Retek® 10.3 Integration Bus

Operations Guide

&

Rete

WWW.RETEK.COM ‘ HELPING THE RETAIL INDUSTRY CREATE, MAMAGE AND FULFILL CONSUMER DEMAND™

Retek Integration Bus

Corporate Headquarters:

Retek Inc.

Retek on the Mall

950 Nicollet Mall
Minneapolis, MN 55403

888.61.RETEK (toll free US)
+1 612 587 5000

European Headquarters:

Retek

110 Wigmore Street
London

W1U 3RW

United Kingdom

Switchboard:
+44 (0)20 7563 4600

Sales Enquiries:
+44 (0)20 7563 46 46
Fax: +44 (0)20 7563 46 10

The software described in this documentation is furnished under a license
agreement, is the confidential information of Retek Inc., and may be used
only in accordance with the terms of the agreement.

No part of this documentation may be reproduced or transmitted in any form
or by any means without the express written permission of Retek Inc., Retek
on the Mall, 950 Nicollet Mall, Minneapolis, MN 55403, and the copyright
notice may not be removed without the consent of Retek Inc.

Information in this documentation is subject to change without notice.

Retek provides product documentation in a read-only-format to ensure
content integrity. Retek Customer Support cannot support documentation
that has been changed without Retek authorization.

Retek® Integration Bus™ is a trademark of Retek Inc.
Retek and the Retek logo are registered trademarks of Retek Inc.

This unpublished work is protected by confidentiality agreement, and by
trade secret, copyright, and other laws. In the event of publication, the
following notice shall apply:

©2003 Retek Inc. All rights reserved.

All other product names mentioned are trademarks or registered trademarks
of their respective owners and should be treated as such.

Printed in the United States of America.

Retek® Confidential

Customer Support

Customer Support hours:
Customer Support is available 7x24x365 via e-mail, phone, and Web access.

Depending on the Support option chosen by a particular client (Standard,
Plus, or Premium), the times that certain services are delivered may be
restricted. Severity 1 (Critical) issues are addressed on a 7x24 basis and
receive continuous attention until resolved, for all clients on active
maintenance.

Contact Method Contact Information

Internet (ROCS) www.retek.com/support
Retek’s secure client Web site to update and view issues

E-mail support@retek.com

Phone US & Canada: 1-800-61-RETEK (1-800-617-3835)
World: +1 612-587-5800
EMEA: 011 44 1223 703 444
Asia Pacific: 61 425 792 927

Mail Retek Customer Support
Retek on the Mall
950 Nicollet Mall
Minneapolis, MN 55403

When contacting Customer Support, please provide:
e Product version and program/module name.

¢ Functional and technical description of the problem (include business
impact).

e Detailed step by step instructions to recreate.
e Exact error message received.

e Screen shots of each step you take.

Contents
Chapter 1 — RIB component overview............cccccceevereecnnnnnn. 1
INEEOAUCTION ...ttt et e et eestaeesbeessaeeabaens 1
SeeBeyond COMPONENLScceerueriiriieriiriinieeieet ettt st 1
ACLIVE MESSAZINE . ..c.eeeeuiieiietieitie ettt ettt et te et et e bt e bt e bt e sbeesatesaeeenteebeenbeesbeesaeeeaee 1
IMOMIEOTINE ... veuvveereeereesteesteesteeseeestaeeereesbeesseesseesseesssessseasseesseessaesseesssesssenssenssenssenssennses 6
Retek supplied COMPONENLS......cc.eeiiiiiiiiiieie e 7
AddItioNal TESOUICES.....c.vieierieiieeiiieiieeieeiee ettt e ere et e ebeesaeesebeestaesseeseeesseenenas 8
Chapter 2 — RIB component operations...........ccccceevveennnnnee. 11
Simple MeSSAZE FlOW.....c.eiiiriiiiiiiiic e 11
IMESSAZE TOULIINE ..eevvveeeiiieeeiiieeeiieeeieeesiteeeseaeeeeteeeeaeeseaeesnsaeesnsaeennseeensseesnsseennes 12
Component fAiluresooeevieriiriiiiiieee e 14
Application trig@er faIlUreS..........cccvviiiiieeiiecciee ettt e e aee e 14
SeeBeyond Publishing adapter failuresccceecvevierienciiniieieeeeecee e 14
SeeBeyond deployed TAFR adapter failurescccoeevvviieciieciieneereeseeceeee e 15
SeeBeyond deployed Subscribing adapter failures............cooceeveeeeiiineenienienieene, 15
Deployment architecture considerationsc.ecceeeeveereeeieeniienieenie e 16
Retek schema integrity on the SeeBeyond Platformccocoviiviiiiiiiieniiceen, 16
Disk SPACE ANALYSIS.....eiiiuiiiiiiiiiieeeiiecieeete ettt et e e et ab e e eeraeenens 16
Intelligent qUEUE MANAZETSccveevrverrerreereereereesteesresreeseesseesseesssesssessseesseesseessees 17
Performance motivated parallel proCcessing........c.ecveeveereereereerireeireereesreeseeeseeenenes 17
Chapter 3 — Configuration files...........ccoeceiiimiicciiiineee, 19
RIB Properti€s File.......ccoiiiiiiiiiiieiieciecce ettt 19
RIB Logging and Timings File.........cccccvieiiiriiniieiiiciececieeeeeee e 19
RIB Message bundling €ntries.......c.cecueeeiieeienierieniesieeieeieeseeseeesnessnesseeseesseessnes 19
Multi-threading eNtrieseevveeriierieeieeie ettt sttt 20
Error HOSPItal @NLIIES.ecvieiieiiiecieeie et ee e e e e ereesreesebesevessbeesbeesseessnesenas 20
GLODAL EIETIESttt ettt ettt et s b ettt et be st e e emeentesbeeneens 20
Implementation classes USEdceevvuieviieriierieiieie ettt 21
SeeBeyond platform Specific €Ntrieseevvierrieiriieeiie e eeiee e sree e 21
ISO platform SPecific ENIIEScccveerieeriieiieiererte et ere e sre e sereeereeseesreas 21
Application SPECITIC ENLIIESeevietieiieriieeieeie ettt ettt e e seees 22
Retek Binding configuration filescccoevieriieiieniieniieeieeieceeee e 22
PrOPerties fIlESccuveruiiiiieiieiiereeete ettt ettt be et e ste e st e s e seb e e s e enaensees 22

XML FI1ES oottt ettt et et e e e ee e e ea e aeeeeaaaseaaaeaeaananane 24

ii Retek Integration Bus

Chapter 4 — SeeBeyond Platform..........ccccccciiimiienciiiinncnnnnnn. 25
RIB startup and ShUtdOWNc.oeiiiiiieriieiiee e 25
Sequencing CONSIAETALIONSc..eeueerverierieriirieie ettt ettt ettt st 25
RIB message publishing adapters..........ccccvveecviiiiiieiiie et 28
RIB message subscribing adapterscvevververrirrierienieesieeseeseresreereesreesseesseesens 28
TAFR QdaPLEIS....cvieriieieieiieiiieitestesteeie et eteeteesteesaessseesseeseesseesssesssesnseanseeseesses 28
RIB 1101 hOSPItalcoiiiiiiiieiieieecite ettt ettt et 28
Preventative maintenance tasks...........ccocueveeririienieneniieneeeeieeeeee e 29
| 0T 1 1SRRI 29
MFEM Staging tabIescccviiiiieeiiieeiie et eie e eee et eeteeesebe e e te e e abeeesbeeeeseeennes 33
EIrOr HOSPIAL ...vievvieiieciiecie ettt ettt st e v esbe et taesebeseneesseesseas 34
SEEBEYONA 001 ..e.uvieiiiiieiiieiecie ettt ettt e s eerbe e taestaesnaeenneeene 35
RIB component configurationoccuveeeiieerieeeriieeieeeceee e e svee e 39
Oracle database trIZEETS. .. .ccverviereerrerreireereeieesreeseesaesereeseeseesseesseesssesssesssessseans 39
RIB Property file......c.coviiiiiiiieiieiieeiieeie sttt et ettt ettt eneeas 39
SeeBeyond e*Way configuration filescccccvviiiiiiiiieiiiecie et 40
SeeBeyond connection point configurationscceccververcreerreenieeseeseesnesneeneenns 47
TAFR adapter Configuration..........ccoecueeeueeeieeseenienieseeeieeieesieeseesresnesnseeseesseessnes 56
Chapter 5 — Message error handlingcccccovveeiiieennnneee. 69
Error Hospital COMPONENLS..........eeeiuiieeiiieeiieeciee et eeieeesieeeeree e saeeevaee e 70
Error Hospital configuration parameters and propertiesccoceeveervervenneenne. 72
Error HOSPital ACtIVITIESccuveeeiiiieeiiiieeiieeeieeeeiee et eeiee e et e et e eeserae e 75
Hospital GUI and command line utility S€t Upccoeevvevrievieerienieciecre e 76
Hospital Admin GUI SCIIPL.....ecvierierierieeiieiierieerieeseestesreereesieessaessaeseresnseeseessees 77
Error Hospital admin command 1ine SCIiptscccvevveeriiereeneenieeieeieeieeeceeeeeen 77
Manually querying message information from Error Hospital.............c.ccoccovininin. 83
Error Hospital 10g€ eNntriescocuieiiieiiiiiiieiieeieee e 84
Create additional Error HOSPItals..........ccceevviieeiieiiiiniieeiecieciceee e 84
Chapter 6 — J2EE Platformsccccceiiimmiecciiiirrecccsirneeannn 85
RIB startup and ShutdOWncooiiiiiiiiiii e 85
Starting the RIB COMPONENLS........cccouiiiiiiiiiiieiiieciee ettt e e e e e eeeeseveeevae e 85
Shutting Down RIB COMPONENLS........cecveeiiirieiieiieiienieeseeseesreesreereeseesseessnesens 85
Preventative maintenance tasks...........ccoeveeiiiiiniiiiienie e 85

L0 FAlES ..ttt ettt et e et e et e e et ae b e e enbeeeebeeesaeeesneeennes 85

RIB component CONfigUration............ccueerueerieeniieeiiienieeiienieeieesereeiee e eeeeeene 86
ConfigUuration fIleS.........eeouieiiieiieiieiere ettt ettt et saeeseeeaeeens 86
GENeric JMS PrOVIAETooiuiiiiiieieie ettt 88
Message LiStener POTLS........ccviiiiiiiiiieieeieeieteste et ere e steestre st e v e esreenraeseaas 88
Data SOUICEeeviiieeiiiee ettt e e e e tr e e e eabeeeeeaaeeesenssaaesasssaeeens 88

Chapter 7 — ISO Platform...........coormco e, 89

RIB startup and shutdOWncoociiiriiiiiiiiicccee e 89

Preventative maintenance tasks...........ccoevieeiiieniieiiienie e 89
| 0T 1 1SRRI 89

RIB component CONfigUration............ccueerueeeieeniieeiiienieeieenieeeeesneeeeeseeeeeeeeee 90
XML FILES ettt ettt et ettt e e et e e b e e b e e eareeeeaeeeaees 90
ISO Configuration (*.cfg) flleS......cuiiviiiiiiiieiiieeiie et 91
PrOPerties fIlESccuviiiiiiiiiieiiecee sttt ettt r e e e e stee st estbesebeenseenraesseas 94

Chapter 8 — RIB Administration Tool.............ccceeecciiirneennnnn. 97

OVETVIEW ...ttt ettt eeitee ettt e ettt e et e e st e e s tee e e bt e esabaeesssaeessaesnsseesssseessseeensseeesses 97

Installation and configUIAtion............cccuieriieiiieriieiiere e 97

Accessing the RIB Administration Toolccoociiiiiiiiiiiiiinicceieee 99
Main Portal SCIEEMcc.ciiuiiiiiiiiiiieee et 99
Hospital Administration GUI APPIEtccvevveriiiciieiieiieniesee st ere e 99
Message StatisticsS GUIL APPLEL.......cccviereerieriiiiieiieieerieeriee e 100
RIB Propertie€s EdItOrcccviiiiiiiiieciieciee ettt et seveeeane e 101

Files and classes contained in the war filecccoecieeiiiniiiiiiiniicee 101

Chapter 9 — Message Statistics Command Line Utility.... 103

OVETVIEW ...etiieeitieeeiiieeeiee et e ettt e et e e s e e e siteeesaaeeesataessssaeenssaaansseesssseesaseeenssesanns 103
REQUITEIMENL ...eeoniiiiiiieieecee ettt ettt st e etbe e ssbeeeaseesnseaens 103
Prerequisites to run the Timings StatiStiCs:cevvvererreciieriierieeeree e eee e 104

Chapter 10 — Multi-Thread feature for the e*Ways............ 107

What is @ TRread?.......ccccviieiiieeiieeeeee e e 107

AMAAII'S LAW ...oiiiiiiiiiiceccc ettt saae s ere e ereenne 107

Multi-threaded feature for Subscriber, TAFR and Publisher:c....ccoeuverennnen. 108

Chapter 1 — RIB component overview 1

Chapter 1 — RIB component overview

Introduction

This manual is designed for System Administrators, Developers, and
Applications Support personnel. Its purpose is to provide a basic understanding
of the Retek Integration Bus components, how messages flow between them, and
operational activities surrounding these components. It also provides templates
for using the RIB as an alternative to FTP batch jobs for transferring files from
one system to another.

This chapter describes the components that make up the Retek Integration Bus
(RIB). These components are distributed within the SeeBeyond Technology
Corporation’s (SeeBeyond) e*Gate™ Enterprise Application Integration
platform. The final deployed system may be distributed across multiple
computing systems. These systems may be running a Microsoft Windows, Unix,
or Linux operating system.

If the SIM/ISO module has been purchased, Retek’s ISO application server (also
known as the Chelsea application server) will be included with the actual
SIM/ISO product. The RIB will then include some components that will be
deployed into the ISO application server.

SeeBeyond components

Active messaging

This section contains a brief description of SeeBeyond e*Gate components. For
more detailed information, see the e*Gate Integrator System Administration and
Operations Guide.

In SeeBeyond’s EAI environment, a “Registry” embodies a complete
administrative domain. A Registry is a database defining the deployed EAI
system and a program that controls access to this database. A Registry is
organized into one or more Schemas. Each schema details a collection of
e*Ways, BOBs, Intelligent Queue Managers, Intelligent Queues, Connection
Points, and Collaboration Brokers along with their network addresses or
locations. The Registry also contains basic security objects that control user
identifications, roles, and privileges shared across all schemas.

Because the Registry embodies all configurable parameters, no other component
can be brought up without access to a registry, either directly or indirectly.
However, in a distributed environment, reliance on a single Registry can be
problematic, since:

e System crashes or scheduled maintenance may bring down the Registry.

e Network partitions may occur that cut communication links between
deployed components

e Reliance on a single host may produce a performance bottleneck.

2 Retek Integration Bus

Deploying and configuring “Secondary Registries” can alleviate these problems.
Secondary Registries replicate the Primary Registry. The number and location of
these Secondary Registries are dependent on the site-specific needs and
capabilities of a deployed system. The replication of the configurations occurs
transparently during normal operation of the system.

Each Registry is broken up into one or more Schemas. Each schema is a self-
contained set of components that define “end-to-end” processing of one or more
messages. The Schema contains the message processing units to deploy, where
messages are stored, security roles, database access definitions, and other
information. Schemas may be bridged, such that one schema may publish a
message and other schemas contain one or more of the message’s subscribers.
For reasons of performance and high availability, schema contents can be copied
within a single Registry (that is, two or more schemas are defined with the same
component types and processing, but have different names and physical
deployments).

In SeeBeyond’s vocabulary, there are three types of logical computing host
types: A Registry Host containing the Registry, Monitor Hosts where the e*Gate
Monitor Software can be run, and “Participating Hosts” that produce, consume
and process messages.

Note: This must be a Microsoft Windows NT/2000 platform. The complete
requirements for such a system is detailed in SeeBeyond’s e*Gate Integrator
Installation Guide.

Although all three of these component types could run on a single physical host,
this is rarely seen in production environments. Usually multiple computers are
found in a deployed system — Operations personnel with PC’s running the
e*Gate.

All components within a Schema are defined within one or more Participating
Hosts. There is a correspondence between a logical Participating Host and
another SeeBeyond infrastructure component known as a Control Broker. The
Control Broker is a program that controls the administrative activities for a
participating host’s messaging components (e*Ways, IQ Managers, and BOBs).
The Control Broker maintains a network Connection with the Registry or a
Secondary Registry at all times, because it also propagates configuration
changes.

There must be at least one control broker up and running on any physical host
involved in the deployed system. Furthermore, there may be multiple control
brokers running on a single physical host because:

e The same computer may be configured as different “Participating Hosts”
within a schema found in multiple Registries. This is because the same
physical host may have multiple identifications within a Domain Name
Server.

e The same host may be configured within multiple Schemas that are part of
the same Registry.

o The same physical computer may be configured to hold multiple
“Participating Hosts” within a single Schema.

e Any or all of the above may be true.

Chapter 1 — RIB component overview 3

Each Control Broker starts with parameters detailing its own name and its
associated Schema and Registry. At least one of these parameters must differ for
each Control Broker instance. (That is, no two control brokers can start with the
same name, same schema specification, and same Registry specification.)

Once a message is created, it usually needs copying to stable storage so that it
doesn’t get lost. The RIB uses the SeeBeyond JMS Intelligent Queue (1Q)
Manager component for this. The JMS IQ Manager is a Java Message Service
provider. Queues within the JMS system are identified as “topics” that
publishers publish to and subscribers subscribe to.

Event types categorize the format of a message. The JMS IQ Manager equates
an event type with a JMS topic.

The Retek Integration Bus uses the JIMS 1Q Manager extensively because it
offers a two-phase commit capability. Two phase commits are integral to
"exactly once" message processing.

Note: “Exactly once message processing” is a SeeBeyond product attribute that
guarantees a message is processed only once successfully. This is important for
non-idem potent messages — messages that contain “relative” values — that would
cause discrepancies if processed by a subscriber more than once. For example, if
a message reserving a stock item for a specific store could end up reserving all
items for that store if processed enough time, even though the publisher only
wanted one item.

The other SeeBeyond component deployed within a Participating Host is the
e*Way. These components produce, consume, or otherwise process messages.
This manual uses the term adapter as a synonym for an e*Way. All RIB
adapters are e*Ways.

Besides the “application” side of an e*Way, messages can be produced or
consumed from an entity known as a Connection Point. A Connection Point
defines a session with an external entity such as a database, e-mail server, World
Wide Web (HTTP/HTTPS) server, or Java Message Service provider. It is
possible to poll Connection Point sessions for incoming data at regular intervals,
as defined by their configuration. Multiple adapters may use the same
Connection Point. Connection Point APIs may be multi-threaded and, depending
on their design and configuration, support an XA compliant two phase commit.

It is only through the XA interface that SeeBeyond insures a message is delivered
and successfully processed exactly once.

The processing for a specific message used by an adapter is defined within
Collaboration. The source of the message (or event) that triggers the
collaboration’s processing may be from either the e*Way application interface,
from a Connection Point or from another collaboration. Messages published from
collaboration must have an associated destination. This destination may be either
an Intelligent Queue or a Connection Point.

4 Retek Integration Bus

One may use a Connection Point to ensure all processing performed on the
message is done atomically. Connection Points implementing the XA interface
can have a distributed transaction that enforces atomic commits and rollbacks.
The e¥*Way’s collaboration control logic manages the commitment or rollback of
this distributed transaction based on the success or failure of the message
processing within the collaboration. “Exactly once message delivery” requires
the XA protocol and its associated two-phase commit operation. However, if the
Connection Point does NOT implement the XA interface, then, under certain
failure scenarios, the same message may be submitted for processing multiple
times.

RIB collaborations will also fail if their database connection points do not
support the XA protocol. RIB collaboration logic does not contain commitment
or rollbacks. The distributed transaction must include the work involved in
delivering the message from a queue to the collaboration. The collaboration
starts only after the message delivery to the adapter. If an invalid connection
point is used, then no database work performed by the collaboration logic will
ever be committed.

The typical lifecycle of a message is as follows:

o First, the publishing adapter creates the message. The event that triggers the
message creation may be a polling operation on the database, the presence of
a file, or merely that a certain time interval has been reached. Each message
is created in the context of collaboration, and part of the collaboration’s
configuration specifies where to publish the created message. The message
is sent to a “queue” that then writes the message to stable storage.

o The message is now available to its subscribers. Subscription is based on the
publishing collaboration / event type combination. Each subscriber will
contact the queue and retrieve the next message available. Separate threads
in the subscriber are used to retrieve messages on a per event type basis. The
specific message retrieved from the queue depends on its location within the
queue. As part of the retrieval processes, the Error Hospital software updates
the state of the message to reflect that one of the subscribers is now
processing it.

¢ Once a subscriber gets the message, it is free to process it according to its
own rules. In the case of a transformer adapter, the subscribing collaboration
can open the message, modify its contents, and then publish the modified
message to a new queue. If the new message is of a different type than the
original, the new message can be published to the original queue. There may
be new subscribers to the modified message, and the scenario repeated for
each of these subscribers.

e When each subscriber has finished processing a message, the queue updates
the state of the message to reflect this. When all subscribers have finished
with the message the message may be deleted immediately or be
archived/journal led for a specific time before deletion. The
archiving/journaling is specific to the type of the queue in use and the
configuration of the queue manager.

Chapter 1 — RIB component overview 5

e The JMS Queue Manager will delete the messages on the queue after
delivering it to the appropriate subscribers or after it has been on the queue
the number of seconds specified in the MaxTimeToLive configuration
parameter.

ISO application server

The ISO application was patterned after the specifications for the J2EE
application server, though it was developed as the specifications evolved, long
before they were complete. For that reason, it is not J2EE compliant. However,
though the terminology may be different, some of the same concepts apply. The
application server has containers that hold server components, which are EJBs in
J2EE. ISO has messaging components, while J2EE has message-driven beans.
ISO has configuration files, while J2EE has deployment descriptors.

The ISO application server was designed with flexibility of deployment in mind.
There are none of the “per PC” licensing requirements that traditional application
servers, such as WebSphere, have. Also, it doesn’t require a heavy-duty server to
run it. This is important for a large retailer who has many individual store
locations, each of which requires an application server.

The ISO application server can use a SeeBeyond JMS queue manager as its JMS
messaging service. In fact, this is the JMS implementation that the RIB uses for
integration between ISO, and other Retek modules such as RMS and RDM. The
existing Retek publishers and subscribers are still SeeBeyond e*Ways, however,
the new ISO components are ISO messaging components for its subscribers, and
publishing utilities.

For more information on the ISO application server, see the documentation
supplied with the SIM/ISO application.

6 Retek Integration Bus

Monitoring

So far, all of the components mentioned are actively involved directly in the EAI
messaging system. In a production system, however, there must be a way to
monitor the running system components.

Note: Monitoring the associated business processes occurs at a different level
and is outside the scope of this discussion.

Four SeeBeyond components are useful in this respect:

1 The e*Gate Monitor: This application that allows an administrator to
determine if a component is up or down and is responding to status requests.
It also allows the administrator to bring up or down any component deployed
on a participating host other than a control broker. Finally, it allows an
administrator to interactively view and mark as resolved any e*Gate Alert
Notifications.

2 The e*Gate JMS Administrator: This application allows an administrator to
monitor the JMS Queue(s). JMS Topic and message statistics can be
analyzed as well as the ability to view, edit or delete message currently in the
queue.

3 The e*Gate Enterprise Manager: This application develops schemas or
modifies existing schemas. As such, it is a primary tool for RIB
development to create new Connection Points, e*Ways, BOBs, 1Q’s 1Q
Managers, Participating Hosts, user IDs, roles, etc., for a schema. A system
administrator would also use this tool to modify the operational
characteristics of schema components, such as changing the level of logging
within an 1Q or e*Way, the automatic running of e*Ways or BOBs, or
specific database log-ins used in Connection Points. Unfortunately, these
attributes may be changed when importing updated schemas from a test
environment to a production environment.

4 Alert Agents or Monitors: Notifications of operational events, such as
e*Ways going down, are passed from a control broker to one or more alert
agents. Different types of alert agents exist and may be configured to create
e-mails, console messages, and SNMP traps. The control broker creates
notification events (messages) that these agents can process. See the
following SeeBeyond manuals for more information on how to install,
configure and modify system monitors:

= ¢*QGate Integrator Alert and Log File Reference Guide
» e*Qate Integrator Alert User’s Guide
» e*Qate Integrator SNMP Agent User’s Guide

= ¢*QGate Integrator System Administrator and Operations Guide

Chapter 1 — RIB component overview 7

If you have purchased the SIM/ISO module, in addition to e*Ways, you will
have ISO platform messaging components that can be monitored using the
Mission Control application, which is part of the ISO application. Within
Mission Control, the highest level entity that can be monitored is the container.
By default, ISO RIB components come in their own container, separate from the
components that are part of the ISO application. The containers can be
monitored to determine whether they are currently up or down, and how long
they have been running. Other miscellaneous vital statistics can also be viewed
from Mission Control.

Within each container in Mission Control, individual components can be
monitored to determine whether they are currently up or down, how long they
have been running, their transaction counts, and any error messages can be
viewed as well.

Retek supplied components

This section contains a brief description of how Retek has built upon the
SeeBeyond and ISO platforms to create the Retek Integration Bus.

