
Oracle Utilities Live Energy Connect
Configuring Oracle Utilities Live Energy Connect as
an OPC UA/ICCP Front End (IFE) to an OEM Appli-
cation
Release 7.1.0.0.0
F43262-01

May 2021

Oracle Utilities Live Energy Connect Configuring Oracle Utilities Live Energy Connect as an OPC UA/ICCP
Front End (IFE) to an OEM Application, Release 7.1.0.0.0

F43262-01

Copyright © 2021 Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or "commercial computer software documentation" pursuant to
the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government's use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe
use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software
or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and
the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

3

Contents
Preface ... 7
System Overview... 9

System Limits and Other Considerations ...10

LEC OPC UA Limits ...10

LEC Server Limits ..10

Subscriptions and Associations ...11

OPC Clients and Servers, LEC Server Instances, and Remote ICCP Peers..........................11

Blocks 1 and/or 2 Top Dataflow ...12

Blocks 1 and/or 2 Bottom Dataflow ..13

Block 4 (ConfirmedMessageFromOpcUa and ConfirmedMessageToIccp)13

Block 4 Subscription ..14

Block 5 Top Dataflow ...14

Block 5 Bottom Dataflow ..14

Configuration Setup, Startup, and Remote Batch Load .. 15
Generating and Staging Batch and Command Files ..15

Staging the IFE Configuration on a Development Machine ..15

Deploying the IFE Configuration ..15

Loading Batch Files ...16

Setting Security within a Batch File ..16

Provisioning a New System ... 17
Oracle LEC Server Requirements ...17

Updating an Existing System ... 17
Heartbeat Monitor.. 17
OPC UA Control Over ICCP Devices ... 17

Select Before Operate (SBO) and Direct Operate (DO) ...17

Commands and Setpoints ...18

LEC Flags for SBO and DO Controls ...18

Issue a Command or Set the Value of a Setpoint Using SBO ..19

Issue a Command or Set the Value of a Setpoint using DO ...22

Tagging ...24

Setting and Clearing Tags ...24

Subscribing to a Tag ..25

Redundancy ... 26
Master Control and Active/Passive Mode ... 27

Association Control Variables ..27

Alarm State .. 28
Setting the Stale Time Property and Association Flags ...29

4

#ConfigControlOut ...29

Determining Which ICCP Points LEC Server Sets in the Alarm State32

Secure OPC and ICCP ... 33
Secure OPC ..33

Setting Secure OPC Properties in an LEC IFE Instance ..34

Disabling Secure OPC in an LEC Server Instance ...35

Windows Certificate Stores ..36

Certificate Details and Requirements ...37

Secure ICCP ...38

Server Health ... 38
Mapping ICCP to OPC UA and Vice Versa .. 39

ICCP Service Modeling ...39

Default ICCP Mapping Exposed by a Local OPC UA Server ...40

ICCP/OPC UA Mapping for Data from Each ICCP Conformance Block40

Quality Bits in LEC Configuration Manager ..42

Mapping Quality Bit Values from ICCP to OPC UA Status Names and States for Block 1 Data
 ..43

Mapping OPC UA Status Names and States to ICCP Quality Bit Values for Block 1 Data45

Mapping of ICCP Measurement Data Types to OPC UA Data Types for Block 1 Data46

Mapping of ICCP Control and Tag Data Types to OPC Data Types for Block 5 Data47

Mapping between Returned ICCP Status Names and OPC UA Status Names for Block 5 Data
 ..48

Mapping between OPC UA Status Codes and ICCP Access Results for Block 5 Data49

Header Batch File Definitions .. 50
#IccpUaServerAgent ...50

#IccpUaClientAgent ...52

#Master Control ...53

#Heartbeat ..54

#HeartBeatFromApp ..54

#ConfigControlIn ...55

#ConfigControlOut ...56

VCC, VMD, Variables, and Node Batch File Definitions for AppTestA1 CSV 57
#sharemode ..58

#My_VCC ..58

#remote_vcc ..59

#CommonName ..60

#AssocInControl ..60

#AssocInControl ..60

5

#OutboundPeerName and #InboundPeerName ..61

#Blk1ToIccp...62

#Blk5FromIccp ..63

#ConfirmedBlk4ToIccp ..66

VCC, VMD, Variables, and Node Batch File Definitions for AppTestA2 CSV 68
#sharemode ..68

#ts_num ..68

#Blk4_buflen..69

#Blk4MessageRouter ..70

#Blk4FromIccp ..71

#Blk1FromIccp ..72

#Blk5ToIccp...74

Repeated Table Headers with Additional Points ..77

Initial Batch File that is Loaded Remotely .. 78
#DBCurrentlyLoaded ...78

Command Files ... 78
AppTestA1.txt ..78

AppTestARemove.txt ...79

AppTestARemoveAll.txt ...79

Fault Tracing with LEC Configuration Manager ... 79
Log Files ..80

Transport and Manager Levels ..81

Editing a Log File ...81

Examine Messages to and from a Remote Peer VMD ...82

Stop and Start the Live Log ...83

Delete Logs ...83

Roll Logs ...83

Refresh Logs ...84

Node Monitor ... 84
Network Monitor .. 84
LDIB Editor .. 85

LDIB File for LEC Server’s OCX ActiveX MMS Client Interface ...86

Gather Diagnostic Data ... 87
Glossary of System Components .. 88

Batch Files ..88

Heartbeats ...88

IFE (ICCP Front End) ..88

Local ICCP Client ..88

6

Local OPC UA Client ...88

Local OPC UA Server ..88

Network Manager SCADA/EMS ..88

OPC UA Client (OEM Applications) ...89

OPC UA Agent ..89

OPC UA Server (LEC) ...89

Telemetry Data ..90

OPC UA Tag ...90

ICCP Client (LEC) ...90

OPC UA Client (LEC) ..90

Connection ..91

Sessions ..91

Subscription...91

VCC ..91

VMD ..91

7

Preface
This guide is intended for those who would like to create an ICCP Front End (IFE) to an OPC
UA Client-Server configuration using the Oracle Utilities Live Energy Connect product. If you
need an IFE, you might want to familiarize yourself with ICCP before reading other parts of the
guide.

Note: The Oracle Utilities Live Energy Connect product was formerly known as the LiveData Utilities
RTI Server Platform.

This preface is designed to give some background information for those who have had little
exposure to the Inter-Control Center Communications Protocol (ICCP). ICCP is an international
standard which is known as International Electrotechnical Commission 60870-6
(IEC)/Telecontrol Application Service Element 2 (TASE.2). ICCP provides data exchange over
wide area networks (WANs) between utility control centers, utilities, power pools, regional
control centers, and non-utility generators.

ICCP exchanges data by using three different mechanisms: transfer sets/information reports,
writes, and event notification. The blocks of data are categorized into eight distinct types of data.
These eight distinct blocks are described in detail in ICCP Service Modeling.

LEC Server supports Blocks 1, 2, 4, 5, and 7.

Block 1 and 2

Provide for the transfer of measurement and state information from an ICCP server to an ICCP
client. Block 1 allows for the hosting of variables on the server, and Block 2 is for monitoring
changes to these variables. Blocks 1 and 2 are exchanged by the creation of a transfer set
composed of a collection of variables. The information in transfer sets is transferred to the client
by way of an information report.

Block 4

Provides for the transfer of a buffer of binary bytes from an ICCP server to an ICCP client.
Therefore, you can use Block 4 to pass any kind of data, numeric, text, or binary bytes;
however, in this application, Block 4 carries mostly informational text messages. Like Blocks 1
and 2, Block 4 uses the transfer set mechanism. In this IFE, customers use Block 4 to
encapsulate messages defined by a different protocol OPC UA.

Block 5

Provides for the writing of control information from an ICCP client to an ICCP server. Block 5
uses the write mechanism. It allows a remote ICCP client1 to control events at devices that are
connected to the ICCP server, such as switching an OEM’s OPC UA server device on or off.
Block 5 also supports setting, clearing, and getting tags. An OEM’s OPC UA client can set or

1 Remote ICCP client refers to a SCADA device that is not part of an OEM’s client-server application, nor does it
exist within the LEC Server instance.

https://en.wikipedia.org/wiki/Wide_area_network

8

clear a tag in the local OPC UA server2 by writing to the tag variable. Similarly, an OEM’s OPC
UA client can monitor a tag in the local OPC UA server by reading the tag variable.

Block 7

Reports completion status for a Block 5 device control. Block 7 does this by using the
mechanism of Event Notification.

2 Local OPC UA server refers to an OPC UA server within the LEC Server instance, also known as an IFE when it is
configured as an OPC UA/ICCP Front End.

9

System Overview
Oracle Utilities engineers can configure LEC Server as an ICCP front end (IFE) to OEM
applications, such as Distributed Energy Resource Management Systems (DERMS), Energy
Management Systems (EMS), for example, ABB’s Ability Network Manager EMS, Outage
Management Systems (OMS), and the Industrial Internet of Things (IIOT). Throughout this
guide, the OEM application is often referred to as “the application” or “an application.”

When Oracle Utilities LEC Server is configured as an IFE, LEC Server connects the application
to remote ICCP SCADA systems; this allows the application’s OPC UA client to read data from
and write data to remote ICCP points. LEC Server converts ICCP data and controls to be
compatible with OPC UA; conversely, LEC Server converts OPC UA data and controls to be
compatible with ICCP. OPC UA clients will be able to write controls to remote ICCP systems
that act upon devices in the field, find out whether the control directives were carried out
successfully, receive telemetry data from the remote systems, and subscribe to data that alerts
the OPC UA client of changes in the field. For each of the OEM’s OPC UA client-server
instances, there are one or more LEC Server instances that provide the OPC UA instances with
bidirectional communication to remote ICCP devices in different regions.

The OEM application hosts the OPC UA clients and servers. Figure 1 provides an overview of
how one OPC UA client and server instance within the SCADA system connects to many LEC
Server instances, and how each of these instances connects to many remote ICCP devices; this
illustrates how each LEC Server instance serves as a bridge between the OPC UA client-server
instance and the remote ICCP devices in each region.

Figure 1: OEM Application, LEC Server Instances, and Remote ICCP Systems in Three Different Regions

Both the OEM’s OPC UA client-server application and the LEC Server instances have
redundant servers at the Main Control Center so that if one instance fails, the system can fail
over to the redundant application on another machine.

10

System Limits and Other Considerations

LEC OPC UA Limits
The following are limitations of local OPC UA clients3, servers4, and subscriptions5 within an
LEC Server instance.

• Local OPC UA client supports up to 1024 DataValue/DeviceControl variables that
connect to the same application’s OPC UA server point. Each of these variables can
be seen as an alias for an OPC UA server point.

• The default maximum number of points per subscription allowed by the local OPC UA
agent is 10,000. However, this number is configurable within the OpcUaAgent
template in LEC Configuration Manager or by setting the number in a batch file. In
LEC Configuration Manager, the Points per subscription property allows you to
adjust this number.

• The default maximum number of subscriptions per connection is 100. However, this
number is configurable within the OpcUaAgent template in LEC Configuration
Manager or by batch file. In LEC Configuration Manager, the Maximum number of
subscriptions property allows you to adjust this number.

• The default maximum number of sessions per connection is 10. However, this
number is configurable within the OpcUaAgent template in LEC Configuration
Manager or by batch file. In LEC Configuration Manager, the Maximum total
subscriptions property allows you to adjust this number.

