

Retek® Customer Order
Management™

11.0

Integration Guide

Corporate Headquarters:

Retek Inc.
Retek on the Mall
950 Nicollet Mall
Minneapolis, MN 55403
USA
888.61.RETEK (toll free US)
Switchboard:
+1 612 587 5000
Fax:
+1 612 587 5100

European Headquarters:

Retek
110 Wigmore Street
London
W1U 3RW
United Kingdom
Switchboard:
+44 (0)20 7563 4600
Sales Enquiries:
+44 (0)20 7563 46 46
Fax:
+44 (0)20 7563 46 10

The software described in this documentation is furnished
under a license agreement, is the confidential information of
Retek Inc., and may be used only in accordance with the
terms of the agreement.
No part of this documentation may be reproduced or
transmitted in any form or by any means without the express
written permission of Retek Inc., Retek on the Mall, 950
Nicollet Mall, Minneapolis, MN 55403, and the copyright
notice may not be removed without the consent of Retek Inc.
Information in this documentation is subject to change
without notice.
Retek provides product documentation in a read-only-format
to ensure content integrity. Retek Customer Support cannot
support documentation that has been changed without Retek
authorization.
Retek® Customer Order ManagementTM is a trademark of
Retek Inc.
Retek and the Retek logo are registered trademarks of Retek
Inc.
This unpublished work is protected by confidentiality
agreement, and by trade secret, copyright, and other laws. In
the event of publication, the following notice shall apply:
©2004 Retek Inc. All rights reserved.
All other product names mentioned are trademarks or
registered trademarks of their respective owners and should
be treated as such.
Printed in the United States of America.

Retek Customer Order Management

Customer Support
Customer Support hours

Customer Support is available 7x24x365 via email, phone, and Web access.

Depending on the Support option chosen by a particular client (Standard, Plus, or Premium), the
times that certain services are delivered may be restricted. Severity 1 (Critical) issues are
addressed on a 7x24 basis and receive continuous attention until resolved, for all clients on active
maintenance. Retek customers on active maintenance agreements may contact a global Customer
Support representative in accordance with contract terms in one of the following ways.

Contact Method Contact Information

E-mail support@retek.com

Internet (ROCS) rocs.retek.com
 Retek’s secure client Web site to update and view issues

Phone +1 612 587 5800

Toll free alternatives are also available in various regions of the world:

Australia +1 800 555 923 (AU-Telstra) or +1 800 000 562 (AU-Optus)
France 0800 90 91 66
Hong Kong 800 96 4262
Korea 00 308 13 1342
United Kingdom 0800 917 2863
United States +1 800 61 RETEK or 800 617 3835

Mail Retek Customer Support
 Retek on the Mall
 950 Nicollet Mall
 Minneapolis, MN 55403

When contacting Customer Support, please provide:

• Product version and program/module name.

• Functional and technical description of the problem (include business impact).

• Detailed step-by-step instructions to recreate.

• Exact error message received.

• Screen shots of each step you take.

http://rocs.retek.com/

Contents

i

Contents
Chapter 1 – Introduction .. 1

Overview... 1

Who this guide is written for .. 1

RCOM’s integration points into the retail enterprise.. 2

Technical architecture overview... 3

The business advantages of the layered approach .. 4

The components and Javadoc ... 5

Where you can find more information.. 5

Chapter 2 – Technical architecture... 7

Overview... 7

A high-level view of the layered model.. 8
Presentation layer ... 8
Business components and services layer .. 8
Data access layer .. 9
Database ... 9

A detailed distributed view of the layered architecture .. 9

Advantages of the data access object (DAO) layer .. 12

Component processing.. 13

RCOM-related Java terms and standards.. 14

Chapter 3 – RCOM and the Retek Integration Bus (RIB) 17

RIB overview.. 17

Subscribers mapping table .. 17

Publishers mapping table .. 21

Chapter 4 – Interface process flows ... 23

Overview... 23

Available to promise (ATP) processing.. 23
From RCOM to the ATP module ... 24
From the merchandising system to the ATP module ... 24
From the ATP module to RCOM ... 24

Custom user interface (such as the internet) ... 24
From RCOM to the custom user interface (such as the internet) 24
From the custom user interface (such as the internet) to RCOM 25

Retek Customer Order Management

ii

Foundation and code data ... 25
From the merchandising system to RCOM .. 25
From the marketing vendor to RCOM ... 25
From the customer vendor to RCOM... 26
From RCOM to the customer vendor... 26

Order fulfillment ... 26
From the distribution management system to RCOM.. 26
From RCOM to the warehouse management system ... 27

Payment processing .. 27
From RCOM to the payment vendor.. 27
From the payment vendor to RCOM.. 27

Sales and other transactions processing.. 28
From RCOM to the sales audit system... 28

Security processing ... 28
From a security vendor to RCOM.. 28

Shipment tracking ... 28
From the distribution management system to RCOM.. 28
Accessing the carrier vendor from RCOM... 28
From the carrier vendor to RCOM ... 28

Tax calculation.. 29
From the tax calculation vendor to RCOM .. 29
From RCOM to the tax calculation vendor .. 29

Chapter 5 – Component overviews and interface(s)................... 31

Introduction... 31

RCOM component map with interfaces ... 32

Banner and channel component (including banner-level parameters)........................ 33
Functional overview ... 33
A functional description of the banner_channel subscription from the RIB 34
Banner-level parameters... 35
The banner_channel packages in Javadoc.. 38
banner_channel RIB integration... 38

Codes component.. 39
Processing overview... 39
Codes processing summary .. 39
The codes package in Javadoc.. 39
Codes RIB integration .. 40

Contents

iii

Correspondence component.. 41
Functional overview ... 41
An overview of the correspondence process .. 42
The correspondence package in Javadoc.. 42
A note about correspondence-related batch processing ... 42
A note about correspondence-related RIB integration ... 42

Customer component .. 43
Functional overview ... 43
Customer component’s interface with a 3rd party customer-related application 44
Customer component batch processing .. 44
The customer packages in Javadoc... 45

Customer order component... 46
Functional overview ... 46
Functional reasons for RIB publication and subscription .. 49
Overview of the shipment confirmation process.. 52
Capturing demand status for each order line that is cancelled ... 53
Quantities: requested, ordered, and chargeable .. 54
Customer order component’s interface with a 3rd party for delivery confirmation......... 55
Customer order component’s interface with a 3rd party for gift certificate fulfillment ... 56
Customer order component’s interface with a warehouse management system 57
The customer order packages in Javadoc ... 57
Customer order RIB integration ... 58
Customer order component batch processing... 58

Demand component .. 59
Functional overview ... 59
The demand packages in Javadoc... 59
Demand component batch processing .. 59

Direct ship order component... 60
Functional overview ... 60
The directshiporder packages in Javadoc ... 60

Event component .. 61
Functional overview ... 61

Geolocation component .. 62
Functional overview ... 62
Geolocation component’s interface with a 3rd party tax application 62
The geolocation package in Javadoc .. 62

History component.. 63
Functional overview ... 63
The history package in Javadoc.. 65

Retek Customer Order Management

iv

Internet component ... 66

Inventory component (including the ATP module) .. 67
Functional overview ... 67
The use of PO data ... 67
The available to promise (ATP) module .. 67
The inventory interface .. 70
Conversion of units of measure.. 71
The inventory package in Javadoc ... 71

Item component .. 72
Functional overview ... 72
A note about the item levels that RCOM can receive .. 73
The item packages in Javadoc .. 73
Item component RIB integration .. 74

Location component.. 75
Functional overview ... 75
The location packages in Javadoc .. 75
Location component RIB integration ... 76

Media component.. 77
Functional overview ... 77
Items and media.. 77
Media component’s interface with a 3rd party marketing application 78
The media packages in Javadoc ... 78
Media component batch processing ... 78
Media component RIB integration ... 79

Message component.. 80
Functional overview ... 80
The message package in Javadoc ... 80

Payment component.. 81
Functional overview ... 81
Encryption strategy... 83
Payment component’s interface with a 3rd party credit application system 83
Payment component’s interface with a 3rd party credit card authorization system 85
Reward certificate authorization processing .. 87
Stored value card (SVC) integration .. 88
Sample output settlement flat file from RCOM ... 90
The payment packages in Javadoc ... 95

Pend component.. 96
Functional overview ... 96
The pend package in Javadoc ... 97

Promotion component... 98
Functional overview ... 98
The promotion package in Javadoc .. 98

Contents

v

Security component .. 99
Functional overview ... 99
The authentication of users... 99
The authorization of role-based access for users.. 100
Security component’s interface with a 3rd party security-related system...................... 100
An overview of the security process .. 101
Security.properties.. 101
Security model diagrams .. 102
The security package in Javadoc .. 104
Security component batch processing .. 104

Shipping component ... 105
Functional overview ... 105
The shipping package in Javadoc ... 106
Shipping component RIB integration... 106

Supplier component .. 107
Functional overview ... 107
The supplier packages in Javadoc .. 107
Supplier component RIB integration.. 107

System parameter component (including system parameters).................................. 108
Functional overview ... 108
The system parameter package in Javadoc... 112

Task component .. 113
Functional overview ... 113
The task package in Javadoc .. 115

Tax component.. 116
Functional overview ... 116
Tax component’s interface with a 3rd party tax application .. 116
The tax packages in Javadoc .. 118

Chapter 6 – Internet/external APIs integration 119

Functional overview.. 119

Internet component batch processing.. 119

Processing through a custom user interface (such as the internet) 120
A guide to using RCOM’s external APIs (such as for the internet) 121

Information sources .. 123

Usage philosophy.. 123

Obtain selling item info .. 126

Obtain stock status .. 128

Obtain customer information .. 129

Retek Customer Order Management

vi

Obtain history event information .. 131

Create customer .. 132

Modify customer... 134

Modify customer preferences ... 135

Obtain order info... 137

Request a catalog .. 140

Request order summary .. 142

Create normal order .. 145

Create pended order .. 145

Modifying an order ... 147

Create order returns... 149

Create order line exchanges .. 151

Order line container information .. 154

Class diagrams .. 156

Appendix A – State model diagrams .. 161

Chapter 1 – Introduction

1

Chapter 1 – Introduction
This integration guide serves as a Retek Customer Order Management (RCOM) reference to
explain the system’s application programming interfaces (API)s. Within RCOM, various
components, organized by functional area, have their own APIs.

Overview
RCOM has been designed to have more flexibility to integrate into the enterprise retail
environment. RCOM leverages the retail enterprise by exposing merchandise, pricing, promotion,
customer, and supply chain information. This integration from RCOM into the enterprise leads to
improved fill-rates for customer demand, quicker shipments of customer orders, and increased
inventory turns.

By offering a single and complete view of the customer, RCOM provides retailers with a
consistent method of creating, managing, and viewing customer interactions across the enterprise
for all of a client’s channels and brands.

The application is designed and built as a comprehensive business-to-consumer enterprise order
management solution and provides integrated business processes into the retail environment, such
as into merchandising and warehouse management applications.

Who this guide is written for
Anyone who has an interest in better understanding the inner workings of the RCOM system can
find valuable information in this guide. There are two audiences in general for whom this guide is
written:

• Integrators and implementation staff who have the overall responsibility for implementing
RCOM into their enterprise.

• Business analysts who are looking for information about processes and interfaces to validate
the support for business scenarios within RCOM and other systems across the enterprise (a
merchandising system such as RMS, a warehouse management system, and so on).

Retek Customer Order Management

2

RCOM’s integration points into the retail
enterprise
The high-level diagram below shows the overall direction of the data among systems and
products across the enterprise. For a detailed description of a similar diagram, see “Chapter 4 –
Interface process flows”.

Payment
vendor

Tax
calculation

vendor

RCOM

Merchandising
system (such as

RMS)

Sales audit
system (such

as ReSA) Warehouse
management system

(such as RWMS)
or

Direct-ship vendor

ATP
calculation

module

Customer
vendorMarketing

vendor

Security
vendor

Carrier
vendor

Custom
user

interface
(such as

the
internet)

RCOM-related dataflow across the enterprise

Chapter 1 – Introduction

3

Technical architecture overview
RCOM’s technical architecture is an object-orientated J2EE-compliant platform that provides the
extensibility of customer order management into the retailing enterprise.

RCOM’s architecture is built upon a layering model that allows for a given layer’s
responsibilities to be encapsulated. In other words, one layer does not need knowledge of how a
different layer accomplishes its tasks. Rather, a layer merely needs to understand the application-
programming interface (API) that is exposed by another layer. This approach allows for more
facile development because an alternative implementation of a layer can be substituted without
impacting other layers.

To allow integration with systems other than RCOM’s own user interface, and to allow for the
future possibility of different user interfaces, RCOM contains all business models and logic in a
set of business objects, called ‘components’. These components expose a set of well-known
business APIs as Java interfaces, and they hide implementation details. The components have
been designed to provide common business logic across multiple banners and order capture
devices.

For a more detailed description of RCOM’s technical architecture, see “Chapter 2 – Technical
architecture”.

Retek Customer Order Management

4

The business advantages of the layered approach
Because RCOM acts as the order ‘engine’ that validates, routes, and updates customer orders
throughout the order lifecycle, RCOM must be extensible across multiple channels and banners.
A layered approach provides this capability.

The business advantages of a layered approach include the following:

• The elimination of duplicate order management business logic across banners

• Reduced operational costs. RCOM provides consistent order management within a variety of
order capture devices across channels (such as, for example, store, kiosk, POS, the web, mail
order and/or call centers). This capability eliminates the cost of maintaining redundant
business logic.

• Increased customer service with an extensible view of real-time ATP merchandise.

• Constant and real-time visibility into the customers’ orders and specific order line status
through the transaction lifecycle.

• Real-time access to customer and to customer history data across the enterprise.

The following diagram describes a business perspective of the layered approach.

Business LogicBusiness Logic

DATADATA

Stores Web Call Center

Pres
entati

on

Pres
entati

on

Pres
entati

on

Pricing,
Fulfillment,
Returns

Customers,
Products,
Promotions

Functionality
appropriate for
audience

Business LogicBusiness Logic

DATADATA

Stores Web Call Center

Pres
entati

on

Pres
entati

on

Pres
entati

on

Pricing,
Fulfillment,
Returns

Customers,
Products,
Promotions

Functionality
appropriate for
audience

RCOM’s architecture from a business perspective

Chapter 1 – Introduction

5

The components and Javadoc
Javadoc is the tool from Sun Microsystems that generates API documentation in HTML format.
The RCOM client receives Javadoc documentation generated from RCOM code as a separate
documentation deliverable (along with the User Guide, Installation Guide, and so on). Click the
HTML file named ‘index’ in the applicable Javadoc folder to open the Javadoc.

Javadoc can be used in conjunction with this Integration Guide, especially with “Chapter 5 –
Component overviews and interface(s)”. To better understand the method-level implementation
that would be required to leverage a component within RCOM, see its section within Chapter 5
(‘Banner and channel component’ for example) and see its section within the Javadoc at its
hyperlinked location. For example:

• com.retek.component.banner_channel

Where you can find more information
• RCOM front-end documentation (for example, the RCOM User Guide)

• RCOM Operations Guide

• RCOM Installation Guide

• Retek Warehouse Management System (RWMS) product documentation

• Retek Merchandising System (RMS) product documentation

• Retek Integration Guide and other RIB-related documentation

• Applicable third-party documentation (such as for Vertex, and so on)

Chapter 2 – Technical architecture

7

Chapter 2 – Technical architecture
This chapter describes the overall software architecture for RCOM. The chapter provides a high-
level discussion of the general structure of the system, including the various layers of Java code.
From the content, integrators can learn both about the pieces of the system and where to enter the
system. This information is valuable in the following scenarios, among others:

• Interfacing with the system.

• Implementing the system for a different database.

For those who are less familiar with Java terminology, a description of RCOM-related Java terms
and standards is provided for your reference at the end of this chapter.

Overview
RCOM’s robust distributed computing platform is a J2EE implementation that enables enhanced
performance and allows for scalability. RCOM utilizes a Java platform because it offers the
optimum solution to the challenges presented by the need for database independence.

An object oriented system, RCOM can be thought of as a system of animated objects
collaborating to fulfill system requirements. Correctly assigning knowledge (data) and logic
(process) responsibilities to classes is the fundamental challenge in creating a maintainable
object-oriented system. To allow integration with systems other than RCOM’s own user interface,
and to allow for the future possibility of different user interfaces, RCOM contains all business
models and logic in a set of business objects, called ‘components’. These components expose a
set of well-known business APIs as Java interfaces, and they hide implementation details.

RCOM’s architecture is built upon a layered model. This approach provides the advantage of
functional encapsulation. That is, any given layer need not be concerned with the internal
functional tasks of any other layer. Each must only be able to interpret the application
programming interface (API) of any other layer.

The layered model of architecture offers the following advantages, among others:

• The functionality of each layer is provided through its public interface, also known as its API.

• Interaction among layers occurs only through their defined APIs.

• With the exception of the presentation layer, the layers in the model are implemented in
independent locations. That is, they are distributed.

• For client layers, the complexities of remote access can be managed.

• Transactional boundaries are defined. For example, when actions must be accomplished
under transactional control, the components are designed to participate in an active
transaction or to initiate a transaction if none is active.

• Security authentication functionality.

• Java database connectivity (JDBC) in the DAO layer, minimizing the number of interface
points that need to be maintained.

Retek Customer Order Management

8

A high-level view of the layered model
The following diagram, together with the explanations that follow, offer a high-level conceptual
view of the layers and their responsibilities within the architecture.

API
Business

components
and services

Presentation Data accessAPI Persistence
engines

Conceptual view of the layered model

Presentation layer
This layer handles the presentation of the application, including its user interface. To facilitate the
demands and complexity of order line entries, the RCOM front end facilitates robust client-side
processing. The RCOM interface was developed using Swing, which is a toolkit for creating rich
graphical user interfaces (GUIs) in Java applications. RCOM thus provides a Swing-based fat
client (with the possibility of other interfaces).

Business components and services layer
This layer is comprised of business components, which represent a logical model of business
entities and processes, not geared to any particular presentation and context.

In other words, the data entering the system from its own user interface, a web interface, a third
party system’s integration into the system, and so on would all be viewed and handled by a
component in the same way. A component is indifferent to the source of the data, even if it stems
from another component. ‘Something’ is asking a question of the component, and it returns the
answer.

Related data and functionality is encapsulated in the business component; thus, a component
typically represents a business concept, such as an order, a customer or a payment. Each
component exposes the data and services related to its business concept to the rest of the system
through a well-defined interface (an API), and is solely responsible for maintaining its runtime
and persisted state.

The API layer insulates a component's clients from its internal implementation details, thus
creating well-defined boundaries for refactoring within a component. The API consists of one or
more Java interfaces. The business delegate layer includes exactly one implementation (that is,
one Java class that implements) for each of these interfaces. Note that individual classes may
implement multiple interfaces, and interfaces may have inheritance relationships with one
another. For example, there may be a batch-use interface for a component, and a GUI-use
interface for the same component, with one class implementing both interfaces.

Chapter 2 – Technical architecture

9

The business object combines data about the business concept with the logic that processes that
data. Business logic includes the following:

• Simple validation (can a field be null or negative?)

• Validation that requires interaction with other components (is this customer's credit card
valid?)

• Knowledge of workflow (an order line cannot be fulfilled until the monogramming of items
is complete)

Assigning these responsibilities well creates a robust, flexible and maintainable system. Business
component objects implement business rules. The interaction of components enables the system
to accomplish tasks and internal workflows. A common business object infrastructure allows for
the components to be utilized again and again within the enterprise. This layer is used by other
layers to access data and implement business processes.

Services within RCOM are synonymous with Enterprise Java Beans (EJB). EJBs within each
component have the responsibility for coordinating transaction processing to ensure the atomicity,
consistency, isolation, and durability (ACID) properties of the functional request. For a definition
of ACID, see the “RCOM-related Java terms and standards” section in this chapter.

Data access layer
In order to support multiple databases, and the future possibility of using object/relational
mapping, RCOM’s business objects and services do not make direct database calls, but instead go
through data access objects, which are hidden behind Java interfaces. This layer facilitates the
application’s interaction with persistence within the application, most notably, but not limited to,
database persistence. The reason for the data access layer is to render the job of persistence
‘abstract’ (not tied to a specific type of database such as Oracle, DB2, and so on). Database
independence is achieved because database code does not permeate the actual database that the
system uses.

No business logic resides in this layer.

Database
The database is the application’s storage platform, containing the physical data (user and system)
used throughout the application. The database is only intended to deal with the storage and
retrieval of information and is not involved in the manipulation or in the delivery of the data. The
database responds to queries; it does not initiate them.

A detailed distributed view of the layered
architecture
The following diagram offers a detailed distributed view of the architecture and some of the
hardware associated to it. Explanations of each number follow the diagram. Note that the
numbers do not reflect the system’s order of operation but are provided to facilitate the discussion
of the model.

Retek Customer Order Management

10

API

MessagingSecurity

Transaction
Management

Remote
Method

Invocation
(RMI)

Application Server

J2EE Container

Data Access

RDBMS

Persistence Engines

Client

API

API

1

5

4

Customer
Order

Customer

Payment

Business
Components and

Services

API

Etc.

3

2

6

A detailed distributed view of the layered architecture

Chapter 2 – Technical architecture

11

1 The presentation layer runs primarily on the client machines. The number of client machines
that are utilized can be scaled through the addition of hardware.

2 Each distributed entity is implemented through a number of interfaces and classes which are
deployed across separate Java virtual machines. These layers are accessed by remote clients
exclusively through their public APIs. The layers are ‘location-independent’, meaning that
they can be accessed from anywhere in the system. The services in the layer use Enterprise
Java Beans (EJB) as session beans (stateless session beans) and EJB design patterns. They
appear as if they were deployed on the client machine, regardless of the actual physical
machine on which they might reside. In addition, note that these layers can be deployed
across multiple application servers, providing potential performance and reliability
advantages. All transaction-related activities occur on this layer (for example, commits,
rollbacks, and so on).

3 The business components and services layer is responsible for using the services provided by
the J2EE application container relative to the unit of work being performed. These
responsibilities include the following:

 The setting and maintaining of transactional boundaries. These components typically
define the start and end points for a transaction. The container, however, manages the
transaction state through the invocation thread across potentially distributed components.
Any applicable component that participates in the resulting execution thread may then
choose to dynamically participate.

 The setting and maintaining of access privileges. These components can define security
roles required to invoke specific business logic. Security roles are relative to the user and
propagated through the execution thread by the container. As a result, the container
enforces security requirements at each invocation in the thread of execution.

4 The J2EE containers act as the interface between a component and the low-level platform-
specific functionality that supports the component. Before a Web, enterprise bean, or
application client component can be executed, it must be assembled into a J2EE application
and deployed into its container.

Hardware can be added enabling scalability. Additional application servers provide potential
performance and reliability benefits. Through the addition of hardware, computational power
is enhanced, increasing throughput, and single points of failure can be rectified.

5 The data access layer provides a means to access the varied information systems without
affecting the rest of the system. Multiple persistence engines within this layer allow for
objects to be flexibly stored, read, and maintained. Each engine may use a different storage
format and provide a different access mechanism and/or paradigm.

This layer enables programming flexibility and bolsters the rapid development of business
logic. The system can be configured to offer persistence engine access at runtime.
Furthermore, by deploying data access components close to the actual persistence engine it
employs, performance can be enhanced. Transparent to the rest of the system, including
dependent RCOM functionality, this flexible deployment scheme provides a way to perform
on-site tuning and maintenance.

6 The data access layer communicates with the database using a Java Database Connectivity
(JDBC) protocol.

Retek Customer Order Management

12

Advantages of the data access object (DAO) layer
RCOM utilizes a DAO design pattern because it decouples the data access logic from the
business logic. In other words, the data access layer can be easily altered or replaced and cause
little or no impact to the business layer. The DAO layer abstracts the actual persistence
mechanism that is being used to persist business objects. The DAO layer allows for changes to a
different database or even to the use of regular files to persist the business objects. In those cases,
only the DAO layer would need to be modified due to the change. The remainder of RCOM
would continue operating unchanged.

The DAO is essentially responsible for creating data transfer objects (DTO)s (both from new and
from persisted data). DTOs can be utilized for performance tuning. The component is responsible
for maintaining its own state, both in memory and persistence. The responsibility for checking the
validity of data is assigned to the business delegates, EJBs and the logic layer classes. As a result,
the DAO does not validate values coming from or going into persistent storage.

Through the use of SQL expressions that can handle cross table joins in one SQL fetch, RCOM
has the ability to generate 'complete' DTOs in the DAO layer. The DAO interface to the middle
layer is thus kept simple, (only one interface is necessary), and SQL tuning and maintenance
efforts are minimized. Note that the DAO model contains no validation logic. The calling RCOM
component middle layer contains the validation logic.

Chapter 2 – Technical architecture

13

Component processing
The following diagram offers a closer look at the processing involved for a given component.
Explanations of each number follow the diagram.

Business Delegates
(also known as Client Adapters)

RDBMS

3

4

Published
API

1a

Remote Access

Business Logic (optional)

Data Objects

1

2

3

4

5

6

Business Logic (optional)
JD

B
C

A component (object) in the remote access layer

Retek Customer Order Management

14

1 The clean and minimal Java interfaces are oriented around business processes rather than
lower-level object models. They are business entities and managers that present a conceptual
model.

2 Ordinary Java classes handle client-side validation logic. These classes map between the API
and the remote access object models. They also mask the complexities of the EJBs.

3 Remote access is handled by session EJBs and Data Transfer Objects (DTO). These set
transaction and security boundaries, and they determine whether to dispatch to business logic
or to go directly to DAOs. To ensure the atomicity, consistency, isolation, and durability
(ACID) properties of state transitions, RCOM implements some business logic using a state
machine (a workflow engine). This workflow engine manages workflow concerns of orders,
payments, and so on as they go from state to state.

4 Ordinary Java classes are responsible for the business logic and can facilitate plug-in
customization. These classes use the strategy pattern and isolate individual business rules. If
necessary, they may dispatch to other components.

5 DAOs contain no logic. Rather, they embody the low-level data model. They contain the
persistent application state.

6 The JDBC relational database belongs to this single component. The data model is not
published to other components. The database is only accessed through a component API,
except in the case of low-level bulk operations such as replication, loading, and so on.

RCOM-related Java terms and standards
RCOM is deployed using the J2EE technologies, methods, versions and/or design patterns
defined in this section.

ACID

ACID represents the four properties of every transaction:

• Atomicity: Either all of the operations bundled in the transaction are performed successfully
or none of them are performed.

• Consistency: The transaction must leave any and all datastores that are affected by the
transaction in a consistent state.

• Isolation: From the application's perspective, the current transaction is independent, in terms
of application logic, from all other transactions running concurrently.

• Durability: The transaction's operations against a datastore must persist.

Business delegate

A J2EE design pattern in which the business delegate class exists primarily to pass calls through
to another object for processing. For example, a business delegate on the client tier might handle
requests for services that are fulfilled by a session EJB. Business delegates shield the API layer
from implementation details. In practical terms, business delegates catch EJB-specific exceptions
and either deal with the exceptional condition with additional logic, or throw a business-oriented
exception that does not reveal to the outside world the fact that J2EE is used internally. In other
words, one benefit of this pattern is that the business delegate can shield the component's client
(the GUI, for example) from exceptions having to do with the remote call, and instead throw a
business-appropriate exception.

Chapter 2 – Technical architecture

15

Data access object (DAO)

A J2EE design pattern that isolates data access and persistence logic. The rest of the component
can thus ignore the persistence details (the database type or version, for example).

Data transfer object (DTO)

A J2EE design pattern that provides a way to transfer data in bulk between the client and server.
Consider the following scenario:

You have a remote reference to a server-side ‘customer object’, and you want to retrieve the
customer's name, address and phone number. Without a DTO, you would need to make three
remote calls, getName(), getAddress() and getPhone(). These three calls represent a resource-
expensive way to get three data elements. After all, each remote call requires a network
access, the marshalling and unmarshalling objects, and so on. With a CustomerDTO object,
on the other hand, you can accomplish the same task (for example, moving customer data
from the server to the client) with just one remote call, getCustomerDTO.

Enterprise Java Beans (EJB)

EJB technology is from Sun. See http://java.sun.com/products/ejb/. EJB refers to a specification
for a server-side component model. RCOM uses only stateless, session EJBs, which are stateless
and clusterable, and which offer a remotely accessible entry point to an application server.

Enterprise Java Beans (EJB) container

An EJB container is the physical context in which EJBs exist. A container is a physical entity
responsible for managing transactions, connection pooling, clustering, and so on. One example of
an RCOM EJB container is Websphere. This container manages the execution of enterprise beans
for J2EE applications.

