Retek® Integration Bus™
10.3.4

Operations Guide

@ WWW.RETEK.COM HELPING THE RETAIL INDUSTRY CREATE, MANAGE AND FULFILL CONSUMER DEMAND™
Retek

Corporate Headquarters:

Retek Inc.

Retek on the Mall

950 Nicollet Mall
Minneapolis, MN 55403
USA

888.61.RETEK (toll free US)
Switchboard:

+1 612 587 5000

Fax:

+1 612 587 5100

European Headquarters:

Retek

110 Wigmore Street
London

W1U 3RW

United Kingdom

Switchboard:

+44 (0)20 7563 4600
Sales Enquiries:

+44 (0)20 7563 46 46

Fax:
+44 (0)20 7563 46 10

The software described in this documentation is furnished
under a license agreement, is the confidential information of
Retek Inc., and may be used only in accordance with the
terms of the agreement.

No part of this documentation may be reproduced or
transmitted in any form or by any means without the express
written permission of Retek Inc., Retek on the Mall, 950
Nicollet Mall, Minneapolis, MN 55403, and the copyright
notice may not be removed without the consent of Retek Inc.

Information in this documentation is subject to change
without notice.

Retek provides product documentation in a read-only-format
to ensure content integrity. Retek Customer Support cannot
support documentation that has been changed without Retek
authorization.

Retek® Integration Bus™ is a trademark of Retek Inc.

Retek and the Retek logo are registered trademarks of Retek
Inc.

This unpublished work is protected by confidentiality
agreement, and by trade secret, copyright, and other laws. In
the event of publication, the following notice shall apply:
©2004 Retek Inc. All rights reserved.

All other product names mentioned are trademarks or
registered trademarks of their respective owners and should
be treated as such.

Printed in the United States of America.

Retek Integration Bus

Customer Support

Customer Support hours
Customer Support is available 7x24x365 via email, phone, and Web access.

Depending on the Support option chosen by a particular client (Standard, Plus, or Premium), the
times that certain services are delivered may be restricted. Severity 1 (Critical) issues are
addressed on a 7x24 basis and receive continuous attention until resolved, for all clients on active
maintenance. Retek customers on active maintenance agreements may contact a global Customer
Support representative in accordance with contract terms in one of the following ways.

Contact Method Contact Information
E-mail support@retek.com

Internet (ROCS) rocs.retek.com
Retek’s secure client Web site to update and view issues

Phone +1 612 587 5800

Toll free alternatives are also available in various regions of the world:

Australia +1 800 555 923 (AU-Telstra) or +1 800 000 562 (AU-Optus)
France 0800 90 91 66

United Kingdom 0800 917 2863

United States +1 800 61 RETEK or 800 617 3835

Mail Retek Customer Support

Retek on the Mall
950 Nicollet Mall
Minneapolis, MN 55403

When contacting Customer Support, please provide:

e Product version and program/module name.

e Functional and technical description of the problem (include business impact).
e Detailed step by step instructions to recreate.

e Exact error message received.

e Screen shots of each step you take.

http://rocs.retek.com/

Contents

Contents
Chapter 1 — RIB component OVErVIEWcceeeeeiieviiieeeeciiieeeeeeeans 1
Lo o [0 od o] o SRRSO 1
SeeBeyoNnd COMPONENTS........ccviiiiieie ettt e esre e reeeesraenneens 1
ACLIVE MESSAGING .ve.vvevveireetieiie sttt et e et et e st e e e s be e e e beste e st e sbeesaesaesteesbesreaneerenreens 1
IVIONIEOTING .tttk bbbttt 5
Retek supplied COMPONENTScviiieieiic e ereas 5
AJAITIONAL FESOUITESvveveeieeiesiee ettt sttt esreesteeneesreesseaneenres 7
Chapter 2 — RIB component operationscccoeevvvvvviineeeeeiinineeeeennns 9
SIMPIE MESSAGE FIOW ... 9
MESSAGE FOULING ...ttt bbbttt bbbttt 10
CoMPONENE TAITUIES ..ot enes 12
Application trigger TAIHUESccviiiececec e e 12
SeeBeyond Publishing adapter failures...........ccccooeieiiiiiie e 12
SeeBeyond deployed TAFR adapter failures ..., 13
SeeBeyond deployed Subscribing adapter faillures ... 13
Deployment architecture CONSIAEIAtIONS..........ccverirrieii e 14
Retek schema integrity on the SeeBeyond Platform ... 14
DiSK SPACE ANAIYSIS. .. c.veiveeviiiiiicite ettt nre s 14
INtelligent QUEUE MANAGETS.c..iveieiieiieiesie sttt 15
Performance motivated parallel ProCesSiNg..........ccovvveiererieienieeie e 15
Chapter 3 — Configuration filesccceeiiiiiiiiii e, 17
RIB PropertieS FIleccvoiiiie et 17
RIB Logging and Timings FIle.........ccooiiiiiiiiiieieeeee e 17
Log4j support in the RIB Properties Filecooi i 17
RIB Message BUNAIING ENEFIESoicveeiieeiie et sre e st e e snae e 20
MUIEI-ENIEATING BNTIIES ... 20
Error HOSPITAl ENEFIES ...oveeeieiecie ettt st e e 21
GIODAL BNLIIES ...ttt st sbe et e 21
IMPIlemMeNntation ClaSSES USEAciveuiiieieiie it st eneas 21
SeeBeyond platform SPeCifiC ENTIES ... 23
ApPPlication SPECITIC BNEFIES ...ccvvi e 23
ISO platform SPeCIfiC BNEFIES......ciiiee e 23
Retek Binding configuration fileS...........ccoiiiiiiii e 24
PrOPEITIES IS ... eecieee et re e e nra e 24
XML FIIES e bbbttt 24

Retek Integration Bus

Chapter 4 — SeeBeyond Platform...........cccccvieii i 25
RIB startup and SNULAOWN...........oouiiiiiie e 25
E AN YL Lo Fo T Tod) S 25
Sequencing considerations — Detailed Information..............cccccoeviiiviieii s, 27
RIB message publishing adapters..........cicviveieiieie i ce st 29
RIB message subSCribing adaplerscocvovoiiiieie e 29

QI AN o P = S 30
Preventative maintenancCe tasksScocueiiriiiiiiie e 30
0o 1 SRRSO 30
MFM Staging tableS.......cvciiiiicce e 34
Error HOSPITAL ..o e 35
SEEBEYONA TO0ISo i e 36
RIB component CONFIQUIAtiON..........c.oiveieiieieec e 40
Oracle database trIGUETSoceierieieeei ettt 40
RIB Property fIlE ..ottt 40
SeeBeyond e*Way configuration fileS.........ccceviiiiiiii i 41
SeeBeyond connection point CONFIGUIAtIONScceoveiiiiirininie e 48
TAFR adapter CONfiQUIationcoooiiiiiiie e 58
Chapter 5 — Message error handlingccccooeviiiiiiiiiiiiciie, 71
Error Hospital COMPONENTSvviieiieiecie e 72
Error Hospital configuration parameters and properties..........cccocevvvereneeienreesennnenns 74
Error HOSPItal QCHIVITIESccvveieeieiiecic e 77
Hospital command line Utility SEL UP......ccooiiiiiiiiiieeee s 78
Error Hospital admin command [ine SCrPLS.........ccoooveieiiiieie e 79
Manually querying message information from Error Hospitalc.c.cccooovevivininnnnnn, 85
Error HOSPItal 10g ENTIES.......coiiiieiieiee e 86
Create additional Error HOSPItalS..........c.civeieiieiieie e 86
Chapter 6 — J2EE Platforms.......ccoooovvviiiiiceei e 87
RIB startup and SNULAOWN............coiiiiieiee s 87
Starting the RIB COMPONENTSooueeiiiieie it 87
Shutting DOwWN RIB COMPONENTS.......ccviieiiiiieieiie st ste s sre e sre e ae e e e sresaeens 87
Preventative MaintenanCe tasksSc.cocuiiiirriiieiie e 87
0o T 1 TSRS 87
RIB component CONFIGUIAtION.cviiiiiieiericrieseseeee s 88
(00 0y 1o 0= €] I LSS 88
GENEIIC JIMS PIOVITEE ...ttt st st sre et e 88
MESSAQE LISTENET POIS.....c.viiviiiiitiitie ettt sttt re s 88
DALA SOUICE ...ttt ettt b ettt e s b e e bt e e ae e e abe e ebe e sbeesbeesebeanbe s 88

Contents

Error HOSPITAl REIIY ... e 88
Chapter 7 — ISO Platformcocoiiiiiii e 91
YOI o] o] [Tor: LA To] (ISt AV OSSR 91
ISO-SPECITIC COMPONENTS ...ttt 91
RIB startup and SNULOWN............couiiieiiic e 91
Preventative MainteNanCe taskscccveiiiiiieiie it 91
0o] SRR 92

RIB component CONFIQUIAtiON..........cuoiiiieiiiiiee e 93
HXIMIL FHIBS ottt ettt e e a e et e e be e sbe e sbeeenreebeesbaentis 93

ISO Configuration (*.Cfg) FIlESooeiiiieee s 94
PrOPEITIES FIlESo iiieice e e 97
Chapter 8 — RIB Administration ToOl........ccccceeeiiiiiiiiiiiiccce e, 99
OVEBIVIBW ...ttt ettt e e b e et e e st e et e e s ae e e st e e abeeestaesbeeaseeebeesaneesaeeanneeree e 99
Installation and coNfiQUIatioNcceoieiiiii e 99
Accessing the RIB Administration TOOI..........cccvoviiiriieniiiiesiee e 101
T T v Lol (T o ISR 101
Hospital Administration GUI APPIELoov i 101
Message StatisticsS GUI APPIEL.......cveiiiiee et 102

RIB Properties EGITOrccoiieieie ettt 103

Files and classes contained inthe war file...........cccooov e 103
Chapter 9 — Message Statistics Command Line Utility............. 105
OVBIVIBW ...ttt ettt ettt ettt et b e et e e s bt e e e e e be e e be e s beeebeeaabeebeesaneenees 105
T T8 T (=] =T R 105
Prerequisites to run the Timings StatistiCs:ccoveviiiieiiiiie e 106
Chapter 10 — RMS Batch Message Program........ccccceeeevevvvnnnnnn.. 109
OVBIVIBW ...ttt ettt et b e et b e e e e s bt e e e e e be e et e e s bbeebeeanbeebeesaneenees 109
RUNNINg RMSBAIChIMSQcvviiiice e 109
PrOPEITIES FIlES ... viiiiicie e e 110
Chapter 11 — Multi-Thread feature for the e*Wayscc.......... 113
What 1S @ Thread?ccviiiiie e e 113

AN 0T F= T S I 1 SRR 113
Multi-threaded feature for Subscriber, TAFR and Publisher:c.cccccooiiiviviiiinenn, 113

Retek Integration Bus

Chapter 12 — Troubleshooting...........cceeiiiiiiii 117
SeeBeyond PIatfOrm ..o 117
Problems starting a RIB COMPONENT..........coiiieiiiiic e 117
Message processing ProbIEMSc.oiiiiiiiiic e e 121
ShUtdOWN PrODIBIMS ... e 124
Hospital admin GUI and command 1ine Utilityccooeoiiiieniiiiie e, 124
J2EE PIALFOIM L. bbb 125
AVAIADIE TOOIS.......e e 125
Messages not getting consumed by appliCationccccevveiievieiicvc e 125
Messages not getting published from applicationccccccveveiiiievececcc e, 126
ETON IMIBSSAGES ...ttt nne e 127
ISO PIALFOMM ...t bbbt 129

Chapter 1 — RIB component overview

Chapter 1 — RIB component overview

Introduction

This manual is designed for System Administrators, Developers, and Applications Support
personnel. Its purpose is to provide a basic understanding of the Retek Integration Bus
components, how messages flow between them, and operational activities surrounding these
components. It also provides templates for using the RIB as an alternative to FTP batch jobs for
transferring files from one system to another.

This chapter describes the components that make up the Retek Integration Bus (RIB). These
components are distributed within the SeeBeyond Technology Corporation’s (SeeBeyond)
e*Gate™ Enterprise Application Integration platform. The final deployed system may be
distributed across multiple computing systems. These systems may be running a Microsoft
Windows, Unix, or Linux operating system.

If the SIM/ISO module has been purchased, Retek’s ISO application server (also known as the
Chelsea application server) will be included with the actual SIM/ISO product. The RIB will then
include some components that will be deployed into the ISO application server.

SeeBeyond components

Active messaging

This section contains a brief description of SeeBeyond e*Gate components. For more detailed
information, see the e*Gate Integrator System Administration and Operations Guide.

In SeeBeyond’s EAI environment, a “Registry” embodies a complete administrative domain. A
Registry is a database defining the deployed EAI system and a program that controls access to
this database. A Registry is organized into one or more Schemas. Each schema details a
collection of e*Ways, BOBs, Intelligent Queue Managers, Intelligent Queues, Connection Points,
and Collaboration Brokers along with their network addresses or locations. The Registry also
contains basic security objects that control user identifications, roles, and privileges shared across
all schemas.

Because the Registry embodies all configurable parameters, no other component can be brought
up without access to a registry, either directly or indirectly. However, in a distributed
environment, reliance on a single Registry can be problematic, since:

e System crashes or scheduled maintenance may bring down the Registry.
o Network partitions may occur that cut communication links between deployed components
¢ Reliance on a single host may produce a performance bottleneck.

Deploying and configuring “Secondary Registries” can alleviate these problems. Secondary
Registries replicate the Primary Registry. The number and location of these Secondary Registries
are dependent on the site-specific needs and capabilities of a deployed system. The replication of
the configurations occurs transparently during normal operation of the system.

Retek Integration Bus

Each Registry is broken up into one or more Schemas. Each schema is a self-contained set of
components that define “end-to-end” processing of one or more messages. The Schema contains
the message processing units to deploy, where messages are stored, security roles, database
access definitions, and other information. Schemas may be bridged, such that one schema may
publish a message and other schemas contain one or more of the message’s subscribers. For
reasons of performance and high availability, schema contents can be copied within a single
Registry (that is, two or more schemas are defined with the same component types and
processing, but have different names and physical deployments).

In SeeBeyond’s vocabulary, there are three types of logical computing host types: A Registry
Host containing the Registry, Monitor Hosts where the e*Gate Monitor Software can be run, and
“Participating Hosts” that produce, consume and process messages.

L] Note: This must be a Microsoft Windows NT/2000 platform. The complete
requirements for such a system is detailed in SeeBeyond’s e*Gate Integrator Installation
Guide.

Although all three of these component types could run on a single physical host, this is rarely
seen in production environments. Usually multiple computers are found in a deployed system —
Operations personnel with PC’s running the e*Gate.

All components within a Schema are defined within one or more Participating Hosts. There is a
correspondence between a logical Participating Host and another SeeBeyond infrastructure
component known as a Control Broker. The Control Broker is a program that controls the
administrative activities for a participating host’s messaging components (e*Ways, 1Q Managers,
and BOBs). The Control Broker maintains a network Connection with the Registry or a
Secondary Registry at all times, because it also propagates configuration changes.

There must be at least one control broker up and running on any physical host involved in the
deployed system. Furthermore, there may be multiple control brokers running on a single
physical host because:

e The same computer may be configured as different “Participating Hosts” within a schema
found in multiple Registries. This is because the same physical host may have multiple
identifications within a Domain Name Server.

e The same host may be configured within multiple Schemas that are part of the same Registry.

e The same physical computer may be configured to hold multiple “Participating Hosts” within
a single Schema.

e Any or all of the above may be true.

Each Control Broker starts with parameters detailing its own name and its associated Schema and
Registry. At least one of these parameters must differ for each Control Broker instance. (That is,
no two control brokers can start with the same name, same schema specification, and same
Registry specification.)

Once a message is created, it usually needs copying to stable storage so that it doesn’t get lost.
The RIB uses the SeeBeyond JMS Intelligent Queue (1Q) Manager component for this. The JMS
1Q Manager is a Java Message Service provider. Queues within the JMS system are identified as
“topics” that publishers publish to and subscribers subscribe to.

Event types categorize the format of a message. The JMS IQ Manager equates an event type with
a JMS topic.

Chapter 1 — RIB component overview

The Retek Integration Bus uses the JIMS 1Q Manager extensively because it offers a two-phase
commit capability. Two phase commits are integral to "exactly once" message processing.

L Note: “Exactly once message processing” is a SeeBeyond product attribute that
guarantees a message is processed only once successfully. This is important for non-
idem potent messages — messages that contain “relative” values — that would cause
discrepancies if processed by a subscriber more than once. For example, if a message
reserving a stock item for a specific store could end up reserving all items for that store if
processed enough time, even though the publisher only wanted one item.

The other SeeBeyond component deployed within a Participating Host is the e*Way. These
components produce, consume, or otherwise process messages. This manual uses the term
adapter as a synonym for an e*Way. All RIB adapters are e*Ways.

Besides the “application” side of an e*Way, messages can be produced or consumed from an
entity known as a Connection Point. A Connection Point defines a session with an external entity
such as a database, e-mail server, World Wide Web (HTTP/HTTPS) server, or Java Message
Service provider. It is possible to poll Connection Point sessions for incoming data at regular
intervals, as defined by their configuration. Multiple adapters may use the same Connection
Point. Connection Point APIs may be multi-threaded and, depending on their design and
configuration, support an XA compliant two phase commit. It is only through the XA interface
that SeeBeyond insures a message is delivered and successfully processed exactly once.

The processing for a specific message used by an adapter is defined within Collaboration. The
source of the message (or event) that triggers the collaboration’s processing may be from either
the e*Way application interface, from a Connection Point or from another collaboration.
Messages published from collaboration must have an associated destination. This destination may
be either an Intelligent Queue or a Connection Point.

One may use a Connection Point to ensure all processing performed on the message is done
atomically. Connection Points implementing the XA interface can have a distributed transaction
that enforces atomic commits and rollbacks. The e*Way’s collaboration control logic manages
the commitment or rollback of this distributed transaction based on the success or failure of the
message processing within the collaboration. “Exactly once message delivery” requires the XA
protocol and its associated two-phase commit operation. However, if the Connection Point does
NOT implement the XA interface, then, under certain failure scenarios, the same message may be
submitted for processing multiple times.

RIB collaborations will also fail if their database connection points do not support the XA
protocol. RIB collaboration logic does not contain commitment or rollbacks. The distributed
transaction must include the work involved in delivering the message from a queue to the
collaboration. The collaboration starts only after the message delivery to the adapter. If an
invalid connection point is used, then no database work performed by the collaboration logic will
ever be committed.

Retek Integration Bus

The typical lifecycle of a message is as follows:

First, the publishing adapter creates the message. The event that triggers the message
creation may be a polling operation on the database, the presence of a file, or merely that a
certain time interval has been reached. Each message is created in the context of
collaboration, and part of the collaboration’s configuration specifies where to publish the
created message. The message is sent to a “queue” that then writes the message to stable
storage.

The message is now available to its subscribers. Subscription is based on the publishing
collaboration / event type combination. Each subscriber will contact the queue and retrieve
the next message available. Separate threads in the subscriber are used to retrieve messages
on a per event type basis. The specific message retrieved from the queue depends on its
location within the queue. As part of the retrieval processes, the Error Hospital software
updates the state of the message to reflect that one of the subscribers is now processing it.

Once a subscriber gets the message, it is free to process it according to its own rules. In the
case of a transformer adapter, the subscribing collaboration can open the message, modify its
contents, and then publish the modified message to a new queue. If the new message is of a
different type than the original, the new message can be published to the original queue.
There may be new subscribers to the modified message, and the scenario repeated for each of
these subscribers.

When each subscriber has finished processing a message, the queue updates the state of the
message to reflect this. When all subscribers have finished with the message the message
may be deleted immediately or be archived/journal led for a specific time before deletion.
The archiving/journaling is specific to the type of the queue in use and the configuration of
the queue manager.

The JMS Queue Manager will delete the messages on the queue after delivering it to the
appropriate subscribers or after it has been on the queue the number of seconds specified in
the MaxT imeToL ive configuration parameter.

Chapter 1 — RIB component overview

Monitoring

So far, all of the components mentioned are actively involved directly in the EAIl messaging
system. In a production system, however, there must be a way to monitor the running system
components.

L Note: Monitoring the associated business processes occurs at a different level and is
outside the scope of this discussion.

Four SeeBeyond components are useful in this respect:

1 The e*Gate Monitor: This application that allows an administrator to determine if a
component is up or down and is responding to status requests. It also allows the
administrator to bring up or down any component deployed on a participating host other than
a control broker. Finally, it allows an administrator to interactively view and mark as
resolved any e*Gate Alert Notifications.

2 The e*Gate JMS Administrator: This application allows an administrator to monitor the JMS
Queue(s). JMS Topic and message statistics can be analyzed as well as the ability to view,
edit or delete message currently in the queue.

3 The e*Gate Enterprise Manager: This application develops schemas or modifies existing
schemas. As such, it is a primary tool for RIB development to create new Connection Points,
e*Ways, BOBs, 1Q’s 1Q Managers, Participating Hosts, user IDs, roles, etc., for a schema. A
system administrator would also use this tool to modify the operational characteristics of
schema components, such as changing the level of logging within an 1Q or e*Way, the
automatic running of e*Ways or BOBs, or specific database log-ins used in Connection
Points. Unfortunately, these attributes may be changed when importing updated schemas
from a test environment to a production environment.

4 Alert Agents or Monitors: Notifications of operational events, such as e*Ways going down,
are passed from a control broker to one or more alert agents. Different types of alert agents
exist and may be configured to create e-mails, console messages, and SNMP traps. The
control broker creates notification events (messages) that these agents can process. See the
following SeeBeyond manuals for more information on how to install, configure and modify
system monitors:

= e*Gate Integrator Alert and Log File Reference Guide
= e*Gate Integrator Alert User’s Guide
= e*Gate Integrator SNMP Agent User’s Guide

= e*Gate Integrator System Administrator and Operations Guide

Retek supplied components

This section contains a brief description of how Retek has built upon the SeeBeyond platform to
create the Retek Integration Bus.

The following components comprise the RIB:

o Database triggers that capture application activities as they occur. These triggers are part of
the specific Retek application, such as RMS. However, as part of the RIB installation and
configuration, they must be enabled to capture information regarding events of interest.

Retek Integration Bus

e Staging tables used to hold the captured information and to maintain the publishing state of
the messages.

o Publishing e*Ways that create messages from the information captured by the
aforementioned Database Triggers. These publishing e*Ways are designed to publish events
from a single “Message Family” and are specific to a Retek Application, such as RMS. Each
RIB publishing e*Way has a collaboration that will invoke a specific stored procedure which
returns the staging table information.

e Subscribing e*Ways that are used to consume messages. These are specific to Retek
Applications (RMS, RCOM, RDM) and are designed to consume all messages from a
specific message family. Each Subscribing e*Way will call a specific stored procedure used
to process a specific application event message.

e Transformation Address Filters/Router (TAFR) e*Ways that transform message data and/or
route messages. The TAFR acronym is a generic term. Multiple, message family specific
TAFRs have been implemented. Different TAFR e*Ways may be active on different
message families or on the same message family depending on the needs of an application.
Not all message families require TAFRSs.

o Error Hospital database tables used as a basis for storing and re-trying problematic messages.
e Error Hospital administration GUI and command line utilities.

e Pre-defined Connection Points used by the adapters listed above. These must be configured
after installation so that the correct database instance and logins are used.

e SeeBeyond Java Message Service (JMS) Queue managers. The JMS Queue Managers
control the JMS queues used to store messages after publication. The messages persist on
stable storage until all subscribers have processed them.

e For J2EE applications (RCOM, MDM, IS0, ...), Enterprise Java Beans (Message-Driven and
Stateless Session).

o [f the SIM/ISO module has been purchased, ISO messaging components, and publishing
utilities have been included for subscribing to RIB messages within 1SO, and publishing RIB
messages out of ISO. These components will act like e*Ways. Though they are developed
under the I1SO platform, they will still use the SeeBeyond JMS queue manager. They will
subscribe to messages published by SeeBeyond e*Ways, and publish messages to the
SeeBeyond JMS queue, to be consumed by subscribing e*Ways.

Chapter 1 — RIB component overview

Additional resources

Use the following resources to further understand the Retek Integration Bus and the SeeBeyond
e*Gate Integrator EAI platform:

o e*Gate Integrator Alert and Log File Reference Guide
o e*Gate Integrator Alert User’s Guide
e e*Gate Integrator SNMP Agent User’s Guide

The three manuals above detail the options, configuration, and other reference material for
creating Agents and other monitors for a deployed system.

e e*Gate Integrator System Administrator and Operations Guide
Contains reference, troubleshooting and administrative information.
e e*Gate Integrator Installation Guide
Contains basic information on how to install the SeeBeyond e*Gate Integrator platform.
e e*Gate Integrator Release Notes
Useful if currently using an earlier version of the SeeBeyond platform.
e e*Gate Integrator User’s Guide
e e*Gate Integrator Intelligent Queue Services Reference Guide
Overview of the Intelligent Queues
e SeeBeyond eBusiness Integration Suite Deployment Guide
This manual contains information on how to analyze, plan, and manage a RIB deployment.
e SeeBeyond eBusiness Integration Suite Primer

This manual contains an introduction to all of the available components within the
SeeBeyond e*Gate product family. These include e*Ways designed to interface to specific
application suites, such as PeopleSoft, SAP, and Oracle Financials.

Chapter 2 — RIB component operations

Chapter 2 — RIB component operations

This section details the message flows for a simple message and for a message undergoing a
routing or filtering operation. For a more detailed description of the RIB components, see the
Retek Integration Bus Technical Architecture. For a detailed discussion of message contents, see
the Retek 10.3 Integration Guide.

Simple message flow

The figure below is a generalized view of a RIB message. Two applications require this data and
subscribe to it. One subscribing application requires certain transformations applied to the data,
but the other subscriber can process the message without any transformations.

Publishing App 1 DB
Adapter i PP
—RIB messsage P —RIB message P SAudbaSpCtZ:) T
Payload
RIB
Queue TN
L Message Famil ‘
Application | 1
R ogers Manager —RIB message—p TAFR Adapter ——p RIB

Staging Tables

Transformed RIB message

< >

4

Subscriber

Adapter 2 App 2 DB

Figure 3.1 Message Flow

First, a trigger on a database table fires in response to an application’s action.

L Note: Some applications, such as RCOM, do not use triggers to publish to the MFM
staging table. RDM uses another variation: an MFM interface harvests data from
“Upload” tables to create the XML payload.

This trigger creates a row in a Message Family Manager (MFM) staging table and commits this
data, known as the payload, along with all of the other changes performed by the user or batch
job.

Second, a RIB Publishing e*Way polls the MFM staging table via a call to an MFM specific
stored procedure. This stored procedure insures that messages are published to the RIB in the
correct order and at the correct time. The Publishing adapter takes the payload and wrappers it
with an envelope used by the RIB infrastructure. The publishing adapter then deposits the
message on a Java Message Service (JMS) queue, which includes writing the message to stable
storage.

Retek Integration Bus

Third, a RIB subscribing e*Way polls the JMS queue for a message and retrieves the one just
published. Assume for simplicity’s sake that this e*Way interfaces with the application requiring
no data transformations. The e*Way then reads the data, performs any needed database updates,
and commits all of its work. It is now ready to process the next message from the JMS queue.