The following components comprise the RIB:

e Database triggers that capture application activities as they occur. These
triggers are part of the specific Retek application, such as RMS. However, as
part of the RIB installation and configuration, they must be enabled to
capture information regarding events of interest.

e Staging tables used to hold the captured information and to maintain the
publishing state of the messages.

o Publishing e*Ways that create messages from the information captured by
the aforementioned Database Triggers. These publishing e*Ways are
designed to publish events from a single “Message Family” and are specific
to a Retek Application, such as RMS. Each RIB publishing e*Way has a
collaboration that will invoke a specific stored procedure which returns the
staging table information.

e Subscribing e*Ways that are used to consume messages. These are specific
to Retek Applications (RMS, RCOM, RDM) and are designed to consume all
messages from a specific message family. Each Subscribing e*Way will call
a specific stored procedure used to process a specific application event
message.

e Transformation Address Filters/Router (TAFR) e*Ways that transform
message data and/or route messages. The TAFR acronym is a generic term.
Multiple, message family specific TAFRs have been implemented. Different
TAFR e*Ways may be active on different message families or on the same
message family depending on the needs of an application. Not all message
families require TAFRs.

e Error Hospital database tables used as a basis for storing and re-trying
problematic messages.

e Error Hospital administration GUI and command line utilities.

8 Retek Integration Bus

Pre-defined Connection Points used by the adapters listed above. These must
be configured after installation so that the correct database instance and
logins are used.

SeeBeyond Java Message Service (JMS) Queue managers. The JMS Queue
Managers control the JMS queues used to store messages after publication.
The messages persist on stable storage until all subscribers have processed
them.

For J2EE applications (RCOM, ISO, ...), Enterprise Java Beans (Message-
Driven and Stateless Session).

If the SIM/ISO module has been purchased, ISO messaging components, and
publishing utilities have been included for subscribing to RIB messages
within ISO, and publishing RIB messages out of [ISO. These components
will act like e*Ways. Though they are developed under the ISO platform,
they will still use the SeeBeyond JMS queue manager. They will subscribe
to messages published by SeeBeyond e*Ways, and publish messages to the
SeeBeyond JMS queue, to be consumed by subscribing e*Ways.

Additional resources

Use the following resources to further understand the Retek Integration Bus and
the SeeBeyond e*Gate Integrator EAI platform:

e*QGate Integrator Alert and Log File Reference Guide
e*QGate Integrator Alert User’s Guide
e*QGate Integrator SNMP Agent User’s Guide

The three manuals above detail the options, configuration, and other
reference material for creating Agents and other monitors for a deployed
system.

e*Qate Integrator System Administrator and Operations Guide
Contains reference, troubleshooting and administrative information.
e*Qate Integrator Installation Guide

Contains basic information on how to install the SeeBeyond e*Gate
Integrator platform.

e*Gate Integrator Release Notes

Useful if currently using an earlier version of the SeeBeyond platform.
e*Gate Integrator User’s Guide

e*Qate Integrator Intelligent Queue Services Reference Guide
Overview of the Intelligent Queues

SeeBeyond eBusiness Integration Suite Deployment Guide

This manual contains information on how to analyze, plan, and manage a
RIB deployment.

SeeBeyond eBusiness Integration Suite Primer

Chapter 1 — RIB component overview 9

This manual contains an introduction to all of the available components
within the SeeBeyond e*Gate product family. These include e*Ways
designed to interface to specific application suites, such as PeopleSoft, SAP,
and Oracle Financials.

Chapter 2 — RIB component operations 11

Chapter 2 — RIB component operations

This section details the message flows for a simple message and for a message
undergoing a routing or filtering operation. For a more detailed description of
the RIB components, see the Retek Integration Bus Technical Architecture. For a
detailed discussion of message contents, see the Retek 10.3 Integration Guide.

Simple message flow

The figure below is a generalized view of a RIB message. Two applications
require this data and subscribe to it. One subscribing application requires certain
transformations applied to the data, but the other subscriber can process the
message without any transformations.

Publishing Abo 1 DB
Adapter] PP
[RIB messsage P —RIB message-p| ?&ﬁ;ﬁ;‘:?:r
Payload
RIB
Quewe .
Application essage Famil i
i] Manager L RIB message . RIB
Triggers Staging Tables ge—p TAFR Adapter —h} Queue
Transformed RIB message
A
Subscriber
Adapter 2 App 2DB

Figure 3.1 Message Flow

First, a trigger on a database table fires in response to an application’s action.

Note: Some applications, such as RCOM, do not use triggers to publish to the
MEFM staging table. RDM uses another variation: an MFM interface harvests
data from “Upload” tables to create the XML payload.

This trigger creates a row in a Message Family Manager (MFM) staging table
and commits this data, known as the payload, along with all of the other changes
performed by the user or batch job.

12 Retek Integration Bus

Second, a RIB Publishing e*Way polls the MFM staging table via a call to an
MFM specific stored procedure. This stored procedure insures that messages are
published to the RIB in the correct order and at the correct time. The Publishing
adapter takes the payload and wrappers it with an envelope used by the RIB
infrastructure. The publishing adapter then deposits the message on a Java
Message Service (JMS) queue, which includes writing the message to stable
storage.

Third, a RIB subscribing e*Way polls the JMS queue for a message and retrieves
the one just published. Assume for simplicity’s sake that this e*Way interfaces
with the application requiring no data transformations. The e*Way then reads
the data, performs any needed database updates, and commits all of its work. It
is now ready to process the next message from the JMS queue.

Fourth, a RIB TAFR e*Way also polls the JMS queue. It retrieves the message,
transforms it into a new message, and publishes it — effectively publishing a new
type of message. The TAFR e*Way could publish the message to the same JMS
queue it retrieved the message from using a different JMS topic or it can publish
the message to a completely different JMS queue. The name of the JMS topic
associated with the message may be determined from the message’s Event Type
name.

Fifth, the e*Way associated with the second application polls the second JMS
queue, retrieves the message, and processes the transformed data.

Message routing

When a message requires routing, a TAFR adapter is needed that directs the
message to the correct destination. The information it uses for routing is found
within the message. However, the routing logic is tailored according to the needs
of the subscriber.

TAFR routing logic many times consists of a simple chain of “if-then-else if”
statements.

For example: if the routing tag equals “Warehousel”, then publish the message
as event type “etMessageWH1”, else if the routing tag equals “Warehouse2”,
then publish the message as event type “etMessageWH2”, else if

However, the routing logic can be complex or route the same message data to
multiple destinations. The determination of this logic is specific to the message
family the TAFR is designed to process.

Once the message is published by the routing TAFR, it resides on a destination
specific queue/topic combination. The TAFR collaboration configuration
determines the specific queue used. There must be an association of the output
event type to this queue.

From here, additional adapters retrieve the message and continue to process it.
The logical flow diagram of a routed message as it travels on the RIB is seen in
Figure 3.2. Note that the triggers and databases have been omitted from this
diagram. Moreover, subscribers may publish additional messages, depending on
the needs of the system.

Publishing
Adapter

| RB
messsage

/
|
|
|
|
|
|
|
|
|
|
|
|
|
d
|
|
|
|
|
|
|
|
|
|
|
|
\
\

\

Pub
Queue

Chapter 2 — RIB component operations 13

RIB Message
Event Type #1

RIB RIBM je
message* TAFR Adapter

RIB Message
Event Type #3

Event Type #2

Figure 3.2 Routed Message Flow

Dest |
!) Subscriber
Q #1 | Adapter 1
ueue |
Dest |
|) Subscriber
Q #2 i Adapter 1
ueue !
Dest !
|) Subscriber
Q #3 | Adapter 1
ueue

14 Retek Integration Bus

Component failures

Understanding how messages are transported and processed successfully is a
concern in a production system. An effective administrator needs to know what
kinds of failure scenarios exist and what steps can be taken once these failures
appear.

Application trigger failures

Failures involving the application database triggers should be extremely rare.
When they occur, they manifest themselves as failures within the application.
Trigger failures should be handled immediately.

Many triggers involve the use of a sequence generator as a primary key in a
Message Family Manager staging table. If this sequence generator has been
reset, then unique constraint exceptions may occur.

Another possible trigger failure also involves the insert operation into the MFM
staging table: out of table space. As mentioned below, an analysis of the needed
space should occur before deploying the system to production — or at least
monitored closely while the system is in production. Messages must be
published to the RIB before they are deleted from the staging table and if the
publishing e*Way cannot keep up, the number of rows in this table and the
publishing delay may increase to unsatisfactory levels.

SeeBeyond Publishing adapter failures

Failures involving SeeBeyond deployed publishing adapters (or e*Ways) may
occur due to configuration errors or environmental errors. If a publishing e*Way
becomes unavailable, then records will accumulate in the MFM staging table.

Configuration failures for publishing adapters may occur in the specification of
its collaborations. Specifically, the configuration supplied as part of the initial
product specifies an Oracle Database Connection Point used to trigger message
publication. This Connection Point must have the correct database user login and
SID information supplied or it will not work or a Connection Point must be
specified that contains the correct information.

Similarly, publishing adapters specify a JMS Connection Point for the JMS
queue the message is published to. If a SeeBeyond JMS queue is used, then the
JMS Queue Manager must be set up and attached to the Connection Point.
Otherwise, all messages will fail when published.

Another common problem with publishing adapters, or any adapter, is that RIB
collaboration rules (the processing logic) are written in Java, and the correct
CLASSPATH must be specified in the environment or in the e*Way’s
configuration. If one uses all default file directory locations, it is expected that
this variable will require little or no modifications. However, if the SeeBeyond
e*Gate system or the Java Runtime Environment is installed in an unexpected
location, then all RIB publisher, TAFR, and subscriber adapter configurations
may need to be modified.

Similar to the CLASSPATH problem, but more insidious, is the JNI DLL
specification.

Chapter 2 — RIB component operations 15

Note: The term “DLL” is used even on Unix systems within the e*Gate product.
This is even though DLL’s are specific to a Microsoft platform. On the Unix
platform this refers to the JNI shared library.

This is the Java Native Interface used within an e*Gate e*Way to jump from a
Java context to native C or C++ context. The JNI DLL specification specifies
where the library containing the “jump” code is located. It is considered part of
the run-time environment.

SeeBeyond deployed TAFR adapter failures

TAFR adapters use collaborations and Java similar to publishing adapters.
Hence, they may have the same problems with JMS Queues, Java CLASSPATH,
or JNI DLL configuration entries as the RIB publishing adapters. However,
TAFRs do not typically involve database operations. On the other hand, TAFR
adapters may have their own configurations specified in property files that detail
the transformations or routing that must occur.

Fatal TAFR failures will cause a message backlog in the source JMS queue.
TAFRs with incorrect routing logic will route messages to incorrect destinations.

SeeBeyond deployed Subscribing adapter failures

Subscriber adapters have the same Java, JNI DLL, and Connection Point
potential problems as publishing adapters. When these problems occur,
messages are not delivered to the adapter and the source message queue will
become backlogged.

However, subscribing adapters may also run into problems due to the field
content of the messages. For example, there may be a mismatch with a value or
ID found in the message. When this occurs, the following takes place:

1 The subscribing adapter keeps track that the message failed internally and
returns a failure to the e*Gate system.

2 A distribute rollback is performed. All database work is rolled back and the
message remains on the source JMS queue.

3 The message is re-processed. Because the adapter has flagged the message
has failed, it inserts the message into the Error Hospital.

4 A distributed commit is performed. The message is removed from the source
queue and is committed to the Error Hospital.

5 Periodically, a second collaboration associated with the Error Hospital
awakens and pulls the data from the Error Hospital. This collaboration then
inserts the message back into the original source queue.

6 Steps 1-5 are repeated until the message is successfully processed or until
maximum retry count is reached.

Note that both a GUI as well as a command line interface are provided to
administer the Error Hospital. Error Hospital operations are detailed later in this
manual.

16 Retek Integration Bus

Deployment architecture considerations

So far, the components have been described in generic terms. This is because
every installation may have its own unique configurations and needs. However,
there are some configuration patterns or philosophies that Retek suggests for
successful RIB operations.

Retek schema integrity on the SeeBeyond Platform

Retek suggests that the messaging schema supplied with the Retek Integration
Bus be modified as little as possible when deployed to a production environment.
Doing so will ease the pain of installing RIB updates. Each future RIB release is
expected to contain additional application integration points and Message
Families. Segregating the Retek messaging schema from other non-Retek
components will enable updates to be installed quicker and with fewer side
effects.

Disk space analysis

Before the RIB is deployed to production, an analysis of the expected message
traffic must be made. The Retek 10.3 Integration Guide lists all of the messages
as implemented within the RIB and the conditions in which they are published.
System designers use this guide to estimate expected message size and volume.
From a business operations viewpoint, one should also determine the amount of
time a specific subscriber is allowed to be unavailable before serious business
consequences occur. This should include the maximum amount of time before a
subscriber is failed-over to another system.

The purpose behind this analysis is to determine the amount of disk space needed
to support continued operations if a subscriber becomes unavailable. The
standard RIB configuration will maintain a copy of each message on a queue’s
persistent storage until all subscribers have processed the message. If the disk —
subsystem or queue’s configuration cannot store messages, then each publisher
will need to be shut down.

This analysis should also be continued to the publisher. Specifically, Retek
suggests performing these calculations on the Message Family Manager staging
table size and the likelihood of the SeeBeyond EAI system becoming unavailable
for a specific amount of time. In this scenario (which may be a continuation of a
subscriber problem) the publishing e*Way may not be able to publish messages.
As such, all messages become backed up in the MFM staging table. If this table
runs out of space, then all application triggers that write to the table will fail and
the application should be shutdown.

Chapter 2 — RIB component operations 17

Intelligent queue managers

The SeeBeyond e*Gate EAI platform allows one to use a number of different
Intelligent Queue Managers for storing published messages. The Retek
Integration Bus is designed to use JMS queues because this component requires
no external database and implements the XA interface protocol. The XA
protocol enables the “exactly once” message processing.

The purpose of an IQ Manager is to manage Intelligent Queues. In most cases,
these queues are explicitly defined. In the case of the JMS IQ Managers used
with the RIB, explicit queue definition is not needed. The JMS 1Q Manager also
provides a JMS Service to the Connection Point interface. Each event type
published using the JMS Service will use the Event Type name as the JMS
“topic”. The configuration of the JMS service sets other parameters needed to
access the message.

Note: Not only Java Collaboration Rules can be used with JMS Connection
Points. Monk Collaboration Rules can publish/subscribe to messages on a JMS
queue, but must also explicitly define a JMS Intelligent Queue on the JMS 1Q
Manager used.

Performance motivated parallel processing

A common method to gain throughput in distributed EAI systems is to duplicate
processing modules across multiple systems or, if the system spends a significant
percentage of time waiting for disk I/O, to duplicate modules within the system.
These components then execute in parallel, reducing the elapsed time for
processing multiple messages.

In the Retek 10.3 release, parallel processing considerations have been
subordinated to message sequencing guarantees. In other words, the design of
the system guarantees message processing is in the correct sequence as opposed
to maximizing throughput.

Additional throughput gains can be made if the system is deployed with parallel
processing nodes. However, simply duplicating these nodes introduce the
possibility that some data will be processed out-of-order. If this occurs, then the
final state of the subscribing system will be incorrect and contain invalid data.

18 Retek Integration Bus

Thus, additional design and implementation work is needed to support parallel
processing deployments of the RIB in the 10.3 release. This work must center on
creating well-defined logical channels of information, each channel responsible
for a well-defined set of business entities. An example of such a logical channel
would be one responsible for all of the "even numbered" purchase orders. This is
similar to the Retek “Batch Thread” model. Briefly, the following changes
would need to be made:

1 The current message flow (Publishing adapter and all TAFRs and
subscribing adapters) would need to be duplicated once per each logical
channel.

2 For each publisher, the MFM Oracle database package would need to be
modified such that the “GETNXT()” procedure only returns messages
concerning a subset of all available business entities. If two publishers were
used, then one would return only even IDs and one, only odd IDs.

3 Additional configuration changes would be needed to insure that different
Error Hospitals are associated with each new subscriber.

4 Each logical channel should have an associated Connection Point that uses a
distinct JMS Service provider. This involves creating a JMS 1Q Manager for
each logical channel and a JMS Connection Point that uses this JMS 1Q
Manager. This JMS Connection Point would then be the source or
destination for all messages on the channel. Otherwise, the messages
published for one channel would become intermingled with those from other
channels when the JMS provider saved them to stable storage.

An alternative to multiple JMS IQ Managers is to rename all of the event types
used within the logical channel to be channel specific.

Chapter 3— Configuration files 19

Chapter 3 — Configuration files

The various RIB platforms leverage some platform specific configuration
mechanisms. However, most RIB specific parameters are specified in a file
known as the RIB Properties file.

The Retek Binding sub-system is used on the ISO and J2EE environments. It
uses its own set of configuration files for determining the code to execute when
publishing or subscribing to a specific message family.

RIB Properties File

The RIB Properties File has the name rib.properties. Its location on the
system is dependent on the deployment of the RIB and the running system’s
CLASSPATH specification. See each platform’s configuration chapter for more
details.

This section details the contents of this file.

RIB Logging and Timings File

This section details the file names and levels of logging (on/off or
normal/verbose) for RIB File logging and Timings logging. A Timings log file
contains a series of timestamp lines the mark the date and time a processing point
has reached. Multiple threads may write the same Timings log file. A post
processor is needed to determine statistics about the running system.

log.default.file_path — Location for the rib log files to be places on the server.

log.default.verbose - Default logging to use if none specified for an
adapter

log.<adapterName>. timings - If this property is set to ‘Y, then a timings
log is created and logged during the execution of the adapter specified.

log.<adapterName>.timings logFile - When the timings is setto “Y’, this
specifies the file time stamp entries are written to.

RIB Message bundling entries

<eway name>.<collaboration name>.pubMessageCount — This attribute is
used to determine the number of times the publishing thread will attempt to call
the GETNXT() stored procedure within a single transaction. It also specifies the
maximum number or RIB Message Nodes that can be included in a single
<RibMessages> tag. This is a new property in the 10.3 release.

This property is optional. If not specified, it defaults to 1. This is a performance
tuning property that can reduce the amount of time spent between collaboration
calls and also reduce the frequency of committing data to JMS and Oracle.

20 Retek Integration Bus

Multi-threading entries

This section details those entries used to support multi-threading within a
message family. Multi-threading allows simultaneous processing among
multiple threads of control for messages within the same message family. If
performed correctly, this allows for large throughput gains while still maintaining
the RIB's sequencing and exactly once guaranteed processing.

mfm.<family name>.total threads -- defines the total threading level to be
used but not exceeded by this message family.

mfm.<family name>.<collaboration name>.thread_num — defines the specific
thread number that the specific collaboration is to use upon execution.

Note that upon start up of some publishing e*Ways there is a synchronization
check with the database on the total threads in rib.properties, and if the data is
not the same the e*Way is shutdown without processing any data, as the
publishers algorithm for deciding what data to publish to each publisher may be
dependent on the threading value configured.

Error Hospital entries

This section details the entries used for retrying messages from the Error
Hospital.

hospital.attempt.max — This is the maximum number of attempts to try to push
this record through the RIB automatically, once this retry count is exceeded the
message remains the Error Hospital DB but is no longer retried automatically.

hospital.attempt.delay — value (in seconds) used to calculate the next attempt
time

hospital.attempt.delayIncrement — value (in seconds) used to calculate the next
attempt time.

The next attempt time is calculated as:
hospital AttemptDelay + (hospital AttemptDelyIncrement * attempt count)

This is done so that the delay between each attempt is longer than the previous
delay.

Global entries

dtd _url.default - Specifies the DTD File location. RIB Payloads
include a DOCTYPE specification.

default.MessageSelectorCheck —When this value is set to ‘true’, all e*Ways
that subscribe to JMS topics will verify that their message selector is set up
properly on their durable subscriber within the SeeBeyond JMS server.

Chapter 3— Configuration files 21

Implementation classes used

In order to promote pluggable, platform specific implementations, the RIB allows
the specification of platform-specific classes for a variety of functions. These
functions include the actual creation of a RibMessages XML message and the
interface to an alert mechanism. The following entries are used to specify what
Java classes should be used for these functions:

alertPublisherImpl -- Interface to the Alerting mechanism

Values: com.retek.rib.sbyn.alert.EgateAlertPublisher
(SeeBeyond)

ribMessagelmpl — Class used to create a ribMessage node within a RibMessages
container.

values: com.retek.rib.sbyn.RibMessageWrapper (SeeBeyond)
ribMessagesImpl — Class used to create a RibMessages container.
values: com.retek.rib.sbyn.RibMessagesWrapper (SeeBeyond)

routingInfolmpl — Class used to create the Routing Information Section within a
ribMessage node.
Values: com.retek.rib.sbyn.RoutingInfoWrapper (SeeBeyond)

failureImpl - Class used to create, store and copy message failure
information

Values: com.retek.rib.sbyn.FailureWrapper (SeeBeyond)

SeeBeyond platform specific entries
This section details the SeeBeyond platform specific entries

eway.<e*Way Name>.no_event sleep millis - This entry specifies how
much time to sleep when no information is available to be published for a
specific e¥Way. The actual e*Way name must replace the string <e*Way
Name>

eway.default.no_event sleep millis - This entry specifies how much
time to sleep when no information is available to be published and there is
e*Way specific no_event sleep_millis entry.

ISO platform specific entries

There are no entries for ISO that are any different from the normal SeeBeyond
entries. Only a small subset of the entries for SeeBeyond Rib components,
however, are required in the rib.properties file for the Rib ISO components.
These are the entries for the error hospital, as the Rib ISO components still
makes use of the error hospital, and entries for the implementation classes used.

22 Retek Integration Bus

Application specific entries

RDM specific entries

facility type.default — Specifies the default facility type to be used by RDM
publishing e*Ways for calls to RDM.

facility_id.<facility type>.<location id> - This property is used by the routing
TAFRs to determine which RDM topic to route a message to based on the facility
type and location id used.

<eway name>.<collaboration name>.dc_dest_id — Used by RDM publishers as
input parameters to the Oracle DB requests. Should be set to the appropriate DC
Destination ID for the data that is desired from the RDM instance being
connected to.

multichannel_ind — this field has been deprecated (a.k.a. no longer used).

FlowTrak specific entries

prop.strm.fname - location of the FlowTrak properties file

Retek Binding configuration files

Properties files

binding.properties — The Retek Binding will look within a package,
“com/retek/binding/rib” that is found on the CLASSPATH environment
variable. The purpose of this properties file is to create a key from the RIB
Message Family and Rib Message Type and map this key to an XML formatted
mapping file. The mapping file is specific to the DTD describing the format of
the message payload.

An example of the RIB Message Family and RIB Message Type key might be,
“ASNOUT.ASNOUTCRE” for example. For more information on the XML
mapping files, see the “XML Files” section, below. A typical entry in the
binding.properties file might be:

ASNOUT.ASNOUTCRE=com/retek/binding/rib/payload/ASNOutDes
cMap . XML

In this example, the Retek Binding would look for the “ASNOutDescMap.XML”
file in the “com/retek/binding/rib/payload” package, which would have to be on
the CLASSPATH environment variable.

castor.properties — The Retek Binding builds on the open source Castor java-
binding framework. The purpose of which is to “bind” an XML document to a
“payload” java object. The results of this binding can go in either direction —
either from a populated java object being marshalling into an XML document, or
from an XML document being unmarshalled into a populated java object. This
framework provides tools for generating payload java objects. Payload objects
javabean-like objects that hold XML data and provide marshalling and
unmarshalling methods. The framework also generates XML mapping
documents (see the “XML Files” section, below).

Chapter 3— Configuration files 23

XML documents can be passed into the payload object’s unmarshal(...) method,
which returns a payload object, or the marshal() method may be called on a
payload object, returning an XML document. The castor.properties file
comes into play during runtime to control some aspects of the marshalling and
unmarshalling operations. The file is not required, and in our case is only used to
prevent validation of the incoming or outgoing XML document. This validation
can prove costly in terms of performance, so by default it is turned off. So the
following entry is the key reason that the Retek Binding includes the
castor.properties file:

org.exolab.castor.parser.validation=false

The other entries in the file are accompanied by comments explaining the use of
the associated entry. This file should be in the CLASSPATH of the application
using the Retek Binding.

castorbuilder.properties — This file is used by the Castor framework during the
generation of the java payload objects. A java payload object is a javabean-like
object, with a number of attributes for holding data from an XML document.
Payload objects can be generated from the Castor framework without the
presence of this file, and the only reason it is included with the Retek Binding is
that we want all payload objects to inherit from a common superclass. The entry
for this property is:
org.exolab.castor.builder.superclass=com.retek.binding.r
ib.payload.Payload

The other entries in the file are accompanied by comments explaining the use of
the associated entry. This file should be in the class path when doing the
generation of the payload classes.

injector.properties — The purpose of this file is to match a Rib message family
and Rib message type key to the fully qualified class name of an application class
implementing the Retek Binding ApplicationMessagelnjector interface. This
interface is for subscribing APIs, and provides a way for them to consume a Rib
message. A typical entry in this file might be:

DIFFS.DIFFCRE=
com.chelseasystems.cs.dataaccess.rib.subscriber.Differen
tiatorCreateInjector

In this example, “DIFFS.DIFFCRE”, is the Rib message family and Rib message
type key of the subscribing API.

payload.properties — The purpose of this file is to match a RIB message family
and RIB message type key to the fully qualified class name of a java payload
object. A java payload object is a javabean-like object, with a number of
attributes for holding data from an XML document. Each of these payload
objects in inherited from a common Retek Binding Payload superclass, in the
“com.retek.binding.rib.payload” package. This file is used in both publishing
and subscribing APIs, as both need a payload object. Publishers need a
populated payload object from which to marshal an XML document. Subscribers
need a payload object, into which to unmarshal an XML document. A typical
entry in this file might be:

ASNOUT.ASNOUTCRE=com.retek.binding.rib.payload.ASNOutDesc

24 Retek Integration Bus

XML files

In this example, “ASNOUT.ASNOUTCRE”, is the RIB message family and RIB
message type key of the API.

publisher.properties — This file is used by the Retek Binding to allow users to
disable publishing of messages. The only entry is for a property called,
“ribMessagePublishEnabled”, and takes a value of either “true” or “false”. The
file should be contained within the CLASSPATH environment variable in use.
Other applications have used this file to include other application-specific
information.

