

Retek® 10.1 Integration Bus

Technical Architecture Guide

Retek Integration Bus

The software described in this documentation is furnished under a license
agreement and may be used only in accordance with the terms of the
agreement.

No part of this documentation may be reproduced or transmitted in any form
or by any means without the express written permission of Retek Inc., Retek
on the Mall, 950 Nicollet Mall, Minneapolis, MN 55403.

Information in this documentation is subject to change without notice.

Retek provides product documentation in a read-only-format to ensure
content integrity. Retek Customer Support cannot support documentation that
has been changed without Retek authorization. Corporate Headquarters:

Retek Inc.

Retek on the Mall

950 Nicollet Mall

Minneapolis, MN 55403

888.61.RETEK (toll free US)

+1 612 587 5000

European Headquarters:
Retek

110 Wigmore Street

London

W1U 3RW

United Kingdom

Switchboard:

+44 (0)20 7563 4600

Sales Enquiries:

+44 (0)20 7563 46 46

Fax: +44 (0)20 7563 46 10

Retek® Integration Bus™ is a trademark of Retek Inc.

Retek and the Retek logo are registered trademarks of Retek Inc.

This unpublished work is protected by confidentiality agreement, and by
trade secret, copyright, and other laws. In the event of publication, the
following notice shall apply:

©2002 Retek Inc. All rights reserved.

All other product names mentioned are trademarks or registered trademarks
of their respective owners and should be treated as such.

Printed in the United States of America.

Retek® Confidential

Customer Support

Customer Support hours:

Customer Support is available 7x24x365 via e-mail, phone and Web access.

Depending on the Support option chosen by a particular client (Standard,
Plus, or Premium), the times that certain services are delivered may be
restricted. Severity 1 (Critical) issues are addressed on a 7x24 basis and
receive continuous attention until resolved, for all clients on active
maintenance.

Contact Method Contact Information

Internet (ROCS) www.retek.com/support
 Retek’s secure client Web site to update and view issues

E-mail support@retek.com

Phone US & Canada: 1-800-61-RETEK (1-800-617-3835)
 World: +1 612-587-5800
 EMEA: 011 44 1223 703 444
 Asia Pacific: 61 425 792 927

Mail Retek Customer Support
 Retek on the Mall
 950 Nicollet Mall
 Minneapolis, MN 55403

When contacting Customer Support, please provide:

• Product version and program/module name.

• Functional and technical description of the problem (include business
impact).

• Detailed step by step instructions to recreate.

• Exact error message received.

• Screen shots of each step you take.

Contents i

Contents
Chapter 1 – Introduction... 1

Additional resources.. 2
Retek 10.1 integration documents .. 2
SeeBeyond Technology Corporation documents ... 2

Chapter 2 – The RIB messaging model................................. 3

Message characterization .. 3

RIB message families and message types ... 4

Model drivers and concerns .. 5

Message life cycle ... 7

RIB message structure... 11

Chapter 3 – Messaging system component overview 13

SeeBeyond components .. 13
Registry... 13
Schemas.. 13
Control brokers and participating hosts.. 13
Events and event type definitions... 13
Collaborations... 14
e*Ways and BOBs.. 14
Intelligent Queues and JMS Intelligent Queues ... 15
IQ Managers and JMS IQ Managers .. 15
e*Way Connection Points .. 15

RIB components .. 16
RIB_XML database package.. 16
RIB_SXW database package.. 16
Application message publishing triggers.. 17
Non-trigger publishing ... 18
Message Family Manager API ... 18
Publishing application adapter.. 20
TAFR Adapter .. 22
Subscribing application adapter.. 24
Subscribing application stored procedure APIs.. 27
Error Hospital ... 28
Performance and “M of N” Threading ... 31

ii Retek Integration Bus

Chapter 4 – RIB message families....................................... 33

Event types and message families ... 33

Message family overview.. 34
RMS published message families... 35
RDM published message families .. 36
RCOM published message families ... 37
Externally published message families... 37

Chapter 5 – External application message interfaces 39

RIB message paradigm concerns .. 39

SeeBeyond application-specific adapters.. 40

Chapter 6 – Retek Extract, Transform, and Load 41

Chapter 7 – Batch job integration.. 43

Motivations for replacing FTP transfers ... 43

Transfer file data using a batch application e*Way .. 44
“Fixed” configuration ... 44
“Message” mode... 46

Transferring data directly from/to a database.. 46
Using connection points and developing the logic within a collaboration 46
Using a “generic” e*Way application adapter.. 47
Using an application specific e*Way adapter... 49

Chapter 1 – Introduction 1

Chapter 1 – Introduction
Welcome to the Retek 10.1 Integration Bus Technical Architecture Guide. This
guide describes the technical architecture of the Retek Integration Bus (RIB). The
goal is to illustrate the capabilities and issues an enterprise may encounter when
integrating applications with the RIB. The intended audience for this guide
includes system designers and project managers. It assumes that you are familiar
with Enterprise Application Integration terms and concepts. If not, see the
“Additional resources” section for more information.

Chapter 2 introduces the RIB message model. Important conceptual topics are
presented such as the business event relationship to the message, the message
‘family,’ and message structures. Because the sequence of events that occur on a
table reflect business processes, this chapter discusses the association of message
structure and sequencing to systems and their availability on the RIB. Error
handling, performance, and the synchronization of participating systems are
topics touched on here. Finally, Chapter 2 presents the message lifecycle, or how
messages flow through the system. Described are simple flows of messages that
do not require additional transformation, filtering, or routing logic (known as a
‘TAFR’) to occur on the RIB, and those flows that depend upon a further TAFR
operation prior to another application’s subscription of the message.

The components of both SeeBeyond’s e*Gate Integrator–the RIB itself–and
Retek applications on the RIB are described in Chapter 3. Here you learn about
SeeBeyond components like the registry, schema, event type definitions,
e*Ways, intelligent queues, collaborations, and more. In addition, this chapter
presents components and processes shared by Retek applications on the RIB.
Retek applications are characterized by the use of Oracle-based triggers and
XML and message family manager packages for publishing messages through
application adapters. Retek applications also share common message subscription
processes for message and error handling. TAFR processing is presented too.

Learn about Retek message families in Chapter 4. The event type and message
family concept is discussed. Here you can see a list of message families for each
application: RMS, RCOM, and RDM. If you are considering the interface of
additional applications on the RIB, read Chapter 5. The successful coupling of
third-party applications to the RIB (and, as a result, to Retek applications) hinges
on understanding the importance of the single event-message relationship. These
concerns are addressed here, along with descriptions of SeeBeyond proprietary
e*Gate adapters that a client can select for applications to be deployed on the
RIB.

Chapters 6 and 7 introduce the integration of Retek Extract, Transform, and Load
(RETL) and batch file transmission on the RIB. RETL (extraction-
transformation-load) is a C++ framework that you can deploy within an
application for high-volume processing, especially in a multi-processing
environment. Both RETL and batch job integration involve the movement of files
across the RIB. Currently, implementation of these processes involves further
definition, and these chapters discuss the relevant issues.

2 Retek Integration Bus

Additional resources
Read the following Retek 10.1 and SeeBeyond documents for additional
information.

Retek 10.1 integration documents
The following resources should be used for further understanding the Retek
Integration Bus:

Retek 10.1 Integration Guide – Descriptions of Retek applications on the RIB
and the functional areas in which they share data. The guide also contains all data
descriptions, including the message catalog; XML document type definitions of
messages; and mapping documents that specify a message’s source application,
table, column, and data type.

Retek 10.1 Integration Bus Primer – An introduction to basic Enterprise
Application Integration (EAI) concepts and to the Retek Integration Bus (RIB).

Retek 10.1 Integration Bus Deployment Guide – Discussion of deployment
considerations, design patterns, and strategies.

Retek 10.1 Installation Guide – Descriptions of:

• SeeBeyond e*Gate Integrator installation of its registry host and all
participating host software, plus Graphical User Interface hosts for
development and system monitoring.

• An explanation of how to import the RIB schema into the e*Gate Integrator
product.

• Configuring database connection points and JMS queues, updating
CLASSPATH configuration values, and deleting unused adapters.

Retek 10.1 Integration Bus Operations Guide–Provides a basic understanding
of RIB components, how messages flow between them, and operational activities
surrounding the components. Included are templates for using the RIB as an
alternative to FTP batch jobs to transfer files from one system to another.

SeeBeyond Technology Corporation documents
See the resources listed in this section to learn more about the RIB as it is
deployed through the SeeBeyond e*Gate Integrator EAI platform:

SeeBeyond Business Integration Suite Deployment Guide – Information to
use in analyzing, planning, and managing an EAI deployment.

SeeBeyond Business Integration Suite Primer – An introduction to all
SeeBeyond e*Gate products, including e*Ways for popular applications like:

• PeopleSoft

• SAP

• Oracle Financials

Chapter 2 – The RIB messaging model 3

Chapter 2 – The RIB messaging model
This chapter presents the RIB’s messaging model. It describes how RIB
messages are structured and the rationale behind this structure. It also describes
the types of messages used.

Not presented in this chapter are the specifics of each message. The Retek 10.1
Integration Guide details information about message contents and
transformations.

Message characterization
Enterprise Application Integration systems produce messages characterized by
three dimensions: the contents of the message, when the message is produced,
and the structure of the message.

Note: The term “message characterization” is used as opposed to “message type”
to avoid confusion with other EAI terms.

Structure: The message may have a simple structure and correspond to a small
business sub-entity or it may contain a hierarchical structure containing all sub-
entities that comprise it. (“Flat” versus “hierarchical”.)

Message contents: The message contains all information about a business entity
or it captures only something that has changed about that entity (“snapshot”
versus “delta”).

When the message is produced: The message may be produced as part of the
business transaction affecting the entity or it may be produced within a separate
transaction that occurs a short period of time later. (“Synchronous” versus
“asynchronous” production.)