Instantiate

In the context of RCOM, to ‘instantiate’ means to create a new instance of a class.

J2EE server

The runtime portion of a J2EE product. A J2EE server provides EJB and Web containers.

The Java 2 Enterprise Edition (J2EE)

The Java standard infrastructure for developing and deploying multi-tier applications.
Implementations of J2EE provide enterprise-level infrastructure tools that enable such important
features as database access, client-server connectivity, distributed transaction management, and
security.

Java Development Kit (JDK), version 1.3.1

Standard Java development tools from Sun Microsystems.

JDBC

JDBC is a means for Java-architected applications such as RCOM to execute SQL statements
against an SQL-compliant database, such as Oracle. Part of Sun’s J2EE specification, most
database vendors implement this specification.

Retek Customer Order Management

16

Java Messaging Service (JMS) topic

A JMS topic is part of Retek’s message-oriented middleware. RCOM uses a JMS view of the
RIB. The topic can be thought of as broadcasting a message from the RIB. RCOM (and
potentially other subscribers) can subscribe to that broadcast. For example, the JMS topic,
EtBannerFromRMS, handles banner-related messages.

Naming conventions in Java

• Packages: The prefix of a unique package name is always written in all-lowercase letters (for
example, com.retek.component.banner_channel.integration.rib)

• Classes: These descriptive names are unabbreviated nouns that have both lower and upper
case letters. The first letter of each internal word is capitalized (for example,
BannerCreateInjector).

• Interfaces: These descriptive names are unabbreviated nouns that have both lower and upper
case letters. The first letter of each internal word is capitalized.

• Methods: Methods begin with a lowercased verb. The first letter of each internal word is
capitalized (for example, getName(), getAddress() and getPhone()).

Persistence

The protocol for transferring the state of an entity bean between variables and an underlying
database.

Persistent connections

The state of connection between an application and the database. A transactional front-end
application most often maintains a continuous connection with the database as the user navigates
from form to form to complete a transaction.

Remote interface

The client side interface to an EJB. This interface defines the server-side methods available in the
client tier.

Session enterprise Java bean (EJB)

A type of J2EE distributed component that gives client programs access to application server
business functionality (also known as the middle-tier). Conceptually similar to other Java classes,
EJBs also have to take care of all the details of being distributed and transactional.

Chapter 3 – RCOM and the Retek Integration Bus (RIB)

17

Chapter 3 – RCOM and the Retek
Integration Bus (RIB)
RIB overview
Retek utilizes a publish and subscribe (pub/sub) messaging paradigm with some guarantee of
delivery for a message. In a pub/sub messaging system, an adapter publishes a message to the
integration bus that is then forwarded to one or more subscribers. The publishing adapter does not
know, nor care, how many subscribers are waiting for the message, what types of adapters the
subscribers are, what the subscribers’ current states are (running/down), or where the subscribers
are located. Delivering the message to all subscribing adapters is the responsibility of the
integration bus.

See the latest Retek Integration Guide and other RIB-related documentation for additional
information.

Subscribers mapping table
The following table lists the message family and message type name, the document type
definition (DTD) that describes the XML message, the mapping document, the component, and
the subscribing classes that facilitate the data’s entry into the application’s business object layer.
These classes are described in the code as ‘injectors’. The component is configured to act upon
and/or validate the data. For additional information, see the latest Retek Integration Guide and
other RIB documentation.

Family Type DTD/Payload Component Injector

ASNOUT ASNOUTCRE ASNOutDesc customerorder ShipmentConfirm
ationInjector

BANNER BANNERCRE BannerDesc banner_channel BannerCreateInje
ctor

BANNER BANNERMOD BannerDesc banner_channel BannerModifyInj
ector

BANNER CHANNELCRE ChannelDesc banner_channel ChannelCreateInj
ector

BANNER CHANNELMOD ChannelDesc banner_channel ChannelModifyIn
jector

CUSTRETUR
N

CORETCRE CustRetDesc customerorder ReturnConfirmati
onInjector

DIFFGRP DIFFGRPDTLCR
E

DiffGrpDtlDesc item DifferentiatorGro
upDetailCreateInj
ector

DIFFGRP DIFFGRPDTLM
OD

DiffGrpDtlDesc item DifferentiatorGro
upDetailModifyI
njector

http://msppc004731.retek.int/wiki/jsp/Wiki?topic=OutDesc&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=ShipmentConfirmationInjector&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=BannerDesc&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=BannerCreateInjector&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=BannerDesc&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=BannerModifyInjector&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=ChannelDesc&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=ChannelCreateInjector&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=ChannelDesc&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=ChannelModifyInjector&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=CustRetDesc&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=ReturnLineInjector&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=DiffGrpDtlDesc&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=DifferentiatorGroupDetailCreateInjector&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=DiffGrpDtlDesc&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=DifferentiatorGroupDetailModifyInjector&action=action_edit

Retek Customer Order Management

18

Family Type DTD/Payload Component Injector

DIFFGRP DIFFGRPHDRC
RE

DiffGrpHdrDesc item DifferentiatorGro
upHeaderCreateI
njector

DIFFGRP DIFFGRPHDRM
OD

DiffGrpHdrDesc item DifferentiatorGro
upHeaderModifyI
njector

DIFFS DIFFCRE DiffDesc item DifferentiatorCre
ateInjector

DIFFS DIFFMOD DiffDesc item DifferentiatorMo
difyInjector

GIFTREG GIFTREGACKC
RE

GiftRegAckDesc customerorder GiftRegistryUpda
teAcknowledgem
entInjector

ITEMLOC ITEMLOCCRE ItemLocDesc item ItemLocationCre
ateInjector

ITEMLOC ITEMLOCMOD ItemLocDesc item ItemLocationMo
difyInjector

ITEMS ITEMBOMCRE ItemBOMDesc item PackItemCreateIn
jector

ITEMS ITEMCRE ItemDesc item ItemCreateInjecto
r

ITEMS ITEMHDRMOD ItemHdrDesc item ItemModifyInject
or

ITEMS ITEMSUPCRE ItemSupDesc item ItemSupplierCrea
teInjector

ITEMS ITEMSUPCTYC
RE

ItemSupCtyDesc item ItemSupplierCou
ntryAttributeCrea
teInjector

ITEMS ITEMSUPCTYM
OD

ItemSupCtyDesc item ItemSupplierCou
ntryAttributeMod
ifyInjector

ITEMS ITEMSUPMOD ItemSupDesc item ItemSupplierMod
ifyInjector

ITEMS ITEMUDAFFCR
E

ItemUDAFFDesc item ItemFreeFormUd
aCreateInjector

ITEMS ITEMUDAFFMO
D

ItemUDAFFDesc item ItemFreeFormUd
aModifyInjector

http://msppc004731.retek.int/wiki/jsp/Wiki?topic=DiffGrpHdrDesc&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=DifferentiatorGroupHeaderCreateInjector&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=DiffGrpHdrDesc&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=DifferentiatorGroupHeaderModifyInjector&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=DiffDesc&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=DifferentiatorCreateInjector&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=DiffDesc&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=DifferentiatorModifyInjector&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=GiftRegAckDesc&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=GiftRegistryUpdateAcknowledgementInjector&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=ItemLocDesc&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=ItemLocationCreateInjector&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=ItemLocDesc&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=ItemLocationModifyInjector&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=PackItemCreateInjector&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=ItemDesc&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=ItemCreateInjector&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=ItemHdrDesc&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=ItemModifyInjector&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=ItemSupDesc&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=ItemSupplierCreateInjector&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=ItemSupCtyDesc&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=ItemSupplierCountryAttributeCreateInjector&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=ItemSupCtyDesc&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=ItemSupplierCountryAttributeModifyInjector&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=ItemSupDesc&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=ItemSupplierModifyInjector&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=ItemFreeFormUdaCreateInjector&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=ItemFreeFormUdaModifyInjector&action=action_edit

Chapter 3 – RCOM and the Retek Integration Bus (RIB)

19

Family Type DTD/Payload Component Injector

ITEMS ITEMUDALOVC
RE

ItemUDALOVDe
sc

item ItemUdaListOfV
aluesCreateInject
or

MEDIA DROPCODECRE DropCodeDesc media DropCodeCreateI
njector

MEDIA DROPCODEDEL DropCodeRef media DropCodeDeleteI
njector

MEDIA MEDIACRE MediaDesc media MediaCreateInjec
tor

MEDIA SOURCECODEC
RE

SourceCodeDesc media SourceCodeCreat
eInjector

MEDIA SOURCECODED
EL

SourceCodeRef media SourceCodeDelet
eInjector

ORDER PODTLCRE PODesc customerorder ECDDRecalculati
onInjector

ORDER PODTLMOD PODesc customerorder ECDDRecalculati
onInjector

ORDER PODTLDEL PORef customerorder ECDDRecalculati
onInjector

SEEDDATA CODEDTLCRE CodeDtlDesc codes CodeCreateInject
or

SEEDDATA CODEDTLMOD CodeDtlDesc codes CodeUpdateInjec
tor

SEEDDATA CODEHDRCRE CodeHdrDesc codes CodeHeaderCreat
eModifyInjector

SEEDDATA CODEHDRMOD CodeHdrDesc codes CodeHeaderCreat
eModifyInjector

SEEDDATA DIFFTYPECRE DiffTypeDesc item DifferentiatorTyp
eCreateInjector

SEEDDATA DIFFTYPEMOD DiffTypeDesc item DifferentiatorTyp
eModifyInjector

SOSTATUS SOSTATUSCRE SOStatusDesc customerorder StockStatusInject
or

STORES STORECRE StoreDesc location StoreCreateInject
or

STORES STOREMOD StoreDesc location StoreModifyInjec
tor

http://msppc004731.retek.int/wiki/jsp/Wiki?topic=ItemUdaListOfValuesCreateInjector&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=DropCodeDesc&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=DropCodeCreateInjector&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=DropCodeRef&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=DropCodeDeleteInjector&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=MediaDesc&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=MediaCreateInjector&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=SourceCodeDesc&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=SourceCodeCreateInjector&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=SourceCodeRef&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=RecalculationInjector&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=RecalculationInjector&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=RecalculationInjector&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=CodeDtlDesc&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=CodeCreateInjector&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=CodeDtlDesc&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=CodeUpdateInjector&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=CodeHdrDesc&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=CodeHeaderCreateModifyInjector&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=CodeHdrDesc&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=CodeHeaderCreateModifyInjector&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=DiffTypeDesc&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=DifferentiatorTypeCreateInjector&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=DiffTypeDesc&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=DifferentiatorTypeModifyInjector&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=StatusDesc&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=StockStatusInjector&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=StoreDesc&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=StoreCreateInjector&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=StoreDesc&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=StoreModifyInjector&action=action_edit

Retek Customer Order Management

20

Family Type DTD/Payload Component Injector

UDAS UDAHDRCRE UDADesc item UdaHeaderCreate
Injector

UDAS UDAHDRMOD UDADesc item UdaHeaderModif
yInjector

UDAS UDAVALCRE UDAValDesc item UdaValueCreateI
njector

UDAS UDAVALMOD UDAValDesc item UdaValueModify
Injector

VENDOR VENDORADDR
CRE

VendorAddrDesc supplier VendorAddressC
reateInjector

VENDOR VENDORADDR
MOD

VendorAddrDesc supplier VendorAddressM
odifyInjector

VENDOR VENDORCRE VendorDesc supplier VendorCreateInje
ctor

VENDOR VENDORHDRM
OD

VendorHdrDesc supplier VendorHeaderM
odifyInjector

WH WHCRE WHDesc location WarehouseCreate
Injector

WH WHMOD WHDesc location WarehouseModif
yInjector

http://msppc004731.retek.int/wiki/jsp/Wiki?topic=UdaHeaderCreateInjector&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=UdaHeaderModifyInjector&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=ValDesc&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=UdaValueCreateInjector&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=ValDesc&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=UdaValueModifyInjector&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=VendorAddrDesc&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=VendorAddressCreateInjector&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=VendorAddrDesc&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=VendorAddressModifyInjector&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=VendorDesc&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=VendorCreateInjector&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=VendorHdrDesc&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=VendorHeaderModifyInjector&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=WarehouseCreateInjector&action=action_edit
http://msppc004731.retek.int/wiki/jsp/Wiki?topic=WarehouseModifyInjector&action=action_edit

Chapter 3 – RCOM and the Retek Integration Bus (RIB)

21

Publishers mapping table
This table illustrates the relationship among the message family, message type, and the
DTD/payload object. For additional information, see the latest Retek Integration Guide and other
RIB documentation.

Family Type DTD/Payload

COCOGS COGSCRE CogsDesc

CODSRCPT DSRCPTCRE DSRcptDesc

CORRESPONDENCE CUSTCORRESCRE CustCorresDesc

COSALE CUSTSALECRE CustSaleDesc

CUSTORDER COCRE CODesc

CUSTORDER CODEL CORef

CUSTRETURN CALLTAGCRE CallTagDesc

GIFTREG GIFTREGUPDMOD GiftRegUpdDesc

INVADJUST INVADJUSTCRE InvAdjustDesc

PAYMENTS REFDPAYSTLMTCRE RefdPayStlmtDesc

PENDRETURN PENDRETCRE PendRtrnDesc

WOOUT OUTBDWOCRE WOOutDesc

Chapter 4 – Interface process flows

23

Chapter 4 – Interface process flows
Overview
This chapter provides an overview as to how RCOM is functionally integrated with other systems
(including other Retek systems). The discussion primarily concerns the flow of RCOM-related
business data across the enterprise.

A diagram shows the overall direction of the data among the products. The accompanying
explanations of this diagram are written from a system-to-system perspective, illustrating the
movement of data. Note that this discussion focuses on the functional use of data; the means of
data movement (for example, the RIB, batch, and so on) is not illustrated in this chapter.

Payment
vendor

Tax
calculation

vendor

RCOM

Merchandising
system (such as

RMS)

Sales audit
system (such

as ReSA) Warehouse
management system

(such as RWMS)
or

Direct-ship vendor

ATP
calculation

module

Customer
vendorMarketing

vendor

Security
vendor

Carrier
vendor

Custom
user

interface
(such as

the
internet)

RCOM-related dataflow across the enterprise

Available to promise (ATP) processing
For more information regarding ATP processing, see the section, ‘Inventory component
(including the ATP module)’ in “Chapter 5 – Component overviews and interface(s)”.

 Note: Although the ATP module resides within the Inventory component of the RCOM
application, the module is depicted outside the application to better illustrate the logic of
the ATP processing dataflow.

Retek Customer Order Management

24

From RCOM to the ATP module
RCOM uses the ATP module for one of the following reasons:

• To place order line reservations and/or back orders.

• To release order lines because the merchandise has either been cancelled or shipped.

In other words, ATP is used to either reserve inventory, reserve a back order, or release a
reservation or a back order.

The ATP module determines whether or not an order line will be fulfilled as a direct ship.

The data that RCOM sends the ATP module, thereby driving the reservation process, includes:

• Item

• Banner

• Channel type

• Requested quantity

From the merchandising system to the ATP module
The merchandising system sends the ATP module the following data:

• Stock on hand quantity data

• Unavailable quantity data

• Approved purchase order data

• In-transit quantity data

• Transfer expected quantity data

• Transfer reserved quantity data

• Virtual warehouse reserved quantity

From the ATP module to RCOM
The ATP module sends RCOM the following merchandise quantity data:

• How much merchandise is reserved

• How much merchandise is back ordered

• How much merchandise is no longer available

• The estimated ship date

• In a direct ship scenario, the ATP module determines whether or not the order line is a direct
ship and sends RCOM the direct-ship supplier-related data.

Custom user interface (such as the internet)
From RCOM to the custom user interface (such as the internet)
• Selling SKUs for a given selling item

Chapter 4 – Interface process flows

25

• Current stock and delivery information for a given selling SKU

• Customers and associated customer data for a given set of search criteria, including customer
number, name, and address information

• History events for a given customer

• Existing orders and associated order data for a given set of search criteria, including order
number, customer number, and various customer information

• Catalog request data for a given concept and subconcept, to be sent to a specified customer
address

• Pricing, shipping, and tax information, and associated totals, for a given set of selling SKUs
(with quantities)

• Shipped container information

From the custom user interface (such as the internet) to RCOM
• The custom user interface sends the input arguments that RCOM needs to perform its tasks.

RCOM must have order and product information so that it can submit the order in its system.
Data includes:

 Customer

 Catolog request

 Customer order

Foundation and code data
From the merchandising system to RCOM
RCOM receives foundation data from the merchandising system including:

• Banners and channels

• Codes (for example, item types, carriers, shipping methods, return reasons and so on)

• Differentiator groups

• Differentiator identifiers

• Items

• Locations (stores and warehouses)

• User-defined attributes (UDAs)

• Vendor and vendor addresses

From the marketing vendor to RCOM
From the third party marketing system, RCOM imports the following:

• Drop code
A media may have different ‘drops’, which can be thought of as subsets of a media. For
example, a catalog might use a different cover, although the pricing structure within remains
the same. A media may have more than one drop code.

Retek Customer Order Management

26

• Source code relationship
Customers and prospects can be grouped by characteristics, such as demographics. This
grouping takes place in a third-party marketing system. Source codes are used to uniquely
identify such customer segments.

Source codes are associated to drops, and drops are associated to the media. For example,
drop 1 has these source codes associated to it; drop 2 has these source codes associated to it,
and so on. Once the media header is created based on this data, RCOM knows, for example,
that this media has these 4 drops with source codes associated to each.

For more information, see the section, ‘Media component’ in “Chapter 5 – Component overviews
and interface(s)”.

From the customer vendor to RCOM
• New customer data and updates to existing customer data

• Merge requests

From RCOM to the customer vendor
• New customer data and updates to existing customers

• Merge requests

Order fulfillment
From the distribution management system to RCOM
• Returns data

Returns data that includes the item and inventory is communicated to RCOM from the
distribution management system.

• Shipment confirmation data
RCOM uses the line level status to facilitate payment settlements for shipped products (for
partial shipments) and for container shipment tracking for the line items shipped on the
customer order line.

 Return Merchandise Authorization (RMA) number
A Return Merchandise Authorization (RMA) number is a number that authorizes the
return of a product.

• Stock order statuses when applicable
The distribution management system sends customer order line status update data at the order
line container level to RCOM. Such data includes:

 Pick exception

 Insufficient inventory data

 Expired order lines data

 Cancel confirmation
The distribution management system sends RCOM a successful delete message to
confirm in RCOM that an order line can be cancelled.

Chapter 4 – Interface process flows

27

From RCOM to the warehouse management system
• Released order line data (in ‘live’ status)

Once RCOM determines that the item has been reserved and that the payment has been
authorized, RCOM sends the released order line data to the distribution warehouse system
with a ‘live’ status. The distribution management system facilitates the picking, packing, and
shipping of the item(s) in the order line.

• Other order line data not to be picked (in ‘shipped’ status, ‘reserved’ status, and so on)
To prevent customer confusion, RCOM publishes the rest of the item data on an order (in
addition to the item data that is being shipped) and marks it with a different status (‘shipped’,
‘reserved’, and so on). For example, even if only one of ten items is sent to the warehouse for
picking, a printed invoice shows the status of all ten items.

• ‘Attempt to cancel’ data
RCOM sends the distribution management system data that attempts to cancel the order line.
Whether the order line can be cancelled or whether the item(s) have already been shipped is
determined by the distribution management system.

• Pending returns

Payment processing
From RCOM to the payment vendor
• Authorization and settlement data

To facilitate the authorization and the settlement of fulfilled item(s), RCOM submits the
following data:

 Payment type and associated attributes (account types, SID numbers, and so on)

 Authorization/settlement amount

 Customer name and address information

From the payment vendor to RCOM
• Authorization status data

The payment vendor sends the authorization status to RCOM for the authorization amount.

• Address verification system (AVS) code data
Once the payment vendor processes and matches the customer name and address information
from RCOM, the payment vendor returns an AVS code.

Retek Customer Order Management

28

Sales and other transactions processing
From RCOM to the sales audit system
• Sales and other transactions data through the RTLOG and/or sales audit XML files

A sales audit system can accept transaction data from various front-end systems and move the
data through a series of processes that culminates in ‘clean data’. It flags inaccurate data for
sales auditors, who can then correct the errors. By running transactions from both the
customer order line management and point of sale applications through a sales audit system, a
standard transaction data flow is enforced cross the entire enterprise.

For more information regarding the RTLOG and RCOM’s interaction with a sales audit
system, see the RCOM Operations Guide.

Security processing
From a security vendor to RCOM

 Note: RCOM never writes data to Active Directory.

• User-related data
An RCOM batch process runs and pulls new and/or modified user-related data from the
security vendor and, after a validation step, persists the data within RCOM (thus ensuring that
the two systems are in sync). Such data could include, for example, username, location,
supervisor, and so on. The security vendor’s system does not contain mappings of users to
roles or roles to permissions. RCOM provides the mappings between users and roles and
roles and permissions. User locations are validated through the use of Vertex (which contains
valid address data).

Shipment tracking
From the distribution management system to RCOM
• Shipment tracking data

To facilitate shipment tracking (utilizing a tracking number by shipment), the distribution
management system informs RCOM that a particular order line has shipped and informs
RCOM about the carrier details associated with that shipment.

Accessing the carrier vendor from RCOM
• Shipment status data

To facilitate customer service, RCOM provides access to the carrier’s website, which tracks
the status of a shipment. RCOM sends the tracking number to the website, and the website
shows the tracking information on the website.

From the carrier vendor to RCOM
• Every container has a tracking number unique to the carrier that delivers it. RCOM accepts

the carrier ID, tracking number, and delivery date as delivery confirmation data. These fields
allow RCOM to find the correct shipped container and update it with the delivery date/time.

Chapter 4 – Interface process flows

29

Tax calculation
From the tax calculation vendor to RCOM
• Calculated taxes for a given order line

The vendor uses its tax calculation engine to return the following types of calculated taxes for
an order line:

 Net merchandise tax

 Shipping and handling tax (including additional delivery charge tax)

 Gifting tax

 Personalization tax

• Error code data
The tax calculation vendor passes error codes to the order entry system.

• GEOCODE(s) data
The tax calculation vendor sends RCOM valid GEOCODE(s) for a given postal code that is
passed to the tax calculation vendor from RCOM.

• Tax rate data
The tax calculation vendor passes error codes to the order entry system.

• Customer tax exemption data
The tax calculation vendor determines whether a customer is tax exempt.

From RCOM to the tax calculation vendor
• Amounts that require tax calculations

 Gifting

 Personalization

 Net merchandise amount

 Shipping and handling amount (including additional delivery charge tax)

• Postal code data
RCOM sends postal codes to the tax calculation vendor anticipating all the matching city-
state-county combinations (the GEOCODE) that are valid for that postal code.

• Tax credits data

 Credits specific to a tax credit accommodation type

 Returns-related credits to update the tax liability

Chapter 5 – Component overviews and interface(s)

31

Chapter 5 – Component overviews and
interface(s)
Introduction
This chapter provides information concerning the various aspects of RCOM’s components (for
example, the customer component, the location component, the inventory component, and so on).

At the beginning of the chapter, a high-level RCOM component map is provided for your
reference.

Information within each component section could include the following:

• A functional overview that includes the business processing for which the component is
responsible

• Information about the component’s integration with 3rd party system(s)

• Sample flat file(s) that would be output from RCOM to third party system(s)

• Parameters associated to the component

• The location of a component’s package(s) within Javadoc

• Whether or not batch process(es) are associated with the component

• Whether or not the RIB is associated with the component

• Other important information related to the component

Retek Customer Order Management

32

RCOM component map with interfaces
The following diagram provides a high-level diagram of RCOM’s components.

media

MED

EJB

item

ITM

EJB

location

LOC

EJB

customerorder

COR

EJB

codes

N/A

EJB

customer

CST

EJB

banner
channel

ORG

EJB

supplier

SUP

EJB

directship
order

DSP

EJB

tax

EJB

geolocation

EJB

system
parameter

SYS

EJB

correspondence

N/A*

EJB

shipping

SHP

EJB

event

EJB

demand

DMD

EJB

pend

PND

EJB

history

ITM

EJB

promotion

PRM

EJB

message

MSG

EJB

Component
name

Key

Component

xxxxx

XXX

RCOM data
source

Table name prefix

3rd party data
source XXX

3rd
party

Media maintenance

3rd
parties

3rd
party

3rd
party

inventory

INV

EJB

RMS

payment

PAY

EJB

3rd
party

security

SEC

EJB

3rd
party

*Correspondence
component data is
included in the tables
with a COR prefix.

sales
audit

RSA

EJB

Task

TSK

EJB

Internet

customer

CST

EJB

customerorder

COR

EJB

3rd
parties

EVT

High-level mapping of components and data sources

Chapter 5 – Component overviews and interface(s)

33

Banner and channel component (including
banner-level parameters)
Functional overview

Banner

Banner plays a critical role within RCOM. With the exception of some customer data, which is
held globally, most of RCOM’s data is held at the banner level.

Some of the important elements of business functionality that depend upon banner-related data
include the following:

• Although customers are global and are not tied to a banner, preferences exist within ‘a
customer’ that are tied to a banner.

• Credit cards

• Sales data exported to a sales audit system

• History

• Orders

• Activity requests may or may not be tied to a specific banner.

• Shipping methods and carrier

• Personalization fees

• Monogramming fees

• Gifting services and gifting seasons

Retek Customer Order Management

34

Channel

Some of the important elements of the business functionality that depend upon channel data
include the following:

• Channel is used in inventory management. Stores and warehouses are assigned to channels.
The channel type is a code that originates in the merchandising system. Channel type is often
used behind the scenes during, for example, aggregations of inventory. Channel types include
brick and mortar, catalog, web/internet, iiosk, and so on.

• Tender types and order sources are related to channels. If an internet order is being taken,
cash may not be a valid tender type, and so on. This relationship is configurable.

A functional description of the banner_channel subscription from the RIB

 Note: In a multi-channel environment, before a location can be successfully consumed by
the subscribing application, any channels or banners that the location references must
have already been successfully consumed by the same subscribing application.

RCOM subscribes to banner-related messages from the RIB. The messages are published by the
merchandising system.

Valid values for banner data must be kept in sync with the external system. All banner data within
RCOM is a reflection of the banner data in the merchandising system.

RCOM subscribes to channel-related messages from the RIB. The messages are published by the
merchandising system.

Valid values for the channel-attribute data must be kept in sync with the external system. All
channel attribute data within RCOM is a reflection of the channel-attribute data in the
merchandising system.

Chapter 5 – Component overviews and interface(s)

35

Banner-level parameters
Banner-level parameters are configured according to the retailer’s needs during initial
implementation. Some banner-level parameters are entered through the front end but are included
in the table below for reference purposes. They reside on the following RCOM table:

• ORG_BANNER_PREFERENCE

As a reference, they are described below. See the RCOM Installation Guide for more information
about how and in what order to enter them into the system.

Parameter Name Description Values

Shipping method ID This parameter, set up at the banner
level, is used to determine which
default shipping method is used.

Shipping Method Id from
the SHP_SHIP_METHOD
table

Event hold days This parameter, set up at the banner
level, is used in the calculation for
the release date on an order line with
an event hold. The Release Date =
estimated customer delivery date
(ECDD) – (event holds release time
parameter + warehouse outbound
handling days + item/location
outbound handling days + service
level delivery days).

Number (in days)

Credit card authorization
lead days

This parameter, set up at the banner
level, determines when to
authorize/reauthorize a credit card
payment.

Number (in days)

Default backorder
delivery days

This parameter, set up at the banner
level, specifies the number of days to
be added to the date an order line is
backordered (without a PO). The
parameter facilitates the calculation
of the ECDD. The attribute is set up
and maintained at the concept level.

Number (in days)

Monogram fee and
personalization fee

This parameter, set up at the banner
level, is a flat rate price associated to
monogramming and personalization.
It is held at the concept level and is
defaulted from RMS.

Number (in dollar amount)

Default cancel days This parameter, set up at the banner
level, specifies the number of days a
pended order is held until it is
systematically cancelled.

Number (in days)

Retek Customer Order Management

36

Parameter Name Description Values

Personal hold delivery
date limit

This parameter, set up at the banner
level, is used to validate that the
personal hold date requested by the
customer is within ‘n’ number of
days from today’s date.

Number (in days)

Minimum amount for
merchandise credit

This parameter, set up at the banner
level, is used to determine whether a
merchandise certificate or gift
certificate needs to be issued.

Number (minimum dollar
amount)

A sales audit system
shipping and handling
export SKU

This parameter, set up at the banner
level, holds the item number value of
shipping and handling (S&H) that is
sent to a sales audit system.