LEC Server Limits
While there are not many actual LEC Server limits, Oracle Utilities engineers have identified the
following:

• LEC Server has a limit of 16,383 virtual devices, VMDs6 and VCCs7, per LEC Server
instance.

• LEC VCCs have a limit of 128 transfer sets per VCC.

3 Local OPC UA client refers to an OPC UA client within the LEC Server instance, also known as an IFE when it is
configured as an OPC UA/ICCP Front End.

4 Local OPC UA server refers to an OPC UA server within the LEC Server instance.

5 Local OPC UA subscription refers to the subscription an OEM’s OPC UA client has to points within the local
OPC UA server for Block 1 and Block 4.

6 A VMD is a container of nodes. VMD stands for virtual manufacturing device. Each VMD is associated with a
specific type of communications protocol or interface. Most VMD types are intended to handle communications
in and out of LEC Server using a particular communications protocol or interface, such as ICCP, OPC UA,
Modbus, database access, or others. Thus, a VMD can map a device from the outside world to Oracle Utilities
LEC's internal variable model, which allows LEC Server to capture, transform, and route data to other devices,
systems, or applications in a form that the other device, system, or application can understand. Each instance of
a VMD has a network address.

7 A VCC is a Virtual Control Center. It is the type of virtual device that communicates to other devices using the
ICCP protocol.

11

Subscriptions and Associations
When an LEC Server instance is configured as an IFE, it connects an OEM’s OPC UA clients to
remote ICCP systems so OPC UA clients can subscribe to data from and exercise control over
remote ICCP peers’ devices. The way in which LEC IFE connects OPC UA clients to remote
ICCP systems follows:

1. An application’s OPC UA client subscribes to a set of local OPC UA server points.
Some of these points are Block 1 points and others are Block 4 points.

2. The local OPC UA server connects to the local ICCP client.

3. For Block 1, the local ICCP client makes associations with remote ICCP SCADA
systems, subscribing to remote ICCP server points with the ICCP Transfer Set
mechanism. Once an association exists, the OPC UA client can also exercise control
over the remote ICCP server by utilizing the ICCP Block 5 write mechanism.

4. For Block 4, the local OPC UA server connects to the local ICCP server. Through that
path, the OPC UA client can cause the local ICCP server to send a block 4 message
to the remote SCADA ICCP client.

Similarly, the LEC Server instance connects remote ICCP clients to the OEM application’s OPC
UA servers so that remote ICCP systems can subscribe to Block 1 and Block 4 data from the
OEM application’s OPC UA servers.

The remote ICCP clients can also exercise control over the OEM application’s OPC UA servers
using the Block 5 write mechanism. The way in which each LEC IFE connects remote ICCP
systems to OPC UA clients follows:

1. Each remote ICCP client can subscribe to a set of local ICCP Block 1 server points
using the ICCP Transfer Set mechanism.

2. The local ICCP server8 connects to the local OPC UA client.

3. The local OPC UA client in turn connects to the OEM application’s OPC UA server.
Once an association exists, the remote ICCP client can exercise control over the
OEM’s OPC UA server by utilizing the ICCP Block 5 write mechanism.

LEC Server supports many protocols, but in this configuration it enables OPC UA clients and
servers to have connectivity and control over only ICCP devices. In the future, Oracle Utilities
expects to use LEC Server to connect to MultiSpeak and IEC 61850 devices.

For information on Block 1 and Block 4 subscriptions, refer to the subsection Blocks 1 and/or 2
Bottom Dataflow and the section Block 4 Subscription. For more information on Block 5, refer to
the subsection Block 5 Top Dataflow.

OPC Clients and Servers, LEC Server Instances, and Remote ICCP Peers
LEC Server supports a subset of the ICCP services that are required for compliance with the
international ICCP Standard.

8 Local ICCP server refers to an ICCP server within the LEC Server instance.

12

Figure 2 illustrates how an OEM application’s OPC UA server and OPC UA client connect to
remote ICCP devices, using LEC Server to facilitate the OPC UA communication to ICCP
devices.

Figure 2: The OEM’s OPC UA Client-Server Application, LEC Server Instance, and Remote ICCP Devices

The top dataflow in Figure 2 shows an application’s OPC UA server communicating with a
remote ICCP client using an LEC Server instance as the ICCP Front End (IFE). This
communication transmits both Blocks 1 and 2 and Block 5 data. Blocks 1 and 2 transfer
measurement and state information from a local ICCP server to a remote ICCP client. Block 5
provides for the transfer of control information from the remote ICCP client to the local ICCP
server.

The lower dataflow in Figure 2 shows an application’s OPC UA client communicating with a
remote ICCP server using LEC Server as the IFE. This communication allows the OPC UA
client to receive Block 1 and/or 2 data as well as Block 4 text messages from the remote ICCP
server. It also shows how the OPC UA client can transmits Block 5 control information to the
ICCP server.

The IFE implements the transfer of Block 4 messages from the OEM’s OPC UA client to the
remote ICCP client by passing the Block 4 messages to the local OPC UA server and then to
the local ICCP server in the upper dataflow diagram.

Blocks 1 and/or 2 Top Dataflow
1. As the top dataflow in Figure 2 shows, an application’s OPC UA server can pass

Block 1 (and Block 2) data to a local OPC UA client in an LEC Server instance.

2. LEC Server converts the OPC UA data to ICCP data, and then passes this converted
data to an ICCP server in the LEC Server instance.

3. The ICCP server transfers this data to a remote ICCP client device.

13

Blocks 1 and/or 2 Bottom Dataflow
1. An application’s OPC UA client subscribes to data points on the OPC UA server in

the LEC Server instance.

2. LEC Server forwards these requests to corresponding points configured on the ICCP
client in the LEC Server instance.

3. The ICCP client requests the creation of a transfer set from the ICCP server,
specifying the list of points.

4. Upon receiving the request, the remote ICCP server can push Block 1 and 2 data to
the local ICCP client when certain criteria are met. For example, LEC Server can
specify that the remote ICCP server push data cyclically after a given period of time
or when the data changes or both. LEC Server converts this data into OPC UA data,
then passes it to the OPC UA server in the LEC Server.

5. The OPC UA server pushes this data to the external OPC UA client.

Block 4 (ConfirmedMessageFromOpcUa and ConfirmedMessageToIccp)
1. As Figure 2a shows, an application’s OPC UA client can pass Block 4 messages to a

remote ICCP client. By using a ConfirmedMessageFromOpcUa node in LEC’s OPC
UA server, the originating OPC UA client can receive confirmation that the local
ICCP server received the message.

Figure 2a: OPC UA Client sends a ConfirmedMessageFromOpcUa message to a Remote ICCP Client

2. LEC Server converts the OPC UA data to ICCP data, and then passes this converted
data to an ICCP server in the upper dataflow.

3. When the local OPC UA server uses a ConfirmedMessageFromOpcUa node, then
the local ICCP server returns confirmation that it received the message to the
originating device.

4. This ICCP server also sends the message to the remote SCADA’s ICCP client if it is
able to do so.

To see the table used to configure Block 4 confirmed messages from OPC UA, see the section
called of this document called #ConfirmedBlk4ToIccp. This section describes the nodes that are

14

required to implement the transfer of Block 4 messages from the application’s OPC UA server to
the remote ICCP client.

Block 4 Subscription
1. An application’s OPC UA client subscribes to data points on the local OPC UA server.

2. LEC Server forwards these subscription requests to corresponding points configured
on the ICCP client in the LEC Server instance.

3. The ICCP client requests the creation of a transfer set from the ICCP server. Unlike
Block 1 and Block 2 transfer sets, a Block 4 transfer set contains no point list; instead,
the Block 4 transfer set grants permission to the remote ICCP server to send Block 4
messages.

4. Upon receiving the transfer set, the remote ICCP server can push Block 4 messages
to the local ICCP client whenever there is a new message. LEC Server converts this
data into OPC UA data, then passes it to the OPC UA server in the LEC Server.

The ICCP Block 4 message is formatted as an InformationBuffer message. The
InformationBuffer object provides a unique identifier (InfoReference) and a local identifier
(LocalReference). The MessageId identifies the particular instance of a message. Each of these
identifiers is a signed 32-bit integer. The Size attribute is the length in octets of the actual data
being transferred.

Figure 2b: ICCP Server Pushes Data from Data Points that the OPC UA client has Subscribed to

LEC Server converts the InformationBuffer message into a data type that the local OPC UA
server can understand. This data type consists of four-elements, a comma-separated string-
type variable, where the elements are the InfoReference, the LocalReference, the MessageId,
and the message buffer.

5. The local OPC UA server makes this data available to the external OPC UA client.

For details on how Block 4 data is configured for subscription, see the sections of this document
called #Blk4_buflen, #Blk4MessageRouter, and #Blk4FromIccp.

Block 5 Top Dataflow
The remote ICCP client can also initiate Block 5 controls to the application’s OPC server as
shown in Figure 2.

Block 5 Bottom Dataflow
1. An application’s OPC UA client can initiate Block 5 controls to the local OPC UA server.

15

2. LEC Server converts the OPC UA data to Block 5 ICCP data and passes it to the local
ICCP client.

3. The ICCP client then transfers this control data to the remote ICCP server device.

For more information on Block 5, see the sections of this document called OPC UA Control Over ICCP
Devices and the entry for OPC UA Client (OEM Applications) in the Glossary of System Components.

Configuration Setup, Startup, and Remote Batch Load
You first need to install Oracle Utilities LEC Configuration Manager and Server on each of the
LEC machines, physical and virtual.

For more information, refer to LEC Platform Installation Guide. Prior to purchasing Oracle Utilities LEC
Platform, which provides both LEC Configuration Manager and Server, first read the section of this
document called Provisioning a New System.

Generating and Staging Batch and Command Files
Prior to activating LEC IFEs, the OEM must generate batch files using the templates that Oracle
Utilities and the OEM develop jointly. These batch files will define the data and control points
designed to hold the Block 1, 2, 4, and 5 data that the IFE configuration can transfer between
the OEM’s application and the remote ICCP systems and, in the opposite direction between the
remote ICCP systems and the OEM’s application; for examples, see the sections of this
document called Header Batch File and VCC, VMD, Variables, and Node Batch File Definitions.

In addition, the OEM needs to generate command files to load the batch files. Oracle Utilities
and the OEM also develop templates that the OEM can use to create these command files.
After generating the batch files and creating the command files, the OEM must stage the batch
files and command files on each LEC Server machine.

Staging the IFE Configuration on a Development Machine
Staging LEC IFEs requires that the OEM perform the following steps:

1. Use LEC Configuration Manager to import the LEC IFE configuration .db file.

2. Use LEC Configuration Manager to load the header batch file into the IFE configuration.

3. Save the LEC IFE configuration .db and give it a descriptive name.

Deploying the IFE Configuration
1. Rename the LEC IFE configuration .db to cfg.db, which is the default name of the

configuration file used by LEC Server.

2. Push or copy cfg.db to the C:\ProgramData\LiveEnergyConnect directory of each IFE
machine.

3. Remotely start LEC Server as a service on each of the IFE machines.

4. Now you are ready to load the additional batch files onto the remote machines where
you or another engineer has completed the following:

https://docs.oracle.com/cd/F34062_01/library/LEC_Installation_Guide_7.1.0.0.0.pdf

16

o Installed LEC Configuration Manager.

o Made the LEC IFE configuration the default configuration database by naming it
cfg.db.

o Started LEC Server as a service.