Using these criteria, one is able to characterize a specific message as a “flat
synchronous snapshot” or a “hierarchical asynchronous delta” or a “hierarchical
synchronous snapshot” or some other combination. Additional information
accompanies the business entity information. This includes XML tags used to
rout the message, information about the originating system or environment, or
information about the business event the message captures.

The RIB publishes three different message characterizations:

• Hierarchical Synchronous Snapshots – These messages contain newly
created composite business entities, such as purchase orders.

• Flat Synchronous Snapshots – These messages contain a change made to a
business entity absolute value, such as the price of an item, on a “master”
system. They may also contain newly created simple business entities, such
as a location.

• Flat Synchronous Deltas – these messages encapsulate a business event
captured on a non-master system that affects information on a remote
“master” system. An example of this would be for a clerk to reserve
inventory for a local store system from a remote warehouse system. The
remote warehouse system is the master of its inventory data.

4 Retek Integration Bus

RIB message families and message types
Besides the characterizations of a message, each RIB message belongs to a
specific message family. Each message family contains information specific to a
related set of operations on a business entity or related business entities. The
publisher is responsible for publishing messages in response to actions performed
on these entities in the same sequence as they occur.

Descriptions of each message family are found later in this document. Although a
generalized format exists, each message family varies in the specifics of the
information it contains – the business entities and events the message captures.
Furthermore, each message family contains a set of sub-formats specific to the
business event triggering message publication. The term message type embodies
this specific sub-format. For example: a Purchase Order message family can
contain message types such as “Create PO Header”, ”Create PO Detail”, “Update
PO Header”, or “Delete PO Detail”.

Messages are published and subscribed to on a message family basis. A single
application is responsible for publishing all messages within a message family.
However, multiple instances of an application may publish messages within the
same message family. In other words, only the RMS application publishes
messages in the “Available To Promise” (ATP) message family and only the
RDM application publishes messages in the “Advanced Ship Notice Outbound”
(ASN Outbound) message family. However, multiple distribution center
installations of RDM may each publish their own ASN Outbound messages.

Chapter 2 – The RIB messaging model 5

Model drivers and concerns
An architect chooses the type, structure, and other characteristics of the messages
within an EAI system based upon many factors. One major factor is that the
message contents encapsulate the business event. Different types and
characterizations are available within a single EAI system. The RIB is no
exception. The RIB contains many messages corresponding to the creation of an
entity characterized as “Hierarchical snapshots” and “synchronously” produced.
On the other hand, there are also “flat synchronous delta” RIB messages
associated with update operations. The factors determining which
characterization to use include:

• Publisher/subscriber/bus availability: One major goal in the design of the
RIB is to insure that no tight coupling exists between Retek’s applications
and the RIB’s availability. That is, if the RIB is unavailable, the publishing
and subscribing applications can still function. This means that there may be
a delay before the transmission of a message occurs over the RIB network. It
also means that database updates needed for message publishing must occur
outside of the same transaction containing the business event.

• Retek application locking on sub-business entities: Many of Retek’s
applications allow for simultaneous updates to sub-business entities. An
example of such an entity is a line item found within a Purchase Order. The
Retek Merchandising System allows multiple concurrent changes to multiple
items, header, or summary information for a single PO. Many times the PO is
used for replenishment purposes and multiple people are constantly updating
the PO. Situations such as these tend to produce “flat” messages containing
only the changes to the line items. Producing a “hierarchical” message would
risk locking the PO for an unacceptable amount of time.

• Concurrency of message contents production and business event: A
desire for a loose coupling between the EAI system and the business
application suite drives some EAI architectures. In many cases, message
information is staged before publication. A delay exists between when the
business event occurs and when the message corresponding to this event is
created and published. This delay presents a window of opportunity for
multiple similar business events to occur on the same entity before
publication of any of the messages. For example, multiple users may make
changes to the same Purchase Order header within a short time period.

There are two strategies for staging business event information: record only
enough information to denote that the event occurred (for example: an update
occurred on PO line item xxx) or record all information about that event (for
example: an update occurred on PO line item xxx and the new quantity is
yyy, the new location is zzz,). If all information about the event is NOT
staged, the message published may not correspond to the triggering business
event. In an even worse scenario, it’s possible to delete the business entity
involved before creating the message.

• Transactional considerations: Some business events require multiple
database transactions to complete. One example of this is the creation of a
new vendor.

6 Retek Integration Bus

• Sequencing and error handling: Many business processes are stateful. That
is, only certain actions can occur at certain times. A subscriber must process
messages concerning a specific business entity in the same order they were
published. This has implications regarding error handling: once an error
occurs on one message, subsequent messages referring to the same business
object should be held and not processed until the error has been resolved.
However, other messages concerning other business entities should continue
to be processed.

• Deployment and software lifecycle: The applications producing and
subscribing to messages need separate deployment between themselves and
the RIB. In effect, each Retek application can be “plugged” into the RIB
based on the needs of the retailer. If the retailer decides to not use the RIB,
then no noticeable performance degradation occurs. In other words, the RIB
is not required for any Retek application.

• Performance: Updates to some business sub-entities happen frequently on a
single business entity. Take the example of a retailer creating a single
replenishment PO per supplier. Users may update the same PO many times
during the day. When one analyzes the volume of updates and the cost of
creating a full PO message, it may be a significant performance bottleneck to
publish the full PO snapshot for each update.

• Data synchronization risks: Many messages seek to replicate data across
multiple systems. Sometimes, the data on two systems may differ due to a
variety of possible situations. When one uses a “delta” type of message, there
is a risk that the subscriber cannot process these messages due to the data
differences.

Chapter 2 – The RIB messaging model 7

Message life cycle
The Retek Information Bus (RIB) uses the “Pub/Sub” message model for all of
the messages produced and consumed within the EAI system. The publishing
application is responsible for creating the initial message contents. The RIB
publishing adapter will publish it to the RIB and make it available to any
subscribers. The RIB knows what subscribers are to receive the message due to
the RIB’s configuration -- this configuration associates a set of subscribers to
each publisher / message family combination.

Database tables associated with the publishing application typically stage
message information. One or more RIB Publishing Adapter collaborations poll
the staging table. A collaboration is a single thread of control within the adapter
that publishes the appropriate XML message(s) to the EAI network. Each
publishing collaboration publishes messages that are specific to a predetermined
subset of business entities.

Note: The actual subset of business entities is determined by configuration
entries. For the Purchase Order message family, for example, if two
collaborations are configured, then one may publish the even numbered POs and
the other the odd numbered POs. Note: not all RIB adapters have this capability.

The message resides in a network queue immediately after publication. This
queue provides stable storage for the message in case of a system crash occurring
before all message destinations receive and process it. One requirement for the
queue is that it must be delivered and processed successfully exactly once to each
subscriber. All work performed by the subscriber and the RIB must be atomically
committed or rolled back, even if the EAI queue is on a remote host using a
remote database. The standard way to perform this is by using an XA interface
and two-phase commit protocol.

After initial publication, a message may undergo a series of transformation,
filtering, or routing operations. A RIB component that implements these
operations is known as a Transformation and Address Filter/Router (TAFR)
component. A transformation operation changes the message data or contents. A
filter operation examines the message contents and makes a determination as to
whether the message is appropriate to the subscriber. For example: those
subscribers that do not process all message types found in a message family
require filter operations to weed out the unsupported types. A router operation
examines the message contents and forwards the message to a subset of its
subscribers. A filter operation can be considered a special case of a routing
operation. Although logically separate operations, for performance reasons
TAFR components usually combine as many as is appropriate.

TAFR operations are specific to the set of subscribers to a specific message
family. Multiple TAFRs may process a single message for a specific subscriber
and different specific TAFRs may be present for different subscribers. Different
sets of TAFRs are necessary for different message families.

8 Retek Integration Bus

If all subscribers to a message can process all messages within a message family
without any TAFR operations, then no TAFR components are needed, as seen in
Figure 2.1. However, multiple TAFRs may be needed depending on the types of
subscribers. This is seen in Figure 2.2, where one TAFR routes the information
among different remote sites and then another TAFR transforms the data further
for an additional subscriber.

Figure 2.1 Simple Message Flow

Application
Triggers

Publishing
Adapter App 1 DB

RIB
Queue

Subscriber
Adapter 1

Subscriber
Adapter 2

Message Family
Manager

Staging Tables App 2 DBPayload

Payload

RIB messsage RIB message

RIB message

Chapter 2 – The RIB messaging model 9

RIB
Queue

2C

Publishing
Adapter TAFR1

RIB
Queue1

RIB
Queue

2A

RIB
Queue

2B

Sub Adapter 1

Sub Adapter 2

TAFR 2

App1 db

App 2 db

App 3 db

Sub Adapter 3

RIB
message

RIB
meessage

RIB Message

RIB Message

RIB Message

RIB
Queue

3

Figure 2.2 Message Flow with TAFR

Message
Family

Manager
Staging
Tables

Application
Trigger

Payload

Payload

Another type of RIB component that may process a message is a bridge
component. These SeeBeyond e*Ways, BOBs, queues, or connection points
allow messages to traverse different administrative domains. The type of bridge
component used is site specific. A deployment of bridge components is
dependent on how the network bandwidth and topology, the administrative
specifics of the publisher and subscriber applications, and the availability of
specific RIB resources. Bridges are very useful when remote sites that belong to
different organizations and operations staff need to exchange messages and a
central controlling authority is non-existent. Figure 2.3 is a modification of
Figure 2.2, where one of the remote systems uses a bridge.