Must be a real RMS
generated SKU set up for
each banner.

A sales audit system VAS
monogram export SKU

This parameter, set up at the banner
level, holds the item number value of
VAS monogramming that is sent to a
sales audit system.

Must be a real RMS
generated SKU set up for
each banner.

A sales audit system VAS
gift card export SKU

This parameter, set up at the banner
level, holds the item number value of
VAS gift card that is sent to a sales
audit system.

Must be a real RMS
generated SKU set up for
each banner.

A sales audit system VAS
gift wrap export SKU

This parameter, set up at the banner
level, holds the item number value of
VAS gift wrap that is sent to a sales
audit system.

Must be a real RMS
generated SKU set up for
each banner.

A sales audit system VAS
personalization export
SKU

This parameter, set up at the banner
level, holds the item number value of
VAS personalization that is sent to a
sales audit system.

Must be a real RMS
generated SKU set up for
each banner.

Return threshold amount This parameter, set up at the banner
level, is used to determine whether a
returned item needs to be returned.
Any return item that is under this
amount does not need to be returned.

Number (dollar amount)

Under payment amount
tolerance

The amount an order can be
underpaid by. This parameter along
with the under payment percent
tolerance parameter determines
whether an under paid order can be
released.

Number (dollar amount)

Chapter 5 – Component overviews and interface(s)

37

Parameter Name Description Values

Under payment percent
tolerance

The percent of the order total an
order can be underpaid by. This
parameter along with the under
payment amount tolerance parameter
determines whether an underpaid
order can be released.

Number (percent)

Backorder notification
lead days

This parameter determines how
many days before the customer
original ECDD the notification
should be sent of the new ECDD.

Number (in days, required,
but can be 0)

Backorder notification
delay days

This parameter determines how
frequently a notification is sent. For
example, if an ECDD only changes
by a few days, a high parameter
value established here would result in
the system’s not generating a
notification.

Number (in days, required
but can be 0)

A sales audit system VAS
general export SKU

The item number used in the TITEM
transaction in a sales audit system for
a post-sale order header
accommodation. This value must be
a valid RMS item number.

Must be a real RMS
generated SKU set up for
each banner.

Merchandise credit as
certificate

This parameter determines which
type of merchandise credit should be
issued..

When the value is = 1, a
merchandise certificate is
issued. When the value is =
0, a merchandise card is
issued.

Default return warehouse This parameter determines which
default warehouse should be used for
an item being returned at the banner
level.

From the
LOC_WAREHOUSE table
- WAREHOUSE_ID
This parameter is not
required, but if it does not
exist for a banner, the item
is returned to the fulfilling
warehouse.

Internet summary pend
cancel days

This parameter, set up at the banner
level, specifies the number of days
that an internet pended order is held
until it is systematically cancelled.

Number (in days)

Retek Customer Order Management

38

The banner_channel packages in Javadoc
To better understand the method-level implementation that would be required to leverage
RCOM’s banner_channel component, see the following packages in the RCOM Javadoc:

• com.retek.component.banner_channel

• com.retek.component.banner_channel.integration.rib

banner_channel RIB integration
This component is involved in RIB-related processing. For information about this component and
the RIB, see the sections, ‘Subscribers mapping table’ and/or the ‘Publisher’s mapping table’ in
“Chapter 3 – RCOM and the Retek Integration Bus (RIB)”. The publishers table illustrates the
relationship among the message family, the message type, and the DTD/payload object. The
subscribers table includes the message family and message type name, the document type
definition (DTD) that describes the XML message, the component, and the subscribing classes
that facilitate the data’s entry into the application’s business object layer. For additional
information, see the latest Retek Integration Guide and other RIB documentation.

Chapter 5 – Component overviews and interface(s)

39

Codes component
Processing overview
Code data that is published to the RIB stems from a single source in the merchandising system.
Because the data is leveraged by multiple components within RCOM, the codes component acts
as a common tool that can leveraged by multiple component APIs.

Within RCOM, code-related injector processing is slightly different than functional-area injector
processing. The following flow diagram and its accompanying explanation provide a brief
overview to this process.

Component
API

Functional area
component

injector

Codes injector
(abstract)

Component
API

Component
API

Functional area
component

injector

Functional area
component

injector

RCOM’s code subscription process

Within RCOM, the data within a code-related DTD is utilized by multiple functional area
component injectors. The codes injector has thus been made abstract (so that it cannot act on its
own).

In a given subscription scenario, a code.properties file maps the code types to the applicable
functional area injectors. The functional area component injector extends the codes injector by
implementing some key methods. The component injector is instructing the codes injector to
inject the payload into the applicable component API(s). The component API is configured to act
upon and/or validate the data.

Codes processing summary
To see tables that describes RCOM’s codes, code types, code descriptions, required indicators,
and code sequences, see the RCOM Installation Guide.

The codes package in Javadoc
To better understand the method-level implementation that would be required to leverage
RCOM’s codes component, see the following package in the RCOM Javadoc:

• com.retek.component.codes

Retek Customer Order Management

40

Codes RIB integration
This component is involved in RIB-related processing. For information about this component and
the RIB, see the sections, ‘Subscribers mapping table’ and/or the ‘Publisher’s mapping table’ in
“Chapter 3 – RCOM and the Retek Integration Bus (RIB)”. The publishers table illustrates the
relationship among the message family, the message type, and the DTD/payload object. The
subscribers table includes the message family and message type name, the document type
definition (DTD) that describes the XML message, the component, and the subscribing classes
that facilitate the data’s entry into the application’s business object layer. For additional
information, see the latest Retek Integration Guide and other RIB documentation.

Chapter 5 – Component overviews and interface(s)

41

Correspondence component
Functional overview
To enhance customer service, the correspondence component ensures that RCOM provides
customer order and customer order line data intended for form letters and notifications to be sent
out by a third-party system.

When certain systematic events occur in the system, a correspondence-related message is
published to the RIB. The client is responsible for pulling the data from the RIB and integrating it
to the third-party mailing system. The third-party mailing system ‘owns’ the templates (for email,
for paper letters, and so on) into which the client places the order or order line data.

Based on the event, either the entire order’s data is published or order line data is published. If an
order has multiple order lines, information for each order line is captured for the correspondence
and published to the RIB. Each order/order line can have multiple correspondences associated to
it.

In this version of RCOM, correspondence types that are systematically created are based on the
following system events (triggers):

• First backorder notifications (order line information)

• Subsequent back order notifications (order line information)

• Mail order back order notifications (order line information)

• Order confirmations (entire order data)

• Return confirmations (order line information)

• Ship confirmations (order line data)

The list of template names is loaded into the RCOM schema via a database script.

Through administrative screens in RCOM’s front end, the client sets up the relationship among
the systematic events, template names, and delivery methods (email or hard copy). Using internal
data, RCOM determines whether a delivery method is inapplicable (for example, when a
customer does not have an email address). The template name and delivery method gets
published to the RIB along with the order/order line information.

Retek Customer Order Management

42

An overview of the correspondence process
The following steps provide an overview to the process when a systematic event, such as an order
confirmation occurs:

1 The system determines the banner.

2 Based on the systematic event and system parameters, the system finds the applicable
template name.

3 The system publishes the template name, delivery method, and order or order line data to the
RIB.

4 The third-party system receives the data and uses it to determine which template and which
fields to utilize in its merging and mailing process.

The correspondence package in Javadoc
To better understand the method-level implementation that would be required to leverage
RCOM’s correspondence component, see the following package in the RCOM Javadoc:

• com.retek.component.correspondence

A note about correspondence-related batch processing
PublishCorrespondenceBatch is a batch process that is related to correspondence but is located
within the Customer order component. See the RCOM Operations Guide for more information.

A note about correspondence-related RIB integration
The correspondence-related publication is processed from within the Customer order component.
This component is involved in RIB-related processing. For information about this component and
the RIB, see the sections, ‘Subscribers mapping table’ and/or the ‘Publisher’s mapping table’ in
“Chapter 3 – RCOM and the Retek Integration Bus (RIB)”. The publishers table illustrates the
relationship among the message family, the message type, and the DTD/payload object. The
subscribers table includes the message family and message type name, the document type
definition (DTD) that describes the XML message, the component, and the subscribing classes
that facilitate the data’s entry into the application’s business object layer. For additional
information, see the latest Retek Integration Guide and other RIB documentation.

Chapter 5 – Component overviews and interface(s)

43

Customer component
Functional overview
The customer component is responsible for processing related to the following areas, among
others:

• Activity requests
An activity request initiates further investigation into an area related to an order or to a
potential order. Customer information is attached to activity requests, which can be related to
care cards, refund checks, product information, special orders, refunds and gift certificates,
‘where is my order’, and so on. RCOM allows for a selling item to be associated to an
activity request.

• Catalog requests and catalog types
A catalog request is user-defined. Existing and new customers may request catalogs. The
customer may request catalogs without placing an order; moreover, the customer can be
provided with an estimated customer delivery date for each catalog.

• Customer

 Note: Customers are global and are not tied to a banner. However, inside customers, data
(credit cards, history, orders, and so on) exists that is or can be tied to a banner.

This processing relates to general customer data. Some of the more important pieces of data
include the following:

 Credit card (note that the customer’s credit card is associated to a banner)

 Note: A customer can have 25 ship to addresses, 43 email addresses and 102 phone
numbers (or more).

 Addresses (primary bill to and primary ship to)

 Active address (ensures that a customer address with the same address text as the
address parameter exists in this customer's active address list)

 Email addresses (active, primary, and so on)

 Active email (ensures that a customer email with the same email address text as the
email parameter exists in this customer's active email list)

 Telephone numbers (primary day, inactive, and so on)

 Active telephone (ensures that a customer telephone with the same number and
extension as the telephone parameter exists in this customer's active telephone list)

 Names (first, last, middle initial, and so on)

 Initial banner (describes the banner through which the customer ‘came into’ the
system; the data is used so that marketing can associate a customer to a banner)

 Acquisition method (system-level data that describes how the customer ‘came into’
the system; for example, he or she requested a catalog, and so on)

 Customer preferences (do not email, do not call, and so on) associated to the banner

Retek Customer Order Management

44

 Match code functionality
During new customer creation, match code functionality causes the system to query
existing customers for records that might match a new customer. This functionality helps
prevent the duplication of customer data within the system. Note that match code rules
are configurable through the front end.

Customer component’s interface with a 3rd party customer-related
application

Customer component-3rd party interface

RCOM has been designed to interact with an integration application that can call the customer
integration API directly. Neither the RIB nor the subscribing classes (injectors) are involved in
this interface.

The customer integration API acts as the interface between the customer application and the
RCOM customer component. It sends the success and error codes back to the customer
application. The API sends to the integration application either an exception for an error, or
nothing when the process was a success.

The four existing export/import API’s include:

• Export Customer

• Export Customer Merge Request

• Import Customer (create/update)

• Import Customer Merge (triggers actual merge of multiple customer records)

Customer component batch processing
Java batch processing is associated with this component. For more information about batch
processing, including file layouts, see the RCOM Operations Guide.

3 rd Party Application
Im

port custom
er

and m
erge

Customer

EJB

Implementation
Component

E
xport custom

er
and m

er ge requests

Chapter 5 – Component overviews and interface(s)

45

The customer packages in Javadoc
To better understand the method-level implementation that would be required to leverage
RCOM’s customer component, see the following packages in the RCOM Javadoc:

• com.retek.component.customer

• com.retek.component.customer.integration

• com.retek.component.customer.integration.batch

• retek.component.customer.integration.xml

Retek Customer Order Management

46

Customer order component
Functional overview
The customer order component manages the customer order throughout its lifecycle and provides
the raw data necessary for historical reference (see the ‘History component’ section of this
chapter). Because a customer can have multiple addresses, order lines, phone number, methods of
payment and so on, this component ties the applicable information together for a given customer
order. In other words, this component acts as the ‘hub’ for a customer order, updating it as it
progresses.

Stripped of its complexity, the customer order process involves these steps:

1 A customer order header is created with a customer order number and a customer ID;
multiple order lines are divided by ship tos.

2 The order lines are divided by the multiple ship to addresses, where applicable. RCOM
processing identifies what is ready to ship and sends those ship requests to the warehouse
management system (WMS).

3 From the WMS, RCOM receives ship confirmations for what has been shipped and how.
RCOM processing updates the order as applicable.

Of course, processing becomes much more complicated with the addition of data related to taxes,
accommodations, handling, payments, and so on.

Some of the more important data that the component associates to the customer order/customer
order line includes the following:

• New or existing customer data (name and primary contact information)

• Source code data

• Bill-to address data

• Ship-to address data

• Because a customer order can have multiple ship-to addresses, order lines are separated by
ship-to data.

• Carrier services

• Total and individual charges (order total, rush, merchandise, accommodation amount, service,
personalization, taxes, and so on)

• Messages (invoice pack slip, shipping label, and so on)

• Warehouse instructions

• Order lines

 Items

 Order line type (up-sell, cross-sell, substitute, standard, partial, return)

 Price and any additional charges

 Shipping information

 Estimated customer delivery date

Chapter 5 – Component overviews and interface(s)

47

 Hold event data

• Value added service (VAS) lines data

 Personalization

 Monogramming services

 Gift wrap data

 Care card data

• Accommodation data
Accommodations provide the customer with an ad hoc discount (in dollars or as a
percentage).

 Accommodation reason

• Discount/promotion data

• Container delivery confirmation data

• Type of payment data

 Credit card

 Merchandise voucher

 Gift certificate

• Payment authorization response data (approved, authorized, cancelled, and so on)

• Payment history
This data represents the payment history associated to an order. For example, a credit card
could be settled multiple times during the course of an order. For each settled payment line,
RCOM displays all of the items that are paid for within that payment settlement line.

• Settlement data

• Shipment confirmation data

 Shipped container data

• Pended status reason code

• Value added service (VAS) data

• Gift certificate data

• Cancellation reason

• Return reason code
These return reason codes originate in the merchandising system and can be used both in the
WMS and within RCOM.

• Shipment request data

Mail orders

The customer order component is responsible for processing related to mail orders. Mail orders
are customer orders that have been mailed by a customer for processing. Mail orders typically
consist of the completed order form (taken from insert within catalog) and the payment (tender)
for the order.

Retek Customer Order Management

48

Due to the need to manage the payments (tender) received with mail orders, additional
management and reconciliation is required for these customer orders. To facilitate the tender
reconciliation of these orders, batch mail order headers are created for a group of customer orders
received by mail. Batches are assigned to specific business users. Batches are typically grouped
into 50 orders.

All batches regardless of tender or type are controlled. Batches with a tender type other than
credit card must be reconciled for the total physical tender amount received in the batch.

Because not all of the initial order information is available during order creation, mail orders
undergo a different validation process than those customer orders which are created over the
phone. The mail order validation process runs after orders have been entered in the system and
confirms that the customer order has the required information to fully process the order. The
validation process performs order functions such as the following:

• ATP

• Discounts

• Shipping and handling

• Tax calculations

• Payment authorizations (CC Authorization and AVS Fraud validation)

The alternative selling lists (upsell, cross sell, or substitutions) and scripting are disabled for mail
order entry and validation. The validation process also checks the thresholds for over/under
payments for the customer order.

Customer orders that pass the validations are released. Orders that fail validation are pended with
a reason code explaining the issue.

Chapter 5 – Component overviews and interface(s)

49

Functional reasons for RIB publication and subscription

The customer order publication

RCOM contains publication functionality that ensures that, for each transmission of a ship request
to the warehouse, informational data is included for all other items on the order, whether shipped
or not. RCOM publishes items on the order that are ready to be picked, and marks those items
‘live’. Using the same message, RCOM publishes the rest of the item data on the order and marks
it with a different status (‘shipped’, ‘reserved’, and so on). For example, even if only one of ten
items is sent to the warehouse for picking, a printed invoice shows the status of all ten items,
thereby preventing customer confusion. All lines that are shipped to the same address and marked
as ‘process together’ are flagged as ‘pick together’ for the WMS. This functionality may vary
when packs are involved depending upon whether the reservation is at the pack level or at the
component level.

RCOM communicates with the warehouse using not the customer order ID, but the ship request
ID. Note that this process is behind the scenes and cannot be seen by the user.

At times, it may be necessary to communicate shipping and handling instructions to warehouse
personnel, direct-ship suppliers, or delivery personnel. Such instructions are entered at the ship-to
address level or at the ship-to address/order line level.

Delivery messages and warehouse messages are associated with a ship-to-address. ‘Process
together’ requests, gifting services, and holds can be entered for one or more order lines destined
for the same ship-to address.

Replacement-related message

A replacement is a scenario in which a customer makes a request to return an item for another of
the same item. Replacements are handled as inventory adjustments and a new cost of goods
(COGS) adjustment. The processing surrounding replacement differs depending upon the
business scenario.

1 Scenario: The item is returned resellable.

A customer calls into replace an item that arrived in good condition but for some reason does
not meet the customer’s expectations.

When the item is received, RCOM sends an inventory adjustment to RMS to decrement the
inventory at the virtual store. RCOM then sends a COGS adjustment to RMS. This COGS
adjustment increments the inventory and decrements the COGS at the virtual store for the
item. RCOM creates a PAID IN transaction with reason code of ‘Replacement In’ to increase
liability/contra sales and sends it to a sales audit system where it will be booked to a general
ledger account.

Once the WMS sends a ship confirmation to RCOM, RCOM does the following:

 Decrements the reservation system and increments RMS with the reservation at the
virtual warehouse that shipped the item.

 Sends a RIB message to transfer the item from the virtual warehouse (decrement stock on
hand and customer reservations at the virtual warehouse).

Retek Customer Order Management

50

 Increments the stock on hand at the store. A COGS adjustment will also be sent to RMS.
This COGS adjustment will decrement the inventory and increment the COGS at the
virtual store for the item.

 RCOM creates a PAID OUT transaction with reason code ‘Replacement Out’ to decrease
liability/contra sales and sends it to a sales audit system where it will be booked to a
general ledger account.

2 Scenario: The item is returned damaged.

A customer calls into replace an item that arrived in damaged condition, perhaps from being
broken in the warehouse, and so on.

When the item is received, RCOM creates a PAID IN transaction with reason code of
‘Replacement In’ to increase liability/contra sales and send it to a sales audit system where it
will be booked to a general ledger account.

When the replacement item is shipped, RCOM decrements the reservation system and
increments RMS with the reservation at the virtual warehouse that shipped the item, sends a
RIB message to transfer the item from the virtual warehouse (decrement stock on hand and
customer reservations at the virtual warehouse) and increments the stock on hand at the store.
A COGS adjustment is also sent to RMS. This COGS adjustment decrements the inventory
and increments the COGS at the virtual store for the item.

RCOM also creates a PAID OUT transaction with a reason code of ‘Replacement Out’ to
decrease customer liability and sends it to a sales audit system where it will be booked to a
general ledger account.

3 Scenario: The item does not need to be returned.

A customer calls into replace an item that arrived damaged. The item is not required to be
returned either because the value of the item is below the return required tolerance, or the
user determines the item does not need to be returned.

RCOM records no liability because was returned.

When the replacement item is shipped, RCOM performs all of the following:

 Decrements the reservation system and increments RMS with the reservation at the
virtual warehouse that shipped the item,

 Sends a RIB message to transfer the item from the virtual warehouse (decrement stock on
hand and customer reservations at the virtual warehouse)

 Increments the stock on hand at the store.

 Sends a COGS adjustment to RMS. This COGS adjustment decrements the inventory and
increments the COGS at the virtual store for the item.

Chapter 5 – Component overviews and interface(s)

51

4 Scenario: The item is returned, and the replacement is fulfilled immediately.

The item is required to be returned because the value of the item is above the return required
tolerance, and the replacement item is sent out immediately to appease the customer.

RCOM sends a pick request to WMS for the replacement item.

When the WMS sends a ship confirmation to RCOM, RCOM performs the same steps as in
the first scenario; only the order is changed. The sale portion of the processing is likely to
occur before the return portion of the processing.

5 Scenario: The item is returned , and a cancellation occurs for the replacement item.

A customer calls into replace an item that arrived damaged. The item is required to be
returned because the value of the item is above the return required tolerance. After the item is
received into the DC, the replacement item would normally be released for fulfillment.
However, if the item is on backorder, it is held until inventory becomes available. During this
time the customer contacts the call center and cancels the replacement item, which in turn,
triggers a refund. The replacement item can be in a status other than backorder, but all
existing cancellation validation/restrictions still apply.

The processing surrounding this scenario is highly complex because so much processing
involves undoing replacement-related transactions. The central piece of this processing is that
RCOM reverses out the replacement transactions that have occurred, and RCOM turns the
processing into a normal return sale transaction.

The customer order subscription

RCOM subscribes to messages from the RIB for ship, container, and distribution confirmation
data. The messages originate in the warehouse management system.

After ship confirmation data is received, RCOM updates its order line information. Ship
confirmation data can be received for order lines in backordered (only if part of the quantity of
the order line is in fulfilling), fulfilling, and pre-cancelled status. If ship confirmation data is
received for an entire quantity of the order line, the order line status is updated to ‘shipped’. The
shipped quantity is updated to reflect quantity shipped. When all the order lines have received a
ship confirmation and the status of all order lines has been updated to shipped or are in cancelled
status, the status of the order header is updated to closed.

If ship confirmation data is received for part of the order line quantity (and no pick exceptions are
received), the order line status remains in its current status. The shipped quantity field is updated
to the quantity shipped.

The WMS informs RCOM as to what shipped and how many containers were used during the
shipping process (these seven items went into one container; these three went into another
container, and so on).

Retek Customer Order Management

52

RCOM subscribes to stock order status messages related to pick exception information that are
originally published by the WMS. These messages are published when the WMS is unable to
perform fulfillment. Some of the data included in the notification includes the ship request
number, item number, exception quantity and the exception status. When a pick exception
message is received, the corresponding order line is found (based on the ship request number and
the inventory item SKU number). The reserved quantity is decremented by the exception
quantity, and the backorder quantity on the order line is incremented by the exception quantity. A
call is made to the Reservation module to decrement the reservation and increment the backorder
reservation for the pick exception quantity. Also, a pick exception event is written to the order’s
history.

The stock order status message subscription is also used to process cancellation confirmations
(successful deletes). Once the message is consumed, RCOM moves cancellations out of a
pending status.

RCOM subscribes to data from the RIB that facilitates estimated customer delivery date (ECDD)
recalculation. RCOM stores the data on a staging table which is used in a batch process that
recalculates the estimated customer delivery date for backordered lines.

Overview of the shipment confirmation process
1 The customer order is created.

2 The order line is reserved.

3 The order is submitted.

4 Order fulfillment processing runs automatically for all items that are ready for fulfillment
when the order is submitted.

5 The order status is open, and the order line status is fulfilling.

6 The item is shipped.

7 The ship confirmation is built.

8 RCOM receives the ship confirmation from the RIB.

Note that the following information is updated in RCOM for the ship confirmation (not all of the
fields are required to have a return value):

• Ship confirmation order number

• Ship confirmation order line number

• Ship confirmation inventory item number

• Ship confirmation shipment number

• Ship confirmation carrier/carrier service level/zone

• Ship confirmation tracking number

• Shipped quantity

• Ship confirmation date

• Ship confirmation ship location

• Ship confirmation return location

• Ship confirmation RMA number

Chapter 5 – Component overviews and interface(s)

53

Capturing demand status for each order line that is cancelled
The system has the ability to capture demand status for each order line that is cancelled from
order entry or order maintenance.

Demand status for each order line that is cancelled from order entry or order maintenance is also
captured in the order line audit tables. Every order line created is populated on the
AUDIT_ORDER_LINE table with a demand status (when an order line has a demand status).

The demand statuses descriptions and codes include the following in their hierarchical order:

• No longer available (NLA)
During order entry, if an item is placed on an order and ATP returns No Longer Available
quantity, a new order line is created (behind the scenes) with a status of cancelled. The order
quantity for the NLA quantity is returned from the ATP module with a cancel reason of No
Longer Available and a demand status of No Longer Available. Order lines that are cancelled
with a status of No Longer Available are never displayed in Order Entry or Order
Maintenance. Instead, they contain an order line type of ‘NLA’. This method is used to
exclude the order line from the order line validation and exclude these types of order lines
from being displayed to the user.

• Order entry error (ORDENTYERR)
When an order line is cancelled and the cancel reason that is chosen by the customer service
representative is Order Entry Error, the Demand status is set to Order Entry Error and
persisted with the order line.

• Fraud (FRD)
When an order is pended because it failed fraud validation, it will have a pended reason code
of Fraud. If an order line is cancelled, the demand status is set to Fraud and persisted with the
order line. If an order is cancelled, the system checks all of the pend reasons for the order
(active and inactive) and determines if there are any fraud pend reasons. If so, the order lines
are assigned a fraud demand status.

• Credit decline (CDCLN)
When an item is placed on an order and is reserved, if any of the payments for this order have
a status of Declined and the customer does not offer any other payments for the order, the
customer service representative can cancel the order. Upon such an occurrence, all associated
order lines have a demand status of Credit Decline.

• Substitute cancel (SUBCNCL)
Sometimes, an order line is applied (regardless of order line status) and a sub item is offered.
If the user accepts the sub item instead of the original item, the original order line is
systematically canceled with a demand status of Cancel Substitute. The Reason code is also
be systematically populated on the original line.

• Backorder abandonment (BKORDABDNT)
In order entry, if an item that is backordered is cancelled, the demand status is set to
Backorder Abandonment.

• Backorder cancel (BKORDCNCL)
In order maintenance or order entry, if an item that is ordered is placed on backorder and then
the customer decides to cancel the order line, regardless of the reason, the demand status is
set to Backorder Cancel.

Retek Customer Order Management

54

• Tag along (TGALNG)
In order maintenance, if an order has multiple order lines and the first order line is cancelled
with a reason of Backorder Cancel, the rest of the items that are cancelled after the first
contain a reason of Tag Along. Processing does not have to occur within the same instance of
order maintenance.

• Customer cancel (CUSTCNCL)
During order entry if the customer decides to cancel an item that is reserved for a reason other
than Order Entry Error, the demand status is set to Customer Cancel.

Quantities: requested, ordered, and chargeable

Requested quantity

Requested quantity is dependent upon the state of the order line. See the below table:

Order line status Requested quantity calculation

New 0

Reserved Reserved qty + virtual warehouse reserved qty + shipped
quantity

Virtual Warehouse Reserved Virtual warehouse reserved quantity + shipped quantity

Backordered Backordered quantity + reserved quantity + virtual
warehouse reserved quantity + shipped quantity

Pre-Cancelled Reserved quantity + virtual warehouse reserved quantity +
fulfilling quantity + backordered quantity + cancelled
quantity + shipped quantity

Cancelled 0

Fulfilling Fulfilling quantity + shipped quantity

Ordered quantity

Ordered quantity always follows the following rules:

Order Line Status Requested quantity calculation

New 0

Pre-Cancelled Shipped quantity + fulfilled quantity + cancelled quantity

All Others Reserved quantity + shipped quantity + fulfilling quantity
+ backordered quantity + cancelled quantity + virtual
warehouse reserved quantity

Chargeable quantity

The system uses the chargeable quantity to populate the original order line quantity in Order
Maintenance. This quantity is all quantity minus cancelled quantity.

Chapter 5 – Component overviews and interface(s)

55

Customer order component’s interface with a 3rd party for delivery confirmation

RCOM must capture proof of delivery at the shipment level based on the delivery confirmation
from the ship carrier. A delivery confirmation API provides an access point for 3rd party vendors
to interface this information into RCOM.

Every container has a tracking number unique to the carrier that delivers it. RCOM accepts the
carrier ID and tracking number in the delivery confirmation API. These fields allow RCOM to
find the correct shipped container and update it with the delivery date/time.

ContainerDeliveryConfirmation is used for updating the delivery confirmation date on a shipped
container from a 3rd party system. Every container has a tracking number unique to the carrier
that delivers it. RCOM accepts the carrier ID and tracking number in the delivery confirmation
API. These fields allow RCOM to find the correct shipped container and update it with the
delivery date/time.

To read the ContainerDeliveryConfirmation and update the date against a tracking number, the
following steps are performed:

 Note: These steps are intended to be a guide rather than a direct procedure. Additional
Java programming may be required to achieve desired results.

1 Get an instance of ContainerDeliveryConfirmationManager as following
ContainerDeliveryConfirmationManager containerDlvryConfMgr =
CustomerOrderManagerFactory.getContainerDeliveryConfirmationManager(getContext());

2 Read the Container by passing the proper carrierId and tracking number and is as follows
ContainerDeliveryConfirmation foundContainer = ContainerDeliveryConfirmation
foundContainer = containerDlvryConfMgr.findConfirmation(carrierId,
carrierTrackingNumber);

3 Create a delivery date of type RDate as following RDate deliveryDate = fill this with proper
date and time of delivery.

