
  

Retek® Integration Bus™ 

10.3.2 

Operations Guide 



   Retek Integration Bus 

Retek® Confidential 

 

 

The software described in this documentation is furnished under a license 
agreement, is the confidential information of Retek Inc., and may be used 
only in accordance with the terms of the agreement.  

 

 

No part of this documentation may be reproduced or transmitted in any form 
or by any means without the express written permission of Retek Inc., Retek 
on the Mall, 950 Nicollet Mall, Minneapolis, MN 55403, and the copyright 
notice may not be removed without the consent of Retek Inc. 

Information in this documentation is subject to change without notice. 

Retek provides product documentation in a read-only-format to ensure 
content integrity.  Retek Customer Support cannot support documentation 
that has been changed without Retek authorization. 

 

 

Retek® Integration Bus™ is a trademark of Retek Inc. 

Retek and the Retek logo are registered trademarks of Retek Inc.  

This unpublished work is protected by confidentiality agreement, and by 
trade secret, copyright, and other laws. In the event of publication, the 
following notice shall apply: 

©2003 Retek Inc. All rights reserved. 

All other product names mentioned are trademarks or registered trademarks 
of their respective owners and should be treated as such.   

Printed in the United States of America. 

 

Corporate Headquarters: 
Retek Inc. 

Retek on the Mall 

950 Nicollet Mall 

Minneapolis, MN 55403 

888.61.RETEK (toll free US) 

+1 612 587 5000 
 
European Headquarters: 
Retek 

110 Wigmore Street 

London 

W1U 3RW 

United Kingdom 

Switchboard:  

+44 (0)20 7563 4600 

Sales Enquiries: 

+44 (0)20 7563 46 46 

Fax:  +44 (0)20 7563 46 10 



 

 

Customer Support 

Customer Support hours: 

Customer Support is available 7x24x365 via e-mail, phone, and Web access.  

Depending on the Support option chosen by a particular client (Standard, 
Plus, or Premium), the times that certain services are delivered may be 
restricted.  Severity 1 (Critical) issues are addressed on a 7x24 basis and 
receive continuous attention until resolved, for all clients on active 
maintenance. 

Contact Method Contact Information 

Internet (ROCS)  www.retek.com/support 
   Retek’s secure client Web site to update and view issues 

E-mail   support@retek.com 

Phone  US & Canada: 1-800-61-RETEK (1-800-617-3835) 
  World: +1 612-587-5800  
  EMEA: 011 44 1223 703 444  
  Asia Pacific: 61 425 792 927 

Mail   Retek Customer Support 
   Retek on the Mall 
   950 Nicollet Mall 
   Minneapolis, MN 55403 

When contacting Customer Support, please provide: 

• Product version and program/module name. 

• Functional and technical description of the problem (include business 
impact). 

• Detailed step by step instructions to recreate. 

• Exact error message received. 

• Screen shots of each step you take. 

 

http://www.retek.com/support




Contents   i 

 

Contents 
Chapter 1 – RIB component overview................................... 1 

Introduction ......................................................................................................... 1 

SeeBeyond components ...................................................................................... 1 
Active messaging........................................................................................................ 1 
Monitoring.................................................................................................................. 6 

Retek supplied components................................................................................. 7 

Additional resources............................................................................................ 8 

Chapter 2 – RIB component operations.............................. 11 

Simple message flow......................................................................................... 11 

Message routing ................................................................................................ 12 

Component failures ........................................................................................... 14 
Application trigger failures....................................................................................... 14 
SeeBeyond Publishing adapter failures .................................................................... 14 
SeeBeyond deployed TAFR adapter failures ........................................................... 15 
SeeBeyond deployed Subscribing adapter failures................................................... 15 

Deployment architecture considerations ........................................................... 16 
Retek schema integrity on the SeeBeyond Platform ................................................ 16 
Disk space analysis................................................................................................... 16 
Intelligent queue managers....................................................................................... 17 
Performance motivated parallel processing.............................................................. 17 

Chapter 3 – Configuration files ............................................ 19 

RIB Properties File............................................................................................ 19 
RIB Logging and Timings File................................................................................. 19 
RIB Message bundling entries.................................................................................. 19 
Multi-threading entries ............................................................................................. 20 
Error Hospital entries................................................................................................ 20 
Global entries............................................................................................................ 20 
Implementation classes used .................................................................................... 21 
SeeBeyond platform specific entries ........................................................................ 21 
ISO platform specific entries .................................................................................... 21 
Application specific entries ...................................................................................... 22 

Retek Binding configuration files ..................................................................... 22 
Properties files .......................................................................................................... 22 
XML files ................................................................................................................. 24 



ii   Retek Integration Bus 

 

Chapter 4 – SeeBeyond Platform......................................... 25 

RIB startup and shutdown ................................................................................. 25 
Available Scripts ...................................................................................................... 25 
Sequencing considerations – Detailed Information.................................................. 26 
RIB message publishing adapters............................................................................. 29 
RIB message subscribing adapters ........................................................................... 29 
TAFR adapters.......................................................................................................... 29 
RIB error hospital ..................................................................................................... 30 

Preventative maintenance tasks......................................................................... 30 
Log files.................................................................................................................... 30 
MFM staging tables .................................................................................................. 34 
Error Hospital ........................................................................................................... 35 
SeeBeyond tools ....................................................................................................... 36 

RIB component configuration........................................................................... 40 
Oracle database triggers............................................................................................ 40 
RIB property file....................................................................................................... 40 
SeeBeyond e*Way configuration files ..................................................................... 41 
SeeBeyond connection point configurations ............................................................ 48 
TAFR adapter configuration..................................................................................... 58 

Chapter 5 – Message error handling ................................... 71 

Error Hospital components................................................................................ 72 

Error Hospital configuration parameters and properties ................................... 74 

Error Hospital activities .................................................................................... 77 
Hospital GUI and command line utility set up ......................................................... 78 
Hospital Admin GUI script....................................................................................... 79 
Error Hospital admin command line scripts ............................................................. 79 
Manually querying message information from Error Hospital................................. 85 

Error Hospital log entries .................................................................................. 86 

Create additional Error Hospitals ...................................................................... 86 

Chapter 6 – J2EE Platforms ................................................. 87 

RIB startup and shutdown ................................................................................. 87 
Starting the RIB components.................................................................................... 87 
Shutting Down RIB Components ............................................................................. 87 

Preventative maintenance tasks......................................................................... 87 
Log Files................................................................................................................... 87 



Contents   iii 

 

RIB component configuration........................................................................... 88 
Configuration files.................................................................................................... 88 
Generic JMS Provider .............................................................................................. 90 
Message Listener Ports............................................................................................. 90 
Data Source .............................................................................................................. 90 

Chapter 7 – ISO Platform...................................................... 91 

RIB startup and shutdown ................................................................................. 91 

Preventative maintenance tasks......................................................................... 91 
Log files.................................................................................................................... 91 

RIB component configuration........................................................................... 92 
XML files ................................................................................................................. 92 
ISO Configuration (*.cfg) files................................................................................. 93 
Properties files .......................................................................................................... 96 

Chapter 8 – RIB Administration Tool................................... 99 

Overview ........................................................................................................... 99 

Installation and configuration............................................................................ 99 

Accessing the RIB Administration Tool ......................................................... 101 
Main Portal Screen ................................................................................................. 101 
Hospital Administration GUI Applet ..................................................................... 101 
Message Statistics GUI Applet............................................................................... 102 
RIB Properties Editor ............................................................................................. 103 

Files and classes contained in the war file ...................................................... 103 

Chapter 9 – Message Statistics Command Line Utility.... 105 

Overview ......................................................................................................... 105 
Requirement ........................................................................................................... 105 
Prerequisites to run the Timings Statistics ............................................................ 106 

Chapter 10 – Multi-Thread feature for the e*Ways ........... 109 

What is a Thread?............................................................................................ 109 
Amdahl's Law......................................................................................................... 109 
Multi-threaded feature for Subscriber, TAFR and Publisher ................................ 110 



iv   Retek Integration Bus 

 

Chapter 11 – Troubleshooting ........................................... 113 

SeeBeyond Platform........................................................................................ 113 
Problems starting a RIB component ....................................................................... 113 
Message processing problems ................................................................................ 116 
Shutdown problems ................................................................................................ 120 
Hospital admin GUI and command line utility....................................................... 120 

J2EE Platform ................................................................................................. 121 
Available tools........................................................................................................ 121 
Messages not getting consumed by application...................................................... 121 
Messages not getting published from application .................................................. 122 

ISO Platform ................................................................................................... 123 



Chapter 1 – RIB component overview   1 

 

Chapter 1 – RIB component overview 
Introduction 

This manual is designed for System Administrators, Developers, and 
Applications Support personnel.  Its purpose is to provide a basic understanding 
of the Retek Integration Bus components, how messages flow between them, and 
operational activities surrounding these components.  It also provides templates 
for using the RIB as an alternative to FTP batch jobs for transferring files from 
one system to another. 

This chapter describes the components that make up the Retek Integration Bus 
(RIB).  These components are distributed within the SeeBeyond Technology 
Corporation’s (SeeBeyond) e*Gate™ Enterprise Application Integration 
platform.  The final deployed system may be distributed across multiple 
computing systems.  These systems may be running a Microsoft Windows, Unix, 
or Linux operating system. 

If the SIM/ISO module has been purchased, Retek’s ISO application server (also 
known as the Chelsea application server) will be included with the actual 
SIM/ISO product.  The RIB will then include some components that will be 
deployed into the ISO application server. 

SeeBeyond components 

Active messaging 
This section contains a brief description of SeeBeyond e*Gate components.  For 
more detailed information, see the e*Gate Integrator System Administration and 
Operations Guide. 

In SeeBeyond’s EAI environment, a “Registry” embodies a complete 
administrative domain.  A Registry is a database defining the deployed EAI 
system and a program that controls access to this database.  A Registry is 
organized into one or more Schemas.  Each schema details a collection of 
e*Ways, BOBs, Intelligent Queue Managers, Intelligent Queues, Connection 
Points, and Collaboration Brokers along with their network addresses or 
locations.  The Registry also contains basic security objects that control user 
identifications, roles, and privileges shared across all schemas. 

Because the Registry embodies all configurable parameters, no other component 
can be brought up without access to a registry, either directly or indirectly.  
However, in a distributed environment, reliance on a single Registry can be 
problematic, since: 

• System crashes or scheduled maintenance may bring down the Registry. 

• Network partitions may occur that cut communication links between 
deployed components 

• Reliance on a single host may produce a performance bottleneck. 



2   Retek Integration Bus 

 

Deploying and configuring “Secondary Registries” can alleviate these problems.  
Secondary Registries replicate the Primary Registry.  The number and location of 
these Secondary Registries are dependent on the site-specific needs and 
capabilities of a deployed system.  The replication of the configurations occurs 
transparently during normal operation of the system. 

Each Registry is broken up into one or more Schemas.  Each schema is a self-
contained set of components that define “end-to-end” processing of one or more 
messages.  The Schema contains the message processing units to deploy, where 
messages are stored, security roles, database access definitions, and other 
information.  Schemas may be bridged, such that one schema may publish a 
message and other schemas contain one or more of the message’s subscribers.  
For reasons of performance and high availability, schema contents can be copied 
within a single Registry (that is, two or more schemas are defined with the same 
component types and processing, but have different names and physical 
deployments). 

In SeeBeyond’s vocabulary, there are three types of logical computing host 
types:  A Registry Host containing the Registry, Monitor Hosts where the e*Gate 
Monitor Software can be run, and “Participating Hosts” that produce, consume 
and process messages. 

Note:  This must be a Microsoft Windows NT/2000 platform.  The complete 
requirements for such a system is detailed in SeeBeyond’s e*Gate Integrator 
Installation Guide. 

Although all three of these component types could run on a single physical host, 
this is rarely seen in production environments.  Usually multiple computers are 
found in a deployed system – Operations personnel with PC’s running the 
e*Gate. 

All components within a Schema are defined within one or more Participating 
Hosts.  There is a correspondence between a logical Participating Host and 
another SeeBeyond infrastructure component known as a Control Broker.  The 
Control Broker is a program that controls the administrative activities for a 
participating host’s messaging components (e*Ways, IQ Managers, and BOBs).  
The Control Broker maintains a network Connection with the Registry or a 
Secondary Registry at all times, because it also propagates configuration 
changes. 

There must be at least one control broker up and running on any physical host 
involved in the deployed system.  Furthermore, there may be multiple control 
brokers running on a single physical host because: 

• The same computer may be configured as different “Participating Hosts” 
within a schema found in multiple Registries.  This is because the same 
physical host may have multiple identifications within a Domain Name 
Server. 

• The same host may be configured within multiple Schemas that are part of 
the same Registry. 

• The same physical computer may be configured to hold multiple 
“Participating Hosts” within a single Schema. 

• Any or all of the above may be true. 



Chapter 1 – RIB component overview   3 

 

Each Control Broker starts with parameters detailing its own name and its 
associated Schema and Registry.  At least one of these parameters must differ for 
each Control Broker instance. (That is, no two control brokers can start with the 
same name, same schema specification, and same Registry specification.) 

Once a message is created, it usually needs copying to stable storage so that it 
doesn’t get lost.  The RIB uses the SeeBeyond JMS Intelligent Queue (IQ) 
Manager component for this.  The JMS IQ Manager is a Java Message Service 
provider.  Queues within the JMS system are identified as “topics” that 
publishers publish to and subscribers subscribe to. 

Event types categorize the format of a message.  The JMS IQ Manager equates 
an event type with a JMS topic. 

The Retek Integration Bus uses the JMS IQ Manager extensively because it 
offers a two-phase commit capability.  Two phase commits are integral to 
"exactly once" message processing. 

Note:  “Exactly once message processing” is a SeeBeyond product attribute that 
guarantees a message is processed only once successfully.  This is important for 
non-idem potent messages – messages that contain “relative” values – that would 
cause discrepancies if processed by a subscriber more than once.  For example, if 
a message reserving a stock item for a specific store could end up reserving all 
items for that store if processed enough time, even though the publisher only 
wanted one item. 

The other SeeBeyond component deployed within a Participating Host is the 
e*Way.  These components produce, consume, or otherwise process messages.  
This manual uses the term adapter as a synonym for an e*Way.  All RIB 
adapters are e*Ways. 

Besides the “application” side of an e*Way, messages can be produced or 
consumed from an entity known as a Connection Point.  A Connection Point 
defines a session with an external entity such as a database, e-mail server, World 
Wide Web (HTTP/HTTPS) server, or Java Message Service provider.  It is 
possible to poll Connection Point sessions for incoming data at regular intervals, 
as defined by their configuration.  Multiple adapters may use the same 
Connection Point. Connection Point APIs may be multi-threaded and, depending 
on their design and configuration, support an XA compliant two phase commit.  
It is only through the XA interface that SeeBeyond insures a message is delivered 
and successfully processed exactly once. 

The processing for a specific message used by an adapter is defined within 
Collaboration. The source of the message (or event) that triggers the 
collaboration’s processing may be from either the e*Way application interface, 
from a Connection Point or from another collaboration. Messages published from 
collaboration must have an associated destination. This destination may be either 
an Intelligent Queue or a Connection Point. 



4   Retek Integration Bus 

 

One may use a Connection Point to ensure all processing performed on the 
message is done atomically.  Connection Points implementing the XA interface 
can have a distributed transaction that enforces atomic commits and rollbacks.  
The e*Way’s collaboration control logic manages the commitment or rollback of 
this distributed transaction based on the success or failure of the message 
processing within the collaboration.  “Exactly once message delivery” requires 
the XA protocol and its associated two-phase commit operation.  However, if the 
Connection Point does NOT implement the XA interface, then, under certain 
failure scenarios, the same message may be submitted for processing multiple 
times. 

RIB collaborations will also fail if their database connection points do not 
support the XA protocol.  RIB collaboration logic does not contain commitment 
or rollbacks.  The distributed transaction must include the work involved in 
delivering the message from a queue to the collaboration.  The collaboration 
starts only after the message delivery to the adapter.  If an invalid connection 
point is used, then no database work performed by the collaboration logic will 
ever be committed. 

The typical lifecycle of a message is as follows: 

• First, the publishing adapter creates the message.  The event that triggers the 
message creation may be a polling operation on the database, the presence of 
a file, or merely that a certain time interval has been reached.  Each message 
is created in the context of collaboration, and part of the collaboration’s 
configuration specifies where to publish the created message.  The message 
is sent to a “queue” that then writes the message to stable storage. 

• The message is now available to its subscribers.  Subscription is based on the 
publishing collaboration / event type combination.  Each subscriber will 
contact the queue and retrieve the next message available.  Separate threads 
in the subscriber are used to retrieve messages on a per event type basis.  The 
specific message retrieved from the queue depends on its location within the 
queue.  As part of the retrieval processes, the Error Hospital software updates 
the state of the message to reflect that one of the subscribers is now 
processing it. 

• Once a subscriber gets the message, it is free to process it according to its 
own rules.  In the case of a transformer adapter, the subscribing collaboration 
can open the message, modify its contents, and then publish the modified 
message to a new queue.  If the new message is of a different type than the 
original, the new message can be published to the original queue.  There may 
be new subscribers to the modified message, and the scenario repeated for 
each of these subscribers. 

• When each subscriber has finished processing a message, the queue updates 
the state of the message to reflect this.  When all subscribers have finished 
with the message the message may be deleted immediately or be 
archived/journal led for a specific time before deletion.  The 
archiving/journaling is specific to the type of the queue in use and the 
configuration of the queue manager. 



Chapter 1 – RIB component overview   5 

 

• The JMS Queue Manager will delete the messages on the queue after 
delivering it to the appropriate subscribers or after it has been on the queue 
the number of seconds specified in the MaxTimeToLive configuration 
parameter. 

ISO application server 
The ISO application was patterned after the specifications for the J2EE 
application server, though it was developed as the specifications evolved, long 
before they were complete.  For that reason, it is not J2EE compliant.  However, 
though the terminology may be different, some of the same concepts apply.  The 
application server has containers that hold server components, which are EJBs in 
J2EE.  ISO has messaging components, while J2EE has message-driven beans.  
ISO has configuration files, while J2EE has deployment descriptors.   

The ISO application server was designed with flexibility of deployment in mind.  
There are none of the “per PC” licensing requirements that traditional application 
servers, such as WebSphere, have.  Also, it doesn’t require a heavy-duty server to 
run it.  This is important for a large retailer who has many individual store 
locations, each of which requires an application server. 

The ISO application server can use a SeeBeyond JMS queue manager as its JMS 
messaging service.  In fact, this is the JMS implementation that the RIB uses for 
integration between ISO, and other Retek modules such as RMS and RDM.  The 
existing Retek publishers and subscribers are still SeeBeyond e*Ways, however, 
the new ISO components are ISO messaging components for its subscribers, and 
publishing utilities. 

For more information on the ISO application server, see the documentation 
supplied with the SIM/ISO application. 



6   Retek Integration Bus 

 

Monitoring 
So far, all of the components mentioned are actively involved directly in the EAI 
messaging system.  In a production system, however, there must be a way to 
monitor the running system components. 

Note:  Monitoring the associated business processes occurs at a different level 
and is outside the scope of this discussion. 

Four SeeBeyond components are useful in this respect: 

1 The e*Gate Monitor: This application that allows an administrator to 
determine if a component is up or down and is responding to status requests.  
It also allows the administrator to bring up or down any component deployed 
on a participating host other than a control broker.  Finally, it allows an 
administrator to interactively view and mark as resolved any e*Gate Alert 
Notifications. 

2 The e*Gate JMS Administrator: This application allows an administrator to 
monitor the JMS Queue(s).  JMS Topic and message statistics can be 
analyzed as well as the ability to view, edit or delete message currently in the 
queue. 

3 The e*Gate Enterprise Manager: This application develops schemas or 
modifies existing schemas.  As such, it is a primary tool for RIB 
development to create new Connection Points, e*Ways, BOBs, IQ’s IQ 
Managers, Participating Hosts, user IDs, roles, etc., for a schema.  A system 
administrator would also use this tool to modify the operational 
characteristics of schema components, such as changing the level of logging 
within an IQ or e*Way, the automatic running of e*Ways or BOBs, or 
specific database log-ins used in Connection Points.  Unfortunately, these 
attributes may be changed when importing updated schemas from a test 
environment to a production environment. 

4 Alert Agents or Monitors: Notifications of operational events, such as 
e*Ways going down, are passed from a control broker to one or more alert 
agents.  Different types of alert agents exist and may be configured to create 
e-mails, console messages, and SNMP traps.  The control broker creates 
notification events (messages) that these agents can process.  See the 
following SeeBeyond manuals for more information on how to install, 
configure and modify system monitors: 

 e*Gate Integrator Alert and Log File Reference Guide 

 e*Gate Integrator Alert User’s Guide 

 e*Gate Integrator SNMP Agent User’s Guide 

 e*Gate Integrator System Administrator and Operations Guide 



Chapter 1 – RIB component overview   7 

 

If you have purchased the SIM/ISO module, in addition to e*Ways, you will 
have ISO platform messaging components that can be monitored using the 
Mission Control application, which is part of the ISO application.  Within 
Mission Control, the highest level entity that can be monitored is the container.  
By default, ISO RIB components come in their own container, separate from the 
components that are part of the ISO application.  The containers can be 
monitored to determine whether they are currently up or down, and how long 
they have been running.  Other miscellaneous vital statistics can also be viewed 
from Mission Control. 

Within each container in Mission Control, individual components can be 
monitored to determine whether they are currently up or down, how long they 
have been running, their transaction counts, and any error messages can be 
viewed as well. 

Retek supplied components  
This section contains a brief description of how Retek has built upon the 
SeeBeyond and ISO platforms to create the Retek Integration Bus. 

The following components comprise the RIB: 

• Database triggers that capture application activities as they occur.  These 
triggers are part of the specific Retek application, such as RMS.  However, as 
part of the RIB installation and configuration, they must be enabled to 
capture information regarding events of interest. 

• Staging tables used to hold the captured information and to maintain the 
publishing state of the messages. 

• Publishing e*Ways that create messages from the information captured by 
the aforementioned Database Triggers.  These publishing e*Ways are 
designed to publish events from a single “Message Family” and are specific 
to a Retek Application, such as RMS.  Each RIB publishing e*Way has a 
collaboration that will invoke a specific stored procedure which returns the 
staging table information. 

• Subscribing e*Ways that are used to consume messages.  These are specific 
to Retek Applications (RMS, RCOM, RDM) and are designed to consume all 
messages from a specific message family.  Each Subscribing e*Way will call 
a specific stored procedure used to process a specific application event 
message. 

• Transformation Address Filters/Router (TAFR) e*Ways that transform 
message data and/or route messages.  The TAFR acronym is a generic term.  
Multiple, message family specific TAFRs have been implemented.  Different 
TAFR e*Ways may be active on different message families or on the same 
message family depending on the needs of an application.  Not all message 
families require TAFRs. 

• Error Hospital database tables used as a basis for storing and re-trying 
problematic messages. 

• Error Hospital administration GUI and command line utilities. 



8   Retek Integration Bus 

 

• Pre-defined Connection Points used by the adapters listed above.  These must 
be configured after installation so that the correct database instance and 
logins are used. 

• SeeBeyond Java Message Service (JMS) Queue managers.  The JMS Queue 
Managers control the JMS queues used to store messages after publication.  
The messages persist on stable storage until all subscribers have processed 
them. 

• For J2EE applications (RCOM, ISO, …), Enterprise Java Beans (Message-
Driven and Stateless Session). 

• If the SIM/ISO module has been purchased, ISO messaging components, and 
publishing utilities have been included for subscribing to RIB messages 
within ISO, and publishing RIB messages out of ISO.  These components 
will act like e*Ways.  Though they are developed under the ISO platform, 
they will still use the SeeBeyond JMS queue manager.  They will subscribe 
to messages published by SeeBeyond e*Ways, and publish messages to the 
SeeBeyond JMS queue, to be consumed by subscribing e*Ways. 