<PayloadObjectName>Map.xml — There is one of these files for each of the
payload classes. These files map the element names in an XML schema
document, to the attribute names in a java object. Because our payload objects
are generated directly from an XML schema document, which in turn is
generated from a DTD document, we theoretically should not need these files,
although in testing the marshalling and unmarshalling of payload objects, this
was not always the case. Here is an example of a “field” element from one of
these files:

<field cst:name="item id" cst:type="java.lang.String"
cst:required="true"><bind-xml name="item id"
node="element"/></field>

These files are in the “com.retek.binding.rib.payload” package, which
should be on the classpath of the application using the Retek Binding.

Chapter 4 —SeeBeyond Platform 25

Chapter 4 — SeeBeyond Platform
RIB startup and shutdown

This section details how to start up and shut down the RIB.

Sequencing considerations

In the RIB architecture, the first step a Retek application performs in publishing a
message is the execution of a table specific trigger. These triggers are installed
in a disabled state with each application. See the Retek Integration Bus
Installation Guide or the product specific installation guide for information on the
triggers and how to enable them.

The SeeBeyond EAI components can be configured to come up manually or
automatically. If configured to be brought automatically, then only the registry
and control brokers need to have an external method for starting. On Unix
systems, this method is typically found in a startup script executed when during
the system boot sequence. The components run as daemons. On Windows
systems, these components are usually installed as services.

Note: Sample scripts to start the registry and control broker can be found in the
$EHOME directory. This is the directory where e*Gate was installed and was
configured as part of the RIB installation process. “start egate” and “start cb”
are the two scripts to refer to.

A generalized list of steps needed to start an e*Gate system is found below.
Complete documentation on SeeBeyond e*Gate operations is found in the
SeeBeyond e*Gate Integrator System Administration and Operations Guide.
Please refer to this manual for further information on the referenced commands.

1 Open all external resources that the components are dependent on, such as an
application’s database.

2 Open the SeeBeyond e*Gate Registry.

= Ifthe RIB Installation Instructions were followed, run the “start egate”
script from the SEHOME directory and skip to step 6.

or
* On Unix systems, this is done via the stcregd command.

= On Microsoft Windows platforms, the registry is typically installed as a
service.

®» The stcregd command is also available as a DOS command.

26 Retek Integration Bus

3

Before the stcregd command may be executed, initialize the user’s
environment correctly. This is typically performed by “sourcing” the file
SEHOME/server/egatereg.sh.

Note: If the RIB Installation Instructions were followed, this step is done by
the “start_egate” script.

For example, for Korn or Bourne Unix shells:

> . SEHOME/server/egatereg.sh

The parameters needed for the stcregd command specify the registry’s
name and TCP port numbers. It is suggested that only one registry be
configured for a host, as this simplifies the configuration of the startup script
for the registry and control brokers. However, site-specific issues may
motivate an EAI administrator to configure multiple registries on the same
computer.

Note: Examples of such issues include using a test system as a “hot
standby” for a production system, or providing extra redundancy for the
registry on the local system.

The following stcregd command displays a registry named “egate_main”
using the default TCP ports for the initial connect port and the connections
made between the registry and control brokers. It also executes without
Access Control Lists used for authorization purposes:

> stcregd -1n egate main

Switches for this command include:

= pr Port number for Registry Clients
" pc Port number for Control Brokers
= -In Registry logical name

" -mc Maximum number of connections
= -bd Base directory

" -ss Run as a service

" -h Display help screen

SeeBeyond suggests that the name of a registry matches the name of its host
computer.

Open the control brokers for all participating hosts.

= [fthe RIB Installation Instructions were followed, run the “start cb”
script from the SEHOME directory and skip to step 11.

or
* On Unix systems, this is done via the stccb command.

* On Microsoft Windows platforms, the registry is typically installed as a
service.

= The stcchb command is also available as a DOS command.

Chapter 4 —SeeBeyond Platform 27

7 Before the stccb command may be executed, the user’s environment must
be initialized correctly. This is typically performed by “sourcing” the file
<EHOME>/server/egateclient.sh.

Note: If the RIB Installation Instructions were followed, this step is done by
the “start_cb” script.

For example, for Korn or Bourne Unix shells:

> . SEHOME/server/egateclient.sh

8 An stcchb daemon must be running for each participating host on that
participating host.

9 The parameters needed for the stccb command specify the control broker’s
name and TCP/IP address of available primary and secondary registries.

10 The following stcecb command brings up a control broker with the following
attributes:

= Named “cb_main”
= Contained the schema “RIB102”

= Uses the registry found on the host “egate_main” with the default TCP
port numbers

* Runs under the SeeBeyond e*Gate defined “Administrator” user-id
» Authenticates itself to the registry using the password “STC”

Note: This is the commonly used “Default” password for SeeBeyond
e*QGate installations. Any installation wishing to provide even a
modicum of security will change this password. Furthermore, the
password may be encrypted and stored in a file via the stcutil
command, so that it is not visible to casual observers. See the
SeeBeyond e*Gate Integrator System Administration and Operations
Guide for more details.

stccb -1n cb main —-rh egate main -rs RIB102
-un Administrator -up STC

= Executes without Access Control Lists used for authorization purposes.

11 At this point, you can display the e*Gate Monitor application to start any
components not configured to be brought up automatically. This application
requires a Microsoft Windows platform for execution.

12 Using the e*Gate Monitor, display all of the JMS Queue Managers needed.

13 Using the e*Gate Monitor, display all of the e¥*Ways and / or schema
bridges. Adapters that subscribe to messages and interface directly to an
application should be brought up before those that publish messages.

28 Retek Integration Bus

RIB message publishing adapters

Adapters that publish messages directly from Retek applications have names in
the following format: ewMSGFAMILYFromAPPNAME, where MSGFAMILY is the
name of the message family published and APPNAME is the name of the
publishing application, such as RCOM, RMS, RDM or RDC.

For a listing of all the available publishing adapters, refer to the RIB 10.3
Integration Guide.

RIB message subscribing adapters

Adapters that subscribe to RIB messages and update Retek applications have
names in the following format: ewMSGFAMILYToAPPNAME, where MSGFAMILY is
the name of the message family published and APPNAME is the name of the
publishing application, such as RCOM, RMS, RDM or RDC.

For a listing of all the available subscribing adapters, refer to the RIB 10.3
Integration Guide.

TAFR adapters

TAFR adapters process messages in support of subscriber specific needs. As
such, they are both subscribers and publishers. TAFR Adapters have names in
the following format: ewMSGFAMILYToMSGFAMILYFromRIB, where MSGFAMILY
is the name of the message family the TAFR works on as input, TOMSGFAMILY is
the name of the message family the TAFR publishes and APPNAME is the name of
the final subscribing application.

For a listing of all the available TAFR adapters, refer to the RIB 10.3 Integration
Guide.

RIB error hospital

The RIB error hospital is a subsystem used to retry messages the subscriber has
failed to process successfully. After a failure, the message is inserted into the
hospital database associated with the subscriber. This message is then
republished a configurable number of times by a “retry” collaboration. The
“retry” collaboration is also found within the subscriber adapter and is only
responsible for re-publishing the message.

The Error Hospital may also contain messages that are dependent on a “failed”
message. The dependency is based solely on a common business entity that the
two messages reference. For example, if a “Create New PO” message fails (and
is added to the hospital), then a subsequent “Add PO Line Item” will also be
added to the hospital if it references the same PO. The “retry” collaboration will
resubmit both messages in the correct order.

The RIB message error hospital requires that the “Retry” collaboration is
included within a subscribing e*Way and uses a valid connection point as the
source of its retry events.

Chapter 4 —SeeBeyond Platform 29

The database tables comprising the Error Hospital storage may be found within
the same database as the stored procedures called by the subscribing adapter or in
a separate database. If the error hospital tables become inaccessible, then any
failing message will cause the total stoppage of all messages by the subscriber.
This consideration should be taken into account when determining the location of
an Error Hospital for a subscriber.

Preventative maintenance tasks

This chapter lists some common tasks that a system administrator may want to
script and perform on a regular basis.

Log files

The SeeBeyond e*Gate EAI system can log volumes of data to log and journal
files. Furthermore, because the RIB uses two phase commit, the SeeBeyond
system, acting as the transaction manager, must log commit information within
“transaction log” files in order for distributed transaction recovery purposes.

E*Gate’s error, trace, and debug log files

The same file is used by SeeBeyond e*Gate adapters for logging error messages,
trace messages, and debugging messages. The adapter’s configuration
determines what is to be logged and the level of logging. If logging is turned on,
then the free disk space should be closely monitored, as these files can rapidly
increase in size and grow to enormous sizes, even if the e*Way has only
processed a relatively few messages.

The location of the log files is the directory <EHOME>/client/logs, where
<EHOME> is the installation directory for the SeeBeyond e*Gate EAI system.
Each component has its own log file named <component>.log, where
<component> is the name of the e*Way, control broker, or IQ Manager.

Additionally, there may also be files containing application “standard error”
output. These files are named <component>.stderr .

Sometimes it is helpful to have component log information to determine a
problem’s source or otherwise monitor its activities. The e*Gate Enterprise
Manager application is used to modify level and type of logging for an e*Way.
Further information may be found in the SeeBeyond e*Gate Integrator User’s
Guide.

30 Retek Integration Bus

To turn on, and/or modify, SeeBeyond’s e*Gate adaptor logging:

1 The first step is to select the RIB adapter component from the main e*Gate

Enterprise Manager window:

@ e*Gate En
Fie Edit

Rib100
Options

e Manager

Wiewe Tools Help

=] B3

0 = e

[[= Cpen Copy Fagte

x

Ug Delete

Properties

=& €

ETD Eclitor D Eclitar

4 Participating Hosts -
EI@ mspdev!d
Elé‘? mapcev! 4_ch

-2 _eyyHolder il
bobbyTest
=) bobbyTestFilen
evvAllocFromRs
evvAlloc ToStockOrderFre
ey &ppointFromRDkAH1
eyy &ppointFromREDkH:
ey AppoirtFromRDkYH:
ey AppoirtFromROkYH:
evvAppoirtToRMS
e ASMINEDIT o ASMInAH
e ASHINEDIToRMS
ey AShInFromED!

InFr oL

Collabaration®

ICDntents of 'ew ASNINFramREDR

Mame

| Collaboration Service | Collaboration Rules

5# colASMINFromRDM Java

e ASHINTa,

fdave ...

ey ASHINTal
ey ASHINTal
ey A ENINTol
e A ENINTol

Caopy
Pasie

Copy Multiple

Export Definitions and Files .

crASMInFromRDM cla:

o, EWASNINTOI

_1| I Rename...

NMetwork #9 Compone Delete 4 I I —'I

IWeIcometo SeeBeyond's E*M I_ﬂ Administrator @ mEpdey] 4

Selecting an e*Way from the e*Gate Enterprise Manager
Right click on the e*Way.
Select Properties. The Properties window is displayed:
Click on the Advanced tab.
Click Log.

wm kA W N

Chapter 4 —SeeBeyond Platform 31

ewASNInFromBDM Properties

Logging level:

Debugging flags:

Flags I

T -
[v CB verbose (CEV) ﬁ
[v e*vay verbose (BVYY)

[V Message verbose (M3GY)

|- Callak zervice verbose (COLY)
[w! Cortrol Braker (CE)

[w| etz (EVY)

[Mezsage Parze (MSGF)

L

L [«

“alue: Ox2o0E0e Select Al | Clear All
[v Uze log file
Ok Cancel | Helg
e*Way Logging window

There are two dimensions to e*Way logging: the areas of information that
the log entries will log about, and the amount or level of logging. There is
only one level of logging for all areas.

Over 25 different areas are available for logging.
To log RIB Adapter-created messages:
6 Select the e*Way (EWY) check box to enable logging.
7 In the Logging File field, select TRACE.
8 Select the Use Log file check box.

Be careful whenever logging is enabled, as log files are not limited in size
and can grow to be quite large. In normal production, you should set the
logging level to be at a very low level: either “FATAL”, “ERROR”, or
“NONE”.

32 Retek Integration Bus

RIB logger

The RIB has its own logging capabilities. The RIB support Java classes contain
logging logic which write to RIB log files. The rib log filenames are in the
format “rib_<ewName>.log” and are written to a user specified directory.
Additionally, the RIB logger has the ability to generate a timings log that can be
used to measure performance.

rib.properties log entries

The following are the entries in the rib.properties file which pertain to the RIB
logger:

Path where RIB and Timings log files will be written. It must end with a
directory separator / or \.

log.default.file_path=/filesO/egate/RIBLOGS/

Log e*Way times? [Y or N]

log.<ewName>.timings=N

File to write timings log entries to. Only specify the file name, as it will be pre-
pended with the log.default.file_path property.

log.<ewName>.timings_logfile=timings <ewName>.log

Default logging level verbose? [Y or N]
log.default.verbose=N

e*Way specific logging level verbose? [Y or N]

log.<ewName>.verbose=N

Chapter 4 —SeeBeyond Platform 33

XA transaction log files

Whenever a two phase commit operation commences, the transaction manager
(TM) must log the decision to commit the transaction to stable storage. This is to
insure the transaction will commit if a failure occurs during the second phase.
These “log_commit” records are read whenever a TM is started so all-active
transactions are completed.

The SeeBeyond e*Way implements a transaction manager. The transaction log
record for collaboration is found in its own file. The path name of the file is:

<EHOME>/client/XALogs/<e*WayName>/<collabName>

Where <EHOME> is the installation directory for the e*Gate product,
<e*WayName> is the name of the e*Way the collaboration runs in, and
<collabName> is the name of the collaboration.

Do not delete these transaction log files. If these files are deleted, then the
adapter associated with the log file(s) may have problems re-processing messages
found in the error hospital or even completing initialization successfully.

If a database or other resource manager has a transaction in a prepared state and
the associated transaction log file is deleted, then the database or resource
manager also must have its knowledge of the transaction removed.

For Oracle databases, transactions that are in the prepared state can be found in
the DBA 2PC PENDING views. One can then use an external database session,
such as one with the SQLPLUS command, to force a rollback or commit
operation on these transactions.

MFM staging tables

Part of the RIB’s architecture is that data is staged from applications using
database tables. The RIB adapters use a well-defined interface to retrieve this
information when the publishing it to the RIB.

The code that wrappers access to these staging tables is known generally as the
Message Family Managers (MFMs). The MFM implements the interfaces for
extracting the data as procedures found within an Oracle database package. For
more information on MFMs in general, see the Retek Integration Bus Technical
Architecture Guide. For information about a specific MFM, see the Retek 10.3
Integration Guide.

Some MFMs require that data in the staging table from multiple application
transactions be coalesced into a single message. In these cases, the MFM waits
until a specific record is inserted into the staging table before the message is
published. For example, new Purchase Orders may not be published until they
have been placed into an “approved” state.

A system administrator may monitor the MFM staging tables to verify that the
RIB’s performance is adequate to handle the messaging traffic. If a system has
the adequate resources, then the number of rows within the staging table should
remain relatively constant.

34 Retek Integration Bus

Error Hospital

Subscribing Error Hospital

The RIB error hospital is a subsystem used to retry messages the subscriber has
failed to process successfully. After a failure, the message is inserted into the
hospital database associated with the subscriber. This message is then
republished a configurable number of times by a “retry” collaboration. The
“retry” collaboration is also found within the subscriber adapter and is only
responsible for re-publishing the message.

The Error Hospital may also contain messages that are dependent on a “failed”
message. The dependency is based solely on a common business entity that the
two messages reference. For example, if a “Create New PO” message fails (and
is added to the hospital), then a subsequent “Add PO Line Item” will also be
added to the hospital if it references the same PO. The “retry” collaboration will
resubmit both messages in the correct order.

The RIB message error hospital requires that the “Retry” collaboration is
included within a subscribing e*Way and uses a valid connection point as the
source of its retry events.

The database tables comprising the Error Hospital storage may be found within
the same database as the stored procedures called by the subscribing adapter or in
a separate database. If the error hospital tables become inaccessible, then any
failing message will cause the total stoppage of all messages by the subscriber.
This consideration should be taken into account when determining the location of
an Error Hospital for a subscriber.

Publishing Error Hospital

In the 10.3 release, a new publishing paradigm was introduced for enhanced
performance. This design uses referenced application data instead of copied
data. The work used to extract the data was also moved from the application
triggers to the GETNXT() stored procedure. However, this design allows for the
possibility that the data may be locked or otherwise unavailable when
GETNXT() is called. When this occurs, the application may request the e*Way
to insert a row into the Publisher Error Hospital, where another attempt to publish
the data may be made later. This allows the subsequent call to the oracle
publisher to process the next message and not get stuck trying to retry a flawed
record in its staging table over and over.

A publishing e*Way will check the error hospital for previous message data that
is currently in the Error Hospital for the Business Object (e.g. PO) the current
message is publishing. If such a dependency exists, the dependant message is put
into the hospital as well.

The Publisher Error hospital is facility uses the same database tables as the
Subscriber Error Hospital. However, an additional Publishing Retry e*Way has
been created for each application that request an insert into the Error Hospital.

The publishing retry e*Way processes data differently than a subscribing retry
e*Way.

Chapter 4 —SeeBeyond Platform 35

A major difference is that the publishing retry e*Way retries directly to the
database, Although it calls the same package, it calls a different procedure,
PUB_RETRY. Therefore it will require a connection point that identical to the
initial publishing e*Way.

The database tables used for a publishing Error Hospital are identical and can be
the same actual database as a subscribing Error Hospital. The same deployment
issues exist.

SeeBeyond tools

This section provides a brief overview of SeeBeyond administration tools.
Additional information about the SeeBeyond tool set may be found in the
SeeBeyond documentation.

e*Gate Monitor and JMS administration tools

The main tool used for starting or stopping a system is the e*Gate Monitor
application. This application attaches to a control broker and is designed to
manually start, stop, pause, resume, or retrieve the status of a component.

The e*Gate monitor is a GUI that can display all components found in a specific
schema. Additional GUI applications are accessible from the e*Gate monitor.
There is a queue monitor for SeeBeyond standard JMS queues called the JMS
Administrator.

The queue monitor tools allow an administrator to examine the number of
messages on a queue and to view the contents of a message on a queue.

Details about the e*Gate Monitor application is found in the SeeBeyond e*Gate
Integrator System Administration and Operations Guide. Details about the JMS
Administrator application are found in the SeeBeyond JMS Intelligent Queue
User’s Guide.

e*Gate enterprise manager

The e*Gate is an application that is used for e*Gate development and operational
changes. It is the primary tool for operations personnel for defining the EAI
system’s security roles and defining new users.

Command line utilities

The following commands can be issued from a command line interpreter, such as
the Korn Shell in Unix or a DOS window. These commands should be found in
the directory <EHOME>/client/bin, where <EHOME> is where the e*Gate
software was installed. Many commands also require shared libraries or DLLs.
On Unix systems, the directory <EHOME>/client/bin may need to be inserted
into the LD LIBRARY PATH variable.

On Unix systems each command has the form <command> or <command>.exe.
Only the latter form is executable on Windows platforms.

36 Retek Integration Bus

stcinstd

This command is known as the “Installer Service”. This service is used to
register a host name with the registry as a valid EAI participating host. This
command performs two functions:

1 It allows users to edit the host and domain name properties for a participating
host in the e*Gate Enterprise Manager application

2 It enables the e*Gate system to automatically propagate upgrades made to a
Registry host to all participating hosts.

The stcinstd command should be run at least once per participating host so
that the host name can be registered.

stcregutil

This is a command designed to modify, import, export or display information on
an existing registry. A common usage will be for importing or exporting e*Gate
schema information from development, test, and production environments. It
does allow fine-grain control over the import and export process. Much of this
functionality is also part of the e*Gate Enterprise Manager tool. However, this
utility may be a large asset when defining code migration procedures for new
EAI system releases.

stcaclutil

This is a utility used to define Access Control List (ACL) privileges, roles, and
user properties. These functions may also be performed using the e*Gate
Enterprise Manager application. Privileges can be assigned to roles and users
assigned to roles. Users and roles can be added or deleted. User passwords may
be altered.

stciqutil

This is a utility for manipulating the contents of a SeeBeyond standard Intelligent
Queue. However, this is of a limited utility for RIB components, since the RIB
uses SeeBeyond JMS Intelligent Queues.

stcutil

This is a utility designed for system testing and debugging. It is of limited use
when working with RIB components.

Chapter 4 —SeeBeyond Platform 37

stcemd

This is a text-based version of the e*Gate system monitoring tool. As such, it
duplicates much of the functionality found in the e*Gate Monitor application. It
provides a command line interface for status retrieval and component starting,
stopping, and status retrieval. It may also “resolve” alerts. Available commands
include:

? - list available commands

activate <component name> - activate element operations

attachig <IQ name> - IQ to bring up

cls [cmd|stat] - clear window

debug <component name> [flag] - show or change an
element's debug flags

detachig <IQ name> - IQ to detach
exit - exit stccmd.exe

getres [-b<begin date (mm/dd/ccyy)> | —-e<end date
(mm/dd/ccyy)] - show resolved notifications

getstatus [-b<begin date (mm/dd/ccyy)> | -e<end date
(mm/dd/ccyy)] - show status-type notifications

getunres [-all | -a] - show unresolved notifications
help <command> - on-line help
history - list command history

list [

all | monitors {-m} | alertors {-a} | ig {-i} | control
{-c}

| notif {-n} [flush | all

| -b<begin date (mm/dd/ccyy)> [-e<end date
(mm/dd/ccyy) >1]

| +r | -r | —-i<notification number> | <component name>
]

quit - exit stccmd.exe
reload <component name> [hard] - reload configuration

resolve <notification number> - indicate that a
notification has been resolved

sequence <component name> [value] - show or change
sequence number

shell <shell command> - run an external command
shutdown <component name> - controlled module shutdown
shutdownall <shutdownall> - controlled modules shutdown
start <component name> - start or restart module
startall <startall> - start or restart all modules
status <component name> - show status

suspend <component name> - suspend operations

version <component name> - Show version

38 Retek Integration Bus

As with the e*Gate Monitor, not all commands are appropriate to all components.

The stccemd command may be used interactively or as a line in a shell script.
For example, to list all component statuses, issue the command:

stccmd.exe -rh egate main -rs RIB102 -cb egate cb -un
Administrator -up STC -cmd list all

Where egate main is the registry host, RIB102 is the schema name, egate cb
is the control broker to connect to, Administrator is the e*Gate user name to
use, and STC is the password for the Administrator user.

stcmsctriutil

This utility is used to examine and manipulate a JMS 1Q Manager configuration
and current messages. The command line format is:

stemsctrlutil —host <hostname> -port <tcp port> <<COMMAND>>
where
<hostname> is the name of the host hosting the JMS 1Q Manager
<tcp port> is the port number of the JMS 1Q Manager

<<COMMAND>> is one of the legal commands for the stcmsctrlutil
program. Useful commands are:

-topiclist
lists all defined topics

-topicstat <topic name>
lists statistics for the named topic.

-sublistfortopic <topic name>
lists all subscribers defined for a topic

-createtopic <topic name>
creates a new topic

-deletetopic <topic name>
deletes an existing topic

-createsub <topic name> <sub name> <client
name>
creates a new durable subscriber for the topic with the given
subscriber name and client name

-deletesub <topic name> <sub name> <client
name>
deletes an existing durable subscriber for the topic with the
given subscriber name and client name

-tmsglist <topic name> <starting seqNo> <# of
msgs>
Displays the messages found in the named list

-tmessage <topic name> <segNo>
Displays the contents of a single message

Chapter 4 —SeeBeyond Platform 39

-deltmsg <topic name> <segNo>
Deletes a message from a topic

RIB component configuration

This section details configuration issues and options with the RIB.

Oracle database triggers

Before any message can be published, a trigger may need to be enabled within
the publishing application. Information on these triggers may be found in the
RMS, RDM, or RCOM operations guides and reference manuals.

RIB property file

The RIB property (rib.properties) file uses the standard Java property file format.
It specifies Error Hospital, TAFR, logging and other configuration information.

e For specific entries dealing with the Error Hospital, see the Message Error
Hospital chapter.

e For specific entries dealing with TAFR adapters, see the TAFR
Configuration section detailed later in this chapter.

