

Retek® 10 Integration Bus

Operations Guide

Retek Integration Bus

The software described in this documentation is furnished under a license
agreement and may be used only in accordance with the terms of the
agreement.

No part of this documentation may be reproduced or transmitted in any form
or by any means without the express written permission of Retek Inc., Retek
on the Mall, 950 Nicollet Mall, Minneapolis, MN 55403.

Information in this documentation is subject to change without notice.

Retek provides product documentation in a read-only-format to ensure
content integrity. Retek Customer Support cannot support documentation
that has been changed without Retek authorization. Corporate Headquarters:

Retek Inc.

Retek on the Mall

950 Nicollet Mall

Minneapolis, MN 55403

888.61.RETEK (toll free US)

+1 612 587 5000

European Headquarters:
Retek

110 Wigmore Street

London

W1U 3RW

United Kingdom

Switchboard:

+44 (0)20 7563 4600

Sales Enquiries:

+44 (0)20 7563 46 46

Fax: +44 (0)20 7563 46 10

Retek® Integration Bus™ is a trademark of Retek Inc.

Retek and the Retek logo are registered trademarks of Retek Inc.

©2002 Retek Inc. All rights reserved.

All other product names mentioned are trademarks or registered trademarks
of their respective owners and should be treated as such.

Printed in the United States of America.

Customer Support

Customer Support hours:

8AM to 5PM Central Standard Time (GMT-6), Monday through Friday,
excluding Retek company holidays (in 2002: Jan. 1, May 27, July 4,
July 5, Sept. 2, Nov. 28, Nov. 29, and Dec. 25).

Customer Support emergency hours:

24 hours a day, 7 days a week.

Contact Method Contact Information

Phone US & Canada: 1-800-61-RETEK (1-800-617-3835)
 World: +1 612-587-5000

Fax (+1) 612-587-5100

E-mail support@retek.com

Internet www.retek.com/support
 Retek’s secure client Web site to update and view issues

Mail Retek Customer Support
 Retek on the Mall
 950 Nicollet Mall
 Minneapolis, MN 55403

When contacting Customer Support, please provide:

• Product version and program/module name.

• Functional and technical description of the problem (include business
impact).

• Detailed step by step instructions to recreate.

• Exact error message received.

• Screen shots of each step you take.

Contents i

Contents
Chapter 1 – Introduction... 1

Chapter 2 – RIB Component Overview.................................. 3

SeeBeyond Components ... 3

Retek Supplied Components ... 8

Additional resources.. 9

Chapter 3 – RIB component operations.............................. 11
Simple message flow.. 11
Message Routing .. 12

Component failures ... 13
Application trigger failures... 13
Publishing adapter failures ... 14
TAFR adapter failures .. 15
Subscribing adapter failures ... 15

Deployment architecture considerations ... 15
Retek schema integrity ... 16
Disk space analysis... 16
Intelligent Queue Managers.. 16
Performance motivated parallel processing.. 17

Chapter 4 – RIB startup and shutdown............................... 19

Sequencing considerations .. 19

RIB Message Publishing Adapters.. 21

RIB Message Subscribing Adapters.. 22

TAFR adapters .. 22

RIB Error Hospital start/stop... 23

Chapter 5 – Preventative maintenance tasks 25

Log files... 25
Error, trace, debug log files .. 25
XA Transaction Log Files .. 30

MFM staging tables... 30

Error Hospital .. 31

SeeBeyond Tools... 31
e*Gate Monitor and Queue Administration Tools ... 31

Retek Integration Bus

e*Gate Enterprise Manager .. 31
Command Line Utilities ... 31

Chapter 6 – Message error handling 35

Error Hospital components.. 37

Error Hospital configuration parameters and properties 38

Error Hospital activities .. 41
Hospital admin command line utility set up ... 41
Error Hospital admin command line scripts ... 43
Manually querying message information from the Error Hospital........................... 48

Error Hospital log entries .. 50

Creating additional error hospitals .. 50

Chapter 7 – RIB component configuration 51

Oracle database triggers .. 51

RIB property file ... 51
Multichannel_ind property ... 51

SeeBeyond e*Way configuration files .. 51
e*Way property and configuration files ... 52
e*Way Collaborations .. 55

SeeBeyond connection point configurations... 59
JMS IQ manager configuration .. 59
JMS IQ Connection Point configuration .. 62
Oracle Connection Point configuration .. 65

TAFR adapter configuration ... 67
RIB Property File TAFR entries... 67
TAFR routing – adding new destinations... 68

Chapter 8 – Trouble-shooting problems............................. 79

Problems starting a RIB component.. 79
Incorrect configurations.. 79
Environment problems ... 79

Message Processing Problems .. 80
No messages processed .. 80
Publishing adapter hangs .. 80
XA lock(s) cause problems with one or more messages .. 81
User Defined Alerts are displayed.. 82
Messages not getting to the correct subscriber ... 82
TAFR not processing any messages ... 82

Contents iii

Shutdown problems... 82

Hospital Admin Command Line utility... 83
Java Class Instantiation Problems .. 83
Database connection problems ... 83

Chapter 1 – Introduction 1

Chapter 1 – Introduction
This manual is designed for System Administrators, Developers, and
Applications Support personnel. Its purpose is to provide a basic understanding
of the Retek Integration Bus components, how messages flow between them, and
operational activities surrounding these components. It also provides templates
for using the RIB as an alternative to FTP batch jobs for transferring files from
one system to another.

Chapter 2 – RIB component overview 3

Chapter 2 – RIB Component Overview
This chapter describes the components the make up the Retek Integration Bus
(RIB). These components are distributed within the SeeBeyond Technology
Corporation’s (SeeBeyond) e*Gate™ Enterprise Application Integration
platform. The final deployed system may be distributed across multiple
computing systems. These systems may be running a Microsoft Windows, Unix,
or Linux operating system.

SeeBeyond Components
This section contains a brief description of SeeBeyond e*Gate components. For
more detailed information, see the e*Gate Integrator System Administration and
Operations Guide.

In SeeBeyond’s EAI environment, a “Registry” embodies a complete
administrative domain. A Registry is a database defining the deployed EAI
system and a program that controls access to this database. A Registry is
organized into one or more Schemas. Each schema details a collection of
e*Ways, BOBs, Intelligent Queue Managers, Intelligent Queues, Connection
Points, and Collaboration Brokers along with their network addresses or
locations. The Registry also contains basic security objects that control user
identifications, roles, and privileges shared across all schemas.

Because the Registry embodies all configurable parameters, no other component
can be brought up without access to a registry, either directly or indirectly.
However, in a distributed environment, reliance on a single Registry can be
problematic, since:

• System crashes or scheduled maintenance may bring down the Registry.

• Network partitions may occur that cut communication links between
deployed components

• Reliance on a single host may produce a performance bottleneck.

Deploying and configuring “Secondary Registries” alleviate these problems.
Secondary Registries replicate the Primary Registry. The number and location of
these Secondary Registries are dependent on the site-specific needs and
capabilities of a deployed system. The replication of the configurations occurs
transparently during normal operation of the system.

Each Registry is broken up into one or more Schemas. Each schema is a self-
contained set of components that define “end-to-end” processing of one or more
messages. The Schema contains the message processing units to deploy, where
messages are stored, security roles, database access definitions, and other
information. Schemas may be bridged, such that one schema may publish a
message and other schemas contain one or more of the message’s subscribers.
For reasons of performance and high availability, schema contents can be copied
within a single Registry (that is, two or more schemas are define with the same
component types and processing defined, but have different names and physical
deployments defined.).

4 Retek Integration Bus

In SeeBeyond’s vocabulary, there are three types of logical computing host
types: A Registry Host containing the Registry, Monitor Hosts where the e*Gate
Monitor Software can be run, and “Participating Hosts” that produce, consume
and process messages.

Note: This must be a Microsoft Windows NT/2000 platform. The complete
requirements for such a system is detailed in SeeBeyond’s e*Gate Integrator
Installation Guide.

Although all three of these component types could run on a single physical host,
this is rarely seen in production environments. Usually multiple computers are
found in a deployed system – Operations personnel with PC’s running the
e*Gate.

All components within a Schema are defined within one or more Participating
Hosts. There is a correspondence between a logical Participating Host and the
next SeeBeyond infrastructure component known as a “Control Broker”. The
Control Broker is a program that controls the administrative activities for a
participating host’s messaging components (e*Ways, IQ Managers, and BOBs).
The Control Broker maintains a network Connection with the Registry or a
Secondary Registry at all times, because it also propagates configuration
changes.

There must be at least one control broker up and running on any physical host
involved in the deployed system. Furthermore, there may be multiple control
brokers running on a single physical host because:

• The same computer may be configured as different “Participating Hosts”
within a schema found in multiple Registries. This is because the same
physical host may have multiple identifications within a Domain Name
Server.

• The same host may be configured within multiple Schemas that are part of
the same Registry.

• The same physical computer may be configured to hold multiple
“Participating Hosts” within a single Schema.

• Any or all of the above may be true.

Each Control Broker starts with parameters detailing its own name and its
associated Schema and Registry. At least one of these parameters must differ
for each Control Broker instance. (That is, no two control brokers can start with
the same name, same schema specification, and same Registry specification.)

Once a message is created, it usually needs copying to stable storage so that it
doesn’t get lost. The RIB uses the SeeBeyond JMS Intelligent Queue Manager
component for this. The JMS IQ Manager is a Java Message Service provider.
Queues within the JMS system are identified as “topics” that publishers publish
to and subscribers subscribe to.

Event types categorize the format of a message. The JMS IQ Manager equates an
event type with a JMS topic.

 The Retek Integration Bus uses the JMS IQ Manager extensively because it
offers a two-phase commit capability. Two phase commits are integral to
"exactly once" message processing.

Chapter 2 – RIB component overview 5

Note: “Exactly once message processing” is a SeeBeyond product attribute that
guarantees a message is processed only once successfully. This is important for
non-idempotent messages – messages that contain “relative” values – that would
cause discrepancies if processed by a subscriber more than once. For example, if
a message reserving a stock item for a specific store could end up reserving all
items for that store if processed enough time, even though the publisher only
wanted one item.

The other RIB used SeeBeyond component deployed within a Participating Host
is the e*Way. These components produce, consume, or otherwise process
messages. This manual uses the term adapter as a synonym for an e*Way. All
RIB adapters are e*Ways.

Besides the “application” side of an e*Way, messages can be produced or
consumed from an entity known as a Connection Point. A Connection Point
defines a session with an external entity such as a database, e-mail server, World
Wide Web (HTTP/HTTPS) server, or Java Message Service provider. It’s
possible to poll Connection Point sessions for incoming data at regular intervals,
as defined by their configuration. Multiple adapters may use the same
Connection Point. Connection Point APIs may be multi-threaded and, depending
on their design and configuration, support an XA compliant two phase commit.
It is only through the XA interface that SeeBeyond insures a message is delivered
and successfully processed exactly once.

The processing for a specific message used by an adapter is defined within
Collaboration. The source of the message (or event) that triggers the
collaboration’s processing may be from either the e*Way application interface,
from a Connection Point or from another collaboration. Messages published from
collaboration must have an associated destination. This destination may be either
an Intelligent Queue or a Connection Point.

One may use a Connection Point to insure all processing performed on the
message is done atomically. Connection Points implementing the XA interface
can have a distributed transaction that enforces atomic commits and rollbacks.
The e*Way’s collaboration control logic manages the commitment or rollback of
this distributed transaction based on the success or failure of the message
processing within the collaboration. “Exactly once message delivery” requires
the XA protocol and its associated two-phase commit operation. However, if the
Connection Point does NOT implement the XA interface, then, under certain
failure scenarios, the same message may be submitted for processing multiple
times.

RIB collaborations will also fail if their database connection points do not
support the XA protocol. RIB collaboration logic does not contain commitment
or rollbacks. The distributed transaction must include the work involved in
delivering the message from a queue to the collaboration. The collaboration
starts only after the message delivery to the adapter. If an invalid connection
point is used, then no database work performed by the collaboration logic will
ever be committed.

The typical lifecycle of a message is as follows:

6 Retek Integration Bus

First, the publishing adapter creates the message. The event that triggers the
message creation may be a polling operation on the database, the presence of
a file, or merely that a certain time interval has been reached. Each message
is created in the context of collaboration, and part of the collaboration’s
configuration specifies where to publish the created message. The message is
sent to a “queue” that then writes the message to stable storage.

The message is now available to its subscribers. Subscription is based on the
publishing collaboration / event type combination. Each subscriber will
contact the queue and retrieve the next message available. Separate threads in
the subscriber are used to retrieve messages on a per event type basis. The
specific message retrieved from the queue depends on its location within the
queue. As part of the retrieval processes, the Error Hospital software updates
the state of the message to reflect that one of the subscribers is now
processing it.

Once a subscriber gets the message, it is free to process it according to its
own rules. In the case of a transformer adapter, the subscribing collaboration
can open the message, modify its contents, and then publish the modified
message to a new queue. If the new message is of a different type than the
original, the new message can be published to the original queue. There may
be new subscribers to the modified message, and the scenario repeated for
each of these subscribers.

When each subscriber has finished processing a message, the queue updates
the state of the message to reflect this. When all subscribers have finished
with the message the message may be deleted immediately or be
archived/journal led for a specific time before deletion. The
archiving/journaling is specific to the type of the queue in use and the
configuration of the queue manager.