Additional resources  
Use the following resources to further understand the Retek Integration Bus and 
the SeeBeyond e*Gate Integrator EAI platform: 

• e*Gate Integrator Alert and Log File Reference Guide 

• e*Gate Integrator Alert User’s Guide 

• e*Gate Integrator SNMP Agent User’s Guide 

The three manuals above detail the options, configuration, and other 
reference material for creating Agents and other monitors for a deployed 
system. 

• e*Gate Integrator System Administrator and Operations Guide 

Contains reference, troubleshooting and administrative information. 

• e*Gate Integrator Installation Guide 

Contains basic information on how to install the SeeBeyond e*Gate 
Integrator platform. 

• e*Gate Integrator Release Notes 

Useful if currently using an earlier version of the SeeBeyond platform. 

• e*Gate Integrator User’s Guide 

• e*Gate Integrator Intelligent Queue Services Reference Guide 

Overview of the Intelligent Queues 

• SeeBeyond eBusiness Integration Suite Deployment Guide 

This manual contains information on how to analyze, plan, and manage a 
RIB deployment. 

• SeeBeyond eBusiness Integration Suite Primer 



Chapter 1 – RIB component overview   9 

 

This manual contains an introduction to all of the available components 
within the SeeBeyond e*Gate product family.  These include e*Ways 
designed to interface to specific application suites, such as PeopleSoft, SAP, 
and Oracle Financials. 

 





Chapter 2 – RIB component operations   11 

 

Chapter 2 – RIB component operations 
This section details the message flows for a simple message and for a message 
undergoing a routing or filtering operation.  For a more detailed description of 
the RIB components, see the Retek Integration Bus Technical Architecture.  For a 
detailed discussion of message contents, see the Retek 10.3 Integration Guide. 

Simple message flow 
The figure below is a generalized view of a RIB message.  Two applications 
require this data and subscribe to it.  One subscribing application requires certain 
transformations applied to the data, but the other subscriber can process the 
message without any transformations. 

Figure 3.1 Message Flow

Application
Triggers

Publishing
Adapter App 1 DB

RIB
Queue

Subscriber
Adapter 1

Subscriber
Adapter 2

Message Family
Manager

Staging Tables

App 2 DB

Payload

Payload

RIB messsage RIB message

RIB message TAFR Adapter RIB
Queue

Transformed RIB message

 

First, a trigger on a database table fires in response to an application’s action. 

Note:  Some applications, such as RCOM, do not use triggers to publish to the 
MFM staging table.  RDM uses another variation: an MFM interface harvests 
data from “Upload” tables to create the XML payload. 

This trigger creates a row in a Message Family Manager (MFM) staging table 
and commits this data, known as the payload, along with all of the other changes 
performed by the user or batch job. 



12   Retek Integration Bus 

 

Second, a RIB Publishing e*Way polls the MFM staging table via a call to an 
MFM specific stored procedure.  This stored procedure insures that messages are 
published to the RIB in the correct order and at the correct time.  The Publishing 
adapter takes the payload and wrappers it with an envelope used by the RIB 
infrastructure.  The publishing adapter then deposits the message on a Java 
Message Service (JMS) queue, which includes writing the message to stable 
storage. 

Third, a RIB subscribing e*Way polls the JMS queue for a message and retrieves 
the one just published. Assume for simplicity’s sake that this e*Way interfaces 
with the application requiring no data transformations.  The e*Way then reads 
the data, performs any needed database updates, and commits all of its work.  It 
is now ready to process the next message from the JMS queue. 

Fourth, a RIB TAFR e*Way also polls the JMS queue.  It retrieves the message, 
transforms it into a new message, and publishes it – effectively publishing a new 
type of message. The TAFR e*Way could publish the message to the same JMS 
queue it retrieved the message from using a different JMS topic or it can publish 
the message to a completely different JMS queue.  The name of the JMS topic 
associated with the message may be determined from the message’s Event Type 
name. 

Fifth, the e*Way associated with the second application polls the second JMS 
queue, retrieves the message, and processes the transformed data. 

Message routing 
When a message requires routing, a TAFR adapter is needed that directs the 
message to the correct destination.  The information it uses for routing is found 
within the message.  However, the routing logic is tailored according to the needs 
of the subscriber. 

TAFR routing logic many times consists of a simple chain of “if-then-else if” 
statements. 

For example: if the routing tag equals “Warehouse1”, then publish the message 
as event type “etMessageWH1”, else if the routing tag equals “Warehouse2”, 
then publish the message as event type “etMessageWH2”, else if …. 

However, the routing logic can be complex or route the same message data to 
multiple destinations.  The determination of this logic is specific to the message 
family the TAFR is designed to process. 

Once the message is published by the routing TAFR, it resides on a destination 
specific queue/topic combination.  The TAFR collaboration configuration 
determines the specific queue used.  There must be an association of the output 
event type to this queue. 

From here, additional adapters retrieve the message and continue to process it.  
The logical flow diagram of a routed message as it travels on the RIB is seen in 
Figure 3.2.  Note that the triggers and databases have been omitted from this 
diagram.  Moreover, subscribers may publish additional messages, depending on 
the needs of the system. 



Chapter 2 – RIB component operations   13 

 

Figure 3.2 Routed Message Flow

Publishing
Adapter

Pub
Queue

Subscriber
Adapter 1

RIB
messsage

RIB
message TAFR Adapter

Dest
#1

Queue

Subscriber
Adapter 1

Dest
#2

Queue

Subscriber
Adapter 1

Dest
#3

Queue

RIB Message
Event Type #1

RIB Message
Event Type #2

RIB Message
Event Type #3

 



14   Retek Integration Bus 

 

Component failures 
Understanding how messages are transported and processed successfully is a 
concern in a production system.  An effective administrator needs to know what 
kinds of failure scenarios exist and what steps can be taken once these failures 
appear. 

Application trigger failures 
Failures involving the application database triggers should be extremely rare.  
When they occur, they manifest themselves as failures within the application.  
Trigger failures should be handled immediately. 

Many triggers involve the use of a sequence generator as a primary key in a 
Message Family Manager staging table.  If this sequence generator has been 
reset, then unique constraint exceptions may occur. 

Another possible trigger failure also involves the insert operation into the MFM 
staging table: out of table space.  As mentioned below, an analysis of the needed 
space should occur before deploying the system to production – or at least 
monitored closely while the system is in production.  Messages must be 
published to the RIB before they are deleted from the staging table and if the 
publishing e*Way cannot keep up, the number of rows in this table and the 
publishing delay may increase to unsatisfactory levels. 

SeeBeyond Publishing adapter failures 
Failures involving SeeBeyond deployed publishing adapters (or e*Ways) may 
occur due to configuration errors or environmental errors.  If a publishing e*Way 
becomes unavailable, then records will accumulate in the MFM staging table. 

Configuration failures for publishing adapters may occur in the specification of 
its collaborations.  Specifically, the configuration supplied as part of the initial 
product specifies an Oracle Database Connection Point used to trigger message 
publication.  This Connection Point must have the correct database user login and 
SID information supplied or it will not work or a Connection Point must be 
specified that contains the correct information. 

Similarly, publishing adapters specify a JMS Connection Point for the JMS 
queue the message is published to.  If a SeeBeyond JMS queue is used, then the 
JMS Queue Manager must be set up and attached to the Connection Point.  
Otherwise, all messages will fail when published. 

Another common problem with publishing adapters, or any adapter, is that RIB 
collaboration rules (the processing logic) are written in Java, and the correct 
CLASSPATH must be specified in the environment or in the e*Way’s 
configuration.  If one uses all default file directory locations, it is expected that 
this variable will require little or no modifications.  However, if the SeeBeyond 
e*Gate system or the Java Runtime Environment is installed in an unexpected 
location, then all RIB publisher, TAFR, and subscriber adapter configurations 
may need to be modified. 

Similar to the CLASSPATH problem, but more insidious, is the JNI DLL 
specification. 



Chapter 2 – RIB component operations   15 

 

Note:  The term “DLL” is used even on Unix systems within the e*Gate product.  
This is even though DLL’s are specific to a Microsoft platform.  On the Unix 
platform this refers to the JNI shared library. 

This is the Java Native Interface used within an e*Gate e*Way to jump from a 
Java context to native C or C++ context.  The JNI DLL specification specifies 
where the library containing the “jump” code is located.  It is considered part of 
the run-time environment. 

SeeBeyond deployed TAFR adapter failures 
TAFR adapters use collaborations and Java similar to publishing adapters.  
Hence, they may have the same problems with JMS Queues, Java CLASSPATH, 
or JNI DLL configuration entries as the RIB publishing adapters.  However, 
TAFRs do not typically involve database operations.  On the other hand, TAFR 
adapters may have their own configurations specified in property files that detail 
the transformations or routing that must occur. 

Fatal TAFR failures will cause a message backlog in the source JMS queue.  
TAFRs with incorrect routing logic will route messages to incorrect destinations. 

SeeBeyond deployed Subscribing adapter failures 
Subscriber adapters have the same Java, JNI DLL, and Connection Point 
potential problems as publishing adapters.  When these problems occur, 
messages are not delivered to the adapter and the source message queue will 
become backlogged. 

However, subscribing adapters may also run into problems due to the field 
content of the messages.  For example, there may be a mismatch with a value or 
ID found in the message.  When this occurs, the following takes place: 

1 The subscribing adapter keeps track that the message failed internally and 
returns a failure to the e*Gate system. 

2 A distribute rollback is performed.  All database work is rolled back and the 
message remains on the source JMS queue. 

3 The message is re-processed.  Because the adapter has flagged the message 
has failed, it inserts the message into the Error Hospital. 

4 A distributed commit is performed.  The message is removed from the source 
queue and is committed to the Error Hospital. 

5 Periodically, a second collaboration associated with the Error Hospital 
awakens and pulls the data from the Error Hospital.  This collaboration then 
inserts the message back into the original source queue. 

6 Steps 1-5 are repeated until the message is successfully processed or until 
maximum retry count is reached. 

Note that both a GUI as well as a command line interface are provided to 
administer the Error Hospital.  Error Hospital operations are detailed later in this 
manual. 



16   Retek Integration Bus 

 

Deployment architecture considerations 
So far, the components have been described in generic terms.  This is because 
every installation may have its own unique configurations and needs.  However, 
there are some configuration patterns or philosophies that Retek suggests for 
successful RIB operations. 

Retek schema integrity on the SeeBeyond Platform 
Retek suggests that the messaging schema supplied with the Retek Integration 
Bus be modified as little as possible when deployed to a production environment.  
Doing so will ease the pain of installing RIB updates.  Each future RIB release is 
expected to contain additional application integration points and Message 
Families.  Segregating the Retek messaging schema from other non-Retek 
components will enable updates to be installed quicker and with fewer side 
effects. 

Disk space analysis 
Before the RIB is deployed to production, an analysis of the expected message 
traffic must be made.  The Retek 10.3 Integration Guide lists all of the messages 
as implemented within the RIB and the conditions in which they are published.  
System designers use this guide to estimate expected message size and volume.  
From a business operations viewpoint, one should also determine the amount of 
time a specific subscriber is allowed to be unavailable before serious business 
consequences occur.  This should include the maximum amount of time before a 
subscriber is failed-over to another system. 

The purpose behind this analysis is to determine the amount of disk space needed 
to support continued operations if a subscriber becomes unavailable.  The 
standard RIB configuration will maintain a copy of each message on a queue’s 
persistent storage until all subscribers have processed the message.  If the disk –
subsystem or queue’s configuration cannot store messages, then each publisher 
will need to be shut down. 

This analysis should also be continued to the publisher.  Specifically, Retek 
suggests performing these calculations on the Message Family Manager staging 
table size and the likelihood of the SeeBeyond EAI system becoming unavailable 
for a specific amount of time.  In this scenario (which may be a continuation of a 
subscriber problem) the publishing e*Way may not be able to publish messages.  
As such, all messages become backed up in the MFM staging table.  If this table 
runs out of space, then all application triggers that write to the table will fail and 
the application should be shutdown. 



Chapter 2 – RIB component operations   17 

 

Intelligent queue managers 
The SeeBeyond e*Gate EAI platform allows one to use a number of different 
Intelligent Queue Managers for storing published messages.  The Retek 
Integration Bus is designed to use JMS queues because this component requires 
no external database and implements the XA interface protocol.  The XA 
protocol enables the “exactly once” message processing. 

The purpose of an IQ Manager is to manage Intelligent Queues.  In most cases, 
these queues are explicitly defined.  In the case of the JMS IQ Managers used 
with the RIB, explicit queue definition is not needed.  The JMS IQ Manager also 
provides a JMS Service to the Connection Point interface.  Each event type 
published using the JMS Service will use the Event Type name as the JMS 
“topic”.  The configuration of the JMS service sets other parameters needed to 
access the message. 

Note:  Not only Java Collaboration Rules can be used with JMS Connection 
Points.  Monk Collaboration Rules can publish/subscribe to messages on a JMS 
queue, but must also explicitly define a JMS Intelligent Queue on the JMS IQ 
Manager used. 

Performance motivated parallel processing 
A common method to gain throughput in distributed EAI systems is to duplicate 
processing modules across multiple systems or, if the system spends a significant 
percentage of time waiting for disk I/O, to duplicate modules within the system.  
These components then execute in parallel, reducing the elapsed time for 
processing multiple messages. 

In the Retek 10.3 release, parallel processing considerations have been 
subordinated to message sequencing guarantees.  In other words, the design of 
the system guarantees message processing is in the correct sequence as opposed 
to maximizing throughput. 

Additional throughput gains can be made if the system is deployed with parallel 
processing nodes.  However, simply duplicating these nodes introduce the 
possibility that some data will be processed out-of-order.  If this occurs, then the 
final state of the subscribing system will be incorrect and contain invalid data. 



18   Retek Integration Bus 

 

Thus, additional design and implementation work is needed to support parallel 
processing deployments of the RIB in the 10.3 release.  This work must center on 
creating well-defined logical channels of information, each channel responsible 
for a well-defined set of business entities.  An example of such a logical channel 
would be one responsible for all of the "even numbered" purchase orders.  This is 
similar to the Retek “Batch Thread” model.  Briefly, the following changes 
would need to be made: 

1 The current message flow (Publishing adapter and all TAFRs and 
subscribing adapters) would need to be duplicated once per each logical 
channel. 

2 For each publisher, the MFM Oracle database package would need to be 
modified such that the “GETNXT()” procedure only returns messages 
concerning a subset of all available business entities.  If two publishers were 
used, then one would return only even IDs and one, only odd IDs. 

3 Additional configuration changes would be needed to insure that different 
Error Hospitals are associated with each new subscriber. 

4 Each logical channel should have an associated Connection Point that uses a 
distinct JMS Service provider.  This involves creating a JMS IQ Manager for 
each logical channel and a JMS Connection Point that uses this JMS IQ 
Manager.  This JMS Connection Point would then be the source or 
destination for all messages on the channel.  Otherwise, the messages 
published for one channel would become intermingled with those from other 
channels when the JMS provider saved them to stable storage. 

An alternative to multiple JMS IQ Managers is to rename all of the event types 
used within the logical channel to be channel specific. 

 

 



Chapter 3– Configuration files   19 

 

Chapter 3 – Configuration files 
The various RIB platforms leverage some platform specific configuration 
mechanisms.  However, most RIB specific parameters are specified in a file 
known as the RIB Properties file.   

The Retek Binding sub-system is used on the ISO and J2EE environments.  It 
uses its own set of configuration files for determining the code to execute when 
publishing or subscribing to a specific message family. 

RIB Properties File 
The RIB Properties File has the name rib.properties.  Its location on the 
system is dependent on the deployment of the RIB and the running system’s 
CLASSPATH specification.  See each platform’s configuration chapter for more 
details. 

This section details the contents of this file. 

RIB Logging and Timings File  
This section details the file names and levels of logging (on/off or 
normal/verbose) for RIB File logging and Timings logging.  A Timings log file 
contains a series of timestamp lines the mark the date and time a processing point 
has reached. Multiple threads may write the same Timings log file.  A post 
processor is needed to determine statistics about the running system. 

log.default.file_path –  Location for the rib log files to be places on the server. 

log.default.verbose – Default logging to use if none specified for an adapter 

log.<adapterName>.timings – If this property is set to ‘Y’, then a timings log 
is created and logged during the execution of the adapter specified. 

log.<adapterName>.timings_logFile -  When the timings is set to ‘Y’, this 
specifies the file time stamp entries are written to. 

RIB Message bundling entries 
<eway name>.<collaboration name>.pubMessageCount – This attribute is 
used to determine the number of times the publishing thread will attempt to call 
the GETNXT() stored procedure within a single transaction.  It also specifies the 
maximum number or RIB Message Nodes that can be included in a single 
<RibMessages> tag.  This is a new property in the 10.3 release. 

This property is optional.  If not specified, it defaults to 1.  This is a performance 
tuning property that can reduce the amount of time spent between collaboration 
calls and also reduce the frequency of committing data to JMS and Oracle. 



20   Retek Integration Bus 

 

Multi-threading entries 
This section details those entries used to support multi-threading within a 
message family.  Multi-threading allows simultaneous processing among 
multiple threads of control for messages within the same message family.  If 
performed correctly, this allows for large throughput gains while still maintaining 
the RIB's sequencing and exactly once guaranteed processing. 

mfm.<family name>.total_threads  -- defines the total threading level to be 
used but not exceeded by this message family. 

mfm.<family name>.<collaboration name>.thread_num – defines the specific 
thread number that the specific collaboration is to use upon execution. 

Note that upon start up of some publishing e*Ways there is a synchronization 
check with the database on the total_threads in rib.properties, and if the data is 
not the same the e*Way is shutdown without processing any data, as the 
publishers algorithm for deciding what data to publish to each publisher may be 
dependent on the threading value configured. 

Error Hospital entries 
This section details the entries used for retrying messages from the Error 
Hospital. 

hospital.attempt.max – This is the maximum number of attempts to try to push 
this record through the RIB automatically, once this retry count is exceeded the 
message remains the Error Hospital DB but is no longer retried automatically. 

hospital.attempt.delay – value (in seconds) used to calculate the next attempt 
time 

hospital.attempt.delayIncrement – value (in seconds) used to calculate the next 
attempt time. 

The next attempt time is calculated as: 
hospitalAttemptDelay + (hospitalAttemptDelyIncrement * 
attempt count) 

This is done so that the delay between each attempt is longer than the previous 
delay. 

Global entries 
dtd_url.default – Specifies the DTD File location.   RIB Payloads include a 
DOCTYPE specification. 

default.MessageSelectorCheck –When this value is set to ‘true’, all e*Ways 
that subscribe to JMS topics will verify that their message selector is set up 
properly on their durable subscriber within the SeeBeyond JMS server. 



Chapter 3– Configuration files   21 

 

Implementation classes used 
In order to promote pluggable, platform specific implementations, the RIB allows 
the specification of platform-specific classes for a variety of functions.  These 
functions include the actual creation of a RibMessages XML  message and the 
interface to an alert mechanism. The following entries are used to specify what 
Java classes should be used for these functions: 

alertPublisherImpl  -- Interface to the Alerting mechanism 
Values: com.retek.rib.sbyn.alert.EgateAlertPublisher 
(SeeBeyond) 

ribMessageImpl – Class used to create a ribMessage node within a RibMessages 
container. 

Values: com.retek.rib.sbyn.RibMessageWrapper  (SeeBeyond) 
ribMessagesImpl – Class used to create a RibMessages container. 

Values: com.retek.rib.sbyn.RibMessagesWrapper  (SeeBeyond) 
routingInfoImpl – Class used to create the Routing Information Section within a 
ribMessage node. 
Values: com.retek.rib.sbyn.RoutingInfoWrapper  (SeeBeyond) 

failureImpl – Class used to create, store and copy message failure information 
Values: com.retek.rib.sbyn.FailureWrapper (SeeBeyond) 

SeeBeyond platform specific entries 
This section details the SeeBeyond platform specific entries 

eway.<e*Way Name>.no_event_sleep_millis – This entry specifies how much 
time to sleep when no information is available to be published for a specific 
e*Way.  The actual e*Way name must replace the string <e*Way Name> 

eway.default.no_event_sleep_millis – This entry specifies how much time to 
sleep when no information is available to be published and there is e*Way 
specific no_event_sleep_millis entry. 

ISO platform specific entries 
There are no entries for ISO that are any different from the normal SeeBeyond 
entries.  Only a small subset of the entries for SeeBeyond Rib components, 
however, are required in the rib.properties file for the Rib ISO components.  
These are the entries for the error hospital, as the Rib ISO components still 
makes use of the error hospital, and entries for the implementation classes used. 



22   Retek Integration Bus 

 

Application specific entries 

RDM specific entries 
facility_type.default – Specifies the default facility type to be used by RDM 
publishing e*Ways for calls to RDM. 

facility_id.<facility_type>.<location id> -  This property is used by the routing 
TAFRs to determine which RDM topic to route a message to based on the facility 
type and location id used. 

<eway name>.<collaboration name>.dc_dest_id – Used by RDM publishers as 
input parameters to the Oracle DB requests.  Should be set to the appropriate DC 
Destination ID for the data that is desired from the RDM instance being 
connected to. 

multichannel_ind – this field has been deprecated (a.k.a. no longer used). 

FlowTrak specific entries 
prop.strm.fname -  location of the FlowTrak properties file  

Retek Binding configuration files 

Properties files 
binding.properties – The Retek Binding will look within a package, 
“com/retek/binding/rib” that is found on the CLASSPATH  environment 
variable.  The purpose of this properties file is to create a key from the RIB 
Message Family and Rib Message Type and map this key to an XML formatted 
mapping file.  The mapping file is specific to the DTD describing the format of 
the message payload.  

An example of the RIB Message Family and RIB Message Type key might be, 
“ASNOUT.ASNOUTCRE” for example.  For more information on the XML 
mapping files, see the “XML Files” section, below.  A typical entry in the 
binding.properties file might be: 

ASNOUT.ASNOUTCRE=com/retek/binding/rib/payload/ASNOutDes
cMap.XML 

In this example, the Retek Binding would look for the “ASNOutDescMap.XML” 
file in the “com/retek/binding/rib/payload” package, which would have to be on 
the CLASSPATH environment variable. 

castor.properties – The Retek Binding builds on the open source Castor java-
binding framework.  The purpose of which is to “bind” an XML document to a 
“payload” java object.  The results of this binding can go in either direction – 
either from a populated java object being marshalling into an XML document, or 
from an XML document being unmarshalled into a populated java object. This 
framework provides tools for generating payload java objects.  Payload objects 
javabean-like objects that  hold XML data and provide marshalling and 
unmarshalling methods. The framework also generates XML mapping 
documents (see the “XML Files” section, below).   



