

Retek® 10.2 Integration Bus

Deployment Guide

Retek Integration Bus

The software described in this documentation is furnished under a license
agreement and may be used only in accordance with the terms of the
agreement.

No part of this documentation may be reproduced or transmitted in any form
or by any means without the express written permission of Retek Inc., Retek
on the Mall, 950 Nicollet Mall, Minneapolis, MN 55403.

Information in this documentation is subject to change without notice.

Retek provides product documentation in a read-only-format to ensure
content integrity. Retek Customer Support cannot support documentation that
has been changed without Retek authorization. Corporate Headquarters:

Retek Inc.

Retek on the Mall

950 Nicollet Mall

Minneapolis, MN 55403

888.61.RETEK (toll free US)

+1 612 587 5000

European Headquarters:
Retek

110 Wigmore Street

London

W1U 3RW

United Kingdom

Switchboard:

+44 (0)20 7563 4600

Sales Enquiries:

+44 (0)20 7563 46 46

Fax: +44 (0)20 7563 46 10

Retek® Integration Bus ™ is a trademark of Retek Inc.

Retek and the Retek logo are registered trademarks of Retek Inc.

This unpublished work is protected by confidentiality agreement, and by
trade secret, copyright, and other laws. In the event of publication, the
following notice shall apply:

©2002 Retek Inc. All rights reserved.

All other product names mentioned are trademarks or registered trademarks
of their respective owners and should be treated as such.

Printed in the United States of America.

Retek® Confidential

Customer Support

Customer Support hours:

Customer Support is available 7x24x365 via e-mail, phone and Web access.

Depending on the Support option chosen by a particular client (Standard,
Plus, or Premium), the times that certain services are delivered may be
restricted. Severity 1 (Critical) issues are addressed on a 7x24 basis and
receive continuous attention until resolved, for all clients on active
maintenance.

Contact Method Contact Information

Internet (ROCS) www.retek.com/support
 Retek’s secure client Web site to update and view issues

E-mail support@retek.com

Phone US & Canada: 1-800-61-RETEK (1-800-617-3835)
 World: +1 612-587-5800
 EMEA: 011 44 1223 703 444
 Asia Pacific: 61 425 792 927

Mail Retek Customer Support
 Retek on the Mall
 950 Nicollet Mall
 Minneapolis, MN 55403

When contacting Customer Support, please provide:

• Product version and program/module name.

• Functional and technical description of the problem (include business
impact).

• Detailed step by step instructions to recreate.

• Exact error message received.

• Screen shots of each step you take.

Contents i

Contents
Chapter 1 – Introduction... 1

Chapter 2 – The RIB schema.. 3

The RIB messaging schema .. 3

RIB messaging schema deployment ... 5

Message flow customization ... 6

RIB component placement .. 7

Schema bridging.. 8

Chapter 3 – External application integration 11

Suggested process ... 11
Step 1: RIB message identification and selection... 11
Step 2: Analyze pub/sub models .. 11
Step 3: Application message specification ... 13
Step 4: Message transformations.. 14
Step 5: Component specification.. 14

Message specification for external schemas ... 15
Message semantics & statefulness.. 15
Message content mapping strategies .. 15
Message representation options.. 16
Additional message format patterns ... 17

External application message sequencing considerations 17

Message transformation considerations .. 18

Message filtering considerations ... 19

ii Retek Integration Bus

Chapter 4 – Systems design and development.................. 21

Systems design process overview ... 21

Operating system selection.. 22

OS considerations.. 23
Process considerations.. 23
Thread considerations... 23

Component considerations .. 24
Collaborations and parallel processing... 24
Connection Points... 24
Queue storage location ... 25
Log files.. 25

Performance considerations .. 25

Chapter 5 – High availability .. 29

Remote data center considerations .. 31
Identification of data centers .. 31
Disaster recovery considerations .. 31

High availability option considerations... 32
Hardware preparedness for HA .. 32
Hot standby data center/server ... 33
Clustered data centers/servers with distributed load balancing 34

High Availability Performance considerations ... 35

Best practices & guidelines summary ... 36
Failover of registry using replication.. 36
Use a high availability clustered software .. 36
Failover of IQs with external RAID ... 37
Failover of e*Gate Monitor .. 37

Illustration of HA architecture with clustered hot standby 38
Schematic overview.. 38
Deployment diagram .. 39

Appendix A – Parallel processing deployments 41

Subscriber pooling... 41

Chapter 1 – Introduction 1

Chapter 1 – Introduction
Welcome to the Retek 10 Integration Bus Deployment Guide. This guide seeks to
aid a system designer or a project manager with issues and solutions associated
with implementing the Retek 10 Integration Bus (RIB). The RIB is a set of pre-
developed EAI components developed by Retek. It contains software deployed
within Retek applications and incorporates the SeeBeyond e*Gate Integrator EAI
system. This guide assumes a familiarity with EAI concepts and RIB
terminology. Readers not familiar with these topics should read the Retek 10
Integration Bus Primer and the Retek 10 Integration Bus Technical Architecture
Guide.

Hardware and software base system requirements for the RIB may vary based
upon a client’s specific deployment. RIB message components are developed
with the SeeBeyond e*Gate Integrator platform in mind. See the SeeBeyond
deployment guidelines for determining final deployment of the RIB. These
guidelines are specified in the SeeBeyond Business Integration Suite Deployment
Guide, available from SeeBeyond Technology Corporation. In it you will find
information you can use when analyzing, planning, and managing an EAI
deployment.

Chapter 2 introduces the RIB schema concept and suggests deployment options
to be aware of. For Retek 10 RIB purposes, “schema” is defined as components
that are required to facilitate the flow of messages. A schema may include
SeeBeyond e*Gate JMS Intelligent Queue Managers, a control broker, and the
RIB adapters. (“Adapter” is synonymous with an e*Gate (Multimode) e*Way).
The schema discussion in this chapter is focused on the Retek 10 applications
RMS, RCOM, and RDM. Alternative, suggested schema designs are also
presented.

If a client is considering the integration of external applications to the RIB,
Chapter 3 focuses on a five-step process to follow. The chapter continues with an
expanded discussion of message specifications when integrating an external
application. Retek 10 applications create messages based upon business events.
Those events themselves are derived from a convergence of business process and
data process. Thus, Chapter 3 focuses on the importance of aligning message
‘events’ among applications that will share data on the RIB. Other deployment
considerations presented here include message representation, sequencing, and
transformation and filtering.

System design and development considerations make up Chapter 4. Any
deployment of the RIB must take into consideration, at a minimum, currently
expected message traffic volume and flow, security, and scalability for future
system and transaction volume growth. Incorporated into this discussion are the
operating system and SeeBeyond components, collaborations, connection points,
and queue locations. Chapter 4 concludes with a summary of best practices and
guidelines for deployment planning.

2 Retek Integration Bus

In Chapter 5, the critical issues of system availability and failover are presented.
Any deployment would include identification of potential points of failure and
strategies for addressing them. Key points of identification are data center
location and availability, dynamic data reroutes for hardware failover, and load
balancing. Chapter 5 also concludes with a summary of best practices and
guidelines for high availability planning.

Chapter 2 – The RIB schema 3

Chapter 2 – The RIB schema
An e*Gate Schema contains the message flow configuration for a related set of
components. This includes the definition of a message’s structure and semantic
content. It also describes the deployment of the components. This chapter focuses
on design considerations for schemas used in deploying the Retek Integration
Bus (RIB).

An e*Gate Schema may contain a variable number of EAI components. In one
extreme, one schema can be defined that contains all of the EAI components an
enterprise uses. In another extreme, each schema may contain only a few EAI
components, such as a single publisher adapter and subscribing adapter used
within a single message family.

Further complicating this issue is the fact that the e*Gate Enterprise Manager
tool may export and import schema components, such as an e*Way,
independently. As with other flexible systems, tradeoffs between logical
cohesiveness, operational characteristics, software lifecycle concerns and other
factors influence the content of a schema. The RIB 10.1 release contains a
“Messaging Schema” that contains all Retek adapters for publishing, subscribing,
transforming, and routing RIB messages.