Fourth, a RIB TAFR e*Way also polls the JIMS queue. It retrieves the message, transforms it into
a new message, and publishes it — effectively publishing a new type of message. The TAFR
e*Way could publish the message to the same JMS queue it retrieved the message from using a
different JMS topic or it can publish the message to a completely different JMS queue. The name
of the JMS topic associated with the message may be determined from the message’s Event Type
name.

Fifth, the e*Way associated with the second application polls the second JMS queue, retrieves the
message, and processes the transformed data.

Message routing

When a message requires routing, a TAFR adapter is needed that directs the message to the
correct destination. The information it uses for routing is found within the message. However,
the routing logic is tailored according to the needs of the subscriber.

TAFR routing logic many times consists of a simple chain of “if-then-else if” statements.

For example: if the routing tag equals “Warehousel”, then publish the message as event type
“etMessageWH1", else if the routing tag equals “Warehouse2”, then publish the message as event
type “etMessageWH2”, else if

However, the routing logic can be complex or route the same message data to multiple
destinations. The determination of this logic is specific to the message family the TAFR is
designed to process.

Once the message is published by the routing TAFR, it resides on a destination specific
gueue/topic combination. The TAFR collaboration configuration determines the specific queue
used. There must be an association of the output event type to this queue.

From here, additional adapters retrieve the message and continue to process it. The logical flow
diagram of a routed message as it travels on the RIB is seen in Figure 3.2. Note that the triggers
and databases have been omitted from this diagram. Moreover, subscribers may publish
additional messages, depending on the needs of the system.

10

Chapter 2 — RIB component operations

Publishing
Adapter

| RB
messsage

RIB
message

RIB Message
Event Type #1

4>

RIB Message

TAFR Adapter Event Type #2

RIB Message
Event Type #3

Figure 3.2 Routed Message Flow

Dest
#2
Queue

) Subscriber
| Adapter 1
3) Subscriber
3 Adapter 1
3) Subscriber
| Adapter 1

11

Retek Integration Bus

Component failures

Understanding how messages are transported and processed successfully is a concern in a
production system. An effective administrator needs to know what kinds of failure scenarios
exist and what steps can be taken once these failures appear.

Application trigger failures

Failures involving the application database triggers should be extremely rare. When they occur,
they manifest themselves as failures within the application. Trigger failures should be handled
immediately.

Many triggers involve the use of a sequence generator as a primary key in a Message Family
Manager staging table. If this sequence generator has been reset, then unique constraint
exceptions may occur.

Another possible trigger failure also involves the insert operation into the MFM staging table: out
of table space. As mentioned below, an analysis of the needed space should occur before
deploying the system to production — or at least monitored closely while the system is in
production. Messages must be published to the RIB before they are deleted from the staging
table and if the publishing e*Way cannot keep up, the number of rows in this table and the
publishing delay may increase to unsatisfactory levels.

SeeBeyond Publishing adapter failures

Failures involving SeeBeyond deployed publishing adapters (or e*Ways) may occur due to
configuration errors or environmental errors. If a publishing e*Way becomes unavailable, then
records will accumulate in the MFM staging table.

Configuration failures for publishing adapters may occur in the specification of its collaborations.
Specifically, the configuration supplied as part of the initial product specifies an Oracle Database
Connection Point used to trigger message publication. This Connection Point must have the
correct database user login and SID information supplied or it will not work or a Connection
Point must be specified that contains the correct information.

Similarly, publishing adapters specify a JMS Connection Point for the JMS queue the message is
published to. If a SeeBeyond JMS queue is used, then the IMS Queue Manager must be set up
and attached to the Connection Point. Otherwise, all messages will fail when published.

Another common problem with publishing adapters, or any adapter, is that RIB collaboration
rules (the processing logic) are written in Java, and the correct CLASSPATH must be specified in
the environment or in the e*Way’s configuration. If one uses all default file directory locations, it
is expected that this variable will require little or no modifications. However, if the SeeBeyond
e*Gate system or the Java Runtime Environment is installed in an unexpected location, then all
RIB publisher, TAFR, and subscriber adapter configurations may need to be modified.

Similar to the CLASSPATH problem, but more insidious, is the JNI DLL specification.
Ll Note: The term “DLL” is used even on Unix systems within the e*Gate product. This is

even though DLL’s are specific to a Microsoft platform. On the Unix platform this refers
to the JNI shared library.

This is the Java Native Interface used within an e*Gate e*Way to jump from a Java context to
native C or C++ context. The JNI DLL specification specifies where the library containing the
“jump” code is located. It is considered part of the run-time environment.

12

Chapter 2 — RIB component operations

SeeBeyond deployed TAFR adapter failures

TAFR adapters use collaborations and Java similar to publishing adapters. Hence, they may have
the same problems with JIMS Queues, Java CLASSPATH, or JNI DLL configuration entries as
the RIB publishing adapters. However, TAFRs do not typically involve database operations. On
the other hand, TAFR adapters may have their own configurations specified in property files that
detail the transformations or routing that must occur.

Fatal TAFR failures will cause a message backlog in the source JMS queue. TAFRs with
incorrect routing logic will route messages to incorrect destinations.

SeeBeyond deployed Subscribing adapter failures

Subscriber adapters have the same Java, JNI DLL, and Connection Point potential problems as
publishing adapters. When these problems occur, messages are not delivered to the adapter and
the source message queue will become backlogged.

However, subscribing adapters may also run into problems due to the field content of the
messages. For example, there may be a mismatch with a value or ID found in the message.
When this occurs, the following takes place:

1 The subscribing adapter keeps track that the message failed internally and returns a failure to
the e*Gate system.

2 Adistribute rollback is performed. All database work is rolled back and the message remains
on the source JMS queue.

3 The message is re-processed. Because the adapter has flagged the message has failed, it
inserts the message into the Error Hospital.

4 Adistributed commit is performed. The message is removed from the source queue and is
committed to the Error Hospital.

5 Periodically, a second collaboration associated with the Error Hospital awakens and pulls the
data from the Error Hospital. This collaboration then inserts the message back into the
original source queue.

6 Steps 1-5 are repeated until the message is successfully processed or until maximum retry
count is reached.

Note that both a GUI as well as a command line interface are provided to administer the Error
Hospital. Error Hospital operations are detailed later in this manual.

13

Retek Integration Bus

Deployment architecture considerations

So far, the components have been described in generic terms. This is because every installation
may have its own unique configurations and needs. However, there are some configuration
patterns or philosophies that Retek suggests for successful RIB operations.

Retek schema integrity on the SeeBeyond Platform

Retek suggests that the messaging schema supplied with the Retek Integration Bus be modified as
little as possible when deployed to a production environment. Doing so will ease the pain of
installing RIB updates. Each future RIB release is expected to contain additional application
integration points and Message Families. Segregating the Retek messaging schema from other
non-Retek components will enable updates to be installed quicker and with fewer side effects.

Disk space analysis

Before the RIB is deployed to production, an analysis of the expected message traffic must be
made. The Retek 10.3 Integration Guide lists all of the messages as implemented within the RIB
and the conditions in which they are published. System designers use this guide to estimate
expected message size and volume. From a business operations viewpoint, one should also
determine the amount of time a specific subscriber is allowed to be unavailable before serious
business consequences occur. This should include the maximum amount of time before a
subscriber is failed-over to another system.

The purpose behind this analysis is to determine the amount of disk space needed to support
continued operations if a subscriber becomes unavailable. The standard RIB configuration will
maintain a copy of each message on a queue’s persistent storage until all subscribers have
processed the message. If the disk —subsystem or queue’s configuration cannot store messages,
then each publisher will need to be shut down.

This analysis should also be continued to the publisher. Specifically, Retek suggests performing
these calculations on the Message Family Manager staging table size and the likelihood of the
SeeBeyond EAI system becoming unavailable for a specific amount of time. In this scenario
(which may be a continuation of a subscriber problem) the publishing e*Way may not be able to
publish messages. As such, all messages become backed up in the MFM staging table. If this
table runs out of space, then all application triggers that write to the table will fail and the
application should be shutdown.

14

Chapter 2 — RIB component operations

Intelligent queue managers

The SeeBeyond e*Gate EAI platform allows one to use a number of different Intelligent Queue
Managers for storing published messages. The Retek Integration Bus is designed to use JMS
gueues because this component requires no external database and implements the XA interface
protocol. The XA protocol enables the “exactly once” message processing.

The purpose of an 1Q Manager is to manage Intelligent Queues. In most cases, these queues are
explicitly defined. In the case of the JMS 1Q Managers used with the RIB, explicit queue
definition is not needed. The JMS 1Q Manager also provides a JMS Service to the Connection
Point interface. Each event type published using the JMS Service will use the Event Type name
as the JIMS “topic”. The configuration of the JMS service sets other parameters needed to access
the message.

L Note: Not only Java Collaboration Rules can be used with JIMS Connection Points.
Monk Collaboration Rules can publish/subscribe to messages on a JMS queue, but must
also explicitly define a JMS Intelligent Queue on the JMS 1Q Manager used.

Performance motivated parallel processing

A common method to gain throughput in distributed EAI systems is to duplicate processing
modules across multiple systems or, if the system spends a significant percentage of time waiting
for disk 1/0, to duplicate modules within the system. These components then execute in parallel,
reducing the elapsed time for processing multiple messages.

In the Retek 10.3 release, parallel processing considerations have been subordinated to message
sequencing guarantees. In other words, the design of the system guarantees message processing
is in the correct sequence as opposed to maximizing throughput.

Additional throughput gains can be made if the system is deployed with parallel processing
nodes. However, simply duplicating these nodes introduce the possibility that some data will be
processed out-of-order. If this occurs, then the final state of the subscribing system will be
incorrect and contain invalid data.

15

Retek Integration Bus

Thus, additional design and implementation work is needed to support parallel processing
deployments of the RIB in the 10.3 release. This work must center on creating well-defined
logical channels of information, each channel responsible for a well-defined set of business
entities. An example of such a logical channel would be one responsible for all of the "even
numbered” purchase orders. This is similar to the Retek “Batch Thread” model. Briefly, the
following changes would need to be made:

1 The current message flow (Publishing adapter and all TAFRs and subscribing adapters)
would need to be duplicated once per each logical channel.

2 For each publisher, the MFM Oracle database package would need to be modified such that
the “GETNXT()” procedure only returns messages concerning a subset of all available
business entities. If two publishers were used, then one would return only even IDs and one,
only odd IDs.

3 Additional configuration changes would be needed to insure that different Error Hospitals are
associated with each new subscriber.

4 Each logical channel should have an associated Connection Point that uses a distinct JMS
Service provider. This involves creating a JMS 1Q Manager for each logical channel and a
JMS Connection Point that uses this IMS 1Q Manager. This JMS Connection Point would
then be the source or destination for all messages on the channel. Otherwise, the messages
published for one channel would become intermingled with those from other channels when
the JMS provider saved them to stable storage.

An alternative to multiple JIMS 1Q Managers is to rename all of the event types used within the
logical channel to be channel specific.

16

Chapter 3 — Configuration files

Chapter 3 — Configuration files

The various RIB platforms leverage some platform specific configuration mechanisms.
However, most RIB specific parameters are specified in a file known as the RIB Properties file.

The Retek Binding sub-system is used on the ISO and J2EE environments. It uses its own set of
configuration files for determining the code to execute when publishing or subscribing to a
specific message family.

RIB Properties File

The RIB Properties File has the name rib._properties. Its location on the system is
dependent on the deployment of the RIB and the running system’s CLASSPATH specification.
See each platform’s configuration chapter for more details.

This section details the contents of this file.

RIB Logging and Timings File

This section details the file names and levels of logging (on/off or normal/verbose) for RIB File
logging and Timings logging. A Timings log file contains a series of timestamp lines the mark
the date and time a processing point has reached. Multiple threads may write the same Timings
log file. A post processor is needed to determine statistics about the running system.

log.default.file_path — Location for the rib log files to be places on the server.
log.default.verbose — Default logging to use if none specified for an adapter

log.<adapterName>.timings — If this property is set to *Y’, then a timings log is created and
logged during the execution of the adapter specified.

log.<adapterName>.timings_logFile - When the timings is set to “Y”, this specifies the file time
stamp entries are written to.
Log4j support in the RIB Properties File

In addition to the functionality and properties described in the previous section; the RIB, starting
with the 10.3.4 release, takes advantage of the Apache Software Foundation’s log4j logging
system.

Introduction to log4j

Log4j is a logging service allowing users to specify at runtime the granularity of the information
displayed, the format, and the destination of logged data. It is fully customizable through
properties in a configuration file. This information can be displayed to the standard output, a file
or a remote service (e.g.: IMS, E-mail, TCP). Many properties exist for configuring the location
of the log files and the content that each one should store (level or relevance of the information,
as well as where in the program the information has been originated). It can also control other
attributes of the file containing the log entries, such as

e the maximum size of the log files
e whether to roll over to a new file based on file size or time criteria

e number of backups of previous files

17

Retek Integration Bus

To learn more about log4j, visit the Apache Software Foundation’s URL
(http://logging.apache.org/log4j/docs/documentation.html) and click on the
“short manual,” “javadoc documentation,” and “FAQ” links.

New log properties in the rib.properties file

In 10.3.4, the RIB comes configured to use log4j. However, this configuration duplicates the
behavior seen in previous RIB releases. Any translation between rib and timings properties and
log4j properties occurs in the RIB infrastructure code. However, in order to maximize the benefits
of log4j a user must replace the pre-existing log properties with properties supported by the log4j
service. This is an automatic process that just requires the execution of a tool provided with the
RIB. The following command will convert the existing rib.properties file to support log4j
properties:

java -DEHOME=$EHOME —cp $EHOME/client/classes/retek-rib-support.jar
com.retek._rib.log.converter_RibLogTolLog4jPropertiesConverter

This command must be run locally in the machine hosting the eGate registry. A backup copy of
the original rib.properties file will be preserved as rib.properties.bak. One of the first things a user
will notice is an increase in the size and content of the new rib.properties file. More properties per
adapter are needed by log4j in order to provide the user with flexibility of configuration. Lets
look at the ewStoresFromRMS e*Way log properties as an example.

For RIB Logging, the single log.ewStoresFromRMS.verbose property has been substituted
with the following set:

log4j.logger.rib.ewStoresFromRMS=INFO, ewStoresFromRMS_ appender

This property defines the component responsible for logging information from the
ewStoresFromRMS e*Way. The first value after the equal sign, indicates the degree of
information to be logged. In the example, it indicates that it should log messages down to the
INFO level. The levels available and their relevance from lowest to highest are ALL < DEBUG <
INFO < WARN < ERROR < FATAL < OFF. A level of INFO will log messages designated as
info, warning, error or fatal, but will leave out any debug messages. ALL and OFF, although not
really levels, are used as switches to turn completely on or off the logging of events. The second
value, known as the appender, indicates the destination of the messages to be logged. Multiple
appenders can be specified by providing a comma-separated list. The list of appenders can
represent any combination of standard output/error, files or remote services.

log4j.additivity.rib.ewStoresFromRMS=False

The additivity flag indicates whether the logger should log messages to just the appenders set in
thelog4j - logger .rib.ewStoresFromRMS property or to other appenders set above in its
hierarchy. Please refer to the log4j documentation from the Apache Software Foundation for a
discussion of logger hierarchy and the additivity flag.

Appenders are configured using an additional set of properties. Appenders control the attributes
of the destination log file.

log4j .appender.ewStoresFromRMS_appender=
org.apache.log4j.RollingFileAppender

log4j -appender.ewStoresFromRMS_appender .File=
${log.default.file_path}/rib_ewStoresFromRMS. log

18

http://logging.apache.org/log4j/docs/documentation.html

Chapter 3 — Configuration files

log4j -appender.ewStoresFromRMS_appender .MaxFileSize=1024KB
log4j .appender.ewStoresFromRMS _appender .MaxBackupIndex=10

In the properties listed above, the ewStoresFromRMS e*Way will log messages to the
rib_ewStoresFromRMS.log file up to a maximum of 1Mbyte (the size is actually slightly larger,
depending on the size of the last message logged required to reach the specified size). After this
value has been reached, a new rib_ewStoresFromRMS.log file will be created up to a maximum
of 10 backup copies. The old log files will be renamed rib_ewStoresFromRMS.log.1,
rib_ewsStoresFromRMS.log.2, rib_ewStoresFromRMS.log.3 and so on. The most recent backup
will have the lowest index (1) while the oldest one will have the highest (10). After the maximum
number of backups is reached, older files will be deleted and only the ten most recent backups
will be kept.

log4j -appender.ewStoresFromRMS_appender. layout=
org.apache.log4j .PatternLayout

log4j .appender.ewStoresFromRMS_appender. layout.ConversionPattern=
%d{yyyy-MM_.dd HH:zmm:ss.SSS}]%m%n

These appender properties indicate the format to apply to each message right before inserting it
into the appender. One of the most powerful functionality of log4j is the ability to control at
runtime the way the information is presented to the user; therefore, giving him/her the ability to
ultimately decide how he/she wants the messages displayed.

In the same manner, the Timings properties:
log.ewStoresFromRMS. timings=N

log.ewStoresFromRMS.timings_logfile=
timings_ewStoresFromRMS. log

has been substituted with the log4j properties:

log4j.logger.timings.rib.ewStoresFromRMS=
OFF, timings_ewStoresFromRMS_ appender

log4j.additivity.timings.rib.ewStoresFromRMS=false

log4j -appender.timings_ewStoresFromRMS_appender=
org.apache._log4j.RollingFileAppender

log4j .appender.timings_ewStoresFromRMS appender.File=
${log.default._file_path}/timings_ewStoresFromRMS. log

log4j .appender.timings_ewStoresFromRMS appender .MaxFileSize=2048KB
log4j -appender.timings_ewStoresFromRMS_appender .MaxBackup Index=10

log4j -appender.timings_ewStoresFromRMS_appender . layout=org.apache.lo
g4j -PatternLayout

log4j .appender.timings_ewStoresFromRMS appender. layout.ConversionPat
tern=%d{yyyy-MM.dd HH:mm:ss.SSS}]%m%n

Two new properties have also been added:

19

Retek Integration Bus

riblog.suppress.repeated.message=true

riblog.suppress.repeated.message.counter=100

Together they help to control the unnecessary logging of repeated information that is caused in
periods of inactivity during the lifetime of the e*Way. If a message has been logged already, and
the riblog.suppress.repeated.message is set to true, the same message will not be logged
again until the 101st time (or the value of riblog.suppress.repeated.message.counter
+ 1) at which point the message is logged only once an the same process repeated.

Enabling log4j for e*Ways

New in 10.3.4, all e*Ways are required to have the log4j.jar added to their classpath. Failure to
comply with this requirement will cause a message similar to the next one and the immediate
shutdown of the e*Way:

jJava.lang.NoClassDefFoundError: org/apache/log4j/Category

Please refer to the 10.3.4 Release Notes for instructions on how to update the e*Ways to include
the log4j.jar entry in their classpath.

RIB Message bundling entries

<eway name>.<collaboration name>.pubMessageCount — This attribute is used to determine
the number of times the publishing thread will attempt to call the GETNXT() stored procedure
within a single transaction. It also specifies the maximum number or RIB Message Nodes that
can be included in a single <RibMessages> tag. This is a new property in the 10.3 release.

This property is optional. If not specified, it defaults to 1. This is a performance tuning property
that can reduce the amount of time spent between collaboration calls and also reduce the
frequency of committing data to JMS and Oracle.

Multi-threading entries

This section details those entries used to support multi-threading within a message family. Multi-
threading allows simultaneous processing among multiple threads of control for messages within
the same message family. If performed correctly, this allows for large throughput gains while
still maintaining the RIB's sequencing and exactly once guaranteed processing.

mfm.<family name>.total_threads -- defines the total threading level to be used but not
exceeded by this message family.

mfm.<family name>.<collaboration name>.thread_num - defines the specific thread number
that the specific collaboration is to use upon execution.

Note that upon start up of some publishing e*Ways there is a synchronization check with the
database on the total_threads in rib.properties, and if the data is not the same the e*Way is
shutdown without processing any data, as the publishers algorithm for deciding what data to
publish to each publisher may be dependent on the threading value configured.

20

Chapter 3 — Configuration files

Error Hospital entries
This section details the entries used for retrying messages from the Error Hospital.

hospital.attempt.max — This is the maximum number of attempts to try to push this record

through the RIB automatically, once this retry count is exceeded the message remains the Error

Hospital DB but is no longer retried automatically.

hospital.attempt.delay — value (in seconds) used to calculate the next attempt time

hospital.attempt.delaylncrement — value (in seconds) used to calculate the next attempt time.

The next attempt time is calculated as:

hospitalAttemptDelay + (hospitalAttemptDelylncrement * attempt
count)

This is done so that the delay between each attempt is longer than the previous delay.

Global entries
dtd_url.default — Specifies the DTD File location. RIB Payloads include a DOCTYPE
specification.

default.MessageSelectorCheck —When this value is set to ‘true’, all e*Ways that subscribe to
JMS topics will verify that their message selector is set up properly on their durable subscriber
within the SeeBeyond JMS server.

default. SubscriberCheck —When this value is set to ‘true’, all e*Ways that publish to JMS will

verify that a subscriber exists for the specified topic within the SeeBeyond JMS server.

Implementation classes used

In order to promote pluggable, platform specific implementations, the RIB allows the

specification of platform-specific classes for a variety of functions. These functions include the

actual creation of a RibMessages XML message and the interface to an alert mechanism. The
following entries are used to specify what Java classes should be used for these functions:

alertPublisherImpl -- Interface to the Alerting mechanism

Values: com.retek.rib.sbyn._alert._EgateAlertPublisher (SeeBeyond)
ribMessagelmpl — Class used to create a ribMessage node within a RibMessages container.

Values: com.retek.rib.sbyn_RibMessageWrapper (SeeBeyond)
ribMessagesImpl — Class used to create a RibMessages container.

Values: com.retek.rib.sbyn.RibMessagesWrapper (SeeBeyond)

routingInfolmpl — Class used to create the Routing Information Section within a ribMessage
node.

Values: com.retek.rib.sbyn.RoutingInfoWrapper (SeeBeyond)
failurelmpl — Class used to create, store and copy message failure information
Values: com.retek.rib._sbyn_FailureWrapper (SeeBeyond)

subListForTopiclmpl — Implementation class for listing subscribers for a topic utilizing the
JMS vendor’s utility command.

Values: com.retek.rib.sbyn.cmd.SubListForTopic (SeeBeyond)

21

Retek Integration Bus

topicStatImpl — Implementation class for listing topic statistics utilizing the JMS vendor’s utility
command.

Values: com.retek.rib.sbyn.cmd.TopicStat (SeeBeyond)

deleteSubImpl — Implementation class for removing a subscriber from a topic utilizing the JIMS
vendor’s utility command.

Values: com.retek.rib.sbyn.cmd.DeleteSub (SeeBeyond)

22

Chapter 3 — Configuration files

SeeBeyond platform specific entries
This section details the SeeBeyond platform specific entries

eway.<e*Way Name>.no_event_sleep_millis — This entry specifies how much time to sleep
when no information is available to be published for a specific e*Way. The actual e*Way name
must replace the string <e*Way Name>

eway.default.no_event_sleep_millis — This entry specifies how much time to sleep when no
information is available to be published and there is e*Way specific no_event_sleep_millis entry.

Application specific entries

RDM specific entries

facility_type.default — Specifies the default facility type to be used by RDM publishing e*Ways
for calls to RDM.

facility_id.<facility _type>.<location id> - This property is used by the routing TAFRs to
determine which RDM topic to route a message to based on the facility type and location id used.

<eway name>.<collaboration name>.dc_dest_id — Used by RDM publishers as input
parameters to the Oracle DB requests. Should be set to the appropriate DC Destination ID for the
data that is desired from the RDM instance being connected to.

multichannel_ind — this field has been deprecated (a.k.a. no longer used).

ISO platform specific entries

There are no entries for ISO that are any different from the normal SeeBeyond entries. Only a
small subset of the entries for SeeBeyond Rib components, however, are required in the
rib.properties file for the Rib ISO components. These are the entries for the error hospital, as the
Rib ISO components still makes use of the error hospital, and entries for the implementation
classes used.

FlowTrak specific entries

prop.strm.fname - Location of the FlowTrak properties file.

23

Retek Integration Bus

Retek Binding configuration files

Properties files

payload.properties — The purpose of this file is to map a RIB message family and RIB message
type key to the fully qualified class hame of a Java payload object. A Java payload object is a
JavaBean-like object, with a number of attributes that can store data from an XML document.
Each of these payload objects is inherited from a common Retek Binding Payload super class, the
com.retek.binding.rib.payload.Payload Object. This file is used in both publishing and
subscribing APIs, as both use a Payload objects.

Properties in this file should be entered as follows:

(message family).(message type) = fully-qualified Java class name
ASNOUT . ASNOUTCRE=com. retek.binding.rib.payload.ASNOutDesc)

binding.properties —The purpose of this file is to map a RIB message family and RIB message
type key to a Castor-generated mapping file. The mapping file is specific to the DTD describing
the format of the message payload. This file is by default empty, as the RIB does not use Castor
Mapping files for XML Binding. However, the ability to use the Castor Mapping file is available
by entering in a new property for a certain message family and type in this file.

The properties in this file are entered in the same way as the payload.properties file:

(message family).(message type) = relative path to Castor Mapping file
ASNOUT . ASNOUTCRE=com/retek/binding/rib/payload/ASNOutDescMap . XML

For more information on the Castor mapping files, see the “XML Files” section, below.

XML files

<PayloadObjectName>Map.xml —These Castor-generated Mapping files map the element
names in an XML schema document, to the attribute names and methods in a Java Payload
object. By default, the RIB does not use Castor Mapping files for Binding, as it uses the Castor-
generated Descriptor files to create the mapping between the XML Schema and Java Payload
Object. A Castor Mapping file can be used in the RIB by defining the relationship in the
binding.properties file. 1f a value is defined for a certain message family and type, that value will
be used as the path to the Mapping file and will be used for XML Binding with Castor.

These Mapping files need to reside in the retek-payload.jar, along with the Java Payload objects.
The path to these files in this jar needs to match the path entered in the binding.properties file.
For example, if the properties file defines the mapping as

“com/retek/rib/binding/payload. ASNOutDescMap.xml”, this would need to be the path to this file
inside the retek-payload.jar.

24

Chapter 4 — SeeBeyond Platform

Chapter 4 — SeeBeyond Platform

RIB startup and shutdown

This section details how to start up and shut down the RIB.

Available Scripts

Bringing up and down the RIB can be done using a series of scripts supplied with the RIB. These
start and stop scripts are:

start_egate | starts the SeeBeyond registry

start_cb starts the SeeBeyond control broker for the RIB Schema

start_rib starts RIB JMS 1Q Manager(s) and e*Ways in a known
sequence.

stop_rib stops RIB JMS 1Q Manager(s) and e*Ways in a known
sequence.

stop_cb stops the SeeBeyond control broker for the RIB Schema

stop_egate | stops the SeeBeyond registry

In general, one should start up the components in the following manner:

First the registry, then the control broker, then the JIMS 1Q Manager, then the subscribing
e*Ways, then the TAFR e*Ways, then the publishers.