 The JMS Queue Manager will delete the messages on the queue after
delivering it to the appropriate subscribers or after it has been on the queue
the number of seconds specified in the MaxTimeToLive configuration
parameter.

So far, all of the components mentioned are actively involved directly in the EAI
messaging system. In a production system, however, there must be a way to
monitor the running system components.

Note: Monitoring the associated business processes occurs at a different level
and is outside the scope of this discussion.

Chapter 2 – RIB component overview 7

Three SeeBeyond components are useful in this respect:

1 The e*Gate Monitor: This application that allows an administrator to
determine if a component is up or down and is responding to status requests.
It also allows the administrator to bring up or down any component deployed
on a participating host other than a control broker. Finally, it allows an
administrator to interactively view and mark as resolved any e*Gate Alert
Notifications.

2 The e*Gate Enterprise Manager: This application develops schemas or
modifies existing schemas. As such, it is a primary tool for RIB
development to create new Connection Points, e*Ways, BOBs, IQ’s IQ
Managers, Participating Hosts, user IDs, roles, etc., for a schema. A system
administrator would also use this tool to modify the operational
characteristics of schema components, such as changing the level of logging
within an IQ or e*Way, the automatic running of e*Ways or BOBs, or
specific database log-ins used in Connection Points. Unfortunately, these
attributes may be changed when importing updated schemas from a test
environment to a production environment.

3 Alert Agents or Monitors: Notifications of operational events, such as
e*Ways going down, are passed from a control broker to one or more alert
agents. Different types of alert agents exist and may be configured to create
e-mails, console messages, and SNMP traps. The control broker creates
notification events (messages) that these agents can process. See the
following SeeBeyond manuals for more information on how to install,
configure and modify system monitors:

 e*Gate Integrator Alert and Log File Reference Guide

 e*Gate Integrator Alert User’s Guide

 e*Gate Integrator SNMP Agent User’s Guide

 e*Gate Integrator System Administrator and Operations Guide

8 Retek Integration Bus

Retek Supplied Components
This section contains a brief description of how Retek has built upon the
SeeBeyond platform to create the Retek Integration Bus.

The following components comprise the RIB:

• Database triggers that capture application activities as they occur. These
triggers are part of the specific Retek application, such as RMS. However, as
part of the RIB installation and configuration, they must be enabled to
capture information regarding events of interest.

• Staging tables used to hold the captured information and to maintain the
publishing state of the messages.

• Publishing e*Ways that create messages from the information captured by
the aforementioned Database Triggers. These publishing e*Ways are
designed to publish events from a single “Message Family” and are specific
to a Retek Application, such as RMS. Each RIB publishing e*Way has a
collaboration that will invoke a specific stored procedure which returns the
staging table information.

• Subscribing e*Ways that are used to consume messages. These are specific
to a Retek Application (RMS, RCOM, RDM,…) and are designed to
consume all messages from a specific message family. Each Subscribing
e*Way will call a specific stored procedure used to process a specific
application event message.

• Transformation Address Filters/Router (TAFR) e*Ways that transform
message data and/or route messages. The TAFR acronym is a generic term.
Multiple, message family specific TAFRs have been implemented. Different
TAFR e*Ways may be active on different message families or on the same
message family depending on the needs of an application. Not all message
families require TAFRs.

• Error Hospital database tables used as a basis for storing and re-trying
problematic messages.

• Pre-defined Connection Points used by the adapters listed above. These must
be configured after installation so that the correct database instance and
logins are used.

• SeeBeyond Java Message Service (JMS) Queue managers. The JMS Queue
Managers control the JMS queues used to store messages after publication.
The messages persist on stable storage until all subscribers have processed
them.

Chapter 2 – RIB component overview 9

Additional resources
Use the following resources to further understand the Retek Integration Bus and
the SeeBeyond e*Gate Integrator EAI platform:

• e*Gate Integrator Alert and Log File Reference Guide

• e*Gate Integrator Alert User’s Guide

• e*Gate Integrator SNMP Agent User’s Guide

The three manuals above detail the options, configuration, and other
reference material for creating Agents and other monitors for a deployed
system.

• e*Gate Integrator System Administrator and Operations Guide

Contains reference, trouble shooting and administrative information

• e*Gate Integrator Installation Guide

Basic information on how to install the SeeBeyond e*Gate Integrator
platform.

• e*Gate Integrator Release Notes

Useful if currently using an earlier version of the SeeBeyond platform

• e*Gate Integrator User’s Guide

• e*Gate Integrator Intelligent Queue Services Reference Guide

Overview of the Intelligent Queues

• SeeBeyond eBusiness Integration Suite Deployment Guide

This manual contains information on how to analyze, plan, and manage a
RIB deployment.

• SeeBeyond eBusiness Integration Suite Primer

This manual contains an introduction to all of the available components within
the SeeBeyond e*Gate product family. These include e*Ways designed to
interface to specific application suites, such as PeopleSoft, SAP, and Oracle
Financials.

Chapter 3 – RIB component operations 11

Chapter 3 – RIB component operations
This section details the message flows for a simple message and for a message
undergoing a routing or filtering operation. For a more detailed description of
the RIB components, see the Retek Integration Bus Technical Architecture. For a
detailed discussion of message contents, see the Retek 10.0 Integration Guide.

Simple message flow
The figure below is a generalized view of a RIB message. Two applications
require this data and subscribe to it. One subscribing application requires certain
transformations applied to the data, but the other subscriber can process the
message without any transformations.

Figure 3.1 Message Flow

Application
Triggers

Publishing
Adapter App 1 DB

RIB
Queue

Subscriber
Adapter 1

Subscriber
Adapter 2

Message Family
Manager

Staging Tables

App 2 DB

Payload

Payload

RIB messsage RIB message

RIB message TAFR Adapter RIB
Queue

Transformed RIB message

First, a trigger on a database table is fired in response to an application’s action.

Note: Some applications, such as RCOM, do not use triggers to publish to the
MFM staging table. RDM uses another variation: an MFM interface harvests
data from “Upload” tables to create the XML payload.

This trigger creates a row in a Message Family Manager (MFM) staging table
and commits this data, known as the payload, along with all of the other changes
performed by the user or batch job.

Second, a RIB Publishing e*Way is polling the MFM staging table via a call to
an MFM specific stored procedure. This stored procedure insures that messages
are published to the RIB in the correct order and at the correct time. The
Publishing adapter takes the payload and wrappers it with an envelope used by
the RIB infrastructure. The publishing adapter then deposits the message on a
Java Message Service (JMS) queue, which includes writing the message to stable
storage.

12 Retek Integration Bus

Third, a RIB subscribing e*Way polls the JMS queue for a message and
retrieves the one just published. Assume for simplicity’s sake that this e*Way
interfaces with the application requiring no data transformations. The e*Way
then reads the data, performs any needed database updates, and commits all of its
work. It is now ready to process the next message from the JMS queue.

Fourth, a RIB TAFR e*Way is also polling the JMS queue. It retrieves the
message, transforms it into a new message, and publishes it – effectively
publishing a new type of message. The TAFR e*Way could publish the message
to the same JMS queue it retrieved the message from using a different JMS topic
or it can publish the message to a completely different JMS queue. The name of
the JMS topic associated with the message may be determined from the
message’s Event Type name.

Fifth, the e*Way associated with the second application polls the second JMS
queue, retrieves the message, and processes the transformed data.

Message Routing
When a message requires routing, a TAFR adapter is needed that directs the
message to the correct destination. The information it uses for routing is found
within the message. However, the routing logic is tailored according to the needs
of the subscriber.

TAFR routing logic many times consists of a simple chain of “if-then-else if”
statements.

For example: if the routing tag equals “Warehouse1”, then publish the message
as event type “etMessageWH1”, else if the routing tag equals “Warehouse2”,
then publish the message as event type “etMessageWH2”, else if ….

However, the routing logic can be complex or route the same message data to
multiple destinations. The determination of this logic is specific to the message
family the TAFR is designed to process.

Once the message is published by the routing TAFR, it will reside on a
destination specific queue/topic combination. The TAFR collaboration
configuration determines the specific queue used. There must be an association
of the output event type to this queue.

From here, additional adapters retrieve the message and continue to process it.
The logical flow diagram of a routed message as it travels on the RIB is seen in
Figure 3.2. Note that the triggers and databases have been omitted from this
diagram. Moreover, subscribers may publish additional messages, depending on
the needs of the system.

Chapter 3 – RIB component operations 13

Figure 3.2 Routed Message Flow

Publishing
Adapter

Pub
Queue

Subscriber
Adapter 1

RIB
messsage

RIB
message TAFR Adapter

Dest
#1

Queue

Subscriber
Adapter 1

Dest
#2

Queue

Subscriber
Adapter 1

Dest
#3

Queue

RIB Message
Event Type #1

RIB Message
Event Type #2

RIB Message
Event Type #3

Component failures
Understanding how messages are transported and processed successfully is only
concern of a production system. An effective administrator needs to know what
kinds of failure scenarios exist and what steps can be taken once these failures
appear.

Application trigger failures
Failures involving the application database triggers should be extremely rare.
When they occur, they manifest themselves as failures within the application.
Trigger failures should be handled immediately.

Many triggers involve the use of a sequence generator as a primary key in a
Message Family Manager staging table. If this sequence generator has been
reset, then unique constraint exceptions may occur.

14 Retek Integration Bus

Another possible trigger failure also involves the insert operation into the MFM
staging table: out of table space. As mentioned below, an analysis of the needed
space should occur before deploying the system to production – or at least
monitored closely while the system is in production. Messages must be
published to the RIB before they are deleted from the staging table and if the
publishing e*Way cannot keep up, the number of rows in this table and the
publishing delay may increase to unsatisfactory levels.

Publishing adapter failures
Failures involving publishing adapters (or e*Ways) may occur due to
configuration errors or environmental errors. If a publishing e*Way becomes
unavailable, then records will accumulate in the MFM staging table.

Configuration failures for publishing adapters may occur in the specification of
its collaborations. Specifically, the configuration supplied as part of the initial
product specifies an Oracle Database Connection Point used to trigger message
publication. This Connection Point must have the correct database user login and
SID information supplied or it will not work or a Connection Point must be
specified that contains the correct information.

Similarly, publishing adapters specify a JMS Connection Point for the JMS
queue the message is published to. If a SeeBeyond JMS queue is used, then the
JMS Queue Manager must be set up and attached to the Connection Point.
Otherwise, all messages will fail when published.

Another common problem with publishing adapters, or any adapter, is that RIB
collaboration rules (the processing logic) are written in Java, and the correct
CLASSPATH must be specified in the environment or in the e*Way’s
configuration. If one uses all default file directory locations, it is expected that
this variable will require little or no modifications. However, if the SeeBeyond
e*Gate system or the Java Runtime Environment is installed in an unexpected
location, then all RIB publisher, TAFR, and subscriber adapter configurations
may need to be modified.

Similar to the CLASSPATH problem, but more insidious, is the JNI DLL
specification.

Note: The term “DLL” is used even on Unix systems within the e*Gate product.
This is even though DLL’s are specific to a Microsoft platform. On the Unix
platform this refers to the JNI shared library.

This is the Java Native Interface used within an e*Gate e*Way to jump from a
Java context to native C or C++ context. The JNI DLL specification specifies
where the library containing the “jump” code is located. It is considered part of
the run-time environment.

Chapter 3 – RIB component operations 15

TAFR adapter failures
TAFR adapters use collaborations and Java similar to publishing adapters.
Hence, they may have the same problems with JMS Queues, Java CLASSPATH,
or JNI DLL configuration entries as the RIB publishing adapters. However,
TAFRs do not typically involve database operations. On the other hand, TAFR
adapters may have their own configurations specified in property files that detail
the transformations or routing that must occur.

Fatal TAFR failures will cause a message backlog in the source JMS queue.
TAFRs with incorrect routing logic will route messages to incorrect destinations.

Subscribing adapter failures
Subscriber adapters have the same Java, JNI DLL, and Connection Point
potential problems as publishing adapters. When these problems occur,
messages are not delivered to the adapter and the source message queue will
become backlogged.

However, subscribing adapters may also run into problems due to the field
content of the messages. For example, there may be a mismatch with a value or
ID found in the message. When this occurs, the following takes place:

1 The subscribing adapter keeps track that the message failed internally and
returns a failure to the e*Gate system.

2 A distribute rollback is performed. All database work is rolled back and the
message remains on the source JMS queue.

3 The message is re-processed. Because the adapter has flagged the message
has failed, it inserts the message into the Error Hospital.

4 A distributed commit is performed. The message is removed from the source
queue and is committed to the Error Hospital.

5 Periodically, a second collaboration associated with the Error Hospital
awakens and pulls the data from the Error Hospital. This collaboration then
inserts the message back into the original source queue.

6 Steps 1-5 are repeated until the message is successfully processed or until
maximum retry count is reached.

In the Retek 10.0 release, a command line interface is provided to examine the
contents of messages found within an Error Hospital. Error Hospital operations
are detailed later in this manual.

Deployment architecture considerations
So far, the components have been described in generic terms. This is because
every installation may have its own unique configurations and needs. However,
there are some configuration patterns or philosophies that Retek suggests for
successful RIB operations.

16 Retek Integration Bus

Retek schema integrity
Retek suggests that the messaging schema supplied with the Retek Integration
Bus be modified as little as possible when deployed to a production environment.
Doing so will ease the pain of installing RIB updates. Each future RIB release is
expected to contain additional application integration points and Message
Families. Segregating the Retek messaging schema from other non-Retek
components will enable updates to be installed quicker and with less side effects.

