, Database, enter the database name and alias.

7. In window 5, Datasource, select Register this database for ODBC and As system data
source. Enter a value for Data source name.

8. In window 6, Node Options, specify the operating system and the remote instance name.

9. In window 7, System Options, specify System name, Host name, and Operating system.

10. In window 8, Security Options, specify Use authentication in server’s DBM Configuration. Click Finish.
The wizard closes and the Configuration Assistant reappears with the connection listed in the pane.

11. Select Selected, Test Connection to verify the connection.

Configuring JNDIDBName.properties
By default JNDIDBName,properties is located on the Advanced Configurator Server:

C:\bea\weblogic81\config\CalicoDomain\applications\CalicoApp\Web-inf\config

Note. You may not need to hand-edit this file. If you are using data from the database specified during
installation the file will be updated based on the information entered with a (datasource) name of “PSCFG.”

Only the portion of the file relevant to your database needs to be changed. All entries except the machine name
are case-sensitive and must match your environment exactly. Substitute your information as follows:

52 PeopleSoft Proprietary and Confidential

Chapter 4 Setting Up the Modeling Environment

1. Replace sqldb, oracledb or DB2DB with your data source name. This name is defined when
the ODBC driver is configured. The “name”(the portion before the first ’.’) should match
the name of the data source specified for the classes in the model.

See Chapter 4, “Setting Up the Modeling Environment,” Database Interface Configuration, page 51.

2. Replace username and password with the user name or login defined for your database account.
The square brackets [] used to delimit the sample must be deleted.

If you specified “Windows NT authentication using the network login ID,” the fields may be left blank.

3. Save a copy of the customized.properties file in a location outside the Advanced Configurator
tree. The properties file will be overwritten if an upgrade is installed.

4. Bounce the server so that JNDIDBName changes can take affect.

The JNDIDBName properties file is shown below.
example for setting up a SQL server database with NewAtlanta driver

SQL server default PortNumber is 1433

sqldb.url=jdbc:JTurbo://[ServerName]:[PortNumber]/[DatabaseName]/sql70=true⇒

/charset=Cp1252

sqldb.driver=com.newatlanta.jturbo.driver.Driver

sqldb.username=[username]

sqldb.password=[password]

example for setting up an Oracle database with Oracle driver

Oracle default PortNumber is 1521

oracledb.url=jdbc:oracle:thin:@[HostName]:[PortNumber]:[OracleSID]

oracledb.driver=oracle.jdbc.driver.OracleDriver

oracledb.username=[username]

oracledb.password=[password]

example for setting up a DB2 database with the Weblogic driver

db2db.url=jdbc:db2://[HostName]:[PortNumber];databaseName=[DatabaseName]

db2db.driver=weblogic.jdbc.db2.DB2Driver

db2db.username=[username]

db2db.password=[password]

PSCFG.url=jdbc:JTurbo://PSMITH081793:1433/Configurator/sql70=true/charset=Cp1252

PSCFG.driver=com.newatlanta.jturbo.driver.Driver

PSCFG.username=ConfiguratorUser

PSCFG.password=

Connecting to a Database from Visual Modeler
Once the ODBC data source and the properties files have been configured, your environment
is ready to support a database connection within Visual Modeler.

Database connection involves two steps:

• Specify a database connection.

PeopleSoft Proprietary and Confidential 53

Setting Up the Modeling Environment Chapter 4

• Specify a default database.

See Also

Chapter 4, “Setting Up the Modeling Environment,” Database Interface Configuration, page 51

Chapter 4, “Setting Up the Modeling Environment,” Configuring JNDIDBName.properties, page 52

Specify a Database Connection
To specify a database connection:

1. In the Visual Modeler, select Project, Database References. A dialog for specifying
the default database appears.

2. Click Add. A dialog for specifying or modifying a database connection appears.

3. Type a name in the Alias field. This is a name of your choice for referring to the database from
within this model; it will be displayed in the drop down on the SQL query dialogs.

4. Type in the Data Source Name exactly as specified in the data source configuration .

5. Type in the Login ID and password defined for the database. These fields can be left blank if the database
uses the Windows NT login. Press OK to view a dialog for setting the default database. The dialog for
selecting the default database reappears, now displaying the database alias you specified.

6. To add another database, repeat steps 2 through 5.

Specify a Default Database
To specify a default database:

1. In the Visual Modeler, select Project, Database References.

2. Select a the desired database in the database listing. The default database is the
same for all database connections in the model.

3. Make sure the database name appears in the Default Database field at the bottom. Click OK.

4. Map a class to a database column.

See Chapter 5, “Creating Objects for the Model,” Selecting a Primary Table, page 75.

The ability to specify a default is a convenience feature. If, at a later time, you need to query a different
database, simply redefine the datasource name to refer to the new database.

Getting Started with Visual Modeler
To start Visual Modeler, select Start, Programs, PeopleSoft Applications, Visual Modeler 8.9, Visual
Modeler 8.9. By default, Visual Modeler displays model information in three major windows.
The largest area, the model structure view, is the modeling work area.

54 PeopleSoft Proprietary and Confidential

Chapter 4 Setting Up the Modeling Environment

Visual Modeler window elements and model components

Model Structure View
Visual Modeler provides several tools for viewing and navigation in the Model Structure View.

The model structure view offers a standard windows “show and hide” paradigm for nodes in the class hierarchy.
Click the “minus” icon to hide a hierarchy and click the “plus” icon to show all items in the hierarchy. If the
node has external domain members, the database icon appears rather than the simple plus/minus icons.

PeopleSoft Proprietary and Confidential 55

Setting Up the Modeling Environment Chapter 4

Hierarchy with shown and hidden nodes

From the View menu you can Show or Hide the following:

• Selection Points

Equivalent to clicking the selection point icon.

• All Domain Members

Show/Hide all domain members in the model.

• Selected Class’ Domain Members

Show/Hide the domain members for a class that is selected in the model structure
view or in the Components view.

• Children

Show/Hide the class hierarchy for a class that is selected in the model structure view or in the Components view.

The View menu also offers similar options for expanding or collapsing items throughout the model.

Note. Expanding is equivalent to clicking the yellow triangle on an object.

Components and Files View
The Components tab is a navigation aid that displays the model’s objects in hierarchical structure. The tab shows
classes, subclasses, domain members, selection points, relationships, and expressions. Double-click on a class,
domain member, or selection point to display it in the Model Structure view. Double-click on a relationship or
expression and its editor appears. Properties for the selected object appear in the Properties Editor.

Properties Editor
All objects’ properties appear in the property table when they are selected. Use this table-based
editor to view, change, add, and delete an object’s properties.

56 PeopleSoft Proprietary and Confidential

Chapter 4 Setting Up the Modeling Environment

Overview Window
If the model is large, use the Modeling editor scroll bars to adjust the view. To “zoom” the model,
click the Viewer icon to display the Viewer window Overview tab. A miniature view of the model
is shown; the viewable area is outlined with a blue dashed line.

The overview window

To zoom the view, move the slide on the right.

To refocus the model structure view display, click within the view outline; a hand cursor
appears. Drag to reposition the view outline over the model.

Find Window
To find an object by name, click the Find icon, or select the X icon, then click the Find tab.
Select or deselect the Show options to vary the objects displayed.

To find an object:

• Scroll the listing until you find its name.

• Start typing a name in the field above the listing. This field supports type-ahead, so the list
will automatically jump to a partial match as you type.

• Select an item in the listing and click Go To, or type Return to bring the entry within the
current window focus. Alternatively, double-click on an item.

Find window

Understanding Project Files
A Visual Modeler project has three file types: a project file (.csp), a workspace
(.csw), and multiple source files (.cms).

PeopleSoft Proprietary and Confidential 57

Setting Up the Modeling Environment Chapter 4

Configurator Source Project (.csp)

When a new project is created, a project file is written to the specified workspace. Typically
the workspace and the project file share the same root name, but a single workspace can contain
multiple projects if so desired. A Project file lists the .cms files required to describe the model,
including standard.cms and any objects stored in separate .cms files.

The .csp file is maintained through Visual Modeler interaction. The File View
displays the contents of the .csp file.

The File View

As you create objects, filenames are dynamically added to the .csp. Note that deleting an object in
the model structure view does not remove its name from the .csp. To remove a file, right-click on a
file to raise the context-sensitive menu. Removing a file from the project does not delete it from the
workspace. Note that you can also perform source control operations from this menu.

See Chapter 3, “Understanding Modeling,” Source Control Interfaces, page 47.

Configurator Source Workspace (.csw)

The Visual Modeler displays one workspace at a time. Each workspace contains one or more projects. When a
.csw file is opened, all the projects within it are opened. To view a different workspace, select File, Open
Workspace to browse for a workspace, or, select File, Recent Workspace and select a previous workspace.
If the current workspace has unsaved changes, you will be given the opportunity to save.

Configurator Model Source (.cms)

Advanced Configurator model source (.cms) files contain an XML representation of one or
more model objects, for example, a class or relationship that is created in and saved from
Visual Modeler. There can be many .cms files in a project.

58 PeopleSoft Proprietary and Confidential

Chapter 4 Setting Up the Modeling Environment

By default, Visual Modeler creates a separate file for each class, relationship, and expression. At creation
time, Visual Modeler proposes a .cms file name based on the object name. You can specify an alternate
new name or an existing file name. If an existing file is specified, the new object is appended to it. A file
name can only be specified at creation time; it cannot be changed after the fact. This implies that although
the class name is changed in the Visual Modeler, the supporting file name is not affected.

Each Standard model contains a file named standard.cms. This file is included when the project is created.
standard.cms contains the root class and must be present in all projects containing standard models.

Team Modeling

The Visual Modeler file structure makes team modeling possible. Using multiple source files, a
modeling team can work on the same model simultaneously. Changes can be checked in and checked
out using source control. Additionally, most merge tools support the CMS format.

Creating a New Project or Workspace
To create a new project in a new workspace, select File, New and click the Projects tab. Select the model
type, standard or compound. Click Create new workspace. Browse for or type in a project directory, then
type in a Project name; the name will be appended to the project directory path. Click OK.

Creating a new project

You can store multiple projects in a single workspace.

To create a new project in an existing workspace, select File, New and click the Projects tab. Click Add to
current workspace, then browse for a project directory. Specify the Project Name, then click OK. The new
project appears in the specified workspace; it has its own structure, as shown in the File view:

PeopleSoft Proprietary and Confidential 59

Setting Up the Modeling Environment Chapter 4

File view

When there are multiple projects in one workspace, you must explicitly set the active project so that
Configurator system knows which project to compile. Select Project, Set Active Project to do this.

The File, Save Model As command allows you to save a copy of the model. All of the files in the project will
be copied into a new destination directory and all occurrences of the original project name (model name) are
replaced with the new project name. Source control status for the project and the source files will be cleared
(you will need to add the new project to source control). The new project then becomes the active project.

The File, Save All option saves all model and workspace information for the current project. In
addition, a model information file is created in the source workspace path. The filename format is
<modelName>.modelinfo.xml. The Configurator Extensions for DreamWeaver use this file.

See Chapter 28, “Using the Page Editor Extensions for Dreamweaver,” page 355.

Visual Modeler provides a way to create (save) a description of the model to an
HTML file. Select File, HTML Report.

Specifying Model Project Settings
You can specify model-level information in the Project Settings dialog.

Dialog Used to Specify Model Project Settings

Select Project, Settings. In this dialog you can specify compilation options and settings
for use at compile time and run time.

60 PeopleSoft Proprietary and Confidential

Chapter 4 Setting Up the Modeling Environment

Project settings for a component model

Current Version The number of the current model version before any changes
to the Major or Minor Version.

Major Version An arbitrary model version used for model maintenance in
<install directory>\ViM\models.

Minor Version An arbitrary minor version used for model maintenance in
<install directory>\ViM\models.

Server The server on which WebLogic and Advanced Configurator are installed.
For example: my_machine.peoplesoft_config.com.

Port The port number for the WebLogic application server. It is 7777 by default.

PeopleSoft Proprietary and Confidential 61

Setting Up the Modeling Environment Chapter 4

Test UI Uses the Model Tester provided with the Advanced Configurator
installation (component models only).

• Auto Submit—Check this box to turn on Auto Submit in the Model Tester.
If Auto Submit is on, the page is refreshed with each pick.

• Columns—The Model Tester displays run-time controls using a table
form. Specify the number of columns in the output display.

• Extern Default—The value to apply to any extern variables
at model initiation.

• Control Type—Select either of Radio Buttons or Dropdown Lists.
This selection applies to all controls.

Other UI Use your own JSP pages.

Effectivity Settings Choose test date settings to verify effectivity dates on relationships.

• Use System Date—Use the local system’s date (usually the current date).

• Use This Date—Enter a date in or out of an effectivity range.

Separator Settings Specify the character you use in SQL queries for separating the
Quantity and Policy values.

Incomplete Configuration
Explanation

Text to display to the user when a completeness check is run. You can
compose the message with these parameters:

• Selection point name— $(n:$DPNAME)

• Expression value— $(expr:exprname)

If the name parameter is included within the explanation text, a separate
explanation message will be generated for each required selection point
that does not have a selection. Otherwise, a single explanation message
will be generated for the Incomplete Configuration violation.

Adding a Project to Source Control
For a description of the source control interface and instructions on configuring source control options.

See Chapter 3, “Understanding Modeling,” Source Control Interfaces, page 47.

1. To add a project to source control, select one or more components in the Visual Modeler File view.

If the Visual Modeler does not recognize files that are already in source control, check out the files and check
them back into the same location. The Visual Modeler will detect the files and duplicates will not be created.

Note. Some providers will always prompt for a log in when a workspace or project file is checked in.
Consequently, when adding all the files in the File view, you will be prompted to log in once for the
.cms files and again for the project file. This is not an extra message. Be sure to provide the project
information; do not leave the field blank. This behavior is known to occur with Visual SourceSafe.

2. Right-click in the tree view, then select Add to Source Control. You will be prompted to add a
comment. To retain checked out files, check the “Keep files checked out” option.

62 PeopleSoft Proprietary and Confidential

Chapter 4 Setting Up the Modeling Environment

3. Click OK to send the source control request to the provider software; at this point
the source control software takes over.

4. To check out a file, select it in the File view, right-click, then select Check Out.

The source control status is visually depicted as follows:

File not in source control.

FIle checked in.

File checked out

Project or Workspace not in source control.

Project or Workspace checked in.

Project or Workspace checked out.

Importing and Exporting Models
Advanced Configurator provides a means to manage, update, and maintain models by importing and exporting
model data. If you have model data that you would like to combine with another model–even if it is not
currently an Advanced Configurator model–or if you want to update an older model by overwriting all or
some of its components, you can use the export and import commands in the Projects menu.

These commands allow you to import and export all or parts of a model:

• Database references.

• Classes, with or without domain members and SQL queries.

• Selection points.

• All or selected relationship types.

• Expressions.

Importable models must be created in one of two ways:

• From an Advanced Configurator model that has been exported, as this formats them in the XML
defined by PeopleSoft Configurator Interchange Format (PCIF).

• From an XML file that compiles with the PCIF.dtd.

The latter method allows you to import a model, partial or complete, from an outside data source.

See Appendix G, “PCIF,” page 473.

Exporting a Model
To export a model, open it in the Visual Modeler, and choose Projects, Export Model.
The Export Model to XML dialog appears.

PeopleSoft Proprietary and Confidential 63

Setting Up the Modeling Environment Chapter 4

Export dialog, showing default settings with all components selected

Importing a Model
The dialog box for importing a model is very much like that for exporting a model.

Import dialog, showing default settings with all components selected

64 PeopleSoft Proprietary and Confidential

Chapter 4 Setting Up the Modeling Environment

To import an Advanced Configurator model:

1. Open the target model in the Visual Modeler and Choose Projects, Import Model. The Import dialog appears.

2. De-select any components that you don’t want to appear in the target model.

3. Select the desired method for handling conflicts that result when a component being
imported has the same name as an existing component. These options let you control, on a
case-by-case basis, whether components are overwritten or not.

4. Choose the desired filename for the import file (XML) and click OK.

Compiling a Model
Compiling a model triggers several separate actions.

• The current model is compiled.

• At compilation, an intermediate XML file is created in the TEMP environment variable.

• If an intermediate XML file does not yet exist, a directory with the same name as
the model is created on the Configurator server in \bea\weblogic81\config
\CalicoDomain\applications\CalicoApp\
Web-inf\models
.

This process preserves a hierarchy of files.

A typical hierarchy of model files

In the above hierarchy,

• The directory name Light is derived from the model name.

• The Major versions, 1 and 2, were taken from settings in the Project Settings dialog,
as was the Minor version (2.1).

• Any sub-minor versions (1, 2, and 3) are created automatically whenever the model structure
changes or the Explanations information changes.

• Each compile is stored in its own directory identified by the compile ID. In the above
sample, this is 20000327-0333825-244. The ID is extrapolated from the date and time.
A sub-minor version can have many compiles.

Advanced Configurator provides a Model Tester for component models. It is a JSP page for testing model
relationships. The Configurator engine must be running in order for the compile to take place.

PeopleSoft Proprietary and Confidential 65

Setting Up the Modeling Environment Chapter 4

Note. Compilation takes place for the Active Project, which may not necessarily be the project you are
currently viewing in the Visual Modeler. To check the active project, select Project, Set Active Project.

Advanced Configurator provides tools for maintaining the contents of the \models
directory and the temporary files in \TEMP.

See Chapter 35, “Maintaining the Advanced Configurator System,” page 421.

To compile a model:

1. Start the Configurator server by either running <WebLogic home>startConfigurator.cmd, or
selecting Start, Programs, PeopleSoft Applications, Configurator 8.9, Start Configurator Server.

2. Click the Compile and Run icon on the toolbar to compile the model and launch the
Model Tester. If you would like to save before compiling, select Tool, Options, then
select the Save before Run option on the General tab.

Alternatively, click the Compile icon on the toolbar to compile the file without launching the Model Tester.

3. Check the output window (below the Model Structure View by default) for compile-time
messages, warnings, or errors.

At least one relationship must be specified in order to compile a model. In addition, each class
that participates in a relationship must have a selection point. (Click the Selection Point icon on
the toolbar to display the selection points in the Model Structure View.)

Using the Model Tester
The Model Tester displays the following information and display options.

Model Tester information and display options

Model Name The name of the model as it appears in the Visual Modeler project.

Model Version Displays the model’s version. The major and minor versions can
be set in the Project Settings dialog.

Compile ID The compile ID is based on the time the file was compiled
on the application server.

66 PeopleSoft Proprietary and Confidential

Chapter 4 Setting Up the Modeling Environment

Show Pricing Activate delta pricing. Delta pricing requires custom JSP programming.

See Chapter 27, “Using JSP Templates for Form Controls,” Displaying
Delta Pricing, page 349 and Chapter 16, “Retrieving Configuration
Information,” Delta Price, page 215.

Show Elimination Level If the model contains elimination levels, display them on the Model Tester.

Verify Configuration If Verify Configuration is checked, the Advanced Configurator checks
the current set of picks for missing selections (on required controls) and
violations. The model is assumed complete and valid if all required
selections are made and no violations are detected.

Sort By State Display the most recent pick at the top of the control.

Auto Submission of Picks Refresh the page as soon as a pick is made. If Auto submission is
off, make one or more picks, then click the Submit button. This value
can be set from the Project Settings dialog.

Use Select (List) Controls If this box is not checked, radio button controls will be used for the
entire model. If this box is checked, list control drop downs will be
used. When list controls are selected, text indicators, rather than the
graphics shown in the Legend box, are displayed:

• D_S—Default selected (used when None is selected by default)

• C_S—Computer-selected

• C_E—Computer-eliminated

• U_S—User-selected

• U_E—User-eliminated

Show None on Required
Controls

None is added to single-select controls at run-time so that if List
controls are used the control can initialize with nothing picked. You
can hide these values on single-select controls.

Number of Controls
Per Row

The number of columns in the Model Tester table. This value can
be set from the Project Settings dialog.

Attribute to Display Display an attribute that is defined for the domain member instead of the
Name. May also display an attribute that is not defined in the model, but
is part of the class. For example, a long description could be displayed
even though the model knows nothing of that description.

Solve Date (YYYYMMDD) Displays the date that the Model Tester is using to test the model. If the
box is initially blank, the system date is being used. If a date appears in
the box initially, it is the specified Model Tester solve date for the project.
(The model test solve date is set in the Projects Settings dialog.)

You can specify a different date in the Model Tester and re-run the test under
the new date by clicking the Submit button. The model is not recompiled.

PeopleSoft Proprietary and Confidential 67

Setting Up the Modeling Environment Chapter 4

Note. Be aware that, in the Model Tester, four or more controls placed horizontally may
not be displayed properly in Microsoft Internet Explorer.

Internalizing Model Data
PeopleSoft Enterprise Mobile Configurator allows the end-user to configure products with Advanced
Configurator applications on local, mobile environments common to field sales. Being local,
such environments do not have access to corporate databases containing model data. To eliminate
this limitation, Advanced Configurator allows system administrators to acquire the data and store
it in the model before distributing the model to the field users.

Internalizing the data can be accomplished in the Configurator Administration Console or with the
Visual Modeler. If you have auxiliary files that must accompany the data, use the Administration
Console. Also, internalizing data in the Visual Modeler is a one-time operation that will create a
model with internal data. Internalizing data with the Administration Console preserves the SQL
query information in the model, yet still produces a compiled model that doesn’t need the database to
run. If the database data changes you can re-compile to pick up the new data.

To internalize model data using the Visual Modeler:

1. Make a copy of the model’s files (in Explorer).

Note. You must internalize a copy so that there remains a database-connected model
for continued maintenance. You will always make a copy of the latest version to use in
creating a distributable Mobile Solution Package.

2. Open the copy of the model in the Visual Modeler.

3. Select Project, Internalize Model.

4. Select Yes to internalize data.

Internalization automatically converts model data into domain members and constraints. If
the data is very large, this process may be lengthy.

68 PeopleSoft Proprietary and Confidential

CHAPTER 5

Creating Objects for the Model

This chapter discusses how to:

• Create a class.

• Delete a class.

• Change class structure.

• Add class attributes.

• Create internal domain members.

• Create external domain members.

• Create a “None” domain member.

• Assign values to attributes.

• Inputting date-type attributes manually.

• Set up binding for external domain members.

• Filter and manipulating table data.

• Work with selection points.

• Storing a dynamic default quantity in a database.

• Internalize data.

Creating a Class
A class has the following default properties:

Inheritance principles must be considered while a model is being built. Click anywhere in the
model structure view to ensure focus on the modeling area.

New Class dialog box

PeopleSoft Proprietary and Confidential 69

Creating Objects for the Model Chapter 5

To create a class:

1. Click the Create Class icon in the right margin, then click the parent class, or,
select a class, then select Insert, Class.

To create multiple classes, hold down the Shift key, click the Create Class icon, then click the
parent class, or, select a class, then select Insert, Multiple Classes.

The New Class dialog appears.

Note. A class may have either subclasses or domain members. If a class has domain
members, they must be deleted before a subclass can be added.

2. Type a name into the Name entry field of the New Class dialog. The dialog prompts with a .cms file name
based on the string you enter. Before continuing be sure the name is correct according to the following:

• Class names must be unique within a model.

• The name cannot include \, =, <. >, :, ", (, or). The initial character cannot be dollar ($) or
underscore (_), but these characters can be included in other positions.

3. Click the Change button to specify a different file name. A class object can be saved to an existing .cms file.

Once a name is accepted, the class name can be changed within the model, but the file name cannot change.

4. If you are adding a single class, click OK to end the process, or click Add Another to continue
adding classes. Or, If you are adding multiple classes, type “Return” to make another, or click the
cursor arrow in the menu bar to revert to the normal Windows cursor.

When a class is created the following events occur:

• The information for the new class is displayed in the context-sensitive properties editor (if it has focus).

• The class name appears in the Class list in the Components view.

• The file name appears in the file list in the File view.

• The file name is automatically added to the model’s .csp file.

• If the class is a leaf class, a corresponding selection point is automatically created.

Deleting a Class
To delete a class, select it and press the delete key.

Deleting a class:

• Removes the class, any subclass(es), and any domain members.

• Removes the class from any relationships that reference it.

To remove the corresponding file from the .csp file, click the File View tab. Locate the associated class
file and right-click to open the context-sensitive menu, then select Remove File From Project. Note that
deleting a class in Visual Modeler does not remove the corresponding .cms file from the file system.

70 PeopleSoft Proprietary and Confidential

Chapter 5 Creating Objects for the Model

Changing Class Structure
It is possible to reuse parts of a diagram with the Reparent and Copy and Paste features.

Compare the following two figures:

Original structure

• a1 is copied and dropped on the Root class. Because the new class is a sibling of
a1, a new name, a1_1 is automatically created.

• The original a1 is dragged and dropped onto a2. a1 becomes a subclass of a2;
there is no need for a name change.

Copy and paste, and reparent

To reparent a class:

Drag and drop it on a class that does not have domain members.

To copy and paste a class:

Copy a class and paste it on another class that does not have domain members. The original class remains
unchanged in the diagram. Any domain members and relationships will be transferred along with the
copied class to its new location. If the class is on the same hierarchical level (a sibling) the class will be
automatically renamed to keep it unique. If the class is not a sibling, the name is unchanged.

PeopleSoft Proprietary and Confidential 71

Creating Objects for the Model Chapter 5

Note. Copying and pasting a class will not copy the corresponding selection points. If the copied
class is a leaf class, a selection point will be created for it; however that selection point will have the
default properties, not the properties, of the original class’s selection point.

Adding Class Attributes
Class, domain member, constraint, and selection point values and attributes can be specified
or edited in the context-sensitive Properties editor.

The Properties editor for a selection point

The figure shows the Properties editor for a class in which the user has defined attributes, and the Internal
property is set to False, so that the attribute values will be imported from an external source.

Note. The SQL Query field is not shown unless Internal is set to False.

Class or subclass properties

To add an attribute to a class:

Click the Add button at the top of the panel to open the Create a New Property dialog. You can either
use the dialog to enter the name, type, and value, or click the OK button to add a blank row to the
table for editing. Possible types are Boolean, float, int, String, and date.

72 PeopleSoft Proprietary and Confidential

Chapter 5 Creating Objects for the Model

An entry in the Value column becomes the default for child classes and for domain members. The
value can be changed in the class in which it is defined, or in an internal domain member. When
the SQL Query property is set to False, internal values are generally ignored, however, if a database
happens to have a null value, the default value from the model will be substituted.

Creating Internal Domain Members
A domain member is an instance of a class. You can create any number of domain members. An internal
domain member is one that is stored within the model rather than a database or another system file.

To create internal domain members:

1. To create a single domain member, click the domain member icon, then click the parent class.

To create multiple domain members, hold down the Shift key, and click the domain
member icon, then click the parent class. Alternatively, select a class, then select Insert,
Domain Member or Insert, Multiple Domain Members.

2. Click OK to complete the process, or click Add Another to continue adding domain members
on the same class. The New Domain Member dialog appears.

3. Type in a name. The name cannot include \, =, <. >, :, ", (, or). The initial character cannot be
dollar ($) or underscore (_), but these characters can be included in other positions. An asterisk (*)
cannot be used alone, but it can be used in combination with other characters.

4. When you are finished creating domain members for this class, select another class, or click Cancel.

Or,

To stop creating multiple domain members, click the cursor icon in the Windows menu
bar to revert to the normal Windows cursor.

Creating a “None” Domain Member
When a control is single-select, an item named None is automatically displayed in the Model Tester
when you launch it. If the selection point flag Optional is set to True, None is computer-selected
(unless a default was set). It is important to understand that this “generated” None is not a domain
member, and it has no value. As such, None does not participate in constraints.

When a user selects None at run time, it means “there is no selection made on this selection point.”

None is not generated for a multi-select control.

For required single-select controls, none has no meaning, so the Model Tester has an
option to hide None on required controls.

If you want an item named None to be selectable on a multi-select or single-select control, you must create
a domain member for that purpose. It is helpful to name this domain member something other than None,
such as “No Thanks” or “I don’t want any” to avoid confusion with the “generated” None.

PeopleSoft Proprietary and Confidential 73

Creating Objects for the Model Chapter 5

Assigning Values to Attributes
Type appropriate values in the Value column. The figure shows the attributes for an internally defined
domain member. The naming restrictions for domain members also apply to attributes.

Domain Member Attributes

Note the use of font styles in the Properties editor:

• Items that cannot be changed are shown in black bold face. For example, the Name
and File Name types cannot be changed.

• Items shown in plain text can be modified, that is, the value of the name can be changed.

• Items defined in an ancestor class—for example, the attribute price in the figure, are shown in italic font.

Inputting Date-Type Attributes Manually
You can input date-typed attributes on classes and domain members manually, through the Property
Editor, and through an SQL query from a database. The Visual Modeler also supports date-typed
data in compatibility, requirement, and dynamic default constraints.

You can express values for dates using the full ISO 8601 format. However, any time zone, hour, minute, and
sub-second information will be truncated during the compilation process to yield a YYYY-MM-DD format.
The validity of dates is checked during the compilation process and error messages are generated for any invalid
dates detected. Advanced Configurator stores the dates as strings in their YYYY-MM-DD format since many
date operations can be performed on the ISO 8601 format using string manipulation and comparison functions.

Date values loaded from a database are retrieved and converted to the YYYY-MM-DD format. Thus,
you can store and retrieve date values in formats other than YYYY-MM-DD.

Note. Strings can be input directly from the user interface if they are in a parseable date format.

74 PeopleSoft Proprietary and Confidential

Chapter 5 Creating Objects for the Model

Editing a class property with date type

You can also use date data in expressions.

See Chapter 6, “Creating Relationships Between Model Objects,” Creating and Editing Expressions, page 88.

Setting Up Binding for External Domain Members
Relationships can be created between classes or selection points and domain members obtained from a
database. Setting up the modeling environment to work with external objects requires:

• Configuring the database.

See Chapter 4, “Setting Up the Modeling Environment,” Database Interface Configuration, page 51.

• Configuring your system so that you can see external data in the model.

See Chapter 4, “Setting Up the Modeling Environment,” Connecting to a Database
from Visual Modeler, page 53.

• Specifying the appropriate values for properties in the JNDIDBName.properties file is that
you can compile and run a model with external data.

See Chapter 4, “Setting Up the Modeling Environment,” Configuring JNDIDBName.properties, page 52.

Selecting a Primary Table
Select a class, and in the Properties editor, set Internal to False. The SQL Query field appears. Click
the Edit button to display the primary table dialog. (If no databases are listed in the drop down
on the upper left, the Visual Modeler is not connected to a database.)

See Chapter 4, “Setting Up the Modeling Environment,” Specify a Database Connection, page 54.

PeopleSoft Proprietary and Confidential 75

Creating Objects for the Model Chapter 5

Primary table with attribute mapping and WHERE clause

Simple Queries

Simple queries, where a database table column corresponds exactly to the model needs,
do not require an advanced SQL query.

To write a simple query:

1. Type the database table name into the Primary Table field.

Note. The table name and all other names associated with the database are case-sensitive.

2. Type a Column name from your database into an empty Table Column cell. To map the values to
class attributes, make a selection in the corresponding Class:Attribute drop down.

3. (Optional) Enter a Where clause. The SELECT and FROM portions of the query are derived
from the dialog inputs. You need only enter the WHERE portion.

4. (Optional) Check the Distinct check box to ensure that repeated values are not displayed.

5. Click the Domain Member Key box next to the value you want displayed on the domain
member. At least one row must be chosen as Domain Member Key. The Domain member
key does not have to match the Primary Key in the database.

Note the following important points about queried data:

76 PeopleSoft Proprietary and Confidential

Chapter 5 Creating Objects for the Model

• Data queried for a Domain Member key must be unique. The Domain Member key data will
be used as an identifier for domain members at run time.

• If two domain member keys are chosen, both will be displayed on the imported domain
members. The topmost key will be displayed first.

If more than one domain member key is chosen, the union of all keys will be used to identify
domain members at run time; the combined list cannot have duplicates.

• Queried data has the same restrictions as internal data. A query cannot return a name
that includes \, =, <. >, :, ", (, or).

The initial character cannot be dollar ($) or underscore (_), but these characters can be included in other
positions. An asterisk (*) cannot be used alone, but it can be used in combination with other characters.

• None is displayed on single-select controls at run time. This “generated” None is not a domain member. If
you want a domain member to perform this function, you must create one in the database.

See Chapter 5, “Creating Objects for the Model,” Creating a “None” Domain Member, page 73.

Secondary Table Option

To join a secondary table to a Primary table, click the Secondary Table button. Database-to-class
property mapping is similar to that for the Primary window, with these exceptions:

• The SQL query is a Join clause. Typically, a secondary table is used to add an attribute from another
table to an external domain member. The secondary table has at least one column in common with
the primary table. The common column is used to state the join condition.

• Columns cannot be mapped to domain members in this dialog.

• Multiple secondary tables are allowed. Click Add New Table. Each table appears on a
separate tab in the Secondary Table(s) window.

Note. Limit using secondary tables to situations where they are truly necessary. Secondary tables are preferred
to defining advanced queries, but they slow Visual Modeler performance and increase compilation time.

PeopleSoft Proprietary and Confidential 77

Creating Objects for the Model Chapter 5

Primary and Secondary Tables with SQL Queries

Advanced Queries

An Advanced Query is required if filtering must be applied to the table data and if you plan to do
any data manipulation in the SQL. For example, you could calculate someone’s age based on the
current date and their birth date and return that value as AGE. You may also need an advanced
query if you are using nested select statements or complex joins.

When you use an advanced query, the run-time system can not dynamically read additional
database data as requested by run time components. Any data needed must be provided by
the query specified in the Advanced Query specification.

You can not request additional attributes on the UI with advanced queries. For example, with a simple
query, you don’t have to map LONG_DESCRIPTION into the model, but you can still display it at
run time since it is added onto the query for the class. With advanced queries, all attributes that will
be displayed or otherwise referenced (e.g., in pricing) must be mapped into the model.

Note. An advanced query must be written such that the first column returned is returned as “$NAME”.
This should be the domain member key (or equal to the domain member key).

To enter an advanced query:

1. Click the Advanced Query check box. The Primary Table field will disappear.

2. Type an SQL Server or Oracle query into the Enter Advanced Query field to:

• Generate the domain-member name column from the key columns.

78 PeopleSoft Proprietary and Confidential

Chapter 5 Creating Objects for the Model

• Return it as column 1 and call it ’$NAME’.

This part of the query looks like:

(tbl1.keycol1 || tbl1.keycol2 || tbl2.keycol1) AS ’$NAME’, tbl1.col2 WHERE ...

Examples

SQL-Server:

(single-column key)
SELECT (cast(tbl1.keycol1 as nvarchar(4000))) AS ’$NAME’, tbl1.col2 WHERE ...

(multi-column key):
SELECT (cast(tbl1.keycol1 as nvarchar(4000)) + ’_’ + cast(tbl1.keycol2 as⇒

nvarchar(4000)) + ’_’ + cast(tbl2.keycol1 as nvarchar(4000))) AS ’$NAME’,⇒

tbl1.col2 WHERE ...

Oracle:

(single-column key):
SELECT (tbl1.keycol1) AS "$NAME", tbl1.col2 WHERE ...

(multi-column key):
SELECT (tbl1.keycol1 || ’_’ || tbl1.keycol2 || ’_’ || tbl2.keycol1) AS "$NAME",⇒

tbl1.col2 WHERE ...

(You can also leave out the table prefix (“tbl1.”, “tbl2.”) if there is only one table being queried.)

3. Add the data call portion of the query:

In an example where a class’ attributes name, attr1, and attr2 are taken from tableX, and there
is a need to order by attr1, the query (for Oracle) is similar to this:

select name as "$NAME", attr1, attr2 from tableX order by attr1

The column mappings are:
$NAME -> tableXID(domain member key)

attr1 -> columnA

attr2 -> columnB

4. Perform the remaining steps as described in the preceding instructions “Simple Queries.”

Note. Do not use the Advanced query unless it is absolutely necessary. The simple query
is preferred because it can be optimized at run time.

Using Table Aliases

Using a table alias helps allows you to:

• Refer to the same table/view more than once in a single query.

• Refer to a table by a sorter name in the where clause.

In particular, a table alias can help you create joins and differentiate between multiple instances of the
same table. To create a table alias, follow the table/view name with a name of your choosing—the
alias. When you refer to that table instance in the where clause, prefix the column name with the
prefix. The SQL below is what the system actually generates at run time. Note the prefix names
used in the WHERE section—you can see them defined in the FROM section.

PeopleSoft Proprietary and Confidential 79

Creating Objects for the Model Chapter 5

SELECT DISTINCT (CAST(kit.PROD_COMPONENT_ID AS NVARCHAR(4000))) AS ’$NAME’

FROM PS_PRODKIT_COMPS kit, PS_EOEP_PRICE_LIST list, PS_EOEP_PRICE_LIST recur, ⇒

PS_PROD_ITEM prod

WHERE kit.SETID = ’COM01’

and kit.PRODUCT_ID = ’TEL200002’

AND list.RECURRING_FLG = ’N’

and list.PRICE_LIST_ID = ’COM_PRICE’

and list.SETID = kit.SETID

and list.PRODUCT_ID = kit.PROD_COMPONENT_ID

AND recur.RECURRING_FLG = ’Y’

and recur.PRICE_LIST_ID = ’COM_PRICE’

and recur.SETID = kit.SETID

and recur.PRODUCT_ID = kit.PROD_COMPONENT_ID

AND prod.SETID = kit.SETID

and prod.PRODUCT_ID = kit.PROD_COMPONENT_ID

Filtering and Manipulating Table Data
An Advanced Query is required if filtering must be applied to the table data and if you plan to do
any data manipulation in the SQL. For example, you could calculate someone’s age based on the
current date and their birth date and return that value as AGE. You may also need an advanced
query if you are using nested select statements or complex joins.

Storing a Dynamic Default Quantity in a Database
A special character is used to separate the quantity values and policy from the constraint value. For instance, if
you want to default four fans with a SUM policy, the string “FANA~4~SUM” might appear in the database to
denote that default. The format for a value stored in a database can be one of the following:

<value>

<value><delimiter><quantity-or-expression>

<value><delimiter><quantity-or-expression><delimiter><policy>

The <value> token is the value to be used by the constraint. In the prior example, this would be the
symbol FanA. The <delimiter> token is the special separation character. In the example, this was the
character ‘~’. You can specify the delimiter character in the Project, Settings dialog.

The <quantity-or-expression> token is either a numeric quantity or the name of an expression.
The <policy> token is SUM, MIN OF, or MAX OF.

80 PeopleSoft Proprietary and Confidential

Chapter 5 Creating Objects for the Model

Retrieving Expression Values and Externs from a Database
You can populate LHS expressions and RHS extern values from stored data. Visual
Modeler and the compiler recognize data output from the database in specific format and
will populate the rows of constraints with that data.

The format for LHS expressions is:

<comparator><space><"const" or "f(x)"><space><value or expression name>

Examples: <= const 2 and > f(x) expSum

Format for RHS externs is < “true” or “false”> to indicate whether it is required (true) or optional (false).

You should have one column in the database for each expression or extern in the constraint.

Working with Selection Points
The selection point is the model component that communicates directly with the HTML control in the UI.
By default, a selection point is created for every leaf class that participates in a relationship.

A selection point has these properties, which are displayed and editable in the properties table:

Name Type String. By default, the name of the selection point is the class name
with Selection appended. This name can be changed. If you change the
name, all constraints or expression that use it must be updated.

Filename Type String. Filename and path to this object.

Type Type String. The name of the original class.

Quantity Type Boolean. Determines default quantities for selections. False indicates
that domain members, when selected, have a quantity of 1. True indicates that
domain members, when selected, have the quantity of 1 or greater, as set in the
Defaults editor (explanation follows), which replaces the Def Choice property.

Use Min/Max Type boolean. Settings for minimum and maximum number of choices
allowed for the control, and for minimum and maximum quantity of each
domain member allowed. Determines single- and multi-select control
type. When set to False (default), the control is optional, and only one
domain member can be selected (single-select). (You can also specify
single-selection with the property Multi Sel = False.) When Use Min/Max
is set to True, the Defaults editor replaces the Def Choice property

Defaults The default quantity policies and values for each domain member
in the selection point. Click Edit to open the Edit Default Choices
dialog. This quantity is compared to the quantity that is assigned to
the domain member during run time when it is selected by a dynamic
default constraint. It is applied if the dynamic default quantity does
not meet the requirement indicated by the policy.

PeopleSoft Proprietary and Confidential 81

Creating Objects for the Model Chapter 5

See Chapter 3, “Understanding Modeling,” Quantities in Modeling, page 32.

Quantity Policy column—One of four ways to apply the static quantity value
in the Quantity Value/Expression column to each domain member:

• Overridable, Overridable f(x)

Assign the quantity to the domain member only in the absence of a
dynamic default quantity on the domain member.

• Min of, Min of f(x)

Check that the largest of the dynamic quantities assigned to the domain
member (assuming it was selected more than once) is the specified static
quantity or greater. If it is not, assign the static quantity value.

• Max of, Max of f(x)

Check that the largest of the dynamic quantities assigned to the domain
member (assuming it was selected more than once) is the specified
quantity or less. If it is not, assign the static quantity value.

• Sum, Sum f(x)

Check that the specified quantity equals the sum of the dynamic
quantities assigned to the domain member (should it be selected multiple
times), otherwise assign the static quantity.

Quantity Value/Expression column—Static quantity. Click on the cell
to display the selector arrows and set the static quantity value, or a
predefined expression, of a domain member. If you use an expression,
the value resulting from the expression will be used.

A value of 0 indicates that there is no minimum, maximum, or summed
quantity requirement on the domain member. 1 - n is the quantity to
be compared to the dynamic quantity, to be applied to the domain
member if the policy requirement is not met.

Domain Member column—(not editable) Name of the domain
member in the selection point.

Use Quantity Policy for All Domain Members—Specifies whether and
how to apply a default quantity to all the domain members. Policy and
Quantity fields specify the same entries as the Quantity Policy and Quantity
Value cells for individual domain members described above.

Multi-Sel Type Boolean. Determines whether a selection point is single- or multi-select.

False indicates that only one selection can be made on the selection point. Be
sure to choose Def Choice if desired (explanation follows). In this sense, the
Quantity property duplicates the Multi-Sel property (explanation follows).

True indicates that multiple selections can be made on the selection point.
When True is selected, the input row Defaults appears in place of the Def
Choice property, and the Defaults Editor is made available for setting
the default choices, their default quantities and policies.

SP Min/Max Click the SP Min/Max Edit button to open a dialog to specify:

• Selection point Minimum Number:

0 indicates that the selection point is optional.

82 PeopleSoft Proprietary and Confidential

Chapter 5 Creating Objects for the Model

1 – n indicates that the selection point is required and must
have at least 1 or n selections.

• Selection point Maximum Number:

Unbounded indicates that there is no limit to the number of discrete domain
members the user can choose (up to all members available). For efficient
model maintenance, use this setting when the number of domain members
is expected to vary over the life of the model or during run time.

1 – n indicates a static limit; 0 has no meaning.

• Expression—the minimum and maximum are determined by an
expression. Choose the expression from the drop down.

• SQL Query—the minimum and maximum are determined by query of the
indicated database. Click the ellipsis button to open an edit window in which
to create the query. Be sure to indicate the database to query.

Note. The Configurator system looks for the selection value in the first
column of the first row of the data returned by the SQL query. Be sure
to create a query that returns only one column and one row.

• Explanation—Message that you want to appear when the min/max limits are
violated, advising the user when not enough choices are made, or too many.
Explanations can be parameterized to indicate the objects involved.

See Chapter 3, “Understanding Modeling,” Creating Parameterized
Explanations, page 44.

DM Min/Max Minimum and maximum limits on the quantity of each domain
member that may be selected.

• Domain member Minimum quantity: The least quantity that can be
specified of a domain member when selected.

• Domain member Maximum quantity: Unbounded indicates that there
is no limit to a domain member’s allowable quantity.

• Expression—If you want the minimum or maximum quantity to be
determined at run time by an expression, select Expression and then select
the desired expression (already defined) from the drop down list.

• SQL Query—the minimum and maximum are determined by query of the
indicated database. Click the ellipsis button to open an edit window in which
to create the query. Be sure to indicate the database to query. row.

Note. The Configurator system looks for the selection value in the first
column of the first row of the data returned by the SQL query. Be sure
to create a query that returns only one column and one.

• Explanation—Message that you want to appear when the min/max limits are
violated, advising the user when too few or too many of a domain member are
selected. Explanations can be parameterized to indicate the objects involved.

See Chapter 3, “Understanding Modeling,” Creating Parameterized
Explanations, page 44.

PeopleSoft Proprietary and Confidential 83

Creating Objects for the Model Chapter 5

Optional Type Boolean. Default is False (required). If False is set, the user must make
a selection on the control before the configuration can be verified.

Note. The same condition applies if Use Min/Max is True and Minimum
Number is not 0.) If Optional is True and Multi Sel is False, the item None
will be automatically added to the control at compile time.

Def Choice Type String. Optional. The item in the control that is pre-selected. Can
be a domain member name or None, which means “none of these domain
members”. If Optional (described below) is True, the <None> option is
computer-selected. If Optional is False (the control is required), None has no
meaning. This property is not available if either Quantity or Multi Sel is True,
as these properties indicate that quantities greater than 1 are to be specified.

See Chapter 5, “Creating Objects for the Model,” Creating a
“None” Domain Member, page 73.

To view a model’s selection points, select View, Show, Selection Points or click the selection point icon
in the toolbar. The selection points are displayed on the left side of the model structure view.

A selection point participates in all relationships that refer to the original parent class. If a relationship
is made directly between a selection point and another object, that relationship is confined to the selection
point. To add a selection point, drag a class from the components view into the selection point area,
or drag a class from the Model Structure View into the selection point area.

To delete a selection point, select it in the Model Structure View, then press the Delete key. Once created, a
selection point can participate in relationships with classes or class attributes members in the modeling editor.

Note the Properties Editor entries for selection points. Because selection points interface with the UI, settings
made here determine how controls behave at run time. A selection point can be designated as multi-select (the
user can select more than one of its items), and/or optional. If a control is optional, the user does not have to
make a selection on the control. If a selection point is required, the model will not be considered valid until
a selection is made. Selection point properties (Table Editor) New selection points appear at the bottom of
the selection points area, and at the end of the selection points listing in the component view.

A class can have many attributes, but if attribute values are to be selectable at run time, they
must be made visible from the selection point. To do this, right-click on a selection point that
has attributes, select Set Visible Attributes, and check any attributes that you want to display at
run-time. When an attribute is made visible, it will be shown on all the selection points for a class.
The display of an attribute cannot be confined to certain controls.

84 PeopleSoft Proprietary and Confidential

Chapter 5 Creating Objects for the Model

Set visible attributes on selection points

Internalizing Data
External data can be extracted from the database and automatically inserted and defined
in the model as for manually entered data.

This is a necessary step if the model is to be deployed in a mobile environment where configuration
will take place locally on a standalone version of Advanced Configurator. The Configurator
Administration Console has a more comprehensive internalization function than does Visual Modeler.
It can internalize data stored in files other than those in a database.

Internalizing data is a “one time” operation. Once it is performed, changes to the data in the database
will no longer be reflected in the model. To internalize data on an ongoing basis, use the option
available with the compile command on the Server’s Administration page.

To internalize external data using the Visual Modeler, use the Project, Internalize Model command.

See Also

Chapter 34, “Administration Tools,” Administration Console, page 411

PeopleSoft Proprietary and Confidential 85

Creating Objects for the Model Chapter 5

86 PeopleSoft Proprietary and Confidential

CHAPTER 6

Creating Relationships Between Model Objects

This chapter discusses how to:

• Prepare to create relationships.

• Create and edit expressions.

• Create a relationship.

• Work with relationships.

• Create relationships outside the model with SQL queries.

Preparing to Create Relationships
Visual Modeler provides graphical ways to express common configuration relationships. Relationships
can be created between classes, class attributes, selection points, and selection point attributes.

• To create a relationship using internal domain members, the Internal flag must be set to True on the parent class.

• To create a relationship using external data, the Internal flag must be set to False
and you must have a valid database connection.

See Chapter 4, “Setting Up the Modeling Environment,” Connecting to a Database
from Visual Modeler, page 53.

• The Elimination and Comparison constraints and relationships operate on expressions; therefore, expressions
of the proper type—numeric, boolean, String, and date—must be defined before they can be created.

Common Elements in this Chapter
Create a compatibility constraint. Click the button, move the cursor to the
first object in the desired relationship, then click and drag to the second
object. You can set up compatibility constraints between two classes
and between a class and a selection point. However, you can’t set up
a relationship between a selection point and a class.

Create a requirement constraint. Click the button, move the cursor to
the first object in the desired relationship, then click and drag to the
second object. You can set up requirement constraints between two classes
and between a class and a selection point. However, you can’t set up
a relationship between a selection point and a class.

PeopleSoft Proprietary and Confidential 87

Creating Relationships Between Model Objects Chapter 6

Create a resource requirement. Click the button, move the cursor to the
first object in the desired relationship, then click and drag to the second
object. You can define a resource requirement between two classes, two
selection points, and between a class and a selection point. However, you
can’t set up a relationship between a selection point and a class.

Create a summation constraint. Click the button, move the cursor to the
first object in the desired relationship, then click and drag to the second
object. You can set up summation constraints between two classes, two
selection points, and between a class and a selection point. However, you
can’t set up a relationship between a selection point and a class.

Create a dynamic default constraint. Click the button, move the cursor to the
first object in the desired relationship, then click and drag to the second
object. You can set up dynamic default constraints between two classes, two
selection points, and between a class and a selection point. However, you
can’t set up a relationship between a selection point and a class.

Create a new expression.

Create an elimination relationship.

Create a comparison relationship, either of numeric or boolean type.

In the Insertable Objects window of the Expression editor,
signifies a selection point object.

In the Insertable Objects window of the Expression editor, signifies a domain
member object that gets the value of the specified attribute from an extern.

In the Insertable Objects window of the Expression editor,
signifies a extern variable.

In the Insertable Objects window of the Expression editor, signifies
an expression that returns a date.

In the Insertable Objects window of the Expression editor, signifies
an expression that returns a numeric value.

In the Insertable Objects window of the Expression editor, signifies
a expression that returns a boolean value.

Creating and Editing Expressions
An expression defines a variable. It associates a numeric, boolean, date, or String value with a name.
All relationships use expressions except summations and resource balancing constraints

An expression can contain:

• A literal value (to act as a constant).

• Selection point attribute values.

• A value a user enters at run time.

88 PeopleSoft Proprietary and Confidential

Chapter 6 Creating Relationships Between Model Objects

• Functions that operate on other expressions.

When you create an expression:

• The name appears in the Relationships or Expressions folder.

• The file name appears in the file list in the File view.

• The file name is automatically added to the project’s .csp file.

There are a few points to keep in mind while using the Expression Editor. When you create an expression,
the numeric, boolean, date, or string value within it is assigned to the expression name. Data for use
in expressions can come from constants, class attributes, and other expressions.

Expressions have their own editor, which opens when you click the Expression editor button on the toolbar.

Return Type Select the expression type to Numeric, Boolean, Date, or String.

Expression Displays the expression. Insert an attribute or expression name into this
window, select a name in the Insertable Objects listing and drag and drop it,
or double-click on it. Large or complicated expressions can be formatted in
a text editor, then pasted into this area. Edit carefully. There is no error
checking on expressions until the model is compiled.

Note. You should stabilize selection point and attribute names before writing
expressions. When an object name changes, Visual Modeler updates
listings, selection points, and other places the name is displayed, however,
an existing expression can’t be updated because it is text. An obsolete
attribute or expression name will not be found at compile time.

Name Displays the expression name as defined.

Change Name Opens a dialog to change the expression name. Like other .cms objects,
an expression is given a filename at the time of creation. This filename
does not change when you edit the description name. The project
manages the expression by the original filename.

Function Category Choose the general type of function to restrict the list of available
functions in the Function Name listbox to those appropriate for the
expression type–boolean, date, numeric, String, and user-defined. Or,
click All to display the entire list of functions.

Function Name Choose the function desired by scrolling and selecting, or by clicking in the
list box and typing the name of the function. The list box will auto-scroll to the
function as you type its name. To narrow the list of functions to those available
to its data type, click a function type in the Function Category listbox.

Insertable Objects Lists all selection points and their attributes. It also lists all
expressions created thus far.

Note. The selection point name is shown for reference. Expressions
operate on attributes only. To insert an attribute or expression into
the Expression window, double-click its name.

Find The Find field searches the Insertable Objects list from top to bottom.
It performs a character match as you type.

PeopleSoft Proprietary and Confidential 89

Creating Relationships Between Model Objects Chapter 6

Note. This feature isn’t active until the list is long enough to scroll.

Refresh Functions From
Server

Click to retrieve user-defined functions (if any were defined) from
the Configurator server. The Configurator server accessed is
specified in the Project Settings dialog.

See Chapter 4, “Setting Up the Modeling Environment,” Specifying
Model Project Settings, page 60.

Open Extern Manager Click to open the Extern Manager and add new extern variables
to the Insertable Object list.

Expression editor

To create an expression:

1. Click the Expression Editor button. A name dialog box appears in which you name the new expression.

2. Click OK; the editor opens.

3. Write the expression in the Expression entry box by double-clicking on the functions and insertable
objects desired. Type as necessary. Indicate the data type of the result in the Return Type drop down.

Warning! Limit attribute values to 10 characters or less. Otherwise, the model will not compile.

See Appendix A, “Visual Modeler Expression Editor Functions,” page 429.

To delete a relationship or expression:

Select its name in the Components view and press the delete key, or right-click on the name and select Delete.

90 PeopleSoft Proprietary and Confidential

Chapter 6 Creating Relationships Between Model Objects

Static Variables

A static variable is an expression that performs no operations and always returns a constant value.

To create a static variable:

Create an expression, set the Return Type, type in a value, then close the window. (You cannot make an
explicit assignment, such as SalesTax=9.5, inside the Expression editor.) For example, to create an expression
named “Airport Tax,” set the Return Type to Numeric, and type the value 12 in the Expression window.

External Variables

The external variable is used to get a value—float, numeric, string, boolean, and
date—from the user or a database at run time.

You cannot assign a value to a variable and operate upon it in the same expression. Any calculated value must
be assigned to its own expression name. Expressions can be built using many other expressions.

User-Defined Functions

If you do not find a function that is appropriate to your specific needs, you can create one that is. To create
your own function, you must create a description of the function in XML and write a Java class that
implements the interface of Advanced Configurator. Sample code and sample files are provided.

See Appendix B, “Creating and Adding User-Defined Functions,” page 439.

To display the user-defined functions in the Function list of the expression editor, click the
“Refresh Functions from Server” button and compile the model.

Creating Externs
You can direct the model to pull data at run time from outside sources such as the enterprise database. Externs
can have the types float, integer, date, string, and boolean. The modeler can specify a default value for each
extern and whether or not the value passed in is required. Defaults can be overridden by end-user input on the UI.

You can declare externs in the Extern Manager dialog.

PeopleSoft Proprietary and Confidential 91

Creating Relationships Between Model Objects Chapter 6

The Extern Manager lists all externally referenced data for the component model

Externs participate in the right-hand side of Requirement constraints. Each extern has a Required check box
in the cells of its column, which, when selected, makes the extern required if the left-hand side conditions
are satisfied. The Required option is the only setting available for the constraint-level use of externs.

Extern-based controls display violations and Control Why Help when the extern is declared as
an argument, or as part of an expression that serves as an argument, in a variety of relationships,
including eliminations, comparisons, requirement, and compatibility constraints. Externs that
are flagged “required” at the object level in the Extern Manager display violations and Control
Why Help only upon execution of the Completeness Check.

At run time, the type of each extern is checked for accuracy, but only date externs will also be checked for
formatting errors. If the value is not of the right type or format, an error message is displayed to the end-user.

Because the requirement of an extern doesn’t affect propagation, the requirement of externs will
be determined after static and dynamic default selections are applied.

To declare an extern:

1. Select Project, Extern Manager to open the Extern Manager dialog.

2. Click the Add button to add a new row to the table.

3. Specify the properties of each:

Type Choose Boolean, Date, Float, Int, or String.

Default Value If you want a value to appear in the UI when the configuration session
begins or when it is reset, enter the desired value.

Required If you want the extern to be required on a model-global basis, select this
check box. To make an extern required when constraint conditions are
met, do not select the Required option in the Extern Manager, but in the
constraint itself by inserting the extern as a column in the right-hand-side of
the relationship and selecting the Required check box in the desired cell(s).

92 PeopleSoft Proprietary and Confidential

Chapter 6 Creating Relationships Between Model Objects

Invalid Type Explanation The message that you want to appear to the user when the type of the
data does not match that specified for the extern variable. Explanations
can be parameterized to indicate the objects involved.

See Chapter 3, “Understanding Modeling,” Creating Parameterized
Explanations, page 44.

4. Click OK. The externs now appear in lists of objects for building Requirement constraints.

Creating a Relationship
You can start a relationship from either the Insert Menu or the relationship palette of icons on the right margin
of the application window. Depending on the type of relationship, one of two editors appears:

• The table-based editor, for compatibility and requirement constraints, and for dynamic defaults.

• The participant-list editor, for resource constraints and summation relationships.

The dialogs for Compatibility constraints, Requirement constraints, and Dynamic Defaults provide
an opportunity to name the relationship and select the class or domain member attributes to constrain
against. These relationships are created using a table interface.

See Chapter 3, “Understanding Modeling,” Relationships Between Objects, page 14.

Requirement dialog

The dialogs for Resource Constraint and Summation relationships differ slightly because each participating
object takes a specific role in the constraint. These constraints are created using a simple list of participants.

See Chapter 3, “Understanding Modeling,” Relationships Between Objects, page 14.

PeopleSoft Proprietary and Confidential 93

Creating Relationships Between Model Objects Chapter 6

The dialog for a summation

To launch the Relationship editor:

1. From the Insert menu, select a relationship. Or, click a relationship icon on the palette.

• If the relationship is an Elimination or a Comparison, the relationship editor appears immediately.

• For all other relationships, you can draw a line to indicate the relationship once the relationship
icon is selected. Position the cursor over a class; the class is highlighted. Click and drag
to draw a line to another class; when the target class is highlighted, release the button.
You can also a draw line from a class to a selection point.

2. Provide a name for the relationship. Note that the relationship name is assigned to a corresponding
.cms file. To change a relationship name, click the Change button.

The dialogs for Compatibility constraints, Requirement constraints, and Dynamic Defaults provide an
opportunity to name the relationship and select the class or domain member attributes to constrain against.
These relationships are created using a table similar to that shown in the following figure.

See Chapter 3, “Understanding Modeling,” Relationships Between Objects, page 14.

Creating Relationships that Have Expressions

All relationships use expressions, with the exception of summations and resource relationships. The figures
below show a numeric elimination, numeric comparison, and boolean comparisons, respectively. To create a
comparison or elimination relationship, click its icon on the palette. The Comparison editor lists operators
and available expressions; the Elimination editor lists operators, selection points, and expressions. From
these lists you can build an elimination or comparison expression that determines when a conflict will
occur. If you have no expressions of a given type, the corresponding editor field is empty.

94 PeopleSoft Proprietary and Confidential

Chapter 6 Creating Relationships Between Model Objects

Comparison editor before expressions are selected

To include an expression in either the left- or right-hand side of the relationship:

1. Click on the heading of the column to the right of where you want to insert the expression.

2. Click the Add Column button. The Object Selection window pops up listing the available objects.

3. Scroll to the expressions, which are at the end of the list, and double-click the desired
one. It is inserted into the new column.

4. If the relationship is a requirement constraint, dynamic default, or a compatibility constraint,
define the relationship for each domain member:

a. Click in the cell of a domain member column to open a drop down containing the
allowed domain member options. For instance, rows of the selection point columns
contain lists of domain members; expression columns contain subcolumns for operators,
expression type (function or constant), and value.

b. In the same row as the domain member, click on the cells of the expression subcolumns. The first
subcolumn, beginning left to right, contains a list of the allowable operators for the expression.
The second subcolumn is the argument type, constant or function f(x), of the value being operated
upon. The third column is the value. If you chose the constant type in the preceding subcolumn,
type the value desired. Be sure it is the correct data type for the expression. If you chose the
function argument type, use the cell drop down to insert the desired expression.

PeopleSoft Proprietary and Confidential 95

Creating Relationships Between Model Objects Chapter 6

Note. The allowed choices for comparison operators depend on the return type of the expression
argument. Similarly, allowed choices for the constant values depend upon the expression argument’s
return type. Choosing an operator with the function symbol f(x) narrows the allowed choices in the
values subcolumn to a list of expressions compatible with the column’s expression type.

c. Repeat these steps for each domain member.

5. On the other side of the relationship, select the desired argument for the relationship from
the list presented for the domain member or selection point.

Note. You can’t add expressions to the RHS of a compatibility, requirement, or dynamic default constraint.

Working with Relationships
When a relationship is created:

• The name appears in the Relationships folder.

• The file name appears in the file list in the File view.

• The file name is automatically added to the project’s .csp file.

To delete a relationship or expression:

Select its name in the Components view, and press the delete key, or right-click on the name and select
Delete. The constraint will be removed from its .cms file. If the .cms file is then zero length, it can be
deleted, and the file name can be manually removed from the .csp file from the File View.

To display relationships in the Model Structure View:

Click on a participating object, such as a class. Red lines appear, connecting all participants. The relationship
name appears on the connecting lines. Double-clicking the name opens the relationship editor.

The costTotal relationship between subclasses cost and kit, and cost and component

When an object is selected, the Attributes tab shows the relationship or expression name
and the path to the file containing the relationship.

To reopen an editor:

Double-click its name in the Components tab.

96 PeopleSoft Proprietary and Confidential

Chapter 6 Creating Relationships Between Model Objects

Relationships Displayed as a Table

Compatibility, requirement, and dynamic default relationships are created using a table-based editor.

The Relationship Editor toolbar appears directly above the table. The buttons are:

Add a column to the right of the current selection.

Add a row below the current selection.

Delete the selected column.

Delete the selected row.

Toggle the directional bar in the current editor.

Toggle compatibility.

Deselects all selected items on the left-hand side.

When inserting columns in a directional constraint, click to the right or left of the bar
before clicking the Add Column icon.

To resize columns, position the cursor over a header’s vertical border then drag left or right.

To move a column, position the cursor over its name, then drag the column to a new position;
a red vertical line appears when a possible location is reached.

Note. The column of check boxes cannot be moved.

PeopleSoft Proprietary and Confidential 97

Creating Relationships Between Model Objects Chapter 6

Dynamic default example using an expression on the left-hand side: “If the value of ’Married’ is greater
than the value of’ SpouseAge,’ then default-select ’Main Applicant’.”

Table-based relationships have the Format property, which allows you to define them within a database
table. For more information on constraints defined external to the model.

Expressions (i.e. boolean, numeric, string, and date expressions) can participate as argument(s) (i.e. columns)
only on the LHS; only the dynamic default can have expressions in both the left-hand and right-hand sides
of table-based relationships. Each row of the expression column is composed of two subcolumns—the
comparison operator subcolumn followed by the values subcolumn. The allowed choices for the comparison
operators depend upon the return type of the expression argument. In turn, input validation for the constant
values depend upon the expression argument’s return type. To enable referencing other expressions in the
values subcolumn, f(x) is postfixed to copies of the allowed comparison operators. If the relationship is
on the RHS, choosing a postfixed version of the operator(s) narrows the allowed choices in the values
subcolumn to a list of other expressions compatible with the column’s expression type.

Relationships Displayed with Participant Lists

For the Resource constraint and Summation relationship, the Relationship editor displays a list
of the attributes involved. They differ somewhat from table-based relationships in that each
participating object takes a specific role in the constraint.

Editing Compatibility Constraints
In a Compatibility constraint, the constraint type can be toggled from Compatible to Not Compatible. Typically,
the majority of domain members are compatible, therefore, the Not Compatible setting is the default, as it is often
less work to distinguish exceptions. Check the Description window to verify that you have the expected setting.

98 PeopleSoft Proprietary and Confidential

Chapter 6 Creating Relationships Between Model Objects

ANY and ALL

The selection option ANY can appear in each row and column where internal data is
used. ALL appears where external data is used.

Note. ALL does not exist in the database; it is merely a “shorthand” representation that Visual Modeler
displays so that you can select all queried domain members. ALL implies that any queried value is acceptable.

Compatibility constraint

Editing Requirement Constraints
The requirement constraint is displayed in a table similar to the compatibility constraint. ANY
and ALL behave as they do in compatibility constraints.

PeopleSoft Proprietary and Confidential 99

Creating Relationships Between Model Objects Chapter 6

Requirement constraint

See Also

Chapter 3, “Understanding Modeling,” Requirement Constraint, page 18

Editing Dynamic Defaults
A Dynamic Default is a way to specify that a specific item will be pre-selected in response to a run-time event,
such as a user selection. An end-user can override a Dynamic Default without violating a constraint. (If a user
overrides a constraint, a violation occurs, which can prevent a user from completing a valid configuration
unless his selections are altered.) Regardless of the default, if all but one choice is constrained away, the
remaining choice will be computer-selected. This behavior occurs automatically; no programming is required.

The Dynamic Default relationship table is similar to that of the Compatibility or Requirement
constraints. ANY has the same significance. Dynamic defaults include the option NONE for every
row. Checking NONE means that there are no defaults for that combination of domain members, or
that every combination of class and domain member properties is to be ignored. NONE allows you
to work with queried values without knowing the specific domain members.

100 PeopleSoft Proprietary and Confidential

Chapter 6 Creating Relationships Between Model Objects

Dynamic Default

Note. Do not confuse the relationship editor NONE option with the None that is displayed at run time.

See Chapter 5, “Creating Objects for the Model,” Creating a “None” Domain Member, page 73.

By default, the Comment area displays an equation for each selected combination.

Editing Resource Constraints
For the resource constraint, the Relationship editor initially displays the classes or attributes selected or defined
when the constraint was created. However, multiple providers and consumers are allowed. Clicking the Add
Provider or Add Consumer button or Remove button displays a list of all attributes in the model.

Note. In order for the constraint to work correctly at run time, the Provider must be a selection
point. The Model Tester automatically supplies controls for the provider and consumer so
that you can monitor resources as picks are made.

The figure shows an example in which a lens is arbitrarily assigned as the resource that can contain no more
than three coatings, in the form of a tint or other coating type, such as an anti reflective coating.

PeopleSoft Proprietary and Confidential 101

Creating Relationships Between Model Objects Chapter 6

Lens resource and coating consumer

Editing Summation Relationships
Attribute summation uses a dialog similar to the Resource Provider relationship. It simply lists all the classes
with the attribute you want to sum. The total is placed in a domain member attribute on the class specified
in the field Attribute to store sum in. The sum automatically appears in the Model Tester.

Note. The attribute used to store the sum must be different from the attribute totaled, or it must be
a child of a class that is not participating in the summation relationship.

Note. A summation constraint cannot calculate quantity. Instead, you must use an expression that uses
sumWithQty(). An expression can use sum() or the + operator to accomplish the same task as this
relationship. An expression has the additional capability to sum external variables.

102 PeopleSoft Proprietary and Confidential

Chapter 6 Creating Relationships Between Model Objects

Sum relationship for cost

Editing Elimination Constraints
An elimination compares a specific attribute value on a selection point with the value of a numeric,
boolean, string, or date expression. For example, an elimination where domain members of
the selection point “HardDriveSelection” are eliminated if the value of the selected hard drive’s
Watts attribute exceeds the value passed in by externExpression.

The layout of the options in the elimination editor allows you to build a constraint in logical
order. The following table details each of the editor’s options.

Explanation The message the user sees when the conditions defined in
the elimination are met.

Comment For internal notations.

Allow Determines which members of a selection point are eliminated. Values in
the Allow list vary depending on the type of attribute specified.

All Of—the domain members that did not satisfy the condition are
eliminated. Supported by all attribute types.

None Of—the domain members that did satisfy the condition are
eliminated. Supported by all attribute types.

The First Of—all domain members are eliminated except the first domain
member that satisfies the condition. Boolean and String types.

The Last Of—all domain members are eliminated except the last domain
member that satisfies the condition. Boolean and String types.

The Least Of—all domain members are eliminated except the domain
members satisfying the condition that contain the smallest numeric value out
of all domain members satisfying the condition. So, if A1, A3, A7, and A9

PeopleSoft Proprietary and Confidential 103

Creating Relationships Between Model Objects Chapter 6

satisfy the condition with attribute values of 3, 7, 3, and 9, then every domain
member but A1 and A7 would be eliminated. Numeric type only.

The Greatest Of—all domain members are eliminated except the domain
members satisfying the condition that contain the largest numeric value out
of all domain members satisfying the condition. o, if A1, A3, A7, and A9
satisfy the condition with attribute values of 3, 7, 3, and 9, then every domain
member but A9 would be eliminated. Numeric type only.

The Earliest Of—analogous to “The Least of.” Date type only.

The Latest Of—analogous to “The Greatest of.” Date type only.

the members of List of all model selection points.

where List of all domain members for the selection point selected in
“the members of” column.

is List of selectable operators. Varies with the domain member type.

to the expression: Select the expression option to choose one of the model’s expressions
to pass in the constraint’s determining value at run time.

to the constant: Select the constant option to set a known, static value as the definition’s
determinor. Use this option to test the constraint.

To create a definition, select:

1. A selection point from “the members of” column.

2. An attribute from the “where” column.

3. A comparison operator from the “is” column.

4. Either the “to the expression” or “to the constant” option.

5. A selection from the “Allow” column.

Repeat selections 2 through 4 for each attribute of the selection point class.

Note. The attribute type must match the expression or constant type.

During run time, the system uses the comparison operator in the “is” column to compare the domain
attribute value to the value supplied by the specified expression or by the constant.

If the comparison evaluates to true, the system adds the domain member to a list of domain
members that satisfy the condition of the elimination.

Editing Comparison Constraints
The comparison editor, like the elimination editor, is laid out so that you can build and
view the constraint in logical sequence.

Like the elimination editor, the comparison relationship editor allows you to enter an arbitrary constant for
comparison. You can use this constant instead of creating an expression to represent the value.

To create a comparison:

Select one item from each of the columns. Operators presented in the “is” column depend on the
type of expression selected in the “Generate a conflict where” column.

104 PeopleSoft Proprietary and Confidential

Chapter 6 Creating Relationships Between Model Objects

Note. Attribute types for the expressions (and constant if used) must match.

Creating Relationships Outside the Model with SQL Queries
You can use the SQL query feature to define constraints, which removes the constraint definition
from the model altogether and places it in a database.

The SQL query uses a SELECT DISTINCT statement to dynamically retrieve the domain member
combinations that are compatible. To update compatibilities, you need only edit the database entries
rather than the constraint definition in the model, eliminating the need to recompile the model.
Thus, SQL query constraints allow you to store the “compatibility” of product options in an SQL
table, and drive product logic dynamically from within a database.

SQL query table containing all possible, valid configurations

The first two rows of the example in the figure state: “Desktop comes with a 20G
drive and in 128M and 256M Memory versions.”

PeopleSoft Proprietary and Confidential 105

Creating Relationships Between Model Objects Chapter 6

Constraint Query dialog showing a sample query

Changing the directionality of the constraint

106 PeopleSoft Proprietary and Confidential

Chapter 6 Creating Relationships Between Model Objects

Assigning the SQL Query property in the relationship properties panel

To create a SQL query constraint:

1. Set up the classes by associating each column in the table with an attribute in the class.

Note. Don’t use the system-defined attribute “Name” as a Constraint item. You must add your own
attribute. In the example, an attribute was created called chassis, and then the value in the attribute that
corresponds to the distinct values in the Table was added. For example, the Desktop Chassis domain
member has an attribute called chassis, and its value is Desktop. (Optional step) Set up a SQL Query for
the domain members as well. The SQL statement for the class would pull its data from the Chassis
column in the table. Then, using a DISTINCT clause in the SQL statement, it pulls all of the “possible”
values for the domain member list. This step saves having to add these values manually.

2. Define the constraint:

a. Create the constraint using the Compatibility Constraint editor. The New Compatibility
Constraint dialog appears first, in which you select the attributes

Warning! In the New Compatibility Constraint dialog, be sure to select the correct
attribute for the constraint arguments, as this is critical for the constraint to work properly.
It will not work if you use the default constraint argument.

b. Make the constraint non-directional by clicking the button on the editor toolbar.

c. Change the Format in the Properties panel to SQL Query. The Constraint Query dialog appears.

Note. Table and column names are case-sensitive.

d. Specify a standard SQL query for each column in the constraint, separating the queries with a
comma. Make sure that the RHS columns and LHS columns of the constraint are present on the
attribute that it is being mapped to, rather than just the selection point name. You can specify that a
space or another separator be used in the Query output, to allow for current data formatting.

e. Click OK. The constraint will be populated with values.

PeopleSoft Proprietary and Confidential 107

Creating Relationships Between Model Objects Chapter 6

If a dynamic default contains default quantities, you can specify the quantities in the database (assuming
the column refers to a selection point with quantity) by separating the policy, quantity, and value using a
user-definable quantity/policy separator. For example, if @ is the separator, an entry in the database would be
MIN@4@Tires. The policy can be MIN OF, MAX OF, or SUM, and the quantity must be a number.

Note. The quantity can not be an expression reference.

108 PeopleSoft Proprietary and Confidential

CHAPTER 7

Specifying Quantities on Selection Points

This chapter discusses the use and setup of quantities on selection points and how to:

• Specify the number of allowed selections and optional/required status.

• Specify single- or multi-select controls.

• Set quantity limits on domain members.

• Set default quantities and selections.

• Define a dynamic default quantity for a selection.

• Attach metadata to selection points.

Understanding Quantity Setup
Once you have set up the model’s classes and objects and defined their relationships, you
are ready to define the properties on their selection points, including its quantities. Use the
selection point’s property table to define its quantities.

To view a model’s selection points, select View, Show, Selection Points or click the View Selection Point
button in the toolbar. Click the selection point to update the Properties Table with its current property values.

Alternatively, you can click the selection point’s name in the Components Tab.

Quantity specification employs these general steps:

Step Reference

Specify whether a selection must be made from the
selection point, and how many selections can or must be
made.

See Chapter 7, “Specifying Quantities on Selection
Points,” Specifying the Number of Allowed Selections and
Optional/Required, page 110.

Decide how many selections the user can make. See Chapter 7, “Specifying Quantities on Selection Points,”
Specifying Single- or Multi-Select Control, page 111.

(Optional) Set ranges for allowable domain member
quantities.

See Chapter 7, “Specifying Quantities on Selection Points,”
Setting Quantity Limits on Domain Members, page 112.

PeopleSoft Proprietary and Confidential 109

Specifying Quantities on Selection Points Chapter 7

Step Reference

If you want one or more items to be pre-selected, specify
which domain member(s) you want to appear and in what
quantity.

See Chapter 7, “Specifying Quantities on Selection Points,”
Setting Default Selections and Quantities, page 114.

Define quantity application behavior for dynamic defaults
and requirement constraints.

See Chapter 7, “Specifying Quantities on Selection Points,”
Defining the Dynamic Default Quantity for a Selection,
page 117.

Specifying the Number of Allowed Selections
and Optional/Required

This section describes how to specify how many different items (domain members) within the selection
point—not the quantity of each selected item–that the end-user can make in the control associated with
the selection point. In the process, you also specify its optional or required property.

For example, in a selection point that contains items A, B, C, and D, a minimum of 2 means that
the end-user must choose at least two items, such as B and C or A, C, and D. Note that a minimum
greater than 1 designates the selection point as multi-select. If minimum = 0, the end-user isn’t
required to choose any of the items—the selection point is considered optional.

Note. This section also describes how to specify single- and multi-select controls, and whether the
end-user is required to select at least one of its items. As described elsewhere in this chapter, you can
use the Multi Sel and Optional properties to accomplish the same purpose. However, the Multi Sel and
Optional properties do not allow you to specify a quantity; using the min/max quantity properties as
described here gives you the full scope of the default quantity and min/max functionalities.

To specify the number of allowed selections:

In the selection point’s property table, select Use Min/Max = True.

Properties table for a selection point

Note. If you are not interested in defining minimum and maximum limits on the selection point,
you can use the Optional property to specify the selection point type. (Optional = False specifies
a required selection; Optional = True specifies an optional selection.)

Click the Edit... button for SP Min/Max. The Selection Point Min/Max dialog for the selection point appears:

110 PeopleSoft Proprietary and Confidential

Chapter 7 Specifying Quantities on Selection Points

Selection Point Min/Max dialog for the selection point

Specify a minimum number of selections in one of three ways:

• Static: Enter in the Number list box either 0 (the user is not required to select from this selection point),
or a quantity 1 or greater, not to exceed the number of different items in the selection point.

• Run time, by expression: If you want the number of selections to be determined at run time by an expression,
select Expression and select the desired expression, created earlier, from the drop down list.

• Run time, by SQL Query: If you want the number of selections to be determined by stored data, select
SQL Query, write the query in the entry box, and specify the database by name.

Note. Advanced Configurator looks for the selection value in question in the first column of the first row of
the data returned by the SQL query. Thus, you should create a query that returns only one column and one row.

In the Explanation box, write a message to be displayed to the user when the minimum and
maximum quantities are not satisfied during run time.

See Chapter 3, “Understanding Modeling,” Creating Parameterized Explanations, page 44.

Specifying Single- or Multi-Select Control
You can designate a selection point’s single- or multi-select property in two ways:

• Set a minimum of 2 or more, as in the previous section.

You may, in fact, have already specified it.

• Set a maximum of 2 or more, as described in this section.

PeopleSoft Proprietary and Confidential 111

Specifying Quantities on Selection Points Chapter 7

Note. If you do not intend to define quantities on the selection point, you can use the Multi Sel
property to specify selection point type. (Multi Sel = False specifies a single-select selection
point; Multi Sel = True specifies a multi-select selection point.)

Note. When Use Min/Max is changed from False to True, the settings in the SP Min/Max and DM Min/Max
dialogs will default to the values specified in the selection point’s properties. For example, if the selection
point is Multi Sel=True, Optional=False, and Quantity=True, then changing Use Min/Max from False to True
gives settings of SP Min = 1, SP Max = Unbounded, DM Min = 0, and DM Max = Unbounded.

To specify single- or multi-select:

As you did for the selection point minimum, specify values for the maximum limit:

• Single-select—Number = 1

• Multi-select—Number = 2 or greater, or Unbounded

For multi-select controls, Unbounded allows the number of selections to be any number of domain members
in the selection point. Using Unbounded makes model maintenance easier in cases where all domain
members can be selected and the number of domain members may change over time.

In the Explanation box, write a message to be displayed to the user when the maximum
number of selections is exceeded during run time.

See Chapter 3, “Understanding Modeling,” Creating Parameterized Explanations, page 44.

Setting Quantity Limits on Domain Members
Use domain member limits to place a minimum and/or a maximum limit on the number of the selected
domain member. These limits apply to all domain members in the selection point. You can set quantity
limits on the domain members of both single- and multi-select selection points.

The end-user can choose no more than three of any one item (it is a single-select control).

112 PeopleSoft Proprietary and Confidential

Chapter 7 Specifying Quantities on Selection Points

Domain Member for Min/Max dialog for the selection point ClassB

Number Absolute number. Enter a numeral.

Expression If you want the minimum quantity to be determined at run time
by an expression, click the Expression radio button and select the
desired expression from the drop down.

Attribute If you want the minimum number to be determined by an attribute
value, click the Attribute radio button and select the desired
attribute from the drop down list.

Explanation write a message to be displayed to the user when the minimum and
maximum quantities are not satisfied during run time.

See Chapter 3, “Understanding Modeling,” Creating Parameterized
Explanations, page 44.

Unbounded Indicate that there is no upper limit.

To set minimum and maximum limits on domain members:

1. On the selection point’s properties table, set Quantity to True.

2. Set Use Min/Max to True.

3. Click the Edit button for DM Min/Max to open the Domain Member for Min/Max dialog.

4. Select either Number, Expression, or Attribute to indicate the source of the value for the minimum quantity.

5. In the Explanation field, write a message to be displayed to the user when the minimum and
maximum quantities are not satisfied during run time. An example message would be: “Please
enter a quantity of at least 3 racks.” Be sure that the message is specific enough to be helpful
but that it makes sense for all domain members in the selection point.

6. Enter settings for the maximum quantity as you did for the minimum quantity. Use the Unbounded
button to indicate that there is no upper limit on the quantity.

PeopleSoft Proprietary and Confidential 113

Specifying Quantities on Selection Points Chapter 7

Setting Default Selections and Quantities
You can set the selection point to display one or more default selections with quantities, to be displayed
when the end-user starts the configuration. The source for these quantities can be:

• Explicit—The modeler specifies the default value in the model.

• Attribute—The modeler specifies an attribute of the domain member from which to pull the value at run time.

Edit Default Choices dialog

Quantity Policy Quantity-choosing behavior to apply when constraints derive quantity
values of their own in response to run-time input.

• Overridable, Overridable f(x)—The quantity applied by the dynamic
default or requirement constraint will be the final configuration
quantity for that domain member. For a detailed explanation
correlating settings with run-time behavior.

114 PeopleSoft Proprietary and Confidential

Chapter 7 Specifying Quantities on Selection Points

See Chapter 3, “Understanding Modeling,” Interaction between Default
Quantities and Min/Max Settings at Run Time, page 42.

• Min of, Min of f(x)—Apply the Quantity Value or Expression result as a
minimum quantity that will be default-selected for the domain member.

• Max of, Max of f(x)—Apply the Quantity Value or Expression result as the
upper limit of the quantity that will be applied to the domain member.

• Sum, Sum f(x)—Add the quantity of each default selection of the domain
member with the dynamic default(s) and requirement constraints . For
instance, if ItemA has a default of 2 and a dynamic default that specifies the
quantity 2, then the run-time quantity of the domain member is 4.

Quantity Value/Expression A numeral, 0 to n or an expression, that depends on the Quantity Policy
that is selected. Click in the cell of the desired Domain Member and
select (or type in) a number or an expression. If you select an expression,
the value resulting from the expression will be used. 0 indicates that
the domain member is not default-selected.

Domain Member Name of the domain member in the selection point. It is not editable.

Use Quantity Policy for All
Domain Members

Specifies whether and how to apply a default quantity to all the
domain members. Policy and Quantity fields specify the same
entries as the Quantity Policy and Quantity Value cells for individual
domain members described above.

Setting Explicit Default Choices and Quantities
To set up default selections and their quantities:

1. On the selection point’s properties table, set Quantity to True. The table adds the property Use Min/Max.

2. Click the Edit button for Defaults to display the Defaults Editor.

3. Enter the desired quantity (1 to n) in the appropriate Quantity Value/Expression cell for the
domain member. 0 indicates the domain member is not default-selected.

4. In the selection point’s property table, set Use Min/Max to True.

5. Click the Defaults Edit button to open the Defaults editor dialog again.

6. If you want the default quantity to be determined by an expression, select the f(x) version of the displayed
Quantity Policy in that cell’s drop down list. Return to the Quantity Value/Expression column and select
the desired expression from the drop down list (expressions are defined in the Expression editor).

7. If there are dynamic default constraints or requirement constraints that could select a domain member
during run time, consider whether you want the default quantity entered in the table cell to remain
in effect if one (or more) of the dynamic defaults and requirement constraints picks the domain
member. If not, leave the policy at Overridable, the default. The quantity applied by the dynamic
default or requirement constraint will be the final configuration quantity for that domain member.
For a detailed explanation that correlates settings with run-time behavior.

See Chapter 3, “Understanding Modeling,” Interaction between Default Quantities
and Min/Max Settings at Run Time, page 42.

8. If you want the entered (static) quantity to be evaluated against the run-time quantities,
designate a new Quantity Policy:

PeopleSoft Proprietary and Confidential 115

Specifying Quantities on Selection Points Chapter 7

• Min of, Min of f(x)—apply the Quantity Value or Expression result as a minimum quantity
that will be default-selected for the domain member.

• Max of, Max of f(x)—apply the Quantity Value or Expression result as the upper limit of
the quantity that will be applied to the domain member.

• Sum, Sum f(x)—add the quantity of each default selection of the domain member with the dynamic
default(s) and requirement constraints. For instance, if ItemA has a default of 2 and a dynamic default
that specifies the quantity 2, then the run-time quantity of the domain member is 4.

9. Click the Quantity Policy of the domain member whose quantities you want to edit and
choose the policy to apply with the quantity.

10. If you want to set up default quantities that apply for all domain members as a group, select Use
Quantity Policy for All Domain Members and enter the Policy or Quantity desired. Setting the
policy and quantity at the selection point level offers these advantages:

• It simplifies model maintenance if domain members do not require different quantity settings.

• If there are no default choices at the domain member level, it allows you to apply static quantities
for those domain members that are not defaulted (quantity = 0).

• If there are default choices at the domain member level, you can set a baseline quantity for all
domain members that satisfies a quantity check at the selection point level.

Similarly, click the value in the Quantity Value/Expression cell for the desired domain
member(s) and type the quantity or choose the expression that supplies the desired
quantity for the domain member if it’s selected.

Getting Default Selections and Quantities at Run
Time Through Attributes
You can specify a static default quantity on each domain member by creating an attribute on its parent class
and assigning each of the domain members a value for the attribute. One useful application of this feature is to
automate the populating of a bill of materials by using a domain member attribute to set a flag on selected items.

To specify run-time defaults:

1. In the Model Structure View , select the class containing the domain members for which to set defaults.

2. In the properties table, click the Add Property button to add a new row to the table.

3. In the popup dialog, enter a name and data type. If you want the domain members to have
a default value, enter it in the Value field. Click OK.

4. If you want an external source to supply values for the attribute, change the Internal property to False.
The SQL property appears. Write the SQL statement to retrieve the desired values.

Warning! Limit attribute values to 10 characters or less. Otherwise, the model will not compile.

See Chapter 5, “Creating Objects for the Model,” Setting Up Binding for External
Domain Members, page 75.

5. If you want to assign static values, select each of the domain members in turn and type the desired value in
the Value column of the attribute you just created. Be sure that the value does not exceed 10 characters.

116 PeopleSoft Proprietary and Confidential

Chapter 7 Specifying Quantities on Selection Points

Defining the Dynamic Default Quantity for a Selection
Another way to set up default quantities that are determined at run time is to write dynamic default
relationships with quantities. If you have dynamic default relationships that default-select one or more
domain members, you may need to define the quantities in those relationships.

Default settings here indicate how many of which free gifts to give to a customer based on the investment attribute

Quantity policy settings are:

Quantity Policy Quantity Values Resulting Behavior

Min of 0 Default; no selection will be made by the LHS members.

Min of

Min of f(x)

1 - n

exp_name

No matter how many times the domain member is
default-selected by this relationship or another, the dynamic
quantity for the domain member will be at least 1 or n.

Max of

Max of f(x)

1 - n

exp_name

No matter how many times the domain member is
default-selected by this relationship or another, the dynamic
quantity for the domain member will be no more than 1 or n.

Sum

Sum f(x)

n

exp_name

The dynamic quantity for this domain member is the sum of all
default-selects for this domain member in the session.

To define quantity selection behavior for a dynamic default relationship:

1. Open the Relationship Editor by double-clicking on the name of the desired
relationship in the Components tab.

PeopleSoft Proprietary and Confidential 117

Specifying Quantities on Selection Points Chapter 7

Look for the Quantity Policy and Quantity Value columns in the right-hand side (RHS) of the
editor . There should be one of each of these for each selection point in the right-hand side of the
relationship. If these columns are not present, then the selection point is not set up for quantity
definitions. To enable quantity definition on the relationship, close or minimize the Relationship
Editor. Display the selection point Properties on the Table Editor and set Quantity to True. Then
reopen the relationship. If you still do not see the quantity columns, check that the relationship
binds a Class and a selection point rather than a Class and a Class.

2. If a default selection requires one or more of the selected domain member(s):

a. Click on the appropriate LHS row to display the desired relationship.

b. Click the policy of the domain member

c. Choose the desired policy from the drop down.

d. Enter the desired quantity in the value column. As with other quantity definitions,
you can obtain the value from an expression as well.

The resulting dynamic quantity is then subjected to further evaluation against any static
default quantities that you may have set in the preceding steps. The result is the final
quantity, which is returned for display in the control.

Note. If configuration conditions are such that a default quantity (static or dynamic)
would cause a violation, it will not be applied.

Attaching Metadata to Selection Points Using Attributes
Attaching metadata to a selection point requires that an attribute be placed on the selection point. This
attribute serves as the source of static default quantities for each domain member in the selection
point. The stored metadata can be retrieved by the front end to perform ancillary operations. At run
time, selection point attributes are read-only. Advanced Configurator uses the default value for a
selection point attribute if a value is not specified for a selection point attribute.

Float, integer, string, date, and boolean data types are supported. Selection point
attributes can be inherited by subclasses.

Attributes on selection points can be inherited by subclasses but not by domain members; they can’t
participate in constraints, and they can’t be filled from external data using a SQL query.

The selection point attribute is the On Output property in the Properties table.

Note. A selection point attribute and domain member attribute within a class cannot have the same name.

Warning! Limit attribute values to 10 characters or less. Otherwise, the model will not compile,
generating the following error: ERROR: Compilation of model <modelname> failed: On GCL class
“<classname>”, domain member “<domain member name>” has a value for attribute “<attribute
name>” of “<value>” which cannot be converted to type _Integer.

To attach metadata to selection points:

118 PeopleSoft Proprietary and Confidential

Chapter 7 Specifying Quantities on Selection Points

Properties table for the class HardDrives, showing the selection point attribute AvailDate

1. In the Model Structure View, select the class.

2. In the properties table, click the Selection Point Attribute button to add a new row.

Adds a row in the properties table for the selection point attribute.

3. If you want to provide a default value for all domain members in the selection point, type it in the Value
column. Otherwise, the value will be taken from the input source you have assigned for the attribute.

4. If you want the default to be different for one or all other selection points of the class, create a
separate selection point for each domain member desired. Select one of the new selection points
in the Model Structure View. The attribute will appear in its properties table. Enter the desired
value in the Value column. Repeat for each selection point for the class.

5. If your application is integrated with Order Capture and you want the attribute’s value to be output, enter
the selection point attribute(s) on the Output tab of the Schema page the same way as for regular attributes.

PeopleSoft Proprietary and Confidential 119

Specifying Quantities on Selection Points Chapter 7

120 PeopleSoft Proprietary and Confidential

PART 3

Product Modeling with Compound Models

Chapter 8
Understanding Compound Modeling

Chapter 9
Working with Compound Models

Chapter 10
Standardizing Compound Model-Building

CHAPTER 8

Understanding Compound Modeling

This chapter provides an overview of compound modeling with Visual Modeler and discusses:

• Applications for compound models.

• Compound model structure styles.

• Architecture.

• Relationships in a compound model.

• Modeling strategy.

Applications for Compound Models
Compound modeling allows you to:

• Create a component model for each configurable component of your product or service offering.
Selection points in each component can receive values from connected components, and can
use them in constraints, creating cross-constrained models.

• Specify which configurable components to include in your offering, and how they connect to one another.

• Using PeopleSoft Advanced Configurator APIs and JavaServer Pages, build an interface that lets your
user dynamically create, configure, and connect instances of your configurable components.

Compound Model Structure Types
PeopleSoft Advanced Configurator enables a variety of compound model styles as illustrated by
the telecommunications scenario of the sample compound model. In the following examples, CC
indicates a configurable component, and Cn indicates a connection.

Note. The sample application illustrates how to create an application that lets a user configure
communication services rather than network hardware.

The following diagram illustrates possible compound model structures, showing configurable
components and their relationships (connections).

PeopleSoft Proprietary and Confidential 123

Understanding Compound Modeling Chapter 8

CC1

Configurable component

CC1 CC1 CC1CnA CnA

Single configurable component and connection

CC1

CC1

CC2CC2CC2CnB CnC

CnBCnB

Multiple configurable components and connections

You can template connections by defining them as Connection Types, as CnB is a
connection type suitable for joining CC1 and CC2.

The Configurator allows you the flexibility to structure your compound model in several ways:

Tree

124 PeopleSoft Proprietary and Confidential

Chapter 8 Understanding Compound Modeling

Network

Mesh

PeopleSoft Proprietary and Confidential 125

Understanding Compound Modeling Chapter 8

Arbitrary

Architecture
Compound structure components extend the Configurator, which runs on the WebLogic application
service. The compound structure extensions include Java classes and JavaServer Pages.

Advanced Configurator

DatabaseXML
CSD

Compound
Structure

Operations

Run-time
Operations

Storage
Control

UI-enabling Java and JSP

JSP
Application

Compound model component hierarchy

Some Compound Structure Java classes work behind the scenes to let you:

• Create multiple instances of models and configure them.

• Constrain the selection point of one model against the selection point of another.

126 PeopleSoft Proprietary and Confidential

Chapter 8 Understanding Compound Modeling

Other Compound Structure Java classes give you a public API that lets you create JavaServer Pages that let
your user dynamically create, configure, and verify a configuration based on a compound model.

See Also

Part 6, “Building a Custom User Interface,” page 293

Relationships in a Compound Model
Compound models extend the basic precepts of component model objects, and relationships
help you define the interaction of the component models. Interactions are defined in the
compound model’s Configurable Components.