The RIB properties file must have the name “rib.properties”. However, the
location of this file may be specific to the e*Way using it.
Multichannel_ind property

The only other type of RIB property file entry is used by RMS publishers. It is
the “multichannel ind" property. An example of an entry here is

multichannel ind = MPHYS
Valid values for this property are:

e MPHYS Specifies multi-channels using physical warehouses. The effect
is for RMS to consolidate virtual warehouse orders at a physical level.

e S Specifies a single distribution channel is in use.

e M (Reserved for future use).

40 Retek Integration Bus

SeeBeyond e*Way configuration files

All RIB adapters are SeeBeyond Multimode e*Ways. Each uses its own
configuration file containing parameters it needs to function. These
configuration files can be manipulated by the SeeBeyond e*Gate Enterprise
Manager application.

@ el ate Enterprize Manager - Rib100 M=l

File Edit View Toolz Optionsz Help

) = i P of o

Tl Cpen Copy Haste g Delete ETDr Editor IT Ec

Fropeties

ICDnterrts of ‘eveDiffGrpToRCCM

lame I Collaborstion Service
¥ colDiffGrpToRCOM Java
¥ colDiffGrpToRCOMRetry Java

2 eywBannerFromRMS "
2 evwBannersToRCOM ﬁﬂl

2 eywCoBoResFromRCOM Caollaborstion®
g evvCoBoResToRMS

a1 2y COReturnFromRCo
ewCORsturnToRMS
ewCOSaleFromRComM
ewCOSaleToRMS
evwCustOrderFramRCOM
evwCustOrder ToStockOrderFromRIB
g v CustReturnFromRDwH1

o evvCustReturnFromROWAH2

a1 ey CustReturnFromROMAHS

a1 ey CustReturnFromROWAHE

a1 evCustReturnToRCOM

a eveDiffGrpFromRMs

Mowe .

a ewDiffGrpToR. Copy
a ewDiffGrpToR . paste

Copy Muliple

4]
Metwork £9% Components |-

Expott Definitions and Files ...

Rename...
Delete

]

I ol

|We|c:u:ume to SeeBeyvond's e*Gate Erterprise Manager.

I_ﬂ Adminiztratar I-E;l mepdes 4

Right-click on e*Way in e*Gate Enterprise Manager

Chapter 4 —SeeBeyond Platform 41

e*Way property and configuration files

The following shows what is displayed when you right click to select an e*Way,
to modify its properties.

1 Select Properties... from the menu, or click the Properties toolbar icon. The
e*Way Properties dialog box is displayed.

@ e“Way - ewDiffGrpToRCOM Properties |

General |S‘tart Llpl .ﬂ.dvancedl Seu:ur'rt':.fl

ey DIffGrpToRCOM

Executakle file

l;:in'lstcewa':.f.exe

Clear | Find |

Additional command line arguments:

W -un % SERMAMES: -up ¢ RO —rp %_REGPORTI:
Run as user
I.ﬂ-.dministratcur LI

Configuration file

l:u:unfigsﬁ.stu:ewayﬁewDiffGrpTDHCOM.u:fg

Clear | Firnd | Edit |

Ok Cancel | Apply | Helg

e*Way Properties Window
2 Click Edit. The Configuration Edit window is displayed.

42 Retek Integration Bus

/Edit Settings for C:/EGATE /Chent/configz/stceway/ewDiffGrpToRCOM clg
File “iew Options Help
Goto Section: | J¥M Settings j Dal%l | I;gll
Goto Parameter: | JRIOLL absalute pathname j
JRI DLL absolute pathname Dal%}l | Eﬂ
i i =
fMlesfegatefegateiclientf2ret_3_0_C b x
& ifilesliegatefegateiclienti2ral_3_0_02Aibk |
| 7
CLASSPATH Prepend Dal%l | (]
i =l
filesfegatefegateiclientclazsesirete o X
@ ffilesDiegate/egateiclienticlassesiratek-rin-: |
Kl | o r

e*Way Configuration Edit Window

The configuration for this e*Way is the file
<EHOME>\configs\stceway\ewDiffGrpToRCOM.cfg.

3 Verify the main configuration entries:
= JNI DLL absolute pathname

The JNI DLL absolute pathname is the location of the Java Native
Interface library. On Unix systems, this is a shared library, while on
Microsoft Windows platforms this is a DLL. This library provides
access to native ‘C’ language components that are part of the SeeBeyond
e*Way infrastructure. SeeBeyond provides such a library with its
installation on a specific platform.

Chapter 4 —SeeBeyond Platform 43

The name of the file on Unix systems is typically of the form
“libjvm.so”. On Windows it is “jvm.dll”. From the SeeBeyond
installation disk, this library is typically found under a Java Runtime
Environment directory. Examples of the library’s location include:

<EHOME>\client\Jre\1l.3\bin\hotspot\jvm.dl1l
(Microsoft Windows)

<EHOME>/client/j2rel 3 0 02/lib/sparc/client/libjvm.s
o

(Sun SunOS or Unix)
= CLASSPATH Prepend

The “CLASSPATH Prepend” parameter must include the location of the
RIB class Java Archive (JAR) file and the location of the RIB properties
file. Both the RIB Support JAR and the rib.properties file are typically
found at

<EHOME>/client/classes

Hence, an example of the CLASSPATH Prepend parameter on a Unix
system is (assuming e*Gate is installed in EHOME (/opt/egate))

% EHOME %/client/classes

while, if e*Gate is installed in C:\egate on a Microsoft Windows system:

% EHOME %\client\classes

Note: The path separator is a semi-colon on the Windows system, and a
colon on the Unix system.

e*Way collaborations

Collaborations define the processing logic for a message. They also define
where messages are subscribed from and published to. For many e*Ways, there
will be no need to modify the collaborations specified for an e*Way. This is
because the supplied connection points can be modified for site-specific values,
such as the host name or TCP port.

However, modifications to the Collaborations specified in an e*Way are needed
when new connection points are required. An example of this is for a new RDM
installation in a remote warehouse. The RDM instance will have its own
database and therefore a new Oracle Connection Point is required. An additional
Error Hospital for such an installation may be useful for performance reasons.
The remote installation may also require a local IMS IQ Manager and associated
connection point. It is possible to have three or more additional connection
points per new RDM installation. This is in addition to creating the new remote
participating host.

44 Retek Integration Bus

The figure below shows the main e*Gate Enterprise Manager for a RIB adapter.
@ e*Gate Enterprise Manager - Rib100 M=l 3
File Edit “iew Tools Options Help

O =

e Open Copy

x B G 1 i

Up Delete Properties ETD Ediitor |0 Edlitor Collab Editor Ext. Editar

2 ewSOStatusFromRDMHE ;I IContents of ‘ewlDAsToRDAHS

WS O0Status ToRCOM " . -
WwSOStatusTORMS MName Collaboration Service Collahoration Rules

WEOStatus ToSOStaUSCOF FomRIE i (y& colUDAsTORDMWHS Java crUDAsToRDM class
sweStockOrder ToRDMAH1 Collaboration® &* coldDAsToRDMWHSREtry Java crHospitalRetry class
wstockOrder ToRDMAWHZ
wstockOrder ToRDMAWHS
wstockOrder ToRDMWHE
wstoresFromRMS
wstoresTolocationFromRIE
wstoresToRCOM

wsLbTest

v TranzfersFromRis
wTranzfersToStockOrderFromRIE
WD AsFromRkE

LD A s ToRDMAHT

DAz ToUDAzLYFromRIE
v endorFromRms

' Encor ToRCOM

' endor ToRDkH1

' endor ToRDkWHZ

gt EANHFFOMRMS -
4« | »
Metwork #9 Components I 4 | _,I

‘Welcome to SeeBeyvond's e*Gate Enterprize Manager. I_ﬂ Administratar I E;l mapdey!d

Main e*Gate window when RIB e*Way selected

The e*Way selected is a subscribing interface to RDM for one warehouse
(number 3 out of 4). The collaboration colUDAsToRDMWH3 subscribes to the
UDA message family and is the normal “subscribing” collaboration. The
collaboration named colUDAsToRDMWH23Retry is the “retry” collaboration and
is responsible for resubmitting and deleting messages from the Error Hospital for
the UDA message family for this subscriber.

Chapter 4 —SeeBeyond Platform 45

When the properties of colUDAsToRDMWH3 are examined, the following
window is displayed:

@ Collaboration - colUDAsToRDMWH3 Properties

General |

g
&é colUDA s ToRDhWHS

Collaboration Rules:

ctUDAsToRDM ey | Edit |

Subscriptions:

Instance Mame Event Type Source Add |
etdRibMessageEnvelope “’E et DAzl YFromRIB

[ceUD2sLvFromRiE o
etdRibMessageEnvelope DEETLID.&STDRDMLHH.. M chlDAsLVFromRIB LI

Publications:
Instance Mame Event Type Drestination Priority Add |
etdUD A =ROMARI mEetLID.ﬂ-.sHDM.ﬂ-.F'I... I]EE cpTod&ndFromR... 5 Dolcte
etdHaspitalDB wfm etHospitslDE [crHo=pit=I0E 5 _I
Lolwvanced |
0]4 Cancel Apply Help

Subscribing e*Way collaboration properties

There are two Event Types subscribed to in this example: One for unprocessed
messages (etUDAAsLVFromRIB) and one for messages to be re-processed
(etUDAsToRDMWH3Retry). The source for each type is the connection point
cpUDAsLVFromRIB.

Note: This example uses a single JMS queue for all e*Ways in the EAI system.
If a local queue were used, the connection point should be named something
similar to cpUDAsSLVFromRIBWH3.

There are also two Event Types “published” in this example:
etUDAsSRDMAPIWH3, the Oracle connection point associated with the warehouse
specific RDM instance and etHospitalDB, the Error Hospital Oracle
Connection Point.

Note: This example uses a single Error Hospital for all e*Ways in the EAI
system. Ifa local Error Hospital were used, the connection point should be
named something similar to cpHospital DBWH3.

46 Retek Integration Bus

Note: This is a subscribing collaboration; the “publishing” connection points
serve only to provide the database connection within the processing logic. No
messages are published to any queues for this collaboration.

However, the “retry” collaboration does publish messages to a queue. The retry
collaboration’s properties is seen below:

@ Collaboration - colUDAsToRDMwH3Retry Properties |

General |

(]
&é collDA=ToRDkWWHIRetry

Caollaboration Rules:

ctHospitalFetry (= | Elit |

Subzscriptions:
Instance Mame Event Type |_S|:|ur|:e Al |

hospitalDB etHozpitalDB cpHospitalDB
P =fm etHosp M cptosp s |

Publications:
Instance Mame Event Type I_Deatinatinn J A |
retryRioMsg mfm etlDAsToROMWHIRetry] crUDASLYFrom...

el ete

L

Advanced

(0] 4 Cancel Apply | Help

Retry collaboration properties

For the retry collaboration, the subscription “source” is the Error Hospital Oracle
Connection Point, not a JMS queue. For publishing messages, the retry
collaboration uses the same connection point as the subscribing collaboration.
The event type it publishes is the etUDAsToRDMWH3Retry event.

If the retry collaboration published the same event type that the subscribing
collaboration originally processed (and had a problem with), then all subscribers
to this event type would re-process the message. In this particular case, this
would not be a problem, since this event type only has one subscriber. However,
other event types are subscribed to by multiple applications. Problems can arise
when a message is delivered after it has been processed successfully.

Chapter 4 —SeeBeyond Platform 47

SeeBeyond connection point configurations

All RIB Adapters use connection points as a source/sink for messages and for
accessing databases. This section details the configurations for the JIMS
Connection Point and an Oracle Connection Point.

The most important aspect of this configuration is the use of the XA protocol in
support of processing messages exactly once.

JMS 1Q manager configuration

Configuring a JMS connection point requires knowledge of the Java Message
Service server that is to be used. SeeBeyond’s JMS Intelligent Queue Manager
provides such a service. Other message oriented middleware products, such as
IBM’s MQ Series product, also may provide such services.

A JMS server provides access to one or more JMS Queues and their associated
stable (a.k.a. hard disk) storage. Multiple JMS IQ Managers may be created and
deployed with the RIB, depending on the topology of the installation, message
lifecycle, administration, performance and availability requirements.

Although a JMS IQ Manager may be accessed from multiple e*Gate schemas via
the connection points contained in these schemas, only the schema containing the
JMS 1Q Manager can administratively view the messages contained in the JMS
server queues.

Similar to other e*Gate components, the JMS 1Q Manager’s full operating
parameters are found in two windows: An IQ Manager Properties window and
the JMS 1Q Manager specific configuration edit window.

48 Retek Integration Bus

@ 13 Manager - igmJM5 Properties |

General | Start Upl Advancedl Securitg.rl

(i
PR

igmdha=

T
H
S
e

-

2 Manager Type

ISeeEleynnd Jhis ;I

Additional command ling arguments:

IE% -un %_USERMAMES -Up % _PASSWORDY -rp %_REGPORT%

Run as user

I.ﬂ-.dministratu:ur ;|

Configuration file

l:u:unfigsﬁ.stu:msagent\.iquMS iy

Clear | Firnd | :

] Cancel | Apply | Help

JMS 1Q Manager Properties Window
The following properties are extremely important:
e On the “General” Tab:
* IQ Manager Type: By definition, must be SeeBeyond JMS.

Note: Of course, if an enterprise has standardized on the IBM MQ Series
product for JIMS servers, then the SeeBeyond MQ Series Connection Point
will be used directly with this server. In this case, no JMS IQ Manager is
needed.

= Configuration File: Details IQ manager configuration storage.
e On the “Start Up” tab:

= Start Automatically: determines if the IQ Manager’s control broker will
start up the IQ Manager whenever the control broker starts up.

e On the “Advanced” Tab:

= TCP/IP port number: determines the TCP port number to listen on. This
must be allocated specifically to the IMS IQ manager instance. No other
application (including other JMS IQ Managers) can use this port.

» Log: This button accesses an additional window to control logging and
tracing levels.

Chapter 4 —SeeBeyond Platform 49

e On the “Security” Tab:

= Privilege: Allows access to a window assigning privileges to defined
roles when ACL’s have been enabled.

/Edit Settings for C:fEGATE fClient/configs/stcmsagent/igmMS clg

File “iew Options Help
Goto Section: | DB Settings j Dal%l | Egl
Goto Parameter: | DBPath j
DBFath DE|%||I§%§|
ffilesDiegatefegatelclient’stcms I.|E'—[x
0] filesOiegatelegatelclient’stcms — —
1 [k
DEFrefix Dal%l ||_j§|
stems I-IEI_I x
™ storns —
. |
E

JMS 10 Manager Configuration Edit window

50 Retek Integration Bus

The SeeBeyond e*Gate JMS 1Q Manager configuration contains five sections.
Full documentation on these parameters is found in the SeeBeyond JMS
Intelligent Queue User’s Guide.

1

DB Settings: This section defines the stable storage options for the files used
by the JMS server. The “DBPath” configuration parameter is particularly
interesting, since it locates the file directories used to store messages. It also
provides options for disk synchronization and memory cache size.

Note: If left blank, the value of the MessageServiceData property from the
.egate.store file will be used. This file is normally located in the user’s home
directory.

Message Settings: This section specifies options for allocating memory for
messages and the maximum time a message will be allowed to persist on a
queue within the server.

Server Settings: This section defines the maximum number of messages the
server will store. The JMS server will throttle clients (cause them to wait)
when this number is exceeded.

Topic Settings: This section sets the per-topic resource limits. In the RIB
environment, a topic equates to an e*Gate Event Type which equates to a
specific queue of messages supplying a set of subscribers.

Trace Settings: This section controls tracing of messages for the JMS
server. Parameters include the name of the log file used for tracing, the trace
verbosity level, and specific types of tracing to perform.

Note: Remember that configuration changes need to be promoted to the run
time environment before they take effect. To do this: in the Configuration
Edit window, select File > Promote to Run Time.

Chapter 4 —SeeBeyond Platform 51

JMS I1Q Connection Point configuration

JMS Connection Points are defined within the e*Way Connections folder. This
folder is found at the right-hand e*Gate Enterprise Monitor frame near the
bottom. When selected, the window will appear similar to the figure below:

@ e*Gate Enterprize Manager - Rib100 H= E
File Edit “iew Tools Options Help
O = ®2 X = G &
ey Open Capy. Raste s} DElEE Braperties ETD Editor ID Ediitor Collak Editor
ewllDasTolDAsLYFromRIB _AI IContentS of 'e*ay Connections'
“YendorFromRMS - -
:xv::dz:TroT?n;OM | Mame | Type | Configuration File
e endorToRDMyHI [mEﬂ cpPendReturmWHFromRIB SeeBevond M5 cpdMS cfy ;I
evyyendor ToRDhWHZ2 ey Connection cpRTYFromRD SeeBevond JMS cpdMS . cfy
ewyy'encor TaRDMYWHS cpReceiptsFromRDM SeeBeyvond M3 cplMS.cfy
ewendorToRDMAHE cpEOStatusCOFromRIB SeeBeyond JMS cpJMS.cfg
G AT cpSOStatusFromRDM SeeBevond JMS cpMS.cfg
— 1”;%%1;”“”0”"?'5 CpSOStatusToRCOMRetry SeeBeyond JMS cpJMS Gl
: I:meRMS CpSOStatus ToRMS SeeBeyond JMS cpdMS cig
e AOINTORDMAHT cpShiphiethFromRECO SeeBeyvond M3 cplMS.cfy
EnOINToRDMHZ cpstockOrdersFromRIB SeeBevond M5 cplMS.cfy
endNOINToRDMHS cpstoresFromRIB SeeBevond MS cpdMS.cfy
e NOINToRDMYH cpStoresFromRMS SeeBevond M5 cpdMS cfy
ewANOINTMOINWHF romRIR cpStoresToRCOM SeeBeyond JMS cplMS.cfy
: !C‘E'Obb'i" cpToandFromintDey Oracle cpToAndFromintDey cf
""" @ im M cpToAndFromRC Ok Oracle cpTosndFromRCOM.cf
- [l mepoievt 4 retek it (inactive)
..... _| Evert Types cpToAndFromRDkAHT Oracle cpTosndFromRDkWH1
_____) Collabioration Rules cpTodndFromRDMYHZ Cracle cpToAndFromRDnhAyHz
..... _| Services cpToAndFromRDMWHS Oracle cpToAndFromRDiHS
..... J " cpToAndFromRDHG Oracle cpToandFromRDhiAHA
= J Security cpToAndFromRMs Oracle cpTofndFromRmS . cfy
[Users cpTodndFromRMSE Cracle cpToAndFromRMSh oft
T| RD_IE_S cpTransfersFromRmMS SeeBeyond JMS cplMS.cfg
_I [£8) Privieges | ~ cpTransfersToStockOrd... SeeBevond M cpJMS.cfy
4 »

Metwork £ 9 Components |

cpUDAsFromRS

SeeBevond WS

cpJils.cfy =
| »

‘Welcome to SeeBeyond's e*Gate Enterprise Manager.

I_ﬁ Administrator rﬂl mspdey!4

e*Gate Enterprise Manager with e*Way Connections folder selected

52 Retek Integration Bus

To create new connection points:
o (Click the central e¥*Way connection button.
To edit existing connection points:

1 Select the connection point.

2 Modify the connection point’s properties: the two main properties are the

configuration file and the connection point type (which by definition must be

a SeeBeyond JMS Connection Point).

/Edit Settings for C:/EGATE fClient/configs/messageservice/cpdMS clg

File “iew Options Help

Goto Section: | General Settings

| 8| %| | k|

Goto Parameter: | Connection Type

h

Connection Type

O3] % | = L

" Queue & Topic

Transaction Type

0a[%@ 1

" Internal
" Mon-Transactional
i MA-compliant

Delivery Mode

o3l [®]L)

" Mon-Persistent " Persistent

Maximum kumber of Bytes to read

U3 | % | 2| L2

=l
1677726 e X

" &000 4

| "com.ste.comman.collabService SBYMJIMSF acton selected.

JMS Connection Point Configuration Edit window

Chapter 4 —SeeBeyond Platform 53

There are two sections determining the connection point’s operating
characteristics:

e General Settings: This section details standard JMS operation options and
message restrictions for the JMS client. Parameters for the General Settings
include:

e Connection Type: Specifies if the connection type used is as a “Queue” or a
“Topic”. Must be set to “Topic” to ensure that all subscribers get the
message. When “Topic” is specified, all subscribers will receive a copy of
all messages for all queues managed by the JMS provider. If “Queue” is
specified, then no message will be sent to more than one subscriber and the
allocation messages to subscribers is indeterminate.

e Transaction Type: Specifies the type of transactions used to dequeue and
enqueue messages. “XA-Compliant” must be used for messages to guarantee
messages are processed successfully exactly once within the RIB.

o Delivery Mode: Must be set to “Persistent” to insure messages are written to
disk before an enqueue operation completes.

e Maximum Number of Bytes to Read: Specifies the maximum number of
bytes to read at a single time from the received bytes message.

e Default Outgoing Message Type: The JMS standard specifies two types of
messages: one consisting of bytes and one of strings. This is not to be
confused with the RIB “message type”.

e Factory Class Name: Name of factory class to use in creating the JMS
connections. Suggested value:
com.stc.common.collabService.SBYNJMSFactory

e Message Service: This section details JMS 1Q Manager specific parameters
for the JMS server.

e Server Name: Specifies the JMS 1Q Manager name as seen in the e*Gate
Enterprise Manager application.

o Host Name: Specifies the IP address or the host name from a Domain Name
Server (DNS) that is running the JMS 1Q Manager.

e Port Number: Specifies the TCP Port number the JMS 1Q Manager is
listening on. Must match the JMS IQ Manager “TCP/IP Port Number”

property.
e Maximum Message Cache size: Specifies the maximum message cache size
for the connection point.

Note: Remember that configuration changes need to be promoted to the run
time environment before they take effect. To do this, on the Configuration
Edit window, select File > Promote to Run Time.

54 Retek Integration Bus

Oracle Connection Point configuration

Oracle Connection Points are defined within the e*Way Connections folder.
This folder is found at the right-hand e*Gate Enterprise Monitor frame near the
bottom. When selected, the window that is displayed is similar to Figure 7-9:
e*Gate Enterprise Manager with e*Way Connections folder selected.

When the properties window of an Oracle Connection Point has been selected, it
appears similar to the figure below:

@ e”Wayp Connection - cpToAndFromintDey Properties |

General |

H

MMy Connection Type: [Oracle LI

cpToAndFromintDey

- EBvent Type "get" interval

Tirme {in milliseconds) after a retrieval
returns "no event availahle" hefore
attermpting anather retrieval.

f1oo

- e ay Connection Configuration File

l:u:unfigsb:urau:Ie'u:pTu:u.ﬂ-.ndFrnmIntDev.u:fg

Clesar | Firnd | Edit |

Apply | Help

0K, |

Oracle Connection Point Properties window

The properties are:
e e*Way Connection Type: Oracle, by definition

e Event Type “get” interval: This is a polling interval occurring after an
“empty” data retrieval. Increasing this value may reduce load on a system.
Decreasing this value may reduce the time it takes to publish a message by
the RIB.

o e*Way Connection Configuration File: name of the configuration file
storing additional parameters.

Chapter 4 —SeeBeyond Platform 55

An Oracle Connection Point Configuration Edit window is pictured below:

/Edit Settings for C:/EGATE fClient/configs/oracle/cpT oAndFromintDev._cfg

File “iew Options Help

Goto Section: I DataSource

=) %] % | %]
j
[52 2|

Goto Parameter: I class

class

oracle jdhcxa.client OraclexaDataSm | =

bz | X

-

i oracle.jdbc.pool.OracleConnectionPoolDat: T

(0] aracle jdhe xa.client.OraclexADataSource

a [v

DriverType Dal%l ||3§|
thin MEI_I x

" ocig =

® thin

1| [—r

|
| "300" selected.

Oracle Connection Point Edit window

56 Retek Integration Bus

There are two sections found in this configuration: “DataSource” and
“connector”. The connector section contains two parameters that cannot be
changed. The DataSource contains the following parameters:

e class: Specifies the JDBC driver class. For XA support, the class should be
oracle.jdbc.xa.client.OracleXADataSource. The JAR file containing this
class is typically found in <ORACLE HOME>/jdbc/lib/classes12 jar.

e DriverType: Type of driver. The OracleXADataSource is a “thin” driver.

e ServerName: Name of the host containing the Oracle Listener process to
connect to.

e PortNumber: TCP Port number the Oracle Listener uses to listen on for new
connections.

e DatabaseName: System ID (SID) of the database to connect to.
e UserName: User name to use for the database connection.

e Password: Password corresponding to the user name. Stored as an
encrypted string.

e Timeout: Login timeout value. Longest time to wait for a session to be
established with the database.

Note: Remember that configuration changes need to be promoted to the run time
environment before they take effect. To do this, on the Configuration Edit
window, select File > Promote to Run Time.

TAFR adapter configuration

The TAFR adapter has both a SeeBeyond e*Gate configuration component and a
RIB Properties file configuration component. Furthermore, when adding
additional routing destinations, such as RDM warehouse installations, additional
work must be performed.

RIB property file TAFR entries

The rib.properties file contains entries for an Error Hospital and for other
components.

The properties associated with a TAFR are used to do the following:
e Translate facility ID codes to destination JMS queues and event IDs.

e Specify a default facility type when the publishing application has no
knowledge of the facility type.