Disk space analysis
Before the RIB is deployed to production, an analysis of the expected message
traffic must be made. The Retek 10.0 Integration Guide lists all of the messages
as implemented within the RIB and the conditions in which they are published.
System designers use this guide to estimate expected message size and volume.
From a business operations viewpoint, one should also determine the amount of
time a specific subscriber is allowed to be unavailable before serious business
consequences occur. This should include the maximum amount of time before a
subscriber is failed-over to another system.

The purpose behind this analysis is to determine the amount of disk space needed
to support continued operations if a subscriber becomes unavailable. The
standard RIB configuration will maintain a copy of each message on a queue’s
persistent storage until all subscribers have processed the message. If the disk –
subsystem or queue’s configuration cannot store messages, then each publisher
will need to be shut down.

This analysis should also be continued to the publisher. Specifically, Retek
suggests performing these calculations on the Message Family Manager staging
table size and the likelihood of the SeeBeyond EAI system becoming unavailable
for a specific amount of time. In this scenario (which may be a continuation of a
subscriber problem) the publishing e*Way may not be able to publish messages.
As such, all messages become backed up in the MFM staging table. If this table
runs out of space, then all application triggers that write to the table will fail and
the application should be shutdown.

Intelligent Queue Managers
The SeeBeyond e*Gate EAI platform allows one to use a number of different
Intelligent Queue Managers for storing published messages. The Retek
Integration Bus is designed to use JMS queues because this component requires
no external database and implements the XA interface protocol. The XA protocol
enables the “exactly once” message processing.

The purpose of an IQ Manager is to manage Intelligent Queues. In most cases,
these queues are explicitly defined. In the case of the JMS IQ Managers used
with the RIB, explicit queue definition is not needed. The JMS IQ Manager also
provides a JMS Service to the Connection Point interface. Each event type
published using the JMS Service will use the Event Type name as the JMS
“topic”. The configuration of the JMS service sets other parameters needed to
access the message.

Chapter 3 – RIB component operations 17

Note: Not only Java Collaboration Rules can be used with JMS Connection
Points. Monk Collaboration Rules can publish/subscribe to messages on a JMS
queue, but must also explicitly define a JMS Intelligent Queue on the JMS IQ
Manager used.

Performance motivated parallel processing
A common method to gain throughput in distributed EAI systems is to duplicate
processing modules across multiple systems or, if the system spends a significant
percentage of time waiting for disk I/O, to duplicate modules within the system.
These components then execute in parallel, reducing the elapsed time for
processing multiple messages.

In the Retek 10.0 release, parallel processing considerations have been
subordinated to message sequencing guarantees. In other words, the design of
the system guarantees message processing is in the correct sequence as opposed
to maximizing throughput.

Additional throughput gains can be made if the system is deployed with parallel
processing nodes. However, simply duplicating these nodes introduce the
possibility that some data will be processed out-of-order. If this occurs, then the
final state of the subscribing system will be incorrect and contain invalid data.

Thus, additional design and implementation work is needed to support parallel
processing deployments of the RIB in the 10.0 release. This work must center on
creating well-defined logical channels of information, each channel responsible
for a well-defined set of business entities. An example of such a logical channel
would be one responsible for all of the "even numbered" purchase orders. This is
similar to the Retek “Batch Thread” model. Briefly, the following changes
would need to be made:

1 The current message flow (Publishing adapter and all TAFRs and
subscribing adapters) would need to be duplicated once per each logical
channel.

2 For each publisher, the MFM Oracle database package would need to be
modified such that the “getnext()” procedure only returns messages
concerning a subset of all available business entities. If two publishers were
used, then one would return only even IDs and one only odd IDs.

3 Additional configuration changes would be needed to insure that different
Error Hospitals are associated with each new subscriber.

4 Each logical channel should have an associated Connection Point that uses a
distinct JMS Service provider. This involves creating a JMS IQ Manager for
each logical channel and a JMS Connection Point that uses this JMS IQ
Manager. This JMS Connection Point would then be the source or
destination for all messages on the channel. Otherwise, the messages
published for one channel would become intermingled with those from other
channels when they were saved to stable storage by the JMS provider.

An alternative to multiple JMS IQ Managers is to rename all of the event types
used within the logical channel to be channel specific.

Chapter 4 – RIB startup and shutdown 19

Chapter 4 – RIB startup and shutdown
This section details how to start up the RIB and how to shut it down.

Sequencing considerations
In the RIB architecture, the first step a Retek application performs in publishing a
message is the execution of a table specific trigger. These triggers are installed
in a disabled state with each application. See the Retek Integration Bus
Installation Guide or the product specific installation guide for information on the
triggers and how to enable them.

The SeeBeyond EAI components can be configured to come up manually or
automatically. If configured to be brought automatically, then only the registry
and control broker’s need to have an external method for starting. On Unix
systems, this method is typically found in a startup script executed when during
the system boot sequence. The components run as daemons. On Windows
systems, these components are usually installed as services.

A generalized list of steps needed to start an e*Gate system is found below.
Complete documentation on SeeBeyond e*Gate operations is found in the
SeeBeyond e*Gate Integrator System Administration and Operations Guide.
Please refer to this manual for further information on the referenced commands .

1 Open all external resources that the components are dependent on, such as an
application’s database.

2 Open the SeeBeyond e*Gate Registry.

 On Unix systems, this is done via the stcregd command.

 On Microsoft Windows platforms, the registry is typically installed as a
service.

 The stcregd command is also available as a DOS command.

3 Before the stcregd command may be executed, initialize the user’s
environment correctly. This is typically performed by “sourcing” the file
<EGATE_HOME>/server/egatereg.sh.

For example, for Korn or Bourne Unix shells:
> . <EGATE_HOME/server/egatereg.sh

4 The parameters needed for the stcregd command specify the registry’s
name and TCP port numbers. It is suggested that only one registry be
configured for a host, as this simplifies the configuration of the startup script
for the registry and control brokers. However, site-specific issues may
motivate an EAI administrator to configure multiple registries on the same
computer.

Note: Examples of such issues include using a test system as a “hot
standby” for a production system, or providing extra redundancy for the
registry on the local system.

20 Retek Integration Bus

5 The following stcregd command displays a registry named “egate_main”
using the default TCP ports for the initial connect port and the connections
made between the registry and control brokers. It also executes without
Access Control Lists used for authorization purposes:
> stcregd –ln egate_main

Switches for this command include:

 -pr Port number for Registry Clients

 -pc Port number for Control Brokers

 -ln Registry logical name

 -mc Maximum number of connections

 -bd Base directory

 -ss Run as a service

 -h Display help screen

SeeBeyond suggests that the name of a registry matches the name of its host
computer.

6 Open the control brokers for all participating hosts. On Unix systems, this is
done via the stccb command. On Microsoft Windows platforms, a control
broker is typically installed as a service. However, the stccb command is
also available as a DOS command.

7 Before the stccb command may be executed, the user’s environment must
be initialized correctly. This is typically performed by “sourcing” the file
<EGATE_HOME>/server/egateclient.sh.

For example, for Korn or Bourne Unix shells:
> . <EGATE_HOME/server/egateclient.sh

8 An stccb daemon must be running for each participating host on that
participating host.

9 The parameters needed for the stccb command specify the control broker’s
name and TCP/IP address of available primary and secondary registries.

10The following stccb command brings up a control broker with the following
attributes:

 named “cb_main”

 contained the schema “rib100”

 uses the registry found on the host “egate_main” with the default TCP
port numbers

 runs under the SeeBeyond e*Gate defined “Administrator” user-id

 authenticates itself to the registry using the password “STC”.

Chapter 4 – RIB startup and shutdown 21

Note: This is the commonly used “Default” password for SeeBeyond
e*Gate installations. Any installation wishing to provide even a
modicum of security will change this password. Furthermore, the
password may be encrypted and stored in a file via the stcutil
command, so that it is not visible to casual observers. See the
SeeBeyond e*Gate Integrator System Administration and Operations
Guide for more details.

stccb –ln cb_main –rh egate_main –rs rib100
–un Administrator –up STC

 Executes without Access Control Lists used for authorization purposes.

11 At this point, you can display the e*Gate Monitor application to start any
components not configured to be brought up automatically. This application
requires a Microsoft Windows platform for execution.

12 Using the e*Gate Monitor, display all of the JMS Queue Managers needed.

13 Using the e*Gate Monitor, display all of the e*Ways and / or schema
bridges. Adapters that subscribe to messages and interface directly to an
application should be brought up before those that publish messages.

RIB Message Publishing Adapters
Adapters that publish messages directly from Retek applications have names in
the following format: ewMSGFAMILYFromAPPNAME, where
MSGFAMILY is the name of the message family published and APPNAME is
the name of the publishing application, such as RCOM, RMS, or RDM.

The following are some of the Retek application publishing adapter names:

E*way Name E*way Name E*way Name

ewVendorFromRMS ewWOInFromRMS ewReceiptsFromRDM

ewStoresFromRMS ewInvBalFromRMS ewCustOrderFromRCOM

ewWHFromRMS ewUDAsFromRMS ewPendReturnFromRCOM

ewUDAsFromRMS ewBannerFromRMS ewShipMethFromRCOM

ewDiffGrpFromRMS ewATPFromRMS ewCOReturnFromRCOM

ewItemsFromRMS ewRTVFromRDM ewCOStatusFromRCOM

ewOrderFromRMS ewInvAdjustFromRDM ewCOStatusFromRCOM

ewOrderPhysFromRMS ewASNInFromRDM ewCOResFromRCOM

ewTransfersFromRMS ewAppointFromRDM ewCOSaleFromRCOM

ewAllocFromRMS ewASNOutFromRDM

ewDiffsFromRMS ewCustReturnFromRDM

22 Retek Integration Bus

RIB Message Subscribing Adapters
Adapters that subscribe to RIB messages and update Retek applications have
names in the following format: ewMSGFAMILYToAPPNAME, where MSGFAMILY is
the name of the message family published and APPNAME is the name of the
publishing application, such as RCOM, RMS, or RDM.

The following are some of the Retek application subscribing adapter names:

E*way Name E*way Name E*way Name

ewVendorToRCOM ewAppointToRMS ewASNInToRMS

ewVendorToRDM ewReceiptsToRMS ewASNInToRDM

ewStoresToRCOM ewSOStatusToRMS ewRTVToRCOM

ewWHToRCOM ewSOStatusToRCOM ewRTVToRMS

ewLocationsToRDM ewASNOutToRMS ewInvBalToRMS

ewCOReturnToRMS ewASNOutToRCOM ewUDAsToRDM

ewItemsToRCOM ewInvAdjustToRMS ewCustReturnToRCOM

ewItemsToRDM ewDiffGrpToRCOM ewPendReturnToRDM

ewOrderPhysToRDM ewDiffsToRCOM ewCOStatusToRMS

ewStockOrderToRDM ewDiffGrpToRDM ewCOResToRMS

ewAppointToRMS ewDiffsToRDM ewCOSaleToRMS

ewATPToRCOM

TAFR adapters
TAFR adapters process messages in support of subscriber specific needs. As
such, they are both subscribers and publishers. TAFR Adapters have names in the
following format: ewMSGFAMILYToMSGFAMILYFromRIB, where MSGFAMILY is
the name of the message family the TAFR works on as input , ToMsgFamily is
the name of the message family the TAFR publishes and APPNAME is the name of
the final subscribing application.

The following are some of the Retek application subscribing adapter names:

Eway Name Eway Name Eway Name

ewStoresToLocationsFromRIB ewTransfersToStockOrderFromRIB ewASNOutToASNOutCOFromRIB

ewWHToLocationsFromRIB ewTransfersToStockOrderWHFromRIB ewASNInToASNInWHFromRIB

ewStoresToLocationsFromRIB ewTransfersToStockOrderFromRIB ewWOInToWOInWHFromRIB

ewWHToLocationsFromRIB ewAllocToStockOrderFromRIB ewUDAsToUDAsLVFromRIB

ewShipMethToLocationsFromRIB ewCustOrderToStockOrderFromRIB ewASNOutToASNOutCOFromRIB

ewItemsToItemsSPFromRIB ewSOStatusToSOStatusCOFromRIB

Chapter 4 – RIB startup and shutdown 23

RIB Error Hospital start/stop
The RIB error hospital is a subsystem used to retry messages the subscriber has
failed to process successfully. After a failure, the message is inserted into the
hospital database associated with the subscriber. This message is republished
time by a “Retry” collaboration. The “Retry” collaboration is also found within
the subscriber adapter and is only responsible for re-publishing the message.

The Error Hospital may also contain messages that are dependent on a “failed”
message. The dependency is based solely on a common business entity that the
two messages reference. For example, if a “Create New PO” message fails (and
is added to the hospital), then a subsequent “Add PO Line Item” will also be
added to the hospital if it references the same PO. The “Retry” collaboration will
resubmit both messages in the correct order.

The RIB message error hospital requires that the “Retry” collaboration is
included within a subscribing e*Way and uses a valid connection point as the
source of its retry events.

The database tables comprising the Error Hospital storage may be found within
the same database as the stored procedures called by the subscribing adapter or in
a separate database. If the error hospital tables become inaccessible, then any
failing message will cause the total stoppage of all messages by the subscriber.
This consideration should be taken into account when determining the location of
an Error Hospital for a subscriber.

Chapter 5 – Preventative maintenance tasks 25

Chapter 5 – Preventative maintenance tasks
This chapter lists some common tasks that a system administrator may want to
script and perform on a regular basis.