In a component model, relationships define the behavior of objects at the class and domain-member
level. In a compound model, relationships determine how the component models interact.
Compound model relationships define connections between components—which components are
connected, how many connections are allowed, and what configuration information is sent from
one component to others. Using compound model relationships, you can:

• Specify the structure of the compound model—which components must connect with which, and how many.

• Set up conditions for generating valid compound configurations.

• Specify what selection points in components are sources of information, and which
are targets for that information.

• Send data from one model to be acted upon by constraints within another model.

Note. The Visual Modeler lets you define relationships; it does not create them so that they
are implemented in JSP pages. This must be done by the site developer. By defining compound
relationships in Visual Modeler, you provide the validation logic so that an appropriate error message
can be generated for the end-user when required relationships are not met.

Compound model relationships address the two central aspects of multiple-model configuration:

• Connected components

• Connection points

Connected Components

Connected components define the structure of the compound model–which and how many component
models (components) connect to each other. Minimum and maximum attributes on the relationship specify
how many of the specified component. In the Sample compound model, structural relationships establish
that Node and Hub components can be connected to Circuit components; Circuit can be connected to
Hubs and Nodes; and Hubs and Nodes can’t be connected directly to each other.

Connection Points

Connection points define which data is to be communicated, if any, along the connection. Each connection point
defines a specific data element that is to be transferred, and what direction the data flows. This data element
can be a user pick or a collection of numeric data across components, or the output of an expression. Important:

PeopleSoft Proprietary and Confidential 127

Understanding Compound Modeling Chapter 8

Important! The Visual Modeler lets you define relationships; it does not create them so that they
are implemented in JSP pages. This must be done by the site developer. By defining compound
relationships in Visual Modeler, you provide the validation logic so that an appropriate error message
can be generated for the end-user when required relationships are not met.

Modeling Strategy
PeopleSoft Advanced Configurator provides three approaches to structuring compound models:

• Reference to template component

• Master component type

• Component type with reference

Reference to Template Component

Create a “template” configurable component and use the reference function to create all others. For example:

Template Configurable Component = ModelPhoneCC, Min1, Max2

Standard phone component = StdPhoneCC_refModelPhoneCC, Min1, Max2

Speaker phone component = SpkPhoneCC_refModelPhoneCC, Min1, Max2

. . .

Master Component Type

Create a component type and base all components on it. For example:

Component Type = ModelPhoneCT, Min1, Max2

Standard phone component = StdPhoneCC_ModelPhoneCT, Min1, Max2

Speaker phone component = SpkPhoneCC_ModelPhoneCT, Min1, Max2

. . .

Component Type with Reference

Create one component based on a component type, use the Reference function to base
others on the original component. For example:

Component Type = ModelPhoneCT, Min1, Max2

CC1 = Standard phone component = StdPhoneCC_ModelPhoneCT, Min1, Max2

CC2 = Speaker phone component = SpkPhoneCC_refStdPhoneCC_ModelPhoneCT, Min1, Max2

. . .

128 PeopleSoft Proprietary and Confidential

CHAPTER 9

Working with Compound Models

This chapter discusses how to:

• Get started with compound models.

• Create a new compound model project.

• Create a configurable component.

• Delete a configurable component.

• Rearrange components in the compound model.

• Add and remove a component model from the project.

• Edit default values.

• Create and delete relationships between configurable components.

• Display a compound model relationship.

• Specify required relationships.

• Edit component model versions.

• Compiling, running, and testing a model.

• Team modeling.

Getting Started with Compound Models
The recommended steps for creating a compound model are:

1. Create the component models that represent the configurable parts of the product. Compile and test them.

2. Create a new compound model in the Visual Modeler workspace, either a new workspace
or an existing one (set it as the active project).

3. Insert the configurable components that represent the jump-off points for the separate
configurations, and associate each with a component model.

4. Create the relationships between the configurable components.

5. Set the required relationships for each configuration component.

6. Create any defaults for the initial instance of each configuration component.

7. Specify project settings (server name and port).

8. Compile the project and run it on test JavaServer Pages (compound models do not
have a Model Tester as component models do).

PeopleSoft Proprietary and Confidential 129

Working with Compound Models Chapter 9

When you launch a Compound Model, the Visual Modeler displays the Compound Model Canvas,
a UML-style layout grid for constructing and displaying the Compound Model.

Compound model workspace, showing the configurable components of the model CorporatePhoneService

Adds a component to the current project.

Creating a Compound Modeling Project
You can create a new project from the base project template or modify an existing project.

To create a new project from the base project template:

1. Select File, New to display the New dialog, then click on the Projects tab.

130 PeopleSoft Proprietary and Confidential

Chapter 9 Working with Compound Models

2. Specify a project name, storage location, and whether to add the project to a current or new workspace.
When you click OK, a template project tree appears in the Components tab.

3. Add models and files to the project as needed.

When you need to build a new compound model from an existing one, you can import its
structure, relationships, and defaults from its .xml file.

To create a project from an existing one:

1. Create a new compound model Project.

2. Select Project, Import Existing Schema. A browse dialog appears.

3. Locate and select the appropriate .XML file. The imported structure appears in the
Components Tab view with the Compound Model canvas.

Editing Project Settings
Properties associated with the compound model are located in the Compound Model Settings dialog.

Compound model settings dialog

Major Version, Minor
Version

Compound model version containing two levels, major and minor, used for
model maintenance. It is not to be confused with component model versions.

PeopleSoft Configurator
Server Location

Server: The server on which WebLogic and the Configurator are installed.

Port: The port number for the WebLogic application server. Default is 7777.

PeopleSoft Proprietary and Confidential 131

Working with Compound Models Chapter 9

Creating a Configurable Component
A configurable component is based on a existing component model. Thus, you must create and
test each component model before proceeding with this step.

See Part 2, “Product Modeling with a Component Model,” page 9.

Use the component editor to create a configurable component:

Component editor

Name Identifies the Configurable component whose instance is being acted
upon. The name cannot include \, =, <. >, :, ", (, or). The initial
character cannot be dollar ($) or underscore (_), but these characters can
be included in other positions. An asterisk (*) cannot be used alone,
but it can be used in combination with other characters

Model Name of the component model to associate the component to. This model
must contain the decision point(s) required by the configurable component.
Each configurable component references one model. (However, one model
can reference more than one configurable component.)

Type The component can be based on a ConfigurableComponentType. The type
definition will be used for any data values not specified within the element
definition. Specify either reference or type, but not both. Can be absent.

Note. If there is a component model associated with the referenced component,
it will be overridden by the component model specified for this component.

Reference The component can be based on another configurable component. The
referenced component will be used for any data values not specified
within the element definition. Either reference or type can be specified,
never both. Can be absent. Can be absent.

Note. If there is a component model associated with the referenced component,
it will be overridden by the component model specified for this component.

Restore Policy Version of model to use when a stored configuration is requested by an end user.

• None—The Configurator will use the most recent model version
on the Configurator server.

• 1 —Fail if stored version not found

The Configurator will display an error message.

• 2 —Use latest if stored version not found

The Configurator will look for the version of the model that created
the configuration. If it is not available, it will use the most recent
model version on the Configurator server.

132 PeopleSoft Proprietary and Confidential

Chapter 9 Working with Compound Models

• 3 —Always use latest model

The Configurator will use the most recent model version on the Configurator
server. If that version is not found, it will fail and display an error message.

• 4 —Ask if multiple versions

If more than one version of the model is found, the Configurator will display
a choice dialog requesting that the end-user specify which version to use.

• 5 —Always use structure version

Use the version specified in the model’s Project Settings.

Max Occurs A non-negative integer or the term unbounded. Specifies the maximum
number of instances that can be created from the component in a
single configuration of the compound model.

For example, for a telecommunications product being configured for a
moderate-sized business customer, the number of OfficePhones is limited
by the number of office setups ordered. You can limit the number of
phones the end-user can configure by specifying that the Max Occurs
value be taken from the OfficeSetup quantity.

Note. PeopleSoft Advanced Configurator does not automatically create
components or limit deletion of components based on this number—but it will
report that the configuration is invalid if the limit is not met.

• Default = Unbounded

• Minimum value = 1

• Maximum value = Unbounded

Min Occurs A non-negative integer. Specifies the minimum number of instances
that must be created in order to satisfy the requirements of the product
model. For instance, if the end-user creates an configurable instance
of an OfficeSetup, they must also configure at least one OfficePhone
for that OfficeSetup. The value of Min Occurs would be 1. A value of
0 would indicate that an OfficePhone is optional.

Note. Advanced Configurator does not automatically create components
or limit deletion of components based on this number – but it will report
that the configuration is invalid if the limit is not met.

• Default = 0

• Minimum value = 0

• Maximum value is less than Max Occurs

Required Relationships Any relationship that must be satisfied for the component in order
for the configuration to be valid. Important:

Important! This property does not actually implement the relationship;
that must be done by the web application developer. It does, however,
verify that such a relationship is satisfied.

PeopleSoft Proprietary and Confidential 133

Working with Compound Models Chapter 9

Setting required relationships for the component here sets up a validation
function that, when violated (the end-user has not added a necessary
component, for instance), an error message is generated for the end-user.

See Chapter 9, “Working with Compound Models,” Creating and Deleting
Relationships Between Configurable Components, page 138.

Note. “Inherit” check boxes appear when the configurable component has a type or reference specified.

Repeat these steps for each configurable component desired.

To create a configurable component:

1. Make sure that the Compound Model Canvas is displayed, and that the desired project is
selected (if the workspace contains more than one project).

2. Do one of the following:

Click the icon at the taskbar on the right of the window.

Or,

Choose Insert, Configurable Component.

3. Move the cursor onto the blue grid where you want the configurable component
to appear in the model structure.

4. Click once to create the component. You can drag-and-drop to reposition it.

5. Double-click on the component to display its component editor

6. Enter the appropriate values for the elements. Values for Type, Defaults, and Required Relationships
may not be available, as they must be created separately. These can be added later.

7. Repeat these steps for each configurable component desired.

Deleting a Configurable Component
To delete a configurable component in the Compound Model canvas, right-click on the desired
component and select Delete “<component name>”.

To delete a configurable component in the Components Tab view, right-click on the
desired component and select Delete from the menu.

Rearranging Components in the Compound Model
Whenever you are using the Compound Model Canvas to create and link components, you can use the
View, Relayout Canvas command to efficiently reposition the components in the window.

134 PeopleSoft Proprietary and Confidential

Chapter 9 Working with Compound Models

Adding and Removing a Component Model from the Project
Adding a component model adds a component model to the project. Once added, the model name makes it
available for connection, via various selection lists, to other component models. Adding a model to the project
does not connect it in the compound model. This is done when you create configurable components.

Model Manager dialog

New Configurator Model Link dialog

Launches the Model Manager dialog

To add a component model:

1. Do one of the following to display the Model Manager:

Select View, Model Manager.

Or,

Click the Model Manager icon in the tool palette.

2. In the Model Manager dialog, click the New button to open the New Configurator Model Link dialog.

PeopleSoft Proprietary and Confidential 135

Working with Compound Models Chapter 9

3. Type the model name in the name field, for example, ConfRoom, or Hub. (The Configurator
looks for models at the specified Configurator server location.)

See Chapter 9, “Working with Compound Models,” Editing Project Settings, page 131.

4. Set the Version preferences and click OK.

Default for each version level is Use Latest, which means the latest version of the model found in
the model directory will be used for compiling. You can instead specify a specific model version
down to the micro level, or you can specify only certain levels. To specify the version number,
click the check box to clear the check and enable the version selector.

Examples:

For any version 1.2.1 – 1.2.10,

If you specify Configurator uses

1-2-5 1.2.5

1-2 1.2.10 (the latest)

1 1.2.10 (the latest)

For any version 1.1.0 – .1.59,

If you specify Configurator uses

1–1 1.1.59 (the latest)

Removing a component model is more accurately described as removing the link to the
component model that exists in the compound model.

Note. Removing a component model from the compound model is not the same operation
as deleting a configurable component.

To remove a component model:

1. Do one of the following to display the Model Manager:

Select View, Model Manager.

Or,

Click the Model Manager icon in the tool palette.

2. In the Model Manager, select the component model that you want to remove from the
compound model and click the Delete button.

You will be notified if there are any components that are dependent on the one being
removed. Note the dependencies and click OK to the message. You will need to make
provision for the removed component model.

3. Click OK to close the dialog. The component will be removed from component
windows during the next compile.

136 PeopleSoft Proprietary and Confidential

Chapter 9 Working with Compound Models

Editing Default Values
Defaults are the values that appear on instances of configurable components when they are created
from the component models of a compound model. By definition, they are the same as defaults for
a component model. But because the initial instance is created within the context of the compound
model, with potential dependencies on other component models, their defaults may not be the same
as they would be if an instance was created from the model in its standalone state.

Defaults are listed with Configurable Components and Relationships in the Components View tab.

Defaults tab

Attributes Attribute Name—The name of the attribute in a component model
to which to assign the Attribute Value.

Attribute Value—The value you wish the attribute to have when the
configurable component is initialized.

Leave these blank if you do not need attribute defaults.

Choices A specific value. A domain member of a particular selection point
within the associated component model.

If applicable, enter a quantity of the item.

PeopleSoft Proprietary and Confidential 137

Working with Compound Models Chapter 9

You can leave this value blank. Use this value when you have a specific
selection point in a specific component model to specify.

External Choices A value provided by a source outside the component model that is only
known at run time, such as user-entered text, numbers, boolean values, and
dates, . In the component model, this will be an extern.

Leave these blank if you do not need attribute defaults.

Opens the Defaults window for new defaults specifications.

Adds rows to the table so that you can edit additional attributes,
choices, and external choices.

On the External Choice element, adds rows so that you can add
additional Values to the parent Selection Point.

Deletes the selected row.

To specify or edit default values:

1. For a new default, open a new Default window in one of three ways:

To change an existing default double-click its name in the Components View tab.

• Double-click on Defaults in the Components tab.

• From the Configurable Components window, select Insert, Defaults.

• Click the Defaults icon in the tools palette

2. Specify or edit the desired defaults.

3. In each of the tables in the Default window, use the Add button to add a new
attribute, choice, or external choice default.

Creating and Deleting Relationships Between
Configurable Components

Relationships in a compound model define interactions between components (component models). By
contrast, relationships within component models define interaction between classes and domain members.

138 PeopleSoft Proprietary and Confidential

Chapter 9 Working with Compound Models

Relationship editor

Target Name of the component model to which data is to be passed.

Connected Components Component—the component that can be connected to the target component.
Click on the field to activate the drop down list. There can be more than
one. Use the Add (+) button to add more components. This relationship
property establishes the structure of the compound model and is the basis
for Required Relationship validations. Default is none.

See Chapter 8, “Understanding Compound Modeling,” Modeling
Strategy, page 128.

Min Occurs—The minimum number of components (instances) that must be
connected to the target component for the configuration to be valid.

• A value of 0 means that if the component is created, its connection
to the target component is optional (and thus it would not be
a Required Relationship).

• A value of 1 indicates that there must be at least one instance of the
component connected to the target component.

Max Occurs—The maximum number of components that can be connected to
the target component in the configuration. Default value is unbounded.

A value of 0 is meaningless. A value of 1 to 99 indicates the upper
limit of allowable connections of this component to the target
component. Unbounded indicates that there is no limit to the number
of this component’s connections to the target.

PeopleSoft Proprietary and Confidential 139

Working with Compound Models Chapter 9

Adds a new connection point.

Opens the properties dialog for the connected component displayed.
Located above the Connection Point Table.

Opens the Relationship editor. Located on the Tools taskbar
at the right of the window.

Adds a row (connection point instance) to the Connection Point table.

An instance of the connection point named Connection PT_CP1

To create a compound model relationship:

1. Do one of the following:

—From the main menu, choose Insert, Relationship.

Or,

—From the Tools taskbar at the right of the window, click the Relationship icon.

The Relationship Editor appears.

2. Enter the appropriate values.

3. To add or view the properties of the connected components, click on the Properties
button above the Connection Point Table.

4. Set the Connection Point information. A Connection Point is a data element that is to be passed along the
connection represented by the relationship. There can be 0, 1, or more than 1 Connection Points.

5. Click the Add button to add a new Connection Point.

6. Enter Connection Point values.

Type If you want to assign a Connection Point type, click on the field to activate
the drop down for selection. Depending on the type you choose, the
operation and source or Target properties will be provided and will appear
in italics (italics indicate properties inherited from types).

If you don’t want to assign a Connection Point type, leave the default value
of None and assign the values Operation and either Source or Target.

Operation Describes the origin of the data to gather. It can be:

Choice—Indicates the data is a value from a particular selection point
domain member or attribute. If Choice is selected, you must provide the
Target selection point in the Connect Components table (following). Target
Variable and Numeric Data do not apply to Choice operations.

Collection—Indicates the data is a set of values taken from all
the sources that have a particular attribute in common. If you
choose the Collection operation, you also must specify Target
Variable and Numeric Data (following).

140 PeopleSoft Proprietary and Confidential

Chapter 9 Working with Compound Models

None—Default value; used when an inherited value will provide the value.

Source Identifies the selection point that provides the data to be communicated
over the connection. You may need to open the component model
with Visual Modeler (in another window is easier) to obtain the
correct name of the selection point.

Target The name of the object in which to store the collected values of a
Collection operation. Not required for Choice operations. This
information is located in the component model that is to receive
the information (connected component).

7. Configure the instance(s) of the Connection Point by first expanding the row with the Add Instance button.

8. If there is only the header for the instance row as in the image above, click the button to add an instance.

If the Connection Point has a type, an instance will already be created and any inherited
properties will be entered in the fields. If not, enter these values:

Instance Specifies how the instances of the Connection Point are to handle
the data received. Entries are All, 0, 1, 2, n.

All indicates that all instances of the Connection Point handle the data
as specified in the Target DP or Numeric Data columns.

1....n indicates order of creation of the instances of the
Connection Point at run time.

Target DP If the Operation is Choice, you must specify which selection point (DP)
in the source is to receive the data. In this example, the first instance of
Ext_voicemailLimitSet will receive the data from the Source DP.

Numeric Data If the Operation is Collection, you must specify the name of the variable that
will contain the data. Because this is a set of numerals, it is called Numeric
Data. In this example, all instances of the Source DP will contribute data,
which, once all data is collected, will be sent to the object lines.

9. If there are additional Targets to receive source data, click the Add Instance button again to add another row.

10. To add or view documentation about the values, click on the Properties button
above the Connection Point Table.

11. Click OK to create the new Connection Point.

For the example below, the first instance of <ConnectionPt>_CP1, Instance 1, will send the data to a Target
DP called LineA. Instance 2, however, sends its data to LineB; Instance All represents data from both
LineA and LineB that the component model sums, placing the result in Target DP LineSum.

Displaying a Compound Model Relationship
To open a previously unopened Relationship Editor window, double-click on the desired
relationship in the Components tab.

PeopleSoft Proprietary and Confidential 141

Working with Compound Models Chapter 9

Opening an existing relationship in the Components tab

If the relationship is already displayed but is not the active window, click on its tab. Relationship
windows are indicated by the Relationships icons:

Opening an existing relationship from its tab

Specifying Required Relationships
Required relationships are those that must be satisfied before a configuration is considered valid. Your
product’s business logic determines what relationships are required. For example, a telecom service product
includes a limit on the number of voicemail accounts on certain phones. The limit applies to phones to be
installed in conference rooms and offices. The components ConferenceRoom and Office can then be said to
be connected to the target component OfficePhone with a voicemail limit relationship (VML):

ConfRoom OfficeOfficePhoneVML VML

The required relationship VML must connect OfficePhone with ConfRoom or Office

This relationship is represented in the Visual Modeler in the Relationship editor as illustrated below:

142 PeopleSoft Proprietary and Confidential

Chapter 9 Working with Compound Models

Example of a required relationship specification

When a ConferenceRoom is not connected to an OfficePhone (perhaps another phone model is desired),
the relationship does not apply. To indicate that the OfficePhoneVMailLimit is required, you must
specify it in the target component’s properties editor as described in this section.

PeopleSoft Proprietary and Confidential 143

Working with Compound Models Chapter 9

The component editor showing required relationships

Displays a list of relations for the project.

Click the Add All Of button to insert a blank All Of clause in the Required
Relationships panel at the location of the selected clause or relationship name.

Click the Add Any Of button to insert a blank Any Of clause in the Required
Relationships panel at the location of the selected clause or relationship name.

Click the Add Exactly One Of button to insert a blank Exactly One
Of clause in the Required Relationships panel at the location of
the selected clause or relationship name.

Editing Component Model Versions
At run time, a compound model communicates with component models (its designated component
models), which are located separately. The compound model contains only a link to its
component models. Since component models are independently built and maintained, provision
for version specification is included in the Compound Model.

Component model versions are specified in the Model Manager dialog. Default version
is 1-0-0 (Major-Minor-Subminor).

144 PeopleSoft Proprietary and Confidential

Chapter 9 Working with Compound Models

The Model Manager dialog

Editing the compound model version

The figure shows the version of the component model ConfRoom is specified to the Minor level; the Micro
level is always the latest. So, at run time, the model accessed will be ConfRoom version 1-7-<latest available>.

To edit a component model version:

1. Do one of the following to access the Model Manager: Select View, Model Manager. Or, Click the Model
Manager icon in the tool palette. The Model Manager appears. Note the version settings for each model.

2. Select the desired component model and click the Edit button.

3. Designate the desired level or check the “Use Latest” check box. Click OK.

Default for each version level is “Use Latest,” which means that the latest version of the model found
in the model directory will be used for compiling. You can instead specify a specific model version
down to the sub-minor level, or you can specify only certain levels. To specify the version number,
click the check box to clear the check and enable the version selector.

PeopleSoft Proprietary and Confidential 145

Working with Compound Models Chapter 9

Compiling, Running, and Testing a Compound Model
A Compound model must be tested on test JSP pages since there is no Model Tester
as there is for a component model.

To test a Compound model:

1. Compile and run each component model separately in component model mode.
Make sure that each runs to your satisfaction.

2. Select Project, Compile Only to compile the Compound model. The compound structure definition
document (.XML) will be created and placed on the server specified in the compound model settings. You
can also launch the Configurator Administration Tool (from the Start/Program menu) to view the .XML file.

See Part 8, “Advanced Configurator System Administration,” page 407.

3. Create JSP pages appropriate to test the connections and constraints between the component models.
JSP pages for the sample compound model are available for modification.

See Part 6, “Building a Custom User Interface,” page 293.

4. Use the JSP pages to create a test web application and deploy it in a test environment.

Warning! Make sure that your browser is cookie-enabled; compound models require the
use of cookies to function properly at run time.

Team Modeling
Not only does Visual Modeler permit simultaneous development of the files of a single model, but team
members can work on the different component models simultaneously. Updating a compound model with
new versions of component models is managed in the Model Manager, which allows modelers to specify the
model version to include in the compound model at compile time. Modelers can specify stable versions of the
component models against which to test their updated model, thus controlling their test environment.

146 PeopleSoft Proprietary and Confidential

CHAPTER 10

Standardizing Compound Model-Building

This chapter discusses how to:

• Create and edit configurable component types.

• Create and edit connection point types.

Creating and Editing Configurable Component Types
You can specify the properties of each Configurable Component one-by-one, or, if components share elements,
you can create Configurable Component types to use as component templates. Then, when you create a
Configurable Component, you can assign it a component type, thereby automatically associating it with a
component model, providing it with default values, restore policy, and occurrence limits.

Configurable Component types are assigned in the component editor; you can assign
it to a relationship in its properties editor.

See Chapter 9, “Working with Compound Models,” Creating a Configurable Component, page 132.

Any Configurable Component assigned a component type inherits the type’s properties. In the
editor, properties inherited from a type are indicated by italics.

PeopleSoft Proprietary and Confidential 147

Standardizing Compound Model-Building Chapter 10

Type Manager dialog

Defining a component type

Name Identifies the Configurable Component type. The name cannot include \, =, <.
>, :, ", (, or). The initial character cannot be dollar ($) or underscore (_), but
these characters can be included in other positions. An asterisk (*) cannot be
used alone, but it can be used in combination with other characters.

Model The component model to associate the component with.

148 PeopleSoft Proprietary and Confidential

Chapter 10 Standardizing Compound Model-Building

Defaults Identifies the Default element that specifies the values of the attributes and the
domain members when an instance of that configurable component is first
created. Defaults will not be available until you describe them.

See Chapter 9, “Working with Compound Models,” Editing
Default Values, page 137.

Note. Compound model defaults override the static defaults set
in the component model itself.

Restore Policy Version of model to use when a stored configuration is requested by an end user.

None—The Configurator will use the most recent model version
on the Configurator server.

1 - Fail if stored version not found—The Configurator will
display an error message.

2 - Use latest if stored version not found—The Configurator will look for the
version of the model that created the configuration. If it is not available, it
will use the most recent model version on the Configurator server.

3 - Always use latest model—The Configurator will use the most
recent model version on the Configurator server. If that version is not
found, it will fail and display an error message.

4 - Ask if multiple versions— If more than one version of the model
is found, the Configurator will display a choice dialog requesting that
the end-user specify which version to use.

5 - Always use structure version—Use the version specified in
the model’s Project Settings.

Minimum Occurrences A non-negative integer. Specifies the minimum number of instances
that must be created in order to satisfy the requirements of the product
model. For instance, if the end-user creates an configurable instance
of an OfficeSetup, they must also configure at least one OfficePhone
for that OfficeSetup. The value of Min Occurs would be 1. A value of
0 would indicate that an OfficePhone is optional.

Default = 0

Minimum value = 0

Maximum value is less than Max Occurs

Note. PeopleSoft Advanced Configurator does not automatically create
components or limit deletion of components based on this number—but it will
report that the configuration is invalid if the limit is not met.

Maximum Occurrences A non-negative integer or the term unbounded. Specifies the maximum
number of instances that can be created from the component in a
single configuration of the compound model.

For example, for a telecommunications product being configured for
a moderate-sized business customer, the number of OfficePhones is
limited by the number of office setups ordered. You can limit the
number of phones the end-user can configure by specifying that the
OfficeSetup quantity value be passed to Max Occurs.

PeopleSoft Proprietary and Confidential 149

Standardizing Compound Model-Building Chapter 10

Default = Unbounded

Minimum value = 1

Maximum value = Unbounded

Note. PeopleSoft Advanced Configurator does not automatically create
components or limit deletion of components based on this number—but it will
report that the configuration is invalid if the limit is not met.

Creating and Editing Connection Point Types
You can specify the properties of each connection between components one-by-one, or, if certain types of
connections have common properties, you can create Connection Point types to use as templates. Then, when
you create a compound model relationship, you can assign it a Connection Point type, thereby automatically
providing it with the source object, the data element, and the components that will receive the data.

Once you have created a Connection Point type, you can assign it to a relationship in its properties editor.

See Chapter 9, “Working with Compound Models,” Creating and Deleting Relationships
Between Configurable Components, page 138.

Note. Any Connection Point assigned a Connection Point type (when creating a relationship) will inherit the
type’s properties. Properties inherited from a type are indicated by italics. This example relationship illustrates:

Inherited properties from type VoiceMailLimitCPT are Choice, VoiceMailLimitSel, and Ext_Voice

150 PeopleSoft Proprietary and Confidential

Chapter 10 Standardizing Compound Model-Building

Editing a connection point type

Operation Describes the origin of the data to gather. It can be:

Choice—Indicates the data is a value entered by a user. If Choice is
selected, you must provide the Target selection point in the Connect
Components table. Leave Target Variable (following) blank, as it
does not apply to Choice operations.

Collection—Indicates the data is a set of values taken from all the sources that
have a particular attribute in common. If you choose the Collection operation,
you also must specify Target Variable and Numeric Data (following).

None—Default value. Use this value when you want the value set for
the connection point itself to be the valid value. Otherwise, the Type
operation (choice or collection) will override it.

Source Identifies the selection point that provides the data to be communicated
over the connection. You may need to open the component model in
Visual Modeler (in another window is easier) to obtain the correct name
of the selection point. For Choice operations only.

Target Variable The name of the object in which to store the collected values of a Collection
operation. Not required for Choice operations. This information is located in
the component model that is to receive the information (connected component).

Associates a new connected component to the connection point type.

Removes a connected component from the connection point type.

PeopleSoft Proprietary and Confidential 151

Standardizing Compound Model-Building Chapter 10

To create a connection point type:

1. Select View, Type Manager. The Type Manager for both Configurable components and
Connection Points appears, listing existing types (if any).

2. If you are creating a new Connection Point type, click the New button next to its panel. If you
are editing an existing type, select it and click the corresponding Edit button.

The Connection Point Type Editor appears for either case.

3. Enter or edit the values in the editor as desired.

4. Specify Connected Components by first determining which components are to receive
data from the Source (source selection point). If you need to refer to a component model,
open it in a separate window of the Visual Modeler.

5. Click the Add button to add a new row (connected component).

6. Enter these values:

Instance Identifies and specifies which instances of the Target DP are to receive
data from the Source DP. Entries are All, 0, 1, 2, n.

All indicates that all instances of connected Target (description
follows) receive the data.

1....n indicates the order in which the Target instances were created
at run time. For example, the first instance of Target, Instance
1, will receive the data from the Source selection point. You
can designate other instances as well.

Target If the Operation is Choice, you must specify which selection point in the
source is to receive the data. In an example in which Instance = 1 and
Target = Ext_voicemailLimitSet, the first instance of Ext_voicemailLimitSet
will receive the data from the Source selection point.

Numeric Data If the Operation is Collection, you must specify the name of the variable
that will contain the data. Because this is always a set of numerals, it is
called Numeric Data. In an example where Instance = All and Numeric
Data = lines, all instances of the Source selection point will contribute
data, which, once all data is collected, will be sent to the object lines.

7. If there are additional Targets to receive source data, click the button again to add another row.

8. Click OK to create the new type. New Connection Point types will hereafter appear for
selection in controls in the properties editor of the component.

152 PeopleSoft Proprietary and Confidential

PART 4

Application Extensions

Chapter 11
Client Operations Processor API

Chapter 12
Using the COP Java API

Chapter 13
Understanding the Configurator XML Interface

Chapter 14
Retrieving Model Information

Chapter 15
Updating a Configuration

Chapter 16
Retrieving Configuration Information

Chapter 17
Retrieving Saved Configuration Information

Chapter 18
Copying a Configuration

Chapter 19
Using Batch Configuration Mode

Chapter 20
Changing the Order Status of a Configuration

CHAPTER 11

Client Operations Processor API

This chapter discusses the PeopleSoft Configurator Client Operations Processor (COP)
Java API and its application classes.

Understanding the COP Java API
The COP Client Operations Processor provides, through its Java API, the public interface to
the Configurator. Your User Interface (UI), or other application, calls the COP Java API to
communicate with the Configurator Engine and its associated modules.

In many cases, developers designing a UI to use with the PeopleSoft Configurator will not have to
make COP Java API calls (or write any code) themselves. Instead, they can use the Configurator
Control Templates, which allow them to use standard Configurator controls to present their interface.
The Control Templates are used within JavaServer Pages. The Control Templates themselves make
COP Java API calls to implement the behavior of the standard controls.

However, in some cases, you may want to have controls whose behavior or appearance is different
from any of the existing Configurator controls. In these cases you will have to modify the code in
the JavaServer Pages (JSP), or write your own from scratch. Alternatively, you may need to create a
UI that uses something other than JSP or standard Web technologies in general.

In that case, these chapters are the reference you need. They describe how to understand, modify, and
write Java code that communicates with the Configurator by making COP API calls.

You can use the COP API to:

• Connect to a particular model.

• Create objects that represent user choices.

• Submit these choices to the Configurator Engine, and get back the results.

• Get user-readable display information, such as domain member attributes and text descriptions of violations.

• Get delta-pricing information.

• Get configuration delta information.

• Verify a configuration.

• Save and restore a configuration.

Choices
Choices are inputs to the model that specify values. Usually they are user inputs (set through
a UI), but they can also be programatically generated. The Configurator has two kinds
of choices: extern variables and domain members.

PeopleSoft Proprietary and Confidential 155

Client Operations Processor API Chapter 11

Extern variables (also called simply “externs”) are named variables whose values are of types int, double,
string, boolean, and date. The UI may restrict what a user can enter so that, for example, the extern variable
only contains a single floating-point number. Extern variables are frequently used in expressions.

Domain members are individual, discrete choices. They are arranged into groups, each group associated with
a decision point (or selection point). A domain member usually has a number of attribute values—such as
its description, size, or color—that the Advanced Configurator can access and use in various ways.

Decision Points and Domain Members
Two modeling concepts—decision points and domain members—are very important in understanding how
to use the COP Java API. This section describes these concepts and how they relate to the UI.

The UI is a visual representation of your model (or, at least, a portion of the model). The model contains
decision points and domain members, some of which will be displayed in the UI.

The figure shows a sample UI for a “Sandwich Model," in which the user can order a sandwich
by choosing the filling, bread, condiments, extras, and temperature.

Sandwich model UI

156 PeopleSoft Proprietary and Confidential

Chapter 11 Client Operations Processor API

A decision point is a collection of associated options that the user (or, through software, the application)
can choose from. The options in a decision point are usually alternatives, although they need not be
mutually exclusive. The individual options themselves are called domain members of that decision
point. For example, in the Sandwich Model, the area labeled “Filling” represents a decision point—the
user can select a sandwich meat from this collection. Each of the possible choices—Roast Beef,
Turkey, Chicken, Tuna—represents a domain member of this decision point.

The COP Java API does not directly define or use decision point objects or domain member
objects. Instead it encapsulates them in objects of type ControlData (for decision points)
and ControlItem (for domain members). Frequently, in discussing the COP Java API, these
distinctions will be blurred when there’s no chance of ambiguity.

A decision point has certain properties—such as a name or a “multiselect" property—that can be
obtained (through Java COP API calls) from the corresponding ControlData object. Likewise, a
domain member has properties that can be obtained from the corresponding ControlItem object. But
ControlData and ControlItem objects can also contain additional information, often representing current
or developer-determined conditions. (For example, the ControlItem objects belonging to a ControlData
object may have a sort-ordering established by the software when it created the ControlData object. This
ordering is not a part of the corresponding decision point and its domain members.)

See Also

Chapter 12, “Using the COP Java API,” ControlData, page 171

Chapter 12, “Using the COP Java API,” ControlItem, page 176

Application Classes
This section lists the COP Java API classes and the primary uses of each.

ClientOperations
ClientOperations is the principal class you will be using. Its methods include:

• Initializing the session (connecting to a model).

• Creating objects that represent user choices (user selections, user eliminations, and extern variables).

• Submitting the user choices to the Configurator Engine that is retrieving the results (ControlData
objects, delta-pricing information, numeric data, violations).

• Retrieving the names and values of extern variables.

• Restoring a configuration, getting the current configuration.

• Other actions.

getControlData is arguably the most important method in the ClientOperations class. It creates a ControlData
object representing a decision point, which in turn contains an array of ControlItem objects representing the
decision point’s domain members. The UI obtains most of the information it needs from these objects.

PeopleSoft Proprietary and Confidential 157

Client Operations Processor API Chapter 11

Configuration
The Configuration class represents a configuration of choices (which may be user, computer, default
choices, and extern variables), together with the configuration attributes and the model’s name, version,
and compileID. The ClientOperations class has methods to create a Configuration object that represents
the current configuration, and to restore a configuration represented by a Configuration object.

The Configuration class includes methods for:

• Writing a representation of itself in XML format.

• Reading configuration data that has been written in XML format.

• Getting the Configuration object’s data (choices, configuration attributes, model information).

• Setting the Configuration object’s data (choices, configuration attributes, model information) directly.

ControlData
The ControlData class represents a decision point, and contains display information for the decision point
and its domain members (ControlItem objects). ControlData objects are created by the ClientOperations
method getControlData. The ControlData class includes methods for:

• Getting all ControlItem objects in this ControlData object.

• Getting iterators that sort and filter the ControlItem objects in specified ways.

• Getting current configuration values of the decision point (state, choices, quantity, and violations).

• Getting properties of the associated decision point (name, multiselect, optional, supports quantity).

ControlItem
The ControlItem class represents a domain member, and contains display information on the domain
member and its attributes. ControlItem objects are obtained from a ControlData object that represents
the domain member’s decision point. The ControlItem class includes methods for:

• Getting display attributes and delta-pricing value for the domain member.

• Getting current configuration values of the domain member (state, elimination level, validity, and violations).

Choice
Choice is the superclass for DMChoice (for domain member choices) and EVChoice (for extern
variable choices). You pass a vector of Choice objects (possibly including both DMChoice objects
and EVChoice objects), one for each user choice, to the Configurator in the ClientOperations method
processChoices, which then processes the choices to create a solution state.

In previous versions of the Configurator, objects of type Choice were used to represent domain member choices.
For compatibility, the current Choice class still retains a number of methods that only make sense for domain
member choices, but these methods are deprecated, and identical methods have been included in the DMChoice
class. Use the methods in the DMChoice class instead of the deprecated methods in the Choice class.

The Choice class also contains non-deprecated methods for a few actions that are meaningful
for both DMChoice and EVChoice, including:

• Getting the XML tag for this choice.

• Determining if the choice is a user selection.

158 PeopleSoft Proprietary and Confidential

Chapter 11 Client Operations Processor API

• Getting the name of the decision point or extern variable associated with the choice. (The method
for this is called getDecisionPointName for backward compatibility.)

DMChoice
DMChoice is a subclass of Choice.

The DMChoice class is used to represent domain member choices (selections and eliminations). You create
a DMChoice object by calling the ClientOperations method makeSelectedChoice (when the user wishes to
include a domain member) or makeEliminatedChoice (when the user wishes to exclude a domain member).

The DMChoice objects generated by makeSelectedChoice and makedEliminatedChoice represent
user choices. However, by using the DMChoice method setState, you can change them to
represent computer or default choices (or various combinations).

EVChoice
EVChoice is a subclass of Choice.

The EVChoice class is used to represent extern variable choices. You create an EVChoice object
by calling the ClientOperations method makeExternVarChoice.

ItemFilter
The ItemFilter class specifies a filter for a decision point’s domain members. You can use
it to filter out all eliminated domain members, or all eliminated domain members whose
elimination values fall outside some given range.

The ClientOperations method getControlData has an ItemFilter parameter, which you can use to filter
out domain members that, in some models, the UI designer does not wish the user to see (such as all
eliminated items). The filter parameter is optional. If you supply null instead, no filtering will be done.
The exception is discarded domain members, which are always filtered out.

See Chapter 12, “Using the COP Java API,” Handling Deleted Domain Members , page 176.

ItemIterator
The ItemIterator class is used to iterate through the domain members of a decision point—more
specifically, through the ControlItem array of a ControlData object. An iterator (object of type
ItemIterator) returns the ControlItem objects both sorted and filtered, as specified by your software.
(The ControlItem array itself is neither sorted nor filtered by the COP.)

The sorting done by an iterator can either be a standard sort order implemented by the COP
or a custom sort order determined by a comparator you provide. You can also have more
than one iterator for a single ControlData object.

See Also

Chapter 12, “Using the COP Java API,” Sorting and Filtering , page 174

ExternVar
The ExternVar class represents an extern variable, and gives access to its name, type, and value.

PeopleSoft Proprietary and Confidential 159

Client Operations Processor API Chapter 11

NumericData
The NumericData class is used to get the type and value of numeric variables. Some models contain
variables that you may wish to display in the UI, such as “total grams of saturated fat" or “number of
video card slots remaining." These values are generated by the Configurator Engine, based on formulas
specified in the model. From the point of view of the COP, they are read-only.

Numeric data are distinct from: configuration attributes; extern variables; and domain
member attributes, prices, and quantities.

Violation
The Violation class is used to report on violations associated with the configuration, decision points,
and domain members. It returns a user-readable explanation for the violation.

160 PeopleSoft Proprietary and Confidential

CHAPTER 12

Using the COP Java API

This chapter describes how to use the COP Java API to accomplish tasks required
by the UI, including the following:

• ClientOperations.

• Initializing the COP.

• Processing and displaying a page.

• Saving and restoring a configuration.

ClientOperations
This is the primary class you will use. It includes methods for initializing a session, creating objects
to represent user choices, submitting user choices to the Configurator Engine, getting back the
results in the form of displayable information, and ending a session.

Note. Several ClientOperations methods, such as getDecisionPointNames, make a distinction between
“public" decision points and “all" (public and private) decision points. The current version of the
Configurator does not implement this distinction; all decision points are considered public.

Methods
The following methods are contained in the ClientOperations class:

void release()

void initialize(Locale appLocale, String modelName, String modelVersion, String⇒

compileID, boolean needHtmlEncoding)

void initialize(Locale appLocale, String modelName, String modelVersion, boolean⇒

needHtmlEncoding)

Configuration getConfiguration()

String[] getDecisionPointNames(boolean allObjects)

String[] getNumericDataNames()

String[] getExternVarNames()

ControlData getControl(String objectName)

ControlData getControlData(String objectName, String[] attributes, boolean sort,⇒

ItemFilter filter)

ControlData getControlData(String objectName, String attribute, boolean sort, Item⇒

Filter filter)

NumericData getNumericData(String objectName)

ExternVar getExternVar(String objectName)

PeopleSoft Proprietary and Confidential 161

Using the COP Java API Chapter 12

double getTotalPrice()

void processChoices(Vector choices)

Violation[] getViolations()

boolean verifyConfiguration(Vector choices)

boolean verifyConfiguration(Configuration config)

DMChoice makeSelectedChoice(String dpName, String dmName, double qty)

DMChoice makeEliminatedChoice(String dpName, String dmName)

EVChoice makeExternVarChoice(String name, Collection values)

String getModelVersion()

String getModelCompileVersion()

Locale getLocale()

ffBaseBillOfMaterials getBOM()

String[] getCompileVersions(String modelName, String modelVersion)

String getModelName()

String[] getModelNames()

String[] getModelVersions(String modelName)

int restore(Configuration config, Locale appLocale, boolean needHtmlEncoding, int⇒

policy)

void setPricingData(Map dpNamesAndAttributes)

String[] getIncompleteDecisionPointNames()

String[] getViolatedConstraintNames()

String[] getViolatedDecisionPointNames()

Date getSolveDate()

void setSolveDate(Date solveDate)

Initializing the COP
Before calling any other ClientOperations methods, you must attach the COP to a particular
model to initialize your session. Do this by calling the ClientOperations methods initialize
or restore. There are two different forms of initialize:

void initialize(Locale appLocale, String modelName, String modelVersion, boolean⇒

needHtmlEncoding)

void initialize(Locale appLocale, String modelName, String modelVersion, String⇒

compileID, boolean needHtmlEncoding)

void restore(Configuration config, Locale appLocale, boolean needHtmlEncoding, int⇒

policy)

Use the first form when you have a model name and version, and wish to use the most recently compiled
version of the model. In this case, you simply call the first form of initialize with the indicated parameters.

The second form is used when there is, in addition to the model name and version, a specific compilation
version (indicated by compileID) of the model that you wish to use. In this case, call the second
form of initialize with the indicated parameters, including the compileID.

There is one form of restore. It is used when you wish to load a previously saved
configuration when initializing the COP.

To load a previously saved configuration at initialization:

1. Create a Configuration object.

2. Call the Configuration object’s fromXML method to read the previously saved
configuration from an input stream.

162 PeopleSoft Proprietary and Confidential

Chapter 12 Using the COP Java API

(Alternatively, if the configuration has been stored in a format other than the Configurator’s standard
XML format, it may be necessary to read the saved configuration, parse it, and set the Configuration
object’s values directly by using its “set" methods - setModelName, setChoices, etc.)

3. Call restore, with the Configuration object as the config parameter. The COP will then be
attached to the model identified by the model name, version, and compileID found in the config
parameter, with the previously saved configuration data restored.

In all cases, you must also provide an appLocale and needHtmlEncoding parameter. appLocale
specifies the language that should be used for user-readable text. needHtmlEncoding specifies
whether attribute data returned by the COP should be in HTML-encoded format. When using the
restore method you must also provide a policy. parameter. policy specifies how to handle
the retrieval of the model to attach to before loading the configuration.

Policy options are:

Option Description

1 Use the model version stored in the Configuration object. Fail if that version is not found.

2 Use the model version stored in Configuration object. Use the latest version if that version is not found.

3 Always use the latest model version.

4 If multiple versions exist, ask which to use. If only one version exists, automatically use it. If no
versions exist, fail.

With option 4, if multiple versions exist, the restore method returns a status code indicating that there
are multiple versions. The methods getModelVersions and getCompileVersions could then be used to
determine available model versions. When the desired version is found, call the setModelVersion and/or
setModelCompileVersion on the Configuration object. Once these initial calls are made, you can use the
Configuration object in a subsequent call to restore with the policy parameter set to 1.

Additionally, you can specify the solve date for the COP to use when processing choices by
calling the setSolveDate method. This method takes a java.util.Date object as a parameter. The
COP constructor defaults the solve date to the current date. An example of overriding the
default date is restoring a previously saved configuration. You may want to use the date that the
configuration was saved as the solve date rather than the current date.

Example (without using a previously saved configuration): there are values for the model name, model
version, and compileID, but if the compileID is empty (null or of zero length), we’ll initialize without it.

ClientOperations cop = new ClientOperationsImpl();

String modelName, modelVersion, compileID;

{

//set modelName, modelVersion, compileID here - not COP code

}

try

{

if ((compileID == null) || (compileID.length() == 0))

{

cop.initialize(Locale.getDefault(), modelName, modelVersion, false);

compileID = cop.getModelCompileVersion();

}

else

PeopleSoft Proprietary and Confidential 163

Using the COP Java API Chapter 12

{

cop.initialize(Locale.getDefault(), modelName, modelVersion, compileID, false);

}

catch (Exception e)

{

System.out.println("Error: Unable to initialize COP - " + e);

}

Releasing the COP
When you are done with your session, call release. This allows the system to dispose of cached
resources associated with the session. After calling release, you will not be able to make
ClientOperations calls without first calling initialize again.

Processing and Displaying a Page
Processing and displaying a page is one of the most common tasks to accomplish using
the COP Java API. It consists of several subtasks.

Circumstances that require you to process and display a page are:

• Initial page display, before the user has made any choices. In this case, the “processing" is done to
retrieve the model’s default choices and process a solution state for them.

• Subsequent page displays, after the user has made some choices and submitted a page.

• In some user interfaces, every time the user makes a choice the value is submitted to the Configurator Engine
(this is called “auto-submit"). Auto-submit gives the user more immediate feedback. Obviously this has
performance implications, since processing and redrawing are being done more frequently.

To process and display a page:

1. If you want delta-pricing information for one or more domain members and/or a total price for the
configuration, call setPricingData if you are running the Configurator in stand-alone mode.

If you are running the Configurator integrated with Order Capture, setup for pricing data
is handled within the Configurator schema setup pages.

See Chapter 22, “Setting Up Integration,” Establishing Pricing Options, page 282.

If you don’t want delta-pricing information, skip this step.

2. If the user has made domain member choices (which is usually the case, except for the
initial page display), call makeSelectedChoice and makeEliminatedChoice to create one
DMChoice object for each user choice or elimination.

The COP does not indicate which domain members in the UI have been selected or eliminated by the user;
you must examine the UI controls and tell the COP by passing Choice objects to processChoices - see Step 4.

3. If the user has entered extern variable choices, call makeExternVarChoice to create one
EVChoice object for each extern variable choice.

4. Call processChoices. This step is mandatory.

If there are user choices (domain member selections or eliminations, or extern variable choices),
pass them to processChoices in a vector of Choice objects. This vector can contain both DMChoice
objects and EVChoice objects, since both are subclasses of Choice.

164 PeopleSoft Proprietary and Confidential

Chapter 12 Using the COP Java API

If there are no selections, pass null to processChoices.

The Configurator Engine creates a solution state representing the choices and their implications—which
domain members are user-selected, user-eliminated, computer-selected, computer-eliminated, and so
on—and the COP generates any delta-pricing information you requested in Step 2. This information
is cached by the COP until the next time you call processChoices (or release), and can be retrieved
by calling getControlData (and other methods), as described in Step 5.

5. For each decision point for which you need display information, call getControlData.

This call will return a ControlData object representing that decision point. The ControlData
object contains an array of ControlItem objects, representing the decision point’s domain
members. Also, the ControlData method iterator can be called to obtain iterators (objects of
type ItemIterator), which are used to access the ControlItem objects.

When you call getControlData, you specify two parameters (sort and filter) that determine
how you want domain members to be sorted and filtered. The ControlData object’s iterator(s)
will return the ControlItem objects in sorted order and filtered as specified. (You can further
control the sort order by supplying a custom Comparator routine.)

See Chapter 12, “Using the COP Java API,” Sorting and Filtering , page 174.

6. Using the ControlData and ControlItem classes, retrieve any display data you want:
domain members (sorted and filtered as desired); their attribute values; and their states
(such as user-selected and computer-eliminated).

7. If you wish to display the values of any extern variables, call the getExternVar method.

8. Render your page with the display information from Step 6 and Step 7.

In addition to the methods of the ControlData and ControlItem classes, you can use the
ClientOperations methods getTotalPrice, getViolations, and getNumericData, and the Configuration
method getAttribute for other information you might wish to display.

Getting a ControlData Object
In Step 5 of the preceding instructions for processing and displaying a page, you get one ControlData
object for each decision point for which you need display information (or for whose domain members for
which you need display information). You do this by calling the getControlData method.

This section describes that method in more detail. There are two forms of getControlData:

ControlData getControlData(String objectName, String attribute, boolean sort, Item⇒

Filter filter)

ControlData getControlData(String objectName, String[] attributes, boolean sort,⇒

ItemFilter filter)

Use the first form when you are only interested in obtaining values for a single attribute
(one value for each domain member of the decision point). Use the second form when
you are interested in the values of multiple attributes.

The call returns a ControlData object, representing a decision point. The ControlData object
includes an array of ControlItem objects, representing all the domain members of that decision
point. You can also obtain one or more iterators (objects of type ItemIterator) from the ControlData
object, which are used to access the ControlItem objects.

In many cases, you will want the domain members in the UI to be sorted in a particular way. The sort
order can be either a standard one implemented by the COP (based on the domain members’ states and
elimination levels), or a custom sort order based on a Comparator routine you supply.

PeopleSoft Proprietary and Confidential 165

Using the COP Java API Chapter 12

See Chapter 12, “Using the COP Java API,” Sorting and Filtering , page 174.

You may also want some domain members to be filtered out, so they don’t appear in the UI at all. For example:
filter out all eliminated domain members. Specify the sort and filter as parameters to the getControlData
call. The ControlData object’s iterator(s) will return the ControlItem objects (domain members) in the
requested sort order, and filter out (skips over) any domain members as specified.

Note. Although you can access the ControlItem array directly using the standard array methods,
you will almost never want to. The array is neither sorted nor filtered by the COP. Use the
ControlData object’s iterators; they will return the ControlItem objects in the correct sort order,
and filter (skip over) any ControlItem outside the specified range.

The parameters to getControlData have the following meanings:

objectName The name of the decision point.

attribute In the first (single-attribute) form of the call, the name of the attribute whose
values you wish to obtain. After making the getControlData call, you can get
ControlItem objects from the resulting ControlData object, then get the attribute
value for each ControlItem (domain member) by using the ControlItem method
getAttributes (which, in this case, will return a vector with one element).

attributes In the second (multiple-attributes) form of the call, an array containing
the names of all the attributes whose values you wish to obtain. After
making the getControlData call, you can get ControlItem objects from
the resulting ControlData object, then get the attribute values for all
the attributes you specified for each ControlItem (domain member) by
using the ControlItem method getAttributes.

sort If true, the ControlItem objects returned by an iterator (object of type
ItemIterator, obtained by calling the ControlData object’s iterator method) will
be sorted. The sort order will either be a standard one implemented by the
COP, or a custom sort order based on a Comparator object that you supply.

See Chapter 12, “Using the COP Java API,” Sorting and Filtering , page 174.

The standard sort order implemented by the COP is based on the state
and elimination level of the ControlItem objects (domain members).
The domain members are sorted as follows:

1. Selected domain members in conflict.

2. Selected domain members not in conflict.

3. Selectable domain members.

4. Eliminated domain members—high elimination level.

5. Eliminated domain members—low elimination level.

If there is more than one domain member in a category, they will be sorted
in their “default order." (This is the order in which they were originally
supplied by the modeler or the data base.) In other words, within each
category the default order will be preserved. This applies to eliminated
domain members only if their elimination level is equal.

If sort is true and you supply a Comparator object, your Comparator
routine will be used to sort the domain members.

166 PeopleSoft Proprietary and Confidential

Chapter 12 Using the COP Java API

If sort is false, the COP will do no sorting of domain members. Any
iterator obtained from this ControlData object’s iterator method will
return the domain members in their default order.

filter Filters out certain ControlItem objects (domain members), based on their
state and elimination level. The ControlData object’s iterator simply skips
over these ControlItem objects. For example: this can be used to filter out
all eliminated items (so the user doesn’t even see them), or all eliminated
items with an elimination level below a certain number.

If filter is null, no filtering is done (except for “deleted" domain members).

See Chapter 12, “Using the COP Java API,” Handling Deleted
Domain Members , page 176.

Given a decision point name (dpName) and attribute (attribute), get and
display the domain members—sorted but not filtered.

ControlData ctrlData = null;

ControlItem ctrlItem = null;

boolean sortFlag = true;

ItemFilter filter = null;

ItemIterator ctrlItemIterator = null;

try

{

ctrlData = cop.getControlData(dpName, attribute, sort⇒

Flag, filter);

}

catch (Exception e)

{

System.out.println("Error: Unable to retrieve ctrlData -⇒

" + e);

ctrlData = null;

}

if (ctrlData != null)

{

crtlItemIterator = ctrlData.iterator();

}

if (crtlItemIterator != null)

{

while (ctrlItemIterator.hasNext())

{

ctrlItem = (ControlItem) ctrlItemIterator.next();

if (ctrlItem != null)

{

// you have ctrlItem - examine and display it here

}

}

}

PeopleSoft Proprietary and Confidential 167

Using the COP Java API Chapter 12

It’s important to note that the methods of ControlData and ControlItem objects return the most recent
display information, which is based on the most recent calls to processChoices, getControlData,
setPricingData, and so on, regardless of when the ControlData or ControlItem object was first created.
They do not “remember" old values. So, for example, if you do the following:

1. Make some user choices.

2. Call processChoices.

3. Call getControlData to get a ControlData object for a decision point.

4. Make different user choices.

5. Call processChoices again.

6. Call getFlags on the ControlData object created in Step 3 to get the state of the decision point.

You would get the current state of the decision point, not the state it had as of Step 3. So there is no reason
to save a ControlData or ControlItem object in order to hold old display information. It won’t work.
(You could, of course, call getFlags immediately after Step 3 and save the value itself.)

Specifying Delta-Pricing and Total-Pricing Requirements
The procedure to process and display a page specifies those domain members (if any)
for which you need pricing-related information.

See Chapter 12, “Using the COP Java API,” Getting Display Information for a Domain Member , page 176.

There are two ways you can accomplish this:

• By calling the setPricingData method. Use this method if you are running the Configurator in
stand-alone mode. This section describes that method in more detail.

• By integrating Configurator with Order Capture. Setup for pricing data is handled within the
Configurator schema setup pages. When using this method of specifying pricing data, use the
ClientOperationsImpl constructor that takes a solutionId as a parameter when creating the COP. The
solutionId tells the COP which schema to reference for the appropriate pricing data.

Calling setPricingData describes a set of domain members for which you want pricing-related information.
This information is cached by the Configurator (until you call setPricingData again, or release). The next
time getControlData is called, the COP will be called to generate pricing-related information for those
domain members. The delta-price value for a domain member can then be retrieved from the ControlItem
representing the domain member using the ControlItem method getDeltaPrice. The total price for the
configuration can also be retrieved using the ClientOperations method getTotalPrice.

There is one form of setPricingData:

void setPricingData(Map dpNamesAndAttributes)

This method takes a Map of decision point names and the corresponding price attribute for that decision
point. Only the domain members in the specified decision points will be delta-priced. Also, only the
specified decision points will be used when calculating the total price for the configuration.

Note. Configurator remembers only the most recent setPricingData call. Subsequent calls do not
“accumulate" domain members for which to get delta-pricing data.

168 PeopleSoft Proprietary and Confidential

Chapter 12 Using the COP Java API

Getting Other Display Information
Some ClientOperations methods return information that you may wish to display, but that is not
included in ControlData or ControlItem objects. These calls include:

• getExternVar—returns an extern variable (object of type ExternVar), based on its name. The ClientOperations
method getExternVarNames returns a vector of the names of all the extern variables that are part of the model.

• getTotalPrice—returns the total price of the current configuration.

• getViolations—returns all violations associated with the configuration.

• getNumericData—returns a NumericData object. Some models contain variables that you may wish to
display in the UI, such as “total grams of saturated fat" or “number of video card slots remaining," that
are distinct from domain member attributes, prices, and quantities. These variables are represented by
NumericData objects. Given the name of such a variable, this call returns a NumericData object representing
it. You can then use the NumericData class methods to get the variable’s type and value.

See Chapter 12, “Using the COP Java API,” NumericData, page 183.

You may also wish to display one or more configuration attributes. To obtain them, call the
ClientOperations method getConfiguration to get the current configuration, and then the Configuration
method getAttribute for each attribute whose value you want to display.

Verifying a Configuration
When the user wishes to finalize the configuration, as in making a purchase, you can verify the configuration
by calling the ClientOperations method verifyConfiguration. This method is similar to processChoices;
it takes a vector of Choice objects (representing the configuration) as input, and calls the Configurator
Engine to generate a solution state. The vector can contain both DMChoice objects and EVChoice
objects. verifyConfiguration also returns a boolean value: true if the configuration is complete and
consistent, false if otherwise. Complete means that every required (non-optional) decision point in the
configuration has a selection. Consistent means the configuration has no violations.

Note. There is an alternate version of verifyConfiguration that takes a Configuration object as a parameter.
With the exception of this additional parameter, it functions the same as the other version.

Configuration
This class represents a set of choices for the model, any configuration attributes, and
the model’s name, version, and compileID.

The choices may include both DMChoice objects and EVChoice objects.

You can obtain the current configuration by calling the ClientOperations method getConfiguration.
This configuration will include user, default, and computer choices.

The Configuration object can be used to write out the configuration to an external format (usually XML), or to
read in a configuration that has been saved in that format. You can also directly set and get the information
in the configuration: choices, configuration attributes, and the model’s name, version, and id.

You can also save and restore a configuration in other formats, but this requires a significant
amount of custom code and is generally not worthwhile.

PeopleSoft Proprietary and Confidential 169

Using the COP Java API Chapter 12

Methods
The Configuration class contains the following methods:

void convertElement(org.w3c.dom.Element elem)

void fromXML(InputStream is)

String getAttribute(String attribute)

Map getAttributeMap()

Vector getChoices()

String getModelCompileVersion()

String getModelName()

String getModelVersion()

String getTagName()

Vector getUserChoices()

String removeAttribute(String attribute)

void setAttribute(String attribute, String value)

void setChoices(Vector choices)

void setModelCompileVersion(String modelCompileVersion)

void setModelName(String modelName)

void setModelVersion(String modelVersion)

org.w3c.dom.DocumentFragment toXML(org.w3c.dom.Document doc)

Object clone()

DeltaConfig delta(Configuration newCfg)

boolean equals(Configuration newCfg)

Date getlastSavedDate()

Vector getNumericDatas()

boolean hasViolations()

void toXML(OutputStream out)

Date getSolveDate()

Saving and Restoring a Configuration
The COP can be used to save the current configuration in an external form, or to read a previously
saved configuration and make it current. The COP uses a Configurator-defined XML format
and standard Java input and output techniques for these operations. Provided the property
calico.na.db.compression in the Advisor.properties file is set to true, it also compresses the data
during the save and de-compresses it (if needed) during a restore.

To save the current configuration:

1. Call the ClientOperations method getConfiguration to obtain a Configuration object
representing the current configuration.

2. Call that object’s toXML method to write out an XML representation of the
configuration to a specified output stream.

To restore a previously saved configuration (that is, make it current):

1. Create a Configuration object.

2. Call that object’s fromXML method to read the previously saved configuration from a specified input stream.

3. Call the ClientOperations method restore, with the Configuration object as its config parameter.

170 PeopleSoft Proprietary and Confidential

Chapter 12 Using the COP Java API

Note. The Configuration methods toXML and fromXML assume the use of the Configurator’s
standard XML format for configurations. It is also possible to represent a configuration in some
other format, defined either by the programmer or by some other (non-Configurator) standard.
In this case you can not use toXML or fromXML. Instead, to save the configuration, you would
examine each item in the configuration (including all the choices, configuration attributes, and model
identification information) and write it out in the desired format. To restore a saved configuration,
reverse the process: create a Configuration object, read in and parse the representation of the stored
configuration, and set the values of all items in the Configuration object accordingly.

Obviously, using a non-standard format to represent a configuration entails much more work than
using the Configurator’s XML representation. It is generally not worthwhile.

ControlData
This class represents a decision point. You create a ControlData object for a decision point by
calling the ClientOperations method getControlData. The ControlData object contains an array of
ControlItem objects, representing all its domain members. It also enables you to obtain one or more
iterators (objects of type ItemIterator) for accessing the ControlItem objects.

If you set the sort parameter of the getControlData call to true, then an iterator obtained from the ControlData
object will return the ControlItem objects in a sort order determined by the software.

See Chapter 12, “Using the COP Java API,” Sorting and Filtering , page 174.

Iterators can also filter out (skip over) certain domain members, such as all eliminated domain members.
Specify the filtering you want by using the filter parameter of getControlData.

See Chapter 12, “Using the COP Java API,” Sorting and Filtering , page 174.

Note. Although you can access the ControlItem array directly using the standard array methods, you will
almost never want to. The array is neither sorted nor filtered by the COP. Use an iterator obtained from the
ControlData object; the iterator will return the ControlItem objects sorted, and filter them as specified.

See Chapter 12, “Using the COP Java API,” Handling Deleted Domain Members , page 176.

Note. Each optional decision point has a special domain member with the reserved name “$NADA",
representing a choice of “none." This domain member is supplied by the Configurator Engine; it does not come
from the modeler or an external source. It does not appear in either the ControlData object’s ControlItem
array or in the ControlItem objects returned by the ItemIterator. Instead, it can only be obtained by calling
the ControlData method getControlItem, with a String parameter that has been set to $NADA.

If, for a given optional decision point, you want to give your users the option of “none" (including
displaying the option, displaying its state, and so on), you need to handle it specially, using
the $NADA domain member and the getControlItem call.

Note. The ControlData method isPublic indicates whether a decision point is public or private. However, the
current version of the Configurator does not implement this distinction; all decision points are considered public.

Methods
The following methods are contained in the ControlData class:

PeopleSoft Proprietary and Confidential 171

Using the COP Java API Chapter 12

Object[] getAllItems()

Choice[] getChoices()

String getClassID()

ControlItem getControlItem(String domainName)

long getFlags()

String getName()

double getQty()

Violation[] getViolations()

boolean hasDeletedItems()

boolean isMultiSelect()

boolean isOptional()

boolean qtySupported()

boolean isPublic()

ItemIterator iterator()

ItemIterator iterator(Comparator comp)

int getMinChoices()

int getMaxChoices()

String[] getAttributeNames()

String getAttributeValue(String name)

String[] getAttributeValues(String[] names)

Getting Display Information for a Decision Point
and Its Domain Members
Most of the display information is associated with the decision point’s domain members, rather than the
decision point. To get at this information, call the ControlData method iterator to get an iterator, and use it to
access the ControlItem objects. They will be sorted and filtered as specified by the software.

You can also call getAllItems, which returns the ControlItem array directly. But this array is not sorted or
filtered by the COP, regardless of the getControlData parameters. It contains all of the decision point’s domain
members, in whatever order they were supplied by the Visual Modeler or an external source.

For each ControlItem, use the ControlItem methods to retrieve its display information.

See Chapter 12, “Using the COP Java API,” ControlItem, page 176.

There is some information that you may wish to display that applies to the decision point as
a whole. Methods that return such information include:

getQty Returns the total of all the quantities for all the selected domain members of this
decision point. Only some decision points, determined by the modeler, permit
their domain members to have quantities. You can determine if a decision
point permits quantities by using the ControlData method qtySupported.

getState Returns the state of the decision point.

See Chapter 12, “Using the COP Java API,” Getting the State
of a Domain Member, page 177.

getViolations Returns all violations associated with this decision point.

int getMinChoices Returns the minimum selection quantity value for this decision point.

172 PeopleSoft Proprietary and Confidential

Chapter 12 Using the COP Java API

int getMaxChoices Returns the maximum selection quantity value for this decision point.

String[]
getAttributeNames()

Returns the names of the selection point attributes for this decision point.

String
getAttributeValue(String
name)

Returns the value of the specified attribute.

String[]
getAttributeValues(String[]
names)

Returns the specified attribute values.

Getting the State of a Decision Point
Based on the configuration and solution state at any given time, a decision point has one or more
states, which can be obtained by calling the ControlData method getFlags. The state of a decision
point depends completely on the state of its domain members.

See Chapter 12, “Using the COP Java API,” Getting the State of a Domain Member, page 177.

There are four decision point states:

selectable If one or more of the domain members is selectable.

selected If one or more of the domain members is selected.

conflicted If one or more of the domain members is conflicted

undefined Neither selectable, selected, nor conflicted.

Combinations are certainly possible. For example, a decision point can be simultaneously
selected (because at least one of its domain members is selected) and selectable (because
some other of its domain members are selectable).

All of a decision point’s domain members are used in determining the domain member’s state, not just the
domain members that have not been filtered out by the ControlData object’s iterator(s).

The ControlData interface defines three different state bits, which can be used to test
a selection point (decision point’s state flags:

Decision point state flags Bits

SELECTABLE 0x01

SELECTED 0x02

CONFLICTED 0x04

Note. The particular values of the state bits are not important, and are only included for illustration. They
might be changed in a later release. It is important that they are single, distinct bits. The bit values are not
the same as the bit values for the similarly named field constants in the ControlItem interface.

The ControlData interface also defines:

PeopleSoft Proprietary and Confidential 173

Using the COP Java API Chapter 12

Decision point state Bits

UNDEFINED 0x00

You can use these field constants with the value returned by the ControlData method getFlags
to determine the decision point’s current state or states.

Sorting and Filtering
A ControlData object contains an array of ControlItem objects, representing its domain members. This array is
not sorted or filtered by the COP. All the ControlData object’s ControlItem objects (domain members) appear
in the array. The ControlItem objects are arranged in the order that the corresponding domain members
were loaded into the engine at model load time. For external domain members, this is the order specified
by the SQL statement for the domain member query. For internal domain members, it is the order they
were entered into the class by the modeler. This is called the domain member’s default order.

However, the COP does permit you to sort and filter the ControlItem objects in certain ways.
This is not implemented through the ControlItem array, but through objects of type ItemIterator,
which can be obtained by calling the ControlData method iterator.

A ControlData object is created by a call to the ClientOperation method getControlData. If the getControlData
parameter sort is set to true, then iterators (objects of type ItemIterator) obtained from the ControlData
object’s iterator method will return the ControlItem objects in a sorted order. This sort order will either
be a standard one implemented by the COP, or a custom sort order based on a Comparator object that
you supply, depending on which form of the ControlData method iterator you use.

You can also have multiple iterators at the same time, for simultaneous access to standard
sorting, custom sorting (one or more), and multiple traverses of the ControlData object’s
domain members. But this will not usually be necessary.

Standard Sorting

The first form of the ControlData method iterator takes no parameters: iterator(). If you call this
form, the resulting iterator returns the ControlItem objects sorted in a standard manner implemented
by the COP. The sort order, one that many User Interfaces prefer, is as follows:

1. Selected domain members in conflict (that is, both selected and eliminated).

2. Selected domain members not in conflict.

3. Selectable domain members (neither selected nor eliminated).

4. Eliminated (but not conflicted) domain members—sorted from highest elimination
value to lowest elimination value.

Within each category (for 1, 2, and 3), if the category has more than one domain member, its
domain members are arranged in the same order in which they appear in the ControlItem array.
That is, the original (default) order is maintained within each category.

Similarly, for category 4, multiple domain members with the same elimination value
will be arranged in their original (default) order.

Every eliminated domain member has an elimination value. If it’s not determined by constraints
for which the modeler has defined elimination levels, it defaults to 1.

174 PeopleSoft Proprietary and Confidential

Chapter 12 Using the COP Java API

Custom Sorting

The second form of the ControlData method iterator takes a Comparator object as its parameter:
iterator(Comparator comp). If you call this form, the resulting iterator returns the ControlItem objects sorted in
the order determined by your Comparator object. This enables you to create a completely customized sort order
by writing your own Comparator object. Your Comparator will have access to all the methods of the ControlItem
objects it is comparing, enabling you to sort on attribute values, states, and other domain member aspects.

Note. A Comparator is a Java object that is used to impose a sort order on a collection of objects by comparing
pairs of objects and returning a result indicating which object is “greater” and which is “lesser?” (or that
the two are to be considered “equal” in the sort order). In this case the objects are the ControlItem objects
of a given ControlData object. Comparators implement the java.util.Comparator interface.

No Sorting

If you call the ClientOperations method getControlData with the sort parameter set to false, then the
ControlItem objects of the resulting ControlData object will not be sorted. Any iterator returned by
that ControlData object’s iterator method will return ControlItem objects in their original (default)
order—exactly as they appear in the ControlItem array—with no sorting by the COP. This is true regardless
of which form of the iterator method you call. However, filtering may still occur.

See Chapter 12, “Using the COP Java API,” Sorting and Filtering , page 174.

Filtering

If the getControlData call has a non-null filter parameter, then iterators obtained from the resulting
ControlData object will filter out (skip over) certain ControlItem objects, and only return the ones that are
not filtered. This makes it easier for the UI to conceal from the user a certain class of domain members
(commonly, all eliminated domain members, or eliminated domain members whose elimination value
is below a certain number). The filtering depends on the filter parameter, as follows:

• If you call the first version of the ItemFilter method setRange—setRange(boolean
filterAllEliminatedItems)—with the parameter set to true, the filter will filter out all
eliminated (but not conflicted) items.

• If you call the second version of the ItemFilter method setRange—setRange(int lower,
int upper)—then any eliminated (but not conflicted) domain members whose elimination values
are outside the range from lower to upper (inclusive) will be filtered out.

Specifically, if you want to filter out all eliminated (but not conflicted) domain members
with an elimination value less than some integer N, you would call setRange(N +
1, ItemFilter.maxEliminationValue).

Every eliminated domain member has an elimination value. If it’s not determined by constraints
for which the modeler has defined elimination levels, it defaults to 1.

• Regardless of the value of the filter parameter—even if it is null—the ControlData object’s iterators
will always filter out “deleted" domain members—that is, an external domain member that has been
removed from its database after the model was compiled. These deleted domain members are still
present in ControlData object’s ControlItem array, so they can be retrieved if necessary.

See Chapter 12, “Using the COP Java API,” Handling Deleted Domain Members , page 176.

If the getControlData range parameter is null, the ControlItem object’s iterators will only filter out
deleted domain members. No other domain members will be filtered out.

PeopleSoft Proprietary and Confidential 175

Using the COP Java API Chapter 12

Handling Deleted Domain Members
In systems that load domain members from external databases, it is sometimes possible to have
“deleted" domain members—that is, an external domain member that has been removed from its
database after the model was compiled. It might be necessary to inform the user that a domain
member has been deleted, especially if it had been user-selected.

A ControlData object’s iterators automatically filter out (skips over) any deleted domain members, so they are
not helpful in handling them. But the deleted domain members are still present in the ControlData object’s
ControlItem array. Use the ControlData method hasDeletedItem to see if the decision point has a deleted
domain member. If it does, you can use getAllItems to get the ControlItem array, then use the standard array
operators to look at all the ControlItem objects in the ControlItem array. The ControlItem method isValid
(false for deleted domain members, true otherwise) will tell you if a given domain member is deleted. If it
is, you can then check the domain member’s state to determine if the user needs to be notified.

ControlItem
This class represents a domain member. It contains display information for that domain member.

Note. A ControlItem always comes from a ControlData object, which was originally obtained from a call
to the ClientOperations method getControlData. So every ControlItem can be traced back to a particular
getControlData call. The attributes parameter to the getControlData (or attribute parameter, for the other
version of the call) determines which attribute values can be obtained from the ControlItem.

Methods
The ControlItem class contains the following methods:

Vector getAttributes()

String getAttributeValue(String attribute)

String getClassID()

double getDeltaPrice()

long getEliminationLevel()

long getFlags()

String getName()

double getQty()

Violation[] getViolations()

boolean hasEliminationLevel()

boolean isValid()

public double getMaxQty()

public double getMinQty()

void setDeltaPrice(double newDelta)

Getting Display Information for a Domain Member
You can use these ControlItem class methods to get display information for a domain member:

176 PeopleSoft Proprietary and Confidential

Chapter 12 Using the COP Java API

Method Description

getAttributes Returns a vector of attribute values for the domain member represented by this
ControlItem. The attributes whose values will be returned are those that were
included in the attributes input to the getControlData call that this ControlItem can be
traced back to. The order of the values will be the same as the order of the attributes
in that parameter. The UI could display these values in whatever format you decide.

getFlags Returns the current state flags for the domain member. This tells you whether
the domain member is user-selected, user-eliminated, computer-selected,
computer-eliminated, and so on. The UI should mark the domain member
appropriately.

See Chapter 12, “Using the COP Java API,” Getting the State of a Decision Point,
page 173.

getQty Returns the quantity of this domain member. Only some decision points, determined
by the modeler, permit their domain members to have quantities. You can
determine if a decision point permits quantities by calling the ControlData method
qtySupported on the associated ControlData object.

getDeltaPrice Returns the delta price for this domain member. This information will only be
available if the decision point this domain member belongs to was specified in the
pricing definition setup.

getViolations Returns an array of all the violations (if any) associated with this domain member.

isValid r Returns false for a deleted domain member, true otherwise.

See Chapter 12, “Using the COP Java API,” Handling Deleted Domain Members ,
page 176.

hasEliminationLevel Returns the elimination level for an eliminated domain member. Every eliminated
domain member has an elimination value. If it’s not determined by constraints for
which the modeler has defined elimination levels, it defaults to 1.

double getMinQty Returns the minimum quantity value for this domain member.

double getMaxQty Returns the maximum quantity value for this domain member.

Getting the State of a Domain Member
Based on the configuration and solution state at any given time, each domain member has one or more states,
indicating whether the domain member is user-selected, computer-selected, user-eliminated, and so on. Multiple
states are certainly possible. For example, a domain member can be both user-selected and computer-selected.

A domain member that is both selected and eliminated (for example, user-selected but computer-eliminated) is
called conflicted. A domain member that is neither selected nor eliminated is called selectable.

The possible states for a domain member are: eliminated, selected, conflicted, selectable, computer-selected,
default-selected, user-selected, computer-eliminated, default-eliminated, user-eliminated.

Note. The Configurator engine does not support “default-eliminated."

The ControlItem interface defines five different state bits, which can be used to test
a domain member’s state flags:

PeopleSoft Proprietary and Confidential 177

Using the COP Java API Chapter 12

Domain member state flag Bits

ELIMINATED 0x01

SELECTED 0x02

COMPUTER 0x10

DEFAULT 0x20

USER 0x40

Note. The particular values of the state bits are not important, and are only included to make some
of the examples clearer. It is important that they are single, distinct bits

These bits do not occur in isolation; you would not expect to find a domain member state with only one of these
bits set. In fact, you would expect at least one from ELIMINATED and SELECTED, and at least one from
COMPUTER, DEFAULT, and USER. These combinations define other states in the ControlItem interface:

Domain member state Bits

COMPUTER_ELIMINATED 0x11

DEFAULT_ELIMINATED 0x21

USER_ELIMINATED 0x41

COMPUTER_SELECTED 0x12

DEFAULT_SELECTED 0x22

USER_SELECTED 0x42

The fields can be combined by the bitwise OR operation into a number that represents the domain member’s
state or states. This number is called the domain member’s state flags (or just flags). You can use the
ControlItem method getFlags to get the state flags for a domain member, and then use these field constants to
determine the precise state or states of the domain member—and thus how to display it in your UI.

Note. If a domain member is conflicted, then it is both eliminated and selected. But it may be difficult or
impossible to get more detailed information from the state flags—such as whether the domain member
is computer-selected, user-selected, computer-eliminated, and so on. For example, a domain member that
is user-selected and computer-eliminated has exactly the same state bits set as a domain member that is
user-eliminated and computer-selected (namely, USER, COMPUTER, SELECTED, ELIMINATED).
So there’s no way to tell from the state flags if the domain member is, for example, computer-selected
or computer-eliminated. The convention, in this case, is to say that the domain member is conflicted,
selected, and eliminated—and not try to go into any more detail than that.

It’s up to you to decide how to use the states for display purposes in your UI. For example, most User Interfaces
will display a domain member that is simply user-selected (0x42) the same way they will display one that
is user-selected and computer-selected (0x52)—with an icon indicating it is user-selected. In this case user
selection is considered more important than computer selection, and the UI doesn’t bother to indicate both states.
However, other User Interfaces may be required to display more information depending on the model needs.

178 PeopleSoft Proprietary and Confidential

Chapter 12 Using the COP Java API

The mapping from state flags to states is not always obvious, and you need to be careful. This is particularly
true when dealing with conflicted domain members. For example, suppose you want to see if a domain member
is computer-selected. When you examine the COMPUTER bit and the SELECTED bit, they are both 1.

It is possible that the domain member is computer-eliminated and user-selected—a conflicted combination.
This combination (0x53) has the COMPUTER and SELECTED bits set, but the domain member is not
computer-selected. You need to check the SELECTED bit to rule out this and similar possibilities.

The following two examples illustrate the use of the state flags to determine the
state or states of a domain member.

Example 1: Check to see if a domain member is computer-selected (a conflicted item is not considered
computer-eliminated, regardless of the other state bits that are set).

long stateFlags = 0;

stateFlags = ctrlItem.getFlags();

if ((stateFlags & ControlItem.COMPUTER_SELECTED) == ControlItem.COMPUTER_SELECTED)⇒

&& ((stateFlags & ControlItem.CONFLICTED) != ControlItem.CONFLICTED))

{

// domain member is computer-selected

}

else

{

//domain member is not computer-selected

}

Example 2: Classifying a domain member as conflicted, selected, selectable, or eliminated.
long stateFlags = 0;

stateFlags = ctrlItem.getFlags();

if (stateFlags & ControlItem.CONFLICTED) == ControlItem.CONFLICTED)

{

// domain member is conflicted

}

else if ((stateFlags & ControlItem.SELECTED) == ControlItem.SELECTED)

{

//domain member is selected (and not conflicted)

else if ((stateFlags & ControlItem.ELIMINATED) != ControlItem.ELIMINATED)

{

//not selected, not eliminated - domain member is selectable

}

else

{

//domain member is eliminated

}

PeopleSoft Proprietary and Confidential 179

Using the COP Java API Chapter 12

Choice
This class is the superclass for DMChoice and EVChoice. Several important methods in the COP Java
API (such as the ClientOperations methods processChoices and verifyConfiguration) either accept or
return a vector of objects of type Choice. These vectors can include both objects of type DMChoice
and objects of type EVChoice, since, by inheritance, both are objects of type Choice.

In this version of the Configurator, many Choice class methods are deprecated and reintroduced
in DMChoice because they apply only to domain member choices and not extern variables. For
this reason there are very few Choice methods that are actually called; instead, the appropriate
DMChoice methods and EVChoice methods are called.

The Choice class contains the following methods:

String getDecisionPointName()

String getDomainMemberName() //Deprecated. Use DMChoice.getDomainMemberName

double getQuantity() //Deprecated. Use DMChoice.getQuantity

long getState() //Deprecated. Use DMChoice.getState

abstract String getTagName()

boolean isSelection() //Deprecated. Use DMChoice.isSelection

boolean isUserChoice()

void setDecisionPointName(String dpName)

void setState(long newState) //Deprecated. Use DMChoice.setState

Object clone()

boolean isDMChoice()

void toXML(StringBuffer buffer)

When called on an object of type EVChoice:

• The method getDecisionPointName() returns the name of the extern variable.

• The method getType() returns the type of the extern variable.

• The method setDecisionPointName() changes the name of the EVChoice object (that is, associates
the EVChoice object with a new extern variable, specified by name).

• The method isUserChoice() returns false if the extern value was defaulted in the model, until
the user overrides the default value, in which case it will return true.

DMChoice
This class is a subclass of Choice. Objects of type DMChoice represent a domain member choice,
that is, a selection or elimination. You create DMChoice objects by calling the ClientOperations
methods makeSelectedChoice and makeEliminatedChoice. These DMChoice objects (along with
EVChoice objects) can be passed in a vector to the ClientOperations method processChoices.
No DMChoice or Choice class methods are required for this.

The DMChoice objects created by makeSelectedChoice and makedEliminatedChoice represent, by default,
user domain member choices. However, by using the DMChoice method setState, you can change
them to represent computer or default domain member choices (or various combinations). This may be
necessary when you are creating DMChoice objects to include in a Configuration object that represents
a configuration containing user, computer, and default domain member choices.

180 PeopleSoft Proprietary and Confidential

Chapter 12 Using the COP Java API

Methods
The following methods are contained in the DMChoice class:

String getDomainMemberName()

double getQuantity()

long getState()

String getTagName()

boolean isSelection()

boolean isUserChoice()

void setState(long newState)

boolean equals(Object newChoice)

void toXML(OutputStream out)

Examining a DMChoice
Given an object of type DMChoice, you can determine what domain member choice
it represents in the following manner:

• Call getDecisionPointName and getDomainMemberName to get the decision point
and domain member for the choice.

• Call isSelection to determine whether the choice represents a user selection or a user elimination.
isSelection returns true for selections, false for eliminations.

• If the DMChoice object represents a user selection, and the associated decision point supports quantities for
its domain members, you can call getQuantity to get the quantity associated with the selection. To determine
if the decision point supports quantities, use the method qtySupported() in the ControlDate class.

• Call getState() to get the current state flags of the domain member associated with the DMChoice object.

EVChoice
This class is a subclass of Choice. Objects of type EVChoice represent extern variables. The value of an
extern variable is a collection of floating-point numbers, strings, dates, boolean values, or integers.

You create EVChoice objects by calling the ClientOperations method makeExternVarChoice. These
EVChoice objects (along with DMChoice objects) can be passed in a vector to the ClientOperations
method processChoices. No EVChoice or Choice methods are required for this.

Methods
The following methods are contained in the EVChoice class:

String getTagName()

int getValueCount()

Collection getValues()

void setValues(Collection values)

boolean equals(Object newChoice)

void toXML(OutputStream out)

Object clone()

boolean isUserChoice()

PeopleSoft Proprietary and Confidential 181

Using the COP Java API Chapter 12

Examining an EVChoice
By using the Choice method getDecisionPointName on an EVChoice object, you can get the name of the
associated extern variable. You can then use the ClientOperations method getExternVar to get an object of
class ExternVar representing the extern variable itself. Alternatively, you can bypass the ExternVar object and
get the value of the extern variable associated with the EVChoice by using the EVChoice method getValues.

ItemFilter
The ClientOperations method getControlData has an ItemFilter parameter that enables
the method to filter out certain domain members.

The most common use of an ItemFilter parameter is to filter out all eliminated domain members, or all
eliminated domain members whose elimination level is below a certain threshold. Depending on the model
and the User Interface, these are domain members that the user may not be interested in.

The ItemFilter parameter to getControlData causes the ItemIterator (belonging to the ControlData
object created by the getControlData call) to filter out (skip over) the specified domain members.
This makes it easy for the UI not to display those domain members. Note that the filtering is done
by the ItemIterator; the ControlData object’s ControlItem array still contains all the ControlItem
objects (domain members) of the ControlData object (decision point).

Methods
The following methods are contained in the ItemFilter class:

void setRange(boolean filterAllEliminatedItems)

void setRange(int lower, int upper)

Filtering Out Domain Members
There are two versions of the ItemFilter method setRange. One takes a boolean parameter,
filterAllEliminatedItems. The other takes two integers, lower and upper. Before using a
parameter of type ItemFilter do one of the following:

• Call setRange(true) on the parameter to filter out all eliminated (but not conflicted) domain members; or

• Call setRange(lower, upper) on the parameter to filter out those eliminated (but not conflicted) domain
members whose elimination values are outside the range from lower to upper (inclusive).

Specifically, if you want to filter out all eliminated (but not conflicted) domain members with an elimination
value less than some integer N, you would call setRange(N + 1, maxEliminationValue).

Every eliminated domain member has an elimination value. If it’s not determined by constraints
for which the modeler has defined elimination levels, it defaults to 1.

Note. Regardless of the value of the filter parameter—even if it is null—the ControlData object’s iterators
will always filter out “deleted" domain members—that is, an external domain member that has been
removed from its database after the model was compiled. These discarded domain members are still
present in ControlData object’s ControlItem array, so they can be retrieved if necessary.

See Chapter 12, “Using the COP Java API,” Handling Deleted Domain Members , page 176.

182 PeopleSoft Proprietary and Confidential

Chapter 12 Using the COP Java API

ItemIterator
The ControlData method iterator returns an object of the ItemIterator class. The ItemIterator object,
called an iterator, is used to access the ControlItem objects (domain members) of the ControlData object
(decision point). The iterator returns the domain members in a specified sort order, which may either
be a standard sort order implemented by the COP or a custom sort order determined by a Comparator
object you supply. The iterator also filters out (skips over) any domain members specified in the filter
parameter to that getControlData call, as well as any deleted domain members.

It is possible to have more than one iterator for the same ControlData object at the
same time. However, this is not usually necessary.

ItemIterator implements the Java interface java.util.Iterator.

The following methods are contained in the ItemIterator class:
boolean hasNext()

Object next()

ExternVar
This class represents an extern variable, and can be used to get the name, type, and value
of the extern variable. The value of an extern variable is a collection of floating-point
numbers, strings, dates, boolean values, or integers.

The ClientOperations method getExternVarNames returns a vector of the names of all the extern variables in a
model. The ClientOperations method getExternVar can then be used to retrieve the extern variable itself.

The value of an extern variable can be used as a choice in a configuration.

See Chapter 12, “Using the COP Java API,” Handling Deleted Domain Members , page 176.

The ExternVar class methods are:

String getName()

Collection getValues()

String getType()

Violation[] getViolations()

boolean isDefault()

NumericData
This class represents a variable in the model. Some models contain variables that you might wish to
display in the UI, such as “total grams of saturated fat" or “number of video card slots remaining."
These are distinct from domain member attributes, prices, and quantities. Obtain a NumericData
object representing a model variable by using the ClientOperations method getNumericData. Then
you can use the methods in this class to get the type and value of the variable.

Numeric data values are generated by the Configurator Engine, based on formulas specified in
the model. From the point of view of the COP, they are read-only.

PeopleSoft Proprietary and Confidential 183

Using the COP Java API Chapter 12

The NumericData class:

String getName()

String getValue()

String getType()

boolean equals(Object obj)

Violation
This class returns information on a violation. Retrieve Violation objects associated with a configuration,
a given decision point, or a given domain member by using the getViolations method of the
ClientOperations, ControlData, or ControlItem classes, respectively.

The Violation class has one method, getExplanation, which returns a user-readable explanation for the violation.

The Violation method contains this method:

String getExplanation()

184 PeopleSoft Proprietary and Confidential

CHAPTER 13

Understanding the Configurator XML Interface

This chapter provides an overview of the Advanced Configurator XML interface and discusses:

• Resquest-response.

• Elements and attributes.

• Retrieving model information.

• Updating a configuration.

Request-Response
The COPXMLServlet translates COP XML to COP Java calls, and COP Java returns to COP
XML. The servlet is installed with Advanced Configurator. If you installed Advanced Configurator
in the default directory, the COPXMLServlet is in this file:

.\bea\weblogic81\config\Calico\applications\Calico\WEB-INF\lib\advisor.jar

You post a request to, and receive a response from, the servlet at COPXML on the computer where you
installed the Configurator; for example, to post directly to the application server, use an URL like this:

http://MyComputer:7777/copxml

The COPXMLServlet and COP XML do not mimic the COP Java API. Instead, in
one round trip, the COPXMLServlet:

• Bundles all of the requests included in the COP XML HTTP POST request.

• Makes all of the necessary COP Java calls required to process the requests.

• Processes everything that is returned by the COP, bundles it, and returns it in a single
COP XML HTTP POST response.

Elements and Attributes
The COP XML request may include these elements:

CONFIGURATION

DECISION_POINTS

CHOICES

CH

EVCH

CONTROL_DATA

PeopleSoft Proprietary and Confidential 185

Understanding the Configurator XML Interface Chapter 13

ATTR

DP

ATTR

NUMERIC_VALUES

EXTERN_VARS

EV

VIOLATIONS

The Configurator XML interface lets you retrieve information about a model, including:

• Model name, version, and compile version, using attributes of the CONFIGURATION element.

• Error messages for an invalid element name, attribute name, or attribute value; omitting
an attribute; or an abnormal processing error.

• A set of decision points, using the ALL attribute of the DECISION_POINTS element.

The CONFIGURATION element is required. Other elements are optional. Attributes of elements further specify
the request. The COP XML response can include other elements and attributes, but is similar to the request.

The COP XML request-response pair can:

• Retrieve information about a model.

• Update a configuration (interactive mode).

• Retrieve information about a configuration (interactive mode).

• Create, update, save, or retrieve a configuration (batch mode).

• Change the order status of a configuration.

Retrieving Model Information
The Configurator XML interface lets you retrieve information about a model, including:

• Model name, version, and compile version.

• Error messages for an invalid request, or an abnormal processing error.

• A list of decision points.

See Also

Chapter 14, “Retrieving Model Information,” page 189

Updating a Configuration Interactively
The Configurator XML interface lets you update a configuration interactively by making
choices or entering values for an external variable, that is, by:

• Selecting a domain member for a single-select decision point.

• Selecting one or more domain members for a multi-select decision point.

186 PeopleSoft Proprietary and Confidential

Chapter 13 Understanding the Configurator XML Interface

• Entering one or more values for an external variable.

See Also

Chapter 15, “Updating a Configuration,” page 195

Retrieving Configuration Information
The Configurator XML interface lets you retrieve this information about a configuration:

• Total price.

• Choices.

• Domain member data, including:

- Domain members for all, or selected decision points.

- Constraint violation explanations for decision points.

- Value of domain member attributes.

- Delta prices for domain members.

- Changes that occurred between two versions of the configuration.

- Class name for domain members.

- State, and quantity of domain members.

• Whether a decision point is multi-select.

• Constraint violation explanations for the configuration.

• Numeric values.

The Configurator XML interface also lets you:

• Sort domain members that are returned by the COP.

• Filter domain members that are returned by the COP.

See Also

Chapter 16, “Retrieving Configuration Information,” page 199

Copying a Configuration
The Configurator XML interface lets you copy a configuration.

See Chapter 18, “Copying a Configuration,” page 261.

PeopleSoft Proprietary and Confidential 187

Understanding the Configurator XML Interface Chapter 13

Using Batch Configuration Mode
The Configurator XML interface lets you create, update, save and/or retrieve configurations in batch mode.

See Chapter 19, “Using Batch Configuration Mode,” page 263.

Changing the Order Status of a Configuration
The Configurator XML interface lets you change the order status of a configuration.

See Chapter 20, “Changing the Order Status of a Configuration,” page 267.

COP.dtd
COP.dtd defines which XML elements and attributes the Configurator XML interface can use to
send requests to, and return responses from, the COP Java interface. COP.dtd also defines which
elements and attributes the COP may use to save and restore configurations.

Studying the COP.dtd may help you better understand the COP XML that is used by the
Configurator XML interface. An annotated version is located in \bea\weblogic81\config
\CalicoDomain\applications\CalicoApp\Web-inf\dtd.

Element-Attribute Trees
COP XML is defined by the COP.dtd. This means that some of its elements and attributes are not used by
the Configurator XML interface, but are used by the COP to save and restore configurations.

COP XML may be viewed as a tree of elements, with some elements having attributes.
Studying these element-attribute trees—especially trees that have only those elements and
attributes that may be used in a request or response—may help you better understand the
COP XML that is used by the Configurator XML interface.

See Also

Appendix H, “Element-Attribute Trees ,” page 505

188 PeopleSoft Proprietary and Confidential

CHAPTER 14

Retrieving Model Information

The Configurator XML interface lets you retrieve information about a model, including:

• Model name, version, and compile version, using attributes of the CONFIGURATION element.

• Error messages for an invalid element name, attribute name, or attribute value; omitting
an attribute; or an abnormal processing error.

• A set of decision points, using the ALL attribute of the DECISION_POINTS element.

Elements and Attributes
The COP XML request may include these elements and attributes to retrieve information about a model.

CONFIGURATION MODEL_ID LOCALE MODEL_VERSION COMPILE_VERSION

DECISION_POINTS ALL

The COP XML response may include these elements and attributes to return information about a model.
CONFIGURATION MODEL_ID LOCALE MODEL_VERSION COMPILE_VERSION TOTAL_PRICE

DECISION_POINTS

DP NM

ERROR

Version and Compile Version
The CONFIGURATION element, and its MODEL_ID, MODEL_VERSION, and COMPILE_VERSION
attributes let you retrieve the model version and model compile version.