4 Set this date on the container read in step 2 as follows
foundContainer.setDeliveryConfirmationDate(deliveryDate);

5 Submit this change to the application as follows foundContainer.submit();

The process is a success if the Submit does not throw an exception.

Retek Customer Order Management

56

Customer order component’s interface with a 3rd party for gift certificate
fulfillment

3rd Party Application

G
C

/M
V

 S
hi

p
co

nf
ir

m
at

io
n

Customer order

EJB

COMCOM

G
C

/M
V

 O
rd

er
 r

el
ea

se

Gift certificate sales

Customer orders are released through the RIB to the WMS. RCOM publishes the same RIB
message as it publishes with a non-gift certificate order. If the order contains an order line(s)
containing a gift certificate, then the RIB message indicates that a gift certificate is on this order
line. The message is then picked up by the legacy system for gift certificate fulfillment. The
WMS does not fulfill gift certificates.

A gift certificate item on an order generates a separate ship request from the rest of the non-gift
certificate items.

Ship confirmation of gift certificates

When a gift certificate has been shipped from the legacy system to the customer, the legacy
system sends RCOM a ship confirmation message via the RIB. RCOM then finds all order line(s)
associated to the shipment and updates the shipped quantity, order line status, and tracking
information. The legacy system supplies RCOM with the voucher number and expiration date for
the gift certificate. Only the voucher number is required.

Chapter 5 – Component overviews and interface(s)

57

Customer order component’s interface with a warehouse management
system

Customer order release

Customer orders are released through the RIB to the WMS. The message includes order priorities,
which helps determine the fulfilling sequence when the order gets to the WMS.

Pick exception

A pick exception from the WMS could occur when an order’s item is one of the following:

• ‘EX’–expired

• ‘NI’–no inventory

• ‘US’–update ship date (updates ship date from a direct ship supplier)

When the message is received into RCOM, the corresponding customer order line is found (based
on the ship request number and the inventory item SKU number), the fulfilling quantity is
decremented by the exception quantity and the backorder quantity on the order line is
incremented by the exception quantity. The order line status is then set to ‘Backordered’.

A call is also made to the Reservation module to decrement the reservation and increment the
backorder reservation for the pick exception quantity.

Cancel order line after release to WMS

When an order line has been released to the WMS and has a fulfilling quantity, it is possible to
cancel the order line. The user will cancel the order line and the order line status will go to
CANCEL REQUEST. RCOM sends a cancel order message to the WMS. If the WMS can
successfully stop the item from getting shipped, the WMS sends a pick exception message back
to RCOM with a status of ‘SD’ to represent a Successful Delete. RCOM then cancels the order
line.

The customer order packages in Javadoc
To better understand the method-level implementation that would be required to leverage
RCOM’s customer order component, see the following packages in the RCOM Javadoc:

• com.retek.component.customerorder

Retek Customer Order Management

58

• com.retek.component.customerorder.batch

• com.retek.component.customerorder.integration.rib

Customer order RIB integration
This component is involved in RIB-related processing. For information about this component and
the RIB, see the sections, ‘Subscribers mapping table’ and/or the ‘Publisher’s mapping table’ in
“Chapter 3 – RCOM and the Retek Integration Bus (RIB)”. The publishers table illustrates the
relationship among the message family, the message type, and the DTD/payload object. The
subscribers table includes the message family and message type name, the document type
definition (DTD) that describes the XML message, the component, and the subscribing classes
that facilitate the data’s entry into the application’s business object layer. For additional
information, see the latest Retek Integration Guide and other RIB documentation.

Customer order component batch processing
Java batch processing is associated with this component. For functional summaries about batch
processing within RCOM, see the RCOM Operations Guide.

Chapter 5 – Component overviews and interface(s)

59

Demand component
Functional overview
The flash demand report displays hourly and historical demand data on a banner-level media by
media basis. The demand component facilitates the processing necessary to ensure that flash
demand report can be accessed from within the RCOM application.

The flash report provides information in two areas:

• Marketing: Summarizes demand at the order level

• Inventory: Summarizes demand at the order line level

Flash values are calculated hourly for a 24-hour period. Values are also rolled up to the day-to-
date (DTD), week-to-date (WTD), and life-to-date (LTD) levels. Life to date refers to the life of
the active or released media. Each day begins at midnight; each week begins on a predefined day.
DTD refers to the previous day.

See the RCOM User Guide for definitions of the column values in the flash demand report (for
example, # Orders, Total Order $, and so on).

Because the flash demand report must be available for all active and released media, a batch
process runs on an hour to hour basis (the report will not be available on an ad hoc basis). For
example, a user sees the same results at 1:15 p.m. as at 1:45 p.m., but at 2:00 p.m., the user sees
new data.

A new day starts at midnight. At 12:00 a.m., the daily totals are reset to 0. At 1 a.m., the DTD
totals are the values from 12 a.m. to 1 a.m.

A new week starts based upon a system parameter. The parameter holds numeric values. 1 =
Sunday; 7 = Saturday.

Note the following:

• If an un-released order line is updated with increased quantity after the order has been
initially persisted, the difference in the updated quantity is captured in flash demand.

• If an un-released order line is updated with decreased quantity after the order has been
initially persisted, the difference in the updated quantity is not captured in flash demand.

The demand packages in Javadoc
To better understand the method-level implementation that would be required to leverage
RCOM’s demand component, see the following packages in the RCOM Javadoc:

• com.retek.component.demand

• com.retek.component.demand.batch

Demand component batch processing
Java batch processing is associated with this component. For functional summaries about batch
processing within RCOM, see the RCOM Operations Guide.

Retek Customer Order Management

60

Direct ship order component
Functional overview
Direct ship order lines are published upon the successful submission of a customer order using
the same messages that are used for a warehouse-fulfilled item.

There is an additional indicator in the routing information for the RIB to use to route these order
lines to a third party system (that is, to a supplier collaboration framework).

The third party has the responsibility of consolidating and of notifying the vendor of orders.
Customer order lines that are put on event holds are also immediately published to the third party.
Again, it is the responsibility of the third party to hold these orders and to release them to the
vendor in time for them to be fulfilled.

The status updates associated with direct ship order lines follow the same process as that of
warehouse-fulfilled items, except in the case of returns.

Direct ship supplier inventories are manually maintained in RCOM and are updated during the
order creation, fulfillment, and shipment process.

The ship confirmation message is used to ship confirm both warehouse and direct-ship items. For
a direct-ship, it is required that a cost for the item be provided. This data is used to record a
receipt of goods at the virtual store that records the sale.

RCOM also publishes cancel requests to the third party, just as it does with regard to warehouse
processing.

For more information about the direct-ship related publication process, see “Chapter 3 – RCOM
and the Retek Integration Bus (RIB)”. The customer order component is responsible for
publishing the direct-ship related data.

The directshiporder packages in Javadoc
To better understand the method-level implementation that would be required to leverage
RCOM’s directshiporder component, see the following packages in the RCOM Javadoc:

• com.retek.component.directshiporder

Chapter 5 – Component overviews and interface(s)

61

Event component
Functional overview
Events (Christmas, Thanksgiving, and so on) play an important role in RCOM’s functionality.
‘Events’ provide the ability to allow a user to place a customer hold on the order lines based on
the event dates. For example, if an order line has an estimated customer delivery date of October
10th, and a ‘Christmas’ event hold is placed on it with the event customer delivery date of
December 20th, the line’s estimated customer delivery date is updated to reflect the new delivery
date of December 20th.

Events can be created at the banner, supplier, and item/supplier levels in RMM. For example, if a
Christmas event is set up, it can be associated to a banner, supplier or an item/supplier. In order to
create an event at an item/supplier level, it has to first exist at the supplier level. Multiple events
can be created at each level.

When a direct ship order line is selected, the system must first check to see if any event
exceptions have been set up on the item/supplier level. If the item/supplier combination events
are found, only those events are displayed. If an item exception event is not found, the system
looks at the events set up for the supplier that is fulfilling the item. Only the events defined for
this supplier are displayed. Finally, if no events for the supplier exist, the standard banner-level
events are displayed. For all non-direct ship lines, only banner-level events are displayed.

Retek Customer Order Management

62

Geolocation component
Functional overview
Once RCOM passes city, state, county, zip code, and postal code data to the third party system
(such as Vertex), it sends geo location data back to RCOM as a tax reference field. RCOM stores
this tax reference code with the customer address so that when Vertex is called again to calculate
taxes during order entry, the calculation is based on the geo location.

Geolocation component’s interface with a 3rd party tax application
The RCOM application uses Vertex as its 3rd party tax application. The diagram below indicates
at a conceptual level the interface functionality between Vertex and the RCOM system.

In production, the database connection information held as a system parameter must be changed.

Vertex

Geo Location

EJBEJB

Tax

G
eo

co
de

V
al

id
at

io
n

T
ax

 C
al

cu
la

tio
n

Geocode
During order entry, the order entry system sends a postal code to the Vertex GEOCODE API. The
Vertex GEOCODE API returns all the matching city/state/county combinations that are valid for
that postal code. The matches are passed back into the order entry system. If an invalid postal
code is sent, an error message is returned to RCOM. If the postal code cannot be validated by
Vertex, the user has to manually capture the address from the customer, and it will not be
validated at that time. It will be validated when the system becomes available.

The geolocation package in Javadoc
To better understand the method-level implementation that would be required to leverage
RCOM’s geolocation component, see the following package in the RCOM Javadoc:

• com.retek.component.geolocation

Chapter 5 – Component overviews and interface(s)

63

History component
Functional overview
Events are captured within RCOM and persisted within a history. When an order, or a customer,
or an activity request, for example, undergoes a change, it is recorded in an applicable history.
The type of information that RCOM captures for a history includes date/time, user, event type,
event details, banner, and so on.

Historical information concerning orders and interactions with customers plays a critical role in
facilitating enhanced customer service and in understanding the lifecycle of orders.

 Note: Customer order payment history is processed in the customer order component.
See the section, ‘Customer order component’ in this chapter.

Customer order history

These events are captured as they occur and include the following, among others:

• Order holds
Whenever an order is submitted and order lines have been placed on hold, a record is
captured in order history.

• Create order
When the order is created, a record is added to the order history.

• Cancel order
If the entire order is canceled, a record is added to the order history.

• Cancel line item
If an order line is cancelled, a record is added to the order history.

• Closed order
When all order lines on an order are in closed (shipped or cancelled), a record is added to the
order history.

• Return order line
When an order line is returned, a record is added to order history.

• Replacement order line
When an order line is replaced, a record is added to order history.

• Partial order line
When a partial order line is created, a record is added to order history.

• Exchange order line
When an exchange order line is created, a record is added to order history.

• Replacement order line
When a replacement order line is created, a record is added to order history.

• Customer correspondence
When an order or line is created, cancelled, returned or placed on backorder, a
correspondence is created and sent to the customer, and a record is added to order history.

Retek Customer Order Management

64

• Activity requests
When activity requests are created and associated with an order, a record is added to order
history.

• Order comments
If the user creates an order comment, a record is added to order history.

• Customer accommodation
When an accommodation is created for an order or an order line, a record is added to order
history.

• Address update
If an address is updated for an order, a record is added to order history.

Customer history

These events are captured as they occur and include the following, among others:

• Catalog request

• Activity requests

• Submitted order data

• Associate comments

• Customer accommodation
An associate entered an ad hoc discount to a customer order at the order level or the order
line level.

• Customer created
An associate entered a new customer.

• Customer preferences updated
An associate updated the customer's preferred contact method and contact time.

• Customer updated
An associate updated a customer's name, address, telephone number, or e-mail address.

• Manual release
An associate investigated a pending order, resolved any issues, and released it.

• Order created
An associate entered a customer order.

Event history

RCOM receives historical information (such as history event ID, description, type [systematic
verses external], and so on) from the following two sources:

Chapter 5 – Component overviews and interface(s)

65

• External system
When an event comes from an external system, RCOM verifies that it is both an existing
history event and that it is marked as ‘active’. If either of these proves to be false, RCOM
logs an error, and no history event is captured. For example, the customer receives a
promotional mailing from a 3rd party system. That system creates event history records for
the customers that received the mailing and sends those to RCOM. RCOM validates that they
are active, existing history events and places them on the applicable historical event table.
This event type must be in the RCOM system for the system prior to receiving the event
records via the API.

• Through the user interface (UI)
The UI allows users to edit event type descriptions for all existing events (regardless of
history event type – systematic verses external). This will be the only editable attribute for
systematic history event types. For external history event types, users are able to mark them
as inactive.

The history package in Javadoc
To better understand the method-level implementation that would be required to leverage
RCOM’s history component, see the following package in the RCOM Javadoc:

• com.retek.component.history

Retek Customer Order Management

66

Internet component
For information about the internet component, see “Chapter 6 – Internet/external APIs
integration”.

Chapter 5 – Component overviews and interface(s)

67

Inventory component (including the ATP module)
Functional overview
Once the item is determined, the system follows these high-level business rules regarding its
inventory status, that is, its ability to be fulfilled:

1 If the item can be warehouse fulfilled, the system utilizes the warehouse for fulfillment. To
determine whether availability exists, the system uses the configurable ATP module,
described below, which is responsible for the calculations in this step.

2 If the item cannot be warehouse fulfilled, the system determines whether the item is a direct
ship item. If it is, the system checks the supplier quantity block to determine if the item is
available.

3 If the item is not available in the supplier quantity block, the system checks to determine if
the item can be backordered.

a If the item can be backordered (an item’s ‘backorderability’ is determined by specific
rules), the system tries to determine the first possible day the item can be fulfilled by
checking whether POs are incoming or in-transit quantities are incoming. These values,
as applicable, are used to help calculate the estimated customer delivery date (ECDD).

b If none of these values are incoming, the system uses today’s date and adds a ‘blanket’
parameter to determine an estimated ship date. At order entry, the carrier service days are
added.

4 For pack items, the pack inventory is checked first. If the requested quantity can be fulfilled,
the pack is reserved. However, if enough inventory is not available, the component inventory
is checked, and the pack is reserved at the component level. If a component is pick excepted,
the component is rereserved and not the entire pack; this logic prevents the overshipping of
goods to customers.

The use of PO data
RCOM uses PO data in its available to promise (ATP) processing to determine future quantities.
Thus, for backordered items, RCOM can provide approximate warehouse arrival dates that are
based upon POs.

PO data is also used to reclass backordered items. If a PO changes, the system must reorganize
POs and check dates to detect potential changes in estimated customer delivery dates (ECDD).
When the estimated in stock date dates change for an item on associated POs, the system updates
the ECDD. Based on parameters in the system, the system may also trigger the sending of a
backorder notification to the customer.

The available to promise (ATP) module
ATP module is responsible for determining inventory quantity-related calculations. For
information about configuring the ATP module’s values, see the RCOM Operations Guide.

ATP processing is integral to the process of taking an order. Behind the scenes, the ATP module
comprises a major part of RCOM’s inventory processing.

RCOM uses the ATP module for one of the following reasons:

• To place order line reservations and/or back orders.

Retek Customer Order Management

68

• To release order lines because the merchandise has either been cancelled or shipped.

In other words, ATP facilitates the reservation of inventory, the reservation of a back order, or the
release of a reservation or of a back order.

Within the ATP module, the Reservation module determines if it can reserve or backorder a
customer order requested item quantity.

The available to promise (ATP) represents current inventory quantities at any time. ATP
references data from the virtual warehouse level and rolls up available inventory to the concept
and channel type to determine item availability. Note the following characteristics of the ATP
module:

• The ATP-Reservation module enables RCOM to get the current inventory picture as well as
the direct ship availability blocks.

• The ATP module prevents synchronization issues.

• The ATP module resides in the Inventory component.

ATP in the context of the order process
When an order is taken in RCOM, the selling items are converted into inventory items and stored
on the order. RCOM uses the inventory item to check ATP and perform the inventory reservation
against.

Reservations are held at the banner-channel type level. When reservations are performed, the
system knows the sum across the virtual stores that have the same banner-channel type. See the
diagram below for a visual representation of the system’s logic.

Banner Channel type

Channel 2Channel 1

Virtual
warehouse 1

Virtual
 store 1

Virtual
 store 2

Virtual
 warehouse 2

Virtual
 warehouse 3

ATP inventory concept at the banner and channel type level

When payments are applied to an order in RCOM, the customer’s credit card (if that is the form
of payment used) is authorized for the amount of the order. The items are reserved in inventory
and the order is then released from RCOM to be sent to the warehouse.

Chapter 5 – Component overviews and interface(s)

69

Retail direct
No matter where an order originates (whether from brick and morter, web, and so on), a system
parameter in RCOM holds a default fulfillment channel type. This system parameter is used by
ATP across the entire application. The value of this system parameter is a valid channel type.

ATP is based on all the channels that belong to the system parameter channel type and the current
banner. This functionality allows all orders taken via RCOM to be fulfilled via valid warehouses
for those channels.

The ATP module and the merchandising system
The following diagram provides a high-level view of what data passes among the merchandising
system, the ATP module, and RCOM.

 Note: Although the ATP module resides within the RCOM application, it is depicted here
outside the application to better illustrate the logic of the ATP processing dataflow.

RMS

ATP

•On Hand
-Receipts
-Sales
-Adjustments

•On-Order
-PO Approval
-PO Cancellations
-Receipts

•Statused Inventory
- Inventory Status Adjustments

• In-Transit
-
-Transfer Receipts

RCOM
Inventory reservations

*Customer orders
*Ship confirmations
*Order cancellations

Reservation updates

RMS

ATP

RCOM

Inventory updates

ATP quantity

On-hand
*Receipts
*Sales
*Adjustments

On-order
*PO approval
*PO cancellations
*Receipts

Statused inventory
*Inventory status
adjustments

In-transit
*Transfer shipments
*Transfer receipts

High-level overview of the ATP module

Retek Customer Order Management

70

The ATP module is the only part of RCOM that accesses the merchandising system directly
(rather than through the RIB) to get data. The module accesses the table ITEM_LOC_SOH and
other inventory datasources for ATP. RCOM logs into the merchandising system behind the
scenes.

Quantities pulled from RMS
database by ATP:
T=Transfer reserved
R=Reserved
B=Backordered
V=Virtual warehouse
reserved
A=Approved purchase order
(PO)
I=In transit
E=Transfer expected
O=Stock on hand
U=Unavailable

Reservation
module

Holds two quantities:
* reservation quantity
* backorder quantity

Available to
promise
module

Holds logic for
ATP calculations

ATP and
Reservation share
the same database

or schema

RMS database
holds the inventory

management
module

Merchandising
system and

inventory
management

module

ATP fills these three
'buckets' with data pullled
from RMS:
* Stock
* Future
* Reserve

The ATP and Reservation modules and the merchandising system

The inventory interface
Within the inventory component, a generic object named InventoryDto holds the inventory
quantities (the entire ‘picture’ of them) for the following:

• The sellable item-banner (inventory quantities are summed for all warehouses for all channels
for this banner and system parameter channel-type)

A sellable item can be either a SKU or a pack.

The interface is InventoryDAO. Its method readInventory returns the inventory for for a banner
based on the input parameter organization reference. That is, if a banner reference as the
organization reference is passed in, the system returns the inventory of the sellable item at the
banner level (actually banner/channel type level for all valid channel types for this banner).

If inventory quantities stem from a merchandising system other than RMS, a client would write a
different implementation of InventoryDAO. A property file enables the substitution to occur.

Inventory at the banner level accounts for all of the channel types of that banner’s having that
sellable item.

Chapter 5 – Component overviews and interface(s)

71

Conversion of units of measure
Because different units of measure exist in the system, what is sold and what is stocked may
represent two different units of measure. Processing within the inventory component converts the
sellable unit of measure to the standard unit of measure when a reservation is made.

The inventory package in Javadoc
To better understand the method-level implementation that would be required to leverage
RCOM’s inventory component, see the following package in the RCOM Javadoc:

• com.retek.component.inventory

Retek Customer Order Management

72

Item component
Functional overview

 Note: Before an item can be successfully consumed by a subscribing application, the
vendor, location, UDAs, diffs, channels, or banners that the item references must have
already been successfully consumed by the same subscribing application.

RCOM subscribes to item-related messages from the RIB and stores the data within its system for
its processing uses. The messages are published by the merchandising system. When RCOM
components utilize item data, they leverage the data that has been persisted within RCOM. The
only item data that is accessed directly in RMS is the quantity data that is handled by the ATP
module within the Inventory component. See the section, ‘Inventory component (including the
ATP module)’ in this chapter.

Valid values for item data must be kept in sync with the external system. All item data within
RCOM is a reflection of the item data in the merchandising system.

A significant amount of business functionality within RCOM depends upon item subscriptions,
including the following:

• The item’s subscribing classes (injectors) facilitate the entry of item information from a
merchandising system (such as RMS). The information should be imported from an external
system and stored. This message is only used during the initial creation of an item and
encompasses the item header message and possibly other messages relating to the item. The
message serves as a ‘wrapper’ for the record so that all required information is there before
the create message is sent. RCOM verifies that no more than one header is allowed for each
item, and that an item has one header. RCOM subscribes to several item level, item-location
level and item-supplier level attributes.

• Within the merchandising system, a default tax category has been added as an attribute on the
class level of the merchandise hierarchy. Assigning a default tax category attribute at the
class level allows the attribute to be inherited by the item during item setup. Items that are
associated with the class inherit the tax category.

• RCOM subscribes to pack items. Packs are composed of one or more sellable or nonsellable
components. The item pack data subscribing classes (injectors) facilitate the entry of item
pack information from an external merchandising system (such as RMS). RCOM subscribes
to this item pack information data and stores it with its association to the item. In RCOM, a
pack number is a selling item SKU. Bill of material items (BOM) are items transformed to a
finished good from a collection of sellable or nonsellable components. The components of a
BOM are orderable items that can be either sellable or non-sellable. A pack item uses one
item number to facilitate the buying and selling of both of the following:

 Multiple units of a multiple component item

 Multiple units of one component item

Packs can be attached to a media, and they can be placed on order lines.

Chapter 5 – Component overviews and interface(s)

73

• RCOM subscribes to messages on the RIB related to the status of an item-location. The
merchandising system publishes item-location data that illustrates whether an item-location is
active, inactive, deleted, and so on. For example, in the summer, snow shovels at a given
store might become ‘inactive’. Within RCOM, the ATP module uses the status of an item-
location to help it determine the item’s availability. For more information about RCOM’s
ATP module, see the ‘Inventory’ section of this chapter.

• Four diffs can be associated with an item. Whenever RMS publishes item messages to the
RIB, it can include all four diffs and their types. RCOM uses diff-related data to facilitate the
ordering of items. When a selling item is entered into the system from the catalog, the system
uses the information to return the diffs. A specific diff can then be selected that gives you the
inventory item to be sold. In addition, searches can be performed using differentiator-related
data.

• User defined attribute (UDA) injectors facilitate the entry of UDA header information from
an external merchandising system (such as RMS). RCOM subscribes to this UDA data and
stores it, associating it to the item. The attributes used for the product information
functionality is derived from subscription-based item attributes/UDA data, or custom data
entered directly into RCOM. Product information is used by the user to offer additional
information to a customer about an item. Product information is held at the banner level and
has a start and end date. There can be no more than one association between product
information and item between the start and the end date.

• Item-supplier attribute related data subscribing classes (injectors) facilitate the entry of item-
supplier level attributes from an external merchandising system (such as RMS). RCOM
subscribes to these item-supplier level attributes and stores them with their association to the
item. During the item definition, the suppliers from which the item are supplied are indicated.
This information determines how the information is loaded into RCOM. Within the message,
the primary direct ship supplier indicator informs the system that this supplier is the primary
direct ship supplier for this item.

• The item-supplier-country attribute related data subscribing classes (injectors) facilitate the
entry of item-supplier-country attributes from an external merchandising system (such as
RMS). RCOM subscribes to these item-supplier-country attributes and stores them with their
association to the item. The message allows RCOM to determine the cost to use when
building a direct-ship purchase order.

A note about the item levels that RCOM can receive
RCOM can receive the parents and the grandparents of items but cannot take the children of
items. In other words, in its current version, RCOM can only take transaction level items and
higher. In terms of the merchandise hierarchy, RCOM receives department, class, and subclass
data through the item messages to which it subscribes.

The item packages in Javadoc
To better understand the method-level implementation that would be required to leverage
RCOM’s item component, see the following packages in the RCOM Javadoc:

• com.retek.component.item

• com.retek.component.item.integration.rib

Retek Customer Order Management

74

Item component RIB integration
This component is involved in RIB-related processing. For information about this component and
the RIB, see the sections, ‘Subscribers mapping table’ and/or the ‘Publisher’s mapping table’ in
“Chapter 3 – RCOM and the Retek Integration Bus (RIB)”. The publishers table illustrates the
relationship among the message family, the message type, and the DTD/payload object. The
subscribers table includes the message family and message type name, the document type
definition (DTD) that describes the XML message, the component, and the subscribing classes
that facilitate the data’s entry into the application’s business object layer. For additional
information, see the latest Retek Integration Guide and other RIB documentation.

Chapter 5 – Component overviews and interface(s)

75

Location component
Functional overview
Changes to store and warehouse data occur when organization features are added, modified or
deleted in the merchandising system. RCOM receives these changes from the RIB.

Call centers are considered locations in RCOM. However, they are ‘owned’ by RCOM and do not
pass through the RIB. For tax purposes, every user within the system is assigned to a call center.
When an order is taken, the location of the person taking the order has repercussions in terms of
tax calculations based upon tax jurisdictions.

Valid values for store must be kept in sync with the external merchandising system. Because
items cannot be sold from the warehouse in the RMS, a ‘virtual’ store must be set up RCOM. A
‘virtual store’ simply refers to a store in the merchandising system that is set up as a non-stock
keeping location.

Valid values for warehouse and the warehouse-attribute data must be kept in sync with the
external system. All warehouse and warehouse attribute data within RCOM is a reflection of the
warehouse and the warehouse-attribute data in the merchandising system.

Warehouse attributes data helps to regulate the types of merchandise that can be stocked at the
warehouse. The definition of warehouses is divided into the following two entity types:

• Physical warehouses: The physical warehouses define the actual ‘four-wall’ warehousing,
distribution and fulfillment facilities through which inventory is managed. The physical
warehouse is a roll-up structure that holds one or more virtual warehouses. The physical
warehouse attributes include the facility address, contact information and other facility level
attributes. Transactions such as purchase orders and transfer orders that are sent to
applications that do not use virtual warehouses are rolled up to the physical warehouse level
(the vendor sees order quantities by physical warehouse).

• Virtual warehouse: A virtual warehouse represents the ownership divisions of inventory
within the physical warehouses and the company as a whole. The virtual warehouse is
defined within the maintenance of the physical warehouse and is assigned a Channel ID to
classify the inventory ownership.

The organization functions provide data structures and screens to maintain the setup data within
RCOM. Much of this information is defined in the merchandising system (such as RMS) and is
integrated directly into the RCOM application. The information is primarily be setup data that is
entered once when the application is installed and is most likely changed only when new
organization features are added, changed, or deleted.

The location packages in Javadoc
To better understand the method-level implementation that would be required to leverage
RCOM’s location component, see the following packages in the RCOM Javadoc:

• com.retek.component.location

• com.retek.component.location.integration.rib

Retek Customer Order Management

76

Location component RIB integration

 Note: In a multi-channel environment, before a location can be successfully consumed by
the subscribing application, any channels or banners that the location references must
have already been successfully consumed by the same subscribing application.

This component is involved in RIB-related processing. For information about this component and
the RIB, see the sections, ‘Subscribers mapping table’ and/or the ‘Publisher’s mapping table’ in
“Chapter 3 – RCOM and the Retek Integration Bus (RIB)”. The publishers table illustrates the
relationship among the message family, the message type, and the DTD/payload object. The
subscribers table includes the message family and message type name, the document type
definition (DTD) that describes the XML message, the component, and the subscribing classes
that facilitate the data’s entry into the application’s business object layer. For additional
information, see the latest Retek Integration Guide and other RIB documentation.

Chapter 5 – Component overviews and interface(s)

77

Media component
Functional overview
Processing within the media component allows for media setup within RCOM.

There are several attributes for the media, including the media type. A media type identifies the
vehicle for communicating product offerings to customers. The media may be delivered in a print
format, such as a catalog, or electronically, such as through an internet website.

A media may have different ‘drops’, subsets of a media. For example, a catalog might use a
different cover, although the pricing structure within remains the same. A media may have more
than one drop code.