Log files
The SeeBeyond e*Gate EAI system can log volumes of data to log and journal
files. Furthermore, because the RIB uses two phase commits, the SeeBeyond
system acting as the transaction manager must log commit information within
“transaction log” files in order for distributed transaction recovery purposes.

Error, trace, debug log files
The same file is used by SeeBeyond e*Gate adapters for logging error messages,
trace messages, and debugging messages. The adapter’s configuration determines
what is to be logged and the level of logging. If logging is turned on, then the
free disk space should be closely monitored, as these files can rapidly increase in
size and grow to enormous sizes, even if the e*Way has only processed a
relatively few messages.

The location of the log files is the directory <EGATE_HOME>/client/logs,
where <EGATE_HOME> is the installation directory for the SeeBeyond e*Gate
EAI system. Each component has its own log file named <component>.log,
where <component> is the name of the e*Way , control broker, or IQ Manager.

Additionally, there may also be files containing application “standard error”
output. These files are named <component>.stderr .

Sometimes it is helpful to have component log information to determine a
problem’s source or otherwise monitor its activities. The e*Gate Enterprise
Manager application is used to modify level and type of logging for an e*Way.
Further information may be found in the SeeBeyond e*Gate Integrator User’s
Guide.

26 Retek Integration Bus

1 The first step is to select the RIB adapter component from the main e*Gate
Enterprise Manager window:

Figure 5-1: Selecting an e*Way from the e*Gate Enterprise Manager

2 Right click on the e*Way.

3 Select Properties. The Properties window is displayed:

Chapter 5 – Preventative maintenance tasks 27

Figure 5-2: e*Way Properties window (General tab)

4 Click on the Advanced tab.

28 Retek Integration Bus

Figure 5-3: e*Way Properties window (Advanced tab)

5 Click Log .

Chapter 5 – Preventative maintenance tasks 29

Figure 5-3: e*Way Logging window

There are two dimensions to e*Way logging: the areas of information that
the log entries will log about, and the amount or level of logging. There is
only one level of logging for all areas.

Over 25 different areas are available for logging.

To log RIB Adapter-created messages:

6 Select the e*Way (EWY) check box to enable logging.

7 In the Logging File field, select TRACE.

8 Select the Use Log file check box.

Be careful whenever logging is enabled, as log files are not limited in size
and can grow to be quite large. In normal production, you should set the
logging level to be at a very low level: either “FATAL”, “ERROR”, or
“NONE”.

30 Retek Integration Bus

XA Transaction Log Files
Whenever a two phase commit operation commences, the transaction manager
(TM) must log the decision to commit the transaction to stable storage. This is to
insure the transaction will commit if a failure occurs during the second phase.
These “log_commit” records are read whenever a TM is started so all active
transactions are completed.

The SeeBeyond e*Way implements a transaction manager. The transaction log
record for a collaboration is found in its own file. The path name of the file is:

<EGATE_HOME>/client/XALogs/<e*WayName>/<collabName>

Where <EGATE_HOME> is the installation directory for the e*Gate
product,<e*WayName> is the name of the e*Way the collaboration runs in,
and<collabName> is the name of the collaboration.

Do not delete these transaction log files. If these files are deleted, then the
adapter associated with the log file(s) may have problems re-processing messages
found in the error hospital or even completing initialization successfully.

If a database or other resource manager has a transaction in a prepared state and
the associated transaction log file is deleted, then the database or resource
manager also must have its knowledge of the transaction removed.

For Oracle databases, transactions that are in the prepared state can be found in
the DBA_2PC_PENDING views. One can then use an external database session,
such as one with the SQLPLUS command, to force a rollback or commit
operation on these transactions.

MFM staging tables
Part of the RIB’s architecture is that data is staged from applications using
database tables. The RIB adapters use a well-defined interface to retrieve this
information when the publishing it to the RIB.

The code that wrappers access to these staging tables is known generally as the
Message Family Managers (MFMs). The MFM implements the interfaces for
extracting the data as procedures found within an Oracle database package. For
more information on MFMs in general, see the Retek Integration Bus Technical
Architecture Guide. For information about a specific MFM, see the Retek 10.0
Integration Guide.

Some MFMs require that data in the staging table from multiple application
transactions be coalesced into a single message. In these cases, the MFM waits
until a specific record is inserted into the staging table before the message is
published. For example, new Purchase Orders may not be published until they
have been placed into an “approved” state.

A system administrator may monitor the MFM staging tables to verify that the
RIB’s performance is adequate to handle the messaging traffic. If a system has
the adequate resources, then the number of rows within the staging table should
remain relatively constant.

Chapter 5 – Preventative maintenance tasks 31

Error Hospital
The Error Hospital uses three database tables for stable storage. Because a
message can only be retried a set number of times, messages may permanently
reside in the Error Hospital and require manual intervention before they can be
deleted.

Error Hospital tables should be monitored on a daily basis. See Chapter 6 –
Message Error Handling for more details.

SeeBeyond Tools
This section provides a brief overview of SeeBeyond administration tools.
Additional information about the SeeBeyond tool set may be found in the
SeeBeyond documentation.

e*Gate Monitor and Queue Administration Tools
The main tool used for starting or stopping a system is the e*Gate Monitor
application. This application attaches to a control broker and is designed to
manually start, stop, pause, resume, or retrieve the status of a component.

The e*Gate monitor is a GUI that can display all components found in a specific
schema. Additional GUI applications are accessible from the e*Gate monitor.
There is a queue monitor for SeeBeyond standard “Intelligent Queues” (the IQ
Administrator) and one for JMS queues (the JMS Administrator).

The queue monitor tools allow an administrator to examine the number of
messages on a queue and to view the contents of a message on a queue.

Details about the e*Gate Monitor application is found in the SeeBeyond e*Gate
Integrator System Administration and Operations Guide. Details about the JMS
Administrator application are found in the SeeBeyond JMS Intelligent Queue
User’s Guide.

e*Gate Enterprise Manager
The e*Gate is an application that is used for e*Gate development and operational
changes. It is the primary tool for operations personnel for defining the EAI
system’s security roles and defining new users.

Command Line Utilities
The following commands can be issued from a command line interpreter, such as
the Korn Shell in Unix or a DOS window. These commands should be found in
the directory <EGATE_HOME>/client/bin, where <EGATE_HOME> is where
the e*Gate software was installed. Many commands also require shared libraries
or DLLs. On Unix systems, the directory <EGATE_HOME>/client/bin may need
to be inserted into the LD_LIBRARY_PATH variable.

On Unix systems each command has the form <command> or <command>.exe.
Only the latter form is executable on Windows platforms.

32 Retek Integration Bus

stcinstd
This command is known as the “Installer Service”. This service is used to register
a host name with the registry as a valid EAI participating host. This command
performs two functions:

1 It allows users to edit the host and domain name properties for a participating
host in the e*Gate Enterprise Manager application

2 It enables the e*Gate system to automatically propagate upgrades made to a
Registry host to all participating hosts.

The stcinstd command should be run at least once per participating host so
that the host name can be registered.

stcregutil
This is a command designed to modify, import, export or display information on
an existing registry. A common usage will be for importing or exporting e*Gate
schema information from development, test, and production environments. It
does allow fine-grain control over the import and export process. Much of this
functionality is also part of the e*Gate Enterprise Manager tool. However, this
utility may be a large asset when defining code migration procedures for new
EAI system releases.

stcaclutil
This is a utility used to define Access Control List (ACL) privileges, roles, and
user properties. These functions may also be performed using the e*Gate
Enterprise Manager application. Privileges can be assigned to roles and users
assigned to roles. Users and roles can be added or deleted. User passwords may
be altered.

stciqutil
This is a utility for manipulating the contents of a SeeBeyond standard Intelligent
Queue. However, this is of a limited utility for RIB components, since the RIB
uses SeeBeyond JMS Intelligent Queues.

stcutil
This is a utility designed for system testing and debugging. It is of limited use
when working with RIB components.

Chapter 5 – Preventative maintenance tasks 33

stccmd
This is a text-based version of the e*Gate system monitoring tool. As such, it
duplicates much of the functionality found in the e*Gate Monitor application. It
provides a command line interface for status retrieval and component starting,
stopping, and status retrieval. It may also “resolve” alerts. Available commands
include:

? - list available commands

activate <component name> - activate element operations

attachiq <IQ name> - IQ to bring up

cls [cmd|stat] - clear window

debug <component name> [flag] - show or change an
element's debug flags

detachiq <IQ name> - IQ to detach

exit - exit stccmd.exe

getres [-b<begin date (mm/dd/ccyy)> | -e<end date
(mm/dd/ccyy)] - show resolved notifications

getstatus [-b<begin date (mm/dd/ccyy)> | -e<end date
(mm/dd/ccyy)] - show status-type notifications

getunres [-all | -a] - show unresolved notifications

help <command> - on-line help

history - list command history

list [
all | monitors {-m} | alertors {-a} | iq {-i} | control
{-c}
| notif {-n} [flush | all
| -b<begin date (mm/dd/ccyy)> [-e<end date
(mm/dd/ccyy)>]
| +r | -r | -i<notification number> | <component name>
]

 quit - exit stccmd.exe

 reload <component name> [hard] - reload configuration

 resolve <notification number> - indicate that a
notification has been resolved

 sequence <component name> [value] - show or change
sequence number

 shell <shell command> - run an external command

 shutdown <component name> - controlled module shutdown

 shutdownall <shutdownall> - controlled modules shutdown

 start <component name> - start or restart module

 startall <startall> - start or restart all modules

 status <component name> - show status

 suspend <component name> - suspend operations

34 Retek Integration Bus

 version <component name> - Show version

As with the e*Gate Monitor, not all commands are appropriate to all components.

The stccmd command may be used interactively or as a line in a shell script.
For example, to list all component statuses, issue the command:

stccmd.exe -rh egate_main -rs Rib100 -cb egate_cb -un
Administrator -up STC -cmd list all

Where egate_main is the registry host, Rib100 is the schema name, egate_cb
is the control broker to connect to, Administrator is the e*Gate user name to
use, and STC is the password for the Administrator user.

Chapter 6 – Message error handling 35

Chapter 6 – Message error handling
An error occurring while a subscriber processes a message poses a problem for
an EAI system. If the error is one such as a broken database connection, the
message simply needs to be retried once the connection is re-established. In these
types of errors, one would like the message to remain on the EAI queue until it
can be successfully processed.

Another type of error arises when messages have dependencies on seed data
found in the subscribing database. For example, a SKU referenced in a Purchase
Order may be referenced only by the SKU number. If the subscribing database
does not contain this SKU, an error will occur. This category of errors, referred
to as Message Content Errors, cannot be resolved only through re-submitting the
same message. Instead, the SKU must be added before the message can be
successfully re-processed.

For the subscribing PO adapter, however, it may make sense to re-process the
message a set number of times anyways. The message that creates a new SKU
may be published by a different adapter than the one creating the Purchase Order.
Because of possible performance bottlenecks or operational difficulties, the
Purchase Order may arrive at the subscribing application adapter for POs before
it arrives at the subscribing application adapter for SKUs. Therefore, simply re-
trying the message gives the application an opportunity to successfully process
the PO.

Once a Message Content Error occurs, it is desirable that the failing message
does not affect the processing of other messages on the queue which refer to a
different business entity. Messages not yet processed could contain acceptable
data and it makes no sense to delay their processing. In order to get at these
messages, the problem message must first be removed from the queue and, once
removed, needs to be stored externally from the integration bus.

This storage mechanism is called the “Error Hospital”. Error Hospitals are
associated with subscriber adapters. Subscribing adapters may share the same
Error Hospital tables, or may have a set of tables reserved only for their specific
use. Messages are re-submitted to the EAI queue by the subscriber and the
resubmitted message will only be re-processed by the subscriber that resubmitted
it.

If a message contains invalid data and there are three subscribers for this message
family, then each subscriber will store a copy of the message in an Error Hospital
and re-publish the message to the queue. In order to accomplish this, the event
type of the re-submitted message is changed. The new event type is specific to
the subscribing application/message family combination. For example, if the
original message was published with the event type of etASNInFromRMSWH1,
then the event type for re-tries might be etASNInFromRMSWH1Retry.

36 Retek Integration Bus

Each subscriber stores its own copy of the failing message because a different
subscriber may have processed the message successfully. When the message is
re-tried, those successful subscribers should not re-process the message.

Another complication with Message Content Errors is that subsequent messages
within the same message family may have dependencies on the problem
message. For example, a “Create New PO” message may be followed by an
“Update PO” message for the same PO number. If the “create” cannot be
processed, then the subscriber will error processing the “update”. Thus, before
any message is processed, a check is performed to see if the Error Hospital
already contains messages for the same business entity (in this case, the same
Purchase Order). If so, then the follow-on message is immediately inserted into
the error hospital, without allowing the application to process it at that time. The
adapter should re-publish the follow-on message only after the first one has been
successfully consumed by the application.

Chapter 6 – Message error handling 37

Error Hospital components
Error Hospitals consist of a collection of Java classes, a set of database tables, a
Connection Point providing access to these tables, and a “retry” collaboration.
The Java classes contain the Error Hospital logic and include database access
logic. The Connection Point must be configured for each subscriber and connect
to the database housing the Error Hospital. The same Error Hospital Connection
Point must be used between the “Normal” subscribing collaboration and the
“Retry” collaboration.