Any COP XML request must include at least the top level CONFIGURATION element, with at
least the MODEL_ID and MODEL_VERSION attributes. The value for the MODEL_ID attribute
must be the name of a valid model. The value for the MODEL_VERSION attribute may be a
valid version number, valid partial version number, or an empty string.

Latest Version and Compile Version
The CONFIGURATION element, without a value for its MODEL_VERSION attribute, lets you
retrieve the latest version and compile version for the model.

PeopleSoft Proprietary and Confidential 189

Retrieving Model Information Chapter 14

Including in the REQUEST Causes the COP to return in the RESPONSE

The CONFIGURATION element with:

• A valid value (model name) for the MODEL_ID
attribute, and

• An empty string as the value for the MODEL_VERSION
attribute.

The CONFIGURATION element with values of:

• The given model name for the MODEL_ID attribute.

• The latest model version for the MODEL_VERSION
attribute.

• The latest compile version for the COMPILE_VERSION
attribute.

For example:

REQUEST RESPONSE

<CONFIGURATION MODEL_ID="Sample"⇒

MODEL_VERSION=""/>

<CONFIGURATION MODEL_ID="Sample" MODEL_⇒VERSION=⇒

"1-0-0" COMPILE_VERSION="2000103⇒0-102408-⇒

606"> </CONFIGURATION>

Latest Compile Version
The CONFIGURATION element, with a valid value (full or partial version) for its MODEL_VERSION
attribute lets you retrieve the latest version and compile version for the given version.

Including in the REQUEST Causes the COP to return in the RESPONSE

The CONFIGURATION element with valid values for:

• The MODEL_ID attribute.

• The MODEL_VERSION attribute.

The CONFIGURATION element with values of:

• The given model name for the MODEL_ID attribute.

• The full, latest, given model version for the
MODEL_VERSION attribute.

• The latest compile version for the COMPILE_VERSION
attribute.

For example:

REQUEST RESPONSE

<CONFIGURATION MODEL_ID="Sample"⇒

MODEL_VERSION="1"/>

<CONFIGURATION MODEL_ID="Sample" MODEL_⇒

VERSION="1-0-0" COMPILE_VERSION="2000103⇒0-⇒

102408-606">

<CONFIGURATION MODEL_ID="Audio"⇒

MODEL_VERSION="3-1"/>

<CONFIGURATION MODEL_ID="Audio" MODEL_⇒

VERSION="3-1-0" COMPILE_VERSION="2000110⇒5-⇒

115320-323">

</CONFIGURATION>

Note. The response for any valid request always includes the full model version and compile version. You
may want to include the version and compile version from the first response in all subsequent requests.

190 PeopleSoft Proprietary and Confidential

Chapter 14 Retrieving Model Information

Error Messages
An abnormal processing error or a request with invalid or omitted information causes
the COP XML to return an error message.

Including in the REQUEST
Causes the COP XML to return in the

RESPONSE

One of the following:

• An invalid element name.

• An invalid attribute name.

• An invalid value for a valid attribute name.

OR omitting a required attribute

The ERROR element as a child element of the
CONFIGURATION element. The ERROR element’s
content is a textual description of the error.

For example:

REQUEST RESPONSE

(An invalid element name)

<CONFIGURATION/>

<CONFIGURATION>

<ERROR>com.calicotech.xml.ffInvalidChild⇒

Exception: Child CONFIGURATION found where⇒

CONFIGURATION required</ERROR>

</CONFIGURATION>

(An invalid attribute name)

<CONFIGURATION MODEL_ID=""/>

<CONFIGURATION>

<ERROR>calico.configurator.exceptions.COPExce⇒

ption: Problem TestModel:0-0-0 not found.<⇒

/ERROR>

</CONFIGURATION>

(An invalid value for an attribute)

<CONFIGURATION MODEL_ID="Sample_2"⇒

/>

<CONFIGURATION>

<ERROR>calico.configurator.exceptions.COPExce⇒

ption: Problem Sample_2:0-0-0 not found.<⇒

/ERROR>

</CONFIGURATION>

(An invalid value for an attribute)

<CONFIGURATION MODEL_ID="Sample"⇒

MODEL_VERSION="1-1"/>

<CONFIGURATION>

<ERROR>calico.configurator.exceptions.COPExce⇒

ption: Version not found for Sample:1-1.<⇒

/ERROR>

</CONFIGURATION>

(Omitting the required MODEL_VERSION
attribute)

<CONFIGURATION MODEL_ID="Sample"/>

<CONFIGURATION>

<ERROR>calico.configurator.exceptions.COPExce⇒

ption: Version not found for Sample:0-0-0.<⇒

/ERROR>

</CONFIGURATION>

PeopleSoft Proprietary and Confidential 191

Retrieving Model Information Chapter 14

Decision Points
The DECISION_POINTS element and its ALL attribute let you retrieve two different
sets of decision points for the model.

All Decision Points
The DECISION_POINTS element, with its ALL attribute set to “true" lets you retrieve
every decision point for the model.

By default, including in the REQUEST the DECISION_POINTS element also includes the
element’s ALL attribute with its value set to true.

REQUEST RESPONSE

<CONFIGURATION MODEL_ID=

"Sample" MODEL_⇒VERSION=""><DECIS⇒

ION_POINTS/>

</CONFIGURATION>

<CONFIGURATION MODEL_ID=

"Sample" MODEL_⇒VERSION=""><DECIS⇒

ION_POINTS ALL="true"/>

</CONFIGURATION>

<CONFIGURATION MODEL_ID="Sample" MODEL_VERSION="1-⇒

0-0" COMPILE_VERSION="20001030-102408-606">

<DECISION_POINTS ALL="true">

<DP NM="BaseSelection"/>

<DP NM="HardDrivesSelection"/>

<DP NM="DVDorCDRomSelection"/>

<DP NM="OperatingSystemSelection"/>

<DP NM="DeviceControllersSelection"/>

<DP NM="MonitorsSelection"/>

<DP NM="WattsDisplaySelection"/>

<DP NM="ChassisSelection"/>

<DP NM="PowerCordSelection"/>

<DP NM="WarrantySelection"/>

<DP NM="AdditionalSoftwareSelection"/>

<DP NM="TravelSelection"/>

<DP NM="PrimaryPurposeSelection"/>

<DP NM="UserTypeSelection"/>

<DP NM="SpeakersSelection"/>

<DP NM="PrintersSelection"/>

<DP NM="ScannersSelection"/>

<DP NM="TapeBackDriveSelection"/>

<DP NM="ZipDriveSelection"/>

<DP NM="CDRWSelection"/>

<DP NM="ModemSelection"/>

<DP NM="SoundSelection"/>

<DP NM="NetworkSelection"/>

<DP NM="MemorySelection"/>

<DP NM="VideoSelection"/>

</DECISION_POINTS>

</CONFIGURATION>

Note. Either request in the example causes the COP to return in the RESPONSE the DECISION_POINTS
element with its ALL attribute set to “true", and, as child elements, all of the DP elements for the model.
The name of each decision point is the value of the NM attribute for each DP element.

Public Decision Points
The DECISION_POINTS element, with its ALL attribute set to “false" lets you retrieve
every public decision point for the model.

192 PeopleSoft Proprietary and Confidential

Chapter 14 Retrieving Model Information

Including in the REQUEST Causes the COP to return in the RESPONSE

The DECISION_POINTS element, with its ALL attribute
set to “false."

• The MODEL_ID attribute.

• The MODEL_VERSION attribute.

The CONFIGURATION element with values of:

• The DECISION_POINTS element with its ALL attribute
set to “false".

• As child elements, only the public DP elements for the
model.

For example:

REQUEST RESPONSE

<CONFIGURATION MODEL_ID="Sample" MODEL_⇒

VERSION="">

<DECISION_POINTS ALL="false"/>

</CONFIGURATION>

Causes the COP to return only the public decision points
for the Sample model.

PeopleSoft Proprietary and Confidential 193

Retrieving Model Information Chapter 14

194 PeopleSoft Proprietary and Confidential

CHAPTER 15

Updating a Configuration

This chapter discusses

• Updating a configuration.

• Elements and attributes

• Choices

• Choices and Response

See Also

Chapter 13, “Understanding the Configurator XML Interface,” Retrieving Model Information, page 186

Chapter 13, “Understanding the Configurator XML Interface,” Retrieving Configuration Information, page 187

Updating a Configuration
The Configurator XML interface lets you update a configuration by making choices—that is, by
selecting a domain member for a single-select decision point, or one or more domain members for a
multi-select decision point, or entering one or more values for an external variable.

To select a domain member using COP XML, the request must include:

• A CHOICES element.

• The child element CH for each domain member that you want to select.

• These attributes of the child element CH:

- DP—The name of the decision point for the domain member you want.

- DM—The name of the domain member you want.

- BY—Indicates that the choice is made by the user (U).

- QTY—The number of copies of the domain member you want.

To enter values for external variables using COP XML, the request must include:

• A CHOICES element.

• The child element EVCH for each external variable that you want to enter a value(s) for.

• These attributes of the child element EVCH:

- DP—the name of the decision point for the external variable you want.

PeopleSoft Proprietary and Confidential 195

Updating a Configuration Chapter 15

- VAL—the value you want to set on the external variable.

Note. You must enter a separate VAL attribute for each of the values you want to set on the external variable.

Note. The Configurator is stateless. Each request must include all user choices.

Elements and Attributes
The COP XML request may include these elements and attributes to update a configuration.

CONFIGURATION MODEL_ID LOCALE MODEL_VERSION COMPILE_VERSION TOTAL_PRICE

CHOICES RET

CH DP DM BY QTY

EVCH DP VAL

The COP XML response may include these elements and attributes to return information about a configuration.
CONFIGURATION MODEL_ID LOCALE MODEL_VERSION COMPILE_VERSION TOTAL_PRICE

CHOICES

CH DP DM BY ST SL EL QTY

EVCH DP VAL TY

Choices
The RET attribute of the CHOICES element lets you control whether the COP returns a
response when you choose one or more domain members.

By default, including in the REQUEST the CHOICES element also includes the element’s
RET attribute with its value set to “false".

As mentioned above, a CHOICES request to update the configuration must also include, as a child
element of the CHOICES element, EITHER the CH element with valid values for:

• The DP attribute

• The DM attribute

• The BY attribute

• The QTY attribute

OR the EVCH element with valid values for:

• The DP attribute

• The VAL attribute(s)

For example, these requests are, in effect, the same:

REQUEST 1 (RET not set):

<CONFIGURATION MODEL_ID="Sample" MODEL_VERSION="">

<CHOICES>

196 PeopleSoft Proprietary and Confidential

Chapter 15 Updating a Configuration

<CH DP="PrintersSelection" DM="HP Laserjet" BY="U"

QTY="1"/>

</CHOICES>

</CONFIGURATION>

REQUEST 2 (RET set to an empty string):
<CONFIGURATION MODEL_ID="Sample" MODEL_VERSION="">

<CHOICES RET="">

<CH DP="PrintersSelection" DM="HP Laserjet" BY="U"

QTY="1"/>

</CHOICES>

</CONFIGURATION>

REQUEST 3 (RET set to “false")
<CONFIGURATION MODEL_ID="Sample" MODEL_VERSION="">

<CHOICES RET="false">

<CH DP="PrintersSelection" DM="HP Laserjet" BY="U"

QTY="1"/>

</CHOICES>

</CONFIGURATION>

Each of these requests—REQUEST 1, 2, and 3—updates the configuration by making a user choice of one copy
of the HP Laserjet for the printer’s decision point. None of the requests cause the COP to return a RESPONSE.

Note. The Configurator is stateless. Each request must include all user choices.

Choices and Response
Including in the REQUEST the CHOICES element with the RET attribute set to “true”
causes the COP to return in the RESPONSE:

• Every non-null attribute-value pair for every choice (pick) of a domain member in the configuration.
The attributes of a domain member (DM) that may be returned are:

- DP

- DM

- BY

- QTY

- ST

- SL

- EL

- TY

• Every non-null, attribute-value pair for every external variable in the configuration.

The attributes of an external variable that may be returned are:

• DP

• VAL

• TY

PeopleSoft Proprietary and Confidential 197

Updating a Configuration Chapter 15

For example:

REQUEST RESPONSE

(Without the CH child element)

<CONFIGURATION MODEL_ID=

"Sample" MODEL_⇒VERSION=""><CHOICES⇒

RET="true"/>

</CONFIGURATION>

<CONFIGURATION MODEL_ID="Sample" MODEL_⇒

VERSION="1-0-0" COMPILE_VERSION="20001128-⇒

143111-404">

<CHOICES>

<CH DP="HardDrivesSelection" DM="4.3 GB⇒

BATRA-33" BY="D" ST="34"/>

<CH DP="ChassisSelection" DM="Mini Tower"⇒

BY="C" ST="18"/>

</CHOICES>

</CONFIGURATION>

(With the CH element PrintersSelection)

<CONFIGURATION MODEL_ID=

"Sample" MODEL_⇒VERSION=""><CHOICES⇒

RET="true">

<CH DP="PrintersSelection" DM="HP⇒

Laserjet" BY="U" QTY="1"/>

</CHOICES>

</CONFIGURATION>

<CONFIGURATION MODEL_ID="Sample" MODEL_⇒

VERSION="1-0-0" COMPILE_VERSION="20001030-⇒

102408-606">

<CHOICES>

<CH DP="PrintersSelection" DM="HP Laserjet"⇒

BY="U" ST="66"/>

</CHOICES>

</CONFIGURATION>

(With the CH element BaseSelection)

<CONFIGURATION MODEL_ID=

"Sample" MODEL_⇒VERSION=""><CHOICES⇒

RET="true">

<CH DP="BaseSelection" BY="U" QTY=⇒

"1" DM="Prima Base Celeron⇒

433Mhz MiniTower"/>

</CHOICES>

</CONFIGURATION>

<CONFIGURATION MODEL_ID="Sample" MODEL_⇒

VERSION="1-0-0" COMPILE_VERSION="20001030-⇒

102408-606">

<CHOICES>

<CH DP="BaseSelection" DM="Prima Base⇒

Celeron 433Mhz MiniTower" BY="U" ST="66"/>

<CH DP="HardDrivesSelection" DM="4.3 GB⇒

BATRA-33" BY="D" ST="34"/>

<CH DP="MonitorsSelection" DM="15 Inch⇒

Monitor" BY="D" ST="34"/>

<CH DP="ChassisSelection" DM="Mini Tower"⇒

BY="C" ST="18"/>

<CH DP="PowerCordSelection" DM="10 Foot PC⇒

Power Cord" BY="C" ST="18"/>

<CH DP="AdditionalSoftwareSelection" DM=⇒

"ISP Direct Connect" BY="C" ST="18"/>

<CH DP="TravelSelection" DM="No" BY="C" ST=⇒

"18"/>

<CH DP="ModemSelection" DM="Internal 56K"⇒

BY="D" ST="34"/>

</CHOICES>

</CONFIGURATION>

Note. The Configurator is stateless. Each request must include all user choices.

198 PeopleSoft Proprietary and Confidential

CHAPTER 16

Retrieving Configuration Information

This chapter discusses how to retrieve configuration information using COP XML:

• Elements and attributes

• Total Price

• Domain member data

• Multi-select decision points

• Global explanations

• Numeric values

Understanding Configuration Information
The Configurator XML interface lets you retrieve information about a configuration, including:

• Total price, using the TOTAL_PRICE attribute of the CONFIGURATION element.

• Choices—using the CHOICES element, the child elements CH and EVCH, and attributes of both elements.

• Domain member data, including:

- Every domain member for every decision point in the configuration, using the CONTROL_DATA element.

- Every domain member for specific decision points in the configuration, using the CONTROL_DATA
element, the DP element, and the NM attribute of the DP element.

- Constraint violation explanations for decision points, using the EXPLANATIONS
attribute of the CONTROL_DATA element.

- Values for domain member attributes, using the ATTR element and its NM attribute.

- Delta prices for domain members, using the DPR attribute of the DP element.

- Class name for domain members, using the CL attribute of the DP element.

- State and quantity of domain members, using the DP element.

• Whether a decision point is multi-select, using the MS element.

• Global explanations—that is, constraint violation explanations for the configuration as a whole—using
the VIOLATIONS element and its EXPLANATIONS attribute.

• Numeric values, using the NUMERIC_VALUES element, the child element NUM,
and the NM attribute of the NUM element.

The Configurator XML interface also lets you:

PeopleSoft Proprietary and Confidential 199

Retrieving Configuration Information Chapter 16

• Sort domain members that are returned by the COP by state using the DMSORT_
ST attribute of the CONTROL_DATA element.

• Filter domain members that are returned by the COP by elimination level using the FILTER_EL,
FILTER_LO, and FILTER_HI attributes of the CONTROL_DATA element.

Note. The Configurator is stateless, so the examples in this chapter include user choices (picks)
to create configurations that provide appropriate control data.

See Also

Chapter 15, “Updating a Configuration,” page 195

Elements and Attributes
The COP XML request may include these elements and attributes to retrieve information about a configuration.

CONFIGURATION MODEL_ID LOCALE MODEL_VERSION COMPILE_VERSION TOTAL_PRICE

CHOICES RET

CH DP DM BY QTY

EVCH DP VAL

CONTROL_DATA DMSORT_ST FILTER_EL_LO FILTER_EL_HI

FILTER_EL EXPLNATIONS

ATTR NM

DP NM CL DPR

ATTR NM

NUMERIC_VALUES

EXTERN_VARS

EV NM TY

VAL

VIOLATIONS EXPLANATIONS

The COP XML response may include these elements and attributes to return information
about a configuration. Attributes are in small italic print.

CONFIGURATION MODEL_ID LOCALE MODEL_VERSION COMPILE_VERSION TOTAL_PRICE

DECISION_POINTS

DP NM

CHOICES

CH DP DM BY ST SL EL QTY TY

EVCH DP VAL TY

CONTROL_DATA

DP NM CL MS

DM NM CL ST QTY SL EL PR

ATTR NM

EXPLANATION

NUMERIC_VALUES

NUM NM VL

EXTERN_VARS

EV NM

200 PeopleSoft Proprietary and Confidential

Chapter 16 Retrieving Configuration Information

VIOLATIONS EXPLANATIONS

EXPLANATION

Total Price
The CONFIGURATION element and its TOTAL_PRICE attribute let you retrieve the configuration’s total price.

Including in the REQUEST the CONFIGURATION element with an empty string value for its TOTAL_PRICE
attribute causes the COP to return in the RESPONSE the value for the TOTAL_PRICE attribute.

For example:

REQUEST

<CONFIGURATION MODEL_ID="Sample" TOTAL_PRICE=""/>

RESPONSE
<CONFIGURATION MODEL_ID="Sample" MODEL_VERSION="1-0-0" COMPILE_VERSION="20000426-⇒

113936-314" TOTAL_PRICE="964.95"/>

Choices
The CHOICES element, its children elements CH and EVCH, and attributes of these
elements let you retrieve choices for the configuration.

Including the CHOICES element in the request updates the configuration by setting choices.
Setting the RET attribute of the CHOICES element to “true” in the request causes the
COP to return all choices in the configuration.

More accurately, including in the REQUEST the CHOICES element with the RET attribute
set to “true” causes the COP to return in the RESPONSE:

• Every non-null attribute-value pair for every choice (pick) of a domain member in the configuration.
The attributes of a domain member (DM) that may be returned are:

- DP

- DM

- BY

- QTY

- ST

- SL

- EL

• Every non-null, attribute-value pair for every external variable in the configuration.

The attributes of an external variable that may be returned are:

• DP

PeopleSoft Proprietary and Confidential 201

Retrieving Configuration Information Chapter 16

• VAL

• TY

For example:

REQUEST

<CONFIGURATION MODEL_ID="Sample" MODEL_VERSION="">

<CHOICES RET="true">

<CH DP="BaseSelection" BY="U" QTY="1" DM="Prima Base Celeron 433Mhz MiniTower"/>

<CH DP="MonitorsSelection" BY="U" QTY="1" DM="15 Inch Monitor"/>

</CHOICES>

</CONFIGURATION>

RESPONSE
CONFIGURATION MODEL_ID="Sample" MODEL_VERSION="1-0-0" COMPILE_VERSION="20001030-⇒

102408-606">

<CHOICES>

<CH DP="BaseSelection" DM="Prima Base Celeron 433Mhz MiniTower" BY="U" ST="66"/>

<CH DP="HardDrivesSelection" DM="4.3 GB BATRA-33" BY="D" ST="34"/>

<CH DP="MonitorsSelection" DM="15 Inch Monitor" BY="U" ST="66"/>

<CH DP="ChassisSelection" DM="Mini Tower" BY="C" ST="18"/>

<CH DP="PowerCordSelection" DM="10 Foot PC Power Cord" BY="C" ST="18"/>

<CH DP="AdditionalSoftwareSelection" DM="ISP Direct Connect" BY="C" ST="18"/>

<CH DP="TravelSelection" DM="No" BY="C" ST="18"/>

<CH DP="ModemSelection" DM="Internal 56K" BY="D" ST="34"/>

</CHOICES>

</CONFIGURATION>

See Also

Chapter 12, “Using the COP Java API,” page 161

Chapter 13, “Understanding the Configurator XML Interface,” Updating a Configuration Interactively, page 186

Domain Member Data
The CONTROL_DATA element, DP element, ATTR element, and attributes of these elements
let you retrieve information on domain members.

Every Decision Point
The CONTROL_DATA element lets you retrieve every domain member for every decision
point (selection point) in the configuration by decision point.

202 PeopleSoft Proprietary and Confidential

Chapter 16 Retrieving Configuration Information

Including in the REQUEST Causes the COP to return in the RESPONSE

The CONTROL_DATA element without an
attribute.

Every DM element for every DP element in the configuration. Each
DP element represents a decision point in the configuration. Each
DM element is a child element of a DP element, and represents a
domain member of that decision point.

For example:

REQUEST

<CONFIGURATION MODEL_ID="Sample" MODEL_VERSION="">

<CONTROL_DATA/>

</CONFIGURATION>

RESPONSE
<CONFIGURATION MODEL_ID="Sample" MODEL_VERSION="1-0-0" COMPILE_VERSION="20001030-⇒

102408-606">

<CONTROL_DATA>

<DP NM="BaseSelection">

<DM NM="Prima Base Celeron 433Mhz MiniTower">

</DM>

<DM NM="Suprema Base Pentium III 750 Mhz MidTower">

</DM>

<DM NM="Magna Base Pentium III Xeon 100 Mhz FullTower">

</DM>

<DM NM="Advanta Base TM3120 400 Mhz Mobile PC">

</DM>

<DM NM="Extra Base Tm5400 700 Mhz Mobile PC">

</DM>

</DP>

<DP NM="HardDrivesSelection">

<DM NM="4.3 GB BATRA-33">

</DM>

<DM NM="8.4 GB BATA-33">

</DM>

<DM NM="13.6 GB BATA-33">

</DM>

<DM NM="Quantum 27.3 GB SCSI">

</DM>

</DP>

<DP NM="DVDorCDRomSelection">

<DM NM="Pioneer DVD-A115">

</DM>

<DM NM="Sharp DVD-A100U">

</DM>

<DM NM="48X Max Variable CD-ROM">

</DM>

</DP>

<DP NM="....">

<DM NM="....">

PeopleSoft Proprietary and Confidential 203

Retrieving Configuration Information Chapter 16

</DM>

</DP>

....

</CONTROL_DATA>

</CONFIGURATION>

Selected Decision Points
The CONTROL_DATA element, its child element DP, and the NM attribute of the DP element let you
retrieve every domain member for a selected decision point in the configuration.

A Single Decision Point

Including in the REQUEST the CONTROL_DATA element, and its child element DP with a
valid value (decision point name) for the NM attribute of DP causes the COP to return in the
RESPONSE every DM element for the named DP element. Each DM is a child element of the
named DP, and represents a domain member of that decision point.

For example:

REQUEST

<CONFIGURATION MODEL_ID="Sample" MODEL_VERSION="">

<CONTROL_DATA>

<DP NM="HardDrivesSelection"/>

</CONTROL_DATA>

</CONFIGURATION>

RESPONSE
<CONFIGURATION MODEL_ID="Sample" MODEL_VERSION="1-0-0" COMPILE_VERSION="20001030-⇒

102408-606">

<CONTROL_DATA>

<DP NM="HardDrivesSelection">

<DM NM="4.3 GB BATRA-33">

</DM>

<DM NM="8.4 GB BATA-33">

</DM>

<DM NM="13.6 GB BATA-33">

</DM>

<DM NM="Quantum 27.3 GB SCSI">

</DM>

</DP>

</CONTROL_DATA>

</CONFIGURATION>

Multiple Decision Points

The request may include more than one DP element, each with a valid value (decision
point name) for its NM attribute:

REQUEST

<CONFIGURATION MODEL_ID="Sample" MODEL_VERSION="">

<CONTROL_DATA>

204 PeopleSoft Proprietary and Confidential

Chapter 16 Retrieving Configuration Information

<DP NM="ScannersSelection"/>

<DP NM="PrintersSelection"/>

</CONTROL_DATA>

</CONFIGURATION>

RESPONSE
<CONFIGURATION MODEL_ID="Sample" MODEL_VERSION="1-0-0" COMPILE_VERSION="20001030-⇒

102408-606">

<CONTROL_DATA>

<DP NM="PrintersSelection">

<DM NM="HP Laserjet">

</DM>

<DM NM="Epson 1500">

</DM>

</DP>

<DP NM="ScannersSelection">

<DM NM="NEC Technologies PediScan">

</DM>

<DM NM="Fujitsu ScanPartner 15C">

</DM>

<DM NM="Canon DR5080C">

</DM>

</DP>

</CONTROL_DATA>

</CONFIGURATION>

No Decision Points

Including in the REQUEST the CONTROL_DATA element and its child element DP with an empty string value
for the NM attribute of DP, causes the COP to return in the RESPONSE no DM elements and no DP elements.

For example:

REQUEST

<CONFIGURATION MODEL_ID="Sample" MODEL_VERSION="">

<CONTROL_DATA>

<DP NM=""/>

</CONTROL_DATA>

</CONFIGURATION>

RESPONSE
<CONFIGURATION MODEL_ID="Sample" MODEL_VERSION="1-0-0" COMPILE_VERSION="20001030-⇒

102408-606">

<CONTROL_DATA>

</CONTROL_DATA>

</CONFIGURATION>

Sorting Domain Members
The DMSORT_ST attribute of the CONTROL_DATA element lets you sort domain
members returned in the response, by state.

PeopleSoft Proprietary and Confidential 205

Retrieving Configuration Information Chapter 16

Including in the REQUEST the CONTROL_DATA element with its DMSORT_ST attribute set to “true”
causes the COP to return in the RESPONSE domain members (DM’s) sorted by state (ST).

For example:

REQUEST (with a request to sort domain members by state)

<CONFIGURATION MODEL_ID="Sample" MODEL_VERSION="">

<CHOICES>

<CH DP="BaseSelection" BY="U" QTY="1" DM="Prima Base Celeron 433Mhz MiniTower"/>

<CH DP="PowerCordSelection" BY="U" QTY="1" DM="Power Brick Cord"/>

</CHOICES>

<CONTROL_DATA DMSORT_ST="true">

<DP NM="BaseSelection"/>

</CONTROL_DATA>

</CONFIGURATION>

RESPONSE (with domain members sorted by state)
<CONFIGURATION MODEL_ID="Sample" MODEL_VERSION="1-0-1" COMPILE_VERSION="20001215-⇒

134209-537">

<CONTROL_DATA>

<DP NM="BaseSelection">

<DM NM="Prima Base Celeron 433Mhz MiniTower" ST="83">

</DM>

<DM NM="Advanta Base TM3120 400 Mhz Mobile PC">

</DM>

<DM NM="Extra Base Tm5400 700 Mhz Mobile PC">

</DM>

<DM NM="Suprema Base Pentium III 750 Mhz MidTower" ST="17">

</DM>

<DM NM="Magna Base Pentium III Xeon 100 Mhz FullTower" ST="17">

</DM>

</DP>

</CONTROL_DATA>

</CONFIGURATION>

Example using the same request and response but without sorting:

REQUEST (with no request to sort domain members by state)
<CONFIGURATION MODEL_ID="Sample" MODEL_VERSION="">

<CHOICES>

<CH DP="BaseSelection" BY="U" QTY="1" DM="Prima Base Celeron 433Mhz MiniTower"/>

<CH DP="PowerCordSelection" BY="U" QTY="1" DM="Power Brick Cord"/>

</CHOICES>

<CONTROL_DATA>

<DP NM="BaseSelection"/>

</CONTROL_DATA>

</CONFIGURATION>

RESPONSE 2 (with domain members not sorted by state)
<CONFIGURATION MODEL_ID="Sample" MODEL_VERSION="1-0-1" COMPILE_VERSION="20001215-⇒

134209-537">

<CONTROL_DATA>

206 PeopleSoft Proprietary and Confidential

Chapter 16 Retrieving Configuration Information

<DP NM="BaseSelection">

<DM NM="Prima Base Celeron 433Mhz MiniTower" ST="83">

</DM>

<DM NM="Suprema Base Pentium III 750 Mhz MidTower" ST="17">

</DM>

<DM NM="Magna Base Pentium III Xeon 100 Mhz FullTower" ST="17">

</DM>

<DM NM="Advanta Base TM3120 400 Mhz Mobile PC">

</DM>

<DM NM="Extra Base Tm5400 700 Mhz Mobile PC">

</DM>

</DP>

</CONTROL_DATA>

</CONFIGURATION>

Note. A custom sort may be installed using COP Extensions.

Filtering Domain Members
The FILTER_EL, FILTER_LO, and FILTER_HI attributes of the CONTROL_DATA element let
you filter domain members returned in the response, by elimination level.

Including in the REQUEST Causes the COP to return in the RESPONSE

The DECISION_POINTS element, with its ALL attribute
set to “false."

• The CONTROL_DATA element with:

• The DP element.

- Its FILTER_EL attribute set to “true”.

- Its FILTER_EL_LO and FILTER_EL_HI attributes set
to valid elimination levels.

DM elements whose elimination levels are between
FILTER_EL_LO and FILTER_EL_HI, inclusive.

For example:

This REQUEST

<CONFIGURATION MODEL_ID="Sample" MODEL_VERSION="">

<CONTROL_DATA FILTER_EL="true" FILTER_EL_LO="2" FILTER_EL_LO="5">

<DP NM="HardDrivesSelection"/>

</CONTROL_DATA>

</CONFIGURATION>

returns a RESPONSE that includes only those DM elements for the HardDrives DP element
that have elimination levels between 2 and 5, inclusive.

Explanations
The EXPLANATIONS attribute of the CONTROL_DATA element lets you retrieve constraint
violation explanations for decisions points in the configuration.

See Chapter 16, “Retrieving Configuration Information,” Global Explanations, page 219.

PeopleSoft Proprietary and Confidential 207

Retrieving Configuration Information Chapter 16

Constraint Violations

Including in the REQUEST the CONTROL_DATA element with its EXPLANATIONS attribute
set to “true” causes the COP to return in the RESPONSE all EXPLANATION elements for every
decision point (DP element) returned. Each EXPLANATION element is a child element of a DP
element, and its content is a textual explanation of the constraint violation.

To return an explanation, the request must include incompatible picks—a constraint
violation—for a specified decision point.

For example:

REQUEST (with two incompatible picks)

<CONFIGURATION MODEL_ID="Sample" MODEL_VERSION="">

<CHOICES>

<CH DP="BaseSelection" BY="U" QTY="1" DM="Prima Base Celeron 433Mhz MiniTower"/>

<CH DP="PowerCordSelection" BY="U" QTY="1" DM="Power Brick Cord"/>

</CHOICES>

<CONTROL_DATA EXPLANATIONS="true">

<DP NM="BaseSelection"/>

</CONTROL_DATA>

</CONFIGURATION>

RESPONSE (with a constraint violation explanation for the specified decision point)
<CONFIGURATION MODEL_ID="Sample" MODEL_VERSION="1-0-1" COMPILE_VERSION="20001215-⇒

134209-537">

<CONTROL_DATA EXPLANATIONS="true">

<DP NM="BaseSelection">

<DM NM="Prima Base Celeron 433Mhz MiniTower" ST="83">

</DM>

<DM NM="Suprema Base Pentium III 750 Mhz MidTower" ST="17">

</DM>

<DM NM="Magna Base Pentium III Xeon 100 Mhz FullTower" ST="17">

</DM>

<DM NM="Advanta Base TM3120 400 Mhz Mobile PC">

</DM>

<DM NM="Extra Base Tm5400 700 Mhz Mobile PC">

</DM>

<EXPLANATION>The C433Mini base requires the 10Foot power cord and Mini chassis.⇒

</EXPLANATION>

</DP>

</CONTROL_DATA>

</CONFIGURATION>

An example of a constraint violation explanation for a specified decision point:

REQUEST (with two incompatible picks)
<CONFIGURATION MODEL_ID="Sample" MODEL_VERSION="">

<CHOICES>

<CH DP="BaseSelection" BY="U" QTY="1" DM="Prima Base Celeron 433Mhz MiniTower"/>

<CH DP="ChassisSelection" BY="U" QTY="1" DM="Full Tower"/>

</CHOICES>

<CONTROL_DATA EXPLANATIONS="true">

208 PeopleSoft Proprietary and Confidential

Chapter 16 Retrieving Configuration Information

<DP NM="BaseSelection"/>

</CONTROL_DATA>

</CONFIGURATION>

RESPONSE (with a constraint violation explanation for the specified decision point)
<CONFIGURATION MODEL_ID="Sample" MODEL_VERSION="1-0-1" COMPILE_VERSION="20001215-⇒

134209-537">

<CONTROL_DATA EXPLANATIONS="true">

<DP NM="BaseSelection">

<DM NM="Prima Base Celeron 433Mhz MiniTower" ST="83">

</DM>

<DM NM="Suprema Base Pentium III 750 Mhz MidTower" ST="17">

</DM>

<DM NM="Magna Base Pentium III Xeon 100 Mhz FullTower">

</DM>

<DM NM="Advanta Base TM3120 400 Mhz Mobile PC" ST="17">

</DM>

<DM NM="Extra Base Tm5400 700 Mhz Mobile PC" ST="17">

</DM>

<EXPLANATION>The C433Mini base requires the 10Foot power cord and Mini chassis.⇒

</EXPLANATION>

</DP>

</CONTROL_DATA>

</CONFIGURATION>

No Constraint Violation

If the request includes compatible picks, there are no constraint violations, and asking
for explanations will not return any explanations.

For example:

REQUEST (with two compatible picks)

<CONFIGURATION MODEL_ID="Sample" MODEL_VERSION="">

<CHOICES>

<CH DP="BaseSelection" BY="U" QTY="1" DM="Prima Base Celeron 433Mhz MiniTower"/>

<CH DP="PowerCordSelection" BY="U" QTY="1" DM="10 Foot PC Power Cord"/>

</CHOICES>

<CONTROL_DATA EXPLANATIONS="true">

<DP NM="BaseSelection"/>

</CONTROL_DATA>

</CONFIGURATION>

RESPONSE (without any explanations for the specified decision point)
<CONFIGURATION MODEL_ID="Sample" MODEL_VERSION="1-0-1" COMPILE_VERSION="20001215-⇒

134209-537">

<CONTROL_DATA EXPLANATIONS="true">

<DP NM="BaseSelection">

<DM NM="Prima Base Celeron 433Mhz MiniTower" ST="66">

</DM>

<DM NM="Suprema Base Pentium III 750 Mhz MidTower" ST="17">

</DM>

PeopleSoft Proprietary and Confidential 209

Retrieving Configuration Information Chapter 16

<DM NM="Magna Base Pentium III Xeon 100 Mhz FullTower" ST="17">

</DM>

<DM NM="Advanta Base TM3120 400 Mhz Mobile PC" ST="17">

</DM>

<DM NM="Extra Base Tm5400 700 Mhz Mobile PC" ST="17">

</DM>

</DP>

</CONTROL_DATA>

</CONFIGURATION>

An example of a request for explanations failing to return any explanations for the specified
decision point, because the picks are compatible:

REQUEST (with two compatible picks)
<CONFIGURATION MODEL_ID="Sample" MODEL_VERSION="">

<CHOICES>

<CH DP="BaseSelection" BY="U" QTY="1" DM="Prima Base Celeron 433Mhz MiniTower"/>

<CH DP="ChassisSelection" BY="U" QTY="1" DM="Mini Tower"/>

</CHOICES>

<CONTROL_DATA EXPLANATIONS="true">

<DP NM="BaseSelection"/>

</CONTROL_DATA>

</CONFIGURATION>

RESPONSE (without any explanations for the specified decision point)
<CONFIGURATION MODEL_ID="Sample" MODEL_VERSION="1-0-1" COMPILE_VERSION="20001215-⇒

134209-537">

<CONTROL_DATA EXPLANATIONS="true">

<DP NM="BaseSelection">

<DM NM="Prima Base Celeron 433Mhz MiniTower" ST="66">

</DM>

<DM NM="Suprema Base Pentium III 750 Mhz MidTower" ST="17">

</DM>

<DM NM="Magna Base Pentium III Xeon 100 Mhz FullTower" ST="17">

</DM>

<DM NM="Advanta Base TM3120 400 Mhz Mobile PC" ST="17">

</DM>

<DM NM="Extra Base Tm5400 700 Mhz Mobile PC" ST="17">

</DM>

</DP>

</CONTROL_DATA>

</CONFIGURATION>

Attributes
The ATTR element and its NM attribute let you retrieve the values for a selected attribute for either:

• Every domain member returned in the response.

• Selected domain members returned in the response.

Either way, the response includes the values for the selected attribute for all of the
appropriate domain members, by domain member.

210 PeopleSoft Proprietary and Confidential

Chapter 16 Retrieving Configuration Information

Every Domain Member

The ATTR element and its NM attribute let you retrieve the values for a named attribute for every
domain member of every decision point returned in the response.

Including in the REQUEST the CONTROL_DATA element and its child element ATTR with a valid value
for the NM attribute of the ATTR element causes the COP to return in the RESPONSE:

• The named ATTR element for every DM element of every DP element returned in the response.

• Attribute-value content for each ATTR element of every returned DM element that has the named attribute.

In the following example, all domain members of both decision points—Scanners, and
Printers—have the ShortName attribute:

REQUEST (requesting values for the ShortName attribute for every domain member of two decision points)

<CONFIGURATION MODEL_ID="Sample" MODEL_VERSION="">

<CONTROL_DATA>

<ATTR NM="ShortName"/>

<DP NM="ScannersSelection"/>

<DP NM="PrintersSelection"/>

</CONTROL_DATA>

</CONFIGURATION>

RESPONSE (with ShortName attribute-value content for every domain member of both decision points)
<CONFIGURATION MODEL_ID="Sample" MODEL_VERSION="1-0-0" COMPILE_VERSION="20001030-⇒

102408-606">

<CONTROL_DATA>

<DP NM="PrintersSelection">

<DM NM="HP Laserjet">

<ATTR NM="SHORTNAME">HPLJ</ATTR>

</DM>

<DM NM="Epson 1500">

<ATTR NM="SHORTNAME">Ep1500</ATTR>

</DM>

</DP>

<DP NM="ScannersSelection">

<DM NM="NEC Technologies PediScan">

<ATTR NM="SHORTNAME">NECPeSc</ATTR>

</DM>

<DM NM="Fujitsu ScanPartner 15C">

<ATTR NM="SHORTNAME">FScP15C</ATTR>

</DM>

<DM NM="Canon DR5080C">

<ATTR NM="SHORTNAME">CDR5080C</ATTR>

</DM>

</DP>

</CONTROL_DATA>

</CONFIGURATION>

In the following example, all domain members of the Base decision point have only the SystemType attribute,
whereas all domain members of the Monitors decision point have only the Watts attribute:

REQUEST (requesting values for two attributes for every domain member of two decision points)

PeopleSoft Proprietary and Confidential 211

Retrieving Configuration Information Chapter 16

<CONFIGURATION MODEL_ID="Sample" MODEL_VERSION="">

<CHOICES>

<CH DP="BaseSelection" BY="U" QTY="1" DM="Prima Base Celeron 433Mhz MiniTower"/>

</CHOICES>

<CONTROL_DATA>

<ATTR NM="Watts"/>

<ATTR NM="SystemType"/>

<DP NM="BaseSelection"/>

<DP NM="MonitorsSelection"/>

</CONTROL_DATA>

</CONFIGURATION>

RESPONSE (with SystemType attribute-value content for every domain member of the Base decision point,
and Watts attribute-value content for every domain member of the Monitors decision point)

<CONFIGURATION MODEL_ID="Sample" MODEL_VERSION="1-0-1" COMPILE_VERSION="20001215-⇒

134209-537">

<CONTROL_DATA>

<DP NM="BaseSelection">

<DM NM="Prima Base Celeron 433Mhz MiniTower" ST="66">

<ATTR NM="WATTS"></ATTR>

<ATTR NM="SYSTEMTYPE">LowEnd</ATTR>

</DM>

<DM NM="Suprema Base Pentium III 750 Mhz MidTower">

<ATTR NM="WATTS"></ATTR>

<ATTR NM="SYSTEMTYPE">MidLevel</ATTR>

</DM>

<DM NM="Magna Base Pentium III Xeon 100 Mhz FullTower">

<ATTR NM="WATTS"></ATTR>

<ATTR NM="SYSTEMTYPE">HighEnd</ATTR>

</DM>

<DM NM="Advanta Base TM3120 400 Mhz Mobile PC">

<ATTR NM="WATTS"></ATTR>

<ATTR NM="SYSTEMTYPE">Laptop</ATTR>

</DM>

<DM NM="Extra Base Tm5400 700 Mhz Mobile PC">

<ATTR NM="WATTS"></ATTR>

<ATTR NM="SYSTEMTYPE">Laptop</ATTR>

</DM>

</DP>

<DP NM="MonitorsSelection">

<DM NM="15 Inch Monitor" ST="34">

<ATTR NM="WATTS">1.0</ATTR>

<ATTR NM="SYSTEMTYPE"></ATTR>

</DM>

<DM NM="17 Inch Monitor">

<ATTR NM="WATTS">3.0</ATTR>

<ATTR NM="SYSTEMTYPE"></ATTR>

</DM>

<DM NM="21 Inch Monitor">

<ATTR NM="WATTS">5.0</ATTR>

212 PeopleSoft Proprietary and Confidential

Chapter 16 Retrieving Configuration Information

<ATTR NM="SYSTEMTYPE"></ATTR>

</DM>

</DP>

</CONTROL_DATA>

</CONFIGURATION>

Selected Domain Members

The ATTR element and its NM attribute let you retrieve the values for a named attribute for every
domain member of selected decision points returned in the response.

Including in the REQUEST Causes the COP to return in the RESPONSE

The DECISION_POINTS element, with its ALL attribute
set to “false."

• The CONTROL_DATA element.

• The DP element.

• The ATTR element (as a child of the DP element) with a
valid value for its NM attribute.

• The named ATTR element for every DM element of the
selected DP element.

• Attribute-value content for each ATTR element of every
returned DM element that has the named attribute.

REQUEST (requesting values for the ShortName attribute for every domain member
of the Printers decision point)

<CONFIGURATION MODEL_ID="Sample" MODEL_VERSION="">

<CONTROL_DATA>

<DP NM="ScannersSelection"/>

<DP NM="PrintersSelection">

<ATTR NM="ShortName"/>

</DP>

<DP NM="SpeakersSelection"/>

</CONTROL_DATA>

</CONFIGURATION>

RESPONSE (with ShortName attribute-value content for every domain member of the Printers decision point)
<CONFIGURATION MODEL_ID="Sample" MODEL_VERSION="1-0-0" COMPILE_VERSION="20001030-⇒

102408-606">

<CONTROL_DATA>

<DP NM="SpeakersSelection">

<DM NM="Altec Lansing 2000">

</DM>

<DM NM="Cambridge SoundWorks SP">

</DM>

</DP>

<DP NM="PrintersSelection">

<DM NM="HP Laserjet">

<ATTR NM="SHORTNAME">HPLJ</ATTR>

</DM>

<DM NM="Epson 1500">

<ATTR NM="SHORTNAME">Ep1500</ATTR>

</DM>

</DP>

PeopleSoft Proprietary and Confidential 213

Retrieving Configuration Information Chapter 16

<DP NM="ScannersSelection">

<DM NM="NEC Technologies PediScan">

</DM>

<DM NM="Fujitsu ScanPartner 15C">

</DM>

<DM NM="Canon DR5080C">

</DM>

</DP>

</CONTROL_DATA>

</CONFIGURATION>

Combining Requests

The request may include both types of requests for the values for selected domain member attributes.

The following example requests the values for these domain member attributes:

• Watts—for every domain member of every decision point.

• ShortName—for every domain member of the Printers, and Speakers decision points.

• Description—for every domain member of the Printers decision point.

REQUEST

<CONFIGURATION MODEL_ID="Sample" MODEL_VERSION="">

<CONTROL_DATA>

<ATTR NM="Watts"/>

<DP NM="ScannersSelection"/>

<DP NM="PrintersSelection">

<ATTR NM="Description"/>

<ATTR NM="ShortName"/>

</DP>

<DP NM="SpeakersSelection">

<ATTR NM="ShortName"/>

</DP>

</CONTROL_DATA>

</CONFIGURATION>

RESPONSE
<CONFIGURATION MODEL_ID="Sample" MODEL_VERSION="1-0-0" COMPILE_VERSION="20001030-⇒

102408-606">

<CONTROL_DATA>

<DP NM="SpeakersSelection">

<DM NM="Altec Lansing 2000">

<ATTR NM="SHORTNAME">AL2000</ATTR>

<ATTR NM="WATTS">1.0</ATTR>

</DM>

<DM NM="Cambridge SoundWorks SP">

<ATTR NM="SHORTNAME">CSWSP</ATTR>

<ATTR NM="WATTS">1.0</ATTR>

</DM>

</DP>

<DP NM="PrintersSelection">

214 PeopleSoft Proprietary and Confidential

Chapter 16 Retrieving Configuration Information

<DM NM="HP Laserjet">

<ATTR NM="DESCRIPTION">HP Laserjet</ATTR>

<ATTR NM="SHORTNAME">HPLJ</ATTR>

<ATTR NM="WATTS">3.0</ATTR>

</DM>

<DM NM="Epson 1500">

<ATTR NM="DESCRIPTION">Epson 1500</ATTR>

<ATTR NM="SHORTNAME">Ep1500</ATTR>

<ATTR NM="WATTS">3.0</ATTR>

</DM>

</DP>

<DP NM="ScannersSelection">

<DM NM="NEC Technologies PediScan">

<ATTR NM="WATTS">4.0</ATTR>

</DM>

<DM NM="Fujitsu ScanPartner 15C">

<ATTR NM="WATTS">4.0</ATTR>

</DM>

<DM NM="Canon DR5080C">

<ATTR NM="WATTS">4.0</ATTR>

</DM>

</DP>

</CONTROL_DATA>

</CONFIGURATION>

Delta Price
The DPR attribute of the DP element lets you retrieve the delta prices for domain
members of a selected decision point.

Including in the REQUEST Causes the COP to return in the RESPONSE

The DECISION_POINTS element, with its ALL attribute
set to “false."

• The CONTROL_DATA element.

• The child element DP with:

- A valid value (decision point name) for its NM
attribute.

- Its DPR attribute set to “true”.

The delta price for each DM element of the named DP
element, included as the value for the PR attribute of each
DM element.

For example:

REQUEST (requesting delta pricing)

<CONFIGURATION MODEL_ID="Sample" MODEL_VERSION="">

<CONTROL_DATA>

<DP NM="ScannersSelection" DPR="true"/>

</CONTROL_DATA>

</CONFIGURATION>

PeopleSoft Proprietary and Confidential 215

Retrieving Configuration Information Chapter 16

RESPONSE (with delta pricing as the value for each PR)
<CONFIGURATION MODEL_ID="Sample" MODEL_VERSION="1-0-1" COMPILE_VERSION="20001215-⇒

134209-537">

<CONTROL_DATA>

<DP NM="ScannersSelection" DPR="true">

<DM NM="NEC Technologies PediScan" PR="-25.0">

</DM>

<DM NM="Fujitsu ScanPartner 15C" PR="0.0">

</DM>

<DM NM="Canon DR5080C" PR="35.0">

</DM>

</DP>

</CONTROL_DATA>

</CONFIGURATION>

Class
The CL attribute of the DP element lets you retrieve the class name for domain
members of a selected decision point.

Including in the REQUEST Causes the COP to return in the RESPONSE

The DECISION_POINTS element, with its ALL attribute
set to “false."

• The CONTROL_DATA element.

• The child element DP with:

- A valid value (decision point name) for its NM
attribute.

- An empty string value for its CL attribute.

The class name for each DM element of the named DP
element, included as the value for the CL attribute of each
DM element.

For example:

REQUEST

<CONFIGURATION MODEL_ID="Sample" MODEL_VERSION="">

, <CONTROL_DATA>

<DP NM="ScannersSelection" CL=""/>

</CONTROL_DATA>

</CONFIGURATION>

RESPONSE
<CONFIGURATION MODEL_ID="Sample" MODEL_VERSION="1-0-1" COMPILE_VERSION="20001215-⇒

134209-537">

<CONTROL_DATA>

<DP NM="ScannersSelection">

<DM NM="NEC Technologies PediScan" CL="Scanners">

</DM>

<DM NM="Fujitsu ScanPartner 15C" CL="Scanners">

</DM>

<DM NM="Canon DR5080C" CL="Scanners">

216 PeopleSoft Proprietary and Confidential

Chapter 16 Retrieving Configuration Information

</DM>

</DP>

</CONTROL_DATA>

</CONFIGURATION>

State and Quantity
The DP element without any special attributes lets you retrieve the state and quantity
of domain members of a selected decision point.

Including in the REQUEST Causes the COP to return in the RESPONSE

The CONTROL_DATA element.

• The CONTROL_DATA element.

• The child element DP with a valid value (decision point
name) for its NM attribute.

Non-null values for the state (ST) and quantity (QTY)
attributes of all domain members (DM elements) of the
named decision point (DP elements).

Note. The request should not include the ST and QTY attributes for the named DP elements.

For example:

REQUEST (without any special DP attributes)

<CONFIGURATION MODEL_ID="Sample" MODEL_VERSION="">

<CHOICES RET="false">

<CH DP="BaseSelection" BY="U" QTY="1" DM="Prima Base Celeron 433Mhz MiniTower"/>

</CHOICES>

<CONTROL_DATA>

<DP NM="BaseSelection"/>

</CONTROL_DATA>

</CONFIGURATION>

RESPONSE (with a non-null value for ST)
<CONFIGURATION MODEL_ID="Sample" MODEL_VERSION="1-0-0" COMPILE_VERSION="20001030-⇒

102408-606">

<CONTROL_DATA>

<DP NM="BaseSelection">

<DM NM="Prima Base Celeron 433Mhz MiniTower" ST="66">

</DM>

<DM NM="Suprema Base Pentium III 750 Mhz MidTower">

</DM>

<DM NM="Magna Base Pentium III Xeon 100 Mhz FullTower">

</DM>

<DM NM="Advanta Base TM3120 400 Mhz Mobile PC">

</DM>

<DM NM="Extra Base Tm5400 700 Mhz Mobile PC">

</DM>

</DP>

</CONTROL_DATA>

</CONFIGURATION>

PeopleSoft Proprietary and Confidential 217

Retrieving Configuration Information Chapter 16

Multi-Select Decision Points
Specifics of the request/response are:

Including in the REQUEST Causes the COP to return in the RESPONSE

The DECISION_POINTS element, with its ALL attribute
set to “false."

• The CONTROL_DATA element.

• The DP element with:

- A valid value (decision point name) for its NM
attribute.

- Its MS attribute set to “true”.

Whether or not the named decision point is multi-select.
If the decision point (DP element) is multi-select, its
MS attribute is set to “true”; if the decision point is
single-select, it has no MS attribute.

For example:

REQUEST (asking whether two decision points are multi-select)

<CONFIGURATION MODEL_ID="Sample" MODEL_VERSION="">

<CONTROL_DATA>

<DP NM="ScannersSelection" MS="true"/>

<DP NM="DeviceControllersSelection" MS="true"/>

</CONTROL_DATA>

</CONFIGURATION>

RESPONSE (answering that only the DeviceControllers decision point is multi-select)
<CONFIGURATION MODEL_ID="Sample" MODEL_VERSION="1-0-1" COMPILE_VERSION="20001215-⇒

134209-537">

<CONTROL_DATA>

<DP NM="DeviceControllersSelection" MS="true">

<DM NM="IDE Cable">

</DM>

<DM NM="SCSI Cable">

</DM>

<DM NM="ATAPI">

</DM>

</DP>

<DP NM="ScannersSelection">

<DM NM="NEC Technologies PediScan">

</DM>

<DM NM="Fujitsu ScanPartner 15C">

</DM>

<DM NM="Canon DR5080C">

</DM>

</DP>

</CONTROL_DATA>

</CONFIGURATION>

218 PeopleSoft Proprietary and Confidential

Chapter 16 Retrieving Configuration Information

Global Explanations
The EXPLANATIONS attribute of the VIOLATIONS element lets you retrieve constraint
violation explanations for the configuration as a whole.

See Also

Chapter 16, “Retrieving Configuration Information,” Explanations, page 207

Global Only
Including in the REQUEST the VIOLATIONS element with its EXPLANATIONS attribute set
to “true” causes the COP to return in the RESPONSE all EXPLANATION elements for the
configuration. Each EXPLANATION element is a child element of a VIOLATIONS element,
and its content is a textual explanation of the constraint violation.

To return an explanation, the request must include incompatible picks—a constraint
violation—for the configuration.

For example:

REQUEST (with two incompatible picks)

<CONFIGURATION MODEL_ID="Sample" MODEL_VERSION="">

<CHOICES>

<CH DP="BaseSelection" BY="U" QTY="1" DM="Prima Base Celeron 433Mhz MiniTower"/>

<CH DP="PowerCordSelection" BY="U" QTY="1" DM="Power Brick Cord"/>

</CHOICES>

<CONTROL_DATA>

<DP NM="BaseSelection"/>

</CONTROL_DATA>

<VIOLATIONS EXPLANATIONS="true"/>

</CONFIGURATION>

RESPONSE (with a global explanation of the constraint violation)
<CONFIGURATION MODEL_ID="Sample" MODEL_VERSION="1-0-1" COMPILE_VERSION="20001215-⇒

134209-537">

<CONTROL_DATA>

<DP NM="BaseSelection">

<DM NM="Prima Base Celeron 433Mhz MiniTower" ST="83">

</DM>

<DM NM="Suprema Base Pentium III 750 Mhz MidTower" ST="17">

</DM>

<DM NM="Magna Base Pentium III Xeon 100 Mhz FullTower" ST="17">

</DM>

<DM NM="Advanta Base TM3120 400 Mhz Mobile PC">

</DM>

<DM NM="Extra Base Tm5400 700 Mhz Mobile PC">

</DM>

</DP>

</CONTROL_DATA>

<VIOLATIONS>

PeopleSoft Proprietary and Confidential 219

Retrieving Configuration Information Chapter 16

<EXPLANATION>The C433Mini base requires the 10Foot power cord and Mini chassis.⇒

</EXPLANATION>

</VIOLATIONS>

</CONFIGURATION>

Global and Decision Point
The request and response can include explanations for both decision points and the configuration.

See Chapter 16, “Retrieving Configuration Information,” Explanations, page 207.

For example: REQUEST (with two incompatible picks)

<CONFIGURATION MODEL_ID="Sample" MODEL_VERSION="">

<CHOICES>

<CH DP="BaseSelection" BY="U" QTY="1" DM="Prima Base Celeron 433Mhz MiniTower"/>

<CH DP="PowerCordSelection" BY="U" QTY="1" DM="Power Brick Cord"/>

</CHOICES>

<CONTROL_DATA EXPLANATIONS="true">

<DP NM="BaseSelection"/>

</CONTROL_DATA>

<VIOLATIONS EXPLANATIONS="true"/>

</CONFIGURATION>

RESPONSE (with an explanation for the specified decision point and a global explanation)
<CONFIGURATION MODEL_ID="Sample" MODEL_VERSION="1-0-1" COMPILE_VERSION="20001215-⇒

134209-537">

<CONTROL_DATA EXPLANATIONS="true">

<DP NM="BaseSelection">

<DM NM="Prima Base Celeron 433Mhz MiniTower" ST="83">

</DM>

<DM NM="Suprema Base Pentium III 750 Mhz MidTower" ST="17">

</DM>

<DM NM="Magna Base Pentium III Xeon 100 Mhz FullTower" ST="17">

</DM>

<DM NM="Advanta Base TM3120 400 Mhz Mobile PC">

</DM>

<DM NM="Extra Base Tm5400 700 Mhz Mobile PC">

</DM>

<EXPLANATION>The C433Mini base requires the 10Foot power cord and Mini chassis.⇒

</EXPLANATION>

</DP>

</CONTROL_DATA>

<VIOLATIONS>

<EXPLANATION>The C433Mini base requires the 10Foot power cord and Mini chassis.⇒

</EXPLANATION>

</VIOLATIONS>

</CONFIGURATION>

220 PeopleSoft Proprietary and Confidential

Chapter 16 Retrieving Configuration Information

Numeric Values
The NUMERIC_VALUES element, the child element NUM, and the NM attribute of the NUM
element let you retrieve numeric values for the configuration.

All Values
Including in the REQUEST the NUMERIC_VALUES element causes the COP to return in the
RESPONSE all NUM elements for the configuration. Each NUM element is a child element of
NUMERIC_VALUES that has attribute-value pairs for its NM and VL attributes.

For example:

REQUEST

<CONFIGURATION MODEL_ID="Sample" MODEL_VERSION="">

<CHOICES>

<CH DP="BaseSelection" BY="U" QTY="1" DM="Prima Base Celeron 433Mhz MiniTower"/>

</CHOICES>

<NUMERIC_VALUES/>

</CONFIGURATION>

RESPONSE
<CONFIGURATION MODEL_ID="Sample" MODEL_VERSION="1-0-1" COMPILE_VERSION="20001215-⇒

134209-537">

<NUMERIC_VALUES>

<NUM NM="[_Application].WattsSummation" VL="3.0" >

</NUM>

<NUM NM="[_Application].StorageCapacitySummation" VL="4300" >

</NUM>

<NUM NM="[_Application].PCISlotsResourceBalancing-Provider" VL="3" >

</NUM>

<NUM NM="[_Application].PCISlotsResourceBalancing-Consumer" VL="1" >

</NUM>

<NUM NM="[_Application].AGPSlotsREsourceBalancing-Provider" VL="0" >

</NUM>

<NUM NM="[_Application].AGPSlotsREsourceBalancing-Consumer" VL="0" >

</NUM>

<NUM NM="[_Application].ISASlotsResourceBalancing-Provider" VL="4" >

</NUM>

<NUM NM="[_Application].ISASlotsResourceBalancing-Consumer" VL="0" >

</NUM>

</NUMERIC_VALUES>

</CONFIGURATION>

Selected Values
Including in the REQUEST the NUMERIC_VALUES element, and the child element NUM with a valid
value for its NM attribute causes the COP to return in the RESPONSE the NUMERIC_VALUES element,
and as a child element, the NUM element named in the request with a value for its VL attribute.

PeopleSoft Proprietary and Confidential 221

Retrieving Configuration Information Chapter 16

For example:

REQUEST

<CONFIGURATION MODEL_ID="Sample" MODEL_VERSION="">

<CHOICES>

<CH DP="BaseSelection" BY="U" QTY="1" DM="Prima Base Celeron 433Mhz MiniTower"/>

</CHOICES>

<NUMERIC_VALUES>

<NUM NM="[_Application].WattsSummation"/>

</NUMERIC_VALUES>

</CONFIGURATION>

RESPONSE
<CONFIGURATION MODEL_ID="Sample" MODEL_VERSION="1-0-1" COMPILE_VERSION="20001215-⇒

134209-537">

<NUMERIC_VALUES>

<NUM NM="[_Application].WattsSummation" VL="3.0" >

</NUM>

</NUMERIC_VALUES>

</CONFIGURATION>

Value (VL)
The value for the VL attribute for the named NUM element is the numeric value for the configuration. It is the
total value for the named NUM element for all picks in the configuration that have the element as an attribute.

For example:

REQUEST 1 (with one user pick)

<CONFIGURATION MODEL_ID="Sample" MODEL_VERSION="">

<CHOICES>

<CH DP="BaseSelection" BY="U" QTY="1" DM="Prima Base Celeron 433Mhz MiniTower"/>

</CHOICES>

<CONTROL_DATA>

<ATTR NM="Watts"/>

<DP NM="BaseSelection"/>

<DP NM="MonitorsSelection"/>

<DP NM="HardDrivesSelection"/>

</CONTROL_DATA>

<NUMERIC_VALUES>

<NUM NM="[_Application].WattsSummation"/>

</NUMERIC_VALUES>

</CONFIGURATION>

RESPONSE 1 (with the one user pick and two computer picks)
<CONFIGURATION MODEL_ID="Sample" MODEL_VERSION="1-0-1" COMPILE_VERSION="20001215-⇒

134209-537">

<CONTROL_DATA>

<DP NM="BaseSelection">

<DM NM="Prima Base Celeron 433Mhz MiniTower" ST="66" >

<ATTR NM="WATTS"></ATTR>

222 PeopleSoft Proprietary and Confidential

Chapter 16 Retrieving Configuration Information

</DM>

<DM NM="Suprema Base Pentium III 750 Mhz MidTower" >

<ATTR NM="WATTS"></ATTR>

</DM>

<DM NM="Magna Base Pentium III Xeon 100 Mhz FullTower" >

<ATTR NM="WATTS"></ATTR>

</DM>

<DM NM="Advanta Base TM3120 400 Mhz Mobile PC" >

<ATTR NM="WATTS"></ATTR>

</DM>

<DM NM="Extra Base Tm5400 700 Mhz Mobile PC" >

<ATTR NM="WATTS"></ATTR>

</DM>

</DP>

<DP NM="HardDrivesSelection">

<DM NM="4.3 GB BATRA-33" ST="34" >

<ATTR NM="WATTS">2.0</ATTR>

</DM>

<DM NM="8.4 GB BATA-33" >

<ATTR NM="WATTS">2.0</ATTR>

</DM>

<DM NM="13.6 GB BATA-33" >

<ATTR NM="WATTS">2.0</ATTR>

</DM>

<DM NM="Quantum 27.3 GB SCSI" >

<ATTR NM="WATTS">2.0</ATTR>

</DM>

</DP>

<DP NM="MonitorsSelection">

<DM NM="15 Inch Monitor" ST="34" >

<ATTR NM="WATTS">1.0</ATTR>

</DM>

<DM NM="17 Inch Monitor" >

<ATTR NM="WATTS">3.0</ATTR>

</DM>

<DM NM="21 Inch Monitor" >

<ATTR NM="WATTS">5.0</ATTR>

</DM>

</DP>

</CONTROL_DATA>

<NUMERIC_VALUES>

<NUM NM="[_Application].WattsSummation" VL="3.0" >

</NUM>

</NUMERIC_VALUES>

</CONFIGURATION>

The value for [_Application].WattsSummation is 3.0—the total watts for all picks in the configuration
that have WATTS as an attribute. The user pick Prima Base Celeron 433Mhz MiniTower does not
have WATTS as an attribute. Two computer picks required by the user pick have WATTS as an
attribute. The total value for the WATTS attribute for those picks is 3.0:

PeopleSoft Proprietary and Confidential 223

Retrieving Configuration Information Chapter 16

• 2.0 watts for the 4.3 GB BATRA-33 hard drive pick, plus

• 1.0 watts for the 15 Inch Monitor pick .

In the following example, there are two user picks and one computer pick. The total value (VL) for the
WATTS attribute for all picks in the configuration having the WATTS attribute is 7.0:

REQUEST 2 (with two user picks)
<CONFIGURATION MODEL_ID="Sample" MODEL_VERSION="">

<CHOICES>

<CH DP="BaseSelection" BY="U" QTY="1" DM="Prima Base Celeron 433Mhz MiniTower"/>

<CH DP="MonitorsSelection" BY="U" QTY="1" DM="21 Inch Monitor"/>

</CHOICES>

<CONTROL_DATA>

<ATTR NM="Watts"/>

<DP NM="BaseSelection"/>

<DP NM="MonitorsSelection"/>

<DP NM="HardDrivesSelection"/>

</CONTROL_DATA>

<NUMERIC_VALUES>

<NUM NM="[_Application].WattsSummation"/>

</NUMERIC_VALUES>

</CONFIGURATION>

RESPONSE 2 (with two user picks and one computer pick)
<CONFIGURATION MODEL_ID="Sample" MODEL_VERSION="1-0-1" COMPILE_VERSION="20001215-⇒

134209-537">

<CONTROL_DATA>

<DP NM="BaseSelection">

<DM NM="Prima Base Celeron 433Mhz MiniTower" ST="66" >

<ATTR NM="WATTS"></ATTR>

</DM>

<DM NM="Suprema Base Pentium III 750 Mhz MidTower" >

<ATTR NM="WATTS"></ATTR>

</DM>

<DM NM="Magna Base Pentium III Xeon 100 Mhz FullTower" >

<ATTR NM="WATTS"></ATTR>

</DM>

<DM NM="Advanta Base TM3120 400 Mhz Mobile PC" >

<ATTR NM="WATTS"></ATTR>

</DM>

<DM NM="Extra Base Tm5400 700 Mhz Mobile PC" >

<ATTR NM="WATTS"></ATTR>

</DM>

</DP>

<DP NM="HardDrivesSelection">

<DM NM="4.3 GB BATRA-33" ST="34" >

<ATTR NM="WATTS">2.0</ATTR>

</DM>

<DM NM="8.4 GB BATA-33" >

<ATTR NM="WATTS">2.0</ATTR>

</DM>

224 PeopleSoft Proprietary and Confidential

Chapter 16 Retrieving Configuration Information

<DM NM="13.6 GB BATA-33" >

<ATTR NM="WATTS">2.0</ATTR>

</DM>

<DM NM="Quantum 27.3 GB SCSI" >

<ATTR NM="WATTS">2.0</ATTR>

</DM>

</DP>

<DP NM="MonitorsSelection">

<DM NM="15 Inch Monitor" >

<ATTR NM="WATTS">1.0</ATTR>

</DM>

<DM NM="17 Inch Monitor" >

<ATTR NM="WATTS">3.0</ATTR>

</DM>

<DM NM="21 Inch Monitor" ST="66" >

<ATTR NM="WATTS">5.0</ATTR>

</DM>

</DP>

</CONTROL_DATA>

<NUMERIC_VALUES>

<NUM NM="[_Application].WattsSummation" VL="7.0" >

</NUM>

</NUMERIC_VALUES>

</CONFIGURATION>

PeopleSoft Proprietary and Confidential 225

Retrieving Configuration Information Chapter 16

226 PeopleSoft Proprietary and Confidential

CHAPTER 17

Retrieving Saved Configuration Information

This chapter describes how to retrieve configuration details using the XML request and provides sample snippets
of both the request and response for the different details that can be retrieved. This chapter has these sections:

• Elements and Attributes

• The CONFIGURATION element

• The CONFIG_DETAILS element

• The SECTION element

• Total Price

• Compound Violations

• Components

• Choices

• Choice Violations

• Component Violations

• Externs

• Numeric Values

• External Variables

• Configuration Attributes

• Hierarchical Component Structure

• Connections

• Completeness Information

• Summary, Configuration Information Elements and Attributes

Understanding Saved Configuration Information
The COPXML ConfigDetails feature lets you retrieve details about a saved configuration, including:

• Total price for the configuration.

• Delta information for changes between two versions of a configuration.

• Information regarding configuration validity and violations.

• Any existing conflicts in the configuration whether at the compound, component, or choice level.

• Completeness information.

PeopleSoft Proprietary and Confidential 227

Retrieving Saved Configuration Information Chapter 17

• Component data, when returned, can include:

- Name, type, ID, Total Price, SolveDate.

- Choices—All choices, those specified by name, or those filtered by an attribute value. Selection
point name, domain member name, state, and quantity (returned by default). Specified attribute
values for each selection, optionally mapped to a different attribute name.

- Externs—All or only those specified by name. Name and value(s). Values can be a collection of one or more.

- Numeric Values—All or only those specified by name. Name, value, and type.

- Config attributes—All or only those specified by name. Name and value.

• Hierarchical component structure for compounds.

Name, type, ID, Total Price, SolveDate.

• Connection data for compounds, when returned, includes:

- Name, type, and ID.

- Name, type, and ID of the connecting (from) component.

- Name, type, and ID of the connected (to) component.

Note. The ConfigDetails request is processed separately from and supersedes any other elements
included in the same request. Thus, if the CONFIG_DETAILS element is included in the request,
the only operation performed during that post to the servlet is the configuration details request.
Any other elements/attributes in the request will be ignored.

Elements and Attributes
The COPXML ConfigDetails request may include these elements and attributes to
retrieve details about a configuration.

CONFIGURATION configId solutionID validate

CONFIG_DETAILS

FLAG name value

SECTION nm

COMPONENTS

FLAG name value

COMPONENT_DEFINITION component

FLAG name value

VALUE

FLAG_SET name

VALUE

SELECTION_ATTRIBUTES

SELECTION_POINT name

ATTRIBUTE name mapto

STRUCTURE value

SUBSTRUCTURE type value

CONNECTIONS

FLAG name value

The COPXML ConfigDetails response may include these elements and attributes to
return details about a configuration.

228 PeopleSoft Proprietary and Confidential

Chapter 17 Retrieving Saved Configuration Information

CONFIG_DETAILS configId solutionId hasViolations isValid TOTAL_PRICE

VIOLATIONS

EXPLANATION

COMPOUND_CONFIGURATION name type

SECTION nm

COMPONENTS

CONFIGURABLE_COMPONENT name component id TOTAL_PRICE

CONFIGURATION

VIOLATIONS

EXPLANATION

COMPLETE STATUS

DP NM

CHOICES

CH DP DM ST QTY

ATTR NM

NUMERIC_VALUES

NUM NM VL TY

EXTERN_VARS

EV NM

VAL

CONFIG_ATTRIBUTES

ATTR NM TY

STRUCTURE

CONFIGURABLE_COMPONENT name component id solve TOTAL_PRICE

CONNECTED_COMPONENT

CONNECTION id name ref fromCompId fromCompName fromCompType to⇒

CompId toCompName toCompType

CONFIGURABLE_COMPONENT name id component

CONNECTIONS

CONNECTION id name ref fromCompId fromCompName fromCompType toCompId⇒

toCompName toCompType

The CONFIGURATION Element
The CONFIGURATION element must be included in the request. There can be only one
CONFIGURATION element per request. It has a child element CONFIG_DETAILS and
the attributes configId, solutionId and validate.

The CONFIG_DETAILS element is described in the next subsection. The attribute configId lets you
specify the id of the configuration that you want to retrieve details for.

The attribute solutionId defines the solutionId for the configuration.

The attribute validate lets you retrieve information about whether the configuration
is valid and if it has any violations.

Including in the REQUEST
<CONFIGURATION configId="1676995129" solutionId="Construction"
validate="true"> causes the ConfigDetails to return in the RESPONSE the configID, solutionId,
and the boolean values for whether the configuration is valid and whether it has violations.

PeopleSoft Proprietary and Confidential 229

Retrieving Saved Configuration Information Chapter 17

For example:

<CONFIGURATION configId="1676995129" solutionId="Construction" validate="true">
RESPONSE <CONFIG_DETAILS configId="1676995129" solutionId="Construction"
hasViolations="true" isValid="false">

REQUEST

<CONFIGURATION configId="1676995129" solutionId="Construction"

validate="true">

RESPONSE
<CONFIG_DETAILS configId="1676995129" solutionId="Construction"

hasViolations="true" isValid="false">

Information about the validity of the configuration and whether it has violations is not returned in the
response if the attribute validate is not included or if it is set it to “false” in the request.

For example:

REQUEST
<CONFIGURATION configId="1676995129" solutionId="Construction"

validate="false">

OR
<CONFIGURATION configId="1676995129" solutionId="Construction">

RESPONSE
<CONFIG_DETAILS configId="1676995129" solutionId="Construction">

The CONFIG_DETAILS Element
The CONFIG_DETAILS element is a child element of the CONFIGURATION element and
must be included in the request to return details of a saved configuration. There can be
only one CONFIG_DETAILS element for a request.

The CONFIG_DETAILS element lets you define one or more sections for the information to be
returned in the response using the SECTION child element. It also lets you define whether you
want total price (for component configurations and compounds) and compound conflicts (for
compounds) returned in the response using the FLAG child element.

Differences between the currently displayed configuration and another version include:

• Added, changed, or deleted choices.

• Added, changed, or deleted configuration attributes.

• Changed expression values.

• Additions, deletions, and relocation of components and connections in compound models.

230 PeopleSoft Proprietary and Confidential

Chapter 17 Retrieving Saved Configuration Information

The DELTA_INFO Element
The DELTA_INFO element is a child element of the CONFIG_DETAILS element and must be
included in the request to return delta details of a saved configuration.

Differences between the currently displayed configuration and another version include:

• Added, changed, or deleted choices.

• Added, changed, or deleted configuration attributes.

• Changed expression values.

• Additions, deletions, and relocation of components and connections in compound models.

By default, the delta information returned is between the most recently saved version of the configuration
and the last version of the configuration whose order status was set to submitted. Optionally, the
DELTA_INFO element lets you specify a range of dates to retrieve deltas for.

Components
Including the DELTA_INFO element in a request for CONFIG_DETAILS of a component
configuration will result in a response with the following structure:

CONFIG_DETAILS configId solutionId hasViolations isValid TOTAL_PRICE

SECTION nm ".

DELTA_INFO startDate endDate

COMPONENT id name type modDate

CONFIG_DELTA

MODEL_DELTA

PREVIOUS modelName modelVersion compileVersion

CURRENT modelName modelVersion compileVersion

CHOICE_ADDS

CH DP DM ST QTY

EVCH DP

VAL

CHOICE_DELETES

CH DP DM ST QTY

EVCH DP

VAL

CHOICE_CHANGES

DELTA_CHOICE DP

PREVIOUS

CH DP DM ST QTY

OR

EVCH DP

VAL

CURRENT

CH DP DM ST QTY

OR

EVCH DP

VAL

CFG_ATTR_ADDS

PeopleSoft Proprietary and Confidential 231

Retrieving Saved Configuration Information Chapter 17

ATTR nm val

CFG_ATTR_DELETES

ATTR nm val

CFG_ATTR_CHANGES

DELTA_ATTR nm PREVIOUS CURRENT

EXPR_ADDS

EXPR nm type val

EXPR_DELETES

EXPR nm type val

EXPR_CHANGES

DELTA_EXPR nm PREVIOUS CURRENT

Compounds
Including the DELTA_INFO element in a request for CONFIG_DETAILS of a compound
configuration will result in a response with the following structure:

CONFIG_DETAILS configId solutionId hasViolations isValid TOTAL_PRICE

VIOLATIONS

EXPLANATION

COMPOUND_CONFIGURATION name type

SECTION nm

DELTA_INFO startDate endDate

COMPONENT_ADDS

COMPONENT id name type modDate

COMPONENT_CHANGES

COMPONENT id name type modDate

CONFIG_DELTA

MODEL_DELTA

PREVIOUS modelName modelVersion compileVersion

CURRENT modelName modelVersion compileVersion

CHOICE_ADDS

CH DP DM ST QTY

EVCH DP

VAL

CHOICE_DELETES

CH DP DM ST QTY

EVCH DP

VAL

CHOICE_CHANGES

DELTA_CHOICE DP

PREVIOUS

CH DP DM ST QTY

OR

EVCH DP

VAL

CURRENT

CH DP DM ST QTY

OR

EVCH DP

232 PeopleSoft Proprietary and Confidential

Chapter 17 Retrieving Saved Configuration Information

VAL

CFG_ATTR_ADDS

ATTR nm val

CFG_ATTR_DELETES

ATTR nm val

CFG_ATTR_CHANGES

DELTA_ATTR nm PREVIOUS CURRENT

EXPR_ADDS

EXPR nm type val

EXPR_DELETES

EXPR nm type val

EXPR_CHANGES

DELTA_EXPR nm PREVIOUS CURRENT

COMPONENT_DELETES

COMPONENT id name type modDate

CONNECTION_ADDS

CONN id name type modDate

CONNECTION_MOVES

CONN id name type modDate

CONN_DELTA

PREVIOUS fromCompId toCompId

CURRENT fromCompId toCompId

CONNECTION_DELETES

CONN id name type modDate

The SECTION Element
The SECTION element is a child element of the CONFIG_DETAILS element. There may
be one or more SECTION elements for a given request.

Each SECTION element can be used to define the different components and their details, connections
and their details (for compounds) and the hierarchical component structure (for compounds) to be
returned in the response by using the COMPONENTS, CONNECTIONS and STRUCTURE child
elements respectively. There can be only one each of the COMPONENTS, CONNECTIONS and
STRUCTURE child elements in each SECTION element and they are optional. The detailed descriptions
of the child elements are discussed in further subsections of this section.

The attribute nm of the SECTION element lets you define a title for the section that can be used
by the application receiving the response in any manner appropriate for the application. The
nm attribute is optional and the value for the nm attribute does not have to be unique across the
request, that is, one or more sections may define the same string for nm.

For example:

REQUEST

<SECTION nm="PackageDetails">

RESPONSE
<SECTION nm="PackageDetails">

PeopleSoft Proprietary and Confidential 233

Retrieving Saved Configuration Information Chapter 17

Total Price
The FLAG child element of the CONFIG_DETAILS element lets you retrieve the configuration’s total price.

Including in the REQUEST FLAG type= "detailsReturned"" value="totalPrice" causes
the ConfigDetails to return in the RESPONSE the value for the TOTAL_PRICE attribute for the whole
configuration as well as the total price for each component in the respective components’s section.

For example:

REQUEST

<FLAG type="detailsReturned" value="totalPrice"/>

RESPONSE
<CONFIG_DETAILS configId="1676995129" solutionId="OutputUtil"

TOTAL_PRICE="211200.00">

<COMPONENTS>

<CONFIGURABLE_COMPONENT name="Building-1" component= "Building"id="1676995126"⇒

TOTAL_PRICE="2120.00" solveDate="20010625">

Compound Violations
The FLAG child element of the CONFIG_DETAILS element lets you retrieve a
compound configuration’s violations.

Including in the REQUEST
FLAG type="detailsReturned" value="compoundConflicts" causes the ConfigDetails
to return in the RESPONSE the compound violation explanations.

For example:

REQUEST

<FLAG type="detailsReturned" value="compoundConflicts"/>

RESPONSE
<VIOLATIONS>

<EXPLANATION>Component Building has an invalid configuration.</

EXPLANATION>

</VIOLATIONS>

Components
The COMPONENTS child element of the SECTION element and its FLAG and COMPONENT_DEFINITION
child elements let you retrieve components and their details. There can be only one COMPONENTS element
per SECTION element. The FLAG element under COMPONENTS lets you define the component type filter
and the COMPONENT_DEFINITION element lets you define what details to return for a component type.
There may be zero or more FLAG elements, each defining a different component type filter.

234 PeopleSoft Proprietary and Confidential

Chapter 17 Retrieving Saved Configuration Information

Case 1

Including in the REQUEST both the FLAG and COMPONENT_DEFINITION elements for one
or more component types and every type defined in FLAG that has a matching type defined in
COMPONENT_DEFINITION causes ConfigDetails to return in the RESPONSE all components
of the requested type(s) and the requested details for those components.

For example:

REQUEST

<SECTION nm="PackageDetails">

<COMPONENTS>

<FLAG type="componentFilterType" value="Building"/>

<FLAG type="componentFilterType" value="Floor"/>

<COMPONENT_DEFINITION component="Building">

<FLAG type="detailsReturned" value="selections"/>

<FLAG type="detailsReturned" value="externs"/>

<FLAG type="detailsReturned" value="expressions"/>

<FLAG type="detailsReturned" value="configAttributes"/>

<FLAG type="detailsReturned" value="componentConflicts"/>

<FLAG type="detailsReturned" value="selectionConflicts"/>

</COMPONENT_DEFINITION>

<COMPONENT_DEFINITION component="Floor">

<FLAG type="detailsReturned" value="selections"/>

<FLAG type="detailsReturned" value="externs"/>

</COMPONENT_DEFINITION>

RESPONSE
<SECTION nm="PackageDetails">

<COMPONENTS>

<CONFIGURABLE_COMPONENT name="Building-1" component="Building" id=⇒

"1676995126" TOTAL_PRICE="2120.00" solveDate="20010625">

<CONFIGURATION>

<CHOICES>

<<---Details--->>

<VIOLATIONS>

<<---Details--->>

</VIOLATIONS>

</CHOICES>

<NUMERIC_VALUES>

<<---Details--->>

</NUMERIC_VALUES>

<EXTERN_VARS>

<<---Details--->>

</EXTERN_VARS>

<VIOLATIONS>

<<---Details--->>

</VIOLATIONS>

<CONFIG_ATTRIBUTES>

<<---Details--->>

</CONFIG_ATTRIBUTES>

PeopleSoft Proprietary and Confidential 235

Retrieving Saved Configuration Information Chapter 17

</CONFIGURATION>

</CONFIGURABLE_COMPONENT>

<CONFIGURABLE_COMPONENT name="Floor-1" component="Floor" id="1676995128"⇒

TOTAL_PRICE="1900.00" solveDate="20010625">

<CONFIGURATION>

<CHOICES>

<<---Details--->>

</CHOICES>

<EXTERN_VARS>

<<---Details--->>

</EXTERN_VARS>

</CONFIGURATION>

</CONFIGURABLE_COMPONENT>

</COMPONENTS>

Case 2

Including in the REQUEST the FLAG elements for one or more component types and
COMPONENT_DEFINITION elements for some, but not all, component types defined in the FLAG element
causes ConfigDetails to return in the RESPONSE all components of the requested type(s) that have a matching
type defined in a COMPONENT_DEFINITION element and the requested details for those components.

For example:

REQUEST

<SECTION nm="PackageDetails">

<COMPONENTS>

<FLAG type="componentFilterType" value="Building"/>

<FLAG type="componentFilterType" value="Floor"/>

<COMPONENT_DEFINITION component="Floor">

<FLAG type="detailsReturned" value="selections"/>

<FLAG type="detailsReturned" value="externs"/>

</COMPONENT_DEFINITION>

RESPONSE
<SECTION nm="PackageDetails">

<COMPONENTS>

<CONFIGURABLE_COMPONENT name="Floor-1" component="Floor" id="1676995128"⇒

TOTAL_PRICE="1900.00" solveDate="20010625">

<CONFIGURATION>

<CHOICES>

<<---Details--->>

</CHOICES>

<EXTERN_VARS>

<<---Details--->>

</EXTERN_VARS>

</CONFIGURATION>

</CONFIGURABLE_COMPONENT>

</COMPONENTS>

Note that components for type Building were not returned as there was no corresponding
COMPONENT_DEFINITION element supplied in the request.

236 PeopleSoft Proprietary and Confidential

Chapter 17 Retrieving Saved Configuration Information

Case 3

Including in the REQUEST both the FLAG and COMPONENT_DEFINITION elements for one or more
component types causes ConfigDetails to return in the RESPONSE all components of the requested type(s)
that have a matching type defined in the COMPONENT_DEFINITION element and the requested details
for those components. For those components with no matching type in COMPONENT_DEFINITION,
the default definition is used to determine what details to return in the response. Every type defined in
FLAG does not have a matching type defined in COMPONENT_DEFINITION). However, it defines a
COMPONENT_DEFINITON element without specifying a component type (the default definition).

For example:

REQUEST

<SECTION nm="PackageDetails">

<COMPONENTS>

<FLAG type="componentFilterType" value="Building"/>

<FLAG type="componentFilterType" value="Floor"/>

<COMPONENT_DEFINITION component="Building">

<FLAG type="detailsReturned" value="expressions"/>

</COMPONENT_DEFINITION>

<COMPONENT_DEFINITION> (or <COMPONENT_DEFINITION component="">

<FLAG type="detailsReturned" value="selections"/>

<FLAG type="detailsReturned" value="externs"/>

<FLAG type="detailsReturned" value="configAttributes"/>

</COMPONENT_DEFINITION>

RESPONSE
<SECTION nm="PackageDetails">

<COMPONENTS>

<CONFIGURABLE_COMPONENT name="Building-1" component="Building" id=⇒

"1676995126" TOTAL_PRICE="2120.00" solveDate="20010625">

<CONFIGURATION>

<NUMERIC_VALUES>

<<---Details--->>

</NUMERIC_VALUES>

</CONFIGURATION>

</CONFIGURABLE_COMPONENT>

<CONFIGURABLE_COMPONENT name="Floor-1" component="Floor" id="1676995128"⇒

TOTAL_PRICE="1900.00" solveDate="20010625">

<CONFIGURATION>

<CHOICES>

<<---Details--->>

</CHOICES>

<EXTERN_VARS>

<<---Details--->>

</EXTERN_VARS>

<CONFIG_ATTRIBUTES>

<<---Details--->>

</CONFIG_ATTRIBUTES>

</CONFIGURATION>

</CONFIGURABLE_COMPONENT>

PeopleSoft Proprietary and Confidential 237

Retrieving Saved Configuration Information Chapter 17

</COMPONENTS>

Case 4

Including in the REQUEST only the COMPONENT_DEFINITION elements for one or more component
types, but no FLAG elements, causes ConfigDetails to return in the RESPONSE all components of
the compound, or the single component in the case of a component configuration. The corresponding
COMPONENT_DEFINITION element is used to return the details. If a COMPONENT_DEFINITION
does not exist for a component type, the default definition is used to return details. If a default definition
does not exist, only high-level details are returned for components of that type.

For example:

REQUEST

<SECTION nm="PackageDetails">

<COMPONENTS>

<COMPONENT_DEFINITION component="Building">

<FLAG type="detailsReturned" value="expressions"/>

</COMPONENT_DEFINITION>

<COMPONENT_DEFINITION> (or <COMPONENT_DEFINITION component="">

<FLAG type="detailsReturned" value="externs"/>

<FLAG type="detailsReturned" value="configAttributes"/>

</COMPONENT_DEFINITION>

<COMPONENT_DEFINITION component="Room">

<FLAG type="detailsReturned" value="externs"/>

</COMPONENT_DEFINITION>

RESPONSE
<SECTION nm="PackageDetails">

<COMPONENTS>

<CONFIGURABLE_COMPONENT name="Building-1" component="Building" id=⇒

"1676995126" TOTAL_PRICE="2120.00" solveDate="20010625">

<CONFIGURATION>

<NUMERIC_VALUES>

<<---Details--->>

</NUMERIC_VALUES>

</CONFIGURATION>

</CONFIGURABLE_COMPONENT>

<CONFIGURABLE_COMPONENT name="Floor-1" component="Floor" id="1676995128"⇒

TOTAL_PRICE="1900.00" solveDate="20010625">

<CONFIGURATION>

<EXTERN_VARS>

<<---Details--->>

</EXTERN_VARS>

<CONFIG_ATTRIBUTES>

<<---Details--->>

</CONFIG_ATTRIBUTES>

</CONFIGURATION>

</CONFIGURABLE_COMPONENT>

<CONFIGURABLE_COMPONENT name="Room-1" component="Room" id="1676995129"⇒

TOTAL_PRICE="130.00" solveDate="20010625">

238 PeopleSoft Proprietary and Confidential

Chapter 17 Retrieving Saved Configuration Information

<CONFIGURATION>

<EXTERN_VARS>

<<---Details--->>

</EXTERN_VARS>

</CONFIGURATION>

</CONFIGURABLE_COMPONENT>

</COMPONENTS>

Note that details for components of type Building and Room were returned based on the corresponding
COMPONENT_DEFINITION elements and that details for components of type Floor were
based on the default COMPONENT_DEFINITION element.

Case 5

Including in the REQUEST only the FLAG elements for one or more component types, but no
COMPONENT_DEFINITION elements, causes ConfigDetails to return in the RESPONSE only high-level
details for all components of the requested type(s) defined in the FLAG elements.

For example:

REQUEST

<SECTION nm="PackageDetails">

<COMPONENTS>

<FLAG type="componentFilterType" value="Building"/>

< FLAG type="componentFilterType" value="Floor"/>

RESPONSE
<SECTION nm="PackageDetails">

<COMPONENTS>

<CONFIGURABLE_COMPONENT name="Building-1" component="Building" id=⇒

"1676995126" TOTAL_PRICE="2120.00" solveDate="20010625">

</CONFIGURABLE_COMPONENT>

<CONFIGURABLE_COMPONENT name="Floor-1" component="Floor" id="1676995128"⇒

TOTAL_PRICE="1900.00" solveDate="20010625">

</CONFIGURABLE_COMPONENT>

</COMPONENTS>

Case 6

Including in the REQUEST neither the FLAG element nor the COMPONENT_DEFINITION element
causes ConfigDetails to return in the RESPONSE only high-level details for all components of the
compound or the single component in case of a component configuration.

For example:

REQUEST

<SECTION nm="PackageDetails">

<COMPONENTS>

RESPONSE
<SECTION nm="PackageDetails">

<COMPONENTS>

<CONFIGURABLE_COMPONENT name="Building-1" component="Building" id=⇒

PeopleSoft Proprietary and Confidential 239

Retrieving Saved Configuration Information Chapter 17

"1676995126" TOTAL_PRICE="2120.00" solveDate="20010625">

</CONFIGURABLE_COMPONENT>

<CONFIGURABLE_COMPONENT name="Floor-1" component="Floor" id="1676995128"⇒

TOTAL_PRICE="1900.00" solveDate="20010625">

</CONFIGURABLE_COMPONENT>

<CONFIGURABLE_COMPONENT name="Room-1" component="Room" id="1676995129" TOTAL_⇒

PRICE="1300.00" solveDate="20010625">

</CONFIGURABLE_COMPONENT>

</COMPONENTS>

Note. In the case of a single component configuration, the element FLAG is ignored. The details for the
single component are returned in the response as defined in the COMPONENT_DEFINITION.

In the case of a compound configuration, an extra child element of the CONFIG_DETAILS element
is included in the response indicating the name and type of the compound.

Choices
The FLAG and FLAG_SET child elements of the COMPONENT_DEFINITION element let you
retrieve choices and their details for a component. The SELECTION_ATTRIBUTES child element
of COMPONENT_DEFINITION lets you retrieve attributes for choices and also lets you map the
attribute name to a different name to be returned in the response.

Case 1

Including in the REQUEST only the FLAG element specifying choices to be returned, causes
ConfigDetails to return in the RESPONSE all choices for a component. Details returned are
decision point name, domain member name, state, and quantity.

For example:

REQUEST

<COMPONENT_DEFINITION component="Building">

<FLAG type="detailsReturned" value="selections"/>

- - -

</COMPONENT_DEFINITION

RESPONSE
<COMPONENTS>

<CONFIGURABLE_COMPONENT name="Building-1" component="Building" id="1676995126"⇒

TOTAL_PRICE="2120.00" solveDate="20010625">

<CONFIGURATION>

<CHOICES>

<CH DP="BuildingTypeSelection" DM="Apartment" ST="66" QTY="1.0">

</CH>

<CH DP="BuildingColorSelection" DM="Blue" ST="66" QTY="1.0">

</CH>

<CH DP="BuildingHeightSelection" DM="300" ST="66" QTY="1.0">

</CH>

</CHOICES>

- - -

240 PeopleSoft Proprietary and Confidential

Chapter 17 Retrieving Saved Configuration Information

</CONFIGURATION>

<CONFIGURABLE_COMPONENT>

<COMPONENTS>

Case 2

Including in the REQUEST the FLAG element specifying choices to be returned and the
SELECTION_ATTRIBUTES element specifying the attributes to be returned, causes ConfigDetails
to return in the RESPONSE all choices for a component. Details returned are decision point
name, domain member name, state, quantity, and the requested attribute names. Please note
the use of the mapTo attribute in the example below.

For example:

REQUEST

<COMPONENT_DEFINITION component="Building">

<FLAG type="detailsReturned" value="selections"/>

- - -

<SELECTION_ATTRIBUTES>

<SELECTION_POINT type="BuildingTypeSelection">

<ATTRIBUTE nm="listPrice" mapto=""/>

<ATTRIBUTE nm="description" mapto="desc"/>

</SELECTION_POINT>

<SELECTION_POINT type="BuildingColorSelection">

<ATTRIBUTE nm="sku"/>

</SELECTION_POINT>

<SELECTION_ATTRIBUTES>

</COMPONENT_DEFINITION

RESPONSE
<COMPONENTS>

<CONFIGURABLE_COMPONENT name="Building-1" component="Building" id="1676995126"⇒

TOTAL_PRICE="2120.00" solveDate="20010625">

<CONFIGURATION>

<CHOICES>

<CH DP="BuildingTypeSelection" DM="Apartment" ST="66" QTY="1.0">

<ATTR NM="listPrice">2000.0</ATTR>

<ATTR NM="desc">Apartment</ATTR>

</CH>

<CH DP="BuildingColorSelection" DM="Blue" ST="66" QTY="1.0">

<ATTR NM="sku">CB00255</ATTR>

</CH>

<CH DP="BuildingHeightSelection" DM="300" ST="66" QTY="1.0">

</CH>

</CHOICES>

</CONFIGURATION>

<CONFIGURABLE_COMPONENT>

<COMPONENTS>

PeopleSoft Proprietary and Confidential 241

Retrieving Saved Configuration Information Chapter 17

Note. To return the same attributes for all the choices, specify the SELECTION_POINT element
only once, specifying the attributes you want returned and without specifying the type attribute.
Specifying mapTo="" is equivalent to not specifying the mapTo attribute.