Chapter 3– Configuration files   23 

 

XML documents can be passed into the payload object’s unmarshal(…) method, 
which returns a payload object, or the marshal() method may be called on a 
payload object, returning an XML document.  The castor.properties file 
comes into play during runtime to control some aspects of the marshalling and 
unmarshalling operations.  The file is not required, and in our case is only used to 
prevent validation of the incoming or outgoing XML document.  This validation 
can prove costly in terms of performance, so by default it is turned off.  So the 
following entry is the key reason that the Retek Binding includes the 
castor.properties file: 

org.exolab.castor.parser.validation=false 

The other entries in the file are accompanied by comments explaining the use of 
the associated entry.  This file should be in the CLASSPATH of the application 
using the Retek Binding. 

castorbuilder.properties – This file is used by the Castor framework during the 
generation of the java payload objects.  A java payload object is a javabean-like 
object, with a number of attributes for holding data from an XML document.  
Payload objects can be generated from the Castor framework without the 
presence of this file, and the only reason it is included with the Retek Binding is 
that we want all payload objects to inherit from a common superclass.  The entry 
for this property is: 

org.exolab.castor.builder.superclass=com.retek.binding.r
ib.payload.Payload 

The other entries in the file are accompanied by comments explaining the use of 
the associated entry.  This file should be in the class path when doing the 
generation of the payload classes. 

injector.properties – The purpose of this file is to match a Rib message family 
and Rib message type key to the fully qualified class name of an application class 
implementing the Retek Binding ApplicationMessageInjector interface.  This 
interface is for subscribing APIs, and provides a way for them to consume a Rib 
message.  A typical entry in this file might be: 

DIFFS.DIFFCRE= 
com.chelseasystems.cs.dataaccess.rib.subscriber.Differen
tiatorCreateInjector 

In this example, “DIFFS.DIFFCRE”, is the Rib message family and Rib message 
type key of the subscribing API. 

payload.properties – The purpose of this file is to match a RIB message family 
and RIB message type key to the fully qualified class name of a java payload 
object.  A java payload object is a javabean-like object, with a number of 
attributes for holding data from an XML document.  Each of these payload 
objects in inherited from a common Retek Binding Payload superclass, in the 
“com.retek.binding.rib.payload” package.  This file is used in both publishing 
and subscribing APIs, as both need a payload object.  Publishers need a 
populated payload object from which to marshal an XML document.  Subscribers 
need a payload object, into which to unmarshal an XML document.  A typical 
entry in this file might be: 
ASNOUT.ASNOUTCRE=com.retek.binding.rib.payload.ASNOutDesc 



24   Retek Integration Bus 

 

In this example, “ASNOUT.ASNOUTCRE”, is the RIB message family and RIB 
message type key of the API. 

publisher.properties – This file is used by the Retek Binding to allow users to 
disable publishing of messages.  The only entry is for a property called, 
“ribMessagePublishEnabled”, and takes a value of either “true” or “false”.  The 
file should be contained within the CLASSPATH environment variable in use.  
Other applications have used this file to include other application-specific 
information. 

XML files 
<PayloadObjectName>Map.xml – There is one of these files for each of the 
payload classes.  These files map the element names in an XML schema 
document, to the attribute names in a java object.  Because our payload objects 
are generated directly from an XML schema document, which in turn is 
generated from a DTD document, we theoretically should not need these files, 
although in testing the marshalling and unmarshalling of payload objects, this 
was not always the case.  Here is an example of a “field” element from one of 
these files: 

<field cst:name="item_id" cst:type="java.lang.String" 
cst:required="true"><bind-xml name="item_id" 
node="element"/></field> 

These files are in the “com.retek.binding.rib.payload” package, which 
should be on the classpath of the application using the Retek Binding. 

 



Chapter 4 –SeeBeyond Platform   25 

 

Chapter 4 – SeeBeyond Platform 
RIB startup and shutdown 

This section details how to start up and shut down the RIB. 

 

Available Scripts 
Bringing up and down the RIB can be done using a series of scripts supplied with 
the RIB.  These start and stop scripts are: 

start_egate starts the SeeBeyond registry 

start_cb    starts the SeeBeyond control broker for the RIB Schema 

start_rib starts RIB JMS IQ Manager(s) and e*Ways in a known sequence.

stop_rib stops RIB JMS IQ Manager(s) and e*Ways in a known sequence. 

stop_cb stops the SeeBeyond control broker for the RIB Schema 

stop_egate stops the SeeBeyond registry 

In general, one should start up the components in the following manner: 

First the registry, then the control broker, then the JMS IQ Manager, then the 
subscribing e*Ways, then the TAFR e*Ways, then the publishers.   

In a standard installation, the start_egate script will reference a file named 
egate.txt.  This file contains all of the standard e*Ways and JMS IQ managers 
that come with the RIB schema.  If invoked with the “-f <filename>” switch, this 
script will use the supplied control file for determining which e*Ways and JMS 
IQ Managers to bring up or down.  A complete listing of options for the start_rib 
script is found below.  Similar execution options are available for the  stop_rib 
script. 

start_rib [-r] [-s schema_name] [-f eway_file] [-u 
user_name] [-p user_password] [-e eway_name] [ALL] [JMS] 
[SUB] [TAFR] [PUB] [HOSP] 

Where 

    -r                specifies to create/update the 
"failed_eways.txt" file with the names of the elements 
not booted 

                      This file may be used with the -f 
switch on a later execution. 

    -s schema_name    specifies the name of the schema 
to start -- default is RIB103 

    -f eway_file      specifies the file containing eway 
description, default is $EHOME/RIB/eways/eways-
out/Egate.txt 

    -u user_name      specifies the user name to use -- 
default is Administrator 



26   Retek Integration Bus 

 

    -p user_password  specifies the password to use -- 
default is STC 

    -e eway_name      specifies only a single eway or 
other element to start 

    ALL               specifies bringing up all elements 
listed in the eway file. Equivalent to JMS SUB TAFR PUB 
HOSP 

    JMS               specifies bringing up all JMS 
elements listed in the eway file 

    SUB               specifies bringing up all SUB 
(subscriber) elements listed in the eway file 

    TAFR              specifies bringing up all TAFR  
elements listed in the eway file 

    PUB               specifies bringing up all PUB 
(publisher)  elements listed in the eway file 

    HOSP              specifies bringing up all HOSP 
(hospital)  elements listed in the eway file 

The format of the  eway_file (typically Egate.txt) is: 
          <name>   <type>   <seq> 

Where <name> is the name of the element/JMS/e*way,  <type> is one of JMS, 
SUB, TAFR, HOSP, PUB,  <seq>  is a number detailing the order of 
operations within a type.    Starting is performed in ascending order.   Stopping is 
performed in descending order.   Comment lines must begin with two forward 
slashes, "//" 

Sequencing considerations – Detailed Information 
In the RIB architecture, the first step a Retek application performs in publishing a 
message is the execution of a table specific trigger.  These triggers are installed 
in a disabled state with each application.  See the Retek Integration Bus 
Installation Guide or the product specific installation guide for information on the 
triggers and how to enable them. 

The SeeBeyond EAI components can be configured to come up manually or 
automatically.  If configured to be brought automatically, then only the registry 
and control brokers need to have an external method for starting.  On Unix 
systems, this method is typically found in a startup script executed when during 
the system boot sequence.  The components run as daemons.   

Note:  Sample scripts to start the registry and control broker can be found in the 
$EHOME directory.  This is the directory where e*Gate was installed and was 
configured as part of the RIB installation process.  “start_egate” and “start_cb” 
are the two scripts to refer to. 

A generalized list of steps needed to start an e*Gate system is found below.  
Complete documentation on SeeBeyond e*Gate operations is found in the 
SeeBeyond e*Gate Integrator System Administration and Operations Guide.  
Please refer to this manual for further information on the referenced commands. 



Chapter 4 –SeeBeyond Platform   27 

 

1 Open all external resources that the components are dependent on, such as an 
application’s database. 

2 Open the SeeBeyond e*Gate Registry. 

 If the RIB Installation Instructions were followed, run the “start_egate” 
script from the $EHOME directory and skip to step 6. 

or 

 On Unix systems, this is done via the stcregd command. 

3 Before the stcregd command may be executed, initialize the user’s 
environment correctly.  This is typically performed by “sourcing” the file 
$EHOME/server/egatereg.sh. 

Note:  If the RIB Installation Instructions were followed, this step is done by 
the “start_egate” script. 

For example, for Korn or Bourne Unix shells: 
>  . $EHOME/server/egatereg.sh 

4 The parameters needed for the stcregd command specify the registry’s 
name and TCP port numbers.  It is suggested that only one registry be 
configured for a host, as this simplifies the configuration of the startup script 
for the registry and control brokers.  However, site-specific issues may 
motivate an EAI administrator to configure multiple registries on the same 
computer. 

Note:  Examples of such issues include using a test system as a “hot 
standby” for a production system, or providing extra redundancy for the 
registry on the local system. 

5 The following stcregd command displays a registry named “egate_main” 
using the default TCP ports for the initial connect port and the connections 
made between the registry and control brokers.  It also executes without 
Access Control Lists used for authorization purposes: 
> stcregd –ln egate_main  

Switches for this command include:  

 -pr  Port number for Registry Clients 

 -pc  Port number for Control Brokers 

 -ln  Registry logical name 

 -mc  Maximum number of connections 

 -bd  Base directory 

 -ss  Run as a service 

 -h  Display help screen 

SeeBeyond suggests that the name of a registry matches the name of its host 
computer. 



28   Retek Integration Bus 

 

6 Open the control brokers for all participating hosts. 

 If the RIB Installation Instructions were followed, run the “start_cb” 
script from the $EHOME directory and skip to step 11. 

or 

 On Unix systems, this is done via the stccb command. 

 On Microsoft Windows platforms, the registry is typically installed as a 
service. 

 The stccb command is also available as a DOS command. 

7 Before the stccb command may be executed, the user’s environment must 
be initialized correctly.  This is typically performed by “sourcing” the file 
<EHOME>/server/egateclient.sh. 

Note:  If the RIB Installation Instructions were followed, this step is done by 
the “start_cb” script. 

For example, for Korn or Bourne Unix shells: 
>  . $EHOME/server/egateclient.sh 

8 An stccb daemon must be running for each participating host on that 
participating host. 

9 The parameters needed for the stccb command specify the control broker’s 
name and TCP/IP address of available primary and secondary registries. 

10 The following stccb command brings up a control broker with the following 
attributes: 

 Named “cb_main” 

 Contained the schema “RIB102” 

 Uses the registry found on the host “egate_main” with the default TCP 
port numbers 

 Runs under the SeeBeyond e*Gate defined “Administrator” user-id 

 Authenticates itself to the registry using the password “STC” 

Note:  This is the commonly used “Default” password for SeeBeyond 
e*Gate installations.  Any installation wishing to provide even a 
modicum of security will change this password.  Furthermore, the 
password may be encrypted and stored in a file via the stcutil 
command, so that it is not visible to casual observers.  See the 
SeeBeyond e*Gate Integrator System Administration and Operations 
Guide for more details. 

stccb –ln cb_main –rh egate_main –rs RIB102  
–un Administrator –up STC 

 Executes without Access Control Lists used for authorization purposes. 



Chapter 4 –SeeBeyond Platform   29 

 

11 At this point, you can display the e*Gate Monitor application to start any 
components not configured to be brought up automatically.  This application 
requires a Microsoft Windows platform for execution. 

12 Using the e*Gate Monitor, display all of the JMS Queue Managers needed. 

13 Using the e*Gate Monitor, display all of the e*Ways and / or schema 
bridges.  Adapters that subscribe to messages and interface directly to an 
application should be brought up before those that publish messages. 

RIB message publishing adapters 
Adapters that publish messages directly from Retek applications have names in 
the following format: ewMSGFAMILYFromAPPNAME, where MSGFAMILY is the 
name of the message family published and APPNAME is the name of the 
publishing application, such as RCOM, RMS, RDM or RDC. 

For a listing of all the available publishing adapters, refer to the RIB 10.3 
Integration Guide. 

RIB message subscribing adapters 
Adapters that subscribe to RIB messages and update Retek applications have 
names in the following format: ewMSGFAMILYToAPPNAME, where MSGFAMILY is 
the name of the message family published and APPNAME is the name of the 
publishing application, such as RCOM, RMS, RDM or RDC. 

For a listing of all the available subscribing adapters, refer to the RIB 10.3 
Integration Guide. 

TAFR adapters 
TAFR adapters process messages in support of subscriber specific needs.  As 
such, they are both subscribers and publishers.  TAFR Adapters have names in 
the following format: ewMSGFAMILYToMSGFAMILYFromRIB, where MSGFAMILY 
is the name of the message family the TAFR works on as input, ToMSGFAMILY is 
the name of the message family the TAFR publishes and APPNAME is the name of 
the final subscribing application. 

For a listing of all the available TAFR adapters, refer to the RIB 10.3 Integration 
Guide. 



30   Retek Integration Bus 

 

RIB error hospital 
The RIB error hospital is a subsystem used to retry messages the subscriber has 
failed to process successfully.  After a failure, the message is inserted into the 
hospital database associated with the subscriber.  This message is then 
republished a configurable number of times by a “retry” collaboration.  The 
“retry” collaboration is also found within the subscriber adapter and is only 
responsible for re-publishing the message. 

The Error Hospital may also contain messages that are dependent on a “failed” 
message.  The dependency is based solely on a common business entity that the 
two messages reference.  For example, if a “Create New PO” message fails (and 
is added to the hospital), then a subsequent “Add PO Line Item” will also be 
added to the hospital if it references the same PO.  The “retry” collaboration will 
resubmit both messages in the correct order. 

The RIB message error hospital requires that the “Retry” collaboration is 
included within a subscribing e*Way and uses a valid connection point as the 
source of its retry events. 

The database tables comprising the Error Hospital storage may be found within 
the same database as the stored procedures called by the subscribing adapter or in 
a separate database.  If the error hospital tables become inaccessible, then any 
failing message will cause the total stoppage of all messages by the subscriber.  
This consideration should be taken into account when determining the location of 
an Error Hospital for a subscriber. 

Preventative maintenance tasks 
This chapter lists some common tasks that a system administrator may want to 
script and perform on a regular basis. 

Log files 
The SeeBeyond e*Gate EAI system can log volumes of data to log and journal 
files.  Furthermore, because the RIB uses two phase commit, the SeeBeyond 
system, acting as the transaction manager, must log commit information within 
“transaction log” files in order for distributed transaction recovery purposes. 

E*Gate’s error, trace, and debug log files 
The same file is used by SeeBeyond e*Gate adapters for logging error messages, 
trace messages, and debugging messages.  The adapter’s configuration 
determines what is to be logged and the level of logging.  If logging is turned on, 
then the free disk space should be closely monitored, as these files can rapidly 
increase in size and grow to enormous sizes, even if the e*Way has only 
processed a relatively few messages. 

The location of the log files is the directory <EHOME>/client/logs, where 
<EHOME> is the installation directory for the SeeBeyond e*Gate EAI system.  
Each component has its own log file named <component>.log, where 
<component> is the name of the e*Way, control broker, or IQ Manager. 



Chapter 4 –SeeBeyond Platform   31 

 

Additionally, there may also be files containing application “standard error” 
output.  These files are named <component>.stderr . 

Sometimes it is helpful to have component log information to determine a 
problem’s source or otherwise monitor its activities.  The e*Gate Enterprise 
Manager application is used to modify level and type of logging for an e*Way.  
Further information may be found in the SeeBeyond e*Gate Integrator User’s 
Guide. 

To turn on, and/or modify, SeeBeyond’s e*Gate adaptor logging: 

1 The first step is to select the RIB adapter component from the main e*Gate 
Enterprise Manager window: 

 

Selecting an e*Way from the e*Gate Enterprise Manager 

2 Right click on the e*Way. 

3 Select Properties.  The Properties window is displayed: 

4 Click on the Advanced tab. 

5 Click Log. 



32   Retek Integration Bus 

 

 

e*Way Logging window 

There are two dimensions to e*Way logging: the areas of information that 
the log entries will log about, and the amount or level of logging.  There is 
only one level of logging for all areas. 

Over 25 different areas are available for logging. 

To log RIB Adapter-created messages: 

6 Select the e*Way (EWY) check box to enable logging. 

7 In the Logging File field, select TRACE. 

8 Select the Use Log file check box. 

Be careful whenever logging is enabled, as log files are not limited in size 
and can grow to be quite large.  In normal production, you should set the 
logging level to be at a very low level: either “FATAL”, “ERROR”, or 
“NONE”. 



Chapter 4 –SeeBeyond Platform   33 

 

RIB logger 
The RIB has its own logging capabilities.  The RIB support Java classes contain 
logging logic which write to RIB log files.  The rib log filenames are in the 
format “rib_<ewName>.log” and are written to a user specified directory.  
Additionally, the RIB logger has the ability to generate a timings log that can be 
used to measure performance. 

rib.properties log entries 

The following are the entries in the rib.properties file which pertain to the RIB 
logger: 

# Path where RIB and Timings log files will be written.  It must end with a 
directory separator / or \. 

log.default.file_path=/files0/egate/RIBLOGS/ 

 

# Log e*Way times? [Y or N] 

log.<ewName>.timings=N 

 

# File to write timings log entries to.  Only specify the file name, as it will be pre-
pended with the log.default.file_path property. 

log.<ewName>.timings_logfile=timings_<ewName>.log 

 

# Default logging level verbose? [Y or N] 

log.default.verbose=N 

 

# e*Way specific logging level verbose? [Y or N] 

log.<ewName>.verbose=N 

 



34   Retek Integration Bus 

 

XA transaction log files 
Whenever a two phase commit operation commences, the transaction manager 
(TM) must log the decision to commit the transaction to stable storage.  This is to 
insure the transaction will commit if a failure occurs during the second phase.  
These “log_commit” records are read whenever a TM is started so all-active 
transactions are completed. 

The SeeBeyond e*Way implements a transaction manager.  The transaction log 
record for collaboration is found in its own file.  The path name of the file is: 

<EHOME>/client/XALogs/<e*WayName>/<collabName> 

Where <EHOME> is the installation directory for the e*Gate product, 
<e*WayName> is the name of the e*Way the collaboration runs in, and 
<collabName> is the name of the collaboration. 

Do not delete these transaction log files.  If these files are deleted, then the 
adapter associated with the log file(s) may have problems re-processing messages 
found in the error hospital or even completing initialization successfully. 

If a database or other resource manager has a transaction in a prepared state and 
the associated transaction log file is deleted, then the database or resource 
manager also must have its knowledge of the transaction removed. 

For Oracle databases, transactions that are in the prepared state can be found in 
the DBA_2PC_PENDING views.  One can then use an external database session, 
such as one with the SQLPLUS command, to force a rollback or commit 
operation on these transactions. 

MFM staging tables 
Part of the RIB’s architecture is that data is staged from applications using 
database tables.  The RIB adapters use a well-defined interface to retrieve this 
information when the publishing it to the RIB. 

The code that wrappers access to these staging tables is known generally as the 
Message Family Managers (MFMs).  The MFM implements the interfaces for 
extracting the data as procedures found within an Oracle database package.  For 
more information on MFMs in general, see the Retek Integration Bus Technical 
Architecture Guide.  For information about a specific MFM, see the Retek 10.3 
Integration Guide. 

Some MFMs require that data in the staging table from multiple application 
transactions be coalesced into a single message.  In these cases, the MFM waits 
until a specific record is inserted into the staging table before the message is 
published.  For example, new Purchase Orders may not be published until they 
have been placed into an “approved” state. 

A system administrator may monitor the MFM staging tables to verify that the 
RIB’s performance is adequate to handle the messaging traffic.  If a system has 
the adequate resources, then the number of rows within the staging table should 
remain relatively constant. 



Chapter 4 –SeeBeyond Platform   35 

 

Error Hospital 

Subscribing Error Hospital 
The RIB error hospital is a subsystem used to retry messages the subscriber has 
failed to process successfully.  After a failure, the message is inserted into the 
hospital database associated with the subscriber.  This message is then 
republished a configurable number of times by a “retry” collaboration.  The 
“retry” collaboration is also found within the subscriber adapter and is only 
responsible for re-publishing the message. 

The Error Hospital may also contain messages that are dependent on a “failed” 
message.  The dependency is based solely on a common business entity that the 
two messages reference.  For example, if a “Create New PO” message fails (and 
is added to the hospital), then a subsequent “Add PO Line Item” will also be 
added to the hospital if it references the same PO.  The “retry” collaboration will 
resubmit both messages in the correct order. 

The RIB message error hospital requires that the “Retry” collaboration is 
included within a subscribing e*Way and uses a valid connection point as the 
source of its retry events. 

The database tables comprising the Error Hospital storage may be found within 
the same database as the stored procedures called by the subscribing adapter or in 
a separate database.  If the error hospital tables become inaccessible, then any 
failing message will cause the total stoppage of all messages by the subscriber.  
This consideration should be taken into account when determining the location of 
an Error Hospital for a subscriber. 

Publishing Error Hospital 
In the 10.3 release, a new publishing paradigm was introduced for enhanced 
performance.  This design uses referenced application data instead of copied 
data.  The work used to extract the data was also moved from the application 
triggers to the GETNXT() stored procedure.  However, this design allows for the 
possibility that the data may be locked  or otherwise unavailable when 
GETNXT()  is called.  When this occurs, the application may request the e*Way 
to insert a row into the Publisher Error Hospital, where another attempt to publish 
the data may be made later.   This allows the subsequent call to the oracle 
publisher to process the next message and not get stuck trying to retry a flawed 
record in its staging table over and over.   

A publishing e*Way will  check the error hospital for previous message data that 
is currently in the Error Hospital for the Business Object (e.g. PO) the current 
message is publishing.  If such a dependency exists, the dependant message is put 
into the hospital as well.    

The Publisher Error hospital is facility uses the same database tables as the 
Subscriber Error Hospital.  However, an additional Publishing Retry e*Way has 
been created for each application that request an insert into the Error Hospital. 

The publishing retry e*Way processes data differently than a subscribing retry 
e*Way.  



36   Retek Integration Bus 

 

A major difference is that the publishing retry e*Way retries directly to the 
database,  Although it calls the same package, it calls a different procedure, 
PUB_RETRY. Therefore it will require a connection point that identical to the 
initial publishing e*Way. 

The database tables used for a publishing Error Hospital are identical and can be 
the same actual database as a subscribing Error Hospital.  The same deployment 
issues exist. 

SeeBeyond tools 
This section provides a brief overview of SeeBeyond administration tools.  
Additional information about the SeeBeyond tool set may be found in the 
SeeBeyond documentation. 

e*Gate Monitor and JMS administration tools 
The main tool used for starting or stopping a system is the e*Gate Monitor 
application.  This application attaches to a control broker and is designed to 
manually start, stop, pause, resume, or retrieve the status of a component. 

The e*Gate monitor is a GUI that can display all components found in a specific 
schema.  Additional GUI applications are accessible from the e*Gate monitor.  
There is a queue monitor for SeeBeyond standard JMS queues called the JMS 
Administrator. 

The queue monitor tools allow an administrator to examine the number of 
messages on a queue and to view the contents of a message on a queue. 

Details about the e*Gate Monitor application is found in the SeeBeyond e*Gate 
Integrator System Administration and Operations Guide.  Details about the JMS 
Administrator application are found in the SeeBeyond JMS Intelligent Queue 
User’s Guide. 

e*Gate enterprise manager 
The e*Gate is an application that is used for e*Gate development and operational 
changes.  It is the primary tool for operations personnel for defining the EAI 
system’s security roles and defining new users. 

Command line utilities 
The following commands can be issued from a command line interpreter, such as 
the Korn Shell in Unix or a DOS window.  These commands should be found in 
the directory <EHOME>/client/bin, where <EHOME> is where the e*Gate 
software was installed.  Many commands also require shared libraries or DLLs.  
On Unix systems, the directory <EHOME>/client/bin may need to be inserted 
into the LD_LIBRARY_PATH variable. 

On Unix systems each command has the form <command> or <command>.exe.  
Only the latter form is executable on Windows platforms. 



Chapter 4 –SeeBeyond Platform   37 

 

stcinstd 

This command is known as the “Installer Service”.  This service is used to 
register a host name with the registry as a valid EAI participating host.  This 
command performs two functions: 

1 It allows users to edit the host and domain name properties for a participating 
host in the e*Gate Enterprise Manager application 

2 It enables the e*Gate system to automatically propagate upgrades made to a 
Registry host to all participating hosts. 

The stcinstd command should be run at least once per participating host so 
that the host name can be registered. 

stcregutil 

This is a command designed to modify, import, export or display information on 
an existing registry.  A common usage will be for importing or exporting e*Gate 
schema information from development, test, and production environments.  It 
does allow fine-grain control over the import and export process.  Much of this 
functionality is also part of the e*Gate Enterprise Manager tool.  However, this 
utility may be a large asset when defining code migration procedures for new 
EAI system releases. 

stcaclutil 

This is a utility used to define Access Control List (ACL) privileges, roles, and 
user properties.  These functions may also be performed using the e*Gate 
Enterprise Manager application.  Privileges can be assigned to roles and users 
assigned to roles.  Users and roles can be added or deleted.  User passwords may 
be altered. 

stciqutil 

This is a utility for manipulating the contents of a SeeBeyond standard Intelligent 
Queue.  However, this is of a limited utility for RIB components, since the RIB 
uses SeeBeyond JMS Intelligent Queues. 

stcutil 

This is a utility designed for system testing and debugging.  It is of limited use 
when working with RIB components. 