10 Retek Integration Bus

RIB
Queue

2C

Publishing
Adapter TAFR1

RIB
Queue1

RIB
Queue

2A

RIB
Queue

2B

Remote Sub
Adapter

Sub Adapter 2

TAFR 2

Remote
App db

App 2 db

App 3 db

Sub Adapter 3

RIB
message

RIB
meessage

RIB Message

RIB Message

RIB Message

RIB
Queue

3

Figure 2.3 Message Flow with TAFRs and Bridge

Remote
RIB

Queue

B
R
I
D
G
E

B
R
I
D
G
E

Remote RIB Installation

Message
Family

Manager
Staging
Tables

Application
Trigger

Payload

Payload

Within RIB components, message processing continues until a subscribing
adapter successfully processes the message. These components will perform
application specific database updates for the specific message encountered.

When a message is processed, the adapter checks to see if the message hospital
contains any messages associated with the same entity as the current message. If
so, then the adapter places the current message in the hospital as well. This is to
insure messages are always processed in the proper sequence. If proper
sequencing is not maintained, then the subscribing application will contain
invalid data.

If an error occurs during message processing, the subscribing adapter notes this
internally and rolls back all database work associated with the message. When
the message is re-processed (since it has yet to be processed successfully), the
adapter will now recognize this message is problematic (sick) and checks it into
the hospital for “surgery”.

After a message is checked into the Error Hospital, a second collaboration
extracts the message from the hospital and re-publishes it to the integration bus.
The message remains in the hospital during all re-tries until the subscribing
adapter successfully processes it or the maximum allowed retries is reached.

Chapter 2 – The RIB messaging model 11

RIB message structure
RIB Messages are XML formatted and have a two-tiered structure consisting of a
set of “envelope” tags and a single “payload”. The envelope tags contain routing,
message type, and other non-business entity information. The payload is specific
to the message type and contains the business entity information.

As of the RIB 10.1 release, the message envelope contains the following tags:

<family> message family message belongs to

<type> message type message belongs to

<id> Optional ID string that identifies the message. Composite
primary keys will require multiple IDs. For example, a line item
within a Purchase Order would contain the PO number and line
item number as part of the ID. For example:

<id>PONumber=12345</id>

<id>ItemID=321</id>

Some ID’s are simple and the value of the ID is
specific to the message family. In this case,
a single ID tag may be present and consist of
merely a single identifier, such as

<id>FT_ITEM_12</id>

<routingInfo> Optional tag that contains elements used to route or filter
messages for specific subscribers. Multiple <routingInfo> tags
may be present. Within the <routingInfo> element, the following
sub-elements must exist:

<name> name of routing field. A message may have
multiple routing fields.

<value> value of the routing field.

<publishTime> Date/timestamp the message was published.

<hospitalID> ID of the Message within the Error Hospital. Set only
after the message is checked into the Error Hospital.

<failure> Optional tag that contains elements used to identify a specific
processing error. Multiple <failure> tags may exist. Every time
the message is checked into the Error Hospital, a <failure> tag is
created. This tag contains the following sub-elements:

<time> Date/timestamp of failure.

<location> Location or name of the Error Hospital.

<description> Textual description of the error.

12 Retek Integration Bus

<messageData> The message type specific “payload” containing data
describing the message triggering event. The payload is XML,
but the XML varies within each message type. The DTDs
describing this data are stored in a table within the rib_messages
database table.

<ribmessageID> This field uniquely identifies the message based on the
publishing adapter. It may be used to track or correlate problems
assocaited with a specific message.

Chapter 3 – Messaging system component overview 13

Chapter 3 – Messaging system component
overview

This chapter details the major components of the RIB that create, process, or
consume messages.

SeeBeyond components
Most of the RIB components execute within the context of SeeBeyond’s e*Gate
Integrator environment. This section presents a brief overview of these
components.

Registry
The e*Gate Registry is a SeeBeyond proprietary database containing all entities
used within a running e*Gate system. There is at least one registry available to
SeeBeyond components at all times. A system designer designates one registry as
the “master”. Other, “secondary” registries replicate the master for increased
performance and system availability.

Schemas
A schema is a logical grouping of EAI components. Each registry contains at one
or more schemas. Typically, schemas are designed for the end-to-end processing
of a set of related messages. The design of a Schema within a deployed RIB
system is dependent on many site-specific factors. Specific design or
configuration options are discussed in the RIB Deployment Guide.

Control brokers and participating hosts
The control broker is responsible for maintaining the operational control and
status of its attached components. Another goal of a control broker is to minimize
the number of network connections to the registry and to provide a central point
of control for a set of components. Each control broker connects to a registry but
can also fail over to other registries if needed. The control broker and all of the
attached components must belong to a single e*Gate schema.

There is one control broker per “participating host” per schema. A participating
host is a logical construct used. The control broker’s TCP/IP address and the
participating host’s name are associated with each other within the registry.

Control Brokers and participating hosts are transparent or not involved in the
processing of RIB messages.

Events and event type definitions
SeeBeyond “events” include both messages passing to and from JMS, and stored
procedure calls to external application APIs. An event’s type determines its
logical name, and its physical structure is determined by an event type definition
(ETD). Different event types may share the same ETD to allow message with
identical structure to flow to different recipients. The RIB uses a single ETD for
all messages while they are inside the RIB.

14 Retek Integration Bus

Collaborations
Collaborations define message processing logic on a per message family/message
source/ component combination. This logic is “triggered” or executed when the
adapter pulls a message with the correct event type from the specified source.
The RIB uses Java to define the message processing logic. All collaborations
require one or more triggering conditions in order to execute. This condition may
be any of the following:

• A file appearing in some directory

• A certain time period has elapsed

• A message appearing on a queue

• Some application – specific condition

A collaboration works on a collection of input and output events, which may be
messages going to or from queues, or passing to or from an application’s RIB
APIs.

In general, the logic within a collaboration may perform any number of
operations. It may update a database, simply collect statistical data, write
information to a file, or some other operation. It may produce zero or hundreds of
output events, depending on the application.

e*Ways and BOBs
There are two basic types of e*Gate components used to create, process, and/or
consume messages on the RIB: e*Ways and Business Object Brokers (BOBs).
These are specific implementations of the generalized concept known as an
Integration Bus “Adapter”. BOBs and e*Ways contain one or more
“Collaborations” that are triggered from some event. A collaboration works on a
collection of input and output events, which may be messages going to or from
queues, or passing to or from an application’s RIB APIs.

Note: See the Retek Integration Bus Primer if you are unfamiliar with the
concept of an Integration Bus Adapter.

e*Ways and BOBs are multi-threaded and can process multiple messages
simultaneously, but are single-threaded for a particular event type.

Traditionally, the difference between the two component types is that e*Ways
may contain an “application specific” source or sink for messages, while BOBs
connect internal bus components. The RIB, however, only uses a specific type of
e*Way, the Java “Multi-mode” e*Way, which can function as both an external
source or sink and an internal connector. The Multi-mode e*Way is a grouping of
logical collaborations into a single physical process or program.

Chapter 3 – Messaging system component overview 15

Intelligent Queues and JMS Intelligent Queues
Intelligent Queues (IQ) hold published messages and maintain a record of what
subscribers have received the messages. Many types of Intelligent Queues either
wrapper the message storage mechanism or bridge to another queuing system.
The SeeBeyond e*Gate system installed with the RIB includes the standard file-
based IQ, a Java Messaging Service (JMS) IQ, and an Oracle IQ. Also available
is a memory-resident queue used to store messages sent between collaborations
that are entirely resident within a single e*Way.

JMS Intelligent Queues are queues that may be accessed using the Java Message
Service API. All supplied RIB Queues use connection points defined for this
API.

IQ Managers and JMS IQ Managers
The original purpose of an Intelligent Queue Manager was to control a set of
Intelligent Queues of the same type. There are multiple types of Queue
Managers, each controlling a different type of IQ. Each type of IQ differs on how
messages are queued and saved to stable storage while in the queue.

The JMS Intelligent Queue Manager serves two roles. The first is the same as
any other IQ manager: to control a set of Intelligent Queues for any SeeBeyond
e*Way. The second (which the RIB uses) is to act as a Java Message Service
(JMS) provider, accessible through JMS Connection Points. The RIB uses the IQ
Manager this way because it requires the use of the XA two-phase commit
protocol to guarantee “exactly once” successful message processing. This
protocol is available with a JMS implementation. However, a JMS Intelligent
Queue is not used because the existing IQ Manager service interface does not
support the XA protocol. Instead, RIB e*Ways use SeeBeyond JMS Connection
Points. Connection Points connect to a JMS IQ Manager such that the XA
protocol is supported. For more information regarding JMS connection points
and Intelligent Queues, see the SeeBeyond JMS Intelligent Queue User’s Guide.

e*Way Connection Points
An “e*Way Connection” or “Connection Point” defines a session between the
e*Way and an external system. The following types of connections are available:

• Java Message Service – a connection to a JMS Server or JMS Service.

• A relational database, such as Oracle

• A TCP/IP connection to a remote application using the HTTP or HTTPS
protocol.

• E-mail (uses SMTP for outbound and POP3 for inbound messages)

If a Database connection point used within a collaboration defines the login,
password, and server address for database operations. It also may define the
frequency “triggering events” are fired off, allowing the collaboration to define a
polling operation.

16 Retek Integration Bus

A connection point made to a JMS implementation can be used to publish or
subscribe to external applications. JMS connection points can also be used to
bridge between e*Gate schemas.

RIB components
The SeeBeyond components listed above build and process RIB messages. This
section lists the subsystems deployed within these components and within other
Retek application software. Each RIB component has a dedicated task and is
generally specific to one message family.

RIB_XML database package
Because so much of the RIB uses Oracle XML, Retek developed utility and
helper procedures. These procedures are stored within the RIB_XML PL/SQL
package. This package simplifies the process of creating new XML strings or
parsing existing XML strings.

Message validation: The RIB_XML package can perform message payload
validation against a Document Type Definition (DTD). This DTD is stored as a
CLOB within the database. If the publishing or subscribing application requests
validation, the RIB_XML package API contains parameters to extract the DTD
from rib_doctypes, parse the DTD and then validate the message payload using
the DTD.