Case 3

Including in the REQUEST the FLAG element specifying choices to be returned and the FLAG element
specifying the type selectionFilterAttribute, causes ConfigDetails to return in the RESPONSE all choices for a
component that have the attribute(s) specified in the selectionFilterAttribute filter (the attribute(s) is not returned
in the response in this case). Details returned are decision point name, domain member name, state, and quantity.

The selectionFilterAttribute defines an attribute that must exist on the choice for the choice to be returned in the
response. Further, if it has a child element VALUE (this is optional), the value specified must match the value of
the attribute on that choice for that choice to be returned. If more than one selectionFilterAttribute is specified,
all of them must exist and satisfy the equality condition specified by VALUE for that choice to be returned.

For example:

REQUEST

<COMPONENT_DEFINITION component="Building">

<FLAG type="detailsReturned" value="selections"/>

<FLAG type="selectionFilterAttribute" value="listPrice">

<VALUE>2000.0</VALUE>

</FLAG>

</COMPONENT_DEFINITION

RESPONSE
<COMPONENTS>

<CONFIGURABLE_COMPONENT name="Building-1" component="Building" id="1676995126"⇒

TOTAL_PRICE="2120.00" solveDate="20010625">

<CONFIGURATION>

<CHOICES>

<CH DP="BuildingTypeSelection" DM="Apartment" ST="66" QTY="1.0">

</CH>

</CHOICES>

</CONFIGURATION>

<CONFIGURABLE_COMPONENT>

<COMPONENTS>

Case 4

Including in the REQUEST the FLAG element specifying choices to be returned, the FLAG element specifying
the type selectionFilterAttribute, and the SELECTION_ATTRIBUTES element specifying the attributes to be
returned causes ConfigDetails to return in the RESPONSE all choices for a component that have the attribute(s)
specified in the selectionFilterAttribute filter (the attribute(s) is returned in the response in this case).

Details returned are decision point name, domain member name, state, quantity and the requested attributes.

For example:

REQUEST

<FLAG type="detailsReturned" value="selections"/>

<FLAG type="selectionFilterAttribute" value="listPrice">

242 PeopleSoft Proprietary and Confidential

Chapter 17 Retrieving Saved Configuration Information

<VALUE>2000.0</VALUE>

</FLAG>

<SELECTION_ATTRIBUTES>

<SELECTION_POINT type="BuildingTypeSelection">

<ATTRIBUTE nm="listPrice" mapto=""/>

<ATTRIBUTE nm="description" mapto="desc"/>

</SELECTION_POINT>

<SELECTION_POINT type="BuildingColorSelection">

<ATTRIBUTE nm="sku"/>

</SELECTION_POINT>

<SELECTION_ATTRIBUTES>

</COMPONENT_DEFINITION

RESPONSE
<COMPONENTS>

<CONFIGURABLE_COMPONENT name="Building-1" component="Building" id="1676995126"⇒

TOTAL_PRICE="2120.00" solveDate="20010625">

<CONFIGURATION>

<CHOICES>

<CH DP="BuildingTypeSelection" DM="Apartment" ST="66" QTY="1.0">

<ATTR NM="listPrice">2000.0</ATTR>

<ATTR NM="desc">Apartment</ATTR>

</CH>

</CHOICES>

</CONFIGURATION>

<CONFIGURABLE_COMPONENT>

<COMPONENTS>

Note. To return the same attributes for all the choices, specify the SELECTION_POINT element only
once, specifying the attributes you want returned but not the type attribute.

Case 5

Including in the REQUEST the FLAG element specifying choices to be returned and the FLAG_SET element
specifying the specific choice(s) to be returned causes ConfigDetails to return in the RESPONSE the requested
choices for a component. Details returned are decision point name, domain member name, state, and quantity.

For example:

REQUEST

<COMPONENT_DEFINITION component="Building">

<FLAG type="detailsReturned" value="selections"/>

<FLAG_SET type="selectionFilterNames">

<VALUE>BuildingTypeSelection</VALUE>

<VALUE>BuildingColorSelection</VALUE>

</FLAG_SET>

</COMPONENT_DEFINITION

RESPONSE
V<COMPONENTS>

<CONFIGURABLE_COMPONENT name="Building-1" component="Building" id="1676995126"⇒

PeopleSoft Proprietary and Confidential 243

Retrieving Saved Configuration Information Chapter 17

TOTAL_PRICE="2120.00" solveDate="20010625">

<CONFIGURATION>

<CHOICES>

<CH DP="BuildingTypeSelection" DM="Apartment" ST="66" QTY="1.0">

</CH>

<CH DP="BuildingColorSelection" DM="Blue" ST="66" QTY="1.0">

</CH>

</CHOICES>

</CONFIGURATION>

<CONFIGURABLE_COMPONENT>

<COMPONENTS>

Case 6

Including in the REQUEST the FLAG element specifying choices to be returned, the FLAG_SET
element specifying the specific choice(s) to be returned, and the SELECTION_ATTRIBUTES
element specifying the attributes to be returned. causes ConfigDetails to return in the RESPONSE
the requested choices for a component. See Cases 2 and 5 above.

Details returned are decision point name, domain member name, state, quantity, and requested attributes.

For example:

REQUEST

<COMPONENT_DEFINITION component="Building">

<FLAG type="detailsReturned" value="selections"/>

<FLAG_SET type="selectionFilterNames">

<VALUE>BuildingTypeSelection</VALUE>

<VALUE>BuildingColorSelection</VALUE>

</FLAG_SET>

<SELECTION_ATTRIBUTES>

<SELECTION_POINT type="BuildingTypeSelection">

<ATTRIBUTE nm="listPrice" mapto="price"/>

<ATTRIBUTE nm="description" mapto="desc"/>

</SELECTION_POINT>

<SELECTION_POINT type="BuildingColorSelection">

<ATTRIBUTE nm="sku"/>

</SELECTION_POINT>

</SELECTION_ATTRIBUTES>

</COMPONENT_DEFINITION

RESPONSE
<COMPONENTS>

<CONFIGURABLE_COMPONENT name="Building-1" component="Building" id="1676995126"⇒

TOTAL_PRICE="2120.00" solveDate="20010625">

<CONFIGURATION>

<CHOICES>

<CH DP="BuildingTypeSelection" DM="Apartment" ST="66" QTY="1.0">

<ATTR NM="price">2000.0</ATTR>

<ATTR NM="desc">Apartment</ATTR>

</CH>

<CH DP="BuildingColorSelection" DM="Blue" ST="66" QTY="1.0">

244 PeopleSoft Proprietary and Confidential

Chapter 17 Retrieving Saved Configuration Information

<ATTR NM="sku">CB00255</ATTR>

</CH>

</CHOICES>

</CONFIGURATION>

<CONFIGURABLE_COMPONENT>

<COMPONENTS>

Case 7

Including in the REQUEST the FLAG element specifying choices to be returned, the FLAG_SET
element specifying the specific choice(s) to be returned, and the FLAG element specifying the type
selectionFilterAttribute causes ConfigDetails to return in the RESPONSE the requested choices for a
component that have the attribute(s) specified in the selectionFilterAttribute flag.

Details returned are decision point name, domain member name, state, and quantity.

For example:

REQUEST

<COMPONENT_DEFINITION component="Building">

<FLAG type="detailsReturned" value="selections"/>

<FLAG_SET type="selectionFilterNames">

<VALUE>BuildingTypeSelection</VALUE>

<VALUE>BuildingColorSelection</VALUE>

</FLAG_SET>

<FLAG type="selectionFilterAttribute" value="listPrice">

<VALUE>2000.0</VALUE>

</FLAG>

</COMPONENT_DEFINITION

RESPONSE
<COMPONENTS>

<CONFIGURABLE_COMPONENT name="Building-1" component="Building" id=⇒

"1676995126" TOTAL_PRICE="2120.00" solveDate="20010625">

<CONFIGURATION>

<CHOICES>

<CH DP="BuildingTypeSelection" DM="Apartment" ST="66" QTY="1.0">

</CH>

</CHOICES>

</CONFIGURATION>

<CONFIGURABLE_COMPONENT>

<COMPONENTS>

Case 8

Including in the REQUEST the FLAG element specifying choices to be returned, the FLAG_SET
element specifying the specific choice(s) to be returned, the FLAG element specifying the type
selectionFilterAttribute, and the SELECTION_ATTRIBUTES element specifying the attributes to be
returned causes ConfigDetails to return in the RESPONSE the requested choices for a component that have
the attribute(s) specified in the selectionFilterAttribute flag. Details returned are decision point name,
domain member name, state, quantity, and requested attributes. See cases 2 and 7 above.

For example:

PeopleSoft Proprietary and Confidential 245

Retrieving Saved Configuration Information Chapter 17

REQUEST

<COMPONENT_DEFINITION component="Building">

<FLAG type="detailsReturned" value="selections"/>

<FLAG type="selectionFilterAttribute" value="onOrder">

<VALUE>true</VALUE>

</FLAG>

<FLAG_SET type="selectionFilterNames">

<VALUE>BuildingTypeSelection</VALUE>

<VALUE>BuildingColorSelection</VALUE>

</FLAG_SET>

<SELECTION_ATTRIBUTES>

<SELECTION_POINT type="BuildingTypeSelection">

<ATTRIBUTE nm="listPrice" mapto="price"/>

<ATTRIBUTE nm="description" mapto="desc"/>

</SELECTION_POINT>

<SELECTION_POINT type="BuildingColorSelection">

<ATTRIBUTE nm="sku"/>

</SELECTION_POINT>

</SELECTION_ATTRIBUTES>

<COMPONENT_DEFINITION>

RESPONSE
<COMPONENTS>

<CONFIGURABLE_COMPONENT name="Building-1" component="Building" id="1676995126"⇒

TOTAL_PRICE="2120.00" solveDate="20010625">

<CONFIGURATION>

<CHOICES>

<CH DP="BuildingTypeSelection" DM="Apartment" ST="66" QTY="1.0">

<ATTR NM="price">2000.0</ATTR>

<ATTR NM="desc">Apartment</ATTR>

</CH>

<CH DP="BuildingColorSelection" DM="Blue" ST="66" QTY="1.0">

<ATTR NM="sku">CB00255</ATTR>

</CH>

</CHOICES>

</CONFIGURATION>

<CONFIGURABLE_COMPONENT>

<COMPONENTS>

Choice Violations
The Flag child element of the COMPONENT_DEFINITION element lets you retrieve component violations
for a choice. Note that choices have to be requested in order to return choice conflicts.

Including in the REQUEST a FLAG element under the COMPONENT_DEFINITION element for
a component type specifying choices to be returned, and another FLAG element specifying choice
violations to be returned, causes ConfigDetails to return in the RESPONSE the choice violations
for each of the choices returned for components of the specified type.

246 PeopleSoft Proprietary and Confidential

Chapter 17 Retrieving Saved Configuration Information

For example:

REQUEST

<COMPONENTS>

<FLAG type="componentFilterType" value="Building"/>

<COMPONENT_DEFINITION component="Building">

- - -

<FLAG type="detailsReturned" value="selections"/>

<FLAG type="detailsReturned" value="selectionConflicts"/>

- - -

RESPONSE
<COMPONENTS>

<CONFIGURABLE_COMPONENT name="Building-1" component="Building" id="1676995126"⇒

TOTAL_PRICE="2120.00" solveDate="20010625">

<CONFIGURATION>

<CHOICES>

<CH DP="BuildingTypeSelection" DM="Apartment" ST="66" QTY="1.0">

<VIOLATIONS>

<EXPLANATION>The country and building type are not compatible.

</EXPLANATION>

</VIOLATIONS>

</CH>

Component Violations
The Flag child element of the COMPONENT_DEFINITION element lets you retrieve
component violations for a component.

Including in the REQUEST the FLAG element under the COMPONENT_DEFINITION element for
a component type specifying component violations to be returned, causes ConfigDetails to return in
the RESPONSE the component violations for components of the specified type.

For example:

REQUEST

<COMPONENTS>

<FLAG type="componentFilterType" value="Building"/>

<COMPONENT_DEFINITION component="Building">

- - -

<FLAG type="detailsReturned" value="componentConflicts"/>

- - -

RESPONSE
<COMPONENTS>

<CONFIGURABLE_COMPONENT name="Building-1" component="Building" id="1676995126"⇒

TOTAL_PRICE="2120.00" solveDate="20010625">

<CONFIGURATION>

PeopleSoft Proprietary and Confidential 247

Retrieving Saved Configuration Information Chapter 17

<VIOLATIONS>

<EXPLANATION>The building height cannot exceed 500 feet.</

EXPLANATION>

</VIOLATIONS>

Externs
The FLAG and FLAG_SET child elements of the COMPONENT_DEFINITION element
let you retrieve extern values for a component.

Case 1

Including in the REQUEST a FLAG element under the COMPONENT_DEFINITION element
for a component type specifying externs to be returned, causes ConfigDetails to return in the
RESPONSE all externs for components of the specified type.

For example:

REQUEST

<COMPONENTS>

<FLAG type="componentFilterType" value="ZSer"/>

<COMPONENT_DEFINITION component="ZSer">

- - -

<FLAG type="detailsReturned" value="externs"/>

- - -

</COMPONENT_DEFINITION>

RESPONSE
<COMPONENTS>

<CONFIGURABLE_COMPONENT name="ZSeries05" component="ZSER"

id="1676995126" TOTAL_PRICE="42120.00" solveDate="20040625">

<CONFIGURATION>

- - -

<EXTERN_VARS>

<EV NM="# of doors" TY="INT">

<VAL>2</VAL>

</EV>

<EV NM="Delivery date" TY="DATE">

<VAL>20041231</VAL>

</EV>

<EV NM="PriceLimit" TY="DOUBLE">

<VAL>40000</VAL>

</EV>

<EV NM="Undercoating?" TY="BOOL">

<VAL>false</VAL>

</EV>

<EV NM="Wheel type" TY="STRING">

<VAL>ALLOY</VAL>

</EV>

248 PeopleSoft Proprietary and Confidential

Chapter 17 Retrieving Saved Configuration Information

</EXTERN_VARS>

- - -

</CONFIGURATION>

Case 2

Including in the REQUEST a FLAG element under the COMPONENT_DEFINITION element for
a component type specifying externs to be returned, and a FLAG_SET element under the same
COMPONENT_DEFINITION element defining the specific extern(s) to be returned, causes ConfigDetails
to return in the RESPONSE only the requested extern(s) for components of the specified type.

For example:

REQUEST

<COMPONENTS>

<FLAG type="componentFilterType" value="ZSER"/>

<COMPONENT_DEFINITION component="ZSER">

- - -

<FLAG type="detailsReturned" value="externs"/>

<FLAG_SET type="externFilterNames">

<VALUE># of doors</VALUE>

</FLAG_SET>

- - -

</COMPONENT_DEFINITION>

RESPONSE
<COMPONENTS>

<CONFIGURABLE_COMPONENT name="ZSeries05" component="ZSER" id="1676995126"⇒

TOTAL_PRICE="42120.00" solveDate="20040625">

<CONFIGURATION>

- - -

<EXTERN_VARS>

<EV NM="# of Doors" TY="2">

<VAL>2</VAL>

</EV>

</EXTERN_VARS>

- - -

</CONFIGURATION>

Numeric Values
The FLAG and FLAG_SET child elements of the COMPONENT_DEFINITION element
let you retrieve numeric values for a component.

Case 1

Including in the REQUEST a FLAG element under the COMPONENT_DEFINITION element
specifying numeric values to be returned for a component type causes ConfigDetails to return in the
RESPONSE all numeric values for components of the specified type.

PeopleSoft Proprietary and Confidential 249

Retrieving Saved Configuration Information Chapter 17

For example:

REQUEST

<COMPONENTS>

<FLAG type="componentFilterType" value="Building"/>

<COMPONENT_DEFINITION component="Building">

- - -

<FLAG type="detailsReturned" value="expressions"/>

- - -

</COMPONENT_DEFINITION>

RESPONSE
<COMPONENTS>

<CONFIGURABLE_COMPONENT name="Building-1" component="Building" id="1676995126"⇒

TOTAL_PRICE="2120.00" solveDate="20010625">

<CONFIGURATION>

- - -

<NUMERIC_VALUES>

<NUM NM="TotalListPrice" VL="2001.0" TY="FLOAT"/>

<NUM NM="OccupantsPerFloor" VL="1.3333334" TY="FLOAT"/>

</NUMERIC_VALUES>

- - -

</CONFIGURATION>

Case 2

Including in the REQUEST a FLAG element under the COMPONENT_DEFINITION
element for a component type specifying numeric values to be returned, and a FLAG_SET
element under the same COMPONENT_DEFINITION element defining the specific numeric
value(s) to be returned, causes ConfigDetails to return in the RESPONSE only the requested
numeric value(s) for components of the specified type.

For example:

REQUEST

<COMPONENTS>

<FLAG type="componentFilterType" value="Building"/>

<COMPONENT_DEFINITION component="Building">

- - -

<FLAG type="detailsReturned" value="expressionsterns"/>

<FLAG_SET type="expressionFilterNames">

<VALUE>OccupantsPerFloor</VALUE>

</FLAG_SET>

- - -

</COMPONENT_DEFINITION>

RESPONSE
<COMPONENTS>

<CONFIGURABLE_COMPONENT name="Building-1" component="Building" id="1676995126"⇒

TOTAL_PRICE="2120.00" solveDate="20010625">

<CONFIGURATION>

- - -

250 PeopleSoft Proprietary and Confidential

Chapter 17 Retrieving Saved Configuration Information

<NUMERIC_VALUES>

<NUM NM="OccupantsPerFloor" VL="1.3333334" TY="FLOAT"/>

</NUMERIC_VALUES>

- - -

</CONFIGURATION>

External Variables
The EXTERN_VARS element, the child element EV, and the NM attribute of the EV element
let you retrieve extern variable values for the configuration.

All Values
Including in the REQUEST the EXTERN_VARS element causes the COP to return in the
RESPONSE all EV elements for the configuration. Each EV element is a child element of
EXTERN_VARS that has attribute-value pairs for its NM and TP attributes and one or more
VAL child elements that contain the value(s) for the extern variable.

For example:

REQUEST

<CONFIGURATION MODEL_ID="AutoInsGeneralCRM" MODEL_VERSION="8-8-1">

<CHOICES>

<CH DP="LeadClSelection" DM="DEALER" BY="U" SL="1" QTY="1"/>

<EVCH DP="ClaimCount">

<VAL>5</VAL>

</EVCH>

<EVCH DP="ContinuousYearsEntry">

<VAL>15</VAL>

</EVCH>

</CHOICES>

<EXTERN_VARS/>

</CONFIGURATION>

RESPONSE
<CONFIGURATION MODEL_ID="AutoInsGeneralCRM" MODEL_VERSION="8-8-1"

COMPILE_VERSION="20020927-152727-590">

<EXTERN_VARS>

<EV NM="ClaimCount">

<VAL>5.0</VAL>

</EV>

<EV NM="ContinuousYearsEntry">

<VAL>15.0</VAL>

</EV>

<EV NM="GeneralZipCode">

</EV>

<EV NM="VehicleCostsEntry">

</EV>

PeopleSoft Proprietary and Confidential 251

Retrieving Saved Configuration Information Chapter 17

<EV NM="DriverRiskFromCoverage">

</EV>

</EXTERN_VARS>

</CONFIGURATION>

Selected Values
Including in the REQUEST the EXTERN_VARS element, and the child element EV with a valid value
for its NM attribute causes the COP to return in the RESPONSE the EXTERN_VARS element, and as a
child element, the EV element named in the request with value(s) for its VAL element(s).

For example:

REQUEST

<CONFIGURATION MODEL_ID="AutoInsGeneralCRM" MODEL_VERSION="8-8-1">

<CHOICES>

<CH DP="LeadClSelection" DM="DEALER" BY="U" SL="1" QTY="1"/>

<EVCH DP="ClaimCount">

<VAL>5</VAL>

</EVCH>

<EVCH DP="ContinuousYearsEntry">

<VAL>15</VAL>

<VAL>25</VAL>

</EVCH>

</CHOICES>

<EXTERN_VARS>

<EV NM="ContinuousYearsEntry"/>

</EXTERN_VARS>

</CONFIGURATION>

Configuration Attributes
The FLAG and FLAG_SET child elements of the COMPONENT_DEFINITION element let
you retrieve configuration attributes for a component.

Case 1

Including in the REQUEST a FLAG element under the COMPONENT_DEFINITION element for a
component type specifying configuration attribute values to be returned causes ConfigDetails to return
in the RESPONSE all configuration attributes for components of the specified type.

For example:

REQUEST

<COMPONENTS>

<FLAG type="componentFilterType" value="Building"/>

<COMPONENT_DEFINITION component="Building">

- - -

<FLAG type="detailsReturned" value="configAttributes"/>

252 PeopleSoft Proprietary and Confidential

Chapter 17 Retrieving Saved Configuration Information

- - -

</COMPONENT_DEFINITION>

RESPONSE
<COMPONENTS>

<CONFIGURABLE_COMPONENT name="Building-1" component="Building" id="1676995126"⇒

TOTAL_PRICE="2120.00" solveDate="20010625">

<CONFIGURATION>

- - -

<CONFIG_ATTRIBUTES>

<ATTR NM="Customer name">John Smith

</ATTR>

<ATTR NM="Phone number">(123)456-7890

</ATTR>

</CONFIG_ATTRIBUTES>

- - -

</CONFIGURATION>

Case 2

Including in the REQUEST a FLAG element under the COMPONENT_DEFINITION element
for a component type specifying configuration attributes to be returned and a FLAG_SET
element under the same COMPONENT_DEFINITION element defining the specific configuration
attribute(s) to be returned causes ConfigDetails to return in the RESPONSE only the requested
configuration attribute(s) for components of the specified type.

For example:

REQUEST

<COMPONENTS>

<FLAG type="componentFilterType" value="Building"/>

<COMPONENT_DEFINITION component="Building">

- - -

<FLAG type="detailsReturned" value="externs"/>

<FLAG_SET type="configAttributesFilterNames">

<VALUE>CustomerName</VALUE>

</FLAG_SET>

- - -

</COMPONENT_DEFINITION>

RESPONSE
<COMPONENTS>

<CONFIGURABLE_COMPONENT name="Building-1" component="Building" id="1676995126"⇒

TOTAL_PRICE="2120.00" solveDate="20010625">

<CONFIGURATION>

- - -

<CONFIG_ATTRIBUTES>

<ATTR NM="Customer name">John Smith

</ATTR>

</CONFIG_ATTRIBUTES>

- - -

</CONFIGURATION>

PeopleSoft Proprietary and Confidential 253

Retrieving Saved Configuration Information Chapter 17

Hierarchical Component Structure
The STRUCTURE and SUBSTRUCTURE child elements of the SECTION element let you return high-level
details for components of a compound configuration in a hierarchical structure. The STRUCTURE
element always defines a component type filter whereas the SUBSTRUCTURE elements may define
either a component type filter or a connection type filter. There can be only one STRUCTURE element
per SECTION element. However there can be one or more SUBSTRUCTURE elements under the
STRUCTURE element and nested SUBSTRUCTURE elements as well.

Including in the REQUEST the STRUCTURE element defined as
<SECTION>
<STRUCTURE value="Building">
<SUBSTRUCTURE type="componentFilterType" value="Floor">
<SUBSTRUCTURE type="connectionFilterType"
value="RoomOnFloor"/>
</SUBSTRUCTURE>
</STRUCTURE>

causes ConfigDetails to return in the RESPONSE all components of type Building, all components
of type Floor connected to each Building, and all components connected to each Floor by the
connection type RoomOnFloor in a hierarchical structure.

For example:

REQUEST

<SECTION>

<STRUCTURE value="Building">

<SUBSTRUCTURE type="componentFilterType" value="Floor">

<SUBSTRUCTURE type="connectionFilterType" value="RoomOnFloor"/>

</SUBSTRUCTURE>

</STRUCTURE>

RESPONSE
<SECTION>

<STRUCTURE>

<CONFIGURABLE_COMPONENT name="Building-1" component="Building" id=⇒

"1676995126" TOTAL_PRICE="2120.00" solveDate="20010625">

<CONNECTED_COMPONENT>

<CONNECTION id="1676995111" name="BtF" ref="FloorInBuilding" fromCompId=⇒

"1676995126" fromCompName="Building-1" fromCompType= "Building" toCompId=⇒

"1676995128" toCompName="Floor-1" toCompType="Floor"/>

<CONFIGURABLE_COMPONENT name="Floor-1" component="Floor" id="987654322"⇒

TOTAL_PRICE="1900.00" solveDate="20010625">

<CONNECTED_COMPONENT>

<CONNECTION id="1676995112" name="FtR" ref="RoomOnFloor" fromCompId=⇒

"1676995128" fromCompName="Floor-1" fromCompType="Floor" toCompId=⇒

"1676995127" toCompName="Room-1" toCompType="Room"/>

<CONFIGURABLE_COMPONENT name="Room-1" component="Room" id="987654323"⇒

TOTAL_PRICE="1120.00" solveDate="20010625" />

</CONNECTED_COMPONENT>

</CONFIGURABLE_COMPONENT>

254 PeopleSoft Proprietary and Confidential

Chapter 17 Retrieving Saved Configuration Information

</CONNECTED_COMPONENT>

</CONFIGURABLE_COMPONENT>

</STRUCTURE>

</SECTION>

Connections
The CONNECTIONS child element of the SECTION element and its FLAG child element let you
retrieve connections and their details. There can be only one CONNECTIONS element per SECTION
element. The FLAG element of CONNECTIONS lets you define the connection type filter. There may
be zero or more FLAG elements, each defining a different connection type filter.

Case 1

Including in the REQUEST only the CONNECTIONS element without defining the FLAG
element causes ConfigDetails to return in the RESPONSE all details for connections if
connected to components that are returned in the response.

For example:

REQUEST

<SECTION nm="PackageDetails">

<CONNECTIONS>

</CONNECTIONS>

RESPONSE
<SECTION nm="PackageDetails">

<CONNECTIONS>

<CONNECTION id="1676995111" name="BtF" ref="FloorInBuilding" fromCompId=⇒

"1676995126" fromCompName="Building-1" fromCompType="Building" toCompId=⇒

"1676995128" toCompName="Floor-1" toCompType="Floor"/>

<CONNECTION id="1676995112" name="FtR" ref="RoomOnFloor" fromCompId=⇒

"1676995128" fromCompName="Floor-1" fromCompType="Floor" toCompId=⇒

"1676995127" toCompName="Room-1" toCompType="Room"/>

</CONNECTIONS>

Case 2

Including in the REQUEST the CONNECTIONS element and the FLAG child element defining one or
more connection type filter(s) causes ConfigDetails to return in the RESPONSE details for connections of
the requested connection type(s) if connected to components that are returned in the response.

For example:

REQUEST

<SECTION nm="PackageDetails">

<CONNECTIONS>

<FLAG type="connectionFilterType" value="RoomOnFloor"/>

</CONNECTIONS>

RESPONSE

PeopleSoft Proprietary and Confidential 255

Retrieving Saved Configuration Information Chapter 17

<SECTION nm="PackageDetails">

<CONNECTIONS>

<CONNECTION id="1676995112" name="FtR" ref="RoomOnFloor"

fromCompId="1676995128" fromCompName="Floor-1" fromCompType="Floor" toCompId=⇒

"1676995127" toCompName="Room-1" toCompType="Room"/>

</CONNECTIONS>

Completeness Information
Completeness information will be returned in the response for those components for which component
conflicts have been requested and if the attribute validate of the CONFIGURATION element is set to
“true” in the request.“The CONFIGURATION element” and “ComponentConflicts”

See Chapter 17, “Retrieving Saved Configuration Information,” The CONFIGURATION Element, page 229.

Including in the REQUEST

<CONFIGURATION configId="1676995129" solutionId="OutputUtil"

validate="true">

and
<COMPONENTS>

<FLAG type="componentFilterType" value="Building"/>

<COMPONENT_DEFINITION component="Building">

- - -

<FLAG type="detailsReturned" value="componentConflicts"/>

- - -

causes ConfigDetails to return in the RESPONSE a status of FALSE along with the required decision point
name(s) that do not have a selection if components of type Building have a completeness violation, OR, a
status of TRUE if the components of type Building do not have any completeness violations.

For example:

REQUEST
<CONFIGURATION configId="1676995129" solutionId="OutputUtil" validate="true">

and

<COMPONENTS>

<FLAG type="componentFilterType" value="Building"/>

<COMPONENT_DEFINITION component="Building">

- - -

<FLAG type="detailsReturned" value="componentConflicts"/>

- - -

RESPONSE
<COMPONENTS>

<CONFIGURABLE_COMPONENT name="Building-1" component="Building" id="1676995126"⇒

TOTAL_PRICE="2120.00" solveDate="20010625">

<CONFIGURATION>

<COMPLETE STATUS="FALSE">

<DP NM="BuildingHeightSelection"/>

256 PeopleSoft Proprietary and Confidential

Chapter 17 Retrieving Saved Configuration Information

<DP NM="BuildingStyleSelection"/>

</COMPLETE>

OR
<COMPONENTS>

<CONFIGURABLE_COMPONENT name="Building-1" component="Building" id="1676995126"⇒

TOTAL_PRICE="2120.00" solveDate="20010625">

<CONFIGURATION>

<COMPLETE STATUS="TRUE">

</COMPLETE>

Summary of Configuration Information Elements
and Attributes

These tables provide a quick reference to configuration information elements and attributes.

Element CONFIGURATION

Attribute Possible Values Case-Sensitive?

validate true no

false no

Element DELTA_INFO – child of element CONFIG_DETAILS

Attribute Possible Values Case-Sensitive?

returnDeltas true

false

no

no

startDate valid Java date no

endDate valid Java date no

Element FLAG – child of element CONFIG_DETAILS

Attribute Possible Values Attribute Possible Values Case-Sensitive?

type detailsReturned value totalPrice no

compoundConflicts no

Element SECTION – child of Element CONFIG_DETAILS

Attribute Possible Values Case-Sensitive?

nm Any string no

PeopleSoft Proprietary and Confidential 257

Retrieving Saved Configuration Information Chapter 17

Element FLAG – child of element COMPONENTS

Attribute Possible Values Attribute Possible Values Case-Sensitive?

type componentFilterType value Any component type yes

Element FLAG – child of element CONNECTIONS

Attribute Possible Values Attribute Possible Values Case-Sensitive?

type connectionFilterType value Any connection type yes

Element COMPONENT_DEFINITION – child of element COMPONENTS

Attribute Possible Values Case-Sensitive?

component Any component type yes

Element STRUCTURE – child of element SECTION

Attribute Possible Values Case-Sensitive?

value Any component type yes

Element SUBTRUCTURE – child of elements STRUCTURE or SUBSTRUCTURE

Attribute Possible Values Attribute Possible Values Case-Sensitive?

type componentFilterType value Any component type no

connectionFilterType Any connection type no

Element FLAG – child of element COMPONENT_DEFINITION

Attribute Possible Values Child/Attribute Possible Values Case-Sensitive?

type detailsReturned value selections no

detailsReturned externs no

detailsReturned expressions no

detailsReturned configAttributes no

detailsReturned selectionConflicts no

detailsReturned componentConflicts no

type selectionFilterAttribute value Any attribute name yes

value The value for the
attribute

yes

258 PeopleSoft Proprietary and Confidential

Chapter 17 Retrieving Saved Configuration Information

Element FLAG_SET – child of element COMPONENT_DEFINITION

Attribute Possible Values Child Possible Values Case-Sensitive?

type selectionFilterNames VALUE Any choice name yes

type externFilterNames VALUE Any extern name yes

type expressionFilterNames VALUE Any numeric value
name

yes

type configAttributeFilterNames VALUE Any config
attribute name

yes

Element SELECTION_POINT – child of element SELECTION_ATTRIBUTES

Attribute Possible Values Case-Sensitive?

type Any choice name yes

Element ATTRIBUTE – child of element SELECTION_POINT

Attribute Possible Values Case-Sensitive?

nm Any attribute name yes

mapTo Any string yes

PeopleSoft Proprietary and Confidential 259

Retrieving Saved Configuration Information Chapter 17

260 PeopleSoft Proprietary and Confidential

CHAPTER 18

Copying a Configuration

The Configurator XML interface lets you copy and save a previously saved configuration. The copy request is
processed separately from, and supersedes any other elements included in the same request. Therefore, if the
configCopy attribute is included in the request and its value is true, then the only operation performed during that
post to the servlet will be the configuration copy. Any other elements/attributes in the request will be ignored.

Elements and Attributes
The COP XML request must include these attributes to copy a configuration.

CONFIGURATION configId solutionId configCopy copyName

The COP XML response may include these elements and attributes to return
information about a copied configuration.

ConfigCopy configId solutionId configCopy copyName

Copy status configId

Attributes are:

configId Specifies the id of the configuration that you want to copy.

solutionId Indicates the solution for the configuration. (A solution is the implementation
of the PeopleSoft Configurator application.)

configCopy Indicates that this is a copy operation.

copyName Indicates the name to give to the new copy of the configuration.

The following is a sample copy request:
<CONFIGURATION configId="1438491808" solutionId="TelcoDemo" configCopy="true"⇒

copyName="New Compound"/>

Copy and Response
The Copy element and its attributes status and configId are returned in the response from
a configCopy request. The attribute status indicates the results of the copy operation. The
following lists valid status codes and descriptions:

0 Copy was successful.

PeopleSoft Proprietary and Confidential 261

Copying a Configuration Chapter 18

101 Invalid solution ID.

102 Invalid Config ID.

103 Solution doesn’t allow new configurations.

104 Database error on save.

The attribute configId is the configId of the new copy of the configuration if the copy
was successful, otherwise it is 0.

The following is a sample response for a SUCCESSFUL copy:

<ConfigCopy solutionId="TelcoDemo" configId="1438491808" copyName="New⇒

Compound"><Copy status="0" configId="932435623"/></ConfigCopy>

The following is a sample response for an UNSUCCESSFUL copy:
<ConfigCopy solutionId="TelcoDemo" configId="1438491808"

copyName="New Compound"><Copy status="102" configId="0"/></ConfigCopy>

262 PeopleSoft Proprietary and Confidential

CHAPTER 19

Using Batch Configuration Mode

The Configurator XML interface lets you configure and/or save configurations in batch mode.

The batch request is processed separately from other elements in the request. In addition, it supersedes
any other elements included in the same request. Therefore, if the batch attribute is included in the request
and its value is true, then the only operation performed during that post to the servlet will be the batch
configuration processing. Any other elements/attributes in the request will be ignored.

Elements and Attributes
The COP XML request must include these attributes to process a configuration in batch mode.

CONFIGURATION batch

CONFIG_XML

The batch attribute indicates whether this is a batch request. Valid values are true/false.

The COP XML response may include these elements and attributes to return
information about a batch configuration.

CONFIG_XML isValid wasSaved

VIOLATIONS

EXPLANATION

Component/CompoundConfiguration

isValid indicates if the configuration was valid. Values are true/false.

The method wasSaved indicates if the configuration was saved. Values are true/false.

The VIOLATIONS element contains an EXPLANATION element for every violation in the configuration.
Each EXPLANATION element contains the why help for that particular violation.

See Also

Chapter 19, “Using Batch Configuration Mode,” Configuring a Component, page 263

Chapter 19, “Using Batch Configuration Mode,” Configuring a Compound Configuration, page 264

Configuring a Component
To configure a component configuration in batch mode the CONFIG_XML element in the request may
include these elements and attributes to contain the information about the configuration:

PeopleSoft Proprietary and Confidential 263

Using Batch Configuration Mode Chapter 19

Component name comment solutionId id

CONFIGURATION COMPILE_VERSION SOLVE_DATE MODEL_ID MODEL_VERSION

ATTRIBUTE_SET

ATTRIBUTE name

CH DM DP QTY ST TY

EVCH DP TY VAL

NUM NM TP VAL

The COP XML response may include these elements and attributes to return information
about a component configuration.

Component name comment solutionId id configCode

CONFIGURATION COMPILE_VERSION XML_GENERATED_DATE SOLVE_DATE MODEL_ID MODEL_VERSION

ATTRIBUTE_SET

ATTRIBUTE name

CH DM DP QTY ST TY

EVCH DP TY VAL

NUM NM TP VAL

Note that the request and response are essentially identical and are the product of a call to
the calico.configurator.cop.Component.toXML method.

Configuring a Compound Configuration
To configure a compound configuration in batch mode the CONFIG_XML element in the request may
include these elements and attributes to contain the information about the configuration:

CompoundConfiguration name type version owner comment solutionId id

Components

ConfigurableComponent name component comment id violation

CONFIGURATION COMPILE_VERSION SOLVE_DATE MODEL_ID MODEL_VERSION

ATTRIBUTE_SET

ATTRIBUTE name

CH DM DP QTY ST TY

EVCH DP TY VAL

NUM NM TP VAL

Connections

Connection id name ref comment component ReverseConnection

Structure

ConnectedComponent id component name

The COP XML response may include these elements and attributes to return information
about a compound configuration.

CompoundConfiguration name type version owner comment solutionId id configCode

Components

ConfigurableComponent name component comment id violation

CONFIGURATION COMPILE_VERSION XML_GENERATED_DATE SOLVE_DATE MODEL_ID MODEL_⇒

VERSION

ATTRIBUTE_SET

ATTRIBUTE name

264 PeopleSoft Proprietary and Confidential

Chapter 19 Using Batch Configuration Mode

CH DM DP QTY ST TY

EVCH DP TY VAL

NUM NM TP VAL

Connections

Connection id name ref comment component ReverseConnection

Structure

ConnectedComponent id component name

Note that the request and response are virtually identical and are the product of a call to the
method calico.cms.runtime.CompoundConfiguration.toXML.

Saving a Configuration
The COPXML request to save a component/compound configuration in batch mode is the same as the request
to configure with the addition of a saveConfig attribute on the CONFIGURATION element.

Valid values for the saveConfig attribute are:

ALWAYS Always saves the configuration.

VALID Only saves the configuration if it is valid.

The COPXML response from a request to save a component/compound configuration in batch
mode contains the same structure as the response to a configure request.

Retrieving a Configuration
The COPXML request must include these attributes to retrieve the XML for a configuration in batch mode.

CONFIGURATION configId solutionId configXml validate

Attributes are:

configId Specifies the id of the configuration that you want to retrieve.

solutionId Indicates the solution for the configuration.

configXml Indicates that this is a retrieve operation.

validate Indicates to validate the configuration before generating the response.

The COPXML response contains the same structure as the response to a configure request.
Please refer to appropriate configure section for details.

PeopleSoft Proprietary and Confidential 265

Using Batch Configuration Mode Chapter 19

266 PeopleSoft Proprietary and Confidential

CHAPTER 20

Changing the Order Status of a Configuration

The Configurator XML interface lets you change the order status of a previously saved configuration.

The order change request is processed separately from other elements in the request. In addition, it
supersedes any other elements included in the same request. Therefore, if the orderChange attribute is
included in the request and its value is true, then the only operation performed during that post to the
servlet will be the order change. Any other elements/attributes in the request are ignored. This chapter
describes how to change the order status of a configuration using COPXML.

Elements and Attributes
The COP XML request must include these attributes to change the order status of a configuration.

CONFIGURATION configId solutionId orderChange newState

The COP XML response may include these elements and attributes to return information
about an order change request.

OrderChange configId solutionId newState stateChanged

Attributes are:

configId Specifies the id of the configuration for which you want to change the status.

solutionId Indicates the solution for the configuration.

orderChange Indicates that this is a order change operation.

newState Indicates the new state value for the order status. Valid values are
Save, Submit, Cancel, and Delete.

Example order change request:
<CONFIGURATION configId="1004316094" solutionId="BMWTest" orderChange="true" new⇒

State="Submit"/>

Order Change and Response
The OrderChange element and its attributes configId, solutionId, newState, and stateChanged
are returned in the response from an orderChange request.

The attribute stateChanged indicates the results of the order change operation. The attribute
newState indicates the new order status value.

PeopleSoft Proprietary and Confidential 267

Changing the Order Status of a Configuration Chapter 20

268 PeopleSoft Proprietary and Confidential

PART 5

PeopleSoft CRM Order Capture Integration

Chapter 21
Understanding Integration with PeopleSoft CRM Order Capture

Chapter 22
Setting Up Integration

CHAPTER 21

Understanding Integration with PeopleSoft
CRM Order Capture

This chapter provides an overview of the PeopleSoft Advanced Configurator integration
with PeopleSoft CRM applications, and discusses:

• Using Integration Broker to set up the integration between Advanced Configurator and PeopleSoft CRM.

• Security.

Integration with PeopleSoft Enterprise Order
Capture Applications

A customer or service agent using a PeopleSoft CRM Order Capture application can log in to PeopleSoft
Order Capture, create a new order or open an existing one, click on the Configurator icon on the
Order page, display the product configuration page, make changes to the order, save it, and pass the
configuration and order data into the CRM system for storage or further processing.

Users can perform these operations from PeopleSoft Enterprise Order Capture and Order Capture
Self Service. Integrating Advanced Configurator enhances:

• Quote and order processes.

• Pricing.

• Installed product configuration and service maintenance.

When integrated with Order Capture applications, Advanced Configurator:

• Ensures that the product selections are compatible and correct.

• (Optionally) provides the list price of the configured product. This price may be further
surcharged or discounted by the Enterprise Pricer engine.

• Calculates and displays delta pricing, in which users can observe the effects of their selections on pricing.

• Displays the details of a configuration within Order Capture.

• After the configuration session, returns the user to the calling component (such as Order Capture).

Insurance and Financial Products
Agents can use PeopleSoft Enterprise Order Capture to take applications for financial services and
process them. If the services are configurable, the configuration UI appears for selections to be
made. When the session is complete, the agent returns to the order form and continues. Customers
themselves can perform these actions through Order Capture Self Service.

PeopleSoft Proprietary and Confidential 271

Understanding Integration with PeopleSoft CRM Order Capture Chapter 21

Similarly, insurance products such as coverages and deductibles are more efficiently ordered
and maintained using the integrated Advanced Configurator.

Service Products
Services can be quoted and ordered through Order Capture. If the services are configurable, the user can
access the configuration page from the order or quote like any other configurable product.

Security
Advanced Configurator can optionally utilize the user login and authentication provided when
logging in to the PeopleSoft Enterprise Order Capture application. Invoking the configuration
UI from an Order page requires no additional login.

272 PeopleSoft Proprietary and Confidential

CHAPTER 22

Setting Up Integration

This chapter discusses how to:

• Set up PeopleSoft Advanced Configurator for integration.

• Set up PeopleSoft Enterprise CRM to integrate with Advanced Configurator.

• Create Advanced Configurator schemas.

• Use Advanced Configurator.

Setting Up PeopleSoft Advanced Configurator for Integration
Perform the following steps to set up your PeopleSoft Advanced Configurator integration with PeopleSoft CRM.

1. Install PeopleSoft Advanced Configurator Server and deploy the desired solutions
on this Configurator Server.

See PeopleSoft Enterprise CRM 8.9 Installation Guide

2. Navigate to PeopleTools, Integration Broker, Gateways. Click the Search button on the Gateways
search page. This accesses the Gateway ID: LOCAL page.

3. Enter the Gateway URL as http://<< PeopleSoft Web Server >>/PSIGW
/PeopleSoftListeningConnector, and click Save.

Note. Remember that the URL is case-sensitive.

4. Load the Connector information by clicking the Load button.

5. A Loading Process was successful message appears. Click OK to continue.

6. A grid appears. This grid displays all of the loaded connectors. For each Connector
ID there is a Connector Class Name. Click Save.

7. Click the Refresh button next to Refresh Integration Gateway.properties file. A Gateway Refresh
Process was successful message appears. Click OK to continue, then Save.

8. Access the Node Definitions page from PeopleTools, Integration Broker, Node Definitions.

9. Open node PSFT_CFG.

10. On the Connectors tab for the new Node Name , (where the value of Gateway ID should be LOCAL
and Connector ID should be HTTPTARGET), change the “PRIMARYURL” property to be the
URL of your Advanced Configurator server. (The URL is case-sensitive.)

PeopleSoft Proprietary and Confidential 273

Setting Up Integration Chapter 22

Note. Advanced Configurator integration does not support URLs beginning with
https for use with Secure Socket Layers (SSL).

11. Save these settings.

12. Enter PSFT_CFG in the Message Node Name field.

You may wish to set up two nodes: One for internally facing applications and one for Self Service
(external) applications. If so, you can create another node that is identical to the shipped PSFT_CFG
node ion every respect other than its name and the associated URL

13. Navigate to the Installations page (Set Up CRM, Product Related, Advanced Configurator, Installation)
and identify an Internal and/or External node(s). The “Internal” node is used for all internally facing
applications. The ’External” node is the one used for all Self Service applications (see below).

14. Navigate to the Schemas page (Set Up CRM, Product Related, Advanced Configurator, Schemas) to
create schemas and tie them to solutions on the PeopleSoft Advanced Configurator Server.

See Chapter 22, “Setting Up Integration,” Creating Advanced Configurator Schemas, page 276.

15. When you set up items, products, and/or packages in the PeopleSoft CRM Item Definition
and Product Definition components, be sure to tie them to the correct PeopleSoft Advanced
Configurator schemas that were established in step (5) above.

See PeopleSoft Enterprise CRM 8.9 Product and Item Management PeopleBook, “Defining Items” and
PeopleSoft Enterprise CRM 8.9 Product and Item Management PeopleBook, “Setting Up Products”.

Setting Up PeopleSoft CRM to Integrate with PeopleSoft
Advanced Configurator

This section provides an overview of integration setup features, and explains how to use PeopleSoft
CRM setup pages to activate the integration between PeopleSoft Advanced Configurator and
PeopleSoft CRM applications. Specifically, it explains how to associate configuration messaging
nodes with CRM Application, and enable Advanced Configurator debugging

Page Used to Set Up Configurator Integration with
PeopleSoft CRM

Page Name Object Name Navigation Usage

Installation Table CFG_SETUP Set Up CRM, Product
Related, Advanced
Configurator, Installation,
Installation Table

Use the Installation
Table page to associate
configuration messaging
nodes with CRM
Applications, and enable
Configurator debugging

274 PeopleSoft Proprietary and Confidential

Chapter 22 Setting Up Integration

Associating Advanced Configurator Messaging Node
and Enabling Debugging
The Installation Table page allows you to specify the PeopleSoft Enterprise Integration Broker Messaging
Node for internal CRM applications, such as Order Capture. You also can specify an External Node
for customer-facing applications such as Order Capture Self Service. Be sure to specify at least
one node, otherwise an error will be generated. Order Capture and Order Capture Self Service use
these nodes to call out to the Advanced Configurator server at run time.

Access the Installation Table page.

Installation Table page

Integration Broker Setup

Configurator Server Node Select either Define External Node Only, Define Internal Node Only,
orDefine Internal/External Nodes depending upon whether you want
to use Advanced Configurator with internal, and/or self service CRM
applications. When using both internal and external CRM applications,
you can define a separate node for the self-service application so that
transactions are stored on a separate, secure server.

Note. The Internal Node and External Node fields appear or
disappear depending on your selection.

Internal Node Enter a Configurator Node name. This node is used to integrate
the Configurator Server with internal-facing CRM applications,
such as PeopleSoft Order Capture.

Note. Nodes are available from the drop-down list, which prompts
against the PSMSGNODEDEFN table.

External Node Enter a Configurator Node name. This node is used to integrate
the Configurator server with customer-facing CRM applications,
such as Order Capture Self Service.

PeopleSoft Proprietary and Confidential 275

Setting Up Integration Chapter 22

Configurator Debug Information

Debug When you turn debugging On, raw configuration details are displayed in
XML format at run time. What this means specifically is that once you
have completed your configuration session, you will be presented with
two pages prior to returning to the application which invoked PeopleSoft
Advanced Configurator. These two pages contain an XML request and an
XML response. The XML request page displays the XML data that was sent
to the Configurator server to retrieve information about the configuration;
the XML response page displays the XML data that was returned by the
Configurator server. This is a useful tool for debugging your schemas because
you can quickly verify that XML configuration details are being returned
from the calling application just as you would like them to be. When you
turn debugging Off (default), you will not see the two XML pages prior to
returning to the calling application from your configuration session.

The Configurator Solution Tester also allows this request and response XML
to be displayed, as well as providing further debugging options.

Note. Log files are available from the appropriate directory on the
Configurator server when Configurator Debug is activated. For example, if
your Advanced Configurator server is running on Windows, the logs will
be stored in C:\bea\weblogic81\config\CalicoDomain\logs

Creating Advanced Configurator Schemas
The following section provides an overview of schemas, and explains how to create schemas for
external and internal solutions. Specifically, it explains how to:

• Create schemas for External Solutions.

• Create schemas for Internal Solutions.

• Establish configuration display and pricing options.

• Determine request/response details.

276 PeopleSoft Proprietary and Confidential

Chapter 22 Setting Up Integration

Pages Used to Create Configurator Schemas

Page Name Object Name Navigation Usage

Display CFG_SCHEMA_DISPLAY Set Up CRM, Product
Related, Advanced
Configurator, Schemas,
Schema Setup.

Set Up CRM, Product
Related, Advanced
Configurator, Schemas,
Display. Select Internal
Solution.

Use the Display page to
choose an external solution,
or create an internal solution.

Price CFG_SCHEMA_PRICE Set Up CRM, Product
Related, Advanced
Configurator, Schemas, Price

Use the Price page to set up
options for whether or not to
return the configuration
list price, as well as to
establish recurring pricing
for configured products.

Request Details CFG_SCHEMA_OUTPUT Set Up CRM, Product
Related, Advanced
Configurator, Request
Details

Use the Request Details page
to select the configuration
information that you want
the user to receive.

Understanding Configurator Schemas
Configuration schemas establish the display, pricing, and configuration details for specific configuration
and what information to retrieve from the configuration models on the Configurator Server. There
are three pages within which you control schema setup for Configurator:

Display Schemas Define the Configuration User Interface that will
be displayed at run time.

Pricing Schemas Define the Configuration pricing options.

Request Details Schemas Define the Configuration details to be sent and
received from the Configurator Server.

Understanding External Solutions and Internal Solutions

There are two types of Configurator schemas. These are externally created solutions and internally
defined solutions. External and internal solutions can be distinguished as follows:

External Solution Allows you to direct run-time data from the model to an HTML-based
UI built specifically for this solution using JSP and external HTML
editing tools (such as Macromedia Dreamweaver).

Note. Templates for Dreamweaver are bundled with the PeopleSoft
Advanced Configurator application.

PeopleSoft Proprietary and Confidential 277

Setting Up Integration Chapter 22

Internal Solution Allows you to define the user interface from within the PeopleSoft
CRM schema setup pages.

Creating Schemas for External Solutions
Access the Display page.Select External Solution as the Solution Type.

Display page, external solution

Schema ID The Schema ID is a unique identifier for the configuration schema. The
Schema ID is the identifier that is associated with an item/product so that the
system knows how to properly configure the product/package.

Note. The Schema ID should match the Solution ID if you are
using an External Solution.

Description Enter a description for the Schema ID.

Solution Properties

Frame Dimensions Specify the width and height of the embedded, run-time
configuration page in pixels.

Note. When the page is saved, there is validation logic to ensure that
neither page Width nor Height are less than 800 pixels.

Solution Type Choose External Solution to select from the existing (externally defined)
sets of Configurator solutions on the Configurator Server.

External Solution When the Solution Type is External, you will be using a predetermined list of
solutions each of which already has the user interface display set. Click the
Lookupbutton to select an external (predefined solution) from a list of all the
current Configurator solutions that exist on the Configurator server.

Solution Tester Select this link to launch the Configurator Solution Test tool which
displays the user interface for this solution ID.

278 PeopleSoft Proprietary and Confidential

Chapter 22 Setting Up Integration

Model Tester link Select this link to test model functionality for the underlying
model of this solution ID.

Creating Schemas for Internal Solutions
Access the Display page.

Select Internal Solution as your Solution Type.

Note. The following page appears when you select a Solution Type of Internal Solution. This
page allows you to specify your own solution type as opposed to choosing one from the default
list that is available when you select an External Solution.

Display page, Internal Solution (1 of 3)

Schema ID The Schema ID is a unique identifier for the configuration schema.

Description Enter a unique description for the Schema ID.

Solution Properties

Frame Dimensions Specify the width and height of the run-time configuration page in pixels.

Note. When the page is saved, there is validation logic to ensure that
neither page Width or Height are less than 800 pixels.

Solution Type Choose Internal Solution, which allows you to define your own solution without
having to return to the environment of the PeopleSoft Advanced Configurator.

Note. When you select Internal Solution, the page updates to display
additional sections, which are explained below.

Configuration Type Choose Component when the solution contains a single model. Choose
Compound if the solution contains multiple models. If you choose Component,
the list displays only the solutions on the server that contain a single,

PeopleSoft Proprietary and Confidential 279

Setting Up Integration Chapter 22

component model. Likewise, choosing Compound, displays a list of the
solutions on the server that contain multiple models.

Note. If you choose Component, all fields on the Display page
will be available for updating.

If you choose Compound, the only modifiable fields will be the Compound
ID, Model Version, Page Title, Validation on Return, and Captions. You will
need to have the individual component schemas already defined.

Model ID/Compound ID Choose a Model ID (or, in the case of a compound model, Compound
ID) for the internal solution.

Use Most Current Version Select this check box to use the most current model.

Note. When you select this check box, the Model Version options disappear.

Model Version This allows you to specify a specific version of the model to use. Specify the
major and minor version numbers in the relevant edit boxes.

Solution Tester Click this link to launch the Configurator Solution Test Tool, which launches
the model, any database connections, and the actual user interface. Use
this tool to verify that the results from the business logic are properly
displayed and to check and tune presentation layout (if it is a custom
UI) and navigation. This link is keyed by solution ID.

Model Tester Click this link to test constraints and conditions defined in the model. A
test UI is launched, so you can divide testing into two phases: business
logic (model constraints and calculations); and presentation (UI, using
the Solution Tester). This link is keyed by solution ID.

Display page Internal Solution (2 of 3)

280 PeopleSoft Proprietary and Confidential

Chapter 22 Setting Up Integration

Display Properties

Page Title Enter a title to display at for the configuration display.

Restore Policy You can choose a restore policy that selects either the Original Model Version
or the Most Current Model Version. This option gives you control over
whether the user’s older, saved configurations are run against the newest
model version if the user requests a saved configuration to view or to use as
the basis for a new configuration. The problem to consider is whether the
new model, which can change substantially through updates, can properly
display and process configuration data produced by an older model.

Page Information

Tab You can control the number of tabs that appear on the page. Enter
the number of the tab here, and make your selections for the content
of the tab in the Control Setup section.

Tab Caption Define a label for each tab.

Number of Columns Define the number of column controls you want to display in the
configuration page for this tab.

Control Setup

Sequence Determine the sequence of the controls displayed on the tabs you
create for the configuration page.

Type Choose from Configuration Attribute, Expression, External
Variable, or Selection.

Name Enter a name for the Configuration Attribute, Expression,
External Variable, or Selection.

Attribute Define the attribute that appears in the drop-down list, or as
a radio button selection.

Caption Enter a descriptive caption that displays on the page.

Control Type Choose to render the control type as either a Dropdownlist, or Radio Button.

Field Processing Choose whether this run-time page will use Dynamic or Deferred
processing. The Dynamic option causes the page to refresh automatically
when the user enters data and tabs out of a field. The Deferred option
leaves processing until the Submit button is clicked.

Control Size Specify the maximum number of characters to allow in the control. This option
appears if the Control Type is Configuration Attribute or External Variable.

Display Options

These options appear only for Control Type Selection.

Show Violations Select this check box to display red violations text on the selections themselves.

Show Eliminated Select this check box to show options that are constrained away by previous
selections. If unchecked, invalid selections will not display at all.

PeopleSoft Proprietary and Confidential 281

Setting Up Integration Chapter 22

Show Delta Price If you have pricing information, select this check box to display pricing change
in the form of how much has been added or subtracted to the price by making
this selection. This is also known as the ability to show plus-minus pricing.

Display page, internal solution (3 of 3)

Captions

Return, Return to
Manager, Cancel, Update,
None

Specify the text that will be used on the labels of the action buttons. These
buttons will be viewable on the configuration page. Return, Cancel,
Update, and None are available for component models. Return, Cancel,
and Return to Manager are available for compound models.

Miscellaneous

Validate on Return Select this check box to check the validity of the configuration before
returning to the calling CRM application.

Show Configuration
List Price

Select this check box to display the list price at the top of the configuration page.

Show Application
Violations

Select this check box to show violation messages during product
configuration. These violation messages appear at the top of the
configuration page in a red text and red button format.

Establishing Pricing Options
Access the Price page.

282 PeopleSoft Proprietary and Confidential

Chapter 22 Setting Up Integration

Price page (1 of 2)

Price Mode

The Price Mode section appears when you specify Configurator in the List Price Source option.

Mode Indicates which price mode, Standard or Advanced is employed to
define the pricing schema as shown on the Configuration List Price
grid. Clicking on the Advanced link makes operators and expressions
available to further define each control’s pricing.

Click Standard to change the mode from Advanced and remove the
operators and expressions. See the explanation below.

Pricing Properties

List Price Source Select Configurator or Product Definition to indicate whether to
draw pricing data for the controls from the Configurator model
or from the Product Definition.

Selecting Configurator displays the Configurator List Price grid, in
which you specify the controls to be priced and their definitions. Product
Definition contain this information already.

Configuration List Price

The Configuration List Price is just that—a list price. PeopleSoft Enterprise Pricer can act further on this pirce
and may place a surcharge on it or discount it depending on the setup in the Enterprise Pricer application.
However, you can operate on these values using the Operator drop down described below. In addition,
the values represented on each of the rows in the grid are summed to yield the total price.

This section is only available when you have chosen Configurator in the List Price Source field.

PeopleSoft Proprietary and Confidential 283

Setting Up Integration Chapter 22

Type Select Expression to identify and define an expression from the Configurator
model that will be used to deliver a list price. Select Selection to indicate that an
attribute of the specified selection is the source for a list price for that selection.

Note. When the Type is Expression, Name is the only field available for
editing. The Delta Price Only check box remains available for selection.

Name Type or select a name for the selection or expression from the Name
lookup list. Names are supplied by the model.

Attribute Select the attribute of the specified selection from which to
take the list price value.

Operator Appears when Price Mode is set to Advanced. Use the Operator
drop down to define an expression to operate on the list price passed
to it from the left-hand side of the row.

Delta Price Only Select this check box to return delta price information for the Selection or
Expression. Delta information is a price value that indicates the difference,
plus or minus, that the picking of a particular selection had on a price.
Delta pricing must be enabled in the model as well.

Recurring Price Source Select Product Definition to indicate that recurring pricing information is
to be taken from the product definition. Select Configurator to define the
source for recurring pricing for the product. The Recurring Price grid
appears when you select the Configurator option.

Price Page (2 of 2)

Recurring Price

Recurring, Expression Select expressions, defined in the Configurator model, for:

• Recurring Price—Select an expression that provides a value for a
recurring charge to be added to the list price.

• Recurring Frequency—Select an expression that defines which
recurring frequency is used when adding the recurring charge
order line, for example, “MNTHLY”.

• Frequency Description—Select text that describes the Recurring
Frequency in words, such as “Monthly”.

284 PeopleSoft Proprietary and Confidential

Chapter 22 Setting Up Integration

Specifying Request Details
The Request Details page allows you to specify in detail what the request will look like that goes from
Order Capture to the Advanced Configurator server and in turn, what details on the configuration
will be returned to Order Capture from the Advanced Configurator server (all via XML). Finally,
it allows you to specify what XSLT StyleSheet to use when rendering the configuration details
to the user in HTML on the “line details” page of Order Capture.

Access the Request Details page.

Request Details page (1 of 2)

It is important to recognize that the Request Details page is affected by the Configuration Type option on the
Display page, but is not influenced by Solution Type. The option to include components, connections, and
structure in the Configuration Details is not available for the Configuration Type of Component. However, all
options on the Request Details page are available to the user when the Configuration Type is Compound.

Request Details

Request Message Specify a Custom XML or Default XMLoutput. Configuration details are in
XML, and a default XSLT is provided with Configurator.Select Custom
XML to access a text entry field where you can define a request.

Define Request When you select Custom XML, the Define Request link appears. Click on the
link to access a text entry field into which you can enter the XML request.

Render With Determines how the information returned by the request is displayed. Enter
Custom Stylesheet or Default Stylesheetstylesheet. When you select the

PeopleSoft Proprietary and Confidential 285

Setting Up Integration Chapter 22

Custom option, the Define Stylesheet link appears and you can define
your own stylesheet. By using a custom stylesheet, you can change the
order in which the information is displayed or the amount of information
displayed. For example, a custom stylesheet could be used to display
expressions first, followed by selection points, and then conflicts. Or you
could display just the selection points with selections and not bother to
display the actual domain members selected or their quantity.

Define Stylesheet Click this link to define a custom XSLT stylesheet for this Schema
ID. The link accesses a page containing a large text entry field into
which you can insert a text defining a stylesheet.

Request Properties

Configuration Details Select this check box to request configuration details provided by Configurator.
Once you check this box, a Configuration Details group box appears and
allows you to make detailed selections. See below. The Configuration Details
options determine what is included in part of the default xml request.

Package Components Select this check box to choose name and attribute options for package
components. A Package Components grid appears at the bottom of
the page. A package component is a one of many products that will
eventually make up a package. For example, a “computer” product
may actually consist of several products such as a monitor, keyboard,
and mouse, as well as the actual computer.

Product Selector Select this check box to choose name and attribute options for product
selections. A Product Selector grid appears at the bottom of the page.
The option replaces the product ID on the order capture line with the
product ID specified in the chosen selection point.

Purchased Components Select this check box to choose name and attribute options for purchased
components. A Purchased Components grid appears at the bottom of the
page. Selecting this option categorizes purchased components for display
purposes; no additional processing is performed.

Manufactured Components Select this check box to choose name and attribute options for manufactured
components. A Manufactured Components grid appears at the bottom
of the page. As with Purchased Components, selecting Manufactured
Components categorizes manufactured components for display purposes;
no additional processing is performed.

Routing Operations Select this check box to choose name and attribute options for routing
operations. A Routing Operations grid appears at the bottom of the page. As
with Purchased Components, selecting Routing Operations categorizes routing
operations for display purposes; no additional processing is performed.

Delta Information Requests the display of the differences between this configuration and the
last submitted configuration. Differences include additions, deletions,
and changes to selection points, expressions, and externs.

Compound Violations Select this check box to return a list of configuration violations for a solution
based on a compound model. This check box is only displayed when you
select a Configuration Type of Compound on the Display page.

286 PeopleSoft Proprietary and Confidential

Chapter 22 Setting Up Integration

Configuration Details

Options in this section of the page determine what information about the configurations generated under this
schema will be returned to, and stored in, Order Capture. The first three fields—Components, Connections,
and Structure—are available only when you select a Configuration Type of Compound on the Display page.

Components Select All Components, or None.

Connections Select All Connections, Filtered List, or None.

Structure Select Include Structure, or None.

Selections Select All Selections, Filtered List, or None.

Expressions Advanced Configurator uses boolean, date, string, and numeric logic as key
parts of its configuration capabilities. Select this check box to return values
calculated by expressions (in the model) during the configuration session.

External Variables PeopleSoft Advanced Configurator can retrieve external data for the
configuration session at run time. Select this check box to return external
value details during the order capture configuration session.

Configuration Attributes Configuration attributes data is normally not essential to the function of the
Configurator, and includes data such as a person’s name, phone, or email.
Select this check box to return configuration attribute data at run time.

Request Details page (2 of 2)

Display Options

Display Component
Violations

Select this check box to return component violation information at run time.

Display Selection Violations Select this check box to return selection violation information at run time.

Package Components

The Package Components grid appears when you select the Package Component check box in the Request
the Following section described above. If the product is a package item, it allows you to select which
of the package components and their attributes to include in the request details.

PeopleSoft Proprietary and Confidential 287

Setting Up Integration Chapter 22

Accessing the Advanced Configurator Solution
from Within PeopleSoft CRM

This section provides an overview of how to launch PeopleSoft Advanced Configurator
in PeopleSoft CRM applications, and discusses:

• Sample configuration

• Configuration result details

Accessing Advanced Configurator
You can access the Advanced Configurator from each of the following:

• PeopleSoft Enterprise Order Capture.

• PeopleSoft Enterprise Order Capture Self Service.

• PeopleSoft Installed Products.

• Product Enterprise Catalog (Product Details).

The following table identifies the Collaborative Selling entry points from which you
can access PeopleSoft Advanced Configurator:

Application/Access Point Page Name Navigation

Order Capture (RO_CAPTURE) Entry Form Order (RO_FORM) Create Order/Create Quote, Entry
Form, add (configurable) product
to order line, click the Configurator
button.

Order Capture Self Service
(RE_CART)

Shopping Cart (RE_CART) Add (configurable) product to
Shopping Cart, Shopping Cart, click
the Configurator button.

Product Catalog (RB_CATALOG) Product Details (RB_PROD_DTL) Access a product catalog, select a
product from the Product Display
page, click the Configurator button.

Users can configure their products and product packages by clicking on the Configurator button within
the calling application. Once the product is configured, the configuration is saved to the database. This
occurs for both simple and compound configurations. When the configuration session is complete, and
order information is updated, the system returns the user to the main calling application.

288 PeopleSoft Proprietary and Confidential

Chapter 22 Setting Up Integration

Pages Used to Access Product Configuration

Page Name Object Name Navigation Usage

Configuration HTML Page CFG_HTML_SEC Create Order/Quote, Entry
Form,. Add (configured)
Product to Lines. Click the

button.

Add (configured) Product to
Cart, Shopping Cart, Click

the button.

Service Management,
Maintain Service, add
(configurable) product, click

the button

360 Degree View, Browse
Catalog, Product Application
page, Select configurable

product, Click the
button.

Access a product catalog,
select a product from the
Product Display page, click

the button.

Use the Configuration
HTML page to configure a
product via a PeopleSoft
Advanced Configurator
session.

Sample Product Configuration
The following is an example of a configuration session initiated from within PeopleSoft Order Capture. It
shows the custom user interface for a complete sample solution that is supplied with Advanced Configurator.

PeopleSoft Proprietary and Confidential 289

Setting Up Integration Chapter 22

Example of a configuration user interface

Viewing Configuration Details
Advanced Configurator allows you to extract information from individual configurations for
additional processing and record-keeping. A common use of configuration details is the population
of the line details of an order or quote. When you set up the schema for the solution, you specify
whether you want to extract configuration information and which data you want. Advanced
Configurator delivers the data in XML form. Because you also specify an XSLT or stylesheet in
the schema, the XML formatted data is rendered in a meaningful form.

290 PeopleSoft Proprietary and Confidential

Chapter 22 Setting Up Integration

An example of configuration details used to populate an order

PeopleSoft Proprietary and Confidential 291

Setting Up Integration Chapter 22

292 PeopleSoft Proprietary and Confidential

PART 6

Building a Custom User Interface

Chapter 23
Understanding the Run-Time System

Chapter 24
JSP and Page Templates

Chapter 25
Processing User Picks and Entries

Chapter 26
Processing Configurator Form Controls in JSP Pages

Chapter 27
Using JSP Templates for Form Controls

Chapter 28
Using the Page Editor Extensions for Dreamweaver

Chapter 29
Compound Modeling

CHAPTER 23

Understanding the Run-Time System

This chapter provides an overview of the Configurator run-time system and discusses:

• Deployment framework.

• Advanced Configurator web components.

• Sequential application JSP pages.

• Deploying a web application based on a single component model.

• Deploying a solution in a mobile environment.

• Deploying a web application based on a compound model.

Deployment Framework
The PeopleSoft Advanced Configurator web deployment framework enables both rapid
web-application development and good web performance.

The web application framework requires Java scripting and HTML coding skills; however, it separates the
functionality into small components, or pages, that you can quickly compose and easily maintain.

The PeopleSoft Advanced Configurator engine is decoupled from the web application service,
keeping the engine stateless and the entire state of each user’s configuration session maintained
solely by the web application. This is done by embedding all the information needed to recreate
each user’s session within hidden input fields on each page of the web application. This information
is then sent back to the web server with every HTML form submission.

The Configurator engine is accessed via its public interfaces, which run on the application server. The
following diagram shows the architecture of a midtier application managing the data flow between the
Configurator engine service and the web user, in which the midtier proxies as the client:

Browser Network
Application server

and solutions
Configurator Server

User environment is de-coupled from the processing

Create a Web client application for the Configurator by creating application JavaServer pages (JSP) that also run
on the application server. Your JSP application pages call the Configurator interfaces and run other supporting
Configurator JSP pages. JSP pages are web pages written using both Java scriptlets and HTML syntax.

See Chapter 24, “JSP and Page Templates,” page 305.

PeopleSoft Proprietary and Confidential 295

Understanding the Run-Time System Chapter 23

You can design your web pages entirely using HTML, except for the form controls that access data from the
configuration models that are processed by the Configurator Engine. Each decision point in the model maps
to a selection point for the client, or web application, and can be implemented by a PeopleSoft-specific
HTML form control. Simple Java scriptlets in the JSP pages are necessary to manually include the
Configurator form control templates, which implement the HTML selection points.

Note. For even faster and easier application development, you can use the popular Dreamweaver web-authoring
tool’s extensions to drag-and-drop Configurator’s form control templates into your application pages.

During the configuration session, the user steps through a series of HTML form-based JSP pages,
submitting a set of picks, or configuration records, for each page. The following diagram illustrates
how the user’s picks are sent to the Configurator engine, which processes the model’s constraints
and redirects the configuration state back to the subsequent JSP page.

296 PeopleSoft Proprietary and Confidential

Chapter 23 Understanding the Run-Time System

1st JSP page

WCP API

getControlData()

Form control

Submit

COP API Configurator
engine

CalicoProcessForm.jsp

1. Processes configuration record
2. nextpage (redirect)

null

2nd JSP page

WCP API

getControlData()

Form control

Submit

COP API Configurator
engine

CalicoProcessForm.jsp

1. Processes configuration record
2. nextpage (redirect)

User picks
from 1st and
2nd pages

3rd JSP page

WCP API

getControlData()

Form control

Submit

COP API Configurator
engine

CalicoProcessForm.jsp

1. Processes configuration record
2. nextpage (redirect)

To 4th JSP page

User picks
from 1st

page

Data submission and return

PeopleSoft Proprietary and Confidential 297

Understanding the Run-Time System Chapter 23

Form Controls HTML provides these user-selection input/output mechanisms for
related choices (or picks), such as:

• Radio buttons, enabling the user to make a single selection from the
displayed items; e.g., the domain members of a decision point.

• Check boxes, enabling the user to make more than one selection
from the displayed items

• Drop-down lists, enabling the user to make a single selection
from a list of items.

• Selection lists, enabling the user to make more than one
selection from a list of items.

Form controls are rendered by all the code between the <FORM>
and </FORM> HTML tags.

Form Control Item A user-selectable choice on a form control that maps to a domain
member in a decision point in the model.

JSP Pages (JavaServer
Pages)

Scripted pages that consist of both HTML and simplified Java that
is scripted along with the HTML. JSP pages are processed into pure
HTML with run-time data included. A JSP page is a file or URL with
a .jsp extension instead of an .html extension.

See http://java.sun.com/products/jsp/http://java.sun.com/products/jsp/

Application JSP Pages JSP pages that correspond to web pages that you create as a client
application, which runs on a midtier environment, not in a browser.
The JSP environment represents a client application connecting the
web user to one or more server-side services.

Page template An application JSP page that is processed to dynamically generate data to return
to the web user along with the HTML web page. The data typically is provided
by a specialized service; e.g., the PeopleSoft Advanced Configurator Engine.

Form control template A relatively small JSP page (provided) representing a form control that
is included during the processing of an application JSP page.

Note. Configurator form control templates display selection points for a
model on the users’ web pages and accept users’ picks.

Processor pages JSP pages (provided) necessary to pre-process the user’s picks before
sending them to the Configurator Engine.

Advanced Configurator Web Components
The following interfaces enable you to create a dynamic web client application for
the PeopleSoft Advanced Configurator Engine:

• Configurator form control templates—JSP pages that retrieve information from the Client
Operations Processor (COP) about decision points and domain members, and dynamically
generate HTML for user input and messages on pick violations.

298 PeopleSoft Proprietary and Confidential

http://java.sun.com/products/jsp/

Chapter 23 Understanding the Run-Time System

• CalicoUI.properties—a text file that sets display properties for the HTML generated
by Configurator form control templates.

• Configurator JSP processor pages—which enable you to use the Configurator controls
templates from your application JSP pages.

• WCP—Web Client Processor, which converts user picks from strings to objects, and
passes them to the COP for processing.

• Client Operations Processor (COP)—which processes user picks to retrieve the current state
of decision points and domain members from the engine.

See Chapter 12, “Using the COP Java API,” page 161.

A dynamic Web client application is created by including Configurator JSP pages (among them,
the Configurator control templates) in your application JSP pages, and setting template parameters
and display properties for the form control template JSP pages.

The Configurator JSP pages make the necessary calls to the WCP and COP to generate an HTML page that has:

• Radio buttons, check boxes, selection lists, and drop-down selection lists that display the
current state of selection points and domain members.

• Text lists that display messages about constraint violations.

• A hidden INPUT tag that submits all previous user picks when the page is submitted.

Note. The Web client’s request for the first JSP page has no user picks, so the
hidden INPUT tag has and submits none.

Sequential Application JSP Pages
In building an application, assume that:

• Page1.jsp contains the code for grouped radio buttons that let the Web client user
choose either a coupe or a pickup automobile.

• Page2.jsp contains the code for grouped radio buttons that let the Web client user choose
one of these interiors: leather, cloth, or vinyl.

• Neither page has default picks.

• The configuration model for the two pages, Vehicles01, has this constraint: a pickup
cannot have a leather interior.

• When the user submits his/her picks on Page1.jsp, the next page, Page2.jsp is processed.

If the web client requests Page1.jsp, the special servlet for Page1.jsp creates an HTML page with radio
buttons for coupe and pickup displayed as selectable—that is, neither selected nor eliminated. If the
web client user chooses pickup and submits the HTML page, the servlet (the CLASS file of a JSP page)
for Page2.jsp creates an HTML page with the radio buttons for cloth and vinyl displayed as selectable,
and the radio button for leather displayed as computer-eliminated. If the web client user chooses a
cloth interior and submits the second HTML page, a hidden INPUT tag submits the user’s previous
pick of a pickup, while the radio button submits the user’s pick of a cloth interior.

Note. A JSP page that has both groups of radio buttons has the same effect when submitted:
that is, if the user chooses a pickup, the hidden INPUT tag stores that choice and the radio
button for leather is displayed as computer-eliminated.

PeopleSoft Proprietary and Confidential 299

Understanding the Run-Time System Chapter 23

Deploying a Web Application Based on a Single
Component Model

A component model is a single, standalone representation of a product or a component of a product that
contains relationships based on its own objects rather than those of another model. A set of component
models whose relationships are interdependent is called a compound model.

To deploy a solution:

1. Create a directory for your application JSP pages in the following directory:

\\bea\weblogic81\config\CalicoDomain\applications\

CalicoApp\solutions

Note. It is good practice to create your application directory name only of lower-case characters.

The application JSP pages belong in an application folder; by default the application folders
should be in the CalicoApp directory. The application server looks for application JSP pages
according to the value resulting from a concatenation of the Name and Path attributes of the
Application element in the config.xml file for the Configurator domain:
(\bea\weblogic81\config\CalicoDomain\config.xml) in the format Path + \ + Name

2. Copy these two files in the same application folder:

CalicoProcessForm.jsp

CalicoUI.properties

3. Modify \bea\weblogic81\config\CalicoDomain\config.xml to the desired settings.

See http://e-docs.bea.com/wls/docs81/index.html

and

PeopleSoft Enterprise CRM 8.9 Installation Guide

4. Modify \bea\weblogic81\config\CalicoDomain\applications\CalicoApp\Web-
inf\config\verify.properties by setting the “messages” flag to FALSE.

5. You are responsible for creating or modifying only the following files for an entire
Configurator web application:

a. You must implement your application JSP pages.

b. You should modify the display configuration file, CalicoUI.properties.

c. You can customize the application’s copy of CalicoProcessForm.jsp.

d. You can copy one of the form control templates (rename the copy, but put it in the
application directory), and then customize the copy.

Optimizing Performance
For better performance, you should disable session support by starting your JSP application pages
(that do not access the implicit session object) with the following tag:

<%@ page session="false" %>

300 PeopleSoft Proprietary and Confidential

Chapter 23 Understanding the Run-Time System

This will prevent the JSP compiler from generating code to create session objects. However, you will not
be able to implement any supporting JavaBeans with session scope for these applications.

Restore Policy
A user’s request to recover a saved configuration presents a challenge in light of the requirement for that
configuration to run on a compatible version of the model that it was created with. It is conceivable that the picks
on the saved configuration correspond to selection points that were removed in an intervening model update.

Deploying a Solution in a Mobile Environment
A solution based on PeopleSoft Advanced Configurator can be installed and run entirely
locally. This capability ensures that a field user does not require a configuration-time
connection to the enterprise installation of Configurator.

PeopleSoft Enterprise Mobile Configurator allows the field user to:

• Log on to the enterprise server to download a current Solution Package—a model(s),
pages, and images that comprise the application.

• Configure products or services while offline.

• Log on to the enterprise and upload saved configurations and their associated artifacts (such as a bill of
materials) to the enterprise database store or for further processing within an ERP system.

• Request existing configurations while logged into the enterprise system.

• Restore existing configurations for reference or modification.

To run a Solution Package, the mobile user’s machine must meet these requirements:

• Windows 2000 operating system

• The following Mobile Configurator components installed:

- Configurator

- WebLogic Application Server

- Configurator Mobile Client

Configurator Mobile components are available on media separate from the Enterprise Server.
Mobile machine installation is performed by an IT administrator.

Distributable Solution Packages are created and managed with the PeopleSoft Advanced
Configurator Packaging Tool .

Very little is required to adapt a PeopleSoft Solution for mobile deployment.

The model implementor must see that all model data is internal to the model, and not requested from a
database or another file. Such data can be easily internalized by the Visual Modeler.

The site developer must set the restore policy and return page in the CalicoUI.properties file.
Restore policies are described in the following section.

PeopleSoft Proprietary and Confidential 301

Understanding the Run-Time System Chapter 23

See Also

Part 2, “Product Modeling with a Component Model,” page 9

Part 3, “Product Modeling with Compound Models,” page 121

Part 7, “Mobile Product Configuration,” page 381

Deploying a Web Application Based on a Compound Model
To deploy a compound model-based solution:

1. Deploy the compound model’s component models (the .cms files) to the server by compiling them
on the Visual Modeler or deploying them using the Administration Tool.

2. Similarly, deploy the compound model’s XML compound structure document to the server by
compiling it on the Visual Modeler or deploying it using the Administration Tool.

3. Create a directory for the compound model in the following directory:

\\bea\weblogic81\config\CalicoDomain\applications\CalicoApp\

4. Following the procedure described in “Create a directory for your application JSP pages in
the following directory”, deploy, in the compound model directory you just created, each
component model as if it is a single, standalone model.

When you are done, the directory structure should look similar to this example:

\\bea\weblogic81\config\CalicoDomain\applications\CalicoApp\

<Compound Model>

\Model1

\pages

CalicoProcessForm.jsp

CalicoUI.properties

\Model2\

\pages

CalicoProcessForm.jsp

CalicoUI.properties

\Model3\

\pages

CalicoProcessForm.jsp

CalicoUI.properties

5. Update the compound model properties file CalicoNA.properties with the appropriate values.

See Appendix D, “Compound Model Properties File,” page 459.

6. Place CalicoNA.properties in the compound model’s root:

\\bea\weblogic81\config\CalicoDomain\applications\CalicoApp\

<Compound Model>

CalicoNA.properties

<compound model schema>.xml

...

302 PeopleSoft Proprietary and Confidential

Chapter 23 Understanding the Run-Time System

\Model1

\pages

...

PeopleSoft Proprietary and Confidential 303

Understanding the Run-Time System Chapter 23

304 PeopleSoft Proprietary and Confidential

CHAPTER 24

JSP and Page Templates

This chapter discusses:

• The midtier framework.

• Scope of the servlet.

• Using JSP processing.

• Writing JSP.

• Using generated Java and class files.

The Midtier Framework
The source code for the midtier applications is put into a set of text files that resemble HTML pages. Each
file, or page, contains the HTML code for the generic style of the web server’s HTTP response to the types
of HTTP requests from the user. These generic response pages are called page templates.

The emergence of JavaServer Pages (JSP) technology enables web page designers to intersperse
Java source code with the HTML code to script server-side servlets that will compile and execute
on the midtier host at run time. JSP includes the following languages:

• Java (scriptlets)

• HTML and JavaScript

• JSP tags

Note. JSP does not include, but does allow, client-side JavaScript, which is treated the same as HTML.

The web server passes incoming user requests to an application server specified by the port number portion of
the URL. The application server converts the JSP source into pure Java source (for a servlet implementation).
Then the application server runs the newly created servlet in its servlet engine. The output of the servlet is
a stream of HTML text that the application passes to the web server to return to the user’s browser.

The following diagram shows the flow of communication between the midtier and the user:

PeopleSoft Proprietary and Confidential 305

JSP and Page Templates Chapter 24

User clicks on JSP link in
browser

Servlet builds HTML

Application server
delivers HTML response

to browser

WebLogic application server
builds and launches servlet

Each JSP page processes a response to a user request

PeopleSoft Advanced Configurator’s framework employs the WebLogic application server
in its environment. WebLogic application servers by default employ the port number 7777,
but may be set to listen to the standard port 80.

Note. An external web server can be configured to proxy requests for JSP pages to
the application server using port 7777.

Users would load the JSP pages using the web server’s host name (and port number if
not port 80), as shown in the following URL:

http://WebServerHostName:7777/sample/myPC-page1.jsp

Whenever the user loads a JSP page in a browser, the WebLogic application server converts the JSP into a
servlet JAVA file and a corresponding servlet CLASS file that implements the servlet interface. These files
live securely on the machine hosting the WebLogic server, not in the browser. The WebLogic server then
runs the servlet, which generates HTML that is served back to the browser. During a Configurator session,
the user is linking to and loading JSP pages, yet only sees HTML output in the browser.

Note. You can compare the JSP source (on the midtier server) with the generated HTML
(in the user’s browser: use the View/Page Source menus).

The following diagram shows the transition from JSP source code to an executing servlet:

306 PeopleSoft Proprietary and Confidential

Chapter 24 JSP and Page Templates

Java source code (.java)

PeopleSoft
Advanced Configurator

engine

Java servlet class (.class)

HTML back to browser

JSP user loads JSP
URL into browser

3

21

JSP executes on the midtier and displays HTML in the browser

Note. This compilation only occurs the first time that the JSP page is requested; however, if
that JSP source file is modified, then WebLogic recompiles it.

Scope of the Servlet
Each page template defines a separate servlet that executes the complete Configurator response
to an HTTP user request. Each servlet binary remains cached to rapidly respond to a particular
request from any subsequent user or any subsequent session.

The Configurator’s midtier servlets are like any other servlets—their scope is not limited to
the source in a single JSP page or file. The Java code can call out to objects and methods in
external CLASS or JAR files anywhere in the servlet CLASSPATH.

Best practices for JSP design use a scripting philosophy, keeping the page size small and complexity per page
at a minimum. This enables rapid code development/deployment and easier maintenance. However, JSP-based
applications need not be small or simple. JSP uses special directive tags to call out to JavaBeans or other
components where much of the application logic can be delegated (and be transparent to the JSP source).

Using JSP Processing
A JSP source file is processed in two stages—translation time and request processing time. At
translation time, which occurs when a user first loads a JSP page, the JSP source file is compiled
to a Java class, usually a Java servlet. The HTML tags and as many JSP tags as possible are
processed at this stage, before the user makes a request.

Request processing time occurs when the user clicks in the JSP page to make a request. The request
is sent from the client to the server by way of the request object. The JSP engine then executes the
compiled JSP file, or servlet, using the request values the user submitted.

PeopleSoft Proprietary and Confidential 307

JSP and Page Templates Chapter 24

When you use scripting elements in a JSP file, you should know when they are evaluated. Declarations are
processed at translation time and are available to other declarations, expressions, and scriptlets in the compiled
JSP file. Both expressions and scriptlets are also evaluated at translation time. The value of each expression
is converted to a string and inserted in place in the compiled JSP file. Scriptlets, however, are evaluated at
request processing time, using the values of any declarations and expressions that are made available to them.

The JSP page finally responds to the request as the source reads sequentially; that means that each block of
Java code—and its resulting display—fires in the normal sequence of the HTML page, just as you’ve written it.

Writing JSP
JSP programming is beyond the scope of this document; however, you can access a very
useful online tutorial for JSP at the following URL:

http://e-docs.bea.com/wls/docs81/jsp/index.html

You can comfortably read JSP code simply by knowing how the Java code can be embedded within
the HTML, and how the HTML code can be embedded within the Java.

• The scriptlet syntax <% ... %> can handle declarations, expressions, or any other type of
code fragment valid in the page scripting language, e.g., Java.

• The include syntax <%@ include file="anotherJspFile" %> includes
a specified external JSP page.

• JSP uses special tags to embed Java code within the HTML: The expression syntax <%= ... %>
defines a scripting language expression and casts the result as a string.

• The declaration syntax <%! ... %> declares variables or methods.

• When you mingle scripting elements with HTML and JSP tags, you must always end a
(JSP) scripting element before you start using (HTML) tags and then reopen the scripting
element afterwards, as shown in the following JSP code:

<%

if (condition) {

%> <!-- closing the scriptlet before the HTML tags start -->

<!-- HTML text goes here outside the scripting tags...-->

<% }

else {

%> <!-- closing the scriptlet before the HTML tags start -->

<!-- HTML text goes here outside the scripting tags...-->

<% } %> <!-- reopening a scriptlet to close the else {} block -->

• HTML text can be embedded within print statements in the Java code portions, for example

out.println("<P>

collection:" +

currCollectionProperty.getName()+"</P>
");

You can have multiple blocks of Java code throughout a JSP page. You can switch between HTML and Java
code anywhere, even within Java constructs and blocks. Notice in the loop shown here that declares a Java loop,
switches to HTML, then back to Java to close the loop. The HTML is output multiple times as the loop iterates.

The following JSP code generates the typical “Hello World” HTML web page:

308 PeopleSoft Proprietary and Confidential

Chapter 24 JSP and Page Templates

<html>

<head><title>Hello World in JSP</title></head>

<body>

<h1> Hello World Test </h1>

<p><i> This is HTML. The following is Java! </i><p>

<%

for (int i = 1; i<=5; i++)

out.print("This is a Java loop! " + i + "Hello World<p>");

%>

</body>

</html>

You can use the implicit object out to print directly to the servlet output stream from your Java code.
Therefore, the servlet can output HTML text directly, as illustrated in the following line of JSP code:

out.print("This is a Java loop! <i>" + i + "</i> <p>");

Using Generated Java and Class Files
When the application server first compiles one of your JSP pages within your client
application directory, the application server also creates the following folder and files, all
named with a prepending underscore “_” character:

• A corresponding application directory by the same application name.

• A JAVA source file.

• A Java CLASS file.

WebLogic stores this new directory structure in:

\bea\weblogic81\config\CalicoDomain\myserver\.wlnotdelete\extract\myserver_Calico⇒

Domain_CalicoApp\jsp_servlet

The application server also creates a corresponding JAVA source file and Java CLASS file with
an underscore prefix for the Configurator JSP processor page.

For example, a Web client application contains these JSP pages:
C:\WirelessPlan\pages\myappdirectory\MyPage1.jsp

C:\WirelessPlan\pages\myappdirectory\CalicoProcessForm.jsp

C:\WirelessPlan\pages\myappdirectory\alicoUI.properties

The application server creates the following directory and files for saving the JAVA and CLASS files:
\bea\weblogic81\config\CalicoDomain\myserver\.wlnotdelete\extract\ myserver_⇒

CalicoDomain_CalicoApp\jsp_servlet_myapp

directory_myPage1.java

_myPage1.class

_CalicoProcessForm.java

_CalicoProcessForm.class

The application server generates only a Java source file and compiles it each time the Web
client first requests a newly installed, or modified, JSP page.

PeopleSoft Proprietary and Confidential 309

JSP and Page Templates Chapter 24

310 PeopleSoft Proprietary and Confidential

CHAPTER 25

Processing User Picks and Entries

This chapter provides an overview of run-time processing and discusses:

• Initializing the web client processor (WCP).

• Processing user picks and entries.

• Making COP calls.

• Using WCP methods.

Understanding Run-Time Processing
The Web Client Processor (WCP) communicates with the Client Operations Processor (COP)
about the run-time configuration state of a PeopleSoft Advanced Configurator model. The COP
is the public interface for the PeopleSoft Advanced Configurator Engine. It processes user picks
to retrieve the current state of selection points and form control items.

The WCP interfaces are convenience API, and therefore are optional. You could implement
the WCP behavior completely using the COP API.

The WCP (Web Client Processor) API is used exclusively within the Configurator JSP processor
page, CalicoStartFormInc.jsp. The WCP has the following methods:

• initialize()—initializes the WebClientOperations object and starts a configuration session for the
given model. This method has four signatures. Two of them take a ClientOperations object as an argument.

• processConfigurationRecords()—converts a configuration records string to Choice
objects and passes those objects to the COP for processing.

• getClientOperations()—returns the ClientOperations object for the current
configuration session. This enables calls to the COP.

• getObjectNames()—returns a string array of all of the decision points or
selection points in the current model.

• getConfigurationRecords()—returns a configuration records string for
the current configuration session.

• loadConfigurationRecords()—converts a stored configuration records string to Choice
objects and passes those objects to the COP to load a configuration.

• getModelName(), getModelVersion() and getModelCompileVersion()—each of which
returns the requested information, as a string, for the current configuration session.

• resetConfiguration()—clears the internal state for the current configuration session.

• release()—releases the WebClientOperations object.

PeopleSoft Proprietary and Confidential 311

Processing User Picks and Entries Chapter 25

The following sections describe these calls in more detail.

See Also

Chapter 12, “Using the COP Java API,” page 161

Chapter 13, “Understanding the Configurator XML Interface,” page 185

Initializing the Web Client Processor
To initialize the WCP object created by the application server, call the WCP method
initialize(), which has four signatures.

All four signatures take the following arguments:

• Name and version of the model.

• The desired locale of the form control data.

• Whether you want the control data to be HTML-encoded.

Two of the signatures also take as an argument the compile version of the model. Two signatures—one that
takes a compile version argument and one that does not—also take a ClientOperations object as an argument.

Initializing the WCP with your own ClientOperations object allows you to extend the normal
ClientOperations processing by implementing the ClientOperations interface with your own custom
class, and using an instance of that class to initialize the WCP. There are multiple reasons why you
might want to do this. One would be to perform additional processing before and/or after normal
processing. Another would be to keep track of and perform processing on non-configuration data
that may be included on your JSP page but not part of the actual model.

See Chapter 12, “Using the COP Java API,” page 161.

Syntax

Syntax to initialize the WCP is:

void initialize (Locale appLocale,

String modelName String modelVersion

boolean HtmlEncoding)

void initialize (Locale appLocale,

String modelName String modelVersion String modelCompileVersion

boolean HtmlEncoding)

void initialize (ClientOperations clientOperations

Locale appLocale,

String modelName String modelVersion

boolean HtmlEncoding)

void initialize (ClientOperations clientOperations

Locale appLocale,

String modelName String modelVersion String modelCompileVersion

312 PeopleSoft Proprietary and Confidential

Chapter 25 Processing User Picks and Entries

boolean HtmlEncoding)

Processing User Picks and Entries
If a Web client user picks an item using a Configurator form control and submits the pick, the
pick is posted to a Configurator JSP page, CalicoProcessFormInc.jsp, that bundles user picks
into a string. The string includes not only all of the picks that the user explicitly submitted, but
also all prior user picks (stored in a hidden HTML input tag).

See Also

Chapter 27, “Using JSP Templates for Form Controls,” page 323

Configuration Records
Each user pick in the string created by CalicoProcessFormInc.jsp is called a configuration record.
There are 2 types of configuration records, one for selection points and one for extern variables. A
selection point configuration record has three parts, separated by a tilde (~):

• Selection point.

• Form control item—the form control item picked by the user.

Note. A form control item represents a domain member in a selection point in the model.

• Quantity—the number of copies of the form control item picked by the user. The string of user picks
(configuration records) is called a configuration records string. Each record in the string is separated
by a pipe (|). Thus, the configuration records string has the following syntax:

<selectionPoint>~<controlItem>~<quantity>|<externVariable>~~<value1>~<value2>|<selec⇒

tionPoint>~<controlItem>~<quantity>

For example, if a Web client user selects the form control item called Coupe at the selection point called
Vehicle, and also picks the form control item called Leather at the selection point called Interior, the
Configurator form control JSP processor page creates the following configuration record:
vehicleSelection~Coupe~1.0|interiorSelection~Leather~1.

Processing

To determine the run-time state of a Configurator model, the COP processes user picks
that are passed to it as Choice objects.

The WCP method processConfigurationRecords():

• Takes as an argument the configuration records string created by the Configurator
JSP page that bundles user picks.