38   Retek Integration Bus 

 

stccmd 

This is a text-based version of the e*Gate system monitoring tool.  As such, it 
duplicates much of the functionality found in the e*Gate Monitor application.  It 
provides a command line interface for status retrieval and component starting, 
stopping, and status retrieval.  It may also “resolve” alerts. Available commands 
include: 

? - list available commands 

activate <component name> - activate element operations 

attachiq <IQ name> - IQ to bring up 

cls [cmd|stat] - clear window 

debug <component name> [flag] - show or change an 
element's debug flags 

detachiq <IQ name> - IQ to detach 

exit - exit stccmd.exe 

getres [-b<begin date (mm/dd/ccyy)> | -e<end date 
(mm/dd/ccyy)] - show resolved notifications 

getstatus [-b<begin date (mm/dd/ccyy)> | -e<end date 
(mm/dd/ccyy)] - show status-type notifications 

getunres [-all | -a] - show unresolved notifications  

help <command> - on-line help 

history - list command history 

list  [ 
all | monitors {-m} | alertors {-a} | iq {-i} | control 
{-c}  
| notif {-n} [flush | all  
| -b<begin  date (mm/dd/ccyy)>  [-e<end date 
(mm/dd/ccyy)>]  
| +r | -r | -i<notification number> | <component name>   
] 

 quit - exit stccmd.exe 

 reload <component name> [hard] - reload configuration 

 resolve <notification number> - indicate that a 
notification has been resolved 

 sequence <component name> [value] - show or change 
sequence number 

 shell <shell command> - run an external command 

 shutdown <component name> - controlled module shutdown 

 shutdownall <shutdownall> - controlled modules shutdown 

 start <component name> - start or restart module 

 startall <startall> - start or restart all modules 

 status <component name> - show status 

 suspend <component name> - suspend operations 

 version <component name> - Show version 

 



Chapter 4 –SeeBeyond Platform   39 

 

As with the e*Gate Monitor, not all commands are appropriate to all components. 

The stccmd command may be used interactively or as a line in a shell script.  
For example, to list all component statuses, issue the command: 

stccmd.exe -rh egate_main -rs RIB102 -cb egate_cb -un 
Administrator -up STC -cmd list all 

Where egate_main is the registry host, RIB102 is the schema name, egate_cb 
is the control broker to connect to, Administrator is the e*Gate user name to 
use, and STC is the password for the Administrator user. 

stcmsctrlutil 

This utility is used to examine and manipulate a JMS IQ Manager configuration 
and current messages.  The command line format is: 

stcmsctrlutil –host <hostname> -port <tcp port>  <<COMMAND>> 

where  

<hostname> is the name of the host hosting the JMS IQ Manager 

<tcp port>  is the port number of the JMS IQ Manager 

<<COMMAND>> is one of the legal commands for the stcmsctrlutil 
program.  Useful commands are: 

-topiclist 
 lists all defined topics 

-topicstat <topic name>  
 lists statistics for the named topic. 

 
-sublistfortopic <topic name> 

lists all subscribers defined for a topic 
-createtopic <topic name>  

 creates a new topic 
-deletetopic <topic name>   

deletes an existing topic 
-createsub <topic name> <sub name> <client 

name>  
 creates a new durable subscriber for the topic with the given 
subscriber name and client name 

-deletesub <topic name> <sub name> <client 
name>  
deletes an existing durable subscriber for the topic with the 
given subscriber name and client name 

-tmsglist <topic name> <starting seqNo> <# of 
msgs> 
Displays the messages found in the named list 

-tmessage <topic name> <seqNo> 
Displays the contents of a single message 



40   Retek Integration Bus 

 

-deltmsg <topic name> <seqNo> 
Deletes a message from a topic 

RIB component configuration 
This section details configuration issues and options with the RIB. 

Oracle database triggers 
Before any message can be published, a trigger may need to be enabled within 
the publishing application.  Information on these triggers may be found in the 
RMS, RDM, or RCOM operations guides and reference manuals. 

RIB property file 
The RIB property (rib.properties) file uses the standard Java property file format.  
It specifies Error Hospital, TAFR, logging and other configuration information. 

• For specific entries dealing with the Error Hospital, see the Message Error 
Hospital chapter. 

• For specific entries dealing with TAFR adapters, see the TAFR 
Configuration section detailed later in this chapter. 

The RIB properties file must have the name “rib.properties”.  However, the 
location of this file may be specific to the e*Way using it. 

Multichannel_ind property 
The only other type of RIB property file entry is used by RMS publishers.  It is 
the “multichannel_ind" property.  An example of an entry here is 

multichannel_ind = MPHYS 

Valid values for this property are: 

• MPHYS Specifies multi-channels using physical warehouses.  The effect 
is for RMS to consolidate virtual warehouse orders at a physical level. 

• S Specifies a single distribution channel is in use. 

• M (Reserved for future use). 



Chapter 4 –SeeBeyond Platform   41 

 

SeeBeyond e*Way configuration files 
All RIB adapters are SeeBeyond Multimode e*Ways.  Each uses its own 
configuration file containing parameters it needs to function.  These 
configuration files can be manipulated by the SeeBeyond e*Gate Enterprise 
Manager application. 

 

 Right-click on e*Way in e*Gate Enterprise Manager 



42   Retek Integration Bus 

 

e*Way property and configuration files 
The following shows what is displayed when you right click to select an e*Way, 
to modify its properties. 

1 Select Properties… from the menu, or click the Properties toolbar icon.  The 
e*Way Properties dialog box is displayed. 

 

e*Way Properties Window 

2 Click Edit.  The Configuration Edit window is displayed. 



Chapter 4 –SeeBeyond Platform   43 

 

 

e*Way Configuration Edit Window 

The configuration for this e*Way is the file 
<EHOME>\configs\stceway\ewDiffGrpToRCOM.cfg. 

3 Verify the main configuration entries: 

 JNI DLL absolute pathname 

The JNI DLL absolute pathname is the location of the Java Native 
Interface library.  On Unix systems, this is a shared library, while on 
Microsoft Windows platforms this is a DLL.  This library provides 
access to native ‘C’ language components that are part of the SeeBeyond 
e*Way infrastructure.  SeeBeyond provides such a library with its 
installation on a specific platform. 



44   Retek Integration Bus 

 

The name of the file on Unix systems is typically of the form 
“libjvm.so”.  On Windows it is “jvm.dll”.  From the SeeBeyond 
installation disk, this library is typically found under a Java Runtime 
Environment directory.  Examples of the library’s location include: 
<EHOME>\client\Jre\1.3\bin\hotspot\jvm.dll  
(Microsoft Windows) 

<EHOME>/client/j2re1_3_0_02/lib/sparc/client/libjvm.s
o  

(Sun SunOS or Unix) 

 CLASSPATH Prepend 

The “CLASSPATH Prepend” parameter must include the location of the 
RIB class Java Archive (JAR) file and the location of the RIB properties 
file.  Both the RIB Support JAR and the rib.properties file are typically 
found at 
<EHOME>/client/classes 

Hence, an example of the CLASSPATH Prepend parameter on a Unix 
system is (assuming e*Gate is installed in EHOME (/opt/egate)) 
%_EHOME_%/client/classes 

while, if e*Gate is installed in C:\egate on a Microsoft Windows system: 
%_EHOME_%\client\classes 

Note:  The path separator is a semi-colon on the Windows system, and a 
colon on the Unix system. 

e*Way collaborations 
Collaborations define the processing logic for a message.  They also define 
where messages are subscribed from and published to.  For many e*Ways, there 
will be no need to modify the collaborations specified for an e*Way.  This is 
because the supplied connection points can be modified for site-specific values, 
such as the host name or TCP port. 

However, modifications to the Collaborations specified in an e*Way are needed 
when new connection points are required.  An example of this is for a new RDM 
installation in a remote warehouse.  The RDM instance will have its own 
database and therefore a new Oracle Connection Point is required.  An additional 
Error Hospital for such an installation may be useful for performance reasons.  
The remote installation may also require a local JMS IQ Manager and associated 
connection point.  It is possible to have three or more additional connection 
points per new RDM installation.  This is in addition to creating the new remote 
participating host. 



Chapter 4 –SeeBeyond Platform   45 

 

The figure below shows the main e*Gate Enterprise Manager for a RIB adapter. 

 

Main e*Gate window when RIB e*Way selected 

The e*Way selected is a subscribing interface to RDM for one warehouse 
(number 3 out of 4).  The collaboration colUDAsToRDMWH3 subscribes to the 
UDA message family and is the normal “subscribing” collaboration.  The 
collaboration named colUDAsToRDMWH3Retry is the “retry” collaboration and 
is responsible for resubmitting and deleting messages from the Error Hospital for 
the UDA message family for this subscriber. 



46   Retek Integration Bus 

 

When the properties of colUDAsToRDMWH3 are examined, the following 
window is displayed: 

 

Subscribing e*Way collaboration properties 

There are two Event Types subscribed to in this example:  One for unprocessed 
messages (etUDAAsLVFromRIB) and one for messages to be re-processed 
(etUDAsToRDMWH3Retry).  The source for each type is the connection point 
cpUDAsLVFromRIB. 

Note:  This example uses a single JMS queue for all e*Ways in the EAI system.  
If a local queue were used, the connection point should be named something 
similar to cpUDAsLVFromRIBWH3. 

There are also two Event Types “published” in this example: 
etUDAsRDMAPIWH3, the Oracle connection point associated with the warehouse 
specific RDM instance and etHospitalDB, the Error Hospital Oracle 
Connection Point. 

Note:  This example uses a single Error Hospital for all e*Ways in the EAI 
system.  If a local Error Hospital were used, the connection point should be 
named something similar to cpHospitalDBWH3. 



Chapter 4 –SeeBeyond Platform   47 

 

Note:  This is a subscribing collaboration; the “publishing” connection points 
serve only to provide the database connection within the processing logic.  No 
messages are published to any queues for this collaboration. 

However, the “retry” collaboration does publish messages to a queue.  The retry 
collaboration’s properties is seen below: 

 

Retry collaboration properties 

For the retry collaboration, the subscription “source” is the Error Hospital Oracle 
Connection Point, not a JMS queue.  For publishing messages, the retry 
collaboration uses the same connection point as the subscribing collaboration.  
The event type it publishes is the etUDAsToRDMWH3Retry event. 

If the retry collaboration published the same event type that the subscribing 
collaboration originally processed (and had a problem with), then all subscribers 
to this event type would re-process the message.  In this particular case, this 
would not be a problem, since this event type only has one subscriber.  However, 
other event types are subscribed to by multiple applications.  Problems can arise 
when a message is delivered after it has been processed successfully. 



48   Retek Integration Bus 

 

SeeBeyond connection point configurations 
All RIB Adapters use connection points as a source/sink for messages and for 
accessing databases.  This section details the configurations for the JMS 
Connection Point and an Oracle Connection Point. 

The most important aspect of this configuration is the use of the XA protocol in 
support of processing messages exactly once. 

JMS IQ manager configuration 
Configuring a JMS connection point requires knowledge of the Java Message 
Service server that is to be used.  SeeBeyond’s JMS Intelligent Queue Manager 
provides such a service.  Other message oriented middleware products, such as 
IBM’s MQ Series product, also may provide such services. 

A JMS server provides access to one or more JMS Queues and their associated 
stable (a.k.a. hard disk) storage.  Multiple JMS IQ Managers may be created and 
deployed with the RIB, depending on the topology of the installation, message 
lifecycle, administration, performance and availability requirements. 

Although a JMS IQ Manager may be accessed from multiple e*Gate schemas via 
the connection points contained in these schemas, only the schema containing the 
JMS IQ Manager can administratively view the messages contained in the JMS 
server queues. 

Similar to other e*Gate components, the JMS IQ Manager’s full operating 
parameters are found in two windows:  An IQ Manager Properties window and 
the JMS IQ Manager specific configuration edit window. 



Chapter 4 –SeeBeyond Platform   49 

 

 

JMS IQ Manager Properties Window 

The following properties are extremely important: 

• On the “General” Tab: 

 IQ Manager Type: By definition, must be SeeBeyond JMS. 

Note:  Of course, if an enterprise has standardized on the IBM MQ Series 
product for JMS servers, then the SeeBeyond MQ Series Connection Point 
will be used directly with this server.  In this case, no JMS IQ Manager is 
needed. 

 Configuration File: Details IQ manager configuration storage. 

• On the “Start Up” tab: 

 Start Automatically: determines if the IQ Manager’s control broker will 
start up the IQ Manager whenever the control broker starts up. 

• On the “Advanced” Tab: 

 TCP/IP port number: determines the TCP port number to listen on.  This 
must be allocated specifically to the JMS IQ manager instance.  No other 
application (including other JMS IQ Managers) can use this port. 

 Log: This button accesses an additional window to control logging and 
tracing levels. 



50   Retek Integration Bus 

 

• On the “Security” Tab: 

 Privilege: Allows access to a window assigning privileges to defined 
roles when ACL’s have been enabled. 

 

JMS IQ Manager Configuration Edit window 



Chapter 4 –SeeBeyond Platform   51 

 

The SeeBeyond e*Gate JMS IQ Manager configuration contains five sections.  
Full documentation on these parameters is found in the SeeBeyond JMS 
Intelligent Queue User’s Guide. 

1 DB Settings: This section defines the stable storage options for the files used 
by the JMS server.  The “DBPath” configuration parameter is particularly 
interesting, since it locates the file directories used to store messages.  It also 
provides options for disk synchronization and memory cache size. 

Note:  If left blank, the value of the MessageServiceData property from the 
.egate.store file will be used.  This file is normally located in the user’s home 
directory. 

2 Message Settings: This section specifies options for allocating memory for 
messages and the maximum time a message will be allowed to persist on a 
queue within the server. 

3 Server Settings: This section defines the maximum number of messages the 
server will store.  The JMS server will throttle clients (cause them to wait) 
when this number is exceeded. 

4 Topic Settings: This section sets the per-topic resource limits.  In the RIB 
environment, a topic equates to an e*Gate Event Type which equates to a 
specific queue of messages supplying a set of subscribers. 

5 Trace Settings: This section controls tracing of messages for the JMS 
server.  Parameters include the name of the log file used for tracing, the trace 
verbosity level, and specific types of tracing to perform. 

Note:  Remember that configuration changes need to be promoted to the run 
time environment before they take effect.  To do this: in the Configuration 
Edit window, select File > Promote to Run Time. 



52   Retek Integration Bus 

 

JMS IQ Connection Point configuration 
JMS Connection Points are defined within the e*Way Connections folder.  This 
folder is found at the right-hand e*Gate Enterprise Monitor frame near the 
bottom.  When selected, the window will appear similar to the figure below: 

 

e*Gate Enterprise Manager with e*Way Connections folder selected 



Chapter 4 –SeeBeyond Platform   53 

 

To create new connection points: 

• Click the central e*Way connection button. 

To edit existing connection points: 

1 Select the connection point. 

2 Modify the connection point’s properties: the two main properties are the 
configuration file and the connection point type (which by definition must be 
a SeeBeyond JMS Connection Point). 

 

JMS Connection Point Configuration Edit window 



54   Retek Integration Bus 

 

There are two sections determining the connection point’s operating 
characteristics: 

• General Settings: This section details standard JMS operation options and 
message restrictions for the JMS client.  Parameters for the General Settings 
include: 

• Connection Type: Specifies if the connection type used is as a “Queue” or a 
“Topic”.  Must be set to “Topic” to ensure that all subscribers get the 
message.  When “Topic” is specified, all subscribers will receive a copy of 
all messages for all queues managed by the JMS provider.  If “Queue” is 
specified, then no message will be sent to more than one subscriber and the 
allocation messages to subscribers is indeterminate. 

• Transaction Type: Specifies the type of transactions used to dequeue and 
enqueue messages.  “XA-Compliant” must be used for messages to guarantee 
messages are processed successfully exactly once within the RIB. 

• Delivery Mode: Must be set to “Persistent” to insure messages are written to 
disk before an enqueue operation completes. 

• Maximum Number of Bytes to Read: Specifies the maximum number of 
bytes to read at a single time from the received bytes message. 

• Default Outgoing Message Type: The JMS standard specifies two types of 
messages: one consisting of bytes and one of strings.  This is not to be 
confused with the RIB “message type”. 

• Factory Class Name: Name of factory class to use in creating the JMS 
connections.  Suggested value: 
com.stc.common.collabService.SBYNJMSFactory 

• Message Service: This section details JMS IQ Manager specific parameters 
for the JMS server. 

• Server Name: Specifies the JMS IQ Manager name as seen in the e*Gate 
Enterprise Manager application. 

• Host Name: Specifies the IP address or the host name from a Domain Name 
Server (DNS) that is running the JMS IQ Manager. 

• Port Number: Specifies the TCP Port number the JMS IQ Manager is 
listening on.  Must match the JMS IQ Manager “TCP/IP Port Number” 
property. 

• Maximum Message Cache size: Specifies the maximum message cache size 
for the connection point. 

Note:  Remember that configuration changes need to be promoted to the run 
time environment before they take effect.  To do this, on the Configuration 
Edit window, select File > Promote to Run Time. 



Chapter 4 –SeeBeyond Platform   55 

 

Oracle Connection Point configuration 
Oracle Connection Points are defined within the e*Way Connections folder.  
This folder is found at the right-hand e*Gate Enterprise Monitor frame near the 
bottom.  When selected, the window that is displayed is similar to Figure 7-9: 
e*Gate Enterprise Manager with e*Way Connections folder selected.  

When the properties window of an Oracle Connection Point has been selected, it 
appears similar to the figure below: 

 

Oracle Connection Point Properties window 

The properties are: 

• e*Way Connection Type: Oracle, by definition 

• Event Type “get” interval: This is a polling interval occurring after an 
“empty” data retrieval.  Increasing this value may reduce load on a system.  
Decreasing this value may reduce the time it takes to publish a message by 
the RIB. 

• e*Way Connection Configuration File: name of the configuration file 
storing additional parameters. 



56   Retek Integration Bus 

 

An Oracle Connection Point Configuration Edit window is pictured below: 

 

Oracle Connection Point Edit window 



Chapter 4 –SeeBeyond Platform   57 

 

There are two sections found in this configuration: “DataSource” and 
“connector”.  The connector section contains two parameters that cannot be 
changed.  The DataSource contains the following parameters: 

• class: Specifies the JDBC driver class.  For XA support, the class should be 
oracle.jdbc.xa.client.OracleXADataSource.  The JAR file containing this 
class is typically found in <ORACLE_HOME>/jdbc/lib/classes12.jar. 

• DriverType: Type of driver.  The OracleXADataSource is a “thin” driver. 

• ServerName: Name of the host containing the Oracle Listener process to 
connect to. 

• PortNumber: TCP Port number the Oracle Listener uses to listen on for new 
connections. 

• DatabaseName: System ID (SID) of the database to connect to. 

• UserName: User name to use for the database connection. 

• Password:  Password corresponding to the user name.  Stored as an 
encrypted string. 

• Timeout: Login timeout value.  Longest time to wait for a session to be 
established with the database. 

Note:  Remember that configuration changes need to be promoted to the run time 
environment before they take effect.  To do this, on the Configuration Edit 
window, select File > Promote to Run Time. 

Oracle Schema owner issues to consider 
The Oracle connection point’s user name also depicts the schema name in which 
the Oracle connection will use by default.  This user/schema is not required to be 
the owner of the package or the Database Objects being used.  However, 
synonyms for all of the packages containing GETNXT() and CONSUME() must 
be present for the RIB user-id being used, and furthermore the owner of these 
packages containing the GETNXT() or CONSUME() stored procedure is 
required to be the owner of the RIB Objects as well.   

The appropriate privileges for accessing the RIB Objects and executing the 
stored procedures must also be granted to the RIB user-id.  Most often, the two 
privileges needed for a separate RIB user-id above those normally granted are 
'CREATE ANY TYPE’ and 'EXECUTE ANY TYPE'. 



58   Retek Integration Bus 

 

TAFR adapter configuration 
The TAFR adapter has both a SeeBeyond e*Gate configuration component and a 
RIB Properties file configuration component.  Furthermore, when adding 
additional routing destinations, such as RDM warehouse installations, additional 
work must be performed. 

RIB property file TAFR entries 
The rib.properties file contains entries for an Error Hospital and for other 
components. 

The properties associated with a TAFR are used to do the following: 

• Translate facility ID codes to destination JMS queues and event IDs. 

• Specify a default facility type  when the publishing application has no 
knowledge of the facility type. 

The entries in the rib.properties file for Facility ID translation have the following 
form: 

facility_id.<FACILITY_TYPE>.<FACILITY_CODE> = <Dest> 

where 

<FACILITY_TYPE> is a string matching the available facility types for the 
entire set of locations. 

<FACILITY_CODE> is a string matching the possible facility ID code values 
for a location. 

<Dest> is a value to use for routing a message to a specific (warehouse) 
location.  This will be appended to event type names to effect the routing of a 
message. 

The entries in the rib.properties file for specifying the default facility type is 
facility_type.default = <DEFAULT_FACILITY_TYPE> 

This provides a means for translating messages created by publishers (such as 
RDM) that do not use the facility type abstraction. 



Chapter 4 –SeeBeyond Platform   59 

 

TAFR Routing – adding new destinations 
Transformation, Address Filtering/Routing (TAFR) adapters are designed to 
perform actions based on message content.  Applications such as RDM require 
TAFRs to route messages to specific instances.  The number and names 
associated with these instances are within the control of the implementation.  
This section details how to add or new destinations. 

First, take a logical view of TAFR Processing.  First, the message to be routed is 
published.  The subscribing TAFR retrieves this message and, based on its 
content, re-publishes it zero or more times.  The queues the TAFR uses to publish 
are different than the one it subscribes to. 

The JMS IQ Manager the TAFR publishes to may be the same one it subscribes 
to, but the “topics” used to publish must differ – so that it will never subscribe to 
the same messages it publishes.  Also, the SeeBeyond interface with the JMS IQ 
Manager equates a “topic” with an “Event Type”.  The RIB associates an “Event 
Type” to a “Message Family”.  A Message Family is a specific XML format.  An 
Event Type is a tag applied to this format.  Multiple Event Types may be 
associated with the same message family. Subscribers subscribe to messages with 
specific Event Types. 

Note:  The RIB associates an “Event Type” to a “Message Family”.  A Message 
Family is a specific XML format.  An Event Type is a tag applied to this format.  
Multiple Event Types may be associated with the same message family. 

When a TAFR determines the routing destination for a message, it uses a 
general-purpose API for publications.  One of the parameters of this API is the 
topic to use.  The TAFR computes the “topic” based on the destination and 
values in the rib.properties file.  One risk with this design is that it is entirely 
possible for the TAFR to publish a message that has no subscribers. Another 
possible error is that the TAFR cannot compute the destination because of 
missing information from the rib.properties file.  If either error is reported, then 
the TAFR will stop processing all further messages. 

A summary of the steps used to add a new destination is as follows: 

1 Determine which TAFR and Message Family requires routing. 

2 Create the new Event Type name and definition. 

3 Modify the TAFR’s configuration to publish the new Event Type. 

4 Create the destination messaging components. 



60   Retek Integration Bus 

 

Step 1: Determine which TAFR and Message Family requires routing 

The first step in this process is to determine which messages are to be sent to the 
subscribing application.  All message content information is found in the Retek 
10.3 Integration Guide.  This guide details the input and output event types for a 
TAFR processing the message family.  In some cases, the documentation may 
picture multiple event types as input.  The RIB schema as supplied from Retek 
deploys by default a separate TAFR adapter for each input event type. 

Once the Message Family has been determined, the TAFR can easily be found, 
because the RIB uses the naming convention of: 

ew<MsgFamily1>To<MsgFamily2><Dest>FromRIB 

where  

<MsgFamily1> and <MsgFamily2> are the names of message families used 
for input and output. 

<Dest> is a generalized specification of the destination (for example, WH 
for RMD warehouses). 

