

Retek® Integration Bus™

10.3.2

Technical Architecture Guide

Retek Integration Bus

Retek® Confidential

The software described in this documentation is furnished under a license
agreement, is the confidential information of Retek Inc., and may be used
only in accordance with the terms of the agreement.

No part of this documentation may be reproduced or transmitted in any form
or by any means without the express written permission of Retek Inc., Retek
on the Mall, 950 Nicollet Mall, Minneapolis, MN 55403, and the copyright
notice may not be removed without the consent of Retek Inc.

Information in this documentation is subject to change without notice.

Retek provides product documentation in a read-only-format to ensure
content integrity. Retek Customer Support cannot support documentation
that has been changed without Retek authorization.

Retek® Integration Bus™ is a trademark of Retek Inc.

Retek and the Retek logo are registered trademarks of Retek Inc.

This unpublished work is protected by confidentiality agreement, and by
trade secret, copyright, and other laws. In the event of publication, the
following notice shall apply:

©2003 Retek Inc. All rights reserved.

All other product names mentioned are trademarks or registered trademarks
of their respective owners and should be treated as such.

Printed in the United States of America.

Corporate Headquarters:
Retek Inc.

Retek on the Mall

950 Nicollet Mall

Minneapolis, MN 55403

888.61.RETEK (toll free US)

+1 612 587 5000

European Headquarters:
Retek

110 Wigmore Street

London

W1U 3RW

United Kingdom

Switchboard:

+44 (0)20 7563 4600

Sales Enquiries:

+44 (0)20 7563 46 46

Fax: +44 (0)20 7563 46 10

Customer Support

Customer Support hours:

Customer Support is available 7x24x365 via e-mail, phone, and Web access.

Depending on the Support option chosen by a particular client (Standard,
Plus, or Premium), the times that certain services are delivered may be
restricted. Severity 1 (Critical) issues are addressed on a 7x24 basis and
receive continuous attention until resolved, for all clients on active
maintenance.

Contact Method Contact Information

Internet (ROCS) www.retek.com/support
 Retek’s secure client Web site to update and view issues

E-mail support@retek.com

Phone US & Canada: 1-800-61-RETEK (1-800-617-3835)
 World: +1 612-587-5800
 EMEA: 011 44 1223 703 444
 Asia Pacific: 61 425 792 927

Mail Retek Customer Support
 Retek on the Mall
 950 Nicollet Mall
 Minneapolis, MN 55403

When contacting Customer Support, please provide:

• Product version and program/module name.

• Functional and technical description of the problem (include business
impact).

• Detailed step by step instructions to recreate.

• Exact error message received.

• Screen shots of each step you take.

http://www.retek.com/support

Contents i

Contents
Chapter 1 – Introduction... 1

Additional resources.. 2
Retek 10.3 integration documents .. 2
SeeBeyond Technology Corporation documents ... 3

Chapter 2 – The RIB messaging model................................. 5

Message characterization .. 5

RIB Message Families and Message Types .. 6

Model drivers and concerns .. 7

Message life cycle ... 9

RIB message structure... 13
Sample RIB Message.. 15

Chapter 3 – Messaging system component overview 19

SeeBeyond components .. 19
Registry... 19
Schemas.. 19
Control brokers and participating hosts.. 19
Events and event type definitions... 20
Collaborations... 20
e*Ways and BOBs.. 21
Intelligent Queues and JMS Intelligent Queues ... 21
IQ Managers and JMS IQ Managers .. 22
e*Way Connection Points .. 22

J2EE components .. 23
Java Message Service Usage .. 23
JMS Selectors ... 24
Enterprise Java Beans (EJBs) ... 25
Message Driven Beans (MDBs) ... 25
Deployment Descriptors ... 25
Transaction Managers... 26

ii Retek Integration Bus

Integrated Store Operations (ISO) components .. 27

RIB components .. 27
Old and New Stored Procedure Interfaces.. 27
RIB Database Objects... 28
RIB_XML database package.. 29
RIB_SXW database package.. 29
RIB_SETTINGS and RIB_TYPE_SETTINGS ... 29
Application message publishing triggers using CLOBs... 31
Application message publishing triggers using RIB Objects 33
RIB Objects: an in-depth view ... 34
RIB Object to XML Translation... 38
Non-trigger PL/SQL publishing ... 39
Message Family Manager API ... 40

Publishing application adapters using PL/SQL interfaces 45
TAFR Adapter .. 47
Subscribing application adapter for PL/SQL application interfaces 49
Subscribing application adapters that also publish messages................................... 52
Subscribing application PL/SQL Stored Procedure APIs .. 52
Error Hospital ... 53
Pl/SQL API Publisher Processing .. 55
Pl/SQL API Subscriber Processing .. 56
Retek MDBs and Publishing EJBs ... 58
Retek Binding... 60
J2EE and SeeBeyond Bridging... 60

Chapter 4 – RIB Message Families 63

Event types and Message Families.. 63

Message Family References.. 64

Chapter 5 – External application message interfaces 65

Direct JMS interfaces for non-Retek applications .. 65

Character Encodings ... 66

RIB Messaging Paradigm concerns .. 66

SeeBeyond application-specific adapters.. 67

Contents iii

Chapter 6 – Retek Extract, Transform, and Load 69

Chapter 7 – Batch job integration.. 71

Motivations for replacing FTP transfers ... 71

Transfer file data using a batch application e*Way .. 72
“Fixed” configuration ... 72
“Message” mode... 74

Transferring data directly from/to a database.. 74
Using connection points and developing the logic within a collaboration 75
Using a “generic” e*Way application adapter.. 75
Using an application specific e*Way adapter... 78

Chapter 1 – Introduction 1

Chapter 1 – Introduction
Welcome to the Retek 10.3 Integration Bus Technical Architecture Guide. This
guide describes the technical architecture of the Retek Integration Bus (RIB). The
goal is to illustrate the capabilities and issues an enterprise may encounter when
integrating applications with the RIB. The intended audience for this guide
includes system designers and project managers. It assumes that you are familiar
with Enterprise Application Integration terms and concepts. If not, see the
“Additional resources” section for more information.

Chapter 2 introduces the RIB message model. Important conceptual topics are
presented such as the business event relationship to the message, the message
‘family,’ and message structures. Because the sequence of events that occur on a
table reflect business processes, this chapter discusses the association of message
structure and sequencing to systems and their availability on the RIB. Error
handling, performance, and the synchronization of participating systems are
topics touched on here. Finally, Chapter 2 presents the message lifecycle, or how
messages flow through the system. Described are simple flows of messages that
do not require additional transformation, filtering, or routing logic (known as a
‘TAFR’) to occur on the RIB, and those flows that depend upon a further TAFR
operation prior to another application’s subscription of the message.

The components of both SeeBeyond’s e*Gate Integrator–the RIB itself–and
Retek applications on the RIB are described in Chapter 3. Here you learn about
SeeBeyond components like the registry, schema, event type definitions,
e*Ways, intelligent queues, collaborations, and more. Because certain Retek
applications have moved to the J2EE environment, this chapter also introduces
the J2EE Enterprise Java Bean and Message Driven Bean components. Non-
J2EE based Retek applications are characterized by the use of Oracle-based
triggers and XML and Message Family manager packages for publishing
messages through application adapters. Retek applications also share common
message subscription processes for message and error handling. TAFR
processing is presented too.

Learn about Retek Message Families in Chapter 4 where the event type and
Message Family concept is discussed. Here you can see a list of Message
Families for each application: Retek Merchandizing System (RMS), Retek
Customer Order Management (RCOM), and Retek Distribution Management
(RDM). If you are considering the interface of additional applications on the
RIB, read Chapter 5. The successful coupling of third-party applications to the
RIB (and, as a result, to Retek applications) hinges on understanding the
importance of the single event-message relationship. These concerns are
addressed here, along with descriptions of SeeBeyond proprietary e*Gate
adapters that a client can select for applications to be deployed on the RIB.

Chapters 6 and 7 introduce the integration of Retek Extract, Transform, and Load
(RETL) and batch file transmission on the RIB. RETL (extraction-
transformation-load) is a framework you can deploy for high-volume data
processing, especially in a multi-CPU execution environment. Both RETL and
batch job integration involve the movement of files across the RIB. Currently,
implementation of these processes involves further definition, and these chapters
discuss the relevant issues.

2 Retek Integration Bus

Additional resources
Read the following Retek 10.3 and SeeBeyond documents for additional
information.

Retek 10.3 integration documents
The following resources should be used for further understanding the Retek
Integration Bus:

Retek 10.3 Integration Guide – Descriptions of Retek applications on the RIB
and the functional areas in which they share data. The guide also contains all data
descriptions, including the message catalog; XML document type definitions of
messages; and mapping documents that specify a message’s source application,
table, column, and data type.

Retek 10.3 Integration Bus Primer – An introduction to basic Enterprise
Application Integration (EAI) concepts and to the Retek Integration Bus (RIB).

Retek 10.3 Integration Bus Deployment Guide – Discussion of deployment
considerations, design patterns, and strategies.

Retek 10.3 Integration Bus Installation Guide – Descriptions of:

• SeeBeyond e*Gate Integrator installation of its registry host and all
participating host software, plus Graphical User Interface hosts for
development and system monitoring.

• How to import the RIB schema into the e*Gate Integrator product.

• Configuring database connection points and JMS topics, updating
CLASSPATH configuration values, and deleting unused adapters.

• Instructions for RIB components for applications using ISO or J2EE
platforms.

Retek 10.3 Integration Bus Operations Guide–Provides a basic understanding
of RIB components, how messages flow between them, and operational activities
surrounding the components. Included are templates for using the RIB as an
alternative to FTP batch jobs to transfer files from one system to another.

Retek 10.3 Extract, Transformation and Load (RETL) Programmer’s Guide
-- Provides information on using RETL for high-volume data extraction and
loading.

Chapter 1 – Introduction 3

SeeBeyond Technology Corporation documents
See the resources listed in this section to learn more about the RIB as it is
deployed through the SeeBeyond e*Gate Integrator EAI platform:

SeeBeyond Business Integration Suite Deployment Guide – Information to
use in analyzing, planning, and managing an EAI deployment.

SeeBeyond Business Integration Suite Primer – An introduction to all
SeeBeyond e*Gate products, including e*Ways for popular applications like:

• PeopleSoft

• SAP

• Oracle Financials

Chapter 2 – The RIB messaging model 5

Chapter 2 – The RIB messaging model
This chapter presents the RIB’s messaging model. It describes how RIB
messages are structured and the rationale behind this structure. It also describes
the types of messages used.

Not presented in this chapter are the specifics of each message. The Retek 10.3
Integration Guide details information about message contents and
transformations.

Message characterization
Enterprise Application Integration systems produce messages characterized by
three dimensions: the contents of the message, when the message is produced,
and the structure of the message.

Note: The term “message characterization” is used as opposed to “message type”
to avoid confusion with other EAI terms.

Structure: The message may have a simple structure and correspond to a small
business sub-entity or it may contain a hierarchical structure containing all sub-
entities that comprise it. (“Flat” versus “hierarchical”.)

Message contents: The message contains all information about a business entity
or it captures only something that has changed about that entity (“snapshot”
versus “delta”).

When the message is produced: The message may be produced as part of the
business transaction affecting the entity or it may be produced within a separate
transaction that occurs a short period of time later. (“Synchronous” versus
“asynchronous” production.)

Using these criteria, one is able to characterize a specific message as a “flat
synchronous snapshot” or a “hierarchical asynchronous delta” or a “hierarchical
synchronous snapshot” or some other combination. Additional information
accompanies the business entity information. This includes XML tags used to
rout the message, information about the originating system or environment, or
information about the business event the message captures.

The RIB publishes three different message characterizations:

• Hierarchical Synchronous Snapshots – These messages contain newly
created composite business entities, such as purchase orders.

• Flat Synchronous Snapshots – These messages contain a change made to a
business entity absolute value, such as the price of an item, on a “master”
system. They may also contain newly created simple business entities, such
as a location.

• Flat Synchronous Deltas – these messages encapsulate a business event
captured on a non-master system that affects information on a remote
“master” system. An example of this would be for a clerk to reserve
inventory for a local store system from a remote warehouse system. The
remote warehouse system is the master of its inventory data.

6 Retek Integration Bus

RIB Message Families and Message Types
Besides the characterizations of a message, each RIB message belongs to a
specific Message Family. Each Message Family contains information specific to
a related set of operations on a business entity or related business entities. The
publisher is responsible for publishing messages in response to actions performed
on these entities in the same sequence as they occur.

Descriptions of each Message Family are found later in this document. Although
a generalized format exists, each Message Family varies in the specifics of the
information it contains – the business entities and events the message captures.
Furthermore, each Message Family contains a set of sub-formats specific to the
business event triggering message publication. The term message type embodies
this specific sub-format. For example: a Purchase Order Message Family can
contain Message Types such as “Create PO Header”, ”Create PO Detail”,
“Update PO Header”, or “Delete PO Detail”.

Messages are published and subscribed to on a Message Family basis. A single
application is responsible for publishing all messages within a Message Family.
However, multiple instances of an application may publish messages within the
same Message Family. In other words, only the RMS application publishes
messages in the “Available To Promise” (ATP) Message Family and only the
RDM application publishes messages in the “Advanced Ship Notice Outbound”
(ASN Outbound) Message Family. However, multiple distribution center
installations of RDM may each publish their own ASN Outbound messages.

Chapter 2 – The RIB messaging model 7

Model drivers and concerns
An architect chooses the type, structure, and other characteristics of the messages
within an EAI system based upon many factors. One major factor is how the
message contents encapsulate a business event. Different characterizations are
available within a single EAI system. The RIB is no exception. The RIB contains
many messages characterized as “Hierarchical snapshots” and “synchronously”
produced. On the other hand, there are also “flat synchronous delta” RIB
messages associated with update operations. The factors determining which
characterization to use include:

• Publisher/subscriber/bus availability: One major goal in the design of the
RIB is to insure that no tight coupling exists between Retek’s applications
and the RIB’s availability. That is, if the RIB is unavailable, the publishing
and subscribing applications can still function. This means that there may be
a delay before the transmission of a message occurs over the RIB network. It
also means that database updates needed for message publishing must occur
outside of the same transaction containing the business event.

• Retek application locking on sub-business entities: Many of Retek’s
applications allow for simultaneous updates to sub-business entities. An
example of such an entity is a line item found within a Purchase Order. The
Retek Merchandising System allows multiple concurrent changes to multiple
items, header, or summary information for a single PO. Many times the PO is
used for replenishment purposes and multiple people are constantly updating
the PO. Situations such as these tend to produce “flat” messages containing
only the changes to the line items. Producing a “hierarchical” message would
risk locking the PO for an unacceptable amount of time.

• Concurrency of message contents production and business event: A
desire for a loose coupling between the RIB and the business application
suite drives some EAI architectures. In many cases, message information is
staged before publication. A delay exists between when the business event
occurs and when the message corresponding to this event is created and
published. This delay presents a window of opportunity for multiple similar
business events to occur on the same entity before publication of any of the
messages. For example, multiple users may make changes to the same
Purchase Order header within a short time period.

There are two strategies for staging business event information: record only
enough information to denote that the event occurred (for example: an update
occurred on PO line item #123) or record all information about that event
(for example: an update occurred on PO line item #123 and the new quantity
is 4, the new location ID is 8,). If only some of the information is staged, the
message published may not correspond to the triggering business event. In
this case, the publisher assumes that the subscriber is interested only in the
resultant business object and has little or no interest in datum such as the
number of times a change has occurred.