The table rib_doctypes stores the DTD as a CLOB and associates the CLOB
with a message name. This table must be accessible within the user ID used to
create or consume RIB messages. Loading the rib_doctypes table may be
performed using the DocTypeInserter java application.

RIB_SXW database package
Another Oracle package has been developed for creating XML payloads, the
RIB_SXW package. This package provides no validation facilities, but better
performance than RIB_XML. It also does not contain any parsing functions.

This package also contains restrictions in how a message may be created, such as
fully populating an XML element with fields and sub-elements before moving to
another node on the XML tree.

Chapter 3 – Messaging system component overview 17

Application message publishing triggers
Most applications use triggers to initiate the message publishing process. These
triggers are RIB specific and should be enabled only when an enterprise is using
the RIB for integrating its applications. These triggers are fired when a specific
database table is modified. The trigger assumes that the application is responsible
for the modified data. The trigger retrieves all of pertinent information to create a
specific type of message and inserts it into a staging table using an application
specific Message Family Manager (MFM) API.

The message information is usually stored as an XML string and is known as the
RIB message “payload”. The payload is contained in an Oracle Character Large
Object Binary (CLOB). The database table that holds the payload data must also
maintain the following:

• The order that messages are created
• The CLOB containing the “payload” XML
• Any routing or filtering key values
• The message type associated with the business event that created the

message. The message type is specific to the message family and a single
business event may produce multiple messages of differing types within
different families.

By storing all of the data within the same transaction as the business event, all
RIB messages are considered as being “published” synchronously with the
business event – even though the message has not been processed by any EAI
system deployed component.

Start Stop
Application
Database
Table mod

Trigger
Collects

info

Create XML
payload
using

RIB_XML or
RIB_SXW
Package

Write XML,
routing info
to staging
table using

MFM

Trigger
Returns

Figure 3.1 Trigger Processing -- XML CLOB

Figure 3.1 displays the application trigger processing. The following steps are
followed:

1 An insert/update/delete operation on a table causes a RIB application trigger
to be executed. The trigger was installed and enabled as part of the RIB
installation.

2 The trigger collects any information it needs to continue. This may involve
additional database operations.

3 The trigger leverages either the RIB_XML or RIB_SXW package to buld the
XML payload for this message type. An Oracle CLOB is created to store the
XML payload.

4 The trigger calls the Message Family Manager package to store the message
into a staging table. The specific API that is called is the ADDTOQ()
procedure.

5 The trigger returns.

18 Retek Integration Bus

Non-trigger publishing
Some applications may not use triggers to start the publishing process. Some
alternatives used are:

• Using an insert into the MFM staging table directly from Oracle Forms. In
this case, the logic to create the CLOB and insert it into the MFM staging
table is found in a stored procedure referenced directly by the Oracle Forms
based application.

• Using “upload” tables to stage the information until ready to publish. In this
scenario, the message is not bound to the XML format until the Message
Family Manager GETNXT() stored procedures invoked. GETNXT() is
described in the next section.

• Using a file to create the RIB Messages. This would typically be used for
interfaces from external systems.

In first two cases above, the information contained in the message published to
the bus is stored within the same transaction as the business event. The actual
technique used to kick off a message’s publication is described in more detail in
the Retek 10.1 Integration Guide.

Message Family Manager API
Each application uses a Message Family Manager (MFM) specific API for
publishing all messages within a specific message family. This API is the
interface to a stored procedure package and wrappers the staging table and
additional business logic surrounding the message publication. A single
application is responsible for publishing all messages within a single MFM.

Because the same application can publish multiple message families, it could use
multiple MFM specific packages, one per MFM.

There are two procedures typically included in an MFM package:

ADDTOQ()
Stores message state, routing / filtering keys, message type, XML Payload, and
other information needed to create a RIB Message. This procedure has the
following format for its parameter footprint:
PROCEDURE ADDTOQ(O_status_code OUT VARCHAR2,
 O_error_text OUT VARCHAR2,
 I_message_type IN VARCHAR2,
 I_message IN CLOB,
 I_msg_1 IN tbl.msg_spec_1%TYPE,
 …

);

where

Chapter 3 – Messaging system component overview 19

O_status_code Denotes the status of the call. The value of this is found
in the RIB_CODES package. Possible values include:

MFM_FATAL_ERROR – cannot insert a message due
to an error.

MFM_SUCCESS – successful message insertion.

O_error_text This is text associated with an error or warning
occurring in the call to ADDTOQ.

I_message_type Type of the message payload. A specific type is
associated with one or more business events. This type is
a further subdivision of the message family.

I_message The message payload formatted as an XML string.

I_msg_1 A message family specific facility type, key, or other
information that is supposed to be present in the message
envelope. This is an optional parameter and may not be
present. The type of this parameter is specific to the
message family.

… Additional optional parameters. These are dependent on
the message family in use.

GETNXT()
Retrieves the record from the staging table for publication. This procedure uses
the following parameter signature:
 PROCEDURE GETNXT(O_status_code OUT VARCHAR2,
 O_error_text OUT VARCHAR2,
 O_message_type OUT VARCHAR2,
 O_message OUT CLOB,
 O_msg_1 OUT tbl.msg_spec_1%TYPE,
 …
);

where

O_status_code Denotes the status of the call. The value of this is found
in the RIB_CODES package. There are for possible
values:

MFM_FATAL_ERROR – cannot retrieve a message due
to an error. Publisher should exit.

MFM_WARNING – the next message cannot be
published because of a sequencing problem.

MFM_SUCCESS – successful message retrieval.

MFM_NO_MSG – no messages are waiting to be put
onto the integration bus.

O_error_text Text associated with an error or warning.

O_message_type Type of the message payload. A specific type is
associated with one or more business events.

20 Retek Integration Bus

O_message The message payload formatted as an XML string.

O_msg_1 A message family specific facility type, key, or other
information that is supposed to be present in the message
envelope. The Type of this parameter is specific to the
message family.

… Additional optional message family specific parameters.

Publishing application adapter
Most messages are published using two separate database transactions, as seen in
Figure 3-2. The first transaction consists of the application specific
insert/update/delete operations that perform some business functionality. These
operations occur independently of the RIB. However, when the RIB is active,
additional triggers are enabled on these tables that create one or more XML
“payloads” that are inserted into one or more staging tables. These “payloads”
encapsulate the business event the application is performing.

Access to the staging table is wrappered by a Message Family Manager (MFM)
PL/SQL package. Many MFMs exist and more detail on them will be found later
in this guide. Each publishing MFM contains a stored procedure used to insert
into the staging table is called “AddToQ()”. This function always has an input
CLOB parameter that contains the XML Payload. It may also contain a variable
number of additional parameters.

The second transaction is controlled by the publishing adapter. A RIB Publishing
Adapter polls the staging table by calling another routine in the MFM called
“GetNxt()”. This type of operation is known as a “Pull”, since the adapter pulls
the data from the database. The MFM “GetNxt()” procedure may contain simple
or complex logic, depending on the messages it is responsible for. For example,
a simple “Create Vendor” message may involve merely selecting and then
deleting a single record from the vendor staging table. On the other hand, a
“Create Purchase Order” message has more complex logic, since one does not
publish purchase orders until they have been approved. Many changes may be
made to a PO before it is approved and each change resulted in a call to the
MFM’s AddToQ() function to add another record into the staging table.

When the call to the MFM GetNxt() returns the data to the publishing adapter, a
RIB Message is created from the payload (and other) GetNxt parameters. This
message is then published to a Java Message Service (JMS) Topic (also called a
“RIB Queue”).

Note: In the Java Message Service nomenclature, one puts a message onto a
JMS “Topic” for Pub/Sub operations. One puts a message onto a JMS “Queue”
when only a single subscriber will ever receive the message.

An XA compliant two-phase commit operation is then performed to insure that
all operations on the database and the RIB Queue are performed atomically. I.e.
the data is either deleted from the database and published to the RIB Queue, or
neither deletion nor publication occurs.

Chapter 3 – Messaging system component overview 21

Note: XA is a Distributed Transaction Processing specification originally
developed in 1991. It is now available from “The Open Group”. Copies of this
standard (C193 Distributed TP: The XA Specification ISBN 1-872630-24-3) are
available from “The Open Group’s” website, http://www.opengroup.org.

As long as the GetNxt() procedure returns a message, the publishing adapter will
immediately publish the message and make another call to GetNxt(). If GetNxt()
returns a “No message available” status, the publishing adapter will sleep a
configured amount of time before it tries to call GetNxt() again.

The message resides in a network queue immediately after publication. This
queue provides stable storage for the message in case of a system crash occurring
before all message destinations receive and process it.

Message Family Manage (MFM)
(Oracle PL/SQL Package)

Oracle
Forms or

Batch
Application

ApplicationD
atabase
Table

 Table
Trigger
(3) Trigger

Creates
Payload

Staging
Table

(aka Msg.
Family
Queue)

Publishing adapter
(e*Way).

(10) Creates RIB
message from Payload

and other data.

(12) Adapter Commits all
database and message

operations

JM
S

To
pi

c

(1) Application updates
, deletes or inserts into

table

(2) SQL
operation

 Fires Trigger
(4)Trigger calls MFM
addToQ() with XML
"Payload", Bus. Obj.

ID, other data

(5) AddToQ() Inserts
Payload, other data into

Staging TableRetek Application
controlled

Transaction

(7) Adapter Polls
calling MFM

GetNxt() Stored
Procedure

(9) GetNxt()
Returns

Payload, Bus.
Obj ID, other

data

(8) GetNxt() Selects,
updates, aggregates,

deletes data from
Staging Table

(11) Adapter
Publishes RIB

Message to JMS
Topic

Publishing Adapter
Controlled Transaction

(2 Phase Commit
involving Oracle and

JMS Provider)

Message Publication Process

(6) Application
commits all changes

Figure 3-2

22 Retek Integration Bus

TAFR Adapter
A Transformation Address Filter/Router (TAFR) adapter is another e*Way
adapter that is used to process data. It contains one or more collaborations that
perform TAFR operations on all messages from a single message family. The
specific activities it performs is dependent on the needs of its subscribers.