• Converts each record in the configuration records string to a Choice object.

• Passes all of those Choice objects to the COP to determine the run-time state of the current Configurator model.

Syntax

Syntax for processConfigurationRecords is:

PeopleSoft Proprietary and Confidential 313

Processing User Picks and Entries Chapter 25

void processConfigurationRecords (String configurationRecords)

Attribute Records
Each text input entry in the string created by CalicoProcessFormInc.jsp is called an attribute record.

An attribute record has two parts, separated by a tilde (~):

• Text input name

• Text input value

The string of text input entries (attribute records) is called an attribute records string. Each
record in the string is separated by a pipe (|) Its syntax is:

<textInputName>~<textInputValue>[|<textInputName>~<textInputValue>]+

For example, if a Web client user enters the value “Coupe” into the text input control Vehicle,
and also enters the value “Leather” into the text input control Interior, the Configurator form
control JSP processor page creates the following attribute record:

Vehicle~Coupe|Interior~Leather|

Processing

The values in text input controls are kept separate from the configuration record because they are not passed
to the Configurator engine. Instead, the CalicoStartFormInc.jsp pulls the processed attribute record from
the request object and sets it onto the configuration object of the COP using the setAttribute() method.
Although this information is not used directly in determining the configuration, it is stored as part of the
configuration record for the purpose of integration with other applications (and databases).

Syntax

Syntax for setAttribute() is:

void setAttribute(String textInputCtrl, String textInputValue);

Making COP Calls
As the public interface for the PeopleSoft Advanced Configurator Engine, the COP processes user
picks to retrieve the run-time state of selection points and form control items.

The WCP method getClientOperations() does the following:

• If you initialized WCP with your own ClientOperations object (that is, with an instance of the
ClientOperationsImpl class), it returns that object for the current configuration session.

• If you did not initialize WCP with a ClientOperations object, it creates and returns a default instance
of the ClientOperationsImpl class for the current configuration session.

This method does not take an argument.

Getting the ClientOperations object enables you to directly retrieve the run-time state of
selection points and form control items through the COP.

See Chapter 12, “Using the COP Java API,” page 161.

314 PeopleSoft Proprietary and Confidential

Chapter 25 Processing User Picks and Entries

Syntax

Syntax for getClientOperations() is:

ClientOperations getClientOperations()

Using WCP Methods
The WCP has other methods to help you design a Web client application. The following
sections describe these methods and provide their syntax.

Getting Decision or Selection Points
The WCP method getObjectNames() returns an array of String objects containing either:

• All selection points in the current Configurator model.

• Public selection points in the current Configurator model.

This method takes a boolean argument: TRUE returns all selection points. FALSE returns only
public selection points. It does not return private selection points—that is, selection points that
are not displayed to—and cannot be selected by—the Web client user.

Syntax

Syntax for getObjectNames() is:

String[] getObjectNames(boolean allObjects)

Getting and Processing Stored Configuration Records
The WCP method getConfigurationRecords() returns a configuration records string with all user
picks for the current configuration session. It takes no argument.

Syntax

Syntax for getConfigurationRecords() is

String getConfigurationRecords()

If you save a configuration records string in an external database, you can pass it to the WCP
method loadConfigurationRecords(), which does the following:

• Converts each record in the configuration records string to a Choice object.

• Passes all of those Choice objects to the COP to load a configuration.

Syntax

Syntax for loadConfigurationRecords() is:

void loadConfigurationRecords(String configurationRecords)

PeopleSoft Proprietary and Confidential 315

Processing User Picks and Entries Chapter 25

Getting Model Name, Version, and Compile Version
The WCP methods getModelName(), getModelVersion(), and getModelCompileVersion(), each return a String
with the information requested, for the current configuration session. None of them take an argument.

Syntax

Syntax for these methods is:

String getModelName()

String getModelVersion()

String getModelCompileVersion()

Clearing Model State
The WCP method resetConfiguration() clears state for the current configuration
session. It does not take an argument.

Syntax

Syntax for these methods is:

void resetConfiguration()

Releasing the WCP
The WCP method release() releases:

• The ClientOperations object, which is either the default instance of the ClientOperationsImpl class that was
created by getClientOperations(), or the instance of the COPExtensionImpl class that you passed to initialize().

• Internal objects for the current configuration session. This method does not take an argument.

Syntax

Syntax for these methods is:

void release()

316 PeopleSoft Proprietary and Confidential

CHAPTER 26

Processing Configurator Form Controls
in JSP Pages

This chapter provides an overview of the JSP pages that process a Configurator form control and discusses:

• Configurator JSP page flow.

• Processing Configurator form controls.

• Using Configurator JSP pages in a solution.

Understanding Configurator Form Control Processing
To create a client application for the Configurator, create JSP pages that use Configurator JSP
pages. There are two types of Configurator JSP pages:

• Form control template—a JSP page that creates an HTML form control (radio-button, check
box, or selection list) for a selection point for your model.

• (Form control) processor page—a JSP page that helps process a Configurator form control.

You can use a Configurator form control template in your Web client application without modification,
setting only its parameters and perhaps its display properties. You can also modify a Configurator
form control template and use the modified template in your application.

See Chapter 27, “Using JSP Templates for Form Controls,” page 323.

You must correctly use all of the Configurator form controls framework in your Web client application.
Normally, the JSP processor pages require no modification. Together, they receive, process, and return
the information needed to implement the Configurator form controls that you include in your application.
Although you can call the WCP or COP directly in the JSP pages that you create, the Configurator
JSP pages normally make all the necessary calls to these two interfaces.

Configurator JSP Page Flow
JSP page statements are interpreted in the order they are written.

The following steps through the execution path by way of the Configurator JSP pages
that are included in each application JSP page:

1. Initialization of settings in the application JSP page(s), (like including delta pricing in
the display) with the JSP built-in jspInit() function.

PeopleSoft Proprietary and Confidential 317

Processing Configurator Form Controls in JSP Pages Chapter 26

2. Application JSP page(s) execute the HTML <FORM> start tag, which specifies the name,
method, and action HTML tag attributes as follows:

<FORM name="form" method="POST" action="CalicoProcessForm.jsp">

3. Application JSP page(s) executes the JSP include directive as follows:

<%@ include file="/calico/CalicoStartFormInc.jsp" %>

Note. CalicoStartFormInc.jsp includes both CalicoConstantsInc.jsp and CalicoControlInc.jsp.

4. Application JSP page(s) execute the include directive for a Configurator JSP form control
template (only once per type of Configurator form control template, regardless of how many
of that type of template you use in that application JSP page).

Note. There may be more than one Configurator form control template per application page.

5. Application JSP page(s) ends its HTML form block by including CalicoEndFormInc.jsp.

6. Application JSP page(s) uses the HTML end form tag, </FORM> on the line following the
JSP include directive that includes CalicoEndFormInc.jsp.

7. After the user clicks the submit or reset button, CalicoProcessForm.jsp processes HTTP
POST information to generate the configuration records for the user’s picks. These picks
are then processed by the COP and the Configurator Engine.

8. The Configurator Engine runs the constraints on the user’s picks, and then returns the new configuration
state to the redirected next page application JSP page in the application sequence.

Processing Configurator Form Controls
The Configurator uses the following JSP pages to process Configurator form controls:

• CalicoProcessForm.jsp—includes CalicoProcessFormInc.jsp.

• CalicoProcessFormInc.jsp—constructs a string of user picks made on a Configurator form control,
and redirects the application server to the next page of the Web client application.

• CalicoConstantsInc.jsp—declares string constants that are used by every Configurator form
control and several Configurator JSP processor pages.

• CalicoStartFormInc.jsp—creates several hidden HTML input tags, sets display properties and pricing
attributes for Configurator form controls, initializes WCP, and processes user picks.

• CalicoControlInc.jsp—declares several methods that are used by every Configurator form control.

• CalicoEndFormInc.jsp—creates hidden input tags on Configurator form controls and
the next page, and releases the WCP object.

The next six sections describe these JSP pages in more detail.

Pre-Process Form Page
CalicoProcessForm.jsp does the following to help process Configurator form controls:

318 PeopleSoft Proprietary and Confidential

Chapter 26 Processing Configurator Form Controls in JSP Pages

• Lets you pre-process information posted by the Web client before you pass it on to be
processed by the other Configurator JSP pages.

• Includes CalicoProcessFormInc.jsp.

Post any form having a Configurator form control to CalicoProcessForm.jsp. If you do not
alter this JSP page to pre-process information posted by the browser, it always includes
CalicoProcessFormInc.jsp, which redirects to that page.

Process Form Page
CalicoProcessFormInc.jsp does the following to help process Configurator form controls:

• Constructs a string of user picks made on Configurator form controls and updates the configuration record.

• Constructs a string of attributes entered into text-entry controls and updates the attribute record.

• Redirects the application to the next JSP page of your Web client application.

Unless you pre-process information posted by the Web client, you effectively post to this JSP page.

CalicoProcessFormInc.jsp creates a configuration records string that the WCP parses to pass user
picks to the COP for processing. This string includes two types of user picks:

• Previous user picks posted from a hidden HTML input tag.

• Current user picks explicitly submitted by the user (this action updates the configuration record).

Note. CalicoStartFormInc.jsp creates the hidden HTML input tag by aggregating explicit user picks.

CalicoProcessFormInc.jsp redirects to the page whose path you set in the name attribute of the
HTML input tag that submits your application page with a Configurator form control. You
set the path by using the “Redirect_” prefix; for example:

name="Redirect_/myjspapplication/Page1.jsp" type="submit" value="Next Page">

Reset a page in the same way, using the “Reset_” prefix, which clears all user pick. For example:
<INPUT name="Reset_/myjspapplication/Page1.jsp" type="submit" value="Clear">

Constants Page
CalicoConstantsInc.jsp declares string constants. This page is included in the following
form controls processor JSP pages:

• CalicoProcessFormInc.jsp

• CalicoStartFormInc.jsp

Start Form Page
CalicoStartFormInc.jsp does the following to help process Configurator form controls:

• Creates hidden HTML input tags for the following:

- Configuration records string

- Attribute records string

- UI version

PeopleSoft Proprietary and Confidential 319

Processing Configurator Form Controls in JSP Pages Chapter 26

- Current page

- Model information

• Initializes a WCP object, and processes the configuration records string.

• Gets a ClientOperations object.

• Reads the CalicoUI.properties file and sets the display properties for Configurator form controls.

• Sets pricing attributes for Configurator form control items.

Include this JSP page in every form that has a Configurator form control immediately after the <FORM> tag.

CalicoProcessFormInc.jsp creates the configuration records string by aggregating previous and
current user picks. By creating a hidden HTML input tag for the configuration records string,
CalicoStartFormInc.jsp ensures that previous user picks are submitted with explicit user picks,
and effectively preserves the state of your Configurator model.

See Also

Chapter 26, “Processing Configurator Form Controls in JSP Pages,” Process Form Page, page 319

Control Page
CalicoControlInc.jsp declares several methods that are used by every Configurator form control.
These methods do the following for each Configurator form control:

• Add the form control to a form control map: register a Configurator form control.

• Get the model’s control data, including elimination levels, for the form control.

• Determine if the form control is priced, and format delta pricing.

• Get the form control’s display properties for conflicted and selectable.

• Parse the input string into an array of strings for each attribute of the domain member’s display attributes.

End Form Page
CalicoEndFormInc.jsp does the following to help process Configurator form controls:

• Creates hidden input tags to later post the following information:

- A map of Configurator form controls created as each form control appends its control ID
using the mapping method declared in CalicoControlInc.jsp.

- The next page.

• Releases the WCP object created in CalicoStartFormInc.jsp.

Include this JSP page in every form that has a Configurator form control, immediately before the </FORM> tag.

Using Configurator JSP Pages in a Solution
When you design a Web client application for the Configurator, you typically use the JSP pages provided,
including the form control templates, and submit to or include them on your JSP pages without change.

To implement the Configurator JSP pages, you must do the following:

320 PeopleSoft Proprietary and Confidential

Chapter 26 Processing Configurator Form Controls in JSP Pages

• Initialize your JSP page to include pricing information if you want it. Use the
standard JSP built-in method, JspInit().

• Include the Configurator form control templates that you want, where you want them on the page.

• Set the parameters for each form control template, including at least the following:

- Object name, which is the model’s decision point class name.

- Form control ID.

- Form control caption.

- Domain member attributes (such as description, size, and price), which are displayable
alongside the form control items.

- Whether to provide the option of choosing none of the form control items, and if so, the text to use
for displaying that choice: this is option for single-selection selection points.

• Modify the UI version, model name, and model compile version in CalicoUI.properties

• Set the HTML display properties (such as images, text, and text colors) for indicating the
state of an item (such as user-selected) in CalicoUI.properties.

Note. This is optional. Change these configurations properties only if you would like to customize
the HTML look-and-feel of your form controls (application scope).

• Include other CalicoStartFormInc.jsp, CalicoEndFormInc.jsp, and include Configurator
form control templates where needed.

The following code example is an application JSP page that uses the Configurator interfaces:

<HTML>

<HEAD>

<TITLE>Sample Page</TITLE>

</HEAD>

<BODY>

<%!

public void jspInit()

{

// turn on pricing for controls

setPricing(true);

// set pricingControls to specify specific controls

// that need to be priced and their pricing attributes.

}

%>

<FORM name="SampletForm" method="POST" action="CalicoProcessForm.jsp">

<%@ include file="/calico/CalicoStartFormInc.jsp" %>

<%@ include file="/calico/templates/html/SingleSelectGroup.jsp" %>

<!-- METADATA TYPE="CalicoControl" startspan-->

<%

if (params != null) {

params.clear();

params.put(PARAM_OBJECTNAME, "VehicleSelection");

params.put(PARAM_ATTRIBUTES, "Description");

PeopleSoft Proprietary and Confidential 321

Processing Configurator Form Controls in JSP Pages Chapter 26

params.put(PARAM_CAPTION,"Select a Vehicle");

params.put(PARAM_CONTROLID, "VehicleSelectionCtrl");

generateSingleSelectGroup(params, request, out);

}

%>

<!-- METADATA TYPE="CalicoControl" endspan -->

<%@ include file="/calico/CalicoEndFormInc.jsp" %>

</FORM>

</BODY>

</HTML>

The methods for setting pricing information mentioned in the code comments to jspInit() are
declared in CalicoStartFormInc.jsp. They have the following syntax:

setPricing(boolean obtainPricingInformation)

setPricingControls(Map[] selectionPoints)

You can also set the range of the levels of eliminated items that you want to display. The commented code
in the sample JSP page displays eliminated items having levels from 4 to 9, inclusive.

More specifically, you must do the following on each JSP page:

• Specify action="CalicoProcessForm.jsp" in the <FORM> tag.

• Include CalicoStartFormInc.jsp just after the <FORM> tag.

• Insert Configurator-related scriptlets and include all the Configurator form control templates
after CalicoStartFormInc.jsp, but before CalicoEndFormInc.jsp.

• Include CalicoEndFormInc.jsp just before the </FORM> tag.

322 PeopleSoft Proprietary and Confidential

CHAPTER 27

Using JSP Templates for Form Controls

This chapter provides an overview of the form control templates and discusses:

• Properties, parameters, and attributes.

• Form control templates.

• Using configuration form control templates.

• Specifying the solution’s model and locale properties.

• Application page example.

• Customizing a form control template.

• Registering custom form control templates.

• Example custom form control template.

• Common errors.

Understanding Form Control Templates
Each decision point in the model maps to a selection point for the client and can be implemented
by an HTML form control. This chapter describes the Configurator templates for the form controls
supported in the Configuration Client, which is the midtier application. A form control template is
a separate JSP page that generates a form control, using the selection point data, for a web page.
Configurator provides a JSP template file for each type of form control.

Your application JSP page(s) can contain form controls by including their corresponding form control templates.

Note. All form control templates, Configurator-specific related scriptlets, and Java code should be
inserted between the inclusion of the CalicoStartFormInc.jsp and CalicoEndFormInc.jsp processor pages.
The JSP initializing method, jspInit(), must precede CalicoStartFormInc.jsp.

You can modify the look-and-feel of the form control display in the following ways:

• Application scope—Modifying display properties’ definitions in a configuration file that an
application page passes to the form control templates.

• Form control scope:

- Setting parameters in the application page(s).

- Customizing a Configurator template—Extending the form control template by copying
the JSP template, modifying that copy, and saving it as a customized template file
that can be included in the application page(s).

PeopleSoft Proprietary and Confidential 323

Using JSP Templates for Form Controls Chapter 27

With the existing Configurator form control templates you can set either the HTML-level display
properties, such as the text color of the form control item’s display data and/or selection state,
or customize the form control’s presentation of the model’s data.

You can specify the data display in the form control to:

• Display domain member attribute information.

• Sort the form control items.

• Eliminate form control items of eliminated domain members.

• Eliminate the form control items of the eliminated domain members whose elimination
levels are beyond an inclusionary range.

• Display delta pricing and the total price.

Properties, Parameters, and Attributes
The presentation of a form control is determined by the application’s HTML display
properties, by the included form control’s HTML display properties and its data, and by the
decision point’s domain member’s display attributes.

Properties
The properties for a form control are the configurable display characteristics of the form control items
that present their selection states and their delta pricing. All form controls properties are located
in the CalicoUI.properties file. These properties are available application-wide, but to be used by a
form control, they must be passed to the form control as parameters.

Parameters
The parameters for a form control are both HTML and data presentation characteristics
your application page(s) passes to included form control templates. Typically, the properties
are passed to the templates as parameter values.

Attributes
The attributes for a form control are determined by the attributes in the model for the domain
members. Typically, the attributes are passed to the templates as parameter values. Use the
PARAM_ATTRIBUTES parameter to display the specified attributes’ data.

Form Control Templates
PeopleSoft Advanced Configurator provides a JSP code template for all HTML-compatible form
controls. This section provides describes the usage and behavior of each. JSP code and the
HTML output are located in the referenced appendix for each.

324 PeopleSoft Proprietary and Confidential

Chapter 27 Using JSP Templates for Form Controls

Note. The form control template filenames are in mixed case, i.e. SingleSelectGroup.jsp. For
the deployments running on Solaris systems, make sure the characters of the filename match
correctly (case-sensitive) with the template filenames.

Single-Select Group

The single-select group form control SingleSelectGroup.jsp consists of a list of form control items, of
which only one can be chosen. If one item in a list is selected, any previously selected item in the same
list is de-selected. The items of a form control are displayed as radio buttons.

You can create the following single-select group form control for the decision point, “OSSelection,”
with the caption “Operating System,” and the ‘Generate None’ option.

A single-select group control

The following code generates the previous form control:

<!-- METADATA TYPE="CalicoControl" startspan-->

<%

if (params != null)

{

params.clear();

params.put(PARAM_OBJECTNAME, "[MyComputerConfig].OSSelection");

params.put(PARAM_ATTRIBUTES, "Desc");

params.put(PARAM_CONTROLID, "OSSelectionCtrl");

params.put(PARAM_CAPTION, "Operating System");

params.put(PARAM_GENERATENONEMODE, "1");

params.put(PARAM_GENERATENONETEXT, "None");

generateSingleSelectGroup(params, request, out);

}

%>

<!-- METADATA TYPE="CalicoControl" endspan -->

See Appendix C, “Advanced Configurator Form Controls,” Single-Select Group Form Control, page 449.

Multi-Select Group

A multi-select group form control consists of a list of form control items, of which more
than one item can be chosen. The items of a form control are displayed as check box
buttons. Each item can be either selected or de-selected.

You can create the following multi-select option group form control for the decision point
“CDSelection” with the caption “Multimedia.”

PeopleSoft Proprietary and Confidential 325

Using JSP Templates for Form Controls Chapter 27

Multiple-select group form control

The following code generates the control in the figure:

<!-- METADATA TYPE="CalicoControl" startspan-->

<%

if (params != null)

{

params.clear();

params.put(PARAM_OBJECTNAME, "[MyComputerConfig].CDSelection");

params.put(PARAM_ATTRIBUTES, "Desc");

params.put(PARAM_CONTROLID, "CDSelectionCtrl");

params.put(PARAM_CAPTION, "Multimedia");

generateMultiSelectGroup(params, request, out);

}

%>

<!-- METADATA TYPE="CalicoControl" endspan -->

See Appendix C, “Advanced Configurator Form Controls,” Multi-Select Group Form Control, page 450.

Single-Select List

A single-select list form control consists of form control items in a drop-down list, of which
only one can be chosen. It’s similar in functionality to a single-select group form control,
but it requires less form control space for the display.

The StateTag indicates the domain member state of the form control item in the drop-down list. The
following table shows the default text symbols used to connote the domain member states:

Symbolic tags Domain member states

– Selectable

>> User-selected

> Computer-selected

> Default-selected

X User-eliminated

X Computer-eliminated

! Conflict

326 PeopleSoft Proprietary and Confidential

Chapter 27 Using JSP Templates for Form Controls

Note. These state tags can be customized by modifying the property values in the CalicoUI.properties
file, which is located in your application directory.

You can create the following single-select list form control for the decision point “OSSelection”
with the caption “Operating System” and the ‘None’ option.

Single-select list

The following code generates the form control in the figure:

<!-- METADATA TYPE="CalicoControl" startspan-->

<%

if (params != null)

{

params.clear();

params.put(PARAM_OBJECTNAME, "[MyComputerConfig].OSSelection");

params.put(PARAM_ATTRIBUTES, "Desc");

params.put(PARAM_CONTROLID, "OSSelectionCtrl");

params.put(PARAM_CAPTION, "Operating System");

params.put(PARAM_GENERATENONEMODE, "1");

params.put(PARAM_GENERATENONETEXT, "None");

generateSingleSelectList(params, request, out);

}

%>

<!-- METADATA TYPE="CalicoControl" endspan -->

See Appendix C, “Advanced Configurator Form Controls,” Single-Select List Form Control, page 452.

Multi-Select List

A multi-select list form control consists of form control items in a list, of which more than one item
can be chosen. To select or de-select more than one item, a user presses the Ctrl/Shift keys and clicks
on the subsequent items to select them or clicks (on selected items) to de-select them.

The StateTag indicates the domain member state of the form control item in the drop-down list. The
following table shows the default text symbols used to connote the domain member states:

Symbolic tags Domain member states

– Selectable

>> User-selected

> Computer-selected

> Default-selected

PeopleSoft Proprietary and Confidential 327

Using JSP Templates for Form Controls Chapter 27

Symbolic tags Domain member states

X User-eliminated

X Computer-eliminated

! Conflict

Note. These state tags can be customized by modifying the property values in the CalicoUI.properties
file, which is located in your application directory.

You can create the following multi-select list form control for the decision point
“CDSelection” with the caption “Multimedia”.

Multi-select list control form

The following code generates the previous form control:

<!-- METADATA TYPE="CalicoControl" startspan-->

<%

if (params != null)

{

params.clear();

params.put(PARAM_OBJECTNAME, "[MyComputerConfig].CDSelection");

params.put(PARAM_ATTRIBUTES, "Desc");

params.put(PARAM_CONTROLID, "CDSelectionCtrl");

params.put(PARAM_CAPTION, "Multimedia");

generateMultiSelectList(params, request, out);

}

%>

<!-- METADATA TYPE="CalicoControl" endspan -->

See Appendix C, “Advanced Configurator Form Controls,” Multi-Select List Form Control, page 452.

Single-Select Table

A single-select table form control consists of form control items in the row/column format based on radio
buttons and table HTML elements. Each row in the table contains a radio button and attributes for each
available form control item. Only one of the form control items can be chosen at a time.

You can create the following single-select table form control for the decision point “OSSelection”
with the caption “Multimedia” and the ‘None’ option.

328 PeopleSoft Proprietary and Confidential

Chapter 27 Using JSP Templates for Form Controls

Single-select table form control

The following code generates the form control in the figure:

<!-- METADATA TYPE="CalicoControl" startspan-->

<%

if (params != null)

{

params.clear();

params.put(PARAM_OBJECTNAME, "[MyComputerConfig].OSSelection");

params.put(PARAM_ATTRIBUTES, "Desc, PN, UC");

params.put(PARAM_CONTROLID, "OSSelectionCtrl");

params.put(PARAM_CAPTIONIMAGE, "/MyComputer/images/cd.gif");

params.put(PARAM_COLUMNHEADINGS, "Description, Part Number, Unit Cost");

params.put(PARAM_GENERATENONEMODE, "1");

params.put(PARAM_GENERATENONETEXT, "None");

generateSingleSelectTable(params, request, out);

}

%>

<!-- METADATA TYPE="CalicoControl" endspan -->

In the code block above, the PARAM_OBJECTNAME example value [MyComputerConfig].OSSelection
is the name of a decision point in the model. MyComputer is the model name, appended with
the string, Config. MyComputerConfig must be bracketed between “[“ and “]” characters.
[MyComputerConfig] OSSelection is the decision point name.

See Appendix C, “Advanced Configurator Form Controls,” Single-Select List Form Control, page 452.

Multi-Select Table

A multi-select table form control consists of form control items in the row/column format based on check
box buttons and table HTML elements. Each row in the table contains a check box button and attributes for
each available form control item. More than one of the form control items can be chosen at a time.

You can create the following multi-select table form control for the decision point
“CDSelection” with the caption “Multimedia.”

Multi-select table form control

PeopleSoft Proprietary and Confidential 329

Using JSP Templates for Form Controls Chapter 27

The following code generates the form control in the figure:

<!-- METADATA TYPE="CalicoControl" startspan-->

<%

if (params != null)

{

params.clear();

params.put(PARAM_OBJECTNAME, "[MyComputerConfig].CDSelection");

params.put(PARAM_ATTRIBUTES, "Desc, PN, UC");

params.put(PARAM_CONTROLID, "CDSelectionCtrl");

params.put(PARAM_CAPTION, "MultiMedia");

params.put(PARAM_COLUMNHEADINGS, "Description, Part Number, Unit Cost");

generateMultiSelectTable(params, request, out);

}

%>

<!-- METADATA TYPE="CalicoControl" endspan -->

See Appendix C, “Advanced Configurator Form Controls,” Multi-Select Table Form Control, page 453.

Single-Select Image

The single-select image template places an image on the page where you indicate, to select a domain member.
Specify an image and location for each domain member of the selection point. At run time, selecting one
image de-selects another. Include the template for the single-select image as follows:

<%@ include file="/calico/templates/html/SingleSelectImage.jsp" %>

For example, you can create the following single-select image controls for a selection
point with three domain members.

Two single–select image controls, before and after selecting an image

When the “selectable” blue image is selected and submitted, it is replaced by a
corresponding “selected” blue image.

Note. Single-select images can be placed on the page where you specify. If you do not
specify a location, they are placed on a line, bottom-aligned.

The following code generates the first (the blue image) of the two controls in the figure.
<!-- METADATA TYPE="CalicoControl" startspan -->

<%

if (params != null)

{

params.clear();

params.put(PARAM_OBJECTNAME, "[AudioConfig].kitSelection");

params.put(PARAM_DOMAINMEMBERNAME, "DashSpacer");

params.put(PARAM_IMAGENAME, "blue.gif");

330 PeopleSoft Proprietary and Confidential

Chapter 27 Using JSP Templates for Form Controls

params.put(PARAM_IMAGEPATH, "SSImages");

params.put(PARAM_AUTOSUBMIT, "true");

generateSingleSelectImage(params, request, out);

}

%>

<!-- METADATA TYPE="CalicoControl" endspan -->

Parameters are:

• PARAM_OBJECTNAME—The unique object name (“<modelnameConfig>.decisionpointname”),
which is used to retrieve the items of a form control.

• PARAM_ DOMAINMEMBERNAME—Name of the domain member that the image selects.

• PARAM_IMAGEATTRIBUTE—Name of the domain member attribute whose value
is the image that selects the domain member.

• PARAM_IMAGENAME—Name of the image that selects the domain member.

See Appendix C, “Advanced Configurator Form Controls,” Single-Select Image, page 454 and Chapter
27, “Using JSP Templates for Form Controls,” Parameters in the Inclusion Set, page 342.

Note. Provide either the image attribute or the image name, but not both.

Optional image parameters are:

• PARAM_IMAGEPATH—URL path to the directory that has the image(s).

• PARAM_IMAGEWIDTH—Width of the image.

• PARAM_IMAGEHEIGHT—Height of the image.

• PARAM_IMAGESTATES—A comma-delimited list of states, other than selectable, for which
there are alternative images whose names follow a naming convention.

The naming convention appends an underscore followed by one or two letters to either the image
name or the value of the image attribute. For example, “image1.gif” becomes “image1_s.gif” and
“image1_c.gif”. The comma-delimited list of states for which there are images uses the same letters
(without the underscore) that are appended to the image name; for example, “us, es, e, c”.

Other possible states and the naming convention for their images are:

- Selected (_s)—Use if you do not display computer-user variations.

- User-selected (_us)

- Computer-selected (_cs))—Default-selected can share this image.

- Default-selected (_ds))—Computer-selected can share this image.

- Eliminated (_e)—Use if you do not display computer-user variations.

- User-eliminated (_ue)

- Computer-eliminated (_ce)

- Conflicted (_c)

• PARAM_MOUSEOVERIMAGES—“True” means that mouseover images are
available. The default value is “False”.

PeopleSoft Proprietary and Confidential 331

Using JSP Templates for Form Controls Chapter 27

You must also provide mouseover images whose names follow a naming convention. The convention
appends an underscore and the letters “mo” to the name of any image that changes when the mouse
moves over it; for example, “image1_mo.gif” or “image1_us_mo.gif”.

• PARAM_ALTTEXTATTRIBUTE—Name of the domain member attribute whose value is the text that is used
as an alternative for the image. Most browsers display this text as a tool tip when the mouse is over the image.

• PARAM_ALTTEX—Text that is used as an alternative for the image, if the domain
member does not have an alternative text attribute.

• PARAM_ADDITIONALATTRIBUTES—Comma-delimited list of domain member attributes that are
available to client-side script. Do not include the image attribute, or the alternative text attribute.

• PARAM_AUTOSUBMIT—True means that the form should be submitted when the user
selects the image. The default value is False.

A JavaScript object, calicoSSI, is created for each image generated by the image templates, and is passed
to JavaScript callback functions to identify the image being created, selected, deselected, moused over,
moused off of, or auto-submitted. Each of these objects has these properties:

Property Name Property Type Description

objectName String Control’s decision point.

ctrItemName String Item’s domain member.

state Number 1 if the image is selected, 0 if it is not selected.

tagName String Value of the attribute for the
item.

attributes Array of Strings An array having all of the item’s attributes.

altText String Alternative text for the item’s image.

priced Boolean True if the control is priced.

delta price Number Item’s delta price.

Optional callback parameters are:

• PARAM_CREATECALLBACK—Name of the JavaScript function that is called when
a client-side single-select image object is created.

Parameter: the newly created object.

Return value: None

For example, createCB():

function createCB(calicoSSI)

{

calicoSSI.myCustomImg = new Image(143, 126)

calicoSSI.myCustomImg.src = calicoSSI.attributes[0]

}

createCB() caches an image specified by a domain member attribute.

332 PeopleSoft Proprietary and Confidential

Chapter 27 Using JSP Templates for Form Controls

• PARAM_SELECTCALLBACK—Name of the JavaScript function that is called when
a domain member image is selected.

Parameter: The object for the image being selected

Return value: True if the selection can proceed; otherwise, False.

For example, selectCB():

function selectCB(calicoSSI)

{

document.images["myCustomImg"].src = calico.SSI.customImg.src

return true

}

selectCB() updates an image with an image cached by createCB().

• PARAM_UNSELECTCALLBACK—Name of the JavaScript function that is called when a domain
member image is de-selected—that is, when another domain member image is selected.

Parameter: The object for the image being de-selected.

Return value: “True” if the de-selection can proceed; otherwise, “False”.

For example, unselectCB():

function unselectCB(calicoSSI)

{

var retval = true

if (someRareCondition(calicoSSI))

{

var retval = false

alert("Explanation of problem")

}

return retval

}

unselectCB() may prevent de-selecting the item, which would prevent selecting another item.

• PARAM_MOUSEOVERCALLBACK—Name of the JavaScript function that is called
when the mouse moves over a domain member image.

Parameter: The object for the image that the mouse is over.

Return value: “False” if the function updates the browser’s status bar. The default value of
“True” lets the image’s alternative text appear in the status bar.

For example, mouseOverCB():

function mouseOverCB(calicoSSI)

{

window.status = calicoSSI.attributes[1]

return false

}

mouseOverCB() puts text from a domain member attribute in the status bar.

• PARAM_MOUSEOUTCALLBACK—Name of the JavaScript function that is called when
the mouse moves off a domain member image.

PeopleSoft Proprietary and Confidential 333

Using JSP Templates for Form Controls Chapter 27

Parameter: The object for the image that the mouse is moving off

Return value: “False” if the function updates the browser’s status bar. The default value
of “True” allows text to be cleared from the status bar.

For example, mouseOutCB():

function mouseOutCB(calicoSSI)

{

window.status = "Eat at Joe’s"

return false

}

mouseOutCB() puts a static string in the status bar.

• PARAM_AUTOSUBMITCALLBACK—Name of the JavaScript function that is called before the form
is submitted because an image is selected whose auto-submit attribute is “True”.

Parameter: The object for the image that is being auto-submitted Return value: “True”
if the form can be submitted; otherwise, “False”.

For example, autoSubmitCB():

function autoSubmitCB(calicoSSI)

{

return confirm("Submit your choices?")

}

autoSubmitCB() asks the user to confirm that the form can be submitted.

Single-Select Image Table

The single-select image table template places images for every domain member of a selection point
either horizontally in a row, or vertically in a column on the page, to select among them. Specify
an image for each domain member of the selection point, and whether you want them placed in a
row or a column. At run time, selecting one image de-selects another.

Include the template for the single-select image table as follows:

<%@ include file="/calico/templates/html/SingleSelectImageTable.jsp" %>

For example, you can create the following single-select image table control for a
selection point with three domain members.

Single-select Image Table, before and after selecting an image

When the “selectable” green image is selected and submitted, it is replaced by a
corresponding “selected” green image.

Note. The images of a Single-Select Table Image control are placed in a table row (in a table cell) and centered.

The following code generates the control in the figure:

334 PeopleSoft Proprietary and Confidential

Chapter 27 Using JSP Templates for Form Controls

<!-- METADATA TYPE="CalicoControl" startspan -->

<%

if (params != null)

{

params.clear();

params.put(PARAM_OBJECTNAME, "[AudioConfig].kitSelection");

params.put(PARAM_IMAGEATTRIBUTE, "SSImage");

params.put(PARAM_IMAGEPATH, "SSImages");

params.put(PARAM_AUTOSUBMIT, "true");

generateSingleSelectImageTable(params, request, out);

}

%>

<!-- METADATA TYPE="CalicoControl" endspan -->

See Chapter 27, “Using JSP Templates for Form Controls,” Parameters in the Inclusion Set, page 342.

The optional table parameters are:

• PARAM_IMAGEATTRIBUTE—Name of the domain member attribute whose value
is the image that selects the domain member.

• PARAM_COLUMNS—Number of columns in the table. The number of domain members
displayed at run time determines the number of rows.

• PARAM_ROWS—Number of rows in the table. The number of domain members displayed
at run time determines the number of columns.

Note. Run-time performance is better if you specify the number of columns, rather than the number of rows.

• PARAM_BORDER—Border attribute for the generated table. The default value is “0”.

• PARAM_CELLSPACING—Cell spacing attribute for the generated table. The default value is “0”.

• PARAM_CELLPADDING—Cell padding attribute for the generated table. The default value is “0”.

See Appendix C, “Advanced Configurator Form Controls,” Single-Select Image Table, page 454.

Application Why Help

An Application Why Help template is used to represent a set of violation items of the
current configuration in an unordered list format.

You can create the following application-level why help:

Application Why Help

The following code generates the form control in the figure:

<!-- METADATA TYPE="CalicoControl" startspan-->

PeopleSoft Proprietary and Confidential 335

Using JSP Templates for Form Controls Chapter 27

<%

if (params != null)

{

params.clear();

params.put(PARAM_CAPTION, "Application Why Help:");

generateApplicationWhyHelp(params, request, out);

}

%>

<!-- METADATA TYPE="CalicoControl" endspan -->

See Appendix C, “Advanced Configurator Form Controls,” Application Why Help, page 456.

Form Control Why Help

A Form Control Why Help template is used to represent a set of violation items of a form
control for the current configuration in the unordered list format.

You can create a Form Control Why Help like the example in the Application Why Help:

Form Control Why Help

The following code generates the example form control:

<!-- METADATA TYPE="CalicoControl" startspan-->

<%

if (params != null)

{

params.clear();

params.put(PARAM_OBJECTNAME, "[MyComputerConfig].HDSelection");

params.put(PARAM_CAPTION, "Control Why Help:");

generateControlWhyHelp(params, request, out);

}

%>

<!-- METADATA TYPE="CalicoControl" endspan -->

See Appendix C, “Advanced Configurator Form Controls,” Form Control Why Help, page 456.

Text Input Form Control

The text input template generates a text box for entering any text value. Unlike values entered into
extern entry templates, text input values are not submitted to the engine. They are instead passed
from page to page and loaded into the configuration object contained within the COP on each
page. This allows any information stored using the text input template to be included with standard
configuration information, such as that acquired when using the BOM item generator, saved when
running against a compound model, or integrating with other applications.

include the template for the extern entry text box as follows:

<%@ include file="/calico/templates/html/TextInput.jsp" %>

336 PeopleSoft Proprietary and Confidential

Chapter 27 Using JSP Templates for Form Controls

For example, you can create the following text input control with an initial default value.

Text Input control

The following code generates the control in the example.
<!-- METADATA TYPE="CalicoControl" startspan -->

<%

if (params != null)

{

params.clear();

params.put(PARAM_OBJECTNAME, "TextInput_Ctrl01");

params.put(PARAM_CAPTION, "Phone Number:");

params.put(PARAM_ TEXTINPUTDEFAULT, "212-555-1212");

params.put(PARAM_ ENTRYSIZE, "12");

generateTextInput(params, request, out, session, cop.getConfiguration());

}

%>

<!-- METADATA TYPE="CalicoControl" endspan -->

See Chapter 27, “Using JSP Templates for Form Controls,” Parameters in the Inclusion Set, page 342.

The two optional parameters are:

PARAM_TEXTINPUTDEFAULT —A default value that shows up when the text input box is initially shown.

PARAM_ENTRYSIZE—Width in characters of the text entry field. The default value is 15.

See Appendix C, “Advanced Configurator Form Controls,” Text Input Form Control, page 457.

Numeric Data Form Control

A numeric data control consists of a control caption or a caption image and a value of the
numeric data that are displayed in the same line.

The include file required for the numeric data template is:

<%@ include file="/calico/templates/html/NumericData.jsp" %>

For example, you can create the following numeric data control for the decision point
“WattsSummation” with the caption “Total Watts”.

PeopleSoft Proprietary and Confidential 337

Using JSP Templates for Form Controls Chapter 27

Numeric Data for watts after submitting picks

The following code generates the control in the figurel.
<!-- METADATA TYPE="CalicoControl" startspan-->

<%

if (params != null)

{

params.clear();

params.put(PARAM_OBJECTNAME, "[_Application].WattsSummation");

params.put(PARAM_CAPTION, "Total Watts");

generateNumericData(params, request, out);

}

%>

<!-- METADATA TYPE="CalicoControl" endspan -->

See Appendix C, “Advanced Configurator Form Controls,” Numeric Data Form Control, page 457.

Extern Entry

The extern entry template generates a text box for entering a value that is submitted to
the Configurator engine using the extern() function.

Include the template for the extern entry text box as follows:

<%@ include file="/calico/templates/html/ExternEntry.jsp" %>

For example, you can create the following extern entry control to enter a floating point value.

Extern Entry control with a numeric value entered

The following code generates the previous control.

<!-- METADATA TYPE="CalicoControl" startspan -->

<%

338 PeopleSoft Proprietary and Confidential

Chapter 27 Using JSP Templates for Form Controls

if (params != null)

{

params.clear();

params.put(PARAM_OBJECTNAME, "[_Application].ExtVar1");

params.put(PARAM_CONTROLID, "ExEn01");

params.put(PARAM_CAPTION, "Enter Number Here");

params.put(PARAM_FLOATENTRY, "true");

params.put(PARAM_ENTRYSIZE, "3");

generateExternEntry(params, request, out);

}

%>

<!-- METADATA TYPE="CalicoControl" endspan -->

See Chapter 27, “Using JSP Templates for Form Controls,” Parameters in the Inclusion Set, page 342.

The two optional parameters are:

• PARAM_FLOATENTRY—“True” processes the entered number as a floating point value. The
default value “False” processes the number as an integer.

• PARAM_ENTRYSIZE—Width in characters of the text entry field. The default value is 3.

Using Configuration Form Control Templates
PeopleSoft Advanced Configurator supplies 11 form control templates. Each is a JSP page that generates
HTML. Six of them enable the Web user to select an item on an HTML form, using radio buttons, check
boxes, drop-down lists, or selection lists. The other four form control templates generate output display
information. One allows the Web user to enter a text value using en edit box. Two of these form controls
display constraint violations; one for the entire configuration session, and the other for its corresponding
form control. The last display form control template generates a visible numeric value.

There are three types of user-selectable form controls:

• Group—radio buttons and check boxes grouped as part of the selection point.

• List—drop-down or selection lists; one for each selection point.

• Table—Table form controls and Group form controls are alike, except that the Table form controls provide,
in addition to the item name, columnar information for each form control item. The Table templates
generate extra columns that are determined by the additional field descriptors in the model.

Each type of user-selectable form control can be either single-selectable or multi-selectable. A
multi-select form control enables the Web client user to pick more than one item for the selection
point, whereas a single-select form control limits the user to a single pick for the selection point. A
single-select list is drop-down, whereas a multi-select list is a list, typically scrollable. The following
table itemizes the form control templates available in this release.

JSP Filename HTML Implementation Comment

SingleSelectGroup <INPUT TYPE="radio"> radio buttons

MultiSelectGroup <INPUT TYPE="checkbox"> check boxes

PeopleSoft Proprietary and Confidential 339

Using JSP Templates for Form Controls Chapter 27

JSP Filename HTML Implementation Comment

SingleSelectList <SELECT> drop-down list; single-selectable

MultiSelectList <SELECT MULTIPLE> list: multi-selectable

SingleSelectTable <INPUT TYPE="radio"> and
<TABLE></TABLE>

multiple columnal radio buttons

MultiSelectTable <INPUT TYPE="checkbox"> and
<TABLE></TABLE>

multiple columnal check boxes

SingleSelectImage an image for selecting a domain member

SingleSelectImageTable and <TABLE></TABLE> a row or column of images for selecting among
domain members

ApplicationWhyHelp violation messages for all form controls:
application scope

ControlWhyHelp violation messages for an individual form
control: form control scope

NumericData caption text or image, and number text display number value aside caption or image

ExternEntry <INPUT TYPE=”text”> a text box for entering a value

TextInput <INPUT TYPE=”text”> a text box for entering a text value

Plugging Form Controls into the Application Page(s)
To use the form control templates, you need to be familiar with the following directories:

• Applications and processing JSP pages for the form control templates—

Solaris: /opt/bea/weblogic81/config/CalicoDomain/ applications/CalicoApp/

Windows NT: \bea\weblogic81\config\CalicoDomain\ applications\Calico⇒App\

• Configuration models—

Solaris: /opt/bea/weblogic81/config/CalicoDomain/ applications⇒/CalicoApp⇒

/Web-inf/models

Windows NT: \bea\weblogic81\config\CalicoDomain\ applications\CalicoApp\Web-⇒

inf\models\

To use a form control template, your application page(s) needs:

• A JSP include directive that includes the specified form control template.

• A specialized code-block that passes the required parameters to the specified form control template followed
by a method call to generate and include it. This information is called the form control inclusion set.

340 PeopleSoft Proprietary and Confidential

Chapter 27 Using JSP Templates for Form Controls

Using a JSP Include Directive

The syntax to include a form control template, such as the SingleSelectGroup template, is:

<%@ include file="/calico/templates/html/SingleSelectGroup.jsp" %>

Place the form control templates’ include directives immediately following the include directive
for the CalicoStartFormInc.jsp that is in each application JSP page.

For example:
<%@ include file="/calico/CalicoStartFormInc.jsp" %>

<%@ include file="/calico/templates/html/SingleSelectGroup.jsp" %>

<%@ include file="/calico/templates/html/MultiSelectTable.jsp" %>...

Note. Only one include directive <% include file="templateFile" %> is required for each
type of form control template in the application JSP page. If you have five single-select list form control
templates in an application JSP page, use only one JSP include directive to include them.

Using a Form Control Inclusion Set

To include a form control template using an inclusion set, bracket the inclusion set within these start and end tags:

<!-- METADATA TYPE="CalicoControl" startspan-->

// set the parameters and include the path name for a form

// control template here

<!-- METADATA TYPE="CalicoControl" endspan -->

Between the start and end tags, insert these required statements:

params.clear(); Initializes all parameters.

params.put(parameter, value); Sets the required and optional parameters
afterparams.clear().

The four required parameters for the interactive form
controls are: PARAM_OBJECTNAME

PARAM_ATTRIBUTES

PARAM_CAPTION or PARAM_CAPTIONIMAGE

PARAM_CONTROLID

generateTemplateName(params, request,⇒

out);

Generates the included form control template file after the
params.put() calls where you’ve set parameters.

The params.put() statements can be in any order,
provided that params.clear() precedes them and that
generateTemplateName() follows them.

Example:
<!-- METADATA TYPE="CalicoControl" startspan-->

<%

if (params != null)

PeopleSoft Proprietary and Confidential 341

Using JSP Templates for Form Controls Chapter 27

{

params.clear();

params.put(PARAM_OBJECTNAME, "VehicleSelection)";

params.put(PARAM_ATTRIBUTES, "Desc");

params.put(PARAM_CAPTION,"Select a Vehicle");

params.put(PARAM_CONTROLID, "VehicleSelectionControlID");

generateSingleSelectGroup(params, request, out);

}

%>

<!-- METADATA TYPE="CalicoControl" endspan -->

Parameters in the Inclusion Set
At run time, the parameters in the inclusion set are passed to the form control template, which uses
them when it runs at the point where generateTemplateName() is called.

Any blank spaces between the values are ignored. For example, “Description, Part Number, Unit Cost”
(with spaces) is the same as “Description,Part Number,Unit Cost” (without spaces).

Form control parameter values are specified as a string. The syntax for assigning multi-valued parameters (in
the application page) is a single string that uses a comma character delimiter between each value. Both the
PARAM_ATTRIBUTES and PARAM_COLUMNHEADINGS parameter values may be multi-valued.

These parameters are required for using the selection point form control templates:

Required parameter Comments

PARAM_OBJECTNAME The object name is the unique object name
(“<modelnameConfig>.decisionpointname”), which is used
to retrieve the items of a form control.

PARAM_CONTROLID The control ID is the unique identifier for the HTML form control. The
application needs a unique identifier for each form control other than the
object name since there might be multiple controls mapping to the same
decision point. This identifier will be used for client-side scripting and
server-side processing.

342 PeopleSoft Proprietary and Confidential

Chapter 27 Using JSP Templates for Form Controls

Required parameter Comments

PARAM_ATTRIBUTES The attributes are the selection point’s data attributes to be displayed on
the form control in the UI. Only Table form controls may use multiple
display attributes from the model.

For internal domain members specified in the if PARAM_
ATTRIBUTES parameter, there must be a corresponding attribute(s)
defined in the model for the domain members.

For external domain members, if the attribute name (column names
of the table that stores the description for the domain members) is
ambiguous (more than one table has the same column name), you must
specify its fully qualified database name—tablename.columnname.

params.put(PARAM_ATTRIBUTES, <attribute name,⇒

attribute name ...>);

or
params.put(PARAM_ATTRIBUTES, <tablename.columnnam⇒

e, tablename.columnname ...>)

Setting the PARAM_ATTRIBUTES parameter in your inclusion set is
optional; however, for deployment you should set it so that the model’s
attributes are displayed. If PARAM_ATTRIBUTES is not explicitly
set, the default display will be the domain member names, which may
be useful during development in that you do not need to add attributes
to test-case models.

PARAM_CAPTION The caption is the string to be displayed as the form control caption. This
parameter is applicable to all the form control templates.

PARAM_CAPTIONIMAGE The caption Image is the image to be displayed as the form control
caption. This parameter is applicable to all the form control templates

Specify either a Caption or a Caption Image, but not both.

The following are optional parameters for the form control templates:

Optional parameter Comments

PARAM_SORT The sort parameter specifies whether to sort form control data based on
the form control states; “true” or “false” are the valid values.

PARAM_FILTERELIMINATEDITEMS The filter-eliminated items parameter renders all eliminated domain
members in the model unavailable to the form controls in the application
page. If set to true, the eliminated domain members in the model are not
available to the form control. If unspecified or set to false, the eliminated
domain members in the model are available to the form control.

You can restrict the filtering to outside a range of elimination levels
captured between a lower and an upper elimination level specified
by the parameters: PARAM_ELIMINATIONLEVEL_LOWER and
PARAM_ELIMINATIONLEVEL_UPPER.

Therefore, if PARAM_ELIMINATIONLEVEL_LOWER is 4, and
PARAM_ELIMINATIONLEVEL_UPPER is 7, then the eliminated
domain members with elimination levels greater than 3 and less than 8,
are available to the form control.

PeopleSoft Proprietary and Confidential 343

Using JSP Templates for Form Controls Chapter 27

Optional parameter Comments

PARAM_ELIMINATIONLEVEL_LOWER The lower elimination level is used to specify the lower bound of the
elimination level range for form control items.

PARAM_ELIMINATIONLEVEL_UPPER The upper elimination level is used to specify the upper bound of the
elimination level range for form control items.

Note. To specify the range for elimination levels, you must set
both parameters, PARAM_ELIMINATIONLEVEL_LOWER and
PARAM_ELIMINATIONLEVEL_UPPER.

PARAM_COMPARATOR Specifies a Java class name to be used with a custom comparator
for sorting control items. The class specified must implement the
java.util.Comparator interface. It passes a custom-written Comparator
object to the ControlData.iterator method. The iterator method then sorts
domain members using Comparator before returning the iterator to the
front-end. Sort can be performed on quantity or any other attribute from
the model.

PARAM_COLUMNHEADINGS The column headings are the labels the Table form control displays for
the columns of domain member attributes.

PARAM_GENERATENONEMODE The Generate None mode is the position for the None item (explicitly
selecting none of the picks). This option is available only for
single-select controls. The corresponding decision point must be
optional. Available options are:

0 — do not generate none value.

1 —generate none value before other options.

2 —generate none value after other options

PARAM_GENERATENONETEXT The Generate None text is the string to be displayed for the ‘None’
item. This option is available only for single-select controls. The
corresponding decision point must be optional.

344 PeopleSoft Proprietary and Confidential

Chapter 27 Using JSP Templates for Form Controls

Optional parameter Comments

PARAM_EVENTHANDER The event handler is the JavaScript event handler for the standard
JavaScript events of form control items.

Put your JavaScript event handler function in the body of the application
page(s), outside of the inclusion set.

For the event handlers, you must write your own JavaScript function
to handle the events, such as onClick or onBlur, and then set
the parameter PARAM_EVENTHANDER to that function name.
Otherwise, you can use the standard event handlers, such as:

this.<form-name>.submit()

Syntax:

params.put(PARAM_EVENTHANDER, "onClick=⇒

’this.<form-name>.submit()’

" or
params.put(PARAM_EVENTHANDER, "onChange=’my⇒

JavascriptSubmit()’"

Note. Common functions such as onClick, onChange, and
onFocus, are JavaScript events. onClick is an event for Group
and Table form controls, but you can use different JavaScript events.
onChange typically is used for List form controls, but you can use
other JavaScript built-ins such as onFocus and onBlur.

PARAM_CONTROLSIZE The control size is the number of visible items for the HTML form
control. This parameter only applies to the List form controls.

PARAM_GENERATEFIRSTITEMTEXT You can add an item with any description (string type) to the beginning
of a single-select list control. For example, "Select a hard drive" can be
added to be displayed as the top element in the drop-down list. Once the
user selects an item from the drop-down list, (for example, "12 GB Hard
Drive"), the first item entry ("Select a hard drive") then disappears.

Specifying the Solution’s Model and Locale Properties
A solution’s UI properties are contained in the configuration file, CalicoUI.properties. Each solution, or
version of a solution, requires a separate copy of CalicoUI.properties to be modified and maintained for that
solution only. It must be placed in the application folder that houses your application JSP pages.

CalicoUI.properties contains mainly display properties, which are optionally used by the application.
However, there are four model properties and two locale properties that the form control templates
need and that you must specify in the solution CalicoUI.properties file:

• calico.ui.version—A unique number for each application hosted by the same
application server; one entry per CalicoUI.properties file.

• calico.model.name—Holds the model name. Valid model names are any subfolder
name under <install_dir>/PeopleSoft Applications/Configurator/, which houses the models.
The modeler sets the model name when it is created.

PeopleSoft Proprietary and Confidential 345

Using JSP Templates for Form Controls Chapter 27

• calico.model.version—Gets the latest compiled model with the specified version number.

• calico.model.compileversion—The generated ID for a compiled model,
for example, 20010221-161729-588..

• calico.locale.language=en—Indicates which set of text in the XX file that provides
text for captions and controls in the desired language.

• calico.locale.country=US—Indicates which country variant of the locale language
specified. If a custom language variant is used, the calico.locale.variant=
property is provided for specification instead.

To specify model and locale properties:

1. If you haven’t already done so, transfer a copy of CalicoUI.properties from <install
directory>\weblogic81\config\CalicoDomain\applications\CalicoApp\solutions\ComponentSample
to the application folder where the JSP pages are kept.

2. Call the property value(s) from each form control that uses the display properties:

• If it is a template form control, insert the property as a parameter in its JSP inclusion set. For example:

<!-- METADATA TYPE="CalicoControl" startspan-->

<%

if (params != null)

{

params.clear();

params.put(PARAM_OBJECTNAME, "[SmallBusTelecom].ServicePlanSelection)";

params.put(PARAM_ATTRIBUTES, "Desc");

params.put(PARAM_CAPTION,"Select a Service Plan");

params.put(PARAM_CONTROLID, "ServPlanSelectionControlID");

params.put(calico.ui.version, "SBQ01.04.01");

generateSingleSelectGroup(params, request, out);

}

%>

<!-- METADATA TYPE="CalicoControl" endspan -->

• If it is a custom form control, fetch the property value(s) with calls from your code.

3. If the language to use in the UI is other than the United States variant of English, specify which by inserting
the code for the desired language and variant. If you have a custom language variant set, specify the desired
language code in calico.locale.country=en, comment out calico.locale.country=US,
uncomment calico.locale.variant=, and insert in it the correct code.

Assigning a Specific Model Version to Use for Configuration

If you use only the major number and the minor number of the model version for setting the calico.model.version
property (such as calico.model.version=0-1), then by default, the form control templates use the
latest compiled version from among all models within the subversions folder under version 0.1.

The model name and version (major-minor) are set in the model by the modeler. By changing these in the
CalicoUI.properties file, you tell the application which model to use rather than the default latest compiled
version. The compiler assigns the micro (sub-version) and compile versions. The WebLogic server by default
loads only the most recent version (major-minor-micro) and compile version of every model.

To assign a specific model version to use:

346 PeopleSoft Proprietary and Confidential

Chapter 27 Using JSP Templates for Form Controls

1. Set the calico.model.version property to the complete version number. For example,
calico.model.version=0-1-4 represents version 0.1.4.

2. Uncomment the calico.model.compileversion property in CalicoUI.properties.

3. Set the calico.model.compileversion property to the name of the folder that houses the
compiled model. For example, using the following directory tree for Configurator models, you would
set calico.model.compiledversion property to 200030825-161346-823:

Setting the compile version (optional)

Specifying Solution Information Properties
Solution information property values are used in generating a Solution List for Configurator client
application. A Solution is the collection of pages, images, model files, and supporting files that comprise
the application(s) that solve a business problem, such as online configuration and order management.
The Solution list is the filenames, structures, and version information for that solution.

The Solution List could also be used in a server-based deployment.

Solution properties are:

calico.solution.name Name of the solution. Acts as the key in the solution list. By default (if this
property isn’t specified), the name will be the name of the directory the
solution resides in (the value of calico.solution.root, which is not specified
here). Default is the name of the directory in which the solution resides.

calico.solution.version The version of the solution. Helps identify different versions (revisions) of
the same solution, but isn’t used in this version of Configurator. Default
is calico.solution.root or as specified in the properties file.

calico.solution.description The text to be displayed in the solution list as a link to this application.
Default is calico.solution.name or as specified in properties file.

calico.solution.restorePolicy The restore policy to use when launching stored configurations. The policy
determines which version of the model to use in launching the configuration in
the web application. Default is 1 or as specified in the properties file.

calico.page.start The page to redirect to when starting a new configuration.

calico.page.restore The page to redirect to when restoring an existing configuration.
If calico.page.restore is blank, the restore will go to the page
specified in calico.page.start.

If these properties aren’t specified, the SolutionInfo class will assign default values.

PeopleSoft Proprietary and Confidential 347

Using JSP Templates for Form Controls Chapter 27

Specifying Display Properties
The names of the form control property types correspond to the names of the display
attributes, as shown in the following list:

Display property types in CalicoUI.properties file Applicable form control template types

calico.control.tag.<property> List

calico.control.image.<property> Group and Table

calico.control.textcolor.<property> Group and Table

calico.control.captioncolor.<property> List, Group, and Table

PeopleSoft Advanced Configurator provides a set of properties to indicate the state of an item in a control:

• Selectable

• User-selected

• Computer-selected

• Default-selected

• User-eliminated

• Computer-eliminated

• Conflict

These properties cause the display of designated text symbols and/or images beside the items
in a control to indicate to the user their availability for selection.

You can use the item state properties as examples for creating your own properties or modify them to your needs.

Displaying Delta Information
Using the COP XML interface, Advanced Configurator generates two types of delta
configuration information at run time:

• Structural

Structural deltas include component additions, deletions and changes, and connection
additions, deletions, and moves. Structural and component delta information applies to
configurations generated from compound models.

• Component

Component information deltas indicate changes between two configurations for a single component and
apply to the components in both component and compound configurations. The information can include:

- Added, changed, and deleted configuration attributes.

- Added, changed, and deleted choices.

Advanced Configurator returns delta information using an XML interface. The existing ConfigDetails
request in the messaging interface (COPXML) can include requests for delta information. By default, the
deltas returned represent the latest set of saved changes or those from a specified date range. In addition, the
available component delta information will be enhanced to include changed expression values. Peoplesoft
Enterprise CRM 8.9 Order Capture and Service Management use delta information in transactions.

348 PeopleSoft Proprietary and Confidential

Chapter 27 Using JSP Templates for Form Controls

See Also

Chapter 16, “Retrieving Configuration Information,” page 199

Displaying Delta Pricing
You can modify the pricing display for either all form control items or for the form control items
belonging to specified selection points. To display delta prices, you must first enable delta pricing
in the application and then specify how it is displayed. Enabling delta pricing occurs in initial
implementation of jspInit() in the body of your application page(s).

1. Enable delta pricing:

To enable delta pricing for all form controls use this statement:

setPricing(true);

This statement also enables total pricing for the entire configuration.

To enable delta pricing for specific form controls, use this statement:
setPricingControls(); // accepts as arguments a map of the

// decision points’ object names (strings)

// and price attributes (strings).

Pass to setPricingControls() the object names you specify in the form controls’ PARAM_OBJECTNAME
parameters along with the price attribute for that object.

Note. For better performance, set the pricing variables rather than calling the corresponding set methods.

2. Set display properties.

The basic format is:

calico.pricing.add=[+ {0}]

calico.pricing.subtract=[- {0}]

The values shown result in a display string that appear alongside the selection. If the delta
price is an additional $20.00, the delta price appears as follows:

[+ $20.00]

By replacing the characters, you can change the display, for example, by replacing the square brackets
with angle brackets, and “+” with “Add”, the display becomes <Add $20.00> for a positive delta
price. Replacing “-” with “Subtract” gives [Subtract $20.00] for negative deltas.

Sample code:

public void jspInit()

{

setPricing(true);

Map pricingControls = new HashMap();

pricingControls.put("[BMWConfig].SeriesSelection", "UnitPrice");

pricingControls.put("[BMWConfig].OptionsSelection", "UnitPrice");

pricingControls.put("[BMWConfig].EngineSelection", "basePrice");

setPricingControls(pricingControls);

PeopleSoft Proprietary and Confidential 349

Using JSP Templates for Form Controls Chapter 27

}

Application Page Example
The following code provides a complete example of an application JSP page.

<HTML>

<HEAD>

<TITLE>Sample Page</TITLE>

</HEAD>

<BODY>

<%!

public void jspInit()

// turn on pricing for controls

setPricing(true);

Map pricingControls = new HashMap();

pricingControls.put("[myPCConfig].ProcessorSelection", "UnitPrice");

setPricingControls(pricingControls);

}

%>

<FORM name="TestForm" method="POST" action="CalicoProcessForm.jsp">

<%@ include file="/calico/CalicoStartFormInc.jsp" %>

<%@ include file="/calico/templates/html/SingleSelectGroup.jsp" %>

<!-- Inclusion set starts below -->

<!-- METADATA TYPE="CalicoControl" startspan-->

<%

if (params != null)

{

params.clear();

params.put(PARAM_OBJECTNAME,

"[myPCconfig].ProcessorSelection");

params.put(PARAM_ATTRIBUTES, "Desc");

params.put(PARAM_CAPTION,

"[myPCConfig].ProcessorSelection");

params.put(PARAM_CONTROLID, "ProcessorSelectionCtrl");

generateSingleSelectGroup(params, request, out);

}

%>

<!-- METADATA TYPE="CalicoControl" endspan -->

<%@ include file="/calico/CalicoEndFormInc.jsp" %>

</FORM>

</BODY>

350 PeopleSoft Proprietary and Confidential

Chapter 27 Using JSP Templates for Form Controls

</HTML>

Customizing a Form Control Template
You must use getControlData() in customized form control template JSP pages, as
in the following Java statement:

ControlData varName = getControlData(objectName, request, params);

Application Scope

You can customize HTML-level display properties, such as the form controls’ text color,
by modifying the properties in the CalicoUI.properties file. The form control templates
load these properties upon their initialization.

Template Scope

You can customize how the display data is altered depending upon the model’s data.
You can customize the behavior of the display to:

• Display domain member attribute information.

• Sort the form control items.

• Eliminate form control items of eliminated domain members.

• Eliminate the form control items of the eliminated domain members whose elimination
levels are beyond an inclusionary range.

• Display delta pricing and the total price.

To customize the state of an individual instance of a form control:

1. Make a copy of the type of form control template you want, rename the copy, and put that
copy in your application directory. When you use the JSP include directive to include your
template, be sure to use the path to your application directory.

Note. Do not modify any of the form control template JSP files: they are installed as read-only files.

2. Modify its JSP code.

3. Include your custom form control template in any of your application JSP pages
whenever you use that type of form control.

Loading the Form Control Data from the Model

The form control templates get their corresponding selection point (decision point) data
from the model with the following JSP template code:

String objectName = (String)params.get(PARAM_OBJECTNAME);

ControlData ctrlData = getControlData(objectName, request, params);

Loading the UI Properties for a Control

The form control templates load the specified UI properties (from the CalicoUI.properties
file) with the following JSP template code:

PeopleSoft Proprietary and Confidential 351

Using JSP Templates for Form Controls Chapter 27

// set up display properties

String[] stateMap = (String[])request.getAttribute(STATEMAP);

String[] tagMap = (String[])request.getAttribute(TAGMAP);

String[] imgMap = (String[])request.getAttribute(IMAGEMAP);

String[] textColorMap = (String[])request.getAttribute(TEXTCOLORMAP);

Properties props = (Properties)request.getAttribute(UIPROPS);

The form control templates set their properties with the following JSP template code:

// set up the display properties for control items

state = (int)ctrlItem.getFlags();

stateFlags = stateMap[state];

tagItemState = tagMap[state];

imgItemState = imgMap[state];

colorItemText = textColorMap[state];

The names of the form control property types correspond to the names of the display
attributes, as shown in the following list:

Display property types in CalicoUI.properties file Applicable form control template types

calico.control.tag.<property> List

calico.control.image.<property> Group and Table

calico.control.textcolor.<property> Group and Table

calico.control.captioncolor.<property> List, Group, and Table

Registering Custom Form Control Templates
The addCtrl() function should be called within any customized form control template. addCtrl() registers
a Configurator form control. It adds each control along with its selection point name to a form hidden
attribute called CalicoCtrlMap, which is generated by CalicoEndFormInc.jsp for each Configurator page.
This is necessary so that the Configurator JSP processor page (CalicoProcessFormInc.jsp) knows which
form controls need to be processed and which to ignore (non-Configurator form controls).

addCtrl() is used by most of the Configurator form control templates.

Example Custom Form Control Template
The purpose of providing the sample template is to explain how developers could customize
the behavior of a Configurator control by displaying eliminated control items differently
based on their elimination levels returned from COP:

If the elimination level for an eliminated control item is >= 0 and <= 4, the item is hidden (not shown).

352 PeopleSoft Proprietary and Confidential

Chapter 27 Using JSP Templates for Form Controls

If the elimination level for an eliminated control item is >= 5 and <= 9, the item is
displayed as grayed out with the X image.

If the elimination level for an eliminated control item is >= 10, the item is displayed as
normal (without being grayed out or the X image).

In this example template, we use 0, 4, 5, 9, 10 etc. for the lower and upper bounds to display control items
differently. Developers can define a range of values for the elimination level they want to handle in the template
they create since these values depend on the elimination levels defined for the constraints by the modelers.

In the following figures, after the “Prima Base Celeron 43 Mhz MiniTower” pick is submitted, the control
on the right only has one item left and is shown as user-selected (finger icon). All other items in the control
have elimination levels that are >= 0 and <= 4. Therefore, they are not shown on the page.

The following web page illustrates using the same model decision point: the top left
form control with the SingleSelectGroup.jsp template, and the top right form control
with the SingleSelectGroupElimLevel.jsp template:

Web page

The next figure illustrates the differing effects of using the standard SingleSelectGroup.jsp form
control template and of using a customized (sample) SingleSelectGroupElimLevel.jsp form control
template. The top left form control was generated by the SingleSelectGroup.jsp template, and the top
right form control was generated by the SingleSelectGroupElimLevel.jsp template:

Second page

PeopleSoft Proprietary and Confidential 353

Using JSP Templates for Form Controls Chapter 27

Common Errors
The following is a checklist of common errors for those who implement the web
applications using Configurator JSP pages:

• calico.model.compileversion—The calico.model.compileversion entry of the CalicoUI.properties
file is used to specify the compiled version for the model to be loaded for the JSP page. By default,
this entry is commented out and the most recent compiled version is loaded for a model. Don’t
uncomment this entry unless a specific compiled version of a model is given.

• Better performance—Add <%@ page session="false" %> to a JSP page if the page does not
reference the session-implicit variable. This should apply to the CalicoProcessForm.jsp file as well.

• CalicoEndFormInc.jsp—A Configurator JSP page must include both CalicoStartFormInc.jsp
and CalicoEndFormInc.jsp. For example:

<%@ include file="/calico/CalicoStartFormInc.jsp" %>

.......

<%@ include file="/calico/CalicoEndFormInc.jsp" %>

CalicoEndFormInc.jsp calls the COP’s release() method. If a system quickly runs out of memory when
executing Configurator JSP pages, verify that CalicoEndFormInc.jsp is included properly on each page.

• Variables declared within JSP <%! %> blocks—Be careful using variables declared within
<%! %> blocks of the JSP pages. For example:

<%!

HashMap myMap = new HashMap();

...

%>

The values of the variables declared within the <%! %> block(s) will be accessed/modified
by more than one user when multiple clients access the pages concurrently unless the access to
such objects is properly synchronized. If such values are meant to be user-specific, the above
variables used by other functions or codes may easily run into problems.

• Template files—The name of the control-generating function should be changed as well as in
any custom templates (e.g. generateMyEnterpriseLargeSingleSelectTable(params, request, out),
generateMyEnterpriseSmallSingleSelectTable(params, request, out)) so that there won’t be any
confusion should multiple templates of the same control type exist on one page.

• Keep the custom templates in the application directory instead of in the calico directory. You
should only include template files that are used on the JSP page.

• StringBuffer.append()—Use StringBuffer.append() for string concatenation instead of
using the + operator of the String class.

• Avoid unnecessary evaluations and object creations in Java codes, especially codes
within loops—for example, while and for loops.

354 PeopleSoft Proprietary and Confidential

CHAPTER 28

Using the Page Editor Extensions for
Dreamweaver

This chapter provides an overview of Dreamweaver extensions and discusses how to:

• Edit CalicoUI.properties.

• Insert a Configurator run-time object.

• Edit properties of Advanced Configurator objects.

Understanding Dreamweaver Extensions
PeopleSoft Advanced Configurator provides extensions for Macromedia® Dreamweaver™ that help
the Web developer build a Web site for a Configurator model. This chapter describes the Configurator
extensions and how to use them. If you do not use Dreamweaver, skip this chapter.

See Chapter 27, “Using JSP Templates for Form Controls,” page 323.

Configurator extensions for Dreamweaver include the following:

• A Configurator item in the Commands menu of the taskbar of the Dreamweaver Document
window. This menu item tells you which version of the extensions you have, lets you edit
the CalicoUI.properties file, and add it to your Web site.

• A Configurator panel in the Dreamweaver Objects palette. This panel lets you insert
Configurator objects into the active Document window.

• A Configurator item in the Insert menu of the task bar of the Dreamweaver Document window. This
menu item also lets you to insert Configurator objects into the active Document window.

• Dreamweaver Property inspectors for most of the Configurator objects. These inspectors let you
edit properties of Configurator objects that are in the active Document window.

Advanced Configurator Run-Time Objects
A Configurator object is a graphical user interface that creates JSP syntax on a JSP page when you insert the
object into the active document window in Dreamweaver. You may view the syntax created by an object by
having the Dreamweaver HTML Source window open as you insert objects or edit their properties.

See Chapter 27, “Using JSP Templates for Form Controls,” page 323.

There are ten Configurator objects that you can insert into the active Document window.
Two of the objects are general purpose:

• Form

PeopleSoft Proprietary and Confidential 355

Using the Page Editor Extensions for Dreamweaver Chapter 28

• Button

You need a Configurator Form to process other Configurator objects. A Configurator
Button submits a page, or resets the picks on a page.

Note. You must use the form and button created by the Configurator Form and Configurator Button
objects. They set attributes to work with your Configurator model.

Do not use more than one Configurator form on a JavaServer Page.

Three Configurator objects create form controls for selection points in the model:

• List

• Group

• Table

In fact, each of these three objects creates two types of form controls:

• Single-select—Lets the user choose only one item. A drop-down list and radio-button
group are single-select form controls.

• Multi-Select—Lets the user select one or more items. A text list and check box
group are multi-select form controls.

The type of selection point—whether it is optional or required—determines which type of
form control these three Configurator objects create.

Note. The modeler creates the selection points in your model. A selection point is that point in your model
where the user selects one or more items from two or more items. A selection point is optional if the user
can choose none of the items, and required if the user must select at least one item.

Two Configurator objects create a single-select form control that uses images to select an item:

• Single-select image control

• Image table

Single-Select Image Control places an image on the page where you indicate, to select one domain member
of a selection point. Image Table places images for every domain member of a selection point in either
a row or a column on the page, to select any domain member of a selection point.

Two Configurator objects create messages for constraint violations:

• Control Why Help

• Application Why Help

Control Why Help creates messages for a selection point. Application Why Help
creates messages for the entire model.

Configurator NumericData is the tenth object. It displays the total—that is, the summation—for
a numeric attribute of user picks, such as price, at run time.

Creating a Solution
To create a Configurator Web application in Dreamweaver, do the following:

1. In Windows Explorer, create a directory for your Web site files; for example:

356 PeopleSoft Proprietary and Confidential

Chapter 28 Using the Page Editor Extensions for Dreamweaver

D:\Dev\WebSites\myWebApp1

2. In Dreamweaver, create a site (select Site, New Site).

3. Edit the CalicoUI.properties file.

See Chapter 28, “Using the Page Editor Extensions for Dreamweaver,” Editing
CalicoUI.properties, page 357.

4. Create JSP pages by inserting Configurator objects into an active Document.

See Chapter 28, “Using the Page Editor Extensions for Dreamweaver,” Editing Properties of
Advanced Configurator Objects, page 369 and Chapter 28, “Using the Page Editor Extensions
for Dreamweaver,” Inserting a Configurator Run-Time Object, page 358.

See Also

Chapter 23, “Understanding the Run-Time System,” Deploying a Web Application Based
on a Single Component Model, page 300

Part 8, “Advanced Configurator System Administration,” page 407

Editing CalicoUI.properties
The CalicoUI.properties file must be in your Web application directory with your JSP pages.
Add it after you create your Site in Dreamweaver. This file determines the display of the
following Configurator objects in your application:

• List

• Group

• Table

• Numeric Data

Before you add the CalicoUI.properties file to your Web application directory, you
must first edit it to apply to your model.

To edit and add the CalicoUI.properties file to your Web application directory, from an active Document window:

1. Select Commands, Edit Calico UI Properties File. A dialog box asks if you want to add
the Configurator UI properties file to your site.

2. Click OK. The Add Calico UI Properties File To Site dialog box appears, so that you can
edit the file before adding it to your application directory.

3. Set values for the following:

Model Information File Browse to the model information file, and click it, or type in
its full path and name.

Note. The model information file is created when the model is created
and compiled using the PeopleSoft Visual Modeler. Obtain this file from
the modeler, or locate it in the appropriate Visual Modeler directory; for
example, D:\Configurator\ViM\Audio\Audio.modelinfo.xml.

PeopleSoft Proprietary and Confidential 357

Using the Page Editor Extensions for Dreamweaver Chapter 28

Model Name and Model
Version Number

If you browsed to the model information file, the dialog box
automatically fills these fields, reading from the file. Otherwise,
type in the model name and version number.

UI Version Number Type in a unique number for your application.

See Part 8, “Advanced Configurator System Administration,” page 407.

Inserting a Configurator Run-Time Object
To insert a Configurator object into the active Document window:

1. Select Window, Objects. The Dreamweaver Objects palette appears.

2. Click the down arrow in the upper right-hand corner of the Objects palette, and in
the menu that appears, click Advisor.

The Advisor panel appears.

3. Drag and drop the object that you want to insert from the Advisor panel. The
object’s insert dialog box appears.

Note. You can also insert Configurator objects from the Configurator item of the Insert menu.

4. Complete at least the required fields of the insert dialog box, and click OK.

For most of the Configurator objects, if you have not previously included CalicoProcessForm.jsp
in your Web application directory, a dialog box prompts you whether to include it.

5. Click OK.

CalicoProcessForm.jsp processes the Configurator form on your JSP page before CalicoProcessFormInc.jsp
processes it in the normal way. By default, CalicoProcessForm.jsp does nothing, and adding it to your
Web site has no effect. Modify this file only if you want to pre-process your Configurator form.

See Chapter 27, “Using JSP Templates for Form Controls,” page 323.

Inserting a Form
You need a Configurator form to process all of the other Configurator objects on the JSP page. All
other Configurator objects on the page must be inserted in the same Configurator form.

You insert the Configurator Form object into the active Document window from the
Advisor panel of the Dreamweaver Objects palette.

If you try to insert another Configurator object before you insert the Configurator form, a
message prompts you to insert the form with the other object.

Warning! Do not use more than one Configurator form on a JavaServer Page.

Inserting a Button
A Configurator button does one of the following:

• Submits the page.

358 PeopleSoft Proprietary and Confidential

Chapter 28 Using the Page Editor Extensions for Dreamweaver

• Resets the page.

The submit button redirects to the URL that you set. The reset button sets picks on the page to the state
that they had when the page was generated, and can redirect to another URL, if you want.

Submit and reset buttons

CLEAR is a reset button. It sets the user’s choice of a vehicle to what it was when the page was
generated. COMPONENTS redirects to the URL of the page for choosing components.

Insert a Configurator Button object into the active Document window from the Advisor
panel of the Dreamweaver Objects palette.

Set the properties of a Configurator Button object in the Insert Calico Button dialog box.

Label Type a label for the button, such as CLEAR for a reset button, and
GO TO PAGE 2 for a submit button.

Button Type Click either Submit or Reset.

URL Browse to the page that you want to redirect to, and click it. You need not set
the URL for a reset button, if you want to remain on the same page.

Inserting a List
A Configurator List is one of the following:

• A drop-down list for a single-select selection point.

• A text list for a multi-select selection point.

The drop-down list initially displays only one item, but expands to display all of the items available for a
selection point. The user can choose only one item. The text list displays the number of items that you
set, and scrolls through additional items, if any. The user can choose one or more items.

A drop-down list and two text lists

PICK A VEHICLE is a drop-down list of four items. The PICK COMPONENTS text list is set to display
one item, and scrolls through three others. The PICK KITS text list is set to display three items. Because
the selection point has only three items, the list has no scroll bars. Insert a Configurator List object into
the active Document window from the Advisor panel of the Dreamweaver Objects palette.

PeopleSoft Proprietary and Confidential 359

Using the Page Editor Extensions for Dreamweaver Chapter 28

Inserting a Configurator List from the Advisor panel

Set the properties of a Configurator List object in the Insert Calico List dialog box:

ID Enter an ID that is unique across all controls for your application.

Selection Point Browse to the <ModelName>.modelinfo.xml file, click it, and choose
one of the selection points in the drop-down list. (The model information
file is created when the model is created and compiled.)

Caption Type Select either text or image from the drop-down list.

String or Path If you want the caption to be text, type it in. If you want the caption
to be an image, browse to the image, and click it.

Control Size Type in the number of items that you want to display. The user must scroll to
see more items. (This field applies to only multi-select lists.)

Sort Click to order picked items first in the list after a pick is submitted.

Show Eliminated Click to display elimination levels, then type in the upper and lower
limits, inclusive, for the elimination levels that you want to display. (The
modeler defines elimination levels in the model.)

Show “None” Choose one of the items in the drop-down list. First places the None
item at the top of the list. Last places the None item at the bottom
of the list. Do Not Show excludes a None item from the list. (This
field applies only to single-select lists.)

Replace “None” With Type in text to identify the item in the list that lets the user choose
nothing. “None” is used if you leave this field blank.

First Item Text For a single-select list, type in the name of the control item that
you want to appear first in the list.

Events Click, then type in the HTML syntax to handle an event for
this control. For example:

onBlur = "foo()"; onClick= "foo2()"

Attributes Click, then type in the attributes that you want to include. Separate multiple
attributes with commas. Attributes replace domain member names. To display
attributes, the modeler should create an attribute for domain member names;
for example, an attribute called “DomMbrName” or “Desc”.

360 PeopleSoft Proprietary and Confidential

Chapter 28 Using the Page Editor Extensions for Dreamweaver

Note. If you want column headings for your attributes, you must use the
Configurator Table object, which creates a radio-box group or check box
group, with attributes in columns, and column headings.

Inserting a Group
A Configurator Group is one of the following:

• A radio-button group for a single-select selection point.

• A check box group for a multi-select selection point.

With radio buttons, the user can choose only one item. However, you can include an item at the top or
bottom of the group to let the user choose nothing, if the selection point is optional. With check boxes, the
user can choose one or more items, and can choose nothing by clearing all of the check boxes.

A radio-button group and two check box groups

SELECT A VEHICLE lets the user choose only one vehicle. If the selection point is optional, you
can include a None button at the top or bottom of the group to let the user choose nothing. SELECT
COMPONENTS and SELECT KITS let the user choose one or more items, or nothing at all.

PeopleSoft Proprietary and Confidential 361

Using the Page Editor Extensions for Dreamweaver Chapter 28

Insert Calico Group dialog box

To insert a group:

1. Insert a Configurator Group object into the active Document window from the Advisor
panel of the Dreamweaver Objects palette.

2. Set the properties of a Configurator Group object in the Insert Calico Group dialog box.

3. Set the following:

ID Enter an ID that is unique across all controls for your application.

Selection Point Browse to the <ModelName>.modelinfo.xml file, click it, and choose
one of the selection points in the drop-down list. (The model information
file is created when the model is created and compiled.)

Caption Type Select either text or image from the drop-down list.

String or Path If you want the caption to be text, type it in. If you want the caption
to be an image, browse to the image, and click it.

Sort Click to order picked items first in the list after a pick is submitted.

Show Eliminated Click to display elimination levels, then type in the upper and lower
limits, inclusive, for the elimination levels that you want to display.
(The modeler defines elimination levels in the model.)

Show “None” Choose one of the items in the drop-down list. First places the
None item at the top of the list. Last places the None item at the
bottom of the list. Do Not Show excludes a None item from the
list. (This field applies only to single-select lists.)

362 PeopleSoft Proprietary and Confidential

Chapter 28 Using the Page Editor Extensions for Dreamweaver

Replace “None” With Type in text to identify the item in the list that lets the user choose
nothing. “None” is used if you leave this field blank.

Events Click, then type in the HTML syntax to handle an event for
this control. For example:

onBlur = "foo()"; onClick= "foo2()"

Attributes Click, then type in the attributes that you want to include. Separate
multiple attributes with commas. Attributes replace domain
member names. To display attributes, the modeler should create
an attribute for domain member names; for example, an attribute
called “DomMbrName” or “Desc”.

Note. If you want column headings for your attributes, you must use the
Configurator Table object, which creates a radio-box group or check
box group, with attributes in columns, and column headings.

Inserting a Table
A Configurator Table is one of the following:

• A radio-button group for a single-select selection point. This displays the button and
attributes for each item in columns with column headings.

• A check box group for a multi-select selection point. This displays the check box and
attributes for each item in columns with column headings.

As with any radio button, the user can choose only one item. However, with a Configurator Table
object, you can include an item at the top or bottom of the radio-button group to let the user choose
nothing, if the selection point is optional. With check boxes, the user can choose one or more
items, and can choose nothing by clearing all of the check boxes.

A radio button table and two check box tables

DECIDE WHICH VEHICLE is a radio-button table. All of the items in it are null because the modeler did
not assign values for the code and cost attributes for this selection point. DECIDE WHICH COMPONENTS
and DECIDE WHICH KITS are check box tables. The modeler assigned values to the code and cost
attributes for these two selection points. (Code and Cost are actually headings that the Web designer
assigned to these two attributes. The modeler named these attributes Abbreviation and Price.)

Notice that attributes replace item names. If you want to use the Configurator Table object, the modeler
should create an attribute for the name of an item, so that you can display it.

To insert a table:

PeopleSoft Proprietary and Confidential 363

Using the Page Editor Extensions for Dreamweaver Chapter 28

1. Insert a Table object into the active Document window from the Advisor panel of
the Dreamweaver Objects palette.

2. Set the properties of a Configurator Table object in the Insert Calico Table dialog box.

ID Enter an ID that is unique across all controls for your application.

Selection Point Browse to the <ModelName>.modelinfo.xml file, click it, and choose
one of the selection points in the drop-down list. (The model information
file is created when the model is created and compiled.)

Caption Type Select either text or image from the drop-down list.

String or Path If you want the caption to be text, type it in. If you want the caption
to be an image, browse to the image, and click it.

Sort Click to order picked items first in the list after a pick is submitted.

Show Eliminated Click to display elimination levels, then type in the upper and lower
limits, inclusive, for the elimination levels that you want to display.
(The modeler defines elimination levels in the model.)

Show “None” Choose one of the items in the drop-down list. First places the
None item at the top of the list. Last places the None item at the
bottom of the list. Do Not Show excludes a None item from the
list. (This field applies only to single-select lists.)

Replace “None” With Type in text to identify the item in the list that lets the user choose
nothing. “None” is used if you leave this field blank.

Events Click, then type in the HTML syntax to handle an event for
this control. For example:

onBlur = "foo()"; onClick= "foo2()"

Attributes Click, then type in the attributes that you want to include. Separate
multiple attributes with commas. Attributes replace domain
member names. To display attributes, the modeler should create
an attribute for domain member names; for example, an attribute
called “DomMbrName” or “Desc”.

Note. If you want column headings for your attributes, you must use the
Configurator Table object, which creates a radio-box group or check
box group, with attributes in columns, and column headings.

Column Heading Type in the column heading for each attribute that you include.
Separate multiple columns with commas.

Inserting an Image
The two image objects let you create a control for a single-select selection point that
uses images to select a domain member:

• Single-Select Image Control—Generates an image to select one domain of a selection point. You
use the object multiple times to specify the image and location on the page for each domain member
of a selection point. At run time, selecting one image de-selects another.

364 PeopleSoft Proprietary and Confidential

Chapter 28 Using the Page Editor Extensions for Dreamweaver

• Image Table—Generates either a column or a row of images for all of the domain members of
a selection point. You use it once to specify the image for every domain member of a selection
point, and whether you want the images placed horizontally in a row, or vertically in a column. At
run time, selecting one image in the row or column de-selects another.

Single-Select Image controls, before and after selecting an image

Single Select Image Table, before and after selecting an image

When the “selectable” green image is selected and submitted, it is replaced by a
corresponding “selected” green image.

Note. The images of a Single-Select Table Image control are placed in a table row (in a table cell), and centered.

You set the properties of a Configurator Image object in one of the following dialog boxes:

PeopleSoft Proprietary and Confidential 365

Using the Page Editor Extensions for Dreamweaver Chapter 28

Insert Calico Single Select Image Control dialog box

To insert a Single Select Image:

1. Insert an Image object into the active Document window from the Advisor panel
of the Dreamweaver Objects palette.

2. Specify the properties in the dialog boxes.

Because Image Table generates one control with images for every domain member of the selection
point, whereas multiple instances of Single Select Image Control generate a control image by
image, the dialog boxes differ from each another in that:

• Single Select Image Control requires a domain member name. Image Table does
not use domain member names.

• Image Table requires an image attribute in the Configurator model. Single Select
Image Control also accepts an image name.

• Image Table requires an alternative text attribute in the model. Single Select Image
Control also accepts an alternative text name.

366 PeopleSoft Proprietary and Confidential

Chapter 28 Using the Page Editor Extensions for Dreamweaver

Inserting Why Help
Configurator Why Help displays messages on constraints resulting from user picks.
There are two types of Configurator Why Help:

• Control Why Help—This object displays messages on constraints resulting from picks on the specified control.

• Application Why Help—This object displays messages on constraints resulting from
picks anywhere in the application.

You can attach labels to the messages. The labels are displayed only when the messages are displayed.

Two Application Why Help messages

You set the properties of a Configurator Why Help object in one of the following dialog boxes:

Insert Control Why Help dialog box

PeopleSoft Proprietary and Confidential 367

Using the Page Editor Extensions for Dreamweaver Chapter 28

Insert Application Why Help dialog box

Selection Point Browse to the <ModelName>.modelinfo.xml file, click it, and choose one
of the selection points in the drop-down list for which you want Control
Why Help. (You do not set a selection point for Application Why Help,
because it applies to all selection points in the model.)

Caption Type Select either text or image from the drop-down list.

Inserting a Numeric Data Object
The Configurator Numeric Data object displays a total—that is, a summation—for a numeric
attribute of user picks, such as price, at run time. The summation is preceded on the
same line by a caption, followed by a colon (:).

Note. The modeler creates a selection point for each summation.

You can attach labels to the messages. The labels are displayed only when the messages are displayed.

Numeric Data for watts before submitting picks

Numeric Data for watts after submitting picks

Insert a Configurator Numeric Data object into the active Document window from the
Advisor panel of the Dreamweaver Objects palette.

Set the properties of a Configurator Numeric Data object the Insert Numeric Data dialog box.

368 PeopleSoft Proprietary and Confidential

Chapter 28 Using the Page Editor Extensions for Dreamweaver

Insert Numeric Data dialog box

Selection Point Browse to the <ModelName>.modelinfo.xml file, click it, and choose
one of the selection points for numeric data—that is, the summation of a
numeric attribute—in the drop-down list. (The model information file
is created when the model is created and compiled.

Note. The modeler creates a selection point for each summation of a numeric
attribute, and may constrain the summation to certain selection points. For
example, the modeler may constrain a selection point called TotalPrice to the
price (a numeric attribute) of HardDrive (one selection point) and PowerSupply
(another selection point). At run time, TotalPrice is the summation of the price
attribute of all hard drive items and power supply items selected by the user.

Caption Type Select either text or image from the drop-down list. This caption
precedes the numeric data on the same line.

String or Path If you want the caption to be text, type it in. If you want the caption to be
an image, browse to the image, and click it. The Numeric Data caption
is displayed only when the numeric data is displayed.

Editing Properties of Advanced Configurator Objects
Each of the Configurator objects, except Form and Button, has a unique Dreamweaver Property inspector
that lets you edit the properties that you set when you inserted the object.

Property inspector for a Configurator List

To access the property inspector for a Configurator object:

1. In an active Document window, select the Configurator object whose properties you want to edit.

2. Select Window, Properties. The Property inspector appears.

PeopleSoft Proprietary and Confidential 369

Using the Page Editor Extensions for Dreamweaver Chapter 28

3. If the arrow in the lower right-hand corner of the inspector is pointing down, click
it to expand the Property inspector.

Editing Forms and Buttons
Configurator forms and buttons don’t have a property inspector in which to change their
property values. To achieve a form or button with different properties, delete it, then reinsert
it, setting the desired properties on the new object.

Warning! The action type for both Configurator buttons is submit. Do not set the action type of any
Configurator button to “reset” in either the standard Property inspector or HTML source.

Editing Lists, Groups, and Tables
The Property dialogs for Configurator List, Configurator Group, and Configurator Table are similar.

370 PeopleSoft Proprietary and Confidential

CHAPTER 29

Compound Modeling

This chapter provides and overview of the compound model at run time and discusses how to:

• Use the compound model JSP pages.

• Call the compound model API.

• Create an application from the sample.

Understanding the Compound Model at Run Time
PeopleSoft Advanced Configurator offers the functionality for developing a Web application
that lets your user configure products based a compound model.

Creating a compound model involves these steps:

1. Create the standard models.

Using the PeopleSoft Visual Modeler, create a model for each configurable component of your
services offering. Decision points in each component can receive values from connected components,
and use them in constraints, creating cross-constrained models.

2. Create a compound structure.

Also using the Visual Modeler, define which configurable components from the standard models
to include in your offering, and how they connect to one another.

3. Create a user interface.

Using Configurator compound model APIs and JavaServer Pages, create an interface that lets your user
dynamically create, configure, and connect instances of your configurable components.

Run-Time Capabilities
PeopleSoft Advanced Configurator lets your user not only create a compound model configuration,
but change it and generate a change order. It also lets your user save both the original and the revised
configuration, and later retrieve information on changes between the two versions.

Configurator JavaServer Pages that you can use in your Web application let your user retrieve information
on configuration changes. The pages are described in the following sections:

See Chapter 29, “Compound Modeling,” Creating an Application from the Sample, page 376 and
Chapter 29, “Compound Modeling,” Using Compound Model JSP Pages, page 373.

A compound configuration must be able to add, delete, move, and change services (such as Web access
or call forwarding in the sample application) on an ongoing basis. To generate a change order, the
provider must be able to identify the following changes to the product configuration:

PeopleSoft Proprietary and Confidential 371

Compound Modeling Chapter 29

• Whether a component has been deleted.

• Whether a component has been added.

• Whether a component has moved.

• Whether a component has changed and how it has changed.

Deleting, adding, and moving a component is considered a structural change—that is, a change to
the structure of the configuration. Revising how a component is configured does not change the
structure of the configuration, and is considered to be a component change.

The Configurator has APIs to retrieve information on both structural and component changes made
during the user’s session. It also has APIs to retrieve configurations by date, which in turn let you
retrieve information on changes in the configuration between two points in time.

Architecture
Compound structure components extend the Configurator, which runs on the WebLogic application
service. The compound structure extensions include Java classes and JavaServer Pages.

Compound Structure Component Hierarchy

Some Compound Structure Java classes work behind the scenes to let you:

• Create multiple instances of models and configure them.

• Constrain the selection point of one model against the selection point of another model.

Other Compound Structure Java classes give you a public API that lets you create JavaServer Pages that let
your user dynamically create, configure, and verify a configuration based on a compound model.

See Also

Chapter 27, “Using JSP Templates for Form Controls,” page 323

372 PeopleSoft Proprietary and Confidential

Chapter 29 Compound Modeling

Using Compound Model JSP Pages
Configurator provides JavaServer Pages that you can include in your Web application to let your user
configure components and connect them, and then save the configuration.

In many cases, you may want to change the JavaServer Pages to suit your particular application.
They illustrate how to make Configurator calls to accomplish various tasks.

Note. Configurator also has JavaServer Pages for a sample application. The sample application
pages use the pages described in this chapter to create a Web application.

See Chapter 29, “Compound Modeling,” Creating an Application from the Sample, page 376.

If you installed Configurator to the D drive, the JavaServer Pages for configuring and connecting
components and for saving a configuration are in the following folder:

D:\bea\weblogic81\config\CalicoDomain\applications\CalicoApp\solutions\Compound⇒

Sample

The networkadvisor folder includes these categories of JavaServer Pages:

• Components—to let your user add, delete, and change components.

• Connections—to let your user add, delete, and change connections.

• Configurations—to let your user log in, and verify, save, and load a configuration.

• Changes—to let your user view information on changes that have been made to components
and connections over time (“delta information”).