Step 2: Create the new Event Type Name and Definition 

Two new event types will need to be created.  The first is the new event type 
used by the TAFR component to route the message to the new destination.  The 
second is used by the subscribing RIB adapter that interfaces with the application 
– the intended destination.  These RIB e*Ways subscribe to two events, the 
“routed” message event type just mentioned and an event type associated with 
retrying the message if an error occurs. 

The RIB uses the following naming convention for the Event Type names 
published by TAFR components: 

et<MsgFamily>FromRIBto<DestSpec> 

where <MsgFamily> is the message family name and <DestSpec> is the 
destination specification. An example is the Event Type name 
etASNInFromRIBToWH1.  As mentioned above, the specific event types 
published is found in the Retek 10.3 Integration Guide. 

Once the name has been determined, the definition must be created.  This is done 
via the e*Gate Enterprise Manager application. Clicking on the “Event Types” 
folder displays the following window: 



Chapter 4 –SeeBeyond Platform   61 

 

 

e*Gate Enterprise Manager with Event Types folder selected 

The figure above shows four possible published event types for the TAFRs 
involved with the ASNIn message family: etASNInFromRIBWH1, 
etASNInFromRIBWH2, etASNInFromRIBWH3, and etASNInFromRIBWH4. 

Clicking on the central “Event Type*” button brings up the following window: 

 

New Event Type window 



62   Retek Integration Bus 

 

1 In the Name field, enter the new event type name, for example, 
etASNInFromRIBWH5. 

2 Click OK. 

3 The new event type is displayed at the bottom of the list of event types. 

4 Double-click on the new event type. The Properties window is displayed. 

 

Event type properties window 



Chapter 4 –SeeBeyond Platform   63 

 

5 Click Find.  This allows you to associate an existing message format (or 
Event Type Definition) with the new event type.  (This may take a few 
seconds.) The Event Type Definition Selection window is displayed. 

 

Choosing an Event Type Definition for the new Event Type 

6 Select the etdRibMessageEnvelope.xsc file. 

7 Click Select. The Event Type Properties window is displayed. 



64   Retek Integration Bus 

 

 

Updated Event Type Properties window 

8 Click OK to finish creating the new Event Type. 

Repeat this process for the “Retry” event type, using the following 
characteristics: 

 The same Event Type Definition 

 The Event Type Name of the form et<MsgFamily>To<DestSpec>Retry. 

In the case of the examples above, the event type would be named 
etASNInFromRIBToWH5Retry. 



Chapter 4 –SeeBeyond Platform   65 

 

Step 3: Modify the TAFR’s Configuration to publish the new Event Types. 

The next step is to publish the new event type.  This has two parts: to update the 
e*Gate registry that the new event type will indeed be published, and, for 
messages destined for an RDM instance, modify the RIB properties file. 

1 In the e*Gate Enterprise Manager, select the TAFR e*Way. 

This can be a little tricky, since many names are similar.  TAFR names have 
the form ew<MsgFamily>To<Dest>FromRIB.  The following example uses 
the TAFR ewASNInToWHFromRIB. 

 

e*Gate Enterprise Manager with TAFR e*Way selected 

2 Select an action: 

 Double-click on the TAFR’s collaboration. 

 Select the TAFR’s collaboration and click on the Properties icon in the 
toolbar. 

3 The Collaboration Properties window is displayed. 



66   Retek Integration Bus 

 

 

Collaboration Properties window 

To add the new event as valid for publication: 

4 In the Publications section, click Add. 

5 Duplicate the connection point specified as the destination. 

6 Select the new event type to be published. 

In the example, you would use the event type etASNInFromRIBToWH5. 

Note:  The “Destination” (in this case ‘WH5’) must also be found in the 
rib.properties file as a valid translation value for a specific facility ID code. 

7 When the new event publication has been specified, click OK to save the 
information and update the e*Gate Registry with the new information. 



Chapter 4 –SeeBeyond Platform   67 

 

Step 4: Create the destination messaging components 

The last step is to create the subscribing RIB adapter.  One way to do this is: 

1 Select an e*Way to duplicate. 

2 Select Edit > Copy multiple. 

 

Copy Multiple edit option 

3 Rename the duplicate e*Ways to match the RIB’s naming convention:  For 
example, duplicating ewASNInToRDMWH4 will result in 
ewASNInToRDMWH4_0.  The RIB Naming convention renames the new 
e*Way to ewASNInToRDMWH5. 

4 Rename the collaborations used to match the RIB naming convention. 

5 Edit each collaboration in the Properties window. 



68   Retek Integration Bus 

 

 

Collaboration Properties window for a Subscribing Application Retry 
collaboration. 

 

Collaboration Properties window for the subscribing collaboration for a 
Subscribing Application adapter. 



Chapter 4 –SeeBeyond Platform   69 

 

Note:  This collaboration updates the application database. 

Figures 7-21 and 7-22 show the Collaboration Property windows for a 
subscribing application. The following must be changed on both collaborations: 

6 Change the Event Type Names to match the new Event Types defined. 

If you do not do this, the adapter will only receive messages that go to a 
different destination.  In the example above, we created a warehouse #5.  All 
references to the Event Type etASNInToRDMWH4Retry must be changed to 
etASNInToRDMWH5Retry and references to etASNInFromRIBToWH4 
changed to etASNInFromRIBToWH5. 

7 If the Error Hospital used is specific to the subscribing application, then 
make the connection point specific to the error hospital used. 

This connection point is associated with the etHospitalDB Event Type 
processing. 

8 If the subscribing application is to be hosted by a different participating host, 
move the new e*Way: 

a Select the adapter that you want to move. 

b Select Edit > Move.  Another window is displayed that allows the e*Way 
to be executed on a new computer. 

The new computer must have an associated “Participating Host” created within 
an e*Gate Schema.  See the SeeBeyond e*Gate Integrator User’s Guide for more 
details.  In addition, a running stccb daemon must be active on the computer 
before any other component can be run on the new participating host. 

 

Edit drop-down menu 
Note:  You must select the e*Way to be moved before you select Edit > Move… 

 





Chapter 5 – Message error handling   71 

 

Chapter 5 – Message error handling 
An error occurring while a subscriber processes a message poses a problem for 
an EAI system.  If the error is one such as a broken database connection, the 
message simply needs to be retried once the connection is re-established.  In 
these types of errors, one would like the message to remain on the EAI queue 
until it can be successfully processed. 

Another type of error arises when messages have dependencies on seed data 
found in the subscribing database.  For example, only the SKU number may 
reference a SKU referenced in a Purchase Order.  If the subscribing database 
does not contain this SKU, an error will occur.  This category of errors, referred 
to as Message Content Errors, cannot be resolved only through re-submitting the 
same message.  Instead, the SKU must be added before the message can be 
successfully re-processed. 

For the subscribing PO adapter, however, it may make sense to re-process the 
message a set number of times anyways.  The message that creates a new SKU 
may be published by a different adapter than the one creating the Purchase Order.  
Because of possible performance bottlenecks or operational difficulties, the 
Purchase Order may arrive at the subscribing application adapter for POs before 
it arrives at the subscribing application adapter for SKUs.  Therefore, simply re-
trying the message gives the application an opportunity to successfully process 
the PO. 

Once a Message Content Error occurs, it is desirable that the failing message 
does not affect the processing of other messages on the queue which refer to a 
different business entity.  Messages not yet processed could contain acceptable 
data and it makes no sense to delay their processing.  In order to get at these 
messages, the problem message must first be removed from the queue and, once 
removed, needs to be stored externally from the integration bus. 

This storage mechanism is called the “Error Hospital”.  Error Hospitals are 
associated with subscriber adapters.  Subscribing adapters may share the same 
Error Hospital tables, or may have a set of tables reserved only for their specific 
use.  Messages are re-submitted to the EAI queue by the subscriber and the 
resubmitted message will only be re-processed by the subscriber that resubmitted 
it. 

If a message contains invalid data and there are three subscribers for this message 
family, then each subscriber will store a copy of the message in an Error Hospital 
and re-publish the message to the queue.  We use message selectors on each 
subscriber that help filter the messages retried to the correct subscriber, as the 
retry e*Way publishes the message with the name of the collaboration on a 
property for retrying. 

Each subscriber stores its own copy of the failing message because a different 
subscriber may have processed the message successfully.  When the message is 
re-tried, those successful subscribers should not re-process the message. 



72   Retek Integration Bus 

 

Another complication with Message Content Errors is that subsequent messages 
within the same message family may have dependencies on the problem 
message.  For example, a “Create New PO” message may be followed by an 
“Update PO” message for the same PO number.  If the “create” cannot be 
processed, then the subscriber will error processing the “update”.  Thus, before 
any message is processed, a check is performed to see if the Error Hospital 
already contains messages for the same business entity (in this case, the same 
Purchase Order).  If so, then the follow-on message is immediately inserted into 
the error hospital, without allowing the application to process it at that time.  The 
adapter should re-publish the follow-on message only after the first one has been 
successfully consumed by the application. 

The retry logic for a publishing error hospital is much different than a 
subscribing error hospital, as the publishing error hospital directly calls the oracle 
package that failed for a message with the correct context data that is in the 
hospital, the retry call then attempts to retry the message.  If it is successfully 
published, the message is removed from the error hospital database.  

Once a message in the error hospital that had a dependency error message in the 
hospital is completed, then the publishing retry e*Way publishes this dependent 
message straight from the error hospital, as it was already successfully published 
from the database but couldn’t be put on the rib because of sequencing. 

Error Hospital components 
Error Hospitals consist of a collection of Java classes, a set of database tables, a 
Connection Point providing access to these tables, and a “retry” collaboration.  
The Java classes contain the Error Hospital logic and include database access 
logic.  The Connection Point must be configured for each subscriber and connect 
to the database housing the Error Hospital.  The same Error Hospital Connection 
Point must be used between the “Normal” subscribing collaboration and the 
“retry” collaboration. 

There is also a command line and a Graphical User Interface (GUI) tool for 
monitoring and manipulating messages found in the Error Hospital.  



Chapter 5 – Message error handling   73 

 

Subscribing
Application

Collaboration

Subscribing
Application Retry

Collaboration

JMS
Message
Queue

Subscribing
Application
Database

Error Hospital
Database

JMS Message Queue
Connection Point

Database Connection
Point Associated with

 MFM Stored
Procedure Call

Error Hospital
Connection Point

Error Hospital
Connection Point

JMS Message Queue
Connection Point

(Retry Message Publication)

JMS Message Queue
Connection Point (Initial

message publication)

Figure 6-1  Connection Points used at a subscriber.

 

The following tables are used to store message information within the Error 
Hospital: 

• rib_message – contains the message “payload”, all single-field envelope 
information, and a concatenated string made from <id> tags. Also contains a 
unique hospital ID identifying this record within the hospital and information 
used to track a message’s retry status. 

• rib_message_failure – contains all failure information for each time the 
message was processed. 

• rib_message_routing – contains all of the routing element information found 
in the message envelope. 

More information about the Error Hospital design may be found in the Retek 
Integration Bus Technical Architecture Guide. 



74   Retek Integration Bus 

 

Error Hospital configuration parameters and properties 
All configuration parameters for an Error Hospital that control its logic are found 
in a properties file.  This file must be part of the Java CLASSPATH used when 
the adapter is running.  In the supplied Retek Messaging Schema, this properties 
file is named rib.properties. 

The properties file, along with the name of the Java Archive (JAR) file 
containing Error Hospital classes and subscribing adapter helper classes, is 
specified in the adapters configuration file. 

To access the adapter configuration: 

1 Open the SeeBeyond Enterprise Manager. 

2 Select an option: 

 Right click on the appropriate subscribing e*Way and select Properties. 

 Select the appropriate subscribing e*Way and then click the Properties 
toolbar button. 

The e*Way Properties dialog box is displayed. 

 

e*Way Properties dialog box 



Chapter 5 – Message error handling   75 

 

3 In the Configuration file area, click Edit.  The configuration file edit window 
is displayed.  The CLASSPATH specification is found in the JVM Settings 
section under the CLASSPATH Prepend parameter. 

 

Configuration file edit window 

Note:  If any parameter found in the configuration file is changed, an additional 
step is needed before the running system actually uses the new configuration: the 
configuration must be “Promoted to run-time”.  This may be done in the 
configuration file “File” drop-down menu or in the Enterprise Manager “File” 
drop-down menu.  Simply changing a configuration does automatically update 
the SeeBeyond Registry with the new value. 



76   Retek Integration Bus 

 

The RIB properties file contains a number of parameters controlling the Error 
Hospital retry logic.  Each parameter is on a line by itself and each line has the 
following form: 

hospital.attempt.<param_name> = <param_value> 

where <param_name> is the name of the parameter and <param_value> is the 
value.  The table below lists the hospital parameters and their default values if 
not found in the RIB properties file: 

Parameter Name Default 
Value 

Description 

hospital.attempt.max 

4 

Maximum number of attempts the 
Error Hospital will make for the 
message, including the initial 
attempt.  Once a message has been 
attempted this many times, a User 
Defined Alert is raised for this 
message.  These alerts will seen on 
the e*Gate Monitor application. 

hospital.attempt.delay 2 Base number of seconds between 
retries. 

hospital.attempt.delayIncrement

8 

Number of seconds to add to the 
base delay per each retry.  For 
example, using the default value, 
the time between the third and 
fourth retry is: 2 + 8 + 8 + 8 = 26 
seconds. 

If different subscribers need different Error Hospital configurations, then each 
subscriber should use a different properties file with the values needed by that 
subscriber. 

Note: Although the directory containing the RIB properties file may change, it 
must always be named rib.properties. 



Chapter 5 – Message error handling   77 

 

Error Hospital activities 
This section details activities one may perform to messages in the Error Hospital 
from either the Hospital Administration GUI or the Hospital command line 
utility.  This Java application lets you: 

• Query the hospital database to determine the message(s) that exist 

• View or save a message’s contents 

• Replace the message’s contents 

• Increase the number of processing attempts for this message for this 
subscriber by one 

• Delete the message 

• Stop the message from further processing attempts 

The Hospital GUI and command line utility are Java classes that are executed or 
wrapped by a set of shell scripts (Unix) or BAT files (Windows/NT).  This Java 
class requires the presence of a properties file, hospital-admin.properties, 
in the user’s home directory. 

These scripts also source the file, hospital-admin.env, to initialize the 
CLASSPATH used by the command line utility class. 



78   Retek Integration Bus 

 

Hospital GUI and command line utility set up 
The hospital-admin.properties file and the hospital-admin.env file must be 
manually set up before the GUI or command line utility can be used.  This is 
detailed in the next section. 

Setting up hospital-admin.properties 
The following properties must be set in the file hospital-
admin.properties.  By default, the user’s home directory is checked for this 
file.  However, the name and location for this file may be specified at run time. 

Parameter Name Description 

hospital.gui.prop.dbUser Database User ID the utility will use to log into 
the hospital database. 

hospitial.gui.prop.dbPwd Password associated with the dbUser parameter.

hospital.gui.prop.dbUrl URL of the JDBC driver that will host the 
database session.  This URL is typically of the 
form: 
jdbc:oracle:thin:@<hostname>:1521:<SID> 
where <hostname> is the name of the host 
containing the Oracle listener and <SID> is the 
Oracle System ID of the database. 

hospital.gui.prop.dbDriverClass Name of the Oracle JDBC driver class. 
Typically, this is 
oracle.jdbc.driver.OracleDriver  As of this 
writing, this driver is found in the file 
client12.zip available from Oracle. 

Because this file contains database login parameters, access to it should be 
limited.  On Unix systems, set the file privileges mode of hospital-
admin.properties to 0400. 

All entries must be in the form <ParameterName> = <Value>.  Comments begin 
with a hash (‘#’) and continue to the end of a line.  Lines containing white space 
are ignored.  An example of the hospital-admin.properties follows: 

hospital.gui.prop.dbUser=retek_user 

hospital.gui.prop.dbPwd=retek_password 

hospital.gui.prop.dbUrl=jdbc:oracle:thin:@HSP_DB_HOST:15
21:hsp_SID 

hospital.gui.prop.dbDriverClass=oracle.jdbc.driver.Oracl
eDriver 



Chapter 5 – Message error handling   79 

 

Setting up hospital-admin.env 
The hospital-admin.env file contains the CLASSPATH and other environment 
entries that the hospital command line utility uses.  Each wrapping [?] script 
sources this file before executing the utility class.  The hospital-admin.env 
file must exist somewhere in the user’s execution path. 

The hospital-admin.env file should contain the following information: 

• The correct CLASSPATH environment variable. An example of a 
CLASSPATH is: 
CLASSPATH=/files0/egate/egate/client/classes/retek-rib-
support.jar:/files0/egate/egate/client/ThirdParty/oracle
/classes/classes12.zip:/files0/egate/egate/client/etd/et
dRibMessageEnvelope.jar:/files0/egate/egate/client/class
es/stcjcs.jar 

The example above assumes that the <EHOME> directory is 
/files0/egate/egate. 

• Any modifications to the PATH environment variable to execute the Java 
command. 

Hospital Admin GUI script 
Run the “hospital” shell script (Unix) or the “hospital.bat” file (Windows). 

Error Hospital admin command line scripts 
All Error Hospital administration is done via the Java class: 

com.retek.rib.collab.HospitalAdminCmdLine 

However, a set of scripts has been created for ease of use. These scripts wrapper 
the HospitalAdminCmdLine class and invoke the java interpreter to execute it.  
Each script will also echo the specific command used. 

Each script has a Unix Bourne shell version and a Windows 2000/NT version.  
Each operating system specific version accepts the same parameters.  The 
following scripts have been implemented: 

Command Parameters Description 

querymsg -l <location> 
-f <family> 
-t <type> 
-i <id> 
-q <inQueue> 
-r <willRetry> 
-p <propertiesFile> 

Queries the database and displays a list 
of message numbers that meet the 
required criteria. Any combination of 
these parameters can be used.  The SQL 
select will use the input parameters in a 
LIKE context so wildcards are allowed 
(%).  For example, if “-i 123%” were 
passed in, all messages with 
message_num starting with 123 would 
be selected. 
• -l <location> lists only those 

message numbers from the 



80   Retek Integration Bus 

 

Command Parameters Description 
specified location.  Locations are 
of the form <eway 
name>.<collaborationName> 

• -f <family> lists only those 
message numbers belonging to the 
specified message families 

• -g <type> lists only those message 
numbers that belong to messages 
of the specified type 

• -i <id> lists only those message 
numbers that apply to the specified 
ID. These identify a specific 
business object, such as a Purchase 
Order or ASN.   

• -q <inQueue> lists only those 
message numbers that are believed 
to be enqueued in the integration 
bus at the current time.  A value of 
0 or “false” implies the message 
only exists in the Error Hospital, a 
value of 1 or “true” implies that the 
message is thought to have been 
published for another attempt to 
process it. 

• -r <retry> lists only those messages 
according to their retry status.  The 
<retry> specification of 0 or 
“false” lists those not eligible for 
retry and marked ready for delete; 
a value of 1 or “true” lists those 
eligible for retry and not ready to 
be deleted. 

All parameters are optional.  Multiple 
parameters produce the intersection of 
their independent results.  (For example, 
–f Family and –l Location lists all 
messages in family “Family” belonging 
to location “Location”.) 

deletemsg -m <messageID> 
-p <propertiesFile> 

Marks the message ready for deletion.  
The message will be deleted when the 
retry collaboration next awakens. 
The –m switch is mandatory and must 
contain the message number of the 
message to delete. 



Chapter 5 – Message error handling   81 

 

Command Parameters Description 

readmsg -m <messageID> 
-F <outputFileName> 
-p <propertiesFile> 

Retrieves the payload contents for 
message <messageID> and writes it out 
to the file <outputFileName>.  
The –m switch is mandatory and must 
contain the message number of the 
message to read. 

updatemsg -m <messageID> 
-f <inputFileName> 
-p <propertiesFile> 

Replaces the message payload for the 
given message with the contents of the 
file.  No validation of the file contents is 
performed until the subscribing adapter 
processes the data. 
The –m switch is mandatory and must 
contain the message number of the 
message to update. 

stopmsg -m <messageID> 
-p <propertiesFile> 

Stops further attempts to retry the 
message. 
The –m switch is mandatory and must 
contain the message number of the 
message to stop retrying. 

retrymsg -m <messageID> 
-p <propertiesFile> 

Flags the message so one additional 
attempt is made to process the message. 
The –m switch is mandatory and must 
contain the message number of the 
message to retry. 

 



82   Retek Integration Bus 

 

Hospital Administration command line examples 
Before using any of the commands below, remember to verify that the 
hospital-admin.properties file exists in your home directory and 
contains the correct database login information.  The name and location of this 
file may be overridden via the –p command line switch. 

Listing all messages in an Error Hospital: 
> querymsg 

[USAGE] querymsg [-p properties file] [-l location] [-f 
family] [-t type] [-i id] [-q inQueue] [-r willRetry] 

java HospitalAdminCmdLine -a query 

Getting properties from: /files0/egate/hospital-
admin.properties 

Number of messages selected: 159 

Message numbers:        2947    2933    2934    2935    
2936    2940    2849    2850    2851    2852    2853    
2854    2856    2857    2858    2859    2923    2924    
2925    2926    2927    2928    2929    2930    2931    
2932     

SUCCESS 

Listing all messages in an Error Hospital from a specific e*Way: 

The example below lists all message numbers that belong to the 
ewASNOutToRCOM e*Way: 

> querymsg -l ewASNOutToRCOM% 

[USAGE] querymsg [-p properties file] [-l location] [-f 
family] [-t type] [-i id] [-q inQueue] [-r willRetry] 

java HospitalAdminCmdLine -a query -l ewASNOutToRCOM% 

Getting properties from: /files0/egate/hospital-
admin.properties 

Number of messages selected: 15 

Message numbers:        2854    2913    2804    2805    
2809    2811    2813    2769    2794    2795    3113    
3115    3117    3119    3124 

SUCCESS 



Chapter 5 – Message error handling   83 

 

Listing all messages in an Error Hospital that belong to a specific message 
family: 

The example below lists all message numbers that belong to the “asnout” 
message family: 

> querymsg -f asnout          

[USAGE] querymsg [-p properties file] [-l location] [-f 
family] [-t type] [-i id] [-q inQueue] [-r willRetry] 

java HospitalAdminCmdLine -a query -f asnout 

Getting properties from: /files0/egate/hospital-
admin.properties 

Number of messages selected: 23 

Message numbers: 2854   2913    2804    2805    2808    
2809   2810 
2811    2812     2813   3019    3045    3012    2769    
2794   2795 3205    3226    3113    3115    3117    3119    
3124 

SUCCESS 

Reading the message payload XML into a file: 

Message contents can be read into a file using the readmsg script.  Note that the 
XML is written as it appears in the original message and this means it contains 
no new-line or carriage return characters.  

> readmsg -m 2947 -F /tmp/message_2947.XML 

java HospitalAdminCmdLine -a read -m 2947 -F 
/tmp/message_2947.XML 

Getting properties from: /files0/egate/hospital-
admin.properties 

read Message: 2947 

SUCCESS 

> cat /tmp/message_2947.XML 



84   Retek Integration Bus 

 

<?XML version="1.0" encoding="UTF-8"?><!DOCTYPE 
POReceiptDesc SYSTEM 
"http://mspdev09:8109/dtdtst/POReceiptDesc.dtd"><PORecei
ptDesc><dc_dest_id>1</dc_dest_id><appt_nbr>500000301</ap
pt_nbr><po_nbr>10610</po_nbr><document_type>P</document_
type><item_id>100614114</item_id><unit_qty>8</unit_qty><
receipt_xactn_type>R</receipt_xactn_type><receipt_date><
year>2002</year><month>03</month><day>08</day><hour>16</
hour><minute>47</minute><second>11</second></receipt_dat
e><receipt_nbr>500000291</receipt_nbr><asn_nbr>ASN-IT-
RECEIPT-
19</asn_nbr><dest_id>1000000014</dest_id><container_id>A
SN-IT-REC-19-
CID001</container_id><distro_nbr>1000001911</distro_nbr>
<distro_doc_type>A</distro_doc_type><to_disposition>WIP<
/to_disposition><from_disposition></from_disposition><to
_wip>MXDSKU</to_wip><from_wip></from_wip><to_trouble></t
o_trouble><from_trouble></from_trouble><user_id>ZZRUDEJ<
/user_id></POReceiptDesc> 

Updating the message payload from a file: 

Message contents can be updated from a file using the updatemsg script.  The 
editor used to manipulate this data is external to this application. 