Loading Batch Files
Loading batch files remotely from the OEM’s application depends on six management variables
defined in the OPC UA server within the LEC IFE application. These variables are located within
the System OPC UA namespace of the OPC UA server and in the LEC System branch.

• DBLoadRequest: This input variable sets the path to a command file that will load
batch files. Writing to this variable triggers the execution of the command file.

• DBLoadState: This output variable indicates the state of the load. 0 is OK; 1 is failed,
and -1 is busy.

• DBLoadRequestedCommandFile: This output variable indicates the name of the
command file to which DBLoadState refers.

• DBLoadCurrentlyLoaded: This output variable provides the name of the last
command file that was loaded; this variable is set just before DBLoadState changes
to 0. If the load fails, DBLoadState is set to 1, indicating failure. In addition,
DBLoadErrorString and DBLoadCommandLine are returned to provide more
information about the failure.

• DBLoadErrorString: This output variable returns a string with the load error
message if there is one.

• DBLoadCommandLine: This output variable returns the line on which the error
occurred in the command file.

The OPC UA client within the OEM application sets the path of the command file that triggers
the loading of one or more batch files in each LEC IFE configuration. This in turn will cause
each LEC IFE to return the success or failure of the batch load in DBLoadState and
DBLoadCurrentlyLoaded. If there is a failure, the OPC UA server will also return
DBLoadRequestedCommandFile, DBLoadCurrentlyLoaded, and DBLoadErrorString.

For an example of a batch file that defines these output variables, see the section of this
document called Header Batch File Definitions.

Setting Security within a Batch File
Security for OPC UA is set within the batch file that defines the OPC UA client agent. In this file,
you can turn on security by setting Security Options for the client. To turn on Security Options,
set the Security Options parameter to BEST. To turn off Security Options, set this parameter to
NONE. By default, OPC UA security is set.

Let your Oracle Utilities engineers know whether you intend to use OPC UA security so that they can
prepare your batch files accordingly.

17

Provisioning a New System
Starting with a Windows Server and install LEC Server software with a base IFE configuration,
the OEM application will be able to push the batch files of specific VMDs, VCCs, association
control variables, and device points to each system. For each system, the OEM application will
also be able to specify IP addresses for all VMDs, VCCs, and utilities, and then push these
addresses to their respective systems.

Oracle LEC Server Requirements
The hardware requirements depend on the specific application. Most applications can run on an
entry-level Microsoft Windows Server. The following are the minimum requirements for a
computer hosting an LEC Server instance:

• Multi-core processor (2.4 GHz or better)

• 8 GB RAM

• 500 GB Hard Disk

• Any currently supported Microsoft Windows Server OS

Updating an Existing System
When the OEM application moves to a new version of LEC Server, the new version will include
new LEC macros, and someone will need to update the macros in the OEM application’s base
configuration.

Heartbeat Monitor
The OEM application’s OPC UA client writes to a heartbeat variable called
HeartBeatFrom<App> in the local OPC UA server in the LEC Server instance. <App> refers to
the OEM application’s name or abbreviation. Each LEC Server instance monitors this heartbeat
variable, and if it is not updated within the configurable timeout, the LEC Server instance will go
offline.

Note: You can disable the monitor in the batch file. See the description of the <active> property in the
#HeartBeatFromApp section for details.

The OPC UA server in each LEC Server instance has a heartbeat variable called HeartbeatMon
that is updated every 10 seconds. The application’s OPC client can monitor this heartbeat
variable for purposes of managing failover.

OPC UA Control Over ICCP Devices
You can use either Select Before Operate (SBO) or Direct Operate (DO) to issue commands
and set or clear points on an ICCP peer device.

Select Before Operate (SBO) and Direct Operate (DO)
SBO is a two-stage, select-before-operate process with confirmation following the select. Using
this process, a client has to select the control object. After selection, the selecting client is the
only one allowed to perform control actions. An ICCP Check Back is required for all Select

18

Before Operate controls. A Check Back is identified using an arbitrary number, agreed upon
by the local ICCP client and the remote ICCP server; the remote ICCP server returns to the
local ICCP client as a result of a Select operation. However, if the Select operation is
successful, the application’s OPC UA client is not notified; the OPC UA client is only notified if
there is an error returned from the Select operation.

DO is a single-stage direct operate process with no select-before-operate stage. The direct
control models provide a simple means to start actions on the LEC Server instance. If multiple
clients are trying to perform conflicting control actions, the LEC Server instance will finish one of
the operations successfully but will fail and return an error message for any additional
operations. If conflict prevention is required, the Select Before Operate process should be
used.

Commands and Setpoints
ICCP distinguishes between device operation (commands) and setting and clearing numeric
values (setpoints) using the following objects:

• COMMAND – ICCP allows 16-bit, integer-based control actions for each control point
such as Open (0) and Close (1) or floating-point values. The following table shows some
of the integer-based values and their meanings for different devices.

Table 1: Examples of Control Actions

0 1 Device

Trip Close Switch

Open Close Switch

Off On Switch

Lower Raise Transformer

Note: Boolean values are represented by the integer values 0 and 1.

• SETPOINT – ICCP’s setpoint object can hold floating-point numbers or integers.

LEC Flags for SBO and DO Controls
LEC Server has a Flags property for the ControlToIccp and ControlFromIccp templates that
allows you to specify the type of control to use for a particular point. Any point defined by one of
these templates is a control point. You can specify more than one flag to define a control point
by using a bar (I), for example: DISCRETE|SBO.

• REAL – The control point is a floating-point number. If a control point is a floating-point
number, it is a setpoint.

• DISCRETE – The control point is an integer. If a control point is an integer, it is a
setpoint.

• SBO – The control point supports Select Before Operate (SBO). If SBO is not
specified, then the control point does not support SBO and uses Direct Operate (DO),
instead.

19

• TAGABLE – The control point supports tagging. If TAGABLE is not specified, then the
point does not support tagging.

Note: The default type of a control point is a command point. In order to indicate that a point is a
command, do not specify either REAL or DISCRETE.

Examples of points that are defined by these flags are described in #Blk5FromIccp and
#Blk5ToIccp. For more information on tagging, see the Tagging section.

Issue a Command or Set the Value of a Setpoint Using SBO
The SBO protocol is shown in Figure 3. LEC Server has a green overlay, and the OEM
application’s OPC UA client has a blue overlay.

Figure 3: Select Before Operate Workflow

20

The following are steps required to issue a command or set a setpoint using the Select Before
Operate protocol with and without Block 7 support.

1. The application’s OPC UA client’s write request variable to the local OPC UA server.
The OPC UA client variable has the following structure: Value, which is a command or a
setpoint. The possible value for a command is an integer, specifying one of two possible
actions to be taken on a device in the field such as 0 for Open and 1 for Close, or 0 for
Off and 1 for On. The possible values for a setpoint are either a floating-point number or
an integer.

2. The local OPC UA server checks the write and sends a write callback if the Write times
out or returns an error. If there is no error, then the Local OPC UA server goes to step 3
in the sequence without sending a callback.

If an error occurs, such as an access right violation, error message or number, or
something else, the local OPC UA server stops the sequence and sends a callback
message with the result back to an application’s OPC client. This message is returned
in the Status field of the OPC client write response variable.

3. The local OPC UA server sends a Select to the remote ICCP device.

a. If there is no error, then the local OPC UA server goes to Step 4 without sending
a callback.

b. If there is an error, the local OPC UA server stops the sequence and sends a
callback message with result back to the application’s OPC client. The result is
returned in the Status field of the OPC UA client variable.

4. The local OPC UA server sends an Operate (Block 5) to ICCP.

a. If there is no support for Block 7, the OPC server does not wait for the operation
to complete. Instead, local OPC UA server sends the Block 5 response back to
the OPC client, which indicates whether or not the ICCP Block 5 Operate was
received by the remote ICCP server, but there is no indication whether the
Operate succeeded or failed. The result is returned in the Status field of the OPC
UA client variable.

After the Operate completes, whether it succeeds or fails, the Select is implicitly
cleared.

b. If there is support for Block 7, then the local OPC UA server goes to Step 5
before sending the Block 5 response.

5. The local OPC UA server waits for the Block 7 event to complete or the local OPC UA
server receives a timeout message. If the Block 7 event completes within the configured
time period, the local OPC UA server sends a callback with a translated ICCP result
(indicating success) to the application’s OPC client.

a. If Block 7 does not complete within the timeout period or if there is an error, local
OPC UA server sends a Write response with the translated ICCP result to the
application’s OPC client.

The result whether successful or unsuccessful is returned in the Status field of the
OPC UA variable.

21

For a list of possible messages that ICCP returns and how LEC Server translates these
messages into OPC UA status codes, see Mapping between Returned ICCP Status Names and
OPC UA Status Names for Block 5 Data.

Figure 4 shows a simple illustration of SBO when an OPC UA client issues a Block 5 command
without Block 7 support.

Figure 4: Block 5 Command Write to a Remote ICCP Server

22

Figure 5 shows a simple illustration of SBO with Block 7 support.

Figure 5: SBO Block 5 Write to a Remote ICCP Server with Block 7 Support

Issue a Command or Set the Value of a Setpoint using DO
The following list describes the steps required to issue a command or set a point using the
Direct Operate protocol with and without Block 7 support.

1. The application’s OPC client writes a variable to the local OPC UA server.

The OPC UA client write request variable has this structure:

• Value, which is a command or a setpoint.

o The possible value for a command is an integer, specifying one of two
possible actions to be taken on a device in the field such as 0 for Open and 1
for Close, or 0 for Off and 1 for On.

23

o The possible values for a setpoint are either a floating-point number or an
integer.

2. The local OPC UA server checks the write and sends a write callback.

a. If there is no error, then the local OPC UA server goes to Step 3 in the sequence
without sending a callback.

b. If an error occurs, such as an access right violation, error message or number, or
something else, the local OPC UA server stops the sequence and sends a
callback message with the result back to the OPC client.

3. The local OPC UA server sends an Operate (Block 5) to the local ICCP client.

4. The local ICCP client then sends an Operate (Block 5) to the remote ICCP server.

If Block 7 is not supported, the OPC server does not wait for the operation to complete. Instead,
the OPC server waits only for the remote ICCP server to respond to the Operate request. Then
the local OPC UA server sends the Block 5 response back to the OPC client in the Status field
of the OPC client variable. The returned value indicates whether or not the remote ICCP server
received the Block 5 Operate request; it does not report whether the Operate succeeded or
failed.

Figure 6 displays the DO Block 5 Write Operate and response sequence.

Figure 6: DO Block 5 Write to a Remote ICCP Server

If there is support for Block 7, the local OPC UA server waits for the Block 7 event to complete
or issues a timeout message. If the Block 7 event completes within the time period, the local
OPC UA server sends a callback with the result (indicating success) to the application’s OPC
client.

If Block 7 does not complete or if there is an error, the local OPC UA server returns a Write
response to the OPC client in the Status field of the OPC UA client variable as shown in Figure
7.