• Application—central pages to let your user access the other pages, and pages containing common features.

• Form—to let your user edit the name of a component.

Components

Three JavaServer Pages let your user add, delete, and edit a component. (You can also move a
component such as a hub, node, or circuit by editing a connection.)

They are:

CalicoNAAddComp.jsp

CalicoNADeleteComp.jsp

CalicoNAEditComp.jsp

Connections

Three JavaServer Pages let your user add, delete, and edit a connection:

CalicoNAAddConn.jsp

CalicoNADeleteConn.jsp

CalicoNAEditConn.jsp

Configurations

Five JavaServer Pages let your user log in, and verify, save, and load a configuration:

PeopleSoft Proprietary and Confidential 373

Compound Modeling Chapter 29

Page Purpose

CalicoNAIdentification.jsp Lets the user log in to your Web application.

CalicoNAVerify.jsp Lets the user verify and display errors about whether the configuration is
valid.

CalicoNASaveConfig.jsp Lets the user save a configuration.

CalicoNALoadConfig.jsp Lets the user load a saved configuration.

CalicoNAErrorInc.jsp Displays various error messages to the user during the configuration
session.

Changes

Two JavaServer Pages let your user view changes made to a compound configuration.

Page Purpose

CalicoNAViewDeltas.jsp Lets the user view which components and connections have been added,
deleted, and moved.

CalicoNAViewDeltaDetail.jsp Lets the user view a detailed change history for each component.

Application

Seven JavaServer Pages implement the sample application. Because they are included
in other JavaServer Pages, their names end with Inc. You can use them as examples for
JavaServer Pages to implement your own application.

Two JavaServer Pages help you display and navigate to other JavaServer Pages.

Page Purpose

CalicoNAMangerInc.jsp Lets the user view all of the components and connections.

CalicoNANavigateInc.jsp Displays buttons on the Manager page to let your user choose to log in, and
verify, save, load, and view changes to a configuration.

Four JavaServer Pages provide a common set of features for all of the sample application pages, except
those used to configure the individual models of the compound configuration.

Page Purpose

CalicoNAConstantsInc.jsp A collection of constants used by Configurator JavaServer Pages.

CalicoNACommonInc.jsp Contains a collection of common imports and properties for the application
object and compound configuration.

CalicoNAHeaderInc.jsp An include file that you can use to put the Configurator banner at the top of
a page.

CalicoNAUtilityInc.jsp A collection of utility functions, such as those used for logging errors.

374 PeopleSoft Proprietary and Confidential

Chapter 29 Compound Modeling

Form

CalicoNAFormInc.jsp lets the user edit the name of a component.

Calling the Compound Model API
PeopleSoft Advanced Configurator has an API that lets you do the following:

• Structure a compound model from configurable components.

• Create multiple instances of configurable components.

• Create multiple instances of connections.

• Create, verify, save, and restore a compound configuration.

The Configurator JavaServer Pages contain examples of the use of the API, and can
be altered to use in your application.

The Configurator compound modeling API consists of the following packages:

File Purpose

calico.cms.definition Handles parsing of the XML compound structure definition (CSD) and provides an API
for accessing compound structure information.

calico.cms.dm The data management package, which is used to access the database in order to store
and retrieve compounds, components, and connections, and to retrieve compound delta
information.

calico.cms.runtime Used for managing compound configurations at run time.

calico.cms.exceptions Contains exceptions thrown by classes in the other compound modeling packages.

calico.cms.cache Provides methods for accessing and managing the set of compound structures on the
server

calico.cms.servlet Contains a servlet class which provides an HTML interface for managing the compound
structures on the server.

The Configurator installation also contains the JavaDoc for the following:

File Purpose

calico.configurator.cop This is the Configurator API. It includes modifications that have been made for
Configurator.

calico.configurator.exceptions exceptions thrown by the Configurator API (COP).

PeopleSoft Proprietary and Confidential 375

Compound Modeling Chapter 29

Creating an Application from the Sample
The Configurator includes a sample Web application, called TelcoSample, that demonstrates
the basic features of a complex product application.

Its JavaServer Pages for the sample are located in:

\bea\weblogic81\config\CalicoDomain\applications\CalicoApp\solutions\Compound⇒

Sample\

The sample includes:

• XML representation of a compound structure definition that has three configurable
components—Node, Hub, and Circuit.

• Source files for the three component models.

• Web application JavaServer Pages that call the compound model API and employ
Configurator JavaServer Pages.

Viewing the Sample Application
This section tells you how to install the sample application, and describes each of its parts. It then shows
you how to use the application to configure, save, restore, and reconfigure a network of communication
services, and to obtain the delta between the first and second configurations.

To launch the sample application:

1. Make sure that the WebLogic application server is running.

2. From your browser, call the following URL for the application’s index page:

http:\\<hostname:port>\\solutions\CompoundSample\CalicoNAmanager.jsp

376 PeopleSoft Proprietary and Confidential

Chapter 29 Compound Modeling

Sample application login page

Node-Hub-Circuit Services
The sample application’s compound structure definition has three configurable components, and three
connections (or relationships). It does not use Type or Instance elements.

See Appendix E, “Node-Circuit-Hub Service,” XML Representation of Compound
Structure Definition, page 464.

Configurable Components
The sample application has three components.

Node

A node is defined by the standard model TelcoComp. By creating a node (using “Add New
Component”) TelcoComp, and clicking on its name in the Manager page, you can see the
decision points and choices of the nodes. The decision points are: Protocol, Access Option,
Local Loop Service, CPE, Port Speed, and Local Loop Port Speed.

PeopleSoft Proprietary and Confidential 377

Compound Modeling Chapter 29

Hub

A hub is defined by the standard model TelcoCompHub. By creating a hub (using “Add New Component”)
in your standard model, and clicking on its name in the Manager page, you can see the decision points and
choices of the hubs. The decision points are: Protocol, Access Option, and Port Speed.

Circuit

A circuit is defined by the standard model TelcoCompCircuit. By creating a circuit (using “Add New
Component”) in your standard model, and clicking on its name in the Manager page, you can see the decision
points and choices of the nodes. This model defines a circuit with one decision point: circuit speed.

Relationships
The sample application has three relationships.

Connection

A connection is an element of Configurator that can be used to connect to configurable components. You
can create new connections (using “Add New Connection”). Each connection is listed on the Manager page,
along with the two components it connects. By clicking on the connection name, you can edit it.

The XML CSD (created with the Visual Modeler) for the sample application defines the connection,
and in particular what information from one component can be used by another component when they
have a connection between them. In this sample application, the CSD says:

• A circuit must have at least 1 and at most 2 connections.

• A circuit can connect to 0 to 2 nodes, and to 0 to 2 hubs (inclusive).

Note. These two rules give us the following possibilities: circuit-node, circuit-hub,
node-circuit-node, hub-circuit-hub, and node-circuit-hub.

• A circuit can access the port speed choice of any component it is connected to. The circuit’s
names for these port speed choices are Ext_PortSpeedSelection_A and (if the circuit is
connected to a second component) Ext_PortSpeedSelection_B.

• A circuit can access the protocol choice of any component it is connected to. The circuit’s
names for these protocol choices are Ext_ProtocolSelection_A and (if the circuit is connected
to a second component) Ext_ProtocolSelection_B.

In its own (standard) model, the circuit can use these port speeds and protocols to constrain its own
domain members. This is how cross-constrained models are created.

HubCircuits

According to the XML CSD definition of the HubCircuits relationship for the sample application, a hub
can be connected to 1 to 24 circuits (inclusive). The hub has access to the collection (set) of the port
speeds of all the circuits connecting to it. The hub’s name for this set is Ext_PortSpeeds.

In its own (standard) model, the hub can use Ext_PortSpeeds to constrain its own domain members. Because
Ext_PortSpeeds is a set, the model will probably apply an operator like “max” or “sum” to it.

NodeCircuit

According to the XML CSD definition of the NodeCircuit relationship, each node
must be connected to exactly one circuit.

378 PeopleSoft Proprietary and Confidential

Chapter 29 Compound Modeling

Modeling Node-Hub-Circuit Services
The sample application has three models with cross-constraints:

• TelcoComp—for a node.

• TelcoCompHub—for a hub.

• TelcoCompCircuit—for a circuit.

You can look at each model and see the use it makes of the cross-constraints that compound modeling makes
available. For example, TelcoCompHub has a constraint that says “the port speed of the hub must be greater
than or equal to the maximum of the port speeds of all the circuits connecting to the hub.”

Configuring Node-Hub-Circuit Services
The sample application lets the user do the following:

• Create a compound Node-Hub-Circuit configuration, and save it.

• Restore a saved configuration, and reconfigure it.

• Obtain the delta between the first and second configuration.

Creating a Compound Configuration
On the Load Configuration page, use the New Configuration button to create a new configuration. This
displays the Manager page. On the Manager page, create the components (in the sample application,
hubs, nodes, and circuits) by using the Add New Component button. Then create connections
between these components by using the Add New Connection button.

Reconfiguring a Compound Configuration
To add a new component or connection, use the Add New Component or Add New
Connection button on the Manager page.

To delete a component or connection, click on that component’s or connection’s
trash can icon on the Manager page.

By clicking on the name of a connection on the Manager page, you can edit the connection, including
changing its name and changing which components it connects. You can move components in your
compound model by editing the connection that connects the components.

By clicking on the name of a component on the Manager page, you can edit the component, including
changing its name and making new choices for its decision points.

Obtaining the Configuration Delta
Clicking on the “View Deltas” button on the Manager page will take you to the View Deltas page, which has
a list of all the model’s components and connections and their modification date. By clicking on the name
of a component or connection, you can view more detailed delta information for that element.

PeopleSoft Proprietary and Confidential 379

Compound Modeling Chapter 29

380 PeopleSoft Proprietary and Confidential

PART 7

Mobile Product Configuration

Chapter 30
Understanding Mobile Product Configuration

Chapter 31
Mobile Solution Administration

Chapter 32
Creating and Maintaining Mobile Solutions

CHAPTER 30

Understanding Mobile Product Configuration

This chapter provides an overview of mobile product configuration and discusses:

• Mobile configuration.

• Solution package contents.

• Functional components.

• Data.

• Solution distribution and installation.

• Types of models.

• Mobile Configurator Packaging Tool.

• Mobile machine requirements.

• Package maintenance.

Mobile Configuration
PeopleSoft Enterprise Mobile Configurator makes offline product configuration possible for field sales
personnel who must configure products without benefit of a run-time connection to the enterprise server.

Mobile components of Advanced Configurator allow a mobile user to download complete and
up-to-date product and model information for later local machine configuration. When the user
reconnects with the enterprise, he or she can upload the new configurations and transaction
artifacts to the enterprise for storage or further processing.

Mobile Configurator components support the creation and maintenance of a browser-based application
that solves an business problem requiring off-line configuration.

In this document, the collection of application pages, models, and supporting files that solve an business
problem, such as product configuration or product recommendation, is referred to as a Solution. For
file management by the Packaging Tool, the Solution is defined in a Solution Package file having the
extension .cci. The Package contains a list of files and their storage locations.

The end product of the Packaging Tool is an installer of component files called the Solution Installer.
Generated from the Solution Package, the Solution Installer is an .msi (Microsoft installer database)
file containing all of the files and information that the mobile user needs to install and run the
Solution on a local system installed with PeopleSoft Mobile Configurator. The .msi is the file that
is distributed to the field, either by email attachment, media, or download.

PeopleSoft Proprietary and Confidential 383

Understanding Mobile Product Configuration Chapter 30

Note. Model requirement: To accommodate a local, offline, run-time environment, models intended
for mobile deployment must have data internal to the model. The Configurator Administration console
provides a function to enable the modeler to quickly internalize model data.

See Chapter 31, “Mobile Solution Administration,” Internalizing Model Data, page 392.

Solution Package Contents
From the Solution Package (.cci), the Packaging Tool creates a Microsoft installer database file (.msi)
containing all of the components needed to run a Configurator application on the Mobile client:

• Model files (run-time model).

• Pages (<modelpage1...n>.jsp).

• Images.

• Directory information for the above Solution files.

• Installation information for all of the above.

Model files, pages, and images are compressed into the .msi install file. Because the .msi file contains
an install script, double-clicking on the file executes a Windows 2000 installation program that
provides the mobile user with a ready-to-run application for configuration.

Functional Components
Mobile Configurator components are:

• Mobile Configurator Packaging Tool—Allows a modeler or model administrator to create
an install file containing all of the components required to carry on a customized PeopleSoft
configuration application session on Mobile Configurator.

• Mobile Configurator client—The client application from which the mobile user configures the product.
Online documentation accessible from the application describes its purpose and how to use it.

• Transfer Service—Allows transfer of configuration data from the Configurator Engine to
other third-party ERP systems for further data processing. The Transfer Service API includes
sample implementations to aid in customizing data exchange.

Data
The Mobile Configurator is designed to manage the various bodies of data with minimal intervention. For
example, the Packaging Tool acts as a central management point for model, site, and related support files.
The Mobile client offers mobile users straightforward upload and download of configurations. And for
modelers, an internalizing function eliminates the need for database-referenced model data.

384 PeopleSoft Proprietary and Confidential

Chapter 30 Understanding Mobile Product Configuration

Model Data
Data specific to configuring the product is in the form of:

• Domain member and constraint data.

• Domain-member attribute data for display and downstream use that is not handled by the
Configurator engine but is needed for configuration.

Accessing this data for configuring in a mobile environment requires that the data be local—specifically,
it must be internal to the model. You can internalize data in one of two ways:

• Assign domain member values manually in the Visual Modeler, OR

• Use the model internalization function of the Advanced Configurator Administration Tool to automatically
populate domain member values from an external database, such as the enterprise central product store.
Then re-compile the model and update the Solution document with the new model version.

The internalization function lets you transfer the latest body of product data from the
enterprise database to the model file itself.

See Chapter 31, “Mobile Solution Administration,” Internalizing Model Data, page 392.

Site Support Data
Non-configuration data that is referenced in the JSPs is included in the Solution by the site
developer rather than the modeler or model administrator.

Configuration Data
Configuration data is the result of a configuration session. The mobile user saves the
configuration to local storage for later upload to the enterprise. The Mobile client also
gives the user the option of emailing the configuration.

Once uploaded to the enterprise, the configuration data can be routed for storage management,
quoting, order entry, or other processing.

Solution Distribution and Installation
There are many ways to distribute the Solution Installer (.msi). For instance, you can:

• Post the .msi file for online distribution by FTP or HTTP protocol.

• Distribute it as an email attachment.

• Transfer it using removable media.

The .msi file is an installation executable; double-clicking the .msi file installs the
Solution on the mobile machine.

Note. A Solution Package will not install on a machine unless the Mobile Configurator has been installed.

PeopleSoft Proprietary and Confidential 385

Understanding Mobile Product Configuration Chapter 30

Types of Models
At the heart of any PeopleSoft Configurator Solution is the model. A Solution may contain one or more
component models, which are programmatic definitions of a product and its options, the relationships that
describe and limit the combination of those options, and associated business data such as price and availability.

Often, business data, being changeable, is provided to the model at run time (during a configuration session)
by an outside source such as an enterprise database. This is external data and delivers the most current
information to the user. Sometimes a model’s data is stored within the model itself as internal data.

If you are packaging a Solution, you need to know if the model has external data that needs
to be internalized before packaging or updating it.

See Chapter 31, “Mobile Solution Administration,” Internalizing Model Data, page 392.

If a product is particularly complex, a Solution may contain one or more compound models.
A compound model describes the relationships between two or more component models that
together describe the product. The description is expressed in XML; the compound model is the
XML file resulting from its compilation by the Visual Modeler.

If a compound model(s) is the type of model employed in a Solution, then the subdirectory
containing its .xml file is the root directory for the entire Solution, even if other parts of the
Solution, including its component models, are located elsewhere. This is true because the compound
model XML file contains the locations of its component models.

Mobile Configurator Packaging Tool
The Mobile Configurator Packaging Tool allows you to:

• Create and maintain a Solution Package—a list of the files that comprise a Solution.

• Create a Solution Installer for the purpose of distributing Solution Package files to a mobile sales force.

Creation and maintenance of a Solution Package entails managing the name, version, and location of the desired
files, as well as adding and deleting files. While relative path information is automated for core Solution files,
you have the flexibility to define and manage the relative organization of miscellaneous files within a Package.

The tool gives you these basic capabilities:

• Create new Solution Packages.

• Modify existing Solution Packages.

• Generate Solution and model-update installers.

Inputs required by the Mobile Packaging Tool for packaging a Solution are:

• Model files and the image and page files of the Solution UI.

• Locations of the aforementioned files for purposes of copying and compressing them into an install package.

The tool’s output is a .cci file (a description of the Solution contents) and an .msi file (the Solution Installer).

Workflow is as follows:

386 PeopleSoft Proprietary and Confidential

Chapter 30 Understanding Mobile Product Configuration

1. A new Solution is created, or files in an existing Solution change, requiring an update to field installations.
Changes can involve the model itself (such as constraints and relationships), model data (domain members
and pricing), or the presentation pages (JSP and images). Any external data is internalized to the model.

2. The model administrator uses the Packaging Tool to describe the Solution files (.cci)
and create a Solution Installer (.msi) from the description, thus replacing the previous
installer with one containing the most current files.

3. The Solution Installer is transferred to distribution media, a designated distribution location
on the enterprise server, or is simply attached to an email.

4. The mobile user receives the new installer by email, media, or download from the enterprise server, and
installs it. While connected to the server, the mobile user can upload configurations to the enterprise server.

5. The mobile user double-clicks on the .msi file and the Solution application is
automatically installed on the local machine.

6. Now disconnected from the enterprise server, the mobile user launches the updated Solution application.

PeopleSoft Proprietary and Confidential 387

Understanding Mobile Product Configuration Chapter 30

Model
Administrator

Update solution files

Model files
Images

JSP, HTML

.CCI

Model data
(if not internal to

model)

URLs
of model and

data files

1

Update Model, solution Package

.MSI

Mobile Configurator
Packaging Tool

2
Model
Administrator

Download current solution, configurations
Upload new configurations

3
Model
AdministratorEnterprise

Database

4 Mobile User

Connect Time
 Package Installer

(.MSI)
 Model data
 Configurations

Mobile User

Install

Model files ,Images,
JSP, HTML

Model data
5

Mobile User

Configure

6

Mobile configuration data flow

388 PeopleSoft Proprietary and Confidential

Chapter 30 Understanding Mobile Product Configuration

Mobile Machine Requirements
In order to run the Configurator Solution installed by its associated Solution Installer, the
mobile machine must meet the following requirements:

• The operating system is Windows 2000 or Windows XP.

• Mobile Configurator must be installed.

PeopleSoft provides a separate installer for Mobile Configurator.

See PeopleSoft Enterprise CRM 8.9 Installation Guide

Package Maintenance
Solution update and maintenance requires more thoughtful care when maintaining models hosted
to numerous off-site machines beyond your control and oversight.

Controlling Field Version Use
The site or model developer can specify options in the Configurator to allow mobile users the flexibility of
choosing which Solution version to use to create or edit a configuration. Such a choice allows the mobile user
to modify existing configurations that have been superseded by product updates. In addition, simply opening
an existing configuration for verification requires that it be restored in the UI it was created with.

See Chapter 27, “Using JSP Templates for Form Controls,” Specifying Solution
Information Properties, page 347.

Designating Solution versions is a matter of specifying the version policy settings in
CalicoUI.properties (for component models) and CalicoNA.properties (for compound models).
You should be aware that the Mobile client gives the mobile user the choice of whether or not
to use the compile version of the requested configuration.

Guidelines for Maintenance
The Packaging Tool allows you substantial flexibility in creating and updating installers that track
changes throughout the life of a given Solution. To avoid version confusion and file-sharing
problems, it is important to follow these guidelines:

Don’t put the same files in multiple packages.

Any file that is shared between two packages has the potential for causing installation dependencies.
Because the installers created by two such Packages will overlap on the shared file. Thus, a
machine with both packages installed will fail to properly un-install either package. To avoid this
problem, keep all shared files in one package. You can then upgrade this package as needed and
send the upgrades to the field in conjunction with other packages.

Avoid putting more then one Solution in a package.

This will greatly reduce the risk of Solutions overlapping other packages.

PeopleSoft Proprietary and Confidential 389

Understanding Mobile Product Configuration Chapter 30

Keep and maintain your Packages for the life of a Solution.

When packaging a Solution for the first time, keep the Package for later updates. Once a new version
of the Solution is available, update the original Package file with the changes to the Solution. In this
way, the new installer will update previous installations on the mobile machine.

The Solution Installer will upgrade the previous version because it contains identification codes unique to
each Package and installer. The Packaging Tool manages these codes for you. Every time you save changes
to a Package, the codes are updated. These codes enable the Microsoft installer application to distinguish
between alternate installations of the same Solution or upgrade previous installations of the Solution.

When you create a Model Update Installer, be aware that you are
creating a new product installation.

The menu command Tools, Create Model Update Installer creates a new Model Update Installer,
which will appear as a separate installer (.msi) on the mobile user’s machine. By contrast,
generating an installer with Tools, Create Solution Installer generates an installer that simply
upgrades any previous version of that Solution on the mobile machine.

The Packaging Tool uses two templates, both of which are .msi files:

• blank.msi

• confirm.msi

390 PeopleSoft Proprietary and Confidential

CHAPTER 31

Mobile Solution Administration

This chapter discusses how to:

• Prepare a solution for packaging.

• Localize solution UI files.

• Customize and localize the Mobile Configurator Client.

• Integrate Mobile Configurator with ERP systems.

• Integrate Mobile Configurator with Mobile Order Capture.

Preparing a Solution for Packaging
Before a Solution can be packaged, it must be prepared for distribution and operation in a mobile environment,
and for the transfer of configuration data between mobile and enterprise data stores.

Very little is required to adapt an existing PeopleSoft Configurator Solution for deployment in a Mobile
Configurator environment, provided the Solution uses JavaServer Pages.

Depending on the Solution’s implementation, you may need to do one or more of the following tasks:

• Model data must be made specified in the model itself, and not requested from a database or another file. Such
externally stored data can be internalized using the Configurator Administration console or Visual Modeler.

See Chapter 31, “Mobile Solution Administration,” Internalizing Model Data, page 392.

• The restore policy and start page must be set in the CalicoUI.properties (for component models)
or CalicoNA.properties (for compound models). You can also set other, optional solution
parameters in these properties files. These parameters are:

- Name (the solution ID).

- Description.

- Restore page.

- The directory that the Solution resides in.

- Language and country codes.

- Enable switch to allow the Solution to create new configurations.

- Solution’s UI Version.

- Compound model name and version

• If the intended user is non-English-speaking, the Mobile Configurator client must be localized.

See Chapter 31, “Mobile Solution Administration,” Localizing Solution UI Files, page 394.

PeopleSoft Proprietary and Confidential 391

Mobile Solution Administration Chapter 31

• If configuration data is to be passed to and from the components of an ERP system,
the Mobile Transfer Service must be integrated.

See Chapter 31, “Mobile Solution Administration,” Setting Configuration Restore Policy, page 393 and
Chapter 31, “Mobile Solution Administration,” Integrating Mobile Configurator with ERP Systems, page 396.

You do not need to make additions to the UI files. You also do not need to re-stage the files, as the Packaging
Tool can extract them from their deployed or staged locations, however they are distributed.

See Also

Part 2, “Product Modeling with a Component Model,” page 9

Internalizing Model Data
The Advanced Configurator Administration console can internalize model data for you. It can import
externally referenced model data and translate it into internally defined data. The model then becomes
self-contained, and can be deployed in a mobile configuration environment needing no access to the
product database. You can also include additional attributes in the internalization process.

Note. The Visual Modeler can also internalize data; however, it can only internalize
data used within the model. Externally referenced data not used in the model, such as
descriptions, can’t be internalized by the Visual Modeler.

To internalize model data:

1. Start the Administration console by selecting Start, Programs, PeopleSoft Applications, Configurator,
Administration. Make sure the Configurator Server is started.

2. Select the check box for “Generate self-contained model” to internalize model data.

3. If there is a separate file containing additional external attribute information, enter
it in the “Additional attribute file” field.

Note. Solutions in which external attribute data is queried from the JSP page rather than the model
require an extra step in order to internalize this portion of the model’s external data.

The extra step is to create a file that specifies which classes contain the attributes
currently being called from the pages.

The file must list the additional classes to be internalized using this format: class\:attribute=type

where type is String, int, float, or Boolean.

For example:

Tires\:description=string

Tires\:sidewall=boolean

Tire\:mfg=string

Wheels\:description=string

Wheels\:mfg=string

The file’s extension can be .txt.

392 PeopleSoft Proprietary and Confidential

Chapter 31 Mobile Solution Administration

4. Click Compile. The Administration console internalizes data referenced by the appropriate
classes in the model as well as any specified in an external attribute file.

Setting Configuration Restore Policy
A user’s request to restore a saved configuration presents a challenge in light of the requirement for that
configuration to run on the same, or a compatible version of, the model that it was created with. This is
necessary in order to avoid a situation in which picks on the saved configuration do not appear because
their corresponding selection points were removed in more recent model updates.

To give you control over which model version is to be used when a saved configuration is
restored, a set of standard policies has been established.

The policies are keyed by number as follows:

Policy Model Type Action If not available...

1 Component, Compound Try to use the same version that the
configuration was created with.

Fail

2 Component, Compound Try to use the same version that the
configuration was created with.

Use the newest version.

3 Component, Compound Always use the newest version. Fail

4 Component If more than one version exists, return status, if
one uses that version.

Fail

Compound Try to use the same version that the
configuration was created with.

Automatically use the version
in the structure document.

5 Component Allow the use of any model through specific
action (Open with...), or setting.

Note. Use this policy in conjunction with any of
the above policies. (The implementor specifies
which model to use in the Configuration object
and then uses policy 1 or 2.)

Fail

Compound Always use the version in the structure
document.

Fail

To implement one of these policies, edit CalicoUI.properties (for component models), or
CalicoNA.properties (for compound models), as follows:

• Assign a policy number (1 through 5) to calico.solution.restorePolicy.

• Assign a value to calico.page.restore.

Note. The CalicoUI.properties and CalicoNA.properties files for an application are located
in their respective application root directories.

PeopleSoft Proprietary and Confidential 393

Mobile Solution Administration Chapter 31

See Also

Part 2, “Product Modeling with a Component Model,” page 9

Part 6, “Building a Custom User Interface,” page 293

Localizing Solution UI Files
PeopleSoft Configurator provides templates for localizing text in the Solution UI files. In addition,
handling the installer (.msi) files conforms with Win2K methods and practices.

Text strings for localizing the Solution Installer are found in:

• blank.msi—for Packages created with no UI.

• confirm.msi—for Packages created with a configuration UI.

Make sure that these files are in the same directory as the SolPkgr.exe. For more information on localizing
your implementation, please refer to the section entitled “Localizing a Windows Installer Package”
of the Platform SDK Windows Installer documentation in the MSDN library.

Customizing and Localizing the Mobile Configurator Client
There are a number of reasons you may want to customize the content displayed by the Mobile client. You
may want the Mobile client to display your company logo, sales info, or other custom content when it is
idle. You may want a way for your mobile user to quickly log into your company support site. You may
have a download page that allows your mobile user to quickly access new or updated Solution Installers
and other content. This is done easily using standard web page authoring tools and techniques.

The PeopleSoft Mobile Configurator client can be localized and customized without the need
to obtain a new version of the executable from PeopleSoft.

Using external HTML files, you can customize these Mobile client UI elements:

• Main window background.

• The target of the Help menu’s On the web item.

• The target of the Help menu’s Updates item.

Customizing the Mobile Client
The Mobile client uses HTML content for the client background area displayed when the
client is idle (not actively configuring a product or displaying other content) and when
the New Configuration dialog is being displayed.

By default, the Mobile client reads the HTML content from data contained within the client executable
(cmc.exe). However, when the Mobile client is launched, it checks for external HTML files in the installation
root directory (default location C:\Program Files\PeopleSoft Applications\Mobile Configurator). If it finds
external HTML files for this content, it will use them rather than the internal data.

394 PeopleSoft Proprietary and Confidential

Chapter 31 Mobile Solution Administration

The content for the Help menu’s On the web and Updates items can be replaced using external HTML
files. The Updates menu item is only displayed if an external HTML file exists.

To customize the content displayed by the Mobile Client:

1. Use standard web page authoring tools and techniques to create the content page.

2. Name the content page file according to its display requirements, as follows:

Content shown when... External file name

Mobile client is idle. Idle.htm

Mobile client is displaying the New Configuration dialog. FileNew.htm

User accesses the On the web Help menu item OnTheWeb.htm

User accesses the Updates Help menu item (the Updates menu item is only
displayed if this external file exists)

Updates.htm

3. Place the content page file in the Mobile client installation root directory. The default installation root
directory is C:\Program Files\PeopleSoft Applications\Mobile Configurator (where the cmc.exe) is located.
Be sure to include any additional files that the content page is referencing, such as image or sound files.

Note. If you intend to build an installer for these files, you can locate the Mobile client installation
root directory path in the Windows Registry on the client machine under the key:

HKEY_LOCAL_MACHINE\SOFTWARE\PeopleSoft\PeopleSoft Applications\CfgMobile\I

The Mobile Configurator client uses the Microsoft Internet Explorer web browser to display the
content in the client area and the pop-up windows, so any content appropriate for IE 5.5 (or newer,
depending on what is installed on the client machine) can be displayed by the Mobile client. However,
keep in mind that the Idle.htm and FileNew.htm content will probably be displayed while the client
machine is disconnected and does not have access to the network or Internet, so you should take
care to create pages that are displayed correctly when access is unavailable.

Tip for setting up OnTheWeb.htm and Updates.htm

The page the Mobile client initially displays is from the local file, which limits what you
can display. To extend display possibilities, include a redirect on the local page to online
content or provide links to online content as appropriate.

Localizing the Mobile Client
By default, the Mobile client menu text, dialog text, and messages are in English. Using a Resource
Only DLL, you can localize the Mobile client to present text for another language.

The Mobile client menu text, dialog text, messages, and other content are accessed from a Microsoft format
resource package. The default resource package is contained within the executable (cmc.exe). However, the
Mobile client can load the resources from an external resource package in the form of a Resource Only Dynamic
Link Library (DLL). When the Mobile client is launched, it checks for an external DLL file, cmc.dll, in the
installation root directory (by default, C:\Program Files\PeopleSoft Applications\Mobile Configurator). If it
finds cmc.dll, it loads the resources from the external resource package rather than from the internal package.

For proper operation, all of the Mobile client resources must be present in the external package.

PeopleSoft Proprietary and Confidential 395

Mobile Solution Administration Chapter 31

Any tool that can create a Windows resource package in the form of a DLL can be used to create the
cmc.dll file. The Mobile Configurator administration installation includes a Microsoft Visual Studio
Resource Only DLL project for you to use as a starting point for a localized version.

To localize the client:

The following procedure assumes that you are familiar with how to edit and build a Resource Only DLL.

Warning! When making changes to the cmc.rc as described below, be sure that
you don’t change any resource Ids.

1. Create a copy of the sample project and open it with Microsoft Visual Studio (Visual
C++). If you are using a tool other than Microsoft Visual C++ create an appropriate
project using the source files included with the sample.

2. Open the cmc.rc file:

• If your localization involves only changing text strings, you can open the cmc.rc file in text mode
and modify the strings directly using the text editor. In addition, you may want to change the
default HTML content used by the Mobile client as part of your localization.

See Chapter 31, “Mobile Solution Administration,” Customizing the Mobile Client, page 394.

• If your localization requires changes to the size or layout of the dialogs, you can open the
cmc.rc file using the resource editor rather than the text editor.

3. Replace the English text with text appropriate for your locale.

4. Modify or replace icons and other graphics as needed for your localization.

5. Build the Resource Only DLL. (The details of how to build the DLL depend on the tool
used and are beyond the scope of this document.)

6. Copy the resulting cmc.dll file to the directory containing the Mobile client executable (cmc.exe).
Typically, this is the Mobile client installation root directory. By default, the installation root
directory is C:\Program Files\PeopleSoft Applications\Mobile Configurator.

Note. If you intend to build an installer for these files, you can locate the Mobile client installation
root directory path in the Windows Registry on the client machine under the key:

HKEY_LOCAL_MACHINE\SOFTWARE\PeopleSoft\PeopleSoft Applications\CfgMobile\InstallRoot

Integrating Mobile Configurator with ERP Systems
Mobile Configurator can interface to the Mobile Transfer Service (MTS), which runs on the enterprise
Configurator Server. You can configure an instance of the MTS to provide facilities for transporting
configurations and configuration-derived artifacts from Mobile Configurator sites to the enterprise
for storage management, quoting, order entry, or other processing.

Through an HTTP POST, the Mobile client passes configuration data to the MTS as XML in the .cmc file. The
request invokes the Receiver servlet that is running inside the MTS. The servlet in turn invokes the Reader,
Handler, and Response implementations specified in the MobileTS.properties file to process the request.

The MTS provides an API for creating site-specific implementations.

396 PeopleSoft Proprietary and Confidential

Chapter 31 Mobile Solution Administration

MTS Interfaces
The Mobile Transfer Service APIs are:

• calico.mobilets.MobileTSResponse.java

Interface for a Response. It provides status and content from the uploaded file.

• calico.mobilets.MobileTSReceiver.java

Interface for a simple rfc1867 upload receiver. It reads an HTTP POST request having a content
type of multipart/ form data. It composes an HTTP response containing the HTTPRequest and
MIME, content headers, and any additional data about the request.

• calico.mobilets.MobileTSReader.java

Interface for a MimeReader.

• calico.mobilets.MobileTSHandler.java

Interface for a Handler. Site-specific implementations process the uploaded configuration files.

Sample Implementations
Also provided are samples for reference as you create your own implementations.

The sample implementations are located on the PeopleSoft Advanced Configurator install in
\samples\Configurator\MobileTransferService\Release\ calico\mobilets.

Implementations are:

• MobileTSResponseImpl.java

A sample MobileTSResponse implementation. Returned by MobileTSHandler.handle().

• MobileTSMultipartReaderImpl.java

Reads a stream of MIME multipart/ form data.

• MobileTSHandlerImpl.java

Stores the uploaded file to the local file system in the directory specified in MobileTS.properties.

To use the Transfer Service with these implementations, you must place the implementation class files either:

• In a location that is in the WebLogic server’s classpath, or

• In any location and add that location to the WebLogic server’s classpath.

Using the Transfer Service
To hook up the Transfer Service to pass configuration data to ERP receivers, first implement the
MTS interfaces as required by your ERP system and Solution.

In MobileTS.properties, edit the values for the Handler and Reader classes to
reference your implementation classes.

Default location for MobileTS.properties is: C:\bea\weblogic81\config\CalicoDomain
\applications\CalicoApp\Web-inf\config

Specify the location of the configuration data file when it is uploaded.

The text of the MobileTS.properties file is:

PeopleSoft Proprietary and Confidential 397

Mobile Solution Administration Chapter 31

###

PROPERTIES FOR CALICO MOBILE - TRANSFER SERVICE

###

Handler Class

HandlerClass=calico.mobilets.MobileTSHandlerImpl

Reader Class

ReaderClass=calico.mobilets.MobileTSMultipartReaderImpl

For sample Handler.

Directory on local file system where the Transfer Service Sample

Handler places the uploaded file.

Note: Please use forward slash for separator.

UploadDirName=C:/Temp

Using Source Control
If your Solution files are stored in source control, be sure to include Solution Package (.cci) files
as well. It is not necessary to protect the Solution Installer (.msi) files in source control for two
reasons: they are not editable, and they can be regenerated from the .cci file.

Integrating Mobile Configurator with Microsoft
COM-Compatible Applications

Mobile Configurator includes a COM API, which allows another application to interact with the
Mobile Configurator to create, save, and restore configurations.

A description of the API’s class and methods is available.

See Also

Appendix F, “Mobile Configurator COM API,” page 467

398 PeopleSoft Proprietary and Confidential

CHAPTER 32

Creating and Maintaining Mobile Solutions

This chapter provides an overview of the Packaging Tool and describes how to:

• Set the application root.

• Create a new solution package.

• Add a model to the package.

• Set end-user installation options.

• Modify a solution package.

• Add non-solution files to the solution package.

• Access package properties.

• Add annotation to the package.

• Generate the solution package installer.

• Update a solution installer.

• Update only the model(s) of a package.

• Print solution package content.

Understanding the Packaging Tool
This figure shows the Packaging Tool’s main window, which is a workspace for managing the
Solution files for the creation and maintenance of a Solution Package.

PeopleSoft Proprietary and Confidential 399

Creating and Maintaining Mobile Solutions Chapter 32

Packaging Tool main window

Setting the Application Root
The Packaging Tool must be pointed to the application root directory of the Configurator
Server in order to create or modify a package. This information tells the tool where to find
the available files for display in the Packaging Tool workspace.

If the Solution employs a compound model, rather than a component model, then the subdirectory containing
the model’s XML file is the root directory for the entire Solution, even if other parts of the Solution,
including its component models, are located elsewhere. This separation of model location is possible
because the compound model XML file contains the locations of its component models.

See Chapter 30, “Understanding Mobile Product Configuration,” Types of Models, page 386.

400 PeopleSoft Proprietary and Confidential

Chapter 32 Creating and Maintaining Mobile Solutions

Options dialog for specifying the location of the solution files

To set the application root:

1. Select Tools, Options to display the Options dialog box:

2. (Optional) Designate an author (optional) and the location of the Solution files. This location should point to
the folder containing the Configurator Solutions. This is typically the default web application root directory:

C:\bea\weblogic81\config\CalicoDomain\applications\CalicoApp\

3. Click OK. The Packaging Tool is now ready to create new Packages.

Creating a New Solution Package
A Solution Package is the set of filenames for the files that you want included in the Solution
Installer, which will be distributed to the mobile user. The Package has the extension.cci
and contains filenames and references for those files.

There are three ways to insert application files into the Tool workspace for the creation of a Package:

• Insert the files of a Solution into a new Package.

• Open an existing Package and move, add, and remove files.

• Open an existing Package and insert another Package into it.

PeopleSoft Proprietary and Confidential 401

Creating and Maintaining Mobile Solutions Chapter 32

Selecting the solution to be packaged. Shown is a compound model Solution (selected) with
three component models, Circuit, Hub, and Node

To create a Package from Solution files:

1. Set the application root.

See Chapter 32, “Creating and Maintaining Mobile Solutions,” Setting the Application Root, page 400.

2. Select File, New Package. The left pane displays the Package name at the top level of a hierarchy
tree. The Package name, default “untitled”, is not editable in the pane; you can assign a name
in the Properties dialog (right-click menu) or when you save it.

3. Select Insert, Solution. A dialog box displaying the Solutions in the specified web application root appears.

If the dialog lists no files, check that the root directory specified in the Options dialog points to the directory
containing the application. The Packaging Tool looks for CalicoUI.properties and CalicoNA.properties
in the specified root directory to locate Solutions to insert. If it does not find either of those files,
the Insert Solution dialog will be blank or it will be missing part of a Solution.

4. Select the desired Solution and click Insert Solution.

Files from the application root appear in the tool workspace and are modifiable.

See Chapter 32, “Creating and Maintaining Mobile Solutions,” Setting End-User
Installation Options, page 403.

5. Move, add, or remove the displayed files as needed and save the Package. You
can now create its Solution Installer.

See Chapter 32, “Creating and Maintaining Mobile Solutions,” Setting End-User
Installation Options, page 403.

To create a new Package from an existing Package:

402 PeopleSoft Proprietary and Confidential

Chapter 32 Creating and Maintaining Mobile Solutions

Warning! It is possible to open a Package and insert another into it. However, this practice implies that
you have already distributed an installer made from the inserted package already. When you distribute the
installer for this merged package, there likely will be shared files for two applications on the mobile machine.
Un-installing one or the other removes the shared file, thereby “breaking” the other application.

1. Select File, New Package. The left pane shows the top level, which is the Package name, initially
“untitled.” The name is not editable in the pane. You can assign a name to the Package when it is
saved, or you can right-click on “untitled,” select Properties, and edit the name.

2. Select Insert, Package to display the “Select Package to insert” dialog box.

3. Select the desired Package and click Open.

The Package panes of the Main Application window are then populated with the Package’s files.

4. Modify as needed.

See Chapter 32, “Creating and Maintaining Mobile Solutions,” Setting End-User
Installation Options, page 403.

5. Save the Package. You can now create a Solution Installer.

See Chapter 32, “Creating and Maintaining Mobile Solutions,” Setting End-User
Installation Options, page 403.

Adding a Model to the Solution Package
With the desired Package open, select Insert, Solution to display the Insert Solution dialog
box, select the desired Solution, then click Insert Model Only.

A dialog box asks whether you want to delete the compiled version. Clicking Yes
causes the compiled version to be overwritten.

The tool workspace will be populated with the model files. Unlike the operation of inserting
a Solution, inserting a model restricts the inserted files to PeopleSoft Configurator model files
only, omitting JSP pages, images, and other site-supporting files.

Setting End-User Installation Options
You can specify whether you want the end-user to have an “opt-out” message for package
installation and to be able to uninstall the package.

To set end-user installation options”

1. Select Tools, Options to display the Options dialog box, then select the MSI Package Preferences tab.

2. If you want the mobile user to receive a dialog verifying their intention to install the Package—giving
the mobile user a chance to opt out of the task—select the UI Confirmation on Install check box.

3. If you want to give the mobile user the ability to uninstall the package from their system’s Add/Remove
Programs utility, select the Add Entry to Add/ Remove Programs check box.

PeopleSoft Proprietary and Confidential 403

Creating and Maintaining Mobile Solutions Chapter 32

4. Click Apply or OK.

Modifying a Solution Package
You can augment the application root files with non-Solution files, such as release
documentation, for the mobile user.

Move, add, copy, and delete Package components in the main window. Moving, adding, copying, and deleting
files conforms to Windows standards, with one exception: there is no drag-and-drop capability.

To add files to the Package, select File, New Folder for add directories, and Insert, Individual File(s) to add files.

To add new folders to the hierarchy, select File, New Folder.

Move, copy, and delete operations are windows-standard.

Adding Non-Solution Files to the Solution Package
The set of deploy files may not completely meet the needs of a mobile user environment. For instance,
since you are ultimately preparing an installable package of files, a “release,” you may want to include
documentation that addresses this release, with information specifically for the mobile user.

To add non-Solution files to the Package, select File, New Folder to add new directories,
and Insert, Individual File(s) to insert files.

Accessing Package Properties
You can view the package’s properties in the Properties dialog. You can also edit the package name, title, and
version. To access the Properties dialog, right-click on the Package name and choose Properties from the menu.

Adding Annotation to the Package
You can enter comments in the Properties dialog for a Package. To access the Properties box, right-click
on the Package name and choose Properties from the menu, then click the Comments tab.

Generating the Solution Package Installer
The Solution Package installer, a .msi file, is the file that you will distribute to end users. The Package
includes a Windows installer, to which you add to the solution package files.

The Solution Package Installer contains:

404 PeopleSoft Proprietary and Confidential

Chapter 32 Creating and Maintaining Mobile Solutions

• Solution Package (.cci—a list of filenames and references).

• The model files, JSP pages, images, and other files required to run the Solution
standalone on the mobile machine.

• Installation script for the above files.

To generate a Solution Package Installer, do one of the following:

• Select Tools, Create Solution Installer for a new package or for an upgrade that extends beyond
a change in the model. You can also click its toolbar icon.

See Chapter 32, “Creating and Maintaining Mobile Solutions,” Updating a Solution
Package Installer, page 405.

• Select Tools, Create Model Update Installer if you want to create a simple model
upgrade containing the latest model version.

See Chapter 32, “Creating and Maintaining Mobile Solutions,” Updating a Solution
Package Installer, page 405.

Updating a Solution Package Installer
Changes to the contents of a Solution Installer are made to its Solution Package and a new installer created.
(File information in the installer file [.msi] is not easily editable.) Consequently, if you want to update the
collection of files that you send to mobile users, you must re-open the associated package, make the desired
modifications to file content, and generate a new Solution Installer from the updated Package.

Solutions contain model files, JSP pages, images, and any necessary support files. You
can replace files with newer versions, add new files to the Package, and move and remove
them. You can do the same with directory structures.

See Also

Chapter 32, “Creating and Maintaining Mobile Solutions,” Adding a Model to the Solution Package, page 403

Chapter 32, “Creating and Maintaining Mobile Solutions,” Adding Non-Solution Files
to the Solution Package, page 404

Updating Only the Model(s) of a Package
Updates to a Solution often involve no more than rolling in the latest version of a model after a routine
update to the product offerings, options, and attendant pricing and sales information. For this reason, the
Packaging Tool offers a shortcut Package generation with a special menu command.

Note. A model-only update does not include updates to non-model files such as JSPs and images. In
creating a Model Update, the Packaging Tool only changes what is in the installer.

See Chapter 32, “Creating and Maintaining Mobile Solutions,” Setting End-User Installation Options, page 403.

To generate a model-only update:

PeopleSoft Proprietary and Confidential 405

Creating and Maintaining Mobile Solutions Chapter 32

1. Open the Solution Package associated with the desired Solution release.

2. Select Insert, Solution. The Solution’s newest model(s) are automatically retrieved
and displayed in the Insert Solution dialog.

3. Select the desired model and click Insert Model Only.

4. Select Tools, Create Model Update Installer or click its icon on the tabular.

The Packaging Tool automatically locates the most recent version of the model and saves it.

A confirmation message appears. The new Model Update Installer does not overwirte the previous
Solution Installer. It is saved automatically as <package name> Model Update.msi.

The new Solution Installer is designated <package name> Model Update.msi. It is
saved in the same directory as the .cci files.

Printing Solution Package Content
To print a list of the files contained in a Solution Package, select File, Print.

406 PeopleSoft Proprietary and Confidential

PART 8

Advanced Configurator System
Administration

Chapter 33
Understanding Advanced Configurator Administration

Chapter 34
Administration Tools

Chapter 35
Maintaining the Advanced Configurator System

CHAPTER 33

Understanding Advanced Configurator
Administration

Advanced Configurator provides two tools to help with the development, testing, and deployment of a model:

• Administration Console

• Solution Tester

PeopleSoft Proprietary and Confidential 409

Understanding Advanced Configurator Administration Chapter 33

410 PeopleSoft Proprietary and Confidential

CHAPTER 34

Administration Tools

Designing and developing a model begins with the PeopleSoft Visual Modeler. The model defines selection
points, domain members, and constraints. Domain members and constraints can be stored externally.

Once the model is created, the Web site application is built using extensions for Dreamweaver,
or more directly, using the PeopleSoft JSP templates for HTML form controls. Your Web site
application connects standard HTML form controls to your model.

At run time, the Web site sends user picks to the PeopleSoft Configurator engine via the Web Client Processor
and the Client Operations Processor (COP). The engine processes the picks, and returns the state of each item in
the form controls to the Web site. The engine also returns explanations for constraints that have been violated.

If the model has external domain members or constraints, the engine gets them from the Configuration Data
Manager. If the model has pricing, the Client Operations Processor calculates the pricing information.

The diagram on the next page shows PeopleSoft Configurator’s design, compile, and run-time environments.

Administration Console
PeopleSoft Configurator Administration console helps you develop, test, and deploy
both component models and compound models.

The Administration console can internalize model data. It can import externally referenced model
data and translate it into internally defined data. The model then becomes self-contained, and can
be deployed in a mobile configuration environment needing no access to the product database. The
console can internalize data stored in a database as well as attribute list files.

On Windows NT, start the Administration tool by clicking Start, and choosing Programs,
PeopleSoft Applications, Configurator 8.9, Administration.

PeopleSoft Proprietary and Confidential 411

Administration Tools Chapter 34

Configurator Administration console

The Administration console enables you to do the following with an Advanced Configurator component model:

• Compile

You can compile a model that is anywhere on the network, using any server on the network.
To compile, select the model’s XML file, the server, and the port.

• Run

You can run the compile version of any model on the network. This launches the PeopleSoft
Configurator Model Tester, which the PeopleSoft Visual Modeler also uses to test models.
With the test client, you can submit the model with various options—such as pricing,
auto-submission, sorting, and formatting—and reset the model.

• Deploy

You can deploy a model from anywhere on the network to any host server and port on the network.
Deploying a model copies it to another machine for use there. You can deploy a compile version
of a model, a major version of a model, or all versions of a model.

• Disable

You can disable a compile version of a model that is anywhere on the network. Disabling a model
restricts its use to the Administration console, which can still run the model. If a model is disabled,
the test client or a midtier application can’t run it. Disabling a model does not delete it.

• Enable

If a model is disabled, you can enable it.

412 PeopleSoft Proprietary and Confidential

Chapter 34 Administration Tools

• Remove

You can remove—that is, delete—a model (including a compound model) from the network. You can
remove a compile version of a model, a major version of a model, or all versions of a model.

Warning! During a model compile, the model version number is incremented based on the latest version
of the model present on the server. Therefore, do not remove the latest version of a model before you
re-compile, as the new version may be given the version number of the deleted latest version.

Note. Removing the model from the server doesn’t cause the model to be removed from server memory if
it has been loaded into memory. The server must be restarted in order to force the model to be removed
from memory. The model load settings for the server may also need to be changed.

• Update Data

You can update any version of a model with model data (domain members and
constraints) stored in an external database.

• Generate a Self-Contained Model

If a model’s data is stored externally, you can read that data into the model for internal storage
and access. That compilation of the model then becomes self-contained, and can be deployed
in a configuration environment needing no access to the product database. You can also
include additional attributes in the internalization process.

Note. The Visual Modeler can also internalize data; however, it can only internalize
data used within the model. Externally referenced data not used in the model, such as
descriptions, can’t be internalized by the Visual Modeler.

Furthermore, the internalize processes in the Visual Modeler is a one-time effort. Once
a model is internalized in the Visual Modeler, the source is internal and all subsequent
compilations produce versions that are internal as well.

• View

You can view a number of files that are created in the compile version directory when a model is compiled:
GCL, RTP, SGCL, TMAP, and XML. This lets you describe the state of these files if you need help.

In addition, the Administration console allows you to manage compound models:

• Upload

You can upload a compound model (in XML format) to the server.

• Cross-check

You can verify a compound model against its component models to verify that selection points
and domain members required by the compound model exist.

• View

You can view a compound model in XML format.

Note. The Administration console does not provide security, but is based on industry standards
for security. The information technologist and system administrator must provide and limit
access to PeopleSoft Configurator servers on the network.

PeopleSoft Proprietary and Confidential 413

Administration Tools Chapter 34

Solution Tester
The Solution Tester can be used to develop and test Configurator solutions outside
of the complete CRM environment.

The Solution Tester simulates the integrated CRM/Configurator environment, allowing you to test a
solution without setting up configurable products or creating quotes or orders.

The Solution Tester allows you to test the following:

• Model operation

• Page display

• User interaction

• Configuration pricing

• Configuration details request and display

It also provides access to parameters and details about the operation of the solution that aren’t available in normal
operation within the CRM environment. The Solution Tester runs completely within the Configurator Server.

The Solution Tester is organized into three sections. The top section contains a number of buttons that
perform the operations provided by the Solution Tester. The middle section displays the results of the
operations, including the user interface for a solution and the display of the configuration details for a
particular solution configuration. The bottom section allows values to be specified that are passed into
the Configurator solution when launched. These sections are described in detail below.

Page Used to Test Solutions
The Solution Tester top panel controls the tester operations and displays the status
returned from certain operations.

Access the Solution Tester page by selecting Start, Programs, PeopleSoft Applications, Configurator
8.9, Server Index Page. Then select Solution Tester.

Solution Tester page (1 of 2)

New Start a new configuration.

Clicking the New button starts a new configuration using the solution selected
in the solution drop down. The solution’s user interface will be displayed
in the center section of the Solution Tester. Interaction with the interface
allows a new configuration to be created (see Configuring below).

The New operation requires that a valid solution be selected in
the solution drop down. The ConfigID and RetCode fields will be
cleared when a new configuration is started.

414 PeopleSoft Proprietary and Confidential

Chapter 34 Administration Tools

Restore Restore an existing configuration.

Clicking the Restore button restores an existing configuration from the
database. The solution’s user interface will be displayed in the center section
of the Solution Tester with the current configuration values. Interaction with
the interface will modify the current configuration (see Configuring below).

The Restore operation requires that a valid solution be selected in the solution
drop down, and the Configuration ID for an existing (saved) configuration
of the appropriate type be specified in the ConfigID field. When restoring
a configuration the RetCode field will be cleared.

Configuring Configuring (from New or Restore).

Solutions designed to run within the integrated CRM/Advanced Configurator
environment usually provide buttons that allow the user to cancel out
of the configuration without saving the current changes, or to save the
current configuration and return (the labels on the buttons are defined
in the user interface for the solution and may not be “Cancel” and
“Return”). Clicking these buttons on a solution’s user interface within
the Solution Tester initiates the same operations. Clicking Cancel returns
the center section to the No Solutions Loaded state without saving the
configuration. Clicking Return will save the current state of the configuration,
update the ConfigID and RetCode fields, and initiate the operation of
retrieving and displaying the configuration details.

The status codes returned are:

0—Success

101—Solution not found

102—Invalid Config ID or Error restoring the configuration

103—Error saving the configuration

104—Error creating the configuration

Copy Copy an existing configuration.

Clicking the Copy button makes a copy of an existing configuration. A new
Configuration ID will be returned and the ConfigID field will be updated.

The Copy operation requires that a valid solution be selected in the solution
drop down, and the Configuration ID for an existing (saved) configuration
of the appropriate solution type be specified in the ConfigID field.

The status codes returned are:

0—Success

101—Solution not found

102—Invalid Config ID or Error restoring the configuration

103—Error saving the configuration

104—Error creating the configuration

List Configurations List the saved configurations. Clicking this button displays information
about the configurations currently saved in the database. If a solution is
selected in the solution drop down, only configurations of that type will
be displayed. If a solution isn’t selected, all of the saved configurations

PeopleSoft Proprietary and Confidential 415

Administration Tools Chapter 34

will be displayed. Selecting a configuration from the list will update the
Solution and ConfigID fields for use with the other operations.

View Details View configuration details.

Clicking the View Details button requests, retrieves, and displays the
returned configuration details for a configuration. The details are formatted
using the style sheet defined for the solution.

For easy modification and testing, you can select the request (XML)
and style sheet (XSLT) used as follows:

1. The Solution Tester checks the solution test directory (by default, C:\bea_
cfg\weblogic81\config\CalicoDomain\applications\
CalicoApp\calico\solutiontest) for a request XML file with
the name, <solutionname>.xml and for a style sheet XSLT file with the
name, <solutionname>.xslt (where solutionname is the name of the
solution used for the configuration). If these are found, they are used for
the request XML and the result formatting style sheet XSLT respectively.

2. If appropriate files are not found, the Solution Tester queries the database
for the associated solution Schema and attempts to retrieve the request
XML and formatting style sheet XSLT defined by the Schema.

3. If request XML and formatting XSLT cannot be found in the solution
schema, or a solution schema cannot be found, the Solution Tester uses the
default details request XML and formatting style sheet XSLT files in the
solutiontest directory (ConfigDetailsRequest.xml and default.xslt).

The XML and XSLT data will be read every time the details are
requested. This sequence allows custom request XML and formatting
XSLT to be tested, modified, and retested easily.

The View Details operation is automatically invoked when returning
from a New or Restore operation using the return operation on
the solution’s user interface.

The View Details operation requires that a valid solution be selected in
the solution drop down, and the Configuration ID for an existing (saved)
configuration of the appropriate type be specified in the ConfigID field.

View Details - XML View request, response, and style sheet XML.

Clicking this button performs the same sequence of steps as the View
Details button, except that the raw XML for the details request,
details response, and formatting XSLT is displayed. Also provided is
information indicating the source location and the size of the details
request, and formatting XSLT. The three pieces of data are formatted
into an XML document with the following structure:

<_details>

<_request>

[details request XML]

</_request>

<_response>

[details response XML]

</_response>

<_stylesheet>

416 PeopleSoft Proprietary and Confidential

Chapter 34 Administration Tools

[XSLT]

</_stylesheet>

</_details>

The View Details- XML operation requires that a valid solution be selected
in the solution drop down, and the Configuration ID for an existing (saved)
configuration of the appropriate type be specified in the ConfigID field.

Save order Change the order status of the configuration to saved. The Save Order
operation requires that a valid solution be selected in the solution drop
down, and that the Configuration ID for an existing (saved) configuration
of the appropriate type be specified in the ConfigID field. When saving
an order, the RetCode field will be cleared.

Submit order Change the order status of the configuration to submitted.

The Submit order operation requires that a valid solution be selected in the
Solution drop down, and that the Configuration ID for an existing (saved)
configuration of the appropriate type be specified in the ConfigID field.
When submitting an order, the RetCode field will be cleared.

Cancel order Roll back the current configuration to the state it was in when
the order was last saved.

The Cancel order operation requires that a valid solution be selected in the
solution drop down, and that the Configuration ID for an existing (saved)
configuration of the appropriate type be specified in the ConfigID field.
When canceling an order the RetCode field will be cleared.

Delete order Roll back the current configuration to the state it was in when
the order was last submitted

The Delete order operation requires that a valid solution be selected in the
solution drop down, and that the Configuration ID for an existing (saved)
configuration of the appropriate type be specified in the ConfigID field.
When deleting an order the RetCode field will be cleared.

Accessing the Solution Tester
To access the Solution Tester pages, select Start, Programs, PeopleSoft Applications,
Configurator 8.9, Server Index Page.

From the Server Index Page, click “Solution Tester.”

Note. If “500 - Internal Server Error” is displayed rather than the tester page, verify that your
database server is running and that the database entry for Advanced Configurator is valid. This
information is entered during Configurator installation and stored in \bea\weblogic81
\config\CalicoDomain\applications\CalicoApp
\WEB-INF\config\JNDIDBName.properties.

Solution Tester parameters

PeopleSoft Proprietary and Confidential 417

Administration Tools Chapter 34

iFrame Height This parameter controls the height in pixels of the center (output)
section of the Solution Tester.

Debug This sets a flag within the Solution Tester and passes a debug parameter to
the Configurator solution (debug=false or debug=true). The value of this
parameter can be used within a solution user interface to control debugging
messages and other debugging or testing operations. When Debug is checked,
the Solution Tester will output messages into the Configurator Server’s
console window containing information about the operations being performed.

Understanding the Output and Solution User Interface
The large main panel displays the results of the operations, including the user interface for a
solution when performing the New or Restore operations.

Since the main panel is an inline frame (iframe), it may contain an independent scroll bar depending on the height
of the content compared to the height of the iframe. When initiating an operation, you can set the height of the
iframe using the iFrame Height field in the bottom section (the height cannot be changed during an operation).

The full URL used by the Solution Tester to initially navigate the frame is displayed. This allows inspection
of the values initially passed to the Configurator solution for New and Restore operations.

Every effort has been taken to make the Solution Tester environment (the environment provided to the
solution running within the tester) match that of the run-time environment of the CRM applications
with which the Configurator integrates. However, some technical limitations prevent the two
environments from being identical. Therefore, it is possible there will be some differences in operation
between the Solution Tester and the actual CRM run-time environment.

In many cases, identifying and correcting these differences can help provide a better, more robust solution by
identifying environment-specific functionality. It is recommended that differences be carefully reviewed to
determine if the solution is relying on functionality that may not be the same on every platform or environment.

In all cases, it is important to perform thorough testing within the actual CRM run time
environment before deploying a new or updated solution.

Setting Configuration Solution Parameters
Scroll to the bottom panel of the Solution Tester page:

Example Solution Tester page (2 of 2)

418 PeopleSoft Proprietary and Confidential

Chapter 34 Administration Tools

The bottom panel contains a number of fields that allow parameter values to be specified that are passed to
the Configurator solution. The parameters passed are the same as those passed from the CRM applications
when interfacing to the Configurator. Additional, user-defined parameters can also be passed.

The values for these parameters can be modified before performing operations. Once an operation is initiated,
changes to the parameter values will not take effect until a new operation is initiated. For instance, once you
have started a new configuration by clicking the New button, changing the value of BusinessUnit will have no
effect until you start another operation, such as starting a new configuration or restoring an existing one.

The labels on the parameter value fields match the names of the parameters passed to the Configurator solution.
The initial values for the fields are taken from a combination of values read from property files (text files in a
specific format) and default values contained in the Solution Tester. The parameter fields are updated with
values when the Solution Tester is first opened or when a new property file is selected in the Property File list.

The Solution Tester determines the values to use for each parameter in the following sequence:

1. Look in the property file identified by the Property File list. If a parameter=value pair
is found for this parameter, use the value specified.

2. If an appropriate parameter entry isn’t found, look in the default property file
(SolutionTest.properties, in the solutiontest directory).

3. If a parameter entry isn’t found in the default property file, use a default value
defined within the Solution Tester.

4. If a default value isn’t defined, leave the field blank.

The Property File list is populated with the names of the property files found in the
solutiontest directory. The example property file ExternalChannel.properties is included
with the installation. This file contains the following:

This file contains specific properties that should be used in place of

those in the ’default’ properties file (SolutionTest.properties)

#

Channel can be ’A’ (internal) or ’W’ (external/web)

Channel=W

Notice that the only entry is for the parameter to override. All other values will be read from the
default property file, the Solution Tester defaults, or left blank. If you create a new property file
while you are using the Solution Tester, you will need to open a new instance of the Solution Tester
for it to be added to the Property File list. The Additional URL Parameters field allows any number
of additional parameters to be passed to the Configurator solution.

Enter additional parameters as follows:

• To pass a single additional parameter, enter: parameter=value

• To pass more than one parameter, enter: parameter1=value1¶meter2=
value2¶meter3=value3

Model Tester
Configurator also includes a web-based interface that is launched from the Visual
Modeler with the Run command.

PeopleSoft Proprietary and Confidential 419

Administration Tools Chapter 34

The Model Tester provides a standard, pre-formatted front-end UI for testing a model’s relationships, error
message display, expression output, and control specifications. Using it, the modeler can perform the actions
of the end-user, making selections and entering data so as to observe actual model behavior at run-time.

To use the Model Tester, the Configurator Server must be installed and running at the time of its use.

420 PeopleSoft Proprietary and Confidential

CHAPTER 35

Maintaining the Advanced Configurator System

This chapter discusses how to:

• Manage model versions.

• Load models.

• Optimize system performance.

• Compress configuration data.

• Use the Explanations.properties file.

• Compile models from the command line.

• Access and use COPXML servlet statistics.

Managing Model Versioning
Different versions of the same model and multiple instances of the same version can co-exist.
Models have a three-part version number plus a compile version number.

The compile version number contains the date and time. For example:

20040320-184840-135

This example version number indicates that the model was compiled at 6:48 p.m. on March 20, 2004.

The version number is separated into parts by hyphens. The parts are the major, minor, and sub-minor
versions of the model. The modeler assigns the major and minor version numbers in the PeopleSoft Visual
Modeler. The compiler assigns the sub-minor version number. It performs a cyclical redundancy check
and advances the sub-minor version number if the model changes. For example: 0-1-3.

This example indicates that the modeler assigned a version number of 0-1, and that the compiler has
detected three changes in the model since it was first compiled as version 0-1-0.

Note. The following description assumes that you accepted default settings when you
installed the PeopleSoft Configurator server.

All models are compiled in subdirectories of the PeopleSoft Configurator models directory. There are
subdirectories for the model, each part of the version number, and the compile version number. For example:

<weblogic home>\weblogic81\config\CalicoDomain\applications\CalicoApp\WEB-INF

\models\myBestModel

0

1

0

PeopleSoft Proprietary and Confidential 421

Maintaining the Advanced Configurator System Chapter 35

20000306-063520-356

The compile version directory contains all the files that are created during linking and compiling.
The parent directories have no files, although you can move the Explanations.properties file to
them. Each time the model is compiled, the compiler creates a new compile directory and all the
files in it. It creates a sub-minor directory only if the model changes.

The compiler creates the following files in the compile version directory:

• Explanations.properties

• Gcl

• Lep

• Map

• Rtp

• Sgcl

• Tmap

• Xml

Loading Models
You can specify which models the PeopleSoft Configurator server loads at startup by setting one or two
parameters for the Configurator’s startup servlet in the WebLogic Administrative console.

To specify the Configurator server settings:

1. Open the WebLogic Administrative console in a browser using its domain address
http://<server>:<port>/console.

2. Navigate to CalicoDomain, Deployments, Web Application, CalicoApp.

3. Click on “Edit Web Application Descriptor”. A new browser window appears
where the parameters can be set.

4. In the new window, navigate to Web Descriptor, Web App Descriptor, Servlets, StartupServlet, Parameters.

Default is a single parameter with name=load and value=default. The load parameter
can have one of these values:

• All, which loads every model in the models\ subdirectory.

• Default, which loads the latest compile version of the latest version of each
model in the models\ subdirectory.

• Specific, which requires the second parameter, models.

5. Add the models parameter:

a. Click on “Configure a new Parameter”

b. Set the name to models.

c. Specify a value using one of the following approaches:

422 PeopleSoft Proprietary and Confidential

Chapter 35 Maintaining the Advanced Configurator System

Specify at least one model name and its version and compile version. If you specify
only the model name, the application server loads the latest compile version of the
latest version of the model that you specify.

OR

Specify the model name and one of the following:

major version

major and minor version

major, minor, and sub-minor version

major, minor, sub-minor, and compile version (which fully specifies the model)

Example:

Version specification Action taken

load=all Loads all compile versions of all models in the
models directory.

load=default Loads the latest compile version of the latest
version of all models in the models directory.

load=specific,models=
myModelOne:0-1-0:20000306-
185244-355;myModelTwo;
myModelThree:0-2

Loads the specified compile version of
myModelOne; the latest compile version of
the latest version of myModelTwo; and the
latest compile version of the latest sub-minor
version of minor version 2 of major version 0 of
myModelThree.

6. Navigate to the top level of the tree in the left-hand pane (called “Web Descriptor”)
and click on the Persist button.

7. Restart the server.

Managing the Configurator Server’s Memory Usage
When a model is compiled on the Configurator server, it is translated from its XML representation into a set of
object instances in the Java Virtual Machine (JVM). This set of object instances is then serialized to an RTP
(run-time problem) disk file. When the model is later requested by a client, this file is used to reconstruct the
needed object instances (hereafter referred to as a ModelSpec instance). Because reconstructing a ModelSpec
from the RTP file significantly affects performance, ModelSpec instances are cached in memory.

In order to prevent the JVM from exhausting its available memory as new versions of models are added to
the server, the administration servlet removes older ModelSpec instances from the cache. Administrators
can control the cache size with the model.cache property in the Advisor.properties file:

model.cache.size=20

If not specified, the property’s value defaults to 10 versions.

PeopleSoft Proprietary and Confidential 423

Maintaining the Advanced Configurator System Chapter 35

In order to minimize the performance impact of a cache size setting that is too small, the cache
comprises a primary and secondary cache. The cache size setting refers to the size of the primary
cache alone. The secondary cache acts as a “holding bin” for the oldest ModelSpec instances,
and they are subject to the JVM’s regular deletion cycles.

The primary cache contains the most recently used ModelSpec instances. As ModelSpec instances
are requested from the cache they are added to the primary cache if they are not already there. If
the primary cache has reached its maximum size, then the least recently used ModelSpec instance
in the primary cache will be pushed to the secondary cache.

Compressing Configuration Data
PeopleSoft Configurator provides the option to compress configuration xml data. Any compressed data
is de-compressed during a restore operation when the configuration is requested.

There are two modes of data compression:

• At run time with the user’s save request.

• For maintenance of existing configuration data stores.

Use the maintenance compression mode to compress configuration data that has not
been compressed during run-time saves.

To specify data compression at run time:

Locate the Advisor.properties file in

\\bea\weblogic81\config\CalicoDomain\applications\CalicoApp\WEB-INF\config

Set the property calico.na.db.compression equal to true if you want to enable data compression.

The calico.na.db.compression property enables and disables compression for the saved configurations
of all solutions deployed on the web application server. Its default setting is true.

To compress configuration data on existing databases:

Execute the following from a command line. A utility compresses the saved
configurations on the specified database.

java -classpath <CONFIGURATOR_JAR_PATH>;<CONFIGURATOR_CONFIG_PATH>;

<DATABASE_DRIVER_PATHS> calico.cms.persistence.DBUtil -compress

where

<CONFIGURATOR_JAR_PATH> is the path to the Configurator jar file (advisor.jar).

<CONFIGURATOR_CONFIG_PATH> is the path to the Configurator properties files.

<DATABASE_DRIVER_PATHS> is the path to both of the database drivers.

Example:
java -classpath r:\MKTG_DEN_CRM\cfg\advisor.jar;r:\CRM_VOB\pscfg\3rdparty\jdbc⇒

\classes12.zip;r:\MKTG_DEN_CRM\cfg\jdbc\mssqldriver.zip;E:\bea\weblogic81

\config\CalicoDomain\applications\CalicoApp\WEB-INF\config⇒

calico.cms.persistence.DBUtil -compress

424 PeopleSoft Proprietary and Confidential

Chapter 35 Maintaining the Advanced Configurator System

Using the Explanations.properties File
The Explanations.properties file contains messages about constraint violations. The compiler creates
an Explanations.properties file in each compile version directory. This file contains key-value
pairs that describe constraint violations, which are displayed in the test client and in the midtier
application. Each explanation is keyed by its constraint name. For example:

LeatherSeatsSedanCompatibility=Leather seats are not available with this vehicle.

WhiteMeatMustardCatsupCompatibility=White meat is not compatible with mustard or⇒

ketchup. The condiment you selected is not available with the meat you selected.⇒

ModemToMotherBoardDynDef=An external drive (floppy or CD-ROM) is recommended.⇒

FramesToTintDynDef=Constraint 4.B.2 RadioMultipleCDCDChangerRequired=The multiple⇒

CD radio requires a CD changer.

Copying the Explanations.properties File
You can move or copy the Explanations.properties file to the following directories:

• <ModelName>

Placing the Explanations.properties in the <ModelName> directory applies it to all versions and compile
versions of that model, unless there is also an Explanations.properties file in a child directory: that
is, in a <MajorVersion>, <MinorVersion>, or <CompileVersion> directory for the model. The file
in a child directory overrides the file in the parent (<ModelName>) directory.

• <MajorVersion>

Placing the Explanations.properties in the <MajorVersion> directory applies it to all minor
versions and compile versions of that major version of the model, unless there is also an
Explanations.properties file in a child directory: that is, in a <MinorVersion> or <CompileVersion>
directory for that major version of the model. The file in any child directory overrides the file
in any parent (<MajorVersion> or <ModelName>) directory.

• <MinorVersion>

Placing the Explanations.properties in the <MinorVersion> directory applies it to all compile versions of
that minor version of the model, unless there is also an Explanations.properties file in a <CompileVersion>
directory for that minor version of the model. The file in a <CompileVersion> directory overrides the
file in any parent (<MinorVersion>, <MajorVersion>, or <ModelName>) directory.

Also, you can place an Explanations.properties file in the models directory. It applies to all
compile versions of all models in the models directory. For example:

COMPLETENESS_CONSTRAINT=You must provide a selection for this choice.

COMPATIBILITY_CONSTRAINT=The selections that you made are not compatible.

Searching for the Explanations.properties File
The Configurator test client used in the PeopleSoft Visual Modeler searches through directories
for the Explanations.properties file in the following order:

1. <MinorVersion>

2. <MajorVersion>

3. \models\ (the root directory for all <ModelName>’s)

PeopleSoft Proprietary and Confidential 425

Maintaining the Advanced Configurator System Chapter 35

4. <ModelName>

5. <CompileVersion>

You can design your JSP midtier application to search in another order.

Compiling Models from the Command Line
If Configurator implementation requires regular or frequent model updates, you can save time and effort by
using the command-line compile utility. This compile command calls the executable for the Visual Modeler
which opens briefly to compile the ,csw file(s) that you supply in the command. It also generates a log file.

The command is the Visual Modeler executable, -compile, and the full or relative
path of the model you want to compile:

ClicViM -compile mymodel.csw

To compile multiple models, call each separately.

The models can be local or remotely located; however, the filepath must be to a machine on which the
Visual Modeler is installed. If desired, you can store the compiled files to an IP address.

Accessing and Using COPXML Servlet Statistics
The COPXML servlet tracks various processing times for interactive xml requests:

• Hits—total number of requests.

• Overall time(ms)—time to process request.

• Start time(ms)—time spent parsing the request.

• Init time(ms)—time spent initializing the COP with the correct model/version.

• Execute time(ms)—time spent processing the request. (Creating choices and
processing them through the engine).

• Extract tTime(ms).

• Generate time(ms)—time spent generating the response XML.

• Max simultaneous—maximum number of simultaneous requests.

The following is an example:

?@COPXMLServlet Statistics

@Hits 10 Total number of requests

@Overall Time(ms) 631 63 avg Total time to process request

@Start Time(ms) 380 38 avg Time spent parsing the request

@Init Time(ms) 90 9 avg Time spent initializing the cop with the correct model/version

426 PeopleSoft Proprietary and Confidential

Chapter 35 Maintaining the Advanced Configurator System

@Execute Time(ms) 61 6 avg Time spent processing the request. (Creating choices
and processing them through the engine)

@Extract Time(ms) 0 0 avg Not used

@Generate Time(ms) 100 10 avg Time spent generating the response XML

@Max Simultaneous 1 Maximum number of simultaneous requests

Note. All times are for processing interactive requests only. Times processing ConfigDetails, ConfigCopy
or Mobile(Compound) requests are not included in the statistics with the exception of Start Time,
which records the parsing of all requests. The first number in each row is the accumulated time
since the server was started. The second number is the average per request.

To view the COPXML statistics, navigate to the copxml servlet in a browser window,
using, for instance, http://localhost:7777/copxml

To reset the values without restarting the server, use the following post URL:

http://localhost:7777/copxml?reset=true

PeopleSoft Proprietary and Confidential 427

Maintaining the Advanced Configurator System Chapter 35

428 PeopleSoft Proprietary and Confidential

APPENDIX A

Visual Modeler Expression Editor Functions

The following table describes the functions and operators that are provided for creating expressions.

Tables are:

• Numeric operators and functions

• Boolean functions

• Date functions

• String functions

Numeric Operators and Functions
The Visual Modeler supports these operators and functions:

Function Description Example

- Subtract. x - y

% Return the remainder of x divided by y. x % y

* Multiply. x * y

** Return x raised to the power y. x ** y

/ Divide. x / y

+ Add. x + y

< Less Than. x < y

<= Less Than or Equal To. x <= y

<> Not Equal. x <> y

= Equal. x = y

> Greater Than. x > y

>= Greater Than or Equal To. x >= y

abs() Return the absolute value of x. abs(x)

PeopleSoft Proprietary and Confidential 429

Visual Modeler Expression Editor Functions Appendix A

Function Description Example

acos() Return the arccosine of the radian
value x.

acos(x)

addDays() Add the integer value (1-31) of the day
of a given date x.

addDays(x)

addMonths() Add the integer value (1-12) of the
month of a given date x.

addMonths(x)

addYears() Add the integer value of the year of a
given date x.

addYears(x)

asin() Return the arcsine of the radian value
x.

asin(x)

avgWithQty() Total the value of all picks divided by
the number of discrete items picked.

avgWithQty(x,y)

bnd() Return the first argument that has a
bound value. Unlike other functions, it
will only propagate its value if one of
the arguments is bound; thus it can be
used to prevent automatic propagation
of selection point attribute references.
Note that if the last value is a constant,
then that will be returned as the default
value. So bnd(sp1, sp2, 4) returns 4 if
neither sp1 nor sp2 are bound.

bnd(x1,…,xn)

compareTo() Compare value x to value y and return
an integer value: < 0 if value x is less
than value y, 0 if value x equals value
y, and > 0 if value x is greater than
value y.

compareTo(x,y)

concatenate() Concatenate object values x1 through
xn into a string.

concatenate(x1,…,xn)

cos() Return the cosine of the radian value x. cos(x)

cot() Return the cotangent of the radian
value x.

cot(x)

countWithQty() Return the number of discrete items.
For example, if the picks are drive
(quantity of 3), cpu (1), and monitor
(1), the count with quantity is 5.

countWithQty(x,y,z)

date() Return a date constructed from integer
year y, month m, and day d.

date(y,m,d)

dateToInt() Convert the date x to an integer in the
form YYYYMMDD.

dateToInt(x)

430 PeopleSoft Proprietary and Confidential

Appendix A Visual Modeler Expression Editor Functions

Function Description Example

daysBetween() Return the number of days (always
positive) between dates x and y. If
x and y are the same days, zero is
returned.

daysBetween(x,y)

doesNotEqual() Return a boolean value indicating
whether value x has the same type and
value as value y.

doesNotEqual(x,y)

equals() Return a boolean value indicating
whether value x has the same type and
value as value y.

equals(x,y)

getDay() Return the integer value (1-31) of the
day of a given date x.

getDay(x)

getMonth() Return the integer value (1-12) of the
month of a given date x.

getMonth(x)

getYear() Return the integer value of the year of
a given date x.

getYear(x)

if() Compare values and return the first
output if the comparison is True, and
the second output if False.

if(x>y,Out1,Out2)

indexOf() Return an integer indicating the
position of integer x within number
y optionally beginning at integer
position z. –1 is returned if integer x is
not found within number y.

indexOf(x,y,z)

intToDate() Convert the integer x to a date in the
form YYMMDD.

intToDate(x)

length() Return the length in characters of
number value x.

length(x)

max() Return the value of the largest
argument

max(x,y,z)

maxWithQty() Multiply the value for each attribute by
quantity, if any, then return the largest
value.

maxWithQty(x,y,z)

min() Return the smallest argument. min(x,y,z)

minWithQty() Multiply each argument by quantity, if
any, then return the smallest value.

minWithQty(x,y,z)

pi() Return the value of pi. pi()

product() Multiply arguments. product(x,y,z)

PeopleSoft Proprietary and Confidential 431

Visual Modeler Expression Editor Functions Appendix A

Function Description Example

quotient() Return the integer result of x / y. quotient(x,y)

round() Return the value x rounded to
integer precision y. If y is greater
than 0, whole number rounding
is performed, otherwise decimal
rounding is performed. For
example, round(126.456,1) is 126
and round(126.456,-1) is 126.5.

round(x,y)

sin() Return the sine of the radian value x. sin(x)

sqrt() Return the square root of x. sqrt(x)

substring() Return the substring value of x starting
at position y optionally ending at
position z if specified.

substring(x,y,z)

sum() Add arguments. sum(x,y,z)

sumWithQty() For each argument, multiply quantity
(if used) times the attribute value and
add the results.

sumWithQty(x,y,z)

tan() Return the tangent of the radian value
x.

tan(x)

toDegrees() Return the radian value x converted to
degrees.

toDegrees(x)

toFloat() Convert a float, integer, string, or
boolean value to a float.

toFloat(x)

toInteger() Convert a float, integer, string, or
boolean value to an integer.

toInteger(x)

toRadians() Return the degree value x converted to
radians.

toRadians(x)

Boolean Functions
The following table list the boolean functions provided for building expressions.

Function Description Sample

! not() NOT

& and() Logical AND

^ xor() Exclusive OR

432 PeopleSoft Proprietary and Confidential

Appendix A Visual Modeler Expression Editor Functions

Function Description Sample

| or() Logical OR

< Less Than x < y

<= Less Than or Equal To x <= y

<> Not Equal x <> y

= Equal x = y

> Greater Than x > y

>= Greater Than or Equal To x >= y

and() Returns true if all the inputs are true. and(x,y,z)

bnd() Returns the first argument that has a
bound value. Unlike other functions, it
will only propagate its value if one of
the arguments is bound; thus it can be
used to prevent automatic propagation
of selection point attribute references.
Note that if the last value is a constant,
then that will be returned as the default
value. So bnd(sp1, sp2, 4) returns 4 if
neither sp1 nor sp2 are bound.

bnd(x1,…,xn)

compareTo() Compares value x to value y and
returns an integer value: < 0 if value x
is less than value y, 0 if value x equals
value y, and > 0 if value x is greater
than value y.

compareTo(x,y)

concatenate() Concatenates object values x1 through
xn into a string.

concatenate(x1,…,xn)

contains() Returns a boolean value indicating
whether string x contains string y.

contains(x,y)

countWithQty() Returns the number of discrete items.
For example, if the picks are drive
(quantity of 3), cpu (1), and monitor
(1), the count with quantity is 5.

countWithQty(x,y,z

doesNotContain() Returns a boolean value indicating
whether string x does not contain
string y.

doesNotContain(x,y)

doesNotEqual() Returns a boolean value indicating
whether value x has the same type and
value as value y.

doesNotEqual(x,y)

endsWith() Returns a boolean value indicating
whether string x ends with string y.

endsWith(x,y)

PeopleSoft Proprietary and Confidential 433

Visual Modeler Expression Editor Functions Appendix A

Function Description Sample

equals() Returns a boolean value indicating
whether value x has the same type and
value as value y.

equals(x,y)

if() Compare values and return the first
output if the comparison is True, and
the second output if False.

if(x>y,Out1,Out2)

not() Returns negated input value. not(x)

occursAfter() Returns the boolean value true if date x
occurs after date y, otherwise the value
false is returned.

occursAfter(x,y)

occursOnOrAfter() Returns the boolean value true if date x
occurs on or after date y, otherwise the
value false is returned.

occursOnOrAfter(x,y)

occursOnOrBefore() Returns the boolean value true if date
x occurs on or before date y, otherwise
the value false is returned.

occursOnOrBefore(x,y)

or() Returns true if any input is true. or(x,y,z)

sortsAfter() Returns a boolean value indicating
whether string x sorts after string y
using a Collator object based on the
current locale.

sortsAfter(x,y)

sortsBefore() Returns a boolean value indicating
whether string x sorts before string y
using a Collator object based on the
current locale.

sortsBefore(x,y)

startsWith() Returns a boolean value indicating
whether string x starts with string y.

startsWith(x,y)

toFloat() Converts a float, integer, string, or
boolean value to a float.

toFloat(x)

toInteger() Converts a float, integer, string, or
boolean value to an integer.

toInteger(x)

xor() Returns true if only one input value is
true.

xor(x,y,z)

Date Functions
The Visual Modeler supports these date functions:

434 PeopleSoft Proprietary and Confidential

Appendix A Visual Modeler Expression Editor Functions

Function Description Sample

addDays() Adds y days to date x returning the
new date.

addDays(x,y)

addMonths() Adds y months to date x returning the
new date.

addMonths(x,y)

addYears() Adds y years to date x returning the
new date.

addYears(x,y)

bnd() Returns the first argument that has a
bound value. Unlike other functions, it
will only propagate its value if one of
the arguments is bound; thus it can be
used to prevent automatic propagation
of selection point attribute references.

bnd(x1,…,xn)

compareTo() Compares value x to value y and
returns an integer value: < 0 if value x
is less than value y, 0 if value x equals
value y, and > 0 if value x is greater
than value y.

compareTo(x,y)

concatenate() Concatenates object values x1 through
xn into a string.

concatenate(x1,…,xn)

countWithQty() Returns the number of discrete items.
For example, if the picks are drive
(quantity of 3), cpu (1), and monitor
(1), the count with quantity is 5.

countWithQty(x,y,z)

date() Returns a date constructed from
integer year y, month m, and day d.

date(y,m,d)

dateToInt() Converts the date x to an integer in the
form YYYYMMDD.

dateToInt(x)

daysBetween() Returns the number of days (always
positive) between dates x and y. If
x and y are the same days, zero is
returned.

daysBetween(x,y)

doesNotEqual() Returns a boolean value indicating
whether value x has the same type and
value as value y.

doesNotEqual(x,y)

equals() Returns a boolean value indicating
whether value x has the same type and
value as value y.

equals(x,y)

getBeginningOfMonth() Returns the date of the beginning of
the month (the 1st) for a given date x.

getBeginningOfMonth(x)

getBeginningofWeek() Returns the date of the closest Monday
on or before a given date x.

getBeginningofWeek(x

PeopleSoft Proprietary and Confidential 435

Visual Modeler Expression Editor Functions Appendix A

Function Description Sample

getBeginningofYear() Returns the date of the beginning of
the year for a given date x. The first
day of the year is considered to be
January 1st.

getBeginningofYear(x)

getDay() Returns the integer value (1-31) of the
day of a given date x.

getDay(x)

getMonth() Returns the integer value (1-12) of the
month of a given date x.

getMonth(x)

getSolveDate() Returns the date passed to the
PSProblemState solve method (which
is also the date used to calculate
effectivity).

getSolveDate(x)

getToday() Returns the current date getToday(x)

getYear() Returns the integer value of the year of
a given date x.

getYear(x)

if() Compare values and return the first
output if the comparison is True, and
the second output if False.

if(x>y,Out1,Out2)

intToDate() intToDate() Converts the integer x to a
date with the YYYYMMDD format.

intToDate(x)

occursAfter() Returns the boolean value true if date x
occurs after date y, otherwise the value
false is returned.

occursAfter(x,y)

occursBefore() Returns the boolean value true if date
x occurs before date y, otherwise false
is returned.

occursBefore(x,y)

occursOnOrAfter() Returns the boolean value true if date x
occurs on or after date y, otherwise the
value false is returned.

occursOnOrAfter(x,y)

occursOnOrBefore() Returns the boolean value true if date
x occurs on or before date y, otherwise
the value false is returned.

occursOnOrBefore(x,y

toDate() Converts the string value x to a date. toDate(x)

toFloat() Converts a float, integer, String, or
boolean value to a float.

toFloat(x)

toInteger() Converts a float, integer, String, or
boolean value to an integer.

toInteger(x

436 PeopleSoft Proprietary and Confidential

Appendix A Visual Modeler Expression Editor Functions

String Functions
The following table describes the string functions available for creating expressions.

Function Description Sample

bnd() Returns the first argument that has a
bound value. Unlike other functions, it
will only propagate its value if one of
the arguments is bound; thus it can be
used to prevent automatic propagation
of selection point attribute references.

bnd(x1,…,xn)

compareTo() Compares value x to value y and
returns an integer value: < 0 if value x
is less than value y, 0 if value x equals
value y, and > 0 if value x is greater
than value y.

compareTo(x,y)

concatenate() Concatenates object values x1 through
xn into a string.

concatenate(x1,…,xn)

contains() Returns a boolean value indicating
whether string x contains string y.

contains(x,y)

countWithQty() Returns the number of discrete items.
For example, if the picks are drive
(quantity of 3), cpu (1), and monitor
(1), the count with quantity is 5.

countWithQty(x,y,z)

doesNotContain() Returns a boolean value indicating
whether string x does not contain
string y.

doesNotContain(x,y)

doesNotEqual() Returns a boolean value indicating
whether value x has the same type and
value as value y.

doesNotEqual(x,y)

endsWith() Returns a boolean value indicating
whether string x ends with string y.

endsWith(x,y)

equals() Returns a boolean value indicating
whether value x has the same type and
value as value y.

equals(x,y)

if() Compare values and return the first
output if the comparison is True, and
the second output if False.

if(x>y,Out1,Out2)

indexOf() Returns an integer indicating the
position of string x within string
y optionally beginning at integer
position z. –1 is returned if string x is
not found within string y.

indexOf(x,y,z,)

PeopleSoft Proprietary and Confidential 437

Visual Modeler Expression Editor Functions Appendix A

Function Description Sample

length() Returns the length in characters of
string value x.

length(x)

sortsAfter() Returns a boolean value indicating
whether string x sorts after string y
using a Collator object based on the
current locale.

sortsAfter(x,y)

sortsBefore() Returns a boolean value indicating
whether string x sorts before string y
using a Collator object based on the
current locale.

sortsBefore(x,y)

startsWith() Returns a boolean value indicating
whether string x starts with string y.

startsWith(x,y)

substring() Returns the substring value of x
starting at position y optionally ending
at position z if specified.

substring(x,y,z)

toDate() Converts the string value x to a date. toDate(x)

toFloat() Converts a float, integer, String, or
boolean value to a float.

toFloat(x)

toInteger() Converts a float, integer, String, or
boolean value to an integer.

toInteger(x)

toLowerCase() Returns a string in which all upper case
letters in string x have been converted
to lower-case letters.

toLowerCase(x)

toUpperCase() Returns a string in which all lower case
letters in string x have been converted
to upper-case letters.

toUpperCase(x)

trim() Returns a string in which all white
space from both ends of string x has
been removed.

trim(x)

438 PeopleSoft Proprietary and Confidential

APPENDIX B

Creating and Adding User-Defined Functions

This appendix discusses the use of user-defined functions.

User-defined functions allow model developers to extend the expression capabilities of PeopleSoft
Advanced Configurator to meet specific needs not addressed by its pre-defined functions. This appendix
provides instructions and information to help you add your own function.

In addition, a sample user-defined function called getQuantity is provided with the Configurator
install. It consists of the compiled class file and Java source file, which are located in:
\samples\Configurator\SampleSolutions\GetQuantity_UDF\classes Also included
is a model and a readme file describing the sample function and how to add it to your system for
demonstration. You can also modify the sample source file to create your own function.

Adding a User-Defined Function
To add a user-defined function:

1. Stop the Configurator Server if it is running.

2. Create a Java source file that implements the UserFunction and java.io.Serializable interfaces. To
implement the UserFunction interface, add a method to the class that calculates the function’s return value.
A number of functions are provided to access the arguments passed to the calculate method.

See Appendix B, “Creating and Adding User-Defined Functions,” Implementing
the UserFunction Interface, page 440.

3. Compile this source file.

4. Copy the newly compiled class file into the \classes directory of \\bea\weblogic81\config
\CalicoDomain\applications\CalicoApp\Web-inf
You may need to create the \classes directory.

5. Locate UserFunctions.xml in \\bea\weblogic81\config\CalicoDomain
\applications\CalicoApp\Web-inf\config

6. Add the following lines between the <FUNCTION_LIST> tags:

<FUNCTION NAME="getQuantity" CATEGORY="user" RETURN_TYPE="float" CLASS=⇒

"Get⇒QuantityFunction"

1######DEFAULT_ARGUMENT_TYPE="integer" DEFAULT_ARGUMENT_NAME="getQuantity-var"

1#######MIN_ARGUMENTS="2" MAX_ARGUMENTS="2"/>

See Appendix B, “Creating and Adding User-Defined Functions,” Editing UserFunctions.xml, page 442.

PeopleSoft Proprietary and Confidential 439

Creating and Adding User-Defined Functions Appendix B

The Visual Modeler queries the server or other supported source for the contents of the UserFunctions.xml
file to determine the names of the functions to be displayed in the expression editor.

At compile time, the compiler employs the UserFunctions.xml file to detect the user-defined functions.

7. Save the file and restart the Configuration Server.

8. In the expression editor of the Visual Modeler, click the “Refresh Functions from Server” button. Visual
Modeler queries the Configurator server for the contents of the UserFunctions.xml.

9. Compile the model to complete the process. The Visual Modeler connects to the Configurator Server, reads
the UserFunctions.xml file, and updates the editor’s list of user-defined functions available for modeling.

Implementing the UserFunction Interface
The primary method in the UserFunction interface is calculate() and must be defined by
any class implementing the UserFunction interface.

The calculate() method is used to compute the result of the user-defined function, which is returned
as an Object instance. Within the calculate() method, the function arguments can be retrieved from
the UserFunctionsArgument instance using the methods provided by its class.

Methods
The UserFunction interface provides these methods:

numberOfArguments() Returns the number of arguments that were passed into
the user function. Each individual argument passed into
the user function is actually a list of values. In the case
of constants, return values from other functions, and
single-select selection point attributes, the list will contain
only one value. In the case of multiselect selection point
attributes, the list can contain multiple values.

argumentContainsMultipleValues(int
argumentPosition)

Returns true if an argument comprises multiple values,
otherwise false is returned. As for Java arrays, references to
the position of an argument begin at 0.

numberOfArgumentValues(int argumentPosition) Returns the number of values associated with the specified
argument position. If called for an argument for which
argumentContainsMultipleValues() would return false, this
method returns 1.

440 PeopleSoft Proprietary and Confidential

Appendix B Creating and Adding User-Defined Functions

argumentIsInteger(int argumentPosition)
argumentIsInteger(int argumentPosition,
int valuePosition) argumentIsDouble(int
argumentPosition) argumentIsDouble(int
argumentPosition, int valuePosition)
argumentIsNumber(int argumentPosition)
argumentIsNumber(int argumentPosition,
int valuePosition) argumentIsBoolean(int
argumentPosition) argumentIsBoolean(int
argumentPosition, int valuePosition) argumentIsString
(int argumentPosition)argumentIsString (int
argumentPosition, int valuePosition)

Used to determine the type of an argument value. These
methods take either one argument, the argument position,
or two arguments, the argument position and value position
in the argument list. If only the argument position is
specified, the value position is assumed to be 0. The return
value of these methods is either true, if the value is of the
specified type, or false, if the value is not of the specified
type.

argumentIntegerValue(int argumentPosition)
argumentIntegerValue(int argumentPosition,
int valuePosition) argumentDoubleValue(int
argumentPosition) argumentDoubleValue
(int argumentPosition, int valuePosition)
argumentBooleanValue(int argumentPosition)
argumentBooleanValue(int argumentPosition,
int valuePosition) argumentStringValue(int
argumentPosition) argumentStringValue(int
argumentPosition, int valuePosition)

Used to retrieve an argument value. These methods
take either one argument, the argument position, or two
arguments, the argument position and value position in the
argument list. If only the argument position is specified, the
value position is assumed to be 0. The return value of these
methods is the specified value from the argument list. The
method argumentIntegerValue() will coerce a float value to
an integer value and argumentDoubleValue() will coerce an
integer value to a float value.

argumentQuantity(int
argumentPosition);argumentQuantity(int
argumentPosition, int valuePosition);

Used to retrieve the quantity associated with argument
values. In the case of constants and return values from
other functions, the quantity returned is always 1. In the
case of selection point attributes, the quantity returned is
the quantity associated with the selected domain member
that is associated with the attribute value.

argumentLongValue(int argumentPosition,
int valuePosition)argumentLongValue(int
argumentPosition);

These methods allow a user-defined function to request
arguments as long integer values rather than integer
values. These methods behave the same as the existing
argumentIntegerValue methods except that they return a
Java long rather than a Java int. Call these methods if you
expect to retrieve numbers larger than 2,096,000,000 (a
Java-imposed limit to the int type).