Figure 3.3 illustrates the activities associated with a TAFR adapter. These
include:

1 A message is delivered to the TAFR adapter collaboration after it has been
placed onto a JMS queue. This triggers the collaboration logic.

2 The TAFR performs its needed filtering and transformation processing on the
message.

3 If the message is to be routed to one or more destinations, the message
contents are copied into a new SeeBeyond Event Type. This event type is
specific to the destination. Hence, if an Advance Ship Notice Inbound
message needs to go three different warehouses, then the full contents of the
message is published to the integration bus as three different events using
three different event types. This allows for each of these messages to be
published to different queues.

Chapter 3 – Messaging system component overview 23

TAFR Adapter (e*W ay)
(2) T ransformations are
performed, if any

(3) destination JMS
Topics are determined. If
no destinations are found,
the message is discarded

JM
S

To
pi

c

(4) RIB Message
published to
appropriate

destination topic(s)

TAFR Adapter
Controlled transaction

 (2 phase commit
involving multiple JMS

Providers)

TAFR Process

JM
S

To
pi

c

JM
S

To
pi

c
JM

S
To

pi
c

...

(1) TAFR pulls message from
JMS Topic

Figure 3-3

24 Retek Integration Bus

Subscribing application adapter
An application subscribes to a message through the use of a RIB subscribing
adapter. This adapter will pull a message from the appropriate JMS topic and
call a subscribing MFM’s “Consume()” stored procedure. For subscribers, there
may be many MFM PL/SQL packages for a single Message Family, each one
with offering its own “Consume()” procedure. The purpose of this procedure is
to directly update the application controlled tables with the information found in
a specific RIB message type.

Subscribing adapters are also responsible for insuring that messages are
processed in the correct sequence for a given business entity. For a specific
Purchase Order, its “Create Purchase Order” message must always be processed
before an update or delete message. Furthermore, all updates must be processed
in the correct order to insure that two systems are correctly synchronized.

But no such guarantee exists when comparing messages concerning different
business entities. In general, messages are processed in a First-In, First-Out
order. If an error occurs processing a message for a PO, then other messages for
other PO’s should still be processed.

If an error occurs during message processing, the subscribing adapter notes this
internally (NOT in the database) and rolls back all database work associated with
the message. When the message is re-processed (since it has yet to be processed
successfully), the adapter will now recognize this message is problematic (sick)
and checks it into an Error Hospital database for “surgery”.

A subscribing adapter always checks the hospital database to see if there are any
messages in the hospital that act on the same business entity (such as a PO) that
the current message does. If so, then the adapter places the current message in the
hospital as well. This is to insure that all messages for a given business entity are
processed in the correct order. Without manual intervention, the RIB will always
process the “Sick” messages for a business object before any subsequent
messages that act on the same business object.

After a message is checked into the Error Hospital, a second thread of control
within the adapter extracts the message from the hospital and re-publishes it to
the integration bus. The message remains in the hospital during all re-tries until
the subscribing adapter successfully processes it or the maximum allowed retries
is reached. The subscribing application adapter contains two collaborations for
each message family. One collaboration is triggered to process incoming
messages (the “subscriber” collaboration) and the other (the “retry”
collaboration) is dedicated to re-publishing messages in the Error Hospital back
to the JMS queue. Every subscriber adapter has a unique “retry” event type,
which allows some adapters to retry a particular message even if others have
processed it successfully.

Chapter 3 – Messaging system component overview 25

Subscribing
Adapter
(2) Checks if message
should immediately go into
the Error Hospital. If so,
puts it into the hospital and
returns success.

(3) Determines correct
MFM Consume() PL/SQL
Stored Procedure to handle
message type

(8) If failure, mark message
to go into hospital, return
failure. If success, return
success.

Subscribing Adapter
Controlled transaction

 (2 phase commit
involving JMS Provider

and Oracle)

Subscription Process

JM
S

To
pi

c

(1) Subscriber pulls
message from JMS

Topic

Message Family
Manager (MFM) (Oracle
PL/SQL Package)

(5) Consume procedure parses
XML payload

Application
Database

Tables

(6) Consume
procedure
updates, inserts,
and/or
manipulates
application tables

(4)Subscribing Adapter calls
correct MFM Consume()

procedure

(7) MFM
Consume()
procedure
returns succss
or failure

Figure3-4

26 Retek Integration Bus

Figure 3.4 illustrates the processing involved for these messages:

1 The appropriate collaboration is triggered by a message from a JMS provider
hosting the RIB Queue. This message may arrive on the RIB Queue from the
Error Hospital, from a publishing adapter, or from a TAFR adapter.

2 The Error Hospital Java code is called to see if this message should
immediately be placed into the Error Hospital. This logic will check

a To see if any previously processed messages for the same business entity
is in the hospital. If so, then this message needs to be put into the Error
Hospital to preserve message sequencing.

b If this is the second time this message was processed because the stored
procedure returned an error the first time. If so, then the expectation is
that the message needs to wait a while before it is retried. The message is
placed into the Error Hospital to allow other messages to flow through
during this time.

If the message is placed into the Error Hospital in this step, the database
work is committed and the message is removed from the RIB Queue. Steps
3-6 are not executed.

3 The correct Message Family Manager stored procedure is called. The
specific stored procedure called is based on the message type of the message.

4 The stored procedure executes the appropriate application specific logic. This
may involve direct updating of application logic or simply inserting the data
into staging tables.

5 If step 4 returns an error, the message is flagged as “bad” (see step 2), and
the transaction will be rolled back. The message is kept on the RIB Queue.
The next time the message is processed, it will be put into the Error Hospital.

6 If step 4 returns success, the collaboration returns success: all database
updates are committed and the message is removed from the RIB Queue.

At the end of each attempt to process a message, it is found in exactly one of
three locations: Still on the RIB queue (because of a stored procedure problem),
in the Error Hospital, or successfully consumed by the subscribing application.

Chapter 3 – Messaging system component overview 27

Subscribing application stored procedure APIs
The concept of a Message Family Manager (MFM) is also used with message
subscriptions within the RIB. However, instead of a single PL/SQL package
processing all message types within a Message Family, a subscribing MFM uses
a single PL/SQL package to process a single Message Type within a Message
Family. As in the publishing side of processing, the subscribing MFM is only
concerned with the XML Payload and not the entire RIB Message XML.

All MFM packages that parse and process the payload within a RIB message
have the same procedure name (CONSUME) and same basic parameter list. An
example is seen below:
PROCEDURE CONSUME(O_status_code IN OUT VARCHAR2,
 O_error_message OUT VARCHAR2,
 I_message IN OUT CLOB);

where

O_status_code is the success/failure status of the procedure call. The
values of this parameter that are standard across all subscribing packages
are found in the RIB_CODES package. Currently, these include:

SUB_FATAL_ERROR – A fatal error was encountered processing the
payload.

SUB_XML_PARSE_ERROR – The payload could not be parsed due to a
validation error.

SUB_SUCCESS – The payload was processed successfully

O_status_code may also contain values that are application
specific. These values must not conflict with those listed above.
These values should be listed in the Retek 10.1 Integration Guide.

O_error_message is text associated with any error condition.

I_message is the payload XML text used as input to the stored
procedure.

Additional parameters may be present, depending of the specific MFM/Message
Type that is processed.

28 Retek Integration Bus

Error Hospital
The Error Hospital is a set of Java Classes and database tables that are designed
to segregate and trigger re-processing for messages that either:

• Had some error with their initial processing.

or

• Update the same business entity as the one mentioned above.

Each time the message is re-processed, a record is kept of the event along with
the results. The intent is to provide a means to halt processing for messages that
cause errors while allowing continued processing for the “good” messages.

If a message is to be inserted into the Error Hospital because of an error during
processing, it is sent to the subscribing collaboration twice. This is because
subscribing collaborations are executed within the context of a distributed
transaction, using the XA two-phase commit protocol. This transaction is
controlled by the e*Way infrastructure: If the collaboration returns success, the
message is removed and all database work committed. If the collaboration returns
failure, the message never leaves the integration bus queue and the database work
is rolled back.

Note: The XA interface is a standard protocol between a “Transaction Manager”
and a database or “Resource Manager”. In a SeeBeyond e*Way, the Transaction
Manager is part of the e*Way software that is involved in executing the
collaboration. Note that both the RIB queue and the database Connection Point
must be configured to support the XA protocol. For more information regarding
the XA standard, see the URL http://www.opengroup.org.

When the initial failure occurs while processing the message, the error is flagged
within the Error Hospital software, the collaboration returns failure so that the
database transaction is rolled back, and the message is kept on the integration bus
queue. Because the message has not been successfully processed, it is re-
submitted to the collaboration. This re-try will now cause the message to be
inserted into the Error Hospital tables.

The Error Hospital assumes that each message family has a single unique ID for
all entities its messages affect. This ID must be the same for the same entity
across all message types within the message family. The reason for this is that the
Error Hospital will automatically insert subsequent messages for the same entity
to maintain the sequential order. Otherwise, multiple updates to this entity may
be processed in the incorrect order, thus leaving incorrect values for that entity.

Chapter 3 – Messaging system component overview 29

For a subscribing adapter, the following logic is performed regarding placing
messages in the Error Hospital:

Copyright
2002

Retek,
Incorporat

ed

 Subscriber Error Handling Logic

Start

Stop

Subscribing
Collaboration

delivers message
from queue

message marked
as Failed, put
into hospital?

call message
type specific
Consume()

stored
procedure

Consume()
Success?

message work
committed

return
success from
collaboration

mark message
as Failed, to
be put into

hospital

return failure
from

Collaboration

message work
rolled back.

message will be
retried

message put
into hospital

Yes

No

No

Does Business
Object ID have

other messages
in Hospital?