24

Figure 7: DO Block 5 Write to a Remote ICCP Server with Block 7 Support

For a list of possible messages that ICCP returns and how LEC Server translates these
messages into OPC UA status codes, see Mapping between Returned ICCP Status Names and
OPC UA Status Names for Block 5 Data.

Tagging
(Tagging is not implemented yet, but it will become available in a future release.)

Tagging is the mechanism through which OPC UA clients can protect utilities technicians and
equipment (usually during maintenance) by hanging a “red tag” (logically, not physically) on a
device to prevent the device from executing subsequent operations. OPC UA clients can set,
clear, and monitor tags in remote ICCP servers. Setting, clearing, and monitoring are all Block 5
operations.

Setting and Clearing Tags
(Tagging is not implemented yet, but it will become available in a future release.)

The application’s OPC client can set or clear a tag in the local OPC UA server by writing to the
tag variable. A tag kind of 1 or 2 sets a tag, and a tag kind of 0 clears the tag. The local OPC UA
server then passes the data in the tag item to a tag in the specified remote ICCP server. The tag
state format for write (set) and monitor/read (get) is composed of three comma-separated fields:
tag kind, armed, and comment.

The tag is a structure within an OPC UA variable that consists of the following fields:

• Tag - a ByteString. The tag state format for write (set) and monitor/read (get) is
composed of three comma-separated fields: tag kind, armed, and comment as
shown in the following table.

25

Tag kind NO-TAG=0 OPEN-AND-CLOSE-INHIBIT=1 CLOSE-ONLY-INHIBIT=2

Armed IDLE=0 ARMED=1

Comment Optional unconstrained comment string that can contain commas

• Status - usually initialized to 0.

• Timestamp of the local OPC UA server - usually initialized to 0.

• Timestamp of the receiving ICCP server - usually initialized to 0 (not currently
used).

The local OPC UA server then passes the data in the tagged items to corresponding tags in the
specified remote ICCP server as shown in Figure 8.
Figure 8: OPC UA Client Writes to a Set of Tags Once the Connection is Made with the ICCP Server

Note: Prior to working with tags, you need to understand it is always the remote ICCP server’s view of
the tag that is the actual tag state. Even if the OPC client writes to a tag, and it is sent to the ICCP
server, the ICCP server can ignore the set tag and consequently will return its view of the tag state in
the next get request.

Subscribing to a Tag
(Tagging is not implemented yet, but it will become available in a future release.)

Subscription is the means by which an application’s OPC client learns the status of a tag in a
remote ICCP server. An OPC client asks to subscribe to a set of tags in the local OPC UA
server as shown in Figure 9.

26

Figure 9: OPC UA Client Writes to a Set of Tags Once the Connection is Made with the ICCP Server

1. After the LEC Server instance has connected to the remote ICCP server, the OPC UA

client can issue subscription requests to a set of Tag items in the LEC Server
instance. The LEC Server instance will in turn subscribe to these points in the remote
ICCP server.

2. From this time forward, LEC Server will cyclically read these tag values, and push any
changed tags to the OPC UA client. The cycle time is configurable. The tag values
are read cyclically because the ICCP server can change the tags at the remote site at
any time for any reason. Figure 10 shows this dataflow.

Figure 10: LEC Server Pushes Changed ICCP Tag Values Back to the OPC UA Client

3. After reading the tagged value, the OPC UA client can be programmed to prevent or

allow the issuing of a control directive (Block 5) to the remote ICCP server.

Redundancy
Oracle supports redundancy by running one LEC Server instance and one or more standby LEC
Server instances. These instances all run on different physical or virtual machines. All
redundant LEC Server instances have identical ICCP link configurations. However, only one
LEC Server instance can be online at one time. When an LEC Server instance is online, in
Active mode, it is the only LEC Server with active ICCP associations and connections to the
application’s OPC client connections.

Each LEC Server instance has a Master Control variable that controls whether it is operating
online (Active mode) or on standby (Passive mode).

27

Master Control and Active/Passive Mode
The LEC Server instance, configured as an IFE, hosts a Master Control variable that toggles the
instance between Active and Passive modes. A remote OPC UA client can write to this Master
Control variable. In this scenario, the remote OPC UA client is one of the application’s OPC UA
clients. Writing 1 to a Master Control variable sets the LEC Server instance to Active mode,
while writing 0 to a Master Control variable sets it to Passive mode. A remote OPC UA client
can also read the Master Control variable to query the instance’s active/passive status. It is
useful for the OPC UA client to read the Master Control variable because, even though the OPC
UA client knows what Master Control values it has sent, the Master Control variable may be
changed by the Heartbeat mechanism or by a cluster controller.

The Master Control variable is available to read from and write to through the LEC Server
instance’s OPC UA server using the following points:

Read Point Write Point

MasterControlOutFor<agent>

Where <agent> is the name of the actual OPC
UA server agent node.

For example: MasterControlOutForAgentS

MasterControlInFor<agent>

Where <agent> is the name of the actual OPC
UA server agent node.

For example: MasterControlInForAgentS

Note: You can configure the OPC UA namespace and branch for each of these points.

Active Mode: In Active mode, LEC Server will allow the enabling of ICCP associations and
OPC UA client outbound connections. However, you must enable each ICCP association
explicitly with the VCC’s Association Control variable. Similarly, you must enable each OPC UA
client outbound connection by explicitly setting the VMD’s Association Control variable.

Passive Mode: In Passive mode, LEC Server will disable all ICCP associations and OPC UA
client outbound connections.

Association Control Variables
Each ICCP VCC has an Association Control variable to enable or disable its associations.
Writing 1 to the Association Control variable enables the VCC’s associations, while writing 0 to
the Association Control variable disables the VCC’s associations. The LEC Server instance
must be in Active mode for associations to be enabled; writing 1 to the Association Control
variable has no effect when the instance is in Passive mode.

The name of the connected remote peer VCC is also read via OPC UA server variable.

Association Control variables are available to read from and write to through the LEC Server
instance’s OPC UA server. The inbound Association Control variables for reading and writing
are as follows:

Inbound Association Variables

Inbound Association: Read Point
 <VCC>/AssocInCtrlStatus

28

Where <VCC> is a placeholder for the actual character
string used in naming the VCC containing this point.
For example: AppTestVcc/AssocInCtrlStatus

Inbound Association: Write Point <VCC>/AssocInCtrlControl
For example: AppTestVcc/AssocInCtrlControl

Inbound Connected Peer: Read Point <VCC>/InboundPeerName
For example: AppTestVcc/InboundPeerName

Outbound Association Variables

Outbound Association: Read Point

<VCC>/AssocOutCtrlStatus
Where <VCC> is a placeholder for the actual character
string used in naming the VCC containing this point .
For example: AppTestVcc/AssocOutCtrlStatus

Outbound Association: Write Point <VCC>/AssocOutCtrlControl
For example: AppTestVcc/AssocOutCtrlControl

Outbound Connected Peer: Read Point

The outbound Association Control variables for reading
and writing are as follows:
<VCC>/OutboundPeerName
For example: AppTestVcc/OutboundPeerName

Note: You can configure the OPC UA namespace and branch for each of these points.

Alarm State
If an enabled VCC association is not established within the configured timeout period, the
association enters an Alarm state. The Alarm state is signaled by setting the Association Control
variable to 3. The LEC Server instance clears the Alarm state when an association is made, or
when the association is disabled by setting the Association Control variable to 2 (associated), or
0 (disabled), respectively.

You can configure the timeout as the Stale time for the Association Control nodes. See Setting
the Stale Time Property for more information.

When an LEC Server instance sets a VCC to the Alarm state, the instance also sets quality
flags that reflect this state in all of the VCC’s ICCP points that support quality flags. The LEC
Server instance can set either the VALID HIGH or VALID LOW quality flag bits, or both, in the
Association flags property of these ICCP points. This behavior is configurable through a batch
file. Specifically, the VALID_LOW flag sets the Validity_lo quality bit (bit #3), and the
VALID_HIGH flag sets the Validity_hi quality bit (bit #2). For more information on quality
bits, see Mapping Quality Bit Values from ICCP to OPC UA Status Names and States for Block
1 Data.

29

Setting the Stale Time Property and Association Flags
You can configure the time period before the LEC Server instance signals an alarm by setting
the Stale time property for the Association Control node in the header file. A batch file sets the
Stale time property for an Association Control point or points as well as the Association flags
VALID_HIGH and/or VALID_LOW. You can find an example of a batch file called
“AppTestAHeader.csv”, which sets VCCs, points, and properties, including the Stale time
property in the directory C:\ProgramData\LiveEnergyConnect\Config\ or
D:\ProgramData\LiveEnergyConnect\Config\. This batch file is described in its entirety in the
section of this document called Header Batch File Definitions.

#ConfigControlIn, <agent>, <branch>, <NS_Suffix>, <type>, <tag>

DBLoadRequest, AgentS, LECSystem, SYSTEM, <v-s:-128>, DBLoadRequest

Prototype Node Name
or Property

Node Label/Output
Variable or Property Value Defines

#ConfigControlIn DBLoadRequest

The label of the input variable that sets the
path to a command file which will load
batch files. Writing to this variable triggers
the execution of the command file.

<agent> AgentS
The label of the OPC UA server agent that
handles communication for the
DBLoadRequest node.

<branch> LECSystem
The OPC UA branch where
DBLoadRequest is located. Leaving blank
indicates no branch.

<NS_Suffix> SYSTEM
Specifies the OPC UA namespace suffix for
DBLoadRequest. Leaving blank indicates
no NS suffix.

<type> <v-s:-128> LEC data type of the DBLoadRequest
node.

<tag> DBLoadRequest
The name of the variable that is to be
passed to the DBLoader script for the
DBLoadRequest point.

#ConfigControlOut
This table defines the output variables that the OPC UA server uses to return error message
data to the OPC UA client. For more information, see the section of this document called
Loading Batch Files.

#ConfigControlOut, <agent>, <branch>, <NS_Suffix>, <type>, <tag>

DBLoadCommandLine, AgentS, LECSystem, SYSTEM, <v-s:-128>, DBLoadCommandLine

DBLoadErrorString, AgentS, LECSystem, SYSTEM, <v-s:-128>, DBLoadErrorString

DBLoadState, AgentS, LECSystem, SYSTEM, <int:32>, DBLoadState

DBLoadRequestedCommandFile, AgentS, LECSystem, SYSTEM, <v-s:-128>,
DBLoadRequestedCommandFile

30

DBLoadCurrentlyLoaded, AgentS, LECSystem, SYSTEM, <v-s:-128>, DBLoadCurrentlyLoaded

Prototype Node
Name or Property

Node Label/Output
Variable or Property

Value
Defines

#ConfigControlOut

DBLoadCommandLine

The label of the output variable that returns the line
on which the error occurred in the command file if an
error occurred.
DBLoadErrorString is the label of the output
variable that returns a string with the load error
message if there is one.
DBLoadState is the label of the output variable that
indicates the state of the load. 0 is OK; 1 is failed,
and -1 is busy.
DBLoadRequestedCommandFile is the label of the
output variable that contains the name of the
command file to which DBLoadState refers.
DBLoadCurrentlyLoaded is the label of the output
variable containing the name of the last command
file that loaded successfully; this variable is set just
before DBLoadState changes to 0. If the load fails,
DBLoadState is set to 1.