Customers and prospects can be grouped by characteristics, such as demographics. This grouping
takes place in a third-party marketing system. Source codes are used to uniquely identify such
customer segments. Source codes are associated to drops, and drops are associated to the media.
This data can lead to helpful analysis answering such questions as ‘Which cover of the catalog
inspired the customer to call?’

From the third party marketing system, RCOM imports the drop code and source code
relationship. For example, drop one has these source codes associated to it; drop two has these
source codes associated to it, and so on.

Once the media header is created based on this data, RCOM knows, for example, that this media
has these four drops with source codes associated to each. RCOM generates a media code based
the drop code-source code relationship data that it receives and sends that media code back to the
third party system.

For each banner, consecutive media codes are generated. A channel is then associated to that
media code. Thus, a banner’s catalog and internet cannot have the same media code.

Shipping rate tables are associated to a media (for this range of money, the system charges this
amount for shipping, and so on).

Items and media
After the media header is created, an assortment of items can be added. A selling item number is
generated for each item that you add to the media. The selling item number consists of the three-
digit media code, a dash, and the parent item number or style number.

If one or more parent items or styles is combined, a dummy number is generated for the multi-
style selling item. The media code precedes this dummy number also. The dummy number is
generated based on a database sequence set up by a database administrator. Once the selling items
are added to the media, one or more depictions can be defined for each selling item. Each selling
item contains one or more selling SKUs.

Pricing is at the selling SKU level (for example, a large shirt could be priced less than an extra-
large shirt). Items, with their associated differentiators, define a selling SKU and can thus be
‘picked’ to be represented and sold within a given catalog (orange sweaters for Halloween, red
sweaters for Christmas, and so on).

Depictions can be set up, and a depiction code is comprised of a combination of the following:

• Page spread: The page or spread of pages on which the depiction is placed.

Retek Customer Order Management

78

• Key: An alphabetic or numeric code that is used to link the photograph or graphic with the
copy text.

Other attributes include the % of page, the space cost, the placement, the total area of depiction
and so on.

Value added services (VAS) can be associated at the inventory item level, so the consumer of the
media can see that an item can be personalized (monogrammed, gift wrapped, and so on).
Whether or not an item can be personalized or gift wrapped is determined by the merchandising
system, but the media can show what is available. Additional setup must occur in RMM in order
for the item personalization functionality to be available.

Media component’s interface with a 3rd party marketing application

3rd Party Application

Im
po

rt
 D

ro
p

C
od

es
an

d
So

ur
ce

 C
od

es

Media

EJB

E
xp

or
t M

ed
ia

 c
od

e

From the third party marketing system, RCOM imports the drop code and source code
relationship. For example, drop 1 has these source codes associated to it; drop 2 has these source
codes associated to it, and so on. Once the media header is created based on this data, RCOM
knows, for example, that this media has these 4 drops with source codes associated to each.

RCOM generates a media code based the drop code-source code relationship data that it receives
and sends that media code back to the third party system.

The media packages in Javadoc
To better understand the method-level implementation that would be required to leverage
RCOM’s media component, see the following packages in the RCOM Javadoc:

• com.retek.component.media

• com.retek.component.media.integration.rib

• com.retek.component.media.batch

Media component batch processing
Java batch processing is associated with this component. For functional summaries about batch
processing within RCOM, see the RCOM Operations Guide.

Chapter 5 – Component overviews and interface(s)

79

Media component RIB integration
This component is involved in RIB-related processing. For information about this component and
the RIB, see the sections, ‘Subscribers mapping table’ and/or the ‘Publisher’s mapping table’ in
“Chapter 3 – RCOM and the Retek Integration Bus (RIB)”. The publishers table illustrates the
relationship among the message family, the message type, and the DTD/payload object. The
subscribers table includes the message family and message type name, the document type
definition (DTD) that describes the XML message, the component, and the subscribing classes
that facilitate the data’s entry into the application’s business object layer. For additional
information, see the latest Retek Integration Guide and other RIB documentation.

Retek Customer Order Management

80

Message component
Functional overview
The message component facilitates the functionality associated with the daily messages that are
sent to specific call centers, corporate headquarters, or all locations. Although all associates may
view messages, only those with the appropriate security level have permission to create, update,
and delete daily messages.

By default, associates see the messages pertaining to their own location when they log on to
RCOM.

The types of messages that appear in the message center may concern event notices, promotion
reminders, and general information that management needs to convey to its associates.

Messages can have a start date and an end date, after which they are no longer visible.

The message package in Javadoc
To better understand the method-level implementation that would be required to leverage
RCOM’s message component, see the following package in the RCOM Javadoc:

• com.retek.component.message

Chapter 5 – Component overviews and interface(s)

81

Payment component
Functional overview
The payment component is responsible for processing related to payment types, credit card types,
credit card validation attributes, and other payment-related data. Payment component processing
addresses payment amounts, amounts that are authorized, authorization responses, payment in
currencies, and settlements. The payment model is extended to include reward certificate payment
functionality and stored value card (SVC) payment functionality.

RCOM processes tender types (credit card payments, gift certificate payments, merchandise
certificates, and checks) according the logic that each requires. For example, when processing gift
certificate payments, RCOM uses a gift certificate’s control number but when handling a credit
card payment, RCOM knows that a control number does not exist.

Tender type and tender type group codes and mappings are utilized in RCOM’s export to a sales
audit system because both systems must utilize common IDs. See the RCOM Operations Guide
for more information.

The payment component also ensures that valid payments occur at different levels. For example,
sometimes tender types are not valid for certain order sources (for example, a web-based store
would not accept a check).

The credit card number rule is the logic that uses numeric prefixes and lengths to automatically
determine a credit card type.

Once the payment vendor processes and matches the customer name and address information
from RCOM, the payment vendor returns an address verification system (AVS) code. The
payment component processes this data and stores it within the system.

The payment settlement process is used to communicate between the order entry application and
the integration component. A batch process (located in the customer order component) runs to
settle all credit card payments. The system will start the standard settlement process for orders
once the item is ship confirmed. Settlements occur only for the payment amount that is equal to
the sum of the merchandise amount, shipping costs, taxes and value added services of the item(s)
being shipped. Each shipment will be settled once.

If an order is only partially shipped, the payments will be settled according to the payment
settlement order of the payment types; for example, cash is settled before credit cards. The system
will use the payment settlement order as defined by the banner/channel/payment type.

Retek Customer Order Management

82

Authorizations
The payment types currently supported by the RCOM application include the following:

• Gift certificates

• Gift cards (type of stored value card)

• Merchandise vouchers

• Merchandise cards (type of stored value card)

• Reward certificates

• Credit cards

• Checks

• Cash

For all payment types except credit cards, gift cards and merchandise cards a manual
authorization within the application is currently required and the order status is therefore left in a
status of pending. For credit card payments, the payment component uses the external
authorization interface to authorize the payment. Gift cards and merchandise cards are authorized
in real-time with a third-party via the authorization API.

The payment authorization API communicates synchronously. However, the API supports a
request API and a response API for the integration layer. When the authorization request API is
called, it makes a blocking call, forcing the UI to wait for a response from the response API. This
processing allows the integration team to continue to build its interfaces.

The payment authorization API was modified to pass routing numbers and check numbers. The
only required fields that need to be passed to the authorization API are tender type and payment
amount. The system has the ability to capture and store check authorization information from the
third party authorization application.

The integration API for credit card authorization is documented in the Javadoc for the package
com.retek.component.payment.integration.creditcard.

Settlements
The payment settlement process is used to communicate between the order entry application and
the integration component. A batch process runs to settle credit card payments.

The batch process creates the flat file that is output from RCOM to the third party authorization
application when settlement occurs. This settlement file is only created when the payment type is
credit card. The batch process also publishes RIB messages for refunds.

The system starts the standard settlement process for orders once the item is ship confirmed.
Settlements occur only for the payment amount that is equal to the sum of the merchandise
amount, shipping costs, taxes and value added services of the item(s) being shipped. Each
shipment is settled once.

If an order is only partially shipped, the payments are settled according to the payment settlement
order of the payment types, that is, cash is settled before credit cards. The system uses the
payment settlement order defined by the banner/channel/payment type.

Chapter 5 – Component overviews and interface(s)

83

Gift certificates and merchandise vouchers are settled upon ship confirmation but are not run
through the batch process. When a ship confirmation is received, the system runs through the
settlement order for the order’s payments. If the gift certificate and/or merchandise voucher
amount can be used to cover the ship container amount, the payment line is settled.

Functional reasons for the settlement-related RIB publication
The settlement process can result in publication requests for check and merchandise voucher
refunds. The message is RefdPayStlmtDesc.dtd.

The settlement (refund)-related publication is processed from within the Customer order
component.

For more information about this publication processing, see the ‘Customer order component’
section of this chapter.

Encryption strategy
RCOM facilitates the encryption of credit card numbers using an encryption strategy
implementation that uses the Java Cryptography Standard Extenstion implementation of the DES
algorithm to return base 64 encoded encrypted representations of credit card information.

Payment component’s interface with a 3rd party credit application system
RCOM sends credit application data to a third party system to allow it to set up a customer on a
private label credit card (PLCC).

Customer is already pre-approved

Scenario

This scenario outlines the most basic credit card application. An existing customer has been pre-
approved for a credit card for the selected concept, and the scenario is triggered when an order is
placed. The customer is informed of the pre-approval and asked if he or she would like to apply
for the credit card. If the customer proceeds with the application, the third party application
processes the application and returns an application status, account number and credit limit (if
status is approved) for the new credit card.

Customer is not already pre-approved

Scenario

This scenario outlines the situation when an existing customer has not yet been pre-approved for
a credit card for the selected concept. This scenario is referred to as quick credit application, and
the scenario is triggered manually by the user. The customer fills out the same application as in
the ‘Customer is already pre-approved’ scenario but for the fact that the pre-approval code is
blank. The third party system first checks to determine whether this customer is pre-approved for
a credit card for the selected tender type. If the customer has not been pre-approved, the
application process is returned with a status of ‘Denied’. If the customer has been pre-approved,
the application process proceeds as described in the ‘Customer is already pre-approved’ scenario.
The third party system returns an application status, account number and credit limit (if status is
approved) for the new credit card.

Retek Customer Order Management

84

Interface process
1 The integration layer must define a class that implements the

SynchronousCreditApplicationApplier interface (handles the applying of a single credit
application).

2 The applyForCredit() method on this class is the entry point for triggering the credit
application. Its only argument is an instance of CreditApplicationRequest which is defined as:

Attribute name Required? Notes

ssn Yes Last 4 digits of customer social security number.

preApprovalCode No

dateOfBirth Yes

tenderTypeCode Yes

orderTotal No

firstName Yes

lastName Yes

middleInitial No

suffixCode No

addressLine1 Yes

addressLine2 No

addressLine3 No

city Yes

state Yes

postalCode Yes

postalCodePlusFour No Zip plus four

telephoneNumber Yes
3 The applyForCredit() method should return an instance of CreditApplicationResponse which

is defined as:

Attribute Name Required? Notes

status Yes Whether application was approved or declined

accountNumber No

creditLimit No
4 If any sort of system exception or fatal error occurs during credit

SynchronousCreditApplicationApplier#applyForCredit, a CreditAppProcessingException
should be thrown.

Chapter 5 – Component overviews and interface(s)

85

Timeout or empty response from the third party system

Scenario

This scenario outlines a credit card application when the response from the third party system is
‘timeout’. This is defined by one of these scenarios:

• The third party system never receives the request.

• The third party system receives the request, but does not respond within a certain time frame
(defined in RCOM by a system parameter).

• The third party system receives the request, but returns an empty response.

In all of these cases, the status in the CreditApplicationResponse should be set to ‘Reapply Later’.

Payment component’s interface with a 3rd party credit card authorization
system
The Third Party Credit Card Authorization System revolves around two objects, The
CreditCardAuthorizationRequest (CCREQ) bean and the CreditCardAuthorizationResponse
(CCRESP) bean. RCOM sends a CCREQ to a registered SynchronousCreditCardAuthorizer via
the SynchronousCreditCardAuthorizer.authorize method.

RCOM finds which SynchronousCreditCardAuthorizer to load and execute by looking at the file:
com/retek/component/payment/integration/creditcard/integration.properties (rcom-
rmm\build\conf\com\retek\component\payment\integration\creditcard\integration.properties)
under the authorizer.synchronous key.

• SynchronousCreditCardAuthorizer.authorize(…)

Attribute name Required? Notes

request Yes This CreditCardAuthorizationRequest Object holds
all the information needed for the 3rd party system
to extract and make an authorization request. (See
CreditCardAuthorizatinRequest)

If the third party integrators decide to validate that all needed information is on the request bean,
they should throw a CreditCardProcessingException if required information is missing. Third
party system should not return a declined CCRESP if pre validation fails.

The authorize(…) method should return an instance of CreditCardAuthorizationResponse which
is defined as:

• CreditCardAuthorizationResponse

Attribute Name Required? Notes

status Yes Either approved or declined.

transactionId Yes This is the transaction number returned by Visa
gateway system.

systemAuthorizationCode Yes This is the authorization code returned by visa.

avsCode No Please note that Rcom does not use this to determine

Retek Customer Order Management

86

Attribute Name Required? Notes

whether or not the request was authorized. Rcom
uses the status to verify whether or not a transaction
is authorized.

authorizationDate Yes AVS code returned by visa.

cvvResponseCode No CVV Response code returned by Visa.

requestId No Id of the original CCREQ sent to Third party system
by Rcom that caused this response. Will be used
when asynchronous authorization is in place.

referenceField1-
referenceField10

No These fields are here for future needs and can be
used by the Settlement system.

If any sort of system exception or fatal error occurs during
SynchronousCreditCardAuthorizer.authorize(…), a CreditCardProcessingException should be
thrown.

• CreditCardAuthorization Request Object

Attribute Name Required? Notes

amount Yes The value to be authorized.

cardNumber Yes The card number to be authorized.

expirationMonth Yes The month the card expires.

expirationYear Yes The year the card expires.

cardVerificationValue No This is the card verification value entered by the
User.

firstName No This is the first name on the orders primary
customer. Note: This is required for address
verification.

middleInit No This is the middle initial on the orders primary
customer.

lastName No This is the last name on the orders primary
customer. Note: This is required for address
verification.

addressLine1 No This is the address line 1 of the orders primary bill
to address. Note: This is required for address
verification

zipCode No This is the zip code (first 5 digits) of the orders
primary bill to address. Note: This is required for
address verification.

transactionDate Yes Day the credit card authorize request is generated.
This is a standard Java Date object representing a

Chapter 5 – Component overviews and interface(s)

87

Attribute Name Required? Notes

snap shot of the system date on the server (includes
time information).

requestId No This is some Rcom generated information that will
be useful when synchronized authorized is
implemented.

Reward certificate authorization processing

Interface process
1 The integration layer must define a class that implements the

SynchronousRewardCertificateAuthorizer interface (handles the authorization of a single
reward certificate).

2 The authorize() method on this class is the entry point for triggering the reward certificate
authorization. Its only argument is an instance of RewardCertificateAuthorizationRequest
which is defined as:

Attribute name Required? Notes

amount Yes The requested amount for the reward certificate

controlNumber Yes The reward certificate’s account number

3 The authorize() method should return an instance of
RewardCertificateAuthorizationResponse which is defined as:

Attribute Name Required? Notes

status Yes Indicates authorization was approved, invalid,
expired, or redeemed

certificateValue Yes Reward certificate value

authorizationDate Yes Date the authorization attempt took place

4 If any sort of system exception or fatal error occurs during
SynchronousRewardCertificateAuthorizer.authorize(), a
RewardCertificateProcessingException should be thrown.

 Note: Retek has provided an implementation of this framework to authorize reward
certificates against a sales audit system. See
com.retek.component.payment.impl.remote.SyncronousRewardCertificateAuthroizerServ
ice for an implementation of SynchronousRewardCertificateAuthorizer

Retek Customer Order Management

88

Stored value card (SVC) integration
The integration layer must define a class that implements the
SynchronousStoredValueCardProcessor interface (the API for all interaction with the stored value
card system). When processing stored value cards (SVC), the system looks for
com/retek/component/payment/integration/storedvaluecard/integration.properties (currently in the
conf directory) in the class path and load the class named in the property
storedvaluecard.synchronous.

The SynchronousStoredValueCardProcessor has four methods that are explained below:

• SynchronousStoredValueCardProcessor.authorize(…)

This method handles the authorization of a single stored value card. If the authorization is
successful, the stored value card should be debited in the external system.

The only argument for this method is an instance of StoredValueCardAuthorizationRequest,
which is defined as:

Attribute Name Required? Notes

accountNumber Yes The stored value card’s account number.

pinNumber Yes The stored value card’s pin number.

requestedAmount Yes The requested amount to authorize.

Both the accountNumber and pinNumber must match for the authorization to be valid. Failure to
match the account number and pin number should result in an invalid response returned.

The authorize(…) method should return an instance of StoredValueCardAuthorizationResponse
which is defined as:

Attribute Name Required? Notes

authorizationDate Yes Date the authorization attempt took place. Populated
even if the authorization fails.

authorizedAmount Yes The actual amount that was authorized for the stored
value card. This value may be less then the
requestedAmount.

availableBalance Yes Remaining card balance after the debit from the
current transaction.

cardType Yes Either gift card or merchandise card

status Yes Either approved or invalid

If any sort of system exception or fatal error occurs during
SynchronousStoredValueCardProcessor.authorize(…), a StoredValueCardProcessingException
should be thrown.

• SynchronousStoredValueCardProcessor.inquiry(…)

This method handles the inquiry of a single stored value card. No changes should be made in the
stored value card system because of this call, it is strictly a “read” method.

Chapter 5 – Component overviews and interface(s)

89

The only argument for this method will be an instance of StoredValueCardInquiryRequest, which
is defined as:

Attribute Name Required? Notes

accountNumber Yes The stored value card’s account number.

The inquiry(…) method should return an instance of StoredValueCardInquiryResponse that is
defined as:

Attribute Name Required? Notes

availableBalance Yes The stored value card’s available balance.

bannerDisplayCode Yes The banner display code associated with the stored
value card.

cardType Yes Either gift card or merchandise card

inquiryDate Yes Date the inquiry takes place. This is the one field
that should be set even if a stored value card is not
found for the requested account number.

The attributes should be set to null (except inquiry date) if a stored value card is not found for the
requested account number.

If any sort of system exception or fatal error occurs during
SynchronousStoredValueCardProcessor.inquiry(…), a StoredValueCardProcessingException
should be thrown.

• SynchronousStoredValueCardProcessor.cashout (…)

This method handles the cashout of a single stored value card. If the method call is successful, the
entire balance should be removed from the card in the stored value card system.
SynchronousStoredValueCardProcessor.cashout(…) is responsible for enforcing the business rule
that a merchandise card cannot be cashed out. It is also responsible for checking the pin number
supplied against the pin number of the card.

The only argument for this method will be an instance of StoredValueCardCashoutRequest,
which is defined as:

Attribute Name Required? Notes

accountNumber Yes The stored value card’s account number.

pinNumber Yes The stored value card’s pin number.

The cashout(…) method should return an instance of StoredValueCardCashoutResponse that is
defined as:

Attribute Name Required? Notes

cashoutAmount Yes The amount available to cashout (the stored value
card’s available balance)

Retek Customer Order Management

90

Attribute Name Required? Notes

cashoutDate Yes Date the cashout takes place. This is the one field
that should be set even if a stored value card is not
found for the requested account number.

bannerDisplayCode Yes The banner display code associated with the stored
value card.

cardType Yes Either gift card or merchandise card

The attributes should be set to null (except cashout date) if a stored value card is not found for the
requested account number or if the card found is a merchandise card or if the card found does not
have a pin number matching the supplied number.

If any sort of system exception or fatal error occurs during
SynchronousStoredValueCardProcessor.cashout(…), a StoredValueCardProcessingException
should be thrown.

• SynchronousStoredValueCardProcessor.voidAuthorization(…)

This method handles the process of voiding out an authorization made on a stored value card. If
the method call is successful, the requested amount should be added back to the stored value card
system.

The only argument for this method will be an instance of StoredValueCardAuthorizationRequest,
which is defined as:

Attribute Name Required? Notes

accountNumber Yes The stored value card’s account number.

pinNumber Yes The stored value card’s pin number.

requestedAmount Yes The requested amount to added back to the stored
value card system. This amount will always be a
positive number.

Both the accountNumber and pinNumber need to match for this operation to be valid.

The voidAuthorization(…) method does not return a value. If the requested stored value card was
not found (or an invalid pin number was supplied), an instance of
StoredValueCardProcessingException should be thrown. The operation was successful if no
exceptions were thrown from the processing of the method.

Sample output settlement flat file from RCOM
This is a sample flat file that would be output from RCOM to the third party authorization
application when settlement occurs. This settlement file layout definition .XML file defines the
current implementation of the file specification.

<?xml version="1.0" ?>

- <fixed-width-format>

- <record-format bean="com.retek.component.payment.FheadRecord">

Chapter 5 – Component overviews and interface(s)

91

- <field start="1" end="5" required="Y" justify="L" pad="">

 <property>recordType</property>

 </field>

- <field start="6" end="15" required="Y" justify="R" pad="0">

 <property>fileLineNumber</property>

 <format>number</format>

 </field>

- <field start="16" end="29" required="Y">

 <property>fileCreateDate</property>

 <format>date,yyyyMMddHHmmss</format>

 </field>

- <field start="30" end="41" required="Y" justify="L" pad="">

 <property>settlementFileNumber</property>

 </field>

 </record-format>

- <record-format bean="com.retek.component.payment.FtailRecord">

- <field start="1" end="5" required="Y" justify="L" pad="">

 <property>recordType</property>

 </field>

- <field start="6" end="15" required="Y" justify="R" pad="0">

 <property>fileLineNumber</property>

 </field>

- <field start="16" end="25" required="Y" justify="R" pad="0">

 <property>fileRecordCount</property>

 </field>

 </record-format>

- <record-format bean="com.retek.component.payment.impl.TheadRecordImpl">

- <field start="1" end="5" required="Y" justify="L" pad="">

 <property>recordType</property>

 </field>

- <field start="6" end="15" required="Y" justify="R" pad="0">

 <property>fileLineNumber</property>

 </field>

- <field start="16" end="16" required="Y" justify="L" pad="">

 <property>transactionCode</property>

 </field>

- <field start="17" end="30" required="Y">

 <property>transactionDate</property>

 <format>date,yyyyMMddHHmmss</format>

 </field>

Retek Customer Order Management

92

- <field start="31" end="42" required="Y" justify="L" pad="">

 <property>bannerCode</property>

 </field>

- <field start="43" end="48" required="Y" justify="L" pad="">

 <property>channelTypeCode</property>

 </field>

- <field start="49" end="78" required="N" justify="L" pad="">

 <property>orderNumber</property>

 </field>

- <field start="79" end="84" required="Y" justify="R" pad="0">

 <property>itemCount</property>

 </field>

 </record-format>

- <record-format bean="com.retek.component.payment.impl.TtailRecordImpl">

- <field start="1" end="5" required="Y" justify="L" pad="">

 <property>recordType</property>

 </field>

- <field start="6" end="15" required="Y" justify="R" pad="0">

 <property>fileLineNumber</property>

 </field>

- <field start="16" end="25" required="Y" justify="R" pad="0">

 <property>transactionRecordCount</property>

 </field>

 </record-format>

- <record-format bean="com.retek.component.payment.impl.TcustRecordImpl">

- <field start="1" end="5" required="Y" justify="L" pad="">

 <property>recordType</property>

 </field>

- <field start="6" end="15" required="Y" justify="R" pad="0">

 <property>fileLineNumber</property>

 </field>

- <field start="16" end="31" required="Y" justify="L" pad="">

 <property>customerId</property>

 </field>

- <field start="32" end="71" required="N" justify="L" pad="">

 <property>customerName</property>

 </field>

- <field start="72" end="111" required="N" justify="L" pad="">

 <property>address1</property>

 </field>

Chapter 5 – Component overviews and interface(s)

93

- <field start="112" end="151" required="N" justify="L" pad="">

 <property>address2</property>

 </field>

- <field start="152" end="191" required="N" justify="L" pad="">

 <property>address3</property>

 </field>

- <field start="192" end="221" required="N" justify="L" pad="">

 <property>city</property>

 </field>

- <field start="222" end="224" required="N" justify="L" pad="">

 <property>state</property>

 </field>

- <field start="225" end="234" required="N" justify="L" pad="">

 <property>zipCode</property>

 </field>

- <field start="235" end="237" required="N" justify="L" pad="">

 <property>countryCode</property>

 </field>

 </record-format>

- <record-format bean="com.retek.component.payment.impl.TpymtRecordImpl">

- <field start="1" end="5" required="Y" justify="L" pad="">

 <property>recordType</property>

 </field>

- <field start="6" end="15" required="Y" justify="R" pad="0">

 <property>fileLineNumber</property>

 </field>

- <field start="16" end="27" required="Y" justify="L" pad="">

 <property>paymentId</property>

 </field>

- <field start="28" end="39" required="Y" justify="L" pad="">

 <property>paymentTypeId</property>

 </field>

- <field start="40" end="79" required="Y" justify="L" pad="">

 <property>paymentTypeDescription</property>

 </field>

- <field start="80" end="95" required="Y" justify="L" pad="">

 <property>creditCardNumber</property>

 </field>

- <field start="96" end="115" required="N" justify="R" pad="0">

 <property>amount</property>

Retek Customer Order Management

94

 <format>number,0.0000</format>

 </field>

- <field start="116" end="129" required="N">

 <property>dateOfPurchase</property>

 <format>date,yyyyMMddHHmmss</format>

 </field>

- <field start="130" end="141" required="N" justify="L" pad="">

 <property>authorizationCode</property>

 </field>

- <field start="142" end="155" required="N" justify="L" pad="">

 <property>expirationDate</property>

 <format>date,yyyyMMddHHmmss</format>

 </field>

- <field start="156" end="165" required="N" justify="L" pad="">

 <property>paymentPlanCode</property>

 </field>

- <field start="166" end="185" required="N" justify="L" pad="">

 <property>referenceField1</property>

 </field>

- <field start="186" end="205" required="N" justify="L" pad="">

 <property>referenceField2</property>

 </field>

- <field start="206" end="225" required="N" justify="L" pad="">

 <property>referenceField3</property>

 </field>

- <field start="226" end="245" required="N" justify="L" pad="">

 <property>referenceField4</property>

 </field>

- <field start="246" end="265" required="N" justify="L" pad="">

 <property>referenceField5</property>

 </field>

- <field start="266" end="285" required="N" justify="L" pad="">

 <property>referenceField6</property>

 </field>

- <field start="286" end="305" required="N" justify="L" pad="">

 <property>referenceField7</property>

 </field>

- <field start="306" end="325" required="N" justify="L" pad="">

 <property>referenceField8</property>

 </field>

Chapter 5 – Component overviews and interface(s)

95

- <field start="326" end="345" required="N" justify="L" pad="">

 <property>referenceField9</property>

 </field>

- <field start="346" end="365" required="N" justify="L" pad="">

 <property>referenceField10</property>

 </field>

- <field start="366" end="385" required="N" justify="R" pad="0">

 <property>originalAuthorizedAmount</property>

 <format>number,0.0000</format>

 </field>

 </record-format>

- <record-format bean="com.retek.component.payment.impl.TitemRecordImpl">

- <field start="1" end="5" required="Y" justify="L" pad="">

 <property>recordType</property>

 </field>

- <field start="6" end="15" required="Y" justify="R" pad="0">

 <property>fileLineNumber</property>

 </field>

- <field start="16" end="25" required="N" justify="L" pad="">

 <property>itemDepartment</property>

 </field>

- <field start="26" end="35" required="N" justify="L" pad="">

 <property>itemClass</property>

 </field>

 </record-format>

 </fixed-width-format>

The payment packages in Javadoc
To better understand the method-level implementation that would be required to leverage
RCOM’s payment component, see the following packages in the RCOM Javadoc:

• com.retek.component.payment

• com.retek.component.payment.integration.creditcard

• com.retek.component.payment.integration.creditapp

• com.retek.component.payment.integration.rewardcertificate

• com.retek.component.payment.integration.storedvaluecard

• com.retek.component.payment.integration.xml

Retek Customer Order Management

96

Pend component
Functional overview
To detect potential fraud, rules and parameters are established in RCOM at the banner level.
Validation occurs when a customer order is submitted by an associate. If a customer order fails
the validation check, it is automatically pended for further review. Pended customer orders can be
reviewed, and a determination can be made whether to release or to cancel the order. The pend
component facilitates processing that systematically validates customer orders or automatically
pends them and sends them to the ‘worklist’ bucket. When a rule is created, it is assigned a task
for routing purposes. See the section ‘Task component’ later in this chapter.