The RIB messaging schema
All of the messaging components used in the RIB software are supplied as a
single schema. This schema has the name RIB101 and is found in a “zip” file on
the CD containing the RIB software and documentation. These components
include SeeBeyond e*Gate JMS Intelligent Queue Managers, a control broker,
and the RIB adapters. These components work together to provide the integration
between Retek applications.

Note: In this document, the term “Adapter” is synonymous with an e*Gate
(Multimode) e*Way.

All components within the RIB101 schema are initially configured for
deployment to a single host. However, this deployment situation may not be
appropriate for some enterprises. The reasons for this may vary and include
considerations for a business’s organizational structure, the internal network
topology, entry points into and out of the EAI system, performance, and
availability.

Retek suggests that an enterprise deploy all RIB components within a set of self-
contained schemas. When interfacing with applications external to those created
by Retek, Retek suggests that these components are placed into one or more
separate schemas. Examples of “external” applications include Oracle Financials,
SAP, PeopleSoft, or any legacy system. This design allows for an easier
installation of RIB updates, highlights the integration points between Retek and
non-Retek applications, and allows different availability and performance
strategies for each. Limiting one schema to the Retek applications may also allow
operations to quickly discern the source of a problem.

4 Retek Integration Bus

Other schema designs may be used when deploying the RIB. The main
disadvantages for these lies in the risk that an enterprise’s schema during
development or testing could affect a Retek component. For example, a
configuration parameter “tweaked” for a specific test. This risk is alleviated by
having the Retek components in a different schema, since the unit of code
migration is usually based on a complete schema.

The suggested RIB deployment framework can be viewed as two (or more)
distinct subsystems. Each subsystem is contained within a single schema. An
example is shown below.

RIB Publishing
Adapters

RIB Publishing
Adapters

RIB Publishing
Adapters

RMS Database
tables

RIB Publishing
AdaptersRIB Publishing

AdaptersRIB Publishing
Adapters For RMS

RMS
Application

components

Error
Hospital

RCOM Database
tables

RIB Publishing
AdaptersRIB Publishing

AdaptersRIB Publishing
Adapters For RCOM

RCOM
Application

components

Error
Hospital

RDM Database
tables

RIB Publishing
AdaptersRIB Publishing

AdaptersRIB Publishing
Adapters For RDM

RDM
Application

components

Error
Hospital

External
application
database

External
application
database

External
application
database

External
Schema

RIB101 Schema

RIB Publishing
AdaptersRIB Subscribing

Adapters For RDM

RIB Publishing
AdaptersRIB Subscribing

Adapters For RCOM

RIB Publishing
AdaptersRIB Subscribing

Adapters For RMS

RIB Publishing
AdaptersRIB Publishing

AdaptersRIB TAFR Adapter(s)
for RMS

RIB Publishing
AdaptersRIB Publishing

AdaptersRIB TAFR Adapter(s)
for RCOM

RIB Publishing
AdaptersRIB Publishing

AdaptersRIB TAFR Adapter(s)
for RDM

Integration Bus

External
Application 1

Adapters
External

Application 1
Adapters

External
Application 2

Adapters

External
Application 1

Adapters
External

Application 1
Adapters

External
Application 2

Adapters

External
Application 1

Adapters
External

Application 1
Adapters

External
Application 1

Adapters

Figure 2-2: RIB Deployment Framework

Any external schema is the responsibility of the enterprise deploying the RIB for
its EAI. The RIB101 Schema is supplied by Retek. RIB101 contains all of the
application adapters for the Retek applications used by the enterprise.

Chapter 2 – The RIB schema 5

Once we logically segregate the RIB and External schemas, we can use one of
several schema-bridging techniques described in the Schema Bridging section to
bridge these the two schemas. An external schema can contain e*Ways that
subscribe to some or all of the RIB message families. External schemas can also
publish messages to the RIB via schema bridges.

RIB messaging schema deployment
Although the RIB comes with a well-defined schema, there is still configuration
and development activities that must take place before the components can be
deployed to a production environment. Most of these activities involve
component configuration. Under some circumstances, the RIB Messaging
Schema may be dispersed among multiple installations of the RIB. The following
bullet points highlight the activities needed for correctly installing the RIB for
integration among installed Retek Applications:

• Installed Retek Applications: The RIB101 schema is designed to ensure
proper integration all Retek applications. In the Retek 10.1 release, the RIB is
capable of interfacing to the RMS, RDM, and RCOM applications. The
specific application needs of each application and the time / dependencies of
each should be reviewed in the context of their business processes and the
needs for external integration.

• Message Family Flows: Retek applications publish and subscribe to
“message families”. These message families contain operations on a related
set of business entities. For example, one message family is specific to
Purchase Orders. These families flow between the applications and these
message flows must be known for performance and availability
considerations, since they affect the deployment of specific RIB components.
Message Families are detailed in “The Retek 10.1 Integration Guide”.

• RIB Adapter Configuration Requirements: Retek applications determine
the number and type of application adapters required. All appropriate
adapters need to be deployed and configured. Some adapters found within
the supplied RIB schema require duplication, configuration, or simple logic
changes due to the specific deployment application configuration. For
example, messages flowing to and from RDM warehouse systems need to be
created for each RDM instance. This customization typically involves
configuration changes or simple, well-defined additions to the processing
logic. RIB component configuration changes are documented in the Retek
Integration Bus Operations Guide.

• Message Flow Customizations: Due to the variances in the number and
deployment of application adapters, processing surrounding the message
flow may need to be modified. An installation with applications co-located in
multiple warehouses or stores need to insure that each receives messages
from the appropriate message families. Such additional applications require
modifications to RIB TAFR adapter components and / or the creation of
additional bridges and queues.

6 Retek Integration Bus

• RIB Connection Points: All RIB publishers, subscribers, and TAFRs
require one or more SeeBeyond e*Gate Connection Points. A Connection
Point is used to specify a database session or JMS Server session. Messages
can be published to a connection point or subscribed from a connection point.
A set of connection points (including JMS queues and Oracle database
connections) is already contained in the RIB Messaging schema. At the very
least, these connection points need configuration changes in order for the
system to become operational.

• Component Placement: Once the components have been determined, the
location where they will execute needs to be determined. If all components
are to run within a single computer, then only the participating host’s
definition needs to be changed. However, if some components are to be
placed onto another computer, then additional participating hosts are
required. The creation of additional hosts is detailed in the SeeBeyond
e*Gate Integrator User’s Guide.

Message flow customization
A message may need transformation, routing or other manipulation after it has
been published by an application and before it arrives at a subscribing adapter. A
category of adapters, known as TAFRs (Transformation, Address
Filtering/Routing), is available to perform many of these functions. However,
additional configuration or logic enhancement may be needed in order for a
TAFR to perform the desired operations.

Routing: A TAFR performing a routing operation takes a single message as
input and then publishes zero or more messages as output. The number and types
of the messages are dependent on the data contained in the input message. For
example, a TAFR that routes stock allocation messages from RMS may route the
message as a “stock order” to a specific RDM instance.

The mechanism used for TAFR routing involves creating an “Event Type”
specific to the stock order message and the RDM instance to receive the message.
Because Retek cannot a priori know all possible instances of RDM among all of
its customers, this work is delegated to the deployment phase of the RIB.

Additional work may also be needed for routing, since once a “routed” message
has been published, it resides on a queue. This queue may be specific to the
destination and as such, it must be created as part of the RIB deployment
activities. Of course, subscribing adapters must also be created for these routed
messages.

Remote Data Centers: some messages may traverse from a local system to a
remote system. The remote system may have all of its RIB components in a
separate schema. If so, a schema bridge is needed to send messages from the
local RIB schema to the remote schema. Schema bridges are not part of the RIB
Messaging schema and must be added later. Additional queues may also be
needed to store incoming messages from remote schemas.

Chapter 2 – The RIB schema 7

RIB component placement
A simple topology for deploying the RIB Schema is to place all components on a
single host. However, this may not be the most efficient and may produce
performance bottlenecks.

Placing all components on a single host may be appropriate when:

• All database connections used by RIB components are accessible on the
same host or via the Local Area Network connected to the hosting computer.