<agent> AgentS

The label of the OPC UA server agent that handles
communication for this point and for
DBLoadErrorString, DBLoadState,
DBLoadRequestedCommandFile, and
DBLoadCurrentlyLoaded.

<branch> LECSystem

The OPC UA branch where this point and
DBLoadErrorString, DBLoadState,
DBLoadRequestedCommandFile, and
DBLoadCurrentlyLoaded are located. Leaving blank
indicates no branch.

<NS_Suffix> SYSTEM

Specifies the OPC UA namespace suffix for this
point as well as DBLoadErrorString, DBLoadState,
DBLoadRequestedCommandFile, and
DBLoadCurrentlyLoaded. Leaving blank indicates no
NS suffix.

<type> <v-s:-128>

Specifies the OPC UA data type for this point and for
DBLoadErrorString,
DBLoadRequestedCommandFile, and
DBLoadCurrentlyLoaded.

Note: The data type for DBLoadState is <int:32>.

<tag> DBLoadCommandLine

The name of the variable that is to be passed to the
DBLoader script for the DBLoadCommandLine point.
In addition, the DBLoadErrorString, DBLoadState,
and DBLoadCurrentlyLoaded points pass the
DBLoadErrorString DBLoadState, and
DBLoadCurrentlyLoaded tags to the DBLoader
script, respectively.

31

Note: These particular values are set in points on
the ConfigLoader VMD, which is internal to the
workings of the IFE.

To set the Stale time property and the Association flags VALID_HIGH and/or VALID_LOW:

1. Stop LEC Server and unload the batch files.

2. In the batch file, search for the table header that begins with the prototype node
#AssocInControl. This node is based on the VccAssocControl template.
Prototype nodes begin with a pound sign (#). The table header identifies all the
prototype node properties that will be set by the following line in the batch file. In
addition to setting properties in the #AssocInControl points (that are generated
when the batch file is loaded), this table sets properties in a connecting node in the
OpcUaServer VMD that has an Agent label, Branch name, and Namespace. All
prototype properties are identified by brackets (<>).

Example 1

#AssocInControl, <agent>, <branch>, <NS_Suffix>, <stale_time>, <timeout_valid_bit>

The next line, shown in Example 2, identifies the actual values used for the Stale time and
Association flags properties in the AssocInCtrl node. In addition, the values for the Agent label,
Branch name, and Namespace are set. These values must be in the exact same order as the
table header shown in Example 1.

Example 2

AssocInControl, AgentS, LECSystem, SYSTEM, 30000, |VALID_LOW|VALID_HIGH

The table below shows the Point label value for the node that is set by the table defined in
Example 2.; each value is delimited by a comma.

Point label Agent Branch Namespace Stale time Timeout valid bit

AssocInCtrl AgentS LECSystem SYSTEM 30000 VALID_LOW and
VALID_HIGH

AgentS is the agent label, which maps to <agent> in the table header. There is no Agent label
property for AssocInCtrl, but AssocInCtrl connects to a node in the OpcUaServer VMD that
requires an Agent label.

In this example, the following schematic shows the connection between AssocInControl and the
OPC UA server node that requires the Agent, Branch, and Namespace properties.

#AssocInControl AppTestA1A/AssocInCtrl
(which is in a VCC) (which is in the OPC server)

AppTestA1A/AssocInControl allows an external OPC client that is connected to the OPC server
to enable or disable an ICCP associate and learn the status of an ICCP association.

32

LECSystem is the OPC branch name that the connecting node AppTestA1A/AssocInCtrl in the
OpcUaServer VMD requires. This value maps to <branch> in the table header.

SYSTEM is the OPC suffix that is to be appended to the OPC namespace Universal Resource
Identifier (URI) that identifies the agent node. This suffix in used by AppTestA1A/AssocInCtrl in
the OpcUaServer VMD.

Stale time specifies the period of time that is allowed to elapse while there is no association.
Stale time is specified in milliseconds. After the period of time has elapsed, the association will
time out, and input points from this association are assigned a quality code based on the
configured timeout validity bit settings: VALID_LOW and VALID_HIGH.

VALID_LOW If the VCC is set to the Alarm state, the VALID_LOW flag sets the Validity_lo
quality bit (bit #3).

VALID_HIGH If the stale time period expires, the VALID_HIGH flag sets the Validity_hi quality
bit (bit #2). For more information on quality bits, see the section of this document called
Mapping Quality Bit Values from ICCP to OPC UA Status Names and States for Block 1 Data.

Note that these flags are prefixed by a vertical bar (|) as shown in Example 2. The vertical bar
(|) before VALID_LOW appends it to other flags that are defined in the #AssocInControl
prototype node in LEC Configuration Manager. The vertical bar (|) before VALID_HIGH appends
it to VALID_LOW. If you look at the Association flags for AssocInCtrl in the Properties panel of
LEC Configuration Manager, you will notice that VALID_LOW comes after
RELAY_FLAG|MASTERRESETFLAG.

The RELAY_FLAG flag is set to 1 in this example. Setting this flag directs LEC Server to treat
incoming Information Reports and Read Event Notifications as though they were MMS Writes to
a local variable by the same name as is in the report. If this flag is not set, the ICCP Block 4
message will not be reliable.

The MASTERRESETFLAG flag is set to 1 in the Association Control nodes in this example
configuration. To enable an association, both the Master Control variable and the VCC
association control variable need to need to be written 1. When Master Control is written 0, all
association control variables will revert to their initialized state of 0. See Determining Which
ICCP Points LEC Server Sets in the Alarm State for more information.

1. Specify your own values, if necessary, for the Stale time property in the batch file
used for setting points and VCC values at your site, such as AppTestA1.csv. The
order of properties might differ in your batch file.

2. Setting this property for the AssocInCtrl node will also set properties in other
connecting nodes/points in the OpcUaServer VMD, so the VCC and the OPC server
can communicate. Repeat this process for AssocOutCtrl.

3. Reload the header file and the batch file you just edited.

4. Restart LEC Server.

Determining Which ICCP Points LEC Server Sets in the Alarm State
If the timeout set by the Stale time property expires, LEC Server sets the Alarm state to
VALID_HIGH, VALID_LOW, or both in the Association flags as discussed in Setting the Stale
Time Property.

33

Whenever a particular VCC association enters the Alarm state, LEC Server will set the ICCP
quality flags fields in any of the VCC’s ICCP points that contain quality flags, such as those that
have either the Data_RealQ data type or the Data_StateQ data types.

Secure OPC and ICCP
This section explains how to secure OPC and ICCP VMDs/VCCs and nodes.

Secure OPC
Secure OPC UA is encrypted at the transport layer. The setup of the encrypted connection
requires the OPC UA server and the client to authenticate their peers’ certificates.

Certificates are stored in certificate stores. A certificate store is a place where certificates can be
stored on a file system. All Windows systems provide a registry-based store called the Windows
Certificate Store.

From LEC Configuration Manager, the OPC server and client VMDs have an OPC UA Agent
node based on the OpcUaAgent template as shown in Figure 11.

Figure 11: OPC UA Server Fields for Secure OPC UA

You can use the following three properties to create a secure OPC UA connection:

• AppCertId (optional): Specifies the application certificate used by this OPC UA client or
server. Specify the ID (thumbprint) of a certificate that was previously created and added
to the appropriate Windows Certificate Store.

• Default Behavior: Required if SecurityOpts is specified as one of the secure options,
otherwise the LEC Server’s OPC UA client/server will fail to start.

• SecurityOpts: Specifies the security modes to use:

34

o NONE means that no encryption is available (server) or requested (client).

o Basic256 means the Basic256 mode is used by the server. Invalid for client.

o Basic128Rsa15 means the Basic128Rsa15 mode is used by the server. Invalid for
client.

o Basic256Sha256 means the Basic1256Sha256 mode is used by the server. Invalid
for client.

o ALL means allow any of the above modes as a server. Invalid for client.

o BEST is a shortcut for Basic256Rsa256 as a server, or to use the best available
secure option as a client.

Setting Secure OPC Properties in an LEC IFE Instance
The security properties are set in an LEC IFE instance at the time the header batch file is
loaded (see the example AppTestAHeader.csv header file). This file is described in its entirety in
Header Batch File Definitions.

1. To ensure that the security properties in the nodes AgentS and AgentC are set correctly,
you need to edit the header batch file located in
C:\ProgramData\LiveEnergyConnect\Config.

Search for the table header in the batch file that begins with the prototype node
#IccpUaServerAgent. Prototype nodes begin with the pound sign (#). This line identifies all the
prototype node properties that will be set by the batch file. These properties are identified by
brackets (<>).

Example 1

#IccpUaServerAgent,<ServerIP>,<AppCertId>,<SecurityOpts>,<PointsPerSub>,<ServerNam
e>,<PublishingInterval>,<CodeMapFile>,<MaxSubs>,<SubsPerSession>,<MaxSessions>

The next line identifies the actual values used for these fields in the agent node for the local
OPC UA server. These values must have the exact same sequence as shown in Example 1.

Example 2

AgentS,opc.tcp://127.0.0.1:4842/server/,,NONE,,,,,50,10,5

The table below shows the Agent label and the OpcUaServer IP address followed by each
security-related property that is defined in the second example line from the batch file as shown
in Example 2.

Agent label OpcUaServer IP AppCertId SecurityOpts

AgentS opc.tcp://127.0.0.1:4842/server/ Not set. NONE

AgentS is the agent label, which maps to the prototype #IccpUaServerAgent node in the
preceding line.

35

opc.tcp://127.0.0.1:4842/server/ is the OPC UA Server IP address, which maps to <ServerIP>

No specification, as shown under the AppCertId field, indicates the default, which means that
the application certificate ID will be generated by LEC Server.

NONE means that no encryption is available (server) or requested (client).

2. Specify your own values for the AppCertId, SecurityOpts properties in the same order as
is in the line shown in Example 1. The order of these properties might differ in your
header file.

3. Repeat the same process for the OPC UA client agent. Search for the line beginning
with the prototype node #IccpUaClientAgent, specifying your own values for the
AppCertId and SecurityOpts properties in the following line, similar to Example 2 but with
appropriate values for the client.

4. Stop LEC Server and reload the header file.

5. Restart LEC Server.

Disabling Secure OPC in an LEC Server Instance
To stop using Secure OPC, you will need to clear the security properties that are set in an LEC
IFE instance at the time the header batch file is loaded.

1. To ensure that the security properties in the nodes based on the OpcUaAgent template,
called AgentS and AgentC, are cleared, you need to edit the header batch file, named
AppTestAHeader.csv.

Search for the table header in the batch file that begins with the prototype node
#IccpUaServerAgent. Prototype nodes begin with the pound sign (#). This line identifies all the
prototype node properties that will be set or cleared by the batch file. These properties are
identified by brackets (<>). Note that these properties can be listed in any order; however, the
following line shown in Example 2 must use the same sequence.

Example 1

#IccpUaServerAgent,<ServerIP>,<AppCertId>,<SecurityOpts>,<PointsPerSub>,<ServerNam
e>,<PublishingInterval>,<CodeMapFile>,<MaxSubs>,<SubsPerSession>,<MaxSessions>

The next line identifies the actual values used for these fields in the agent node for the local
OPC UA server. These values must have the exact same sequence as <AppCertId> and
<SecurityOpts> shown in Example 1.