8 Retek Integration Bus

• Transactional considerations: Some business events require multiple
database transactions to complete. One example of this is the creation of a
new vendor. In this case, all of the surrounding foundation data must be
present before the vendor specifics. This foundation data includes
information such a valid country code identifying the vendor’s country of
origin, one or more valid currencies, and other specific terms, conditions or
other policy identifiers used to conduct transactions with the vendor.

• Sequencing and error handling: Many business processes are stateful. That
is, only certain actions can occur at certain times. A subscriber must process
messages concerning a specific business entity in the same order they were
published. This has implications regarding error handling: once an error
occurs on one message, subsequent messages referring to the same business
object should be held and not processed until the error has been resolved.
However, other messages concerning other business entities should continue
to be processed.

• Deployment and software lifecycle: The applications producing and
subscribing to messages need separate deployment between themselves and
the RIB. In effect, each Retek application can be “plugged” into the RIB
based on the needs of the retailer. If the retailer decides to not use the RIB,
then no noticeable performance degradation occurs. In other words, the RIB
is not required for any Retek application to function in a stand-alone manner.

• Performance: Updates to some business sub-entities happen frequently on a
single business entity. Take the example of a retailer creating a single
replenishment PO per supplier. Users may update the same PO many times
during the day. When one analyzes the volume of updates and the cost of
creating a full PO message, it may be a significant performance bottleneck to
publish the full PO snapshot for each update.

Another performance consideration is the granularity of a message and the
requisite overhead to process the contents of a message. This includes the
following factors:

 Per-message overhead – the amount of processing needed to simply
retrieve a message from the associated message server and to perform a
two-phase commit operation.

 Retrieval of referenced data – the external data needed to process a
message that is referenced, but not contained, within the message.

 Aggregation of contents – the number of logical units and their contents
contained in a message. Aggregation is a performance enhancement
technique that allows more data to be processed in a single physical unit
of work by spreading overhead among many logical units of work.

Chapter 2 – The RIB messaging model 9

• Scalability: Associated with performance is how well the system can scale.
Scaling concerns come to the forefront when a single thread of processing
cannot perform well enough to process a required amount of data. Ideally, a
scalable application will perform in a linear manner according to the
available resources – doubling the number of processing instances and
resources should double the throughput of the application. The main concern
for scalability is inherent in the resource contention between threads. These
concerns can only be addressed by the message definition and the associated
database locks held while processing a message. In certain circumstances, a
message may be processed by an application in multiple database
transactions to insure scalability.

• Data synchronization risks: Many messages seek to replicate data across
multiple systems. Sometimes, the data on two systems may differ due to a
variety of possible situations. When one uses a “delta” type of message, there
is a risk that the subscriber cannot process these messages due to the data
differences.

Message life cycle
The Retek Information Bus (RIB) uses the “Pub/Sub” message model for all of
the messages produced and consumed within the EAI system. The publishing
application is responsible for creating the initial message contents. The RIB
publishing adapter will publish it to the RIB and make it available to any
subscribers. The RIB knows what subscribers are to receive the message due to
the RIB’s configuration -- this configuration associates a set of subscribers to
each publisher / Message Family combination.

Database tables associated with the publishing application typically stage
message information. On the SeeBeyond platform, one or more RIB Publishing
Adapter collaborations poll the application via a stored procedure call. A
collaboration is a single thread of control within the adapter. On the J2EE
platform, the application calls a Retek developed Enterprise Java Bean (EJB)
with the payload information to be published.

The message resides on a Java Message Service (JMS) topic1 immediately after
publication. The JMS topic provides stable storage for the message in case a
system crash occurs before all message subscribers receive and process it.

One system requirement is that a message must be delivered to and processed
successfully exactly once by each subscriber. Furthermore, all work performed
by the subscriber and the RIB must be atomically committed or rolled back, even
if the JMS server is on a remote host. The standard way to perform this is by
using an XA2 compliant interface and two-phase commit protocol.

1 A “JMS topic” is a queue of messages that can be shared between multiple subscribers and each
subscriber can independently access every message on the topic. A “JMS queue” is a queue of messages
which, if shared between multiple subscribers, allows for only one subscriber to see any specific message.
2 XA is a standard specification that details the interface between multiple “Resource Managers” and a
“Transaction Manager”. It insures that distributed transactions are performed correctly within a
heterogeneous environment.

10 Retek Integration Bus

After initial publication, a message may undergo a series of transformation,
filtering, or routing operations. A RIB component that implements these
operations is known as a Transformation and Address Filter/Router (TAFR)
component. A transformation operation changes the message data or contents. A
filter operation examines the message contents and makes a determination as to
whether the message is appropriate to the subscriber. For example: those
subscribers that do not process all Message Types found in a Message Family
require filter operations to weed out the unsupported types. A router operation
examines the message contents and forwards the message to a subset of its
subscribers. A filter operation can be considered a special case of a routing
operation. Although logically separate operations, for performance reasons
TAFR components usually combine as many as is appropriate.

TAFR operations are specific to the set of subscribers to a specific Message
Family. Multiple TAFRs may process a single message for a specific subscriber
and different specific TAFRs may be present for different subscribers. Different
sets of TAFRs are necessary for different Message Families.

If all subscribers to a message can process all messages within a Message Family
without any TAFR operations, then no TAFR components are needed, as seen in
Figure 2.1.

Figure 2.1 Simple Message Flow

Application
Triggers

Publishing
Adapter App 1 DB

JMS
Topic

Subscriber
Adapter 1

Subscriber
Adapter 2

Message Family
Manager

Staging Tables App 2 DBPayload

Payload

RIB messsage RIB message

RIB message

Chapter 2 – The RIB messaging model 11

Multiple TAFRs may be needed depending on the types of subscribers. This is
seen in Figure 2.2, where one TAFR routes the information among different
remote sites and then another TAFR transforms the data further for an additional
subscriber.

JMS
Topic

2C

Publishing
Adapter TAFR1

JMS
Topic

1

JMS
Topic

2A

JMS
Topic

2B

Sub Adapter 1

Sub Adapter 2

TAFR 2

App1 db

App 2 db

App 3 db

Sub Adapter 3

RIB
message

RIB
meessage

RIB Message

RIB Message

RIB Message

RIB
Queue

3

Figure 2.2 Message Flow with TAFR

Message
Family

Manager
Staging
Tables

Application
Trigger

Payload

Payload

Another type of RIB component that may process a message is a bridge
component. These SeeBeyond e*Ways, BOBs, queues, or connection points
allow messages to traverse different administrative domains. The type of bridge
component used is site specific. A deployment of bridge components is
dependent on how the network bandwidth and topology, the administrative
specifics of the publisher and subscriber applications, and the availability of
specific RIB resources. Bridges are very useful when remote sites that belong to
different organizations and operations staff need to exchange messages and a
central controlling authority is non-existent. Figure 2.3 is a modification of
Figure 2.2, where one of the remote systems uses a bridge.

12 Retek Integration Bus

JMS
Topic

2C

Publishing
Adapter TAFR1

JMS
Topic

1

JMS
Topic

2A

JMS
Topic

2B

Remote Sub
Adapter

Sub Adapter 2

TAFR 2

Remote
App db

App 2 db

App 3 db

Sub Adapter 3

RIB
message

RIB
meessage

RIB Message

RIB Message

RIB Message

JMS
Topic

3

Figure 2.3 Message Flow with TAFRs and Bridge

Remote
JMS

Topic

B
R
I
D
G
E

B
R
I
D
G
E

Remote RIB Installation

Message
Family

Manager
Staging
Tables

Application
Trigger

Payload

Payload

Within RIB components, message processing continues until a subscribing
adapter successfully processes the message. These components will perform
application specific database updates for the specific message encountered.

When a message is processed, the adapter checks to see if the Error Hospital
contains any messages associated with the same entity as the current message. If
so, then the adapter places the current message in the hospital as well. This is to
insure messages are always processed in the proper sequence. If proper
sequencing is not maintained, then the subscribing application will contain
invalid data.

If an error occurs during message processing, the subscribing adapter notes this
internally and rolls back all database work associated with the message. When
the message is re-processed (since it has yet to be processed successfully), the
adapter will now recognize this message is problematic (sick) and checks it into
the hospital for a “cure”.

After a message is checked into the Error Hospital, a second collaboration
extracts the message from the hospital and re-publishes it to the integration bus.
The message remains in the hospital during all re-tries until the subscribing
adapter successfully processes it.

Chapter 2 – The RIB messaging model 13

RIB message structure
RIB Messages are XML formatted. Multiple business events may be aggregated
or bundled into a single message. The outer tag, <RibMessages> may contain
multiple <ribMessage> tags, each of which represents a separate business event.
The <RibMessages> tag may also contain a single <publishetname> tag. When
the source of data is a file, certain collaborations use this tag to determine the
correct event type (JMS Topic) to publish the message to. It is only valid when
a file must be loaded as a single message using the RIB’s generic file loading
collaboration rule. Each <ribMessage> tag is a two-tiered structure consisting of
a set of “envelope” tags and a single “payload”. The envelope tags contain
routing, message type, and other non-business entity information. The payload is
specific to the message type and contains the business entity information.

As of the RIB 10.3 release, the message envelope contains the following tags:
<RibMessages>
root message tag. This tag contains one or more <ribMessage> tags.
<ribMessage>
tag delimiting information regarding a single event that has occurred on a
business object. This tag contains all of the elements below:
<family>
Message Family message belongs to
<type>
message type message belongs to
<id>
Optional ID string that identifies the message. Composite primary keys will
require multiple IDs. For example, a line item within a Purchase Order would
contain the PO number and line item number as part of the ID. For example:

<id>PONumber=12345</id>

<id>ItemID=321</id>

Some ID’s are simple and the value of the ID is specific to the Message Family.
In this case, a single ID tag may be present and consist of merely a single
identifier, such as <id>FT_ITEM_12</id>.

14 Retek Integration Bus

<routingInfo>
Optional tag that contains elements used to route or filter messages for specific
subscribers. Multiple <routingInfo> tags may be present. Within the
<routingInfo> element, the following sub-elements must exist:

<name>
name of routing field. A message may have multiple routing fields.
<value>
value of the routing field.
<detail>
optional tag containing additional qualification of the name/value. There
may be up to two <detail> tags found within each <routingInfo> tag. Sub-
elements of <detail> are:

<dtl_name>
name of the detail field.
<dtl_value>
value of the detail field.

The values of the <name>, <value>, <dtl_name>, and <dtl_value> are
specific to the message family.

<publishTime>
Date/timestamp the message was published. Must be in the form, yyyy-MM-dd
HH:mm:ss.SSS z

where:

yyyy is the year
MM is the numeric month (1 – 12)
dd is the day of the month
HH is the hour of the day (0 – 23)
mm is the minutes of the hour (0 – 59)
ss is the seconds of the minute (0-59)
SSS is the milliseconds of the second (000 – 999)
z is the three character time zone specification

<hospitalID>
This is an optional element. It constains the ID of the Message within the Error
Hospital. Must be set when the message has been resubmitted or retried.
<failure>
Optional tag that contains elements used to identify a specific processing error.
Multiple <failure> tags may exist. Every time the message is checked into the
Error Hospital, a <failure> tag is created. This tag contains the following sub-
elements:

<time>
Date/timestamp of failure.
<location>
Location or name of the Error Hospital.
<description>
Textual description of the error.

Chapter 2 – The RIB messaging model 15

<messageData>
The message type specific “payload” containing data describing the message
triggering event. The payload is XML, but the XML varies within each message
type. The DTDs describing this data are stored in a table within the rib_message
database table.
<ribmessageID>
This field uniquely identifies the message based on the publishing adapter. It
may be used to track or correlate problems associated with a specific message.
<customData>
Optional field reserved for client specific additions to RIB message payloads.
<customFlag>
Reserved for future use. Must be set to ‘F’.
<hospitalRef>
This is an optional field. The reference to a hospital record used by custom post-
processing in conjunction with the hospital controller. It allows a successful
completion of one message to cause a change in a status of a message in the error
hospital, so that potentially it can be retried. The hospitalRef contains 4
components:

 MessageNum (Unique hospital ID)

 Message Family

 Old Reason Code

 New Reason Code

Sample RIB Message
The sample RIB Message below contains a <RibMessages> tag containing two
<ribMessage> nodes. The <messageData> tag contains data for a warehouse
create and modification messages. Routing information has been added for this
example; this message does not normally contain routing information.

Also in the example, one difference between each <ribMessage> node is the
format of the <messageData> string. This tag contains XML tags itself. Tag
delimiters and quotation marks within an XML tag must be changed or
surrounded by a CDATA declaration in order for it to be well-formed. The first
node uses a CDATA declaration. Using the CDATA declaration is more
efficient than replacing the XML reserved characters. However, it requires that
the string itself never contains the ending delimiter for a CDATA string, “>>]”.
The second changes the reserved XML characters using the “<”, “>”, and
“"” for “<”,”>” and “”” (double quotation), respectively3. Either format
may be used in a <messageData> element.

Whitespace between different XML elements is optional. However, whitespace
should not be found immediately following the <messageData> tag and the
message payload itself.

3 There are two additional reserved characters in XML, “&” (ampersand) and “’” (apostrophe or single
quotation mark). Their replacement strings are “&” and “'”.

16 Retek Integration Bus

<?xml version="1.0" encoding="UTF-8" ?>

<RibMessages>

 <ribMessage>

 <family>WH</family>

 <type>WHCre</type>

 <id>22</id>

<ribmessageID>10.3|ewWHFromRMS|colWHFromRMS|2003.05.26
13:43:29.123|78</ribmessageID>

 <routingInfo>

 <name>to_phys_loc</name>

 <value>9901</value>

 <detail>

 <dtl_name>to_phys_loc_type</dtl_name>

 <dtl_value>S</dtl_value>

 </detail>

 </routingInfo>

 <publishTime>2003-05-26 18:06:29.809
CDT</publishTime>

 <messageData><![CDATA[<!DOCTYPE WHDesc SYSTEM
"http://www.retek.com/dtd/rib/WHDesc.dtd">

<WHDesc>

 <wh>22</wh>

 <wh_name>WH1</wh_name>

 <wh_add1>19 Pruneridge Ave</wh_add1>

 <wh_add2/>

 <wh_city>Cupertino</wh_city>

 <county/>

 <state>CA</state>

 <country_id>USA</country_id>

 <wh_pcode>95014</wh_pcode>

 <email/>

 <stockholding_ind>Y</stockholding_ind>

 <channel_id/>

 <currency_code>USD</currency_code>

 <duns_number/>

 <duns_loc/>

 <physical_wh>1</physical_wh>

 <break_pack_ind>Y</break_pack_ind>

Chapter 2 – The RIB messaging model 17

 <redist_wh_ind>N</redist_wh_ind>

 <delivery_policy>NEXT</delivery_policy>

</WHDesc>]]></messageData>

 <customFlag>F</customFlag>

 </ribMessage>

 <ribMessage>

 <family>WH</family>

 <type>WHMod</type>

 <id>22</id>

<ribmessageID>10.3|ewWHFromRMS|colWHFromRMS|2003.05.26
13:43:29.123|79</ribmessageID>

 <routingInfo>

 <name>to_phys_loc</name>

 <value>22</value>

 <detail>

 <dtl_name>to_phys_loc_type</dtl_name>

 <dtl_value>S</dtl_value>

 </detail>

 </routingInfo>

 <publishTime>2003-05-26 18:06:29.834
CDT</publishTime>

 <messageData><!DOCTYPE WHDesc SYSTEM
"http://www.retek.com/dtd/rib/WHDesc.dtd">

<WHDesc>

 <wh>22</wh>

 <wh_name>WH1</wh_name>

 <wh_add1>20 Pruneridge Ave</wh_add1>

 <wh_add2/>

 <wh_city>Cupertino</wh_city>

 <county/>

 <state>CA</state>

 <country_id>USA</country_id>

 <wh_pcode>95014</wh_pcode>

 <email/>

 <stockholding_ind>Y</stockholding_ind>

 <channel_id/>

 <currency_code>USD</currency_code>

 <duns_number/>

18 Retek Integration Bus

 <duns_loc/>

 <physical_wh>1</physical_wh>

 <break_pack_ind>Y</break_pack_ind>

 <redist_wh_ind>N</redist_wh_ind>

 <delivery_policy>NEXT</delivery_policy>

</WHDesc></messageData>

 <customFlag>F</customFlag>

 </ribMessage>

</RibMessages>

Chapter 3 – Messaging system component overview 19

Chapter 3 – Messaging system component
overview

This chapter details the major components of the RIB that create, process, or
consume messages.