Subscribing
Application

Collaboration

Subscribing
Application Retry

Collaboration

JMS
Message
Queue

Subscribing
Application
Database

Error Hospital
Database

JMS Message Queue
Connection Point

Database Connection
Point Associated with

 MFM Stored
Procedure Call

Error Hospital
Connection Point

Error Hospital
Connection Point

JMS Message Queue
Connection Point

(Retry Message Publication)

JMS Message Queue
Connection Point (Initial
message publication)

Figure 6-1 Connection Points used at a subscriber.

The following tables are used to store message information within the Error
Hospital:

• rib_message – contains the message “payload”, all single-field envelope
information, and a concatenated string made from <id> tags. Also contains a
unique hospital ID identifying this record within the hospital and information
used to track a message’s retry status.

• rib_message_failure – contains all failure information for each time the
message was processed.

• rib_message_routing – contains all of the routing element information found
in the message envelope.

38 Retek Integration Bus

More information about the Error Hospital design may be found in the Retek
Integration Bus Technical Architecture Guide.

Error Hospital configuration parameters and properties
All configuration parameters for an Error Hospital that control its logic are found
in a properties file. This file must be part of the Java CLASSPATH used when
the adapter is running. In the supplied Retek Messaging Schema, this properties
file is named rib.properties.

The properties file, along with the name of the Java Archive (JAR) file
containing Error Hospital classes and subscribing adapter helper classes, is
specified in the adapters configuration file.

To access the adapter configuration:

1 Open the SeeBeyond Enterprise Manager.

2 Select an option:

 Right click on the appropriate subscribing e*Way and select Properties.

 Select the appropriate subscribing e*Way and then click the Properties
toolbar button.

The e*Way Properties dialog box is displayed.

e*Way Properties dialog box

Chapter 6 – Message error handling 39

3 In the Configuration file area, click Edit . The configuration file edit window
is displayed. The CLASSPATH specification is found in the JVM Settings
section under the CLASSPATH Prepend parameter.

Configuration file edit window

Note: If any parameter found in the configuration file is changed, an additional
step is needed before the running system actually uses the new configuration: the
configuration must be “Promoted to run-time”. This may be done in the
configuration file “File” drop-down menu or in the Enterprise Manager “File”
drop-down menu. Simply changing a configuration does automatically update
the SeeBeyond Registry with the new value.

40 Retek Integration Bus

The RIB properties file contains a number of parameters controlling the Error
Hospital retry logic. Each parameter is on a line by itself and each line has the
following form:

hospital.attempt.<param_name> = <param_value>

where <param_name> is the name of the parameter and <param_value> is the
value. The table below lists the hospital parameters and their default values if
not found in the RIB properties file:

Parameter Name Default
Value

Description

hospital.attempt.max

4

Maximum number of attempts the
Error Hospital will make for the
message, including the initial
attempt. Once a message has been
attempted this many times, a User
Defined Alert is raised for this
message. These alerts will seen on
the e*Gate Monitor application.

hospital.attempt.delay 2 Base number of seconds between
retries.

hospital.attempt.delayIncrement

8

Number of seconds to add to the
base delay per each retry. For
example, using the default value,
the time between the third and
fourth retry is: 2 + 8 + 8 + 8 = 26
seconds.

If different subscribers need different Error Hospital configurations, then each
subscriber should use a different properties file with the values needed by that
subscriber.

Note: Although the directory containing the RIB properties file may change, it
must always be named rib.properties.

Chapter 6 – Message error handling 41

Error Hospital activities
This section details activities one may perform on the Error Hospital from the
Error Hospital command line utility. This Java application lets you:

• Query the hospital database to determine the message(s) that exist

• View or save a message’s contents

• Replace the message’s contents

• Increase the number of processing attempts for this message for this
subscriber by one

• Delete the message

• Stop the message from further processing attempts

The Error Hospital command line utility is a single Java class that is executed or
wrappered by a set of shell scripts (Unix platform) or BAT files for the Windows
NT or Windows 2000 environment. This Java class requires the presence of a
properties file, hospital-admin.properties, in the user’s home directory.

These scripts also source the file, hospital-admin.env, to initialize the
CLASSPATH used by the command line utility class.

Hospital admin command line utility set up
There hospital-admin.properties file and the hospital-admin.env file must be
manually set up before the command line utility can be used.

42 Retek Integration Bus

Setting up hospital-admin.properties
The following properties must be set in the file hospital-
admin.properties. By default, the user’s home directory is checked for this
file. However, the name and location for this file may be specified at run time.

Parameter Name Description

hospital.gui.prop.dbUser Database User ID the utility will use to log into
the hospital database.

hospitial.gui.prop.dbPwd Password associated with the dbUser parameter.

hospital.gui.prop.dbUrl URL of the JDBC driver that will host the
database session. This URL is typically of the
form:
jdbc:oracle:thin:@<hostname>:1521:<SID>
where <hostname> is the name of the host
containing the Oracle listener and <SID> is the
Oracle System ID of the database.

hospital.gui.prop.dbDriverClass Name of the Oracle JDBC driver class.
Typically, this is
oracle.jdbc.driver.OracleDriver As of this
writing, this driver is found in the file
client12.zip available from Oracle.

Because this file contains database login parameters, access to it should be
limited. On Unix systems, set the file privileges mode of hospital-
admin.properties to 0400.

All entries must be in the form <ParameterName> = <Value> . Comments begin
with a hash (‘#’) and continue to the end of a line. Lines containing white space
are ignored. An example of the hospital-admin.properties follows:

hospital.gui.prop.dbUser=retek_user

hospital.gui.prop.dbPwd=retek_password

hospital.gui.prop.dbUrl=jdbc:oracle:thin:@HSP_DB_HOST:15
21:hsp_SID

hospital.gui.prop.dbDriverClass=oracle.jdbc.driver.Oracl
eDriver

Chapter 6 – Message error handling 43

Setting up hospital-admin.env
The hospital-admin.env file contains the CLASSPATH and other environment
entries that the hospital command line utility uses. Each wrapping [?] script
sources this file before executing the utility class. The hospital-admin.env
file must exist somewhere in the user’s execution path.

The hospital-admin.env file should contain the following information:

• The correct CLASSPATH environment variable. An example of a
CLASSPATH is:
CLASSPATH=/files0/egate/egate/client/classes/retek-rib-
support.jar:/files0/egate/egate/client/ThirdParty/oracle
/classes/classes12.zip:/files0/egate/egate/client/etd/et
dRibMessageEnvelope.jar:/files0/egate/egate/client/class
es/stcjcs.jar

The example above assumes that the <EGATE_HOME> directory is
/files0/egate/egate.

• Any modifications to the PATH environment variable to execute the Java
command.

Error Hospital admin command line scripts
All Error Hospital administration is done via the Java class:

com.retek.rib.collab.HospitalAdminCmdLine

However, a set of scripts has been created for ease of use. These scripts wrapper
the HospitalAdminCmdLine class and invoke the java interpreter to execute it.
Each script will also echo the specific command used.

Each script has a Unix Bourne shell version and a Windows 2000/NT version.
Each operating system specific version accepts the same parameters. The
following scripts have been implemented:

Command Parameters Description

querymsg -l <location>
-f <family>
-t <type>
-i <id>
-q <inQueue>
-r <willRetry>
-p
<propertiesFile>

Queries the database and displays a list
of message numbers that meet the
required criteria. Any combination of
these parameters can be used. The SQL
select will use the input parameters in a
LIKE context so wildcards are allowed
(%). For example, if “-i 123%” were
passed in, all messages with
message_num starting with 123 would
be selected.

• -l <location> lists only those
message numbers from the
specified location. Locations are
of the form <eway
name>.<collaborationName>

44 Retek Integration Bus

Command Parameters Description
• -f <family> lists only those

message numbers belonging to the
specified message families

• -g <type> lists only those message
numbers that belong to messages
of the specified type

• -i <id> lists only those message
numbers that apply to the specified
ID. These identify a specific
business object, such as a Purchase
Order or ASN.

• -q <inQueue> lists only those
message numbers that are believed
to be enqueued in the integration
bus at the current time. A value of
0 or “false” implies the message
only exists in the Error Hospital, a
value of 1 or “true” implies that the
message is thought to have been
published for another attempt to
process it.

• -r <retry> lists only those messages
according to their retry status. The
<retry> specification of 0 or
“false” lists those not eligible for
retry and marked ready for delete;
a value of 1 or “true” lists those
eligible for retry and not ready to
be deleted.

All parameters are optional. Multiple
parameters produce the intersection of
their independent results. (For example,
–f Family and –l Location lists all
messages in family “Family” belonging
to location “Location”.)

deletemsg -m <messageID>
-p
<propertiesFile>

Marks the message ready for deletion.
The message will be deleted when the
retry collaboration next awakens.
The –m switch is mandatory and must
contain the message number of the
message to delete.

readmsg -m <messageID>
-F
<outputFileName>
-p
<propertiesFile>

Retrieves the payload contents for
message <messageID> and writes it out
to the file <outputFileName>.
The –m switch is mandatory and must
contain the message number of the
message to read

Chapter 6 – Message error handling 45

Command Parameters Description
message to read.

updatemsg -m <messageID>
-f
<inputFileName>
-p
<propertiesFile>

Replaces the message payload for the
given message with the contents of the
file. No validation of the file contents is
performed until the subscribing adapter
processes the data.
The –m switch is mandatory and must
contain the message number of the
message to update.

stopmsg -m <messageID>
-p
<propertiesFile>

Stops further attempts to retry the
message.
The –m switch is mandatory and must
contain the message number of the
message to stop retrying.

retrymsg -m <messageID>
-p
<propertiesFile>

Flags the message so one additional
attempt is made to process the message.
The –m switch is mandatory and must
contain the message number of the
message to retry.

Hospital Administration command line examples
Before using any of the commands below, remember to verify that the
hospital-admin.properties file exists in your home directory and
contains the correct database login information. The name and location of this
file may be overridden via the –p command line switch.

Listing all messages in an Error Hospital:
> querymsg

[USAGE] querymsg [-p properties file] [-l location] [-f
family] [-t type] [-i id] [-q inQueue] [-r willRetry]

java HospitalAdminCmdLine -a query

Getting properties from: /files0/egate/hospital-
admin.properties

Number of messages selected: 159

Message numbers: 2947 2933 2934 2935
2936 2940 2849 2850 2851 2852 2853
2854 2856 2857 2858 2859 2923 2924
2925 2926 2927 2928 2929 2930 2931
2932

SUCCESS

>

46 Retek Integration Bus

Listing all messages in an Error Hospital from a specific e*Way:

The example below lists all message numbers that belong to the
ewASNOutToRCOM e*Way:

> querymsg -l ewASNOutToRCOM%

[USAGE] querymsg [-p properties file] [-l location] [-f
family] [-t type] [-i id] [-q inQueue] [-r willRetry]

java HospitalAdminCmdLine -a query -l ewASNOutToRCOM%

Getting properties from: /files0/egate/hospital-
admin.properties

Number of messages selected: 15

Message numbers: 2854 2913 2804 2805
2809 2811 2813 2769 2794 2795 3113
3115 3117 3119 3124

SUCCESS

>

Listing all messages in an Error Hospital that belong to a specific message
family:

The example below lists all message numbers that belong to the “asnout”
message family:

> querymsg -f asnout

[USAGE] querymsg [-p properties file] [-l location] [-f
family] [-t type] [-i id] [-q inQueue] [-r willRetry]

java HospitalAdminCmdLine -a query -f asnout

Getting properties from: /files0/egate/hospital-
admin.properties

Number of messages selected: 23

Message numbers: 2854 2913 2804 2805 2808
2809 2810
2811 2812 2813 3019 3045 3012 2769
2794 2795 3205 3226 3113 3115 3117 3119
3124

SUCCESS

Reading the message payload XML into a file

Message contents can be read into a file using the readmsg script. Note that the
XML is written as it appears in the original message and this means it contains
no new-line or carriage return characters.

> readmsg -m 2947 -F /tmp/message_2947.xml

java HospitalAdminCmdLine -a read -m 2947 -F
/tmp/message_2947.xml

Getting properties from: /files0/egate/hospital-
admin.properties

read Message: 2947

Chapter 6 – Message error handling 47

SUCCESS

> cat /tmp/message_2947.xml

<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE
POReceiptDesc SYSTEM
"http://mspdev09:8109/dtdtst/POReceiptDesc.dtd"><PORecei
ptDesc><dc_dest_id>1</dc_dest_id><appt_nbr>500000301</ap
pt_nbr><po_nbr>10610</po_nbr><document_type>P</document_
type><item_id>100614114</item_id><unit_qty>8</unit_qty><
receipt_xactn_type>R</receipt_xactn_type><receipt_date><
year>2002</year><month>03</month><day>08</day><hour>16</
hour><minute>47</minute><second>11</second></receipt_dat
e><receipt_nbr>500000291</receipt_nbr><asn_nbr>ASN-IT-
RECEIPT-
19</asn_nbr><dest_id>1000000014</dest_id><container_id>A
SN-IT-REC-19-
CID001</container_id><distro_nbr>1000001911</distro_nbr>
<distro_doc_type>A</distro_doc_type><to_disposition>WIP<
/to_disposition><from_disposition></from_disposition><to
_wip>MXDSKU</to_wip><from_wip></from_wip><to_trouble></t
o_trouble><from_trouble></from_trouble><user_id>ZZRUDEJ<
/user_id></POReceiptDesc>

>

Updating the message payload from a file:

Message contents can be updated from a file using the updatemsg script. The
editor used to manipulate this data is external to this application.