Chapter 4 —SeeBeyond Platform 57

The entries in the rib.properties file for Facility ID translation have the following
form:

facilityiid <FACILITY TYPE>.<FACILITY CODE> = <Dest>
where

<FACILITY TYPE> is a string matching the available facility types for the
entire set of locations.

<FACILITY CODE> is a string matching the possible facility ID code values
for a location.

<Dest> is a value to use for routing a message to a specific (warehouse)
location. This will be appended to event type names to effect the routing of a
message.

The entries in the rib.properties file for specifying the default facility type is
facility type.default = <DEFAULT FACILITY TYPE>

This provides a means for translating messages created by publishers (such as
RDM) that do not use the facility type abstraction.

TAFR Routing — adding new destinations

Transformation, Address Filtering/Routing (TAFR) adapters are designed to
perform actions based on message content. Applications such as RDM require
TAFRs to route messages to specific instances. The number and names
associated with these instances are within the control of the implementation.
This section details how to add or new destinations.

First, take a logical view of TAFR Processing. First, the message to be routed is
published. The subscribing TAFR retrieves this message and, based on its
content, re-publishes it zero or more times. The queues the TAFR uses to publish
are different than the one it subscribes to.

The JMS IQ Manager the TAFR publishes to may be the same one it subscribes
to, but the “topics” used to publish must differ — so that it will never subscribe to
the same messages it publishes. Also, the SeeBeyond interface with the JIMS 1Q
Manager equates a “topic” with an “Event Type”. The RIB associates an “Event
Type” to a “Message Family”. A Message Family is a specific XML format. An
Event Type is a tag applied to this format. Multiple Event Types may be
associated with the same message family. Subscribers subscribe to messages with
specific Event Types.

Note: The RIB associates an “Event Type” to a “Message Family”. A Message
Family is a specific XML format. An Event Type is a tag applied to this format.
Multiple Event Types may be associated with the same message family.

58 Retek Integration Bus

When a TAFR determines the routing destination for a message, it uses a
general-purpose API for publications. One of the parameters of this API is the
topic to use. The TAFR computes the “topic” based on the destination and
values in the rib.properties file. One risk with this design is that it is entirely
possible for the TAFR to publish a message that has no subscribers. Another
possible error is that the TAFR cannot compute the destination because of
missing information from the rib.properties file. If either error is reported, then
the TAFR will stop processing all further messages.

A summary of the steps used to add a new destination is as follows:

1 Determine which TAFR and Message Family requires routing.

2 Create the new Event Type name and definition.

3 Modify the TAFR’s configuration to publish the new Event Type.
4

Create the destination messaging components.

Step 1: Determine which TAFR and Message Family requires routing

The first step in this process is to determine which messages are to be sent to the
subscribing application. All message content information is found in the Retek
10.3 Integration Guide. This guide details the input and output event types for a
TAFR processing the message family. In some cases, the documentation may
picture multiple event types as input. The RIB schema as supplied from Retek
deploys by default a separate TAFR adapter for each input event type.

Once the Message Family has been determined, the TAFR can easily be found,
because the RIB uses the naming convention of:

ew<MsgFamilyl>To<MsgFamily2><Dest>FromRIB
where

<MsgFamilyl> and <MsgFamily2> are the names of message families used
for input and output.

<Dest> is a generalized specification of the destination (for example, WH
for RMD warehouses).

Step 2: Create the new Event Type Name and Definition

Two new event types will need to be created. The first is the new event type
used by the TAFR component to route the message to the new destination. The
second is used by the subscribing RIB adapter that interfaces with the application
— the intended destination. These RIB e*Ways subscribe to two events, the
“routed” message event type just mentioned and an event type associated with
retrying the message if an error occurs.

Chapter 4 —SeeBeyond Platform 59

The RIB uses the following naming convention for the Event Type names

published by TAFR components:

et<MsgFamily>FromRIBto<DestSpec>

where <MsgFamily> is the message family name and <DestSpec> is the
destination specification. An example is the Event Type name
etASNInFromRIBToWHI1. As mentioned above, the specific event types
published is found in the Retek 10.3 Integration Guide.

Once the name has been determined, the definition must be created. This is done
via the e*Gate Enterprise Manager application. Clicking on the “Event Types”
folder displays the following window:

@ e*Gate Enterprise Manager - Rib100 M=
File Ecit “iew Tools Options Help
O = =) X ofg i 28
Mewy Open (LG, Easte: 1 == (= Eroperties ETD Editor 1D Ecfitar Caollah Ec
E| J Participating Hosts IContents of ‘Event Types'
E""E;I‘“p?nz\:d‘;w 4ok Iame Evert Type Defintion | |
E;l spdev'l 4.rete_k.int (inactive) g@ DE 0000600 Evertihsg.ssc =
R =rt Types Evert Typet ‘“E GeneticinEvert GeneticinEvert. zac
(] Collaboration Rules ‘“E GeneticOutEvent GeneticOutEvent s3c
;| Services “’E Matification MotificationMessage ssc
| e*vay Connections “’E Throwswway Thraw ey K30
4 Security mfE stASNNEDITORMSRetry stdRibMessageEnvelops xsc
“’E et&SMINFromED| etoRibhessageEnvelope xsc
“’E etASMINFromEDIExt etdASkInFromEDIExt xsc
“’E et &EMNINFromFED etiRibMessageEnvelope xsc
“’E etASMINFromREDkFR etdASrInFromRDnFR K
“’E etASMInFromRIBToWH1 etdRibMessageEnvelope xsc
“’E etASMInFromRIBTovWH2 etdRibMessageEnvelope xsc
“’EE etASNInFromRIBTovWHS etdRibMezsageEnvelope xsc
“’EE etASNInFromRIBTovWHd etdRibMezsageEnvelope xsc
DEE et AShInRDMAPIAH etdAShINROMAPL xsC
DEE etASNInRDMAPKHZ etd AShINROMAP xsC
“’EE et ASMINRDMAPKHS etd AShINROMAP xsC
DEE etASHInRDMAPRH etdAShINROMAP xsc
DEE etAShInRMS AP etdAShINRMS AP xsc
DE etASHINToRDMYWHI Retry etdRibMessageEnvelope xsc
DE etASHINToRDMYWHZRetry etdRibMessageEnvelope xsc
‘“E etASNINToRDMWHSRetry etdRibMessageEnvelope xsc
‘“E etASNInToRDMWHAR ety etdRibMessageEnvelope xsc =
Metwork £ % Components | _:Im o T T T - LI—I

Welcone to SeeBeyond's e*Gate Enterprise Manager.

I_ﬂ Administrator r@. mEpdey 4

e*Gate Enterprise Manager with Event Types folder selected

The figure above shows four possible published event types for the TAFRs
involved with the ASNIn message family: et ASNInFromRIBWHI,
etASNInFromRIBWH2, etASNInFromRIBWH3, and etASNInFromRIBWH4.

60 Retek Integration Bus

Clicking on the central “Event Type*” button brings up the following window:

@ Mew Event Type Component |

Matmne l

Ok I Cancel Apply Helg

New Event Type window

1 In the Name field, enter the new event type name, for example,
etASNINnFromRIBWHS.

2 Click OK.
3 The new event type is displayed at the bottom of the list of event types.

4 Double-click on the new event type. The Properties window is displayed.
@ Event Type - etASHInFromBIBT o'wWH5 Properties |

General |

EI:I-E et ShInFromRIEToWHS

Event Type Definition

ZIESE | Fird | i

04 Cancel Apply Help

Event type properties window

Chapter 4 —SeeBeyond Platform 61

5 Click Find. This allows you to associate an existing message format (or
Event Type Definition) with the new event type. (This may take a few
seconds.) The Event Type Definition Selection window is displayed.

@ Event Type Definition Selection

Loak in: Ietd ;I | |=j€ |
etdPendReturnRDMAR] x50 etoReceiptsFromRDMMEM st
etdPOReceiptsFromBOhMER jar etdReceiptz=RMZ AP jar
etdPOReceiptsFromROMMEM xac etdReceiptsRMSAP xac
etdPOReceiptzRMZ AR jar etdRibMeszageEnvelope jar
etdPOReceipt=RMSAP x20 = ctdRibMessageEnvelope xac

etdReceiptzFromROMMWFR jar etdRTWFromROhMF R jar

1 [ol
Filename: etdRibMeszageEnvelope xsc Select |
Files of type: Al files :I Cancel |

Choosing an Event Type Definition for the new Event Type
6 Select the etdRibMessageEnvelope.xsc file.

7 Click Select. The Event Type Properties window is displayed.

62 Retek Integration Bus

@ Event Type - etASMInFromBIBT o'wWH5 Properties |
General |
EI:I-E etASMInFromRIBToWHS
Event Type Definition
letd'l.ethibMessageEnvelupe.xsu:
Clear | Edlit
Ok Cancel Apply Helg

Updated Event Type Properties window
8 Click OK to finish creating the new Event Type.

Repeat this process for the “Retry” event type, using the following
characteristics:

e The same Event Type Definition
e The Event Type Name of the form et<MsgFamily>To<DestSpec>Retry.

In the case of the examples above, the event type would be named
etASNInFromRIBToWH5Retry.

Chapter 4 —SeeBeyond Platform 63

Step 3: Modify the TAFR’s Configuration to publish the new Event Types.

The next step is to publish the new event type. This has two parts: to update the
e*QGate registry that the new event type will indeed be published, and, for
messages destined for an RDM instance, modify the RIB properties file.

1 In the e*Gate Enterprise Manager, select the TAFR e*Way.

This can be a little tricky, since many names are similar. TAFR names have
the form ew<MsgFamily>To<Dest>FromRIB. The following example uses
the TAFR ewASNInToWHFromRIB.

@ e*Gate Enterprice Manager - Rib100 M= =
File Edit iew Tools Options Help
L = !
O = B X =g 5 2
(=N Open Copy Paste Lp Delete Propetties ETDr Eclitar ICr Eclitar Callak Editor

) ewrsSNnEDITaRMS =] [cortents of tewASHIRToASHIRAHFromRIE!

e ASNINFromeD] Maime Collskorstion Service | Collskorstion Rules
e ASMInFromRDh

e & Jaea crASNINToASNIRAH
ewASNInToASNInL’\HFromRIEJ ﬁié &&

ew ASMINToRCMAHT Collaboration®
ew ASHInToRDMAHZ

e ASNINToRDMAHS
ewASNINToRDMYH
ewASNInToRMS

e ASNOLEFromRDAH1

e ASNOLEFromRDAH2

e ASMNOutFromROMAHS

e ASNOLEFromRDAH4

ew ASNOToASMIMYHFromR
ew ASMO ToASNOWCCFrom
e ASMNOUE ToRCOh

e ASHNOUToRMS
ewATPFromRMS

ew ATPToRCOM
ewBannerFromRS
ewBannersToRCOM
ewCoBoResFromRCOmM

I ewCobBoResToRMS -
4| | »
Metwork % Components | 4| | _,I

Welcome to SeeBevond's e*Gate Enterprize Manager. I_g Aclminiztrstor r@ mzpcew! 4

e*Gate Enterprise Manager with TAFR e*Way selected
2 Select an action:
= Double-click on the TAFR’s collaboration.

= Select the TAFR’s collaboration and click on the Properties icon in the
toolbar.

3 The Collaboration Properties window is displayed.

64 Retek Integration Bus

@ Collaboration - colASHInT oASHInWHFromRIB Properties |

General |

foe
&é colASMNInToASNImYHF romRIB

Collabaration Rules:

MINTo&SMInWHFromRIB ey | Edlit |
Subscriptions:
Instance Mame Event Type I Source Al |
In ofm etASNINFromROM [l crastinFroms...
[elete |
Publications:
Instance M...| Event Type | Destination Priarity Al
Ot IDEE et SMInFromRIBT o WH4 I]HE cpASMIMAHFromRIB 5
Ot “’[E etASMInFromRIBTolWHS HHE cpASMIMWHF romRIB a2 Dl |
Ot meEtASNInFrDmRIEITDWH1 []HE cpASMInYHFromRIB 5 Advancedl
Ot IDEE et SMInFromRIBTolWH2 HHE cpASMIMAHF romRIB 5
[8]34 Cancel Apply | Help

Collaboration Properties window
To add the new event as valid for publication:
4 In the Publications section, click Add.
5 Duplicate the connection point specified as the destination.
6 Select the new event type to be published.
In the example, you would use the event type et ASNInFromRIBToWHS.

Note: The “Destination” (in this case ‘WHS5”) must also be found in the
rib.properties file as a valid translation value for a specific facility ID code.

7 When the new event publication has been specified, click OK to save the
information and update the e*Gate Registry with the new information.

Chapter 4 —SeeBeyond Platform 65

Step 4: Create the destination messaging components

The last step is to create the subscribing RIB adapter. One way to do this is:
1 Select an e*Way to duplicate.

2 Select Edit > Copy multiple.

@ e~Gate Enterprize Manager - Rib100 H=E
m Wi Tools Cptionz Help
e . : = o
N PRy Copy Pagte Up Delete Properties ETD Ecittor D Editor Collsb Edtor Ext.
Basie
& ICDrﬂerﬁs of ‘e ASHInToRDhkAHS'
E Rename ... Pame | Collaboration Service | Callaboration Rules
74 Delete a # colsSMINToRDMAHE Java CrASMINTORDM class
Propetties ... collaharation® (y'i col&AZMInToRDMWHAREtry Java crHozpitalRetry class
—_— TFileln
ewAllocFromRs
evvdliocToStockOrderFromRIB
ewAppointFromROYH1
ey AppoirtFromRDNYH2
ewAppointFromROMAHS
ey AppoirtFromRDnHS
ewAppoirt ToRMS
ew ASKINEDIToASHIMYHFromRIB
evwASHINEDIToRMS
ew ASRNFromED|
e ASHIRFromRDk
ew ASNNToASMIMAHFromRIE
ew ASMInToRDRWH1
evwAShnToRDkWHZ
e ASMIRToRDMWHS
MInToRD 4
ey ASMINToRME —
Al | Db
Metweark €9 Components il | _;I
|Welcome to SeeBeyond's e*Gate Enterprize Manacer. I?} Administrator I-E;l mspdey1 4

Copy Multiple edit option

3 Rename the duplicate e*Ways to match the RIB’s naming convention: For
example, duplicating ewASNInToRDMWH4 will result in
ewASNInToRDMWH4 0. The RIB Naming convention renames the new
e*Way to ewASNInToRDMWHS.

4 Rename the collaborations used to match the RIB naming convention.

5 Edit each collaboration in the Properties window.

66 Retek Integration Bus

@ Collaboration - colASNInToRDMWH5SRetry Properties

General |

i
&& col ASKINToRDMWHSRetry

Collabaration Rules:

[~ Newl Ed'rtl

Subscriptions:
Instance Mame Everit Type | Source Al |
hozpitalDB etHoszpitalDB cpHozpitalDB
NHE] [Elete |
Publications:
Instance Mame Event Type I Destination J Ad |
retryRibksg M{EETASNInTDRDrmNH-QRetw [m]}]]cpASNInWHFr... 5 o
Elete |
Advancedl

Cancel

o |

Collaboration Properties window for a Subscribing Application Retry

Apply | Help |

collaboration.
@ Collaboration - colASNInToRDMWHS Properties [x|
General |
Gé)
& col2SMInToRDMAHS
Callaboration Rules:
[~ | New | Eciit |
Subscriptions:
Instance Mame Event Type I_Source Al
etolRibMeszageEnvelope "’E etAEMInToRDMYWHAR ety [IHE cpASMIRAHF ..
etolRibMeszageEnvelope nEetASNInFrnmRIEITnWde [IHE cpASMIRAHF .. Dislaiz |
Publications:
Instance Marme Event Type | Destination J Al |
etdHospitalDE s etHospitalDE [l crHospiane 5
et A SMINRDMAR “’E etaShnROMAPLYHS M cpTofndFrom... | 5 Dl |
.&.dvancedl
Ok I Cancel Apply | Help |

Collaboration Properties window for the subscribing collaboration for a
Subscribing Application adapter.

Chapter 4 —SeeBeyond Platform 67

Note: This collaboration updates the application database.

Figures 7-21 and 7-22 show the Collaboration Property windows for a
subscribing application. The following must be changed on both collaborations:

6 Change the Event Type Names to match the new Event Types defined.

If you do not do this, the adapter will only receive messages that go to a
different destination. In the example above, we created a warehouse #5. All
references to the Event Type etASNInToRDMWH4Retry must be changed to
etASNInToRDMWHS5Retry and references to etASNInFromRIBToWH4
changed to etASNInFromRIBToWHS.

7 If the Error Hospital used is specific to the subscribing application, then
make the connection point specific to the error hospital used.

This connection point is associated with the etHospitalDB Event Type
processing.

8 If the subscribing application is to be hosted by a different participating host,
move the new e*Way:

a Select the adapter that you want to move.

b Select Edit > Move. Another window is displayed that allows the e*Way
to be executed on a new computer.

The new computer must have an associated “Participating Host” created within
an e*Gate Schema. See the SeeBeyond e*Gate Integrator User’s Guide for more
details. In addition, a running stccb daemon must be active on the computer
before any other component can be run on the new participating host.

0 e*Gate Enterprise Manager - Rib100 |_ (O] x|
m Wiew Toolz Options Help
Move ... B = e u
N ®2 X B 8 =
N SoRy Copy Paste Up Delsts Propeies ETD Editor D Ecitar Collab Ecitar ~ Ext.
Raste
Copy Mutiple 2] [contents of ‘ewsshnToRDMAHS
Rename ... ::':11':\-18 Name | Callaboration Service | Collaborstion Rules
| X Celete StockOrderFromRIB ,&& (\gﬁ col&ZMINToRDMNHS Jawa crASN\l.wToRDM.c\ass
- FromROMAH1 Colaboration® &5 coldSNINToRDMMHER ety Jawva crHospitalRetry class

i & ppoint FromRDOMAHS
& ppointFromRDkHS
A ppoint ToRMS
A SMINEDIToA SkInWHFromRIB

e ASHINToASNINMAHF romRIB
e A SNINToRDMAAHT
e ASMINToRDMHZ
s ASNINToRDMHS
s B ENINToRDMANH

o, E W ASNOUEF romRDMAHI =
4| | >
Metwork €9 Companerts 4 | LI

Welcome to SeeBeyond's e*Gste Enterprize Manager. I g Administratar I E;l mspdey! 4

Edit drop-down menu
Note: You must select the e*Way to be moved before you select Edit > Move...

Chapter 5 — Message error handling 69

Chapter 5 — Message error handling

An error occurring while a subscriber processes a message poses a problem for
an EAI system. If the error is one such as a broken database connection, the
message simply needs to be retried once the connection is re-established. In
these types of errors, one would like the message to remain on the EAI queue
until it can be successfully processed.

Another type of error arises when messages have dependencies on seed data
found in the subscribing database. For example, only the SKU number may
reference a SKU referenced in a Purchase Order. If the subscribing database
does not contain this SKU, an error will occur. This category of errors, referred
to as Message Content Errors, cannot be resolved only through re-submitting the
same message. Instead, the SKU must be added before the message can be
successfully re-processed.

For the subscribing PO adapter, however, it may make sense to re-process the
message a set number of times anyways. The message that creates a new SKU
may be published by a different adapter than the one creating the Purchase Order.
Because of possible performance bottlenecks or operational difficulties, the
Purchase Order may arrive at the subscribing application adapter for POs before
it arrives at the subscribing application adapter for SKUs. Therefore, simply re-
trying the message gives the application an opportunity to successfully process
the PO.

Once a Message Content Error occurs, it is desirable that the failing message
does not affect the processing of other messages on the queue which refer to a
different business entity. Messages not yet processed could contain acceptable
data and it makes no sense to delay their processing. In order to get at these
messages, the problem message must first be removed from the queue and, once
removed, needs to be stored externally from the integration bus.

This storage mechanism is called the “Error Hospital”. Error Hospitals are
associated with subscriber adapters. Subscribing adapters may share the same
Error Hospital tables, or may have a set of tables reserved only for their specific
use. Messages are re-submitted to the EAI queue by the subscriber and the
resubmitted message will only be re-processed by the subscriber that resubmitted
it.

If a message contains invalid data and there are three subscribers for this message
family, then each subscriber will store a copy of the message in an Error Hospital
and re-publish the message to the queue. We use message selectors on each
subscriber that help filter the messages retried to the correct subscriber, as the
retry e*Way publishes the message with the name of the collaboration on a
property for retrying.

Each subscriber stores its own copy of the failing message because a different
subscriber may have processed the message successfully. When the message is
re-tried, those successful subscribers should not re-process the message.

70 Retek Integration Bus

Another complication with Message Content Errors is that subsequent messages
within the same message family may have dependencies on the problem
message. For example, a “Create New PO” message may be followed by an
“Update PO” message for the same PO number. If the “create” cannot be
processed, then the subscriber will error processing the “update”. Thus, before
any message is processed, a check is performed to see if the Error Hospital
already contains messages for the same business entity (in this case, the same
Purchase Order). If so, then the follow-on message is immediately inserted into
the error hospital, without allowing the application to process it at that time. The
adapter should re-publish the follow-on message only after the first one has been
successfully consumed by the application.

The retry logic for a publishing error hospital is much different than a
subscribing error hospital, as the publishing error hospital directly calls the oracle
package that failed for a message with the correct context data that is in the
hospital, the retry call then attempts to retry the message. If it is successfully
published, the message is removed from the error hospital database.

Once a message in the error hospital that had a dependency error message in the
hospital is completed, then the publishing retry e*Way publishes this dependent
message straight from the error hospital, as it was already successfully published
from the database but couldn’t be put on the rib because of sequencing.

Error Hospital components

Error Hospitals consist of a collection of Java classes, a set of database tables, a
Connection Point providing access to these tables, and a “retry” collaboration.
The Java classes contain the Error Hospital logic and include database access
logic. The Connection Point must be configured for each subscriber and connect
to the database housing the Error Hospital. The same Error Hospital Connection
Point must be used between the “Normal” subscribing collaboration and the
“retry” collaboration.

There is also a command line and a Graphical User Interface (GUI) tool for
monitoring and manipulating messages found in the Error Hospital.

Chapter 5 — Message error handling 71

JMS Message Queue
Connection Point (Initial
sage publication)

Database Connection

JMS s o
M ge JMS Message Queue | SAL:)T)SI|((::th)|I:r? Point Associated with SAL:)%TIZZm?
Queue Connection Point Collaboration MFM Stored Database

Procedure Call

U Error Hospital

Connectjon Point

JMS Message Queue
Connection Point
(Retry Message Publication)

Subscribing
Application Retry
Collaboration

Error Hospital
Database

Error Hospital
Connection Point

Figure 6-1 Connection Points used at a subscriber.

The following tables are used to store message information within the Error

Hospital:

e rib_message — contains the message “payload”, all single-field envelope
information, and a concatenated string made from <id> tags. Also contains a
unique hospital ID identifying this record within the hospital and information
used to track a message’s retry status.

e r1ib_message failure — contains all failure information for each time the
message was processed.

e rib_message routing — contains all of the routing element information found
in the message envelope.

More information about the Error Hospital design may be found in the Retek
Integration Bus Technical Architecture Guide.

72 Retek Integration Bus

Error Hospital configuration parameters and properties

All configuration parameters for an Error Hospital that control its logic are found
in a properties file. This file must be part of the Java CLASSPATH used when
the adapter is running. In the supplied Retek Messaging Schema, this properties
file is named rib.properties.

The properties file, along with the name of the Java Archive (JAR) file
containing Error Hospital classes and subscribing adapter helper classes, is
specified in the adapters configuration file.

To access the adapter configuration:
1 Open the SeeBeyond Enterprise Manager.
2 Select an option:
= Right click on the appropriate subscribing e*Way and select Properties.

= Select the appropriate subscribing e*Way and then click the Properties
toolbar button.

The e*Way Properties dialog box is displayed.

@ e“way - ewASHNInFromEDI Properties |

General | Start Upl Advancedl Securitg.rl

evv A SMInF romED]

Executable file

}uinlﬂcewgenericmnnk.exe

Clear | Find |

Additional command ling arguments:

SCHEMAYE -In % LOGICALMNAMES: -un %

Run as uzer

I.ﬂ-.dministratnr]|

Configuration file

l:u:unfigsﬁstcewgenericmnnklewASNInFrDmEDI.n:fg

Clear | Firnd | Edit |

] Cancel | Apply | Help

e*Way Properties dialog box

3 In the Configuration file area, click Edit. The configuration file edit window
is displayed. The CLASSPATH specification is found in the JVM Settings
section under the CLASSPATH Prepend parameter.

Chapter 5 — Message error handling 73

/Edit Settings for C:/EGATE /Chent/configz/stceway/ewASHInToRMS cig
File “iew Options Help

oto Section: | JuM Settings j Dal%l | I;gll

oto Parameter: | IZLASSPATH Prepend j
CLASSPATH Prepend Dal%l ||§§|
lesOiegatelegateitlienticlassesirete | (= [

-

& jfilesiegatefegateiclienticlassesiratakerin-: | |

ll KNl |

| |

CLASSPATH Override g |%s| & |
5 b

-]

Configuration file edit window

Note: If any parameter found in the configuration file is changed, an additional
step is needed before the running system actually uses the new configuration: the
configuration must be “Promoted to run-time”. This may be done in the
configuration file “File”” drop-down menu or in the Enterprise Manager “File”
drop-down menu. Simply changing a configuration does automatically update
the SeeBeyond Registry with the new value.