> updatemsg -m 2947 -F /tmp/message_2947.XML 

java HospitalAdminCmdLine -a update -m 2947 -F 
/tmp/message_2947.XML 

Getting properties from: /files0/egate/hospital-
admin.properties 

update Message: 2947 

SUCCESS 

Marking a message ready for deletion: 

The deletion of messages stored in the Error Hospital is performed by the retry 
collaboration.  One may mark a message ready to be deleted by this software 
using the deletemsg script.  The example below marks message number 2155 
ready to be deleted: 

> deletemsg -m 2155  

java HospitalAdminCmdLine -a delete -m 2155 

Getting properties from: /files0/egate/hospital-
admin.properties 

delete Message: 2155 

SUCCESS 



Chapter 5 – Message error handling   85 

 

Manually querying message information from Error Hospital 
Although the Hospital Admin command line utility allows one to view 
information about the messages contained in the hospital, one may wish to select 
IDs from the Error Hospital database using some other unique criteria. 

Most message information is stored in the rib_message table. 

To count the number of messages in the Error Hospital for a specific adapter: 
select count(*) from rib_message where location = 
’<ADAPTER_NAME>’; 

To display the Error Hospital message numbers for messages in the Error 
Hospital for a specific adapter: 

select message_num from rib_message where location = 
’<ADAPTER_NAME>’; 

To display the failure history of a specific message 
select * from rib_message_failure where message_num = 
<MESSAGE_NUM>; 

To display the message numbers for a particular message type 
select count(*) from rib_message where location = 
’<ADAPTER_NAME>’; 

Columns in the RIB_MESSAGE table 

Column Name Description 

message_num Error Hospital message ID 

Location Name of adapter (e*Way name + ‘.’ + collaboration 
name) encountering an error processing the message 

family family of message 

type type of message 

ID ID of business entity that this message is associated 
with 

ribmessageID RIB ID of message.  Contains RIB version, publishing 
e*Way name, collaboration name, e*Way start time 
and a unique sequence ID. 

publish_time Date/Time message published 

in_queue Flag set when message is re-published by the retry 
collaboration.  A value of 1 indicates the message 
resides on the JMS queue and has not yet been 
processed by the subscriber collaboration. A value of 
0 indicates the message only resides in the Error 
Hospital 

message_data CLOB containing the message data 



86   Retek Integration Bus 

 

Column Name Description 

attempt_count The number of times this message has been sent 
(unsuccessfully) to the subscriber, including the initial 
attempt 

max_attempts The number of attempts the hospital will make before 
stopping retries and alerting an administrator 

next_attempt_time The time of the next retry attempt, or null if the 
message should be attempted as soon as possible. 

delete_pending Set to 0 to indicate message is to be kept in the Error 
Hospital.  Set to 1 to prompt the retry collaboration to 
delete the message from the Error Hospital. 

Error Hospital log entries 
The Error Hospital software contains trace statements for monitoring its 
execution.  These statements will be logged to the e*Way RIB log files. More 
verbose logging of hospital operations is available if the e*Way’s verbose log 
settings have been set to Y in the rib.properties file. 

The log filename will be (rib_<EWAY_NAME>.log) and it will be written to the 
default log directory as specified in the rib.properties file. 

Create additional Error Hospitals 
An Error Hospital is checked each time a subscribing application adapter 
processes a message.  Because of this, location of the database with the Error 
Hospital tables is critical.  The Error Hospital may be located within its own 
database or be part of the application’s database. 

By default, only a single Error Hospital is used in the RIB Messaging schema.  
The instructions for installing a new Error Hospital are found in the RIB 
Installation Guide.  This installation consists of creating a set of new database 
tables and a sequence object. 

Once the new Error Hospital has been created, create a new Oracle Connection 
Point to reference it.  Then update the collaborations used by the subscribing 
application adapters to use the new Connection Point 



Chapter 6 – J2EE Platforms   87 

 

Chapter 6 – J2EE Platforms 
RIB startup and shutdown 

This section details considerations for bringing up and shutting down the RIB 
Enterprise Java Beans and Message-Driven Beans when deployed on a J2EE 
Application Server, such as WebSphere. 

Starting the RIB components 
All RIB EJB components should be automatically started when the application 
server is brought up.  One prerequisite is for the SeeBeyond JMS IQ Manager to 
be running before starting the Application Server. 

The SeeBeyond JMS server, however, requires a SeeBeyond instance.  If the 
JMS is not available, then follow the instructions for configuring the SeeBeyond 
RIB Components. 

Shutting Down RIB Components 
With the exception of the SeeBeyond JMS Server, all RIB components should 
cease to function once the J2EE Application Server is brought down. 

Preventative maintenance tasks 
Log files are the primary tools used to determine activity.  These files must be 
maintained as they could continue to grow to unmanageable sizes. 

Log Files 

WebSphere log files 
WebSphere’s log files are managed from its Administration Console.  You can 
configure the maximum size of the files, the number of histories to keep, etc.  
Refer to WebSphere for the details of these configurations. 

RIB/Timings log files 
The RIB/Timings logs are not managed and must be maintained.  The path and 
file name(s) are found in the rib.properties file found in the rcom-j2ee-rib.jar file, 
which is part of the rcom.ear file. 



88   Retek Integration Bus 

 

RIB component configuration 
This section will detail using WebSphere as the Application Server. 

Configuration files 

rib.properties 
In the rcom-j2ee-rib.jar file, you will find a file named rib.properties.  This file 
contains the RIB specific properties used by the RIB subscribing Message-
Driven Beans and publishing Stateless Session Beans that are deployed on the 
Application Server.  See below. 

 
############################################ 

# These are the RIB hospital properties. 

hospital.attempt.max=5 

hospital.attempt.delay=10 

hospital.attempt.delayIncrement=10 

 

############################################ 

# Default logging level verbose? [Y or N] 

log.default.verbose=N 

 

############################################ 

# Path where RIB and Timings log files will be written.  It must end with 

# a directory separator / or \. 

log.default.file_path=/files2/websph/WebSphere/AppServer/logs/server1/ 

 

############################################ 

# Log message times? [Y or N], and the file to write timings log 

# entries to. Only specify the file name as it will be pre-pended 

# with the log.default.file_path property.  If no entries for an 

# e*Way, it will default to N. 

# 

log.MDB.timings=Y 

log.MDB.timings_logfile=timings_rib.log 

 



Chapter 6 – J2EE Platforms   89 

 

############################################ 

# These are JNDI names used to lookup DataSource and TransactionManager 

# used by the RIB. 

rcom.jndi.db=jdbc/OracleRibDs 

#rcom.jndi.tm=java:comp/env/TransactionManager 

rcom.jndi.jms.factory=XAConnectionFactory 

 

############################################ 

# This is the hostname and port of the eGate JMS provider. 

rib.jms.hostname=<servername> e.g. mspdev14.retek.int 

rib.jms.port=<portname> e.g. 24053 

 

# Write each JMS message (XML) out to a file? [Y, N, True or False] 

rib.jms.write_file=False 

 

############################################ 

# Version of AlertPublisher, RibMessage, etc. the RIB is using. 

alertPublisherImpl=com.retek.rib.alert.NullAlertPublisher 

ribMessageImpl=com.retek.rib.sbyn.RibMessageWrapper 

ribMessagesImpl=com.retek.rib.sbyn.RibMessagesWrapper 

routingInfoImpl=com.retek.rib.sbyn.RoutingInfoWrapper 

failureImpl=com.retek.rib.sbyn.FailureWrapper 

 

############################################ 

# These properties are used to interface with RCOM (J2EE).  Only applicable 

# if RIB is not deployed in same AppServer Container. 

#rcom.jndi.context.factory=com.ibm.websphere.naming.WsnInitialContextFactory 

#rcom.jndi.url=iiop://mspdev03.retek.int:2809 

.bindings 
In the …/WebSphere/sbynjndi directory you will find a file named “.bindings”.  
This hidden file contains the serialized java JMS Objects that the Generic JMS 
Provider uses.  It is created as part of the RCOM installation.  Refer to that 
product’s Installation Guide for details. 



90   Retek Integration Bus 

 

Generic JMS Provider 
The Generic JMS Provider is fully configured as part of the RCOM installation.  
From the WebSphere Admin Console, click Resources -> Generic JMS 
Providers.  You will see “SeeBeyond JMS Provider” as the available resource.  
The JMS Connection Factory as well as all the JMS Destinations defined here. 

Message Listener Ports 
The Message Listener Ports are also fully configured as part of the RCOM 
installation.  From the WebSphere Admin Console, click Servers -> Application 
Servers -> server1 -> Message Listener Service -> Listener Ports.  You will see 
all of the WebSphere Listener Ports defined here. 

Data Source 
Finally, the Oracle DataSources are fully configured as part of the RCOM 
installation.  From the WebSphere Admin Console, click Resources -> JDBC 
Providers.  You will see “Oracle JDBC Thin Driver (XA)” as the available 
resource.  All of the RCOM DataSources are defined here.  The “Oracle Rib 
Datasource” is the DataSource that the RIB utilizes. 

 



Chapter 7 – ISO Platform   91 

 

Chapter 7 – ISO Platform 
RIB startup and shutdown 

Starting the Rib components for the ISO application is as easy as starting the ISO 
application server.  No additional steps are necessary, as long as the 
configuration files have been installed correctly in the Rib install process.  See 
“Chapter 14 – RIB component configuration: ISO Platform” for details regarding 
the configuration files. 

Preventative maintenance tasks 
This chapter lists some common tasks that a system administrator may want to 
script and perform on a regular basis, or may not need to script or perform on a 
regular basis. 

Log files 
Each of the subscribing Rib messaging components has a log file associated with 
it.  Each publisher, although not a server component, is associated with a 
particular message family, and has its own log file as well.  The names of these 
log files are set in the configuration file for the subscriber or publisher.  Also 
contained in the configuration files are some Log4j logging properties that can be 
used to configure the maintenance of these log files.  For more information on 
Log4j, see the documentation at the following Internet URL: 
http://jakarta.apache.org/log4j/docs/documentation.html 

There are four entries in the publisher and subscriber configuration files that deal 
with log file maintenance.  The names of these properties are:  

• LOGGING_LOG4J_LEVEL 

• LOGGING_LOG4J_MAX_FILE_SIZE 

• LOGGING_LOG4J_MAX_BACKUP_INDEX 

• LOGGING_LOG4J_PATTERN_FORMAT 

The first entry has to do with the level of detail that will be output to the log file.  
The log file will grow most quickly if the level is set to “DEBUG”.  To keep the 
log files smaller, you may want to set the level to a different value.  The default 
is “DEBUG”.   

The second entry has to do with the maximum size to which a log file is allowed 
to grow.  Once the file reaches this size, if the value for the third property, 
LOGGING_LOG4J_MAX_BACKUP_INDEX, is positive, then files {File.1, ..., 
File.MaxBackupIndex -1} are renamed to {File.2, ..., File.MaxBackupIndex}. 
Moreover, File is renamed File.1 and closed. A new File is created to receive 
further log output.  If MaxBackupIndex is equal to zero, then the File is truncated 
with no backup files created.  This allows an administrator to maintain the log 
files with no scripting required. 

http://jakarta.apache.org/log4j/docs/documentation.html


92   Retek Integration Bus 

 

The default value (the value that is in the configuration file to start with) of the 
second property is, “1024KB”, or one megabyte.  The default value for the third 
property is “1”. 

The last property, “LOGGING_LOG4J_PATTERN_FORMAT”, controls the 
format of the output data.  For more information on this setting, see the 
documentation at the following Internet URL: 
http://jakarta.apache.org/log4j/docs/documentation.html 

RIB component configuration 

XML files 

RibContainer.xml 
The key XMLconfiguration file for the ISO application server is 
RIBContainer.xml.   This file will be found in one of the following directories: 

Unix: 
<install_dir>/chelsea/serverUnix/retek/sim/files/prod/tu
ning 

Windows: 
<install_dir>\chelsea\serverWdws\retek\sim\files\prod\tu
ning 

This configuration file must be present in this directory in order for the RIB 
components to be deployed.  There needs to be an entry in RIBContainer.xml file 
for each of the messaging components (subscribers).   

Some of the other key entries in this file are: 

For the container as a whole: 

• containerName – This entry controls the naming of the container’s log files, 
and the name displayed in the Mission Control application for the RIB’s 
container.  It is “RIBContainer” by default. 

• defaultInstanceCount – This entry controls how many instances of the 
container are started at startup.  It is set to “1” by default. 

• MinutesPauseVitals – This entry controls the delay updates to the 
container’s vitals in the Mission Control application.  The default is “5”. 

For the individual components: 

• componentClassName – This entry controls the class that the component 
consists of.  This class must be a descendant of 
com.chelseasystems.cr.node.CMSComponent.  The default is 
com.retek.rib.redsky.RibMessagingComponent.  This entry should not 
normally need to be changed. 

• defaultMaxCount – This entry controls the minimum number of instances 
of the component that will be allowed to exist.  If the number of instances of 
the component ever dips below this number, a new instance of the 
component will be created. 

http://jakarta.apache.org/log4j/docs/documentation.html


Chapter 7 – ISO Platform   93 

 

• defaultMinCount – This entry controls the maximum number of instances 
of the component that will be allowed to exist.  If the number of instances of 
the component ever goes above this number, an instance of the component 
will be destroyed. 

• name – This entry controls the name of the component, as displayed within 
the Mission Control application. 

• propertyPairs – This entry controls what name/value pairs, or properties, 
are passed to component upon startup of the component.  Of all the standard 
name/value pairs available, one is mandatory.  It is, “CONFIG_FILE”, and 
its value should be the name of the configuration file for the component.  No 
path information should be included with this value, as ISO will look for this 
file in the standard “config” directory.  For the RIB components, this is the 
only entry that is necessary. 

Retek Binding Mappings 
Retek Binding Mapping XML Files detail the mapping of the XML data to/from 
the payload object.  They exist mainly to prevent costly message validation. 

ISO Configuration (*.cfg) files 
Non-XML formatted configuration files for the RIB on the ISO application 
server platform are: 

Subscriber messaging component configuration 
Subscribing messaging component configuration files use the following naming 
convention: <RibFamilyName>messagingcomponent.cfg 

An instance of this file should exist in the ISO “config” directory, for each RIB 
component deployed.  Remember, the messaging components represent 
subscribers, and as such they are server components that are brought up when the 
application server starts up.  The names of the configuration files for the standard 
RIB components include: 

• asnoutmessagingcomponent.cfg 

• diffsmessagingcomponent.cfg 

• itemsmessagingcomponent.cfg 

• ordermessagingcomponent.cfg 

• seedmessagingcomponent.cfg 

• storesmessagingcomponent.cfg 

• vendormessagingcomponent.cfg 

• whmessagingcomponent.cfg 



94   Retek Integration Bus 

 

Some of the key entries in these subscriber configuration files are: 

• TOPIC_NAME – The value of this entry should be the topic name in 
SeeBeyond, to which the component subscribes. 

• DURABLE_SUBSCRIBER – The value of this entry should be “true”.  All 
of the RIB’s subscribing e*Ways in SeeBeyond are durable, and all of the 
ISO subscribers should be durable as well.  For a definition of a durable 
subscriber, see the Sun JMS specification. 

• JMS_COMPONENT_TYPE – The value of this entry should be 
“Subscriber”.  Remember, we are talking about the configuration files for 
ISO subscribing messaging components here. 

• MODULE_NAME – The overall component name.  For the RIB 
subscribers, this should be “RibMessagingComponent”. 

• SUB_MODULE_NAME – The RIB family name for the subscriber. 

• SINGLE_THREADED – The valid values for this entry are “true” and 
“false”.  If this entry is set to “true”, only a single thread will be used to call 
the processMessages(ArrayList) method.  This method is the main method of 
the subscribing messaging component, and is responsible for consuming 
individual RIB messages.  If the value for this entry is “false”, multiple 
threads may call this method. The default is, “true”. 

• MESSAGING_CONFIG – The name of the JMS messaging configuration 
file.  This path information should not be included in this file, as ISO will 
look in the standard “config” directory for this file.  See “JMS Messaging in 
General”, below for more information on this file. 

• Logging - log4j – There should be a section in the file for Log4j logging.  
The individual properties in this section are: 

 LOGGING_LOG4J_LEVEL 

 LOGGING_LOG4J_MAX_FILE_SIZE 

 LOGGING_LOG4J_MAX_BACKUP_INDEX 

 LOGGING_LOG4J_PATTERN_FORMAT 

For a description of the individual entries, see the following Internet URL:  
http://jakarta.apache.org/log4j/docs/documentation.html 

http://jakarta.apache.org/log4j/docs/documentation.html


Chapter 7 – ISO Platform   95 

 

Publisher messaging component configuration 
Publishing messaging component configuration files use the following naming 
format: <RibFamilyName>publisher.cfg. 

The publishers are utility classes, and although they require configuration files, 
they are not server components that are brought up during startup.  Also, entries 
for these publishers are not required in the RIBContainer.xml configuration file.  
Names of the configuration files for the standard Rib publishers include: 

• asnoutpublisher.cfg 

• dsdreceiptpublisher.cfg 

• invadjustpublisher.cfg 

• receivingpublisher.cfg 

• rtvpublisher.cfg 

Some of the key entries in these publisher configuration files are: 

• TOPIC_NAME – The value of this entry should be the topic name in 
SeeBeyond, to which the component publishes. 

• JMS_COMPONENT_TYPE – The value of this entry should be 
“Publisher”.  Remember, we are talking about the configuration files for 
individual instances of the publisher utility class here. 

• MODULE_NAME – The overall component name.  For the Rib publishers, 
this should be “RibPublishingUtility”. 

• SUB_MODULE_NAME – The Rib family name for the publisher. 

• Logging - log4j – There should be a section in the file for Log4j logging.  
The individual properties in this section are: 

 LOGGING_LOG4J_LEVEL 

 LOGGING_LOG4J_MAX_FILE_SIZE 

 LOGGING_LOG4J_MAX_BACKUP_INDEX 

 LOGGING_LOG4J_PATTERN_FORMAT 



96   Retek Integration Bus 

 

For a description of the individual entries, see the following Internet URL:  
http://jakarta.apache.org/log4j/docs/documentation.html 

• JMS Messaging in General – There is a configuration file for general JMS 
messaging for the Rib.  Its name is ribmessaging.cfg, and it is located in the 
standard ISO “config” directory.  There should be a property in each of the 
above configuration files, for both subscribers and publishers that refers to 
this file.  The property name is, “MESSAGING_CONFIG” and its value 
should be, “ribmessaging.cfg”.  Some of the key entries in this file are: 

 CLIENT_IMPL – Should be 
“com.retek.rib.redsky.RibSeeBeyondJmsServices” for all Rib ISO 
subscribers and publishers. 

 USE_SESSION_TRANSACTION – The value of this entry should be 
“true”.  What this means is that the container session should control the 
entire transaction, rather than the individual database and JMS sessions 
within the overall transaction.  What this amounts to a sort of two-phase 
commit, where the container session knows all of the individual database 
and JMS sessions involved, and the Rib messaging component tells the 
session to commit all involved sessions.  This entry should always be 
“true”. 

 BROKER – Should consist of the host name of the server on which 
SeeBeyond is running, plus “:”, plus the port of the JMS queue manager.  
The port of the JMS queue manager can be found in the SeeBeyond 
e*Gate Enterprise Manager application.  Navigate to the JMS queue 
manager, go to the “Properties” for it, and look under the “Advanced” 
tab. 

Properties files 
The property files for the Rib/ISO installation are: 

• binding.properties – This is a “Retek Binding” subsystem file.  It is located 
under the standard ISO “config” directory.  Within the “config” directory, the 
pathname is, “com/retek/binding/rib/castor.properties”.  See the “Retek 
Binding Configuration files” section in “Chapter 4 – Configuration files” for 
properties files relating to the Retek Binding. 

• castor.properties – This is a “Retek Binding” subsystem file.  It is located in 
the standard ISO “config” directory.  See the “Retek Binding Configuration 
files” section in “Chapter 4 – Configuration files” for properties files relating 
to the Retek Binding. 

• injector.properties – This is a “Retek Binding” subsystem file.  It is located 
in the standard ISO “config” directory.  See the “Retek Binding 
Configuration files” section in “Chapter 4 – Configuration files” for 
properties files relating to the Retek Binding. 

• payload.properties – This is a “Retek Binding” subsystem file.  It is located 
under the standard ISO “config” directory.  Within the “config” directory, the 
pathname is, “com/retek/binding/rib/castor.properties”.  See the “Retek 
Binding Configuration files” section in “Chapter 4 – Configuration files” for 
properties files relating to the Retek Binding. 

http://jakarta.apache.org/log4j/docs/documentation.html


Chapter 7 – ISO Platform   97 

 

• publisher.properties – This file is also used by the Retek Binding 
subsystem (see the “Retek Binding Configuration files” section in “Chapter 4 
– Configuration files” for entries relating to the Retek Binding).  Some 
additional entries are included in this file for the Rib publishers. The property 
names consist of the Rib message family name, plus “.”, plus the Rib 
message type name.  An example would be, “ASNOUT.ASNOUTCRE”.  
The value for each of these properties would be the name of the 
configuration file for each of the publishers.  The path information should not 
be included, as ISO will look for these configuration files in the standard ISO 
“config” directory.  The properties and there values should be: 

ASNOUT.ASNOUTCRE=asnoutpublisher.cfg 
DSDRECEIPT.DSDRECEIPTCRE=dsdreceiptpublisher.cfg 
INVADJUST.INVADJUSTCRE=invadjustpublisher.cfg 
RECEIVING.RECEIPTCRE=receivingpublisher.cfg 
RECEIVING.RECEIPTMOD=receivingpublisher.cfg 
RTV.RTVCRE=rtvpublisher.cfg 

• rib.properties – See the description under “ISO Platform Specific entries”, 
under the “RIB Properties File” section of “Chapter 4 – Configuration files”. 

 





Chapter 8 – RIB Administration Tool   99 

 

Chapter 8 – RIB Administration Tool 
Overview 

The RIB Administration Tool contains three administrative GUI Applets: a 
Hospital Administration GUI Applet, a RIB Properties Editor GUI Applet and a 
Message Statistics GUI Applet.  This web application is contained in the gui.war 
file under the Rib_Hospital_Gui directory.  

The application is for administration of a RIB installation on the same computer 
as the Application Server hosting the  RIB Administration Tool. 

Installation and configuration 
The RIB Administration Tool requires an existing application server, such as 
Apache Tomcat, installed and running on the same host as the running RIB 
installation. 

The RIB comes equipped with the necessary ‘war’ file, named ‘gui.war’, for the 
installation.   This file is found <install_dir>/RIB103/Rib_Hospital_Gui/build 
directory.  

To install and configure the RIB Administration Tool using the Tomcat 
application server: 

1 Install the war file on an application server using the gui.war file. 

2 Edit the gui.properties configuration file. 
############################################ 

# GUI Project Variables 

GUI.ProjectHost= 

GUI.ProjectPort= 

GUI.ProjectName= 

GUI.TimingsLogFile.Path= 

GUI.TimingsLogFile.Name= 

GUI.rib.properties.default.FilePath= 

GUI.rib.properties.default.BackupFileExt=.bak 

 GUI.ProjectHost and GUI.ProjectPort are values you can set for all the 
applets.  These values override the applet’s baseurl.getContext lookups 
to find the URL to the servlets.  If for any reason this lookup does not 
find your correct host and port, or if you want to use a servlet residing on 
a different host or port, set these values in the properties file. 

 GUI.ProjectName should be set in the properties file to contain the name 
of your project installation (installed application name) on the 
application server.  The applets will use this name to build the URL to 
the servlets.  The default installation name is “gui”.   