Pend rules are assigned a ‘pend rule level’. This level dictates the following:

• Which pend rule criteria is valid when creating/editing the rule

• The level at which the rule is evaluated

A table within RCOM contains level/criteria relationships. The four levels are the following:

1 Order header

2 Order line

3 Return line

4 Accommodations

All areas that evaluate the pend rules upon an order submit evaluate rules at the correct level. For
example, only pend rules created at the order header level are used to evaluate order header
totals/attributes; only pend rules created at the order line level are used to evaluate order lines;
and so on.

Each pend rule is treated as an OR condition. If a pend rule has multiple criteria, each criterion
within the pend rule is treated as an AND condition.

The negative file contains records of customer, customer contact, and order-related information
that were determined to be fraudulent. Records are added systematically when an associate
cancels a customer order because of a specific reason code or selects the applicable add to file
check box from the worklist.

Chapter 5 – Component overviews and interface(s)

97

A customer order may fail for one of the following reasons, among others:

• Payment type
If the selected payment type is used to make a payment on a customer order, the customer
order is pended.

• Department
If one or more items are sourced from the selected department, the customer order is pended.

• Order line quantity
If the number of units entered for one or more order lines is equal to or greater than the
quantity entered, the customer order is pended.

• Order total tolerance
If the grand total of a customer order is equal to or greater than the amount entered, the
customer order is pended.

• High risk zip codes
The zip codes on the bill-to and ship-to addresses are compared to predefined, high-risk zip
codes. If there is a match, the customer order is pended.

• Negative file match
The customer information is compared to predefined customer information in the negative
file. If there is a match, the customer order is pended.

• Different bill-to and ship-to
The customer order is pended if the bill-to and ship-to addresses differ in any way.

• Pend accommodations
The customer order is pended if it contains any customer accommodations.

The pend package in Javadoc
To better understand the method-level implementation that would be required to leverage
RCOM’s fraud component, see the following package in the RCOM Javadoc:

• com.retek.component.pend

Retek Customer Order Management

98

Promotion component
Functional overview
The promotion component facilitates the set up and the application of a general discount (50% off
in percentage terms or $50.00 off in dollar terms, for example) that can be applied to order totals,
order lines or to service totals. It also includes the setup and application threshold level discounts.
Threshold level discounts incorporate purchasing a specific currency or quantity amount of an
item or group of items in order to receive a discount off the purchase price, a discounted or free
item, a discounted or free gift certificate, or a new PLCC plan code.

The general discount promotion is triggered by source codes, alternative selling lists or offer
codes. There is only one source code associated to an order, and if that source code is associated
to a promotion or promotions, the system applies the discount(s). (For more information about
source codes, see the ‘Media component’ section of this chapter.) When an alternative selling list
is triggered on an order (by either media code or selling item), and that alternative selling list is
associated to a promotion or promotions, the system applies the discount(s). When an offer code
is applied to an order, and if that offer code is associated to a promotion or promotions, the
system applies the discount(s). The percent off or dollar off amount is established during the
promotion setup.

If the promotion is set up to provide free or discounted services that are associated with the order
header, the dollar off or percent off amount is applied to the service (such as shipping and
handling) associated with the order. An order total or service total that is ‘free’ (such as free
shipping and handling, for example) would be defined in the system as a 100% off general
discount.

The threshold promotion is triggered by source codes, offer codes or tender types. If the order an
order contains one of these triggers and meets specific criteria established during promotion
setup, the system applies the discount(s).

Promotions are held at the banner/channel type level and occur within a valid date range.

The promotion package in Javadoc
To better understand the method-level implementation that would be required to leverage
RCOM’s promotion component, see the following package in the RCOM Javadoc:

• com.retek.component.promotion

Chapter 5 – Component overviews and interface(s)

99

Security component
Functional overview
The security framework within RCOM has been created to be responsible for the following two
pieces of functionality, which are described in this section:

• Authenticating a user who is logging onto the system.

• Authorizing a user through the user interface (UI) to have access to specific business
functions applicable to his or her role.

The authentication of users
To facilitate the authentication of users, RCOM is integrated with a 3rd party directory service
application: Microsoft’s Active Directory®. Microsoft’s website describes this product as having
a “single-logon capability and a central repository for information for your entire infrastructure,
vastly simplifying user and computer management and providing superior access to networked
resources.” RCOM’s security solution is implemented with LDAP, which allows RCOM to ‘talk’
with Active Directory.

Data about users is stored in Active Directory. Such data could include, for example, username,
password, location, supervisor, and so on. Active Directory does not contain mappings of users to
roles or roles to permissions. RCOM provides the mappings between users and roles and roles
and permissions.

 Note: RCOM never writes data to Active Directory.

An RCOM batch process runs and pulls new and/or modified user-related data from Active
Directory and, after a validation step, persists the data within RCOM (thus ensuring that the two
systems are in sync). The user’s address information is the call center ID. API method calls verify
that the call center that is imported from Active Directory is a valid call center in the RCOM
system.

If the data is not valid, the user’s data is not submitted to RCOM. Rather, the data is written to an
output file, which can be specified as an argument in the command line when the batch process is
run. The output file serves as a reference for errors, a log of ‘bad’ users. Before the batch process
is run again, applicable corrections must be made to the ‘bad’ user’s data in Active Directory.

Retek Customer Order Management

100

LDAP
LDAP stands for Light Directory Access Protocol. The LDAP standard defines a network
protocol for accessing information in a directory. For additional information about LDAP, see the
following website:

• http://www.openldap.org/
This site contains the OpenLDAP main page. This site contains introduction, downloads, and
documentation.

Bootstrap user
The security framework includes a user that is does not originate in Active Directory. This user is
not authenticated via the normal process. This user was created to engage in initial security
functions and is intentionally prevented from being removed from the system (thus, this user is
not visible from the front end).

System user
Throughout RCOM’s operation, the system performs automated tasks which are logged (in
auditing tables, in history tables, and so on). System user is the name under which these
automated tasks are logged.

The authorization of role-based access for users
Security is used to grant permission to users to perform the tasks in RCOM and RMM that are
required for their jobs.

One or more users must have permission to maintain security. That user, or security
administrator, is responsible for setting up roles and assigning the appropriate roles to all other
users. Roles are assigned to users, and permissions are assigned to roles.

Once the security administrator assigns one or more roles to a user, the user can access the
application (RCOM and/or RMM) and perform the tasks for which permissions were assigned.

Security component’s interface with a 3rd party security-related system
RCOM uses Active Directory (AD) for two purposes:

• As the master repository of user information

• As a third-party authentication service

In the first case, all user information that is needed for RCOM is copied from AD into the RCOM
repository via a batch process. Currently, the batch process only supports adding and updating
users; there is no way to delete or inactivate users.

In the second case, RCOM authenticates users by connecting to AD as the user who is attempting
to log in to RCOM. The user's password is never stored in RCOM; it is passed along when
RCOM tries to connect to AD. If the connection to AD succeeds, then the user is considered
authenticated in RCOM.

If RCOM cannot connect to AD; the user is not able to log in.

In both cases, RCOM connects to AD via LDAP. No Microsoft-specific enhancements are
utilized.

Chapter 5 – Component overviews and interface(s)

101

An overview of the security process
The following numbered steps illustrate the security process from a high-level perspective using a
call center as an example. The steps illustrate a scenario in which a new user is added to Active
Directory.

1 A new customer service representative (CSR) is hired.

2 The CSR user data is entered into Active Directory.

3 RCOM’s batch process, SecurityUserUpdateBatch, is run, and the user’s data is validated and
persisted in the RCOM schema.

4 An RCOM security administrator assigns the user a role that provides access to applicable
business processes.

5 The user can log on to the system, having undergone authentication and a role assignment.

Security.properties
Security configurations for RCOM are located in the security.properties file.

Note that within the property file, a # sign that proceeds a value in the properties file signifies that
what follows is a comment and is not being utilized as a setting.

authentication.loginmodule
This setting specifies the process that is used to authenticate a user. For production purposes, this
setting should always be set to the value below, which assumes the use of Active Directory:

authentication.loginmodule=com.retek.component.security.auth.LdapLog
inModule

ldap.initialcontextfactory
This internal Java-specific setting should not change from its initial value.

For LDAP authentication
These values are used for the configuration of the authentication process as it is run through
LDAP. For example, in a production environment, the setting below would contain the client’s
address for its Active Directory:

For LDAP authentication.

ldap.authenticationprovider.url=ldap://64.238.67.60:389/

For batch user update
These values are used for the configuration of the authentication process with regard to the
SecurityUserUpdateBatch process. For example, the setting below specifies where the system
starts to look in the directory service for users:

ldap.batchuser.dn=cn=Administrator,cn=Users,dc=rcomad,dc=local

For mapping LDAP to RCOM schema
These values are used for the configuration of Active Directory attribute names. For example:

ldap.country.attrname=c

ldap.county.attrname=county

Retek Customer Order Management

102

ldap.employeenum.attrname=employeeID

Security model diagrams
The following diagrams provide a high level view of the security model. They illustrate the
conceptual logic behind security processing:

RetekPermission
Retek Permiss ionC ol lection

+ add()
+ implies()

1..*1..*

GUIComponent

PermissionCollection

- readOnly : boolean

+ PermissionCollection()
+ add()
+ implies()
+ elements()
+ setReadOnly ()
+ isReadOnly ()
+ toString()

(from security)

Permis sion

- name : String

+ Permiss ion()
+ checkGuard()
+ implies()
+ equals()
+ has hCode()
+ getName()
+ getActions()
+ newPerm issionCollection()
+ toSt ring()

(from security)

Access Manager

+ login()
+ logout()
+ has Perm iss ion()
+ ass ertPermission()

<<singleton>>

Permissions

+ Permissions()
+ add()
+ implies()
+ elements()
- elements()
- getPermissionCollection()
- getUnresolv edPermissions()
class$()

(from security)

-a llPermiss ion

Permission model

Chapter 5 – Component overviews and interface(s)

103

Sche maPermi ssi on

Permission

+ Permission()
+ checkGuard()
+ implies()
+ equals()
+ hashCode()
+ getName()
+ getActions()
+ newPermissionCollection()
+ toString()

(from security)

User

conte xt Role inv:
 not sel f.permissions->exists(oclIsKi ndOf(Schema Permission))

OperationPermission

Role

RetekPermission

RoleMapping

Ap pl ica tion

0..*

0..*

0..*0..*0..*

0..*0..*

0..*0..*

-im pl ies 0..*0..*

0..*

0..*

0..*

-permi ssi ons

0..*

0..*

0..*

0..*

1..*1..* 0..*

1

0..*

1

-roles

Permission mapping

LdapLoginModulePropertiesLoginModule

AccessManager

+ login()
+ logout()
+ hasPermission()
+ assertPermission()

<<singleton>>

RetekLoginM odule

UserManager

User

PermissionsManager

AccessServ icesEjb

RoleManager

Authentication model

Retek Customer Order Management

104

The security package in Javadoc
To better understand the method-level implementation that would be required to leverage
RCOM’s security component, see the following packages in the RCOM Javadoc:

• com.retek.component.security

• com.retek.component.security.auth

• com.retek.component.security.batch

Security component batch processing
Java batch processing is associated with this component. For functional summaries about batch
processing within RCOM, see the RCOM Operations Guide.

Chapter 5 – Component overviews and interface(s)

105

Shipping component
Functional overview
This component engages in processing related to carriers, shipping methods (carrier services), and
ship restriction data, all of which are imported into RCOM. This component associates the
carriers (UPS, Federal Express, and so on) to the ship methods (overnight, next day, and so on).
Items that are set up in RMM include a default shipping method.

Some of the processing within this component includes the following:

• Adding and/or removing a specified carrier to the list of carriers that provide a shipping
method.

• Setting/returning a list of carriers that provide a shipping method.

• Setting/returning a default carrier for a shipping method.

• Setting/returning the number of days it takes to deliver an item via a shipping method. These
values, as applicable, are used in conjunction with the estimated ship date, which is the result
of ATP calculations. To arrive at an estimated customer delivery date (ECDD), processing
elsewhere in the system adds the ATP-generated estimated ship date to the shipping-
generated delivery days data.

• Setting/returning a description of a shipping method.

• Getting/returning a shipment tracking carrier website URL for a given shipment tracking
number (from a shipment container).

The following attributes are held at the carrier level:

• Carrier (existing and non editable)

• Valid carrier(s) used for return pickups

• Default carrier to be used for pickups

• Account number used for the billing of pickups for that carrier

• Tracking URL (existing)

RCOM subscribes to the RIB to retrieve the carriers and shipping methods (carrier services). See
the ‘Codes component’ section of this chapter.

Retek Customer Order Management

106

The shipping package in Javadoc
To better understand the method-level implementation that would be required to leverage
RCOM’s shipping component, see the following package in the RCOM Javadoc:

• com.retek.component.shipping

• com.retek.component.shipping.integration.rib

Shipping component RIB integration
The shipping-related subscription is processed from within the Codes component. For
information about this component and the RIB, see the sections, ‘Subscribers mapping table’
and/or the ‘Publisher’s mapping table’ in “Chapter 3 – RCOM and the Retek Integration Bus
(RIB)”. The publishers table illustrates the relationship among the message family, the message
type, and the DTD/payload object. The subscribers table includes the message family and
message type name, the document type definition (DTD) that describes the XML message, the
component, and the subscribing classes that facilitate the data’s entry into the application’s
business object layer. For additional information, see the latest Retek Integration Guide and other
RIB documentation.

Chapter 5 – Component overviews and interface(s)

107

Supplier component
Functional overview
Supplier and supplier address-related data is imported from the RIB and originates within the
merchandising system. Valid values for the supplier and supplier address data must be kept in
sync with the external system. All supplier-related data within RCOM is a reflection of the
supplier-related data in the merchandising system. The message serves as a ‘wrapper’ for the
record so that all required information is there before the create message is sent.

Processing within this component facilitates the following business processes.

• Personalization service: RCOM processes this data because personalization differs among
suppliers.

• Monogramming service: RCOM processes this data because personalization differs among
suppliers.

• Direct ship order addresses are used for tax calculations during ship confirmation.

• The supplier font and color descriptions originate from an external supplier’s system. The
supplier component uses this data for personalization and monogramming. The data includes
applicable ID values. For the color Red, for example, supplier A red might use a value of ‘R’,
and supplier B might use a value of ‘Red’.

The supplier packages in Javadoc
To better understand the method-level implementation that would be required to leverage
RCOM’s supplier component, see the following packages in the RCOM Javadoc:

• com.retek.component.supplier

• com.retek.component.supplier.integration.rib

Supplier component RIB integration
This component is involved in RIB-related processing. For information about this component and
the RIB, see the sections, ‘Subscribers mapping table’ and/or the ‘Publisher’s mapping table’ in
“Chapter 3 – RCOM and the Retek Integration Bus (RIB)”. The publishers table illustrates the
relationship among the message family, the message type, and the DTD/payload object. The
subscribers table includes the message family and message type name, the document type
definition (DTD) that describes the XML message, the component, and the subscribing classes
that facilitate the data’s entry into the application’s business object layer. For additional
information, see the latest Retek Integration Guide and other RIB documentation.

Retek Customer Order Management

108

System parameter component (including system
parameters)
Functional overview
Every system parameter has a pre-established (default) value.

System-level parameters are configured according to the client’s needs during initial
implementation. They reside on the following RCOM table:

• SYS_SYSTEM_PARAMETER

As a reference, they are described below. See the RCOM Installation Guide for more information
about how and in what order to enter them into the system.

Parameter Name Description Values

Point of Presence --
tax.pointOfPresence

This parameter is used to determine
which organization addresses are
used to determine Point of Presence
for Tax calculations. Set up as a
system parameter.

Values are ‘Banner’ or
‘Global’, Parameter Type =
‘T’

System Parameters to
connect to the tax service
Vertex.databaseUrl
Vertex.databaseUser
Vertex.databasePassword

These variables are used only when
connecting to Vertex. Set up as
system parameters.

URL – Holds the connection
to a 3rd party tax application
(Vertex)
USER – Holds the user
name used to enter into a
3rd party tax application
(Vertex)
Password – Holds the
password to enter into a 3rd
party tax application
(Vertex)
Parameter Type = ‘X’

In Transit Day Factor --
atp.inTransitDayFactor

This parameter specifies the number
of days to be added to the date an
order line is backordered (due to in-
transit inventory), in order to
calculate the Estimated Customer
Delivery Date. Set up as a system
parameter.

Number (in days),
Parameter Type = ‘A’

Chapter 5 – Component overviews and interface(s)

109

Parameter Name Description Values

System Parameters for
Hotkeys

Ability to use short cut codes when
entering text on the personalization
and ship-to processing secondary
tabs. (User types SHIFT + ALT +
one of the codes). Set up as a system
parameter.

Values:
HB – Happy Birthday
MC – Merry Christmas
HA – Happy Anniversary
HH – Happy Hanukkah
HW – Happy Halloween
HM – Happy Mother’s Day
HF – Happy Father’s Day
NP – No Packing Peanuts
BD – Beware of Dog
LN – Leave with Neighbor
Parameter Type = ‘V’

Match Code System
Parameter -
matchCode.isFunctionalit
yActive

This parameter determines when
match code functionality is active or
inactive. Set up as a system
parameter.

Values are ‘true or ‘false’,
Parameter Type = ‘M’

Shipping & Handling Tax
Code --
tax.shippingAndHandling
TaxCode

This parameter is used to identify tax
codes for product codes. Set up as a
system parameter.

Number, Parameter Type =
‘T’

Gifting Tax Code --
tax.giftingTaxCode

This parameter is used to identify tax
codes for product codes. Set up as a
system parameter.

Number, Parameter Type =
‘T’

Personalization Tax Code
--
tax.personalizationTaxCo
de

This parameter is used to identify tax
codes for product codes. Set up as a
system parameter.

Number, Parameter Type =
‘T’

Fraud Cancel Reason --
fraud.cancelReason

This parameter is used to hold the
value(s) of the fraud cancel reason
that generates a negative fraud file.
The parameter can hold multiple
cancel reason ids. Set up as a system
parameter.

Number, Parameter Type =
‘F’

Flash Demand Week Start
Day
system.flashReportWeek
ResetDaykey

For flash demand reporting, a new
week will begin on the specified day.
The parameter will hold numeric
values. 1 = Sunday, 7= Saturday

Parameter Type = ‘S’

Time Out In Seconds
system.parameterTimeout
InSeconds

The number of seconds the
application will cache the system
parameter values in memory before
going back to the database to read the
values again. Number (in seconds)

Parameter Type = ‘S’

Retek Customer Order Management

110

Parameter Name Description Values

Backorder Pending Hours
system.backorderPending
HoursKey

The number of hours a backorder
notification will be held in the
pending file before it is published to
the RIB. This will give users the
ability to go in and cancel a
notification if it is deemed no longer
needed to be sent. - Number (in
hours)

Parameter Type = ‘S’

Return Disposition Code
for Disposed Inventory
system.defaultReturnDisp
ositionCode

This parameter is used to denote the
return disposition code that results in
disposed inventory transactions.

Parameter Type = ‘S’

Pick Not After Days --
System.pickNotAfter

The pick_not_after_date field is
required for the RIB message, but
RCOM items do not have this kind
of information. This parameter will
be added onto the transaction date in
the ship request message to populate
the pick_not_after_date on the
message. The parameter’s value is in
days.

Parameter Type = ‘S’

Return Tax Credit Reason
--
tax.returnTaxCreditReaso
nCode

This code represents why a tax credit
is being issued in the case of returns.

Parameter Type = ‘T’

Accommodation Tax
Credit Reason --
tax.accommodationTaxCr
editReasonCode

This code represents why a tax credit
is being issued in the case of a
general accommodation.

Parameter Type = ‘T’

Tax Accommodation Tax
Credit Reason --
tax.taxAccommodationTa
xCreditReasonCode

This code represents why a tax credit
is being issued in the case of a tax
accommodation.

Parameter Type = ‘T’

Sunday Contact Day --
system.sundayContactDa
y

This value informs the system what
day is Sunday. To guarantee
synchronicity between systems, this
day must be identical to that set up in
the merchandising system (such as
RMS).

Parameter Type = ‘S’

Default Client Browser
Path --
system.defaultClientBrow
serPath

This parameter represents the default
path to a browser that resides on the
client system. The browser is used in
conjunction with shipment tracking
functionality.

Parameter Type = ‘S’

Chapter 5 – Component overviews and interface(s)

111

Parameter Name Description Values

ATP Fulfillment Channel
Type --
atp.fulfillmentChannelTy
peMod

This parameter must be a channel
type used for ATP inventory lookup.

Parameter Type = ‘A’

Max Days Compare Dups
- -
salesAudit.maxDaysCom
pareDups

This is the number of days before the
transaction numbers will be reset to
1.
To guarantee synchronicity between
systems, this day must be identical to
that set up in the merchandising
system (such as RMS).

Parameter Value = 1
Parameter Type = U

Default Destination ID --
system.defaultDestination
Id

The parameter represents the default
destination in Warehouse
management system for customer
orders.

Parameter Value = Retailer
defined
Parameter Type = S

Additional Field Editable
--
system.additionalFieldsE
ditable

This parameter determines if the user
will have access to the following
RMM tabs:
Inventory Item
Item Supplier
Item Supplier Personalization
Item Location
Events
Maintain Events
Banner Events
Supplier Events
Item Events
Admin
Organization
Supplier
Warehouse
Ship Restriction Codes

Parameter Values = true, or
false
Parameter Type = S

Last Transaction Reset
Date - -
alesAudit.lastTransaction
ResetDate

Internal date used for sales audit
batch process. No initial setup is
required.

Parameter Value = “MM-
DD-YYYY”
Parameter Type = S

Retek Customer Order Management

112

The system parameter package in Javadoc
To better understand the method-level implementation that would be required to leverage
RCOM’s system parameter component, see the following package in the RCOM Javadoc:

• com.retek.component.systemparameter

Chapter 5 – Component overviews and interface(s)

113

Task component
Functional overview
This component addresses the variety of customer-service tasks that do not fall under the strict
category of order capture or maintenance. These tasks typically cannot be addressed immediately
(for example, while on the phone with the customer). They are managed as a set of offline
activities with their own priorities and resource requirements.

The diagram below (along with the following passage) describes the logic behind task processing.
Any time an order is pended, a task is created and routed to a worklist. New tasks are associated
to the reasons that orders are pended (for example, underpayment, credit card authorization failed,
and so on). An order pended for three reasons would have three tasks. Tasks are a required
attribute for every pend reason in the system.

The user responsible for addressing a task can access it on a worklist. For example, the user in
charge of credit card authorization failures could access a worklist of tasks related to that pended
reason; the user responsible for fraud issues could access a worklist of fraud tasks; and so on.
When a user double clicks on a task, he or she is taken to an order.

To release a reason, a user with supervisor privileges completes a task. For example, let’s say the
user has a credit card authorization failure on his or her task list. He or she navigates to the
applicable order, reauthorizes the credit card, calls the customer, and so on. After rectifying the
credit card authorization issue, the user can release the reason on the order. If the order is pended
for additional reasons, additional tasks would have to be addressed before the reasons could be
released on an order.

Retek Customer Order Management

114

 Pend Rule 1

 Pend Rule 2

Pend
Reason 1

(for example,
high risk zip

code)

Pend
Reason 2

(for example,
reg. fraud file)

Pend
Reason 3

(for example
manual fraud

pend)

Manually Pend - No Rule

Setup/Administration Execution

Task
(for example,

customer fraud)

Banner Name ORDER 1/26/03

 Task 10 1
 Task 10 2
 Task 10 3

Tasks

 Banner Name 1 Banner Name 2 Banner Name 3
Customer Fraud 3

1/26/03

Credit Card Authorization Failure
Over Payment

Resolution

The setup, execution, and resolution of tasks

Print file tasks associated to activity requests
Tasks associated with activity requests can be routed to a print file. Using the print file, specific
users within the system have the ability to print these tasks on an ad-hoc basis.

For example, let’s say a user wishes to have shipping labels printed in order to mail back a box.
The user creates an activity request related to printing shipping labels and associated to a task
related to shipping label printing. The task is routed to the print file (as opposed to a worklist).
Once the print screen is accessed, the user has the choice of what type of activity requests should
be printed to a file. The system prints all of the labels (all of the information) associated to all of
the activity requests under the task. For example, if a hundred people are waiting for labels, the
user could select all of the activity requests, and the system would, based on the task, create a flat
print file that could be later merged and printed using a predetermined template in either Word or
Excel.

Chapter 5 – Component overviews and interface(s)

115

Personal reminders
Personal reminders are tasks associated to a specific user ID within the system; these reminders
are visible only to the assigned user. The user can access the list of personal reminders at his or
her discretion. These tasks are routed to neither a worklist nor a print file.

If a personal reminder is created when the user is within an activity request or an order, the
personal reminder is associated to the activity request or order number. Note that the association
to a specific order or activity request is independent of any existing tasks on an order or on an
activity request. If a personal reminder contains an association to an activity request or an order,
the user can use the personal reminder to navigate to the order or the activity request.

To resolve a personal reminder, the user opens the personal reminder and enters the applicable
‘resolved’ command. The system marks the task as resolved and associates the correct date/time
to the task. The task becomes no longer viewable on the user’s personal reminder primary view.

The user can edit existing personal tasks by selecting the task. The only editable fields include
task description and content. The ‘last updated date’ and ‘create date’ data is populated
systematically.

The task package in Javadoc
To better understand the method-level implementation that would be required to leverage
RCOM’s task component, see the following package in the RCOM Javadoc:

• com.retek.component.task

Retek Customer Order Management

116

Tax component
Functional overview
From an order entry perspective, RCOM calls the third party tax system to calculate estimated
taxes for applicable amounts. These taxes are persisted with the customer order, and they
represent the amount that is charged to the customer.

During the ship confirmation process, a call to the third-party tax system must occur to document
the actual tax in the third-party tax system application. The actual tax is the tax calculated on the
day of shipment and may be different than the quoted tax charged to the customer. RCOM is
responsible for facilitating the persistence (within the third-party tax system) of the RCOM-
generated invoice number along with the shipment record. The invoice number is also persisted
within RCOM in case the need arises to reconcile the two systems’ processing. If there is a
difference between the quoted and the actual tax, the customer is charged the lesser of the two
values. Within RCOM, the quoted tax is not altered, and the actual and the charged values are
also held.

Because addresses play an important role in tax processing, RCOM includes functionality (in
various components) to ensure that the following address data, sent to the third-party tax system,
is valid and complete:

• Order acceptance

• Ship-to

• Ship-from

For example, RCOM processing steps ensure that customers must have county information as
part of their address.

Tax component’s interface with a 3rd party tax application

 Note: The tax codes held in the system parameter table must match the codes contained
in the tax engine.

RCOM includes processing to call the third-party tax system to perform the following:

• Calculate following types of taxes for an order line:

 VAS tax (for gifting and personalization value added services, for example)

 Net merchandise tax

 Shipping and handling tax (including additional delivery charge tax)

• Determine whether a tax credit applies to a previous tax calculation for an order.

• Determine whether a customer is tax exempt.

• Create a tax credit transaction for the total calculated tax amount from the created invoice.
The total tax amount would be negative in cases where the taxes collected to reverse. The
third-party tax system can accept both positive and negative total tax amounts. RCOM
assigns the credits a tax credit accommodation type. Returns-related credits update tax
liability. When creating tax credit invoices, the system uses the original order line create date.

• Update the actual taxes owed to the tax jurisdictions.

Chapter 5 – Component overviews and interface(s)

117

• Pass error codes to the order entry system.

• Send RCOM valid GEOCODE(s) (matching city-state-county combinations) for a given
postal code that is passed from RCOM.

Vertex overview
The RCOM application uses Vertex 2.1.4 as its 3rd party tax application. The diagram below
indicates at a conceptual level the interface functionality between Vertex and the RCOM system.

Vertex has already been implemented. In production, the database connection information held as
a system parameter must be changed.

Vertex

Geo Location

EJBEJB

Tax

G
eo

co
de

V
al

id
at

io
n

T
ax

 C
al

cu
la

tio
n

Tax processing
To calculate tax on a customer order, RCOM creates a TaxCalculatorInvoice by calling the
method buildTaxCalculatorInvoiceInstance in TaxManager. Each order line in RCOM needs to
be converted to TaxInvoiceLineItem. To make the conversion, RCOM calls
buildTaxInvoiceLineItemInstance in TaxManager and then sets all the parameters from the
customer order line number to the merchandise amount. These steps are repeated for all order
lines. These TaxInvoiceLineItems are added to the TaxCalculatorInvoice.