Example 2

AgentS,opc.tcp://127.0.0.1:4842/server/,,,,,,,50,10,5

36

The table below shows the Agent label and the OpcUaServer IP address followed by each
security-related property that is defined in the second example line from the batch file.

Agent label OpcUaServer IP AppCertId SecurityOpts

AgentS, opc.tcp://127.0.0.1:4842/server/

AgentS is the agent label, which maps to the prototype #IccpUaServerAgent node in the
preceding line.

opc.tcp://127.0.0.1:4842/server/ is the OPC UA Server IP address, which maps to <ServerIP>

The empty space, nothing specified, usually indicates the default, which means the application
certificate ID will be generated by LEC Server. However, in this instance, it actually clears the
value for the AppCertId property.

The empty space under the SecurityOpts property clears the value for this property, too.

2. Clear the values for the AppCertId, AuthorizedCerts, SecurityOpts properties in the
same order as is in the line shown in Example 1. Note that the order of the prototype
node properties in your batch file might differ from the order shown in Example 1.

3. Repeat the same process for the OPC UA client agent. Search for the line beginning
with the prototype node #IccpUaClientAgent, clearing the values for the AppCertId and
SecurityOpts properties in the correct order.

4. Stop LEC Server and reload the header file.

5. Restart LEC Server.

Windows Certificate Stores
LEC Server’s OPC UA server and client access certificates stored in the Windows Certificate
Store.

Note: The Oracle Utilities Live Energy Connect (LEC Server) software was formerly known as
LiveData RTI Server. For this reason, the following certificate sub stores still reference LiveData.

The following sub-stores are created and utilized:

• LocalMachine\LiveData OPCUA Server App – where LEC’s OPC UA server
certificates are stored.

• LocalMachine\LiveData OPCUA Server Trusted – where LEC’s OPC UA server looks
to find public certificates of connecting clients. If a copy of the client’s presenting
certificate is stored here, the client is considered trusted and the connection may be
accepted. CA certificates/chains also be stored here. This allows any presented client
certificate signed by the CA to be considered trusted. Certificate Revocation Lists
(CRLs) may also be imported there to disallow certain client certificates signed by CAs
stored here.

• LocalMachine\LiveData OPCUA Server Issuer – where LEC’s OPC UA server looks
for CA certificates/chains to validate trusted client certificates if said certificates are not
self-signed.

37

• LocalMachine\LiveData OPCUA Server Rejected – where LEC’s OPC UA server
stores certificates presented by connecting clients that are not trusted. Rejected
certificates may be copied or moved from here to the trusted store.

• LocalMachine\LiveData OPCUA Client App – where LEC’s OPC UA client certificates
are stored.

• LocalMachine\LiveData OPCUA Client Trusted – where LEC’s OPC UA client looks to
find public certificates presented by servers it is connecting to. If a copy of the server’s
presenting certificate is stored here, the server is considered trusted and the connection
may proceed. CA certificates/chains also be stored here. This allows any presented
server certificate signed by the CA to be considered trusted. Certificate Revocation Lists
(CRLs) may also be imported there to disallow certain client certificates signed by CAs
stored here.

• LocalMachine\LiveData OPCUA Client Issuer – where LEC’s OPC UA client looks for
CA certificates/chains to validate trusted server certificates if said certificates are not
self-signed.

• LocalMachine\LiveData OPCUA Client Rejected – where LEC’s OPC UA client stores
certificates presented by connected servers that are not trusted. Rejected certificates
may be copied or moved from here to the trusted store.

Certificate Details and Requirements
The LEC Server’s Secure OPC UA client and server utilize X.509 V3 certificates for encryption
and peer authentication. Below are specific certificate requirements:

• A minimum key length of 2048 bits is required, with a maximum of 4096 bits allowed.

• A Common Name (CN) is required, though its content is not important.

• Key Usage required usages: Digital Signature, Non-Repudiation, Key
Encipherment, Data Encipherment, Certificate Signing

• Certain X.509 V3 extensions are required:

o Subject Alternative Name - must be provided with the following Names:

 URI - (at least one) of the form URL=urn:<host>:<peer application
name>

 At least one of the following:

 IP Address – one or more specifying and IP address to be
associated with the endpoint, as seen by the receiving client or
server.

 DNS Name – one of more specifying the hostname to be
associated with the endpoint, as seen by the receiving client or
server.

o Basic Constraints – must be provided with self-signed certificates to indicate:

 Subject Type = End Entity

 Path Length Constraint = 0

38

o Enhanced Key Usage – “Server Authentication” and “Client
Authentication” required.

LEC Server ships with and installs OPC UA client and server certificates that is suitable for
testing locally on a single machine, with OPC UA client and server endpoints specified with the
localhost IP address 127.0.0.1. Also included is MakeLegalUaCert.bat that can be used and
modified to create suitable certificates for network connections.

Secure ICCP
Secure ICCP provides security for the transport and application layers with certificates.

You need to set up Secure ICCP when you configure your LEC Server. Refer the Oracle
Utilities Live Energy Connect Installation Guide and the Oracle Utilities Live Energy Connect
Certificate Deployment Procedure for Using Secure ICCP document for instructions on
configuring LEC Server for Secure ICCP.

Server Health
Every LEC Server instance exposes Server Health using a Service Level variable that OPC can
access remotely. An LEC health monitor script not only monitors VMDs for their health, but the
Health monitoring script has been customized to create an overall health score, also known as a
service level, for the LEC Server instance. Since the Service Level variable is maintained by the
Health Script, it can be exposed using OPC UA or any protocols that are supported by your
environment. The Service Level variable is a byte. Health refers to all critical LEC Server
functionality, including the ability of the LEC Server instance to communicate via SCADA
protocols as well as functions such as:

• LEC WatchDogs

• Data flows: thread checker watchdog

• Link operational status

• Script execution

• Database access

• Logging

The Service Level variable is a node of the OPC UA server. The following table shows what
each value or range of values means9.

Subrange Name Description

0-0 Maintenance
The failed LEC Server instance is in the maintenance subrange.
Therefore, new clients will not be allowed to connect, and currently
connected clients will disconnect.

1-1 No Data

LEC Server is not operational. Therefore, an application’s OPC client
will not be able to exchange any information with it. LEC Server most
likely has no data other than Service Level and diagnostic
information available.

9 In the future, LEC Server will also support the Standard OPC UA service level ns=0;n=2267.

https://docs.oracle.com/cd/F34062_01/library/LEC_Installation_Guide_7.1.0.0.0.pdf
https://docs.oracle.com/cd/F34062_01/library/LEC_Installation_Guide_7.1.0.0.0.pdf
https://docs.oracle.com/cd/F34062_01/library/LEC_Secure_ICCP_Certficate_Deployment_7.1.0.0.0.pdf
https://docs.oracle.com/cd/F34062_01/library/LEC_Secure_ICCP_Certficate_Deployment_7.1.0.0.0.pdf

39

2-199 Degraded

LEC Server is partially operational but is experiencing problems
such that portions of the address space are out of service or
unavailable. A possible cause for the Degraded service level would
be if three of ten ICCP devices connected to LEC Server were
unavailable.

200-255 Healthy

LEC Server is fully operational. Therefore, an application’s OPC UA
client can obtain all information from this server. This subrange
allows LEC Server to provide information that clients can use to load
balance. LEC Server could use this Service Level subrange to reflect
LEC Server’s CPU load; this would enable LEC Server to conclude
that data would be delivered as expected. LEC Servers in the
Healthy Service Level subrange are able to deliver information in a
timely manner.

Mapping ICCP to OPC UA and Vice Versa
This section describes how Oracle Utilities LEC Server exposes ICCP monitoring and control
information using an OPC UA interface.

ICCP Service Modeling
ICCP communication consists of the following data exchange patterns:

• Writes: The ICCP client writes to the ICCP server.

• Solicited Read: The server replies to a client request.

• Unsolicited Periodic Reporting: The server periodically sends data to the client.

• Unsolicited Exception Reporting: The server sends data that has changed within a
period of time.

• Unsolicited Event Reporting: The server sends data based on client-defined criteria.

ICCP conformance blocks define groups for what and how to exchange data.
Table 2: ICCP Conformance Blocks

ICCP Block Description

Block 1

Periodic System Data: Status points, analog points, quality flags, timestamp, change
of value counter. ICCP transfers Block 1 data using Solicited Read as well as
Unsolicited Periodic Reporting.

Block 2
Extended Data Set Condition Monitoring: Status points, analog points, quality flags,
time stamp, and change-of-value (COV) counter. ICCP exchanges Block 2 data using
Solicited Read as well as Unsolicited Exception Reporting.

Block 3 Not supported

Block 4 Information Messages: ICCP exchanges simple text and binary files using Unsolicited
Exception Reporting.

Block 5 Device Control: Device control requests include on/off, trip/close, raise/lower as well
as setting and clearing digital setpoints. Block 5 includes mechanisms for interlocked

40

Default ICCP Mapping Exposed by a Local OPC UA Server
For OPC UA, an ICCP folder is exposed under the root Objects folder on the LEC Server
machine.

ICCP
(OPC UA Folder off root objects folder)

#PointName
(OPC UA Numeric data Variable or Boolean Data

Variable)
This Variable is complex if COV is used.

#DeviceName
(OPC UA Object)

While ICCP is the default name for the root of ICCP data, this OPC UA folder name is the name
of the configuration database file.

Although only point values and change-of-value (COV) variables are shown above, you can
configure variables for individual ICCP Quality tags by modifying the default batch file.

ICCP/OPC UA Mapping for Data from Each ICCP Conformance Block
This section shows how an LEC Server instance, acting as an LEC IFE, maps ICCP to OPC UA
types for each ICCP conformance block. Blocks 1 and 2 include the PointTypes, which are
REAL, STATE, and DISCRETE, as well as the Quality bits, Timestamp, and COV data. Block 4
includes ICCP data that is defined by the Message attribute, and Blocks 5 and 7 are defined by
the ICCP Control and Report attributes, respectively.

Table 3 shows the OPC UA mappings for the data that is supported in each ICCP conformance
block.

Table 3: ICCP to OPC UA Mapping by ICCP Conformance Block

ICCP Block ICCP Attribute ICCP Attribute Values Default OPC UA
Type Mapping

Blocks 1 & 2 PointType
(REAL,STATE,DISCRETE)

controls and select-before-operate methods. ICCP exchanges Block 5 data using
Writes as well as Unsolicited Periodic and Exception Reporting.

Block 6 Not supported

Block 7 Event Reporting: ICCP provides Reporting completion status for a Block 5 device
control.

Block 8 Additional User Objects: ICCP provides scheduling, accounting, outage, and plant
information.

Block 9 Not supported

41

Blocks 1 & 2 PointType= REAL PointRealValue

Float
is defined as a 32-bit
floating-point number
with an eight-bit
exponent.

Blocks 1 & 2 PointState= STATE PointStateValue
Int32
is defined as a
signed 32-bit integer.

Blocks 1 & 2 PointState=DISCRETE PointDiscreteValue Int32

Blocks 1 & 2 Quality

See the section called
Quality Bits in LEC
Configuration Manager
for an explanation of the
representation of quality
bits.

See Table 4.