> updatemsg -m 2947 -F /tmp/message_2947.xml

java HospitalAdminCmdLine -a update -m 2947 -F
/tmp/message_2947.xml

Getting properties from: /files0/egate/hospital-
admin.properties

update Message: 2947

SUCCESS

>

Marking a message ready for deletion:

The deletion of messages stored in the Error Hospital is performed by the retry
collaboration. One may mark a message ready to be deleted by this software
using the deletemsg script. The example below marks message number 2155
ready to be deleted:

> deletemsg -m 2155

java HospitalAdminCmdLine -a delete -m 2155

Getting properties from: /files0/egate/hospital-
admin.properties

delete Message: 2155

SUCCESS

>

48 Retek Integration Bus

Manually querying message information from the Error Hospital
Although the Hospital Admin command line utility allows one to view
information about the messages contained in the hospital, one may wish to select
IDs from the Error Hospital database using some other unique criteria.

Most message information is stored in the rib_message table.

To count the number of messages in the Error Hospital for a specific adapter:
select count(*) from rib_message where location =
’<ADAPTER_NAME>’;

To display the Error Hospital message numbers for messages in the Error
Hospital for a specific adapter:

select message_num from rib_message where location =
’<ADAPTER_NAME>’;

To display the failure history of a specific message
select * from rib_message_failure where message_num =
<MESSAGE_NUM>;

To display the message numbers for a particular message type
select count(*) from rib_message where location =
’<ADAPTER_NAME>’;

Columns in the RIB_MESSAGE table

Column Name Description

message_num Error Hospital message ID

Location Name of adapter (e*Way name + ‘.’ + collaboration
name) encountering an error processing the message

Family family of message

Type type of message

ID ID of business entity that this message is associated
with

publish_time Date/Time message published

in_queue Flag set when message is re-published by the retry
collaboration. A value of 1 indicates the message
resides on the JMS queue and has not yet been
processed by the subscriber collaboration. A value of
0 indicates the message only resides in the Error
Hospital

message_data CLOB containing the message data

attempt_count The number of times this message has been sent
(unsuccussfully) to the subscriber, including the initial
attempt

Chapter 6 – Message error handling 49

Column Name Description

max_attempts The number of attempts the hospital will make before
stopping retries and alerting an administrator

next_attempt_time The time of the next retry attempt, or null if the
message should be attempted as soon as possible.

delete_pending Set to 0 to indicate message is to be kept in the Error
Hospital. Set to 1 to prompt the retry collaboration to
delete the message from the Error Hospital.

50 Retek Integration Bus

Error Hospital log entries
The Error Hospital software contains trace statements for monitoring its
execution. These statements will be logged to the SeeBeyond e*Way log files.
More verbose logging of hospital operations is available if the e*Way’s Log
settings have been set to log ‘e*Way (EWY)’ messages and the log level has
been set to “DEBUG” or “TRACE”. These settings can be modified by using the
e*Gate Enterprise Manager application.

The standard log file will be used
(<EGATE_HOME>/client/logs/<EWAY_NAME>.log).

Unfortunately, once this logging level has been set, the adapter will log many
more messages from other e*Way components. The following Unix command
may be used to see just the Error Hospital messages (from either the subscribing
collaboration or the retry collaboration):

egrep 'Hospital(Controller|Persistence) '
<LOG_FILE_NAME>

where <LOG_FILE_NAME> is the name of the log file.

Note: There is a space both before and after the second single-quotation mark.

Creating additional error hospitals
An Error Hospital is checked each time a subscribing application adapter
processes a message. Because of this, location of the database with the Error
Hospital tables is critical. The Error Hospital may be located within its own
database or be part of the application’s database.

By default, only a single Error Hospital is used in the RIB Messaging schema.
The instructions for installing a new Error Hospital are found in the RIB
Installation Guide. This installation consists of creating a set of new database
tables and a sequence object.

Once the new Error Hospital has been created, create a new Oracle Connection
Point to reference it. Then update the collaborations used by the subscribing
application adapters to use the new Connection Point.

Chapter 7 – RIB component configuration 51

Chapter 7 – RIB component configuration
This section details configuration issues and options with the RIB.

Oracle database triggers
Before any message can be published, a trigger may need to be enabled within
the publishing application. Information on these triggers may be found in the
RMS, RDM, or RCOM operations guides and reference manuals.

RIB property file
The RIB property file uses the standard Java property file format. It specifies
Error Hospital, TAFR and other configuration information.

• For specific entries dealing with the Error Hospital, see the Message Error
Hospital chapter

• For specific entries dealing with TAFR adapters, see the TAFR
Configuration section detailed later in this chapter.

The RIB properties file must have the name “rib.properties”. However, the
location of this file may be specific to the e*Way using it.

Multichannel_ind property
The only other type of RIB property file entry is used by RMS publishers. It is
the “multichannel_ind" property. An example of an entry here is

multichannel_ind = MPHYS

Legal values for this property are:

• MPHYS Specifies multi-channels using physical warehouses. The effect
is for RMS to consolidate virtual warehouse orders at a physical level.

• S Specifies a single distribution channel is in use.

• M (Reserved for future use).

SeeBeyond e*Way configuration files
All RIB adapters are SeeBeyond Multimode e*Ways. Each uses its own
configuration file containing parameters it needs to function. These configuration
files can be manipulated by the SeeBeyond e*Gate Enterprise Manager
application.

52 Retek Integration Bus

Figure 7-1: Right-click on e*Way in e*Gate Enterprise Manager

e*Way property and configuration files
Figure 7-1 shows what is displayed when you right click to select an e*Way, to
modify its properties.

1 Select Properties… from the menu, or click the Properties toolbar icon. The
e*Way Properties dialog box is displayed.

Chapter 7 – RIB component configuration 53

Figure 7-2: e*Way Properties Window

2 Click Edit. The Configuration Edit window is displayed.

54 Retek Integration Bus

Figure 7-3: e*Way Configuration Edit Window

The configuration for this e*Way is the file
<EGATE_HOME>\configs\stceway\ewDiffGrpToRCOM.cfg.

3 Verify the main configuration entries:

 JNI DLL absolute pathname

The JNI DLL absolute pathname is the location of the Java Native
Interface library. On Unix systems, this is a shared library, while on
Microsoft Windows platforms this is a DLL. This library provides
access to native ‘C’ language components that are part of the SeeBeyond
e*Way infrastructure. SeeBeyond provides such a library with its
installation on a specific platform.

The name of the file on Unix systems is typically of the form
“libjvm.so”. On Windows it is “jvm.dll”. From the SeeBeyond
installation disk, this library is typically found under a Java Runtime
Environment directory. Examples of the library’s location include:

Chapter 7 – RIB component configuration 55

<EGATE_HOME>\client\Jre\1.3\bin\hotspot\jvm.dll
(Microsoft Windows)

<EGATE_HOME>/client/j2re1_3_0_02/lib/sparc/client/lib
jvm.so

(Sun SunOS or Unix)

 CLASSPATH Prepend

The “CLASSPATH Prepend” parameter must include the location of the
RIB class Java Archive (JAR) file and the location of the RIB properties
file. The RIB Support JAR file is typically found at
<EGATE_HOME>/client/classes/retek-rib-support.jar

while the RIB Properties file is typically found at
<EGATE_HOME>/client/classes/rib.properties

Hence, an example of the CLASSPATH Prepend parameter on a Unix
system is (assuming e*Gate is installed in /opt/egate)
/opt/egate/client/classes/retek-rib-support.jar:
 /opt/client/classes/rib.properties

while, if e*Gate is installed in C:\egate on a Microsoft Windows system:
C:\egate\client\classes\retek-rib\support.jar;
c:\egate\client\classes\rib.properties

Note: The path separator is a semi-colon on the Windows system, and a colon
on the Unix system.

e*Way Collaborations
Collaborations define the processing logic for a message. They also define where
messages are subscribed from and published to. For many e*Ways, there will be
no need to modify the collaborations specified for an e*Way. This is because the
supplied connection points can be modified for site-specific values, such as the
host name or TCP port.

However, modifications to the Collaborations specified in an e*Way are needed
when new connection points are required. An example of this is for a new RDM
installation in a remote warehouse. The RDM instance will have its own
database and therefore a new Oracle Connection Point is required. An additional
Error Hospital for such an installation may be useful for performance reasons.
The remote installation may also require a local JMS IQ Manager and associated
connection point. It is possible to have three or more additional connection
points per new RDM installation. This is in addition to creating the new remote
participating host.

The figure below shows the main e*Gate Enterprise Manager for a RIB adapter.

56 Retek Integration Bus

Figure 7-4: Main e*Gate window when RIB e*Way selected

The e*Way selected is a subscribing interface to RDM for one warehouse
(number 3 out of 4). The collaboration colUDAsToRDMWH3 subscribes to the
UDA message family and is the normal “subscribing” collaboration. The
collaboration named colUDAsToRDMWH3Retry is the “retry” collaboration and
is responsible for resubmitting and deleting messages from the Error Hospital for
the UDA message family for this subscriber.

When the properties of colUDAsToRDMWH3 are examined, the following
window is displayed:

Chapter 7 – RIB component configuration 57

Figure 7-5: “subscribing” e*Way collaboration properties

There are two Event Types subscribed to in this example: One for unprocessed
messages (etUDAAsLVFromRIB) and one for messages to be re-processed
(etUDAsToRDMWH3Retry). The source for each type is the connection point
cpUDAsLVFromRIB .

Note: This example uses a single JMS queue for all e*Ways in the EAI system.
If a local queue were used, the connection point should be named something
similar to cpUDAsLVFromRIBWH3.

There are also two Event Types “published” in this example:
etUDAsRDMAPIWH3, the Oracle connection point associated with the warehouse
specific RDM instance and etHospitalDB, the Error Hospital Oracle
Connection Point.

Note: This example uses a single Error Hospital for all e*Ways in the EAI
system. If a local Error Hospital were used, the connection point should be
named something similar to cpHospitalDBWH3.

Note: This is a subscribing collaboration; the “publishing” connection points
serve only to provide the database connection within the processing logic. No
messages are published to any queues for this collaboration.

58 Retek Integration Bus

However, the “retry” collaboration does publish messages to a queue. The retry
collaboration’s properties is seen below:

Figure 7-6: “Retry” collaboration properties

For the retry collaboration, the subscription “source” is the Error Hospital Oracle
Connection Point, not a JMS queue. For publishing messages, the retry
collaboration uses the same connection point as the subscribing collaboration.
The event type it publishes is the etUDAsToRDMWH3Retry event.

If the retry collaboration published the same event type that the subscribing
collaboration originally processed (and had a problem with), then all subscribers
to this event type would re-process the message. In this particular case, this
would not be a problem, since this event type only has one subscriber. However,
other event types are subscribed to by multiple applications. Problems can arise
when a message is delivered after it has been processed successfully.

Chapter 7 – RIB component configuration 59

SeeBeyond connection point configurations
All RIB Adapters use connection points as a source/sink for messages and for
accessing databases. This section details the configurations for the JMS
Connection Point and an Oracle Connection Point.

The most important aspect of this configuration is the use of the XA protocol in
support of processing messages exactly once.

JMS IQ manager configuration
Configuring a JMS connection point requires knowledge of the Java Message
Service server that is to be used. SeeBeyond’s JMS Intelligent Queue Manager
provides such a service. Other message oriented middleware products, such as
IBM’s MQ Series product, also may provide such services.

A JMS server provides access to one or more JMS Queues and their associated
stable (a.k.a. hard disk) storage. Multiple JMS IQ Managers may be created and
deployed with the RIB, depending on the topology of the installation, message
lifecycle, administration, performance and availability requirements.

Although a JMS IQ Manager may be accessed from multiple e*Gate schemas via
the connection points contained in these schemas, only the schema containing the
JMS IQ Manager can administratively view the messages contained in the JMS
server queues.

Similar to other e*Gate components, the JMS IQ Manager’s full operating
parameters are found in two windows: An IQ Manager Properties window and
the JMS IQ Manager specific configuration edit window.

60 Retek Integration Bus

Figure 7-7: JMS IQ Manager Properties Window

The following properties are extremely important:

• On the “General” Tab:

 IQ Manager Type: By definition, must be SeeBeyond JMS.

Note: Of course, if an enterprise has standardized on the IBM MQ Series
product for JMS servers, then the SeeBeyond MQ Series Connection Point
will be used directly with this server. In this case, no JMS IQ Manager is
needed.

 Configuration File: Details IQ manager configuration storage.

• On the “Start Up” tab:

 Start Automatically: determines if the IQ Manager’s control broker will
start up the IQ Manager whenever the control broker starts up.

• On the “Advanced” Tab:

 TCP/IP port number: determines the TCP port number to listen on. This
must be allocated specifically to the JMS IQ manager instance. No other
application (including other JMS IQ Managers) can use this port.

 Log: This button accesses an additional window to control logging and
tracing levels.

• On the “Security” Tab:

Chapter 7 – RIB component configuration 61

 Privilege: Allows access to a window assigning privileges to defined
roles when ACL’s have been enabled.

Figure 7-8: JMS IQ Manager Configuration Edit window

The SeeBeyond e*Gate JMS IQ Manager configuration contains five sections.
Full documentation on these parameters is found in the SeeBeyond JMS
Intelligent Queue User’s Guide.