100   Retek Integration Bus 

 

 GUI.TimingsLogFile.Path and the GUI.TimingsLogFile.Name should be 
set to contain the default path to the timings log file and the default name 
for the log file for the Message Statistics GUI Applet.  When this applet 
is loaded, it will display a window where the user can enter the path to 
the log file and the parameters to pass into the RibTimings class to gather 
the statistics.  The default path is displayed using these properties.  If no 
value is entered, the log file path text field on this window will initially 
be blank. 

 GUI.rib.properties.default.FilePath should be set to the default file path 
of the rib.properties file.  This will be displayed in the RIB Properties 
Editor’s connection window as the default File Name, which the user can 
modify before retrieving the file from the server. 

 GUI.rib.properties.default.BackupFileExt should be set to contain the 
default file extension the RIB Properties Editor will use when creating a 
backup copy of the rib.properties on the server.  This will be displayed in 
a dialog that appears on saving the file.  The user can modify the 
extension of the backup file to whatever they choose before the file is 
saved. 

3 Edit the gui.servlet.properties file in WEB-INF/classes.  
############################################ 

# GUI Project Variables 

GUI.jdbc.driver=oracle.jdbc.driver.OracleDriver 

GUI.rib.properties.SessionTimeout=900 

GUI.rib.properties.local.FilePath= 

 GUI.jdbc.driver should be set to the driver used to log in to the database 
for the main Portal login.  The default driver that is contained the gui.war 
is an Oracle database driver. 

 GUI.rib.properties.SessionTimeout should be set to the amount of time in 
which a session is timed out after being idle.  The index.jsp will set the 
HttpSession.setMaxInactiveInterval();  The default is 900 
seconds (15 minutes). 

 GUI.rib.properties.local.FilePath should be set to the directory where the 
RIB Properties should locally save the file while editing it.  The default 
is to set this to <appserver-installation-directory>/<installed-application-
name>/temp/, but can be changed to any directory on the application 
server. 



Chapter 8 – RIB Administration Tool   101 

 

Accessing the RIB Administration Tool 
The RIB Administration Tool starts with the Main Portal screen.  All access is 
performed using a Web Browser such as the  Microsoft® Internet Explorer.  The 
Web Browser downloads a Java applet from the application server.  

Main Portal Screen 
To access the Main Portal Screen,  first Bring up the RIB Administration Tool 
from your browser by the following URL: 

http://<hostname>:<port>/<installed-app-name> 

where  

<hostname> is the name of the host containing the application server, <port> is 
the port number used to access the application server <installed-app-name> is the 
name of the application the RIB Administration Tool has been installed under.  
The default is “gui”. 

A login screen will appear.  Enter in the login to the Hospital database you want 
to access using the Hospital Administration GUI.  Even though the Message 
Statistics GUI and RIB Properties Editor GUI do not use a database connection, 
the RIB Administration tool uses the Hospital database login for authentication.  
This database login will need to be entered in to access the RIB Administration 
Tool regardless of whether the Hospital Administration GUI will be used.   

Once logged in to the RIB Administration Tool, an index screen will appear 
containing links to the three applets:  Hospital Administration GUI, RIB 
Properties GUI and Message Statistics GUI. 

The login to the RIB Administration Tool will expire after the timeout set in the 
gui.servlet.properties.  The user will be forced to login again if idle for the time 
set in this timeout property. 

Hospital Administration GUI Applet 
This applet contains the same functionality as the Hospital Administration 
Application detailed earlier in this manual.  The only difference is the lack of a 
login window, since this login is derived from the main portal login. 

See the help located in the Applet or Chapter 7 for more information about how 
to run this applet. 

http://<hostname>:<port>/<installed-app-name


102   Retek Integration Bus 

 

Message Statistics GUI Applet 
This applet contains the same functionality of the RibTimings detailed in Chapter 
16, but is now available in a GUI format.  On loading of the applet, a window 
will appear with the following fields:   

Filename:  The default path and filename set in the gui.properties will appear 
here if they have been set.  Otherwise, enter the full path to the timings log file 
located on the application server. 

Status:  Select the status of the statistics to display.  All selects all the statistics 
available in the timings log file. 

Interval:  Enter the interval of time in seconds to create a bucket of timings.  The 
RibTimings will group timings into a bucket to gather statistics.  The default is 
3600. 

Start time:  Enter the timestamp time in which the RibTimings should begin 
gathering statistics.  The timings will not be gathered for any timestamp that is 
before the time entered in this field. 

End time:  This is not available unless a start time has been entered.  The 
RibTimings will stop processing timings if it encounters any timestamp after the 
end time entered in this field. 

Help Menu:  This will display help on how to run the applet. 

The main Statistics window will appear after selecting the Ok button.  There are 
three areas to the main Statistics window:  the message type list, the time period 
list and the statistics table.  Select a message type from the list, and the time 
period list will display the time periods available for that message type.  Once a 
time period is selected, the statistics table will display the corresponding 
statistics. 

See the Help menu in the Message Statistics GUI Applet or Chapter 16 for more 
information on how to run this applet. 



Chapter 8 – RIB Administration Tool   103 

 

RIB Properties Editor 
The RIB Properties Editor is a file editor that can be used for editing a file on a 
server using FTP.  The file is copied to a local directory on the application server, 
and on save is copied back to the original server using FTP.  A backup of the old 
file is created when the changes are saved. 

This applet contains two windows: a Connection Window and a Main Menu. 

Connection Window  

The FTP connection information is entered on this window.  The window 
appears on startup of the applet and by selecting  

Open from the Main Menu.  The following information must be entered: 

File Name:  The full path to the file on the server. 

Server Name:  The name of the server for the FTP Connection. 

FTP User Name:  The username for the FTP Connection. 

FTP Password:  The password for the FTP Connection. 

Main Menu 

This window contains the main actions for downloading and uploading a new 
RIB Properties file.  The actions available are: 

Open:  Displays the connection window for retrieving the file. 

Save:  Saves the changes to the file back to the server.  Displays a dialog in 
which a backup file extension can be entered, the default is displayed based on 
the gui.properties value. 

Cancel:  Cancels changes to the file.  A dialog is displayed to verify that all 
changes should be discarded. 

Exit:  Exits from the applet. 

Files and classes contained in the war file 
Classes: 

com.retek.rib.gui.AppletCoder:  used for encoding and decoding information 
sent from applets to servlets 

com.retek.rib.gui.HospitalUIApplet:  main Hospital Administration class, 
contains all applet GUI code 

com.retek.rib.gui.HospitalUIHelper:  Hospital Administration class, contains 
calls to servlet 

com.retek.rib.gui.PropertiesUI:  main RIB Properties Editor class, contains all 
applet GUI Code 

com.retek.rib.gui.PropsHelper:  RIB Properties Editor class, contains calls to 
servlet 

com.retek.rib.gui.StatisticsUI:  main Message Statistics class,  contains all 
applet GUI code 



104   Retek Integration Bus 

 

com.retek.rib.gui.StatsDBHelper:  Message Statistics class, contains 
TableModel implementation  

com.retek.rib.gui.StatsHelper:  Message Statistics class, contains calls to 
servlet 

com.retek.rib.gui.TableMap and com.retek.rib.gui.TableSorter:  classes used 
for TableModel implementation for both applets 

com.retek.rib.gui.DBConnection:  used by index.jsp to test authentication with 
main RIB Administration login 

com.retek.rib.gui.HospitalUIDBHelper:  Hospital Administration class, 
contains TableModel implementation and command calls 

com.retek.rib.gui.HospitalUIServlet:  Hospital Administration servlet class 

com.retek.rib.gui.PropertiesServlet:  RIB Properties Editor servlet class 

com.retek.rib.gui.TimingsServlet:  Message Statistics servlet class 

Other files: 

js/apps.js:  javascript file for RIB Administration index page 

taglibs/gui.tld:  tag library for RIB Administration index page 

WEB-INF/lib/classes12.jar:  contains Oracle Database Driver 

WEB-INF/lib/retek-rib-support.jar:  contains base code for Hospital 
Administration and Message Statistics functionality 

WEB-INF/lib/retek-sbyn.jar: contains base code for Hospital Administration 

WEB-INF/lib/etdRibMessages.jar: contains base code for Hospital 
Administration 

WEB-INF/lib/stcjs.jar: contains base code for Hospital Administration 

WEB-INF/web.XML:  contains servlet mappings and session defaults 

WEB-INF/classes/gui.servlet.properties and gui.properties:  properties files 
used by RIB Administration Tool and applets 

WEB-INF/classes/rib.properties:  properties file used for Hospital 
Administration 

HospitalUIHelp.html, StatisticsHelp.html and PropertiesUIHelp.html:  help 
files for the applets, displayed by selecting Contents from the applet’s Help 
Menu. 

errorpage.jsp:  error page for RIB Adminstration index and login pages 

index.jsp:  main index page for RIB Administration 

login.jsp:  main login page for RIB Administration 

HospitalUI_en_US.properties, PropertiesUI_en_US.properties and 
StatisticsUI_en_US.properties:  properties files containing GUI text for 
internationalization purposes 

 



Chapter 9 – Message Statistics Command Line Utility   105 

 

Chapter 9 – Message Statistics Command Line 
Utility 
Overview 

The Retek Integration Bus (RIB) logs set of timing entries whenever it creates, 
transform, routes, filters, or subscribes to messages on the RIB. These time 
entries are then post-processed by some other means to roll-up the data. This 
method was deployed to create a standard set of classes to perform this rollup and 
to create an internal summary storage of rolled up statistics. The displaying of the 
rolled up information is done via writing to the timings file or via message 
publication collaboration. You can then use this information to determine if the 
system is functioning correctly or if an application problem exists. 

The same classes are used for this implementation as in the Administrative GUI 
applet. 

Requirement  
The following classes need to be deployed in order to gather the timings 
statistics. BucketSet.java, BucketTimingsMain.java, ProcessTimingsLog.java, 
RibFileLogger, RibTimings.java, StatsBucket.java, TimestampType.java, 
TimingsBucket.java, TimingsLog.java and TimingsType.java. 

Description of the classes  
The BucketSet contains a set of TimingsBuckets for a specific period of time. 
Each TimingsBucket contains a statistical rollup of timings for a specific Timing 
Type, Message Family, Message Type, and Processing Status combination. For 
some processing statuses, the Message Family and Message Type may be null. 
Additional BucketSet objects may be derived from an initial BucketSet object 
that contain some subset filetered by Timing Type, Message Family, Message 
Type and Processing Status. This class should be the interface to create or 
retrieve a specific bucket based on a combination of the identification fields – 
BucketSet Name, threshold, timings interval length, interval number. 

A StatsBucket object is the holder of statistical information. From a StatsBucket, 
you can retrieve the average interval time, the standard deviation (n-1), the 
minimum time, the maximum time, the number of times the time is above a 
certain threshold value, the threshold value used (a constructor parameter), and 
the average value that exceeded the threshold. Every call to the 
StatsBucket.update() method results in these updated statistics. 

A TimingsBucket object is a StatsBucket associated with a TimingType, 
Message Family, Message Type, and Processing Status. Multiple 
TimingsBuckets can be rolled up into a single StatsBucket.  

The TimingsLog class is designed to read a file containing time stamp log entries 
and create a bucket array from the data. You can then manipulate or display this 
data as needed.  



106   Retek Integration Bus 

 

The RibTimings class is a wrapper around all the Timings Statistics class to 
produce a report through a User Interface. 

Prerequisites to run the Timings Statistics 
The rib.properties should have all the properties defined for the e*Ways to get 
the timings statistics. The command line arguments to run the RibTimings  and 
BucketTimingsMain class is:  

java RibTimings filename status [CSV] [internal [ time | all ] ]  

java BucketTimingsMain filename status [internal [ time | all ] ] 

Where status is SUCCESS, FAILURE or ALL (case insensitive), 

Interval is seconds for each report, 

Time is in the form HH: MI: SS and only the interval containing the time is 
reported. 

Note that the retek-rib-support.jar should have all the Timings statistics class 
within it. The retek-rib-support.jar should be placed to the correct CLASSPATH. 
Usage:  java –cp –classpath < retek-rib-support.jar> 

 



 Chapter 9 – Message Statistics Command Line Utility   87 

 

How the output appears to be when Timings Statistics report is run: 

ewReceivingToRMS.timings SUCCESS 84400 

Timings for the Period 00:00:00 to 23:26:39 

 
Timing Count Average STD 

Dev 
Time 
Sum 

Time^2 
Sum 

Min Max  Threshold Over 
Threshold 

Count 

Over 
Threshold 

Sum 

Over 
Threshold 

Avg 

SUB_BETWEEN_COLLAB 999 0.07885 0.00099 78.772 7.18824 0.061 0.554 10 0 0 ? 

SUB_B4_CONSUME 1000 0.0114 0.00029 11.405 0.21223 0.009 0.265 10 0 0 ? 

SUB_IN_CONSUME 1000 0.14611 0.00084 146.111 22.06014 0.133 0.609 10 0 0 ? 

SUB_AFTER_CONSUME 1000 0.00845 0.00005 8.455 0.07404 0.007 0.024 10 0 0 ? 

SUB_TOTAL_IN_COLLAB 1000 0.16875 0.00093 168.751 29.3368 0.153 0.63 10 0 0 ? 

 
 
 





Chapter 10 – Multi-Thread feature for the e*Ways    87 

 

Chapter 10 – Multi-Thread feature for the e*Ways 
What is a Thread? 

A thread (sometimes called an execution context or a lightweight process) is a 
single sequential flow of control within a program. The threads are used to isolate 
tasks.  

Amdahl's Law 
Assuming that an application is multithreaded (programs written to execute in a 
parallel manner, rather than a serial or purely sequential one), there are inherent 
difficulties in making a program run faster proportional to the number of 
processors: the program needs to be written in a parallel fashion, and the program 
itself must be resource friendly. 

Amdahl’s Law explains this: "…the performance improvement to be gained from 
using some faster mode of execution is limited by the fraction of the time the 
faster mode can be used.” This law applies to more than just changing sequential 
code to parallel code. 

Assume that a program consists of two main parts, A and B, and that each can be 
optimized. Part A represents 90% of the execution time, and B represents the 
remaining 10%. Assume that B can be optimized in such a fashion so as to be 
able to finish in one tenth the time of the original version, and that A can be 
optimized so as to complete its part of the program in 2/3 the time it previously 
needed. If both parts A and B take the same amount of time to be optimized, and 
the programmer has time only to optimize one part, which should the 
programmer work on? Obviously, he/she should work on part A. 

Assume that this program requires 100 seconds to complete. Part A consumes 90 
seconds of execution time, and B requires 10 seconds of execution time. After 
optimization Part A would take 60 seconds, and B a mere 1 second. The choice is 
between a total of 70 seconds of execution time if A is optimized, and 91 seconds 
if B is optimized.  



110   Retek Integration Bus 

 

Multi-threaded feature for Subscriber, TAFR and Publisher  
What are the situations where multi-threading can help? 

Multi-thread can be a valuable tool to increase performance, but it does not help 
in every situation. First and foremost, there is some overhead associated with 
multi-threading. Therefore, multi-threading should not be used unless a 
performance problem exists. If you have an e*Way that is processing only 
several messages per minute, this would probably not be a good candidate for 
multi-threading. This is because you would be increasing the overhead on the 
server, but you would not get any benefit from that increased overhead. A good 
candidate for multi-threading would be an e*Way that continually receives a 
stream of multiple messages per second, or that receives bursts of many 
messages within a short period of time. One example might be an e*Way that 
receives real-time updates from time to time, and also receives periodic batch 
updates consisting of a large number of updates. 

Multi-threading still may not help the above situation unless the server has 
multiple processors to share the load. If the machines has only a single processor, 
the additional overhead associated with switching between multiple threads may 
actual slow the processing of messages down. If the threads can be doled out to 
separate processors, that is where performance can really be enhanced. 

When multi-threading is used, it should be used across all the e*Ways that 
process messages for a message family. That would include publisher, 
subscriber, and TAFR e*Ways. It would not be helpful to have a publisher 
sending messages very quickly and efficiently, but if the subscriber can process 
them only so fast, the bottleneck will exist in the subscriber e*Ways. 

The Subscribing, TAFR and Publishing e*Ways provides the multi-threading 
features together with the Publishing e*Way. In order to incorporate this feature, 
there is a certain step that needs to be followed. The following classes cater the 
multi-thread features for the e*ways -HospitalController.java, 
HospitalRetryController.java, RibCollabController.java, RibProperties.java, and 
MultiThreadUtil.java.  

Go to the SeeBeyond e*Gate Enterprise Manager -> select the e*Way which 
needs to run the Multi-thread feature and copy the collaboration and paste the 
number of times it needs to be multi-threaded. Rename the collaboration so that 
the e*Way has unique identification of the multi-thread collaboration. If there is 
4 Publishing e*Ways with multi-thread features, then there should be 4 
Subscribing e*Ways and as a result, there should be no thread number greater 
than 4.  



Chapter 10 – Multi-Thread feature for the e*Ways    87 

 

The Retry feature has been enhanced with the Multi-thread features. The 
rib.properties file needs to have the following entries: 

a In the multi-threading properties section, there should be an entry for each 
family name and total number of threads implemented, e.g. 

Mfm.messageFamilyName.total_threads=n  

mfm.Alloc.total_threads=4 

mfm.Alloc.colAllocFromRMS_1.thread_num=1 

mfm.Alloc.colAllocFromRMS_2.thread_num=2 

mfm.Alloc.colAllocFromRMS_3.thread_num=3 

mfm.Alloc.colAllocFromRMS_4.thread_num=4 

When a multi-threaded e*Way comes online, the system will check this 
value for each individual collaboration as it comes online. As the 
collaboration comes online, the system keeps track of how many have come 
online so far. If the number specified in the rib.properties entry is exceeded, a 
runtime exception will occur. 

b The e*Way specific logging level verbose should be set to ‘Y’ for the e*Way 
which needs to be run for the multi-thread feature, e.g. 
log.ewAllocFromRMS.verbose=Y 

All collaboration have different database connection settings for the 
HospitalRetry. If one decides to have multi-thread based queues, we suggest 
you set-up hospital retry queues. Each application should have its own 
collaboration in the hospital e*Way – ewHospitalRetry.  

c The next step is the replication of the publishing and subscribing event types. 
Assume our original event type is named, “etTestMessageType”. Since our 
total threads is four, we want to make three copies and then rename them. As 
mentioned above, there are naming conventions that you need to follow. 
Each event type needs to have to end with an underscore and a unique digit. 
In this case, we will name the event types, “etTestMessageType_1”, 
“etTestMessageType_2”, “etTestMessageType_3”, and 
“etTestMessageType_4”. It has to end with an underscore and a sequence of 
digits. 

d Next, replicate the collaborations for the respective subscribing and 
publishing e*Ways. Before we do this, though, we should go into our 
original collaboration and verify that the publishing event type has been 
automatically renamed as the new name for our original event type. For 
example, it should be as follows; 

Event Type                              Corresponding Collaboration 

etTestMessageType_1              colTestSubCollaboration_1 

etTestMessageType_2              colTestSubCollaboration_2 

etTestMessageType_3              colTestSubCollaboration_3 

etTestMessageType_4              colTestSubCollaboration_4 



112   Retek Integration Bus 

 

In renaming all the event types and corresponding collaboration, the system 
automatically publishes events to the correct topics. 

If you created a new connection point and selected the properties with 
e*Way Connection Type as ‘SeeBeyond JMS’, the “New” button is enabled 
for the ‘e*Way Connection Configuration File’. After pressing the “New” 
button, it displays two options. Selecting the “Internal: Connect to JMS IQ 
Mgr within this schema” and JMS IQ Manager as ‘iqmJMS’, it sets the 
configuration file. Click the ‘Edit’ button and go to the ‘Goto Section’ for 
‘General Settings’ and select the ‘Goto Parameter’ for ‘Message Selector’. 
You need to add within this ’Message Selector’ like ‘Thread_Value=1’. This 
message selector is used for subscription. The Java class programs cater this 
piece of information and as a result, this feature does not need to be set in the 
connection point of SeeBeyond e*Gate Enterprise Manager.  

Before ‘Start’ of any e*Ways to run the multi-thread feature, log onto 
SeeBeyond e*Gate Monitor for the respective schema, then click the ‘Launch 
JMS Administrator’ button to open the ‘JMS Administrator’ window. On 
expanding the ‘iqmJMS’ option, the ‘Topics’ would be displayed. Select the 
event type that needs to be run for the multi-thread feature and check out 
whether any collaboration for the subscriber is associated with the event 
type. Delete any collaboration to the subscriber by selecting the 
collaboration.  Press the right-mouse-button and select ‘Delete Subscriber’. 
Once this process is completed, start the e*Ways from the e*Gate Monitor 
and run the multi-thread feature. 

The RIB_MESSAGE table has thread_value field, which collects the multi-
thread information. The MultiThreadUtil class has the NumThreads and 
ThreadValue properties defined for Multi-threading. 

 



Chapter 11 – Troubleshooting    87 

 

Chapter 11 – Troubleshooting 
SeeBeyond Platform 

This section lists a general approach to troubleshooting problems. 

If a problem persists, information can be obtained by turning on e*Way logging 
and tracing.  For information on this, see the Error, Trace, Debug Log Files 
section of Chapter 5. 

Problems starting a RIB component 
A RIB adapter may not start or can terminate soon after it has started.  There are 
two possible sources of this problem: incorrect configurations and environment 
problems. 

Incorrect configurations 
Many problems can arise that involve improper or incorrect configuration file or 
properties: 

• Connection Point Names: If a Connection Point is renamed or deleted, then 
any collaboration that references it will have errors and will not be able to 
process data. 

• Oracle Connection Point User Names and Passwords: Incorrect 
specification of the Database Server, System ID (SID), User Name or User 
password will result in errors for all adapters using the connection point.  
Note that the user password is stored as an encrypted string. 

• JMS Connection Point TCP/IP Address: JMS Connection Ports must 
specify the correct TCP port number and IP address or host name.  A 
common problem that may occur when migrating a schema from one 
environment (such as a development environment) to another (such as a test 
environment) is that these are not changed.  The configuration files for this 
contain ASCII characters.  Retek recommends creating scripts to modify 
these values when migrating the RIB between development, test, and 
production environments. 



114   Retek Integration Bus 

 

Environment problems 
Some problems starting adapters are the result of environment or system errors. 

• Registry or Control Broker not started: The SeeBeyond EAI system does 
not automatically start up the host registry daemon or any of the control 
brokers found within a schema.  For Unix Systems, these must be started via 
a startup script, typically upon system boot.  On Microsoft Windows 
systems, these are typically installed as services and should be started 
automatically.  There must be one control broker per host per schema found 
in the registry. 

• JMS IQ Manager NOT started: The RIB adapters that use a JMS 
Connection Point require that the JMS IQ Manager be up and running before 
any adapter can access it. 

• XA Transaction Logs deleted: Never delete the XA transaction logs or you 
risk losing data on the JMS queues, losing data associated with prepared 
transactions in Oracle, or having many other problems.  Oracle prepared 
transaction IDs can be found in the DBA_2PC_PENDING view.  SeeBeyond 
transaction logs are found beneath the directory <EHOME>/client/XALogs. 

• XA Not installed in Oracle: An adapter can have problems starting if the 
XA package and libraries are not installed in the Oracle database. 

• JMS IQ Manager Directory specified via a relative pathname: This 
becomes a problem if the control broker is started from a different directory 
than usual.  As a rule, always use a fully qualified directory name. 

• Multiple Duplicate Control Brokers: On Unix systems, the stccb command 
must be executed once per control broker.  If multiple identical stccb 
commands are issued, components chaos may ensue.  The Unix command 
“ps –ef | grep stccb” lists running stccb processes.  Use the “kill” command 
to bring down the extra stccb process 

• SYS.DBMS_PICKLER ERRORS from Oracle:  Usually occurs because 
the user used in the connection point does not have sufficient priviledges to 
the Package or RIB Objects being referred to in the application.  Either 
change the user that is being used or make sure proper permissions and 
synonyms are created in Oracle. 