Yes

No

If message is being
retried, mark
message for

deletion

Yes

Figure 3-5

Also associated with the Error Hospital within the subscribing adapter is a “Retry”
collaboration. This thread of control is responsible for retrying “sick” messages and to
delete all messages marked for delete. It selects messages to retry based on the Business
Object ID, the “Hospital ID” (a sequence number used to insure message sequencing is
maintained), and whether the maximum number of automatic retries has been reached.

30 Retek Integration Bus

The following tables are used to store messages in the Error Hospital:

rib_message – contains the message payload, all single-field envelope
information, and a concatenated string made from <id> tags. Also
contains a unique hospital ID identifying this record within the
hospital.

rib_message_failure – contains all failure information for each time
the message was processed.

rib_message_routing – contains all of the routing element
information found in the message envelope.

Additionally, a sequence, rib_message_seq, is used to maintain a unique
“Hospital ID” associated with each message placed into the Error Hospital.

Note: The “Retry” collaboration is responsible for maintaining the “State” information
for hospital records. One element of this information is whether the message has been
queued to the RIB Queue for re-try processing. Thus, manually deleting messages from
the hospital database using SQL directly may produce severe processing problems.
Similarly, deleting messages directly from the JMS provider may result in a message that
is never retried again.

 The RIB is supplied with a command-line and GUI interface to the Error Hospital
database for administrative message control. These facilities also allow one to manually
change the payload data for the next retry attempt.

Chapter 3 – Messaging system component overview 31

Performance and “M of N” Threading
The default message-processing paradigm is to have a single publisher for all
messages, zero or more TAFR adapters (depending on the subscribing system(s))
and one subscribing adapter per subscribing application. All of these
components originally come supplied within a single RIB schema and are placed
on a single host system. By implementing a production system using these
defaults, one is limited to the processing capabilities of a single RIB host and
associated database server. In some situations, this may not be sufficient.

There are a couple of ways one can deploy the RIB with higher throughput
capabilities. The first is to offload a subset of the RIB components to another
host. This is easily performed using the SeeBeyond Enterprise Manager. This is
applicable when a single RIB server is ‘maxed out’ in terms of one or more
resources. For example, if the RIB Server is CPU bound, or I/O bound. The
determination of which component(s) should be based on the source of the
problem. Such as:

� If the problem is Disk I/O on the RIB Server, then the problem may be due to
a single JMS provider on the host and creating another JMS provider (JMS
IQ Manager) on another host may provide the answer.

� If the problem is with CPU and/or network I/O on the RIB Server then one
may consider moving some of the high-volume adapters to another host.
Additional JMS providers may also need to be created.

But, the problem may be one of the serial nature of processing the messages. For
example, the message family manager GETNXT() procedure may be taking too
long to meet the message publication requirements. Assuming that the database
tables are indexed correctly, the next step in achieving performance goals may be
to multi-thread the processing from end-to-end.

Note: A huge increase in performance of an MFM may be achieved if the
staging tables are indexed correctly. The difficultly for this lies in the fact that
the near-real time nature of the RIB means that small numbers of records are
usually present at any given time. However, batch processes may infrequently
produce large amounts of data within a short period of time. Thus, when creating
indexes for the staging tables, it is important to generate them when large
amounts of data is present in the staging table. Otherwise, incorrect or
ineffectual indexes or statistics may be used.

The current RIB architecture supports this for a set of publishing Message Family
Managers. These, “High Volume” MFMs contain a ‘GETNXT()’ stored
procedure that contains two parameters used for multi-threading the publication
process: I_NUM_THREADS, and I_THREAD_VAL. I_NUM_THREADS is
the total number of threads that are involved in the publication process.
I_THREAD_VAL is the current thread ‘number’. This has been termed “M of
N” threading because each collaboration considers itself the Mth thread out of a
total of N threads.

32 Retek Integration Bus

The values of these parameters are set in the rib.properties file. The properties of
interest are:

mfm.<eway>.total_threads I_NUM_THREADS value
mvm.<eway>.<collab>.thread_num I_THREAD_VAL value

(current thread number)
where:

<eway> is the name of the e*Way
<collab> is the name of the collaboration in the e*Way

An example entry for the RMS Purchase Order publisher
(ewOrderPhysFromRMS) with two publishing collaborations is:

mfm.ewOrderPhysFromRMS.total_threads=2
mfm.ewOrderPhysFromRMS.ewOrderPhysFromRMS.thread_num=1
mfm.ewOrderPhysFromRMS.ewOrderPhysFromRMS.thread_num=2

The publishing collaborations may be deployed among multiple e*Ways, as long
as:

1 No duplicate “thread_num” values exist.

2 The aggregate set of “thread_num” values contains all valid values (1 to
“thread_num”, inclusive)

3 the total_threads property is the same for all of the e*Ways containing the
collaborations

Once additional publishing collaborations have been created, one must determine
if the downstream processing for the messages also must be duplicated. Doing so
allows one to distribute the processing stream across multiple hosts. It also
allows for multiple subscribers to process the same message family while at the
same time insuring the message sequencing is maintained.

Chapter 4 – RIB message families 33

Chapter 4 – RIB message families
This chapter presents an overview of the RIB Message Families. Each Message
Family contains information specific to a related set of operations. Processing by
Message Family insures that a sequence of messages for a given Business Entity
(for example, a PO) is maintained throughout the message lifecycle. In the RIB
10.1 release, a single thread of processing insures this sequence. The RIB
infrastructure maintains a FIFO ordering for messages on all of its queues.

A Message Family may contain multiple “Message Types”. Each message type
encapsulates the information specific to a business entity within one or more
business events. A single business event, such as updating a Purchase Order, may
involve multiple business entities, such as a line item within the Purchase Order.
Furthermore, because a single business event may involve multiple business
entities, the application may publish messages for this event from multiple
Message Families for a single business transaction. More than one message type
within a Message Family may also be created.

Messages published from different Message Families do not have the same
sequential guarantees as messages published from within the same Message
Family. Examining the contents of the Message Families reveals that most, if not
all, of these dependencies concern the existence of a specific business entity.
Hence, an Item may need to be created before it is used in a Purchase Order. The
Error Hospital retry logic alleviates this situation: when such a scenario occurs,
the operation (say, creating a new PO line item detail) will be re-tried until the
dependent entity (the Item) is created.

Event types and message families
Each Message Family uses a single SeeBeyond Event Type Definition to define
the publishing format for all message types within the Message Family. Because
of this, the SeeBeyond e*Gate Integrator infrastructure sees all messages from a
Message Family as belonging to a single “type”, known as the Event Type. The
RIB message processing logic sub-divides the messages according to the
message type field found in the RIB message envelope. The Event Type is the
SeeBeyond ID associated with the type of the message. Event Types may use the
same internal format. As such, Event Types may also be specific to how much
processing has occurred on the data.

The SeeBeyond Event Type used for a Message Family may be changed if TAFR
components are part of the processing stream. This is required when a single
message needs to be routed to multiple destinations. In this case, each destination
is associated with a distinct queue and each queue is associated with a distinct
Event Type.

34 Retek Integration Bus

TAFR components may also change the Event Type messages when a mere
transformation or filter operation is performed. This is done for two reasons:

1 It allows flexibility for the RIB topology. All messages may be put into the
same queue on the integration bus if they have different types. For simple
topologies, one can monitor the number of messages “In progress” on the
RIB by looking at the statistics from a single queue.

2 It provides greater clarity when configuring a subscribing adapter or TAFR
collaboration. Triggering events for a collaboration are fully specified by the
Event Type and the source of the Event Type. When the source is an
“upstream” collaboration, the Queue containing the event is “hidden” within
the upstream collaboration’s configuration. Specifying the output event type
using a different name insures that any components requiring the TAFR
operation gets only TAFR processed messages.

Message family overview
This section is an overview of the Message Families contained in the RIB 10.1
release. Additional Message Families are expected in future releases. These
message families are grouped by publishing application.

Remember that each RIB message is divided into an “envelope” and a “payload”.
The envelope contains transformation, routing, filtering, retry, creation, and other
information. The payload contains business event/business entity specific
information. For more information on the RIB messages associated with each
Message Family, see the Retek 10.1 Integration Guide manual.

Chapter 4 – RIB message families 35

RMS published message families
The following Message Families are published by the Retek Merchandizing
System application:

Interface Message Family
Abbreviated

Name

Description

ATP ATP Create or modify item/location stock data

Banner Banner Create, modify, or delete banner/channel
information

Differentiator
Groups

DiffGrp Create, modify, or delete differentiator group
headers or details.

Differentiators Diffs Create, modify, or delete differentiator
information

Items Items Create, modify, or delete items and item/suppliers,
item images and item UDA’s

Locations Stores Create, modify, delete store information

Locations WH Create, modify, or delete warehouse information

Merchandise
Hierarchy

MerchHeir Merchandise hierarchy changes

Partners Partners Partner information

Purchase Order Order Create, modify, or delete a purchase order with
physical or virtual warehouse items depending on
the implementation of the RMS.

Purchase Order OrderPhys Create, modify, or delete a purchase order with
only physical warehouse items

RTV Request RTV Request Return to Vendor Request

Seasons Seasons Season Information

Stock Order Alloc Create, modify, or delete allocation header and
detail information

Stock Order Transfers Create, modify, or delete transfer header and
detail information

UDAs UDAs Create, modify, or delete User Defined Attribute
information

Vendor Vendor Create, modify, or delete suppliers and supplier
address information

Work Order
(Inbound)

WOIn Create, modify, or delete inbound work order
information. This includes both an entire work
order, header modifications or detail
modifications or deletions.

36 Retek Integration Bus

RDM published message families
The following Message Families are published by the Retek Distribution
Management application:

Interface Message Family
Abbreviated

Name

Description

ASN Inbound ASNIn Advanced Shipment Notice (inbound shipment)
creation, modification, or deletion.