1 DB Settings: This section defines the stable storage options for the files used
by the JMS server. The “DBPath” configuration parameter is particularly
interesting, since it locates the file directories used to store messages. It also
provides options for disk synchronization and memory cache size.

2 Message Settings: This section specifies options for allocating memory for
messages and the maximum time a message will be allowed to persist on a
queue within the server.

62 Retek Integration Bus

3 Server Settings: This section defines the maximum number of messages the
server will store. The JMS server will throttle clients (cause them to wait)
when this number is exceeded.

4 Topic Settings: This section sets the per-topic resource limits. In the RIB
environment, a topic equates to an e*Gate Event Type which equates to a
specific queue of messages supplying a set of subscribers.

5 Trace Settings: This section controls tracing of messages for the JMS
server. Parameters include the name of the log file used for tracing, the trace
verbosity level, and specific types of tracing to perform.

Note: Remember that configuration changes need to be promoted to the run time
environment before they take effect. To do this: in the Configuration Edit
window, select File > Promote to Run Time.

JMS IQ Connection Point configuration
JMS Connection Points are defined within the e*Way Connections folder. This
folder is found at the right-hand e*Gate Enterprise Monitor frame near the
bottom. When selected, the window will appear similar to the figure below:

Figure 7-9: e*Gate Enterprise Manager with e*Way Connections folder
selected

Chapter 7 – RIB component configuration 63

To create new connection points:

• Click the central e*Way connection button.

To edit existing connection points:

1 Select the connection point.

2 Modify the connection point’s properties: the two main properties are the
configuration file and the connection point type (which by definition must be
a SeeBeyond JMS Connection Point).

Figure 7-10: JMS Connection Point Configuration Edit window

There are two sections determining the connection point’s operating
characteristics:

64 Retek Integration Bus

• General Settings: This section details standard JMS operation options and
message restrictions for the JMS client. Parameters for the General Settings
include:

• Connection Type: Specifies if the connection type used is as a “Queue” or a
“Topic”. Must be set to “Topic” to ensure that all subscribers get the
message. When “Topic” is specified, all subscribers will receive a copy of
all messages for all queues managed by the JMS provider. If “Queue” is
specified, then no message will be sent to more than one subscriber and the
allocation messages to subscribers is indeterminate.

• Transaction Type: Specifies the type of transactions used to dequeue and
enqueue messages. “XA-Compliant” must be used for messages to guarantee
messages are processed successfully exactly once within the RIB.

• Delivery Mode: Must be set to “Persistent” to insure messages are written to
disk before an enqueue operation completes.

• Maximum Number of Bytes to Read: Specifies the maximum number of
bytes to read at a single time from the received bytes message.

• Default Outgoing Message Type: The JMS standard specifies two types of
messages: one consisting of bytes and one of strings. This is not to be
confused with the RIB “message type”.

• Factory Class Name: Name of factory class to use in creating the JMS
connections. Suggested value:
com.stc.common.collabService.SBYNJMSFactory

• Message Service: This section details JMS IQ Manager specific parameters
for the JMS server.

• Server Name: Specifies the JMS IQ Manager name as seen in the e*Gate
Enterprise Manager application.

• Host Name: Specifies the IP address or the host name from a Domain Name
Server (DNS) that is running the JMS IQ Manager.

• Port Number: Specifies the TCP Port number the JMS IQ Manager is
listening on. Must match the JMS IQ Manager “TCP/IP Port Number”
property.

• Maximum Message Cache size: Specifies the maximum message cache size
for the connection point.

Note: Remember that configuration changes need to be promoted to the run
time environment before they take effect. To do this, on the Configuration
Edit window, select File > Promote to Run Time.

Chapter 7 – RIB component configuration 65

Oracle Connection Point configuration
Oracle Connection Points are defined within the e*Way Connections folder.
This folder is found at the right-hand e*Gate Enterprise Monitor frame near the
bottom. When selected, the window that is displayed is similar to Figure 7-9:
e*Gate Enterprise Manager with e*Way Connections folder selected.

When the properties window of an Oracle Connection Point has been selected, it
appears similar to the figure below:

Figure 7-11: Oracle Connection Point Properties window

The properties are:

• e*Way Connection Type: Oracle, by definition

• Event Type “get” interval: This is a polling interval occurring after an
“empty” data retrieval. Increasing this value may reduce load on a system.
Decreasing this value may reduce the time it takes to publish a message by
the RIB.

• e*Way Connection Configuration File: name of the configuration file
storing additional parameters.

66 Retek Integration Bus

An Oracle Connection Point Configuration Edit window is pictured below:

Figure 7-12: Oracle Connection Point Edit window

There are two sections found in this configuration: “DataSource” and
“connector”. The connector section contains two parameters that cannot be
changed. The DataSource contains the following parameters:

• class : Specifies the JDBC driver class. For XA support, the class should be
oracle.jdbc.xa.client.OracleXADataSource. The JAR file containing this
class is typically found in <ORACLE_HOME>/jdbc/lib/classes12.jar.

• DriverType: Type of driver. The OracleXADataSource is a “thin” driver.

• ServerName: Name of the host containing the Oracle Listener process to
connect to.

Chapter 7 – RIB component configuration 67

• PortNumber: TCP Port number the Oracle Listener uses to listen on for new
connections.

• DatabaseName: System ID (SID) of the database to connect to.

• UserName: User name to use for the database connection.

• Password: Password corresponding to the user name. Stored as an
encrypted string.

• Timeout: Login timeout value. Longest time to wait for a session to be
established with the database.

Note: Remember that configuration changes need to be promoted to the run time
environment before they take effect. To do this, on the Configuration Edit
window, select File > Promote to Run Time.

TAFR adapter configuration
The TAFR adapter has both a SeeBeyond e*Gate configuration component and a
RIB Properties file configuration component. Furthermore, when adding
additional routing destinations, such as RDM warehouse installations, additional
work must be performed.

RIB Property File TAFR entries
The RIB properties file contains entries for an Error Hospital and for other
components.

The properties associated with a TAFR are used to do the following:

• translate facility ID codes to destination JMS queues and event IDs.

• specify a default facility type when the publishing application has no
knowledge of the facility type.

The entries in the RIB properties file for Facility ID translation have the
following form:

facility_id.<FACILITY_TYPE>.<FACILITY_CODE> = <Dest>

where

<FACILITY_TYPE> is a string matching the available facility types for the
entire set of locations.

<FACILITY_CODE> is a string matching the possible facility ID code values
for a location.

<Dest> is a value to use for routing a message to a specific (warehouse)
location. This will be appended to event type names to effect the routing of a
message.

The entries in the RIP properties file for specifying the default facility type is
facility_type.default = <DEFAULT_FACILITY_TYPE>

This provides a means for translating messages created by publishers (such as
RDM) that do not use the facility type abstraction.

68 Retek Integration Bus

TAFR routing – adding new destinations
Transformation, Address Filtering/Routing (TAFR) adapters are designed to
perform actions based on message content. Applications such as RDM require
TAFRs to route messages to specific instances. The number and names
associated with these instances are within the control of the implementation.
This section details how to add or new destinations.

First, take a logical view of TAFR Processing. First, the message to be routed is
published. The subscribing TAFR retrieves this message and, based on its
content, re-publishes it zero or more times. The queues the TAFR uses to publish
are different than the one it subscribes to.

The JMS IQ Manager the TAFR publishes to may be the same one it subscribes
to, but the “topics” used to publish must differ – so that it will never subscribe to
the same messages it publishes. Also, the SeeBeyond interface with the JMS IQ
Manager equates a “topic” with an “Event Type”. The RIB associates an “Event
Type” to a “Message Family”. A Message Family is a specific XML format. An
Event Type is a tag applied to this format. Multiple Event Types may be
associated with the same message family. Subscribers subscribe to messages with
specific Event Types.

Note: The RIB associates an “Event Type” to a “Message Family”. A Message
Family is a specific XML format. An Event Type is a tag applied to this format.
Multiple Event Types may be associated with the same message family.

When a TAFR determines the routing destination for a message, it uses a
general-purpose API for publications. One of the parameters of this API is the
topic to use. The TAFR computes the “topic” based on the destination and
values in the RIB properties file (rib.properties). One risk with this design is that
it is entirely possible for the TAFR to publish a message that has no subscribers.
Another possible error is that the TAFR cannot compute the destination because
of missing information from the rib.properties file. If either error is reported,
then the TAFR will stop processing all further messages.

A summary of the steps used to add a new destination is as follows:

1 Determine which TAFR and Message Family requires routing.

2 Create the new Event Type name and definition.

3 Modify the TAFR’s configuration to publish the new Event Type.

4 Create the destination messaging components.

Chapter 7 – RIB component configuration 69

Step 1: Determine which TAFR and Message Family requires routing
The first step in this process is to determine which messages are to be sent to the
subscribing application. All message content information is found in the Retek
10.0 Integration Guide. This guide details the input and output event types for a
TAFR processing the message family. In some cases, the documentation may
picture multiple event types as input. The RIB schema as supplied from Retek
deploys by default a separate TAFR adapter for each input event type.

Once the Message Family has been determined, the TAFR can easily be found,
because the RIB uses the naming convention of:

ew<MsgFamily1>To<MsgFamily2><Dest>FromRIB

where

<MsgFamily1> and <MsgFamily2> are the names of message families used
for input and output.

<Dest> is a generalized specification of the destination (for example, WH
for RMD warehouses).

Step 2: Create the new Event Type Name and Definition
Two new event types will need to be created. This first one is the new event type
used by the TAFR component to rout the message to the new destination. The
second event type is used by the subscribing RIB adapter that interfaces with the
application – the intended destination. These RIB e*Ways subscribe to two
events, the “routed” message event type just mentioned and an event type
associated with retrying the message if an error occurs.

The RIB uses the following naming convention for the Event Type names
published by TAFR components:

et<MsgFamily>FromRIBto<DestSpec>

where <MsgFamily> is the message family name and <DestSpec> is the
destination specification. An example is the Event Type name
etASNInFromRIBToWH1. As mentioned above, the specific event types
published is found in the Retek 10.0 Integration Guide.

Once the name has been determined, the definition must be created. This is done
via the e*Gate Enterprise Manager application. Clicking on the “Event Types”
folder displays the following window:

70 Retek Integration Bus

Figure 7-13: e*Gate Enterprise Manager with Event Types folder selected

The figure above shows four possible published event types for the TAFRs
involved with the ASNIn message family: etASNInFromRIBWH1,
etASNInFromRIBWH2, etASNInFromRIBWH3, and etASNInFromRIBWH4.

Clicking on the central “Event Type*” button brings up the following window:

Figure 7-14: New Event Type window

1 In the Name field, enter the new event type name, for example,
etASNInFromRIBWH5.

2 Click OK.

3 The new event type is displayed at the bottom of the list of event types.

4 Double-click on the new event type. The Properties window is displayed.

Chapter 7 – RIB component configuration 71

Figure 7-15: Event type properties window

5 Click Find. This allows you to associate an existing message format (or
Event Type Definition) with the new event type. (This may take a few
seconds.) The Event Type Definition Selection window is displayed.

Figure 7-16: Choosing an Event Type Definition for the new Event Type

6 Select the etdRibMessageEnvelope.xsc file.

72 Retek Integration Bus

7 Click Select. The Event Type Properties window is displayed.

Figure 7-17: Updated Event Type Properties window

8 Click OK to finish creating the new Event Type.

Repeat this process for the “Retry” event type, using the following
characteristics:

• The same Event Type Definition

• The Event Type Name of the form et<MsgFamily>To<DestSpec>Retry.

In the case of the examples above, the event type would be named
etASNInFromRIBToWH5Retry.

Chapter 7 – RIB component configuration 73

Step 3: Modify the TAFR’s Configuration to publish the new Event Types.
The next step is to publish the new event type. This has two parts: to update the
e*Gate registry that the new event type will indeed be published, and, for
messages destined for an RDM instance, modify the RIB properties file.

1 In the e*Gate Enterprise Manager, select the TAFR e*Way.

This can be a little tricky, since many names are similar. TAFR names have
the form ew<MsgFamily>To<Dest>FromRIB. The following example uses
the TAFR ewASNInToWHFromRIB.

Figure 7-18: e*Gate Enterprise Manager with TAFR e*Way selected

2 Select an action:

 Double-click on the TAFR’s collaboration.

 Select the TAFR’s collaboration and click on the Properties icon in the
toolbar.

74 Retek Integration Bus

3 The Collaboration Properties window is displayed.

Figure 7-19: Collaboration Properties window

To add the new event as valid for publication:

4 In the Publications section, click Add.

5 Duplicate the connection point specified as the destination.

6 Select the new event type to be published.

In the example, you would use the event type etASNInFromRIBToWH5.

Note: The “Destination” (in this case ‘WH5’) must also be found in the
rib.properties file as a valid translation value for a specific facility ID code.

7 When the new event publication has been specified, clickOK to save the
information and update the e*Gate Registry with the new information.

Chapter 7 – RIB component configuration 75

Step 4: Create the destination messaging components
The last step is to create the subscribing RIB adapter. One way to do this is:

1 Select an e*Way to duplicate.

2 Select Edit > Copy multiple.

Figure 7-20: Copy Multiple edit option

3 Rename the duplicate e*Ways to match the RIB’s naming convention: For
example, duplicating ewASNInToRDMWH4 will result in
ewASNInToRDMWH4_0. The RIB Naming convention renames the new
e*Way to ewASNInToRDMWH5.