The 10.3 release of the RIB has a diverse set of application interfaces. For some
Foundation Data interfaces, the 10.3 RIB release uses Character Large Object
Binaries to communicate with the Oracle Stored Procedures. For high-volume
messages, the interfaces to Oracle Stored Procedures use a RIB specific set of
Oracle Objects. Another variant in use has the RIB infrastructure implemented
with the Java 2 Platform, Enterprise Edition (J2EE) environment to work with
Retek Applications deployed within the J2EE environment.

SeeBeyond components
The RIB deployed on the SeeBeyond e*Gate Integrator platform uses an
application provided Oracle Stored Procedure interface to process message
payload or to create payloads for new messages. In this environment, the RIB
components execute within the context of SeeBeyond’s e*Gate Integrator
framework. This section presents a brief overview of the associated components.

Registry
The e*Gate Registry is a SeeBeyond proprietary database containing all entities
used within a running e*Gate system. There is at least one registry available to
SeeBeyond components at all times. A system designer designates one registry as
the “master”. Other, “secondary” registries replicate the master for increased
performance and system availability.

Schemas
A schema is a logical grouping of SeeBeyond EAI components. Each registry
contains at least one or more schemas. Typically, schemas are designed for the
end-to-end processing of a set of related messages. The design of a Schema
within a deployed RIB system is dependent on many site-specific factors.
Specific design or configuration options are discussed in the RIB Deployment
Guide.

Control brokers and participating hosts
The control broker is responsible for maintaining the operational control and
status of its attached components. Another goal of a control broker is to minimize
the number of network connections to the registry and to provide a central point
of control for a set of components. Each control broker connects to one registry
but can also fail over to other registries if needed. The control broker and all of
the attached components must belong to a single e*Gate schema.

20 Retek Integration Bus

There is one control broker per “participating host” per SeeBeyond e*Gate
schema. A participating host is a logical construct used. The control broker’s
TCP/IP address and the participating host’s name are associated with each other
within the registry.

Control Brokers and participating hosts are transparent or not involved in the
processing of RIB messages.

Events and event type definitions
SeeBeyond “events” include both messages passing to and from JMS, and stored
procedure calls to external application APIs. An event’s type determines its
logical name, but the rules for parsing are determined by an event type definition
(ETD). Hence, the ETD has a strong coupling with the message structure.
Different event types may share the same ETD to allow message with identical
structure to flow to different recipients. The RIB uses a single ETD for all
messages while they are inside the RIB.

Collaborations
Collaborations define message processing logic on a per Message
Family/message source/ component combination. This logic is “triggered” or
executed when the adapter pulls a message with the correct event type from the
specified source. The RIB uses Java to define the message processing logic. All
collaborations require one or more triggering conditions in order to execute. This
condition may be any of the following:

• A file appearing in some directory

• A certain time period has elapsed

• A message appearing on a queue

• Some application – specific condition

Chapter 3 – Messaging system component overview 21

A collaboration works on a collection of input and output events, which may be
messages going to or from queues, or passing to or from an application’s RIB
APIs.

In general, the logic within a collaboration may perform any number of
operations. It may update a database, simply collect statistical data, write
information to a file, or some other operation. It may produce zero or hundreds of
output events, depending on the application.

e*Ways and BOBs
There are two basic types of e*Gate components used to create, process, and/or
consume messages on the RIB: e*Ways and Business Object Brokers (BOBs).
These are specific implementations of the generalized concept known as an
Integration Bus “Adapter”. BOBs and e*Ways contain one or more
“Collaborations” that are triggered from some event. A collaboration works on a
collection of input and output events, which may be messages going to or from
queues, or passing to or from an application’s RIB APIs.

Note: See the Retek Integration Bus Primer if you are unfamiliar with the
concept of an Integration Bus Adapter.

e*Ways and BOBs are multi-threaded and can process multiple messages
simultaneously, but are single-threaded for a particular event type.

Traditionally, the difference between the two component types is that e*Ways
may contain an “application specific” source or sink for messages, while BOBs
connect internal bus components. The RIB, however, only uses a specific type of
e*Way, the Java “Multi-mode” e*Way, which can function as both an external
source or sink and an internal connector. The Multi-mode e*Way is a grouping of
logical collaborations into a single physical process or program.

Intelligent Queues and JMS Intelligent Queues
Intelligent Queues (IQ) hold published messages and maintain a record of what
subscribers have received the messages. Many types of Intelligent Queues either
wrapper the message storage mechanism or bridge to another queuing system.
The SeeBeyond e*Gate system installed with the RIB includes a Java Messaging
Service (JMS) IQ. JMS Intelligent Queues are queues that may be accessed
using the Java Message Service API.

22 Retek Integration Bus

IQ Managers and JMS IQ Managers
One primary purpose of an Intelligent Queue Manager is to control a set of
Intelligent Queues of the same type. There are multiple types of Queue
Managers, each controlling a different type of IQ. Each type of IQ differs on how
messages are queued and saved to stable storage while in the queue.

The JMS Intelligent Queue Manager serves two roles. The first is the same as
any other IQ manager: to control a set of Intelligent Queues for any SeeBeyond
e*Way. The second (which the RIB uses) is to act as a Java Message Service
(JMS) provider, accessible through JMS Connection Points. The RIB uses the IQ
Manager this way because it requires the use of the XA two-phase commit
protocol to guarantee “exactly once” successful message processing. This
protocol is available with a JMS implementation. However, a JMS Intelligent
Queue is not used because the existing IQ Manager service interface does not
support the XA protocol. Instead, RIB e*Ways use SeeBeyond JMS Connection
Points. Connection Points connect to a JMS IQ Manager such that the XA
protocol is supported. For more information regarding JMS connection points
and Intelligent Queues, see the SeeBeyond JMS Intelligent Queue User’s Guide.

The RIB is designed to only retrieve and publish messages to a JMS compliant
server. The preferred JMS implementation is the SeeBeyond’s standard JMS
implementation. As of the 10.3 release, Retek has not certified other JMS
implementations or interfaces.

e*Way Connection Points
An “e*Way Connection” or “Connection Point” defines a session between the
e*Way and an external system. The following types of connections are available:

• Java Message Service – a connection to a JMS Server or JMS Service.

• A relational database, such as Oracle

• A TCP/IP connection to a remote application using the HTTP or HTTPS
protocol.

• E-mail (uses standard SMTP for outbound and POP3 interfaces for inbound
messages)

If a database connection point used within a collaboration defines the login,
password, and server address for database operations. It also may define the
frequency “triggering events” are fired off, allowing the collaboration to define a
polling operation.

A connection point made to a JMS implementation can be used to publish or
subscribe to external applications. JMS connection points can also be used to
bridge between e*Gate schemas.

Chapter 3 – Messaging system component overview 23

J2EE components
The Java 2 Platform, Enterprise Edition (J2EE) is a multi-tiered client/server
architecture that allows an application to be deployed as a set of reusable
components within a distributed processing environment. Client tier components
run on a client machine and business tier components run on the J2EE server and
database components run on a database server.

Retek applications that are deployed on the J2EE platform and integrating using
the RIB will require the Retek Binding, Retek Message Driven Bean (MDB), and
Enterprise Java Bean (EJB) components. Retek applications deployed using
Oracle Forms do not have J2EE dependencies, except for a Java Message
Service provider.

Java Message Service Usage
The J2EE Java Message Service (JMS) specification provides a standard API
used by RIB components for publishing and subscribing messages. This section
details what parts of the specification are used.

In the e*Way environment, sending messages to and retrieving messages from
the JMS is wrappered by a set of SeeBeyond proprietary classes. However, it
could be possible to circumvent these classes, at the cost of additional program
complexity. This means that the actual implementation is still JMS compliant.

For the RIB, all messages are published to a JMS Topic. The specific topic used
is dependent on the Message Family the message belongs to and the current stage
in the processing of the message. For example, the name of the topic used to
hold messages pulled from RMS with vendor information is
“etVendorFromRMS”. TAFR adapters may both subscribe to and publish
messages in the same Message Family. In these cases, the re-published messages
are put onto another topic.

The list of JMS topics used by RIB components is detailed in the RIB Integration
Guide.

24 Retek Integration Bus

JMS Selectors
Another aspect of the JMS usage is the attachment of message properties to
published messages and the use of selectors by message subscribers. Message
selectors are used by the RIB to distinguish the desired subscribers for a message.
The standard set of message properties are:

threadValue– the logical thread value associated with the multi-threading of
a message stream. All messages for a specific business object will always
contain the same threadValue property. This, combined with the standard
FIFO message ordering on the topic, is integral to message sequencing.
Messages with different threadValue properties are not guaranteed to be
processed in the same relative order as publishing.

retryLocation -- This identifies a specific subscriber that is to retry this
message. This property is only set when a message is currently in the Error
Hospital and is scheduled for another attempt to be processed. It insures that
messages being retried are only picked up by the original subscriber for those
topics having multiple subscribers.

groupKey – This property identifies a group of subscribers for processing
the message. The value of this property is an identification of a level within
a hierarchy that is to receive this message. It is present for compatibility with
the Retek Integrated Store Operations (ISO) platform.

Messages published without any selectors present will not be picked up by the
standard RIB adapters in the SeeBeyond platform. By default, the RIB creates a
selector that subscribes to messages:

• with a threadValue of ‘1’ and

• a retryLocation of ‘<ewayName>.<collaborationName>’ or null (not
present).

Message Selector Check
Because these message selectors help guarantee single message processing and
thread routing, we need to make sure that message selectors are properly set on
each durable subscriber. Upon starting each e-way that subscribes to a message
on a topic (Subscribers and Tafrs), the e-way checks its own selector and if it
isn’t set correctly it will check to see if any messages are awaiting consumption
by that subscriber, and if no messages are waiting the durable subscriber is
deleted and recreated with the proper message selector. However, if messages
are waiting to be consumed the eway will explain this state and shut itself down
before consuming any messages telling the user (in the RIBLogs) to extract the
messages and fix the selector, then re-add the messages to ensure that the eway
can make sure the messages are to be processed or if it should be filtered out.

This check and termination of the eway can be bypassed by changing a setting in
the rib.properties file:

default.MessageSelectorCheck=true (change to false if you want to skip this
validation).

Chapter 3 – Messaging system component overview 25

Enterprise Java Beans (EJBs)
Enterprise JavaBeans are a means to deploy application components without the
developer necessarily worrying about low-level implementation details such as
threading, transaction control, and load balancing.

EJB’s are deployed within a J2EE Server container. It is the container’s
responsibility to instantiate an EJB, provide a thread of execution and perform
load balancing. Depending on how the EJB is deployed and used, it may also be
the container’s responsibility to provide the transactional context of calls made to
the EJB.

There are two characteristics of EJBs: Session versus Entity and Stateless versus
Stateful. All RIB EJBs are Stateless Session Beans. This means that these Beans
are not associated with a specific database entity, but maintain a session with the
client. It also means that no state is preserved between bean activations.

Message Driven Beans (MDBs)
Message Driven Beans are used to process messages from one or more Java
Message Server Providers. The J2EE server is responsible for reading the
message from the JMS provider and delivering it to the MDB onMessage()
procedure. The Application developer creates the onMessage() method of the
bean to implement all application specific logic.

For the J2EE deployment of the RIB, all of its MDB’s begin by implementing the
same code. This is because a) the MDB’s deployment descriptors describe the
RIB interface enough for Message Family specific processing and b) the Retek
Binding Code enables the means for Retek application specific processing. The
Retek Binding code is discussed later.

Deployment Descriptors
The deployment of EJBs and MDBs are through XML files known as
Deployment Descriptors. Deployment Descriptors describe the attributes of a
J2EE component in regards to what the component is, the number of instances
allowed and the transactionality of a request made to the component.

Each application server has unique variances from other application servers in
the available and required XML tags found in its deployment descriptors. Hence,
Jboss deployed EJBs use a slightly different deployment descriptor than
WebSphere specific deployment descriptors. Fortunately, tools exist to easily
create application server specific deployment descriptors.

26 Retek Integration Bus

Deployment descriptors also specify the selector a MDB is using. Standard RIB
messages will have a JMS message property, threadValue, set to a value defining
a logical processing thread. By default, threadValue has a value of ‘1’. For
messages being retried from the Error Hospital, an additional property,
retryLocation, is set to make sure only the original subscriber will receive the
message. Hence, most MDBs will have a selector of the form:

threadValue=’1’ and (retryLocation is null or
retryLocation = ‘<mdbID>’)

Where <mdbID> is the so-called locationID found in the ‘location’ column of the
error message.

One very important aspect of the deployment descriptors for RIB MDB’s is the
control of the number of MDB instances and the number of messages retrieved
from the JMS server at a single time. The J2EE specification allows multiple
MDB instances to retrieve multiple messages at a single time from a specific
JMS topic. The reason for this is to improve performance. However, if one
simply increases the number of MDB’s reading from a topic or the number of
messages retrieved from the JMS, windows of opportunity arise for messages to
be processed out of order. Hence, the RIB requires that each and every MDB
deployed use at most one instantiation. Multi-threading the message processing
must be done using separate deployment descriptors which specify different JMS
“Selectors” for each deployed MDB for a single Message Family. This will
insure that all messages for a single business object will always be processed in
the correct order.

Transaction Managers
All RIB publishers and subscribers use an XA compliant two-phase commit
operation to insure that

• A message is published if and only if the associated database transaction is
successfully committed.

• A message is removed from the JMS server if and only if the associated
processing is successful.

An integral part of this is a J2EE component known as a Transaction Manager
(TM). Transaction Managers have been around for at least as long as the XA
specification and are an integral part of three-tier client/server computing. The
purpose of a TM is to start, end, and control a transaction involving multiple
resources such as databases and JMS Servers.

EJB’s and MDB’s for the RIB are configured to use container managed
transactions. This means that the J2EE container which hosts the bean controls
the transaction either by implementing a TM or by using a TM implemented
elsewhere in the application server.

It should be noted that all RIB Bean components must require the use of a global
transactions. For MDB’s, the transactionality of requests should be set that a
Transaction is required and for RIB EJB’s, the transactionality of method calls
should be set to Mandatory. Otherwise, a window of opportunity exists whereby
either a message is published twice to the JMS topic or the message is lost.