25

Retek Integration Bus

In a standard installation, the start_egate script will reference a file named egate.txt. This file
contains all of the standard e*Ways and JMS 1Q managers that come with the RIB schema. If
invoked with the “-f <filename>" switch, this script will use the supplied control file for
determining which e*Ways and JMS 1Q Managers to bring up or down. A complete listing of
options for the start_rib script is found below. Similar execution options are available for the
stop_rib script.

start_rib [-r] [-s schema_name] [-f eway Ffile] [-u user_name] [-p
user_password] [-e eway_name] [ALL] [IMS] [SUB] [TAFR] [PUB] [HOSP]

Where

-r specifies to create/update the
"failed eways.txt" file with the names of the elements not booted

This file may be used with the -f switch on a
later execution.

-s schema_name specifies the name of the schema to start --
default is RIB103

-f eway_file specifies the Ffile containing eway
description, default is $EHOME/RIB/eways/eways-out/Egate.txt

-u user_name specifies the user name to use -- default is
Administrator

-p user_password specifies the password to use -- default is
STC

-e eway_name specifies only a single eway or other element
to start

ALL specifies bringing up all elements listed in
the eway Ffile. Equivalent to JMS SUB TAFR PUB HOSP

JMS specifies bringing up all JMS elements listed

in the eway file

SUB specifies bringing up all SUB (subscriber)
elements listed in the eway file

TAFR specifies bringing up all TAFR elements
listed in the eway file

PUB specifies bringing up all PUB (publisher)
elements listed in the eway file

HOSP specifies bringing up all HOSP (hospital)
elements listed in the eway file

The format of the eway_file (typically Egate.txt) is:
<name> <type> <se(q>

Where <name> is the name of the element/JMS/e*way, <type> is one of IMS, SUB, TAFR,
HOSP, PUB, <seq> is anumber detailing the order of operations within a type. Starting is
performed in ascending order. Stopping is performed in descending order. Comment lines must
begin with two forward slashes, "//"

26

Chapter 4 — SeeBeyond Platform

Sequencing considerations — Detailed Information

In the RIB architecture, the first step a Retek application performs in publishing a message is the
execution of a table specific trigger. These triggers are installed in a disabled state with each
application. See the Retek Integration Bus Installation Guide or the product specific installation
guide for information on the triggers and how to enable them.

The SeeBeyond EAI components can be configured to come up manually or automatically. If
configured to be brought up automatically, then only the registry and control brokers need to have
an external method for starting. On Unix systems, this method is typically found in a startup
script executed when during the system boot sequence. The components run as daemons.

L Note: Sample scripts to start the registry and control broker can be found in the
$EHOME directory. This is the directory where e*Gate was installed and was configured
as part of the RIB installation process. “start_egate” and “start_cb” are the two scripts to
refer to.

A generalized list of steps needed to start an e*Gate system is found below. Complete
documentation on SeeBeyond e*Gate operations is found in the SeeBeyond e*Gate Integrator
System Administration and Operations Guide. Please refer to this manual for further information
on the referenced commands.

1 Open all external resources that the components are dependent on, such as an application’s
database.

2 Open the SeeBeyond e*Gate Registry.

= |If the RIB Installation Instructions were followed, run the “start_egate” script from the
$EHOME directory and skip to step 6.

or
= On Unix systems, this is done via the stcregd command.

3 Before the stcregd command may be executed, initialize the user’s environment correctly.
This is typically performed by “sourcing” the file SEHOME/server/egatereg.sh.
L0 Note: If the RIB Installation Instructions were followed, this step is done by the

“start_egate” script.

For example, for Korn or Bourne Unix shells:
> . $EHOME/server/egatereg.sh

4 The parameters needed for the stcregd command specify the registry’s name and TCP port
numbers. It is suggested that only one registry be configured for a host, as this simplifies the
configuration of the startup script for the registry and control brokers. However, site-specific
issues may motivate an EAI administrator to configure multiple registries on the same
computer.

L Note: Examples of such issues include using a test system as a “hot standby” for a
production system, or providing extra redundancy for the registry on the local
system.

27

Retek Integration Bus

5 The following stcregd command displays a registry named “egate_main” using the default
TCP ports for the initial connect port and the connections made between the registry and
control brokers. It also executes without Access Control Lists used for authorization
purposes:

> stcregd —In egate _main

Switches for this command include:

= -pr Port number for Registry Clients

" -pc Port number for Control Brokers

= -n Registry logical name

= -mc Maximum number of connections

* -hbd Base directory

=SS Run as a service

= -h Display help screen

SeeBeyond suggests that the name of a registry matches the name of its host computer.
6 Open the control brokers for all participating hosts.

= [If the RIB Installation Instructions were followed, run the “start_cb” script from the
$EHOME directory and skip to step 11.

or
»= On Unix systems, this is done via the stccbh command.

= On Microsoft Windows platforms, the registry is typically installed as a service.
» The stccb command is also available as a DOS command.

7 Before the stccb command may be executed, the user’s environment must be initialized
correctly. This is typically performed by “sourcing” the file
<EHOME>/server/egateclient.sh.

LI Note: if the RIB Installation Instructions were followed, the “start_cb” script does
this step.

For example, for Korn or Bourne Unix shells:
> _ $EHOME/server/egateclient._sh

8 An stcch daemon must be running for each participating host on that participating host.

9 The parameters needed for the stccbh command specify the control broker’s name and TCP/IP
address of available primary and secondary registries.

28

Chapter 4 — SeeBeyond Platform

10 The following stcch command brings up a control broker with the following attributes:
= Named “cb_main”
= Contained the schema “R1B102”
= Uses the registry found on the host “egate_main” with the default TCP port numbers
* Runs under the SeeBeyond e*Gate defined “Administrator” user-id
= Authenticates itself to the registry using the password “STC”

L) Note: Thisis the commonly used “Default” password for SeeBeyond
e*Gate installations. Any installation wishing to provide even a
modicum of security will change this password. Furthermore, the
password may be encrypted and stored in a file via the stcutil
command, so that it is not visible to casual observers. See the
SeeBeyond e*Gate Integrator System Administration and Operations
Guide for more details.

stccb —In cb_main —-rh egate main —-rs RIB102
—un Administrator —up STC

= Executes without Access Control Lists used for authorization purposes.11 At this
point, you can display the e*Gate Monitor application to start any components not
configured to be brought up automatically. This application requires a Microsoft
Windows platform for execution.

12 Using the e*Gate Monitor, display all of the JMS Queue Managers needed.

13 Using the e*Gate Monitor, display all of the e*Ways and / or schema bridges. Adapters that
subscribe to messages and interface directly to an application should be brought up before
those that publish messages.

RIB message publishing adapters

Adapters that publish messages directly from Retek applications have names in the following
format: ewMSGFAMILYFromAPPNAME, where MSGFAMILY is the name of the message family
published and APPNAME is the name of the publishing application, such as RCOM, RMS, RDM or
RDC.

For a listing of all the available publishing adapters, refer to the RIB 10.3 Integration Guide.

RIB message subscribing adapters

Adapters that subscribe to RIB messages and update Retek applications have names in the
following format: ewMSGFAMILYToAPPNAME, where MSGFAMILY is the name of the message
family published and APPNAME is the name of the publishing application, such as RCOM, RMS,
RDM or RDC.

For a listing of all the available subscribing adapters, refer to the RIB 10.3 Integration Guide.

29

Retek Integration Bus

TAFR adapters

TAFR adapters process messages in support of subscriber specific needs. As such, they are both
subscribers and publishers. TAFR Adapters have names in the following format:
ewMSGFAMILYToMSGFAMILYFromR1B, where MSGFAMILY is the name of the message family the
TAFR works on as input, TOMSGFAMILY is the name of the message family the TAFR publishes
and APPNAME is the name of the final subscribing application.

For a listing of all the available TAFR adapters, refer to the RIB 10.3 Integration Guide.RIB error
hospital

The RIB error hospital is a subsystem used to retry messages the subscriber has failed to process
successfully. After a failure, the message is inserted into the hospital database associated with the
subscriber. This message is then republished a configurable number of times by a “retry”
collaboration. The “retry” collaboration is also found within the subscriber adapter and is only
responsible for re-publishing the message.

The Error Hospital may also contain messages that are dependent on a “failed” message. The
dependency is based solely on a common business entity that the two messages reference. For
example, if a “Create New PO” message fails (and is added to the hospital), then a subsequent
“Add PO Line Item” will also be added to the hospital if it references the same PO. The “retry”
collaboration will resubmit both messages in the correct order.

The RIB message error hospital requires that the “Retry” collaboration is included within a
subscribing e*Way and uses a valid connection point as the source of its retry events.

The database tables comprising the Error Hospital storage may be found within the same database
as the stored procedures called by the subscribing adapter or in a separate database. If the error
hospital tables become inaccessible, then any failing message will cause the total stoppage of all
messages by the subscriber. This consideration should be taken into account when determining
the location of an Error Hospital for a subscriber.

Preventative maintenance tasks

This chapter lists some common tasks that a system administrator may want to script and perform
on a regular basis.

Log files

The SeeBeyond e*Gate EAI system can log volumes of data to log and journal files.
Furthermore, because the RIB uses two phase commit, the SeeBeyond system, acting as the
transaction manager, must log commit information within “transaction log” files in order for
distributed transaction recovery purposes.

E*Gate’s error, trace, and debug log files

The same file is used by SeeBeyond e*Gate adapters for logging error messages, trace messages,
and debugging messages. The adapter’s configuration determines what is to be logged and the
level of logging. If logging is turned on, then the free disk space should be closely monitored, as
these files can rapidly increase in size and grow to enormous sizes, even if the e*Way has only
processed a relatively few messages.

30

Chapter 4 — SeeBeyond Platform

The location of the log files is the directory <EHOME>/client/logs, where <EHOME> is the
installation directory for the SeeBeyond e*Gate EAI system. Each component has its own log
file named <component>.log, where <component> is the name of the e*Way, control broker, or
1Q Manager.

Additionally, there may also be files containing application “standard error” output. These files
are named <component>.stderr .

Sometimes it is helpful to have component log information to determine a problem’s source or
otherwise monitor its activities. The e*Gate Enterprise Manager application is used to modify
level and type of logging for an e*Way. Further information may be found in the SeeBeyond

e*Gate Integrator User’s Guide.

To turn on, and/or modify, SeeBeyond’s e*Gate adaptor logging:

1 The first step is to select the RIB adapter component from the main e*Gate Enterprise

Manager window:

@ e*Gate Enterprise Manager - Rib100 _ O] <]
File Edit “iew Tools Options Help
[= ® b ofg &
ey Open Copy Haste (T3] Delete Properies ETD Editor |D Edlitor

| Participating Hosts - ICorrtents af ‘e AShINFromRDk

=1 [l mspdevi 4

8 %--@pmspdevm ch Mame Collaboration Service I Collahoration Rules

A" G & ¥ colASNINFromRDM Java crASNINFromROM cla:

bobbyTest
bbby TestFilen

ewASMINTo,

e AllocFromRs
ewallocToStockOrderFro
e A ppointF romROwHA
ewy A ppointF romROwHE
e A ppoirtF romROMYHE
2, & A ppoirtFromRDAHL
7, EwAppoint ToRMS
et SHINEDITo A SMInYH
e ASMINEDIToRMS
e A SMInFromED]
w2 SMINFropEDE

Collahorstion®

Maove ...

ew ASMInTol
e ASMINTal
e A SHINTal
2 e A SMINTal

Copy
Haste

Copy Multiple

...... 20 ew ASNMINTal

Expott Defintions and Files ...

et ark f‘ Compone

Rename...
Delete

o

| ol

Wyelcome to SeeBeyvond's B*M

|_£> Administrator I-E;l mzpdey 4

Selecting an e*Way from the e*Gate Enterprise Manager

2
3
4

Right click on the e*Way.

Select Properties. The Properties window is displayed:
Click on the Advanced tab.

Click Log.

31

Retek Integration Bus

ewASHInFromBDM Properties |

Logging lewvel:

Debugging flags:

Flags I

e 3 7

[w! CB werbose (CEY) il
[w! ety werboze (B)

[¥ Mezzage verboze (MSGEY)

|_ Collab zervice verbose (COLW)
[w! Cantrol Broker (CE)

v ey (Ev)

L

[Message Parse (MSGP) ;I
Walue: Ox2e060e21 Select Al | Clear All |
[v Use log file

Ok Cancel | Help

e*Way Logging window
There are two dimensions to e*Way logging: the areas of information that the log entries will
log about, and the amount or level of logging. There is only one level of logging for all areas.

Over 25 different areas are available for logging.
To log RIB Adapter-created messages:
6 Select the e*Way (EWY) check box to enable logging.
7 Inthe Logging File field, select TRACE.
8 Select the Use Log file check box.

Be careful whenever logging is enabled, as log files are not limited in size and can grow to be
quite large. In normal production, you should set the logging level to be at a very low level:
either “FATAL”, “ERROR”, or “NONE”".

32

Chapter 4 — SeeBeyond Platform

RIB logger

The RIB has its own logging capabilities. The RIB support Java classes contain logging logic
which write to RIB log files. The rib log filenames are in the format “rib_<ewName>.log” and
are written to a user specified directory. Additionally, the RIB logger has the ability to generate a
timings log that can be used to measure performance.

rib.properties log entries
The following are the entries in the rib.properties file which pertain to the RIB logger:

Path where RIB and Timings log files will be written. It must end with a directory separator /
or\.

log.default.file_path=/filesO/egate/RIBLOGS/

Log e*Way times? [Y or N]

log.<ewName>.timings=N

File to write timings log entries to. Only specify the file name, as it will be pre-pended with the
log.default.file_path property.

log.<ewName>.timings_logfile=timings_<ewName>.log

Default logging level verbose? [Y or N]
log.default.verbose=N

e*Way specific logging level verbose? [Y or N]

log.<ewName>.verbose=N

33

Retek Integration Bus

XA transaction log files

Whenever a two phase commit operation commences, the transaction manager (TM) must log the
decision to commit the transaction to stable storage. This is to insure the transaction will commit
if a failure occurs during the second phase. These “log_commit” records are read whenever a TM
is started so all-active transactions are completed.

The SeeBeyond e*Way implements a transaction manager. The transaction log record for
collaboration is found in its own file. The path name of the file is:

<EHOME>/client/XALogs/<e*WayName>/<col labName>

Where <EHOME> is the installation directory for the e*Gate product, <e*WayName> is the name
of the e*Way the collaboration runs in, and <col 1abName> is the name of the collaboration.

Do not delete these transaction log files. If these files are deleted, then the adapter associated
with the log file(s) may have problems re-processing messages found in the error hospital or even
completing initialization successfully.

If a database or other resource manager has a transaction in a prepared state and the associated
transaction log file is deleted, then the database or resource manager also must have its
knowledge of the transaction removed.

For Oracle databases, transactions that are in the prepared state can be found in the
DBA_2PC_PENDING views. One can then use an external database session, such as one with
the SQLPLUS command, to force a rollback or commit operation on these transactions.

MFM staging tables

Part of the RIB’s architecture is that data is staged from applications using database tables. The
RIB adapters use a well-defined interface to retrieve this information when the publishing it to the
RIB.

The code that wrappers access to these staging tables is known generally as the Message Family
Managers (MFMs). The MFM implements the interfaces for extracting the data as procedures
found within an Oracle database package. For more information on MFMs in general, see the
Retek Integration Bus Technical Architecture Guide. For information about a specific MFM, see
the Retek 10.3 Integration Guide.

Some MFMs require that data in the staging table from multiple application transactions be
coalesced into a single message. In these cases, the MFM waits until a specific record is inserted
into the staging table before the message is published. For example, new Purchase Orders may
not be published until they have been placed into an “approved” state.

A system administrator may monitor the MFM staging tables to verify that the RIB’s
performance is adequate to handle the messaging traffic. If a system has the adequate resources,
then the number of rows within the staging table should remain relatively constant.

34

Chapter 4 — SeeBeyond Platform

Error Hospital

Subscribing Error Hospital

The RIB error hospital is a subsystem used to retry messages the subscriber has failed to process
successfully. After a failure, the message is inserted into the hospital database associated with the
subscriber. This message is then republished a configurable number of times by a “retry”
collaboration. The “retry” collaboration is also found within the subscriber adapter and is only
responsible for re-publishing the message.

The Error Hospital may also contain messages that are dependent on a “failed” message. The
dependency is based solely on a common business entity that the two messages reference. For
example, if a “Create New PO” message fails (and is added to the hospital), then a subsequent
“Add PO Line Item” will also be added to the hospital if it references the same PO. The “retry”
collaboration will resubmit both messages in the correct order.

The RIB message error hospital requires that the “Retry” collaboration is included within a
subscribing e*Way and uses a valid connection point as the source of its retry events.

The database tables comprising the Error Hospital storage may be found within the same database
as the stored procedures called by the subscribing adapter or in a separate database. If the error
hospital tables become inaccessible, then any failing message will cause the total stoppage of all
messages by the subscriber. This consideration should be taken into account when determining
the location of an Error Hospital for a subscriber.

Publishing Error Hospital

In the 10.3 release, a new publishing paradigm was introduced for enhanced performance. This
design uses referenced application data instead of copied data. The work used to extract the data
was also moved from the application triggers to the GETNXT() stored procedure. However, this
design allows for the possibility that the data may be locked or otherwise unavailable when
GETNXT() is called. When this occurs, the application may request the e*Way to insert a row
into the Publisher Error Hospital, where another attempt to publish the data may be made later.
This allows the subsequent call to the oracle publisher to process the next message and not get
stuck trying to retry a flawed record in its staging table over and over.

A publishing e*Way will check the error hospital for previous message data that is currently in
the Error Hospital for the Business Object (e.g. PO) the current message is publishing. If such a
dependency exists, the dependant message is put into the hospital as well.

The Publisher Error hospital is facility uses the same database tables as the Subscriber Error
Hospital. However, an additional Publishing Retry e*Way has been created for each application
that request an insert into the Error Hospital.

The publishing retry e*Way processes data differently than a subscribing retry e*Way.

A major difference is that the publishing retry e*Way retries directly to the database, although it
calls the same package, it calls a different procedure, PUB_RETRY. Therefore it will require a
connection point that identical to the initial publishing e*Way.

The database tables used for a publishing Error Hospital are identical and can be the same actual
database as a subscribing Error Hospital. The same deployment issues exist.

35

Retek Integration Bus

SeeBeyond tools

This section provides a brief overview of SeeBeyond administration tools. Additional
information about the SeeBeyond tool set may be found in the SeeBeyond documentation.

e*Gate Monitor and JMS administration tools

The main tool used for starting or stopping a system is the e*Gate Monitor application. This
application attaches to a control broker and is designed to manually start, stop, pause, resume, or
retrieve the status of a component.

The e*Gate monitor is a GUI that can display all components found in a specific schema.
Additional GUI applications are accessible from the e*Gate monitor. There is a queue monitor
for SeeBeyond standard JMS queues called the IMS Administrator.

The queue monitor tools allow an administrator to examine the number of messages on a queue
and to view the contents of a message on a queue.

Details about the e*Gate Monitor application is found in the SeeBeyond e*Gate Integrator
System Administration and Operations Guide. Details about the IMS Administrator application
are found in the SeeBeyond JMS Intelligent Queue User’s Guide.

e*Gate enterprise manager

The e*Gate is an application that is used for e*Gate development and operational changes. It is
the primary tool for operations personnel for defining the EAI system’s security roles and
defining new users.

36

Chapter 4 — SeeBeyond Platform

Command line utilities

The following commands can be issued from a command line interpreter, such as the Korn Shell
in Unix or a DOS window. These commands should be found in the directory
<EHOME>/client/bin, where <EHOME> is where the e*Gate software was installed. Many
commands also require shared libraries or DLLs. On Unix systems, the directory
<EHOME>/client/bin may need to be inserted into the LD_LIBRARY_PATH variable.

On Unix systems each command has the form <command> or <command>.exe. Only the latter
form is executable on Windows platforms.

stcinstd

This command is known as the “Installer Service”. This service is used to register a host name
with the registry as a valid EAI participating host. This command performs two functions:

1 Itallows users to edit the host and domain name properties for a participating host in the
e*Gate Enterprise Manager application

2 Itenables the e*Gate system to automatically propagate upgrades made to a Registry host to
all participating hosts.

The stcinstd command should be run at least once per participating host so that the host name
can be registered.

stcregutil

This is a command designed to modify, import, export or display information on an existing
registry. A common usage will be for importing or exporting e*Gate schema information from
development, test, and production environments. It does allow fine-grain control over the import
and export process. Much of this functionality is also part of the e*Gate Enterprise Manager tool.
However, this utility may be a large asset when defining code migration procedures for new EAI
system releases.

stcaclutil

This is a utility used to define Access Control List (ACL) privileges, roles, and user properties.
These functions may also be performed using the e*Gate Enterprise Manager application.
Privileges can be assigned to roles and users assigned to roles. Users and roles can be added or
deleted. User passwords may be altered.

stciqutil

This is a utility for manipulating the contents of a SeeBeyond standard Intelligent Queue.
However, this is of a limited utility for RIB components, since the RIB uses SeeBeyond JMS
Intelligent Queues.

stcutil

This is a utility designed for system testing and debugging. It is of limited use when working
with RIB components.

37

Retek Integration Bus

stccmd

This is a text-based version of the e*Gate system monitoring tool. As such, it duplicates much of
the functionality found in the e*Gate Monitor application. It provides a command line interface
for status retrieval and component starting, stopping, and status retrieval. It may also “resolve”
alerts. Available commands include:

? - list available commands

activate <component name> - activate element operations

attachiqg <IQ name> - 1Q to bring up

cls [cmd]stat] - clear window

debug <component name> [flag] - show or change an element®s debug
flags

detachig <I1Q name> - 1Q to detach
exit - exit stccmd.exe

getres [-b<begin date (mm/dd/ccyy)> | -e<end date (mm/dd/ccyy)] -
show resolved notifications

getstatus [-b<begin date (mm/dd/ccyy)> | -e<end date (mm/dd/ccyy)] -
show status-type notifications

getunres [-all | -a] - show unresolved notifications
help <command> - on-line help
history - list command history

list [

all | monitors {-m} | alertors {-a} | iq {-i} | control {-c}
| notif {-n} [Flush | all

| -b<begin date (mm/dd/ccyy)> [-e<end date (mm/dd/ccyy)>]
| +r | -r | -i<notification number> | <component name>

1

quit - exit stccemd.exe
reload <component name> [hard] - reload configuration

resolve <notification number> - indicate that a notification has
been resolved

sequence <component name> [value] - show or change sequence number
shell <shell command> - run an external command

shutdown <component name> - controlled module shutdown

shutdownall <shutdownall> - controlled modules shutdown

start <component name> - start or restart module

startall <startall> - start or restart all modules

status <component name> - show status

suspend <component name> - suspend operations

version <component name> - Show version

38

Chapter 4 — SeeBeyond Platform

As with the e*Gate Monitor, not all commands are appropriate to all components.

The stcemd command may be used interactively or as a line in a shell script. For example, to list
all component statuses, issue the command:

stcemd.exe -rh egate_main -rs RIB102 -cb egate_cb -un Administrator
-up STC -cmd list all

Where egate_main is the registry host, RIB102 is the schema name, egate_cb is the control
broker to connect to, Administrator is the e*Gate user name to use, and STC is the password
for the Administrator user.

stcmsctrlutil

This utility is used to examine and manipulate a JMS 1Q Manager configuration and current
messages. The command line format is:

stemsctrlutil —host <hostname> -port <tcp port> <<COMMAND>>

where
<hostname> is the name of the host hosting the JMS IQ Manager
<tcp port> is the port number of the IMS 1Q Manager

<<COMMAND>> is one of the legal commands for the stcmsctrlutil
program. Useful commands are:

-topiclist
lists all defined topics

-topicstat <topic name>
lists statistics for the named topic.

-sublistfortopic <topic name>
lists all subscribers defined for a topic

-Ccreatetopic <topic name>
creates a new topic

-deletetopic <topic name>
deletes an existing topic

-createsub <topic name> <sub name> <client
name>
creates a new durable subscriber for the topic with the given
subscriber name and client name

-deletesub <topic name> <sub name> <client
name>

deletes an existing durable subscriber for the topic with the
given subscriber name and client name

-tmsglist <topic name> <starting seqNo> <# of
msgs>
Displays the messages found in the named list

-tmessage <topic name> <seqNo>
Displays the contents of a single message

-deltmsg <topic name> <seqNo>
Deletes a message from a topic

39

Retek Integration Bus

RIB component configuration

This section details configuration issues and options with the RIB.

Oracle database triggers

Before any message can be published, a trigger may need to be enabled within the publishing
application. Information on these triggers may be found in the RMS, RDM, or RCOM operations
guides and reference manuals.

RIB property file

The RIB property (rib.properties) file uses the standard Java property file format. It specifies
Error Hospital, TAFR, logging and other configuration information.

o For specific entries dealing with the Error Hospital, see the Message Error Hospital chapter.

o For specific entries dealing with TAFR adapters, see the TAFR Configuration section
detailed later in this chapter.

The RIB properties file must have the name “rib.properties”. However, the location of this file
may be specific to the e*Way using it.
Multichannel_ind property

The only other type of RIB property file entry is used by RMS publishers. It is the
“multichannel_ind" property. An example of an entry here is

multichannel _ind = MPHYS
Valid values for this property are:

e MPHYS Specifies multi-channels using physical warehouses. The effect is for RMS to
consolidate virtual warehouse orders at a physical level.

e S Specifies a single distribution channel is in use.

o M (Reserved for future use).

40

Chapter 4 — SeeBeyond Platform

SeeBeyond e*Way configuration files

All RIB adapters are SeeBeyond Multimode e*Ways. Each uses its own configuration file
containing parameters it needs to function. These configuration files can be manipulated by the

SeeBeyond e*Gate Enterprise Manager application.

@ e*Gate Enterprize Manager - Rib100 M=l E3

File Edit

Wi Toolz Qputions Help

0

=0

= =]

Dpen Copry Hasie

Up

Delete

Propetties

€

ETD Editor ID Ec

4 ewr ATPFromRMS ;I

e A TPToRCOM

7, ewBannerFromRMS
7, ewBannersToRCOM

ewyCoBoResFromRCOmM
ewyCoBoResToRMS

ey COReturnFromRCOm

ey COREtUrmToRMS

ey COSsleFromRCOM
ewyC0SsleToRMS

e CustorderFromRCom

e Custorder ToStockOrderFromRIB
e CustReturnFromRDRH1
ewCustReturnFromRDRHZ
ewCustReturnFromRDWHS

2, eweCustReturnFromRDRYHS

ewCustReturn ToRCOM

e Diff GrpFromRMS
GrpToR e

e DiffGrpToR Move ...

&

Callaborstion®

ewDiffGroToR - Copy

2, ewDiffGroToR - poste

eweDiffGrpToR Copy Mutiple

ewDiffsFromR

) ewDiff=ToRCC Export Defintions and Files

2 ewDiffsToRDh - Rename...

Delete

]
Metwork #9% Components I-

ICu:urrtents of 'esyDiffGrpToRCOM'

Matne

| Collahorstion Service

i colDiffGrpToRCOM Java
o colDiffGrpToRCOMRetry Java

|]

|We|c:nme to SeeBeyond's e*Gate Enterprize Manager.

I_ﬂ Aclministrator r_@ mEpdesy 4

Right-click on e*Way in e*Gate Enterprise Manager

41

Retek Integration Bus

e*Way property and configuration files

The following shows what is displayed when you right click to select an e*Way, to modify its
properties.