74 Retek Integration Bus

The RIB properties file contains a number of parameters controlling the Error
Hospital retry logic. Each parameter is on a line by itself and each line has the
following form:

hospital.attempt.<param name> = <param value>
where <param name> is the name of the parameter and <param value> is the

value. The table below lists the hospital parameters and their default values if
not found in the RIB properties file:

Parameter Name Default Description
Value

hospital.attempt.max Maximum number of attempts the
Error Hospital will make for the
message, including the initial
attempt. Once a message has been
attempted this many times, a User
Defined Alert is raised for this
message. These alerts will seen on
the e*Gate Monitor application.

hospital.attempt.delay Base number of seconds between
retries.

hospital.attempt.delayIncrement Number of seconds to add to the
base delay per each retry. For
example, using the default value,
the time between the third and
fourth retry is: 2+ 8 + 8 + 8 =26
seconds.

If different subscribers need different Error Hospital configurations, then each
subscriber should use a different properties file with the values needed by that
subscriber.

Note: Although the directory containing the RIB properties file may change, it
must always be named rib.properties.

Chapter 5 — Message error handling 75

Error Hospital activities

This section details activities one may perform to messages in the Error Hospital
from either the Hospital Administration GUI or the Hospital command line
utility. This Java application lets you:

e Query the hospital database to determine the message(s) that exist
e View or save a message’s contents
e Replace the message’s contents

e Increase the number of processing attempts for this message for this
subscriber by one

e Delete the message
e Stop the message from further processing attempts

The Hospital GUI and command line utility are Java classes that are executed or
wrapped by a set of shell scripts (Unix) or BAT files (Windows/NT). This Java
class requires the presence of a properties file, hospital-admin.properties,
in the user’s home directory.

These scripts also source the file, hospital-admin.env, to initialize the
CLASSPATH used by the command line utility class.

76 Retek Integration Bus

Hospital GUI and command line utility set up

The hospital-admin.properties file and the hospital-admin.env file must be
manually set up before the GUI or command line utility can be used. This is

detailed in the next section.

Setting up hospital-admin.properties

The following properties must be set in the file hospital-
admin.properties. By default, the user’s home directory is checked for this
file. However, the name and location for this file may be specified at run time.

Parameter Name

Description

hospital.gui.prop.dbUser

Database User ID the utility will use to log into
the hospital database.

hospitial.gui.prop.dbPwd

Password associated with the dbUser parameter.

hospital.gui.prop.dbUrl

URL of the JDBC driver that will host the
database session. This URL is typically of the
form:

jdbc:oracle:thin:@<hostname>:1521:<SID>

where <hostname> is the name of the host
containing the Oracle listener and <SID> is the
Oracle System ID of the database.

hospital.gui.prop.dbDriverClass

Name of the Oracle JDBC driver class.
Typically, this is
oracle.jdbc.driver.OracleDriver As of this
writing, this driver is found in the file
client12.zip available from Oracle.

Because this file contains database login parameters, access to it should be
limited. On Unix systems, set the file privileges mode of hospital-

admin.properties to 0400.

All entries must be in the form <ParameterName> = <Value>. Comments begin
with a hash (‘#’) and continue to the end of a line. Lines containing white space
are ignored. An example of the hospital-admin.properties follows:

hospital.gui.prop.dbUser=retek user

hospital.gui.prop.dbPwd=retek password

hospital.gui.prop.dbUrl=jdbc:oracle:thin:@HSP DB HOST:15

21:hsp SID

hospital.gui.prop.dbDriverClass=oracle.jdbc.driver.Oracl

eDriver

Chapter 5 — Message error handling 77

Setting up hospital-admin.env

The hospital-admin.env file contains the CLASSPATH and other environment
entries that the hospital command line utility uses. Each wrapping [?] script
sources this file before executing the utility class. The hospital-admin.env
file must exist somewhere in the user’s execution path.

The hospital-admin.env file should contain the following information:

o The correct CLASSPATH environment variable. An example of a
CLASSPATH is:

CLASSPATH=/filesO/egate/egate/client/classes/retek-rib-
support.jar:/files0/egate/egate/client/ThirdParty/oracle
/classes/classesl2.zip:/filesO/egate/egate/client/etd/et
dRibMessageEnvelope.jar:/filesO/egate/egate/client/class
es/stcjcs.jar

The example above assumes that the <EHOME> directory is
/filesO/egate/egate.

e Any modifications to the PATH environment variable to execute the Java
command.

Hospital Admin GUI script
Run the “hospital” shell script (Unix) or the “hospital.bat” file (Windows).

Error Hospital admin command line scripts

All Error Hospital administration is done via the Java class:

com.retek.rib.collab.HospitalAdminCmdLine

However, a set of scripts has been created for ease of use. These scripts wrapper
the HospitalAdminCmdLine class and invoke the java interpreter to execute it.
Each script will also echo the specific command used.

Each script has a Unix Bourne shell version and a Windows 2000/NT version.
Each operating system specific version accepts the same parameters. The
following scripts have been implemented:

Command Parameters Description
querymsg -1 <location> Queries the database and displays a list
-f <family> of message numbers that meet the

required criteria. Any combination of

‘[<pr€> these parameters can be used. The SQL
- <id> select will use the input parameters in a
-q <inQueue> LIKE context so wildcards are allowed

- <willRetry> (%). For example, if “-i 123%” were

passed in, all messages with
message num starting with 123 would
be selected.

-p <propertiesFile>

e -] <location> lists only those
message numbers from the

78 Retek Integration Bus

Command

Parameters

Description

specified location. Locations are
of the form <eway
name>.<collaborationName>

o -f<family> lists only those
message numbers belonging to the
specified message families

e -g <type> lists only those message
numbers that belong to messages
of the specified type

e i <id> lists only those message
numbers that apply to the specified
ID. These identify a specific
business object, such as a Purchase
Order or ASN.

e -q <inQueue> lists only those
message numbers that are believed
to be enqueued in the integration
bus at the current time. A value of
0 or “false” implies the message
only exists in the Error Hospital, a
value of 1 or “true” implies that the
message is thought to have been
published for another attempt to
process it.

e -r<retry> lists only those messages
according to their retry status. The
<retry> specification of 0 or
“false” lists those not eligible for
retry and marked ready for delete;
a value of 1 or “true” lists those
eligible for retry and not ready to
be deleted.

All parameters are optional. Multiple
parameters produce the intersection of
their independent results. (For example,
—f Family and I Location lists all
messages in family “Family” belonging
to location “Location”.)

deletemsg

-m <messagelD>
-p <propertiesFile>

Marks the message ready for deletion.
The message will be deleted when the
retry collaboration next awakens.

The —m switch is mandatory and must
contain the message number of the
message to delete.

Chapter 5 — Message error handling 79

Command Parameters Description

readmsg -m <messagelD> Retrieves the payload contents for
-F <outputFileName> | message <messagelD> and writes it out
to the file <outputFileName>.

-p <propertiesFile>
The —m switch is mandatory and must
contain the message number of the
message to read.
updatemsg -m <messagelD> Replaces the message payload for the

-f <inputFileName> | given message with the contents of the
file. No validation of the file contents is
performed until the subscribing adapter
processes the data.

-p <propertiesFile>

The —m switch is mandatory and must
contain the message number of the
message to update.

stopmsg -m <messagelD> Stops further attempts to retry the

-p <propertiesFile> message.

The —m switch is mandatory and must
contain the message number of the
message to stop retrying.

retrymsg -m <messagelD> Flags the message so one additional
-p <propertiesFile> attempt is made to process the message.

The —m switch is mandatory and must
contain the message number of the
message to retry.

Hospital Administration command line examples

Before using any of the commands below, remember to verify that the
hospital-admin.properties file exists in your home directory and
contains the correct database login information. The name and location of this
file may be overridden via the —-p command line switch.

80 Retek Integration Bus

Listing all messages in an Error Hospital:
> querymsg

[USAGE] querymsg [-p properties file] [-1 location] [-f
family] [-t typel] [-1i id] [-g inQueue] [-r willRetry]

java HospitalAdminCmdLine -a query

Getting properties from: /filesO/egate/hospital-
admin.properties

Number of messages selected: 159

Message numbers: 2947 2933 2934 2935
2936 2940 2849 2850 2851 2852 2853
2854 2856 2857 2858 2859 2923 2924
2925 2926 2927 2928 2929 2930 2931
2932

SUCCESS

Listing all messages in an Error Hospital from a specific e*Way:

The example below lists all message numbers that belong to the
ewASNOutToRCOM e*Way:

> querymsg -1 ewASNOutToRCOMS

[USAGE] querymsg [-p properties file] [-1 location] [-f
family] [-t typel] [-1i id] [-g inQueue] [-r willRetry]

java HospitalAdminCmdLine -a query -1 ewASNOutToRCOMS%

Getting properties from: /filesO/egate/hospital-
admin.properties

Number of messages selected: 15

Message numbers: 2854 2913 2804 2805
2809 2811 2813 2769 2794 2795 3113
3115 3117 3119 3124

SUCCESS

Chapter 5 — Message error handling 81

Listing all messages in an Error Hospital that belong to a specific message
family:

The example below lists all message numbers that belong to the “asnout”
message family:

> querymsg -f asnout

[USAGE] querymsg [-p properties file] [-1 location] [-f
family] [-t type] [-1 id] [-g inQueue] [-r willRetry]

java HospitalAdminCmdLine -a query -f asnout

Getting properties from: /filesO/egate/hospital-
admin.properties

Number of messages selected: 23

Message numbers: 2854 2913 2804 2805 2808
2809 2810

2811 2812 2813 3019 3045 3012 2769
2794 2795 3205 3226 3113 3115 3117 3119
3124

SUCCESS

Reading the message payload XML into a file

Message contents can be read into a file using the readmsg script. Note that the
XML is written as it appears in the original message and this means it contains
no new-line or carriage return characters.

> readmsg -m 2947 -F /tmp/message 2947 .XML

java HospitalAdminCmdLine -a read -m 2947 -F
/tmp/message 2947 .XML

Getting properties from: /filesO/egate/hospital-
admin.properties

read Message: 2947
SUCCESS
> cat /tmp/message 2947 .XML

82 Retek Integration Bus

<?XML version="1.0" encoding="UTF-8"?><!DOCTYPE
POReceiptDesc SYSTEM
"http://mspdev09:8109/dtdtst/POReceiptDesc.dtd"><PORecei
ptDesc><dc dest id>1</dc dest id><appt nbr>500000301</ap
pt nbr><po nbr>lO6lO</po nbr><document type>P</document
type><item id>100614114</item id><unit gty>8</unit gty><
receipt xactn type>R</receipt xactn type><receipt date><
year>2002</year><month>03</month><day>08</day><hour>16</
hour><minute>47</minute><second>11</second></receipt dat
e><receipt nbr>500000291</receipt nbr><asn nbr>ASN-IT-
RECEIPT-

19</asn nbr><dest id>1000000014</dest id><container id>A
SN-IT-REC-19-
CID001</container id><distro nbr>1000001911</distro nbr>
<distro_doc_type>A</distro_doc_ type><to disposition>WIP<
/to_disposition><from disposition></from disposition><to
_wip>MXDSKU</to wip><from wip></from wip><to trouble></t
o _trouble><from trouble></from trouble><user id>ZZRUDEJ<
/user 1d></PORecelptDesc>

Updating the message payload from a file:

Message contents can be updated from a file using the updatemsg script. The
editor used to manipulate this data is external to this application.

> updatemsg -m 2947 -F /tmp/message 2947 .XML

java HospitalAdminCmdLine -a update -m 2947 -F
/tmp/message 2947 .XML

Getting properties from: /filesO/egate/hospital-
admin.properties

update Message: 2947
SUCCESS

Marking a message ready for deletion:

The deletion of messages stored in the Error Hospital is performed by the retry
collaboration. One may mark a message ready to be deleted by this software
using the deletemsg script. The example below marks message number 2155
ready to be deleted:

> deletemsg -m 2155
java HospitalAdminCmdLine -a delete -m 2155

Getting properties from: /filesO/egate/hospital-
admin.properties

delete Message: 2155
SUCCESS

Chapter 5 — Message error handling 83

Manually querying message information from Error Hospital

Although the Hospital Admin command line utility allows one to view
information about the messages contained in the hospital, one may wish to select
IDs from the Error Hospital database using some other unique criteria.

Most message information is stored in the rib message table.

To count the number of messages in the Error Hospital for a specific adapter:

select count (*) from rib message where location =
’<ADAPTER_NAME>’;

To display the Error Hospital message numbers for messages in the Error
Hospital for a specific adapter:

select message num from rib message where location =
"<ADAPTER NAME>';

To display the failure history of a specific message

select * from rib message failure where message num =
<MESSAGE_NUM>;

To display the message numbers for a particular message type

select count (*) from rib message where location =
’<ADAPTER_NAME>’;

Columns in the RIB_MESSAGE table

Column Name Description
message num Error Hospital message ID
Location Name of adapter (e*Way name + °.” + collaboration

name) encountering an error processing the message

family family of message

type type of message

ID ID of business entity that this message is associated
with

ribmessagelD RIB ID of message. Contains RIB version, publishing

e*Way name, collaboration name, e*Way start time
and a unique sequence ID.

publish_time Date/Time message published

in_queue Flag set when message is re-published by the retry
collaboration. A value of 1 indicates the message
resides on the JMS queue and has not yet been
processed by the subscriber collaboration. A value of
0 indicates the message only resides in the Error
Hospital

message data CLOB containing the message data

84 Retek Integration Bus

Column Name Description
attempt _count The number of times this message has been sent
(unsuccessfully) to the subscriber, including the initial
attempt
max_attempts The number of attempts the hospital will make before

stopping retries and alerting an administrator

next_attempt_time The time of the next retry attempt, or null if the
message should be attempted as soon as possible.

delete pending Set to 0 to indicate message is to be kept in the Error
Hospital. Set to 1 to prompt the retry collaboration to
delete the message from the Error Hospital.

Error Hospital log entries

The Error Hospital software contains trace statements for monitoring its
execution. These statements will be logged to the e*Way RIB log files. More
verbose logging of hospital operations is available if the e¥*Way’s verbose log
settings have been set to Y in the rib.properties file.

The log filename will be (rib <EWAY NAME>.log) and it will be written to the
default log directory as specified in the rib.properties file.

Create additional Error Hospitals

An Error Hospital is checked each time a subscribing application adapter
processes a message. Because of this, location of the database with the Error
Hospital tables is critical. The Error Hospital may be located within its own
database or be part of the application’s database.

By default, only a single Error Hospital is used in the RIB Messaging schema.
The instructions for installing a new Error Hospital are found in the RIB
Installation Guide. This installation consists of creating a set of new database
tables and a sequence object.

Once the new Error Hospital has been created, create a new Oracle Connection
Point to reference it. Then update the collaborations used by the subscribing
application adapters to use the new Connection Point

Chapter 6 — J2EE Platforms 85

Chapter 6 — J2EE Platforms
RIB startup and shutdown

This section details considerations for bringing up and shutting down the RIB
Enterprise Java Beans and Message-Driven Beans when deployed on a J2EE
Application Server, such as WebSphere.

Starting the RIB components

All RIB EJB components should be automatically started when the application
server is brought up. One prerequisite is for the SeeBeyond JMS 1Q Manager to
be running before starting the Application Server.

The SeeBeyond JMS server, however, requires a SeeBeyond instance. If the
JMS is not available, then follow the instructions for configuring the SeeBeyond
RIB Components.

Shutting Down RIB Components

With the exception of the SeeBeyond JMS Server, all RIB components should
cease to function once the J2EE Application Server is brought down.

Preventative maintenance tasks

Log files are the primary tools used to determine activity. These files must be
maintained as they could continue to grow to unmanageable sizes.

Log Files
WebSphere log files

WebSphere’s log files are managed from its Administration Console. You can
configure the maximum size of the files, the number of histories to keep, etc.
Refer to WebSphere for the details of these configurations.

RIB/Timings log files

The RIB/Timings logs are not managed and must be maintained. The path and
file name(s) are found in the rib.properties file found in the rcom-j2ee-rib.jar file,
which is part of the rcom.ear file.

86 Retek Integration Bus

RIB component configuration

This section will detail using WebSphere as the Application Server.
Configuration files

rib.properties

In the rcom-j2ee-rib.jar file, you will find a file named rib.properties. This file
contains the RIB specific properties used by the RIB subscribing Message-
Driven Beans and publishing Stateless Session Beans that are deployed on the
Application Server. See below.

TR R
These are the RIB hospital properties.
hospital.attempt.max=5

hospital.attempt.delay=10

hospital.attempt.delayIncrement=10

HHHHHHHE A
Default logging level verbose? [Y or N]
log.default.verbose=N

W R R
Path where RIB and Timings log files will be written. It must end with
a directory separator / or \.

log.default.file path=/files2/websph/WebSphere/AppServer/logs/serverl/

HHHHHHHHHH AR

Log message times? [Y or NJ, and the file to write timings log
entries to. Only specify the file name as it will be pre-pended
with the log.default.file_path property. If no entries for an

e*Way, it will default to N.

#

log.MDB.timings=Y

log. MDB.timings_logfile=timings_rib.log

Chapter 6 — J2EE Platforms 87

S R R]

These are JNDI names used to lookup DataSource and TransactionManager
used by the RIB.

rcom.jndi.db=jdbc/OracleRibDs
#rcom.jndi.tm=java:comp/env/TransactionManager

rcom.jndi.jms.factory=XA ConnectionFactory

S R R R
This is the hostname and port of the eGate JMS provider.
rib.jms.hostname=<servername> e.g. mspdev14.retek.int

rib.jms.port=<portname> e.g. 24053

Write each JMS message (XML) out to a file? [Y, N, True or False]

rib.jms.write file=False

HHHHHHHHHH AR

Version of AlertPublisher, RibMessage, etc. the RIB is using.
alertPublisherImpl=com.retek.rib.alert.NullAlertPublisher
ribMessagelmpl=com.retek.rib.sbyn.RibMessage Wrapper
ribMessagesImpl=com.retek.rib.sbyn.RibMessagesWrapper
routingInfolmpl=com.retek.rib.sbyn.RoutingInfoWrapper

failurelmpl=com.retek.rib.sbyn.FailureWrapper

TR R

These properties are used to interface with RCOM (J2EE). Only applicable

if RIB is not deployed in same AppServer Container.
#rcom.jndi.context.factory=com.ibm.websphere.naming. Wsnlnitial ContextFactory

#rcom.jndi.url=iiop://mspdev03.retek.int:2809

.bindings

B

In the .../WebSphere/sbynjndi directory you will find a file named “.bindings”.
This hidden file contains the serialized java JMS Objects that the Generic JMS
Provider uses. It is created as part of the RCOM installation. Refer to that
product’s Installation Guide for details.

88 Retek Integration Bus

Generic JMS Provider

The Generic JMS Provider is fully configured as part of the RCOM installation.
From the WebSphere Admin Console, click Resources -> Generic JIMS
Providers. You will see “SeeBeyond JMS Provider” as the available resource.
The JMS Connection Factory as well as all the JMS Destinations defined here.

Message Listener Ports

The Message Listener Ports are also fully configured as part of the RCOM
installation. From the WebSphere Admin Console, click Servers -> Application
Servers -> serverl -> Message Listener Service -> Listener Ports. You will see
all of the WebSphere Listener Ports defined here.

Data Source

Finally, the Oracle DataSources are fully configured as part of the RCOM
installation. From the WebSphere Admin Console, click Resources -> JDBC
Providers. You will see “Oracle JDBC Thin Driver (XA)” as the available
resource. All of the RCOM DataSources are defined here. The “Oracle Rib
Datasource” is the DataSource that the RIB utilizes.

Chapter 7 — ISO Platform 89

Chapter 7 — ISO Platform
RIB startup and shutdown

Starting the Rib components for the ISO application is as easy as starting the ISO
application server. No additional steps are necessary, as long as the
configuration files have been installed correctly in the Rib install process. See
“Chapter 14 — RIB component configuration: ISO Platform” for details regarding
the configuration files.

Preventative maintenance tasks

This chapter lists some common tasks that a system administrator may want to
script and perform on a regular basis, or may not need to script or perform on a
regular basis.

Log files

Each of the subscribing Rib messaging components has a log file associated with
it. Each publisher, although not a server component, is associated with a
particular message family, and has its own log file as well. The names of these
log files are set in the configuration file for the subscriber or publisher. Also
contained in the configuration files are some Log4j logging properties that can be
used to configure the maintenance of these log files. For more information on
Log4j, see the documentation at the following Internet URL:

http://jakarta.apache.org/logdj/docs/documentation.html

There are four entries in the publisher and subscriber configuration files that deal
with log file maintenance. The names of these properties are:

e LOGGING LOG4J LEVEL

e LOGGING LOG4J MAX FILE SIZE

e LOGGING LOG4] MAX BACKUP INDEX
e LOGGING LOG4J PATTERN FORMAT

The first entry has to do with the level of detail that will be output to the log file.
The log file will grow most quickly if the level is set to “DEBUG”. To keep the
log files smaller, you may want to set the level to a different value. The default

is “DEBUG”.

The second entry has to do with the maximum size to which a log file is allowed
to grow. Once the file reaches this size, if the value for the third property,
LOGGING _LOG4] MAX BACKUP_INDEX, is positive, then files {File.1, ...,
File.MaxBackuplndex -1} are renamed to {File.2, ..., File.MaxBackupIndex}.
Moreover, File is renamed File.1 and closed. A new File is created to receive
further log output. If MaxBackuplndex is equal to zero, then the File is truncated
with no backup files created. This allows an administrator to maintain the log
files with no scripting required.

90 Retek Integration Bus

The default value (the value that is in the configuration file to start with) of the
second property is, “1024KB”, or one megabyte. The default value for the third

property is “1”.
The last property, “LOGGING_LOG4] PATTERN_FORMAT?”, controls the

format of the output data. For more information on this setting, see the
documentation at the following Internet URL:

http://jakarta.apache.org/logd4j/docs/documentation.html

RIB component configuration

XML files

RibContainer.xml

The key XMLconfiguration file for the ISO application server is
RIBContainer.xml. This file will be found in one of the following directories:
Unix:
<install dir>/chelsea/serverUnix/retek/sim/files/prod/tu
ning
Windows:
<install dir>\chelsea\serverWdws\retek\sim\files\prod\tu
ning
This configuration file must be present in this directory in order for the RIB
components to be deployed. There needs to be an entry in RIBContainer.xml file
for each of the messaging components (subscribers).

Some of the other key entries in this file are:
For the container as a whole:

e containerName — This entry controls the naming of the container’s log files,
and the name displayed in the Mission Control application for the RIB’s
container. Itis “RIBContainer” by default.

o defaultInstanceCount — This entry controls how many instances of the
container are started at startup. It is set to “1” by default.

e MinutesPauseVitals — This entry controls the delay updates to the
container’s vitals in the Mission Control application. The default is “5”.

For the individual components:

e componentClassName — This entry controls the class that the component
consists of. This class must be a descendant of
com.chelseasystems.cr.node. CMSComponent. The default is
com.retek.rib.redsky.RibMessagingComponent. This entry should not
normally need to be changed.

o defaultMaxCount — This entry controls the minimum number of instances
of the component that will be allowed to exist. If the number of instances of
the component ever dips below this number, a new instance of the
component will be created.

Chapter 7 — ISO Platform 91

e defaultMinCount — This entry controls the maximum number of instances
of the component that will be allowed to exist. If the number of instances of
the component ever goes above this number, an instance of the component
will be destroyed.

e name — This entry controls the name of the component, as displayed within
the Mission Control application.

e propertyPairs — This entry controls what name/value pairs, or properties,
are passed to component upon startup of the component. Of all the standard
name/value pairs available, one is mandatory. It is, “CONFIG_FILE”, and
its value should be the name of the configuration file for the component. No
path information should be included with this value, as ISO will look for this
file in the standard “config” directory. For the RIB components, this is the
only entry that is necessary.

Retek Binding Mappings

Retek Binding Mapping XML Files detail the mapping of the XML data to/from
the payload object. They exist mainly to prevent costly message validation.

ISO Configuration (*.cfg) files
Non-XML formatted configuration files for the RIB on the ISO application
server platform are:

Subscriber messaging component configuration

Subscribing messaging component configuration files use the following naming
convention: <RibFamilyName>messagingcomponent.cfg

An instance of this file should exist in the [SO “config” directory, for each RIB
component deployed. Remember, the messaging components represent
subscribers, and as such they are server components that are brought up when the
application server starts up. The names of the configuration files for the standard
RIB components include:

e asnoutmessagingcomponent.cfg
o diffsmessagingcomponent.cfg

e itemsmessagingcomponent.cfg
e ordermessagingcomponent.cfg

e seedmessagingcomponent.cfg

e storesmessagingcomponent.cfg
e vendormessagingcomponent.cfg

e whmessagingcomponent.cfg

92 Retek Integration Bus

Some of the key entries in these subscriber configuration files are:

TOPIC_NAME — The value of this entry should be the topic name in
SeeBeyond, to which the component subscribes.