Chapter 11 – Troubleshooting    87 

 

Invalid JMS selectors 
This section applies to the following message that may appear in the RIB Log file 
for an adapter or e*Way: 

Current Message Selector = ‘’ but it should be  
= 'threadValue=’1’ and (retryLocation is null or 
retryLocation = ‘<eWayName>.<collaborationName>’)’ 

There are up to <some number> messages awaiting 
processing by this subscriber"); 

To fix this problem Export all messages on Topic and 
delete the subscriber with the following command: 
stcmsctrlutil –host … 

Where <eWayName> is the name of the e*Way, <collaborationName> is the 
name of a collaboration, and <some number> is a number.  

In order to insure exactly once processing, RIB adapters use JMS Selectors to 
filter out messages that are specific to a single subscriber when multiple 
subscribers go against the same JMS Topic.  The selector will insure that only the 
correct subscriber will get a message re-posted from an Error Hospital.  In a 
multi-threaded environment, selectors are used to insure that each subscribing 
thread receives the correct stream of messages when sharing a JMS topic. 

In order to simplify configuration, the selector is determined programmatically at 
startup.  Unfortunately, when a JMS server is booted, SeeBeyond dynamically 
checks its registry for the JMS selector used by  e*Way connection points.  When 
the JMS is booted, it creates a JMS durable subscriber using the value from the 
registry, not from a previous instance of the JMS.  When this occurs, the JMS 
durable subscribers are re-created with empty or blank selectors.  At this time, 
Retek is working with SeeBeyond to change this behavior.  As of the 10.3.2 
release, an ESR has been made available to disable this behavior when the JMS 
is booted.  Check with Retek customer support for more information. 

A RIB Properties file property, default.MessageSelectorCheck, determines 
whether the e*Ways should check if the correct selector is in place.  If set to true, 
the following is performed when the e*Way is started: 

1 During the call to userInitialize(), the e*Way examines the JMS Topic it 
subscribes to. 

2 The e*Way verifies its Durable Subscriber contains the correct selector.  If 
the selector is missing or incorrect and there are no messages queued for 
the subscriber,  the Durable Subscriber is deleted and re-created with the 
correct JMS Selector.   



116   Retek Integration Bus 

 

3 If messages are queued on the JMS Topic for an invalid durable subscriber, 
the e*Way is shut down and the error mentioned above logged to the 
e*Way’s RIB Log file. 

If an e*Way is shutdown due to an invalid selector, the following process can  fix 
the situation: 

a Shut down any message publishers for the messages handled by the 
TAFR or subscribing adaptor. 

b Edit the rib.properties file, change default.MessageSelectorCheck from 
“true” to “false”. 

c Bring up the e*Way and wait for it to process all messages on the topic. 

d Bring down the e*Way.  Change default.MessageSelectorCheck back 
to “true”.  

e Bring up the e*Way again.  The selector should now be valid. 

To avoid this problem, always try to perform the following: 

1 Always bring up message subscribers before message publishers. 

2 If at all possible,  always turn off messages publishers and wait for all 
messages to drain before shutting down the JMS server. 

In the RIB 10.3.2 release, two new scripts, start_rib and stop_rib, are available to 
bring up or down the RIB schema in a controlled sequential manner.  These 
scripts use a configuraton file that details which e*Ways should be brought up 
and the order this is done.  A switch is available to specify an implementation 
specific configuration file. 

Message processing problems 
This section describes possible problems the RIB might occur processing 
messages.  It gives a brief description of the problem symptoms and suggested 
actions. 

Messages “disappear” when published by a non-Retek application 
Description:  A non-Retek standard adapter publishes messages successfully, but 
they appear to vanish and none are delivered to the Retek adapter.  

Action: Many times this is due to the messages not containing the correct JMS 
message properties.  All messages must contain a message property named 
threadValue.  By default, RIB adapters select only those messages with a 
threadValue of ‘1’.  Hence, have the publisher create and set a JMS Message 
Property named ‘threadValue’ with a value of ‘1’. 



Chapter 11 – Troubleshooting    87 

 

A non-Retek application recieves messages being re-tried from the Error 
Hospital that it had already successfully processed. 

Description:  A non-Retek is delivered messages successfully consumed by 
itself but were not successfully processed by another subscriber.  When the 
message is retried from the Error Hospital both subscribers reprocess the 
message. 

Action: Insure that the subscriber uses a selector that checks the retryLocation 
JMS Message Property.  All messages published from the Error Hospital  to a 
JMS Topic for retrying will contain a value of retryLocation specific to one and 
only subscriber to actually perform the retry processing.  A typical JMS selector 
is the following: 

threadValue =’1’ and ( retryLocation is null or retryLocation =’<locationID>’) 

where <locationID> specifies the adapter thread to perform the retry processing. 

No messages processed 
Description: An adapter is not able to update the Error Hospital, publish new 
messages, or successfully process messages from a queue if the XA package is 
not installed and/or activated in the Oracle database.  No messages leave the RIB 
queue, since XA is required for inserting messages into the Error Hospital. 

Action: Install the XA libraries and packages. 

Publishing adapter hangs 
Description: Some messages were published before, but now no messages can 
be published at all.  The publishing e*Way hangs whenever it tries to send a 
message to the JMS queue. 

Action: The JMS queue may be full.  This could be due to problems with 
subscribing e*Ways.  For example, the database the subscriber is connected to 
does not have the Oracle XA libraries installed.  Check to make sure that 
subscribers can be started successfully and, if possible, have no errors processing 
messages. 

This problem can also be caused by an e*Way that is designed to connect to an 
application that is not installed.  Messages remain in the JMS queue for all 
adapters it believes will, in some future time, pull off messages.  The standard 
RIB schema contains all adapters for all Retek applications.  Delete any e*Way 
that is not brought up as part of your version of the RIB schema. 



118   Retek Integration Bus 

 

XA lock(s) cause problems with one or more messages 
Description: Database locks are normally held within a 2-phase commit 
operation transaction until the second phase has started or a rollback is issued.  If 
a system failure has occurred between the end of the first phase and the 
beginning of the second phase, then these locks are held forever, unless 
administrative actions are taken. 

The following Oracle message may appear in the logs when this occurs: 
ORA-01591: lock held by in-doubt distributed transaction 
<XID> 

where <XID> is a string of three numbers separated by periods (such as 1.21.17). 

Action: If possible, fix the problem and display the e*Way associated with the 
transaction.  The e*Way recovery process should complete the transaction and 
remove the lock.  If this cannot occur, evaluate whether the transaction should be 
committed or rolled back administratively. 

The following procedure commits the Oracle part of a transaction: 

Note: This process risks a “Heuristically Mixed” transaction status: the Oracle 
work in a transaction committed, but the SeeBeyond work rolled back. Careful 
analysis should always be performed before attempting to perform this 
procedure.  

1 Determine the Global Transaction ID (XID) of the transaction to be 
committed.  All prepared transactions will have an entry in the 
DBA_2PC_PENDING view.  With SeeBeyond e*Gate, the XID is a string of 
three period-separated numbers (such as 123.45.890).  This view requires 
administrator privileges to access its contents. 

2 Issue the following SQL, using a facility such as SQLPLUS: 
COMMIT FORCE ‘<XID>’ ; 

where <XID> is the XID of the transaction.  Successful execution of this 
command requires administrator privileges that are not granted to most users. 

3 Or, commit the work using the following SQL: 
ROLLBACK FORCE ‘<XID>’  

This has the same condition as forcing a commit.  That is, the Oracle work 
rolled back and the SeeBeyond work committed. 



Chapter 11 – Troubleshooting    87 

 

User defined alerts are displayed 
Description: The e*Gate Monitor reports many “User Defined Alerts”.  This 
results from trying messages in the Error Hospital too many times. 

Action: If possible, determine the root cause.  These messages may be going into 
the Error Hospital due to a field value found in the publisher but not found in the 
subscriber.  Examine the messages in the error hospital and check to see what the 
error is.  If nothing is apparent, turn on trace logging in the e*Way and look at 
the log file for more information.  These alerts might also be due cross message 
family dependencies, so verify that all appropriate publishing and subscribing 
adapters are up and running. 

Once the problem has been fixed, increase the Max attempts for all of the 
messages in the error hospital so that they will be republished.  Otherwise, the 
data contained in these messages will never be processed again.  Furthermore, 
any subsequent messages referencing the same business entity (such as the same 
Purchase Order) will be held in the Error Hospital as well. 

Messages not getting to the correct subscriber 
Description: The TAFR routing functionality appears to be malfunctioning.  
Messages go to the wrong subscriber. 

Action: Examine the rib.properties file used.  Verify that lines exist in this file 
for all locations and that the translation of the <facility_type>.<facility_code> is 
correct. 

TAFR not processing any messages 
Description: The TAFR is not processing any messages. 

Action: Examine the rib.properties file used.  Verify that lines exist in this file 
for all locations and that the translation of the <facility_type>.<facility_code> is 
correct.  Using the e*Gate Monitor application, verify that the JMS server (the 
JMS IQ Manager) used as the destination for the messages is running.  Look for 
any alerts published from the TAFR adapter. 



120   Retek Integration Bus 

 

Shutdown problems 
An adapter or IQ Manager will not shutdown unless it is between messages.  
Once a shutdown command has been accepted by a component, it will not accept 
new work.  However, existing messages will still be processed. 

In rare circumstances, it may be necessary to manually “kill” an adapter because 
a message processing thread is held due to a database lock or other resource 
contention conflict.  If this occurs, you can kill the process using the Unix “kill” 
command or, for Microsoft Windows platforms, the task manager. 

Note: If the RIB Installation Instructions were followed, a “plist” script will exist 
in the $EHOME directory which displays all current processes. 

Because of the distributed nature of the e*Gate platform, manually issuing kill 
commands for the control broker process (stccb) is not recommended unless all 
attempts to shutdown the control broker using the e*Gate Monitor application 
has failed. 

Hospital admin GUI and command line utility 
There are two types of problems using the Hospital admin GUI or command line 
interface:  Java class instantiation problems and Database connection problems. 

Java class instantiation problems 
Most Java class instantiation problems involve the inability to create a java class 
because it doesn’t know where the class definition is.  Typically, an incorrect 
CLASSPATH environment variable is the cause.  The scripts hospital, 
querymsg, readmsg, deletemsg, updatemsg, and stopmsg all source the 
hospital-admin.env file to set the correct class path.  This file assumes that 
the directory <EHOME>/client/classes exists and contains the required JAR files.  
However, there are some circumstances where needed jar files do not exist here.  
The main scenario where this can occur is before any RIB e*Way has been 
started that requires the specific JAR file.  Listed below are some JAR and ZIP 
files needed, and alternative locations: 

• xalan.jar – needed for reading message contents.  The JAR file contains the 
definition of the class org/XML/sax/ContentHandler.  This JAR file can 
also be found in the “server” directory of the e*Gate installation: 
<EHOME>/server/registry/repository/default/ThirdParty/RSA/certj_2.0.1/cla
sses/xalan.jar 

• classes12.zip – needed for the JDBC driver to connect to the Oracle9i 
database.  This file is normally found in 
<EHOME>/client/ThirdParty/oracle/classes/classes12.zip.  It may also be 
downloaded from the Oracle Technology Network website.  See 
http://otn.oracle.com/software/content.html for more details. 

• retek-rib-support.jar 
etdRibMessageEnvelope.jar 
stcjcs.jar – these JAR files are used by the Error Hospital should be in 
<EHOME>/client/ directory tree.  Alternate copies of these files are found in 
the <EHOME>/server/repository directory tree. 

http://otn.oracle.com/software/content.html


Chapter 11 – Troubleshooting    87 

 

Database connection problems 
An inability to connect to the database may be due to a missing JDBC driver 
code.  The file classes12.zip should be present in the CLASSPATH and exist on 
the local machine where the utility executes. 

Other possible connection problems include: 

• Bad username/password/SID specification in the hospital-
admin.properties file or a missing hospital-admin.properties file. 

• A connection will not be made if using a PC to execute the utility that is 
located outside of a firewall that is not configured to accept connections to 
the database. 

J2EE Platform 
This section lists a general approach to troubleshooting problems using 
WebSphere as the application server. 

Available tools 
The following are available for assisting with troubleshooting: 

 SeeBeyond JMS Administrator 

 SeeBeyond e*Way log files 

 RIB Log files 

 WebSphere server log files 

Messages not getting consumed by application 
Once messages are published to the RIB, and have made it through the 
appropriate TAFR e*Way, they should be immediately picked up by the 
WebSphere Application Server (Message-Driven Beans).  If not, either there is 
an incorrect JMS configuration, or WebSphere’s Message Listener Ports have 
lost connection to the SeeBeyond managed JMS queue. 



122   Retek Integration Bus 

 

Incorrect configurations 
Within WebSphere, there are three things that must be correctly configured in 
order for messages to be consumed by the Message-Driven beans: 

• File System JNDI/Context file:  In the …/WebSphere/sbynjndi directory, 
there is a hidden file named .bindings.  This file contains the actual 
serialized SeeBeyond JMS Objects.  If this file doesn’t exist or was created 
with a different JMS hostname/port combination, the Generic JMS Provider 
configuration will be invalid.  Refer to the RCOM installation guide on how 
to create this file. 

• Generic JMS Provider: If the JMS Connection Factory and Destinations are 
not properly configured, the listener ports will not be able to start. 

• Message Listener Ports: Each Message Listener Port must be correctly 
configured with a valid Connection Factory and Destination.  These are 
configured in the Generic JMS Provider area. 

Lost connection to JMS 
The following, would cause WebSphere to not “listen” to JMS: 

• SeeBeyond’s JMS Queue was not running when the Application Server was 
started, the Message Listener Ports would not be connected. 

• If SeeBeyond’s JMS Queue should happen to be stopped after the Message 
Listener Ports have successfully started. 

In either case, the Application Server will have to be restarted after ensuring that 
SeeBeyond’s JMS queue running. 

Messages not getting published from application 
Published messages should go directly into SeeBeyond JMS to be consumed by 
other e*Ways.  The WebSphere server log file and the SeeBeyond JMS 
Administrator are the two tools to use for troubleshooting publishing messages 
from a J2EE application. 

Incorrect configurations 
Within WebSphere, there is one thing that must be correctly configured in order 
for messages to be published by the Publisher beans: 

• File System JNDI/Context file:  In the …/WebSphere/sbynjndi directory, 
there is a hidden file named .bindings.  This file contains the actual 
serialized SeeBeyond JMS Objects.  If this file doesn’t exist or was created 
with a different JMS hostname/port combination, the Generic JMS Provider 
configuration will be invalid.  Refer to the RCOM installation guide on how 
to create this file. 



Chapter 11 – Troubleshooting    87 

 

JMS Provider down 
SeeBeyond’s JMS queue must be running for the Publisher EJB to be able to 
publish messages.  If this is not the case, ensure the JMS queue is running and try 
to publish again. 

ISO Platform 
There are several log files that are important to troubleshooting the Rib ISO 
integration module.  All of the log files mentioned below will be found in the 
standard ISO “log” directory.   

On the Windows operating system the log files are found in the directory 
<install_dir>\chelsea\serverWdws\retek\sim\log 

On the Unix operating system the log files are found in the directory 

<install_dir>/chelsea/serverUnix/retek/sim/log 

In both cases, <install_dir> is the directory the ISO application has been installed 
into. 

The first, and most important log files, are the files that are specific to each 
individual API, whether publishing or subscribing.  By default, their names are 
<RibMessageFamily>messagingcomponent.log (all lowercase) for subscribers, 
and <RibMessageFamily>publisher.log (all lower case) for the publishers.   

Examples of a publisher and a subscriber are: 
asnoutpublisher.log 

asnoutmessagingcomponent.log 

In addition to these log files, there are two log files pertaining to the entire RIB 
container.  These are the RIBContainer_nnnnn.out, and the 
RIBContainer_nnnnn.err files.  Any messages written by either the ISO 
application, or the Rib integration module, to standard out go to the 
“RIBContainer_nnnnn.out” file, while messages written to standard error go to 
“RIBContainer_nnnnn.err”.  Most messages, however, will go to the individual 
log files for the publishers and subscribers.  If you do not find the detailed 
information you are looking for in the individual publisher or subscriber log file, 
you might be able to find it in one of these two files. 



124   Retek Integration Bus 

 

When troubleshooting using the log files, here are some of the things to look for, 
as well as some potential solutions: 

Exception Class Name Exception Message Possible Solution 

org.xml.sax.SAXException Parsing Error : File 
"http://www.retek.com/ 
dtd/rib/DiffDesc.dtd”  not 
found. 

There are two potential solutions to 
this error.  The first is to correct the 
data in the rib_doctypes database 
table in the RMS database.  This 
solution is valid only if there is a row 
in the table whose value in the 
doc_name column matches the dtd 
document name.  In this example the 
document name is, “DiffDesc.dtd”.  
In the case where we do have a 
matching row, the problem is most 
likely that the doc_type_url column 
has an invalid url.  It must consist of 
an http server and port number that 
points to a directory containing the 
dtd document. 
The second potential solution is that, 
if there is not a matching record in 
the rib_doctypes table, the entry for 
the default DTD URL in the 
rib.properties file is missing, or 
invalid.  Keep in mind that we are 
talking about the rib.properties file 
for the RMS publisher, not the Rib 
ISO integration.  The property name 
for the default DTD URL is, 
“dtd_url.default”.  Again, the value 
must consist of an http server and 
port number that points to a directory 
containing the DTD document. 
An example of an entry for the DTD 
URL in the rib.properties file is: 
http://hostname:8100/dtd/ 

com.retek.binding.rib.exception. 
ApplicationMessageInjectionExceptio
n 

“CREATE_FAILED”, 
“MODIFY_FAILED”, or 
“DELETE_FAILED” 

There was a problem in the ISO 
application.  The 
ApplicationMessageInjection 
Exception class can contain a nested 
exception.  Most likely this nested 
exception will be a 
java.sql.SQLException.  If it is, it 
will likely indicate a null constraint 
violation, integrity constraint 
violation, or unique constraint 
violation. 

http://hostname:8100/dtd/


Chapter 11 – Troubleshooting    87 

 

Exception Class Name Exception Message Possible Solution 

com.retek.binding.rib.exception. 
RIBIntegrationException 

COMMAND_ 
FACTORY_UNABLE_ 
TO_READ_ INJECTOR_ 
PROPERTY_FILE 

The injector.properties file is not on 
the application’s class path.  Check 
the rns.sh, node_rns.sh, and node.sh 
on Unix, or rns.bat, node_rns.bat, 
and node.bat on Windows.  Check 
these files for the class path set in 
them to make sure the directory, in 
which the injector.properties file is 
located, is in the class path.  
Alternatively, put the 
inject.properties file into a directory 
that is on the class path. 

com.retek.binding.rib.exception. 
RIBIntegrationException 

COMMAND_ 
FACTORY_UNABLE_ 
TO_READ_ 
PAYLOAD_OR_ 
BINDING_ 
PROPERTY_FILES 

Either the payload.properties, or 
binding.properties file is not on the 
application’s class path.  Check the 
rns.sh, node_rns.sh, and node.sh on 
Unix, or rns.bat, node_rns.bat, and 
node.bat on Windows.  Check these 
files for the classpath set in them to 
make sure the directory, in which the 
payload.properties or 
binding.properties file is located, is 
in the classpath.  Alternatively, put 
the properties file into a directory 
that is on the classpath. 

com.retek.binding.rib.exception. 
RIBIntegrationException 

COMMAND_ 
FACTORY_CANNOT_ 
INSTANTIATE_ 
INJECTOR 

The injector.properties file does not 
contain an entry whose property 
name matches the Rib message 
family and Rib message type key, 
extracted from the Rib message 
itself.  Either the XML for the Rib 
message does not have the 
appropriate family and/or type, or 
the injector.properties file is missing 
an entry for the family and type.  See 
the section, “Retek Binding 
Configuration Files” under “Chapter 
4 – Configuration Files”. 



126   Retek Integration Bus 

 

Exception Class Name Exception Message Possible Solution 

com.retek.binding.rib.exception. 
RIBIntegrationException 

COMMAND_ 
FACTORY_CANNOT_ 
INSTANTIATE_ 
PAYLOAD 

The payload.properties file does not 
contain an entry whose property 
name matches the Rib message 
family and Rib message type key, 
extracted from the Rib message 
itself.  Either the XML for the Rib 
message does not have the 
appropriate family and/or type, or 
the payload.properties file is missing 
an entry for the family and type.  See 
the section, “Retek Binding 
Configuration Files” under “Chapter 
4 – Configuration Files”. 

com.retek.binding.rib.exception. 
RIBIntegrationException 

UNMARSHALING_ 
ERROR 

There is either something wrong 
with the XML that is being 
unmarshalled into the payload 
object, or the payload object is out of 
date with respect to the DTD and 
XML schema, from which the 
payload object was generated. 

 

 


	Contents
	Chapter 1 – RIB component overview
	Introduction
	SeeBeyond components
	Active messaging
	Monitoring

	Retek supplied components
	Additional resources

	Chapter 2 – RIB component operations
	Simple message flow
	Message routing
	Component failures
	Application trigger failures
	SeeBeyond Publishing adapter failures
	SeeBeyond deployed TAFR adapter failures
	SeeBeyond deployed Subscribing adapter failures

	Deployment architecture considerations
	Retek schema integrity on the SeeBeyond Platform
	Disk space analysis
	Intelligent queue managers
	Performance motivated parallel processing


	Chapter 3 – Configuration files
	RIB Properties File
	RIB Logging and Timings File
	RIB Message bundling entries
	Multi-threading entries
	Error Hospital entries
	Global entries
	Implementation classes used
	SeeBeyond platform specific entries
	ISO platform specific entries
	Application specific entries

	Retek Binding configuration files
	Properties files
	XML files


	Chapter 4 – SeeBeyond Platform
	RIB startup and shutdown
	Available Scripts
	Sequencing considerations – Detailed Information
	RIB message publishing adapters
	RIB message subscribing adapters
	TAFR adapters
	RIB error hospital

	Preventative maintenance tasks
	Log files
	MFM staging tables
	Error Hospital
	SeeBeyond tools

	RIB component configuration
	Oracle database triggers
	RIB property file
	SeeBeyond e*Way configuration files
	SeeBeyond connection point configurations
	TAFR adapter configuration


	Chapter 5 – Message error handling
	Error Hospital components
	Error Hospital configuration parameters and properties
	Error Hospital activities
	Hospital GUI and command line utility set up
	Hospital Admin GUI script
	Error Hospital admin command line scripts
	Manually querying message information from Error Hospital

	Error Hospital log entries
	Create additional Error Hospitals

	Chapter 6 – J2EE Platforms
	RIB startup and shutdown
	Starting the RIB components
	Shutting Down RIB Components

	Preventative maintenance tasks
	Log Files

	RIB component configuration
	Configuration files
	Generic JMS Provider
	Message Listener Ports
	Data Source


	Chapter 7 – ISO Platform
	RIB startup and shutdown
	Preventative maintenance tasks
	Log files

	RIB component configuration
	XML files
	ISO Configuration (*.cfg) files
	Properties files


	Chapter 8 – RIB Administration Tool
	Overview
	Installation and configuration
	Accessing the RIB Administration Tool
	Main Portal Screen
	Hospital Administration GUI Applet
	Message Statistics GUI Applet
	RIB Properties Editor

	Files and classes contained in the war file

	Chapter 9 – Message Statistics Command Line Utility
	Overview
	Requirement
	Prerequisites to run the Timings Statistics


	Chapter 10 – Multi-Thread feature for the e*Ways
	What is a Thread?
	Amdahl's Law
	Multi-threaded feature for Subscriber, TAFR and Publisher


	Chapter 11 – Troubleshooting
	SeeBeyond Platform
	Problems starting a RIB component
	Message processing problems
	Shutdown problems
	Hospital admin GUI and command line utility

	J2EE Platform
	Available tools
	Messages not getting consumed by application
	Messages not getting published from application

	ISO Platform