Chapter 3 – Messaging system component overview 27

Integrated Store Operations (ISO) components
The ISO platform is a low-cost Retek application server available for use in store
systems. Although this platform is not J2EE compliant, it is extremely similar to
J2EE. Although some differences in terminology exist, such as the use of the
term “ISO component” versus “EJB” or “MDB”, the same basic paradigm is
used to describe the architecture. A critical component is the usage of an XA
compliant two phase commit. This insures that messages are removed if and
only if a successful processing has occurred.

For those applications using the ISO platform, the Java Open Transaction
Manager is used to control the two phase commitment operations. For more
information on JOTM, see http://jotm.objectweb.org .

RIB components
The SeeBeyond components listed above build and process RIB messages. This
section lists the subsystems deployed within these components and within other
Retek application software. Each RIB component has a dedicated task and is
generally specific to one Message Family.

Old and New Stored Procedure Interfaces
In previous releases, all adapters used the same interface structure to the
database. The main facets of this design involved the use of Oracle CLOBS
(Character Large Object Binaries) as the means to pass information to and from
an Oracle Stored Procedure. The stored procedure was responsible for encoding
and parsing the message payload.

For those interfaces requiring a high-level of performance, this design has been
modified such that XML creation and parsing is performed in the SeeBeyond
e*Way adapter. The means to communicate data to/from the stored procedure is
performed via the use of Oracle Objects. These objects provide a hierarchical
container to store the XML and map one-to-one with all attributes and elements
found in the payload of a RIB message. There are also other changes to these
interfaces concerning the number and types of the parameters.

Additionally, the RIB has begun to interface with Retek applications developed
on the J2EE platform. For this platform, the interface to the RIB is via a
Message Driven Bean (MDB) for subscribers and by using an Enterprise Java
Bean (EJB) to publish messages to the RIB.

http://jotm.objectweb.org/

28 Retek Integration Bus

RIB Database Objects
As mentioned above, some adapters and application interfaces have been
modified to use Oracle Objects to pass information to and from the stored
procedure. All of the Oracle Objects used to pass payload information are
created under the same base object, RIB_OBJECT. In other words, these
payload objects extend RIB_OBJECT or inherit from RIB_OBJECT. Because of
this, they are generically known as RIB Objects.

RIB Objects are used as both input and output parameters to the GETNXT() and
CONSUME() stored procedures. Because Oracle Objects are polymorphic, a
single stored procedure may accept or produce different RIB Object types,
depending on the desired message to be published or consumed.

One aspect of RIB Objects is that they are hierarchical in nature. Each RIB
Object corresponds to the DTD that defines the RIB Message payload. Oracle
objects do not provide support for optional attributes or elements defined as a
“CHOICE”, so a RIB Object will contain all possible attributes or elements
contained in a DTD.

RIB Objects use nested tables and nested objects to provide the hierarchical
container. The determination of whether a nested table of RIB Objects is used is
determined on the cardinality of the XML sub-node. If the sub-node has a
cardinality of zero or one possible instantiations, then a nested RIB Object is
used. If the sub-node has a cardinality of zero or many, a nested table of RIB
Objects is used.

Database Schema Owner Requirements
The ownership of a RIB Object is critical to the correct functioning of the RIB.
The owner of a RIB Object must be the same as the owner of the packages in
which these Database Objects are used. If the application is installed under a
different Oracle user-id than the RIB uses, then the owner of the RIB Objects
must be fully specified by the RIB adapter. When this scenario is present, the
owner of the package containing the GETNXT() or CONSUME() stored
procedure is determined and the assumption is that this user-id also owns the RIB
Objects as well.

The implication of this is that when installing a Retek application under a
different user-id, synonyms for all of the packages containing GETNXT() and
CONSUME() must also be present for the RIB user-id. Furthermore, these
appropriate privileges for accessing the RIB Objects and executing the stored
procedures must also be granted to the RIB user-id. Most often, the two
privileges needed for a separate RIB user-id above those normally granted are
'CREATE ANY TYPE’ and 'EXECUTE ANY TYPE'.

Chapter 3 – Messaging system component overview 29

RIB_XML database package
In previous releases, application specific Stored Procedures created or parsed
XML strings stored in CLOBS. Retek developed the RIB_XML PL/SQL
Package to contain utility and helper procedures for this.

Message validation: The RIB_XML package can perform message payload
validation against a Document Type Definition (DTD). This DTD is stored as a
CLOB within the database. If the publishing or subscribing application requests
validation, the RIB_XML package API contains parameters to extract the DTD
from rib_doctypes table, parse the DTD and then validate the message payload
using the DTD.

The rib_doctypes table stores the DTD as a CLOB and associates the
CLOB with a message name. This table must be accessible within the user ID
used to create or consume RIB messages. Loading the rib_doctypes table may be
performed using the DocTypeInserter java application.

RIB_SXW database package
Another Oracle package has been developed for creating XML payloads, the
RIB_SXW package. This package provides no validation facilities, but better
performance than RIB_XML. It also does not contain any parsing functions.

This package also contains restrictions in how a message may be created, such as
fully populating an XML element with fields and sub-elements before moving to
another node on the XML tree.

RIB_SETTINGS and RIB_TYPE_SETTINGS
PL/SQL stored procedures may use two tables to refine their behavior:
RIB_SETTINGS and RIB_TYPE_SETTINGS.

30 Retek Integration Bus

The columns in the RIB_SETTINGS table describe, on a per Message Family
basis:

• The number of threads to use when publishing. This is used by database
triggers for determining the thread value to use for scalability purposes. Not
all application triggers will use this value, but those that do (typically RMS
interface points) will also implement and verify that the RIB adapter also is
configured to use the same value.

• The maximum number of details to publish within a create, update, or delete
message. Retek applications typically do not have a limit to the number of
details a specific business object can have. Hence, a Purchase Order may be
created containing tens of thousands of detail lines – each line a specific
item/location combination. A single “PO Create” message containing 30,000
or so lines will require a vast amount of resident memory to parse. This
column limits the “PO Create” and subsequent “PO Detail Add” messages to
a set number of details.

• The number of minutes that a publishing application may wait before
publishing “incomplete” business object create messages. This becomes
important for business object publication that are dependent on manual
processes. The purpose of this is to bound the latency between an actual
business event and the publication of a message, when the message
publication is delayed. For example, recording items received at a
warehouse within a specific shipment may be performed by employees using
hand scanners. For performance reasons, aggregating all of these item
receipts into a single RIB Message is desired. However, these employees
may be interrupted by a variety of disturbances (lunch, quitting time, a
higher priority shipment) and the complete shipment may not be scanned for
some time. In this case, the MINUTES_TIME_LAG column insures that all
recorded items have a known maximum latency between the scanning
operation and the message publication. Note: not all applications make use
of this parameter.

The columns in the RIB_TYPE_SETTINGS table describe, on a per Message
Family / message type combination whether informational and debugging log
entries should be output using the DBMS_OUTPUT Oracle package and/or
written to a log file. These entries are not used by all applications – and may in
fact be only used by Retek Distribution Management interfaces. Typically, they
should only be used to debug performance or bugs found within a application.

Chapter 3 – Messaging system component overview 31

Application message publishing triggers using CLOBs
Oracle Forms based or PL/SQL based RIB applications use triggers to initiate the
message publishing process. These triggers are RIB specific and should be
enabled only when an enterprise is using the RIB for integrating its applications.
These triggers are fired when a specific database table is modified. There are
two types of these triggers used by the RIB: those that create a CLOB to store the
XML data associated with the triggering business event and those that do not.

CLOB creation triggers assume that the application is responsible for the
modified data. The trigger retrieves all of pertinent information to create a
specific type of message and inserts it into a staging table using an application
specific Message Family Manager (MFM) API.

The message information is usually stored as an XML string and is known as the
RIB message “payload”. The payload is contained in an Oracle Character Large
Object Binary (CLOB). The database table that holds the payload data must also
maintain the following:

• The order that messages are created

• The CLOB containing the “payload” XML

• Any routing or filtering key values

• The message type associated with the business event that created the
message. The message type is specific to the Message Family and a single
business event may produce multiple messages of differing types within
different families.

By storing all of the data within the same transaction as the business event, all
RIB messages are considered as being “published” synchronously with the
business event – even though the message has not been processed by any EAI
system deployed component.

Start Stop
Application
Database

Table mod

Trigger
Collects

info

Create XML
payload
using

RIB_XML or
RIB_SXW
Package

Write XML,
routing info
to staging
table using

MFM

Trigger
Returns

Figure 3.1 Trigger Processing -- XML CLOB

32 Retek Integration Bus

Figure 3.1 displays the application trigger processing. The following steps are
followed:

1 An insert/update/delete operation on a table causes a RIB application trigger
to be executed. The trigger was installed and enabled as part of the RIB
installation.

2 The trigger collects any information it needs to continue. This may involve
additional database operations.

3 The trigger leverages either the RIB_XML or RIB_SXW package to build
the XML payload for this message type. An Oracle CLOB is created to store
the XML payload.

4 The trigger calls the Message Family Manager package to store the message
into a staging table. The specific API that is called is the ADDTOQ()
procedure.

5 The trigger returns.

Note: CLOB creation triggers insure that all available data needed for creating
the final XML is available within the same transaction as the triggering event.
Because of this, there are no windows of opportunity for data to become out of
sync with the published message.

Chapter 3 – Messaging system component overview 33

Application message publishing triggers using RIB Objects
One problem with CLOB based triggers is the per-detail overhead required. Part
of the overhead involves the performance characteristics creating a CLOB.
Furthermore, if a Purchase Order contains thousands of detail lines, then the
detail table trigger needs to be fired thousands of times. Compounding this
problem is the fact that many times a Retek application will fire the same trigger
multiple times within a single transaction for the same data row. Because of
problems with triggers maintaining context information, this implies that the
same logic is implemented multiple times. This leads to performance problems
either to maintain the “correct” version of the business object in the MFM
staging table or requiring extra messages to be published.

For high-volume interfaces, CLOB creation triggers are not used. Instead, detail
table triggers are implemented that perform a minimum amount of processing.
Many times these triggers simply check to see if the business object containing
the detail has been published or does not require an approval to be performed. If
so, the data required to create a “Detail Add”, “Detail Update” , or “Detail
Delete” message is inserted into a staging table. Because XML strings are not
created and CLOBS are not used, these operations are very efficient. If the
business object requires an approval operation to be performed before it can be
published, it is assumed that the correct data will be made available when the
approval takes place.

When a message is ready for publication, the Message Family Manager
GETNXT() Stored Procedure examines its staging tables and creates the
appropriate RIB Object for publication. In many cases, these staging tables
contain columns that are themselves declared a specific type of RIB Object.
Once the complete RIB Object is ready, the GETNXT() Stored Procedure returns
this to the adapter, which then converts the information into an XML string. This
XML string is then placed into a RIB Message payload

Note that one implication of these triggers is that multiple staging tables may be
needed for a single Message Family: One to hold “Header” level information
and one for detail level information. Furthermore, the lifecycle of the “Header”
table must map to the lifecycle of application business object itself – header
information must be maintained for all periods of time that operations are valid
against that business object. In other words, the header information must be kept
until the business object is either deleted or considered “closed”.

34 Retek Integration Bus

RIB Objects: an in-depth view
RIB Objects use the Oracle Objects type introduced into the Oracle Database in
the Oracle 8i release. This is an object based technology that allows a developer
to create database types that are hierarchical in nature and can leverage type
inheritance and polymorphism. Furthermore, methods may be defined for each
type similar to C++ and Java objects.

RIB Objects all inherit from a single base object type, RIB_OBJECT. A new
RIB object type is created for each node on a message’s XML DTD. An
example of a script used to create a simple, flat RIB Object is seen below:

CREATE OR REPLACE TYPE RIB_FrtTermDesc_REC UNDER
RIB_OBJECT (

 freight_terms VARCHAR2(30),

 term_desc VARCHAR2(240),

 enabled_flag VARCHAR2(1),

 start_date_active DATE,

 end_date_active DATE,

 overriding member procedure appendNodeValues(
i_prefix in varchar2)

);

/

CREATE OR REPLACE TYPE BODY RIB_FrtTermDesc_REC AS

overriding member procedure appendNodeValues(i_prefix
in varchar2) IS

tbl RIB_object_tbl;

l_new_pre varchar2(4000);

begin

 rib_obj_util.g_RIB_element_values(i_prefix||'freight_
terms') := freight_terms;

 rib_obj_util.g_RIB_element_values(i_prefix||'term_des
c') := term_desc;

 rib_obj_util.g_RIB_element_values(i_prefix||'enabled_
flag') := enabled_flag;

 rib_obj_util.g_RIB_element_values(i_prefix||'start_da
te_active') := TO_CHAR(start_date_active,
RIB_obj_util.g_date_format)

;

 rib_obj_util.g_RIB_element_values(i_prefix||'end_date
_active') := TO_CHAR(end_date_active,
RIB_obj_util.g_date_format)

;

END AppendNodeValues;

Chapter 3 – Messaging system component overview 35

END;

/

The first block of code creates the type specification. This defines the attributes
stored by the RIB_OBJECT and declares that this object type inherits from the
RIB_OBJECT type. The second block of code creates the type body containing
the method, appendNodeValues(). This method is used only for debugging
purposes.

For hierarchical structures, the “leaf” or “child” RIB Objects must be created
before the “trunk” or “parent” objects. The script below creates a hierarchical
structure that contains a single header and many details:

CREATE TYPE RIB_Detail_REC UNDER RIB_OBJECT (

varchar_detail VARCHAR2(20),

 number_detail NUMBER(4,0),

 date_detail DATE,

 overriding member procedure appendNodeValues(
i_prefix in varchar2)

);

/

CREATE TYPE BODY RIB_Detail_REC AS

overriding member procedure appendNodeValues(i_prefix
in varchar2) IS

tbl RIB_object_tbl;

l_new_pre varchar2(4000);

begin

 rib_obj_util.g_RIB_element_values(i_prefix||'varchar_
detail') := varchar_detail;

 rib_obj_util.g_RIB_element_values(i_prefix||'number_d
etail') := number_detail;

 rib_obj_util.g_RIB_element_values(i_prefix||'date_det
ail') := TO_CHAR(date_detail,
RIB_obj_util.g_date_format);

END AppendNodeValues;

END;

/

CREATE TYPE RIB_Detail_TBL AS TABLE OF RIB_Detail_REC;

/

CREATE TYPE RIB_Header_REC UNDER RIB_OBJECT (

 Varchar_header VARCHAR2(10),

Number_header NUMBER(12,4),

36 Retek Integration Bus

Date_header DATE,

Detail_tbl RIB_Detail_TBL,

 overriding member procedure appendNodeValues(
i_prefix in varchar2)

);

/

CREATE TYPE BODY RIB_VendorHdrDesc_REC AS

overriding member procedure appendNodeValues(i_prefix
in varchar2) IS

tbl RIB_object_tbl;

l_new_pre varchar2(4000);

begin

 rib_obj_util.g_RIB_element_values(i_prefix||'varchar_
header') := varchar_header;

 rib_obj_util.g_RIB_element_values(i_prefix||'number_h
eader') := number_header;

 rib_obj_util.g_RIB_element_values(i_prefix||'date_hea
der') := TO_CHAR(end_date_active,
RIB_obj_util.g_date_format);

 l_new_pre :=i_prefix||'detail_TBL.';

 FOR INDX IN detail_TBL.FIRST()..detail_TBL.LAST()
LOOP

 detail_TBL(indx).appendNodeValues(
i_prefix||indx||'detail_TBL.');

 RIB_obj_util.g_RIB_table_names(l_new_pre) :=
indx;

 END LOOP;

END AppendNodeValues;

END;

/

Chapter 3 – Messaging system component overview 37

In the hierarchical example, three types are created: RIB_detail_REC,
RIB_Detail_TBL, and RIB_Header_REC. The RIB_header_REC type contains
a table of Details. Since the size of this table is unbounded, it must be declared
as a nested table type (RIB_Detail_TBL). The resultant object types created
have a one-to-one mapping to the following DTD:

<!ELEMENT header (
 varchar_header
, number_header
, date_header
, details+

)>

<!ELEMENT details (
 varchar_detail
, number_detail
, date_detail

)>

<!ENTITY % varchar2 "(#PCDATA)">

<!ENTITY % number "(#PCDATA)">

<!ELEMENT year %number;>

<!ELEMENT month %number;>

<!ELEMENT day %number;>

<!ELEMENT hour %number;>

<!ELEMENT minute %number;>

<!ELEMENT second %number;>

<!ENTITY % date "(year, month, day, (hour, minute,
second)?)">

<!ELEMENT varchar_header %varchar2; >
<!ELEMENT number_header %number; >
<!ELEMENT date_header %date; >

<!ELEMENT varchar_detail %varchar2; >
<!ELEMENT number_detail %number; >
<!ELEMENT date_detail %date; >

Note: Dropping Oracle Object types must use the “FORCE” keyword if there
any types or tables that are dependent on that type. Once an Oracle Type is
dropped, all dependent types and table columns are marked has invalid and must
be recompiled or re-created.