DURABLE_SUBSCRIBER - The value of this entry should be “true”. All
of the RIB’s subscribing e*Ways in SeeBeyond are durable, and all of the
ISO subscribers should be durable as well. For a definition of a durable
subscriber, see the Sun JMS specification.

JMS_COMPONENT_TYPE — The value of this entry should be
“Subscriber”. Remember, we are talking about the configuration files for
ISO subscribing messaging components here.

MODULE_NAME - The overall component name. For the RIB
subscribers, this should be “RibMessagingComponent”.

SUB_MODULE_NAME - The RIB family name for the subscriber.

SINGLE_THREADED - The valid values for this entry are “true” and
“false”. If this entry is set to “true”, only a single thread will be used to call
the processMessages(ArrayList) method. This method is the main method of
the subscribing messaging component, and is responsible for consuming
individual RIB messages. If the value for this entry is “false”, multiple
threads may call this method. The default is, “true”.

MESSAGING_CONFIG — The name of the JMS messaging configuration
file. This path information should not be included in this file, as ISO will
look in the standard “config” directory for this file. See “JMS Messaging in
General”, below for more information on this file.

Logging - log4j — There should be a section in the file for Log4j logging.
The individual properties in this section are:

» LOGGING LOG4] LEVEL
» LOGGING LOG4] MAX FILE SIZE

» LOGGING LOG4] MAX_BACKUP_INDEX
» LOGGING LOG4] PATTERN FORMAT

For a description of the individual entries, see the following Internet URL:
http://jakarta.apache.org/log4i/docs/documentation.html

Chapter 7 — ISO Platform 93

Publisher messaging component configuration

Publishing messaging component configuration files use the following naming
format: <RibFamilyName>publisher.cfg.

The publishers are utility classes, and although they require configuration files,
they are not server components that are brought up during startup. Also, entries
for these publishers are not required in the RIBContainer.xml configuration file.
Names of the configuration files for the standard Rib publishers include:

e asnoutpublisher.cfg

e dsdreceiptpublisher.cfg

e invadjustpublisher.cfg

e receivingpublisher.cfg

e rtvpublisher.cfg

Some of the key entries in these publisher configuration files are:

e TOPIC_NAME - The value of this entry should be the topic name in
SeeBeyond, to which the component publishes.

e JMS COMPONENT_TYPE — The value of this entry should be
“Publisher”. Remember, we are talking about the configuration files for
individual instances of the publisher utility class here.

e MODULE_NAME - The overall component name. For the Rib publishers,
this should be “RibPublishingUtility”.

e SUB MODULE NAME - The Rib family name for the publisher.

o Logging - log4j — There should be a section in the file for Log4j logging.
The individual properties in this section are:

» LOGGING LOG4J LEVEL

» LOGGING LOG4] MAX FILE SIZE

» LOGGING LOG4] MAX BACKUP INDEX
» LOGGING LOG4] PATTERN_FORMAT

For a description of the individual entries, see the following Internet URL:
http://jakarta.apache.org/log4j/docs/documentation.html

e JMS Messaging in General — There is a configuration file for general JMS
messaging for the Rib. Its name is ribmessaging.cfg, and it is located in the
standard ISO “config” directory. There should be a property in each of the
above configuration files, for both subscribers and publishers that refers to
this file. The property name is, “MESSAGING_CONFIG” and its value
should be, “ribmessaging.cfg”. Some of the key entries in this file are:

* CLIENT_IMPL - Should be
“com.retek.rib.redsky.RibSeeBeyondJmsServices” for all Rib ISO
subscribers and publishers.

94 Retek Integration Bus

= USE_SESSION _TRANSACTION - The value of this entry should be
“true”. What this means is that the container session should control the
entire transaction, rather than the individual database and JMS sessions
within the overall transaction. What this amounts to a sort of two-phase
commit, where the container session knows all of the individual database
and JMS sessions involved, and the Rib messaging component tells the
session to commit all involved sessions. This entry should always be

2

“true”.

* BROKER - Should consist of the host name of the server on which
SeeBeyond is running, plus “:”, plus the port of the JMS queue manager.
The port of the IMS queue manager can be found in the SeeBeyond
e*QGate Enterprise Manager application. Navigate to the JMS queue
manager, go to the “Properties” for it, and look under the “Advanced”

tab.

Properties files
The property files for the Rib/ISO installation are:

binding.properties — This is a “Retek Binding” subsystem file. It is located
under the standard ISO “config” directory. Within the “config” directory, the
pathname is, “com/retek/binding/rib/castor.properties”. See the “Retek
Binding Configuration files” section in “Chapter 4 — Configuration files” for
properties files relating to the Retek Binding.

castor.properties — This is a “Retek Binding” subsystem file. It is located in
the standard ISO “config” directory. See the “Retek Binding Configuration
files” section in “Chapter 4 — Configuration files” for properties files relating
to the Retek Binding.

injector.properties — This is a “Retek Binding” subsystem file. It is located
in the standard ISO “config” directory. See the “Retek Binding
Configuration files” section in “Chapter 4 — Configuration files” for
properties files relating to the Retek Binding.

payload.properties — This is a “Retek Binding” subsystem file. It is located
under the standard ISO “config” directory. Within the “config” directory, the
pathname is, “com/retek/binding/rib/castor.properties”. See the “Retek
Binding Configuration files” section in “Chapter 4 — Configuration files” for
properties files relating to the Retek Binding.

publisher.properties — This file is also used by the Retek Binding
subsystem (see the “Retek Binding Configuration files” section in “Chapter 4
— Configuration files” for entries relating to the Retek Binding). Some
additional entries are included in this file for the Rib publishers. The property
names consist of the Rib message family name, plus “.”, plus the Rib
message type name. An example would be, “ASNOUT.ASNOUTCRE”.

The value for each of these properties would be the name of the
configuration file for each of the publishers. The path information should not
be included, as ISO will look for these configuration files in the standard ISO
“config” directory. The properties and there values should be:

Chapter 7 — ISO Platform 95

ASNOUT.ASNOUTCRE=asnoutpublisher.cfg
DSDRECEIPT.DSDRECEIPTCRE=dsdreceiptpublisher.cfg
INVADJUST.INVADJUSTCRE=invadjustpublisher.cfqg
RECEIVING.RECEIPTCRE=receivingpublisher.cfg
RECEIVING.RECEIPTMOD=receivingpublisher.cfg
RTV.RTVCRE=rtvpublisher.cfg

rib.properties — See the description under “ISO Platform Specific
entries”, under the “RIB Properties File” section of “Chapter 4 —
Configuration files”.

Chapter 8 — RIB Administration Tool 97

Chapter 8 — RIB Administration Tool

Overview

The RIB Administration Tool contains three administrative GUI Applets: a
Hospital Administration GUI Applet, a RIB Properties Editor GUI Applet and a
Message Statistics GUI Applet. This web application is contained in the gui.war
file under the Rib_Hospital Gui directory.

The application is for administration of a RIB installation on the same computer
as the Application Server hosting the RIB Administration Tool.

Installation and configuration

The RIB Administration Tool requires an existing application server, such as
Apache Tomcat, installed and running on the same host as the running RIB
installation.

The RIB comes equipped with the necessary ‘war’ file, named ‘gui.war’, for the
installation. This file is found <install dir>/RIB103/Rib_Hospital Gui/build
directory.

To install and configure the RIB Administration Tool using the Tomcat
application server:

1 Install the war file on an application server using the gui.war file.
2 Edit the gui.properties configuration file.
FHEHHHHEH AR AR
GUI Project Variables
GUI.ProjectHost=
GUI.ProjectPort=
GUI.ProjectName=
GUI.TimingsLogFile.Path=
GUI.TimingsLogFile.Name=
GUI.rib.properties.default.FilePath=
GUI.rib.properties.default.BackupFileExt=.bak

= GUI.ProjectHost and GUI.ProjectPort are values you can set for all the
applets. These values override the applet’s baseurl.getContext lookups
to find the URL to the servlets. If for any reason this lookup does not
find your correct host and port, or if you want to use a servlet residing on
a different host or port, set these values in the properties file.

= GUI.ProjectName should be set in the properties file to contain the name
of your project installation (installed application name) on the
application server. The applets will use this name to build the URL to
the servlets. The default installation name is “gui”.

98 Retek Integration Bus

GUILTimingsLogFile.Path and the GUI. TimingsLogFile.Name should be
set to contain the default path to the timings log file and the default name
for the log file for the Message Statistics GUI Applet. When this applet
is loaded, it will display a window where the user can enter the path to
the log file and the parameters to pass into the RibTimings class to gather
the statistics. The default path is displayed using these properties. If no
value is entered, the log file path text field on this window will initially
be blank.

GULrib.properties.default.FilePath should be set to the default file path
of the rib.properties file. This will be displayed in the RIB Properties
Editor’s connection window as the default File Name, which the user can
modify before retrieving the file from the server.

GULrib.properties.default. BackupFileExt should be set to contain the
default file extension the RIB Properties Editor will use when creating a
backup copy of the rib.properties on the server. This will be displayed in
a dialog that appears on saving the file. The user can modify the
extension of the backup file to whatever they choose before the file is
saved.

1 Edit the gui.servlet.properties file in WEB-INF/classes.
G i
GUI Project Variables

GUI.jdbc.driver=oracle.jdbc.driver.OracleDriver

GUI.rib.properties.SessionTimeout=900

GUI.rib.properties.local.FilePath=

GUILjdbc.driver should be set to the driver used to log in to the database
for the main Portal login. The default driver that is contained the gui.war
is an Oracle database driver.

GULrib.properties.SessionTimeout should be set to the amount of time in
which a session is timed out after being idle. The index.jsp will set the

Ht t pSessi on. set Maxl nacti vel nterval (); The default is 900
seconds (15 minutes).

GULrib.properties.local.FilePath should be set to the directory where the
RIB Properties should locally save the file while editing it. The default
is to set this to <appserver-installation-directory>/<installed-application-
name>/temp/, but can be changed to any directory on the application
server.

Chapter 8 — RIB Administration Tool 99

Accessing the RIB Administration Tool

The RIB Administration Tool starts with the Main Portal screen. All access is
performed using a Web Browser such as the Microsoft® Internet Explorer. The
Web Browser downloads a Java applet from the application server.

Main Portal Screen

To access the Main Portal Screen, first Bring up the RIB Administration Tool
from your browser by the following URL:

http://<hostname>:<port>/<installed-app-name>

where

<hostname> is the name of the host containing the application server, <port> is
the port number used to access the application server <installed-app-name> is the
name of the application the RIB Administration Tool has been installed under.
The default is “gui”.

A login screen will appear. Enter in the login to the Hospital database you want
to access using the Hospital Administration GUI. Even though the Message
Statistics GUI and RIB Properties Editor GUI do not use a database connection,
the RIB Administration tool uses the Hospital database login for authentication.
This database login will need to be entered in to access the RIB Administration
Tool regardless of whether the Hospital Administration GUI will be used.

Once logged in to the RIB Administration Tool, an index screen will appear
containing links to the three applets: Hospital Administration GUI, RIB
Properties GUI and Message Statistics GUI.

The login to the RIB Administration Tool will expire after the timeout set in the
gui.servlet.properties. The user will be forced to login again if idle for the time
set in this timeout property.

Hospital Administration GUI Applet

This applet contains the same functionality as the Hospital Administration
Application detailed earlier in this manual. The only difference is the lack of a
login window, since this login is derived from the main portal login.

See the help located in the Applet or Chapter 7 for more information about how
to run this applet.

100 Retek Integration Bus

Message Statistics GUI Applet

This applet contains the same functionality of the RibTimings detailed in Chapter
16, but is now available in a GUI format. On loading of the applet, a window
will appear with the following fields:

Filename: The default path and filename set in the gui.properties will appear
here if they have been set. Otherwise, enter the full path to the timings log file
located on the application server.

Status: Select the status of the statistics to display. All selects all the statistics
available in the timings log file.

Interval: Enter the interval of time in seconds to create a bucket of timings. The
RibTimings will group timings into a bucket to gather statistics. The default is
3600.

Start time: Enter the timestamp time in which the RibTimings should begin
gathering statistics. The timings will not be gathered for any timestamp that is
before the time entered in this field.

End time: This is not available unless a start time has been entered. The
RibTimings will stop processing timings if it encounters any timestamp after the
end time entered in this field.

Help Menu: This will display help on how to run the applet.

The main Statistics window will appear after selecting the Ok button. There are
three areas to the main Statistics window: the message type list, the time period
list and the statistics table. Select a message type from the list, and the time
period list will display the time periods available for that message type. Once a
time period is selected, the statistics table will display the corresponding
statistics.

See the Help menu in the Message Statistics GUI Applet or Chapter 16 for more
information on how to run this applet.

Chapter 8 — RIB Administration Tool 101

RIB Properties Editor

The RIB Properties Editor is a file editor that can be used for editing a file on a
server using FTP. The file is copied to a local directory on the application server,
and on save is copied back to the original server using FTP. A backup of the old
file is created when the changes are saved.

This applet contains two windows: a Connection Window and a Main Menu.
Connection Window

The FTP connection information is entered on this window. The window
appears on startup of the applet and by selecting

Open from the Main Menu. The following information must be entered:
File Name: The full path to the file on the server.

Server Name: The name of the server for the FTP Connection.

FTP User Name: The username for the FTP Connection.

FTP Password: The password for the FTP Connection.

Main Menu

This window contains the main actions for downloading and uploading a new
RIB Properties file. The actions available are:

Open: Displays the connection window for retrieving the file.

Save: Saves the changes to the file back to the server. Displays a dialog in
which a backup file extension can be entered, the default is displayed based on
the gui.properties value.

Cancel: Cancels changes to the file. A dialog is displayed to verify that all
changes should be discarded.

Exit: Exits from the applet.

Files and classes contained in the war file

Classes:

com.retek.rib.gui.AppletCoder: used for encoding and decoding information
sent from applets to servlets

com.retek.rib.gui.HospitalUIApplet: main Hospital Administration class,
contains all applet GUI code

com.retek.rib.gui.HospitalUIHelper: Hospital Administration class, contains
calls to servlet

com.retek.rib.gui.PropertiesUl: main RIB Properties Editor class, contains all
applet GUI Code

com.retek.rib.gui.PropsHelper: RIB Properties Editor class, contains calls to
servlet

com.retek.rib.gui.StatisticsUI: main Message Statistics class, contains all
applet GUI code

102 Retek Integration Bus

com.retek.rib.gui.StatsDBHelper: Message Statistics class, contains
TableModel implementation

com.retek.rib.gui.StatsHelper: Message Statistics class, contains calls to
servlet

com.retek.rib.gui.TableMap and com.retek.rib.gui.TableSorter: classes used
for TableModel implementation for both applets

com.retek.rib.gui.DBConnection: used by index.jsp to test authentication with
main RIB Administration login

com.retek.rib.gui.HospitalUIDBHelper: Hospital Administration class,
contains TableModel implementation and command calls

com.retek.rib.gui.HospitalUIServlet: Hospital Administration servlet class
com.retek.rib.gui.PropertiesServlet: RIB Properties Editor servlet class
com.retek.rib.gui.TimingsServlet: Message Statistics servlet class

Otbher files:

js/apps.js: javascript file for RIB Administration index page

taglibs/gui.tld: tag library for RIB Administration index page
WEB-INF/lib/classes12.jar: contains Oracle Database Driver

WEB-INF/lib/retek-rib-support.jar: contains base code for Hospital
Administration and Message Statistics functionality

WEB-INF/lib/retek-sbyn.jar: contains base code for Hospital Administration

WEB-INF/lib/etdRibMessages.jar: contains base code for Hospital
Administration

WEB-INF/lib/stcjs.jar: contains base code for Hospital Administration
WEB-INF/web.XML: contains servlet mappings and session defaults

WEB-INF/classes/gui.servlet.properties and gui.properties: properties files
used by RIB Administration Tool and applets

WEB-INF/classes/rib.properties: properties file used for Hospital
Administration

HospitalUIHelp.html, StatisticsHelp.html and PropertiesUIHelp.html: help
files for the applets, displayed by selecting Contents from the applet’s Help
Menu.

errorpage.jsp: error page for RIB Adminstration index and login pages
index.jsp: main index page for RIB Administration
login.jsp: main login page for RIB Administration

HospitalUI _en_US.properties, PropertiesUl_en_US.properties and
StatisticsUI_en_US.properties: properties files containing GUI text for
internationalization purposes

Chapter 9 — Message Statistics Command Line Utility 103

Chapter 9 — Message Statistics Command Line
Utility

Overview

The Retek Integration Bus (RIB) logs set of timing entries whenever it creates,
transform, routes, filters, or subscribes to messages on the RIB. These time
entries are then post-processed by some other means to roll-up the data. This
method was deployed to create a standard set of classes to perform this rollup and
to create an internal summary storage of rolled up statistics. The displaying of the
rolled up information is done via writing to the timings file or via message
publication collaboration. You can then use this information to determine if the
system is functioning correctly or if an application problem exists.

The same classes are used for this implementation as in the Administrative GUI
applet.

Requirement

The following classes need to be deployed in order to gather the timings
statistics. BucketSet.java, BucketTimingsMain.java, ProcessTimingsLog.java,
RibFileLogger, RibTimings.java, StatsBucket.java, TimestampType.java,
TimingsBucket.java, TimingsLog.java and TimingsType.java.

Description of the classes:

The BucketSet contains a set of TimingsBuckets for a specific period of time.
Each TimingsBucket contains a statistical rollup of timings for a specific Timing
Type, Message Family, Message Type, and Processing Status combination. For
some processing statuses, the Message Family and Message Type may be null.
Additional BucketSet objects may be derived from an initial BucketSet object
that contain some subset filetered by Timing Type, Message Family, Message
Type and Processing Status. This class should be the interface to create or
retrieve a specific bucket based on a combination of the identification fields —
BucketSet Name, threshold, timings interval length, interval number.

A StatsBucket object is the holder of statistical information. From a StatsBucket,
you can retrieve the average interval time, the standard deviation (n-1), the
minimum time, the maximum time, the number of times the time is above a
certain threshold value, the threshold value used (a constructor parameter), and
the average value that exceeded the threshold. Every call to the
StatsBucket.update() method results in these updated statistics.

A TimingsBucket object is a StatsBucket associated with a TimingType,
Message Family, Message Type, and Processing Status. Multiple
TimingsBuckets can be rolled up into a single StatsBucket.

The TimingsLog class is designed to read a file containing time stamp log entries
and create a bucket array from the data. You can then manipulate or display this
data as needed.

104 Retek Integration Bus

The RibTimings class is a wrapper around all the Timings Statistics class to
produce a report through a User Interface.

Prerequisites to run the Timings Statistics:

The rib.properties should have all the properties defined for the e*Ways to get
the timings statistics. The command line arguments to run the RibTimings and
BucketTimingsMain class is:

java RibTimings filename status [CSV] [internal [time | all]]
java BucketTimingsMain filename status [internal [time | all]]
Where status is SUCCESS, FAILURE or ALL (case insensitive),
Interval is seconds for each report,

Time is in the form HH: MI: SS and only the interval containing the time is
reported.

Note that the retek-rib-support.jar should have all the Timings statistics class
within it. The retek-rib-support.jar should be placed to the correct CLASSPATH.
Usage: java —cp —classpath < retek-rib-support.jar>

b 0 0 OI | €970 | €ST0| 89€€6T | 1SL'89T | €6000°0 | SL89T°0 | 0001 | AVITIOD NI TVLOL 4NS
b 0 0 0l | ¥20°0 | LOOO | +0¥LOO ¢S'8 | S0000°0 | S¥800°0 | 0001 HNNSNOD Y414V dNs
b 0 0 0l | 6090 | €€1°0 | #1090°CC | TIT9%1 | ¥8000°0 | T19¥1°0 | 0001 JINNSNOD NI dNs
6 0 0 01 | $9C°0 | 600°0 | €CCITO | SO¥'IT | 62000°0 Y1100 | 0001 JINNSNOD +d dNs
6 0 0 0L | #SS°0 | 190°0 | ¥T88I'L | TLL'8L | 660000 | S88LO0 666 | AV1I10D NAdMLAd dNs

BAay wng jJuno)n

Ploysaiyl | pjoysailyl | pjoysaiyl wng wns AdQ
13A0 13AQ 13A0 ploysaiyl | Xxe|N | Uln | gvewil awi] alLs | ebesaay | 3uno) Bujwi

18 Aunn sur] puewwo) sansijels abessap — 6 493deyd

6£:97°€T 01 00:00:00 POLIdJ Y} 10§ sFurwiL |,
00t+8 SSHODNS STurun SIAYO,LIUTAIINYMI

:unu st 3odar sonsnels s3urwr], uaym 9q o3 sreadde indino oy) moy

Chapter 10 — Multi-Thread feature for the e*Ways 87

Chapter 10 — Multi-Thread feature for the e*Ways
What is a Thread?

A thread (sometimes called an execution context or a lightweight process) is a
single sequential flow of control within a program. The threads are used to isolate
tasks.

Amdahl's Law

Assuming that an application is multithreaded (programs written to execute in a
parallel manner, rather than a serial or purely sequential one), there are inherent
difficulties in making a program run faster proportional to the number of
processors: the program needs to be written in a parallel fashion, and the program
itself must be resource friendly.

Amdahl’s Law explains this: "...the performance improvement to be gained from
using some faster mode of execution is limited by the fraction of the time the
faster mode can be used.” This law applies to more than just changing sequential
code to parallel code.

Assume that a program consists of two main parts, A and B, and that each can be
optimized. Part A represents 90% of the execution time, and B represents the
remaining 10%. Assume that B can be optimized in such a fashion so as to be
able to finish in one tenth the time of the original version, and that A can be
optimized so as to complete its part of the program in 2/3 the time it previously
needed. If both parts A and B take the same amount of time to be optimized, and
the programmer has time only to optimize one part, which should the
programmer work on? Obviously, he/she should work on part A.

Assume that this program requires 100 seconds to complete. Part A consumes 90
seconds of execution time, and B requires 10 seconds of execution time. After
optimization Part A would take 60 seconds, and B a mere 1 second. The choice is
between a total of 70 seconds of execution time if A is optimized, and 91 seconds
if B is optimized.

108 Retek Integration Bus

Multi-threaded feature for Subscriber, TAFR and Publisher:

What are the situations where multi-threading can help?

Multi-thread can be a valuable tool to increase performance, but it does not help
in every situation. First and foremost, there is some overhead associated with
multi-threading. Therefore, multi-threading should not be used unless a
performance problem exists. If you have an e*Way that is processing only
several messages per minute, this would probably not be a good candidate for
multi-threading. This is because you would be increasing the overhead on the
server, but you would not get any benefit from that increased overhead. A good
candidate for multi-threading would be an e*Way that continually receives a
stream of multiple messages per second, or that receives bursts of many
messages within a short period of time. One example might be an e*Way that
receives real-time updates from time to time, and also receives periodic batch
updates consisting of a large number of updates.

Multi-threading still may not help the above situation unless the server has
multiple processors to share the load. If the machines has only a single processor,
the additional overhead associated with switching between multiple threads may
actual slow the processing of messages down. If the threads can be doled out to
separate processors, that is where performance can really be enhanced.

When multi-threading is used, it should be used across all the e*Ways that
process messages for a message family. That would include publisher,
subscriber, and TAFR e*Ways. It would not be helpful to have a publisher
sending messages very quickly and efficiently, but if the subscriber can process
them only so fast, the bottleneck will exist in the subscriber e*Ways.

The Subscribing, TAFR and Publishing e*Ways provides the multi-threading
features together with the Publishing e*Way. In order to incorporate this feature,
there is a certain step that needs to be followed. The following classes cater the
multi-thread features for the e*ways -HospitalController.java,
HospitalRetryController.java, RibCollabController.java, RibProperties.java, and
MultiThreadUtil.java.

Go to the SeeBeyond e*Gate Enterprise Manager -> select the e*Way which
needs to run the Multi-thread feature and copy the collaboration and paste the
number of times it needs to be multi-threaded. Rename the collaboration so that
the e*Way has unique identification of the multi-thread collaboration. If there is
4 Publishing e*Ways with multi-thread features, then there should be 4
Subscribing e*Ways and as a result, there should be no thread number greater
than 4.

Chapter 10 — Multi-Thread feature for the e*Ways 87

The Retry feature has been enhanced with the Multi-thread features. The
rib.properties file needs to have the following entries:

a In the multi-threading properties section, there should be an entry for each
family name and total number of threads implemented, e.g.

Mfm.messageFamilyName.total threads=n
mfm.Alloc.total threads=4
mfm.Alloc.colAllocFromRMS 1.thread num=1
mfm.Alloc.colAllocFromRMS_2.thread num=2
mfm.Alloc.colAllocFromRMS 3.thread num=3
mfm.Alloc.colAllocFromRMS 4.thread num=4

When a multi-threaded e*Way comes online, the system will check this
value for each individual collaboration as it comes online. As the
collaboration comes online, the system keeps track of how many have come
online so far. If the number specified in the rib.properties entry is exceeded, a
runtime exception will occur.

b The e*Way specific logging level verbose should be set to ‘Y’ for the e*Way
which needs to be run for the multi-thread feature, e.g.
log.ewAllocFromRMS.verbose=Y

All collaboration have different database connection settings for the
HospitalRetry. If one decides to have multi-thread based queues, we suggest
you set-up hospital retry queues. Each application should have its own
collaboration in the hospital e*Way — ewHospitalRetry.