4 Rename the collaborations used to match the RIB naming convention.

76 Retek Integration Bus

5 Edit each collaboration in the Properties window.

Figure 7-21: Collaboration Properties window for a Subscribing Application
Retry collaboration.

Chapter 7 – RIB component configuration 77

Figure7-22: Collaboration Properties window for the subscribing collaboration
for a Subscribing Application adapter.

Note: This collaboration updates the application database.

Figures 7-21 and 7-22 show the Collaboration Property windows for a subscribing
application. The following must be changed on both collaborations:

6 Change the Event Type Names to match the new Event Types defined.

If you do not do this, the adapter will only receive messages that go to a
different destination. In the example above, we created a warehouse #5. All
references to the Event Type etASNInToRDMWH4Retry must be changed to
etASNInToRDMWH5Retry and references to etASNInFromRIBToWH4
changed to etASNInFromRIBToWH5.

7 If the Error Hospital used is specific to the subscribing application, then
make the connection point specific to the error hospital used.

This connection point is associated with the etHospitalDB Event Type
processing.

78 Retek Integration Bus

8 If the subscribing application is to be hosted by a different participating host,
move the new e*Way:

a Select the adapter that you want to move.

b Select Edit > Move. Another window is displayed that allows the e*Way
to be executed on a new computer.

The new computer must have an associated “Participating Host” created within
an e*Gate Schema. See the SeeBeyond e*Gate Integrator User’s Guide for more
details. In addition, a running stccb daemon must be active on the computer
before any other component can be run on the new participating host.

Figure 7-23: Edit drop-down menu.

Note: You must select the e*Way to be moved before you select Edit > Move….

Chapter 8 – Trouble-shooting problems 79

Chapter 8 – Trouble-shooting problems
This section lists a general approach to trouble shooting problems.

If a problem persists, much information may be obtained by turning on e*Way
logging and tracing. For information on this, see the Error, Trace, Debug Log
Files section of Chapter 5.

Problems starting a RIB component
A RIB adapter may not start or may terminate soon after it has started. There are
two possible sources of this problem: incorrect configurations and environment
problems.

Incorrect configurations
Many problems can arise that involve improper or incorrect configuration file or
properties:

• Connection Point Names: If a Connection Point is renamed or deleted, then
any collaboration that references it will have errors and will not be able to
process data.

• Oracle Connection Point User Names and Passwords: Incorrect
specification of the Database Server, System ID (SID), User Name or User
password will result in errors for all adapters using the connection point.
Note that the user password is stored as an encrypted string.

• JMS Connection Point TCP/IP Address: JMS Connection Ports must
specify the correct TCP port number and IP address or host name. A
common problem that may occur when migrating a schema from one
environment (such as a development environment) to another (such as a test
environment) is that these are not changed. The configuration files for this
contain ASCII characters. Retek recommends creating scripts to modify
these values when migrating the RIB between development, test, and
production environments.

Environment problems
Some problems starting adapters are the result of environment or system errors.

• Registry or Control Broker not started: The SeeBeyond EAI system does
not automatically start up the host registry daemon or any of the control
brokers found within a schema. For Unix Systems, these must be started via
a startup script, typically upon system boot. On Microsoft Windows
systems, these are typically installed as services and should be started
automatically. There must be one control broker per host per schema found
in the registry.

• JMS IQ Manager NOT started: The RIB adapters that use a JMS
Connection Point require that the JMS IQ Manager be up and running before
any adapter can access it.

80 Retek Integration Bus

• XA Transaction Logs deleted: Never delete the XA transaction logs unless
one accepts the risk of losing data on the JMS queues, losing data associated
with prepared transactions in Oracle, or having many other problems. Oracle
prepared transaction IDs can be found in the DBA_2PC_PENDING view.
SeeBeyond transaction logs are found beneath the directory
<EGATE_HOME>/client/XALogs.

• XA Not installed in Oracle: An adapter may have problems starting if the
XA package and libraries are not installed in the Oracle database.

• JMS IQ Manager Directory specified via a relative pathname: This
becomes a problem if the control broker is started from a different directory
than usual. As a rule, always use a fully qualified directory name.

• Multiple Duplicate Control Brokers: On Unix systems, the stccb command
must be executed once per control broker. If multiple identical stccb
commands are issued, components chaos may ensue. The Unix command
“ps –ef | grep stccb” will list running stccb processes. Use the “kill”
command to bring down the extra stccb process

Message Processing Problems
This section describes possible problems the RIB might occur processing
messages. It gives a brief description of the problem symptoms and suggested
actions.

No messages processed
Description: An adapter will not be able to update the Error Hospital, publish
new messages, or successfully process messages from a queue if the XA package
is not installed and/or activated in the Oracle database. No messages will ever be
able to leave the RIB queue, since XA is required for inserting messages into the
Error Hospital.

Action: Install the XA libraries and packages.

Publishing adapter hangs
Description: Some messages were published before, but now no messages can
be published at all. The publishing e*Way hangs whenever it tries to send a
message to the JMS queue.

Action: The JMS queue may be full. This could be due to problems with
subscribing e*Ways. For example, the database the subscriber is connected to
does not have the Oracle XA libraries installed. Check to make sure that
subscribers can be started successfully and, if possible, have no errors processing
messages.

This problem can also be caused by an e*Way that is designed to connect to an
application that is not installed. Messages will remain in the JMS queue for all
adapters it believes will, in some future time, pull off messages. The standard
RIB schema contains all adapters for all Retek applications. Delete any e*Way
that is not brought up as part of your version of the RIB schema.

Chapter 8 – Trouble-shooting problems 81

XA lock(s) cause problems with one or more messages
Description: Database locks are normally held within a 2-phase commit
operation transaction until the second phase has started or a rollback is issued. If
a system failure has occurred between the end of the first phase and the
beginning of the second phase, then these locks will be held forever, unless
administrative actions are taken.
The following Oracle message may appear in the logs when this occurs:

ORA-01591: lock held by in-doubt distributed transaction
<XID>

where <XID> is a string of three numbers separated by periods (such as 1.21.17).

Action: If possible, fix the problem and display the e*Way associated with the
transaction. The e*Way recovery process should complete the transaction and
remove the lock. If this cannot occur, one should evaluate whether the
transaction should be committed or rolled back administratively.

The following procedure will administratively commit the Oracle part of a
transaction:

Note: This process risks a “Heuristically Mixed” transaction status: the Oracle
work in a transaction committed, but the SeeBeyond work rolled back. Careful
analysis should always be performed before attempting to perform this
procedure.

1 Determine the Global Transaction ID (XID) of the transaction to be
committed. All prepared transactions will have an entry in the
DBA_2PC_PENDING view. With SeeBeyond e*Gate, the XID is a string of
three period-separated numbers (such as 123.45.890). This view requires
administrator privileges to access its contents.

2 Issue the following SQL, using a facility such as SQLPLUS:
COMMIT FORCE ‘<XID>’ ;

where <XID> is the XID of the transaction. Successful execution of this
command requires administrator privileges that are not granted to most users.

3 Or, commit the work using the following SQL:
ROLLBACK FORCE ‘<XID>’

This has the same provisos as forcing a commit. That is, the Oracle work
rolled back and the SeeBeyond work committed.

82 Retek Integration Bus

User Defined Alerts are displayed
Description: The e*Gate Monitor reports many “User Defined Alerts”. When
examining the details of these alerts, it is seen that they are resulting from
retrying messages in the Error Hospital too many times.

Action: If possible, determine the root cause. These messages may be going into
the Error Hospital due to a field value found in the publisher but not found in the
subscriber. Examine the messages in the error hospital and check to see what the
error is. If nothing is apparent, turn on trace logging in the e*Way and look at the
log file for more information. These alerts might also be due cross message
family dependencies, so check that all appropriate publishing and subscribing
adapters are up and running.

Once the problem has been fixed, increase the Max attempts for all of the
messages in the error hospital so that they will be republished. Otherwise, the
data contained in these messages will never be processed again. Furthermore,
any subsequent messages referencing the same business entity (such as the same
Purchase Order) will be held in the Error Hospital as well.

Messages not getting to the correct subscriber
Description: The TAFR routing functionality appears to be malfunctioning.
Messages go to the wrong subscriber.

Action: Examine the rib.properties file used. Verify that lines exist in this file
for all locations and that the translation of the <facility_type>.<facility_code> is
correct.

TAFR not processing any messages
Description: The TAFR is not processing any messages.

Action: Examine the rib.properties file used. Verify that lines exist in this file
for all locations and that the translation of the <facility_type>.<facility_code> is
correct. Using the e*Gate Monitor application, verify that the JMS server (the
JMS IQ Manager) used as the destination for the messages is running. Look for
any alerts published from the TAFR adapter.

Shutdown problems
An adapter or IQ Manager will not shutdown unless it is between messages.
Once a shutdown command has been accepted by a component, it will not accept
new work. However, existing messages will still be processed.

In rare circumstances, it may be necessary to manually “kill” an adapter because
a message processing thread is held due to a database lock or other resource
contention conflict. If this occurs, one can kill the process using the Unix “kill”
command or, for Microsoft Windows platforms, the task manager.

Because of the distributed nature of the e*Gate platform, manually issuing kill
commands for the control broker process (stccb) is not recommended unless all
attempts to shutdown the control broker using the e*Gate Monitor application
has failed.

Chapter 8 – Trouble-shooting problems 83

Hospital Admin Command Line utility
There are two types of problems using the Hospital Command Line: Java class
instantiation problems and Database connection problems.

Java Class Instantiation Problems
Most Java class instantiation problems involve the inability to create a java class
because it doesn’t know where the class definition is. Typically, an incorrect
CLASSPATH environment variable is the cause. The scripts querymsg,
readmsg, deletemsg, updatemsg , and stopmsg all source the hospital-
admin.env file to set the correct class path. This file assumes that the directory
<EGATE_HOME>/client/classes exist and contains required JAR files.
However, there are some circumstances where needed jar files do not exist here.
The main scenario where this can occur is before any RIB e*Way has been
started that requires the specific JAR file. Listed below are some JAR and ZIP
files needed, and alternative locations:

• xalan.jar – needed for reading message contents. The JAR file contains the
definition of the class org/xml/sax/ContentHandler. This JAR file can also
be found in the “server” directory of the e*Gate installation:
<EGATE_HOME>/server/registry/repository/default/ThirdParty/RSA/certj_
2.0.1/classes/xalan.jar

• classes12.zip – needed for the JDBC driver to connect to the Oracle9i
database. This file is normally found in
<EGATE_HOME>/client/ThirdParty/oracle/classes/classes12.zip. It may
also be down-loaded from the Oracle Technology Network website. See
http://otn.oracle.com/software/content.html for more details.

• retek-rib-support.jar
etdRibMessageEnvelope.jar
stcjcs.jar – these JAR files are used by the Error Hospital should be in
<EGATE_HOME>/client/ directory tree. Alternate copies of these files are
found in the <EGATE_HOME>/server/repository directory tree.

Database connection problems
An inability to connect to the database may be due to a missing JDBC driver
code. The file classes12.zip should be present in the CLASSPATH and exist on
the local machine where the utility executes.

Other possible connection problems include:

• Bad username/password/SID specification in the hospital-
admin.properties file or a missing hospital-admin.properties file.

• A connection will not be made if using a PC to execute the utility that is
located outside of a firewall that is not configured to accept connections to
the database.

	Contents
	Chapter 1 – Introduction
	Chapter 2 – RIB Component Overview
	SeeBeyond Components
	Retek Supplied Components
	Additional resources

	Chapter 3 – RIB component operations
	Simple message flow
	Message Routing
	Component failures
	Application trigger failures
	Publishing adapter failures
	TAFR adapter failures
	Subscribing adapter failures

	Deployment architecture considerations
	Retek schema integrity
	Disk space analysis
	Intelligent Queue Managers
	Performance motivated parallel processing

	Chapter 4 – RIB startup and shutdown
	Sequencing considerations
	RIB Message Publishing Adapters
	RIB Message Subscribing Adapters
	TAFR adapters
	RIB Error Hospital start/stop

	Chapter 5 – Preventative maintenance tasks
	Log files
	Error, trace, debug log files
	XA Transaction Log Files

	MFM staging tables
	Error Hospital
	SeeBeyond Tools
	e*Gate Monitor and Queue Administration Tools
	e*Gate Enterprise Manager
	Command Line Utilities

	Chapter 6 – Message error handling
	Error Hospital components
	Error Hospital configuration parameters and properties
	Error Hospital activities
	Hospital admin command line utility set up
	Error Hospital admin command line scripts
	Manually querying message information from the Error Hospital

	Error Hospital log entries
	Creating additional error hospitals

	Chapter 7 – RIB component configuration
	Oracle database triggers
	RIB property file
	Multichannel_ind property

	SeeBeyond e*Way configuration files
	e*Way property and configuration files
	e*Way Collaborations

	SeeBeyond connection point configurations
	JMS IQ manager configuration
	JMS IQ Connection Point configuration
	Oracle Connection Point configuration

	TAFR adapter configuration
	RIB Property File TAFR entries
	TAFR routing – adding new destinations

	Chapter 8 – Trouble-shooting problems
	Problems starting a RIB component
	Incorrect configurations
	Environment problems

	Message Processing Problems
	No messages processed
	Publishing adapter hangs
	XA lock(s) cause problems with one or more messages
	User Defined Alerts are displayed
	Messages not getting to the correct subscriber
	TAFR not processing any messages

	Shutdown problems
	Hospital Admin Command Line utility
	Java Class Instantiation Problems
	Database connection problems