38 Retek Integration Bus

RIB Object to XML Translation
Parsing the XML to create a RIB Object and creating XML from a RIB Object
are performed using different Java classes. A basic overview of these techniques
is listed here.

For publishing, the adapter uses a class that implements the
com.retek.rib.collab.OracleObjectPublisherTranslator interface. A class that
implements this interface is known as a “PubTrans” class. A PubTrans class is
coupled to the DTD of the resultant XML and the structure of the RIB Object.
As such, each Message Family publisher must have its own PubTrans class. For
convenience, PubTrans classes also extend the class
com.retek.rib.collab.AbstractGetNextPubHelper. Combined, these classes
collaborate with the OracleObjectPublisherHelper class to call the GETNXT()
stored procedure and create the XML payload. A diagram of how these classes
interact follows.

...

Collaboration Rule Hospital
Controller

OracleObject
PublisherHelper

OracleObject
Translator I/F

userInitialize
()

execute
Business
Rules ()

createAndPublishMessages()

produceMessage()

init()

new

startPubTimingsLog()

end()

prepare()

getCallableStatement()

execute()

mapToRibMessage()

new

registerOutParams()

getInParamIndex()

getOutParamIndex()
processOutParams()

createXML()

mapToRibMessage()

produceMessage() ...

Chapter 3 – Messaging system component overview 39

In the diagram above, each collaboration rule creates and contains a single
OracleObjectPublisherHelper object. The OracleObjectPublisherHelper creates a
PubTrans object, since the class name of the PubTrans class is supplied as a
constructor parameter. Another parameter to the constructor is the collaboration
rule itself, which implements the com.retek.rib.collab.PublishMessageIface
interface. When the collaboration rule executes, it calls
createAndPublishMessages() which performs a callback on the
produceMessage() method for each ribMessage node to add into the message.
OracleObjectPublisherHelper publishes the message to the JMS topic and returns
a status to the collaboration rule. Finally, the collaboration rule calls the
OracleObjectPublisherHelper.end() to clean up and log the correct timings entry
for the method.

For subscribing adapters calling the CONSUME() API, translation is performed
by examining the structure of the RIB Object and pulling out XML attributes
with the same names as the RIB Object attributes. The process followed is:

1 During the collaboration rule initialization, a mapping is created that
associates the correct Oracle RIB Object type name, the correct
CONSUME() parameter list and a message type for all message types known
by the collaboration rule.

2 The mapping process will involve examining and storing the Oracle RIB
Object structure definition. The characteristics of each RIB Object attribute
– whether it is a scalar value, a date, a nested RIB Object or a table of nested
RIB Objects – is also stored.

3 A SAX parser is created to parse the XML payload. A parameter to the
handler for the parser is the OracleObjectDescriptor mappings.

4 For each RibMessage node payload, the SAX Parser is invoked and the
appropriate JDBC driver STRUCT object is created. Then, the CONSUME()
method is called.

Non-trigger PL/SQL publishing
Some applications may not use triggers to start the publishing process. Some
alternatives used are:

• Using an insert into the MFM staging table directly from Oracle Forms. In
this case, the logic to create the CLOB and insert it into the MFM staging
table is found in a stored procedure referenced directly by the Oracle Forms
based application.

• Using “upload” tables to stage the information until ready to publish. In this
scenario, the message is not bound to the XML format until the Message
Family Manager GETNXT() stored procedures invoked. GETNXT() is
described in the next section.

• Using a file to create the RIB Messages. This would typically be used for
interfaces from external systems.

• Using a RIB Publishing EJB within the J2EE platform.

• Using a RIB Publishing Component within the ISO platform.

40 Retek Integration Bus

In first two cases above, the information contained in the message published to
the bus is stored within the same transaction as the business event. The actual
technique used to kick off a message’s publication is described in more detail in
the Retek 10.3 Integration Guide.

Message Family Manager API
Each PL/SQL based application uses a Message Family Manager (MFM) specific
API for publishing all messages within a specific Message Family. This API is
the interface to a stored procedure package and wrappers the staging table and
additional business logic surrounding the message publication. A single
application is responsible for publishing all messages within a single MFM.

Because the same application can publish multiple Message Families, it could
use multiple MFM specific packages, one per MFM.

There are two procedures typically included in an MFM package:

ADDTOQ()
The purpose of ADDTOQ() is to store message state, routing / filtering keys,
message type, XML Payload, and other information needed to create a RIB
Message. This procedure has the following format for its parameter footprint for
CLOB creation based publishers:
PROCEDURE ADDTOQ(O_status_code OUT VARCHAR2,
 O_error_text OUT VARCHAR2,
 I_message_type IN VARCHAR2,
 I_message IN CLOB,
 I_msg_1 IN tbl.msg_spec_1%TYPE,
 …

);

Chapter 3 – Messaging system component overview 41

where

O_status_code Denotes the status of the call. The value of this is found
in the RIB_CODES package. Possible values include:

MFM_FATAL_ERROR – cannot insert a message due
to an error.

MFM_SUCCESS – successful message insertion.

O_error_text This is text associated with an error or warning
occurring in the call to ADDTOQ.

I_message_type Type of the message payload. A specific type is
associated with one or more business events. This type is
a further subdivision of the Message Family.

I_message The message payload formatted as an XML string.

I_msg_1 A Message Family specific facility type, key, or other
information that is supposed to be present in the message
envelope. This is an optional parameter and may not be
present. The type of this parameter is specific to the
Message Family.

… Additional optional parameters. These are dependent on
the Message Family in use.

For RIB Object based publishing, the ADDTOQ() is dependent of the Message
Family, the RIB Object required, and the trigger used to publish. The parameter
list is thus extremely specific to the business object or business detail involved.
An example of a RIB Object ADDTOQ() is seen below for the
RMSMFM_ORDERS package:
ADDTOQ(O_error_message OUT VARCHAR2,

 I_message_type IN ORDER_MFQUEUE.MESSAGE_TYPE%TYPE,
 I_order_no IN ORDHEAD.ORDER_NO%TYPE,
 I_order_header_status IN ORDHEAD.STATUS%TYPE,
 I_supplier IN ORDHEAD.SUPPLIER%TYPE,
 I_item IN ORDLOC.ITEM%TYPE,
 I_location IN ORDLOC.LOCATION%TYPE,
 I_loc_type IN ORDLOC.LOC_TYPE%TYPE,
 I_physical_location IN ORDLOC.LOC_TYPE%TYPE)

In this case, only the minimum amount of information is available in the API for
ADDTOQ(). Additional information will be queried either within ADDTOQ() or
within the GETNXT() Stored Procedure.

42 Retek Integration Bus

GETNXT()
Retrieves the record from the staging table for publication. This procedure uses
the following parameter signature for CLOB creation based publishers:
 PROCEDURE GETNXT(O_status_code OUT VARCHAR2,
 O_error_text OUT VARCHAR2,
 O_message_type OUT VARCHAR2,
 O_message OUT CLOB,
 O_msg_1 OUT tbl.msg_spec_1%TYPE,
 …
);

where

O_status_code Denotes the status of the call. The value of this is found
in the RIB_CODES package. There are for possible
values:

MFM_FATAL_ERROR – cannot retrieve a message due
to an error. Publisher should exit.

MFM_WARNING – the next message cannot be
published because of a sequencing problem.

MFM_SUCCESS – successful message retrieval.

MFM_NO_MSG – no messages are waiting to be put
onto the integration bus.

O_error_text Text associated with an error or warning.

O_message_type Type of the message payload. A specific type is
associated with one or more business events.

O_message The message payload formatted as an XML string.

O_msg_1 A Message Family specific facility type, key, or other
information that is supposed to be present in the message
envelope. The Type of this parameter is specific to the
Message Family.

… Additional optional Message Family specific parameters.

Chapter 3 – Messaging system component overview 43

For RIB Object publishers, the minimum signature of a Stored Procedure is
shown below. Note that for a given GETNXT(), there may be additional
parameters. The values of these parameters are typically specified in the RIB
Properties file.

 PROCEDURE GETNXT(O_status_code OUT VARCHAR2,
 O_error_text OUT VARCHAR2,
 O_message_type OUT VARCHAR2,
 O_message OUT RIB_OBJECT,
 O_bus_obj_id OUT RIB_BUSOBJID_TBL,

 O_routing_info OUT RIB_ROUTINGINFO_TBL,
 I_num_threads IN NUMBER DEFAULT 1,
 I_thread_val IN NUMBER DEFAULT 1)

where

O_status_code Denotes the status of the call. The value of this is found
in the RIB_CODES package. There are for possible
values:

MFM_FATAL_ERROR – cannot retrieve a message due
to an error. Publisher should exit.

MFM_SUCCESS – successful message retrieval.

MFM_NO_MSG – no messages are waiting to be put
onto the integration bus.

MFM_HOSPITAL – put the message into the error
hospital

O_error_text Text associated with an error or warning.

O_message_type Type of the message payload. A specific type is
associated with one or more business events.

O_message The message payload as a RIB Object. The actual type
used is dependent on the Message Family and Message
Type for this RIB Message. Note that many Message
Types may use the same RIB Object to convey data.

O_bus_obj_id An identification of the ID of the business object
associated with the message. This ID is unique to the
Message Family. The Business Object ID may be a
composite entity – for example a combination of a ASN
and a distribution center ID. RIB sequencing
automatically insures that all messages for a specific
Business Object ID are delivered in the correct order.

44 Retek Integration Bus

O_routing_info Certain Message Family messages require routing
operations by TAFR adapters. The information used to
route these messages is found in the RIB Message
envelope. In the CLOB creation interface, each Message
Family had its own set of specific parameters it returned
to populate these fields. In the RIB Object creation
interface, the O_routing_info parameter contains this
information.

I_num_threads The total number of threads used in publishing. This
value comes from the rib.properties file and should
match the same entry in the RIB_SETTINGS table.

I_thread_val An identification that this call is made for publishing
messages specific to a specific thread. This value will be
attached as the “threadValue” property associated with
the published RIB Message.

Chapter 3 – Messaging system component overview 45

Publishing application adapters using PL/SQL interfaces
PL/SQL based applications publish messages using at least two separate
database transactions, as seen in Figure 3-2. The first transaction consists of the
application specific insert/update/delete operations that perform some business
functionality. These operations occur independently of the RIB. However, when
the RIB is active, additional triggers are enabled on these tables that insert
information into staging tables for later publication. This data may be a CLOB, a
specific RIB Object sub-type, or as stored within a standard SQL type.

The second transaction is controlled by the publishing adapter. A RIB Publishing
Adapter polls the staging table by calling another routine in the MFM called
“GETNXT()”. This type of operation is known as a “Pull”, since the adapter
pulls the data from the database. The MFM “GETNXT()” procedure may
contain simple or complex logic that is specific to the Message Types published.
For example, a simple “Create Vendor” message may involve merely selecting
and then deleting a single record from the vendor staging table. On the other
hand, a “Create Purchase Order” message requires fairly complex logic to create
because of the business process dependencies. Many changes may be made to a
PO before it is approved.

When the call to the MFM GETNXT() returns the data to the publishing adapter,
a RIB Message is created from the payload (and other) GETNXT parameters.
This message is then published to a Java Message Service (JMS) Topic
(sometimes called a “RIB Queue”).

Note: In the Java Message Service nomenclature, one puts a message onto a
JMS “Topic” for Pub/Sub operations. One puts a message onto a JMS “Queue”
when only a single subscriber will ever receive the message. The RIB assumes
that any published message may have multiple subscribers and hence only uses
JMS topics.

In the 10.3 release, Retek implemented the ability to call the GETNXT() Stored
Procedure multiple times. When message data is returned, the associated XML
String is created and placed within the “<messageData>” tag. (See Chapter 2 for
more information on the message structure). “<messageData>” is a sub-element
of “<ribMessage>”.

In each published message, the <RibMessages> tag wrappers one or more
<ribMessage> tags. Under normal circumstances, GETNXT() is called until
either a configured maximum number of times or until GETNXT() returns a “No
Data Found” status.

An XA compliant two-phase commit operation is then performed to insure that
all operations on the database and the JMS Topic are performed atomically. I.e.
either the data is deleted from the database and published to the JMS Topic, or
neither deletion or publication occurs.

Note: XA is a Distributed Transaction Processing specification originally
developed in 1991. It is now available from “The Open Group”. Copies of this
standard (C193 Distributed TP: The XA Specification ISBN 1-872630-24-3) are
available from “The Open Group’s” website, http://www.opengroup.org.

http://www.opengroup.org/

46 Retek Integration Bus

As long as the GETNXT() procedure returns at least one populated
<messageData> tag, the publishing adapter will immediately publish the message
and repeat the process. If GETNXT() returns a “No message available” status,
the publishing adapter will sleep a configured amount of time before it tries to
call GETNXT() again. A rollback operation will be performed if no messages
are published.

The message resides in a network queue immediately after publication. This
queue provides stable storage for the message in case of a system crash occurring
before all message destinations receive and process it.

Message Family Manage (MFM)
(Oracle PL/SQL Package)

Oracle
Forms or

Batch
Application

Application
Database

Table

 Table
Trigger

(3) Trigger
identifies

operation. For
CLOBs, creates

XML String

Staging
Table

(aka Msg.
Family
Queue)

Publishing adapter (e*Way).

(10) Creates RIB message from
Payload and other data. For RIB
Object interfces, payload XML is

created.

 Steps 7 - 10 repeated as per
message availability and

adapter cofiguration.