At this point, the TaxCalculator is built by calling the buildTaxCalculatorInstance in TaxManager
by passing in the Tax CalculatorInvoice. To trigger the calculation, the calculate method is called
in the TaxCalculator. There is no need to call this calculate method explicitly. Calling the
getMerchandiseTax on the TaxCalculator triggers this action.

The shipping and handling tax for the entire order is retrieved by setting the shipping and
handling amount on the TaxCalculatorInvoice. To get the extended shipping and handling tax on
the order line, a shipping and handling product code is added to the TaxInvoiceLine. To get the
value added service tax (personalization and gifting cost tax) on the order line, a personalization
or gifting product code is added to the TaxInvoiceLine before triggering the calculate method.
RCOM is responsible for summing up the two value added service tax amounts and storing them
as only one field in the system.

Retek Customer Order Management

118

If Vertex becomes unavailable, RCOM continues to process the order without tax information.
During order submit, RCOM again validates whether or not Vertex is available. If it is
unavailable, RCOM systematically pends the order; otherwise, the tax is calculated and the order
submitted normally.

Geocode processing
During order entry, the order entry system sends a postal code to the Vertex GEOCODE API. The
Vertex GEOCODE API returns all the matching city/state/county combinations that are valid for
that postal code. The matches are passed back into the order entry system. If an invalid postal
code is sent, an error message is returned to RCOM. If the postal code cannot be validated by
Vertex, the user has to manually capture the address from the customer, and it will not be
validated at that time. It will be validated when the system becomes available.

The tax packages in Javadoc
To better understand the method-level implementation that would be required to leverage
RCOM’s tax component, see the following packages in the RCOM Javadoc:

• com.retek.component.tax

• com.retek.component.tax.integration.taxengine

Chapter 6 – Internet/external APIs integration

119

Chapter 6 – Internet/external APIs
integration
Functional overview
This component facilitates the use of customer order management functionality through a custom
user interface (such as an internet e-commerce website). Because of processing within this
component, RCOM exposes a portion of its existing functionality to an external system. Through
this exposure of its APIs, RCOM provides functionality for the following three areas and more:

• Customer creation and search

• Customer order submission and creation

• Catalog request creation

To ensure that the system offers rapid performance throughout a visitor’s session to the custom
interface (such as an internet website), an RCOM batch process exports a media and all of its
items to an XML file for the use of the external system. To access the item-related data within the
XML file, the third party system does not have to make a real-time call to RCOM (which would
have an adverse impact upon performance, given the volume of item-related information).

Note that any orders created via the internet have an ‘internet’ order source.

Internet component batch processing
Java batch processing is associated with this component. For functional summaries about batch
processing within RCOM, see the RCOM Operations Guide.

Retek Customer Order Management

120

Processing through a custom user interface (such
as the internet)
The steps below provide an example of how RCOM is used in conjunction with a custom
interface (such as an internet e-commerce website). During internet processing, two primary
RCOM calls occur through APIs. The first call is to ‘calculate my shopping cart’. This call can be
made as many times as necessary. Each time this call occurs, RCOM can look up the order again,
apply changes, perform recalculations, and so on. The second call is to create the order and
submit the order. Both primary calls are shown in the steps below. Note that other smaller APIs
are used in other calls (related to ATP, customer creation, and so on).

1 A website is built with a custom user interface.

2 Through the website, a user inserts customer information and item information.

3 The information is conveyed in a direct call to RCOM through its APIs.

4 RCOM’s functionality performs the following and informs the user of the results:

 Creates the customer.

 Uses ATP functionality to determine whether or not the items are in stock.

 Calculates taxes, prices and so on.

5 RCOM sends this data back in almost real time to the user as a sort of pended order, that is, a
‘shopping cart’ on its way to checkout. A shopping cart is the minimum amount of
information needed to create an order. Note that an external system may request ATP
information or create customers at any time. However, a pended order is only created once
the third party provides a minimum set of data (as outlined in the APIs).

6 The user performs one of the following:

 Adds and/or removes items from the order.

OR

 Inserts payment information and submit the data (‘order submit’ is the equivalent
command in the RCOM application).

7 The information is conveyed in a call to RCOM through the APIs, and RCOM performs one
of the following and informs the user:

 Creates and submits the order, returning an order confirmation.

OR

 Returns an error requesting more information from the external system.

Chapter 6 – Internet/external APIs integration

121

A guide to using RCOM’s external APIs (such as for the internet)
This design addresses the need to integrate existing client e-commerce web sites with the
customer and order management functionality implemented by RCOM. This external API will
henceforth be called ExA, for convenience and brevity.

The external API was implemented primarily to deal with conditions presented by the use case
shown in Figure 1, which represents a high-level view of a web ordering facility.

Given that the RCOM functionality is strongly oriented to the call center purposes that it fulfills,
this design strives to provide, in a seamless fashion, a stateless representation of RCOM order
creation with the following related functions:

• Obtain all selling SKUs for a given selling item

• Obtain current stock and delivery information for a given selling SKU

• Obtain all customers and associated customer data for a given set of search criteria, including
customer number, name, and address information

• Obtain all existing orders and associated order data for a given set of search criteria,
including order number, customer number, and various customer information

• Obtain all history events for customer and orders for a given set of search criteria

• Create and maintain customer emails, telephone numbers, addresses and preferences

• Request a catalog, for a given concept and subconcept, to be sent to a specified customer
address

• Request pricing, shipping, and tax information, and associated totals, for a given set of selling
SKUs (with quantities)

• Create an order, paid with any payment type, and have designated items on the order shipped
to specified locations

• Create an order, and pend it for completion by conversation with a call center representative

• Recall an order by order number and modify line quantity, cancel the order, cancel lines, or
cancel payments on the order

• Create order returns, exchanges and view container information

The overriding philosophy observed in implementing ExA was simplicity. RCOM is a very
robust and functionally complete system, and to utilize the native APIs from an external
application environment would be very difficult. ExA attempts to shield the external application
as much as possible, from this complexity. Likewise, to immunize clients of this API from
changes to the implementation, all interaction with the API is via established Java interfaces.

Retek Customer Order Management

122

Figure 1.

Chapter 6 – Internet/external APIs integration

123

Information sources
The information used to drive any ExA function is obtained from one of three sources

1 Customer or third party sources

2 ExA queries

3 RCOM data extract

Customer-provided information (via the web) or third party sources are entirely beyond the scope
of this document. It is assumed that this information will be provided by the integrator.

ExA queries can provide information on selling items, selling SKUs, item availability, item
delivery, existing customers, and existing orders.

Periodic data extractions are exported from RCOM to facilitate querying and ordering from
outside the native RCOM environment via ExA. This extract will include information about all
concepts, media, selling items, selling skus, gifting, color and font data, etc.

Annotations will be included wherever data from the extract is required for ExA. See “Appendix
A – Batch file layout specifications” in the RCOM Operations Guide appendix.

Usage philosophy
ExA consists of two managers, the request manager and the API manager, and many classes that
support manager operations. Each manager is instantiated by invoking a specific method on the
manager factory class ExAManagerFactory and each will be discussed separately in this section.

The request manager, ExARequestManager, is very specifically intended to create objects
observing request interfaces (primarily “setter” methods), which are to be used by the API
manager. Some of these objects include:

• ExACatalogRequest

• ExAOrderLineRequest

• ExABannerRequest

• ExAMediaRequest

• ExASellingItemRequest

• ExASellingSkuRequest

• ExAPackSellingSkuRequest

• ExACustomerRequest

• ExAOrderCustomerRequest

• ExACatalogCustomerRequest

• ExAShipToLabelRequest

• ExAOrderRequest

• ExAPersonalizationRequest

• ExAPersonalizationTextLineRequest

Retek Customer Order Management

124

• ExAMonogrammingRequest

• ExAGiftingSeasonRequest

• ExAGiftWrapRequest

• ExAGiftCardRequest

• ExACreditCardPaymentRequest

The API manager, ExAManager, uses instances of the above classes, in combination with
various Java primitives, to accomplish the desired objectives. The methods implementing those
aims are:

• findSellingItem()

• findStockStatus()

• findCustomers()

• findOrders()

• findOrderCancelReasons()

• createCatalogRequest()

• createSummary()

• createOrder()

• createPendedOrder()

• updateOrder()

• createCustomer()

• updateCustomer()

This section illustrates some common e-commerce use cases and example code that might be
used to implement ExA functionality to support that use case.

Exception Handling

The API methods have been implemented with a few essential assumptions about the client’s
usage. The following code illustrates one of these assumptions:

try {

 //

 // API invocation

 //

} catch (ExABusinessException rbe) {

 //

 // Exception exhibiting business rule inconsistency

 //

} catch (ExASystemException rse) {

 //

 // Exception exhibiting system inconsistency

Chapter 6 – Internet/external APIs integration

125

//

}

Encounters with the ExABusinessException are largely recoverable and represent business rule
violations.

The ExASystemException, on the other hand, is probably not immediately recoverable and
probably represents a condition in the remote server that needs to be addressed.

Native Java exceptions that are thrown will include, for example, IllegalArgumentException,
that represent method invocation errors.

Retek Customer Order Management

126

Obtain selling item info

Figure 2.

Given that the RCOM data extract contains all pertinent information about selling items in
extracted media, this might seem, at first glance, to be superfluous. However, if a requested
selling item is not from a currently extracted media, information may only be available from the
native database. The findSellingItem() method supplies access to that information. Figure 2
shows a Catalog Quick Shop feature that allows ad hoc entry of published catalog selling item
information. The Item Lookup function corresponds to this method.

The following code excerpt shows query and retrieval of a uniquely-designated selling item:
ExAManager mgr = ExAManagerFactory.getExAManager();

ExARequestManager reqMgr = ExAManagerFactory.getRequestManager();

// The banner number is from the RCOM data extract.

String bannerNumber = “9900”;

// The media number may originate from either the RCOM data extract,
or from

// a UI field prompting for a catalog identifier.

String mediaNumber = “001”;

Chapter 6 – Internet/external APIs integration

127

// The media object needed by the findSellingItem() API must first
be constructed,

// and it requires the prior existence of a banner instance.

ExABanner banner = (ExABanner)
reqMgr.buildExABannerRequest(bannerNumber);

ExAMedia media = (ExAMedia) reqMgr.buildExAMediaRequest(banner,
mediaNumber);

// The selling item number will very likely come from a UI field
which prompts

// for a catalog entry. Or it, too, may originate in the RCOM data
extract.

String sellingItemNumber = “100006666”;

ExASellingItem sellingItem = mgr.findSellingItem(media,
sellingItemNumber);

The bannerNumber, mediaNumber, and sellingItemNumber are data from the RCOM data extract
or synthesized from customer or third party information. The returned ExASellingItem instance
identifies various characteristics of the selling item as well as all selling SKUs, the actual,
orderable item, encompassed by the selling item.

Retek Customer Order Management

128

Obtain stock status
Stock and delivery information for a single selling SKU may be determined immediately using
the findStockStatus() method. Figure 2 depicts the ability to View Item Detail by utilizing a
function shown as Stock Status, which corresponds to this method.

The following code shows query and retrieval of a uniquely-designated selling SKU:
ExAManager mgr = ExAManagerFactory.getExAManager();

// The selling sku number will very likely originate in the RCOM
data extract. It’s also

// possible that it came from a request to obtain selling item
information.

String sellingSkuNumber = “100166286”;

BigDecimal quantity = new BigDecimal(3);

ExASellingSkuStockStatus stockStatus =
mgr.findStockStatus(sellingSkuNumber, quantity);

If (stockStatus.getReservableQuantity().compareTo(quantity) == -1) {

 //

 // Supplier will be unable to meet the given quantity without
backordering

 //

}

The sellingSkuNumber may originate in either the data extract or from an ExA query. The
specified quantity is at the client’s prerogative. The returned instance of
ExASellingSkuStockStatus reveals how much of the given item is currently on hand. It also
shows the expected customer deliver date of anything that is immediately ordered.

Chapter 6 – Internet/external APIs integration

129

Obtain customer information
Customer information may be obtained by querying the remote RCOM server with the
findCustomers() method. A specific customer may be sought by using a known customer number
(say, from a previously submitted query or order), or a set of customers may be obtained by
requesting customers matching a search criteria.

 Note: This general search capability must be used with caution to avoid exposing
confidential customer information inappropriately.

The first code example shows querying for customer information based on a known customer
number. The client can expect either a single, unique customer on return, or nothing if the
customer doesn’t exist.

ExAManager mgr = ExAManagerFactory.getExAManager();

ExACustomerSearchCriteria criteria = new
ExACustomerSearchCriteria();

criteria.setCustomerNumber(“1045993”);

Set customers = mgr.findCustomers(criteria);

If (customers.size() == 0) {

 //

 // No such customer exists

 //

} else {

 //

 // Requested customer was returned

 //

}

The returned set of customers for a successful find, in the above scenario, will consist of a single
instance of an ExACustomer object.

The following example implements a fuzzier search utilizing other fields in the
ExACustomerSearchCriteria class.

ExAManager mgr = ExAManagerFactory.getExAManager();

ExACustomerSearchCriteria criteria = new
ExACustomerSearchCriteria();

criteria.setFirstName(“John”);

criteria.setLastName(“Smith”);

Set customers = mgr.findCustomers(criteria);

If (customers.size() == 0) {

 //

 // No such customer exists

 //

} else {

Retek Customer Order Management

130

 //

 // Matching customer record(s) were returned

 //

}

In this case, the returned set for a successful find may well consist of more than one
ExACustomer object. It is up to the client to responsibly deal with multiple ExACustomer
information.

Chapter 6 – Internet/external APIs integration

131

Obtain history event information
History Event information may be obtained by querying the remote RCOM server with the
findHistoryEvents() method. History events bay be sought by using a known customer number
(from a previously submitted customer query or request) or by using a known order number. Here
is some example code that shows querying history events based on customer information.

ExAManager mgr = ExAManagerFactory.getExAManager();

ExAHistoryEventSearchCriteria criteria = new
ExAHistoryEventSearchCriteria();

criteria.setCustomerNumber(“1045993”);

criteria.setVisibility(“B”);

Set historyEvents = mgr.findHistoryEvents(criteria);

If (historyEvents.size() == 0) {

 //

 // No history events exist for customer

 //

} else {

 //

 // Requested history events were returned

 //

}

There are three visibility codes that can be set on the criteria: “C” returns only customer history
events, “O” return only order history events and “B” return both types of history events for the
criteria.

Retek Customer Order Management

132

Create customer
The createCustomer() method requires a number of things to complete:

1 An instance of ExAUser representing the legitimate ExA user identifier

2 An instance of ExACustomerRequest representing a new customer with fully specified
demographics, address, etc.

Some minimal amount of information is required to create a customer. A name and a bill to
address are the minimum amount required. The following example illustrates creating a customer:

ExAManager mgr = ExAManagerFactory.getExAManager();

ExARequestManager reqMgr = ExAManagerFactory.getExARequestManager();

// The user name is provided as part of the integration work and
must be a legitimate

// user name with the RCOM application. This is required for all
transactions that may

// persist information.

ExAUser user = new ExAUser();

user.setUserName(“SpecialInternetUserName”);

ExACustomerRequest cust = reqMgr.buildExACustomerRequest();

// Assign name information

cust.setFirstName(“John”);

cust.setMiddleInitial(“J”);

cust.setLastName(“Smith”);

// Create and assign email

ExAEmail email = new ExAEmail();

email.setEmailAddress(john.smith@yahoo.com);

cust.addEmailAddress(email);

// Create and assign telephone

ExATelephoneNumber telephone = new ExATelephoneNumber();

telephone.setTelephoneNumber(“4155556789”);

cust.addTelephoneNumber(telephone);

// Create and assign bill to address

ExAAddress billToAddress = new ExAAddress();

Chapter 6 – Internet/external APIs integration

133

billToAddress.setFirstName(“John”);

billToAddress.setMiddleInitial(“Q”);

billToAddress.setAddressLine1(“Smith”);

billToAddress.setCity(“Airedale”);

billToAddress.setCounty(“Froofroo”);

billToAddress.setState(“AK”);

billToAddress.setPostalCode(“67890”);

billToAddress.setCountry(“USA”);

billToAddress.setDayPhone(“1234567890”);

billToAddress.setEveningPhone(“1234567890”);

cust.setBillToAddress(billToAddress);

// Assign user

cust.setCreatedBy(user);

// Finally, request that the customer be created

ExaCustomer customer = reqMgr.createCustomer(cust);

The “SpecialInternetUserName” should be replaced with the unique user identifier provided as a
consequence of the integration effort. It must be a legitimate RCOM user name and should be
distinct, probably on a site basis.

Retek Customer Order Management

134

Modify customer
The updateCustomer() method is used to update customer information. An instance of ExAUser
representing the legitimate ExA user identifier is required. The first step of the process of
modifying a customer is to retrieve an existing customer using the Obtain Customer Info steps.
Once an ExACustomer object has been obtained, all of the set() and add() methods may be used
to modify data.

ExAManager mgr = ExAManagerFactory.getExAManager();

ExARequestManager reqMgr = ExAManagerFactory.getExARequestManager();

// The user name is provided as part of the integration work and
must be a legitimate

// user name with the RCOM application. This is required for all
transactions that may

// persist information.

ExAUser user = new ExAUser();

user.setUserName(“SpecialInternetUserName”);

ExACustomerSearchCriteria criteria = new
ExACustomerSearchCriteria();

criteria.setCustomerNumber(“1045993”);

Set customers = mgr.findCustomers(criteria);

ExaCustomer cust = null;

If (customers.size() == 0) {

 //

 // No such customer exists

 //

} else {

 cust = (ExaCustomer) customers.iterator().next();

}

// Create and add new email

ExAEmail email = new ExAEmail();

email.setEmailAddress(jsmith@busi.com);

cust.addEmailAddress(email);

cust.getBillToAddress().setCity(“Cleveland”);

cust.setUpdatedBy(user);

ExaCustomer customer = reqMgr.updateCustomer(cust);

Exceptions may occur during this process.

Chapter 6 – Internet/external APIs integration

135

Modify customer preferences
The updateCustomer() method is used to update customer preference information. An instance of
ExAUser representing the legitimate ExA user identifier is required. The first step of the process
of modifying a customer is to retrieve an existing customer using the Obtain Customer Info steps.
Once an ExACustomer object has been obtained, preferences can be retrieved and modified.
Preferences are unique by banner display code, so if only a single banner preference is being
altered, the banner display code is needed to identify the proper object.

ExAManager mgr = ExAManagerFactory.getExAManager();

ExARequestManager reqMgr = ExAManagerFactory.getExARequestManager();

// The user name is provided as part of the integration work and
must be a legitimate

// user name with the RCOM application. This is required for all
transactions that may

// persist information.

ExAUser user = new ExAUser();

user.setUserName(“SpecialInternetUserName”);

ExACustomerSearchCriteria criteria = new
ExACustomerSearchCriteria();

criteria.setCustomerNumber(“1045993”);

Set customers = mgr.findCustomers(criteria);

ExaCustomer cust = null;

If (customers.size() == 0) {

 //

 // No such customer exists

 //

} else {

 cust = (ExaCustomer) customers.iterator().next();

}

Set preferenceSet = cust.getCustomerPreferences();

for (Iterator iterator = preferenceSet.iterator();
iterator.hasNext();) {

 ExACustomerPreference preference = (ExACustomerPreference)
iterator.next();

 Preference.setDoNotCall(true);

}

cust.setUpdatedBy(user);

ExaCustomer customer = reqMgr.updateCustomer(cust);

Retek Customer Order Management

136

Exceptions may occur during this process.

Chapter 6 – Internet/external APIs integration

137

Obtain order info

Figure 3.
Order information may be obtained by querying the remote RCOM server with the findOrders()
method, as shown in Figure 3. A specific order may be sought by using a known order number
(say, from the response to a previously submitted order), or a set of orders may be obtained by
requesting orders matching a search criteria.

 Note: This general search capability must be used with caution to avoid exposing
confidential order information inappropriately.

The first code example shows querying for order information based on a known order number.
The client can expect either a single, unique order on return, or nothing if the order doesn’t exist.

ExAManager mgr = ExAManagerFactory.getExAManager();

ExAOrderSearchCriteria criteria = new ExAOrderSearchCriteria();

// The order number may have originated from a previous order placed
over a web UI,

// or an order placed via the RCOM call center application.

criteria.setOrderNumber(“99703”);

// Though the order number is sufficient to identify a unique order,
additional information

// might be solicited to provide a customer security cross-check.

Criteria.setBillToPostalCode(“55337”);

Set orders = mgr.findOrders(criteria);

If (orders.size() == 0) {

 //

Retek Customer Order Management

138

 // No such order exists

 //

} else {

 //

 // Requested order was returned

 //

}

The returned set for a successful find, in the above scenario, will consist of a single instance of
the ExAOrder object.

The state of the order represented by the returned object can be in a number of states:

State Description

ExAOrder.NEW_STATE The order is in the process of being set up; no existing order
should ever appear in this state.

ExAOrder.PENDING_STATE The order, for one or more specific reasons, has been “pended”;
that is, all order processing has been suspended until the reasons
no longer apply.

ExAOrder.OPEN_STATE The order is progressing through its natural fulfillment and
shipping phases.

ExAOrder.CLOSED_STATE All activity on the order has been naturally completed. No further
activity is currently indicated, though returns and exchanges may
resurrect order activity.

ExAOrder.CANCELLED_STATE All activity on the order has ceased because of cancellation. No
further activity is indicated.

The following example implements a fuzzier search utilizing other fields in the
ExAOrderSearchCriteria class.

ExAManager mgr = ExAManagerFactory.getExAManager();

ExAOrderSearchCriteria criteria = new ExAOrderSearchCriteria();

criteria.setCustomerNumber(“1045993”);

Set orders = mgr.findOrders(criteria);

If (orders.size() == 0) {

 //

 // No such order exists

 //

} else {

 //

 // Matching order record(s) were returned

 //

}

Chapter 6 – Internet/external APIs integration

139

In this case, the returned set for a successful find may well consist of more than one ExAOrder
object. It is up to the client to responsibly deal with multiple ExAOrder information.

Retek Customer Order Management

140

Request a catalog

Figure 4.
The createCatalogRequest() method is a bit more complex than those in preceding sections. The
catalog request requires a number of things to complete:

1 An instance of ExAUser representing the legitimate ExA user identifier

2 An instance of ExACatalogCustomerRequest representing either an existing customer
(identified by the customer number) or a new customer with fully specified demographics,
address, etc.

3 A banner number representing the numeric code of the concept from which the catalog is to
be ordered

4 A subconcept identifier, which may qualify the banner number; a missing subconcept will
uniquely identify only a concept with no subconcepts, and may not provide sufficient
information to order a catalog successfully

Figure 4 shows a Catalog Request feature that allows a published catalog to be remotely ordered.

The following example illustrates an existing customer (whose number is known from, for
example, a previous order) requesting a catalog.

ExAManager mgr = ExAManagerFactory.getExAManager();

ExARequestManager reqMgr = ExAManagerFactory.getExARequestManager();

// The user name is provided as part of the integration work and
must be a legitimate

// user name with the RCOM application. This is required for all
transactions that may

// persist information.

ExAUser user = new ExAUser();

user.setUserName(“SpecialInternetUserName”);

Chapter 6 – Internet/external APIs integration

141

ExACatalogCustomerRequest cust =
reqMgr.buildExACatalogCustomerRequest();

ExACatalogRequest catRequest = reqMgr.buildExACatalogRequest();

// The customer number might be entered from the UI by an attentive,
existing customer.

cust.setCustomerNumber(“1045993”);

catRequest.setCustomer(cust);

// The banner number is from the RCOM data extract.

catRequest.setBannerNumber(“138”);

// The subconcept id is from the RCOM data extract.

catRequest.setSubConceptId(“7740”);

catRequest.setCreatedBy(user);

ExACatalogRequestResponse response =
mgr.createCatalogRequest(catRequest);

The “SpecialInternetUserName” should be replaced with the unique user identifier provided as a
consequence of the integration effort. It must be a legitimate RCOM user name and should be
distinct, probably on a site basis.

The banner number is the code from the data extract representing a specific concept. The
subconcept id is also a code from the data extract, and it represents the specific subconcept within
a concept.

The returned ExACatalogRequestResponse instance reveals the estimated delivery date of the
catalog, a description of the catalog type ordered, and the customer number.

Retek Customer Order Management

142

Request order summary
The order summary returned by the createSummary() method represents an order that has been
submitted to the server for pricing, tax, and shipping evaluation, all of which, including totals, are
reported to the requesting client upon completion. The order thus submitted to the server is in a
state not yet amenable to completion (since it does not yet have a payment associated with it).

This is one of the more complex methods. The order summary request requires a number of
things to complete:

1 An instance of ExAUser representing the legitimate RCOM user identifier

2 An instance of ExAOrderCustomerRequest representing either an existing customer
(identified by the customer number) or a new customer with fully specified demographics,
address, etc.

3 At least one instance of ExAOrderLineRequest, representing an order line

4 A banner number representing the numeric code of the concept from which the catalog is to
be ordered

5 An order source code representing either generic internet
(ExAOrder.INTERNET_SOURCE) source or gift registry
(ExAOrder.GIFT_REGISTRY_SOURCE) source

6 A legitimate, fully-specified bill-to address
ExAManager mgr = ExAManagerFactory.getExAManager();

ExARequestManager reqMgr = ExAManagerFactory.getExARequestManager();

// The selling sku number will very likely originate in the RCOM
data extract. It’s also

// possible that it came from a request to obtain selling item
information.

String sellingSkuNumber = “100166286”;

BigDecimal requestedQuantity = new BigDecimal(3);

// The user name is provided as part of the integration work and
must be a legitimate

// user name with the RCOM application. This is required for all
transactions that may

// persist information.

ExAUser user = new ExAUser();

User.setUserName(“SpecialInternetUserName”);

ExACustomerRequest cust = reqMgr.buildExAOrderCustomerRequest();

ExAOrderRequest orderRequest = reqMgr.buildExAOrderRequest();

Chapter 6 – Internet/external APIs integration

143

// The customer number might be entered from the UI by an attentive,
existing customer.

cust.setCustomerNumber(“1045993”);

Set shipTos = new HashSet();

ExAShipToLabelRequest shipTo = reqMgr.buildExAShipToLabelRequest();

shipTos.addShipToLabelRequest(shipTo);

Set orderLines= new HashSet();

shipTo.setOrderLines(orderLines);

ExAOrderLineRequest orderLine = reqMgr.buildExAOrderLineRequest();

orderLines.addOrderLine(orderLine);

orderLine.setSellingSku(sellingSkuNumber);

orderLine.setRequestedQuantity(requestedQuantity);

ExAAddress shipToAddress = new ExAAddress();

shipTo.setAddress(shipToAddress);

shipToAddress.setFirstName(“John”);

shipToAddress.setMiddleInitial(“Q”);

shipToAddress.setAddressLine1(“Smith”);

shipToAddress.setCity(“Airedale”);

shipToAddress.setCounty(“Froofroo”);

shipToAddress.setState(“AK”);

shipToAddress.setPostalCode(“67890”);

shipToAddress.setCountry(“USA”);

shipToAddress.setDayPhone(“1234567890”);

shipToAddress.setEveningPhone(“1234567890”);

ExAAddress billToAddress = new ExAAddress();

billToAddress.setFirstName(“John”);

billToAddress.setMiddleInitial(“Q”);

billToAddress.setAddressLine1(“Smith”);

billToAddress.setCity(“Airedale”);

billToAddress.setCounty(“Froofroo”);

billToAddress.setState(“AK”);

billToAddress.setPostalCode(“67890”);

billToAddress.setCountry(“USA”);

billToAddress.setDayPhone(“1234567890”);

billToAddress.setEveningPhone(“1234567890”);

Retek Customer Order Management

144

orderRequest.setBannerNumber(“138”);

orderRequest.setOrderSourceCode(“I”);

orderRequest.setCustomerRequest(cust);

orderRequest.setShipToLabelSet(shipTos);

orderRequest.setBillToAddress(billTo);

orderRequest.setCreatedBy(user);

ExAOrder order = mgr.createSummary(orderRequest);

Upon completion of this method, the order summary has correctly calculated all prices, taxes,
shipping, and associated totals, and the order has been systematically pended with a “Pended to
Generate Internet Summary” pend reason. This state is intended to be highly transitory. When an
order has been pended with this reason, and if it remains in this state, its life span is determined
by the banner parameter “Internet Summary Pend Cancel Days” in RCOM’s
ORG_PREFERENCE database table. After the number of days specified in this parameter, the
aforementioned pended order is subject to systematic cancellation by CancelPendedOrderBatch.

For efficiency this summary, with the included order number, should be used to complete the
order using the updateOrder() method. Once the order has been so completed, it moves to a state
of “Open”, and is no longer subject to systematic pended-order cancellation.