Blocks 1 & 2 Quality.Validity

0 = Valid,
1 = Held,
2 = Suspect,
3 = Invalid

Blocks 1 & 2 Quality.CurrentSource

0 = Telemetered,
1 = Calculated,
2 = Entered,
3 = Estimated

Blocks 1 & 2 Quality.NormalValue 0 = Normal,
1 = Abnormal

Blocks 1 & 2 Quality.TimeStampQuality 0 = Valid,
1 = Invalid

Blocks 1 & 2 Quality.State

0 = Between,
1 = Off,
2 =On,
3 = Invalid

Blocks 1 & 2 TimeStamp

32-bit integer
representing Universal
Time Coordinated (UTC)
in seconds since
midnight January 1,
1970 00:00:00 in
Greenwich, England and
optionally a 16-bit
integer for the number of
milliseconds elapsed
within the current
second

ICCP time if
available, if not, LEC
Server’s host
machine time
Regardless of the
source of the
timestamp, LEC
Server converts it
into an OPC UA
timestamp.

Blocks 1 & 2 COV
16-bit unsigned integer
that holds the change-of-
value counter.

COV is exposed as a
two-item OPC UA
array, where the first
item is the usual

42

point information,
and the second item
is a Uint16 COV.
Uint16 is an
unsigned 16-bit
integer.

Block 4 (not used
as part of ICCP
control)

Message
An octet string of 8 bits
for binary data or
characters.

Four-element,
comma-separated
string-type variable,
where the elements
are respectively the
InfoReference, the
LocalReference, the
MessageId, and the
message buffer.

Block 5 Control

See the OPC UA Control
over ICCP Devices
For information on
tagging, see the Setting
and Clearing Tags
section.

Block 7 Report
See the OPC UA Control
over ICCP Devices
section.

Block 8 Not supported Not supported Not supported

Quality Bits in LEC Configuration Manager
The easiest way to see the ICCP quality bits returned for ICCP Block 1 and 2 data is to use the
Node Monitor in LEC Configuration Manager. Figure 12 shows an example of the information
that you can read from Processor nodes within the Node Monitor.

Figure 12: Node Monitor exposes Quality Bits of ICCP Types Data_RealQ and Data_StateQ

In Figure 12, a Data_RealQ value has the floating point value 122.026 and a Quality byte of
‘00000000.’

43

00 00 00 0 0

Good Valid Telemetered Normal Value Normal Timestamp

In Figure 12, a Data_StateQ value has a Quality byte of ‘10000010.’

10 00 00 1 0

On Valid Telemetered Abnormal Value Normal Timestamp

State is shown in the first pair of bits if the bit string represents a State value.

Bits 00 01 10 11

Meaning Between Off On Invalid

Validity is shown in the second pair of bits.

Bits 00 01 10 11

Meaning Good or Valid Held Suspect Bad or Invalid

Current Source is shown in the third pair of bits.

Bits 00 01 10 11

Meaning Telemetered Calculated Entered Estimated

Normal or Abnormal Value is shown in the next single bit.

Bits 0 1

Meaning Normal Abnormal

Valid or Invalid Timestamp is shown in the last single bit.

Bits 0 1

Meaning Valid Invalid

Mapping Quality Bit Values from ICCP to OPC UA Status Names and States for
Block 1 Data
LEC Server matches incoming ICCP Quality bit values to the outgoing OPC UA status name
and OPC UA state value if the incoming value is a State PointType. These Quality flags are
returned with the ICCP Real, Discrete, and State PointTypes. Table 5 shows the outgoing OPC
UA status names and state values that map to the ICCP Quality flags, State, Validity, Normal
Value, and TimeStampQuality.

44

Table 4: Mapping ICCP Quality Bit Values (Flags) to OPC UA Statuses and States

ICCP
State

ICCP
Validity

ICCP
CurrentSource

ICCP
Normal
Value

ICCP
TimeStamp

Quality

OPC UA Status
Name

OPC UA
State Value

No Problems

0, 1, 2,
3 0 0 0 0 or 1 Good Do not set

state

Normal Value Problem

0, 1, 2,
3 0 0 1 0 or 1 UncertainEngineerin

gUnitsExceeded
Do not set
state

Current Source Problems

0, 1, 2,
3 0 1 0 or 1 0 or 1 GoodEdited

Do not set
state

0, 1, 2,
3 0 2 0 or 1 0 or 1 GoodLocalOverride Do not set

state

0, 1, 2,
3 0 3 0 or 1 0 or 1 GoodEdited Do not set

state

State Problems

0 0 0, 1, 2, or 3 0 or 1 0 or 1 Uncertain Do not set
state

3 0 0, 1, 2, or 3 0 or 1 0 or 1 UncertainEngineerin
gUnitsExceeded

Do not set
state

Validity Problems

0, 1, 2,
3 1 0, 1, 2, or 3 0 or 1 0 or 1 UncertainLastUsabl

eValue
Do not set
state

0, 1, 2,
3 2 0, 1, 2, or 3 0 or 1 0 or 1 Uncertain Do not set

state

0, 1, 2,
3 3 0, 1, 2, or 3 0 or 1 0 or 1 BadUnexpectedErro

r
Do not set
state

Transfer State Values

0 0 0, 1, 2, or 3 0 or 1 0 or 1 Do not set status 0

1 1 0, 1, 2, or 3 0 or 1 0 or 1 Do not set status 1

2 2 0, 1, 2, or 3 0 or 1 0 or 1 Do not set status 2

45

3 3 0, 1, 2, or 3 0 or 1 0 or 1 Do not set status 3

Mapping OPC UA Status Names and States to ICCP Quality Bit Values for Block 1
Data
LEC Server matches an incoming OPC status name and transfer state value to the outgoing
ICCP Quality bit values and the State value if the incoming value is the State PointType. Table 5
shows the outgoing ICCP quality bit values, State, Validity, Normal Value, and
TimeStampQuality that map to the incoming OPC status names and transfer state values.

Table 5: Converting OPC UA Statuses and States to ICCP Quality Bit Values

OPC UA
Status Name

OPC UA
State
Value

State Validity Current
Source

Normal
Value

TimeStamp
Quality

ICCP
Description

No Problems

Good 0, 1, 2, or
3 Don’t set 0 0 0 0 ICCP_Good

Quality

Current Source Problem

GoodEdited

0, 1, 2, or
3 Don’t set 0 2 0 0 ICCP_Enter

ed

GoodLocalO
verride

0, 1, 2, or
3 Don’t set 0 2 0 0 ICCP_Enter

ed

Normal Value Problem

UncertainEng
ineering

0, 1, 2, or
3 Don’t set 0 0 1 0 ICCP_Abno

rmalValue

Validity Problem

UncertainLas
tUsableValue

0, 1, 2, or
3 Don’t set 1 0 0 0 ICCP_Held

Uncertain 0, 1, 2, or
3 Don’t set 2 0 0 0 ICCP_Susp

ect

Bad 0, 1, 2, or
3 Don’t set 3 0 0 0 ICCP_NotV

alid

BadUnexpect
edError

0, 1, 2, or
3 Don’t set 3 0 0 0 ICCP_NotV

alid

BadWaitingF
orInitial

0, 1, 2, or
3 Don’t set Don’t

set
Don’t
set

Don’t
set Don’t set Do not pass

data

Transfer State Values

Any incoming
status 0 0 Don’t

set
Don’t
set

Don’t
set Don’t set

46

Mapping of ICCP Measurement Data Types to OPC UA Data Types for Block 1
Data
Table 6 shows how LEC Server maps ICCP (Block 1) measurement data types to equivalent
OPC UA data types.

Table 6: Mapping of ICCP Data Types to OPC UA Data Types for Block 1

ICCP Data Type Meaning OPC UA Data Type
Mapping

Data_State Discrete 2-bit value OPC UA UInt32

Data_StateQ Discrete 2-bit value + 6 ICCP Quality
bits

OPC UA UInt32 with
ICCP Quality reflected in
the OPC UA Status

Data_StateQTimeTag Discrete 2-bit value + ICCP Quality bits
+ Timestamp

OPC UA UInt32 with
ICCP Quality reflected in
the OPC UA Status

Data_StateExtended Discrete 2-bit value + ICCP Quality bits
+ COV

Two element OPC UA
array type, where the
first element is ICCP
Quality, which is
reflected in the OPC UA
Status, and the second
element is the Uint32
COV

Data_StateTimeTagExtended Discrete 2-bit value + ICCP Quality bits
+ Extended timestamp

OPC UA UInt32 with
ICCP Quality reflected in
the OPC UA Status

Any incoming
status 1 1 Don’t

set
Don’t
set

Don’t
set Don’t set

Any incoming
status 2 2 Don’t

set
Don’t
set

Don’t
set Don’t set

Any incoming
status 3 3 Don’t

set
Don’t
set

Don’t
set Don’t set

Default Values

DEFAULT_G
OOD

0, 1, 2, or
3 Don’t set 0 0 0 0 ICCP_Good

Quality

DEFAULT_U
NCERTAIN

0, 1, 2, or
3 Don’t set 2 0 0 0 ICCP_Susp

ect

DEFAULT_B
AD

0, 1, 2, or
3 Don’t set 3 0 0 0 ICCP_NotV

alid

47

Data_Discrete Integer value 32-bit signed OPC UA Int32

Data_DiscreteQ Integer value 32-bit signed + ICCP
Quality bits

OPC UA Int32 with
ICCP Quality reflected in
the OPC UA Status

Data_DiscreteQTimeTag Integer value 32-bit signed + ICCP
Quality + Timestamp

OPC UA Int32 with
ICCP Quality reflected in
the OPC UA Status

Data_DiscreteExtended Integer value 32-bit signed + ICCP
Quality bits + COV

Two element OPC UA
array type, where the
first element is ICCP
Quality, and the second
element is the Uint32
COV

Data_DiscreteTimeTagExtended Integer value 32-bit signed + ICCP
Quality bits + Extended timestamp

OPC UA Int32 with
ICCP Quality reflected in
the OPC UA Status

Data_Real Float 32 OPC UA Float

Data_RealQ Float 32 + ICCP Quality bits
OPC UA Float with
ICCP Quality reflected in
the OPC UA Status

Data_RealQTimeTag Float 32 + ICCP Quality bits +
Timestamp

OPC UA Float with
ICCP Quality reflected in
the OPC UA Status

Data_RealExtended Float 32 + ICCP Quality bits + Current
Source + COV

Two element OPC UA
array type, where the
first element is ICCP
Quality, and the second
element is the Uint32
COV

Data_RealTimeTagExtended Float 32 + ICCP Quality bits + Current
Source + Extended timestamp

OPC UA Float with
ICCP Quality reflected in
OPC UA Status

Mapping of ICCP Control and Tag Data Types to OPC Data Types for Block 5 Data
Table 7 shows how LEC Server maps ICCP (Block 5) command, setpoint, and tag data types to
equivalent OPC UA data types.

Table 7: Mapping of ICCP Data Types to OPC UA Data Types for Block 5

Block 5 Controls and
Tags ICCP Data Type OPC UA Data Type Mapping

Command 16-bit integer OPC UA Int32

48

Setpoint 32-bit integer or
Floating point

OPC UA Int32
OPC UA Float

Tag
A data structure containing
three strings for tag kind,
armed, and comment.

A ByteString containing three
comma-separated fields: tag kind,
armed, and comment

See the section of this document called Setting and Clearing Tags for more information on the
specific tag fields.