(12) Adapter Commits all database
and message operations

JM
S

 T
op

ic

(1) Application
updates , deletes or

inserts into table

(2) SQL
operation

 Fires Trigger
(4)Trigger calls
MFM addToQ()

"Payload", Bus. Obj.
ID, Threading, and

Routing Info

(5) AddToQ() Inserts
Payload, other data into

Staging TableRetek Application
controlled

Transaction

(7) Adapter
Polls calling

MFM GetNxt()
Stored

Procedure

(9) GetNxt()
Returns

Payload, Bus.
Obj ID, other

data

(8) GetNxt()
Selects, updates,

aggregates, deletes
data from Staging

Table

(11) Adapter
Publishes

RIB Message
to JMS Topic

Publishing Adapter
Controlled Transaction

(2 Phase Commit
involving Oracle and

JMS Provider)

Sucessful Message Publication Process

(6) Application
commits all changes

Figure 3-2

Chapter 3 – Messaging system component overview 47

TAFR Adapter
A Transformation Address Filter/Router (TAFR) adapter is another e*Way
adapter that is used to process data. It contains one or more collaborations that
perform TAFR operations on all messages from a single Message Family. The
specific activities performed are dependent on the needs of its subscribers.

Figure 3.3 illustrates the activities associated with a TAFR adapter. These
include:

1 A message is delivered to the TAFR adapter collaboration after it has been
placed onto a JMS topic. This triggers the collaboration logic.

2 The TAFR performs its needed filtering and transformation processing on the
message.

3 If the message is to be routed to one or more destinations, the message
contents are copied into a new SeeBeyond Event Type. This event type is
specific to the destination. Hence, if an Advance Ship Notice Inbound
message needs to go three different warehouses, then the full contents of the
message is published to the integration bus as three different events using
three different event types. This allows for each of these messages to be
published to different queues.

48 Retek Integration Bus

TAFR Adapter (e*W ay)
(2) Transform ations are
perform ed, if any

(3) destination JMS
Topics are determ ined. If
no destinations are
found, the m essage is
discarded

JM
S

 T
op

ic

(4) RIB Message
published to
appropriate

destination topic(s)

TAFR Adapter
Controlled transaction

 (2 phase com m it
involving m ultip le JMS

Providers)

TAFR Process

JM
S

 T
op

ic

JM
S

 T
op

ic
JM

S
 T

op
ic

...

(1) TAFR pulls m essage from
JMS Topic

Figure 3-3

Chapter 3 – Messaging system component overview 49

Subscribing application adapter for PL/SQL application
interfaces

As in publishing, subscribing applications providing a PL/SQL API have two
variants: one using CLOBs and one using RIB Objects. In both cases, a call is
made to a Stored Procedure called CONSUME(). The purpose of this procedure
is to directly update the application controlled tables with the information found
in a specific RIB message type. However, for the CLOB API’s, there is one
specific PL/SQL Package for each separate Message Family/Message Type
combination and for RIB Object API’s, there is only one PL/SQL package per
Message Family.

Subscribing adapters are also responsible for insuring that messages are
processed in the correct sequence for a given business entity. For a specific
Purchase Order, its “Create Purchase Order” message must always be processed
before an update or delete message. Furthermore, all updates must be processed
in the correct order to insure that two systems are correctly synchronized. But no
such guarantee exists when comparing messages concerning different business
entities. If no errors occur, messages are processed in a First-In, First-Out (FIFO)
order. Alternatively, if an error occurs processing a message for one business
object (PO #123), then other messages that apply to other business objects (
PO’s #124, #125,…) should still be processed. Furthermore, all messages for the
problem business object (PO #123) will be held in the Error Hospital.

If an error occurs during message processing a two-step process is followed:
First, the subscribing adapter notes this internally (NOT in the database) and rolls
back all database work associated with the message. Next, the JMS server re-
sends the message to the adapter (since it has yet to be processed successfully),
the adapter will now recognize this message is problematic (sick) and checks it
into an Error Hospital database.

A subscribing adapter always checks the hospital database to see if there are any
messages in the hospital that act on the same business entity (such as a PO) that
the current message does. If so, then the adapter immediately places the current
message in the hospital as well. This is to insure that all messages for a given
business entity are processed in the correct order. Without manual intervention,
the RIB will always process the “Sick” messages for a business object before any
subsequent messages that act on the same business object.

After a message is checked into the Error Hospital, a second thread of control
within the adapter extracts the message from the hospital and re-publishes it to
the integration bus. The message remains in the hospital during all re-tries until
the subscribing adapter successfully processes it or the maximum allowed retries
is reached. The subscribing application adapter contains two collaborations for
each Message Family. One collaboration is triggered to process incoming
messages (the “subscriber” collaboration) and the other (the “retry”
collaboration) is dedicated to re-publishing messages in the Error Hospital back
to the JMS topic. Every subscriber adapter has a unique “retry” event type, which
allows some adapters to retry a particular message even if others have processed
it successfully.

50 Retek Integration Bus

Subscribing
Adapter

(2) Checks if message
should immediately go into
the Error Hospital. If so,
puts it into the hospital
and returns success.

(3) Determines correct
MFM Consume() PL/SQL
Stored Procedure to
handle message type

(8) If failure, mark
message to go into
hospital, return failure. If
success, return success.

Subscribing Adapter
Controlled transaction

 (2 phase commit
involving JMS Provider

and Oracle)

Subscription Process for PL/SQL
Interfaces

JM
S

 T
op

ic

(1) Subscriber pulls
message from JMS

Topic

Message Family
Manager (MFM) (Oracle
PL/SQL Package)

(5) Consume procedure
parses XML payload

Application
Database

Tables

(6) Consume
procedure
updates, inserts,
and/or
manipulates
application tables

(4)Subscribing Adapter
calls correct MFM

Consume() procedure

(7) MFM
Consume()
procedure
returns succss
or failure

Figure3-4

Figure 3.4 illustrates the processing involved for these messages:

Chapter 3 – Messaging system component overview 51

1 The appropriate collaboration is triggered by a message from a JMS
provider. This message may arrive on the JMS topic from the Error Hospital,
from a publishing adapter, or from a TAFR adapter.

2 The Error Hospital Java code is called to see if this message should
immediately be placed into the Error Hospital. This logic will check

a To see if any previously processed messages for the same business entity
is in the hospital. If so, then this message needs to be put into the Error
Hospital to preserve message sequencing.

b If this is the second time this message was processed because the stored
procedure returned an error the first time. If so, then the expectation is
that the message needs to wait a while before it is retried. The message is
placed into the Error Hospital to allow other messages to flow through
during this time.

If the message is placed into the Error Hospital in this step, the database
work is committed and the message is removed from the JMS topic. Steps 3-
6 are not executed.

3 The correct Message Family Manager stored procedure is called. The
specific stored procedure called is based on the message type of the message.

4 The stored procedure executes the appropriate application specific logic. This
may involve direct updating of application logic or simply inserting the data
into staging tables.

5 If step 4 returns an error, the message is flagged as “bad” (see step 2), and
the transaction will be rolled back. The message is kept on the JMS topic.
The next time the message is processed, it will be put into the Error Hospital.

6 If step 4 returns success, the collaboration returns success: all database
updates are committed and the message is removed from the JMS topic.

At the end of each attempt to process a message, it is found in exactly one of
three locations: Still on the JMS topic (because of a stored procedure problem),
in the Error Hospital, or successfully consumed by the subscribing application.

52 Retek Integration Bus

Subscribing application adapters that also publish messages
Some message processing requires database locks that reduce the scalability of
the system. For example, item receipt processing may hold a lock on a shipment
table or a table holding open-to-buy information. In effect, processing of these
messages requires locks placed on “parent” tables. There is no problem for this
when processing these receipt messages in a single thread. However, as soon as
multiple threads or processing is performed, threads begin to wait on these
“parent” locks and even deadlocks can occur.

The are two approaches to this problem:

1 Use threading criteria based on the “parent” record locking performed by the
subscriber. I.e. publish messages flowing to different subscriber threads such
that different threads will never update the same “parent” records. This
requires the publisher to understand the locking used by a subscriber. One
problem, however, is different subscribers to the same message may have
different locking profiles. Furthermore, a single message may lock multiple
“parent” records from multiple database tables with different sets of
“children”.

2 Move the problematic locking to another adapter. The two adapters may
work either in a parallel or serial fashion. Many times, it makes business
sense to first perform all of the child table processing before updating the
parent table and in these cases, the PL/SQL stored procedure will return a
RIB Object that will be published by the original subscriber and subscribed
to by another adapter.

Subscribing application PL/SQL Stored Procedure APIs
The concept of a Message Family Manager (MFM) is also used with message
subscriptions within the RIB. As in the publishing side of processing, the
subscribing MFM is only concerned with the XML Payload and not the entire
RIB Message XML.

All MFM packages that parse and process the payload within a RIB message
have the same procedure name (CONSUME) and same basic parameter list. An
example is seen below:
PROCEDURE CONSUME(O_status_code IN OUT VARCHAR2,
 O_error_message OUT VARCHAR2,
 I_message IN OUT CLOB);

where

O_status_code is the success/failure status of the procedure call. The
values of this parameter that are standard across all subscribing packages
are found in the RIB_CODES package. Currently, these include:

SUB_FATAL_ERROR – A fatal error was encountered processing the
payload.

SUB_XML_PARSE_ERROR – The payload could not be parsed due to a
validation error.

SUB_SUCCESS – The payload was processed successfully

Chapter 3 – Messaging system component overview 53

O_status_code may also contain values that are application
specific. These values must not conflict with those listed above.
These values should be listed in the Retek 10.3 Integration Guide.

O_error_message is text associated with any error condition.

I_message is the payload XML text used as input to the stored
procedure.

For RIB Object subscribing applications, the I_message parameter is declared to be of the
type RIB_OBJECT.

Additional parameters may be present, depending on

• the specific MFM/Message Type that is processed.

• whether the CONSUME procedure also returns a RIB Object to be
published.

Also note that MFMs using CLOB based API’s use multiple PL/SQL packages,
one per Message Type, while RIB Object based API’s use a single PL/SQL
package for all Message Types within an MFM.

Error Hospital
The Error Hospital is a set of Java Classes and database tables that are designed
to segregate and trigger re-processing for messages that either:

• Had some error with their initial processing.

or

• Update the same business entity with messages already in the Error Hospital.

As of the RIB 10.3 release, some publishers will return an ‘H’ status to denote a
problem creating a new message for a specific business object. This status may
be due to database locks being held by on-line users of an Oracle Forms
application. It could also be due to some data incompatibility found in the
GETNXT() procedure. In any case, whenever a publisher recognizes that a
message for a business object cannot be published due to one of these conditions,
the message must go into the Error Hospital.

Of course, if a subscriber encounters any errors processing a message, it will also
put messages into the Error Hospital.

Each time the message is re-processed, a record is kept of the event along with
the results. The intent is to provide a means to halt processing for messages that
cause errors while allowing continued processing for the “good” messages.

If a message is to be inserted into the Error Hospital because of an error during
processing, it is sent to the subscribing collaboration twice. This is because
subscribing collaborations are executed within the context of a distributed
transaction, using the XA two-phase commit protocol. This transaction is
controlled by the e*Way infrastructure: If the collaboration returns success, the
message is removed and all database work committed. If the collaboration returns
failure, the message never leaves the integration bus queue and the database work
is rolled back.

54 Retek Integration Bus

Note: The XA interface is a standard protocol between a “Transaction Manager”
and a database or “Resource Manager”. In a SeeBeyond e*Way, the Transaction
Manager is part of the e*Way software that is involved in executing the
collaboration. Note that both the JMS topic connection and the database
connection must support the XA protocol. For more information regarding the
XA standard, see the URL http://www.opengroup.org.

When the initial failure occurs while processing the message, the error is flagged
within the Error Hospital software, the collaboration returns failure so that the
database transaction is rolled back, and the message is kept on the integration bus
queue. Because the message has not been successfully processed, it is re-
submitted to the collaboration. This re-try will now cause the message to be
inserted into the Error Hospital tables.

The Error Hospital assumes that each Message Family has a single unique ID for
all business object entities its messages are associated with. This ID must be the
same for the same entity across all Message Types within the Message Family. If
any message for a specific business entity is admitted to the Error Hospital, then
the Error Hospital will automatically insert subsequent messages for the same
business object. This helps maintain correct message sequencing and guaranteed
exactly once successful message processing. Otherwise, multiple update
messages for a business object may be processed in an incorrect order and create
incompatibilities between applications.

Chapter 3 – Messaging system component overview 55

Pl/SQL API Publisher Processing
For a publishing adapter, the following logic is performed to publish messages to
the RIB or place messages into the Publishing Error Hospital:

Copyright
2002

Retek,
Incorporat

ed

Publisher Message Processing flow using
GETNXT()

Start

Return,
Success,
perfrom 2

Phase
Commit

Publishing
Collaboration calls

GETNXT()

GETNXT
returns fatal

Error Status?

GETNXT
returned a
message
payload?

Publish
RibMessages to

JMS Topic

put
ribMessage
into Hospital

No

No

No

GETNXT
returned 'Put
message into

Hospita?"

No

Yes

create ribMessage
for payload

Shutdown the
e*Way

Yes Stop all
e*way

processing

More
 ribMessage
Nodes to put

into
RibMessages?

YesYes

do other
 messages exist in
Error Hospital for

this Business
Object?

Yes

create ribMessage
for payload

put ribMessage into
RibMessages

No

GETNXT
returned any

message
payloads?

Yes

Return
non-succes,

perfrom
Rollback

No

 Figure 3-5

56 Retek Integration Bus

Pl/SQL API Subscriber Processing
For a subscribing adapter, the following logic is performed regarding placing
messages in the Error Hospital:

Copyright
2002

Retek,
Incorporat

ed

 Subscriber Processing Logic using
CONSUME()

Start

Stop

Subscribing
Collaboration

delivers message
from queue

message marked
as Failed, put
into hospital?

call message
type specific
Consume()

stored
procedure

Consume()
Success?

message work
committed

return
success from
collaboration

mark
message as
Failed, to be

put into
hospital

return failure
from

Collaboration

message work
rolled back.

message will
be retried

message put
into hospital

Yes

No

No

Does Business
Object ID have

other messages
in Hospital?

Yes

No

If message is being
retried, mark
message for

deletion

Yes

Figure 3-6

Chapter 3 – Messaging system component overview 57

Also associated with the Error Hospital within the subscribing adapter is a
subscriber “Retry” adapter. This adapter is responsible for re-creating and re-
publishing messages which have had problems previously. There should be one
subscriber “Retry” thread within the adapter per Error Hospital and JMS service
provider. This thread of control is also responsible for deleting all messages
marked for delete in the Error Hospital. (A Hospital Graphical User Interface
application is available for manual operations on messages found in the Error
Hospital.)

Messages are selected for retry based on the Business Object ID, the “Hospital
ID” (a sequence number used to insure message sequencing is maintained), and
whether the maximum number of automatic retries has been reached.

Error Hospital Database Tables

The following tables are used to store messages in the Error Hospital:

rib_message – contains the message payload, all single-field envelope
information, and a concatenated string made from <id> tags. Also contains a
unique hospital ID identifying this record within the hospital.

rib_message_failure – contains all failure information for each time the
message was processed.

rib_message_routing – contains all of the routing element information
found in the message envelope.

Additionally, a sequence, rib_message_seq, is used to maintain a unique
“Hospital ID” associated with each message placed into the Error Hospital.

Note: The “Retry” collaboration is responsible for maintaining the “State”
information for hospital records. One element of this information is whether the
message has been queued to the JMS topic for re-try processing. Thus, manually
deleting messages from the hospital database using SQL directly may produce
severe processing problems. Similarly, deleting messages directly from the JMS
provider may result in a message that is never retried again.

 The RIB is supplied with a command-line and GUI interface to the Error
Hospital database for administrative message control. These facilities also allow
one to manually change the payload data for the next retry attempt.