• All messages within the RIB have the same availability requirements and
these requirements are satisfied by the disk subsystem attached to the
computer and fail over mechanisms available.

• Message analysis indicates that the host computer can easily handle peak
message volume.

• All application interfaces can be administered within a single
administration domain. Organizational, political and security issues do not
conflict with having a single set of roles, users, or privileges under a central
administrative authority.

However:

If a RIB component interfaces with a database that is not on the same LAN,
then the RIB component should run on a computer located near that database.

If messages on the RIB have different availability requirements and those
messages requiring higher availability cannot be failed over in adherence to
these requirements, then the queues storing this data and the adapters
processing these messages should be moved to a host that satisfies the
availability requirements.

If message analysis reveals that the host computer cannot handle expected
peak load, then it may be appropriate to move some components to another
computer.

If organizational, political, or security issues conflict with having a
centralized administrative authority, then multiple schemas or even multiple
SeeBeyond registries (also referred to as multiple SeeBeyond e*Gate
installations or multiple SeeBeyond e*Gate instances) should be used and the
appropriate RIB components placed into them. This will also require the
creation of schema bridges between the sites.

8 Retek Integration Bus

Schema bridging
An EAI implementation may contain multiple schemas across an enterprise. The
reason for this may derive from a desire for a remote site to have complete
control over the administration of its systems, to separate logically distinct
message families, to provide a high degree of availability, or to for ease of
updates.

When a RIB installation contains multiple schemas for processing the same
message, the message will need to traverse a bridge between the schemas. This
section lists various SeeBeyond e*Gate components and techniques for this to
occur.

The RIB Messaging Schema as supplied by Retek does not contain these bridge
components. The deployment process used must determine how many schemas
are to be used and what types of bridges are to be employed between them.

• Java Message Service: The SeeBeyond. e*Gate platform provides a
mechanism to use a JMS service provider to bridge between systems. In the
RIB 10.1 release, the JMS IQ manager is used, along with JMS connection
points for all RIB queues. The motivation behind this in the RIB is the
guarantee of “exactly once” message delivery. Furthermore, JMS compliant
service providers are implemented against a standard that has no
dependencies on the SeeBeyond e*Gate platform.

Any application can interface with the service provider as long as it follows
the JMS implementation protocol. Hence, any JMS Connection Point in any
schema can publish or subscribe to any of the messages published by a RIB
adapter. Retek suggests that the SeeBeyond JMS IQ manager is used to
bridge schemas because it offers a two-phase commit capability, is part of the
standard RIB already, and the fact that no more intermediary processing is
needed between schemas.

 Schema Bridge e*Way: e*Gate provides a Schema Bridge e*Way that
allows a component in a master schema to send messages to components in
its slave schema. This must be purchased separately from SeeBeyond.

• FTP: A file based integration may be used where files are FTPd between
hosts. Batch e*Ways within each schema act as message publishers and
subscribers for sending the data to/from each system. This may be used for
systems that have infrequent opportunities for communication.

• MQ Series: MQ Series is a de facto industry standard for message-oriented
middleware. e*Gate has JMS protocol based interfaces to MQ Series. In this
interface, a schema component can publish messages to a JMS MQ Series
connection point, the same way that it can publish to a standard JMS queue.
Please refer to MQ Series e*Way and connection point documentation of
SeeBeyond for more details. This must be purchased separately from
SeeBeyond.

Chapter 2 – The RIB schema 9

• HTTP/XML: Another bridging option is the use of HTTP protocols using an
XML formatted document interchange. An application server is used as an
intermediary, along with a SeeBeyond HTTP e*Way. This could be used for
communicating between systems protected by a firewall. This must be
purchased separately from SeeBeyond.

• SOAP: SOAP refers to Simple Object Access Protocol. SOAP is
increasingly becoming popular, especially in Windows 2000 based e*Gate
servers as a means for bridging two schemas across a firewall. Please refer to
the SOAP e*Way Intelligent Adapters User’s Guide for more details on
installing and configuring a SOAP bridge. This must be purchased separately
from SeeBeyond.

Chapter 3 – External application integration 11

Chapter 3 – External application integration
This chapter focuses on non-RIB application integration.

Suggested process
This section suggests a process to follow when attempting to integrate an external
application to the RIB.

Step 1: RIB message identification and selection
The first step focuses on selecting those RIB messages of business interest for
external (non-Retek) applications. The complete list of RIB messages is
contained in the Retek 10.1 Integration Guide.

Step 2: Analyze pub/sub models
The RIB publishes several message families to convey events in specific business
processes. Typically, each business process will have a publication model that
describes all the messages generated by different business activities in it. All
such messages are often grouped into a message family. A key property of a
message family is that its messages have a natural order dictated by its business
process.

The following figure illustrates a publication model.

12 Retek Integration Bus

E
A
I

Validate Vendor

Create Vendor

Maintain Vendor

Deactivate Vendor

et_Retek_RMS_Vendor_Create__00001: ()

Vendor_Address()

et_Retek_RMS_Vendor_Header_Modify_00011: ()

Delete Vendor

et_Retek_RMS_Vendor_Addr_Create_00014: ()
et_Retek_RMS_Vendor_Addr_Modify_00015: ()
et_Retek_RMS_Vendor_Addr_Delete_00016: ()

et_Retek_RMS_Vendor_Deactivate_00018: ()

et_Retek_RMS_Vendor_Delete_00019: ()

Figure 3-1: Message Publication Model

The message publication model shows not only the events that may be published,
but also precursor events. In the diagram above, it is seen that no messages are
produced when a vendor is validated, and possibly 4 different types of messages
can be published to maintain a vendor. It also implies that a vendor must be
created before maintained.

A message publication model is useful in communicating to all subscribers the
context of business events (messages) submitted to the RIB. A similar analysis is
required to analyze how a RIB message will fit into the business process handled
by an external application.

Chapter 3 – External application integration 13

E
A
I

Validate Vendor

Create Vendor

Maintain Vendor

Deactivate Vendor

et_Retek_RMS_Vendor_Create_0000

Vendor_Address()
et_Retek_RMS_Vendor_Header_M

Delete Vendor

et_Retek_RMS_Vendor_Addr_Cr

et_Retek_RMS_Vendor_Addr_Mo

et_Retek_RMS_Vendor_Addr_De

et_Retek_RMS_Vendor_Deactiv

et_Retek_RMS_Vendor_Dele

Validate Vendor

Maintain Vendor

Deactivate Vendor

Delete Vendor

et_From_Retek_Vendor_Create_or_U

Subscribing Application

et_From_Retek_Vendor_Create_or_U

RV to
MV

Publishing Application

Figure 3-2: Message Subscription Model

In the figure above, it is that the subscribing application accepts only a “Create or
Update Vendor message”. As such, those messages published as part of the
“Maintain Vendor” business process will need to be linked and/or transformed
into this format. The diagram has specified that a component named “RV to MV”
(Retek Vendor to My Vendor) for this purpose.

Step 3: Application message specification
Application messages need to be specified in light of an application’s needs. The
specification must include the following:

• The contents of the message – required and option data fields and field types.
This is very important since field type incompatibilities can cause serious
consequences.

• The structure of the message – whether it is XML, comma delimited, or some
other format

• The delivery interface – whether a subscribing application can take messages
directly from the EAI bus or if it needs to have a file-based interface.

This specification drives out the ETD, collaboration, e*Way and other integration
bus components that the external application interface will need.

14 Retek Integration Bus

Step 4: Message transformations
Unless an external application can understand, process, and create RIB messages
directly, some message transformations are needed. The transformation of each
message published and subscribed to across the EAI system between the RIB and
external application must be specified, analyzed and developed. Although the
RIB contains logic of this sort in its set of TAFR adapters, it is expected that
transformations between the RIB components and external components will need
to be developed from scratch.

One very important input to this process is the message model analysis
performed earlier. The RIB uses a very specific message model. This model may
not be compatible on a message to message basis with another application. For
example, an application may assume that all changes to a purchase order can be
published in a single message, while the RIB breaks out changes for a PO header
in a message that is different from line item changes. Another possible scenario is
that a subscribing application may assume that all PO information is contained in
all PO related messages – that is, that each message regarding a PO is a snapshot
of the PO. In both cases, once these incompatibilities have been identified, the
project plan can be updated with the appropriate task to resolve the issue.