¢ The next step is the replication of the publishing and subscribing event types.
Assume our original event type is named, “etTestMessageType”. Since our
total threads is four, we want to make three copies and then rename them. As
mentioned above, there are naming conventions that you need to follow.
Each event type needs to have to end with an underscore and a unique digit.
In this case, we will name the event types, “etTestMessageType 17,
“etTestMessageType 27, “etTestMessageType 37, and
“etTestMessageType 4”. It has to end with an underscore and a sequence of
digits.

d Next, replicate the collaborations for the respective subscribing and
publishing e*Ways. Before we do this, though, we should go into our
original collaboration and verify that the publishing event type has been

automatically renamed as the new name for our original event type. For
example, it should be as follows;

Event Type Corresponding Collaboration
etTestMessageType 1 colTestSubCollaboration 1
etTestMessageType 2 colTestSubCollaboration 2
etTestMessageType 3 colTestSubCollaboration 3

etTestMessageType 4 colTestSubCollaboration 4

110 Retek Integration Bus

In renaming all the event types and corresponding collaboration, the system
automatically publishes events to the correct topics.

If you created a new connection point and selected the properties with
e*Way Connection Type as ‘SeeBeyond JMS’, the “New” button is enabled
for the ‘e*Way Connection Configuration File’. After pressing the “New”
button, it displays two options. Selecting the “Internal: Connect to JMS IQ
Mgr within this schema” and JMS IQ Manager as ‘iqmJMS’, it sets the
configuration file. Click the ‘Edit’ button and go to the ‘Goto Section’ for
‘General Settings’ and select the ‘Goto Parameter’ for ‘Message Selector’.
You need to add within this "Message Selector’ like ‘Thread Value=1’. This
message selector is used for subscription. The Java class programs cater this
piece of information and as a result, this feature does not need to be set in the
connection point of SeeBeyond e*Gate Enterprise Manager.

Before ‘Start’ of any e*Ways to run the multi-thread feature, log onto
SeeBeyond e*Gate Monitor for the respective schema, then click the ‘Launch
JMS Administrator’ button to open the ‘JMS Administrator’ window. On
expanding the ‘igqmJMS’ option, the ‘Topics’ would be displayed. Select the
event type that needs to be run for the multi-thread feature and check out
whether any collaboration for the subscriber is associated with the event
type. Delete any collaboration to the subscriber by selecting the
collaboration. Press the right-mouse-button and select ‘Delete Subscriber’.
Once this process is completed, start the e*Ways from the e*Gate Monitor
and run the multi-thread feature.

The RIB. MESSAGE table has thread value field, which collects the multi-
thread information. The MultiThreadUtil class has the NumThreads and
ThreadValue properties defined for Multi-threading.

Chapter 11 — Troubleshooting 87

Chapter 11 — Troubleshooting
SeeBeyond Platform

This section lists a general approach to troubleshooting problems.

If a problem persists, information can be obtained by turning on e*Way logging
and tracing. For information on this, see the Error, Trace, Debug Log Files
section of Chapter 5.

Problems starting a RIB component

A RIB adapter may not start or can terminate soon after it has started. There are
two possible sources of this problem: incorrect configurations and environment
problems.

Incorrect configurations

Many problems can arise that involve improper or incorrect configuration file or
properties:

e Connection Point Names: If a Connection Point is renamed or deleted, then
any collaboration that references it will have errors and will not be able to
process data.

e Oracle Connection Point User Names and Passwords: Incorrect
specification of the Database Server, System ID (SID), User Name or User
password will result in errors for all adapters using the connection point.
Note that the user password is stored as an encrypted string.

e JMS Connection Point TCP/IP Address: JMS Connection Ports must
specify the correct TCP port number and IP address or host name. A
common problem that may occur when migrating a schema from one
environment (such as a development environment) to another (such as a test
environment) is that these are not changed. The configuration files for this
contain ASCII characters. Retek recommends creating scripts to modify
these values when migrating the RIB between development, test, and
production environments.

112 Retek Integration Bus

Environment problems

Some problems starting adapters are the result of environment or system errors.

e Registry or Control Broker not started: The SeeBeyond EAI system does
not automatically start up the host registry daemon or any of the control
brokers found within a schema. For Unix Systems, these must be started via
a startup script, typically upon system boot. On Microsoft Windows
systems, these are typically installed as services and should be started
automatically. There must be one control broker per host per schema found
in the registry.

e JMS IQ Manager NOT started: The RIB adapters that use a JMS
Connection Point require that the JMS 1Q Manager be up and running before
any adapter can access it.

e XA Transaction Logs deleted: Never delete the XA transaction logs or you
risk losing data on the JMS queues, losing data associated with prepared
transactions in Oracle, or having many other problems. Oracle prepared
transaction IDs can be found in the DBA 2PC_PENDING view. SeeBeyond
transaction logs are found beneath the directory <EHOME>/client/XALogs.

e XA Not installed in Oracle: An adapter can have problems starting if the
XA package and libraries are not installed in the Oracle database.

e JMS IQ Manager Directory specified via a relative pathname: This
becomes a problem if the control broker is started from a different directory
than usual. As a rule, always use a fully qualified directory name.

e Multiple Duplicate Control Brokers: On Unix systems, the stccb command
must be executed once per control broker. If multiple identical stccb
commands are issued, components chaos may ensue. The Unix command
“ps —ef | grep stccb” lists running stceb processes. Use the “kill” command
to bring down the extra stccb process

Invalid JMS selectors

In order to insure exactly once processing, RIB adapters use JMS Selectors to
filter out messages that are specific to a single subscriber when multiple
subscribers go against the same JMS Topic. The selector will insure that only the
correct subscriber will get a message re-posted from an Error Hospital. In a
multi-threaded environment, selectors are used to insure that each subscribing
thread receives the correct stream of messages when sharing a JMS topic.

In order to simplify configuration, the selector is determined programmatically at
startup. Unfortunately, when a JMS server is booted, SeeBeyond dynamically
checks its registry for the JMS selector used by e*Way connection points.
Under most circumstances, these JMS durable subscribers are re-created with
empty or blank selectors. At this time, Retek is working with SeeBeyond to
change this behavior.

A RIB Properties file property, default.MessageSelectorCheck, determines
whether the e*Ways should check if the correct selector is in place. If set to true,
the following is performed when the e*Way is started:

Chapter 11 — Troubleshooting 87

1 During the call to userlnitialize(), the e*Way examines the JMS Topic it
subscribes to.

2 The e*Way verifies its Durable Subscriber contains the correct selector. If
the selector is missing or incorrect and there are no messages queued for
the subscriber, the Durable Subscriber is re-created with the correct JIMS
Selector.

3 If messages are queued on the JMS Topic for invalid durable subscriber, the
e*Way is shut down and an error logged to the e*Ways RIB Log file.

If an e*Way is shutdown due to an invalid selector, the following process can
fix the situation:

a Shut down any message publishers for the messages handled by the
TAFR or subscribing adaptor.

b Edit the rib.properties file, change default.MessageSelectorCheck from
“true” to “false”.

Bring up the e*Way and wait for it to process all messages on the topic.

d Bring down the e*Way. Change default.MessageSelectorCheck back
to “true”.

e Bring up the e*Way again. The selector should now be valid.
To avoid this problem, always try to perform the following:
1 Always bring up message subscribers before message publishers.

2 If atall possible, always turn off messages publishers and wait for all
messages to drain before shutting down the JMS server.

Message processing problems

This section describes possible problems the RIB might occur processing
messages. It gives a brief description of the problem symptoms and suggested
actions.

No messages processed

Description: An adapter is not able to update the Error Hospital, publish new
messages, or successfully process messages from a queue if the XA package is
not installed and/or activated in the Oracle database. No messages leave the RIB
queue, since XA is required for inserting messages into the Error Hospital.

Action: Install the XA libraries and packages.

Publishing adapter hangs

Description: Some messages were published before, but now no messages can
be published at all. The publishing e*Way hangs whenever it tries to send a
message to the JMS queue.

114 Retek Integration Bus

Action: The JMS queue may be full. This could be due to problems with
subscribing e*Ways. For example, the database the subscriber is connected to
does not have the Oracle XA libraries installed. Check to make sure that
subscribers can be started successfully and, if possible, have no errors processing
messages.

This problem can also be caused by an e*Way that is designed to connect to an
application that is not installed. Messages remain in the JMS queue for all
adapters it believes will, in some future time, pull off messages. The standard
RIB schema contains all adapters for all Retek applications. Delete any e*Way
that is not brought up as part of your version of the RIB schema.

XA lock(s) cause problems with one or more messages

Description: Database locks are normally held within a 2-phase commit
operation transaction until the second phase has started or a rollback is issued. If
a system failure has occurred between the end of the first phase and the
beginning of the second phase, then these locks are held forever, unless
administrative actions are taken.

The following Oracle message may appear in the logs when this occurs:

ORA-01591: lock held by in-doubt distributed transaction
<XID>

where <XID> is a string of three numbers separated by periods (such as 1.21.17).

Action: If possible, fix the problem and display the e*Way associated with the
transaction. The e*Way recovery process should complete the transaction and
remove the lock. If this cannot occur, evaluate whether the transaction should be
committed or rolled back administratively.

The following procedure commits the Oracle part of a transaction:

Note: This process risks a “Heuristically Mixed” transaction status: the Oracle
work in a transaction committed, but the SeeBeyond work rolled back. Careful
analysis should always be performed before attempting to perform this
procedure.

1 Determine the Global Transaction ID (XID) of the transaction to be
committed. All prepared transactions will have an entry in the
DBA 2PC PENDING view. With SeeBeyond e*Gate, the XID is a string of
three period-separated numbers (such as 123.45.890). This view requires
administrator privileges to access its contents.

2 Issue the following SQL, using a facility such as SQLPLUS:
COMMIT FORCE ‘<XID>' ;

where <XID> is the XID of the transaction. Successful execution of this
command requires administrator privileges that are not granted to most users.

3 Or, commit the work using the following SQL:
ROLLBACK FORCE ‘<XID>'

This has the same condition as forcing a commit. That is, the Oracle work
rolled back and the SeeBeyond work committed.

Chapter 11 — Troubleshooting 87

User defined alerts are displayed

Description: The e*Gate Monitor reports many “User Defined Alerts”. This
results from trying messages in the Error Hospital too many times.

Action: If possible, determine the root cause. These messages may be going into
the Error Hospital due to a field value found in the publisher but not found in the
subscriber. Examine the messages in the error hospital and check to see what the
error is. If nothing is apparent, turn on trace logging in the e*Way and look at
the log file for more information. These alerts might also be due cross message
family dependencies, so verify that all appropriate publishing and subscribing
adapters are up and running.

Once the problem has been fixed, increase the Max attempts for all of the
messages in the error hospital so that they will be republished. Otherwise, the
data contained in these messages will never be processed again. Furthermore,
any subsequent messages referencing the same business entity (such as the same
Purchase Order) will be held in the Error Hospital as well.

Messages not getting to the correct subscriber

Description: The TAFR routing functionality appears to be malfunctioning.
Messages go to the wrong subscriber.

Action: Examine the rib.properties file used. Verify that lines exist in this file
for all locations and that the translation of the <facility type>.<facility code> is
correct.

TAFR not processing any messages
Description: The TAFR is not processing any messages.

Action: Examine the rib.properties file used. Verify that lines exist in this file
for all locations and that the translation of the <facility type>.<facility code> is
correct. Using the e*Gate Monitor application, verify that the JMS server (the
JMS IQ Manager) used as the destination for the messages is running. Look for
any alerts published from the TAFR adapter.

Shutdown problems

An adapter or IQ Manager will not shutdown unless it is between messages.
Once a shutdown command has been accepted by a component, it will not accept
new work. However, existing messages will still be processed.

In rare circumstances, it may be necessary to manually “kill” an adapter because
a message processing thread is held due to a database lock or other resource
contention conflict. If this occurs, you can kill the process using the Unix “kill”
command or, for Microsoft Windows platforms, the task manager.

Note: If the RIB Installation Instructions were followed, a “plist” script will exist
in the SEHOME directory which displays all current processes.

Because of the distributed nature of the e*Gate platform, manually issuing kill
commands for the control broker process (stccb) is not recommended unless all
attempts to shutdown the control broker using the e*Gate Monitor application
has failed.

116 Retek Integration Bus

Hospital admin GUI and command line utility

There are two types of problems using the Hospital admin GUI or command line
interface: Java class instantiation problems and Database connection problems.

Java class instantiation problems

Most Java class instantiation problems involve the inability to create a java class
because it doesn’t know where the class definition is. Typically, an incorrect
CLASSPATH environment variable is the cause. The scripts hospital,
querymsg, readmsg, deletemsq, updatemsq, and stopmsg all source the
hospital-admin.env file to set the correct class path. This file assumes that
the directory <EHOME>/client/classes exists and contains the required JAR files.
However, there are some circumstances where needed jar files do not exist here.
The main scenario where this can occur is before any RIB e*Way has been
started that requires the specific JAR file. Listed below are some JAR and ZIP
files needed, and alternative locations:

xalan.jar — needed for reading message contents. The JAR file contains the
definition of the class org/’XML/sax/ContentHandler. This JAR file can
also be found in the “server” directory of the e*Gate installation:
<EHOME>/server/registry/repository/default/ThirdParty/RSA/certj 2.0.1/cla
sses/xalan.jar

classes12.zip — needed for the JDBC driver to connect to the Oracle9i
database. This file is normally found in
<EHOME>/client/ThirdParty/oracle/classes/classes12.zip. It may also be
downloaded from the Oracle Technology Network website. See
http://otn.oracle.com/software/content.html for more details.

retek-rib-support.jar

etdRibMessageEnvelope.jar

stcjes.jar — these JAR files are used by the Error Hospital should be in
<EHOME>/client/ directory tree. Alternate copies of these files are found in
the <EHOME>/server/repository directory tree.

Chapter 11 — Troubleshooting 87

Database connection problems

An inability to connect to the database may be due to a missing JDBC driver
code. The file classes12.zip should be present in the CLASSPATH and exist on
the local machine where the utility executes.

Other possible connection problems include:

e Bad username/password/SID specification in the hospital-
admin.properties file or a missing hospital-admin.properties file.

e A connection will not be made if using a PC to execute the utility that is
located outside of a firewall that is not configured to accept connections to
the database.

J2EE Platform

This section lists a general approach to troubleshooting problems using
WebSphere as the application server.

Available tools
The following are available for assisting with troubleshooting:
» SeeBeyond IMS Administrator
= SeeBeyond e*Way log files
= RIB Log files
= WebSphere server log files

Messages not getting consumed by application

Once messages are published to the RIB, and have made it through the
appropriate TAFR e*Way, they should be immediately picked up by the
WebSphere Application Server (Message-Driven Beans). If not, either there is
an incorrect JMS configuration, or WebSphere’s Message Listener Ports have
lost connection to the SeeBeyond managed JMS queue.

118 Retek Integration Bus

Incorrect configurations

Within WebSphere, there are three things that must be correctly configured in
order for messages to be consumed by the Message-Driven beans:

o File System JNDI/Context file: In the .../WebSphere/sbynjndi directory,
there is a hidden file named .bindings. This file contains the actual
serialized SeeBeyond JMS Objects. If this file doesn’t exist or was created
with a different JMS hostname/port combination, the Generic JMS Provider
configuration will be invalid. Refer to the RCOM installation guide on how
to create this file.

e Generic JMS Provider: If the JMS Connection Factory and Destinations are
not properly configured, the listener ports will not be able to start.

e Message Listener Ports: Each Message Listener Port must be correctly
configured with a valid Connection Factory and Destination. These are
configured in the Generic JMS Provider area.

Lost connection to JMS

The following, would cause WebSphere to not “listen” to JMS:

= SeeBeyond’s JMS Queue was not running when the Application Server was
started, the Message Listener Ports would not be connected.

o IfSeeBeyond’s JMS Queue should happen to be stopped after the Message
Listener Ports have successfully started.

In either case, the Application Server will have to be restarted after ensuring that
SeeBeyond’s JMS queue running.

Messages not getting published from application

Published messages should go directly into SeeBeyond JMS to be consumed by
other e¥*Ways. The WebSphere server log file and the SeeBeyond JMS
Administrator are the two tools to use for troubleshooting publishing messages
from a J2EE application.

Incorrect configurations

Within WebSphere, there is one thing that must be correctly configured in order
for messages to be published by the Publisher beans:

¢ File System JNDI/Context file: In the .../WebSphere/sbynjndi directory,
there is a hidden file named .bindings. This file contains the actual
serialized SeeBeyond JMS Objects. If this file doesn’t exist or was created
with a different JMS hostname/port combination, the Generic JMS Provider
configuration will be invalid. Refer to the RCOM installation guide on how
to create this file.

Chapter 11 — Troubleshooting 87

JMS Provider down

SeeBeyond’s JMS queue must be running for the Publisher EJB to be able to
publish messages. If this is not the case, ensure the JMS queue is running and try
to publish again.

ISO Platform

There are several log files that are important to troubleshooting the Rib ISO
integration module. All of the log files mentioned below will be found in the
standard ISO “log” directory.

On the Windows operating system the log files are found in the directory

<install dir>\chelsea\serverWdws\retek\sim\log

On the Unix operating system the log files are found in the directory
<install dir>/chelsea/serverUnix/retek/sim/log

In both cases, <install_dir> is the directory the ISO application has been installed
into.

The first, and most important log files, are the files that are specific to each
individual API, whether publishing or subscribing. By default, their names are
<RibMessageFamily>messagingcomponent.log (all lowercase) for subscribers,
and <RibMessageFamily>publisher.log (all lower case) for the publishers.

Examples of a publisher and a subscriber are:
asnoutpublisher.log

asnoutmessagingcomponent.log

In addition to these log files, there are two log files pertaining to the entire RIB
container. These are the RIBContainer nnnnn.out, and the

RIBContainer nnnnn.err files. Any messages written by either the ISO
application, or the Rib integration module, to standard out go to the
“RIBContainer nnnnn.out” file, while messages written to standard error go to
“RIBContainer nnnnn.err”. Most messages, however, will go to the individual
log files for the publishers and subscribers. If you do not find the detailed
information you are looking for in the individual publisher or subscriber log file,
you might be able to find it in one of these two files.

120 Retek Integration Bus

When troubleshooting using the log files, here are some of the things to look for,
as well as some potential solutions:

Exception Class Name

Exception Message

Possible Solution

org.xml.sax.SAXException

Parsing Error : File
"http://www.retek.com/
dtd/rib/DiffDesc.dtd” not
found.

There are two potential solutions to
this error. The first is to correct the
data in the rib_doctypes database
table in the RMS database. This
solution is valid only if there is a row
in the table whose value in the
doc_name column matches the dtd
document name. In this example the
document name is, “DiffDesc.dtd”.
In the case where we do have a
matching row, the problem is most
likely that the doc_type url column
has an invalid url. It must consist of
an http server and port number that
points to a directory containing the
dtd document.

The second potential solution is that,
if there is not a matching record in
the rib_doctypes table, the entry for
the default DTD URL in the
rib.properties file is missing, or
invalid. Keep in mind that we are
talking about the rib.properties file
for the RMS publisher, not the Rib
ISO integration. The property name
for the default DTD URL is,
“dtd_url.default”. Again, the value
must consist of an http server and
port number that points to a directory
containing the DTD document.

An example of an entry for the DTD
URL in the rib.properties file is:

http://hostname:8100/dtd/

com.retek.binding.rib.exception.
ApplicationMessagelnjectionExceptio
n

“CREATE_FAILED”,
“MODIFY_FAILED”, or
“DELETE FAILED”

There was a problem in the ISO
application. The
ApplicationMessagelnjection
Exception class can contain a nested
exception. Most likely this nested
exception will be a
java.sql.SQLException. Ifitis, it
will likely indicate a null constraint
violation, integrity constraint
violation, or unique constraint
violation.

Chapter 11 — Troubleshooting 87

Exception Class Name Exception Message Possible Solution
com.retek.binding.rib.exception. COMMAND _ The injector.properties file is not on
RIBIntegrationException FACTORY UNABLE the application’s class path. Check

TO_READ_INJECTOR_ | the rns.sh, node rns.sh, and node.sh
PROPERTY FILE on Unix, or rns.bat, node rns.bat,

and node.bat on Windows. Check
these files for the class path set in
them to make sure the directory, in
which the injector.properties file is
located, is in the class path.
Alternatively, put the
inject.properties file into a directory
that is on the class path.

com.retek.binding.rib.exception. COMMAND Either the payload.properties, or

RIBIntegrationException FACTORY _UNABLE binding.properties file is not on the
TO READ application’s class path. Check the
PAYLOAD OR rns.sh, node rns.sh, and node.sh on
BINDING _ Unix, or rns.bat, node rns.bat, and
PROPERTY_FILES node.bat on Windows. Check these

files for the classpath set in them to
make sure the directory, in which the
payload.properties or
binding.properties file is located, is
in the classpath. Alternatively, put
the properties file into a directory
that is on the classpath.

com.retek.binding.rib.exception. COMMAND _ The injector.properties file does not

RIBIntegrationException FACTORY CANNOT contain an entry whose property
INSTANTIATE _ name matches the Rib message
INJECTOR family and Rib message type key,

extracted from the Rib message
itself. Either the XML for the Rib
message does not have the
appropriate family and/or type, or
the injector.properties file is missing
an entry for the family and type. See
the section, “Retek Binding
Configuration Files” under “Chapter
4 — Configuration Files”.

122 Retek Integration Bus

Exception Class Name

Exception Message

Possible Solution

RIBIntegrationException

com.retek.binding.rib.exception.

COMMAND _
FACTORY _CANNOT _
INSTANTIATE
PAYLOAD

The payload.properties file does not
contain an entry whose property
name matches the Rib message
family and Rib message type key,
extracted from the Rib message
itself. Either the XML for the Rib
message does not have the
appropriate family and/or type, or
the payload.properties file is missing
an entry for the family and type. See
the section, “Retek Binding
Configuration Files” under “Chapter
4 — Configuration Files”.

RIBIntegrationException

com.retek.binding.rib.exception.

UNMARSHALING _
ERROR

There is either something wrong
with the XML that is being
unmarshalled into the payload
object, or the payload object is out of
date with respect to the DTD and
XML schema, from which the
payload object was generated.

	Contents
	Chapter 1 – RIB component overview
	Introduction
	SeeBeyond components
	Active messaging
	Monitoring

	Retek supplied components
	Additional resources

	Chapter 2 – RIB component operations
	Simple message flow
	Message routing
	Component failures
	Application trigger failures
	SeeBeyond Publishing adapter failures
	SeeBeyond deployed TAFR adapter failures
	SeeBeyond deployed Subscribing adapter failures

	Deployment architecture considerations
	Retek schema integrity on the SeeBeyond Platform
	Disk space analysis
	Intelligent queue managers
	Performance motivated parallel processing

	Chapter 3 – Configuration files
	RIB Properties File
	RIB Logging and Timings File
	RIB Message bundling entries
	Multi-threading entries
	Error Hospital entries
	Global entries
	Implementation classes used
	SeeBeyond platform specific entries
	ISO platform specific entries
	Application specific entries

	Retek Binding configuration files
	Properties files
	XML files

	Chapter 4 – SeeBeyond Platform
	RIB startup and shutdown
	Sequencing considerations
	RIB message publishing adapters
	RIB message subscribing adapters
	TAFR adapters
	RIB error hospital

	Preventative maintenance tasks
	Log files
	MFM staging tables
	Error Hospital
	SeeBeyond tools

	RIB component configuration
	Oracle database triggers
	RIB property file
	SeeBeyond e*Way configuration files
	SeeBeyond connection point configurations
	TAFR adapter configuration

	Chapter 5 – Message error handling
	Error Hospital configuration parameters and properties
	Error Hospital activities
	Hospital GUI and command line utility set up
	Hospital Admin GUI script
	Error Hospital admin command line scripts
	Manually querying message information from Error Hospital

	Error Hospital log entries
	Create additional Error Hospitals

	Chapter 6 – J2EE Platforms
	RIB startup and shutdown
	Starting the RIB components
	Shutting Down RIB Components

	Preventative maintenance tasks
	Log Files

	RIB component configuration
	Configuration files
	Generic JMS Provider
	Message Listener Ports
	Data Source

	Chapter 7 – ISO Platform
	RIB startup and shutdown
	Preventative maintenance tasks
	Log files

	RIB component configuration
	XML files
	ISO Configuration (*.cfg) files
	Properties files

	Chapter 8 – RIB Administration Tool
	Overview
	Installation and configuration
	Accessing the RIB Administration Tool
	Main Portal Screen
	Hospital Administration GUI Applet
	Message Statistics GUI Applet
	RIB Properties Editor

	Files and classes contained in the war file

	Chapter 9 – Message Statistics Command Line Utility
	Overview
	Requirement
	Prerequisites to run the Timings Statistics:

	Chapter 10 – Multi-Thread feature for the e*Ways
	What is a Thread?
	Amdahl's Law
	Multi-threaded feature for Subscriber, TAFR and Publisher:

	Chapter 11 – Troubleshooting
	SeeBeyond Platform
	Problems starting a RIB component

	Invalid JMS selectors
	Message processing problems
	Shutdown problems
	Hospital admin GUI and command line utility

	J2EE Platform
	Available tools
	Messages not getting consumed by application
	Messages not getting published from application

	ISO Platform