58 Retek Integration Bus

Retek MDBs and Publishing EJBs
For the J2EE environment, publishing to the RIB is performed via a deployed
Enterprise Java Bean. Subscribing is performed by deploying a Message Driven
Bean that subscribes to the specific JMS topic with an appropriate selector. In
both cases, the container manages the transaction and both the JMS and database
resources are included in a two-phase commit XA compliant transaction.

An overview of the publishing process is:

1 The J2EE application determines that a message is to be published. It creates
a RIB Payload object to hold the information. Rib Payload objects are
message type specific and map directly to the RIB message payloads.

2 The J2EE application invokes the RIB Publishing EJB’s XAPublish()
methods. The RIB Publishing EJB is a stateless session bean. Parameters to
this method include the RIB Message payload object, the Message Family
and the message type.

3 The RIB Publishing EJB creates a new RIB Message and invokes the
appropriate Retek Binding subsystem to create the XML Payload and puts it
into the RIB Message. The Retek Binding code also determines the correct
Topic to publish to.

4 The RIB Publishing EJB publishes the RIB Message to a configured JMS
Provider and returns control to the J2EE application.

5 The J2EE application completes its unit of work and a 2-phase commit
operation is performed between any database(s) and the JMS server.

For the subscriber process, the process is slightly different. However, it is very
similar to the SeeBeyond e*Way process.

1 The Message Driven Bean is deployed with a deployment descriptor
detailing the topic and select the bean subscribes to.

2 After the MDB is activated, a J2EE global transaction is started.

3 A message on the JMS topic is then delivered to the MDB’s onMessage()
method.

4 The MDB calls the appropriate RIB “Consume” bean’s “CONSUME()”
method. The Consume bean is an EJB deployed to generically handle a
message.

5 The Consume Bean checks to see if this message is a re-delivery from a
previously failed attempt. If so it creates a set of new entries in the Error
Hospital and returns success. There will be one new entry per RIB Message
Node.

Chapter 3 – Messaging system component overview 59

6 The Consume Bean performs the following actions on each RIB Message
Node found in the message.

a The Consume Bean checks the Error Hospital to see if there are entries in
it for the same Message Family/Business Object ID combination. If so,
this message is also placed into the Error Hospital and a successful return
is made.

b The Consume Bean invokes the Retek Binding subsystem to create an
“injector” object. The Injector object is specific to the Message Family
and Message Type. It contains the application specific logic needed to
process the message.

c The Consume Bean creates a RIB Payload object from the RIB Message
Payload XML.

d The Consume Bean invokes the Injector’s “inject()” method. This
method performs the required application specific logic to process the
message.

e The “inject()” method returns the status of the message back to the
Consume Bean.

f The Consume Bean examines the status.

 If a failure has occurred, the transaction is marked rollback only, The
message is marked as failed and control is returned to the MDB.

 The MDB throws an exception to the MDB’s container.

 A rollback of all database work and the RIB Messages message remains
on the JMS Topic.

 The RIB Messages message is re-delivered to the MDB and steps 2, 3,
and 4 are repeated.

 The Consume Bean now recognizes that this is a redelivery of a failure.
It performs the actions detailed in Step 5 above and returns.

 Else the processing was successful so the Consume Bean examines the
Error Hospital to see if this message is in the Error Hospital. If so, the
message is deleted from the Error Hospital.

7 The Consume EJB returns success to the MDB.

8 The MDB returns success to its container and the message is removed from
the JMS provider. A two-phase commit operation is performed with both the
Database and JMS provider committing all work.

9 Steps 2-8 are repeated.

60 Retek Integration Bus

Retek Binding
The term “Retek Binding” is used to identify a message processing subsystem.
This subsystem consists of a set of classes used to process or create RIB
messages and typically executes using the J2EE platform. It is responsible for
translating the RIB Message payload XML string into a “payload” object and to
execute application specific code to process the payload. The configuration of
the Retek Binding is found in a set of property files. These files include the
following:

binding.properties – contains the association between a Message Family
and Message Type and an identification of a “Binding”.

injector.properties – associates a given Binding with a specific injector
class.

payload.properties – associates a given Binding with a specific payload
class.

The Retek Binding subsystem has a single instance of the “CommandFactory”
class. This class is used to

1 Determine the correct Binding ID to use for a given Message Family and
Type.

2 Create a “Command” object that processes the payload form a RIB Message.
These Command Objects are used both in publishing and subscribing. The
Publishing EJB calls the CommandFactory’s getPublishCommand() method
and the Consume EJB calls the CommandFactory’s
getSubscribeCommand().

The getSubscribeCommand() method is responsible for converting the
payload XML into a payload object and creating the application specific
“injector” object.

The getPublishCommand() is responsible for creating the appropriate
payload object and the appropriate translation command and injector to
convert the payload object to an XML string.

3 It is the Command object that invokes the injector’s doExecute() method to
process or create an XML payload.

J2EE and SeeBeyond Bridging
In these cases, there needs to be application server specific bridges built between
the SeeBeyond JMS and the Application Server supported JMS implementation.

The main problem for the J2EE platform is in a specific application server
implementation of the JMS standard. Many application servers have their own
“built-in” JMS implementations. In some cases, the application servers do not
correctly use the JMS interface and hence not all application servers can use an
externally provided JMS implementation.

For J2EE application servers that support generic JMS providers, integration
between an Oracle Forms based application, such as RMS, and the J2EE
application is seen below:

Chapter 3 – Messaging system component overview 61

SeeBeyond
Environment

e*Gate JMS

Native PL/SQL RIB - J2EE Solution

RIB Publisher
EJBRMS

TAFR e*Ways
Pub e*Ways
Sub e*Ways

Hospital e*Way

Application
Database

RIB MDB and
Consume EJB

J2EE
application

EJBs

The solid lines represent message or data flow. The line between the Application
Database and the Hospital e*Way implies that the Error Hospital tables are
installed as part of the Application Database. This implementation currently
requires a SeeBeyond e*Way to poll the Error Hospital tables and retry failed
messages and their dependent messages.

Unfortunately, not all application servers can support an external JMS
implementation. Many times what support there is lacks an adequate XA
compliant Two-Phase Commit interface with Message Driven Beans. In order to
compensate for this, a set of Bridge e*Ways is needed to transfer the data from
the SeeBeyond JMS to the application server specific JMS. A diagram of this
configuration is seen below:

Bridging PL/SQL RIB - J2EE Solution

e*Gate JMS
Pub e*Ways

RMS

Retek J2EE
Application

Bridge e*Ways

TAFR e*Ways

App
Server
JMS

Sub e*Ways

Note: The hop from the
Bridge eWay to JBoss
JMS is non-XA (2PC)

Hospital e*Way

RIB Publisher
EJB

RIB MDB and
Consume EJB

SeeBeyond
Environment

Note that this implementation also currently requires a SeeBeyond e*Way to poll
the Error Hospital tables and retry failed messages and their dependent messages.

Chapter 4 – RIB Message Families 63

Chapter 4 – RIB Message Families
This chapter presents an overview of the RIB Message Families. Each Message
Family contains information specific to a related set of operations. Processing by
Message Family insures that a sequence of messages for a given Business Entity
(for example, a PO) is maintained throughout the message lifecycle. In the RIB
10.3 release, a single thread of processing insures this sequence. The RIB
infrastructure maintains a FIFO ordering for messages on all of its queues.

A Message Family may contain multiple “Message Types”. Each message type
encapsulates the information specific to a business entity within one or more
business events. A single business event, such as updating a Purchase Order, may
involve multiple business entities, such as a line item within the Purchase Order.
Furthermore, because a single business event may involve multiple business
entities, the application may publish messages for this event from multiple
Message Families for a single business transaction. More than one message type
within a Message Family may also be created.

Messages published from different Message Families or messages acting on
different business objects do not have the same sequential guarantees. It is
possible for two Purchase Orders to be processed by a subscriber in the reverse
order they were created. Many times the cause of this is due to an error or locked
record discovered by the publishing adapter.

Dependencies between Message Families are more problematic. For Example,
an Item must be created before it is used in a Purchase Order. If the Item
publisher or subscriber is not available, then the Purchase Order may arrive at the
subscriber before the Item it uses does. When it does, the PO is put into the Error
Hospital. The Error Hospital retry logic then attempts to automatically correct
this situation by re-publishing the PO a configurable number of times.

Event types and Message Families
Each Message Family uses a single SeeBeyond Event Type Definition to define
the publishing format for all Message Types within the Message Family. Because
of this, the SeeBeyond e*Gate Integrator infrastructure sees all messages from a
Message Family as belonging to a single “type”, known as the Event Type. The
RIB message processing logic sub-divides the messages according to the
message type field found in the RIB message envelope. The Event Type is the
SeeBeyond ID associated with the type of the message. Event Types may use the
same internal format. As such, Event Types may also be specific to how much
processing has occurred on the data.

The SeeBeyond Event Type used for a Message Family may be changed if TAFR
components are part of the processing stream. This is required when a single
message needs to be routed to multiple destinations. In this case, each destination
is associated with a distinct queue and each queue is associated with a distinct
Event Type.

64 Retek Integration Bus

TAFR components may also change the Event Type messages when a mere
transformation or filter operation is performed. This is done for two reasons:

1 It allows flexibility for the RIB topology. All messages may be put into the
same queue on the integration bus if they have different types. For simple
topologies, one can monitor the number of messages “In progress” on the
RIB by looking at the statistics from a single queue.

2 It provides greater clarity when configuring a subscribing adapter or TAFR
collaboration. Triggering events for a collaboration are fully specified by the
Event Type and the source of the Event Type. When the source is an
“upstream” collaboration, the Queue containing the event is “hidden” within
the upstream collaboration’s configuration. Specifying the output event type
using a different name insures that any components requiring the TAFR
operation gets only TAFR processed messages.

Message Family References
An excellent resource summarizing the Message Families is the
RIB_FAMILIES.pdf report supplied with each RIB installation. This document
lists the available Message Families, their Message Types, the names of the
DTD’s that document the message payload.

Chapter 5 – External application message interfaces 65

Chapter 5 – External application message
interfaces

This chapter presents a brief overview of interfacing with external applications
using defined RIB messages.

Direct JMS interfaces for non-Retek applications
Legacy and other applications should directly connect to the SeeBeyond JMS
provider using standard JMS interfaces. For implementation specific details, see
SeeBeyond e*Gate API Developer’s Guide.

Connecting directly to the JMS provider allows an application to decouple its
implementation from the Retek application. Changes made to the Retek
application will not affect this interface as long as the message format remains
the same.

All message publishers should publish to the JMS using JMS ‘Text’ messages.
This insures that character encoding issues are minimized. Messages published
as ‘Bytes’ messages could run into character encoding issues, depending on the
default encodings of the Java Virtual Machines used to publish and subscribe to
the message.

All message publishers must also ensure that a message is published with the
JMS Message Property, threadValue set to an appropriate value. When only a
single subscribing thread is used, the value of threadValue should be ‘1’. This is
the default for all RIB adapters. When multiple threads are used, messages
should be published with a value of threadValue that specifies the logical
processing channel to use.

Furthermore, all subscribers must use selectors to insure that they do not process
retried messages destined for other subscribers. Retried messages are queued
onto the same topic that they originally were published to. The Error Hospital
Retry publisher will set a retryLocation property to specify that the message is
being retried and that only one specific subscriber should receive it.

A typical selector used for RIB Messages has the following form:
threadValue=’1’ and (retryLocation is null or
retryLocation = ‘<adapterName>’)

Where <adapterName> is an identification of the subscriber. For those adapters
running on the SeeBeyond eGate platform (an e*Way), it is the name of the
e*Way and the name of the collaboration separated by a period. E.g.
‘ewItemToRDMWH1.colItemToRDMWH’.

66 Retek Integration Bus

Character Encodings
The RIB fully supports the UTF-8 character encoding. This encoding allows for
multi-byte Unicode characters to be contained in RIB messages.

At this time, Retek only fully supports UTF-8 as the Oracle database natural
language. However, some implementations have used other character sets. In
these cases, translation from Unicode UTF-8 to another character encoding is
performed within the Oracle JDBC driver and PL/SQL interface.

RIB Messaging Paradigm concerns
The following tenets of the RIB Messaging system are of interest to external
(non-Retek) publishers and subscribers:

1 During a business transaction, one or more “Create” messages may be
published. These messages consist of all header and detail information for
the composite entity created. External applications may require that these
messages be coalesced into a single composite message.

2 Conversely, an external application may not have the same data model as the
Retek application and require that a composite message be divided into
multiple messages. These may need to be along the lines of a “header” and
one or more “details”.

3 When a business entity is modified, a message specific to the modification is
published. The message may be specific to a sub-entity. For example, if a
line item is added to a Purchase Order, a PODTLCre message will be
published. If multiple items will be added, multiple PODTLCre messages
will be created. This means that a single database transaction may result in
multiple messages within the same or multiple Message Families.

Non-Retek subscribing applications may not associate a single message with
a single database transaction. Another problem is that some non-Retek
applications require a complete snapshot of the changed business object, not
just a snapshot of the changed detail or header. In this case, a TAFR must be
developed to create the desired information.

4 In terms of non-Retek (external) publishing applications, the application
must publish using Retek’s canonical form (as specified in the Retek
Integration Guide) or convert to this format. Besides converting field names
or code values, this may also mean splitting up a single message into
multiple messages.

5 Deletion messages may be applicable to an entire composite business entity.
Different Message Types distinguish between the deletion of a sub-entity and
the composite entity. For example, a Delete Supplier message will delete the
supplier and all of its addresses, while a Delete Supplier Address will only
delete a supplier’s address.

Non-Retek subscribers that cannot accept a single delete message for these
entities will need to have additional processing to specify the sub-entities to
delete.

Chapter 5 – External application message interfaces 67

6 The full create/modify/delete/detail update/detail modify/detail delete
Message Types are not available for all Message Types. Non-composite
business entities do not contain “detail” operations. Some messages, such as
a Stock Order Status, reflect only an adjustment to an entity that will never
be deleted (or created) by the publishing application.

7 RIB published messages may require modification or transformation to
satisfy the external application APIs. These modifications and
transformations may involve additional database operations. For example,
the complete vendor name may be needed in a message as opposed to a
“vendor ID” found in the RIB message. Once the data requirements of the
subscriber have been determined, the available RIB messages should be
inventoried for their applicability and the specific transformations that need
to be applied to them.

SeeBeyond application-specific adapters
When integrating with an existing non-Retek application, development time may
be shortened considerably using a SeeBeyond e*Gate Application Adapter
designed for that specific application. These application adapters are either:

• e*Ways that surface an application’s interface via a set of event type
definitions: For these types of e*Ways, one must develop a set of subscribing
collaborations that accept RIB messages as input events and a set of
publishing collaboration that accept the application specific events.

The subscribing collaborations convert the input RIB event into the event
types associated with the non-Retek application adapter. Then the
collaboration must publish the event to the “External” side of the e*Way.
The “external” side then understands what API’s are used for each event type
and updates the application with the correct data.

The publishing collaborations must convert the input application specific
events into one or more RIB events before publishing them. The source of
these events must be the “External” side of the e*Way.

Because of deployment limitations and performance concerns, it may be
necessary to locate the message event type transformation logic within a
different e*Way or BOB from the application specific e*Way. Because the
conversion is already done, no transformation is needed at the application
specific e*Way and “pass-through” collaborations are configured as part of
the e*Way.