ASN Outbound
(BOL)

ASNOut Creation of Advanced Shipment Notice or
outbound shipment from warehouse (Bill of
Lading)

Customer
Return

CustReturn Customer return

Inventory
Adjustments

InvAdjust Inventory adjustment message

ItemWH ItemWH Items within a warehouse

Receipts Receipts Stock receipt creation and modification.

Receiving Receiving Appointment creation or deletion, header
modifications and appointment detail create,
modify, or deletion

RTV RTV Return to Vendor Transfer

Space
Locations

SpaceLocs Space location information for a warehouse

Stock Order
Status

SOStatus Status or modification of a stock order (Transfer
or Allocation)

Chapter 4 – RIB message families 37

RCOM published message families
The following Message Families are published by the Retek Customer Order
Management application:

Interface Message Family
Abbreviated

Name

Description

Customer Back
Order /
reservation

COBoRes Customer Back Order creation, change to/from
reservation, cancellation

Customer
Return Sale

COReturn Customer return of a sales item.

Customer Sale COSale Customer sales

Locations ShipMeth Shipment Method notification creation,
modification or deletion.

Pending Return PendReturn Pending customer return creation, deletion, detail
creation, detail modification, or detail deletion.

Stock Order CustOrder Customer order

Externally published message families
The following Message Families are published by non-Retek applications.

Interface Message Family
Abbreviated

Name

Description

Currency Rates CurRate Currency Rate information typically published by
a Financials application adapter.

Freight Terms FrtTerm Freight Term information typically published by a
Financials application.

Payment Terms PayTerm Payment Term information typically published by
a Financials application adapter.

Locations Locations Location creation, modification, or deletion.

Vendor Vendor Vendor information typically published by a
Financials application adapter.

Stock Order StockOrder Stock Order creation, deletion, header
modification, detail creation, detail modification,
and detail deletion.

GL Chart of
Accounts

GLCOA General ledger chart of accounts, typically
published by a Financials application adapter.

SKU
Optimization

SKUOptm SKU Optimization tasks.

Chapter 5 – External application message interfaces 39

Chapter 5 – External application message
interfaces

This chapter presents a brief overview of interfacing with external applications
using defined RIB messages.

RIB message paradigm concerns
The following tenets of the RIB Messaging system are of interest to external
(non-Retek) publishers and subscribers:

1 When a business entity is created, some result in one or more “Create”
messages. These messages consist of all header and detail information for the
composite entity created. External applications may require that these
messages be coalesced into a single composite message.

2 Conversely, an external application may not have the same data model as the
Retek application and require that a composite message be divided into
multiple messages. These may need to be along the lines of a “header” and
one or more “details”.

3 When a business entity is modified, a message specific to the modification is
published. The message may be specific to a sub-entity. For example, if a
line item is added to a Purchase Order, a PODTLCre message will be
published. If multiple items will be added, multiple PODTLCre messages
will be created. This means that a single database transaction may result in
multiple messages within the same or multiple message families.

Non-Retek subscribing applications cannot associate a single message with a
single database transaction.

In terms of non-Retek publishing applications, the application must publish
using Retek’s canonical form (as specified in the Retek Integration Guide) or
convert to this format. Besides converting field names or code values, this
may also mean splitting up a single message into multiple messages.

4 Deletion messages may be applicable to an entire composite business entity.
Different message types distinguish between the deletion of a sub-entity and
the composite entity. For example, a Delete Supplier message will delete the
supplier and all of its addresses, while a Delete Supplier Address will only
delete a supplier’s address.

Non-Retek subscribers that cannot accept a single delete message for these
entities will need to have additional processing to specify the sub-entities to
delete.

5 The full create/modify/delete/detail update/detail modify/detail delete
message types are not available for all message types. Non-composite
business entities do not contain “detail” operations. Some messages, such as
a Stock Order Status, reflect only an adjustment to an entity that will never
be deleted (or created) by the publishing application.

Non-Retek applications must only publish messages supported by the RIB if
they are to be consumed by standard Retek applications.

40 Retek Integration Bus

RIB published messages may require modification or transformation to satisfy
the external application APIs. These modifications and transformations may
involve additional database operations. For example, the complete vendor name
may be needed in a message as opposed to a “vendor ID” found in the RIB
message. Once the data requirements of the subscriber have been determined, the
available RIB messages should be inventoried for their applicability and the
specific transformations that need to be applied to them.

SeeBeyond application-specific adapters
When integrating with an existing non-Retek application, development time may
be shortened considerably using a SeeBeyond e*Gate Application Adapter
designed for that specific application. These application adapters are either:

• e*Ways that surface an application’s interface via a set of event type
definitions: For these types of e*Ways, one must develop a set of subscribing
collaborations that accept RIB messages as input events and a set of
publishing collaboration that accept the application specific events.

The subscribing collaborations convert the input RIB event into the event
types associated with the non-Retek application adapter. Then the
collaboration must publish the event to the “External” side of the e*Way.
The “external” side then understands what API’s are used for each event type
and updates the application with the correct data.

The publishing collaborations must convert the input application specific
events into one or more RIB events before publishing them. The source of
these events must be the “External” side of the e*Way.

Because of deployment limitations and performance concerns, it may be
necessary to locate the message event type transformation logic within a
different e*Way or BOB from the application specific e*Way. Because the
conversion is already done, no transformation is needed at the application
specific e*Way and “pass-through” collaborations are configured as part of
the e*Way.

• A library of event type definitions or wizards used to create these ETDs: An
example of this is the EDI ETD library. The purpose of these libraries is to
reduce the time creating, parsing, and/or validating the message format. For
example, one could use the event type definitions for EDI. In this case, the
ETD library aids parsing of the EDI document and reduces the amount of
development needed to convert these into messages used on the RIB.

Chapter 6 – Retek Extract, Transform, and Load 41

Chapter 6 – Retek Extract, Transform, and Load
The Retek Extract, Transform and Load (RETL) is a high-performance runtime
tool that is especially useful in parallel processing systems designed for high
volumes of data. The design of the RETL decreases the time importing or
exporting data to or from a database. An “IMPORT” operation reads from a data
file and an “EXPORT” operation creates a data file.

The usage of the RETL tool should be based on desired performance and data
volume. The RETL is a tool that leverages parallel processing. Although the
integration bus can also be configured for parallel processing, the RETL tool set
is much more flexible, and performs better. RETL is optimized specifically for
high data import and export throughput – much more than a normal on-line
messaging system.

The RETL software is extremely powerful and flexible. There are currently no
standard event type definitions for the RETL. The relationship between the
RETL and the RIB integration bus intersect only on the transfer of these files. As
such, one should treat the RETL tool in the same manner as a batch job stream.
The RETL may use a file as input or create a file as output. These files may be
transferred like a regular batch file. However, if the RETL is used between two
Retek databases, it may make sense to keep the file where it was generated and to
create two batch jobs executing serially on the same host.

Note that the size of the files produced could be a concern when RETL is used.
As seen in the next chapter, the easiest way to implement a batch file transfer is
as a single message. However, the one-to-one association of a file to a message
requires that the entire message must be read into program memory. If the file is
very large, then this could consume more resources than are available, causing
the file transfer e*Way to hang or error. Hence, it may be worthwhile to
investigate the size of the files imported or exported via the RETL tool and, if
over 100 megabytes in size, consider techniques to break the file up into smaller
sizes.

Chapter 7 – Batch job integration 43

Chapter 7 – Batch job integration
The main characteristic of a batch job is the reliance on a file as the means for
input and output. In point-to-point solutions, this file is typically FTPd between
systems. To integrate with the RIB, the batch file is converted to one or multiple
messages published to the integration bus.

The does not exist any pre-packaged batch integration software within the RIB
10.1 software that extracts data from the database and publishes it as a series of
RIB messages versus a file. If such software existed, then this in itself would be a
message-based solution (and there would still not be any pre-packaged “batch”
integration). However, the SeeBeyond e*Gate Integrator infrastructure allows
files to be used as sources or sinks for messages.

The RIB may be an alternative to using FTP or in conjunction with FTP file
transfers. The mechanism currently used to FTP existing batch jobs may be
replaced completely RIB based mechanisms.

Motivations for replacing FTP transfers
FTP is a common method for transferring files between systems. It uses a stable,
well-specified protocol and mature products are available that implement it. RIB
integration with batch files involves taking the file information and publishing it
to the RIB. The reasons why one would want to replace an FTP transfer with this
method include:

• Reduced number of FTP jobs that transfer the same file from place to place.

• With FTP, both hosts need to be available. When an adapter publishes data to
a RIB queue, only the RIB and one of the hosts need to be available. Because
of the distributed processing available on the RIB and the ability to move
components physically within a network, there is an increased flexibility for
operations personnel to perform system maintenance.

• Subscribers or publishers can move from a batch-oriented method to a
message-oriented mode in an incremental fashion. After publication, file data
exists as one or more messages and can be transformed, filtered, and routed
as such. If the same data is needed by multiple subscribing applications, then
some of the subscribers can remain relatively unchanged and still use a file as
input while others can read the data as messages directly from an integration
bus queue.

44 Retek Integration Bus

Transfer file data using a batch application e*Way
The first and simplest available option for using the RIB in this respect is to use
the SeeBeyond e*Gate Batch application e*Way to transfer file information to
and from the RIB. This e*Way can be used to copy files to or from hosts without
installed e*Gate components. The Batch e*Way is fully documented in the
SeeBeyond Batch e*Way Intelligent Adapter User’s Guide. This manual presents
a brief overview of its capabilities.

Do not use the SeeBeyond e*Gate File e*way. This is a development tool not
robust enough for deployment in a production environment.

A batch e*Way is created by creating new e*Way in the e*Gate Enterprise
Manager, selecting “stcewgenericmonk.exe” as the “Executable file”, and then,
when creating the new configuration file, selecting the “batch” e*Way
configuration template.