1 Select Properties... from the menu, or click the Properties toolbar icon. The e*Way
Properties dialog box is displayed.

@ e“Way - ewDiffGrpToRCOM Properties |

Genersl |S‘tart Llpl Advancedl Secur'rt':.fl

ewDiffGrp ToRC M

Executable file

}uinﬁs’tceway.exe

Clear | Fird |

Additional command ling arguments:

o_USERMAMES: -up %

Run az user

I.ﬂ-.dministratu:ur |

Configuration file

l:anigS'l.E’lDEWE‘:.-'"EWDiffGFpTDHCOM.I:fg

Clear | Fircd | Edit |

Ok Cancel | Apply | Help

e*Way Properties Window
2 Click Edit. The Configuration Edit window is displayed.

42

Chapter 4 — SeeBeyond Platform

/Edit Settings for C:/EGATE /Chent/configz/stceway/ewDiffGrpToRCOM clg

File “iew Options Help

Goto Section: | J¥M Settings j Dal%l | I;gll
Goto Parameter: | JRIOLL absalute pathname j
2
JRI DLL absolute pathname Dal%}l ||§§

i i =
ifileslfegatefegateiclienti2re1_3_0_C =

-

® ffilesOiegate/egateiclient2rel_3_0_02Mibi |

ll KNl |

+] |
CLASSPATH Prepend g |%s| & |
ffilesiegatefegatelclienticlassesirete ME'_[X

-

@ ffilesDiegate/egateiclienticlassesiratek-rin-: |

-]

e*Way Configuration Edit Window
The configuration for this e*Way is the file
<EHOME>\configs\stceway\ewDiffGrpToRCOM.cfg.

3 Verify the main configuration entries:
= JNI DLL absolute pathname

The JNI DLL absolute pathname is the location of the Java Native
Interface library. On Unix systems, this is a shared library, while on
Microsoft Windows platforms this isa DLL. This library provides
access to native ‘C’ language components that are part of the SeeBeyond
e*Way infrastructure. SeeBeyond provides such a library with its
installation on a specific platform.

43

Retek Integration Bus

The name of the file on Unix systems is typically of the form
“libjvm.so”. On Windows it is “jvm.dIlI”. From the SeeBeyond
installation disk, this library is typically found under a Java Runtime
Environment directory. Examples of the library’s location include:

<EHOME>\client\Jre\1l.3\bin\hotspot\jvm.dll
(Microsoft Windows)

<EHOME>/client/j2rel 3 0 02/lib/sparc/client/libjvm.s
o

(Sun SunQS or Unix)
= CLASSPATH Prepend

The “CLASSPATH Prepend” parameter must include the location of the
RIB class Java Archive (JAR) file and the location of the RIB properties
file. Both the RIB Support JAR and the rib.properties file are typically
found at

<EHOME>/client/classes

Hence, an example of the CLASSPATH Prepend parameter on a Unix
system is (assuming e*Gate is installed in EHOME (/opt/egate))

% EHOME_%/client/classes

while, if e*Gate is installed in C:\egate on a Microsoft Windows system:
% EHOME_%\client\classes

L Note: The path separator is a semi-colon on the Windows system, and a colon on the
Unix system.

e*Way collaborations

Collaborations define the processing logic for a message. They also define where messages are
subscribed from and published to. For many e*Ways, there will be no need to modify the
collaborations specified for an e*Way. This is because the supplied connection points can be
modified for site-specific values, such as the host name or TCP port.

However, modifications to the Collaborations specified in an e*Way are needed when new
connection points are required. An example of this is for a new RDM installation in a remote
warehouse. The RDM instance will have its own database and therefore a new Oracle
Connection Point is required. An additional Error Hospital for such an installation may be useful
for performance reasons. The remote installation may also require a local JMS 1Q Manager and
associated connection point. It is possible to have three or more additional connection points per
new RDM installation. This is in addition to creating the new remote participating host.

44

Chapter 4 — SeeBeyond Platform

The figure below shows the main e*Gate Enterprise Manager for a RIB adapter.

@ e*Gate Enterprise Manager - Rib100 [_ (O] x|
File Edit “iew Tools Options Help
O = B X ofE %2 2 7
ey Open Copy Faste Up Delete Properties ETD Ediitor |0 Edlitor Callak Editar Ext. Edlitar

=) ewSOStatusFromROMAHS =
e SOStatusToRCOM
ewS0StatusToRMS
ewSOStatusToSOStatusCOFromRIB e
e StockOrder ToRDRAHT
ewStockOrder ToRDMAHZ
ewStockOrder ToRDMAHS
ewStockOrder ToRDhAAHS
ewStoresFromRMS
ewStoresTolocationFromRIE
ewStoresToRCOM
ewSubTest
ewTranzfersFromRMS
ewTranzfersToStockOrderFromRIE
ewlDasFromRMS
ewlDaAzToRDMAH1
ewlDasToRDMAHZ
A5 ToRDMAWHS
ewlDaAsToRDMHE
ewlDasTolDAsLYFromRIB
ewiendorFromRids
ewyencdorToRCOM
ewvendor ToRDAAH1
ewvendor ToRDkWHZ
evvyendor ToRDhAHE
ewvendor ToRDkYHE

2 endHFromRMS -
4] | »
Metwork #9 Components I

Callaboration®

IContents of ‘ewlDAsToRDAHS

Collahoration Rules
crUDasToRDM class
crHospitalRetry class

Mame Collaboration Service
&R colUDasToROMAHS Jarea
i colUDASTORDMAHIRetry Java

4 | ol

‘Welcome to SeeBeyvond's e*Gate Enterprize Manager.

I_ﬂ Administratar I E;l mapdey!d

Main e*Gate window when RIB e*Way selected

The e*Way selected is a subscribing interface to RDM for one warehouse (number 3 out of 4).
The collaboration colUDASToRDMWH3 subscribes to the UDA message family and is the
normal “subscribing” collaboration. The collaboration named colUDAsTORDMWH3Retry is the
“retry” collaboration and is responsible for resubmitting and deleting messages from the Error
Hospital for the UDA message family for this subscriber.

45

Retek Integration Bus

When the properties of colUDAsToRDMWH3 are examined, the following window is displayed:
@ Collaboration - colUDAsToRDMWH3 Properties |

Genetal |

iy
Qé colUCt = ToRDhWHS

Collaboration Rules:

ctUDA=ToRDM ey | Edit |

Subscriptions:

Instance Mame Event Type Source Add |

etdRibheszageEnvelope mEetLlDAsLVFrDmRIEI @ cplDAsL VFromRIB Deit
elete
M [z

etdRibMeszageEnvelope "’E et IDAsToRDMAH.. cplDAsL VFromRIB

Publications:
Instance Bame Event Type Destination Priarity Add |
etdUDAzRDMARI DEETLID.E.SHDM.&.PI... I]EE cpTo&ndFramP... =
stdHaspitalDE wfm etHospitslDB i crHosrits0B 5 ﬂl
Aolvanced |
Ol Cancel Apply | Help

Subscribing e*Way collaboration properties

There are two Event Types subscribed to in this example: One for unprocessed messages
(etUDAAsSLVFromRIB) and one for messages to be re-processed (etUDAsSToRDMWH3Retry).
The source for each type is the connection point cpUDAsSLVFromRIB.

L Note: This example uses a single JMS queue for all e*Ways in the EAI system. If a
local queue were used, the connection point should be named something similar to
cpUDASLVFromRIBWHS3.

There are also two Event Types “published” in this example: etUDASRDMAP IWH3, the Oracle
connection point associated with the warehouse specific RDM instance and etHospitalDB, the
Error Hospital Oracle Connection Point.

L Note: This example uses a single Error Hospital for all e*Ways in the EAI system. If a
local Error Hospital were used, the connection point should be named something similar
to cpHospitalDBWHS3.

ﬂ!.!_“ Note: This is a subscribing collaboration; the “publishing” connection points serve onl
g p g Y y
to provide the database connection within the processing logic. No messages are
published to any queues for this collaboration.

46

Chapter 4 — SeeBeyond Platform

However, the “retry” collaboration does publish messages to a queue. The retry collaboration’s
properties is seen below:

@ Collaboration - colUDAsToRDMWH3Retry Properties |

General |

[
&é colUDazToRDhAWHIR ety

Collabaration Rules:

crHozspitalRetry ey | Edlit |
Subscriptions:
Instance Mame Event Type | Source Al |
hospitalDB etHozpitalDB cpHospitalDB
P =fm etHosp M cptosp s |
Publications:
Instance Mame Event Type | Destination J Al |
retryRibhis et DA sToRDMYWHIRetr cpUD&sLYFrom...| 5
yRikiMsg ol e . |
Advanced |

(0] 4 Cancel Apply | Help

Retry collaboration properties

For the retry collaboration, the subscription “source” is the Error Hospital Oracle Connection
Point, not a JMS queue. For publishing messages, the retry collaboration uses the same
connection point as the subscribing collaboration. The event type it publishes is the
etUDASTORDMWH3Retry event.

If the retry collaboration published the same event type that the subscribing collaboration
originally processed (and had a problem with), then all subscribers to this event type would re-
process the message. In this particular case, this would not be a problem, since this event type
only has one subscriber. However, other event types are subscribed to by multiple applications.
Problems can arise when a message is delivered after it has been processed successfully.

47

Retek Integration Bus

SeeBeyond connection point configurations

All RIB Adapters use connection points as a source/sink for messages and for accessing
databases. This section details the configurations for the JMS Connection Point and an Oracle
Connection Point.

The most important aspect of this configuration is the use of the XA protocol in support of
processing messages exactly once.

JMS IQ manager configuration

Configuring a JMS connection point requires knowledge of the Java Message Service server that
is to be used. SeeBeyond’s JMS Intelligent Queue Manager provides such a service. Other
message oriented middleware products, such as IBM’s MQ Series product, also may provide such
services.

A JMS server provides access to one or more JMS Queues and their associated stable (a.k.a. hard
disk) storage. Multiple JIMS 1Q Managers may be created and deployed with the RIB, depending
on the topology of the installation, message lifecycle, administration, performance and
availability requirements.

Although a JMS 1Q Manager may be accessed from multiple e*Gate schemas via the connection
points contained in these schemas, only the schema containing the JIMS 1Q Manager can
administratively view the messages contained in the JMS server queues.

Similar to other e*Gate components, the JMS 1Q Manager’s full operating parameters are found
in two windows: An 1Q Manager Properties window and the JMS 1Q Manager specific
configuration edit window.

48

Chapter 4 — SeeBeyond Platform

@ 10 Manager - igmJM5 Properties |
General |5tart Upl Advancedl Securitg.rl

o
e
i
P
Heal

T,
ALY

igmdha=

-

12 Manager Type

ISeeEleyDnd WS LI

Additional command ling arguments:

|E% -un %_USERMAMES -up %_PASSWORDY -rp %_REGPORT%

Run as user

IAdministratu:-r LI

Configuration file

l:u:unfigs'l.s’tu:msagenﬂiquMS.u:fg

Clesar | Firicd |

]2 Cancel | Apply | Help

JMS 1Q Manager Properties Window
The following properties are extremely important:

On the “General” Tab:
* |Q Manager Type: By definition, must be SeeBeyond JMS.

L Note: of course, if an enterprise has standardized on the IBM MQ Series product for
JMS servers, then the SeeBeyond MQ Series Connection Point will be used directly
with this server. In this case, no JMS 1Q Manager is needed.

= Configuration File: Details IQ manager configuration storage.
On the “Start Up” tab:

= Start Automatically: determines if the 1Q Manager’s control broker will start up the 1Q
Manager whenever the control broker starts up.

On the “Advanced” Tab:

= TCP/IP port number: determines the TCP port number to listen on. This must be
allocated specifically to the JMS 1Q manager instance. No other application (including
other JMS 1Q Managers) can use this port.

= Log: This button accesses an additional window to control logging and tracing levels.

49

Retek Integration Bus

e On the “Security” Tab:

Privilege: Allows access to a window assigning privileges to defined roles when ACL’s
have been enabled.

/Edit Settings for C:fEGATE fClient/configs/stcmsagent/igmMS clg

File “iew Options Help

Goto Section: | DB Settings

| T8 % ||
B
HEREE

Goto Parameter: | DBPath

DBFPath

ffilesDiegatefegatelclient’stcms =

0] filesOiegatelegatelclient’stcms —

DBPF refix

NEEE

stems

™ stems

I5
|

JMS 1Q Manager Configuration Edit window

50

Chapter 4 — SeeBeyond Platform

The SeeBeyond e*Gate JMS 1Q Manager configuration contains five sections. Full
documentation on these parameters is found in the SeeBeyond JMS Intelligent Queue User’s
Guide.

1

DB Settings: This section defines the stable storage options for the files used by the IMS
server. The “DBPath” configuration parameter is particularly interesting, since it locates the
file directories used to store messages. It also provides options for disk synchronization and
memory cache size.

L Note: If left blank, the value of the MessageServiceData property from the
.egate.store file will be used. This file is normally located in the user’s home
directory.

Message Settings: This section specifies options for allocating memory for messages and the
maximum time a message will be allowed to persist on a queue within the server.

Server Settings: This section defines the maximum number of messages the server will
store. The JMS server will throttle clients (cause them to wait) when this number is
exceeded.

Topic Settings: This section sets the per-topic resource limits. In the RIB environment, a
topic equates to an e*Gate Event Type which equates to a specific queue of messages
supplying a set of subscribers.

Trace Settings: This section controls tracing of messages for the JMS server. Parameters
include the name of the log file used for tracing, the trace verbosity level, and specific types
of tracing to perform.

L) Note: Remember that configuration changes need to be promoted to the run time
environment before they take effect. To do this: in the Configuration Edit window,
select File > Promote to Run Time.

51

Retek Integration Bus

JMS 1Q Connection Point configuration

JMS Connection Points are defined within the e*Way Connections folder. This folder is found at
the right-hand e*Gate Enterprise Monitor frame near the bottom. When selected, the window
will appear similar to the figure below:

@ e*Gate Enterprise Manager - Rib100 [_[O] =]
File Edit “iew Tools Options Help
i = =) X =f & &
T Open (G, FEste] DEIETE = = ETD Edlitor 1D Edlitar Collab Editor
3, e IDAsTolDAsL VYFromRIB _AI IContents of 'e*ay Connections'
:xis::z:i;n;zh:f | klame | Type | Configuration File
EewencorToRDhyH1 [mE] cpPendReturmHFromRIB SeeBevond M5 cplMS.cfy ;I
ewvendor TaRDMYWHZ e*ay Connection CpRTYFromRD SeeBevond MS cpdMS.cfy
eyvy'endor ToRDMYWHS cpReceiptsFromRDM SeeBevond M5 cpdMS cfy
ewendorToRDMWHS CpSOStatusCOFromRIB SeeBeyond JMS cpJMS.cfg
ewliHFromRMS CpSOStatusFromROM SeeBevond MS cpMS.cg
AR AL R L A CpEOStatusTORCOMRetry SeeBievond JMS oplMS.ciy
_ :mﬁ;gﬁgms CpEOStatusTORMS SeeBieyond JMS opdMS.ciy
eOINToRDMAH [l coShipMethFromRCOM SeeBevand M3 cpJMS.cfy
EndOINToRDMHZ cpstockOrdersFromRIB SeeBevond MS cpdMS.cfy
endNOINToRDMHS cpStoresFromRIB SeeBevond M5 cpdMS cfy
enANOINToRDMYHE cpStoresFromRMS SeeBevond JMS cpdMS . cfy
evWOINTalOInWHF romRIB cpStoresToRCOM SeeBeyond M3 cplMS .cig
=5 inBokby cpTotndFromirtDey Oracle cpTosndFromirtDesy cf
""" @ i o cpTodndFramRic o Cracle cpToAndFromRCOM.ct
_____ ilfﬂ\irrdniz[:)?: AL) cpToandFromRDkH1 Cracle cpToAndFromRDMH
_____] Collaboration Rules cpTodndFromROMAYHZ Cracle cpToAndFromRDnhAyHE
..... (] Services cpToAndFromROMAHS COracle cpTosndFromROkAHE
cpTolndFromRDyWHS Oracle cpToAndFromRDivHYg
cpTodndFromRmMS Oracle cpToAndFromREmMS cfg
cpToAndFromRMEE Oracle cpTosndFromRMSh oft

Metwork 9 Components |

cpTransfersFromRMs
cpTransfersToStockOrd. ..
cplDAsFromRMS

SeeBevond WS
SeeBevond JMS
SeeBeyond JMS

chJME. cfy
cpdME cfy

cplS cfy _ILI
| 3

IWeIcome to SeeBeyond's e*Gate Enterprise Manager.

I_Q Acministrator r@ mzpdeswd

e*Gate Enterprise Manager with e*Way Connections folder selected

52

Chapter 4 — SeeBeyond Platform

To create new connection points:

o Click the central e*Way connection button.
To edit existing connection points:

1 Select the connection point.

2 Modify the connection point’s properties: the two main properties are the configuration file
and the connection point type (which by definition must be a SeeBeyond JMS Connection
Point).

/Edit Settings for C:/EGATE fClient/configs/messageservice/cpdMS clg
File “iew Options Help

Goto Sectinn:| General Settings j Dal%l ||§§||
Goto Parameter:| Connection Type j
Connection Type LSl
" Queue & Topic
Transaction Type ':'E|%]| | Eil
" Internal
(" Mon-Transactional
(8 MA-compliant
Delivary Mode Ug % | 2|2
" Mon-Persistent " Persistent
Maximum kumber of Bytes to read ':'El%l | Eﬁ
16777216 ﬁ X
" 5000 4 r

| "com.ste.comman.collabService SBYMJIMSF acton selected.

JMS Connection Point Configuration Edit window

53

Retek Integration Bus

There are two sections determining the connection point’s operating characteristics:

54

General Settings: This section details standard JMS operation options and message
restrictions for the JMS client. Parameters for the General Settings include:

Connection Type: Specifies if the connection type used is as a “Queue” or a “Topic”. Must
be set to “Topic” to ensure that all subscribers get the message. When “Topic” is specified,
all subscribers will receive a copy of all messages for all queues managed by the JMS
provider. If “Queue” is specified, then no message will be sent to more than one subscriber
and the allocation messages to subscribers is indeterminate.

Transaction Type: Specifies the type of transactions used to dequeue and enqueue messages.
“XA-Compliant” must be used for messages to guarantee messages are processed
successfully exactly once within the RIB.

Delivery Mode: Must be set to “Persistent” to insure messages are written to disk before an
engueue operation completes.

Maximum Number of Bytes to Read: Specifies the maximum number of bytes to read at a
single time from the received bytes message.

Default Outgoing Message Type: The JMS standard specifies two types of messages: one
consisting of bytes and one of strings. This is not to be confused with the RIB “message
type”.

Factory Class Name: Name of factory class to use in creating the JMS connections.
Suggested value:

com.stc.common.collabService.SBYNJMSFactory

Message Service: This section details JMS 1Q Manager specific parameters for the JIMS
server.

Server Name: Specifies the JMS 1Q Manager name as seen in the e*Gate Enterprise
Manager application.

Host Name: Specifies the IP address or the host name from a Domain Name Server (DNS)
that is running the JMS 1Q Manager.

Port Number: Specifies the TCP Port number the JMS 1Q Manager is listening on. Must
match the JMS 1Q Manager “TCP/IP Port Number” property.

Maximum Message Cache size: Specifies the maximum message cache size for the
connection point.

L Note: Remember that configuration changes need to be promoted to the run time
environment before they take effect. To do this, on the Configuration Edit window,
select File > Promote to Run Time.

Chapter 4 — SeeBeyond Platform

Oracle Connection Point configuration

Oracle Connection Points are defined within the e*Way Connections folder. This folder is found
at the right-hand e*Gate Enterprise Monitor frame near the bottom. When selected, the window
that is displayed is similar to Figure 7-9: e*Gate Enterprise Manager with e*Way Connections
folder selected.

When the properties window of an Oracle Connection Point has been selected, it appears similar

to the figure below:
@ e“way Connection - cpToAndFromintD ey Properties |

General |
H i cpToAndFromintCey
e*izy Connection Type: |Oracle LI

~Ewent Type "get" interval

Time {in millisecands) after a retrieval
returns "no event available" before
attermpting another retrieval.

|1IZIIZI

- BFNay Connection Configuration File

l:u:unfigs'lurau:le'u:pTu:u.ﬂ-.ndFrDmIntDev.u:fg

Clear | Firid | Edit |

Apply | Help

|

Oracle Connection Point Properties window
The properties are:

o e*Way Connection Type: Oracle, by definition

o Event Type “get” interval: This is a polling interval occurring after an “empty” data
retrieval. Increasing this value may reduce load on a system. Decreasing this value may
reduce the time it takes to publish a message by the RIB.

¢ e*Way Connection Configuration File: name of the configuration file storing additional
parameters.

55

Retek Integration Bus

An Oracle Connection Point Configuration Edit window is pictured below:

/Edit Settings for C:/EGATE fClient/configzforaclef/cpT cAndFromintDey.cig

File “iew Options Help

Goto Section: I DataSource

=) %8| %[=]k
-

Goto Parameter: I class

class ':'E|%|||§£|
i i =l
oracle jdhcxa.client. OraclexaADataSo b X
i oracle.jdbc.pool.OracleConnectionPoolDat: T
(0] aracle jdhe xa.client.OraclexabataSource B
‘| T
DrriverType ':'E|%]| ||§§I
i =
thin = X
" ocig _
{® thin
“ | [_r
El
| "300" selected.

Oracle Connection Point Edit window

56

Chapter 4 — SeeBeyond Platform

There are two sections found in this configuration: “DataSource” and “connector”. The
connector section contains two parameters that cannot be changed. The DataSource contains the
following parameters:

o class: Specifies the JDBC driver class. For XA support, the class should be
oracle.jdbc.xa.client.OracleXADataSource. The JAR file containing this class is typically
found in <ORACLE_HOME>/jdbc/lib/classes12.jar.

o DriverType: Type of driver. The OracleXADataSource is a “thin” driver.

o ServerName: Name of the host containing the Oracle Listener process to connect to.

e PortNumber: TCP Port number the Oracle Listener uses to listen on for new connections.
o DatabaseName: System ID (SID) of the database to connect to.

e UserName: User name to use for the database connection.

e Password: Password corresponding to the user name. Stored as an encrypted string.

e Timeout: Login timeout value. Longest time to wait for a session to be established with the
database.

L) Note: Remember that configuration changes need to be promoted to the run time
environment before they take effect. To do this, on the Configuration Edit window,
select File > Promote to Run Time.

Oracle Schema owner issues to consider

The Oracle connection point’s user name also depicts the schema name in which the Oracle
connection will use by default. This user/schema is not required to be the owner of the package
or the Database Objects being used. However, synonyms for all of the packages containing
GETNXT() and CONSUME() must be present for the RIB user-id being used, and furthermore
the owner of these packages containing the GETNXT() or CONSUME() stored procedure is
required to be the owner of the RIB Objects as well.

The appropriate privileges for accessing the RIB Objects and executing the stored procedures
must also be granted to the RIB user-id. Most often, the two privileges needed for a separate RIB
user-id above those normally granted are 'CREATE ANY TYPE’ and '/EXECUTE ANY TYPE'.

57

Retek Integration Bus

TAFR adapter configuration

The TAFR adapter has both a SeeBeyond e*Gate configuration component and a RIB Properties
file configuration component. Furthermore, when adding additional routing destinations, such as
RDM warehouse installations, additional work must be performed.

RIB property file TAFR entries

The rib.properties file contains entries for an Error Hospital and for other components.

The properties associated with a TAFR are used to do the following:

Translate facility 1D codes to destination JMS queues and event IDs.

Specify a default facility type when the publishing application has no knowledge of the
facility type.

The entries in the rib.properties file for Facility 1D translation have the following form:

facility id.<FACILITY_TYPE>_.<FACILITY_CODE> = <Dest>

where

<FACILITY_TYPE> is a string matching the available facility types for the entire set of
locations.

<FACILITY_CODE> is a string matching the possible facility 1D code values for a location.

<Dest> is a value to use for routing a message to a specific (warehouse) location. This will
be appended to event type names to effect the routing of a message.

The entries in the rib.properties file for specifying the default facility type is

facility type.default = <DEFAULT_FACILITY_TYPE>

This provides a means for translating messages created by publishers (such as RDM) that do not
use the facility type abstraction.

58

Chapter 4 — SeeBeyond Platform

TAFR Routing — adding new destinations

Transformation, Address Filtering/Routing (TAFR) adapters are designed to perform actions
based on message content. Applications such as RDM require TAFRs to route messages to
specific instances. The number and names associated with these instances are within the control
of the implementation. This section details how to add or new destinations.

First, take a logical view of TAFR Processing. First, the message to be routed is published. The
subscribing TAFR retrieves this message and, based on its content, re-publishes it zero or more
times. The queues the TAFR uses to publish are different than the one it subscribes to.

The JMS 1Q Manager the TAFR publishes to may be the same one it subscribes to, but the
“topics” used to publish must differ — so that it will never subscribe to the same messages it
publishes. Also, the SeeBeyond interface with the JIMS 1Q Manager equates a “topic” with an
“Event Type”. The RIB associates an “Event Type” to a “Message Family”. A Message Family
is a specific XML format. An Event Type is a tag applied to this format. Multiple Event Types
may be associated with the same message family. Subscribers subscribe to messages with specific
Event Types.

LIl Note: The RIB associates an “Event Type” to a “Message Family”. A Message Family
is a specific XML format. An Event Type is a tag applied to this format. Multiple Event
Types may be associated with the same message family.

When a TAFR determines the routing destination for a message, it uses a general-purpose API for
publications. One of the parameters of this API is the topic to use. The TAFR computes the
“topic” based on the destination and values in the rib.properties file. One risk with this design is
that it is entirely possible for the TAFR to publish a message that has no subscribers. Another
possible error is that the TAFR cannot compute the destination because of missing information
from the rib.properties file. If either error is reported, then the TAFR will stop processing all
further messages.

A summary of the steps used to add a new destination is as follows:

1 Determine which TAFR and Message Family requires routing.

2 Create the new Event Type name and definition.

3 Modify the TAFR’s configuration to publish the new Event Type.
4

Create the destination messaging components.

59

Retek Integration Bus

Step 1: Determine which TAFR and Message Family requires routing

The first step in this process is to determine which messages are to be sent to the subscribing
application. All message content information is found in the Retek 10.3 Integration Guide. This
guide details the input and output event types for a TAFR processing the message family. In
some cases, the documentation may picture multiple event types as input. The RIB schema as
supplied from Retek deploys by default a separate TAFR adapter for each input event type.

Once the Message Family has been determined, the TAFR can easily be found, because the RIB
uses the naming convention of:

ew<MsgFami lyl>To<MsgFami ly2><Dest>FromRI1B
where

<MsgFami ly1> and <MsgFami ly2> are the names of message families used for input and
output.

<Dest> is a generalized specification of the destination (for example, WH for RMD
warehouses).

Step 2: Create the new Event Type Name and Definition

Two new event types will need to be created. The first is the new event type used by the TAFR
component to route the message to the new destination. The second is used by the subscribing
RIB adapter that interfaces with the application — the intended destination. These RIB e*Ways
subscribe to two events, the “routed” message event type just mentioned and an event type
associated with retrying the message if an error occurs.