Chapter 6 – Internet/external APIs integration

145

Create normal order
 Note: This method has been deprecated and should not be used (use updateOrder()

instead).

When an order is to be finally committed, the summary corresponding to that order, with all
requisite payment information, must be submitted using the createOrder() method. Any payment
methods or payment method combinations can be used to pay for the order. A credit card
payment is used here as an example.

Upon successful commitment of the order, the reported order state should be
ExAOrder.OPEN_STATE. If the reported state reflects any flavor of
ExAOrder.PENDING_STATE, as it might with credit card problems or when defined ordering
limits have been exceeded, the user placing the order should be urged to call the appropriate call
center to rectify any problems.

Create pended order
It is possible to create and commit an order in a ExAOrder.PENDING_STATE state. The
rationale for doing so may vary greatly, but a succinct example is the user who does not wish to
divulge credit card information over the web. The order will be created and pended, and a quick
phone conversation (and the appropriate order number) with a call center representative can
complete the order with payment information.

Following is an example code sequence of this scenario.
ExAManager mgr = ExAManagerFactory.getExAManager();

ExARequestManager reqMgr = ExAManagerFactory.getExARequestManager();

 //

 // creation of order for summary

 //

ExAOrder order = mgr.createSummary(orderRequest);

ExAOrder orderResponse = mgr.createPendedOrder(order);

This is not to say that a pended order may not have payments applied to it. In fact, the order may
be 100% complete and correct and still be pended for only user-known reasons.

ExAManager mgr = ExAManagerFactory.getExAManager();

ExARequestManager reqMgr = ExAManagerFactory.getExARequestManager();

 //

 // creation of order for summary

 //

ExAOrder order = mgr.createSummary(orderRequest);

// The account number and optional PIN number will likely be
specified by UI fields.

String accountNumber = “4000000000000001”;

Retek Customer Order Management

146

String pinNumber = “0123”;

// The tender type code is from the RCOM data extract. It must
correspond to the

// credit card type (e.g., Visa, Discover, MasterCard, etc.) that is
usually

// specified within a UI field.

String tenderTypeCode = “3000”;

Date expiryDate = new Date(2003, 11, 16);

Set payments = new HashSet();

ExACreditCardPaymentRequest payment =
reqMgr.buildExACreditCardPaymentRequest();

Payments.addPayment(payment);

payment.setAccountNumber(accountNumber);

payment.setCardVerificationValue(pinNumber);

payment.setExpirationDate(expiryDate);

payment.setTenderTypeCode(tenderTypeCode);

ExAOrder orderResponse = mgr.createPendedOrder(order, payments);

Upon completion, the order will have been pended on the RCOM system with a “Internet
Manually Pended” pend reason, and the user placing the order should be urged to call the
appropriate call center to move the order through its normal life cycle.

While a manually pended cannot remain so indefinitely, it is no longer governed by the “Internet
Summary Pend Cancel Days” in RCOM’s ORG_PREFERENCE database table, as are orders
pended with the “Pended to Generate Internet Summary” pend reason.

Chapter 6 – Internet/external APIs integration

147

Modifying an order
It is possible to modify an order after calling createOrder, createSummary, pendOrder, or
updateOrder. An order can have additional payments applied to it; the order can be cancelled;
individual lines can have quantity changed; individual lines can be cancelled; individual
payments can be cancelled; and change an address for a ship to label.

Following is an example code sequence of this scenario.
ExAManager mgr = ExAManagerFactory.getExAManager();

ExARequestManager reqMgr = ExAManagerFactory.getExARequestManager();

ExAOrderSearchCriteria orderSearchCriteria = new
ExAOrderSearchCriteria();

OrderSearchCriteria.setOrderNumber(“12345”);

Set foundOrderSet = mgr.findOrders(orderSearchCriteria);

If (foundOrderSet.isEmpty()) {

 // do something about missing order

}

ExAOrder preExistingOrder = (ExAOrder)
foundOrderSet.iterator().next();

Set allOrderCancelReasons = mgr.findOrderCancelReasons();

Iterator iter = allOrderCancelReasons.iterator();

ExAOrderCancelReason cancelReason = (ExAOrderCancelReason)
iter.next();

// cancel the order

exAOrder.cancel(cancelReason);

OrderSearchCriteria.setOrderNumber(“654321”);

foundOrderSet = mgr.findOrders(orderSearchCriteria);

If (foundOrderSet.isEmpty()) {

 // do something about missing second order

}

ExAOrder orderForOtherMods = (ExAOrder)
foundOrderSet.iterator().next();

Set allOrderCancelReasons = mgr.findOrderCancelReasons();

Retek Customer Order Management

148

Iterator iter = allOrderCancelReasons.iterator();

ExAOrderCancelReason cancelReason = (ExAOrderCancelReason)
iter.next();

Iterator orderLineIter =
orderForOtherMods.getOrderLines().iterator();

ExAOrderLine orderLine = (ExAOrderLine)orderLineIter.next();

// cancel an order line

OrderLine.cancel(cancelReason);

// modify an order line’s quantity

ExAOrderLine orderLine2 = (ExAOrderLine) orderLineIter.next();

OrderLine2.setRequestedQuantity(new BigDecimal(5));

// canceling a payment

ExAPayment payment = (ExAPayment)
order.getPayments().iterator().next();

Payment.cancel();

// modify an address

ExAShipToLabel shipToLabel = (ExAShiptToLabel)
order.getShipToLabels().iterator().next();

ExAAddress address = shipToLabel.getAddress();

Address.setLine1(“something new”);

// now that we’ve modified the order, let’s submit it

mgr.modifyOrder(order);

Chapter 6 – Internet/external APIs integration

149

Create order returns
It is possible to return order lines which have been shipped completely or partially. In order to do
so the order needs to have at least one order line with a shipped quantity of 1 or more.

Following is an example code sequence of this scenario for an example order. Order “888” has
been created with one order line. Order was partially shipped.

ExAManager mgr = ExAManagerFactory.getExAManager();

// find an existing order

ExAOrderSearchCriteria criteria = new ExAOrderSearchCriteria();

criteria.setOrderNumber(“888”);

ExAOrder order = mgr.findOrders(criteria).iterator().next();

// Get the line to be returned.

ExAOrderLine line = (ExAOrderLine)
order.getOrderLines().iterator().next();

// verify line is returnable.

boolean returnable = line.isReturnable();

// Create a return line. The request manager method needs to take in
the orderLine for

// which the return is being created.

ExAManager requestMgr = ExAManagerFactory. getExARequestManager ();

ExAReturnLine returnLine = requestMgr.buildExAReturnLine(line);

// if returnable, get the maximum Quantity that can be returned.

BigDecimal maxReturnableQty = returnLine.getReturnableQuantity();

// Set the return quantity

returnLine.setExpectedReturnQty(maxReturnableQty);

// Select a return reason. In this example we select the first
reason.

Set returnReasons = mgr.findReturnReasons();

ExAReturnReason returnReason = (ExAReturnReason)
returnReasons.iterator().next();

// Set the Return Reason

Retek Customer Order Management

150

returnLine.setReturnReason(returnReason);

// Add exchange line to order

order.addReturnLine(exaLine);

// Update order

mgr.updateOrder(order);

Upon completion, the order will have been save on the RCOM system.

Chapter 6 – Internet/external APIs integration

151

Create order line exchanges
Order line exchanges can be created provided there is at least one line is being returned.

Following is an example code sequence of this scenario for an example order. Order “888” has
been created with one order line that was shipped.

ExAManager mgr = ExAManagerFactory.getExAManager();

// find an existing order

ExAOrderSearchCriteria criteria = new ExAOrderSearchCriteria();

criteria.setOrderNumber(“888”);

ExAOrder order = mgr.findOrders(criteria).iterator().next();

// Get the line to be returned.

ExAOrderLine line = (ExAOrderLine) order.getOrderLines().iterator().next();

// verify line is returnable.

boolean returnable = line.isReturnable();

// Create a return line. The request manager method needs to take in
the orderLine for

// which the return is being created.

ExAManager requestMgr = ExAManagerFactory. getExARequestManager ();

ExAReturnLine returnLine = requestMgr.buildExAReturnLine(line);

// if returnable, get the maximum Quantity that can be returned.

BigDecimal maxReturnableQty = returnLine.getReturnableQuantity();

// Select a return reason

Set returnReasons = mgr.findReturnReasons();

ExAReturnReason returnReason = (ExAReturnReason)
returnReasons.iterator().next();

// Set the return quantity

returnLine.setExpectedReturnQty(maxReturnableQty);

// Set the Return Reason

returnLine.setReturnReason(returnReason);

Retek Customer Order Management

152

// Add return line to order

order.addReturnLine(exaLine);

// Create exchange line

ExAOrderLineRequest exchangeLine =
requestMgr.buildExAExchangeLineRequest();

// Find a sellking Sku and set on exchange line

exchangeLine.setSellingSku(sellingSk);

exchangeLine.setRequestedQuantity(new BigDecimal(100));

// Update order

mgr.updateOrder(order);

Upon completion, the order will have been saved on the RCOM system with the return and
exchange lines. If the addition of exchange lines creates an order balance (that is, cost of lines
exchanged exceeds that of the returned) then the order will be pended.

Payments can be made to the order by reading the order and making payments based on the order
balance.

ExAOrderSearchCriteria criteria = new ExAOrderSearchCriteria();

criteria.setOrderNumber(“888”);

ExAOrder order = mgr.findOrders(criteria).iterator().next();

BigDecimal orderBalance = order.getBalance();

// Create and Add payment to order

ExACreditCardPaymentRequest payment =
reqMgr.buildExACreditCardPaymentRequest();

payment.setAmount(orderBalance);

payment.setAccountNumber(“.. “);

payment.setExpirationDate(“06/09.. “);

payment.setTenderTypeCode(“..“);

order.addPayment(payment);

// Update order

mgr.updateOrder(order);

Chapter 6 – Internet/external APIs integration

153

Upon completion, the order will have been saved on the RCOM system and should be in open
status.

Retek Customer Order Management

154

Order line container information
The Order API will have methods to call and retrieve all container information, which includes
ship to addresses, container line information, etc.

Following is an example of obtaining all the container and its associated information.
ExAManager mgr = ExAManagerFactory.getExAManager();

// find an existing order

ExAOrderSearchCriteria criteria = new ExAOrderSearchCriteria();

criteria.setOrderNumber(“888”);

ExAOrder order = mgr.findOrders(criteria).iterator().next();

Set containers = exOrder.getShipContainers();

ExAShippedContainer container = (ExAShippedContainer) containers

// Get container information…

container.getRmaNumber();

container.getShippedContainerNumber();

container.getShippedDate();

container.getEstimatedArrivalDate();

// Get container Lines and container line information

Set containerLines = container.getShippedContainerLines();

ExAShippedContainerLine containerLine = (ExAShippedContainerLine)

containerLines.iterator().next();

ExaORderLine orderLine = containerLine.getOrderLine();

BigDecimal totalServiceCharge = exaline.getTotalServiceCharge());

BigDecimal totalShippingAndDeliveryCharges =

Chapter 6 – Internet/external APIs integration

155

line.getTotalShippingAndDeliveryCharges();

// Get Ship To Address for container Line

ExAShipToLabel exaShipTo = container.getShipTo();

exaShipTo.getInvoicePackingSlipMessage();

exaShipTo.getWarehouseInstructionsMessage();

// ..

Retek Customer Order Management

156

Class diagrams

Comprehensive object model

Chapter 6 – Internet/external APIs integration

157

Item Object Model

Retek Customer Order Management

158

Services Object Model

Chapter 6 – Internet/external APIs integration

159

Customer Object Model

Retek Customer Order Management

160

Payments Object Model

Appendix A – State model diagrams

161

Appendix A – State model diagrams
For four functional areas, order, order line, payment, and return line, the diagrams in this
appendix describe states of RCOM objects. Guards, which are Boolean expressions, control
transitions between states. The Guard Key that follows each state model diagram maps to the
preceding diagram.

163

[D] = Decision
/E = Entry Action
/A = Transition Action
(A…Z) = State Code
[O-#] = Guard Key
 = internal transition

Pend /A
[O-5]

Submit /A
[O-6]

/A
Add order line

/A
Add replacement line

Pend

Line change
[O-7]

Line change
 [O-8]

/ASettle
Line change
[O-9]

Line change
[O-10]

Line change [O-11]

Cancel

Cancel

Done [O-12]

Submit

Pend

Done

Submit
[O-13]

Pend Done
[O-14]

Auth Payments

Line change
[O-17]

Auth Payments

Line change
[O-18]

Line change
[O-19]

/A

Add return line

/ASettle

/A

Add partial/
 exchange [O-20]

/A

Settle

/A

Add order line
Line change
[O-21]

/A
Settle

/A
Add return
line

/A
Add
order line

/A
Add return line

/A
Add order
line

Submit

Release

Line change

/A
Add

 replacement

Return
Line change

[O-16]

Cancel

/A
Add
replacement

/A Add return
line

/A Add replacement

New(N)

Cancelling (G)
/E

Cancelled (C)
/E

Authorizing
Payment (A)

[D] /E
Checking Pend
Rules (B)
[D] /E

Open (O)
/E

Mail Order
Releasing State

(R) /E

Mail Order Pre
Batch (M) /E

Pending (P)
/E

Closed (X)
/E

Order state model

Submit Done
[O-15]

Pend
[O-2]

Submit
[O-1]

Cancel
Pend
[O-4]

Submit
[O-3]

Submit
/A

Consolidate payments
/A

/A settlement

/A
Consolidate
Payment

/A Settlement
/A Consolidate Payments

164

Guard key

O-1 NOT ALL ORDER LINES CANCELLED AND ORDER TYPE IS MAIL ORDER

O-2 Not all order lines cancelled and order type is mail order

O-3 All order lines cancelled

O-4 All order lines cancelled

O-5 Not all order lines cancelled and order type is not mail order

O-6 Not all order lines cancelled and order type is not mail order

O-7 All order line shipped or cancelled and one or more lines has a shipped quantity > 0

O-8 All order lines cancelled and no lines have a shipped quantity > 0

O-9 At least one order line has a shipped quantity > 0

O-10 All order lines cancelled and no lines have a shipped quantity > 0

O-11 All order lines cancelled and no lines have a shipped quantity > 0

O-12 Order has active pend reasons

O-13 Not all order lines are cancelled

O-14 Order does not have active pend reasons and not (All order lines are shipped or cancelled and all return lines are not new or
pending return and all partial lines are shipped or cancelled)

O-15 Order does not have active pend reasons and all order lines are shipped or cancelled and all return lines are not new or pending
return and all partial lines are shipped or cancelled

O-16 All order lines are cancelled or shipped and one or more lines has a shipped quantity > 0 and all return lines are returned or
cancelled

O-17 All order lines fulfilling or reserved and sall payments are cancelled, approved, or settled

O-18 All order line shipped or cancelled and order does not have active pend reasons and one or more lines has a shipped quantity > 0

O-19 All order line shipped or cancelled and one or more lines has a shipped quantity > 0

O-20 Order line type is partial or exchanged

165

O-21 Not all order lines shipped or cancelled

166

State1

(reserving process3 .)

(reserving process2)

(reserving process)

New (N)

Order Line State Model
Hold /A

Mail Order Pre-Batch (M)

Reserve [OL-2]

cancellation process

Pre-Cancelled (P) /E

Cancel [OL-23]

Reserving (V) /E

[OL-1] / A

reserving process

Reserved (R) /E

[OL-24]

Backordered (B) /E .

[OL-25]

Pre-Shipped (H)

Reserve [OL-4] / A

Shipped (S) /E

Submit

Cancel

Cancel

Reserve [OL-26] / A

Reserve

Hold /A

Virtual Warehouse Reserved (W)

Finish Reserve

[OL-29]

[OL-9]

Cancelled (C) /E

Reserve [OL-30] / A

[OL-8] / A

[OL-5]

Cancel Requested (Q)

[OL-5] / A

Finish Reserve [OL-3]

[OL-7]

Pack Line Refining (D) [D]

[OL-31]

Virtual Warehouse Reserving (I) /E

[OL-32]

[OL-33]

Finish Virtual Warehouse Reserve

Ship Confirm [OL-19] / A

Ship Confirm [OL-16] / A

Process Cofirm Calncel (A) [D] /A

Confirm Cancel

Done [OL-18]

Done [OL-20]

Done [OL-17]

Fulfilling (F) /E .

Done [OL-21]

Ship Request [OL-10]
Direct Ship PO

Hold /A

[OL-35]

[OL-36]

virtual Warehouse Reserve

Hold /A
virtual Warehouse Reserve [OL-37]

Ship Request [OL-38]

PIck Exception / A
PIck Exception / A

Ship Confirm [OL-13] / A

Ship Confirm [OL-12] / A

Confirm Cancel [OL-22] / A

Ship Confirm / AShip Request

Hold /A

Reserve [OL-27]

virtual Warehouse Reserve [OL-39]

virtual Warehouse Reserve [OL-40]

virtual Warehouse Reserve [OL-41]
Submit / A

Reserve [OL-41] / A

Cancel [OL-42] / A

Pre-cancel requested (L) /E

Cancel [OL-15]
Refine State

Parent Line Canceled

Submit / A

Hold /A

Done [OL-42]

Done [OL-43]

[OL-44]

Done

Cancel [OL-45]

[OL-46]

[OL-47]
Reserving or Finish Reserve [OL-48]

167

Guard key

OL-1 Not mail order pre-batch nor order line type zero sale and not pack component line

OL-2 Order is mail order pre-batch

OL-3 Not reserved quantity > 0

OL-4 Line is zero sale

OL-5 Cancel quantity >= 0 and fulfilling quantity > 0 and not reserved Qty = 0 and shipped Qty = 0 and order line is Pack not reserved
at component level

OL-6 Cancel quantity >= 0 and not reserved quantity = 0 and fulfilling quantity = 0 and shipped quantity = 0

OL-7 Fulfilling quantity = 0 and backorder quantity = 0 and reserved quantity = 0 and shipped quantity > 0

OL-8 Back ordered quantity > 0 and cancelled quantity = 0 and not reserved quantity = 0 and order line is Pack not reserved at
component level

OL-9 Cancelled quantity > 0 and back ordered quantity = 0 and not reserved quantity = 0 virtual wh reserved quantity = 0 and order line
is Pack not reserved at component level

OL-10 Backordered quantity = 0

OL-11 Sufficient payments authorized

OL-12 Fulfilling quantity > shipped quantity

OL-13 Shipped quantity = fulfilling quantity

OL-14 Fulfilling quantity = 0

OL-15 Fulfilling quantity > 0

OL-16 Shipped quantity < fulfilling quantity

OL-17 Fulfilling quantity > 0 and cancel reason not = direct ship vendor cancel

OL-18 Fulfilling quantity = 0 and shipped quantity = 0

OL-19 Shipped quantity = fulfilling quantity

OL-20 Fulfilling quantity = 0 and shipped quantity > 0

168

OL-21 Fulfilling quantity > 0 and cancel reason = direct ship vendor cancel

OL-22 Order line is direct ship

OL-23 Order line is no longer available

OL-24 Order line is pack component and backorder quantity = 0

OL-25 Order line is pack component and backorder quantity > 0

OL-26 Mail order releasing state = order line releasing state

OL-27 Order line is pack component

OL-28 Order line is not pack component

OL-29 Backordered = 0 and not (reserved = 0 and virtual warehouse reserved = 0 and canceled >= 0) and order line is not a pack line
reserved only at the component level and the warehouse reserved > 0

OL-30 Not reserved quantity > 0 and requested quantity = 0 and is mail order

OL-31 Order line is a pack line reserved only at the component level

OL-32 Backordered quantity = 0

OL-33 Backordered quantity > 0

OL-34 Recommended pack line state is canceled

OL-35 (order line is not pack component) or (order line is pack component and backordered quantity = 0)

OL-36 Order line is pack component and backordered quantity > 0

OL-37 Reserved quantity > 0 and warehouse reserved quantity > 0

OL-38 Backordered quantity = 0

OL-39 Order line is not pack component and order line has Ship to

OL-40 Backordered quantity = 0

OL-41 Order line is not pack component

OL-42 Pack line recommended state is cancelled

OL-43 Pack line recommended state is reserved

169

OL-44 Pack line recommended state is fufilling

OL-45 Pack line recommended state is shipped

OL-46 Pack line recommended state is backordered

OL-47 Pack line recommended state is virtual warehouse reserved

OL-48 Backorder Qty = 0 and Fulfilling Qty > 0

170

Payment Process

Approved Process

Authorization Process

Approved (A)
/E

[D] = Decision
/E = Entry Action
/A = Action
(A…Z) = State Code

Waiting
Authorization

(W)

Authorizing
(Z) [D] /E

Authorization
Failed (G)

Waiting For Manual
Authorization (M)

/E

Pre-settled (T) /E

Manually
Approved (N) /E

Expired (E)

Referral (R)
/E

Fraud (F) /E

Cancelled (C) /E

Settled (S) /E

Start

Authorize
[Authorize Amount != null]

Allocate Settlement /A

Manual Authorize /A Finish Authorize
[Response=Referral]

Finish Authorize
[Response=Fraud]

Finish Authorize
[Response=
 Authorization Failed]

Finish Authorize
[Response=Waiting For Manual
 Authorization]

Finish Authorize
[Response=Approved
Authorize Amount != 0] /A

Declined (D) /E

Authorize

Cancel
[not “Payment in cancel
requested group”]

Cancel
[not “Payment in cancel
requested group”]

Check Expiration
[Within Auth Period]

Authorize
[Auth Amt != null
 Auth Amt = 0]

Check Expiration
[Not Within Auth Period]

Finish Settlement /A

Manual Authorization Process

Manual Authorize /A

Finish Authorize
[Response=Declined]

Finish Authorize
[Response=System Approved]

Authorize
[Authorize Amount != null]

Authorize
[Authorize Amount != null
 Authorize Amount != 0]

Payment State Model

New (N)
Payment

Consolidation (I)

Redeemed (B) /E

Split Payment (P)
[D] /A

New to Awaiting Auth

New to Split Payment

New to Pmt
Consolidation

Payment Consolidation /A

Finish Authorize
[Response=Waiting for Auth] Finish Authorize

[Response=Expired]

Redeem [is reward certificate]

Finish Split Payment
 [payment in state Approved]

Finish Split Payment
 [payment in state Redeemed]

Finish Split Payment
 [payment in state
Manually Approved]

171

Pending Return (P)
 /E

[T] = Transient
/E = Entry Action
/A = Action
(A…Z) = State Code

Cancelled (C)
/E

New (N)

Returned (R)
/E

Pre-Returned (T)
/E

Start

Applied
[No customer info
supplied] Replacement return to normal

return
[Was replacement return] /A

Order submit
[Return required]

Cancel
[!(Replacement Return &&
(saleLine.shippedQty > 0 ||
saleLine.fulfillingQty > 0))]
/A

Cancel /A

Order submit
[Return not required]
/A

Receive
/A

Replacement return
 to normal return
[was replacement return]

Order submit

Cancel

Applied
[Customer info supplied]

End

Return Line State Model

	Contents
	Chapter 1 – Introduction
	Overview
	Who this guide is written for
	RCOM’s integration points into the retail enterprise
	Technical architecture overview
	The business advantages of the layered approach
	The components and Javadoc
	Where you can find more information

	Chapter 2 – Technical architecture
	Overview
	A high-level view of the layered model
	Presentation layer
	Business components and services layer
	Data access layer
	Database

	A detailed distributed view of the layered architecture
	Advantages of the data access object (DAO) layer
	Component processing
	RCOM-related Java terms and standards

	Chapter 3 – RCOM and the Retek Integration Bus (RIB)
	RIB overview
	Subscribers mapping table
	Publishers mapping table

	Chapter 4 – Interface process flows
	Overview
	Available to promise (ATP) processing
	From RCOM to the ATP module
	From the merchandising system to the ATP module
	From the ATP module to RCOM

	Custom user interface (such as the internet)
	From RCOM to the custom user interface (such as the internet)
	From the custom user interface (such as the internet) to RCOM

	Foundation and code data
	From the merchandising system to RCOM
	From the marketing vendor to RCOM
	From the customer vendor to RCOM
	From RCOM to the customer vendor

	Order fulfillment
	From the distribution management system to RCOM
	From RCOM to the warehouse management system

	Payment processing
	From RCOM to the payment vendor
	From the payment vendor to RCOM

	Sales and other transactions processing
	From RCOM to the sales audit system

	Security processing
	From a security vendor to RCOM

	Shipment tracking
	From the distribution management system to RCOM
	Accessing the carrier vendor from RCOM
	From the carrier vendor to RCOM

	Tax calculation
	From the tax calculation vendor to RCOM
	From RCOM to the tax calculation vendor

	Chapter 5 – Component overviews and interface(s)
	Introduction
	RCOM component map with interfaces
	Banner and channel component (including banner-level parameteters)
	Functional overview
	A functional description of the banner_channel subscription
	Banner-level parameters
	The banner_channel packages in Javadoc
	banner_channel RIB integration

	Codes component
	Processing overview
	Codes processing summary
	The codes package in Javadoc
	Codes RIB integration

	Correspondence component
	Functional overview
	An overview of the correspondence process
	The correspondence package in Javadoc
	A note about correspondence-related batch processing
	A note about correspondence-related RIB integration

	Customer component
	Functional overview
	Customer component’s interface with a 3rd party customer-related application
	Customer component batch processing
	The customer packages in Javadoc

	Customer order component
	Functional overview
	Functional reasons for RIB publication and subscription
	Overview of the shipment confirmation process
	Capturing demand status for each order line that is cancelled
	Quantities: requested, ordered, and chargeable
	Customer order component’s interface with a 3rd party for delivery confirmation
	Customer order component’s interface with a 3rd party for gift certificate fulfillment
	Customer order component’s interface with a warehouse management system
	The customer order packages in Javadoc
	Customer order RIB integration
	Customer order component batch processing

	Demand component
	Functional overview
	The demand packages in Javadoc
	Demand component batch processing

	Direct ship order component
	Functional overview
	The directshiporder packages in Javadoc

	Event component
	Functional overview

	Geolocation component
	Functional overview
	Geolocation component’s interface with a 3rd party tax application
	The geolocation package in Javadoc

	History component
	Functional overview
	The history package in Javadoc

	Internet component
	Inventory component (including the ATP module)
	Functional overview
	The use of PO data
	The available to promise (ATP) module
	The inventory interface
	Conversion of units of measure
	The inventory package in Javadoc

	Item component
	Functional overview
	A note about the item levels that RCOM can receive
	The item packages in Javadoc
	Item component RIB integration

	Location component
	Functional overview
	The location packages in Javadoc
	Location component RIB integration

	Media component
	Functional overview
	Items and media
	Media component’s interface with a 3rd party marketing application
	The media packages in Javadoc
	Media component batch processing
	Media component RIB integration

	Message component
	Functional overview
	The message package in Javadoc

	Payment component
	Functional overview
	Encryption strategy
	Payment component’s interface with a 3rd party credit application system
	Payment component’s interface with a 3rd party credit card authorization system
	Reward certificate authorization processing
	Stored value card (SVC) integration
	Sample output settlement flat file from RCOM
	The payment packages in Javadoc

	Pend component
	Functional overview
	The pend package in Javadoc

	Promotion component
	Functional overview
	The promotion package in Javadoc

	Security component
	Functional overview
	The authentication of users
	The authorization of role-based access for users
	Security component’s interface with a 3rd party security-related system
	An overview of the security process
	Security.properties
	Security model diagrams
	The security package in Javadoc
	Security component batch processing

	Shipping component
	Functional overview
	The shipping package in Javadoc
	Shipping component RIB integration

	Supplier component
	Functional overview
	The supplier packages in Javadoc
	Supplier component RIB integration

	System parameter component (including system parameters)
	Functional overview
	The system parameter package in Javadoc

	Task component
	Functional overview
	The task package in Javadoc

	Tax component
	Functional overview
	Tax component’s interface with a 3rd party tax application
	The tax packages in Javadoc

	Chapter 6 – Internet/external APIs integration
	Functional overview
	Internet component batch processing
	Processing through a custom user interface (such as the internet)
	A guide to using RCOM’s external APIs (such as for the internet)

	Information sources
	Usage philosophy
	Obtain selling item info
	Obtain stock status
	Obtain customer information
	Obtain history event information
	Create customer
	Modify customer
	Modify customer preferences
	Obtain order info
	Request a catalog
	Request order summary
	Create normal order
	Create pended order
	Modifying an order
	Create order returns
	Create order line exchanges
	Order line container information
	Class diagrams

	Appendix A – State model diagrams