If you don’t, and such a huge number gets entered into your
UDF, it will get truncated (and might become negative or
some other funny effect)

Exceptions
If the argument or value positions are invalid or if an invalid type is requested, the UserFunctionException
exception will be thrown by the argument access methods.

PeopleSoft Proprietary and Confidential 441

Creating and Adding User-Defined Functions Appendix B

Editing UserFunctions.xml
Entries in UserFunctions.xml must contain either:

• The name of the Java class that implements the user-defined function (the NAME tag), or

• The name of the function as displayed by the Visual Modeler and referenced in expressions.

Or,

You can specify:

• The return type of the function (the RETURN_TYPE tag).

• The minimum and maximum number of arguments expected by the function (the
MIN_ARGUMENTS and MAX_ARGUMENTS tags).

• The default argument type (the DEFAULT_ARGUMENT_TYPE tag).

• The default argument aggregation (the DEFAULT_ARGUMENT_AGGREGATION tag).

• The default argument name (the DEFAULT_ARGUMENT_NAME).

Tag definitions are:

RETURN_TYPE Legal values are integer, float, double, number, string, date, boolean,
long, and object. If this tag is unspecified, it is assumed to be object.
Using number as the return type signifies that the return value will be
either a double or integer. Using float as the return type is identical
to using double as the return type. Using object as the return type
signifies that the return value will be either integer, double, string,
date, or boolean.

MIN_ARGUMENTS and MAX_
ARGUMENTS

Should be integers or the symbol “variable”. If unspecified, these tags
are assumed to be variable.

DEFAULT_ARGUMENT_TYPE Has the same allowed types as the RETURN_TYPE tag.

DEFAULT_ARGUMENT_AGGREGATION Should be a Boolean value. By default it is assumed to be false.

DEFAULT_ARGUMENT_NAMED Is a description of the function’s arguments.

Specify information for each argument using the ARGUMENT tag.

For each argument, specify the NAME tag needs to be specified for each argument
and is a description of the argument.

The type can be specified for each argument using the TYPE tag and aggregation can be
specified using the AGGREGATOR tag. The TYPE tag has the same allowed types as the
RETURN_TYPE tag. By default, the type is object.

The AGGREGATOR tag should be a boolean value and by default is false. If an argument is specified to
be an aggregator, then the compiler enforces the restriction that only selection point/attribute references,
function calls, and numeric variables can be specified for this argument in an expression.

Examples

The content portion of an example UserFunctions.xml file illustrates the use of the second method above:

442 PeopleSoft Proprietary and Confidential

Appendix B Creating and Adding User-Defined Functions

public class TripleFunction

implements UserFunction, java.io.Serializable

{

public Object calculate(UserFunctionArguments args)

{

try

{

if (args.argumentIsInteger(0))

{ return new Integer(3 * args.argumentIntegerValue(0)); }

else if (args.argumentIsDouble(0))

{ return new Double(3.0 * args.argumentDoubleValue(0)); }

return(new Integer(0));

}

catch (UserFunctionException e)

{

return(new Integer(0));

}

}

}

The following example is of a user function called tripleWithQty, which takes 1 or more
numeric arguments. Each argument value is multiplied by 3 and its associated quantity and
the resulting values are summed and returned as a Double value.

import com.calico.engine.config.lightning.compiler.UserFunction;

import com.calico.engine.config.lightning.compiler.UserFunctionArguments;

import com.calico.engine.config.lightning.compiler.UserFunctionException;

public class TripleWithQtyFunction

implements UserFunction, java.io.Serializable

{

public Object calculate(UserFunctionArguments args)

{

try

{

int i, j;

double sum = 0.0;

for (i = 0; i < args.numberOfArguments(); i++)

{

for (j = 0; j < args.numberOfArgumentValues(i); j++)

{

if (args.argumentIsNumber(i,j))

{

sum += 3.0 * args.argumentDoubleValue(i,j) *

args.argumentQuantity(i,j);

}

}

}

PeopleSoft Proprietary and Confidential 443

Creating and Adding User-Defined Functions Appendix B

return(new Double (sum));

}

catch (UserFunctionException e)

{

return(new Double(0.0));

}

}

}

Using the Sample User-Defined Function getQuantity()
This section describes the sample user-defined function called getQuantity() that is
provided with the Visual Modeler.

• Setting up getQuantity().

• Viewing getQuantity() behavior.

Understanding the getQuantity() Sample Function
getQuantity() is a sample user-defined function that returns the selected quantity of a specific domain
member within a multi-select selection point. The associated files and a sample model implementing
this function are included on the Configurator CD. You can use this sample in your own modeling or
simply to understand how to define and implement your own expression functions.

Suppose you want to know the quantity of the selected domain member in a single-selection
point. You could use the pre-defined function countWithQty() to retrieve that value. However,
this function cannot recognize more than one selected domain member, so you must use the
getQuantity() sample function for multi-select selection points.

The sample getQuantity() user-defined function requires two files and a sample model to demonstrate its use:

• GetQuantityFunction.java Java user-defined function (for source use).

• GetQuantityFunction.class compiled Java user-defined function.

• UserFunctions.xml user-defined XML for getQuantity().

The compiled class file and Java source file are located on the PeopleSoft Advanced Configurator CD at:

\samples\Configurator\SampleSolutions\GetQuantity_UDF\classes

The getQuantity() function has two arguments:

• An integer representing an integer attribute value on the specific domain member holding the desired quantity.

• The Selection Point/attribute name combination for the Selection Point containing the
domain member holding the desired quantity.

In order for the function to evaluate properly, the target domain member must have an
attribute value equal to the same value of the first argument.

444 PeopleSoft Proprietary and Confidential

Appendix B Creating and Adding User-Defined Functions

In the figure below, the domain member A2 has an attribute called index with an integer
value of 2. If you wished to obtain the quantity of the A2 domain member, the first
argument in the getQuantity() function would be 2.

Partial Structure View and expression Properties Editor for domain member A2

Note. Set the return type for getQuantity() to Numeric. The expression in the figure below, named
GQ2 in the sample model, will return the quantity selected on the A2 domain member.

Expression editor for getQuantity()

Setting Up getQuantity()
To demonstrate getQuantity(), you must first place it and the model files in the appropriate directories.

To install the function:

1. Stop the PeopleSoft Advanced Configurator Server if it is running.

2. Create a \classes folder that resides within the \Web-inf folder of your PeopleSoft
Advanced Configurator installation. For example:

C:\bea\weblogic81\config\CalicoDomain\applications\CalicoApp\Web-Inf

3. Copy the getQuantityFunction.class file to the \classes folder just created.

4. Locate UserFunctions.xml on the Configurator CD:

\samples\Configurator\SampleSolutions\GetQuantity_UDF\WEB-INF\config

5. Do one of the following:

If no user-defined functions have been installed in your PeopleSoft Advanced Configurator environment,
you can copy the entire UserFunctions.xml file into the config folder, located typically in:

PeopleSoft Proprietary and Confidential 445

Creating and Adding User-Defined Functions Appendix B

C:\bea\weblogic81\config\CalicoDomain\applications\CalicoApp\Web-inf\config

If user-defined functions are already installed in your PeopleSoft Advanced Configurator environment,
open the UserFunctions.xml file from the CD and copy and paste the following text to your
existing UserFunctions.xml file between the <FUNCTION_LIST> tags:
<FUNCTION NAME="getQuantity" CATEGORY="user" RETURN_TYPE="float"

CLASS="GetQuantityFunction"

DEFAULT_ARGUMENT_TYPE="integer"

DEFAULT_ARGUMENT_NAME="getQuantity-var"

MIN_ARGUMENTS="2" MAX_ARGUMENTS="2"/>

6. Locate the getQuantity sample model on the Configurator CD in:

\samples\Configurator\SampleSolutions\GetQuantity_UDF\model

7. Copy the getQuantity folder and its contents to:

C:\bea\weblogic81\config\CalicoDomain\applications\CalicoApp\Web-inf\classes

Note. Do not place the getQuantity folder and its contents in a subfolder.

8. Start the PeopleSoft Advanced Configurator Server.

9. Start the Visual Modeler and open the getQuantity sample model you just copied.

10. Select Project, Settings to verify that the model is pointing at the correct hostname
for your Configurator Server.

11. Open any expression (for example, GQ2) by double-clicking on one in the Components windows.

12. Click on the Refresh Functions From Server button. The Visual Modeler will connect to the Configurator
Server , read the UserFunctions.xml file, and update the list of user-defined functions available for modeling.

13. Click on the compile icon in the toolbar of the Visual Modeler. Verify that the model was compiled
successfully by viewing its name in the Visual Modeler message window, as shown:

Updated function list

Viewing getQuantity() Behavior
This section discusses how to run the GetQuantity model so as to observe results from the getQuantity() function.

446 PeopleSoft Proprietary and Confidential

Appendix B Creating and Adding User-Defined Functions

To see the run-time behavior of getQuantity(), compile and run the getQuantity() sample model by
clicking the Compile and run the model icon in the toolbar of the Visual Modeler. Enter quantity
values for each domain member on the selection point and click the Submit button. Note that the
G1-G5 expressions return the quantity values entered. Also note that the GQ2 expression returns
the quantity value of A2, as it was used in the examples above.

Model Tester showing getQuantity() run-time behavior

PeopleSoft Proprietary and Confidential 447

Creating and Adding User-Defined Functions Appendix B

448 PeopleSoft Proprietary and Confidential

APPENDIX C

Advanced Configurator Form Controls

This appendix provides the specific code for the form controls supported by Advanced
Configurator for use in developing custom user interfaces:

• Single-Select Group Form Control

• Multi-Select Group Form Control

• Single-Select List Form Control (Drop-Down)

• Multi-Select List Form Control

• Single-Select Table Form Control

• Multi-Select Table Form Control

• Single-Select Image Table

• Application Why Help

• Form Control Why Help

• Text Input Form Control

• Numeric Data Form Control

• Extern Entry

Single-Select Group Form Control
The following JSP code generates a single-select group form control in HTML:

<!-- METADATA TYPE="CalicoControl" startspan-->

<%

if (params != null)

{

params.clear();

params.put(PARAM_OBJECTNAME, <Object Name>);

params.put(PARAM_ATTRIBUTES, <Attributes>);

params.put(PARAM_CONTROLID, <Control ID>);

params.put(PARAM_CAPTION, <Caption>);

params.put(PARAM_GENERATENONEMODE, <Generate None Mode>);

params.put(PARAM_GENERATENONETEXT, <Generate None Text>);

generateSingleSelectGroup(params, request, out);

}

%>

<!-- METADATA TYPE="CalicoControl" endspan -->

PeopleSoft Proprietary and Confidential 449

Advanced Configurator Form Controls Appendix C

Note. The form control template filenames are in mixed case, i.e. SingleSelectGroup.jsp. For
the deployments running on Solaris systems, make sure the characters of the filename match
correctly (case-sensitive) with the template filenames.

The following is the HTML output of the previous JSP code:

Caption

<INPUT TYPE="radio" NAME="Control ID" VALUE="$NADA">GenerateNone⇒

Text

<INPUT TYPE="radio" NAME="Control ID" VALUE="ControlItemName~State">"><FONT COLOR=⇒

"...">

Multi-Select Group Form Control
The following JSP code creates a multiple-select group form control in HTML.

<!-- METADATA TYPE="CalicoControl" startspan-->

<%

if (params != null)

{

params.clear();

params.put(PARAM_OBJECTNAME, <Object Name>);

params.put(PARAM_ATTRIBUTES, <Attributes>);

params.put(PARAM_CONTROLID, <Control ID>);

params.put(PARAM_CAPTION, <Caption>);

generateMultiSelectGroup(params, request, out);

}

%>

<!-- METADATA TYPE="CalicoControl" endspan -->

The following is the HTML output of the previous JSP code:
Caption

<INPUT TYPE="checkbox" NAME="Control ID" VALUE="ControlItemName~State">"><FONT⇒

COLOR="...">

ControlItemName DeltaPrice

450 PeopleSoft Proprietary and Confidential

Appendix C Advanced Configurator Form Controls

Single-Select Table Form Control
The following JSP code creates a single-select table form control in HTML:

<!-- METADATA TYPE="CalicoControl" startspan-->

<%

if (params != null)

{

params.clear();

params.put(PARAM_OBJECTNAME, <Object Name>);

params.put(PARAM_ATTRIBUTES, <Attributes>);

params.put(PARAM_CONTROLID, <Control ID>);

params.put(PARAM_CAPTIONIMAGE, <Caption Image>);

params.put(PARAM_COLUMNHEADINGS, <Column Headings>);

params.put(PARAM_GENERATENONEMODE, <Generate None Mode>);

params.put(PARAM_GENERATENONETEXT, <Generate None Text>);

generateSingleSelectTable(params, request, out);

}

%>

<!-- METADATA TYPE="CalicoControl" endspan -->

The following is the HTML output of the previous JSP code.
 Caption

<TABLE>

<TR>

<TH></TH>

<TH>ColumnHeadingItem</TH>

...

</TR>

<TR>

<TD>

<INPUT TYPE="radio" NAME="Control ID" VALUE="$NADA">

</TD>

<TD>>GenerateNoneText

</TD>

</TR>

<TR>

<TD>

<INPUT TYPE="radio" NAME="Control ID"

VALUE="ControlItemName~ItemState">

</TD>

<TD>ControlItemAttribute

</TD>

...

</TR>

...

</TABLE>

PeopleSoft Proprietary and Confidential 451

Advanced Configurator Form Controls Appendix C

Multi-Select List Form Control
The following JSP code creates a multiple-select list form control in HTML.

<!-- METADATA TYPE="CalicoControl" startspan-->

<%

if (params != null)

{

params.clear();

params.put(PARAM_OBJECTNAME, <Object Name>);

params.put(PARAM_ATTRIBUTES, <Attributes>);

params.put(PARAM_CONTROLID, <Control ID>);

params.put(PARAM_CAPTION, <Caption>);

generateMultiSelectList(params, request, out);

}

%>

<!-- METADATA TYPE="CalicoControl" endspan -->

The following is the HTML output of the previous JSP code.

 Caption

<SELECT NAME="Control ID " MULTIPLE >

<OPTION VALUE="$NADA">GenerateNoneText

<OPTION VALUE="ControlItemName~State" >StateTag ControlItemName DeltaPrice

Single-Select List Form Control
The following JSP code creates a single-select list form control in HTML:

<!-- METADATA TYPE="CalicoControl" startspan-->

<%

if (params != null)

{

params.clear();

params.put(PARAM_OBJECTNAME, <Object Name>);

params.put(PARAM_ATTRIBUTES, <Attributes>);

params.put(PARAM_CONTROLID, <Control ID>);

params.put(PARAM_CONTROLSIZE, <Control Size>);

params.put(PARAM_CAPTION, <Caption>);

params.put(PARAM_GENERATENONEMODE, <Generate None Mode>);

params.put(PARAM_GENERATENONETEXT, <Generate None Text>);

generateSingleSelectList(params, request, out);

}

%>

<!-- METADATA TYPE="CalicoControl" endspan -->

452 PeopleSoft Proprietary and Confidential

Appendix C Advanced Configurator Form Controls

The following is the HTML output of the previous JSP code.
 Caption

<SELECT NAME="Control ID ">

<OPTION VALUE="$NADA">GenerateNoneText

<OPTION VALUE="ControlItemName~State" >StateTag ControlItemName DeltaPrice

Multi-Select Table Form Control
The following JSP code creates a multiple-select table form control in HTML:

<!-- METADATA TYPE="CalicoControl" startspan-->

<%

if (params != null)

{

params.clear();

params.put(PARAM_OBJECTNAME, <Object Name>);

params.put(PARAM_ATTRIBUTES, <Attributes>);

params.put(PARAM_CONTROLID, <Control ID>);

params.put(PARAM_COLUMNHEADINGS, <Column Headings>);

params.put(PARAM_CAPTION, <Caption>);

generateMultiSelectTable(params, request, out);

}

%>

<!-- METADATA TYPE="CalicoControl" endspan -->

The following is the HTML output of the previous JSP code:
 Caption

<TABLE>

<TR>

<TH></TH>

<TH>ColumnHeadingItem</TH>

...

</TR>

<TR>

<TD>

<INPUT TYPE="checkbox" NAME="Control ID"

VALUE="ControlItemName~ItemState " >

</TD>

<TD>ControlItemAttribute

</TD>

...

</TR>

...

</TABLE>

PeopleSoft Proprietary and Confidential 453

Advanced Configurator Form Controls Appendix C

Single-Select Image
Pass parameters to the template, and create a single-select image on the model’s Web page as follows:

<!-- METADATA TYPE="CalicoControl" startspan-->

<%

if (params != null)

{

params.clear();

params.put(PARAM_OBJECTNAME, <Object Name>);

params.put(PARAM_DOMAINMEMBERNAME, <Domain Member Name>);

params.put(PARAM_IMAGEATTRIBUTE, <Image Attribute>);

//or

//params.put(PARAM_IMAGENAME, <Image Name>);

//optional image parameters

params.put(PARAM_IMAGEPATH, <Image Path>);

params.put(PARAM_IMAGEWIDTH, <Image Width>);

params.put(PARAM_IMAGEHEIGHT, <Image Height>);

params.put(PARAM_IMAGESTATES, <Image States>);

params.put(PARAM_MOUSEOVERIMAGES, <Mouseover Images>);

params.put(PARAM_ALTTEXTATTRIBUTE, <Alt Text Attribute>);

params.put(PARAM_ALTTEXT, <Alt Text>);

params.put(PARAM_ADDITIONALATTRIBUTES, <Additional Attributes>);

params.put(PARAM_AUTOSUBMIT, <Autosubmit>);

//optional callback parameters

params.put(PARAM_CREATECALLBACK, <Create Callback>);

params.put(PARAM_SELECTCALLBACK, <Select Callback>);

params.put(PARAM_UNSELECTCALLBACK, <Unselect Callback>);

params.put(PARAM_MOUSEOVERCALLBACK, <Mouseover Callback>);

params.put(PARAM_MOUSEOUTCALLBACK, <Mouseout Callback>);

params.put(PARAM_AUTOSUBMITCALLBACK, <Autosubmit Callback>);

generateSingleSelectImage(params, request, out);

}

%>

<!-- METADATA TYPE="CalicoControl" endspan -->

Single-Select Image Table
Pass parameters to the template and create a single-select image table on the model’s Web page as follows:

<!-- METADATA TYPE="CalicoControl" startspan-->

<%

if (params != null)

454 PeopleSoft Proprietary and Confidential

Appendix C Advanced Configurator Form Controls

{

params.clear();

params.put(PARAM_OBJECTNAME, <Object Name>);

params.put(PARAM_CAPTION, <Caption>);

//or

//params.put(PARAM_CAPTIONIMAGE, <Caption Image>);

params.put(PARAM_IMAGEATTRIBUTE, <Image Attribute>);

//optional standard Advisor parameters

params.put(PARAM_SORT, <Sort>);

params.put(PARAM_FILTERELIMINATEDITEMS, <Caption Image>);

params.put(PARAM_FILTERELIMINATIONLEVEL_LOWER, <Lower E Level>);

params.put(PARAM_FILTERELIMINATIONLEVEL_UPPER, <Upper E Level>);

params.put(PARAM_COMPARATOR, <Comparator>);

//optional image parameters

params.put(PARAM_IMAGEPATH, <Image Path>);

params.put(PARAM_IMAGEWIDTH, <Image Width>);

params.put(PARAM_IMAGEHEIGHT, <Image Height>);

params.put(PARAM_IMAGESTATES, <Image States>);

params.put(PARAM_MOUSEOVERIMAGES, <Mouseover Images>);

params.put(PARAM_ALTTEXTATTRIBUTE, <Alt Text Attribute>);

params.put(PARAM_ADDITIONALATTRIBUTES, <Additional Attributes>);

params.put(PARAM_AUTOSUBMIT, <Autosubmit>);

//optional callback parameters

params.put(PARAM_CREATECALLBACK, <Create Callback>);

params.put(PARAM_SELECTCALLBACK, <Select Callback>);

params.put(PARAM_UNSELECTCALLBACK, <Unselect Callback>);

params.put(PARAM_MOUSEOVERCALLBACK, <Mouseover Callback>);

params.put(PARAM_MOUSEOUTCALLBACK, <Mouseout Callback>);

params.put(PARAM_AUTOSUBMITCALLBACK, <Autosubmit Callback>);

//optional table parameters

params.put(PARAM_COLUMNS, <Columns>);

params.put(PARAM_ROWS, <Rows>);

params.put(PARAM_BORDER, <Border>);

params.put(PARAM_CELLSPACING, <Cell Spacing>);

params.put(PARAM_CELLPADDING, <Cell Padding>);

generateSingleSelectImageTable(params, request, out);

}

%>

<!-- METADATA TYPE="CalicoControl" endspan -->

PeopleSoft Proprietary and Confidential 455

Advanced Configurator Form Controls Appendix C

Application Why Help
The following JSP code creates the application why help in HTML:

<!-- METADATA TYPE="CalicoControl" startspan-->

<%

if (params != null)

{

params.clear();

params.put(PARAM_CAPTION, <Caption>);

generateApplicationWhyHelp(params, request, out);

}

%>

<!-- METADATA TYPE="CalicoControl" endspan -->

The Caption parameter value is the string to be displayed as the caption for the violations. The Caption Image is
the image to be displayed as the caption for the violations. Specify either Caption or Caption Image but not both.

Note. There are no required parameters for the Application Why Help form control template.

The following is the HTML output of the previous JSP code:
Caption

ViolationItem 1

ViolationItem 2

Form Control Why Help
The following JSP code creates the Form Control Why Help in HTML:

<!-- METADATA TYPE="CalicoControl" startspan-->

<%

if (params != null)

{

params.clear();

params.put(PARAM_OBJECTNAME, <Object Name>);

params.put(PARAM_CAPTION, <Caption>);

generateControlWhyHelp(params, request, out);

}

%>

<!-- METADATA TYPE="CalicoControl" endspan -->

Note. PARAM_OBJECTNAME is the only required parameter for the Control Why Help form control template.

The following is the HTML output of the previous JSP code:

Caption

ViolationItem 1

ViolationItem 2

456 PeopleSoft Proprietary and Confidential

Appendix C Advanced Configurator Form Controls

...

Text Input Form Control
Pass parameters to the template, and create the text input text box on the model’s Web page as follows:

<!-- METADATA TYPE="CalicoControl" startspan-->

<%

if (params != null)

{

params.clear();

params.put(PARAM_OBJECTNAME, <Object Name>);

params.put(PARAM_CAPTION, <Caption>);

//or

//params.put(PARAM_CAPTIONIMAGE, <Caption Image>);

// optional parameters

params.put(PARAM_TEXTINPUTDEFAULT, <Default Entry>);

params.put(PARAM_ENTRYSIZE, <Entry Size>);

generateTextInput(params, request, out);

}

%>

<!-- METADATA TYPE="CalicoControl" endspan -->

Numeric Data Form Control
The following JSP code creates a numeric data control on the model’s web page:

<!-- METADATA TYPE="CalicoControl" startspan-->

<%

if (params != null)

{

params.clear();

params.put(PARAM_OBJECTNAME, <Object Name>);

params.put(PARAM_CAPTION, <Caption>);

//or you could use

//params.put(PARAM_CAPTIONIMAGE, <Caption Image>);

// but not both caption parameters.

generateNumericData(params, request, out);

}

PeopleSoft Proprietary and Confidential 457

Advanced Configurator Form Controls Appendix C

%>

<!-- METADATA TYPE="CalicoControl" endspan -->

The following is the HTML output of the previous JSP code:
Caption : Numeric Data

Extern Entry
Use the following to pass parameters to the template, and to create the extern entry
text box on the model’s Web page:

<!-- METADATA TYPE="CalicoControl" startspan-->

<%

if (params != null)

{

params.clear();

params.put(PARAM_OBJECTNAME, <Object Name>);

params.put(PARAM_CONTROLID, <Control ID>);

params.put(PARAM_CAPTION, <Caption>);

//or

//params.put(PARAM_CAPTIONIMAGE, <Caption Image>);

// optional parameters

params.put(PARAM_FLOATENTRY, <Float Entry>);

params.put(PARAM_DATE, <Date Entry>); params.put(PARAM_INTEGER, <Integer⇒

Entry>); params.put(PARAM_BOOLEAN, <Boolean Entry>); params.put(PARAM_⇒

STRINGENTRY, <String Entry>); params.put(PARAM_ENTRYSIZE, <Entry Size>);

generateExternEntry(params, request, out);

}

%>

<!-- METADATA TYPE="CalicoControl" endspan -->

458 PeopleSoft Proprietary and Confidential

APPENDIX D

Compound Model Properties File

Before you can test or deploy a compound model, you must specify its operating properties
in CalicoNA.properties. This file is located in \\bea\weblogic81\config\CalicoDomain
\applications\CalicoApp\solutions\CompoundSample.

This appendix provides an explanation of the properties and the text of the file.

Properties Description
This section explains each property and the values expected as they appear in the file. A
complete, non-annotated version of the file follows.

Auto Save On Session Timeout (true/false)

calico.session.autosave=false

If set to true, this property will save any configurations that are open when the session times out. It is
recommended that you consider all the ramifications of this behavior before setting the flag to true.

Solution info

calico.solution.name=TelcoDemo

calico.solution.version=1-2

calico.solution.description=Component Modeling Demo

calico.solution.allowNew=true

These properties are read and displayed by the solutions list servlet.
calico.page.restore=

See Chapter 23, “Understanding the Run-Time System,” Restore Policy, page 301.

This property is reserved for features to be added in a future release. Leave it at its default value.
Compound Structure File

calico.compoundstructure.name=TelcoDemo

calico.compoundstructure.version=1-0

calico.compoundstructure.restore.policy=1

These properties define the Compound Structure Document used when using compound configurations.
Default is the TelcoDemo (\TelcoSample) sample compound model.

Resource Bundle Names

calico.resourcebundle.name=NAResourceBundle

calico.verify.resourcebundle.name=NAVerifyResourceBundle

These properties define the resource bundles for the sample pages and the error messages
resulting from exceptions thrown during verification.

Default Date Format

PeopleSoft Proprietary and Confidential 459

Compound Model Properties File Appendix D

calico.default.date.format=MMM d, yyyy ’at’ hh:mm aaa

This property defines the date format used by deltas in the sample pages.
Database

calico.na.db=true

This property is reserved for functions to be added in a future release. Leave it at its default value.
Images

calico.na.image.violation=/calico/images/violation.gif

calico.na.image.noviolation=/calico/images/no_violation.gif

calico.na.image.add=/calico/images/add_icon.gifcalico.na.image.delete=/calico⇒

/images/delete_icon.gif

calico.na.image.sort=/calico/images/sort_icon.gif

These properties specify the images used by the compound configuration sample pages.
Edit Component Entry Points (Relative To Document Root)

Hub=/solutions/CompoundSample/hub/hub.jsp

Node=/solutions/CompoundSample/node/node.jsp

Circuit=/solutions/CompoundSample/circuit/circuit.jsp

These properties define the entry points to each model used in compound configuration.
Note that all reference the root directory of the web server, and are not relative to the
compound configuration manager page or directory.

Network Advisor Application Pages (Relative To Document Root)

calico.page.manager=/solutions/CompoundSample/CalicoNAManager.jsp

This property defines the manager page to be used in compound configuration.
CalicoNAAddComp=/calico/CalicoNAAddComp.jsp

CalicoNAAddConn=/calico/CalicoNAAddConn.jsp

CalicoNAChangeId=/calico/CalicoNAIdentification.jsp

CalicoNADeleteComp=/calico/CalicoNADeleteComp.jsp

CalicoNADeleteConfig=/calico/CalicoNADeleteConfig.jsp

CalicoNADeleteConn=/calico/CalicoNADeleteConn.jsp

CalicoNAEditComp=/calico/CalicoNAEditComp.jsp

CalicoNAEditConn=/calico/CalicoNAEditConn.jsp

CalicoNAError=/calico/CalicoNAError.jsp

CalicoNALoadConfig=/calico/CalicoNALoadConfig.jsp

CalicoNASaveConfig=/calico/CalicoNASaveConfig.jsp

CalicoNAVerify=/calico/CalicoNAVerify.jsp

CalicoNAViewBOM=/calico/CalicoNABOM.jsp

CalicoNAViewDeltaDetail=/calico/CalicoNAViewDeltaDetail.jsp

CalicoNAViewDeltas=/calico/CalicoNAViewDeltas.jsp

These properties define the page to be used with each action in compound configuration. When the Manager
page finds any of these actions in the request, it will redirect the request to the appropriate page.

File Text
The following is the unannotated text of the CalicoNA.properties file.

PeopleSoft Configurator Compound Modeling Properties

460 PeopleSoft Proprietary and Confidential

Appendix D Compound Model Properties File

Auto Save On Session Timeout (true/false)

calico.session.autosave=false

Solution info

calico.solution.name=TelcoDemo

calico.solution.version=1-2

calico.solution.description=Compound Modeling Demo

calico.solution.allowNew=true

calico.page.restore=

Compound Structure File

calico.compoundstructure.name=TelcoDemo

calico.compoundstructure.version=1-0

calico.compoundstructure.restore.policy=1

Resource Bundle Names

calico.resourcebundle.name=NAResourceBundle

calico.verify.resourcebundle.name=NAVerifyResourceBundle

Default Date Format

calico.default.date.format=MMM d, yyyy ’at’ hh:mm aaa

Database

calico.na.db=true

Images

calico.na.image.violation=/calico/images/violation.gif

calico.na.image.noviolation=/calico/images/no_violation.gif

calico.na.image.add=/calico/images/add_icon.gif

calico.na.image.delete=/calico/images/delete_icon.gif

calico.na.image.sort=/calico/images/sort_icon.gif

Edit Component Entry Points (Relative To Document Root)

Hub=/solutions/CompoundSample/hub/hub.jsp

Node=/solutions/CompoundSample/node/node.jsp

Circuit=/solutions/CompoundSample/circuit/circuit.jsp

Network Advisor Application Pages (Relative To Document Root)

calico.page.manager=/solutions/CompoundSample/CalicoNAManager.jsp

CalicoNAAddComp=/calico/CalicoNAAddComp.jsp

CalicoNAAddConn=/calico/CalicoNAAddConn.jsp

CalicoNAChangeId=/calico/CalicoNAIdentification.jsp

CalicoNADeleteComp=/calico/CalicoNADeleteComp.jsp

CalicoNADeleteConfig=/calico/CalicoNADeleteConfig.jsp

CalicoNADeleteConn=/calico/CalicoNADeleteConn.jsp

CalicoNAEditComp=/calico/CalicoNAEditComp.jsp

CalicoNAEditConn=/calico/CalicoNAEditConn.jsp

CalicoNAError=/calico/CalicoNAError.jsp

PeopleSoft Proprietary and Confidential 461

Compound Model Properties File Appendix D

CalicoNALoadConfig=/calico/CalicoNALoadConfig.jsp

CalicoNASaveConfig=/calico/CalicoNASaveConfig.jsp

CalicoNAVerify=/calico/CalicoNAVerify.jsp

CalicoNAViewBOM=/calico/CalicoNABOM.jsp

CalicoNAViewDeltaDetail=/calico/CalicoNAViewDeltaDetail.jsp

CalicoNAViewDeltas=/calico/CalicoNAViewDeltas.jsp

462 PeopleSoft Proprietary and Confidential

APPENDIX E

Node-Circuit-Hub Service

This appendix describes a sample complex product (communications services) offering that includes node,
circuits, and hubs, and gives you the XML representation of its compound structure definition.

Description of Services
The following bulleted items describe the sample product offering.

Node

In the sample model, a Node:

• Can be created.

• Is configured.

• Can stand alone.

• Can be connected to a single Circuit.

Hub

In the sample model, a Hub:

• Can be created.

• Is configured.

• Can stand alone.

• Can be connected to, at most, 24 Circuits.

Circuit

In the sample model, a Circuit:

• Can be created.

• Is configured.

Connections

In the sample model, applicable conditions for a Connection are:

• Must be connected to at least one Node or Hub.

• Can have at most two connections.

• The one or two connections can be to either Nodes or Hubs.

PeopleSoft Proprietary and Confidential 463

Node-Circuit-Hub Service Appendix E

- Node-Circuit

- Hub-Circuit

- Node-Circuit-Node

- Node-Circuit-Hub or Hub-Circuit-Node

- Hub-Circuit-Hub

• When a Circuit is connected to either a Node or a Hub, the following data relationship exists:

- The PortSpeedSelection from the first Node or Hub should be applied to the
Ext_PortSpeedSelection_A on the Circuit.

- The PortSpeedSelection from the second Node or Hub should be applied to the
Ext_PortSpeedSelection_B on the Circuit.

- The ProtocolSelection from the first Node or Hub should be applied to the
Ext_ProtocolSelection_A on the Circuit.

- The ProtocolSelection from the second Node or Hub should be applied to the
Ext_ProtocolSelection_B on the Circuit.

• When Circuits are connected to a Hub, a collection containing the portSpeed value from each
Circuit should be applied to the Ext_PortSpeeds variable on the Hub.

XML Representation of Compound Structure Definition
The following XML represents the compound structure definition for the sample services offering.
Compound models use the XML schema at run time to control operation, and to verify the
structure of a compound configuration instance. It is located in

\bea\weblogic81\config\CalicoDomain\applications\CalicoApp\solutions\CompoundSample

<CompoundStructure name="TelcoDemo" version="1-0">

<comment>This is a sample compound structure that represents the current⇒

Network Advisor 1.0 TelcoDemo, plus additional functionality available with⇒

Network Advisor 3.5. Specifically, this sample adds in a hub component.</comment>

<Components>

<ConfigurableComponent name="Node">

<Model name="TelcoComp" version="1-1"/>

</ConfigurableComponent>

<ConfigurableComponent name="Hub">

<Model name="TelcoCompHub" version="1-1"/>

</ConfigurableComponent>

<ConfigurableComponent name="Circuit">

<Model name="TelcoCompCircuit" version="1-1"/>

<RequiredRelationships>

<Relationship ref="Connection"/>

</RequiredRelationships>

</ConfigurableComponent>

</Components>

<Relationships>

<Relationship name="Connection" component="Circuit">

464 PeopleSoft Proprietary and Confidential

Appendix E Node-Circuit-Hub Service

<Structure minOccurs="1" maxOccurs="2">

<ConnectedComponent ref="Node" minOccurs="0" maxOccurs="2"/>

<ConnectedComponent ref="Hub" minOccurs="0" maxOccurs="2"/>

</Structure>

<ConnectionPoints>

<ConnectionPoint name="PortSpeed" operation="CHOICE" sourceDP="Port⇒

SpeedSelection">

<comment>Apply the port speed selection</comment>

<ConnectedComponent instance="1" targetDP="Ext_PortSpeedSelection_⇒

A"/>

<ConnectedComponent instance="2" targetDP="Ext_PortSpeedSelection_⇒

B"/>

</ConnectionPoint>

<ConnectionPoint name="Protocol" operation="CHOICE" sourceDP="Protocol⇒

Selection">

<comment>Apply the protocol selection</comment>

<ConnectedComponent instance="1" targetDP="Ext_ProtocolSelection_A"⇒

/>

<ConnectedComponent instance="2" targetDP="Ext_ProtocolSelection_B"⇒

/>

</ConnectionPoint>

</ConnectionPoints>

</Relationship>

<Relationship name="HubCircuits" component="Hub">

<Structure>

<ConnectedComponent ref="Circuit" minOccurs="1" maxOccurs="24"/>

</Structure>

<ConnectionPoints>

<ConnectionPoint name="PortSpeeds" operation="COLLECTION" target⇒

Variable="Ext_PortSpeeds">

<comment>Apply the port speeds from all circuits</comment>

<ConnectedComponent instance="all" sourceNumericData="portSpeed"/>

</ConnectionPoint>

</ConnectionPoints>

</Relationship>

<Relationship name="NodeCircuit" component="Node">

<Structure>

<ConnectedComponent ref="Circuit" minOccurs="1" maxOccurs="1"/>

</Structure>

</Relationship>

</Relationships>

</CompoundStructure>

PeopleSoft Proprietary and Confidential 465

Node-Circuit-Hub Service Appendix E

466 PeopleSoft Proprietary and Confidential

APPENDIX F

Mobile Configurator COM API

This appendix lists the classes and methods of and PeopleSoft.MCfgProxy.

PeopleSoft.MCfgProxy Methods
PeopleSoft.MCfgProxy contains these methods.

Start
Initiates the startup sequence of the Mobile Configurator application. Call this method right after
MCfg object creation and before other methods are called on Mobile Configurator. By default
the MCfg application window is shown centered and normal.

Arguments

None

Return Values

Type: Integer

0 – Successful

1 – Fail

Stop
Closes and shuts down the Mobile Configurator.

Arguments

None

Return Values

Type: Integer

0 – Successful

1 – Fail

Show
Shows/Restores the Mobile Configurator application window if it was previously hidden on a Hide call.

PeopleSoft Proprietary and Confidential 467

Mobile Configurator COM API Appendix F

Arguments

None

Return Values

Type: Integer

0 – Successful

1 – Fail

Hide
Hides the Mobile Configurator application.

Arguments

None

Return Values

Type: Integer

0 – Successful

1 – Fail

NewConfiguration(String sSolutionID)
Loads/starts a new configuration session based on the passed configuration ID.

Arguments

sSolutionID – a string value for the solution ID to load, i.e. “Sample”, “TelcoHub” etc.

Return Values

Type: Integer

0 – Success

1 – Fail

ReConfigure(String sXML)
Reloads/restarts a configuration session based on the previously saved configuration
xml formatted record that is passed in.

Arguments

sXML – a string containing the xml formatted configuration record that is to be reloaded for reconfiguration.

Return Values

Type: Integer

0 – Success

468 PeopleSoft Proprietary and Confidential

Appendix F Mobile Configurator COM API

1– Fail

WaitForConfiguration(Integer nTimeout)
Gets the state of the configuration session or how it ended (timeout). In doing so, the method waits
for the configuration session to end before returning the exit state of the session.

Arguments

nTimeout—length of time in seconds.

Return Values

Type: Integer

0 – Success

1 – Fail

2 – Timeout

3 – Cancel

5 – Configuration Timer Timeout

IsConfigurationReady
Gets the state of the configuration session. In contrast to WaitForConfiguration, this method does not
wait for the configuration session to end to send the state but returns it immediately.

Arguments

None

Return Values

Type: Integer

0 – Success

1 –Fail

3 –Cancel

4 – In Progress

5 – Configuration Timer Timeout

GetConfiguration
Retrieves the xml formatted configuration of the configuration session.

Arguments

None

Return Values

Type: String

PeopleSoft Proprietary and Confidential 469

Mobile Configurator COM API Appendix F

The xml formatted string of the configuration.

SetLabelToString(Integer nLabelID, String NewLabel)
Sets the specified label, which corresponds to the ID passed in, to the new label string passed
in. The label is for the “Save” and “Cancel” menu items.

Arguments

NLabelID – ID of label whose string value is to be set .

Valid values are as follows:

0 – label for “Save”

1 – label for “Cancel”

NewLabel – string value that the label is to be set to.

Return Values

Type: Integer

0 – Success

1 – Fail

StartCountdown(Integer nCountdownTimeInMins, Integer
nWarnLeftTimeInMins, String strWarnMessage, String
strContinueLabel, String strStopLabel)
Initiates the countdown timers that set the maximum time duration for a configuration session.

Arguments

nCountdownTimeInMins—total length of time in minutes that the configuration can be worked on.

nWarnLeftTimeInMins—the time remaining in minutes that is left in the nCountdownTimeInMins argument,
before a message appears to warn the user of the impending timeout, and to ask the user for a course of
action (options are to Stop waiting for Mobile Configurator to return or to Continue to wait).

strWarnMessage—the message is displayed in the warning message dialog.

strContinueLabel—the string label for the button that is associated with the user choosing
to continue with the configuration session.

StrStoplabel—the string label for the button that is associated with the user choosing to stop
the configuration session and save it back to the order.

Return Values

Type: Integer

0 – Success

1 – Fail

470 PeopleSoft Proprietary and Confidential

Appendix F Mobile Configurator COM API

StopCountdown
Stops the countdown timers that were previously initiated with the startcountdown method.

Arguments

None

Return Values

Type: Integer

0 – Success

1 – Fail

Sample Application Client Code
The following is sample code included with the application.

Dim oMCfg As Object

Set oMCfg = CreateObject("PeopleSoft.MCfgProxy")

If (oMCfg.Start() = 1) Then

MsgBox "Failed creating the configurator app"

Set oMCfg = Nothing

End

End If

oMCfg.Show

oMCfg.StartCountdown(30, 10, "Config will timeout in 10 minutes!!",⇒

"Continue with session", "Save and return to order")

oMCfg.NewConfiguration txtConfigID.Text

Dim ret As Long

’timeout in 60 seconds

ret = oMCfg.WaitForConfiguration(60)

If (ret = 0) Then

txtXML.Text = oMCfg.GetConfiguration()

ElseIf (ret = 1) Then

txtXML.Text = "Configuration failed"

ElseIf (ret = 2) Then

txtXML.Text = "Configuration timeout"

ElseIf (ret = 3) Then

txtXML.Text = "Configuration canceled by user"

ElseIf (ret = 5) Then

PeopleSoft Proprietary and Confidential 471

Mobile Configurator COM API Appendix F

txtXML.Text = "Configuration timer timeout"

End If

oMCfg.StopCountdown

oMCfg.Hide

oMCfg.Stop

Set oMCfg = Nothing

472 PeopleSoft Proprietary and Confidential

APPENDIX G

PCIF

The PeopleSoft Advanced Configurator Interchange Format, or PCIF, is an XML format that can be
used to generate PeopleSoft Visual Modeler models from an outside data source. PCIF encapsulates
all the functionality that is available to a Configurator modeler.

This appendix describes the elements and ordering of the PCIF document so that you can create an XML file
that describes your model data in the format understood by the Configurator Visual Modeler.

Included with the installation of PeopleSoft Enterprise Visual Modeler is the file PCIF.dtd, which
describes the structure of PCIF documents and acts as the validator for them.

In order to successfully describe and validate the outside data, the contents of the PCIF document
must be ordered so that the Visual Modeler can recognize the elements. To some extent, the DTD
enforces this ordering; however, for some objects, particularly CLASS elements, the PCIF writer
must maintain a hierarchical ordering to ensure that the document can be imported correctly. Order
is explained in greater detail in the individual element sections below.

The information in this appendix assumes that you are familiar with the concepts inherent to the
PeopleSoft Configurator, the Visual Modeler, and XML. Some elements’ descriptions reference a
“target model.” The target model is the Visual Modeler model into which PCIF is being imported.
The target model does not have to be empty; in fact, a modeler can use a PCIF document to update
models with newer data, as the Visual Modeler gives the modeler the option of overwriting objects
that have the same name as those defined in an imported PCIF document.

This document is arranged in the order that one might find XML elements in a PCIF
document, starting with the topmost element (a MODEL).

Note. It is strongly recommended that any PCIF document created by an application other
than the Visual Modeler has the document type declaration:

<!DOCTYPE MODEL PUBLIC "PeopleSoft Configurator Model" "PCIF.dtd">

This document type declaration should be made before the root element MODEL. Using this document
type declaration ensures that when the PCIF document is imported into the Visual Modeler, it will be
validated against the DTD, thereby preventing errors in the model due to badly formed PCIF.

MODEL Element
The MODEL element is the root element of a model in the PCIF representation.

Attributes:

PeopleSoft Proprietary and Confidential 473

PCIF Appendix G

Name Type Required? Description

VERSION CDATA Yes The version of PCIF
implemented. This
document describes PCIF
version 1.0.

NAME CDATA Yes The name of the model.
On import, this attribute
will be overridden by
the name of the model
importing it.

MODEL_VERSION CDATA Yes The version of the model
itself (as would be
specified in the Visual
Modeler’s Project
Settings dialog box).
On import, this attribute
will be overridden by
the version of the model
importing it.

Subelements:

Name How Many? Description

DATABASE_REFERENCE 0 or more A reference to an external data source.

CLASS 0 or more A class. Classes must be defined
in hierarchical order, i.e. a parent
class must be defined before its
subclasses. If any classes have
SQL queries, their respective
DATABASE_REFERENCES
should have already been defined.

SELECTION_POINT 0 or more Selection points must be defined on
classes that exist in the target model or
have been previously defined in this
PCIF document. If a leaf class does
not have a selection point defined,
the Visual Modeler optionally can
autogenerate a selection point for that
class.

EXPRESSION 0 or more An expression.

NOT_COMPATIBLE 0 or more A non-compatibility constraint.

COMPATIBLE 0 or more A compatibility constraint.

REQUIRED 0 or more A requires constraint.

DYNAMIC_DEFAULT 0 or more A dynamic default.

474 PeopleSoft Proprietary and Confidential

Appendix G PCIF

Name How Many? Description

ELIMINATION 0 or more An elimination constraint.

COMPARISON 0 or more A comparison constraint.

RESOURCE_CONSTRAINT 0 or more A resource balancing constraint.

SUMMATION 0 or more A summation.

DATABASE_REFERENCE Element
Attributes:

Name Type Required? Description

ALIAS CDATA Yes The name by which
this database will be
referenced in the Visual
Modeler.

DATA_SOURCE CDATA Yes The name of the
underlying ODBC and
JDBC data source.

LOGIN_ID CDATA Yes The login name for the
data source.

PASSWORD CDATA Yes The password for the
data source. If the Visual
Modeler has created the
PCIF file, this password
will be encrypted using
the Visual Modeler’s
password encryption
scheme. For security
reasons, an encrypted
password can only be
read and written by the
Visual Modeler.

PASSWORD_ENCRYPTED Boolean Yes A flag that tells the
Visual Modeler if the
password specified in the
PASSWORD attribute
has been encrypted. If an
application other than
the Visual Modeler
is creating a PCIF
document, this attribute
should always be set to
FALSE, and the password
should be unencrypted.

PeopleSoft Proprietary and Confidential 475

PCIF Appendix G

Subelements: None.

CLASS Element
Classes must be defined in a hierarchical manner; that is, parent classes must be defined in a MODEL
before the child classes are defined. Furthermore, attributes that are referenced in a class’ domain
members or SQL query should be defined on the class or on one of its parent classes.

Attributes:

Name Type Required? Description

NAME CDATA Yes The name of the class.
Each individual class
must have a unique
name; if a duplicate
name is found in the
model, and the class of
that name has the same
parent class, then the
Visual Modeler can
optionally overwrite the
existing class with the
class defined in the PCIF.
If the class’s name in
PCIF is “RootClass”, any
attributes defined on this
class will be added to the
Root Class.

PARENT CDATA Yes The parent class of this
class. If not specified,
the class will be a child
of the Root Class by
default.

Subelements:

Name How Many? Description

CLASS_ATTRIBUTE 0 or more An attribute defined on this class.
There should never be attribute
conflicts with a parent class; that is,
if an attribute is defined on a parent
class, no attribute by that name should
be defined on any child class.

DOMAIN_MEMBER 0 or more A domain member. Classes should not
have both a SQL query and domain
members; the two are mutually
exclusive. Classes that are parent
classes (i.e. they have subclasses)
should not have domain members.

476 PeopleSoft Proprietary and Confidential

Appendix G PCIF

Name How Many? Description

STANDARD_QUERY 0 or 1 A standard SQL query that defines
an database from which this class
should get its domain members. If
a STANDARD_QUERY is defined
on a CLASS, that CLASS should
not have any DOMAIN_MEMBER
elements, and it should not have an
ADVANCED_QUERY element.

ADVANCED_QUERY 0 or 1 An advanced SQL query that defines
an database from which this class
should get its domain members. If
an ADVANCED_QUERY is defined
on a CLASS, that CLASS should
not have any DOMAIN_MEMBER
elements, and it should not have an
STANDARD_QUERY element.

REFRESH_INTERVAL 0 or more A rule that defines how often this class
will refresh those attributes which
have been marked for scheduled
data refreshes. Should only be
present if STANDARD_QUERY or
ADVANCED_QUERY is defined.
Multiple REFRESH_INTERVALs
will effectively be “anded” together, so
all of them will apply.

SELECTION_POINT_ATTRIBUTE 0 or more A selection point level attribute
defined on this class. There should
never be attribute conflicts with a
parent class or with selection points
defined on this class or its subclasses;
that is, if a selection point level
attribute is defined here, a selection
point level attribute of that name
should not be defined on the parent
class, subclasses, or selection points
of this class. Furthermore, no domain
member level attributes of that name
should be defined on the parent class
or subclasses of this class.

CLASS_ATTRIBUTE Element
Attributes:

PeopleSoft Proprietary and Confidential 477

PCIF Appendix G

Name Type Required? Description

NAME CDATA Yes The name of the attribute. This attribute name should
not have been defined on an parent of the class it’s
currently being defined on.

TYPE Choice of {Date, String,
Boolean, Int, Float}

Yes The type of this attribute.

Subelements:

Name How Many? Description

DEFAULT_VALUE 0 or 1 The default value of this attribute.

DEFAULT_VALUE Element
Attributes: None.

Subelements: None.

The DEFAULT_VALUE element contains #PCDATA , which holds the default value of a
CLASS_ATTRIBUTE. If the CLASS_ATTRIBUTE is of type Date, the default value should be
formatted as an ISO-standard time, such as 2002-09-17T00:00:00.000000+06:00.

If the CLASS_ATTRIBUTE is of type Float, the default value should be formatted as
a floating point number, such as 1.328.

If the CLASS_ATTRIBUTE is of type Integer, the default value should be formatted
as an integer number, such as 13.

If the CLASS_ATTRIBUTE is of type Boolean, the default value should be formatted as a
boolean with the first letter capitalized, such as True or False.

DOMAIN_MEMBER Element
Attributes:

Name Type Required? Description

NAME CDATA Yes The name of the domain member. If this domain
member already exists in the target model, properties
from the PCIF domain member will overwrite those
in the target model.

Subelements:

478 PeopleSoft Proprietary and Confidential

Appendix G PCIF

Name How Many? Description

DEFAULT_VALUE 0 or 1 The default value of this attribute.

DM_ATTRIBUTE Element
Attributes:

Name Type Required? Description

NAME CDATA Yes The name of the attribute for which this domain
member is providing a value.

Subelements:

None.

The DM_ATTRIBUTE element contains #PCDATA, which holds a value. If the CLASS_ATTRIBUTE
to which this DM_ATTRIBUTE is referring is of type Date, the default value should be formatted
as an ISO-standard time, such as 2002-09-17T00:00:00.000000+06:00.

If the CLASS_ATTRIBUTE is of type Float, the default value should be formatted as
a floating point number, such as 1.328.

If the CLASS_ATTRIBUTE is of type Integer, the default value should be formatted
as an integer number, such as 13.

If the CLASS_ATTRIBUTE is of type Boolean, the default value should be formatted as a
boolean with the first letter capitalized, such as True or False.

STANDARD_QUERY Element
Attributes:

Name Type Required? Description

DATA_
SOURCE

CDATA Yes A reference to the ALIAS of a DATABASE_
REFERENCE.

DISTINCT Boolean Yes Flag that decides whether the query retrieves distinct
results.

Subelements:

PeopleSoft Proprietary and Confidential 479

PCIF Appendix G

Name How Many? Description

PRIMARY_TABLE 1 The primary WHERE clause and domain member
mappings.

SECONDARY_TABLE 0 or more JOIN clauses and secondary domain member
mappings.

PRIMARY_TABLE Element
Attributes:

Name Type Required? Description

TABLE CDATA Yes The table in the database where this query will be
retrieving its data.

Subelements:

Name How Many? Description

COLUMN 0 or more The mappings of database table columns to domain
member attributes.

WHERE 0 or 1 The query’s where clause. An empty clause will select
all the specified columns of the table unconditionally.

COLUMN Element
Attributes:

Name Type Required? Description

NAME CDATA Yes The name of the column coming from the
database table.

KEY Boolean Yes Flag that decides whether this column will be
a domain member key. Exactly one column
should have this attribute set to TRUE.

ATTRIBUTE_NAME CDATA Yes The domain member attribute into which this
column’s data will be stored.

Subelements: None

480 PeopleSoft Proprietary and Confidential

Appendix G PCIF

WHERE Element
Attributes: None

Subelements: None.

Contains #PCDATA which acts as the WHERE clause for a standard SQL query.

SECONDARY_TABLE Element
Attributes:

Name Type Required? Description

TABLE CDATA Yes The table in the database where this query will
be retrieving its data.

Subelements:

Name How Many? Description

COLUMN 0 or more The mappings of database table columns to domain
member attributes.

JOIN 0 or 1 The query’s join clause. An empty clause will join all
the specified columns of the table unconditionally.

JOIN Element
Attributes: None.

Subelements: None.

Contains #PCDATA which acts as the JOIN clause for a standard SQL query.

ADVANCED_QUERY Element
Attributes:

PeopleSoft Proprietary and Confidential 481

PCIF Appendix G

Name Type Required? Description

DATA_SOURCE CDATA Yes A reference to the ALIAS of a DATABASE_
REFERENCE.

ASSUME_SORTED Boolean No Flag that indicates whether the ViM should
assume the data from this query is already
sorted in the order the modeler requires

Subelements:

Name How Many? Description

COLUMN 0 or more The mappings of database table columns to domain
member attributes.

QUERY_TEXT 0 or 1 The text of the SQL query.

QUERY_TEXT Element
Attributes: None.

Subelements: None.

Contains #PCDATA, which acts as the text of an SQL query.

SELECTION_POINT Element
Attributes:

Name Type Required? Description

NAME CDATA Yes The name of the selection point.
Each individual selection point
must have a unique name; if a
duplicate name is found in the
model, then the Visual Modeler
can optionally overwrite the
existing selection point with the
selection point defined in the PCIF.

CLASS CDATA Yes The name of the class this selection
point refers to. This class must
have been defined either in the
target model or earlier in the PCIF
document.

482 PeopleSoft Proprietary and Confidential

Appendix G PCIF

Name Type Required? Description

DEFAULT_QUANTITY CDATA No The default quantity to use for all
domain members in this selection
point. Cannot be specified if
DEFAULT_QUANTITY_
EXPRESSION is specified.

DEFAULT_QUANTITY_POLICY CDATA No The quantity policy to use
with defaults applied to
all domain members in the
selection point. Only valid if
DEFAULT_QUANTITY or
DEFAULT_QUANTITY_
EXPRESSION is specified.

DEFAULT_QUANTITY_EXPRESSION CDATA No The expression that defines the
default quantity to use for all
domain members in this selection
point. Cannot be specified if
DEFAULT_QUANTITY is
specified.

QUANTITY Boolean No Flag that defines whether this
selection point has quantity.
Defaults to false.

QUANTITY_ATTRIBUTE CDATA No Domain member attribute from
which to gather default quantity
data.

QUANTITY_ATTRIBUTE_POLICY CDATA No Quantity policy to use with
defaults gathered from domain
member attributes. Only valid
when QUANTITY_ATTRIBUTE
is specified.

MULTISELECT Boolean No Flag that defines whether this
selection point is multiselect.
Defaults to false.

OPTIONAL Boolean No Flag that defines whether this
selection point is optional.
Defaults to false.

USE_MIN_MAX Boolean No Flag that defines whether this
selection point uses the min and
max quantity constraints. Defaults
to false.

Subelements:

PeopleSoft Proprietary and Confidential 483

PCIF Appendix G

Name How Many? Description

STATIC_DEFAULTS 0 or 1 The set of static defaults for this selection
point.

SELECTION_POINT_MIN_QTY_SETTINGS 0 or 1 The minimum quantity settings for the
selection point. This subelement should
only be defined if USE_MIN_MAX is true.

SELECTION_POINT_MAX_QTY_SETTINGS 0 or 1 The maximum quantity settings for the
selection point. This subelement should
only be defined if USE_MIN_MAX is true.

DOMAIN_MEMBER_MIN_QTY_SETTINGS 0 or 1 The minimum quantity settings for domain
members on this selection point. This
subelement should only be defined if both
USE_MIN_MAX and QUANTITY are
true.

DOMAIN_MEMBER_MAX_QTY_SETTINGS 0 or 1 The maximum quantity settings for domain
members on this selection point. This
subelement should only be defined if both
USE_MIN_MAX and QUANTITY are
true.

SELECTION_POINT_ATTRIBUTE 0 or more A selection point level attribute defined on
this selection point. There should never be
attribute conflicts with the class on which
this selection point is defined; that is, if a
selection point level attribute is defined
here, a selection point level attribute of that
name should not be defined this selection
point’s class or any of its parent classes.
Furthermore, no domain member level
attributes of that name should be defined
on this selection point’s class or any of its
parent classes.

STATIC_DEFAULTS Element
Attributes: None

Subelements:

Name How Many? Description

STATIC_DEFAULT 0 or more A static default.

484 PeopleSoft Proprietary and Confidential

Appendix G PCIF

STATIC_DEFAULT Element
Attributes:

Name Type Required? Description

DOMAIN_MEMBER CDATA Yes The domain member that is to be
defaulted.

QUANTITY CDATA No The quantity that should be used with
this default. Should be an integer
number. Should not be defined if
QUANTITY_EXPRESSION is
defined.

QUANTITY_EXPRESSION CDATA No The expression that should be used
to find the quantity for this default.
Should not be defined if QUANTITY is
defined.

QUANTITY_POLICY CDATA No The quantity policy that should be
used with this default. Should be one
of {IGNORE, MIN, MAX, SUM}.
IGNORE corresponds to a quantity
policy of “Overridable.”

Subelements: None

SELECTION_POINT_MIN_QTY_SETTINGS Element
Attributes:

Name Type Required? Description

SOURCE Choice of
{QUANTITY,
EXPRESSION,
SQL_QUERY}

Yes The source of the number that will be the
minimum number of selections on the
selection point.

QUANTITY CDATA No The absolute quantity that will act as the
minimum selections. Should only be
specified if SOURCE is QUANTITY.
Should be an integer.

EXPRESSION CDATA No The expression that will act as the
minimum selections. Should only be
specified if SOURCE is EXPRESSION.

PeopleSoft Proprietary and Confidential 485

PCIF Appendix G

Name Type Required? Description

SQL_QUERY CDATA No The SQL query that will gather the data to
act as the minimum selections. Should only
be specified if SOURCE is SQL_QUERY.

DATABASE CDATA No The ALIAS of the database that the SQL
query will act on. Should be defined in
the target model or in the PCIF earlier as a
DATABASE_REFERENCE. Should only
be specified if SOURCE is SQL_QUERY.

Subelements:

Name How Many? Description

EXPLANATION 0 or 1 The explanation that will appear if this constraint is
violated.

DOMAIN_MEMBER_MIN_QTY_SETTINGS Element
Attributes:

Name Type Required? Description

SOURCE Choice of
{QUANTITY,
EXPRESSION,
ATTRIBUTE}

Yes The source of the number that will be the
minimum number of selections for each
domain member.

QUANTITY CDATA No The absolute quantity that will act as
the minimum quantity. Should only be
specified if SOURCE is QUANTITY.
Should be an integer.

EXPRESSION CDATA No The expression that will act as the
minimum quantity. Should only be
specified if SOURCE is EXPRESSION.

ATTRIBUTE CDATA No The attribute that will contain the data to
act as the minimum quantity. Should only
be specified if SOURCE is ATTRIBUTE.
The attribute should already have been
defined on the selection point’s class or one
of its parent classes.

Subelements:

486 PeopleSoft Proprietary and Confidential

Appendix G PCIF

Name How Many? Description

EXPLANATION 0 or 1 The explanation that will appear if this constraint is
violated.

DOMAIN_MEMBER_MAX_QTY_SETTINGS Element
Attributes:

Name Type Required? Description

SOURCE Choice of
{QUANTITY,
EXPRESSION,
ATTRIBUTE}

Yes The source of the number that will be the
maximum number of selections for each
domain member.

QUANTITY CDATA No The absolute quantity that will act as
the maximum quantity. Should only be
specified if SOURCE is QUANTITY.
Should be either an integer or the word
“UNBOUNDED”.

EXPRESSION CDATA No The expression that will act as the
maximum quantity. Should only be
specified if SOURCE is EXPRESSION.

ATTRIBUTE CDATA No The attribute that will contain the data to
act as the maximum quantity. Should only
be specified if SOURCE is ATTRIBUTE.
The attribute should already have been
defined on the selection point’s class or
one of its parent classes.

Subelements:

Name How Many? Description

EXPLANATION 0 or 1 The explanation that will appear if this constraint is
violated.

DYNAMIC_DEFAULT Element
Attributes:

PeopleSoft Proprietary and Confidential 487

PCIF Appendix G

Name Type Required? Description

NAME CDATA Yes The name of the dynamic default. Each
individual dynamic default must have a
unique name; if a duplicate name is found
in the model, then the Visual Modeler can
optionally overwrite the existing dynamic
default with the dynamic default defined in
the PCIF. If a constraint of a different type
exists in the model, the ViM will not import
this constraint.

ENABLED Boolean No Flag that specifies whether the constraint is
enabled. Defaults to TRUE.

FORMAT Choice of
{Internal, DBTable,
SQLQuery}

No Specifies whether this constraint stores its
row data internally (to CMS files), stores
them to a database table, or retrieves them
from a SQL Query.

DATA_SOURCE CDATA No Specifies from which database this
constraint should store or retrieve its data.
Must be a reference to a database name
previously defined in the PCIF file as
a DATABASE_REFERENCE, or to a
database already defined in the destination
model. The DATA_SOURCE attribute
must be present if FORMAT is DBTable or
SQLQuery.

Subelements:

Name How Many? Description

EFFECTIVITY 0 or 1 The effectivity dates for this constraint.

COMMENT 0 or 1 A comment on this constraint.

EXPLANATION 0 or 1 An explanation that is shown if this constraint is
violated.

ARGUMENT 1 or more An argument that displays as a column on the left hand
side.

RHS_ARGUMENT 1 or more An argument that displays as a column on the right
hand side.

ROW 1 or more A row that defines a set of values that are
incompatible.

CONSTRAINT_QUERY 0 or 1 The SQL query information for this constraint. Should
only be specified if the FORMAT attribute is set to
SQLQuery.

488 PeopleSoft Proprietary and Confidential

Appendix G PCIF

EXPLANATION Element
Attributes: None.

Subelements: None.

Contains #PCDATA with the text of an explanation.

EXPRESSION Element
Attributes:

Name Type Required? Description

NAME CDATA Yes The name of the expression. Each individual
expression must have a unique name; if a
duplicate name is found in the model, then
the Visual Modeler can optionally overwrite
the existing expression with the expression
defined in the PCIF.

TYPE Choice of {Numeric,
Boolean, Date,
String}

Yes The return type of the expression.

COMMENT CDATA No A comment on the expression.

Subelements: None.

Contains #PCDATA which represents the text of the expression itself.

NOT_COMPATIBLE Element
Attributes:

Name Type Required? Description

NAME CDATA Yes The name of the non-compatibility
constraint. Each individual
non-compatibility must have a unique
name; if a duplicate name is found in
the model, then the ViM can optionally
overwrite the existing non-compatibility
with the non-compatibility defined in
the PCIF. If a constraint of a different
type exists in the model, the ViM will not
import this constraint.

PeopleSoft Proprietary and Confidential 489

PCIF Appendix G

Name Type Required? Description

ENABLED Boolean No Flag that specifies whether the constraint is
enabled. Defaults to TRUE.

FORMAT Choice of
{Internal, DBTable,
SQLQuery}

No Specifies whether this constraint stores its
row data internally (to CMS files), stores
them to a database table, or retrieves them
from a SQL Query.

DATA_SOURCE CDATA No Specifies from which database this
constraint should store or retrieve its data.
Must be a reference to a database name
previously defined in the PCIF file as
a DATABASE_REFERENCE, or to a
database already defined in the destination
model. The DATA_SOURCE attribute
must be present if FORMAT is DBTable or
SQLQuery.

Subelements:

Name How Many? Description

EFFECTIVITY 0 or 1 The effectivity dates for this constraint.

COMMENT 0 or 1 A comment on this constraint.

EXPLANATION 0 or 1 An explanation that is shown if this constraint is
violated.

ARGUMENT 1 or more An argument that displays as a column on the left hand
side.

RHS_ARGUMENT 0 or more An argument that displays as a column on the right
hand side.

ROW 0 or more A row that defines a set of values that are
incompatible.

CONSTRAINT_QUERY 0 or 1 The SQL query information for this constraint. Should
only be specified if the FORMAT attribute is set to
SQLQuery.

EXTERN Element
Attributes:

490 PeopleSoft Proprietary and Confidential

Appendix G PCIF

Name Type Required? Description

NAME CDATA Yes The name by which this extern will be
referenced in the Visual Modeler.

DEFAULT_VALUE CDATA No The default value of this extern.

REQUIRED Boolean No Flag indicating whether a value must be
provided for this extern at runtime in order
for the configuration to be valid.

TYPE Choice of {Date,
String, Boolean, Int,
Float}

Yes The data type of this extern.

Subelements: None

EFFECTIVITY Element
Attributes: None

Subelements:

Name How Many? Description

EFFECTIVEDATE 1 or more The effectivity dates.

EFFECTIVEDATE Element
Attributes:

Name Type Required? Description

EFFECTIVE_FROM CDATA Yes The date effectivity begins.
Should be in ISO-time format, e.g.
2002-09-17T00:00:00.000000+06:00.
Should be a date before EFFECTIVE_TO.

EFFECTIVE_TO CDATA Yes The date effectivity ends. Should be in
ISO-time format, e.g. 2002-09-17T00:00:
00.000000+06:00. Should be a date after
EFFECTIVE_FROM.

COMMENT CDATA No A comment on these effective dates.

Subelements:

PeopleSoft Proprietary and Confidential 491

PCIF Appendix G

Name How Many? Description

EFFECTIVEDATE 1 or more The effectivity dates.

COMMENT Element
Attributes: None.

Subelements: None.

Contains #PCDATA with the text of a comment.

ARGUMENT Element
Attributes:

Name Type Required? Description

LEVEL CDATA No The level of this argument. Should be an
integer. Defaults to 1.

CLASS CDATA No The class this argument refers to. Either the
CLASS or the SELECTION_POINT must
be specified, but not both.

SELECTION_POINT CDATA No The selection point this argument
refers to. Either the CLASS or the
SELECTION_POINT must be specified,
but not both.

PROPERTY CDATA No The property (also known as an attribute)
that this argument refers to.

EXPRESSION CDATA No The expression that this argument refers to.

COMPLETE Boolean No Flag indicating whether the set of
expression comparisons in the column
denoted by this argument forms a complete
range. Only valid if the EXPRESSION
attribute is specified.

Subelements: None

RHS_ARGUMENT Element
Attributes:

492 PeopleSoft Proprietary and Confidential

Appendix G PCIF

Name Type Required? Description

LEVEL CDATA No The level of this argument. Should be an
integer. Defaults to 1.

CLASS CDATA No The class this argument refers to. Either the
CLASS or the SELECTION_POINT must
be specified, but not both.

SELECTION_POINT CDATA No The selection point this argument
refers to. Either the CLASS or the
SELECTION_POINT must be specified, but
not both.

PROPERTY CDATA No The property (also known as an attribute)
that this argument refers to.

Subelements: None

ROW Element
Attributes: None

Subelements:

Name How Many? Description

VALUE 0 or more A single value in a column of a table constraint. If this
SET is on the left hand side, there should be only one
VALUE. If it is on the right hand side, there can be
multiple VALUEs.

There should be exactly as many SET elements in a ROW as there are ARGUMENTs plus
RHS_ARGUMENTs. For instance, if there are two ARGUMENTs and three RHS_ARGUMENTs,
there should be five SET elements in each ROW.

SET Element
Attributes: None

Subelements:

Name How Many? Description

DEFAULT_VALUE 0 or 1 The default value of this attribute.

PeopleSoft Proprietary and Confidential 493

PCIF Appendix G

VALUE Element
Attributes: None.

Subelements: None.

Contains #PCDATA that references a domain member name or attribute value.

The CONSTRAINT_QUERY Element
Attributes:

Name Type Required? Description

SEPARATOR_ CHARACTER CDATA No If this SQL query will return multiple
values per row, this is the character that
separates each individual value. Should be
exactly one character long.

QUANTITY_SEPARATOR CDATA No If this SQL query will return values with
quantities and quantity policies, this is the
character that will separate the policy, the
quantity, and the value. Should be exactly
one character long.

Subelements:

Name How Many? Description

SQL_CLAUSE Exactly 1 The SQL clause for this constraint.

SQL_CLAUSE Element
Attributes: None.

Subelements: None.

Contains #PCDATA that is a complete SQL clause.

COMPATIBLE Element
Attributes:

494 PeopleSoft Proprietary and Confidential

Appendix G PCIF

Name Type Required? Description

NAME CDATA Yes The name of the compatibility constraint.
Each individual compatibility must have a
unique name; if a duplicate name is found
in the model, then the Visual Modeler
can optionally overwrite the existing
compatibility with the compatibility
defined in the PCIF. If a constraint of a
different type exists in the model, the
Visual Modeler will not import this
constraint.

ENABLED Boolean No Flag that specifies whether the constraint is
enabled. Defaults to TRUE.

FORMAT Choice of
(Internal, DBTable,
SQLQuery)

No Specifies whether this constraint stores its
row data internally (to CMS files) or to a
database table, or retrieves them from a
SQL Query.

DATA_SOURCE CDATA No Specifies the database that this constraint
is to use to store or retrieve its data.
Must be a reference to a database name
previously defined in the PCIF file as
a DATABASE_REFERENCE, or to a
database already defined in the destination
model. The DATA_SOURCE attribute
must be present if FORMAT is DBTable or
SQLQuery.

Subelements:

Name How Many? Description

EFFECTIVITY 0 or 1 The effectivity dates for this constraint..

COMMENT 0 or 1 A comment on this constraint.

EXPLANATION 0 or 1 An explanation that is shown if this constraint is
violated.

ARGUMENT 1 or more An argument that displays as a column on the left hand
side.

RHS_ARGUMENT 0 or more An argument that displays as a column on the right
hand side.

ROW 0 or more A row that defines a set of values that are
incompatible.

CONSTRAINT_QUERY 0 or 1 The SQL query information for this constraint. Should
only be specified if the format attribute is set to
SQLQuery.

PeopleSoft Proprietary and Confidential 495

PCIF Appendix G

REQUIRED Element
Attributes:

Name Type Required? Description

NAME CDATA Yes The name of the required constraint. Each
individual required must have a unique name;
if a duplicate name is found in the model, then
the Visual Modeler can optionally overwrite
the existing required with the required defined
in the PCIF. If a constraint of a different type
exists in the model, the Visual Modeler will
not import this constraint.

ENABLED Boolean No Flag that specifies whether the constraint is
enabled. Defaults to TRUE.

FORMAT Choice of (Internal,
DBTable, SQLQuery)

No Specifies whether this constraint stores its row
data internally (to CMS files) or to a database
table, or retrieves them from a SQL Query.

DATA_SOURCE CDATA No Specifies the database that this constraint
is to use to store or retrieve its data.
Must be a reference to a database name
previously defined in the PCIF file as a
DATABASE_REFERENCE, or to a database
already defined in the destination model. The
DATA_SOURCE attribute must be present if
FORMAT is DBTable or SQLQuery.

Subelements:

Name How Many? Description

EFFECTIVITY 0 or 1 The effectivity dates for this constraint.

COMMENT 0 or 1 A comment on this constraint.

EXPLANATION 0 or 1 An explanation that is shown if this constraint is
violated.

ARGUMENT 1 or more An argument that displays as a column on the left hand
side.

RHS_ARGUMENT 1 or more An argument that displays as a column on the right
hand side.

ROW 0 or more A row that defines a set of values that are
incompatible.

CONSTRAINT_QUERY 0 or 1 The SQL query information for this constraint. Should
only be specified if the format attribute is set to
SQLQuery.

496 PeopleSoft Proprietary and Confidential

Appendix G PCIF

ELIMINATION Element
Attributes:

Name Type Required? Description

NAME CDATA Yes The name of the elimination constraint.
Each individual elimination must have a
unique name; if a duplicate name is found
in the model, then the Visual Modeler
can optionally overwrite the existing
elimination with the elimination defined in
the PCIF. If a constraint of a different type
exists in the model, the Visual Modeler will
not import this constraint.

ENABLED Boolean No Flag that specifies whether the constraint is
enabled. Defaults to TRUE.

LEVEL CDATA No The level of this constraint. Defaults to 1.

ALLOW Choice of {NONE,
ALL, GREATEST,
LEAST, FIRST,
LAST, EARLIEST,
LATEST}

No The set of values the elimination will allow.

SELECTION_ POINT CDATA No The selection point this elimination applies
to.

TARGET_ ATTRIBUTE CDATA No The attribute this elimination acts
upon. Should be a valid attribute of the
SELECTION_POINT specified earlier.

COMPARATOR Choice of {NEQ,
GEQ, LEQ, LT, GT,
EQ, CONTAINS,
DOES_NOT_
CONTAIN,
STARTS_WITH,
ENDS_WITH,
STARTS, ENDS,
IS_CONTAINED_
IN, IS_NOT_
CONTAINED_IN}

Yes The comparator that will be used in the
elimination.

PeopleSoft Proprietary and Confidential 497

PCIF Appendix G

Name Type Required? Description

COMPARISON_EXPRESSION CDATA No The expression that the target
attribute will be compared to.
Should be of the same type as the
TARGET_ATTRIBUTE. Should not be
specified if COMPARISON_CONSTANT
is specified.

COMPARISON_CONSTANT CDATA No The constant that the target attribute will
be compared to. Should be of the same
type as the TARGET_ATTRIBUTE.
Should not be specified if COMPARISON_
EXPRESSION is specified.

Subelements:

Name How Many? Description

EFFECTIVITY 0 or 1 The name of the comparison constraint. Each
individual comparison must have a unique name;
if a duplicate name is found in the model, then the
Visual Modeler can optionally overwrite the existing
comparison with the comparison defined in the PCIF.
If a constraint of a different type exists in the model,
the Visual Modeler will not import this constraint.

COMMENT 0 or 1 A comment on this constraint.

EXPLANATION 0 or 1 An explanation that is shown if this constraint is
violated.

COMPARISON Element
Attributes:

Name Type Required? Description

NAME CDATA Yes The name of the comparison constraint.
Each individual comparison must have a
unique name; if a duplicate name is found
in the model, then the Visual Modeler
can optionally overwrite the existing
comparison with the comparison defined in
the PCIF. If a constraint of a different type
exists in the model, the Visual Modeler will
not import this constraint.

ENABLED Boolean No Flag that specifies whether the constraint is
enabled. Defaults to TRUE.

LEVEL CDATA No The level of this constraint. Defaults to 1.

498 PeopleSoft Proprietary and Confidential

Appendix G PCIF

Name Type Required? Description

LEFT_ EXPRESSION CDATA No The expression on the left hand side of the
comparison.

COMPARATOR Choice of {NEQ,
GEQ, LEQ, LT, GT,
EQ, CONTAINS,
DOES_NOT_
CONTAIN,
STARTS_WITH,
ENDS_WITH,
STARTS, ENDS,
IS_CONTAINED
_IN, IS_NOT_
CONTAINED_IN}

No The comparator that will be used in the
elimination.

RIGHT_ EXPRESSION CDATA No The expression on the right hand side of the
comparison. Should be of the same type
as the LEFT_EXPRESSION. Should not
be specified if RIGHT_CONSTANT is
specified.

RIGHT_ CONSTANT CDATA No The constant on the right hand side of the
comparison. Should be of the same type
as the LEFT_EXPRESSION. Should not
be specified if RIGHT_EXPRESSION is
specified.

Subelements:

Name How Many? Description

EFFECTIVITY 0 or 1 The effectivity dates for this constraint.

COMMENT 0 or 1 A comment on this constraint.

EXPLANATION 0 or 1 An explanation that is shown if this constraint is
violated.

RESOURCE_CONSTRAINT Element
Attributes:

PeopleSoft Proprietary and Confidential 499

PCIF Appendix G

Name Type Required? Description

NAME CDATA Yes The name of the resource constraint. Each
individual resource constraint must have a
unique name; if a duplicate name is found
in the model, then the Visual Modeler can
optionally overwrite the existing resource
constraint with the resource constraint
defined in the PCIF. If a constraint of
a different type exists in the model, the
Visual Modeler will not import this
constraint.

ENABLED Boolean No Flag that specifies whether the constraint
is enabled. Defaults to TRUE.

Subelements:

Name How Many? Description

EFFECTIVITY 0 or 1 The effectivity dates for this constraint.

COMMENT 0 or 1 A comment on this constraint.

EXPLANATION 0 or 1 An explanation that is shown if this constraint is
violated.

RESOURCE_ PROVIDERS Exactly 1 The resource providers.

RESOURCE_ CONSUMERS Exactly 1 The resource consumers.

RESOURCE_PROVIDERS Element
Attributes: None

Subelements:

Name How Many? Description

ATTRIBUTE 0 or more The attributes that provide resources.

ATTRIBUTE Element
Attributes:

500 PeopleSoft Proprietary and Confidential

Appendix G PCIF

Name Type Required? Description

CLASS CDATA Yes The class this attribute refers to. Either the
CLASS or the SELECTION_POINT must
be specified, but not both.

SELECTION_ POINT CDATA No The selection point this attribute
refers to. Either the CLASS or the
SELECTION_POINT must be specified,
but not both.

PROPERTY CDATA Yes The property (also known as an attribute)
that this attribute refers to.

Subelements: None

RESOURCE_CONSUMERS Element
Attributes: None

Subelements:

Name How Many? Description

ATTRIBUTE 0 or more The attributes that consume resources.

SELECTION_POINT_ATTRIBUTE Element
Attributes:

Name Type Required? Description

NAME CDATA Yes The name of the selection point level
attribute. This attribute name should not
have been defined on an parent of the
class or selection point it’s currently being
defined on.

TYPE Choice of {Date,
String, Boolean, Int,
Float}

Yes The type of this attribute.

Subelements:

PeopleSoft Proprietary and Confidential 501

PCIF Appendix G

Name How Many? Description

DEFAULT_VALUE 0 or 1 The default value of this attribute.

SUMMATION Element
Attributes:

Name Type Required? Description

NAME CDATA Yes The name of the summation. Each
individual summation must have a unique
name; if a duplicate name is found in
the model, then the Visual Modeler
can optionally overwrite the existing
summation with the summation defined in
the PCIF. If a constraint of a different type
exists in the model, the Visual Modeler
will not import this constraint.

ENABLED Boolean No Flag that specifies whether the summation
is enabled. Defaults to TRUE.

Subelements:

Name How Many? Description

COMMENT 0 or 1 A comment on this constraint.

SUMMANDS Exactly 1 The attributes to be summed.

TOTAL_ATTRIBUTE Exactly 1 The attribute where the sum will be stored.

SUMMANDS Element
Attributes: None

Subelements:

Name How Many? Description

ATTRIBUTE 0 or more The attributes that are to be summed.

502 PeopleSoft Proprietary and Confidential

Appendix G PCIF

TOTAL_ATTRIBUTE Element
Attributes:

Name Type Required? Description

CLASS CDATA No The class this attribute refers to. Either the
CLASS or the SELECTION_POINT must
be specified, but not both.

SELECTION_ POINT CDATA No The selection point this attribute
refers to. Either the CLASS or the
SELECTION_POINT must be specified,
but not both.

PROPERTY CDATA Yes The property (also known as an attribute)
that this attribute refers to.

Subelements: None

PeopleSoft Proprietary and Confidential 503

PCIF Appendix G

504 PeopleSoft Proprietary and Confidential

APPENDIX H

Element-Attribute Trees

XML may be viewed as a tree of elements, with some elements having attributes. This appendix
presents COP XML as element-attribute trees, and has these sections:

• Complete COP XML

• Configurator XML Interface

Complete COP XML
The COP DTD defines which XML elements and attributes may be used for:

• Configurations saved in XML, and restored from XML by the COP.

• XML requests sent to, and XML responses received from the COP, and translated by the
COPXMLServlet—the Configurator XML interface.

The next two trees present the complete COP XML, including those elements and attributes
that are not part of the Configurator XML interface.

Without Attributes
This tree presents the complete COP XML without attributes:

CONFIGURATION

DECISION_POINTS

DP

ATTR

DM

ATTR

EXPLANATION

ATTRIBUTE_SET

ATTRIBUTE

CHOICES

CH

EVCH

CONTROL_DATA

ATTR

DP

ATTR

DM

ATTR

PeopleSoft Proprietary and Confidential 505

Element-Attribute Trees Appendix H

EXPLANATION

NUMERIC_VALUES

NUM

EXTERN_VARS

EV

VAL

VIOLATIONS

EXPLANATION

ERROR

With Attributes
This tree presents the complete COP XML with attributes.

CONFIGURATION MODEL_ID LOCALE MODEL_VERSION COMPILE_VERSION

TOTAL_PRICE NETWORK_ADVISOR RESTORE_POLICY

DECISION_POINTS ALL

DP NM CL DPR MS

ATTR NM

DM NM CL ST QTY SL EL PR

ATTR NM

EXPLANATION

ATTRIBUTE_SET RET

ATTRIBUTE NAME

CHOICES RET

CH DP DM BY ST SL EL QTY TY

EVCH DP VAL TY

CONTROL_DATA DMSORT_QTY DMSORT_ST DMSORT_ATTR SO FILTER_EL_LO

FILTER_EL_HI FILTER_EL EXPLNATIONS

ATTR NM

DP NM CL DPR MS

ATTR NM

DM NM CL ST QTY SL EL PR

ATTR NM

EXPLANATION

NUMERIC_VALUES

NUM NM VL

EXTERN_VARS

EV NM

VAL

VIOLATIONS EXPLANATIONS

EXPLANATION

ERROR

CONFIG_REC RET

ATTRIBUTE_REC RET

CONFIG_XML RET

PRICING_DATA RET

DP

ATTR

506 PeopleSoft Proprietary and Confidential

Appendix H Element-Attribute Trees

Configurator XML Interface
The Configurator XML interface uses only some of the elements and attributes of the COP
DTD. The next two trees present only those elements and attributes that the COPXMLServlet
translates into HTTP POST requests, and responses.

Request
This tree has those COP XML elements and attributes that are used in a request.

CONFIGURATION MODEL_ID LOCALE MODEL_VERSION COMPILE_VERSION TOTAL_PRICE

DECISION_POINTS ALL

CHOICES RET

CH DP DM BY QTY

EVCH DP VAL

CONTROL_DATA DMSORT_ST FILTER_EL_LO FILTER_EL_HI

FILTER_EL EXPLNATIONS

ATTR NM

DP NM CL DPR

ATTR NM

NUMERIC_VALUES

EXTERN_VARS

VIOLATIONS EXPLANATIONS

Response
This tree has those COP XML elements and attributes that are used in a response.

CONFIGURATION MODEL_ID LOCALE MODEL_VERSION COMPILE_VERSION TOTAL_PRICE

DECISION_POINTS

DP NM

CHOICES

CH DP DM BY ST SL EL QTY TY

EVCH DP VAL TY

CONTROL_DATA

DP NM CL MS

DM NM CL ST QTY SL EL PR

ATTR NM

EXPLANATION

NUMERIC_VALUES

NUM NM VL

EXTERN_VARS

EV NM

VAL

VIOLATIONS EXPLANATIONS

EXPLANATION

ERROR

PeopleSoft Proprietary and Confidential 507

Element-Attribute Trees Appendix H

508 PeopleSoft Proprietary and Confidential

APPENDIX I

ISO Country and Currency Codes

PeopleBooks use International Organization for Standardization (ISO) country and currency codes
to identify country-specific information and monetary amounts.

This appendix discusses:

• ISO country codes.

• ISO currency codes.

See Also

 “About This PeopleBook ,” Typographical Conventions and Visual Cues

ISO Country Codes
This table lists the ISO country codes that may appear as country identifiers in PeopleBooks:

ISO Country Code Country Name

ABW Aruba

AFG Afghanistan

AGO Angola

AIA Anguilla

ALB Albania

AND Andorra

ANT Netherlands Antilles

ARE United Arab Emirates

ARG Argentina

ARM Armenia

ASM American Samoa

ATA Antarctica

PeopleSoft Proprietary and Confidential 509

ISO Country and Currency Codes Appendix I

ISO Country Code Country Name

ATF French Southern Territories

ATG Antigua and Barbuda

AUS Australia

AUT Austria

AZE Azerbaijan

BDI Burundi

BEL Belgium

BEN Benin

BFA Burkina Faso

BGD Bangladesh

BGR Bulgaria

BHR Bahrain

BHS Bahamas

BIH Bosnia and Herzegovina

BLR Belarus

BLZ Belize

BMU Bermuda

BOL Bolivia

BRA Brazil

BRB Barbados

BRN Brunei Darussalam

BTN Bhutan

BVT Bouvet Island

BWA Botswana

CAF Central African Republic

CAN Canada

CCK Cocos (Keeling) Islands

510 PeopleSoft Proprietary and Confidential

Appendix I ISO Country and Currency Codes

ISO Country Code Country Name

CHE Switzerland

CHL Chile

CHN China

CIV Cote D’Ivoire

CMR Cameroon

COD Congo, The Democratic Republic

COG Congo

COK Cook Islands

COL Colombia

COM Comoros

CPV Cape Verde

CRI Costa Rica

CUB Cuba

CXR Christmas Island

CYM Cayman Islands

CYP Cyprus

CZE Czech Republic

DEU Germany

DJI Djibouti

DMA Dominica

DNK Denmark

DOM Dominican Republic

DZA Algeria

ECU Ecuador

EGY Egypt

ERI Eritrea

ESH Western Sahara

PeopleSoft Proprietary and Confidential 511

ISO Country and Currency Codes Appendix I

ISO Country Code Country Name

ESP Spain

EST Estonia

ETH Ethiopia

FIN Finland

FJI Fiji

FLK Falkland Islands (Malvinas)

FRA France

FRO Faroe Islands

FSM Micronesia, Federated States

GAB Gabon

GBR United Kingdom

GEO Georgia

GHA Ghana

GIB Gibraltar

GIN Guinea

GLP Guadeloupe

GMB Gambia

GNB Guinea-Bissau

GNQ Equatorial Guinea

GRC Greece

GRD Grenada

GRL Greenland

GTM Guatemala

GUF French Guiana

GUM Guam

GUY Guyana

GXA GXA - GP Core Country

512 PeopleSoft Proprietary and Confidential

Appendix I ISO Country and Currency Codes

ISO Country Code Country Name

GXB GXB - GP Core Country

GXC GXC - GP Core Country

GXD GXD - GP Core Country

HKG Hong Kong

HMD Heard and McDonald Islands

HND Honduras

HRV Croatia

HTI Haiti

HUN Hungary

IDN Indonesia

IND India

IOT British Indian Ocean Territory

IRL Ireland

IRN Iran (Islamic Republic Of)

IRQ Iraq

ISL Iceland

ISR Israel

ITA Italy

JAM Jamaica

JOR Jordan

JPN Japan

KAZ Kazakstan

KEN Kenya

KGZ Kyrgyzstan

KHM Cambodia

KIR Kiribati

KNA Saint Kitts and Nevis

PeopleSoft Proprietary and Confidential 513

ISO Country and Currency Codes Appendix I

ISO Country Code Country Name

KOR Korea, Republic of

KWT Kuwait

LAO Lao People’s Democratic Rep

LBN Lebanon

LBR Liberia

LBY Libyan Arab Jamahiriya

LCA Saint Lucia

LIE Liechtenstein

LKA Sri Lanka

LSO Lesotho

LTU Lithuania

LUX Luxembourg

LVA Latvia

MAC Macao

MAR Morocco

MCO Monaco

MDA Moldova, Republic of

MDG Madagascar

MDV Maldives

MEX Mexico

MHL Marshall Islands

MKD Fmr Yugoslav Rep of Macedonia

MLI Mali

MLT Malta

MMR Myanmar

MNG Mongolia

MNP Northern Mariana Islands

514 PeopleSoft Proprietary and Confidential

Appendix I ISO Country and Currency Codes

ISO Country Code Country Name

MOZ Mozambique

MRT Mauritania

MSR Montserrat

MTQ Martinique

MUS Mauritius

MWI Malawi

MYS Malaysia

MYT Mayotte

NAM Namibia

NCL New Caledonia

NER Niger

NFK Norfolk Island

NGA Nigeria

NIC Nicaragua

NIU Niue

NLD Netherlands

NOR Norway

NPL Nepal

NRU Nauru

NZL New Zealand

OMN Oman

PAK Pakistan

PAN Panama

PCN Pitcairn

PER Peru

PHL Philippines

PLW Palau

PeopleSoft Proprietary and Confidential 515

ISO Country and Currency Codes Appendix I

ISO Country Code Country Name

PNG Papua New Guinea

POL Poland

PRI Puerto Rico

PRK Korea, Democratic People’s Rep

PRT Portugal

PRY Paraguay

PSE Palestinian Territory, Occupie

PYF French Polynesia

QAT Qatar

REU Reunion

ROU Romania

RUS Russian Federation

RWA Rwanda

SAU Saudi Arabia

SDN Sudan

SEN Senegal

SGP Singapore

SGS Sth Georgia & Sth Sandwich Is

SHN Saint Helena

SJM Svalbard and Jan Mayen

SLB Solomon Islands

SLE Sierra Leone

SLV El Salvador

SMR San Marino

SOM Somalia

SPM Saint Pierre and Miquelon

STP Sao Tome and Principe

516 PeopleSoft Proprietary and Confidential

Appendix I ISO Country and Currency Codes

ISO Country Code Country Name

SUR Suriname

SVK Slovakia

SVN Slovenia

SWE Sweden

SWZ Swaziland

SYC Seychelles

SYR Syrian Arab Republic

TCA Turks and Caicos Islands

TCD Chad

TGO Togo

THA Thailand

TJK Tajikistan

TKL Tokelau

TKM Turkmenistan

TLS East Timor

TON Tonga

TTO Trinidad and Tobago

TUN Tunisia

TUR Turkey

TUV Tuvalu

TWN Taiwan, Province of China

TZA Tanzania, United Republic of

UGA Uganda

UKR Ukraine

UMI US Minor Outlying Islands

URY Uruguay

USA United States

PeopleSoft Proprietary and Confidential 517

ISO Country and Currency Codes Appendix I

ISO Country Code Country Name

UZB Uzbekistan

VAT Holy See (Vatican City State)

VCT St Vincent and the Grenadines

VEN Venezuela

VGB Virgin Islands (British)

VIR Virgin Islands (U.S.)