The RIB uses the following naming convention for the Event Type names published by TAFR
components:

et<MsgFami ly>FromRIBto<DestSpec>
where <MsgFamily> is the message family name and <DestSpec> is the destination specification.

An example is the Event Type name etASNInNFromRIBToWH1. As mentioned above, the
specific event types published is found in the Retek 10.3 Integration Guide.

Once the name has been determined, the definition must be created. This is done via the e*Gate
Enterprise Manager application. Clicking on the “Event Types” folder displays the following
window:

60

Chapter 4 — SeeBeyond Platform

@ e*Gate Enterprise Manager - Rib100 H=E
File Edit “iew Toole Options Help
O = i) X oz & =
Mesn Open e FEE1E U EIEtE Broperies: ETD: Ediitar 0 Eclitar Collak Ec
E| 7 | Participating Hosts IContents of ‘Event Types'
: Eﬂl B Mame Event Type Cefinition I
mzpdeyv 4_ch
i mfm 00000000 Everthsn.s3c a
DE GenericinEvent GenericinEvent.ssc
Y Evert Type*
[] Collaboration Rules DE GenericOutEvent GenericOutEvent ssc
| Services DE Matification MotificationMessage ssc
| efNay Connections “’E Throweaway Throwerway xsc
=4 Security oD et ASNIEDITORMSRetry etdRibMessagsEnvelope xsc
DEE etASNInFromED etdRibMessageEnvelope xsc
DEE etAShInFromEDIExt etdAShInFromEDIExt xsc
DEE etASKInFromRDmM etdRibMessageEnvelope xsc
DEE etAShInFromRDkMER etdAShInFromROMFM 5o
DEE etASKInFromRIBT o WH1 etdRibMessageEnvelope xsc
DEE etASKInFromRIBTovWH2 etdRibMessageEnvelope xsc
DEE etASKInFromRIBTovWH3 etdRibMessageEnvelope xsc
DEE etASKInFromRIBTovWH4 etdRibMessageEnvelope xsc
“’E et ASNINROMAPKYH1 et ASMNRDMAPLx=sc
“’E et ASNINROMAPKH2 et ASMNRDMAPLx=sc
“’E et ASNINROMAPKYHS et ASMNRDMAPLx=sc
“’E et ASNINROMAPKH et ASMNRDMAPLx=C
“’E et AENINRMEAR et ASMNRMEAPLx=C
"’EE etASNINToRDMYWHI Retry etdRibMeszsageEnvelope xsc
"’EE etASNINToRDMWHZRetry etdRibMezsageEnvelope xsc
"’EE etASNINToRDMYWHIRetry etdRibMeszsageEnvelope xsc
"’EE etASNINToRDMYWHARetry etdRibMessageEnvelope xsc =
Metwork £ % Components | _:lm T e " LI_I

IWeIcome to SeeBeyond's e*Gate Enterprize Manager.

I_Q Administrator I-E;I' mepdey!d

e*Gate Enterprise Manager with Event Types folder selected
The figure above shows four possible published event types for the TAFRs involved with the
ASNIn message family: etASNInFromRIBWH1, etASNInFromRIBWH2,
etASNInFromRIBWH3, and etASNInFromRIBWH4.

Clicking on the central “Event Type*” button brings up the following window:

@ Mew Event Type Component

Matme '

]|

o]

Cancel

&pply Help

New Event Type window

61

Retek Integration Bus

In the Name field, enter the new event type name, for example, etASNInFromR1BWH5.
Click OK.

The new event type is displayed at the bottom of the list of event types.

Double-click on the new event type. The Properties window is displayed.

@ Event Type - etASHInFromRIBT o'WH5 Properties |

General |

A~ ww N e

DE et2SMInFromRIBToWHS
Event Type Definition
Elear | Find |
ik Cancel Apply Help

Event type properties window

62

Chapter 4 — SeeBeyond Platform

5 Click Find. This allows you to associate an existing message format (or Event Type

Definition) with the new event type. (This may take a few seconds.) The Event Type
Definition Selection window is displayed.

@ Event Type Definition Selection |
Look in; [etd =] | 5 |
etdPencReturNROMAP] a0 etoiReceiptsFromRDMMEN xac
etdPOReceiptzFromRDMMEN jar etdReceiptzRMS AR jar
etdPOReceiptsFromROMbFI xae stdRecaiptzRMELP] xao
etdPOReceiptsRMZAP jar etdRibMeszageEnvelope jar
etdPOReceiptsRMEAP] xsc = ctolRikhd geEnvelope
etdReceiptsFramRDMMPM jar etdR T FromRDMWF b jar
1 []]

Filename: etdRibMeszageEnvelope xzc Select |
Files of type: Al files :I Cancel |

Choosing an Event Type Definition for the new Event Type
6 Select the etdRibMessageEnvelope.xsc file.

7 Click Select. The Event Type Properties window is displayed.
@ Evont Type - cIASNInFromRIBTowHS Propertics 3|

General |

EI:I-E etASHINFromRIBToyHS
Event Type Definition
letdﬁetdﬁibMessageEnvelnpe.xsu:
Clear | : Ecit
Ok Cancel Apply Helg

Updated Event Type Properties window

63

Retek Integration Bus

8 Click OK to finish creating the new Event Type.
Repeat this process for the “Retry” event type, using the following characteristics:
= The same Event Type Definition
= The Event Type Name of the form et<MsgFamily>To<DestSpec>Retry.

In the case of the examples above, the event type would be named
etASNInFromRIBToWH5Retry.

64

Chapter 4 — SeeBeyond Platform

Step 3: Modify the TAFR’s Configuration to publish the new Event Types.

The next step is to publish the new event type. This has two parts: to update the e*Gate registry
that the new event type will indeed be published, and, for messages destined for an RDM

instance, modify the RIB properties file.

1

In the e*Gate Enterprise Manager, select the TAFR e*Way.

This can be a little tricky, since many names are similar. TAFR names have the form
ew<MsgFamily>To<Dest>FromRIB. The following example uses the TAFR
ewASNInToWHFromRIB.

@ e*Gate Enterprize Manager - Rib100

File Edit

Wiew

Tools

Cptions

Help

[_[O] %]

O

ey

=
Cpen Copy

=}

Pazte

Up

x

Delete

Propetties

=

ETD Exfitor

&

ID Edlitar

~u
2k
Callab Editar

]

4

e ASMIREDITaRMS

v 2 SMINFromED]
oy ShINFromREomd

i SPINToRDKVWHS

el SPINToRDRYHS

v SMINToRMS

sy A SMOLEF romBDAH1
v A SMOLEF romBDH2
oy SMCUEF romROMAHS
iy A SMOLEF romBDh A HE

A SMNOLEToRCOM
A SMOUToRMS

v A TRFramRMS

A TRTaRCOM
wBannerFromRS
wBannersToRCOM
wCoBoResFromRCOM

7 evvCoBoResToRMS

]

WASNInToASNInL’\HFromRIEJ

iy A SO ToASIMWHFromR
v SMOUETo ASNOWCCOF rom

o

Metwaork €% Components |

‘&"

Collaboration*

IContents of ‘e ASKINToASKAWHFromRIB

Collaborstion Rules
crASMIRToASMIMYH

Collaborstion Service

IHame

B

Java

4 | i

Welcome to SeeBevond's e*Gate Enterprise Manager.

I_g Aclministrator r@ mEpoles] 4

e*Gate Enterprise Manager with TAFR e*Way selected

2 Select an action:

= Double-click on the TAFR’s collaboration.

= Select the TAFR’s collaboration and click on the Properties icon in the toolbar.

65

Retek Integration Bus

3 The Collaboration Properties window is displayed.

@ Collaboration - colASHInT oASHInWHFromRIB Properties |

General |

G
&é colASMInToL SHInWHF romRIB

Caollaboration Rules:

ety | Ediit |
Subscriptions:
Instance Mame Ewvent Type | Source Add
In afm etaSNINFromROM [l cpasmnFrome...

[elete

i

Publications:
Instance M...| Event Type |_Destinatiu:un Priarity Al
out mfo etashinFromRIBTawHS [cpasiaHFromRIB 5
out mfm etasnnFromRIEToWHS [H cpaSNmwHFramRIE B | Dtz |
Out wfw etasinFromRIBTonH [fH cpastnvHFramRIB 5 Mvancedl
out mfo etastinFromRIBTaAH2 [crasiwHFromRIB 5
(0.4 Cancel Apply | Help

Collaboration Properties window
To add the new event as valid for publication:

4 In the Publications section, click Add.
5 Duplicate the connection point specified as the destination.
6 Select the new event type to be published.
In the example, you would use the event type etASNInFromR1BToWH5.

L Note: The “Destination” (in this case “WH5’) must also be found in the
rib.properties file as a valid translation value for a specific facility 1D code.

7 When the new event publication has been specified, click OK to save the information and
update the e*Gate Registry with the new information.

66

Chapter 4 — SeeBeyond Platform

Step 4: Create the destination messaging components

The last step is to create the subscribing RIB adapter. One way to do this is:

1 Select an e*Way to duplicate.
2 Select Edit > Copy multiple.

@ e~Gate Enterprize Manager - Rib100 H=E
m Wi Tools Cptionz Help
Mowe .. 2 = e —a
P B X =fz o af
NSy Copy Pagte Up Delete Properties ETD: Editar I[y Exltor Collsb Edtor Ext.
Basie
& ICDrﬂerﬁs of ‘e ASHInToRDhkAHS'
Mame | Collabaoration Service | Collabaoration Rules
% # colsSMINToRDMAHE Java crASMINToRDM class

ewAllocFromRs
evvdliocToStockOrderFromRIB
ewAppointFromROYH1

ey AppoirtFromRDNYH2
ewAppointFromROMAHS

ey AppoirtFromRDnHS
ewAppoirt ToRMS

ew ASKINEDIToASHIMYHFromRIB
e ASMNEDI TaRMS

ew ASRNFromED|

e ASHIRFromRDk

ew ASNNToASMIMAHFromRIE
ew ASMInToRDRWH1
evwAShnToRDkWHZ
e ASMIRToRDMWHS
MINToRDkWHA
ewASKNToRME

N . il

Metweark €9 Components |

Collaboration*

53’ col&AZMInToRDMWHAREtry Java crHozpitalRetry class

4 | I

|Welcome to SeeBeyond's e*Gate Enterprize Manacer.

I?} Adminiztratar I-E;l mspdevld

Copy Multiple edit option

3 Rename the duplicate e*Ways to match the RIB’s haming convention: For example,
duplicating ewASNInToRDMWH4 will result in ewASNINToRDMWH4_0. The RIB Naming
convention renames the new e*Way to ewASN InTORDMWHS.

4 Rename the collaborations used to match the RIB naming convention.

Edit each collaboration in the Properties window.

67

Retek Integration Bus

@ Collaboration - colASHInT oRDMWHSHRetry Properties

General |

i
&é colASHINToRDMAHSRetry

Collaborstion Rules:

[~ Newl Ed'rtl

Subscriptions:
Instance Mame Everit Type I Source A
hospitalDB etHospitalDB cpHozpitalDB
DE ”HE] [relete |
Publications:
Instance Mame Ewverit Type | Destinstion J A |
retryRibhzg etAShInToRDMWHARetry cpAShimAaHFr ... | 5
% 'WH] [relete |
Advancedl

Ok I Cancel | Apply | Helgp

Collaboration Properties window for a Subscribing Application Retry collaboration.

@ Collaboration - colASNInToRDMWHS FProperties

General |

[
&é col&SKINToRDMWHS

Callaboration Rules:

nToROM [~ | hew | Edlit |

Subscriptions:

Instance Mame Event Type | Source Al
etdRibMeszaneEnvelope mEetASNInToRDMWHﬂlRetry HHE cpASMIMYHF ...
etdRibMeszaneEnvelope mEetASNInFrnmRIEITnWHJf HHE cpASMIMAHF ... Dalstz

|

Publications:
Instance Mame Event Type I Destinstion J Al |
etdHospitalDB s stHospitalDE [l =eHospitaine 5
et ASHINRDMAR “’E et SMInRDMWAPRYHA [IHE cpTodndFrom... | 5 Dakte |
Advancedl

Ok I Cancel Apply | Help |

Collaboration Properties window for the subscribing collaboration for a Subscribing
Application adapter

L Note: This collaboration updates the application database.

68

Chapter 4 — SeeBeyond Platform

The following must be changed on both collaborations:

6

Change the Event Type Names to match the new Event Types defined.

If you do not do this, the adapter will only receive messages that go to a different destination.
In the example above, we created a warehouse #5. All references to the Event Type
etASNINToORDMWHA4Retry must be changed to etASNINToRDMWHS5Retry and references
to etASNInFromRIBToWH4 changed to etASNInFromRIBToWHS5.

If the Error Hospital used is specific to the subscribing application, then make the connection
point specific to the error hospital used.

This connection point is associated with the etHospitalDB Event Type processing.

If the subscribing application is to be hosted by a different participating host, move the new
e*Way:

a Select the adapter that you want to move.

b Select Edit > Move. Another window is displayed that allows the e*Way to be executed
on a new computer.

The new computer must have an associated “Participating Host” created within an e*Gate

Schema. See the SeeBeyond e*Gate Integrator User’s Guide for more details. In addition, a
running stccb daemon must be active on the computer before any other component can be run
on the new participating host.

o e*Gate Enterprize Manager - Rib100 [_[O] =]
m Wiewe Tools Options Help
Mave ... L = ¥ .
—= = X = i a8
o Comy Copy Pt Up Delete Froperlies ETD Editor D Ecltar Collab Ecitor ~ Ext.
BEStE
Copry Mutiple 1] [carterts of ‘ewasnRTERDMARE
Rename ... :Li:qs Mame | Collabaration Service | Collaboration Rules
X Delete StockOrderFromRB i (\gﬁ ol SNINToRDMYHS Java craSNINToRDM class
& Properties .. FromROMH1 Collaboration® &* colASNInToRDMAHSRetry Java crHospitalRetry class
T, o SPROTTLE FomREDhAYHZ2
ey AppointFromRDhAHS
ewAppointFromRDhHS
ewAppoint ToRMS
e ASMINEDIToASMInWHF romRIB
B, s ASNINEDITORMS
eurASMINFromeD
ew ASNINFromRDM
-+ mgt, £ ASNINToASNINAHF romRIB
e ASMINToRDMWH
ewASMNINToRDMWH2
eurASMNToRDMAHS
ew A SNINToRDWHE
o ASHINToRDMHS
ew A ENINToRMS
ewASMNOULFromRDMYH1
eurASMOUtFromRDMAH2
B e ASNOUtFromRDMAHS =
il | LIJ
Metwark #9 Components « | _,I
Welcome to SeeBeyond's e*Gste Enterprize Manager. I g Administrator I E;l mapdew! 4

Edit drop-down menu
L Note: You must select the e*Way to be moved before you select Edit > Move...

69

Chapter 5 — Message error handling

Chapter 5 — Message error handling

An error occurring while a subscriber processes a message poses a problem for an EAI system. If
the error is one such as a broken database connection, the message simply needs to be retried
once the connection is re-established. In these types of errors, one would like the message to
remain on the EAI queue until it can be successfully processed.

Another type of error arises when messages have dependencies on seed data found in the
subscribing database. For example, only the SKU number may reference a SKU referenced in a
Purchase Order. If the subscribing database does not contain this SKU, an error will occur. This
category of errors, referred to as Message Content Errors, cannot be resolved only through re-
submitting the same message. Instead, the SKU must be added before the message can be
successfully re-processed.

For the subscribing PO adapter, however, it may make sense to re-process the message a set
number of times anyways. The message that creates a new SKU may be published by a different
adapter than the one creating the Purchase Order. Because of possible performance bottlenecks
or operational difficulties, the Purchase Order may arrive at the subscribing application adapter
for POs before it arrives at the subscribing application adapter for SKUs. Therefore, simply re-
trying the message gives the application an opportunity to successfully process the PO.

Once a Message Content Error occurs, it is desirable that the failing message does not affect the
processing of other messages on the queue which refer to a different business entity. Messages
not yet processed could contain acceptable data and it makes no sense to delay their processing.
In order to get at these messages, the problem message must first be removed from the queue and,
once removed, needs to be stored externally from the integration bus.

This storage mechanism is called the “Error Hospital”. Error Hospitals are associated with
subscriber adapters. Subscribing adapters may share the same Error Hospital tables, or may have
a set of tables reserved only for their specific use. Messages are re-submitted to the EAI queue
by the subscriber and the resubmitted message will only be re-processed by the subscriber that
resubmitted it.

If a message contains invalid data and there are three subscribers for this message family, then
each subscriber will store a copy of the message in an Error Hospital and re-publish the message
to the queue. We use message selectors on each subscriber that help filter the messages retried to
the correct subscriber, as the retry e*Way publishes the message with the name of the
collaboration on a property for retrying.

Each subscriber stores its own copy of the failing message because a different subscriber may
have processed the message successfully. When the message is re-tried, those successful
subscribers should not re-process the message.

Another complication with Message Content Errors is that subsequent messages within the same
message family may have dependencies on the problem message. For example, a “Create New
PO” message may be followed by an “Update PO message for the same PO number. If the
“create” cannot be processed, then the subscriber will error processing the “update”. Thus, before
any message is processed, a check is performed to see if the Error Hospital already contains
messages for the same business entity (in this case, the same Purchase Order). If so, then the
follow-on message is immediately inserted into the error hospital, without allowing the
application to process it at that time. The adapter should re-publish the follow-on message only
after the first one has been successfully consumed by the application.

71

Retek Integration Bus

The retry logic for a publishing error hospital is much different than a subscribing error hospital,
as the publishing error hospital directly calls the oracle package that failed for a message with the
correct context data that is in the hospital, the retry call then attempts to retry the message. Ifitis
successfully published, the message is removed from the error hospital database.

Once a message in the error hospital that had a dependency error message in the hospital is
completed, then the publishing retry e*Way publishes this dependent message straight from the
error hospital, as it was already successfully published from the database but couldn’t be put on
the rib because of sequencing.

Error Hospital components

Error Hospitals consist of a collection of Java classes, a set of database tables, a Connection Point
providing access to these tables, and a “retry” collaboration. The Java classes contain the Error
Hospital logic and include database access logic. The Connection Point must be configured for
each subscriber and connect to the database housing the Error Hospital. The same Error Hospital
Connection Point must be used between the “Normal”” subscribing collaboration and the “retry”
collaboration.

There is also a command line and a Graphical User Interface (GUI) tool for monitoring and
manipulating messages found in the Error Hospital.
JMS Message Queue

Connection Point (Initial
sage publication)

Database Connection

JMS ibi ihyi

M je JMS Message Queue | Subs_cnb_mg Point Associated with Subs_cnb_lng
e Connection Point > Application MFM Stored Application
Queue Collaboration Database

Procedure Call

Error Hospital
Connectjon Point

JMS Message Queue
Connection Point
(Retry Message Publication)

Subscribing
Application Retry
Collaboration

Error Hospital
Connection Point

Error Hospital
Database

Figure 6-1 Connection Points used at a subscriber.

72

Chapter 5 — Message error handling

The following tables are used to store message information within the Error Hospital:

e rib_message — contains the message “payload”, all single-field envelope information, and a
concatenated string made from <id> tags. Also contains a unique hospital ID identifying this
record within the hospital and information used to track a message’s retry status.

o rib_message_failure — contains all failure information for each time the message was
processed.

o rib_message_routing — contains all of the routing element information found in the message
envelope.

More information about the Error Hospital design may be found in the Retek Integration Bus
Technical Architecture Guide.

73

Retek Integration Bus

Error Hospital configuration parameters and
properties

All configuration parameters for an Error Hospital that control its logic are found in a properties
file. This file must be part of the Java CLASSPATH used when the adapter is running. In the
supplied Retek Messaging Schema, this properties file is named rib.properties.

The properties file, along with the name of the Java Archive (JAR) file containing Error Hospital
classes and subscribing adapter helper classes, is specified in the adapters configuration file.

To access the adapter configuration:
1 Open the SeeBeyond Enterprise Manager.
2 Select an option:
= Right click on the appropriate subscribing e*Way and select Properties.
= Select the appropriate subscribing e*Way and then click the Properties toolbar button.

The e*Way Properties dialog box is displayed.

@ e“way - ewASNInFromEDI Properties |

General |Start Upl Advanced' Eecuritg.fl

ey ASMInFromEDI

Executable file

}ainﬁm:ewgenericmunk.exe

Clear | Firmd |

Additional command ling arguments:

-th P _HOSTY -re 36 _SCHEMAR: -In % _LOGICALNAMES: -un 3 _|

Run as user

|Administrat.:-r LI

Caonfiguration file

l:u:unfigs'l.stu:EWgeneriu:mu:unkﬁ.ew.-'J«SNInFrDmEDI.u:fg

Clear | Firicd | Edit |

]34 Cancel | Apply | Help

e*Way Properties dialog box

74

Chapter 5 — Message error handling

3

In the Configuration file area, click Edit. The configuration file edit window is displayed.
The CLASSPATH specification is found in the JVM Settings section under the
CLASSPATH Prepend parameter.

/Edit Settings for C:/EGATE /Chent/configz/stceway/ewASHInToRMS cig
File “iew Options Help

Goto Section: | JyM Settings

=| D% ||

Goto Parameter: | [ZLASSPATH Prepend

h

CLASSPATH Prepend

S

ifileslfegatefegateiclienttclassesirete

=l

X

= fMlesliegatefenateiclienticlassesiretek-rin-s

-

| |

all K|

CLASSPATH Owerride

U3 | % | 2| L

]

ll KNl |

=

Configuration file edit window

L

Note: If any parameter found in the configuration file is changed, an additional step is
needed before the running system actually uses the new configuration: the configuration
must be “Promoted to run-time”. This may be done in the configuration file “File” drop-
down menu or in the Enterprise Manager “File” drop-down menu. Simply changing a
configuration does automatically update the SeeBeyond Registry with the new value.

75

Retek Integration Bus

The RIB properties file contains a number of parameters controlling the Error Hospital retry
logic. Each parameter is on a line by itself and each line has the following form:

hospital .attempt.<param_name> = <param_value>

where <param_name> is the name of the parameter and <param_value> is the value. The table
below lists the hospital parameters and their default values if not found in the RIB properties file:

Parameter Name Default | Description
Value

hospital.attempt.max Maximum number of attempts the
Error Hospital will make for the
message, including the initial
attempt. Once a message has been
4 attempted this many times, a User
Defined Alert is raised for this
message. These alerts will seen
on the e*Gate Monitor
application.

hospital.attempt.delay Base number of seconds between
retries.

hospital.attempt.delayIncrement Number of seconds to add to the
base delay per each retry. For
example, using the default value,
the time between the third and
fourth retry is:2+8 +8 +8 =26
seconds.

If different subscribers need different Error Hospital configurations, then each subscriber should
use a different properties file with the values needed by that subscriber.

L Note: Although the directory containing the RIB properties file may change, it must
always be named rib.properties.

76

Chapter 5 — Message error handling

Error Hospital activities

This section details activities one may perform to messages in the Error Hospital from either the
Hospital Administration GUI or the Hospital command line utility. This Java application lets
you:

e Query the hospital database to determine the message(s) that exist

e View or save a message’s contents

o Replace the message’s contents

e Increase the number of processing attempts for this message for this subscriber by one
e Delete the message

e Stop the message from further processing attempts

The Hospital GUI and command line utility are Java classes that are executed or wrapped by a set
of shell scripts (Unix) or BAT files (Windows/NT). This Java class requires the presence of a
properties file, hospital-admin.properties, in the user’s home directory.

These scripts also source the file, hospital-admin.env, to initialize the CLASSPATH used by
the command line utility class.

77

Retek Integration Bus

Hospital command line utility set up

The hospital-admin.properties file and the hospital-admin.env file must be manually set up before
the GUI or command line utility can be used. This is detailed in the next section.

Setting up hospital-admin.properties

The following properties must be set in the file hospital-admin.properties. By default,
the user’s home directory is checked for this file. However, the name and location for this file

may be specified at run time.

Parameter Name

Description

hospital.gui.prop.dbUser

Database User ID the utility will use to log into
the hospital database.

hospitial.gui.prop.dbPwd

Password associated with the dbUser parameter.

hospital.gui.prop.dbUrl

URL of the JDBC driver that will host the
database session. This URL is typically of the
form:
jdbc:oracle:thin:@<hostname>:1521:<SID>

where <hostname> is the name of the host
containing the Oracle listener and <SID> is the
Oracle System ID of the database.

hospital.gui.prop.dbDriverClass

Name of the Oracle JDBC driver class.
Typically, this is
oracle.jdbc.driver.OracleDriver As of this
writing, this driver is found in the file
client12.zip available from Oracle.

Because this file contains database login parameters, access to it should be limited. On Unix
systems, set the file privileges mode of hospital-admin.properties to 0400.

All entries must be in the form <ParameterName> = <Value>. Comments begin with a hash (‘#’)
and continue to the end of a line. Lines containing white space are ignored. An example of the

hospital-admin.properties follows:

hospital .gui .prop.dbUser=retek user

hospital .gui .prop.dbPwd=retek password
hospital .gui .prop.dbUrl=jdbc:oracle:thin:@HSP_DB HOST:1521:hsp_SID

hospital .gui .prop.dbDriverClass=oracle.jdbc.driver._.OracleDriver

78

Chapter 5 — Message error handling

Setting up hospital-admin.env

The hospital-admin.env file contains the CLASSPATH and other environment entries that the
hospital command line utility uses. Each wrapping [?] script sources this file before executing the
utility class. The hospital-admin.env file must exist somewhere in the user’s execution path.

The hospital-admin.env file should contain the following information:

e The correct CLASSPATH environment variable. An example of a CLASSPATH is:

CLASSPATH=/files0/egate/egate/client/classes/retek-rib-
support.jar:/files0/egate/egate/client/ThirdParty/oracle/classes/cla
ssesl2.zip:/TilesO/egate/egate/client/etd/etdRibMessageEnvelope. jar:
/TilesO/egate/egate/client/classes/stcjcs. jar

The example above assumes that the <EHOME> directory is /filesO/egate/egate.

e Any modifications to the PATH environment variable to execute the Java command.

Error Hospital admin command line scripts

All Error Hospital administration is done via the Java class:
com.retek.rib.collab._HospitalAdminCmdLine

However, a set of scripts has been created for ease of use. These scripts wrapper the
HospitalAdminCmdLine class and invoke the java interpreter to execute it. Each script will also
echo the specific command used.

Each script has a Unix Bourne shell version and a Windows 2000/NT version. Each operating
system specific version accepts the same parameters. The following scripts have been
implemented:

Command | Parameters Description
querymsg -1 <location> Queries the database and displays a list
-f <family> of message numbers that meet the

required criteria. Any combination of

t <'_[ype> these parameters can be used. The SQL
-i <id> select will use the input parameters in a
-(<inQueue> LIKE context so wildcards are allowed

-r <willRetry> (%). For example, if “-i 123%” were

passed in, all messages with
message_num starting with 123 would
be selected.

o -| <location> lists only those
message numbers from the
specified location. Locations are
of the form <eway
name>.<collaborationName>

o -f <family> lists only those message
numbers belonging to the specified
message families

e -g <type> lists only those message
numbers that belong to messages

-p <propertiesFile>

79

Retek Integration Bus

80

Command

Parameters

Description

of the specified type

o -j <id> lists only those message
numbers that apply to the specified
ID. These identify a specific
business object, such as a Purchase
Order or ASN.

e - <inQueue> lists only those
message numbers that are believed
to be enqueued in the integration
bus at the current time. A value of
0 or “false” implies the message
only exists in the Error Hospital, a
value of 1 or “true” implies that the
message is thought to have been
published for another attempt to
process it.

o -r <retry> lists only those messages
according to their retry status. The
<retry> specification of 0 or
“false” lists those not eligible for
retry and marked ready for delete;
a value of 1 or “true” lists those
eligible for retry and not ready to
be deleted.