Step 5: Component specification
Once all of the messages and message transformations have been specified, the
next step is to determine the components to publish, subscribe, and transform
these messages. The considerations for this include:

• Logical cohesiveness of the messages: Messages should be produced and
consumed together only if there is some cohesiveness between them.

• Physical deployment concerns: The more pieces involved in a system, the
greater the chance that something may break. Also, some messages may have
special or non-standard resource requirements that force their deployment
into stand-alone adapters.

• Availability and performance: Availability and performance can be
maintained in a number of ways. However, these may impact the message
paradigm or require additional categories of adapters. These issues are
discussed further later in this manual.

At the end of this analysis, a good idea of all of the adapters and queues needed
to interface with the RIB should be at hand.

Chapter 3 – External application integration 15

Message specification for external schemas
Message specification is an art as well as a science. The goal is to determine
context, scope, structure, content, relationships, and the representation format of
each message. The following message aspects familiarize you with some
considerations so that you can specify messages properly for an external
application. It is worth noting here that a comprehensive and careful analysis has
already been conducted in specifying all of the RIB messages

Message semantics & statefulness
A primary difference between application integration using data synchronization
techniques (such as Extraction, Transformation, & Loading tools or batch
integration) and message-oriented integration of EAI is that the latter is based on
aligning business processes. Message subscribers should understand both the
contents of a message and the business context that generated the message. In
this way, the subscriber can implement the appropriate business logic.

Message content mapping strategies
This section details strategies defining message contents.

Data Model Mapped Messages: Traditionally, middleware message formats
tend to mimic the hierarchy of elements in the data model of publishing
applications. However, as any experienced data modeler attests to, data models
are not often ideal candidates for message format. A primary reason for this
concern is that data models of entities often go through ‘concept creep.’ Over
time, the model includes new entity attributes and business constraints that can
violate prudent normalization standards or are inconsistent with other business
entities.

Middleware message specification is an opportunity to fix any inconsistencies or
anomalies in data models of underlying business entities. Message specification
provides a higher level of abstraction where the business entities can be
rationalized and abstracted away from clumsy cumbersome models.

Canonical Messages: A problem modeling messages from a database model is
that the same business entity can have different representations in different
applications. For example, an invoice payment relationship might be one-to-one
between invoice and payment entities in one application and in another
application have a one-to-many relationship. A third application might allow a
single payment for multiple invoices. In such a situation, how can we determine a
message format that minimizes translation complexity and hides the differences
in data models?

16 Retek Integration Bus

A common resolution to this is to use the message format of the application that
is designated as the System of Records (SOR) for that business entity. For
example, one can generate a message format A’ for a business entity based on the
data model for that entity in application A, which is the system of records. From
now on, A’ can act as a de facto canonical message format. Here, once the
translation from message format A (data model based) to A’ is made, that format
is broadcast in the EAI message. Each subscribing application, in turn, needs to
transform A’ into their native message format. This approach often works when
the underlying data models of the entity are commensurate. In other words, the
hierarchical message structures in all applications need to be very similar.

A canonical message is an abstract representation of a business event. The format
must be compatible with all application specific message formats that are
interested in that business event. If the canonical form retains all the hierarchical
structures of these application specific formats, then translation efforts as
messages traverse back and forth from different applications are reduced. Some
XML schema formats discussed below are capable of such generic message
representations.

However, if the canonical form contains incompatibilities, then translation
overhead can be high. One example of such an incompatibility is the flattening of
a hierarchy: that is, one application says that x must contain y, while another says
that x and y must exist, but are independent. Translating messages in one
direction must create a hierarchy, while translating in the other destroys a
hierarchy.

Message representation options
Once the content has been defined, the representation of a message should be
determined.

Delimited or Fixed Formats: A simplest message format is a fixed format or
delimited text message. An important consideration here is the stability of
underlying business entities that generate the message. It is typical for legacy
systems or batch oriented systems to use such text based message formats. It is
feasible to define a message at any granularity level. For example, we can treat
an entire file of transactions or individual transaction as a single message.

XML Messages using DTDs: The RIB uses an XML DTD (document type
definition) to specify the format of its messages. This message format allows one
to define a document as a hierarchy of elements and their attributes. It is possible
to define name spaces and data types. With these building blocks, complex
message types can be specified. A limitation of DTD format is that all data types
eventually have to be represented as character data. Hence, the publishing
application has to ensure that data type constraints and business constraints are
adhered before publishing the message onto EAI platform.

Chapter 3 – External application integration 17

XML Messages using XML Schemas: XML Schema formats were specified
more recently by W3C consortium. XML Schemas improve DTD format with
more comprehensive data type verification and business rules enforcement
capabilities. XML Schema format is more ideally suited for developing canonical
message forms. It allows for complex functionalities such as <xs:choice> that
allows for isomorphic representation of message hierarchies. That is, it is
possible for a branch of a message to take one out of a specified list of branch
structures.

Additional message format patterns
Within a specific representation, one may use a variety of patterns for the
contents of a message:

• Message Body Only: A simple design pattern is to convert the message
body into an event type definition (ETD) format, which is natively used by
SeeBeyond for its internal message representation. Each ETD is specific to a
single business event. The ETD fully specifies all fields within the message.

• Envelope & Payload: This design pattern hides the complexity of a message
into a single element called as payload and wraps it up with an envelope
message. The envelope contains several attributes related to message
addressing, filtering, and routing. This pattern is useful when the focus is on
message sequence or temporal order, rather than on the message content
itself. The RIB uses this design pattern. One driver for this pattern is that
general-purpose components can be developed that operation only on the
envelope.

• Envelope & Body Fully specified: A less frequently used design pattern is
to fully specify all envelope attributes discussed above along with the
hierarchy of elements in the message body. This pattern is best used when
the message parsing and processing has a facility similar to the “inheritance”
concept used in Object Oriented programming languages.

External application message sequencing
considerations

Within the RIB, the publishing application preserves the business event sequence
within the message publication sequence. In other words, messages associated
with business events are published in the same order. However, it is possible for
messages to arrive out of sequence at the subscribing application if the messages
are handled by parallel processing paths. For RIB messages using the Retek 10
architecture, this sequence is only guaranteed when a single thread of message
processing is used. That is, there is only one path for a message to take from the
publisher to any given subscriber.

For non-RIB applications, another solution is to deposit all messages into a
staging area for each subscribing application. If messages arrive out of sequence,
the API of subscribing application will delay consuming the message until all its
predecessors arrive. However, this adds complexity and possible performance
delays on the subscriber.

18 Retek Integration Bus

Message transformation considerations
Message transformation can be a resource intensive effort and should be
minimized. Some important considerations for message transformation include
location, complexity, and frequency of message transformation.

All transformations execute within a SeeBeyond e*Gate collaboration. The
following considerations should be examined when determining transformation
approach for messages in an external schema.

• Complexity of Message Transformation: Transformation complexity stems
from dissimilarities of input and output message formats. Canonical formats
may be themselves complex. However, canonical message formats decrease
transformation complexity in much the same way as an integration bus
decreases integration complexity.

• Frequency of Message Transformation: To maximize performance,
minimize the number of times a message needs to be transformed. One aid in
this is to base the message format on the data model in the application
designated as the “system of record”. One advantage of this approach is it
promotes a common view of the business entity in question.

• Location of Message Transformation: A message can be transformed
anytime between publication and final the subscribing system. The location
of the transformation can be based on the relative number of publishers and
subscribers and the specific message pathways. When there are more
subscribers, it makes sense to transform a message into common format near
publication. When there are more publishers, it makes sense to transform a
message near the subscription. If messages are multiplexed through multiple
pathways, a transformation adapter may make sense located midway in the
processing stream.