VNM Viet Nam

VUT Vanuatu

WLF Wallis and Futuna Islands

WSM Samoa

YEM Yemen

YUG Yugoslavia

ZAF South Africa

ZMB Zambia

ZWE Zimbabwe

ISO Currency Codes
This table lists the ISO country codes that may appear as currency identifiers in PeopleBooks:

ISO Currency Code Description

ADP Andorran Peseta

AED United Arab Emirates Dirham

AFA Afghani

AFN Afghani

ALK Old Lek

ALL Lek

AMD Armenian Dram

518 PeopleSoft Proprietary and Confidential

Appendix I ISO Country and Currency Codes

ISO Currency Code Description

ANG Netherlands Antilles Guilder

AOA Kwanza

AOK Kwanza

AON New Kwanza

AOR Kwanza Reajustado

ARA Austral

ARP Peso Argentino

ARS Argentine Peso

ARY Peso

ATS Schilling

AUD Australian Dollar

AWG Aruban Guilder

AZM Azerbaijanian Manat

BAD Dinar

BAM Convertible Marks

BBD Barbados Dollar

BDT Taka

BEC Convertible Franc

BEF Belgian Franc

BEL Financial Belgian Franc

BGJ Lev A/52

BGK Lev A/62

BGL Lev

BGN Bulgarian LEV

BHD Bahraini Dinar

BIF Burundi Franc

BMD Bermudian Dollar

PeopleSoft Proprietary and Confidential 519

ISO Country and Currency Codes Appendix I

ISO Currency Code Description

BND Brunei Dollar

BOB Boliviano

BOP Peso

BOV Mvdol

BRB Cruzeiro

BRC Cruzado

BRE Cruzeiro

BRL Brazilian Real

BRN New Cruzado

BRR Brazilian Real Dollar

BSD Bahamian Dollar

BTN Ngultrum

BUK N/A

BWP Pula

BYB Belarussian Ruble

BYR Belarussian Ruble

BZD Belize Dollar

CAD Canadian Dollar

CDF Franc Congolais

CHF Swiss Franc

CLF Unidades de fomento

CLP Chilean Peso

CNX Peoples Bank Dollar

CNY Yuan Renminbi

COP Colombian Peso

CRC Costa Rican Colon

CSD Serbia Dinar

520 PeopleSoft Proprietary and Confidential

Appendix I ISO Country and Currency Codes

ISO Currency Code Description

CSJ Krona A/53

CSK Koruna

CUP Cuban Peso

CVE Cape Verde Escudo

CYP Cyprus Pound

CZK Czech Koruna

DEM Deutsche Mark

DJF Djibouti Franc

DKK Danish Krone

DOP Dominican Peso

DZD Algerian Dinar

ECS Sucre

ECV Unidad de Valor

EEK Kroon

EGP Egyptian Pound

EQE Ekwele

ERN Nakfa

ESA Spanish Peseta

ESB Convertible Peseta

ESP Spanish Peseta

ETB Ethiopian Birr

EUR euro

FIM Markka

FJD Fiji Dollar

FKP Falklands Isl. Pound

FRF French Franc

GBP Pound Sterling

PeopleSoft Proprietary and Confidential 521

ISO Country and Currency Codes Appendix I

ISO Currency Code Description

GEK Georgian Coupon

GEL Lari

GHC Cedi

GIP Gibraltar Pound

GMD Dalasi

GNE Syli

GNF Guinea Franc

GNS Syli

GQE Ekwele

GRD Drachma

GTQ Quetzal

GWE Guinea Escudo

GWP Guinea-Bissau Peso

GYD Guyana Dollar

HKD Hong Kong Dollar

HNL Lempira

HRD Dinar

HRK Kuna

HTG Gourde

HUF Forint

IDR Rupiah

IEP Irish Pound

ILP Pound

ILR Old Shekel

ILS New Israeli Sheqel

INR Indian Rupee

IQD Iraqi Dinar

522 PeopleSoft Proprietary and Confidential

Appendix I ISO Country and Currency Codes

ISO Currency Code Description

IRR Iranian Rial

ISJ Old Krona

ISK Iceland Krona

ITL Italian Lira

JMD Jamaican Dollar

JOD Jordanian Dinar

JPY Yen

KES Kenyan Shilling

KGS Som

KHR Riel

KMF Comoro Franc

KPW North Korean Won

KRW Won

KWD Kuwaiti Dinar

KYD Cayman Islands dollar

KZT Tenge

LAJ Kip Pot Pol

LAK Kip

LBP Lebanese Pound

LKR Sri Lanka Rupee

LRD Liberian Dollar

LSL Loti

LSM Maloti

LTL Lithuanian Litas

LTT Talonas

LUC Convertib Francl

LUF Luxembourg Franc

PeopleSoft Proprietary and Confidential 523

ISO Country and Currency Codes Appendix I

ISO Currency Code Description

LUL Financial Franc

LVL Latvian Lats

LVR Latvian Ruble

LYD Libyan Dinar

MAD Moroccan Dirham

MAF Mali Franc

MDL Moldovan Leu

MGF Malagasy Franc

MKD Denar

MLF Mali Franc

MMK Kyat

MNT Tugrik

MOP Pataca

MRO Ouguiya

MTL Maltese Lira

MTP Maltese Pound

MUR Mauritius Rupee

MVQ Maldive Rupee

MVR Rufiyaa

MWK Malawian Kwacha

MXN Mexican Peso

MXP Mexican Peso

MXV Mexican UDI

MYR Malaysian Ringgit

MZE Mozambique Escudo

MZM Metical

NAD Namibia Dollar

524 PeopleSoft Proprietary and Confidential

Appendix I ISO Country and Currency Codes

ISO Currency Code Description

NGN Naira

NIC Cordoba

NIO Cordoba Oro

NLG Netherlands Guilder

NOK Norwegian Krone

NPR Nepalese Rupee

NZD New Zealand Dollar

OMR Rial Omani

PAB Balboa

PEI Inti

PEN Nuevo Sol

PES Sol

PGK Kina

PHP Philippine Peso

PKR Pakistan Rupee

PLN Zloty

PLZ Zloty

PTE Portuguese Escudo

PYG Guarani

QAR Qatari Rial

ROK Leu A/52

ROL Leu

RUB Russian Ruble

RUR Russian Federation Rouble

RWF Rwanda Franc

SAR Saudi Riyal

SBD Solomon Islands

PeopleSoft Proprietary and Confidential 525

ISO Country and Currency Codes Appendix I

ISO Currency Code Description

SCR Seychelles Rupee

SDD Sudanese Dinar

SDP Sudanese Pound

SEK Swedish Krona

SGD Singapore Dollar

SHP St Helena Pound

SIT Tolar

SKK Slovak Koruna

SLL Leone

SOS Somali Shilling

SRG Surinam Guilder

STD Dobra

SUR Rouble

SVC El Salvador Colon

SYP Syrian Pound

SZL Lilangeni

THB Baht

TJR Tajik Ruble

TJS Somoni

TMM Manat

TND Tunisian Dinar

TOP Pa’anga

TPE Timor Escudo

TRL Turkish Lira

TTD Trinidad Dollar

TWD New Taiwan Dollar

TZS Tanzanian Shilling

526 PeopleSoft Proprietary and Confidential

Appendix I ISO Country and Currency Codes

ISO Currency Code Description

UAH Hryvnia

UAK Karbovanet

UGS Uganda Shilling

UGW Old Shilling

UGX Uganda Shilling

USD US Dollar

USN US Dollar (Next day)

USS US Dollar (Same day)

UYN Old Uruguay Peso

UYP Uruguayan Peso

UYU Peso Uruguayo

UZS Uzbekistan Sum

VEB Bolivar

VNC Old Dong

VND Dong

VUV Vatu

WST Tala

XAF CFA Franc BEAC

XAG Silver

XAU GOLD

XBA European Composite Unit

XBB European Monetary Unit

XBC European Unit of Account 9

XBD European Unit of Account 17

XCD East Caribbean Dollar

XDR SDR

XEU EU Currency (E.C.U)

PeopleSoft Proprietary and Confidential 527

ISO Country and Currency Codes Appendix I

ISO Currency Code Description

XFO Gold-Franc

XFU UIC-Franc

XOF CFA Franc BCEAO

XPD Palladium

XPF CFP Franc

XPT Platinum

XTS For Testing Purposes

XXX Non Currency Transaction

YDD Yemeni Din

YER Yemeni Rial

YUD New Yugoslavian Dinar

YUM New Dinar

YUN Yugoslavian Dinar

ZAL Financial Rand

ZAR Rand

ZMK Zambian Kwacha

ZRN New Zaire

ZRZ Zaire

ZWC Rhodesian Dollar

ZWD Zimbabwe Dollar

528 PeopleSoft Proprietary and Confidential

Glossary of PeopleSoft Terms

absence entitlement This element defines rules for granting paid time off for valid absences, such as sick
time, vacation, and maternity leave. An absence entitlement element defines the
entitlement amount, frequency, and entitlement period.

absence take This element defines the conditions that must be met before a payee is entitled
to take paid time off.

accounting class In PeopleSoft Enterprise Performance Management, the accounting class defines how
a resource is treated for generally accepted accounting practices. The Inventory
class indicates whether a resource becomes part of a balance sheet account, such as
inventory or fixed assets, while the Non-inventory class indicates that the resource is
treated as an expense of the period during which it occurs.

accounting date The accounting date indicates when a transaction is recognized, as opposed to the date
the transaction actually occurred. The accounting date and transaction date can be the
same. The accounting date determines the period in the general ledger to which the
transaction is to be posted. You can only select an accounting date that falls within an
open period in the ledger to which you are posting. The accounting date for an item
is normally the invoice date.

accounting split The accounting split method indicates how expenses are allocated or divided among
one or more sets of accounting ChartFields.

accumulator You use an accumulator to store cumulative values of defined items as they are
processed. You can accumulate a single value over time or multiple values over
time. For example, an accumulator could consist of all voluntary deductions, or all
company deductions, enabling you to accumulate amounts. It allows total flexibility
for time periods and values accumulated.

action reason The reason an employee’s job or employment information is updated. The action
reason is entered in two parts: a personnel action, such as a promotion, termination, or
change from one pay group to another—and a reason for that action. Action reasons
are used by PeopleSoft Human Resources, PeopleSoft Benefits Administration,
PeopleSoft Stock Administration, and the COBRA Administration feature of the
Base Benefits business process.

action template In PeopleSoft Receivables, outlines a set of escalating actions that the system or user
performs based on the period of time that a customer or item has been in an action
plan for a specific condition.

activity In PeopleSoft Enterprise Learning Management, an instance of a catalog item
(sometimes called a class) that is available for enrollment. The activity defines
such things as the costs that are associated with the offering, enrollment limits and
deadlines, and waitlisting capacities.

In PeopleSoft Enterprise Performance Management, the work of an organization and
the aggregation of actions that are used for activity-based costing.

In PeopleSoft Project Costing, the unit of work that provides a further breakdown of
projects—usually into specific tasks.

In PeopleSoft Workflow, a specific transaction that you might need to perform in a
business process. Because it consists of the steps that are used to perform a transaction,
it is also known as a step map.

PeopleSoft Proprietary and Confidential 529

Glossary

agreement In PeopleSoft eSettlements, provides a way to group and specify processing options,
such as payment terms, pay from a bank, and notifications by a buyer and supplier
location combination.

allocation rule In PeopleSoft Enterprise Incentive Management, an expression within compensation
plans that enables the system to assign transactions to nodes and participants. During
transaction allocation, the allocation engine traverses the compensation structure
from the current node to the root node, checking each node for plans that contain
allocation rules.

alternate account A feature in PeopleSoft General Ledger that enables you to create a statutory chart
of accounts and enter statutory account transactions at the detail transaction level, as
required for recording and reporting by some national governments.

AR specialist Abbreviation for receivables specialist. In PeopleSoft Receivables, an individual in
who tracks and resolves deductions and disputed items.

arbitration plan In PeopleSoft Enterprise Pricer, defines how price rules are to be applied to the base
price when the transaction is priced.

assessment rule In PeopleSoft Receivables, a user-defined rule that the system uses to evaluate the
condition of a customer’s account or of individual items to determine whether to
generate a follow-up action.

asset class An asset group used for reporting purposes. It can be used in conjunction with the asset
category to refine asset classification.

attribute/value pair In PeopleSoft Directory Interface, relates the data that makes up an entry in the
directory information tree.

authentication server A server that is set up to verify users of the system.

base time period In PeopleSoft Business Planning, the lowest level time period in a calendar.

benchmark job In PeopleSoft Workforce Analytics, a benchmark job is a job code for which there is
corresponding salary survey data from published, third-party sources.

book In PeopleSoft Asset Management, used for storing financial and tax information, such
as costs, depreciation attributes, and retirement information on assets.

branch A tree node that rolls up to nodes above it in the hierarchy, as defined in PeopleSoft
Tree Manager.

budgetary account only An account used by the system only and not by users; this type of account does
not accept transactions. You can only budget with this account. Formerly called
“system-maintained account.”

budget check In commitment control, the processing of source transactions against control budget
ledgers, to see if they pass, fail, or pass with a warning.

budget control In commitment control, budget control ensures that commitments and expenditures
don’t exceed budgets. It enables you to track transactions against corresponding
budgets and terminate a document’s cycle if the defined budget conditions are not met.
For example, you can prevent a purchase order from being dispatched to a vendor if
there are insufficient funds in the related budget to support it.

budget period The interval of time (such as 12 months or 4 quarters) into which a period is divided
for budgetary and reporting purposes. The ChartField allows maximum flexibility to
define operational accounting time periods without restriction to only one calendar.

business event In PeopleSoft Receivables, defines the processing characteristics for the Receivable
Update process for a draft activity.

530 PeopleSoft Proprietary and Confidential

Glossary

In PeopleSoft Sales Incentive Management, an original business transaction or activity
that may justify the creation of a PeopleSoft Enterprise Incentive Management event
(a sale, for example).

business unit A corporation or a subset of a corporation that is independent with regard to one or
more operational or accounting functions.

buyer In PeopleSoft eSettlements, an organization (or business unit, as opposed to an
individual) that transacts with suppliers (vendors) within the system. A buyer creates
payments for purchases that are made in the system.

catalog item In PeopleSoft Enterprise Learning Management, a specific topic that a learner can
study and have tracked. For example, “Introduction to Microsoft Word.” A catalog
item contains general information about the topic and includes a course code,
description, categorization, keywords, and delivery methods. A catalog item can
have one or more learning activities.

catalog map In PeopleSoft Catalog Management, translates values from the catalog source data to
the format of the company’s catalog.

catalog partner In PeopleSoft Catalog Management, shares responsibility with the enterprise catalog
manager for maintaining catalog content.

categorization Associates partner offerings with catalog offerings and groups them into enterprise
catalog categories.

channel In PeopleSoft MultiChannel Framework, email, chat, voice (computer telephone
integration [CTI]), or a generic event.

ChartField A field that stores a chart of accounts, resources, and so on, depending on the
PeopleSoft application. ChartField values represent individual account numbers,
department codes, and so forth.

ChartField balancing You can require specific ChartFields to match up (balance) on the debit and the credit
side of a transaction.

ChartField combination edit The process of editing journal lines for valid ChartField combinations based on
user-defined rules.

ChartKey One or more fields that uniquely identify each row in a table. Some tables contain only
one field as the key, while others require a combination.

checkbook In PeopleSoft Promotions Management, enables you to view financial data (such as
planned, incurred, and actual amounts) that is related to funds and trade promotions.

Class ChartField A ChartField value that identifies a unique appropriation budget key when you
combine it with a fund, department ID, and program code, as well as a budget period.
Formerly called sub-classification.

clone In PeopleCode, to make a unique copy. In contrast, to copy may mean making a
new reference to an object, so if the underlying object is changed, both the copy and
the original change.

collection To make a set of documents available for searching in Verity, you must first create
at least one collection. A collection is set of directories and files that allow search
application users to use the Verity search engine to quickly find and display source
documents that match search criteria. A collection is a set of statistics and pointers
to the source documents, stored in a proprietary format on a file server. Because a
collection can only store information for a single location, PeopleSoft maintains a set
of collections (one per language code) for each search index object.

PeopleSoft Proprietary and Confidential 531

Glossary

collection rule In PeopleSoft Receivables, a user-defined rule that defines actions to take for a
customer based on both the amount and the number of days past due for outstanding
balances.

compensation object In PeopleSoft Enterprise Incentive Management, a node within a compensation
structure. Compensation objects are the building blocks that make up a compensation
structure’s hierarchical representation.

compensation structure In PeopleSoft Enterprise Incentive Management, a hierarchical relationship of
compensation objects that represents the compensation-related relationship between
the objects.

condition In PeopleSoft Receivables, occurs when there is a change of status for a customer’s
account, such as reaching a credit limit or exceeding a user-defined balance due.

configuration parameter
catalog

Used to configure an external system with PeopleSoft. For example, a configuration
parameter catalog might set up configuration and communication parameters for an
external server.

configuration plan In PeopleSoft Enterprise Incentive Management, configuration plans hold allocation
information for common variables (not incentive rules) and are attached to a node
without a participant. Configuration plans are not processed by transactions.

content reference Content references are pointers to content registered in the portal registry. These are
typically either URLs or iScripts. Content references fall into three categories: target
content, templates, and template pagelets.

context In PeopleCode, determines which buffer fields can be contextually referenced and
which is the current row of data on each scroll level when a PeopleCode program
is running.

In PeopleSoft Enterprise Incentive Management, a mechanism that is used to
determine the scope of a processing run. PeopleSoft Enterprise Incentive Management
uses three types of context: plan, period, and run-level.

control table Stores information that controls the processing of an application. This type of
processing might be consistent throughout an organization, or it might be used only by
portions of the organization for more limited sharing of data.

cost profile A combination of a receipt cost method, a cost flow, and a deplete cost method. A
profile is associated with a cost book and determines how items in that book are
valued, as well as how the material movement of the item is valued for the book.

cost row A cost transaction and amount for a set of ChartFields.

current learning In PeopleSoft Enterprise Learning Management, a self-service repository for all of a
learner’s in-progress learning activities and programs.

data acquisition In PeopleSoft Enterprise Incentive Management, the process during which raw
business transactions are acquired from external source systems and fed into the
operational data store (ODS).

data elements Data elements, at their simplest level, define a subset of data and the rules by which
to group them.

For Workforce Analytics, data elements are rules that tell the system what measures to
retrieve about your workforce groups.

dataset A data grouping that enables role-based filtering and distribution of data. You can
limit the range and quantity of data that is displayed for a user by associating dataset
rules with user roles. The result of dataset rules is a set of data that is appropriate
for the user’s roles.

532 PeopleSoft Proprietary and Confidential

Glossary

delivery method In PeopleSoft Enterprise Learning Management, identifies the primary type of
delivery method in which a particular learning activity is offered. Also provides
default values for the learning activity, such as cost and language. This is primarily
used to help learners search the catalog for the type of delivery from which they learn
best. Because PeopleSoft Enterprise Learning Management is a blended learning
system, it does not enforce the delivery method.

In PeopleSoft Supply Chain Management, identifies the method by which goods are
shipped to their destinations (such as truck, air, rail, and so on). The delivery method is
specified when creating shipment schedules.

delivery method type In PeopleSoft Enterprise Learning Management, identifies how learning activities can
be delivered—for example, through online learning, classroom instruction, seminars,
books, and so forth—in an organization. The type determines whether the delivery
method includes scheduled components.

directory information tree In PeopleSoft Directory Interface, the representation of a directory’s hierarchical
structure.

document sequencing A flexible method that sequentially numbers the financial transactions (for example,
bills, purchase orders, invoices, and payments) in the system for statutory reporting
and for tracking commercial transaction activity.

dynamic detail tree A tree that takes its detail values—dynamic details—directly from a table in the
database, rather than from a range of values that are entered by the user.

edit table A table in the database that has its own record definition, such as the Department table.
As fields are entered into a PeopleSoft application, they can be validated against an
edit table to ensure data integrity throughout the system.

effective date A method of dating information in PeopleSoft applications. You can predate
information to add historical data to your system, or postdate information in order to
enter it before it actually goes into effect. By using effective dates, you don’t delete
values; you enter a new value with a current effective date.

EIM ledger Abbreviation for Enterprise Incentive Management ledger. In PeopleSoft Enterprise
Incentive Management, an object to handle incremental result gathering within the
scope of a participant. The ledger captures a result set with all of the appropriate traces
to the data origin and to the processing steps of which it is a result.

elimination set In PeopleSoft General Ledger, a related group of intercompany accounts that is
processed during consolidations.

entry event In PeopleSoft General Ledger, Receivables, Payables, Purchasing, and Billing, a
business process that generates multiple debits and credits resulting from single
transactions to produce standard, supplemental accounting entries.

equitization In PeopleSoft General Ledger, a business process that enables parent companies to
calculate the net income of subsidiaries on a monthly basis and adjust that amount
to increase the investment amount and equity income amount before performing
consolidations.

event A predefined point either in the Component Processor flow or in the program flow.
As each point is encountered, the event activates each component, triggering any
PeopleCode program that is associated with that component and that event. Examples
of events are FieldChange, SavePreChange, and RowDelete.

In PeopleSoft Human Resources, also refers to an incident that affects benefits
eligibility.

event propagation process In PeopleSoft Sales Incentive Management, a process that determines, through logic,
the propagation of an original PeopleSoft Enterprise Incentive Management event and
creates a derivative (duplicate) of the original event to be processed by other objects.

PeopleSoft Proprietary and Confidential 533

Glossary

Sales Incentive Management uses this mechanism to implement splits, roll-ups, and so
on. Event propagation determines who receives the credit.

exception In PeopleSoft Receivables, an item that either is a deduction or is in dispute.

exclusive pricing In PeopleSoft Order Management, a type of arbitration plan that is associated with a
price rule. Exclusive pricing is used to price sales order transactions.

fact In PeopleSoft applications, facts are numeric data values from fields from a source
database as well as an analytic application. A fact can be anything you want to measure
your business by, for example, revenue, actual, budget data, or sales numbers. A
fact is stored on a fact table.

forecast item A logical entity with a unique set of descriptive demand and forecast data that is used
as the basis to forecast demand. You create forecast items for a wide range of uses, but
they ultimately represent things that you buy, sell, or use in your organization and for
which you require a predictable usage.

fund In PeopleSoft Promotions Management, a budget that can be used to fund promotional
activity. There are four funding methods: top down, fixed accrual, rolling accrual, and
zero-based accrual.

generic process type In PeopleSoft Process Scheduler, process types are identified by a generic process
type. For example, the generic process type SQR includes all SQR process types,
such as SQR process and SQR report.

group In PeopleSoft Billing and Receivables, a posting entity that comprises one or more
transactions (items, deposits, payments, transfers, matches, or write-offs).

In PeopleSoft Human Resources Management and Supply Chain Management, any
set of records that are associated under a single name or variable to run calculations
in PeopleSoft business processes. In PeopleSoft Time and Labor, for example,
employees are placed in groups for time reporting purposes.

incentive object In PeopleSoft Enterprise Incentive Management, the incentive-related objects that
define and support the PeopleSoft Enterprise Incentive Management calculation
process and results, such as plan templates, plans, results data, user interaction objects,
and so on.

incentive rule In PeopleSoft Sales Incentive Management, the commands that act on transactions and
turn them into compensation. A rule is one part in the process of turning a transaction
into compensation.

incur In PeopleSoft Promotions Management, to become liable for a promotional payment.
In other words, you owe that amount to a customer for promotional activities.

item In PeopleSoft Inventory, a tangible commodity that is stored in a business unit
(shipped from a warehouse).

In PeopleSoft Demand Planning, Inventory Policy Planning, and Supply Planning, a
noninventory item that is designated as being used for planning purposes only. It can
represent a family or group of inventory items. It can have a planning bill of material
(BOM) or planning routing, and it can exist as a component on a planning BOM. A
planning item cannot be specified on a production or engineering BOM or routing,
and it cannot be used as a component in a production. The quantity on hand will
never be maintained.

In PeopleSoft Receivables, an individual receivable. An item can be an invoice, a
credit memo, a debit memo, a write-off, or an adjustment.

KPI An abbreviation for key performance indicator. A high-level measurement of how well
an organization is doing in achieving critical success factors. This defines the data
value or calculation upon which an assessment is determined.

534 PeopleSoft Proprietary and Confidential

Glossary

LDIF file Abbreviation for Lightweight Directory Access Protocol (LDAP) Data Interchange
Format file. Contains discrepancies between PeopleSoft data and directory data.

learner group In PeopleSoft Enterprise Learning Management, a group of learners who are linked
to the same learning environment. Members of the learner group can share the same
attributes, such as the same department or job code. Learner groups are used to control
access to and enrollment in learning activities and programs. They are also used to
perform group enrollments and mass enrollments in the back office.

learning components In PeopleSoft Enterprise Learning Management, the foundational building blocks
of learning activities. PeopleSoft Enterprise Learning Management supports six
basic types of learning components: web-based, session, webcast, test, survey, and
assignment. One or more of these learning component types compose a single
learning activity.

learning environment In PeopleSoft Enterprise Learning Management, identifies a set of categories and
catalog items that can be made available to learner groups. Also defines the default
values that are assigned to the learning activities and programs that are created within a
particular learning environment. Learning environments provide a way to partition the
catalog so that learners see only those items that are relevant to them.

learning history In PeopleSoft Enterprise Learning Management, a self-service repository for all of a
learner’s completed learning activities and programs.

ledger mapping You use ledger mapping to relate expense data from general ledger accounts to
resource objects. Multiple ledger line items can be mapped to one or more resource
IDs. You can also use ledger mapping to map dollar amounts (referred to as rates)
to business units. You can map the amounts in two different ways: an actual amount
that represents actual costs of the accounting period, or a budgeted amount that can be
used to calculate the capacity rates as well as budgeted model results. In PeopleSoft
Enterprise Warehouse, you can map general ledger accounts to the EW Ledger table.

library section In PeopleSoft Enterprise Incentive Management, a section that is defined in a plan (or
template) and that is available for other plans to share. Changes to a library section are
reflected in all plans that use it.

linked section In PeopleSoft Enterprise Incentive Management, a section that is defined in a plan
template but appears in a plan. Changes to linked sections propagate to plans using
that section.

linked variable In PeopleSoft Enterprise Incentive Management, a variable that is defined and
maintained in a plan template and that also appears in a plan. Changes to linked
variables propagate to plans using that variable.

load In PeopleSoft Inventory, identifies a group of goods that are shipped together. Load
management is a feature of PeopleSoft Inventory that is used to track the weight, the
volume, and the destination of a shipment.

local functionality In PeopleSoft HRMS, the set of information that is available for a specific country.
You can access this information when you click the appropriate country flag in the
global window, or when you access it by a local country menu.

location Locations enable you to indicate the different types of addresses—for a company, for
example, one address to receive bills, another for shipping, a third for postal deliveries,
and a separate street address. Each address has a different location number. The
primary location—indicated by a 1—is the address you use most often and may be
different from the main address.

logistical task In PeopleSoft Services Procurement, an administrative task that is related to hiring
a service provider. Logistical tasks are linked to the service type on the work order
so that different types of services can have different logistical tasks. Logistical tasks
include both preapproval tasks (such as assigning a new badge or ordering a new

PeopleSoft Proprietary and Confidential 535

Glossary

laptop) and postapproval tasks (such as scheduling orientation or setting up the service
provider email). The logistical tasks can be mandatory or optional. Mandatory
preapproval tasks must be completed before the work order is approved. Mandatory
postapproval tasks, on the other hand, must be completed before a work order is
released to a service provider.

market template In PeopleSoft Enterprise Incentive Management, additional functionality that is
specific to a given market or industry and is built on top of a product category.

match group In PeopleSoft Receivables, a group of receivables items and matching offset items.
The system creates match groups by using user-defined matching criteria for selected
field values.

MCF server Abbreviation for PeopleSoft MultiChannel Framework server. Comprises the
universal queue server and the MCF log server. Both processes are started when MCF
Servers is selected in an application server domain configuration.

merchandising activity In PeopleSoft Promotions Management, a specific discount type that is associated with
a trade promotion (such as off-invoice, billback or rebate, or lump-sum payment) that
defines the performance that is required to receive the discount. In the industry, you
may know this as an offer, a discount, a merchandising event, an event, or a tactic.

meta-SQL Meta-SQL constructs expand into platform-specific Structured Query Language
(SQL) substrings. They are used in functions that pass SQL strings, such as in SQL
objects, the SQLExec function, and PeopleSoft Application Engine programs.

metastring Metastrings are special expressions included in SQL string literals. The metastrings,
prefixed with a percent (%) symbol, are included directly in the string literals. They
expand at run time into an appropriate substring for the current database platform.

multibook In PeopleSoft General Ledger, multiple ledgers having multiple-base currencies that
are defined for a business unit, with the option to post a single transaction to all base
currencies (all ledgers) or to only one of those base currencies (ledgers).

multicurrency The ability to process transactions in a currency other than the business unit’s base
currency.

national allowance In PeopleSoft Promotions Management, a promotion at the corporate level that is
funded by nondiscretionary dollars. In the industry, you may know this as a national
promotion, a corporate promotion, or a corporate discount.

node-oriented tree A tree that is based on a detail structure, but the detail values are not used.

pagelet Each block of content on the home page is called a pagelet. These pagelets display
summary information within a small rectangular area on the page. The pagelet provide
users with a snapshot of their most relevant PeopleSoft and non-PeopleSoft content.

participant In PeopleSoft Enterprise Incentive Management, participants are recipients of the
incentive compensation calculation process.

participant object Each participant object may be related to one or more compensation objects.

See also compensation object.

partner A company that supplies products or services that are resold or purchased by the
enterprise.

pay cycle In PeopleSoft Payables, a set of rules that define the criteria by which it should select
scheduled payments for payment creation.

pending item In PeopleSoft Receivables, an individual receivable (such as an invoice, a credit
memo, or a write-off) that has been entered in or created by the system, but hasn’t
been posted.

536 PeopleSoft Proprietary and Confidential

Glossary

PeopleCode PeopleCode is a proprietary language, executed by the PeopleSoft application
processor. PeopleCode generates results based upon existing data or user actions. By
using business interlink objects, external services are available to all PeopleSoft
applications wherever PeopleCode can be executed.

PeopleCode event An action that a user takes upon an object, usually a record field, that is referenced
within a PeopleSoft page.

PeopleSoft Internet
Architecture

The fundamental architecture on which PeopleSoft 8 applications are constructed,
consisting of a relational database management system (RDBMS), an application
server, a web server, and a browser.

performance measurement In PeopleSoft Enterprise Incentive Management, a variable used to store data (similar
to an aggregator, but without a predefined formula) within the scope of an incentive
plan. Performance measures are associated with a plan calendar, territory, and
participant. Performance measurements are used for quota calculation and reporting.

period context In PeopleSoft Enterprise Incentive Management, because a participant typically
uses the same compensation plan for multiple periods, the period context associates
a plan context with a specific calendar period and fiscal year. The period context
references the associated plan context, thus forming a chain. Each plan context has a
corresponding set of period contexts.

plan In PeopleSoft Sales Incentive Management, a collection of allocation rules, variables,
steps, sections, and incentive rules that instruct the PeopleSoft Enterprise Incentive
Management engine in how to process transactions.

plan context In PeopleSoft Enterprise Incentive Management, correlates a participant with
the compensation plan and node to which the participant is assigned, enabling
the PeopleSoft Enterprise Incentive Management system to find anything that is
associated with the node and that is required to perform compensation processing.
Each participant, node, and plan combination represents a unique plan context—if
three participants are on a compensation structure, each has a different plan context.
Configuration plans are identified by plan contexts and are associated with the
participants that refer to them.

plan template In PeopleSoft Enterprise Incentive Management, the base from which a plan is created.
A plan template contains common sections and variables that are inherited by all plans
that are created from the template. A template may contain steps and sections that
are not visible in the plan definition.

planned learning In PeopleSoft Enterprise Learning Management, a self-service repository for all of
a learner’s planned learning activities and programs.

planning instance In PeopleSoft Supply Planning, a set of data (business units, items, supplies, and
demands) constituting the inputs and outputs of a supply plan.

portal registry In PeopleSoft applications, the portal registry is a tree-like structure in which content
references are organized, classified, and registered. It is a central repository that
defines both the structure and content of a portal through a hierarchical, tree-like
structure of folders useful for organizing and securing content references.

price list In PeopleSoft Enterprise Pricer, enables you to select products and conditions for
which the price list applies to a transaction. During a transaction, the system either
determines the product price based on the predefined search hierarchy for the
transaction or uses the product’s lowest price on any associated, active price lists. This
price is used as the basis for any further discounts and surcharges.

price rule In PeopleSoft Enterprise Pricer, defines the conditions that must be met for
adjustments to be applied to the base price. Multiple rules can apply when conditions
of each rule are met.

PeopleSoft Proprietary and Confidential 537

Glossary

price rule condition In PeopleSoft Enterprise Pricer, selects the price-by fields, the values for the price-by
fields, and the operator that determines how the price-by fields are related to the
transaction.

price rule key In PeopleSoft Enterprise Pricer, defines the fields that are available to define price rule
conditions (which are used to match a transaction) on the price rule.

process category In PeopleSoft Process Scheduler, processes that are grouped for server load balancing
and prioritization.

process group In PeopleSoft Financials, a group of application processes (performed in a defined
order) that users can initiate in real time, directly from a transaction entry page.

process definition Process definitions define each run request.

process instance A unique number that identifies each process request. This value is automatically
incremented and assigned to each requested process when the process is submitted to
run.

process job You can link process definitions into a job request and process each request serially
or in parallel. You can also initiate subsequent processes based on the return code
from each prior request.

process request A single run request, such as a Structured Query Report (SQR), a COBOL or
Application Engine program, or a Crystal report that you run through PeopleSoft
Process Scheduler.

process run control A PeopleTools variable used to retain PeopleSoft Process Scheduler values needed
at runtime for all requests that reference a run control ID. Do not confuse these with
application run controls, which may be defined with the same run control ID, but only
contain information specific to a given application process request.

product category In PeopleSoft Enterprise Incentive Management, indicates an application in the
Enterprise Incentive Management suite of products. Each transaction in the PeopleSoft
Enterprise Incentive Management system is associated with a product category.

programs In PeopleSoft Enterprise Learning Management, a high-level grouping that guides the
learner along a specific learning path through sections of catalog items. PeopleSoft
Enterprise Learning Systems provides two types of programs—curricula and
certifications.

progress log In PeopleSoft Services Procurement, tracks deliverable-based projects. This is similar
to the time sheet in function and process. The service provider contact uses the
progress log to record and submit progress on deliverables. The progress can be logged
by the activity that is performed, by the percentage of work that is completed, or by the
completion of milestone activities that are defined for the project.

project transaction In PeopleSoft Project Costing, an individual transaction line that represents a cost,
time, budget, or other transaction row.

promotion In PeopleSoft Promotions Management, a trade promotion, which is typically funded
from trade dollars and used by consumer products manufacturers to increase sales
volume.

publishing In PeopleSoft Enterprise Incentive Management, a stage in processing that makes
incentive-related results available to participants.

record group A set of logically and functionally related control tables and views. Record groups
help enable TableSet sharing, which eliminates redundant data entry. Record groups
ensure that TableSet sharing is applied consistently across all related tables and views.

record input VAT flag Abbreviation for record input value-added tax flag. Within PeopleSoft Purchasing,
Payables, and General Ledger, this flag indicates that you are recording input VAT

538 PeopleSoft Proprietary and Confidential

Glossary

on the transaction. This flag, in conjunction with the record output VAT flag, is used
to determine the accounting entries created for a transaction and to determine how a
transaction is reported on the VAT return. For all cases within Purchasing and Payables
where VAT information is tracked on a transaction, this flag is set to Yes. This flag
is not used in PeopleSoft Order Management, Billing, or Receivables, where it is
assumed that you are always recording only output VAT, or in PeopleSoft Expenses,
where it is assumed that you are always recording only input VAT.

record output VAT flag Abbreviation for record output value-added tax flag.

See record input VAT flag.

reference data In PeopleSoft Sales Incentive Management, system objects that represent the sales
organization, such as territories, participants, products, customers, channels, and so on.

reference object In PeopleSoft Enterprise Incentive Management, this dimension-type object further
defines the business. Reference objects can have their own hierarchy (for example,
product tree, customer tree, industry tree, and geography tree).

reference transaction In commitment control, a reference transaction is a source transaction that is
referenced by a higher-level (and usually later) source transaction, in order to
automatically reverse all or part of the referenced transaction’s budget-checked
amount. This avoids duplicate postings during the sequential entry of the transaction at
different commitment levels. For example, the amount of an encumbrance transaction
(such as a purchase order) will, when checked and recorded against a budget, cause
the system to concurrently reference and relieve all or part of the amount of a
corresponding pre-encumbrance transaction, such as a purchase requisition.

regional sourcing In PeopleSoft Purchasing, provides the infrastructure to maintain, display, and select
an appropriate vendor and vendor pricing structure that is based on a regional sourcing
model where the multiple ship to locations are grouped. Sourcing may occur at a
level higher than the ship to location.

relationship object In PeopleSoft Enterprise Incentive Management, these objects further define a
compensation structure to resolve transactions by establishing associations between
compensation objects and business objects.

remote data source data Data that is extracted from a separate database and migrated into the local database.

REN server Abbreviation for real-time event notification server in PeopleSoft MultiChannel
Framework.

requester In PeopleSoft eSettlements, an individual who requests goods or services and whose
ID appears on the various procurement pages that reference purchase orders.

role Describes how people fit into PeopleSoft Workflow. A role is a class of users who
perform the same type of work, such as clerks or managers. Your business rules
typically specify what user role needs to do an activity.

role user A PeopleSoft Workflow user. A person’s role user ID serves much the same purpose as
a user ID does in other parts of the system. PeopleSoft Workflow uses role user IDs
to determine how to route worklist items to users (through an email address, for
example) and to track the roles that users play in the workflow. Role users do not need
PeopleSoft user IDs.

roll up In a tree, to roll up is to total sums based on the information hierarchy.

run control A run control is a type of online page that is used to begin a process, such as the
batch processing of a payroll run. Run control pages generally start a program that
manipulates data.

run control ID A unique ID to associate each user with his or her own run control table entries.

PeopleSoft Proprietary and Confidential 539

Glossary

run-level context In PeopleSoft Enterprise Incentive Management, associates a particular run (and batch
ID) with a period context and plan context. Every plan context that participates in a run
has a separate run-level context. Because a run cannot span periods, only one run-level
context is associated with each plan context.

search query You use this set of objects to pass a query string and operators to the search engine.
The search index returns a set of matching results with keys to the source documents.

section In PeopleSoft Enterprise Incentive Management, a collection of incentive rules that
operate on transactions of a specific type. Sections enable plans to be segmented to
process logical events in different sections.

security event In commitment control, security events trigger security authorization checking, such
as budget entries, transfers, and adjustments; exception overrides and notifications;
and inquiries.

serial genealogy In PeopleSoft Manufacturing, the ability to track the composition of a specific,
serial-controlled item.

serial in production In PeopleSoft Manufacturing, enables the tracing of serial information for
manufactured items. This is maintained in the Item Master record.

session In PeopleSoft Enterprise Learning Management, a single meeting day of an activity
(that is, the period of time between start and finish times within a day). The session
stores the specific date, location, meeting time, and instructor. Sessions are used for
scheduled training.

session template In PeopleSoft Enterprise Learning Management, enables you to set up common
activity characteristics that may be reused while scheduling a PeopleSoft Enterprise
Learning Management activity—characteristics such as days of the week, start and
end times, facility and room assignments, instructors, and equipment. A session
pattern template can be attached to an activity that is being scheduled. Attaching a
template to an activity causes all of the default template information to populate
the activity session pattern.

setup relationship In PeopleSoft Enterprise Incentive Management, a relationship object type that
associates a configuration plan with any structure node.

share driver expression In PeopleSoft Business Planning, a named planning method similar to a driver
expression, but which you can set up globally for shared use within a single planning
application or to be shared between multiple planning applications through PeopleSoft
Enterprise Warehouse.

single signon With single signon, users can, after being authenticated by a PeopleSoft application
server, access a second PeopleSoft application server without entering a user ID or
password.

source transaction In commitment control, any transaction generated in a PeopleSoft or third-party
application that is integrated with commitment control and which can be checked
against commitment control budgets. For example, a pre-encumbrance, encumbrance,
expenditure, recognized revenue, or collected revenue transaction.

SpeedChart A user-defined shorthand key that designates several ChartKeys to be used for voucher
entry. Percentages can optionally be related to each ChartKey in a SpeedChart
definition.

SpeedType A code representing a combination of ChartField values. SpeedTypes simplify the
entry of ChartFields commonly used together.

staging A method of consolidating selected partner offerings with the offerings from the
enterprise’s other partners.

540 PeopleSoft Proprietary and Confidential

Glossary

statutory account Account required by a regulatory authority for recording and reporting financial
results. In PeopleSoft, this is equivalent to the Alternate Account (ALTACCT)
ChartField.

step In PeopleSoft Sales Incentive Management, a collection of sections in a plan. Each
step corresponds to a step in the job run.

storage level In PeopleSoft Inventory, identifies the level of a material storage location. Material
storage locations are made up of a business unit, a storage area, and a storage level.
You can set up to four storage levels.

subcustomer qualifier A value that groups customers into a division for which you can generate detailed
history, aging, events, and profiles.

Summary ChartField You use summary ChartFields to create summary ledgers that roll up detail amounts
based on specific detail values or on selected tree nodes. When detail values are
summarized using tree nodes, summary ChartFields must be used in the summary
ledger data record to accommodate the maximum length of a node name (20
characters).

summary ledger An accounting feature used primarily in allocations, inquiries, and PS/nVision
reporting to store combined account balances from detail ledgers. Summary ledgers
increase speed and efficiency of reporting by eliminating the need to summarize
detail ledger balances each time a report is requested. Instead, detail balances are
summarized in a background process according to user-specified criteria and stored on
summary ledgers. The summary ledgers are then accessed directly for reporting.

summary time period In PeopleSoft Business Planning, any time period (other than a base time period) that is
an aggregate of other time periods, including other summary time periods and base
time periods, such as quarter and year total.

summary tree A tree used to roll up accounts for each type of report in summary ledgers. Summary
trees enable you to define trees on trees. In a summary tree, the detail values are really
nodes on a detail tree or another summary tree (known as the basis tree). A summary
tree structure specifies the details on which the summary trees are to be built.

syndicate To distribute a production version of the enterprise catalog to partners.

system function In PeopleSoft Receivables, an activity that defines how the system generates
accounting entries for the general ledger.

TableSet A means of sharing similar sets of values in control tables, where the actual data values
are different but the structure of the tables is the same.

TableSet sharing Shared data that is stored in many tables that are based on the same TableSets. Tables
that use TableSet sharing contain the SETID field as an additional key or unique
identifier.

target currency The value of the entry currency or currencies converted to a single currency for budget
viewing and inquiry purposes.

template A template is HTML code associated with a web page. It defines the layout of
the page and also where to get HTML for each part of the page. In PeopleSoft, you
use templates to build a page by combining HTML from a number of sources. For
a PeopleSoft portal, all templates must be registered in the portal registry, and each
content reference must be assigned a template.

territory In PeopleSoft Sales Incentive Management, hierarchical relationships of business
objects, including regions, products, customers, industries, and participants.

TimeSpan A relative period, such as year-to-date or current period, that can be used in various
PeopleSoft General Ledger functions and reports when a rolling time frame, rather

PeopleSoft Proprietary and Confidential 541

Glossary

than a specific date, is required. TimeSpans can also be used with flexible formulas in
PeopleSoft Projects.

trace usage In PeopleSoft Manufacturing, enables the control of which components will be traced
during the manufacturing process. Serial- and lot-controlled components can be
traced. This is maintained in the Item Master record.

transaction allocation In PeopleSoft Enterprise Incentive Management, the process of identifying the owner
of a transaction. When a raw transaction from a batch is allocated to a plan context,
the transaction is duplicated in the PeopleSoft Enterprise Incentive Management
transaction tables.

transaction state In PeopleSoft Enterprise Incentive Management, a value assigned by an incentive
rule to a transaction. Transaction states enable sections to process only transactions
that are at a specific stage in system processing. After being successfully processed,
transactions may be promoted to the next transaction state and “picked up” by a
different section for further processing.

Translate table A system edit table that stores codes and translate values for the miscellaneous fields in
the database that do not warrant individual edit tables of their own.

tree The graphical hierarchy in PeopleSoft systems that displays the relationship between
all accounting units (for example, corporate divisions, projects, reporting groups,
account numbers) and determines roll-up hierarchies.

unclaimed transaction In PeopleSoft Enterprise Incentive Management, a transaction that is not claimed
by a node or participant after the allocation process has completed, usually due to
missing or incomplete data. Unclaimed transactions may be manually assigned to the
appropriate node or participant by a compensation administrator.

universal navigation header Every PeopleSoft portal includes the universal navigation header, intended to appear at
the top of every page as long as the user is signed on to the portal. In addition to
providing access to the standard navigation buttons (like Home, Favorites, and signoff)
the universal navigation header can also display a welcome message for each user.

user interaction object In PeopleSoft Sales Incentive Management, used to define the reporting components
and reports that a participant can access in his or her context. All Sales Incentive
Management user interface objects and reports are registered as user interaction
objects. User interaction objects can be linked to a compensation structure node
through a compensation relationship object (individually or as groups).

variable In PeopleSoft Sales Incentive Management, the intermediate results of calculations.
Variables hold the calculation results and are then inputs to other calculations.
Variables can be plan variables that persist beyond the run of an engine or local
variables that exist only during the processing of a section.

VAT exception Abbreviation for value-added tax exception. A temporary or permanent exemption
from paying VAT that is granted to an organization. This terms refers to both VAT
exoneration and VAT suspension.

VAT exempt Abbreviation for value-added tax exempt. Describes goods and services that are not
subject to VAT. Organizations that supply exempt goods or services are unable to
recover the related input VAT. This is also referred to as exempt without recovery.

VAT exoneration Abbreviation for value-added tax exoneration. An organization that has been granted a
permanent exemption from paying VAT due to the nature of that organization.

VAT suspension Abbreviation for value-added tax suspension. An organization that has been granted a
temporary exemption from paying VAT.

warehouse A PeopleSoft data warehouse that consists of predefined ETL maps, data warehouse
tools, and DataMart definitions.

542 PeopleSoft Proprietary and Confidential

Glossary

work order In PeopleSoft Services Procurement, enables an enterprise to create resource-based
and deliverable-based transactions that specify the basic terms and conditions for
hiring a specific service provider. When a service provider is hired, the service
provider logs time or progress against the work order.

worksheet A way of presenting data through a PeopleSoft Business Analysis Modeler interface
that enables users to do in-depth analysis using pivoting tables, charts, notes, and
history information.

worklist The automated to-do list that PeopleSoft Workflow creates. From the worklist, you
can directly access the pages you need to perform the next action, and then return to
the worklist for another item.

XML schema An XML definition that standardizes the representation of application messages,
component interfaces, or business interlinks.

yield by operation In PeopleSoft Manufacturing, the ability to plan the loss of a manufactured item on an
operation-by-operation basis.

zero-rated VAT Abbreviation for zero-rated value-added tax. A VAT transaction with a VAT code that
has a tax percent of zero. Used to track taxable VAT activity where no actual VAT
amount is charged. Organizations that supply zero-rated goods and services can still
recover the related input VAT. This is also referred to as exempt with recovery.

PeopleSoft Proprietary and Confidential 543

Glossary

544 PeopleSoft Proprietary and Confidential

Index

A
abs() 429
acos() 430
addCtrl() 352
addDays() 430, 435
additional documentation xxiv
addMonths() 430, 435
addYears() 430, 435
Administration console

description 411
understanding 3

administration, mobile solutions 391
ALL selection option 99
Allow options 103
and() 433
annotation, Package 404
ANY selection option 99, 100
APIs

calling the compound model 375
client operations 155

application fundamentals xxiii
application page example 350
application root, mobile

configuration 400
application server 4, 295

default port 7777 306
Java and CLASS files 309
path to JSP pages 300

Application Why Help 456
architecture

compound model 126, 372
understanding 4

asin() 430
ATTR element 210
Attribute element 259
Attribute field

Display page, internal solution 281
Domain Member Min/Max dialog 113

Attribute option, Price page 284
attribute parameter, getControlData 166
attribute record 314
Attribute to Display field 67
attributes

assigning date attributes 74
assigning values to attributes 74

attaching metadata to selection
points 118

classes 13
for domain member quantities 114, 116
form control 324
in modeling 12
obtaining values through the API 165
parameter, getControlData 166
warning about number of

characters 118
Attributes field

compound model 137
group control insertion 363
list control insertion 360
table control insertion 364

Auto Submission of Picks option 67
avgWithQty() 430

B
batch configuration 263, 264
binding, selection points 31
bnd() 430, 433, 437
bnd() 31
bnd() function 25
boolean comparison 21
boolean functions 432
business logic 4
button controls

editing 370
inserting 358

Button Type option
button control insertion 359

C
cache size 423
cached resources 164
calico.page.restore 347
calico.page.start 347
calico.solution.description 347
calico.solution.name 347
calico.solution.restorePolicy 347
calico.solution.version 347
CalicoConstantsInc.jsp 319
CalicoControlInc.jsp 320
CalicoEndFormInc.jsp 320

PeopleSoft Proprietary and Confidential 545

Index

CalicoNA.properties 302
CalicoProcessForm.jsp 318
CalicoProcessFormInc.jsp 314, 319
CalicoStartFormInc.jsp 311, 319
CalicoUI.properties 357
Cancel order button 417
Caption field 281
Caption Type option

Application Why Help 368
group control insertion 362
Insert Numeric Data dialog box 369
list control insertion 360
table control insertion 364

character limitations, attribute values 116
Choice class 158, 180
Choice object 315
choices 155
CHOICES element 197, 201, 240
Choices field 137
Class (CL) attribute 216
CLASS files 309
class, custom, initializing the WCP

with 312
classes

adding attributes to 72
creating 69
date attributes 74
deleting 70
modeling 13
move, copy, and paste 71
naming restrictions 70

classpath of JSP servlet 307
Client Operations Processor (COP)

API, description 155
initializing 162
making calls to 314
run-time processing 311
web application 299

ClientOperations class
methods 161
summary 157

.cms files 58
Column Heading field 364
COM messaging 398
command line compile 426
comments, submitting xxvii
common elements xxvii
Comparator object 175
compareTo() 430, 433, 435
comparison constraints

description 21
editing 104

compatibility constraints 98
See Also editing
overview 15
vs. requirement constraint 46

compilation 65
compile ID 65, 162
Compile ID option 66
completeness information 256
component models

adding or removing 135
configuring in batch mode 263
delta configuration information 231

component, configurable, See configurable
component

COMPONENT_DEFINITION
element 258

Components and Files View 56
COMPONENTS element 234
Components field 287
compound models

architecture 126
compiling, running, testing 146
configuring in batch mode 264
connections 127
creating a project 130
delta configuration information 232
deploying on a web application 301
properties file 459
relationships 127
sample 46, 463
structure types 123
uses for compound 123
xml, compound structure definition

sample 464
Compound Violations field 286
compression of data 424
concatenate() 430
CONFIG_DETAILS element 230
configCopy attribute 261
configId attribute 261, 267
configName attribute 261
configurable components

creating 132
deleting 134
editing types 147
rearranging 134

configuration
attributes 169

546 PeopleSoft Proprietary and Confidential

Index

data 158
loading, API call 162
mobile environment 383
state 296

Configuration Attributes field 287
Configuration class

methods 169
summary 158

configuration details 187, 287
Configuration Details option 286
CONFIGURATION element 229, 257
Configuration HTML Page 289
configuration information

retrieving 199
configuration list price 283
configuration records 296

information in 313
saving in external database 315

configuration results 290
configuration session, ending 164
Configuration Type option 279
configurations 199

See Also configuration information
batch mode 263, 264
copying 261
restore policy 301
retrieving stored 265
save and restore 170
saving 227
saving using COPXML request 265
updating 186, 195
verifying 169

Configurator Form 356
Configurator Solution Tester 276
Configuring button 415
conflicted state 173
Connected Components field 139
connecting to CRM applications 273
connection points

creating and editing types 150
description 127

connections 463
CONNECTIONS element 255
Connections field, Request Details

page 287
constraints

bound and unbound 26
comparison 21
compatibility 15
directional, non-compatibility 16

dynamic default 19
elimination 21
non-compatibility 16
requirement 18
resource 20
summation 20, 21

contact information xxvii
contains() 433, 437
control data, retrieving 158
Control Size field

Display page, internal solution 281
list control insertion 360

Control Type option 281
ControlData class

methods 171
summary 158

ControlData object
COP API 157
retrieving 165

ControlItem class
description 176
summary 158

ControlItem object 157
COP, See Client Operations Processor
COPXML servlet 185
COPXML servlet statistics 426
Copy button 415
cos() 430
cot() 430
countWithQty() 430, 433
creating “None” 73
cross-references xxvi
.csp files 58
.csw files 58
Current Version 61
Customer Connection website xxiv
customization, Mobile Configurator

client 394

D
data 315, 385

compressing configuration data 424
configuration 385
configuration deltas 379
domain members 202
dynamic default quantity storage 80
loading form control data from the

model 351
model 385

PeopleSoft Proprietary and Confidential 547

Index

model, internalizing with Administration
console 392

numeric form control 337
numeric object 368

database abstraction 4
databases

connecting Visual Modeler to 53
interface setup 51
specifying a default in Visual
Modeler 54

supported 47
date() 430, 435
dates

comparison constraint 21
constants in expressions 27
effectivity 24, 25, 30
functions 434

dateToInt() 430, 435
daysBetween() 431, 435
DB Table format 30
DB2, See IBM DB2
Debug option

Configurator Installation page 276
Solution Tester 418

decision points 156, 192
See Also selection points
and selection points 323
choices 156
description 157
retrieving domain members of 202,
204

states 173
DECISION_POINTS element 192
Def Choice option, domain member

quantity dialog 84
default quantities 34, 35
default quantities, static 43
Default Value field, Extern Manager 92
defaults

choices and quantities 115
compound models 137
getting selections through
attributes 116

Defaults column 81
Defaults field 149
Define Request link 285
Define Stylesheet link 286
Delete order button 417
delimiter token 80
delta information

DELTA_INFO element 231
displaying in custom UI 348

Delta Information option 286
delta price (DPR) attribute 215
Delta Price Only option 284
delta pricing

displaying in custom Ui 349
specifying through the API 168

DELTA_INFO element 257
delta-pricing information 164
deltas, configuration 379
deployment

Administration console 411, 412
custom UI 295, 300, 301, 302
mobile configuration environment 391

directional compatibility 15
directional compatibility constraints 46
directory structure, custom UI files 309
Display Component Violations field 287
display information

API call 172
ControlData class 158
ControlItem class 158
domain member 176
getting through the API 169

display options 281
Display page 277

External Solution 278
Internal Solution 279

display properties
CalicoUI.properties 352
specifying 348

Display Selection Violations field 287
DM Min/Max field 83
DMChoice class 159, 180
documentation

printed xxiv
related xxiv
updates xxiv

doesNotContain() 433, 437
doesNotEqual(437
doesNotEqual() 431, 433, 435
domain members

creating a “None” 73
creating internal 73
date attributes 74
deleted 176
description 14, 156
external to model 14
filtering 182, 207

548 PeopleSoft Proprietary and Confidential

Index

internal to model 14
min/max limits 41
retreiving the display information

of 176
retreiving values of all 211
retreiving values of selected 213
retrieving the state 177
retrieving through COP API 202
setting quantity limits 112
setting up binding for external 75
sorting 205
state flags 177

Dreamweaver, See MacroMedia
Dreamweaver

Dreamweaver extensions, using 355
dynamic default relationships

default quantities 108
example 98
storing the quantity in a database 80

dynamic defaults
editing 100
overview 19

dynamic presentation 4

E
effectivity dates

constraints 30
description 24

Effectivity Settings field 62
eliminated items 322
elimination constraints

description 21
editing 103

Enabled property 29
endsWith() 433, 437
equals() 431, 434
error messages 191
error-checking on expressions 89
errors in custom UI creation 354
evaluation of expressions 31
EVChoice class 159, 181
Events field

group control insertion 363
list control insertion 360
table control insertion 364

example of configuration 289
Exclusive property 29
Explanation field

Domain Member Min/Max dialog 113
domain member quantity dialog 83

elimination editor 103
SP Min/Max 83

explanations
creating parameterized 44
incomplete configuration vs. minimum

violation 43
relationships 27
returning using COPXML 219

EXPLANATIONS attribute 207, 219
Explanations.properties

copying 425
description of use 425
searching 425

Expression editor 90
Expression field

Domain Member Min/Max dialog 113
Expression editor 89
Price page 284

expression values, retrieving from a
database 81

expressions
adding to the RHS of a relationship 96
behavior at run time 26
calculating the required quantities 32
creating 90
creating and editing, overview 88
creating relationships containing 94
date functions 434
default values 31
deleting 90, 96
format in LHS 81
functions and operators 429
in relationships 25
string functions 437
viewing 96

Expressions field, Request Details
page 287

extern entry
template 338
text box control 458

External Choices field 138
external data

making internal to the model 85
parameterized explanations 44
variables 91

external database, saving configuration
records to 315

external domain members 75
external node 275
External Node field 275

PeopleSoft Proprietary and Confidential 549

Index

External Solution option 278
external solutions, schemas 278
external variables 91, 251
External Variables field, Request Details

page 287
externs

API 159
binding 31
creating 91
format in RHS 81
representing in the API 159
retrieving by COPXML request 248
retrieving from a database 81

ExternVar class
methods 183
summary 159

F
Field Processing option 281
Filename field 81
filter parameter 167
filtering

API 159
domain members 166, 182
methods 175
table data for the model 80

Find window 57
First Item Text field 360
FLAG element 252, 257, 258
flag, internal 13
FLAG_SET element 252, 259
flags, state of domain members 177
font styles in Properties table 74
form control data, loading 351
form control inclusion set 340
form control item 298
form control templates

application why help 335
customizing 351
description 298
extern entry 338
file location 340
form control why help 336
implementing 339
modifying, example 352
multi-select group 325
multi-select list 327
multi-select table 329
numeric data 337
registering modified templates 352

single-select group 325
single-select image 330
single-select image table 334
single-select list 326
single-select table 328
text input 336
understanding 323

Form Control Why Help 456
form controls

list of provided 298
plugging into pages 340
processing 317, 318

format checking, externs 92
Format property 29, 98
forms

editing 370
inserting 358

Frame Dimensions fields
Display page, external solution 278
Display page, internal solution 279

Function Name field 89
functions

for expressions 429
user-defined 91

G
getAttributeNames() method 173
getAttributes 177
getAttributeValue(String name)

method 173
getAttributeValues method 173
getBeginningOfMonth() 435
getBeginningofWeek() 435
getBeginningofYear() 436
getClientOperations() 311, 314
getCompileVersion() 316
getConfigurationRecords() 311, 315
getDay() 431, 436
getDeltaPrice 177
getExternVar 169
getFlags 177
getMaxQty 177
getMinQty 177
getModelCompileVersion() 311
getModelName() 311, 316
getModelVersion() 311, 316
getMonth() 431, 436
getNumericData 169
getObjectNames() 311
getQty 177

550 PeopleSoft Proprietary and Confidential

Index

getQty method 172
getQuantity method 446
getQuantity() 444
getSolveDate() 436
getState method 172
getting stored configuration records 315
getToday() 436
getTotalPrice 169
getViolations 169, 177
getViolations method 172
getYear() 431, 436
glossary 529
group controls, inserting 361

H
hasEliminationLevel 177

I
IBM DB2 51
IBM DB2 database setup 52
ID field

group control insertion 362
list control insertion 360
table control insertion 364

if() 431
iFrame Height field, Solution Tester 418
image controls, inserting 364
importing a model 64
Include directive, JSP 341
include() 340
inclusion set

parameters 342
using for form control templates 341

inclusion set for form control 340
Incomplete Configuration Explanation

field 62
indexOf() 431, 437
initial page display, API cal 164
initialize() 311
Insertable Objects dialog 89
Installation Table page 274, 275
Instance field

connection point 141
connection point type 152

int getMaxChoices method 173
int getMinChoices method 172
integration

getting pricing data 168
implementing 6

Mobile Configurator 398
Mobile Configurator and ERP

systems 396
setting up 274
to PeopleSoft Enterprise CRM 273
with Order Capture 271, 273

Integration Broker, setup 275
internal flag 13
Internal format 29
internal model data 68
internal node 275
Internal Node field 275
Internal property 13
internal solutions, schemas 279
intToDate() 431, 436
Invalid Type Explanation, Extern

Manager 93
isValid r 177
ItemFilter class

description 182
summary 159

ItemIterator class
methods 183
summary 159

iteration 159

J
Java Server Pages (JSP)

basis applications pages 309
run-time processing 307
scripting in run-time processing 308

Java source files 309
JavaServer Pages (JSP) 305

compound model 373
compound models 126
description 298
implementing in a solution 320

JNDIDBName.properties 52
JSP, See Java Server Pages (JSP)

L
Label field 359
length() 431
Levels format 30
List Configurations button 415
list control 359
List Price Source field 283
loadConfigurationRecords() 311, 315
localization

PeopleSoft Proprietary and Confidential 551

Index

Mobile Configurator client 395
solution UI 394
specifying properties 345

M
MacroMedia Dreamweaver 47
maintenance

mobile packages 389
model 116
reducing for model 45

major and minor versions 65
Major Version field 61
Major Version, Minor Version fields,

compound model settings 131
Manufactured Components option 286
Max Occurs field 133
max() 431
Maximum field, domain member quantity

dialog 83
Maximum Number 83
Maximum Occurrences field 149
maxWithQty() 431
memory use 423
message display 27
messaging node

associating to CRM applications 275
metadata, on selection points 118
Min Occurs field 133
Min of, Max of quantity policies 82, 115,

117
min() 431
Min/Max settings

interaction with default quantities 42
selection points and domain
members 40, 41

Minimum field, domain member quantity
dialog 83

Minimum Number field 82
Minimum Occurrences field 149
Minor Version field 61
minWithQty() 431
MMA Partners xxiv
Mobile Configurator COM API 467
Mobile Transfer Service APIs 397
Mode option 283
model data 68
Model field

component model editor 132
defining component type 148

Model ID field 280

model information 186, 189
Model Information File field 357
Model Name and Model Version Number

field 358
Model Structure View 55
Model Tester 47, 419

behavior, backing out of a pick
sequence 43

compiling a model 66
expression behavior 26
using 66

Model Tester link
Display page, external solution 279
Display page, internal solution 280

Model Version field
Display page, internal solution 280
Model Tester 66

modeling
attributes 12
classes 13
concepts 11
objects 12
quantities in 32
summary of process 46
team environment 146

models
compiling 65
compiling from command line 426
exporting and importing 63
loading 422
managing versions 421
sample 46
sample compound model 377
uses for compound 123

Multi-Sel option, selection point
properties 82

multi-select controls
number of selections allowed 41
overview 356
specifying 111

multi-select group 325
JSP code 450

multi-select list
JSP code 452
state tags 327
template 327

multi-select objects
directional compatibility 15
directional compatibility constraint 46

multi-select table control

552 PeopleSoft Proprietary and Confidential

Index

JSP code 453
template 329

N
“Name” attribute 107
naming restrictions

class names 70
domain members 73
queried data 77

New button 414
newState attribute 267
non-compatibility constraints 16
non-directional compatibility 15
None domain member 73, 77
None field 282
none option

in dynamic defaults 100
providing through the API 171

not() 434
notes xxvi
Number field 113
Number of Columns field 281
Number of Controls Per Row field 67
numeric comparison 21
numeric data control 337, 457
Numeric Data field

connection point 141
connection point type 152

numeric data object 169, 368
numeric values, component 249
NUMERIC_VALUES element 221
NumericData class

methods 183
summary 160

O
objectName parameter 166
occursAfter() 434, 436
occursBefore() 436
occursOnOrAfter() 434, 436
occursOnOrBefore() 434, 436
ODBC data source configuration 51, 52
On Output property 118
Operation field

connection point type 151
Relationship editor 140

Operator option 284
operators, numeric 429

Optional option, domain member quantity
dialog 84

or() 434
Oracle database setup 51, 52
order change 267
orderChange attribute 267
Other UI field 62
out object 309
output 285, 418
Output page 277
overridable quantity policy 82, 114
Overview window 57

P
Package Components option 286
Packaging Tool 386
page flow in custom UI 317
page template 298
parameters

explanations 44
form control 324
format in explanation 27

PCIF
list of elements 473
use 63

PeopleBooks
ordering xxiv

PeopleCode, typographical
conventions xxv

PeopleSoft Advanced Configurator 273
access points 288
integrating 288
integrating, overview 288
launching 288
testing and administration 3

PeopleSoft application fundamentals xxiii
PeopleSoft Configurator Server Location

field 131
PeopleSoft Enterprise Visual Modeler 11
PeopleSoft.MCfgProxy 467
performance

enhancing at model level 45
performance optimization 300
pi() 431
plus-minus pricing 282
policy options 163
Port field 61
prerequisites xxiii
Price page 277, 282
pricing

PeopleSoft Proprietary and Confidential 553

Index

establishing options 282
properties 283

pricing information
getting through the API 168
setting in custom UI solutions 322

print command, in scripting JSP
pages 309

printed documentation xxiv
processConfigurationRecords() 311
Product Selector option 286
product() 431
project files 58
project settings

compound model 131
specifying 60

properties
class 13
compound models 302
displaying custom UI state tags 348
form control 324
loading for a custom control 351
mobile solution packages 404
of relationships 29
specifying for solution’s models 345
specifying solution information 347

Properties Editor
description 56
font styles 74

PSMSGNODEDEFN table 275
Purchased Components option 286

Q
quantities

default, interaction with Min/Max
settings 42

domain member min/max limits 41
dynamic default 34
getting from attributes 116
of domain members, retrieving 217
running a check 116
selection point 43
setting default values 115
setting up in model 109
settting default 114
static default 34

Quantity option 81
quantity policies 82
Quantity Policy

description 42
setting 117

Quantity Policy column, Edit Default
Choices dialog 114

Quantity Value/Expression column
Edit Default Choices dialog 115

quotient() 432

R
Recurring Price Source field 284
recurring prices 284
Reference field, component model

editor 132
Refresh Functions From Server button 90
related documentation xxiv
relationships

between objects 14
See Also constraints

compound models 127
creating 93
creating and deleting in compound

models 138
creating outside the model 105, 107
deleting 90, 96
displaying for compound model 141
dynamic default with quantity 117
explanations 27
expressions on the LHS 98
prerequisites 87
sample compound model 378
specifying required, in compound

model 142
viewing 96
working with 96

release() 311, 316
Render With option 285
reparent classes 71
Replace “None” With field

group control insertion 363
list control insertion 360
table control insertion 364

Request Details page 285
request details, internal solutions 285
Request Message field 285
request properties 286
Required option, Extern Manager 92
Required Relationship field 133
requirement constraints

description 18
editing 99
externs 92
vs. compatibility constraint 46

554 PeopleSoft Proprietary and Confidential

Index

requirements, Mobile Configurator 389
reserved symbols and words 13
reset buttons 359
resetConfiguration() 311, 316
resource constraints

description 20
editing 101

restore API call 162
Restore button 415
restore configuration 158, 315
restore policy 301, 393
Restore Policy field

component model editor 132
defining component type 149

Restore Policy option
Display page, internal solution 281

restricted characters 132
Return field 282
Return Type option 89
RHS, See right-hand-side of a relationship
root class 13
round() 432
Routing Operations option 286
run-time functions 371
run-time objects 355, 358

S
sample configuration 289
samples

compound model 379, 463
creating a custom UI 376
custom application page 350
Mobile Configurator 397

Save order button 417
Schema ID 278, 279
schemas

creating for external solutions 278
creating for internal solutions 279
display 277
external solution 277
internal solution 278
output 277
pricing 277
understanding 276, 277

scriptlets 308
SECTION element 233, 257
selectable state 173
selected state 173
Selection Point option

Application Why Help 368

Dreamweaver setup 369
group control insertion 362
list control insertion 360
table control insertion 364

selection points
deleting 84
described 81
description 14
form controls for 356
min/max limits 40
multi-select 218
setting visible attributes 84
specifying quantities 32
viewing 84

SELECTION_POINT element 259
selections

number allowed 40, 42, 43, 110
setting default 114
setting defaults 115

Selections field, Request Details page 287
Separator Settings field 62
Sequence field 281
Server field 61
server node 275
server, application 295
servlet statistics 426
servlet, custom UI 307
setPricingControls() 349
Show Application Violations, Display page,

internal solution 282
Show Configuration List Price option,

Display page, internal solution 282
Show Delta Price option 282
Show Eliminated option

Display page, internal solution 281
group control insertion 362
list control insertion 360
table control insertion 364

Show Elimination Level option 31, 67
Show None on Required Controls

option 67
Show “None” option

group control insertion 362
list control insertion 360
table control insertion 364

Show Pricing option 67
Show Violations option

Display page, internal solution 281
sin() 432
single-select controls

PeopleSoft Proprietary and Confidential 555

Index

number of selections allowed 41
overview 356
specifying 111

single-select group control
JSP code 449
template 325

single-select image control
Dreamweaver extension 356
JSP code 454
template 330

single-select image table control
description 334
JSP code 454

single-select list
state tags 326
template 326

single-select list control
JSP code 452

single-select table
JSP code 451
template 328

site support 385
Solaris, form control location 340
solution information 347
solution list 347
solution package

adding a model 403
adding files 404
contents 384
creating 401
generating and updating the
installer 404, 405

modifying 404
printing contents 406
updating the model 405

Solution Package 301
solution properties 278
solution state 158
Solution Tester

description 414
launching 417

Solution Tester link
Display page, external solution 278
Display page, internal solution 280

Solution Type option
Display page, external solution 278
Display page, internal solution 279

solutionId attribute 261, 267
solutions

creating with Dreamweaver 356

distribution and installation for mobile
use 385

external vs. internal 277
integrated 6
setting test parameters 418
specifying model properties 345
standalone 6
testing 414

solve date 25
Solve Date (YYYYMMDD) field 67
Sort button 362
Sort By State option 67
Sort option

list control insertion 360
table control insertion 364

sort parameter, getControlData 166
sorting

custom 175
domain members 166, 205
methods 174

sortsAfter() 434, 438
sortsBefore() 434, 438
source control

Mobile Configurator 398
model files 62
setup 50
supported software 47
Visual Modeler 46

Source field
connection point 141
connection point type 151

SP Min/Max button, selection point
properties 82

SQL queries
creating relationships outside the

model 105, 107
writing 75, 76, 77, 78, 79

SQL Query
domain member quantity dialog 83
field 72

SQL Query edit window 83
SQL Query format 29
SQL Query option 13
SQL Server setup 51
sqrt() 432
standalone solution

implementing 6
start page, setting 391
startsWith() 434, 438
state

556 PeopleSoft Proprietary and Confidential

Index

decision point, getting 173
domain member 177
of domain members, retrieving 217

state tags 326, 327, 348
state, model, clearing 316
static default quantities 43
static variable 91
string functions 437
String or Path field

group control insertion 362
list control insertion 360
table control insertion 364

String or Path option 369
StringBuffer.append() 354
STRUCTURE element 258
Structure field 287
STRUCTURE, SUBSTRUCTURE

elements 254
stylesheet for internal solution UI 285
Submit order button 417
substring() 432, 438
SUBSTRUCTURE element 258
suggestions, submitting xxvii
sum quantity policy 82
Sum quantity policy 115, 117
sum() 432
summation relationships

description 20
dialog 94
editing 102

sumWithQty() 432

T
Tab field, Display page, internal

solution 281
table aliases 79
table controls, inserting 363
table data 80
tan() 432
Target DP field 141
Target field

compound model relationship 139
connection point 141
connection point type 152

Target Variable field 151
team modeling 146
TelcoSample 376
template

form control 298
page 298

templates, See form controls
compound models 128
extern entry form control 338
form control filenames 339
form controls 351
implementing for form controls 339

terms 529
Test UI field 62
testing and administration tools 3
text input control 457
text input template 336
toDate() 436
toDegrees() 432
toFloat() 432, 434, 436
toInteger() 432, 434, 436
toLowerCase() 438
toRadians() 432
TOTAL_PRICE attribute 201, 234
toUpperCase() 438
transfer service, Mobile Configurator 397
trim() 438
Type field

connection point 140
Type field, component model editor 132
Type field, Extern Manager 92
Type option

Display page, internal solution 281
Price page 284

typographical conventions xxv

U
UI Version Number field 358
un-installing

mobile solution package 389
Unbounded button, Domain Member

Min/Max dialog 113
undefined state 173
Update field

Display page, internal solution 282
URL field 359
Use Min/Max option 81
Use Most Current Version option 280
Use Quantity Policy for All Domain

Members option 115
Use Select (List) Controls option 67
user-defined functions

creating and adding 439
description 91
getQuantity() 444
retrieving 90

PeopleSoft Proprietary and Confidential 557

Index

UserFunction interface 440
UserFunctions.xml 442

V
Validate on Return option 282
Value (VL) attribute 222
variable

extern 91
external 91
static 91

verification
of configuration 169
quantity calculation of domain
members 116

Verify Configuration option 67
version control, See source control
versions

assigning to model 346
editing component model’s in a
compound 144

for component models of a
compound 136

getting the compile 316
mobile solutions 389
of models 421
retrieving the latest compile 189, 190

View Details – XML button 416
View Details button 416
Violation class 184
violation messages 425
violations

API 160
externs 92
incomplete configuration vs. minimum
violation explanations 43

returned by COPXML 247
returning choice violations 246
returning explanations of constraint
violations 208

VIOLATIONS element 234
visual cues xxvi
Visual Modeler

description 11
main window 54

Visual SourceSafe 62

W
warnings xxvi
Web Client Processor (WCP)

architecture component 299
initializing 312
methods 315
releasing 316
run-time processing 311

web components 298
web deployment 295
web server

architecture 4
default port 80 306

Why Help
application-level 456
constraint violation explanations 27
externs 92
form control template 336
inserting 367
template for application-level 335

workspace creation 59

X
xml, compound model structure

definition 464
xor() 434

558 PeopleSoft Proprietary and Confidential

	toc
	Open Source Disclosure
	Contents
	About This PeopleBook
	PeopleSoft Application Prerequisites
	PeopleSoft Application Fundamentals
	Related Documentation
	Obtaining Documentation Updates
	Ordering Printed Documentation
	Web
	Telephone
	Email

	Typographical Conventions and Visual Cues
	Typographical Conventions
	Visual Cues
	Notes
	Warnings
	Cross-References

	Country, Region, and Industry Identifiers
	Country Identifiers
	Region Identifiers
	Industry Identifiers

	Currency Codes

	Comments and Suggestions
	Common Elements in These PeopleBooks
	PeopleSoft Enterprise Advanced Configurator for CRM Preface
	PeopleSoft Enterprise Advanced Configurator 8.9 PeopleBook
	PeopleSoft Enterprise Order Capture 8.9 PeopleBook
	Getting Started
	Getting Started with PeopleSoft Enterprise Advanced Configurator
	Additional Documentation for Advanced Configurator
	Testing and Administration Tools
	Advanced Configurator Architecture
	Application Server
	Web Server
	Relational Databases

	Configurator Interfaces
	Advanced Configurator Implementation
	Implementing an Integrated Configurator Solution
	Implementing a Standalone Configurator Solution

	Other Sources of Information

	Product Modeling with a Component Model
	Understanding Modeling
	Basic Model Concepts
	Visual Modeler
	Visual Modeler Objects
	Object Properties and Attributes
	Classes and Class Attributes

	Domain Members
	Internal Domain Members
	External Domain Members

	Selection Points

	Relationships Between Objects
	Compatibility
	Directional Compatibility
	Non-Compatibility
	Directional Non-Compatibility
	Expressions in the Left-Hand Side of the Relationship
	Requirement Constraint
	Dynamic Default
	Resource Constraint
	Summation
	Elimination
	Comparison
	Effectivity Dates

	Expressions in Relationships
	Relationship Explanations
	Relationship Properties
	Enabled
	Exclusive
	Format
	Effectivity Date
	Levels

	Default Values Within Expressions
	Quantities in Modeling
	Static Default Quantities
	Dynamic Default Quantities
	Multiple Selections on a Single Domain Member
	Order of Evaluation

	Understanding Minimum and Maximum Selections and Limits
	Selection Point Min/Max

	Domain Member Min/Max
	Interaction between Default Quantities and Min/Max Settings at
	Minimum Violation Explanation and Incomplete Configuration Expla

	Creating Parameterized Explanations
	Optimizing Performance and Minimizing Model Maintenance
	Using the Sample Models
	The Modeling Process
	Model Tester
	Interfacing with Third-Party Tools
	Microsoft SQL Server, Oracle Databases, and IBM DB2
	MacroMedia DreamWeaver
	Source Control Interfaces

	Setting Up the Modeling Environment
	Common Elements in this Chapter
	Connecting to Third-Party Software
	Source Control Software
	Database Interface Configuration
	Configuring an ODBC Data Source for Microsoft SQL Server
	Configuring an ODBC Data Source for Oracle
	Configuring an ODBC Data Source for IBM DB2

	Configuring JNDIDBName.properties

	Connecting to a Database from Visual Modeler
	Specify a Database Connection
	Specify a Default Database

	Getting Started with Visual Modeler
	Model Structure View
	Components and Files View
	Properties Editor
	Overview Window
	Find Window

	Understanding Project Files
	Configurator Source Project (.csp)
	Configurator Source Workspace (.csw)
	Configurator Model Source (.cms)
	Team Modeling
	Creating a New Project or Workspace
	Specifying Model Project Settings
	Dialog Used to Specify Model Project Settings

	Adding a Project to Source Control

	Importing and Exporting Models
	Exporting a Model
	Importing a Model

	Compiling a Model
	Using the Model Tester
	Internalizing Model Data

	Creating Objects for the Model
	Creating a Class
	Deleting a Class
	Changing Class Structure
	Adding Class Attributes
	Creating Internal Domain Members
	Creating a “None” Domain Member
	Assigning Values to Attributes
	Inputting Date-Type Attributes Manually
	Setting Up Binding for External Domain Members
	Selecting a Primary Table
	Simple Queries
	Secondary Table Option
	Advanced Queries
	Using Table Aliases

	Filtering and Manipulating Table Data
	Storing a Dynamic Default Quantity in a Database
	Retrieving Expression Values and Externs from a Database
	Working with Selection Points
	Internalizing Data

	Creating Relationships Between Model Objects
	Preparing to Create Relationships
	Common Elements in this Chapter
	Creating and Editing Expressions
	Static Variables
	External Variables
	User-Defined Functions

	Creating Externs
	Creating a Relationship
	Creating Relationships that Have Expressions

	Working with Relationships
	Relationships Displayed as a Table
	Relationships Displayed with Participant Lists
	Editing Compatibility Constraints
	ANY and ALL

	Editing Requirement Constraints
	Editing Dynamic Defaults
	Editing Resource Constraints
	Editing Summation Relationships
	Editing Elimination Constraints
	Editing Comparison Constraints

	Creating Relationships Outside the Model with SQL Queries

	Specifying Quantities on Selection Points
	Understanding Quantity Setup
	Specifying the Number of Allowed Selections and Optional/Require
	Specifying Single- or Multi-Select Control
	Setting Quantity Limits on Domain Members
	Setting Default Selections and Quantities
	Setting Explicit Default Choices and Quantities
	Getting Default Selections and Quantities at Run Time Through At

	Defining the Dynamic Default Quantity for a Selection
	Attaching Metadata to Selection Points Using Attributes

	Product Modeling with Compound Models
	Understanding Compound Modeling
	Applications for Compound Models
	Compound Model Structure Types
	Architecture
	Relationships in a Compound Model
	Connected Components
	Connection Points

	Modeling Strategy
	Reference to Template Component
	Master Component Type
	Component Type with Reference

	Working with Compound Models
	Getting Started with Compound Models
	Creating a Compound Modeling Project
	Editing Project Settings
	Creating a Configurable Component
	Deleting a Configurable Component
	Rearranging Components in the Compound Model
	Adding and Removing a Component Model from the Project
	Editing Default Values
	Creating and Deleting Relationships Between Configurable Compone
	Displaying a Compound Model Relationship
	Specifying Required Relationships
	Editing Component Model Versions
	Compiling, Running, and Testing a Compound Model
	Team Modeling

	Standardizing Compound Model-Building
	Creating and Editing Configurable Component Types
	Creating and Editing Connection Point Types

	Application Extensions
	Client Operations Processor API
	Understanding the COP Java API
	Choices
	Decision Points and Domain Members

	Application Classes
	ClientOperations
	Configuration
	ControlData
	ControlItem
	Choice
	DMChoice
	EVChoice
	ItemFilter
	ItemIterator
	ExternVar
	NumericData
	Violation

	Using the COP Java API
	ClientOperations
	Methods
	Initializing the COP
	Releasing the COP
	Processing and Displaying a Page
	Getting a ControlData Object
	Specifying Delta-Pricing and Total-Pricing Requirements
	Getting Other Display Information
	Verifying a Configuration

	Configuration
	Methods
	Saving and Restoring a Configuration

	ControlData
	Methods
	Getting Display Information for a Decision Point and Its Domain
	Getting the State of a Decision Point
	Sorting and Filtering
	Standard Sorting
	Custom Sorting
	No Sorting
	Filtering

	Handling Deleted Domain Members

	ControlItem
	Methods
	Getting Display Information for a Domain Member
	Getting the State of a Domain Member

	Choice
	DMChoice
	Methods
	Examining a DMChoice

	EVChoice
	Methods
	Examining an EVChoice

	ItemFilter
	Methods
	Filtering Out Domain Members

	ItemIterator
	ExternVar
	NumericData
	Violation

	Understanding the Configurator XML Interface
	Request-Response
	Elements and Attributes
	Retrieving Model Information
	Updating a Configuration Interactively
	Retrieving Configuration Information
	Copying a Configuration
	Using Batch Configuration Mode
	Changing the Order Status of a Configuration
	COP.dtd
	Element-Attribute Trees

	Retrieving Model Information
	Elements and Attributes
	Version and Compile Version
	Latest Version and Compile Version
	Latest Compile Version

	Error Messages
	Decision Points
	All Decision Points
	Public Decision Points

	Updating a Configuration
	Updating a Configuration
	Elements and Attributes
	Choices
	Choices and Response

	Retrieving Configuration Information
	Understanding Configuration Information
	Elements and Attributes
	Total Price
	Choices
	Domain Member Data
	Every Decision Point
	Selected Decision Points
	A Single Decision Point
	Multiple Decision Points
	No Decision Points

	Sorting Domain Members
	Filtering Domain Members
	Explanations
	Constraint Violations
	No Constraint Violation

	Attributes
	Every Domain Member
	Selected Domain Members
	Combining Requests

	Delta Price
	Class
	State and Quantity

	Multi-Select Decision Points
	Global Explanations
	Global Only
	Global and Decision Point

	Numeric Values
	All Values
	Selected Values
	Value (VL)

	Retrieving Saved Configuration Information
	Understanding Saved Configuration Information
	Elements and Attributes
	The CONFIGURATION Element
	The CONFIG_DETAILS Element
	The DELTA_INFO Element
	Components
	Compounds

	The SECTION Element
	Total Price
	Compound Violations
	Components
	Case 1
	Case 2
	Case 3
	Case 4
	Case 5
	Case 6

	Choices
	Case 1
	Case 2
	Case 3
	Case 4
	Case 5
	Case 6
	Case 7
	Case 8

	Choice Violations
	Component Violations
	Externs
	Case 1
	Case 2

	Numeric Values
	Case 1
	Case 2

	External Variables
	All Values
	Selected Values

	Configuration Attributes
	Case 1
	Case 2

	Hierarchical Component Structure
	Connections
	Case 1
	Case 2

	Completeness Information
	Summary of Configuration Information Elements and Attributes

	Copying a Configuration
	Elements and Attributes
	Copy and Response

	Using Batch Configuration Mode
	Elements and Attributes
	Configuring a Component
	Configuring a Compound Configuration
	Saving a Configuration
	Retrieving a Configuration

	Changing the Order Status of a Configuration
	Elements and Attributes
	Order Change and Response

	PeopleSoft CRM Order Capture Integration
	Understanding Integration with PeopleSoft CRM Order Capture
	Integration with PeopleSoft Enterprise Order Capture Application
	Insurance and Financial Products
	Service Products

	Security

	Setting Up Integration
	Setting Up PeopleSoft Advanced Configurator for Integration
	Setting Up PeopleSoft CRM to Integrate with PeopleSoft Advanced
	Page Used to Set Up Configurator Integration with PeopleSoft CRM
	Associating Advanced Configurator Messaging Node and Enabling De
	Integration Broker Setup
	Configurator Debug Information

	Creating Advanced Configurator Schemas
	Pages Used to Create Configurator Schemas
	Understanding Configurator Schemas
	Understanding External Solutions and Internal Solutions

	Creating Schemas for External Solutions
	Solution Properties

	Creating Schemas for Internal Solutions
	Solution Properties
	Display Properties
	Page Information
	Control Setup
	Display Options
	Captions
	Miscellaneous

	Establishing Pricing Options
	Price Mode
	Pricing Properties
	Configuration List Price
	Recurring Price

	Specifying Request Details
	Request Details
	Request Properties
	Configuration Details
	Display Options
	Package Components

	Accessing the Advanced Configurator Solution from Within PeopleS
	Accessing Advanced Configurator
	Pages Used to Access Product Configuration
	Sample Product Configuration
	Viewing Configuration Details

	Building a Custom User Interface
	Understanding the Run-Time System
	Deployment Framework
	Advanced Configurator Web Components
	Sequential Application JSP Pages
	Deploying a Web Application Based on a Single Component Model
	Optimizing Performance
	Restore Policy

	Deploying a Solution in a Mobile Environment
	Deploying a Web Application Based on a Compound Model

	JSP and Page Templates
	The Midtier Framework
	Scope of the Servlet
	Using JSP Processing
	Writing JSP
	Using Generated Java and Class Files

	Processing User Picks and Entries
	Understanding Run-Time Processing
	Initializing the Web Client Processor
	Syntax

	Processing User Picks and Entries
	Configuration Records
	Processing
	Syntax

	Attribute Records
	Processing
	Syntax

	Making COP Calls
	Syntax

	Using WCP Methods
	Getting Decision or Selection Points
	Syntax

	Getting and Processing Stored Configuration Records
	Syntax
	Syntax

	Getting Model Name, Version, and Compile Version
	Syntax

	Clearing Model State
	Syntax

	Releasing the WCP
	Syntax

	Processing Configurator Form Controls in JSP Pages
	Understanding Configurator Form Control Processing
	Configurator JSP Page Flow
	Processing Configurator Form Controls
	Pre-Process Form Page
	Process Form Page
	Constants Page
	Start Form Page
	Control Page
	End Form Page

	Using Configurator JSP Pages in a Solution

	Using JSP Templates for Form Controls
	Understanding Form Control Templates
	Properties, Parameters, and Attributes
	Properties
	Parameters
	Attributes

	Form Control Templates
	Single-Select Group
	Multi-Select Group
	Single-Select List
	Multi-Select List
	Single-Select Table
	Multi-Select Table
	Single-Select Image
	Single-Select Image Table
	Application Why Help
	Form Control Why Help
	Text Input Form Control
	Numeric Data Form Control
	Extern Entry

	Using Configuration Form Control Templates
	Plugging Form Controls into the Application Page(s)
	Using a JSP Include Directive
	Using a Form Control Inclusion Set

	Parameters in the Inclusion Set

	Specifying the Solution's Model and Locale Properties
	Assigning a Specific Model Version to Use for Configuration
	Specifying Solution Information Properties
	Specifying Display Properties
	Displaying Delta Information
	Displaying Delta Pricing

	Application Page Example
	Customizing a Form Control Template
	Application Scope
	Template Scope
	Loading the Form Control Data from the Model
	Loading the UI Properties for a Control

	Registering Custom Form Control Templates
	Example Custom Form Control Template
	Common Errors

	Using the Page Editor Extensions for Dreamweaver
	Understanding Dreamweaver Extensions
	Advanced Configurator Run-Time Objects
	Creating a Solution

	Editing CalicoUI.properties
	Inserting a Configurator Run-Time Object
	Inserting a Form
	Inserting a Button
	Inserting a List
	Inserting a Group
	Inserting a Table
	Inserting an Image
	Inserting Why Help
	Inserting a Numeric Data Object

	Editing Properties of Advanced Configurator Objects
	Editing Forms and Buttons
	Editing Lists, Groups, and Tables

	Compound Modeling
	Understanding the Compound Model at Run Time
	Run-Time Capabilities
	Architecture

	Using Compound Model JSP Pages
	Components
	Connections
	Configurations
	Changes
	Application
	Form

	Calling the Compound Model API
	Creating an Application from the Sample
	Viewing the Sample Application
	Node-Hub-Circuit Services
	Configurable Components
	Node
	Hub
	Circuit

	Relationships
	Connection
	HubCircuits
	NodeCircuit

	Modeling Node-Hub-Circuit Services
	Configuring Node-Hub-Circuit Services
	Creating a Compound Configuration
	Reconfiguring a Compound Configuration
	Obtaining the Configuration Delta

	Mobile Product Configuration
	Understanding Mobile Product Configuration
	Mobile Configuration
	Solution Package Contents
	Functional Components
	Data
	Model Data
	Site Support Data
	Configuration Data

	Solution Distribution and Installation
	Types of Models
	Mobile Configurator Packaging Tool
	Mobile Machine Requirements
	Package Maintenance
	Controlling Field Version Use
	Guidelines for Maintenance
	Don't put the same files in multiple packages.
	Avoid putting more then one Solution in a package.
	Keep and maintain your Packages for the life of a Solution.
	When you create a Model Update Installer, be aware that you are

	Mobile Solution Administration
	Preparing a Solution for Packaging
	Internalizing Model Data
	Setting Configuration Restore Policy

	Localizing Solution UI Files
	Customizing and Localizing the Mobile Configurator Client
	Customizing the Mobile Client
	Tip for setting up OnTheWeb.htm and Updates.htm

	Localizing the Mobile Client

	Integrating Mobile Configurator with ERP Systems
	MTS Interfaces
	Sample Implementations
	Using the Transfer Service
	Using Source Control

	Integrating Mobile Configurator with Microsoft COM-Compatible Ap

	Creating and Maintaining Mobile Solutions
	Understanding the Packaging Tool
	Setting the Application Root
	Creating a New Solution Package
	Adding a Model to the Solution Package
	Setting End-User Installation Options
	Modifying a Solution Package
	Adding Non-Solution Files to the Solution Package
	Accessing Package Properties
	Adding Annotation to the Package
	Generating the Solution Package Installer
	Updating a Solution Package Installer
	Updating Only the Model(s) of a Package
	Printing Solution Package Content

	Advanced Configurator System Administration
	Understanding Advanced Configurator Administration
	Administration Tools
	Administration Console
	Solution Tester
	Page Used to Test Solutions
	Accessing the Solution Tester
	Understanding the Output and Solution User Interface
	Setting Configuration Solution Parameters

	Model Tester

	Maintaining the Advanced Configurator System
	Managing Model Versioning
	Loading Models
	Managing the Configurator Server's Memory Usage
	Compressing Configuration Data
	Using the Explanations.properties File
	Copying the Explanations.properties File
	Searching for the Explanations.properties File

	Compiling Models from the Command Line
	Accessing and Using COPXML Servlet Statistics

	Visual Modeler Expression Editor Functions
	Numeric Operators and Functions
	Boolean Functions
	Date Functions
	String Functions

	Creating and Adding User-Defined Functions
	Adding a User-Defined Function
	Implementing the UserFunction Interface
	Methods
	Exceptions
	Editing UserFunctions.xml
	Examples

	Using the Sample User-Defined Function getQuantity()
	Understanding the getQuantity() Sample Function
	Setting Up getQuantity()
	Viewing getQuantity() Behavior

	Advanced Configurator Form Controls
	Single-Select Group Form Control
	Multi-Select Group Form Control
	Single-Select Table Form Control
	Multi-Select List Form Control
	Single-Select List Form Control
	Multi-Select Table Form Control
	Single-Select Image
	Single-Select Image Table
	Application Why Help
	Form Control Why Help
	Text Input Form Control
	Numeric Data Form Control
	Extern Entry

	Compound Model Properties File
	Properties Description
	File Text

	Node-Circuit-Hub Service
	Description of Services
	Node
	Hub
	Circuit
	Connections

	XML Representation of Compound Structure Definition

	Mobile Configurator COM API
	PeopleSoft.MCfgProxy Methods
	Start
	Arguments
	Return Values

	Stop
	Arguments
	Return Values

	Show
	Arguments
	Return Values

	Hide
	Arguments
	Return Values

	NewConfiguration(String sSolutionID)
	Arguments
	Return Values

	ReConfigure(String sXML)
	Arguments
	Return Values

	WaitForConfiguration(Integer nTimeout)
	Arguments
	Return Values

	IsConfigurationReady
	Arguments
	Return Values

	GetConfiguration
	Arguments
	Return Values

	SetLabelToString(Integer nLabelID, String NewLabel)
	Arguments
	Return Values

	StartCountdown(Integer nCountdownTimeInMins, Integer nWarnLeftTi
	Arguments
	Return Values

	StopCountdown
	Arguments
	Return Values

	Sample Application Client Code

	PCIF
	MODEL Element
	DATABASE_REFERENCE Element
	CLASS Element
	CLASS_ATTRIBUTE Element
	DEFAULT_VALUE Element
	DOMAIN_MEMBER Element
	DM_ATTRIBUTE Element
	STANDARD_QUERY Element
	PRIMARY_TABLE Element
	COLUMN Element
	WHERE Element
	SECONDARY_TABLE Element
	JOIN Element
	ADVANCED_QUERY Element
	QUERY_TEXT Element
	SELECTION_POINT Element
	STATIC_DEFAULTS Element
	STATIC_DEFAULT Element
	SELECTION_POINT_MIN_QTY_SETTINGS Element
	DOMAIN_MEMBER_MIN_QTY_SETTINGS Element
	DOMAIN_MEMBER_MAX_QTY_SETTINGS Element
	DYNAMIC_DEFAULT Element
	EXPLANATION Element
	EXPRESSION Element
	NOT_COMPATIBLE Element
	EXTERN Element
	EFFECTIVITY Element
	EFFECTIVEDATE Element
	COMMENT Element
	ARGUMENT Element
	RHS_ARGUMENT Element
	ROW Element
	SET Element
	VALUE Element
	The CONSTRAINT_QUERY Element
	SQL_CLAUSE Element
	COMPATIBLE Element
	REQUIRED Element
	ELIMINATION Element
	COMPARISON Element
	RESOURCE_CONSTRAINT Element
	RESOURCE_PROVIDERS Element
	ATTRIBUTE Element
	RESOURCE_CONSUMERS Element
	SELECTION_POINT_ATTRIBUTE Element
	SUMMATION Element
	SUMMANDS Element
	TOTAL_ATTRIBUTE Element

	Element-Attribute Trees
	Complete COP XML
	Without Attributes
	With Attributes

	Configurator XML Interface
	Request
	Response

	ISO Country and Currency Codes
	ISO Country Codes
	ISO Currency Codes

	Glossary of PeopleSoft Terms
	Index