All parameters are optional. Multiple
parameters produce the intersection of
their independent results. (For example,
—f Family and -1 Location lists all
messages in family “Family” belonging
to location “Location”.)

deletemsg

-m <messagelD>
-p <propertiesFile>

Marks the message ready for deletion.
The message will be deleted when the
retry collaboration next awakens.

The —m switch is mandatory and must
contain the message number of the
message to delete.

readmsg

-m <messagelD>
-F <outputFileName>
-p <propertiesFile>

Retrieves the payload contents for
message <messagelD> and writes it out
to the file <outputFileName>.

The —m switch is mandatory and must
contain the message number of the
message to read.

updatemsg

-m <messagelD>
-f <inputFileName>
-p <propertiesFile>

Replaces the message payload for the
given message with the contents of the
file. No validation of the file contents is

Chapter 5 — Message error handling

Command

Parameters

Description

performed until the subscribing adapter
processes the data.

The —m switch is mandatory and must
contain the message number of the
message to update.

stopmsg

-m <messagelD>
-p <propertiesFile>

Stops further attempts to retry the
message.

The —m switch is mandatory and must
contain the message number of the
message to stop retrying.

retrymsg

-m <messagelD>
-p <propertiesFile>

Flags the message so one additional
attempt is made to process the message.

The —m switch is mandatory and must
contain the message number of the
message to retry.

81

Retek Integration Bus

Hospital Administration command line examples

Before using any of the commands below, remember to verify that the hospital -
admin.properties file exists in your home directory and contains the correct database login
information. The name and location of this file may be overridden via the —p command line
switch.

Listing all messages in an Error Hospital:
> querymsg

[USAGE] querymsg [-p properties file] [-1 location] [-F family] [-t
type] [-1 id] [-q inQueue] [-r willRetry]

Java HospitalAdminCmdLine -a query
Getting properties from: /filesO/egate/hospital-admin.properties
Number of messages selected: 159

Message numbers: 2947 2933 2934 2935 2936 2940
2849 2850 2851 2852 2853 2854 2856 2857 2858
2859 2923 2924 2925 2926 2927 2928 2929 2930
2931 2932

SUCCESS

Listing all messages in an Error Hospital from a specific e*Way:
The example below lists all message numbers that belong to the ewASNOutToRCOM e*Way:
> querymsg -1 ewASNOutToRCOM%

[USAGE] querymsg [-p properties file] [-1 location] [-F family] [-t
type] [-1 id] [-q inQueue] [-r willRetry]

jJjava HospitalAdminCmdLine -a query -1 ewASNOutToORCOM%
Getting properties from: /filesO/egate/hospital-admin.properties
Number of messages selected: 15

Message numbers: 2854 2913 2804 2805 2809 2811
2813 2769 2794 2795 3113 3115 3117 3119 3124

SUCCESS

82

Chapter 5 — Message error handling

Listing all messages in an Error Hospital that belong to a specific message family:
The example below lists all message humbers that belong to the “asnout” message family:
> querymsg -T asnout

[USAGE] querymsg [-p properties file] [-1 location] [-F family] [-t

type] [-1 id] [-g inQueue] [-r willRetry]
Java HospitalAdminCmdLine -a query -f asnout
Getting properties from: /filesO/egate/hospital-admin._properties

Number of messages selected: 23

Message numbers: 2854 2913 2804 2805 2808 2809 2810
2811 2812 2813 3019 3045 3012 2769 2794 2795

3205 3226 3113 3115 3117 3119 3124
SUCCESS

Reading the message payload XML into a file:

Message contents can be read into a file using the readmsg script. Note that the XML is written

as it appears in the original message and this means it contains no new-line or carriage return
characters.

> readmsg -m 2947 -F /tmp/message_2947 . XML

jJava HospitalAdminCmdLine -a read -m 2947 -F /tmp/message 2947 XML
Getting properties from: /filesO/egate/hospital-admin._properties
read Message: 2947

SUCCESS

> cat /tmp/message 2947 . XML

<?XML version="1.0" encoding=""UTF-8"?><IDOCTYPE POReceiptDesc SYSTEM
"http://mspdev09:8109/dtdtst/POReceiptDesc.dtd"><POReceiptDesc><dc _d
est_id>1</dc_dest_id><appt_nbr>500000301</appt_nbr><po_nbr>10610</po
_nbr><document_type>P</document_type><item_i1d>100614114</item_id><un
it _gqty>8</unit_gty><receipt _xactn_type>R</receipt xactn_type><receip
t_date><year>2002</year><month>03</month><day>08</day><hour>16</hour
><minute>47</minute><second>11</second></receipt_date><receipt_nbr>5
00000291</receipt_nbr><asn_nbr>ASN-IT-RECEIPT-
19</asn_nbr><dest_id>1000000014</dest_id><container_id>ASN-IT-REC-
19-
CID0O0O1</container_id><distro_nbr>1000001911</distro_nbr><distro_doc
type>A</distro_doc_type><to_disposition>WIP</to_disposition><from_di
sposition></from_disposition><to_wip>MXDSKU</to_wip><from_wip></from
_wip><to_trouble></to_trouble><from_trouble></from_trouble><user_id>
ZZRUDEJ</user__id></POReceiptDesc>

Updating the message payload from a file:

Message contents can be updated from a file using the updatemsg script. The editor used to
manipulate this data is external to this application.

> updatemsg -m 2947 -F /tmp/message 2947 . XML
jJava HospitalAdminCmdLine -a update -m 2947 -F /tmp/message 2947 . XML
Getting properties from: /filesO/egate/hospital-admin._properties

83

Retek Integration Bus

update Message: 2947
SUCCESS

Marking a message ready for deletion:

The deletion of messages stored in the Error Hospital is performed by the retry collaboration.
One may mark a message ready to be deleted by this software using the deletemsg script. The
example below marks message number 2155 ready to be deleted:

> deletemsg -m 2155

jJava HospitalAdminCmdLine -a delete -m 2155

Getting properties from: /filesO/egate/hospital-admin_properties
delete Message: 2155

SUCCESS

84

Chapter 5 — Message error handling

Manually querying message information from Error Hospital

Although the Hospital Admin command line utility allows one to view information about the
messages contained in the hospital, one may wish to select IDs from the Error Hospital database
using some other unique criteria.

Most message information is stored in the rib_message table.

To count the number of messages in the Error Hospital for a specific adapter:
select count(*) from rib_message where location = “<ADAPTER_NAME>~;

To display the Error Hospital message numbers for messages in the Error Hospital for a specific
adapter:

select message num from rib_message where location =
*<ADAPTER_NAME>" ;

To display the failure history of a specific message
select * from rib_message_ failure where message num = <MESSAGE_NUM>;

To display the message numbers for a particular message type
select count(*) from rib_message where location = “<ADAPTER NAME>7;

Columns in the RIB_MESSAGE table

Column Name Description

message_num Error Hospital message 1D

Location Name of adapter (e*Way name + *.” + collaboration
name) encountering an error processing the message

family family of message

type type of message

ID ID of business entity that this message is associated
with

ribmessagelD RIB ID of message. Contains RIB version, publishing

e*Way name, collaboration name, e*Way start time
and a unigue sequence ID.

publish_time Date/Time message published

in_queue Flag set when message is re-published by the retry
collaboration. A value of 1 indicates the message
resides on the JMS queue and has not yet been
processed by the subscriber collaboration. A value of
0 indicates the message only resides in the Error

Hospital

message_data CLOB containing the message data

attempt_count The number of times this message has been sent
(unsuccessfully) to the subscriber, including the initial
attempt

85

Retek Integration Bus

Column Name Description

max_attempts The number of attempts the hospital will make before
stopping retries and alerting an administrator

next_attempt_time The time of the next retry attempt, or null if the
message should be attempted as soon as possible.

delete_pending Set to O to indicate message is to be kept in the Error
Hospital. Set to 1 to prompt the retry collaboration to
delete the message from the Error Hospital.

Error Hospital log entries

The Error Hospital software contains trace statements for monitoring its execution. These
statements will be logged to the e*Way RIB log files. More verbose logging of hospital
operations is available if the e*Way’s verbose log settings have been set to Y in the rib.properties
file.

The log filename will be (rib_<EWAY_NAME>.log) and it will be written to the default log
directory as specified in the rib.properties file.

Create additional Error Hospitals

An Error Hospital is checked each time a subscribing application adapter processes a message.
Because of this, location of the database with the Error Hospital tables is critical. The Error
Hospital may be located within its own database or be part of the application’s database.

By default, only a single Error Hospital is used in the RIB Messaging schema. The instructions
for installing a new Error Hospital are found in the RIB Installation Guide. This installation
consists of creating a set of new database tables and a sequence object.

Once the new Error Hospital has been created, create a new Oracle Connection Point to reference
it. Then update the collaborations used by the subscribing application adapters to use the new
Connection Point

86

Chapter 6 — J2EE Platforms

Chapter 6 — J2EE Platforms

RIB startup and shutdown

This section details considerations for bringing up and shutting down the RIB Enterprise Java
Beans and Message-Driven Beans when deployed on a J2EE Application Server, such as
WebSphere.

Starting the RIB components

All RIB EJB components should be automatically started when the application server is brought
up. One prerequisite is for the SeeBeyond JMS IQ Manager to be running before starting the
Application Server.

The SeeBeyond JMS server, however, requires a SeeBeyond instance. If the JMS is not
available, then follow the instructions for configuring the SeeBeyond RIB Components.
Shutting Down RIB Components

With the exception of the SeeBeyond JMS Server, all RIB components should cease to function
once the J2EE Application Server is brought down or the Application is stopped.

Preventative maintenance tasks

Log files are the primary tools used to determine activity. These files must be maintained as they
could continue to grow to unmanageable sizes.

Log Files

WebSphere log files

WebSphere’s log files are managed from its Administration Console. You can configure the
maximum size of the files, the number of histories to keep, etc. Refer to WebSphere for the
details of these configurations.

RIB/Timings log files

The RIB/Timings logs are not managed and must be maintained. These files are configured using
Log4J. See the RIB Installation Guide, Chapter 6 for more information on configuring these log
files using Log4J.

87

Retek Integration Bus

RIB component configuration

This section will detail configuration information used in a WebSphere J2EE environment. See
Chapter 6 of the RIB Installation Guide for more details on configuring this environment.

Configuration files

rib.properties

RIB configuration file. See the RIB Installation Guide, Chapter 6 for details on the rib.properties
entries required for a J2EE environment.

log4j.properties

Configures logging. See the RIB Installation Guide, Chapter 6 for details on the log4j.properties
entries required for a J2EE environment.

.bindings

In the .../WebSphere/sbynjndi directory you will find a file named “.bindings”. This hidden file
contains the serialized java JMS Objects that the Generic JMS Provider uses. It is created as part
of the RIBforAPP installation, detailed in Chapter 6 of the RIB Installation guide.

Note: For RIBforMDM the directory is .../\WebSphere/AppServer/rib/sbynjndi

hibernate.cfg.xml

Hibernate configuration file. See the RIB Installation Guide, Chapter 6 for details on the
hibernate.cfg.xml entries required for a J2EE environment.

Generic JMS Provider

The Generic JMS Provider is fully configured as part of the RIBfor<APP> installation. From the
WebSphere Admin Console, click Resources -> Generic JMS Providers. You will see
“SeeBeyond JMS Provider” as the available resource. The JMS Connection Factory as well as
all the JMS Destinations are defined here.

Message Listener Ports

The Message Listener Ports are also fully configured as part of the RIBfor<APP> installation.
From the WebSphere Admin Console, click Servers -> Application Servers -> serverl ->
Message Listener Service -> Listener Ports. You will see all of the WebSphere Listener Ports
defined here.

Data Source

The Oracle DataSources are fully configured as part of the RIBfor<APP> installation. From the
WebSphere Admin Console, click Resources -> JDBC Providers. You will see “Oracle JDBC
Thin Driver (XA)” as the available resource. All of the <APP> DataSources are defined here.
The “Oracle Rib Datasource” is the DataSource that the RIB utilizes.

Error Hospital Retry

Finally, the Error Hospital Retry EJB may be deployed as part of the RIBfor<APP> installation.
This can be configured and administered through the web browser.

88

Chapter 6 — J2EE Platforms

http://<server>:<http port>/ribhospitalretry/ErrorHospitalRetryServiet

89

http://<server>:<http/

Chapter 7 — 1SO Platform

Chapter 7 — ISO Platform

ISO application server

The 1SO application was patterned after the specifications for the J2EE application server, though
it was developed as the specifications evolved, long before they were complete. For that reason,
it is not J2EE compliant. However, though the terminology may be different, some of the same
concepts apply. The application server has containers that hold server components, which are
EJBs in J2EE. 1SO has messaging components, while J2EE has message-driven beans. 1SO has
configuration files, while J2EE has deployment descriptors.

The 1SO application server was designed with flexibility of deployment in mind. There are none
of the “per PC” licensing requirements that traditional application servers, such as WebSphere,
have. Also, it doesn’t require a heavy-duty server to run it. This is important for a large retailer
who has many individual store locations, each of which requires an application server.

The 1SO application server can use a SeeBeyond JMS queue manager as its JMS messaging
service. In fact, this is the JMS implementation that the RIB uses for integration between ISO,
and other Retek modules such as RMS and RDM. The existing Retek publishers and subscribers
are still SeeBeyond e*Ways, however, the new 1SO components are 1ISO messaging components
for its subscribers, and publishing utilities.

For more information on the ISO application server, see the documentation supplied with the
SIM/ISO application.

ISO-specific Components

If you have purchased the SIM/ISO module, in addition to e*Ways, you will have ISO platform
messaging components that can be monitored using the Mission Control application, which is part
of the 1SO application. Within Mission Control, the highest level entity that can be monitored is
the container. By default, ISO RIB components come in their own container, separate from the
components that are part of the 1SO application. The containers can be monitored to determine
whether they are currently up or down, and how long they have been running. Other
miscellaneous vital statistics can also be viewed from Mission Control.

Within each container in Mission Control, individual components can be monitored to determine
whether they are currently up or down, how long they have been running, their transaction counts,
and any error messages can be viewed as well.

RIB startup and shutdown

Starting the Rib components for the 1SO application is as easy as starting the 1SO application
server. No additional steps are necessary, as long as the configuration files have been installed
correctly in the Rib install process. See “Chapter 14 — RIB component configuration: 1SO
Platform” for details regarding the configuration files.

Preventative maintenance tasks

This chapter lists some common tasks that a system administrator may want to script and perform
on a regular basis, or may not need to script or perform on a regular basis.

91

Retek Integration Bus

Log files

Each of the subscribing Rib messaging components has a log file associated with it. Each
publisher, although not a server component, is associated with a particular message family, and
has its own log file as well. The names of these log files are set in the configuration file for the
subscriber or publisher. Also contained in the configuration files are some Log4j logging
properties that can be used to configure the maintenance of these log files. For more information
on Log4j, see the documentation at the following Internet URL.:

http://jakarta.apache.org/log4j/docs/documentation.html

There are four entries in the publisher and subscriber configuration files that deal with log file
maintenance. The names of these properties are:

e LOGGING_LOG4) LEVEL
e LOGGING_LOG4] MAX_FILE_SIZE

e LOGGING_LOG4] MAX_BACKUP_INDEX
e LOGGING_LOG4) PATTERN_FORMAT

The first entry has to do with the level of detail that will be output to the log file. The log file will
grow most quickly if the level is set to “DEBUG”. To keep the log files smaller, you may want to
set the level to a different value. The default is “DEBUG”.

The second entry has to do with the maximum size to which a log file is allowed to grow. Once
the file reaches this size, if the value for the third property,

LOGGING_LOG4J_MAX_BACKUP_INDEX, is positive, then files {File.1, ...,
File.MaxBackuplIndex -1} are renamed to {File.2, ..., File.MaxBackuplIndex}. Moreover, File is
renamed File.1 and closed. A new File is created to receive further log output. If

MaxBackuplndex is equal to zero, then the File is truncated with no backup files created. This
allows an administrator to maintain the log files with no scripting required.

The default value (the value that is in the configuration file to start with) of the second property
is, “1024KB”, or one megabyte. The default value for the third property is “1”.

The last property, “LOGGING_LOG4J PATTERN_FORMAT?”, controls the format of the
output data. For more information on this setting, see the documentation at the following Internet
URL:

http://jakarta.apache.org/log4j/docs/documentation.html

92

http://jakarta.apache.org/log4j/docs/documentation.html
http://jakarta.apache.org/log4j/docs/documentation.html

Chapter 7 — 1SO Platform

RIB component configuration
XML files

RibContainer.xml

The key XMLconfiguration file for the ISO application server is RIBContainer.xml. This file
will be found in one of the following directories:

Unix:
<install _dir>/chelsea/serverUnix/retek/sim/files/prod/tuning

Windows:
<install_dir>\chelsea\serverWdws\retek\sim\files\prod\tuning

This configuration file must be present in this directory in order for the RIB components to be
deployed. There needs to be an entry in RIBContainer.xml file for each of the messaging
components (subscribers).

Some of the other key entries in this file are:
For the container as a whole:

e containerName — This entry controls the naming of the container’s log files, and the name
displayed in the Mission Control application for the RIB’s container. It is “RIBContainer” by
default.

e defaultinstanceCount — This entry controls how many instances of the container are started
at startup. Itis setto “1” by default.

o MinutesPauseVitals — This entry controls the delay updates to the container’s vitals in the
Mission Control application. The default is “5”.

For the individual components:

o componentClassName — This entry controls the class that the component consists of. This
class must be a descendant of com.chelseasystems.cr.node. CMSComponent. The default is
com.retek.rib.redsky.RibMessagingComponent. This entry should not normally need to be
changed.

o defaultMaxCount — This entry controls the minimum number of instances of the component
that will be allowed to exist. If the number of instances of the component ever dips below
this number, a new instance of the component will be created.

o defaultMinCount — This entry controls the maximum number of instances of the component
that will be allowed to exist. If the number of instances of the component ever goes above
this number, an instance of the component will be destroyed.

e name - This entry controls the name of the component, as displayed within the Mission
Control application.

e propertyPairs — This entry controls what name/value pairs, or properties, are passed to
component upon startup of the component. Of all the standard name/value pairs available,
one is mandatory. Itis, “CONFIG_FILE”, and its value should be the name of the
configuration file for the component. No path information should be included with this
value, as 1SO will look for this file in the standard “config” directory. For the RIB
components, this is the only entry that is necessary.

93

Retek Integration Bus

Retek Binding Mappings

Retek Binding Mapping XML Files detail the mapping of the XML data to/from the payload
object. They exist mainly to prevent costly message validation.

ISO Configuration (*.cfg) files

Non-XML formatted configuration files for the RIB on the ISO application server platform are:

Subscriber messaging component configuration

Subscribing messaging component configuration files use the following naming convention:
<RibFamilyName>messagingcomponent.cfg

An instance of this file should exist in the SO “config” directory, for each RIB component
deployed. Remember, the messaging components represent subscribers, and as such they are
server components that are brought up when the application server starts up. The names of the
configuration files for the standard RIB components include:

e asnoutmessagingcomponent.cfg
o diffsmessagingcomponent.cfg

e itemsmessagingcomponent.cfg
e ordermessagingcomponent.cfg

e seedmessagingcomponent.cfg

e storesmessagingcomponent.cfg
e vendormessagingcomponent.cfg

e whmessagingcomponent.cfg

94

Chapter 7 — 1SO Platform

Some of the key entries in these subscriber configuration files are:

o TOPIC_NAME - The value of this entry should be the topic name in SeeBeyond, to which
the component subscribes.

o DURABLE_SUBSCRIBER — The value of this entry should be “true”. All of the RIB’s
subscribing e*Ways in SeeBeyond are durable, and all of the ISO subscribers should be
durable as well. For a definition of a durable subscriber, see the Sun JMS specification.

o JMS_COMPONENT_TYPE - The value of this entry should be “Subscriber”. Remember,
we are talking about the configuration files for ISO subscribing messaging components here.

e MODULE_NAME - The overall component name. For the RIB subscribers, this should be
“RibMessagingComponent”.

e SUB _MODULE_NAME - The RIB family name for the subscriber.

e SINGLE_THREADED - The valid values for this entry are “true” and “false”. If this entry
is set to “true”, only a single thread will be used to call the processMessages(ArrayL.ist)
method. This method is the main method of the subscribing messaging component, and is
responsible for consuming individual RIB messages. If the value for this entry is “false”,
multiple threads may call this method. The default is, “true”.

o MESSAGING_CONFIG - The name of the IMS messaging configuration file. This path
information should not be included in this file, as ISO will look in the standard “config”
directory for this file. See “JMS Messaging in General”, below for more information on
this file.

e Logging - log4j — There should be a section in the file for Log4j logging. The individual
properties in this section are:

= LOGGING_LOG4J LEVEL

= LOGGING_LOG4J MAX_FILE_SIZE

» LOGGING_LOG4J) MAX_BACKUP_INDEX
» LOGGING_LOG4J PATTERN_FORMAT

For a description of the individual entries, see the following Internet URL.:
http://jakarta.apache.org/log4j/docs/documentation.html

95

http://jakarta.apache.org/log4j/docs/documentation.html

Retek Integration Bus

Publisher messaging component configuration

Publishing messaging component configuration files use the following naming format:
<RibFamilyName>publisher.cfg.

The publishers are utility classes, and although they require configuration files, they are not
server components that are brought up during startup. Also, entries for these publishers are not
required in the RIBContainer.xml configuration file. Names of the configuration files for the
standard Rib publishers include:

e asnoutpublisher.cfg
e dsdreceiptpublisher.cfg
e invadjustpublisher.cfg

e receivingpublisher.cfg

rtvpublisher.cfg
Some of the key entries in these publisher configuration files are:

e TOPIC_NAME - The value of this entry should be the topic name in SeeBeyond, to which
the component publishes.

o JMS COMPONENT_TYPE - The value of this entry should be “Publisher”. Remember,
we are talking about the configuration files for individual instances of the publisher utility
class here.

e MODULE_NAME - The overall component name. For the Rib publishers, this should be
“RibPublishingUtility”.

e SUB MODULE_NAME - The Rib family name for the publisher.

e Logging - log4j — There should be a section in the file for Log4j logging. The individual
properties in this section are:

» LOGGING_LOG4J] LEVEL

» LOGGING_LOG4) MAX_FILE_SIZE

» LOGGING_LOG4J MAX_BACKUP_INDEX
» LOGGING_LOG4] PATTERN_FORMAT

96

Chapter 7 — 1SO Platform

For a description of the individual entries, see the following Internet URL:
http://jakarta.apache.org/log4j/docs/documentation.html

JMS Messaging in General — There is a configuration file for general JIMS messaging for
the Rib. Its name is ribmessaging.cfg, and it is located in the standard 1SO “config”
directory. There should be a property in each of the above configuration files, for both
subscribers and publishers that refers to this file. The property name is,
“MESSAGING_CONFIG” and its value should be, “ribmessaging.cfg”. Some of the key
entries in this file are:

= CLIENT_IMPL - Should be “com.retek.rib.redsky.RibSeeBeyondJmsServices” for all
Rib 1SO subscribers and publishers.

= USE_SESSION_TRANSACTION - The value of this entry should be “true”. What
this means is that the container session should control the entire transaction, rather than
the individual database and JMS sessions within the overall transaction. What this
amounts to a sort of two-phase commit, where the container session knows all of the
individual database and JMS sessions involved, and the Rib messaging component tells
the session to commit all involved sessions. This entry should always be “true”.

= BROKER - Should consist of the host name of the server on which SeeBeyond is
running, plus “:”, plus the port of the JMS queue manager. The port of the JMS queue
manager can be found in the SeeBeyond e*Gate Enterprise Manager application.
Navigate to the JIMS queue manager, go to the “Properties” for it, and look under the
“Advanced” tab.

Properties files

The property files for the Rib/ISO installation are:

binding.properties — This is a “Retek Binding” subsystem file. It is located under the
standard 1SO “config” directory. Within the “config” directory, the pathname is,
“com/retek/binding/rib/castor.properties”. See the “Retek Binding Configuration files”
section in “Chapter 4 — Configuration files” for properties files relating to the Retek Binding.

castor.properties — This is a “Retek Binding” subsystem file. It is located in the standard
ISO “config” directory. See the “Retek Binding Configuration files” section in “Chapter 4 —
Configuration files” for properties files relating to the Retek Binding.

injector.properties — This is a “Retek Binding” subsystem file. It is located in the standard
ISO “config” directory. See the “Retek Binding Configuration files” section in “Chapter 4 —
Configuration files” for properties files relating to the Retek Binding.

payload.properties — This is a “Retek Binding” subsystem file. It is located under the
standard 1SO “config” directory. Within the “config” directory, the pathname is,
“com/retek/binding/rib/castor.properties”. See the “Retek Binding Configuration files”
section in “Chapter 4 — Configuration files” for properties files relating to the Retek Binding.

97

http://jakarta.apache.org/log4j/docs/documentation.html

Retek Integration Bus

98

publisher.properties — This file is also used by the Retek Binding subsystem (see the “Retek
Binding Configuration files” section in “Chapter 4 — Configuration files” for entries relating
to the Retek Binding). Some additional entries are included in this file for the Rib publishers.
The property names consist of the Rib message family name, plus “.”, plus the Rib message
type name. An example would be, “ASNOUT.ASNOUTCRE”. The value for each of these
properties would be the name of the configuration file for each of the publishers. The path
information should not be included, as 1ISO will look for these configuration files in the
standard 1SO “config” directory. The properties and there values should be:

ASNOUT.ASNOUTCRE=asnoutpublisher.cfg
DSDRECEIPT.DSDRECEIPTCRE=dsdreceiptpublisher.cfg
INVADJUST.INVADJUSTCRE=invadjustpublisher.cfg
RECEIVING.RECEIPTCRE=receivingpublisher.cfg
RECEIVING.RECEIPTMOD-=receivingpublisher.cfg
RTV.RTVCRE=rtvpublisher.cfg

rib.properties — See the description under “ISO Platform Specific entries”, under the “RIB
Properties File” section of “Chapter 4 — Configuration files”.

Chapter 8 — RIB Administration Tool

Chapter 8 — RIB Administration Tool

Overview

The RIB Administration Tool contains three administrative GUI Applets: a Hospital
Administration GUI Applet, a RIB Properties Editor GUI Applet and a Message Statistics GUI
Applet. This web application is contained in the gui.war file under the Rib_Hospital_Gui
directory.

The application is for administration of a RIB installation on the same computer as the
Application Server hosting the RIB Administration Tool.

Installation and configuration

The RIB Administration Tool requires an existing application server, such as Apache Tomcat,
installed and running on the same host as the running RIB installation.

The RIB comes equipped with the necessary ‘war’ file, named ‘gui.war’, for the installation.
This file is found <install_dir>/RIB103/Rib_Hospital _Gui/build directory.