Chapter 3 – External application integration 19

 Message filtering considerations
Sometimes a message or its attributes might contain a well-specified range of
values. When such message is published frequently, its subscribers are forced to
process the message quite often. However, in some situations, the subscribing
application might be interested in a business event only if a specific field falls
within in a narrow range of values. For example, a purchase order application can
publish PO status whenever any PO changes its state. If the publication of the
other messages is quite high, it may be fruitful for load balancing or performance
reasons to separate the filtering logic to a different adapter. The filtering
component on RIB can prevent the deliver of PO status messages to that
subscribing application. In one sense, filtering is a special case of routing.

The location of filtering should be based on considerations such as network
bandwidth, application complexity, the message publication and subscription
models, and future integration plans. Does it make sense to insert filter logic in
an adapter that will later be stripped out? One may gain more flexibility by
developing a separate (TAFR) adapter for filtering. This also has the advantage
of allowing greater flexibility if these messages need to be re-filtered: it could be
performed by a simple configuration change of the TAFR adapter, as opposed to
a logic change within the subscriber.

Chapter 4 – Systems design and development 21

Chapter 4 – Systems design and development
The purpose of this chapter is to describe the considerations and design patterns
involved in developing systems design and development processes for
successfully deploying the Retek Integration Bus and the underlying SeeBeyond
e*Gate platform. In general, an EAI platform has to be scalable and flexible to
meet the increasing application interface needs of a firm. This chapter describes a
process for systematically developing architecture for the physical design of the
EAI infrastructure.

 The design effort starts with business and technical requirements. Among these
are the applications to be integrated, acceptable latencies for message traffic, and
security concerns. Furthermore, these requirements should include future
transaction growth estimates arising from additional participating applications
and additional integration points within the deployed applications. All of this
information then establishes broad parameters for systems design.

For example, an expectation of substantial growth in the transaction volumes
handled by a participating application requires careful review of the proximity of
application servers to EAI servers or the network bandwidth between those
systems. Similarly, when new types of applications are added to EAI platform,
they can put substantial performance demands on EAI platform: Web based
applications typically require near real-time response rates. The ability to scale
up components rapidly to maintain acceptable response times becomes important.

Systems design process overview
The first step is to determine all components involved in the EAI system based
on the messages needed to support the business processes. The next task is to
design the proper topology of e*Gate components to meet the performance needs
of the EAI system. The issues presented in this chapter are discussed in a “top-
down” fashion, beginning with domain considerations and ending with log file
location considerations.

One begins with a map of all administrative domains within the enterprise in
which the integration components can potentially be installed. An important
consideration is the geographical scope of corporate network – whether the
platform will be located entirely within a data center or dispersed over several
data centers.

Typically, the location of associated application servers determine the data
centers involved. Identify the network domains in which application servers
reside and the domains in which the integration bus platform resides. Then
determine the network bandwidth among the domains involved in the integration.
An additional consideration is the identification of security requirements and
firewalls, which can restrict the available architectural options. This analysis is
also important for disaster recovery planning needed to resurrect operations in a
new data center location after a catastrophic environment failure.

22 Retek Integration Bus

A popular design pattern for server domains is to centralize them into a single
domain. Many times the EAI development team is a centralized resource. EAI
teams are responsible for meeting Service Level Agreements related to an EAI
platform with all application or functional teams. Furthermore, an EAI team can
be a central repository of knowledge. Their EAI expertise is critical for data
center network administrators, operating system administrators, and SeeBeyond
administrators for properly configuring, scaling up, and troubleshooting the EAI
platform. Hence, physical proximity of data center team and the EAI team is
beneficial for building an EAI infrastructure rapidly, especially in the early years
of EAI adoption by an enterprise. Even if physical proximity is not feasible, close
working relationship (such as job rotation or joint design teams) should be
fostered between data center team and EAI team to achieve proper performance
of EAI platform.

Operating system selection
The selection of an operating system platform for the EAI infrastructure is
important for performance and scalability. The SeeBeyond e*Gate platform is
supported in several platforms such as Solaris 2.8, Aix 4.3, HP/UX 11, Linux 6.2,
Compaq True64, and Windows 2000. The only requirement for e*Gate
connectivity is TCP/IP compatibility. Hence, it is possible to implement e*Gate
in Windows 2000 even when applications are on a Unix platform, or vice versa.

Some factors that affect the choice of the OS for e*Gate platform are the
availability of High Availability cluster software, scalability of servers within a
cluster, limitations on processes/threads, and limitations on memory scalability.
See the OS Considerations section for more information.

The e*Gate client and its Graphic User Interfaces (e*Gate Enterprise Manager,
e*Gate Monitor, e*Gate IQ Viewer, and e*Gate Alert Agent) run exclusively on
Windows 2000 operating system. Operations personnel who are monitoring the
running system use these tools.

The development server operating system platform can be completely different
from that of production environment. For example, the development environment
can be in Windows 2000 environment and the production environment in AIX.
The task of migrating schema code from one operating system to another is a
routine administrative task that can be accomplished in hours.

See the SeeBeyond e*Gate Deployment Guide for minimum hardware
specifications for e*Gate server on each platform and e*Gate client on Windows
2000.

Chapter 4 – Systems design and development 23

OS considerations
A key to designing e*Gate systems is maximizing the performance of the
operating system hosting an e*Gate server. Many times performance gains are
achieved simply by increasing memory and CPU processing speed. However,
this is only appropriate if the system is fully utilized. Two important operating
system resources are the number of processes and threads. A system that is not
supporting an adequate amount of processes or threads may not be fully utilized.

Process considerations
A number of e*Gate components such as e*Ways, connection points, and IQ
managers execute within a single Unix process or Windows executable. For
complex schemas, these components can number in the hundreds. Computing the
number of processes needed by the system may be found by counting the number
of components (including the “infrastructure” components such as control
brokers or the registry) that are deployed on the system by all schemas in the
installation.

Thread considerations
Some e*Gate components, such as IQ Managers, spawn hundreds of threads for
their proper functioning. As the number of components, especially IQ managers,
increase in a schema, the number of total threads used by e*Gate increases as
well.

Some operating systems have a limit on the number of threads that can be
spawned per process. If the number of threads per process is beyond the
permissible OS limit on threads per process, we need to redesign the components
to reduce this.

Note: RIB schema components usually do not need this reduction because most
of the RIB adapters (e*Ways) do not contain many collaborations. The
philosophy here was to deploy fewer, message family specific processes as
opposed to many concurrent threads. This allows for a better fine-grain control of
each message producer and consumer.

This can be accomplished in several ways. First, the number of collaborations per
e*Way can be decreased by adding a new copy of e*Way and moving half of
collaborations to the new e*Way. This keeps the total number of threads same
but decreases threads per each process. It is suggested that the maximum number
of collaborations for an e*Way is in the range of six to ten. For JMS IQ
Managers that push the threads per process limit, one may add more JMS IQ
Managers and redistribute the messaging load between them.

24 Retek Integration Bus

Component considerations
This section describes some additional considerations for each SeeBeyond
component type.

BOBs and e*Ways: An e*Way is an application specific adapter that fully
supports invoking all published Applications Program Interfaces (APIs) of that
application within the collaborations attached to it. A BOB (Business Object
Broker) is an internal SeeBeyond container for holding collaborations. The RIB
only uses e*Ways. The RIB uses the “Multi-mode” e*Way exclusively for its
adapters.

The biggest question for is the number of copies and their location. Each e*Way
will process a stream of messages from an application or an application’s
database. The location of an e*Way is dependent on the availability and
performance of its information source or sink: the application or the database the
application uses.

The number of copies of each e*Way is determined by the amount of parallel
processing desired. In the RIB 10.1 release, sequencing considerations curtail the
options here for RIB components. However, these concerns may not apply to
other interfaces to external applications. If parallel processing is implemented,
then one copy of an e*Way per parallel processing path can be used.

Collaborations and parallel processing
A collaboration is the basic programming unit for a work-slice (message
processing logic) in e*Gate. Within the RIB components, collaborations have
already been defined and located.

Collaborations have to be deployed and executed within an e*Way. An e*Way is
an operating system “task” or “process”. A collaboration is run as a thread under
that process.

The number of copies of collaboration depends on the transaction throughput
required. Incremental throughput improvements can be achieved by adding
copies of collaboration to the e*Way. This can improve performance by parallel
processing. The intent here is that system idle time due to disk I/O is reduced
when multiple copies of the same collaboration are simultaneously processing
messages.