• A library of event type definitions or wizards used to create these ETDs: An
example of this is the EDI ETD library. The purpose of these libraries is to
reduce the time creating, parsing, and/or validating the message format. For
example, one could use the event type definitions for EDI. In this case, the
ETD library aids parsing of the EDI document and reduces the amount of
development needed to convert these into messages used on the RIB.

Chapter 6 – Retek Extract, Transform, and Load 69

Chapter 6 – Retek Extract, Transform, and Load
The Retek Extract, Transform and Load (RETL) is a high-performance runtime
tool that is especially useful in parallel processing systems designed for high
volumes of data. The design of the RETL decreases the time importing or
exporting data to or from a database. An “IMPORT” operation reads from a data
file and an “EXPORT” operation creates a data file.

The usage of the RETL tool should be based on desired performance and data
volume. The RETL is a tool that leverages parallel processing. Although the
integration bus can also be configured for parallel processing, the RETL tool set
is much more flexible, and performs better. RETL is optimized specifically for
high data import and export throughput – much more than a normal on-line
messaging system.

The RETL software is extremely powerful and flexible. There are currently no
standard event type definitions for the RETL. The relationship between the
RETL and the RIB integration bus intersect only on the transfer of these files. As
such, one should treat the RETL tool in the same manner as a batch job stream.
The RETL may use a file as input or create a file as output. These files may be
transferred like a regular batch file. However, if the RETL is used between two
Retek databases, it may make sense to keep the file where it was generated and to
create two batch jobs executing serially on the same host.

Note that the size of the files produced could be a concern when RETL is used.
As seen in the next chapter, the easiest way to implement a batch file transfer is
as a single message. However, the one-to-one association of a file to a message
requires that the entire message must be read into program memory. If the file is
very large, then this could consume more resources than are available, causing
the file transfer e*Way to hang or error. Hence, it may be worthwhile to
investigate the size of the files imported or exported via the RETL tool and, if
over 100 megabytes in size, consider techniques to break the file up into smaller
sizes.

Please read the 10.3 RETL Programmer’s Guide for more details.

Chapter 7 – Batch job integration 71

Chapter 7 – Batch job integration
Retek recommends that integration to Legacy applications use JMS as the means
to integrate with Retek applications. The methods to do this may include a new
messaging component or may be by via a file loaded to the RIB. This section
describes using the SeeBeyond “Batch” e*way to load a file to and from the RIB.

The main characteristic of a batch job is the reliance on a file as the means for
input and output. In point-to-point solutions, this file is typically FTP'd between
systems. To integrate with the RIB, the batch file is converted to one or multiple
messages published to the integration bus.

There does not exist any pre-packaged batch integration software within the RIB
10.3 software that extracts data from the database and publishes it as a series of
RIB messages versus a file. If such software existed, then this in itself would be a
message-based solution (and there would still not be any pre-packaged “batch”
integration). However, the SeeBeyond e*Gate Integrator infrastructure allows
files to be used as sources or sinks for messages. However, an e*Way
collaboration does exist that can be used to load files if these files have been
already created in the correct XML format.

The RIB may be an alternative to using FTP or in conjunction with FTP file
transfers. The mechanism currently used to FTP existing batch jobs may be
replaced completely RIB based mechanisms.

Motivations for replacing FTP transfers
FTP is a common method for transferring files between systems. It uses a stable,
well-specified protocol and mature products are available that implement it. RIB
integration with batch files involves taking the file information and publishing it
to the RIB. The reasons why one would want to replace an FTP transfer with this
method include:

• Reduced number of FTP jobs that transfer the same file from place to place.

• With FTP, both hosts need to be available. When an adapter publishes data to
a JMS topic, only the RIB and one of the hosts need to be available. Because
of the distributed processing available on the RIB and the ability to move
components physically within a network, there is an increased flexibility for
operations personnel to perform system maintenance.

• Subscribers or publishers can move from a batch-oriented method to a
message-oriented mode in an incremental fashion. After publication, file data
exists as one or more messages and can be transformed, filtered, and routed
as such. If the same data is needed by multiple subscribing applications, then
some of the subscribers can remain relatively unchanged and still use a file as
input while others can read the data as messages directly from an integration
bus queue.

72 Retek Integration Bus

Transfer file data using a batch application e*Way
The first and simplest available option for using the RIB in this respect is to use
the SeeBeyond e*Gate Batch application e*Way to transfer file information to
and from the RIB. This e*Way can be used to copy files to or from hosts without
installed e*Gate components. The Batch e*Way is fully documented in the
SeeBeyond Batch e*Way Intelligent Adapter User’s Guide. This manual presents
a brief overview of its capabilities.

Do not use the SeeBeyond e*Gate File e*way. This is a development tool not
robust enough for deployment in a production environment.

A batch e*Way is created by creating new e*Way in the e*Gate Enterprise
Manager, selecting “stcewgenericmonk.exe” as the “Executable file”, and then,
when creating the new configuration file, selecting the “batch” e*Way
configuration template.

The Batch e*Way works in one of two modes:

1 A fixed configuration that publishes data to the RIB based on the presence of
a file in a directory or creates/appends a file based on the presence of a
message on a queue.

2 A message based configuration where the batch e*Way subscribes to
messages that contain the specifics of the file transfer.

“Fixed” configuration

Publication of data to the RIB
A batch e*Way is configured to poll for the existence of files (either on the local
system or on a remote system). Once found, the e*Way copies the files to a local
temporary directory. For files found on remote systems, FTP is used to copy it to
the local temporary directory. Configuration options determine the polling
interval, where the file is located, file masks to determine which files to transfer,
FTP parameters, whether the file should be renamed or archived after
publication, and if the contents of the file should be published as a single
message or if each line in the file corresponds to a single message. This is all
performed in the “application” side of the e*Way.

Once a message is ready on the application side of the e*Way, the message is
sent to the “collaborations” configured with the e*Way. A collaboration must be
created that can handle the messages published whose source is “<external>”. In
the simplest case, this collaboration could merely pass through the data without
modification or validation. In a more complex case, the collaboration could
validate and transform the data before publishing it as an event.

Chapter 7 – Batch job integration 73

If the entire file is to be published as a single message, the entire file will be read
into the memory of the batch e*Way. The memory allocated for this may never
be relinquished by the e*Way, depending on its scheduling. Severe problems
may result when the amount of memory needed exceeds the maximum available
for a single process or when the virtual memory of the machine is exhausted.
Retek internal test systems successfully transferred files 100 megabytes large;
your results may vary according to the specific operating system and its
configuration.

Subscribing to data from the RIB
A batch e*Way is configured with a collaboration that is triggered from events
(messages) published by another collaboration or are available on a JMS topic.
The processing order of these events is the reverse of publication. First, the
subscribing collaboration is executed and performs any needed transformations
or validations. Then the message is passed over to the “application” side of the
e*Way by publishing the message to the “<external>” destination.

The configuration of the application side determines the final disposition of the
data. As in the publication scenario, the data stages through a temporary file and
before copied to its final destination. FTP is used when the final destination is a
remote system. Configuration options for this processing include the following:

• The name of the file to put the message in.

• Whether messages are appended to this file or new files are created.

• Whether the file is uniquely named via a time stamp or sequence number.

• How often new files are created (if the append mode is used) and copied.

• Pre- and post- file copy activities.

• FTP session parameters.

Import notes: When the “append messages to a file” is used, file boundaries are
not necessarily maintained from the source file. One or more source files could
be put into a single destination file or, if the source file was published record-by-
record, half of the source file could be appended to a single destination file and
half to the next. It all depends on a set of interacting configuration parameters.
Furthermore, if a batch e*Way was used to publish the file using a “fixed”
configuration, no intrinsic mechanism exists for communicating the name of the
source file.

74 Retek Integration Bus

“Message” mode
In message mode, the batch e*Way receives an XML message detailing the file
transfer details. This message contains one or more operations or commands to
execute. There are two types of commands:

1 “receive” – find one or more external files and publish them to the
integration bus. The message published by the e*Way is formatted using
XML. It contains an identifying “return_tag” plus a “payload” tag containing
the data found in the file.

2 “send” – the subscribed message is used to create or append to a destination
file. The message contains a “payload” tag with the file contents. Other tags
in the message detail other specifics of the file, such as the destination file
name, and what to do if the destination file exists, and local/remote file copy
details.

One advantage of the “message mode” FTP configuration is that “send”
commands specify the name of the destination file. Hence, it is possible to
maintain file names across the file transfer. However, this method requires
additional development and processing.

Transferring data directly from/to a database
Another method for implementing batch transfers is to create an e*Way and a set
of collaborations to read from a database table and publish the information to the
RIB. This involves using the e*Gate Enterprise Manager to create the event type
definitions, collaboration rules, collaborations, e*Ways and queues. This strategy
replaces a batch mode of processing with a message-based mode. It directly uses
new development specifically for the integration bus.

There are two strategies one can use for this development: Using connection
points and developing the logic entirely within a collaboration or using one of the
“Generic” SeeBeyond e*Way adapters.

Chapter 7 – Batch job integration 75

Using connection points and developing the logic within a
collaboration

This strategy is useful if the data is available via a simple SQL statement or with
little added processing. (Actually, the wizard generates events based on table
structure, SQL statement, or Stored Procedure API.) The e*Gate Enterprise
Manager contains a database wizard that can generate an event corresponding to
the SQL statement.

Publication: One defines an e*Way connection with a polling parameter
determining how often these events will trigger the collaboration. No data or
SQL statement will populate the event (message) when the collaboration triggers.
The SQL statement executes as part of the collaboration rule logic and each row
of any result set needs publishing as a separate event.

Subscription: One configures a collaboration that includes the defined event as
an output event with a destination specified as a database connection point. The
collaboration transforms the input data into the SQL specific event and then
executes the SQL statement.

Note that database transaction boundaries depend on XA interface usage and an
event’s destination or source. If the XA interface is used, all work within each
invocation of the collaboration is within a single transaction. If not, the
collaboration can execute multiple transactions per single invocation. RIB
collaborations typically use XA to insure “exactly once” successful message
processing.

Using a “generic” e*Way application adapter
A Generic e*Way Application Adapter is useful when the business logic
surrounding message creation or processing is not trivial. This series of adapters
also cannot leverage the XA interface. There is the possibility that the same
message is published or consumed multiple times.

Generic Application Adapters are specific to a programming language such as
Java or C/C++. Their configuration specifies a shared library, DLL, or Jar file
that contains the application logic. The functions, classes, and methods used in
this logic must meet certain criteria.

These adapters have the following models:

• Publication: When the e*Way is instantiated (brought up) its configuration
is read and the container of the application logic is attached to the e*Way.
Specific initialization functions are called (as per the Generic e*Way
standard application API). These functions may perform one-time activities,
such as establishing a database connection. Additional functions or methods
need to be implemented to inform the e*Way of lost connections or other
events. Once the e*Way is initialized, it polls (according to a configured
parameter) the application by calling a specific application provided
function. If any data is available, the e*Way attempts to decode the returned
bytes as a message in order to invoke a collaboration to process this message.
All collaborations of this sort must subscribe to an event whose source is
“<external>”.

76 Retek Integration Bus

The collaboration may simply pass the message through for publishing as-is
or transform the event in some way. Once the message has been published
successfully, a function is called on the “application” side of the e*Way to
allow the application to further update state or commit updates already
performed. The application polling function is called again and the process
repeated. When the collaboration processing the application’s message
returns failure, the e*Way calls a “failure” function to allow the application
to process the failure or rollback database changes.

Between each loop there are checks to see if any the application is ready to
continue or if an administrator has requested the e*Way to shut down.

• Subscription: In order to process incoming messages, a Generic e*Way
must have at least one collaboration configured with an output event type
that the application can parse. This event must also have a destination of
“<external>”. Input events can come from any valid connection point or
other collaboration. The collaboration processes the input event according to
its own logic and publishes the output event. The e*Way presents the output
event (message) as a parameter to an application-side implemented function.

Note that the application side of the e*Way is responsible for maintaining its own
database connections that it uses. Any needed information can be prompted for in
the e*Way configuration using modified “configuration definition files” (*.def).

Chapter 7 – Batch job integration 77

Start

Stop

eway started

message
returned

application
side

initialized

application
polled for
messages

wait

send message
to

collaboration

collaboration
success?

call success
function

call failure
function

shutdown?

shutdown

No

Yes

No

Yes

Yes

Figure 7.1 Generic application eWay publishing flow

No

78 Retek Integration Bus

For more information on the specifics of the Generic e*Way adapters, see the
appropriate SeeBeyond manual listed below:

• Java Generic Extension Kit Developer’s Guide

• C Generic e*Way Extension Kit Developer’s Guide

• Generic e*Way Extension Kit (Monk enabled)

Using an application specific e*Way adapter
Application specific e*Way Adapters are built using the same paradigm as the
“Generic” adapters listed above. However, these e*Ways have the “application
side” of the e*Way already developed. The event types (message formats) the
application can publish or parse are typically defined already (or at least an easy
way to create them is available) along with the application processing logic.
Hence, the main work here is to develop the correct collaborations to convert
RIB events (messages) to or from this set.

There is a rich set of application specific adapters available. A complete list is
available on the SeeBeyond web site, http://www.seebeyond.com.

	Contents
	Chapter 1 – Introduction
	Additional resources
	Retek 10.3 integration documents
	SeeBeyond Technology Corporation documents

	Chapter 2 – The RIB messaging model
	Message characterization
	RIB Message Families and Message Types
	Model drivers and concerns
	Message life cycle
	RIB message structure
	Sample RIB Message

	Chapter 3 – Messaging system component overview
	SeeBeyond components
	Registry
	Schemas
	Control brokers and participating hosts
	Events and event type definitions
	Collaborations
	e*Ways and BOBs
	Intelligent Queues and JMS Intelligent Queues
	IQ Managers and JMS IQ Managers
	e*Way Connection Points

	J2EE components
	Java Message Service Usage
	JMS Selectors
	Enterprise Java Beans (EJBs)
	Message Driven Beans (MDBs)
	Deployment Descriptors
	Transaction Managers

	Integrated Store Operations (ISO) components
	RIB components
	Old and New Stored Procedure Interfaces
	RIB Database Objects
	RIB_XML database package
	RIB_SXW database package
	RIB_SETTINGS and RIB_TYPE_SETTINGS
	Application message publishing triggers using CLOBs
	Application message publishing triggers using RIB Objects
	RIB Objects: an in-depth view
	RIB Object to XML Translation
	Non-trigger PL/SQL publishing
	Message Family Manager API

	Publishing application adapters using PL/SQL interfaces
	TAFR Adapter
	Subscribing application adapter for PL/SQL application interfaces
	Subscribing application adapters that also publish messages
	Subscribing application PL/SQL Stored Procedure APIs
	Error Hospital
	Pl/SQL API Publisher Processing
	Pl/SQL API Subscriber Processing
	Retek MDBs and Publishing EJBs
	Retek Binding
	J2EE and SeeBeyond Bridging

	Chapter 4 – RIB Message Families
	Event types and Message Families
	Message Family References

	Chapter 5 – External application message interfaces
	Direct JMS interfaces for non-Retek applications
	Character Encodings
	RIB Messaging Paradigm concerns
	SeeBeyond application-specific adapters

	Chapter 6 – Retek Extract, Transform, and Load
	Chapter 7 – Batch job integration
	Motivations for replacing FTP transfers
	Transfer file data using a batch application e*Way
	“Fixed” configuration
	“Message” mode

	Transferring data directly from/to a database
	Using connection points and developing the logic within a collaboration
	Using a “generic” e*Way application adapter
	Using an application specific e*Way adapter