To install and configure the RIB Administration Tool using the Tomcat application server:
1 Install the war file on an application server using the gui.war file.
2 Edit the gui.properties configuration file.

HAHHHHH R R

GUI Project Variables

GUl .ProjectHost=

GUI .ProjectPort=

GUI .ProjectName=

GUI.TimingsLogFile.Path=

GUI.TimingsLogFile.Name=

GUI.rib.properties.default._FilePath=

GUI.rib.properties.default_BackupFileExt=_bak

= GUI.ProjectHost and GUI.ProjectPort are values you can set for all the applets. These
values override the applet’s baseurl.getContext lookups to find the URL to the servlets.
If for any reason this lookup does not find your correct host and port, or if you want to
use a servlet residing on a different host or port, set these values in the properties file.

= GUI.ProjectName should be set in the properties file to contain the name of your project
installation (installed application name) on the application server. The applets will use
this name to build the URL to the servlets. The default installation name is “gui”.

99

Retek Integration Bus

GUI.TimingsLogFile.Path and the GUI.TimingsLogFile.Name should be set to contain
the default path to the timings log file and the default name for the log file for the
Message Statistics GUI Applet. When this applet is loaded, it will display a window
where the user can enter the path to the log file and the parameters to pass into the
RibTimings class to gather the statistics. The default path is displayed using these
properties. If no value is entered, the log file path text field on this window will initially
be blank.

GUL.rib.properties.default.FilePath should be set to the default file path of the
rib.properties file. This will be displayed in the RIB Properties Editor’s connection
window as the default File Name, which the user can modify before retrieving the file
from the server.

GUL.rib.properties.default.BackupFileExt should be set to contain the default file
extension the RIB Properties Editor will use when creating a backup copy of the
rib.properties on the server. This will be displayed in a dialog that appears on saving the
file. The user can modify the extension of the backup file to whatever they choose before
the file is saved.

3 Edit the gui.servlet.properties file in WEB-INF/classes.
HHHH A R R R R R
GUI Project Variables

100

GUI.jdbc.driver=oracle.jdbc.driver.OracleDriver

GUI.rib.properties.SessionTimeout=900

GUI.rib.properties.local .FilePath=

GUI.jdbc.driver should be set to the driver used to log in to the database for the main
Portal login. The default driver that is contained the gui.war is an Oracle database driver.

GUL.rib.properties.SessionTimeout should be set to the amount of time in which a session
is timed out after being idle. The index.jsp will set the
HttpSession.setMaxInactiveInterval(); The default is 900 seconds (15
minutes).

GUL.rib.properties.local.FilePath should be set to the directory where the RIB Properties
should locally save the file while editing it. The default is to set this to <appserver-
installation-directory>/<installed-application-name>/temp/, but can be changed to any
directory on the application server.

Chapter 8 — RIB Administration Tool

Accessing the RIB Administration Tool

The RIB Administration Tool starts with the Main Portal screen. All access is performed using a
Web Browser such as the Microsoft® Internet Explorer. The Web Browser downloads a Java
applet from the application server.

Main Portal Screen

To access the Main Portal Screen, first Bring up the RIB Administration Tool from your browser
by the following URL.:

http://<hostname>:<port>/<installed-app-name>

where

<hostname> is the name of the host containing the application server, <port> is the port number
used to access the application server <installed-app-name> is the name of the application the RIB
Administration Tool has been installed under. The default is “gui”.

A login screen will appear. Enter in the login to the Hospital database you want to access using
the Hospital Administration GUI. Even though the Message Statistics GUI and RIB Properties
Editor GUI do not use a database connection, the RIB Administration tool uses the Hospital
database login for authentication. This database login will need to be entered in to access the RIB
Administration Tool regardless of whether the Hospital Administration GUI will be used.

Once logged in to the RIB Administration Tool, an index screen will appear containing links to
the three applets: Hospital Administration GUI, RIB Properties GUI and Message Statistics GUI.

The login to the RIB Administration Tool will expire after the timeout set in the
gui.servlet.properties. The user will be forced to login again if idle for the time set in this timeout

property.
Hospital Administration GUI Applet

This applet contains the same functionality as the Hospital Administration Application detailed
earlier in this manual. The only difference is the lack of a login window, since this login is
derived from the main portal login.

See the help located in the Applet or Chapter 7 for more information about how to run this applet.

101

http://<hostname>:<port>/<installed-app-name

Retek Integration Bus

Message Statistics GUI Applet

This applet contains the same functionality of the RibTimings detailed in Chapter 16, but is now
available in a GUI format. On loading of the applet, a window will appear with the following
fields:

Filename: The default path and filename set in the gui.properties will appear here if they have
been set. Otherwise, enter the full path to the timings log file located on the application server.

Status: Select the status of the statistics to display. All selects all the statistics available in the
timings log file.

Interval: Enter the interval of time in seconds to create a bucket of timings. The RibTimings
will group timings into a bucket to gather statistics. The default is 3600.

Start time: Enter the timestamp time in which the RibTimings should begin gathering statistics.
The timings will not be gathered for any timestamp that is before the time entered in this field.

End time: This is not available unless a start time has been entered. The RibTimings will stop
processing timings if it encounters any timestamp after the end time entered in this field.

Help Menu: This will display help on how to run the applet.

The main Statistics window will appear after selecting the Ok button. There are three areas to the
main Statistics window: the message type list, the time period list and the statistics table. Select
a message type from the list, and the time period list will display the time periods available for
that message type. Once a time period is selected, the statistics table will display the
corresponding statistics.

See the Help menu in the Message Statistics GUI Applet or Chapter 16 for more information on
how to run this applet.

102

Chapter 8 — RIB Administration Tool

RIB Properties Editor

The RIB Properties Editor is a file editor that can be used for editing a file on a server using FTP.
The file is copied to a local directory on the application server, and on save is copied back to the
original server using FTP. A backup of the old file is created when the changes are saved.

This applet contains two windows: a Connection Window and a Main Menu.
Connection Window

The FTP connection information is entered on this window. The window appears on startup of
the applet and by selecting

Open from the Main Menu. The following information must be entered:
File Name: The full path to the file on the server.

Server Name: The name of the server for the FTP Connection.

FTP User Name: The username for the FTP Connection.

FTP Password: The password for the FTP Connection.

Main Menu

This window contains the main actions for downloading and uploading a new RIB Properties file.
The actions available are:

Open: Displays the connection window for retrieving the file.

Save: Saves the changes to the file back to the server. Displays a dialog in which a backup file
extension can be entered; the default is displayed based on the gui.properties value.

Cancel: Cancels changes to the file. A dialog is displayed to verify that all changes should be
discarded.

Exit: Exits from the applet.

Files and classes contained in the war file

Classes:

com.retek.rib.gui.AppletCoder: used for encoding and decoding information sent from applets
to servlets

com.retek.rib.gui.HospitalUIApplet: main Hospital Administration class, contains all applet
GUI code

com.retek.rib.gui.HospitalUIHelper: Hospital Administration class, contains calls to servlet

com.retek.rib.gui.PropertiesUl: main RIB Properties Editor class, contains all applet GUI
Code

com.retek.rib.gui.PropsHelper: RIB Properties Editor class, contains calls to servlet
com.retek.rib.gui.StatisticsUl: main Message Statistics class, contains all applet GUI code

com.retek.rib.gui.StatsDBHelper: Message Statistics class, contains TableModel
implementation

com.retek.rib.gui.StatsHelper: Message Statistics class, contains calls to servlet

103

Retek Integration Bus

com.retek.rib.gui.TableMap and com.retek.rib.gui.TableSorter: classes used for TableModel
implementation for both applets

com.retek.rib.gui.DBConnection: used by index.jsp to test authentication with main RIB
Administration login

com.retek.rib.gui.HospitalUIDBHelper: Hospital Administration class, contains TableModel
implementation and command calls

com.retek.rib.gui.HospitalUlServlet: Hospital Administration servlet class
com.retek.rib.gui.PropertiesServlet: RIB Properties Editor servlet class
com.retek.rib.gui. TimingsServlet: Message Statistics servlet class

Other files:

Js/apps.js: javascript file for RIB Administration index page

taglibs/gui.tld: tag library for RIB Administration index page
WEB-INF/lib/classes12.jar: contains Oracle Database Driver

WEB-INF/lib/retek-rib-support.jar: contains base code for Hospital Administration and
Message Statistics functionality

WEB-INF/lib/retek-sbyn.jar: contains base code for Hospital Administration
WEB-INF/lib/etdRibMessages.jar: contains base code for Hospital Administration
WEB-INF/lib/stcjs.jar: contains base code for Hospital Administration
WEB-INF/web.XML: contains servlet mappings and session defaults

WEB-INF/classes/gui.servlet.properties and gui.properties: properties files used by RIB
Administration Tool and applets

WEB-INF/classes/rib.properties: properties file used for Hospital Administration

HospitalUlHelp.html, StatisticsHelp.html and PropertiesUlHelp.html: help files for the
applets, displayed by selecting Contents from the applet’s Help Menu.

errorpage.jsp: error page for RIB Adminstration index and login pages
index.jsp: main index page for RIB Administration
login.jsp: main login page for RIB Administration

HospitalUl_en_US.properties, PropertiesUl_en_US.properties and
StatisticsUl_en_US.properties: properties files containing GUI text for internationalization
purposes

104

Chapter 9 — Message Statistics Command Line Utility

Chapter 9 — Message Statistics
Command Line Utility

Overview

The Retek Integration Bus (RIB) logs set of timing entries whenever it creates, transform, routes,
filters, or subscribes to messages on the RIB. These time entries are then post-processed by some
other means to roll-up the data. This method was deployed to create a standard set of classes to
perform this rollup and to create an internal summary storage of rolled up statistics. The
displaying of the rolled up information is done via writing to the timings file or via message
publication collaboration. You can then use this information to determine if the system is
functioning correctly or if an application problem exists.

The same classes are used for this implementation as in the Administrative GUI applet.

Requirement

The following classes need to be deployed in order to gather the timings statistics.
BucketSet.java, BucketTimingsMain.java, ProcessTimingsLog.java, RibFileLogger,
RibTimings.java, StatsBucket.java, TimestampType.java, TimingsBucket.java, TimingsLog.java
and TimingsType.java.

Description of the classes

The BucketSet contains a set of TimingsBuckets for a specific period of time. Each
TimingsBucket contains a statistical rollup of timings for a specific Timing Type, Message
Family, Message Type, and Processing Status combination. For some processing statuses, the
Message Family and Message Type may be null. Additional BucketSet objects may be derived
from an initial BucketSet object that contain some subset filetered by Timing Type, Message
Family, Message Type and Processing Status. This class should be the interface to create or
retrieve a specific bucket based on a combination of the identification fields — BucketSet Name,
threshold, timings interval length, interval number.

A StatsBucket object is the holder of statistical information. From a StatsBucket, you can retrieve
the average interval time, the standard deviation (n-1), the minimum time, the maximum time, the
number of times the time is above a certain threshold value, the threshold value used (a
constructor parameter), and the average value that exceeded the threshold. Every call to the
StatsBucket.update() method results in these updated statistics.

A TimingsBucket object is a StatsBucket associated with a TimingType, Message Family,
Message Type, and Processing Status. Multiple TimingsBuckets can be rolled up into a single
StatsBucket.

The TimingsLog class is designed to read a file containing time stamp log entries and create a
bucket array from the data. You can then manipulate or display this data as needed.

The RibTimings class is a wrapper around all the Timings Statistics class to produce a report
through a User Interface.

105

Retek Integration Bus

Prerequisites to run the Timings Statistics:

The rib.properties should have all the properties defined for the e*Ways to get the timings
statistics. The command line arguments to run the RibTimings and BucketTimingsMain class is:

java RibTimings filename status [CSV] [internal [time | all]]

java BucketTimingsMain filename status [internal [time | all]]

Where status is SUCCESS, FAILURE or ALL (case insensitive),

Interval is seconds for each report,

Time is in the form HH: MI: SS and only the interval containing the time is reported.

Note that the retek-rib-support.jar should have all the Timings statistics class within it. The retek-
rib-support.jar should be placed to the correct CLASSPATH. Usage: java —cp —classpath < retek-
rib-support.jar>

106

Chapter 9 — Message Statistics Command Line Utility

How the output appears to be when Timings Statistics report is run:

ewReceivingToRMS.timings SUCCESS 84400

Timings for the Period 00:00:00 to 23:26:39

Timing Count | Averag | STD Time | Time”2 | Min | Max | Threshold | Over Over Over
e Dev Sum Sum Threshol | Threshol | Threshol
d Count |dSum d Avg
SUB_BETWEEN_COLLAB | 999 0.07885 | 0.00099 | 78.772 | 7.18824 | 0.061 | 0.554 | 10 0 0 ?
SUB_B4_CONSUME 1000 | 0.0114 0.00029 | 11.405 | 0.21223 | 0.009 | 0.265 | 10 0 0 ?
SUB_IN_CONSUME 1000 | 0.14611 | 0.00084 | 146.111 | 22.06014 | 0.133 | 0.609 | 10 0 0 ?
SUB_AFTER_CONSUME | 1000 | 0.00845 | 0.00005 | 8.455 | 0.07404 | 0.007 | 0.024 | 10 0 0 ?
SUB_TOTAL_IN_COLLAB | 1000 | 0.16875 | 0.00093 | 168.751 | 29.3368 | 0.153 | 0.63 | 10 0 0 ?

107

Chapter 10 — RMS Batch Message Program

Chapter 10 — RMS Batch Message
Program

Overview

The RmsBatchMsg class allows a user to run RMS 9 publishers and subscribers without the use
of Seebeyond. The RmsBatchMsg class will export RMS publishing data into XML files, and
import XML file data into RMS subscribers.

Running RmsBatchMsg

A properties file has been created for each publishing and subscribing API released in RMS
9.0.15. The following is a list of RMS 9.0.15 APIs and their corresponding properties files:

Publishing APIs

API properties file
RMSMFM_COSTZNGRP costzngrp.properties
RMSMFM_LOCLIST loclist.properties
RMSMFM_ORGHIER orghier.properties
RMSMFM_PARTNER partner.properties
RMSMFM_SEASON season.properties
RMSMFM_STORE store.properties
RMSMFM_SUPPLIER supplier.properties
RMSMFM_WH wh.properties

Subscribing APIs

API properties file
RMSSUB_ITEMLIST itemlist.properties
RMSSUB_XITEM xitem.properties
RMSSUB_XITEMLOC xitemloc.properties
RMSSUB_XUDA xuda.properties

109

Retek Integration Bus

Before running an API, make sure the following jars are in the CLASSPATH:
e rmsbatch.jar

e retek-rib-support.jar

e retek-pub-trans.jar

o log4j.jar

o xmlParserAPls.jar

e classes12.jar

o xerces 1 2 3jar

To run an API, simply run the RmsBatchMsg class with the API’s properties file.

Example:
Java RmsBatchMsg costzngrp.properties

Properties files

Properties - common

Each properties file has the following editable properties

rmsbatch.RmsBatchMsg.message_nodes_in_commit=1

rmsbatch.<<subclass
name>>._.url=jdbc:oracle:thin:@<<machine>>:<<port>>:<<db>>

rmsbatch.<<subclass name>>.user=user
rmsbatch.<<subclass name>>.password=password
rmsbatch.<<subclass name>>.package name=<<RMS package>>

rmsbatch.<<subclass name>>_message_ family=<<message family>>

The <<subclass name>> is set one of the following in the properties file:
o OracleObjectGetNxtSource - for publishing APIs that use Oracle Objects
o ClobGetNxtSource - for publishing APIs that use CLOBs

e OracleObjectConsumeDestination - for subscribing APIs (all subscribing APIs in RMS
9.0.15 use Oracle Objects)

message_nodes_in_commit - specifies the number of messages processed between each commit.

L NOTE: This does NOT specify how many messages to publish from an API. ALL
messages will be published from the specified API in one call to RmsBatchMsg.

url - specifies the location of the RMS database. The <<machine>>, <<port>>, and <<db>>
need to be filled in for each properties file.

user - the username for logging into the RMS database.

110

Chapter 10 — RMS Batch Message Program

password - the password for logging into the RMS database.

package_name - the name of the RMS API being called. In the costzngrp.properties example,
this is set to RMSMFM_COSTZNGRP.

message_family - the name of the message family. In the costzngrp.properties example, this is
set to COSTZNGRP.

Properties - publisher-specific
rmsbatch.RibMessagesFileDestination.file_name=<<filename>>
file_name - specifies the file to write messages to.

Ll NOTE: The program will overwrite any existing file without warning, so make sure to
move an existing output file before running the program again.

Properties - subscriber-specific

rmsbatch.OracleObjectConsumeDestination.type map.<<message
type>>=<<oracle object type>>

rmsbatch.RibMessagesFileSource.file_name=<<filename>>

type_map - specifies which oracle object type is used for each message type in the family. There
should be one property for each message type. For example, the itemlist family has 5 message

types, “itemlistcre”, “itemlistmod”, “itemlistdel”, “itemlistdtlcre”, and “itemlistdtldel”. Here are
the type_map settings for the itemlist family:

rmsbatch.OracleObjectConsumeDestination.type map.ITEMLISTCRE=RIB_ITE
MLISTDESC_REC

rmsbatch.OracleObjectConsumeDestination.type map. I TEMLISTMOD=RIB_ITE
MLISTDESC_REC

rmsbatch.OracleObjectConsumeDestination.type map.ITEMLISTDEL=RIB_ITE
MLISTREF_REC

rmsbatch.OracleObjectConsumeDestination.type map. I TEMLISTDTLCRE=RIB_
ITEMLISTDESC_REC

rmsbatch.OracleObjectConsumeDestination.type map. I TEMLISTDTLDEL=RIB_
ITEMLISTREF_REC

file_name - specifies the XML file to read messages from.

111

Chapter 11 — Multi-Thread feature for the e*Ways

Chapter 11 — Multi-Thread feature for the
e*Ways

What is a Thread?

A thread (sometimes called an execution context or a lightweight process) is a single sequential
flow of control within a program. The threads are used to isolate tasks.

Amdahl's Law

Assuming that an application is multithreaded (programs written to execute in a parallel manner,
rather than a serial or purely sequential one), there are inherent difficulties in making a program
run faster proportional to the number of processors: the program needs to be written in a parallel
fashion, and the program itself must be resource friendly.

Amdahl’s Law explains this: "...the performance improvement to be gained from using some
faster mode of execution is limited by the fraction of the time the faster mode can be used.” This
law applies to more than just changing sequential code to parallel code.

Assume that a program consists of two main parts, A and B, and that each can be optimized. Part
A represents 90% of the execution time, and B represents the remaining 10%. Assume that B can
be optimized in such a fashion so as to be able to finish in one tenth the time of the original
version, and that A can be optimized so as to complete its part of the program in 2/3 the time it
previously needed. If both parts A and B take the same amount of time to be optimized, and the
programmer has time only to optimize one part, which should the programmer work on?
Obviously, he/she should work on part A.

Assume that this program requires 100 seconds to complete. Part A consumes 90 seconds of
execution time, and B requires 10 seconds of execution time. After optimization Part A would
take 60 seconds, and B a mere 1 second. The choice is between a total of 70 seconds of execution
time if A is optimized, and 91 seconds if B is optimized.

Multi-threaded feature for Subscriber, TAFR and Publisher:

What are the situations where multi-threading can help?

Multi-thread can be a valuable tool to increase performance, but it does not help in every
situation. First and foremost, there is some overhead associated with multi-threading. Therefore,
multi-threading should not be used unless a performance problem exists. If you have an e*Way
that is processing only several messages per minute, this would probably not be a good candidate
for multi-threading. This is because you would be increasing the overhead on the server, but you
would not get any benefit from that increased overhead. A good candidate for multi-threading
would be an e*Way that continually receives a stream of multiple messages per second, or that
receives bursts of many messages within a short period of time. One example might be an e*Way
that receives real-time updates from time to time, and also receives periodic batch updates
consisting of a large number of updates.

113

Retek Integration Bus

Multi-threading still may not help the above situation unless the server has multiple processors to
share the load. If the machines has only a single processor, the additional overhead associated
with switching between multiple threads may actual slow the processing of messages down. If the
threads can be doled out to separate processors, that is where performance can really be
enhanced.

When multi-threading is used, it should be used across all the e*Ways that process messages for a
message family. That would include publisher, subscriber, and TAFR e*Ways. It would not be
helpful to have a publisher sending messages very quickly and efficiently, but if the subscriber
can process them only so fast, the bottleneck will exist in the subscriber e*Ways.

The Subscribing, TAFR and Publishing e*Ways provides the multi-threading features together
with the Publishing e*Way. In order to incorporate this feature, there is a certain step that needs
to be followed. The following classes cater the multi-thread features for the e*ways -
HospitalController.java, HospitalRetryController.java, RibCollabController.java,
RibProperties.java, and MultiThreadUtil.java.

Go to the SeeBeyond e*Gate Enterprise Manager -> select the e*Way which needs to run the
Multi-thread feature and copy the collaboration and paste the number of times it needs to be
multi-threaded. Rename the collaboration so that the e*Way has unique identification of the
multi-thread collaboration. If there is 4 Publishing e*Ways with multi-thread features, then there
should be 4 Subscribing e*Ways and as a result, there should be no thread number greater than 4.

114

Chapter 11 — Multi-Thread feature for the e*Ways

The Retry feature has been enhanced with the Multi-thread features. The rib.properties file needs
to have the following entries:

a

In the multi-threading properties section, there should be an entry for each family name and
total number of threads implemented, e.g.

Mfm.messageFamilyName.total_threads=n
mfm.Alloc.total_threads=4
mfm.Alloc.colAllocFromRMS_1.thread_num=1
mfm.Alloc.colAllocFromRMS_2.thread_num=2
mfm.Alloc.colAllocFromRMS_3.thread_num=3
mfm.Alloc.colAllocFromRMS_4.thread_num=4

When a multi-threaded e*Way comes online, the system will check this value for each
individual collaboration as it comes online. As the collaboration comes online, the system
keeps track of how many have come online so far. If the number specified in the
rib.properties entry is exceeded, a runtime exception will occur.

The e*Way specific logging level verbose should be set to “Y” for the e*Way which needs to
be run for the multi-thread feature, e.g. log.ewAllocFromRMS.verbose=Y

All collaboration have different database connection settings for the HospitalRetry. If one
decides to have multi-thread based queues, we suggest you set-up hospital retry queues. Each
application should have its own collaboration in the hospital e*Way — ewHospitalRetry.

The next step is the replication of the publishing and subscribing event types. Assume our
original event type is named, “etTestMessageType”. Since our total threads is four, we want
to make three copies and then rename them. As mentioned above, there are naming
conventions that you need to follow. Each event type needs to have to end with an underscore
and a unique digit. In this case, we will name the event types, “etTestMessageType 1",
“etTestMessageType_2”, “etTestMessageType_3”, and “etTestMessageType_4”. It has to
end with an underscore and a sequence of digits.

Next, replicate the collaborations for the respective subscribing and publishing e*Ways.
Before we do this, though, we should go into our original collaboration and verify that the
publishing event type has been automatically renamed as the new name for our original event
type. For example, it should be as follows;

Event Type Corresponding Collaboration
etTestMessageType_1 colTestSubCollaboration_1
etTestMessageType 2 colTestSubCollaboration_2
etTestMessageType 3 colTestSubCollaboration_3
etTestMessageType_4 colTestSubCollaboration_4

In renaming all the event types and corresponding collaboration, the system automatically
publishes events to the correct topics.

115

Retek Integration Bus

116

If you created a new connection point and selected the properties with e*Way Connection
Type as ‘SeeBeyond JMS’, the “New” button is enabled for the ‘e*Way Connection
Configuration File’. After pressing the “New” button, it displays two options. Selecting the
“Internal: Connect to JMS 1Q Mgr within this schema” and JMS 1Q Manager as ‘igmIMS’, it
sets the configuration file. Click the “Edit” button and go to the ‘Goto Section’ for ‘General
Settings’ and select the ‘Goto Parameter’ for ‘Message Selector’. You need to add within this
"Message Selector’ like ‘Thread_Value=1". This message selector is used for subscription.
The Java class programs cater this piece of information and as a result, this feature does not
need to be set in the connection point of SeeBeyond e*Gate Enterprise Manager.

Before ‘Start” of any e*Ways to run the multi-thread feature, log onto SeeBeyond e*Gate
Monitor for the respective schema, then click the *Launch JMS Administrator’ button to open
the ‘JMS Administrator’ window. On expanding the ‘igmJMS’ option, the “Topics’ would be
displayed. Select the event type that needs to be run for the multi-thread feature and check out
whether any collaboration for the subscriber is associated with the event type. Delete any
collaboration to the subscriber by selecting the collaboration. Press the right-mouse-button
and select ‘Delete Subscriber’. Once this process is completed, start the e*Ways from the
e*Gate Monitor and run the multi-thread feature.

The RIB_MESSAGE table has thread_value field, which collects the multi-thread
information. The MultiThreadUtil class has the NumThreads and ThreadValue properties
defined for Multi-threading.

Chapter 12 — Troubleshooting

Chapter 12 — Troubleshooting

SeeBeyond Platform

This section lists a general approach to troubleshooting problems.

If a problem persists, information can be obtained by turning on e*Way logging and tracing. For
information on this, see the Error, Trace, Debug Log Files section of Chapter 5.

Problems starting a RIB component

A RIB adapter may not start or can terminate soon after it has started. There are two possible
sources of this problem: incorrect configurations and environment problems.

Incorrect configurations

Many problems can arise that involve improper or incorrect configuration file or properties:

Connection Point Names: If a Connection Point is renamed or deleted, then any
collaboration that references it will have errors and will not be able to process data.

Oracle Connection Point User Names and Passwords: Incorrect specification of the
Database Server, System ID (SID), User Name or User password will result in errors for all
adapters using the connection point. Note that the user password is stored as an encrypted
string.

JMS Connection Point TCP/IP Address: JMS Connection Ports must specify the correct
TCP port number and IP address or host name. A common problem that may occur when
migrating a schema from one environment (such as a development environment) to another
(such as a test environment) is that these are not changed. The configuration files for this
contain ASCII characters. Retek recommends creating scripts to modify these values when
migrating the RIB between development, test, and production environments.

117

Retek Integration Bus

Environment problems

Some problems starting adapters are the result of environment or system errors.

118

Registry or Control Broker not started: The SeeBeyond EAI system does not
automatically start up the host registry daemon or any of the control brokers found within
a schema. For Unix Systems, these must be started via a startup script, typically upon system
boot. On Microsoft Windows systems, these are typically installed as services and should be
started automatically. There must be one control broker per host per schema found in the
registry.

JMS 1Q Manager NOT started: The RIB adapters that use a JMS Connection Point require
that the JMS 1Q Manager be up and running before any adapter can access it.

XA Transaction Logs deleted: Never delete the XA transaction logs or you risk losing data
on the JMS queues, losing data associated with prepared transactions in Oracle, or having
many other problems. Oracle prepared transaction IDs can be found in the
DBA_2PC_PENDING view. SeeBeyond transaction logs are found beneath the directory
<EHOME>/client/XALogs.

XA Not installed in Oracle: An adapter can have problems starting if the XA package and
libraries are not installed in the Oracle database.

JMS 1Q Manager Directory specified via a relative pathname: This becomes a problem if
the control broker is started from a different directory than usual. As a rule, always use a
fully qualified directory name.