Connection Points
Connection Points are protocol based communication service provider
components. They create a session with some external entity. For example, the
Oracle connection point establishes a database connectivity with an Oracle
database and the MQ JMS connection point establishes connectivity to an MQ
Series server. Only one connection point per schema is needed for a
communication service for an application integration point. However, it is not
unusual to have one connection point for outbound connections, one for inbound
connections, and a third for special purpose connections (such as error handling
or control).

Chapter 4 – Systems design and development 25

Queue storage location
A common design pattern is to locate queue storage along with other schema
components on the same server. This pattern increases performance by
decreasing network overhead.

However, locating the queue storage on a separate server from schema
components is useful for high availability situations. An advantage here is that
the queues continue to be available even when the server containing other
schema components fail. Furthermore, an IQ manager is a fairly robust
component that handles routine database transactions without any user
intervention. The probability of the failure of a server handling IQ managers
alone is quite low compared to that of a server housing complex application
specific code.

A common practice is to locate queue storage on networked enabled RAID disks,
so that message data continues to be available even when an e*Gate server fails.
The RAID disks are typically configured in RAID 1 + 0 (that is, both mirroring
and striping). RAID 5 configuration can be equally effective as messages with in
IQs are rarely updated, thus minimizing any update penalties possible in RAID 5
configuration.

Log files
SeeBeyond uses various log files during the recovery of e*Gate schema after a
server failure. Logs have to be stored with same care as data within IQs. A
popular design pattern is to locate logs on external RAID boxes using the same
configuration as that of IQs. If log files are available during a fail-over operation,
then some messages may be lost.

Performance considerations
The key to performance improvement of e*Gate is to fully understand or map the
source and destination of messages across all applications. The location of
servers and schema components affect the distances these message travel. The
overall objective of topology design is to minimize the overall network travel
path of messages. This is especially important for high volume messages. The
topology design has to focus on minimizing travel distances of high volume
messages.

26 Retek Integration Bus

A second performance consideration is the ability to simultaneously process
multiple messages of the same message family and message type. In the RIB
10.0 release, all messages were published under a single thread. However, in the
10.1 release, certain message types are published using the M of N threading
concept. For these message types, multiple collaborations publish messages of
the same message family. However, each collaboration will only publish a
subset of the possible messages. For example, if two publishing collaborations
exist for the Purchase Order MFM, then one collaboration should be configured
to publish PO’s with an even PO number, and one used to publish odd PO’s.
This will decrease the time it takes to publish a complete set of POs, while at the
same time insuring that sequencing is maintained. Only one copy of each
publishing collaboration is supplied as part of the RIB schema. Additional
copies can easily be created and configured, but this is considered an
implementation issue.

Chapter 4 – Systems design and development 27

Best practices & guidelines summary

Minimize message and database connection path length. Locate RIB adapter
e*Ways and external application e*Ways on the same LAN as their respective
database servers. Locate e*Ways belonging to the same message stream on the
same LAN if at all possible.

Limit the number of collaborations per e*Way to between 6 and 10. The RIB
uses only 1 or 2 collaborations per e*Way. For RIB-supplied e*Ways, this is
only appropriate to those publishing e*Ways using M of N multi-threading.
E*Ways with large numbers of collaborations not be able to run large numbers of
collaborations efficiently due to schedule thrashing problems.

Locate Queue Storage on disk systems that can failover along with the
e*Ways or other schema components. Otherwise, messages may be lost until
the system has failed back.

Locate log files on disk systems that can fail over along with the other
e*Ways or other schema components. Otherwise, there may be database
recovery or lock problems.

Understand your schema design. Retek suggests that a “RIB Messaging”
schema is used that contains few, if any, external components. However,
whichever schema design is implemented, make sure the motivations and risks
behind the design are understood.

Analyze the number of processes and threads needed for a running system.
Make sure that these values are configured as part of the operating system.

For external subscribers, delay converting from the RIB canonical form to
the subscriber’s specific message format as late as possible. For external
publishers, convert to the RIB canonical form as early as possible. Let the
RIB supplied components process perform all of the message transportation
functions. Leverage the RIB supplied facilities for message tracking.

When developing new adapters from scratch, follow the RIB architecture
and leverage the RIB Helper classes. This will make it easier to support the
new applications code and RIB feature enhancements may be transparently
added to your applications.

Place all external adapters into an ‘External’ schema. This will make it easier
to apply RIB updates.

Chapter 5 – High availability 29

Chapter 5 – High availability
SeeBeyond’s distributed architecture addresses the needs of high availability and
robust failover, while providing inherent scalability across all components. The
key for High Availability (HA) deployment is to identify and eliminate any
single point failure, both in terms of software components and hardware
components.

High availability solutions are typically complex, involving redundant software,
hardware, and network resources. One or more of the following e*Gate product
features described in this section can be used to deploy Retek Integration Bus
(RIB) in a “High Availability” configuration.

A major goal in deploying any EAI platform such as the RIB is to strive for 24 x
7 availability. Any prolonged outage in the availability of EAI bus can lead to
adverse consequences. When some parts of RIB are unavailable, RIB itself
continues to receive events and store them in IQs till the required components are
available. However, prolonged outage can create a cascade of failed transactions
when IQs are filled up.

E*Gate provides several ways of providing High Availability by enabling
automatic failover. Key components in e*Gate that provide this HA capability
are:

e*Gate Registry: This directory contains all information related to the run time
environments of all the components registered on a deployed e*Gate system. All
participating hosts authenticate with the Registry using their schema name and
the logical name of their control broker. The registry keeps track of mapping
between logical names of control brokers and their physical addresses on the bus.
Thus, when a participation host is unavailable, a new participation host can be
attached to the network with its control broker taking on the logical name of the
control broker on the failed host. Such changes in physical address have to be
updated in the Registry to bring up the new host in place of the failed
participation host. However, this requires replication of the Registry itself on
more than one participation host, so that this information is always available.

Registry Replication: It is important to replicate Registry information to two or
more participation hosts to ensure its recoverability, without which e*Gate itself
cannot be recovered. One of the participation hosts can be arbitrarily selected as
the Primary Registry. Several Secondary Registries can be placed on other
Participation Hosts on the network. Whenever a change is made to the Primary
Registry, it automatically updates all the secondary copies in real-time to
maintain consistency. Components initially request information from the Primary
Registry. When that is unavailable, it goes through the list of Secondary
Registries till it finds one that is available.

30 Retek Integration Bus

Subscriber Pooling: One option configuring JMS Connection Points is whether
to use “queue” or “topic” connections. If “queue” is used, then only one copy of
each message is delivered any of the topic’s subscribers. In this design, it is
assumed that all subscribers perform the same processing. This allows for
parallel message processing, since multiple messages can be processed
simultaneously. Furthermore, if the subscribers are distributed on separate boxes,
then messages can continue to be processed as long as the queue and at least one
subscriber is available. This technique is known as Subscriber pooling and is also
available with the standard SeeBeyond IQ implementation.

However, subscriber pooling introduces the possibility that multiple subscribers
will process dependent messages in a slightly different order than when they
were produced. Consider the following scenario: two subscribers process PO
Item update messages and there are two consecutive messages updating the same
item. The first message updates the item quantity to 10, the second one updates
the quantity to 100. One subscriber is on a heavily loaded system and the other
on a lightly loaded system. The subscriber on the heavily loaded system finishes
some prior work and grabs the first message. The lightly loaded subscriber then
grabs the second message but is able to lock the item database record before the
first subscriber. (The first subscriber is running on a slower system.) Now, the
first message cannot be processed until the second message has finished its
processing. This means that the final quantity is left at 10, not at the last updated
value of 100. Because of this and similar scenarios, configuring JMS
connection points using “queue” connections is not recommended.

Chapter 5 – High availability 31

Remote data center considerations
The IT infrastructure of an installation might include several data centers
geographically dispersed. In such a situation, network bandwidth plays an
important constraint in RIB processes such as Registry replication.