The Batch e*Way works in one of two modes:

1 A fixed configuration that publishes data to the RIB based on the presence of
a file in a directory or creates/appends a file based on the presence of a
message on a queue.

2 A message based configuration where the batch e*Way subscribes to
messages that contain the specifics of the file transfer.

“Fixed” configuration

Publication of data to the RIB
A batch e*Way is configured to poll for the existence of files (either on the local
system or on a remote system). Once found, the e*Way copies the files to a local
temporary directory. For files found on remote systems, FTP is used to copy it to
the local temporary directory. Configuration options determine the polling
interval, where the file is located, file masks to determine which files to transfer,
FTP parameters, whether the file should be renamed or archived after
publication, and if the contents of the file should be published as a single
message or if each line in the file corresponds to a single message. This is all
performed in the “application” side of the e*Way.

Once a message is ready on the application side of the e*Way, the message is
sent to the “collaborations” configured with the e*Way. A collaboration must be
created that can handle the messages published whose source is “<external>”. In
the simplest case, this collaboration could merely pass through the data without
modification or validation. In a more complex case, the collaboration could
validate and transform the data before publishing it as an event.

Chapter 7 – Batch job integration 45

If the entire file is to be published as a single message, the entire file will be read
into the memory of the batch e*Way. The memory allocated for this may never
be relinquished by the e*Way, depending on its scheduling. Severe problems
may result when the amount of memory needed exceeds the maximum available
for a single process or when the virtual memory of the machine is exhausted.
Retek internal test systems successfully transferred files 100 megabytes large;
your results may vary according to the specific operating system and its
configuration.

Subscribing to data from the RIB
A batch e*Way is configured with a collaboration that is triggered from events
(messages) published by another collaboration or are available on a JMS queue.
The processing order of these events is the reverse of publication. First, the
subscribing collaboration is executed and performs any needed transformations
or validations. Then the message is passed over to the “application” side of the
e*Way by publishing the message to the “<external>” destination.

The configuration of the application side determines the final disposition of the
data. As in the publication scenario, the data stages through a temporary file and
before copied to its final destination. FTP is used when the final destination is a
remote system. Configuration options for this processing include the following:

• The name of the file to put the message in.

• Whether messages are appended to this file or new files are created.

• Whether the file is uniquely named via a time stamp or sequence number.

• How often new files are created (if the append mode is used) and copied.

• Pre- and post- file copy activities.

• FTP session parameters.

Import notes: When the “append messages to a file” is used, file boundaries are
not necessarily maintained from the source file. One or more source files could
be put into a single destination file or, if the source file was published record-by-
record, half of the source file could be appended to a single destination file and
half to the next. It all depends on a set of interacting configuration parameters.
Furthermore, if a batch e*Way was used to publish the file using a “fixed”
configuration, no intrinsic mechanism exists for communicating the name of the
source file.

46 Retek Integration Bus

“Message” mode
In message mode, the batch e*Way receives an XML message detailing the file
transfer details. This message contains one or more operations or commands to
execute. There are two types of commands:

1 “receive” – find one or more external files and publish them to the
integration bus. The message published by the e*Way is formatted using
XML. It contains an identifying “return_tag” plus a “payload” tag containing
the data found in the file.

2 “send” – the subscribed message is used to create or append to a destination
file. The message contains a “payload” tag with the file contents. Other tags
in the message detail other specifics of the file, such as the destination file
name, and what to do if the destination file exists, and local/remote file copy
details.

One advantage of the “message mode” FTP configuration is that “send”
commands specify the name of the destination file. Hence, it is possible to
maintain file names across the file transfer. However, this method requires
additional development and processing.

Transferring data directly from/to a database
Another method for implementing batch transfers is to create an e*Way and a set
of collaborations to read from a database table and publish the information to the
RIB. This involves using the e*Gate Enterprise Manager to create the event type
definitions, collaboration rules, collaborations, e*Ways and queues. This strategy
replaces a batch mode of processing with a message-based mode. It directly uses
new development specifically for the integration bus.

There are two strategies one can use for this development: Using connection
points and developing the logic entirely within a collaboration or using one of the
“Generic” SeeBeyond e*Way adapters.

Using connection points and developing the logic within a
collaboration

 This strategy is useful if the data is available via a simple SQL statement or with
little added processing. (Actually, the wizard generates events based on table
structure, SQL statement, or Stored Procedure API.) The e*Gate Enterprise
Manager contains a database wizard that can generate an event corresponding to
the SQL statement.

Publication: One defines an e*Way connection with a polling parameter
determining how often these events will trigger the collaboration. No data or
SQL statement will populate the event (message) when the collaboration triggers.
The SQL statement executes as part of the collaboration rule logic and each row
of any result set needs publishing as a separate event.

Subscription: One configures a collaboration that includes the defined event as
an output event with a destination specified as a database connection point. The
collaboration transforms the input data into the SQL specific event and then
executes the SQL statement.

Chapter 7 – Batch job integration 47

Note that database transaction boundaries depend on XA interface usage and an
event’s destination or source. If the XA interface is used, all work within each
invocation of the collaboration is within a single transaction. If not, the
collaboration can execute multiple transactions per single invocation. RIB
collaborations typically use XA to insure “exactly once” successful message
processing.

Using a “generic” e*Way application adapter
A Generic e*Way Application Adapter is useful when the business logic
surrounding message creation or processing is not trivial. This series of adapters
also cannot leverage the XA interface. There is the possibility that the same
message is published or consumed multiple times.

Generic Application Adapters are specific to a programming language such as
Java or C/C++. Their configuration specifies a shared library, DLL, or Jar file
that contains the application logic. The functions, classes, and methods used in
this logic must meet certain criteria.

These adapters have the following models:

• Publication: When the e*Way is instantiated (brought up) its configuration
is read and the container of the application logic is attached to the e*Way.
Specific initialization functions are called (as per the Generic e*Way
standard application API). These functions may perform one-time activities,
such as establishing a database connection. Additional functions or methods
need to be implemented to inform the e*Way of lost connections or other
events. Once the e*Way is initialized, it polls (according to a configured
parameter) the application by calling a specific application provided
function. If any data is available, the e*Way attempts to decode the returned
bytes as a message in order to invoke a collaboration to process this message.
All collaborations of this sort must subscribe to an event whose source is
“<external>”.

The collaboration may simply pass the message through for publishing as-is
or transform the event in some way. Once the message has been published
successfully, a function is called on the “application” side of the e*Way to
allow the application to further update state or commit updates already
performed. The application polling function is called again and the process
repeated. When the collaboration processing the application’s message
returns failure, the e*Way calls a “failure” function to allow the application
to process the failure or rollback database changes.

Between each loop there are checks to see if any the application is ready to
continue or if an administrator has requested the e*Way to shut down.

• Subscription: In order to process incoming messages, a Generic e*Way
must have at least one collaboration configured with an output event type
that the application can parse. This event must also have a destination of
“<external>”. Input events can come from any valid connection point or
other collaboration. The collaboration processes the input event according to
its own logic and publishes the output event. The e*Way presents the output
event (message) as a parameter to an application-side implemented function.

48 Retek Integration Bus

Note that the application side of the e*Way is responsible for maintaining its own
database connections that it uses. Any needed information can be prompted for in
the e*Way configuration using modified “configuration definition files” (*.def).

Start

Stop

eway started

message
returned

application
side

initialized

application
polled for
messages

wait

send message
to

collaboration

collaboration
success?

call success
function

call failure
function

shutdown?

shutdown

No

Yes

No

Yes

Yes

Figure 7.1 Generic application eWay publishing flow

No

Chapter 7 – Batch job integration 49

For more information on the specifics of the Generic e*Way adapters, see the
appropriate SeeBeyond manual listed below:

• Java Generic Extension Kit Developer’s Guide

• C Generic e*Way Extension Kit Developer’s Guide

• Generic e*Way Extension Kit (Monk enabled)

Using an application specific e*Way adapter
Application specific e*Way Adapters are built using the same paradigm as the
“Generic” adapters listed above. However, these e*Ways have the “application
side” of the e*Way already developed. The event types (message formats) the
application can publish or parse are typically defined already (or at least an easy
way to create them is available) along with the application processing logic.
Hence, the main work here is to develop the correct collaborations to convert
RIB events (messages) to or from this set.

There is a rich set of application specific adapters available. A complete list is
available on the SeeBeyond web site, http://www.seebeyond.com.

	Contents
	Chapter 1 – Introduction
	Additional resources
	Retek 10.1 integration documents
	SeeBeyond Technology Corporation documents

	Chapter 2 – The RIB messaging model
	Message characterization
	RIB message families and message types
	Model drivers and concerns
	Message life cycle
	RIB message structure

	Chapter 3 – Messaging system component overview
	SeeBeyond components
	Registry
	Schemas
	Control brokers and participating hosts
	Events and event type definitions
	Collaborations
	e*Ways and BOBs
	Intelligent Queues and JMS Intelligent Queues
	IQ Managers and JMS IQ Managers
	e*Way Connection Points

	RIB components
	RIB_XML database package
	RIB_SXW database package
	Application message publishing triggers
	Non-trigger publishing
	Message Family Manager API
	Publishing application adapter
	TAFR Adapter
	Subscribing application adapter
	Subscribing application stored procedure APIs
	Error Hospital
	Performance and “M of N” Threading

	Chapter 4 – RIB message families
	Event types and message families
	Message family overview
	RMS published message families
	RDM published message families
	RCOM published message families
	Externally published message families

	Chapter 5 – External application message interfac
	RIB message paradigm concerns
	SeeBeyond application-specific adapters

	Chapter 6 – Retek Extract, Transform, and Load
	Chapter 7 – Batch job integration
	Motivations for replacing FTP transfers
	Transfer file data using a batch application e*Way
	“Fixed” configuration
	“Message” mode

	Transferring data directly from/to a database
	Using connection points and developing the logic within a collaboration
	Using a “generic” e*Way application adapter
	Using an application specific e*Way adapter