Multiple Duplicate Control Brokers: On Unix systems, the stccb command must be
executed once per control broker. If multiple identical stcch commands are issued,
components chaos may ensue. The Unix command “ps —ef | grep stcch” lists running stcch
processes. Use the “kill” command to bring down the extra stccb process

SYS.DBMS_PICKLER ERRORS from Oracle: Usually occurs because the user used in
the connection point does not have sufficient priviledges to the Package or RIB Objects being
referred to in the application. Either change the user that is being used or make sure proper
permissions and synonyms are created in Oracle.

Chapter 12 — Troubleshooting

Invalid JMS selectors

This section applies to the following message that may appear in the RIB Log file for an adapter
or e*Way:
Current Message Selector = “” but it should be

= "threadvValue="1" and (retryLocation is null or retrylLocation =
“<eWayName>.<col laborationName>")~

There are up to <some number> messages awaiting processing by this
subscriber');

To Fix this problem Export all messages on Topic and delete the
subscriber with the following command: stcmsctrlutil —host ..

Where <eWayName> is the name of the e*Way, <collaborationName> is the name of a
collaboration, and <some number> is a number.

In order to insure exactly once processing, RIB adapters use JMS Selectors to filter out messages
that are specific to a single subscriber when multiple subscribers go against the same JMS Topic.
The selector will insure that only the correct subscriber will get a message re-posted from an
Error Hospital. In a multi-threaded environment, selectors are used to insure that each
subscribing thread receives the correct stream of messages when sharing a JMS topic.

In order to simplify configuration, the selector is determined programmatically at startup.
Unfortunately, when a JMS server is booted, SeeBeyond dynamically checks its registry for the
JMS selector used by e*Way connection points. When the JMS is booted, it creates a JMS
durable subscriber using the value from the registry, not from a previous instance of the JMS.
When this occurs, the JIMS durable subscribers are re-created with empty or blank selectors. At
this time, Retek is working with SeeBeyond to change this behavior. As of the 10.3.2 release, an
ESR has been made available to disable this behavior when the JMS is booted. Check with Retek
customer support for more information.

A RIB Properties file property, default.MessageSelectorCheck, determines whether the e*Ways
should check if the correct selector is in place. If set to true, the following is performed when the
e*Way is started:

1 During the call to userlInitialize(), the e*Way examines the JMS Topic it subscribes to.

2 The e*Way verifies its Durable Subscriber contains the correct selector. If the selector is
missing or incorrect and there are no messages queued for the subscriber, the Durable
Subscriber is deleted and re-created with the correct JMS Selector.

119

Retek Integration Bus

3 If messages are queued on the JMS Topic for an invalid durable subscriber, the e*Way is shut
down and the error mentioned above logged to the e*Way’s RIB Log file.

If an e*Way is shutdown due to an invalid selector, the following process can fix the situation:

a

c
d
e

Shut down any message publishers for the messages handled by the TAFR or subscribing
adaptor.

Edit the rib.properties file, change default.MessageSelectorCheck from “true” to
“false”.

Bring up the e*Way and wait for it to process all messages on the topic.
Bring down the e*Way. Change default.MessageSelectorCheck back to “true”.

Bring up the e*Way again. The selector should now be valid.

To avoid this problem, always try to perform the following:

1 Always bring up message subscribers before message publishers.

2 Ifatall possible, always turn off messages publishers and wait for all messages to drain
before shutting down the JMS server.

In the RIB 10.3.2 release, two new scripts, start_rib and stop_rib, are available to
bring up or down the RIB schema in a controlled sequential manner. These
scripts use a configuraton file that details which e*Ways should be brought up
and the order this is done. A switch is available to specify an implementation
specific configuration file.

Publisher being shutdown during initialization

If default.SubscriberCheck is set to true or non-existent (default action), the publisher is
configured to verify that a subscriber does exist for each topic it will publish to. If at least one
subscriber is not found, the publisher will shutdown and an exception will be thrown, causing the
collaboration to stop. During initialization this causes the e*Way to shutdown.

The solution is to verify that a subscriber does exist for the topic that the publisher will be
publishing to. Turning on verbose logging will aid in tracking down which topic it will publish

to.

120

Chapter 12 — Troubleshooting

Message processing problems

This section describes possible problems the RIB might occur processing messages. It gives a
brief description of the problem symptoms and suggested actions.

Messages “disappear” when published by a non-Retek application

Description: A non-Retek standard adapter publishes messages successfully, but they appear to
vanish and none are delivered to the Retek adapter.

Action: Many times this is due to the messages not containing the correct JMS message
properties. All messages must contain a message property named threadValue. By default, RIB
adapters select only those messages with a threadValue of ‘1’. Hence, have the publisher create
and set a JMS Message Property named ‘threadValue’ with a value of ‘1.

A non-Retek application recieves messages being re-tried from the Error
Hospital that it had already successfully processed.

Description: A non-Retek is delivered messages successfully consumed by itself but were not
successfully processed by another subscriber. When the message is retried from the Error
Hospital both subscribers reprocess the message.

Action: Insure that the subscriber uses a selector that checks the retryLocation JMS Message
Property. All messages published from the Error Hospital to a JMS Topic for retrying will
contain a value of retryLocation specific to one and only subscriber to actually perform the retry
processing. A typical JMS selector is the following:

threadValue =’1" and (retryLocation is null or retryLocation =’<locationID>")

where <locationlD> specifies the adapter thread to perform the retry processing.

No messages processed

Description: An adapter is not able to update the Error Hospital, publish new messages, or
successfully process messages from a queue if the XA package is not installed and/or activated in
the Oracle database. No messages leave the RIB queue, since XA is required for inserting
messages into the Error Hospital.

Action: Install the XA libraries and packages.

Publishing adapter hangs

Description: Some messages were published before, but now no messages can be published at
all. The publishing e*Way hangs whenever it tries to send a message to the JMS queue.

Action: The JMS queue may be full. This could be due to problems with subscribing e*Ways.
For example, the database the subscriber is connected to does not have the Oracle XA libraries
installed. Check to make sure that subscribers can be started successfully and, if possible, have
NO errors processing messages.

This problem can also be caused by an e*Way that is designed to connect to an application that is
not installed. Messages remain in the JMS queue for all adapters it believes will, in some future
time, pull off messages. The standard RIB schema contains all adapters for all Retek
applications. Delete any e*Way that is not brought up as part of your version of the RIB schema.

121

Retek Integration Bus

XA lock(s) cause problems with one or more messages

Description: Database locks are normally held within a 2-phase commit operation transaction
until the second phase has started or a rollback is issued. If a system failure has occurred between
the end of the first phase and the beginning of the second phase, then these locks are held forever,
unless administrative actions are taken.

The following Oracle message may appear in the logs when this occurs:
ORA-01591: lock held by in-doubt distributed transaction <XID>

where <XID> is a string of three numbers separated by periods (such as 1.21.17).

Action: If possible, fix the problem and display the e*Way associated with the transaction. The
e*Way recovery process should complete the transaction and remove the lock. If this cannot
occur, evaluate whether the transaction should be committed or rolled back administratively.

The following procedure commits the Oracle part of a transaction:
L Note: This process risks a “Heuristically Mixed” transaction status: the Oracle work in a

transaction committed, but the SeeBeyond work rolled back. Careful analysis should
always be performed before attempting to perform this procedure.

1 Determine the Global Transaction ID (XID) of the transaction to be committed. All prepared
transactions will have an entry in the DBA_2PC_PENDING view. With SeeBeyond e*Gate,
the XID is a string of three period-separated numbers (such as 123.45.890). This view
requires administrator privileges to access its contents.

2 Issue the following SQL, using a facility such as SQLPLUS:
COMMIT FORCE “<XID>~

where <XID> is the XID of the transaction. Successful execution of this command requires
administrator privileges that are not granted to most users.

3 Or, commit the work using the following SQL.:
ROLLBACK FORCE <“<XI1D>"

This has the same condition as forcing a commit. That is, the Oracle work rolled back and
the SeeBeyond work committed.

122

Chapter 12 — Troubleshooting

User defined alerts are displayed

Description: The e*Gate Monitor reports many “User Defined Alerts”. This results from trying
messages in the Error Hospital too many times.

Action: If possible, determine the root cause. These messages may be going into the Error
Hospital due to a field value found in the publisher but not found in the subscriber. Examine the
messages in the error hospital and check to see what the error is. If nothing is apparent, turn on
trace logging in the e*Way and look at the log file for more information. These alerts might also
be due cross message family dependencies, so verify that all appropriate publishing and
subscribing adapters are up and running.

Once the problem has been fixed, increase the Max attempts for all of the messages in the error
hospital so that they will be republished. Otherwise, the data contained in these messages will
never be processed again. Furthermore, any subsequent messages referencing the same business
entity (such as the same Purchase Order) will be held in the Error Hospital as well.

Messages not getting to the correct subscriber

Description: The TAFR routing functionality appears to be malfunctioning. Messages go to the
wrong subscriber.

Action: Examine the rib.properties file used. Verify that lines exist in this file for all locations
and that the translation of the <facility type>.<facility_code> is correct.

TAFR not processing any messages
Description: The TAFR is not processing any messages.

Action: Examine the rib.properties file used. Verify that lines exist in this file for all locations
and that the translation of the <facility type>.<facility_code> is correct. Using the e*Gate
Monitor application, verify that the JMS server (the JMS 1Q Manager) used as the destination for
the messages is running. Look for any alerts published from the TAFR adapter.

TAFR being shutdown during runtime

Description: If default.SubscriberCheck is set to true or non-existent (default action), TAFR’s
are configured to verify that a subscriber does exist for each topic it is publishing to. 1f no
subscriber is found, an exception will be thrown, causing the collaboration to stop. This will
cause the e*Way to shutdown also.

Action: Verify that a subscriber does exist for the topic that the TAFR is publishing to. Turning
on verbose logging will aid in tracking down which topic it is publishing to.

123

Retek Integration Bus

Shutdown problems

An adapter or 1Q Manager will not shutdown unless it is between messages. Once a shutdown
command has been accepted by a component, it will not accept new work. However, existing
messages will still be processed.

In rare circumstances, it may be necessary to manually “kill” an adapter because a message
processing thread is held due to a database lock or other resource contention conflict. If this
occurs, you can kill the process using the Unix “kill” command or, for Microsoft Windows
platforms, the task manager.

L] Note: If the RIB Installation Instructions were followed, a “plist” script will exist in the
SEHOME directory which displays all current processes.

Because of the distributed nature of the e*Gate platform, manually issuing kill commands for the
control broker process (stcch) is not recommended unless all attempts to shutdown the control
broker using the e*Gate Monitor application has failed.

Hospital admin GUI and command line utility

There are two types of problems using the Hospital admin GUI or command line interface: Java
class instantiation problems and Database connection problems.

Java class instantiation problems

Most Java class instantiation problems involve the inability to create a java class because it
doesn’t know where the class definition is. Typically, an incorrect CLASSPATH environment
variable is the cause. The scripts hospital, querymsg, readmsg, deletemsg, updatemsg,
and stopmsg all source the hospital-admin_.env file to set the correct class path. This file
assumes that the directory <EHOME>/client/classes exists and contains the required JAR files.
However, there are some circumstances where needed jar files do not exist here. The main
scenario where this can occur is before any RIB e*Way has been started that requires the specific
JAR file. Listed below are some JAR and ZIP files needed, and alternative locations:

e xalan.jar — needed for reading message contents. The JAR file contains the definition of the
class org/XML/sax/ContentHandler. This JAR file can also be found in the “server”
directory of the e*Gate installation:
<EHOME>/server/registry/repository/default/ThirdParty/RSA/certj_2.0.1/classes/xalan.jar

o classes12.zip — needed for the JDBC driver to connect to the Oracle9i database. This file is
normally found in <EHOME>/client/ThirdParty/oracle/classes/classes12.zip. It may also be
downloaded from the Oracle Technology Network website. See
http://otn.oracle.com/software/content.html for more details.

e retek-rib-support.jar
etdRibMessageEnvelope.jar
stcjcs.jar — these JAR files are used by the Error Hospital should be in <EHOME>/client/
directory tree. Alternate copies of these files are found in the <EHOME>/server/repository
directory tree.

124

http://otn.oracle.com/software/content.html

Chapter 12 — Troubleshooting

Database connection problems

An inability to connect to the database may be due to a missing JDBC driver code. The file
classes12.zip should be present in the CLASSPATH and exist on the local machine where the
utility executes.

Other possible connection problems include:

o Bad username/password/SID specification in the hospital-admin.properties file or a
missing hospital-admin.properties file.

e A connection will not be made if using a PC to execute the utility that is located outside of a
firewall that is not configured to accept connections to the database.

J2EE Platform

This section lists a general approach to troubleshooting problems using WebSphere as the
application server.

Available tools

The following are available for assisting with troubleshooting:

e SeeBeyond JMS Administrator

e SeeBeyond e*Way log files

e RIB Log files

o WebSphere server log files

Messages not getting consumed by application

Once messages are published to the RIB, and have made it through the appropriate TAFR e*Way,
they should be immediately picked up by the WebSphere Application Server (Message-Driven
Beans). If not, either there is an incorrect JMS configuration, or WebSphere’s Message Listener
Ports have lost connection to the SeeBeyond managed JMS queue.

125

Retek Integration Bus

Incorrect configurations

Within WebSphere, there are three things that must be correctly configured in order for messages
to be consumed by the Message-Driven beans:

o File System JNDI/Context file: In the .../WebSphere/sbynjndi directory, there is a hidden
file named .bindings. This file contains the actual serialized SeeBeyond JMS Objects. If this
file doesn’t exist or was created with a different JMS hostname/port combination, the Generic
JMS Provider configuration will be invalid. Refer to the RCOM installation guide on how to
create this file.

e Generic JMS Provider: If the JMS Connection Factory and Destinations are not properly
configured, the listener ports will not be able to start.

o Message Listener Ports: Each Message Listener Port must be correctly configured with a
valid Connection Factory and Destination. These are configured in the Generic JMS Provider
area.

Lost connection to JMS

The following, would cause WebSphere to not “listen” to JMS:

e SeeBeyond’s JMS Queue was not running when the Application Server was started, the
Message Listener Ports would not be connected.

o If SeeBeyond’s JMS Queue should happen to be stopped after the Message Listener Ports
have successfully started.

In either case, the Application Server will have to be restarted after ensuring that SeeBeyond’s
JMS queue running.
Messages not getting published from application

Published messages should go directly into SeeBeyond JMS to be consumed by other e*Ways.
The WebSphere server log file and the SeeBeyond JMS Administrator are the two tools to use for
troubleshooting publishing messages from a J2EE application.

Incorrect configurations

Within WebSphere, there is one thing that must be correctly configured in order for messages to
be published by the Publisher beans:

e File System JNDI/Context file: In the .../WebSphere/sbynjndi directory, there is a hidden
file named .bindings. This file contains the actual serialized SeeBeyond JMS Objects. If this
file doesn’t exist or was created with a different IMS hostname/port combination, the Generic
JMS Provider configuration will be invalid. Refer to the RCOM installation guide on how to
create this file.

JMS Provider down

SeeBeyond’s JMS queue must be running for the Publisher EJB to be able to publish messages.
If this is not the case, ensure the JMS queue is running and try to publish again.

126

Chapter 12 — Troubleshooting

Error Messages

When troubleshooting using the log files, here are some of the things to look for, as well as some

potential solutions:

Exception Class Name

Exception Message

Possible Solution

org.xml.sax.SAXException

Parsing Error : File
"http://www.retek.com/
dtd/rib/DiffDesc.dtd” not
found.

There are two potential solutions to
this error. The first is to correct the
data in the rib_doctypes database
table in the RMS database. This
solution is valid only if there is a row
in the table whose value in the
doc_name column matches the dtd
document name. In this example the
document name is, “DiffDesc.dtd”.
In the case where we do have a
matching row, the problem is most
likely that the doc_type_url column
has an invalid url. It must consist of
an http server and port number that
points to a directory containing the
dtd document.

The second potential solution is that,
if there is not a matching record in
the rib_doctypes table, the entry for
the default DTD URL in the
rib.properties file is missing, or
invalid. Keep in mind that we are
talking about the rib.properties file
for the RMS publisher, not the Rib
ISO integration. The property name
for the default DTD URL is,
“dtd_url.default”. Again, the value
must consist of an http server and
port number that points to a directory
containing the DTD document.

An example of an entry for the DTD
URL in the rib.properties file is:

http://hostname:8100/dtd/

com.retek.binding.rib.exception.
PublishException

“PUBLISH_FAILED”

The PublishException is returned
from the RIBMessagePublisherEJB
when a message cannot be published
to either JMS or be inserted into the
Hospital. Check that the JMS is
running and there are no database
problems with the RIB datasource in
WebSphere.

127

http://hostname:8100/dtd/

Retek Integration Bus

Exception Class Name

Exception Message

Possible Solution

com.retek.binding.rib.exception.

InjectorException

“INJECT_FAILED”

The InjectorException class can
contains a nested exception returned
from the RCOM application. Most
likely this nested exception will be a
java.sql.SQLException. Ifitis, it
will likely indicate a null constraint
violation, integrity constraint
violation, or unique constraint
violation.

com.retek.binding.rib.exception.

RIBIntegrationException

COMMAND _
FACTORY_UNABLE_
TO_READ_
PAYLOAD OR_
BINDING_
PROPERTY_FILES

Either the payload.properties, or
binding.properties file is not on the
application’s class path. Check the
rns.sh, node_rns.sh, and node.sh on
Unix, or rns.bat, node_rns.bat, and
node.bat on Windows. Check these
files for the classpath set in them to
make sure the directory, in which the
payload.properties or
binding.properties file is located, is
in the classpath. Alternatively, put
the properties file into a directory
that is on the classpath.

com.retek.binding.rib.exception.

RIBIntegrationException

COMMAND _
FACTORY_CANNOT_
INSTANTIATE_
PAYLOAD

The payload.properties file does not
contain an entry whose property
name matches the Rib message
family and Rib message type key,
extracted from the Rib message
itself. Either the XML for the Rib
message does not have the
appropriate family and/or type, or
the payload.properties file is missing
an entry for the family and type. See
the section, “Retek Binding
Configuration Files” under “Chapter
4 — Configuration Files”.

com.retek.binding.rib.exception.

RIBIntegrationException

UNMARSHALING_
ERROR

There is either something wrong
with the XML that is being
unmarshalled into the payload
object, or the payload object is out of
date with respect to the DTD and
XML schema, from which the
payload object was generated.

128

Chapter 12 — Troubleshooting

ISO Platform

There are several log files that are important to troubleshooting the Rib 1SO integration module.
All of the log files mentioned below will be found in the standard 1SO “log” directory.

On the Windows operating system the log files are found in the directory
<install_dir>\chelsea\serverWdws\retek\sim\log

On the Unix operating system the log files are found in the directory
<install _dir>/chelsea/serverUnix/retek/sim/log

In both cases, <install_dir> is the directory the ISO application has been installed into.

The first, and most important log files, are the files that are specific to each individual API,
whether publishing or subscribing. By default, their names are
<RibMessageFamily>messagingcomponent.log (all lowercase) for subscribers, and
<RibMessageFamily>publisher.log (all lower case) for the publishers.

Examples of a publisher and a subscriber are:
asnoutpublisher.log

asnoutmessagingcomponent. log

In addition to these log files, there are two log files pertaining to the entire RIB container. These
are the RIBContainer_nnnnn.out, and the RIBContainer_nnnnn.err files. Any messages written
by either the 1ISO application, or the Rib integration module, to standard out go to the
“RIBContainer_nnnnn.out” file, while messages written to standard error go to
“RIBContainer_nnnnn.err”. Most messages, however, will go to the individual log files for the
publishers and subscribers. If you do not find the detailed information you are looking for in the
individual publisher or subscriber log file, you might be able to find it in one of these two files.

129

Retek Integration Bus

When troubleshooting using the log files, here are some of the things to look for, as well as some

potential solutions:

Exception Class Name

Exception Message

Possible Solution

org.xml.sax.SAXException

Parsing Error : File
"http://www.retek.com/
dtd/rib/DiffDesc.dtd” not
found.

There are two potential solutions to
this error. The first is to correct the
data in the rib_doctypes database
table in the RMS database. This
solution is valid only if there is a row
in the table whose value in the
doc_name column matches the dtd
document name. In this example the
document name is, “DiffDesc.dtd”.
In the case where we do have a
matching row, the problem is most
likely that the doc_type_url column
has an invalid url. It must consist of
an http server and port number that
points to a directory containing the
dtd document.

The second potential solution is that,
if there is not a matching record in
the rib_doctypes table, the entry for
the default DTD URL in the
rib.properties file is missing, or
invalid. Keep in mind that we are
talking about the rib.properties file
for the RMS publisher, not the Rib
ISO integration. The property name
for the default DTD URL is,
“dtd_url.default”. Again, the value
must consist of an http server and
port number that points to a directory
containing the DTD document.

An example of an entry for the DTD
URL in the rib.properties file is:

http://hostname:8100/dtd/

com.retek.binding.rib.exception.
ApplicationMessagelnjectionExceptio
n

“CREATE_FAILED?”,
“MODIFY_FAILED?”, or
“DELETE_FAILED”

There was a problem in the ISO
application. The
ApplicationMessagelnjection
Exception class can contain a nested
exception. Most likely this nested
exception will be a
java.sql.SQLException. Ifitis, it
will likely indicate a null constraint
violation, integrity constraint
violation, or unique constraint
violation.

130

http://hostname:8100/dtd/

Chapter 12 — Troubleshooting

Exception Class Name

Exception Message

Possible Solution

com.retek.binding.rib.exception.

RIBIntegrationException

COMMAND _
FACTORY_UNABLE_
TO_READ_ INJECTOR_
PROPERTY _FILE

The injector.properties file is not on
the application’s class path. Check
the rns.sh, node_rns.sh, and node.sh
on Unix, or rns.bat, node_rns.bat,
and node.bat on Windows. Check
these files for the class path set in
them to make sure the directory, in
which the injector.properties file is
located, is in the class path.
Alternatively, put the
inject.properties file into a directory
that is on the class path.

com.retek.binding.rib.exception.

RIBIntegrationException

COMMAND _
FACTORY_UNABLE_
TO_READ_
PAYLOAD OR_
BINDING_
PROPERTY_FILES

Either the payload.properties, or
binding.properties file is not on the
application’s class path. Check the
rns.sh, node_rns.sh, and node.sh on
Unix, or rns.bat, node_rns.bat, and
node.bat on Windows. Check these
files for the classpath set in them to
make sure the directory, in which the
payload.properties or
binding.properties file is located, is
in the classpath. Alternatively, put
the properties file into a directory
that is on the classpath.

com.retek.binding.rib.exception.

RIBIntegrationException

COMMAND _
FACTORY_CANNOT _
INSTANTIATE_
INJECTOR

The injector.properties file does not
contain an entry whose property
name matches the Rib message
family and Rib message type key,
extracted from the Rib message
itself. Either the XML for the Rib
message does not have the
appropriate family and/or type, or
the injector.properties file is missing
an entry for the family and type. See
the section, “Retek Binding
Configuration Files” under “Chapter
4 — Configuration Files”.

131

Retek Integration Bus

Exception Class Name

Exception Message

Possible Solution

com.retek.binding.rib.exception.

RIBIntegrationException

COMMAND_
FACTORY_CANNOT_
INSTANTIATE_
PAYLOAD

The payload.properties file does not
contain an entry whose property
name matches the Rib message
family and Rib message type key,
extracted from the Rib message
itself. Either the XML for the Rib
message does not have the
appropriate family and/or type, or
the payload.properties file is missing
an entry for the family and type. See
the section, “Retek Binding
Configuration Files” under “Chapter
4 — Configuration Files”.

com.retek.binding.rib.exception.

RIBIntegrationException

UNMARSHALING_
ERROR

There is either something wrong
with the XML that is being
unmarshalled into the payload
object, or the payload object is out of
date with respect to the DTD and
XML schema, from which the
payload object was generated.

132

	Contents
	Chapter 1 – RIB component overview
	Introduction
	SeeBeyond components
	Active messaging
	Monitoring

	Retek supplied components
	Additional resources

	Chapter 2 – RIB component operations
	Simple message flow
	Message routing
	Component failures
	Application trigger failures
	SeeBeyond Publishing adapter failures
	SeeBeyond deployed TAFR adapter failures
	SeeBeyond deployed Subscribing adapter failures

	Deployment architecture considerations
	Retek schema integrity on the SeeBeyond Platform
	Disk space analysis
	Intelligent queue managers
	Performance motivated parallel processing

	Chapter 3 – Configuration files
	RIB Properties File
	RIB Logging and Timings File
	Log4j support in the RIB Properties File
	RIB Message bundling entries
	Multi-threading entries
	Error Hospital entries
	Global entries
	Implementation classes used
	SeeBeyond platform specific entries
	Application specific entries
	ISO platform specific entries

	Retek Binding configuration files
	Properties files
	XML files

	Chapter 4 – SeeBeyond Platform
	RIB startup and shutdown
	Available Scripts
	Sequencing considerations – Detailed Information
	RIB message publishing adapters
	RIB message subscribing adapters
	TAFR adapters

	Preventative maintenance tasks
	Log files
	MFM staging tables
	Error Hospital
	SeeBeyond tools

	RIB component configuration
	Oracle database triggers
	RIB property file
	SeeBeyond e*Way configuration files
	SeeBeyond connection point configurations
	TAFR adapter configuration

	Chapter 5 – Message error handling
	Error Hospital components
	Error Hospital configuration parameters and properties
	To access the adapter configuration:

	Error Hospital activities
	Hospital command line utility set up
	Error Hospital admin command line scripts
	Manually querying message information from Error Hospital

	Error Hospital log entries
	Create additional Error Hospitals

	Chapter 6 – J2EE Platforms
	RIB startup and shutdown
	Starting the RIB components
	Shutting Down RIB Components

	Preventative maintenance tasks
	Log Files

	RIB component configuration
	Configuration files
	Generic JMS Provider
	Message Listener Ports
	Data Source
	Error Hospital Retry

	Chapter 7 – ISO Platform
	ISO application server
	ISO-specific Components
	RIB startup and shutdown
	Preventative maintenance tasks
	Log files

	RIB component configuration
	XML files
	ISO Configuration (*.cfg) files
	Properties files

	Chapter 8 – RIB Administration Tool
	Overview
	Installation and configuration
	Accessing the RIB Administration Tool
	Main Portal Screen
	Hospital Administration GUI Applet
	Message Statistics GUI Applet
	RIB Properties Editor

	Files and classes contained in the war file
	Classes:

	Chapter 9 – Message Statistics Command Line Utility
	Overview
	Requirement
	Prerequisites to run the Timings Statistics:

	Chapter 10 – RMS Batch Message Program
	Overview
	Running RmsBatchMsg
	Properties files

	Chapter 11 – Multi-Thread feature for the e*Ways
	What is a Thread?
	Amdahl's Law
	Multi-threaded feature for Subscriber, TAFR and Publisher:

	Chapter 12 – Troubleshooting
	SeeBeyond Platform
	Problems starting a RIB component
	Message processing problems
	Shutdown problems
	Hospital admin GUI and command line utility

	J2EE Platform
	Available tools
	Messages not getting consumed by application
	Messages not getting published from application
	Error Messages

	ISO Platform