Identification of data centers
The process begins by taking an inventory of data centers where e*Gate
hardware will be located. Locating all e*Gate servers in a central data center
facility enables easier administration and tighter physical security. However, the
response time for transactions might be hampered in such an architecture with
network propagation delays.

The next step is to consider if the e*Gate infrastructure will be dispersed among
two or more remote data centers as well. An important consideration here is the
network bandwidth between each data center pair. The location of fail over
systems and other attended processes will only be successful if message traffic
can be physically communicated to the components providing this capability
within allotted response times. If the bandwidth is not sufficient for all messages,
then it may be necessary to only provide partial fail over capabilities: messages
deemed non-critical will stay in queues or have their publishing adaptors shut
down.

Disaster recovery considerations
If the client has an alternate data center for disaster recovery, the disaster
recovery data center needs to be equipped with sufficient e*Gate hardware and
software infrastructure for recovery of the e*Gate platform. Network bandwidth
analysis should also be performed, treating the disaster recovery center as another
remote data center.

32 Retek Integration Bus

High availability option considerations
One primary consideration for determining the HA architecture is to insure that
normal operations are not adversely affected. Another consideration is to fully
utilize available hardware platforms. A third consideration may be the likelihood
of multiple failures. It is important to understand the trade-offs and the risks for
any specific deployment.

The following sections present two alternatives for implementing High
Availability configurations. Care should be taken in evaluating these options
regarding the following:

• The amount of manual intervention required when a host failure occurs.

• The amount of tolerable down time associated with a failure.

• The complexity of the deployed system.

• The development of special components to insure that messages are
processed in the correct sequence, or reduce the risks if certain messages are
processed out of sequence.

Hardware preparedness for HA
HA architecture involves replicating schemas across two or more servers.
Schema components such as a JMS connection point or Oracle ODBC
connection point are often configured to connect with a named application server.
A DNS server or an Oracle Names Server resolves the domain names into
physical IP numbers. When a server using a physical IP as its domain name fails,
all of its schema components have to be reconfigured to point to the new IP
number of the fail over server. To avoid such manual intervention and the need to
edit the configuration files of schema components, we need to make sure that
domain names resolve into logical IP addresses, where we can attach new servers
to take over the logical IP address dynamically and seamlessly continue e*Gate
processing. We can allocate IP addresses dynamically to servers using the means
described below:

Hardware IP Routing: A network router, such as Cisco Local Director or
ArrowPoint load balancer, dynamically multiplexes incoming e*Gate events to
its attached servers. All the servers in this configuration share the same IP
number. Thus, when a server is attached during failover, the new server has the
same IP number as the failed server. This ensures that we do not have to make
any changes to configuration files of e*Gate schema components.

Clustered IP Routing: We can configure a clustered server network to share IP
numbers among its server nodes. The cluster management software is mounted
on a shared file system and this storage box typically contains its own Ethernet
cards. In addition, the individual server nodes can contain private file systems
and private Ethernet cards that allow direct IP addressing. For configuring
e*Gate under HA mode, we need to rely on the shared IP numbers of the cluster
for receiving events. In this mode, when a new node is added to the cluster, it can
automatically take over the shared IP number of the failed server node as all
nodes are using the cluster’s shared IP number.

Chapter 5 – High availability 33

Advantages of clustered IP routing
This document suggests the use of clustered servers managed by an HA cluster
management package that detects failures at the operating system level. IP
routers are not natively geared to recovering the failed server. When an IP router
finds a server non-responsive, it merely routes the incoming packets to the next
available server. IP routing by itself does not initiate any failover processes. In
contrast, HA clustered software, such as Solaris HA or IBM HACMP, provides
automatic detection of server failure and initiate recovery by invoking a recovery
script.

Hot standby data center/server
If a deployment has multiple data centers, one may use one of them as
operational data center. The remaining data centers will not participate in e*Gate
processing as long as primary data center is operational. When primary data
center is not available for some reason, one of the remaining data centers will be
designated as e*Gate operational data center and takes over e*Gate message
handling.

In a clustered Hot Standby option, a cluster of two identical servers is deployed.
Only one of them is in production mode at any time. When the production server
fails, the standby server takes over e*Gate processing.

Some positive factors that favor Clustered Hot Standby Sever option are as
follows:

• HA clustered software can only be used for hardware recovery, that is, an
alternate server takes over the IP number and functions of the failed server.
The processes and state information in the failed server are lost. At this time,
e*Gate does not have HA software layer that keeps track of such state
information during failover, so active components will be re-started without
any state carryover.

• Shortened recovery periods during failover.

• A cluster’s shared disks enables data consistency between the Production
Server and the backup server.

• Schema complexity is relatively low compared to load balancing options.

• Scalability and Increased processing power is feasible by adding additional
servers.

• Uses the distributed architecture of SeeBeyond e*Gate to a limited extent.

• Preserves message sequencing.

34 Retek Integration Bus

Some negative factors that need to be addressed in Clustered Hot Standby Server
option:

• Recovery complexity can still be high.

• The processing power of a powerful Hot Standby Server is either not utilized
or is used for some other purposes. If the latter case exists, then this other
processing may need to be shutdown before the failover can commence.

• Does not fully utilize the distributed processing architecture of e*Gate
platform.

• The failover recovery process might take 10 minutes or more. This depends
on the time it takes to recognize that a failure has occurred. Some HA
packages by some vendors allow the monitoring of specific running
components. If these are used for monitoring e*Gate components, these
scripts may go through a series of health checks to bring up failed e*Gate
modules before declaring the Production Server as having fatal error. During
these monitoring and health checks, the EAI messaging service is not
available to applications.

Clustered data centers/servers with distributed load balancing
In this architecture, each server node has multiple copies of all schema
components to increase CPU utilization and transaction throughput. All queues
are configured using pooled subscribers. Availability is maximized using a
“server farm”. When a server goes down, all the copies of schema on that server
might become unavailable, which can decrease transaction throughput. However,
as long as there is at least one copy of a functioning schema on one host in the
server farm, messages may still be processed. This option is similar to a
Subscriber Pool off of an IQ Manager, except that the subscribers are all within
different schemas.

This configuration contains some very positive features, such as significant
uptime, scalability, and server utilization. However, there are also some
significant drawbacks to this approach, including:

• Complexity of the distributed architecture.

• e*Gate schema will be complex to allow load balancing through subscription
pooling.

• Additional programming effort to enable subscription pooling of all active
components in each node. Typically, 50% of additional programming effort
is required for accomplishing load balancing of multiple nodes, compared to
the programming effort involved in developing a schema for a node.

• Issues with sequencing and error handling. The RIB’s current design insures
that all messages within a single queue are consumed in order. Multiple
simultaneous subscribers may violate this. In the 10.1 release of the RIB, all
messages within a single message family need to be processed in a single-
threaded manner to insure correctness. This is intimately tied into error
handling subsystems. Multiple copies of the same publisher or subscriber
could cause “out of order” problems unless additional installation specific
development is performed.

Chapter 5 – High availability 35

In the 10.1 release, “M of N Threading” has been implemented for a set of
message families. This allows one to split message publication among a
predetermined set of collaborations or e*Ways, by “striping” the business
objects the publisher creates messages for. This solution is different than a
“clustered” approach, since the publication and subscribing system for a
stream of messages is predetermined and message sequencing within a
message family is always maintained.

Note: A ‘Message Family’ is a set of messages published by a single
publishing collaboration. See the Retek Integration Bus Technical
Architecture manual for more details on message families.

Because of potential problems with sequencing and error handling during the
normal operation of the RIB, this option is discouraged unless a thorough
analysis has been performed regarding these issues has been performed and the
appropriate risks addressed.

High Availability Performance considerations
In order to select an appropriate HA architecture, we need to define selection
criteria properly. Some important performance factors for selecting a HA
architecture include transaction throughput, infrastructure cost, and
recoverability.

Transaction throughput
To improve performance, it is possible to extend the capabilities of the server by
increasing its processors, processor speed, memory, and network bandwidth.
However, performance gains may be limited due to the nature of any specific
performance decreasing bottleneck. For example, if the specific disk I/O sub-
system used is slowing the overall system performance, then adding additional
CPUs or upgrading the existing CPU to a faster model will not increase
performance. Alternatively, options such as moving a schema to a new host,
distributing the components in a different configuration, or improving the disk
I/O subsystem used may result in the desired throughput.

Infrastructure cost
The infrastructure cost is dependent on the number of servers in an HA cluster
and the specifications of each server node. This has to be computed based on
transaction volumes, number of schemas, transaction processing time, memory,
IQ size, archiving needs, CPU count, CPU speed etc.

A major consideration here is the choice between deploying a cluster containing
a few high-end servers versus a cluster containing a large number of mid- or low-
end servers. High-end servers can have more memory and processing speed.
However, the performance of e*Gate is dependent on the number of operating
system processes and threads, which can be maximized with a large number of
nodes in a cluster. Hence, in many cases, it is more cost effective to use a cluster
of larger number of mid- or low-end servers rather than a smaller cluster of high-
end servers.

36 Retek Integration Bus

Recoverability
The ability to recover after a system failure is the primary reason for HA
architecture. During failure, certain transactions can be abandoned after partial
processing. Unless these transactions are rolled back properly, there is a danger
that transactions are dropped without proper delivery or that non-idempotent
operations are performed multiple times.

Definition: Idempotent operation: An operation that can be performed multiple
times with the same result as the first time it is performed. Setting a thermostat to
70 degrees Fahrenheit is idempotent. Setting a thermostat 5 degrees warmer is
not idempotent.

The EAI bus has to guarantee “exactly once” processing of an event by all
subscribers. The complexity of transaction recoverability is similar in all
architecture options described in the previous section. The essential steps involve
detection of a failed server in the HA cluster management software layer and
invoking a recovery script. This script must insure that all standard and JMS IQ
managers are brought up under the control of the fail over server and partial
transactions are rolled back.

Best practices & guidelines summary
This section describes several design patterns that have been successful in
designing HA architectures.

Failover of registry using replication

The e*Gate Registry provides directory services for all the components on the
EAI bus. To prevent registry becoming a single point of failure a preferred design
pattern is to have a registry in each server. This will also minimize network
roundtrips for information that components such as the Control Broker need. One
of these registries can be designated as primary registry and remaining secondary
registries can be replicated automatically. If there are frequent changes to
registry, such as relocation of component schemas across servers, replication can
increase network traffic. Since changes to registry are infrequent, replication
related network traffic is often insignificant.

Use a high availability clustered software

The use of HA cluster management software is highly suggested. The cost of HA
cluster management software is minimal compared to the hardware cost of
servers in a cluster. A major advantage of the HA cluster management software
layer is the detection of server failure. The interrupt from such HA cluster
management software can be used to trigger a recovery script to initiate and
complete proper recovery tasks. In addition, the presence of a shared file system
in a cluster allows all servers to share same resource libraries etc., which
eliminates version incompatibilities that might arise when servers have their own
resource libraries in their private file systems.

Chapter 5 – High availability 37

Failover of IQs with external RAID

As long as events are in IQ, transactions are guaranteed to be recoverable.
However, when the file system used by IQ itself fails, there is a severe danger of
transaction loss. A preferred design pattern here is to achieve hardware failover
of IQs using external RAID banks. It is typical to configure IQs under RAID 1+0
(mirroring and striping of IQ data).

Failover of e*Gate Monitor
It is important to ensure that e*Gate Monitor does not become a single point of
failure. The e*Gate Monitor application needs to be installed on two or more
systems so that failure of any single host does not remove the ability to control
the operations of the RIB.

38 Retek Integration Bus

Illustration of HA architecture with clustered hot
standby

This HA architecture requires two node cluster managed by HA cluster
management software. One of the nodes is operational and other is in hot standby
mode.

Schematic overview
The figure below shows the schematic overview of Clustered Hot Standby HA
architecture:

Primary Registry Host
e*Gate Monitor

e*Gate Enterprise Mgr.

Participating Host 1
Cluster

Participating Host N
Cluster

Registry N

Control
Broker N

Control
Broker 1

IQ MGRs

e*Wayse*Ways

BOBsBOBs

IQ MGRS

Registry 1

HACMP
Clustered

Servers

Registry
Replication

Shared Disk array

Mirror OS, Database
for Logs, Queues, Journals. Raid 1+0

e*Gate Monitor
e*Gate Enterprise Mgr.

Figure 5-1: Schematic Overview of Clustered Hot Standby HA Architecture

Chapter 5 – High availability 39

Deployment diagram
The deployment of e*Gate components for the clustered hot standby architecture
is shown below:

Storage Disk Array

IQ

e*Gate
Monitor

*

*

Module Availability Status
*

*

Recovery Sequence Initiation

*

*

Server Available;
Components shutdown by Monitor

Scripts needed for recovering IQ state
to recover transactions

HACMP Shared Disk

e*W ays

BOBs Collaborations

IQ Manager

Connection Point

Control Broker

Recovery Script

Raid 1+0 Architecture.
Sriping & Mirroring Ensures

 IQ recovery & Availability.

e*Gate Primary
Server

HACMP S/W

Registry

Participation Host

*

*

Fiber channel

e*Gate Secondary
Server

HACMP S/W

Registry

Participation Host

*

*
Fiber channel

Figure 5-2: Deployment Diagram of Clustered Hot Standby HA Architecture

Appendix A – Parallel processing deployments 41

Appendix A – Parallel processing deployments
This appendix describes methods of configuring e*Gate with multiple copies of
e*Ways for the purposes of increasing throughput or providing for seamless and
immediately available fail over. However, these topologies are not suggested
with currently available RIB components due to risk that messages may be
processed out of order. Additional custom development may be needed for RIB
components if some type of parallel processing is needed.

Subscriber pooling
Subscriber pooling is a technique for parallel message processing. When an
SeeBeyond Standard or JMS IQ Manager is configured for Subscriber Pooling,
then all messages on its queues are delivered to a single subscriber. However, in
this design, it is assumed that all subscribers perform the same processing. The
intent is for improving throughput using parallel processing.

This is not recommended for standard RIB messages and components because of
the risk that messages will be processed out of order. This restriction may be
lifted in later releases. However, for other, non-RIB or non-sequence dependent
messages, subscription pooling may make sense. Because of its utility in other
areas, this appendix provides an example of how subscriber pooling may be used.

Figure A-1: Subscriber Pooling

This example has three host machines, and two of them are using e*Ways to
process messages. The third machine is for message queuing only. The
subscriber components are redundant and run from both host machines. The IQs
are subscriber-pooled so their operation is load balanced across software
processes and also across host machines.

42 Retek Integration Bus

The second machine takes over processing seamlessly from the failed server as
shown below:

Figure A-2: Failover through Subscriber Pooling

	Contents
	Chapter 1 – Introduction
	Chapter 2 – The RIB schema
	The RIB messaging schema
	RIB messaging schema deployment
	Message flow customization
	RIB component placement
	Schema bridging

	Chapter 3 – External application integration
	Suggested process
	Step 1: RIB message identification and selection
	Step 2: Analyze pub/sub models
	Step 3: Application message specification
	Step 4: Message transformations
	Step 5: Component specification

	Message specification for external schemas
	Message semantics & statefulness
	Message content mapping strategies
	Message representation options
	Additional message format patterns

	External application message sequencing considerations
	Message transformation considerations
	Message filtering considerations

	Chapter 4 – Systems design and development
	Systems design process overview
	Operating system selection
	OS considerations
	Process considerations
	Thread considerations

	Component considerations
	Collaborations and parallel processing
	Connection Points
	Queue storage location
	Log files

	Performance considerations

	Chapter 5 – High availability
	Remote data center considerations
	Identification of data centers
	Disaster recovery considerations

	High availability option considerations
	Hardware preparedness for HA
	Hot standby data center/server
	Clustered data centers/servers with distributed load balancing

	High Availability Performance considerations
	Best practices & guidelines summary
	Failover of registry using replication
	Use a high availability clustered software
	Failover of IQs with external RAID
	Failover of e*Gate Monitor

	Illustration of HA architecture with clustered hot standby
	Schematic overview
	Deployment diagram

	Appendix A – Parallel processing deployments
	Subscriber pooling