Mapping between Returned ICCP Status Names and OPC UA Status Names for
Block 5 Data
The mapping between ICCP status names and OPC UA status names allows the application’s
OPC UA server to see device control results. ICCP controls (Block 5) have no quality bits, but
when an ICCP client receives an OPC UA device control, the ICCP client returns an MMS
status name and number.

LEC Server maps these MMS status names and numbers to a 32-bit integer (shown in hex) that
represents an OPC UA status name. If there is no mapping for an MMS status name, LEC
Server gives it the default OPC UA status name BadUnknownResponse. The following table
shows the OPC UA number that represents each of the MMS status names and codes returned
by ICCP.

Table 8: Mapping of ICCP Data Type to OPC UA Data Type

32-bit Integer
returned by LEC

Server in hex
OPC UA Status Name for

returned MMS Status NameC
MMS Status Name returned

by ICCP

MMS
Status
Code

returned
by ICCP

0 Good SUCCESS -1

0x803F0000 BadObjectDeleted INVALIDATED 0

0x808B0000 BadDeviceFailure FAULT 1

0x80040000 BadResourceUnavailable UNAVAILABLE 2

0x801F0000 BadUserAccessDenied DENIED 3

0x80340000 BadNodeIdUnknown UNDEFINED 4

0x80640000 BadSourceNodeIdInvalid INVALID_ADDRESS 5

0x80110000 BadDataTypeIdUnknown TYPE_UNSUPPORTED 6

0x80740000 BadTypeMismatch TYPE_INCONSISTENT 7

0x80620000 BadNodeAttributesInvalid ATTRIBUTE_INCONSISTENT 8

0x803D0000 BadNotSupported ACCESS_UNSUPPORTED 9

0x803E0000 BadNotFound NON_EXISTENT 10

49

0x80850000 BadRequestTimeout TIMEOUT 11

Mapping between OPC UA Status Codes and ICCP Access Results for Block 5
Data
The mapping between OPC status codes and ICCP access results allows the ICCP server to
see device control results. LEC Server provides a mapping between each OPC UA status name
and each MMS status name in the file StandardOpcToIccp.csv. You can change these
mappings by editing this file that is in the directory C: or
D:\ProgramData\LiveEnergyConnect\Config.

Since there are far fewer MMS status numbers/names than OPC UA status names, more than
one OPC UA status name has to be mapped to a single MMS status name. If an OPC UA name
is not mapped to an MMS status name, LEC Server will map the OPC UA status name to the
MMS status name as shown in the DEFAULT row of the table.

Table 9: Mapping of OPC Status Names to MMS Status Names and Numbers

OPC UA Status Name MMS Status Name MMS Number

GoodCompletesAsynchronously IN_PROCESS -2

Good SUCCESS -1

GoodLocalOverride SUCCESS -1

GoodEntryInserted SUCCESS -1

GoodEntryReplaced SUCCESS -1

GoodNonCriticalTimeout SUCCESS -1

BadObjectDeleted INVALIDATED 0

BadDeviceFailure FAULT 1

BadSensorFailure FAULT 1

BadResourceUnavailable UNAVAILABLE 2

BadNoCommunication UNAVAILABLE 2

BadInvalidState UNAVAILABLE 2

BadOutOfService UNAVAILABLE 2

BadStateNotActive UNAVAILABLE 2

BadUserAccessDenied DENIED 3

BadRequestTypeInvalid DENIED 3

BadMethodInvalid DENIED 3

BadNodeIdUnknown UNDEFINED 4

BadSourceNodeIdInvalid INVALID_ADDRESS 5

50

BadDataTypeIdUnknown TYPE_UNSUPPORTED 6

BadNotImplemented TYPE_UNSUPPORTED 6

BadDataEncodingUnsupported TYPE_UNSUPPORTED 6

BadTypeMismatch TYPE_INCONSISTENT 7

BadIndexRangeInvalid TYPE_INCONSISTENT 7

BadOutOfRange TYPE_INCONSISTENT 7

BadNodeAttributesInvalid ATTRIBUTE_INCONSISTENT 8

BadDataEncodingInvalid ATTRIBUTE_INCONSISTENT 8

BadArgumentsMissing ATTRIBUTE_INCONSISTENT 8

BadDeadbandFilterInvalid ATTRIBUTE_INCONSISTENT 8

BadAttributeIdInvalid ATTRIBUTE_INCONSISTENT 8

BadInvalidArgument ATTRIBUTE_INCONSISTENT 8

BadNotSupported ACCESS_UNSUPPORTED 9

BadNotWritable ACCESS_UNSUPPORTED 9

OPC UA Status Name MMS Status Name MMS Number

BadWriteNotSupported ACCESS_UNSUPPORTED 9

BadNotFound NON_EXISTENT 10

BadTimeout TIMEOUT 11

BadRequestTimeout TIMEOUT 11

DEFAULT INVALID_ADDRESS 5

Header Batch File Definitions
The header batch file sets up the Master Control, Heartbeat, and ServiceLevel variables, and
Input and Output Control points as well as the server and client agents. You must load the
header batch file from the machine on which LEC Server is installed after the configuration .db
file has been imported and prior to any other batch files. (See the section of this document
called Configuration Setup, Startup, and Remote Batch Load section for more information on
loading batch files.) This batch file is called AppTestAHeader.csv, and by default it is located in
C:\ProgramData\LiveEnergyConnect\Config. The following section defines each table and row
in the example header batch file.

#IccpUaServerAgent
This table defines the agent in the OPC UA server VMD.

#IccpUaServerAgent, <ServerIP>, <PublishingInterval>, <ServerName>, <CodeMapFile>,
<AppCertId>, <AuthorizedCerts>, <SecurityOpts>, <PointsPerSub>, <MaxSubs>,
<SubsPerSession>, <MaxSessions>,<push_by_status>,<AssocDownStatus>

51

AgentS, opc.tcp://127.0.0.1:4842/server/,,,,, *, NONE, , 50, 10, 50,0,BadCommunicationError

Table 10: Properties and Values of the OPC UA Server Agent

Node or Property Value Defines

#IccpUaServerAgent AgentS Name given to the OPC UA server
agent node.

<ServerIP> opc.tcp://127.0.0.1:4842/server/

The URI address of the OPC UA
server. The application’s OPC UA
client would connect to the OPC UA
server by specifying this address.

<PublishingInterval>

Minimum time in seconds between the
transmissions of subscribed data. By
default, the OPC UA server agent will
send transmissions immediately.

<ServerName> Name of the OPC UA server. The
default name is LiveData_OPC_UA.

<CodeMapFile>

The path of the ICCP-OPC code
mapping file. The default is
StandardOpcIccp.csv. See the section
called Mapping between Returned
ICCP Status Names and OPC UA
Status Names for Block 5 Data.

<AppCertId>

Descriptor that specifies the certificate
to use from the Windows Certificate
Store.
No value is given since the certificate
used in this example does not come
from the Windows Certificate Store.

<SecurityOpts> NONE
NONE specifies the security mode.
There are other security mode options
available.

<PointsPerSub> The maximum number of points per
subscription. The default is 10,000.

<MaxSubs> 50
The total number of subscriptions
permitted for this agent. The default is
100.

<SubsPerSession> 10 The number of subscriptions that are
allowed per session.

<MaxSessions> 50 The maximum number of sessions per
connection. The default is 10.

<push_by_status> 0

Enables or disables (default) OPC UA
server toggling unused bits in the OPC
UA status field to force otherwise
unchanged data propagate.

52

<AssocDownStatus> BadCommunicationError

Specifies which OPC UA status code
to apply to OPC UA server points
when the source ICCP association is
down

#IccpUaClientAgent
This table defines the agent in the OPC UA client VMD.

#IccpUaClientAgent, <ServerIP>, <PublishingInterval>, <ServerName>, <NS_URI>,
<CodeMapFile>, <AppCertId>, <SecurityOpts>, <PointsPerSub>, <MaxSubs>,
<SubsPerSession>, <MaxSessions>
,<StaleTime>,<TimeoutValidBit>,<ConnStatusBranch>,<ConnStatusNS>,<ConnStatusOpcLabe
l>,<ConnStatusServerAgent>,<InactiveTimeout>

AgentC, opc.tcp://127.0.0.1:4840/server/,,Test,,,, NONE, , 50, 10, 50 , 30000,
|VALID_HIGH|VALID_LOW,RTISystem, SYSTEM, OpcClientConnectionStatusForAgentC,
AgentS

Node or Property Value Defines

#IccpUaClientAgent AgentC Name given to the OPC UA
client agent node.

<ServerIP> opc.tcp://127.0.0.1:4840/server/

The URI address of the OPC UA
client. The application’s OPC UA
server would connect to this
client by specifying this address.

<PublishingInterval>

Minimum time in seconds
between the transmissions of
subscribed data. By default, the
OPC UA server agent will send
transmissions immediately.

<ServerName> Test
The name of the OPC UA server
to which the OPC UA client will
connect.

<NS_URI> URI for all points under this
agent.

<CodeMapFile>

The path of the ICCP-OPC UA
code mapping file. The default
is StandardOpcIccp.csv. See the
section called Mapping between
Returned ICCP Status Names
and OPC UA Status Names for
Block 5 Data.

<AppCertId>
Descriptor that specifies the
certificate to use from the
Windows Certificate Store.

<AuthorizedCerts> * * is a wildcard that specifies all
certificates except for those in

53

the Windows Certificate Store.
There are additional options for
specifying certificates.

<SecurityOpts> NONE
NONE specifies the security
mode. There are other security
mode options available.

<PointsPerSub>
The maximum number of points
per subscription. The default is
10,000.

<MaxSubs> 50
The total number of
subscriptions permitted for this
agent. The default is 100.

<SubsPerSession> 10 The number of subscriptions that
are allowed per session.

<MaxSessions>

50
The maximum number of
sessions per connection. The
default is 10.

<StaleTime> 30000 Number of milliseconds before
data is considered stale.

<TimeoutValidBit> VALID_HIGH|VALID_LOW Which ICCP quality validity bits
to set to indicate data is stale.

<ConnStatusBranch>
OPC UA server branch for
connection status variable for
this OPC UA client.

<ConnStatusNS>
OPC UA server namespace for
connection status variable for
this OPC UA client.

<ConnStatusOpcLabel>
Alternative name to get the
connection status OPC UA
server variable.

<ConnStatusServerAgent> AgentS
Name of OPC UA server agent
where client connection status
variable is available.

<InactiveTimeout>

Timeout in milliseconds data
inactivity. Change client
connection status to 4 when
timed out

#Master Control
Each IFE hosts a Master Control variable that toggles the instance between Active and Passive
modes. A remote OPC UA client can write to this Master Control variable. If an application’s
OPC UA client writes 1 to a Master Control variable, the IFE instance is set to Active mode;
conversely, if an application’s OPC UA client writes 0 to a Master Control variable, the IFE

54

instance is set to Passive mode. The #MasterControl table defines this variable, which is
exposed in the MasterControlOutForAgentS and MasterControlInForAgentS nodes.

#MasterControl, <agent>, <branch>, <NS_Suffix>

MasterControl, AgentS, LECSystem, SYSTEM

Prototype Node or Property Value Defines

#MasterControl MasterControl The name of the master control variable.

<agent> AgentS

The label of the OPC UA server agent that
handles communication for the nodes that have
access to the Master Control variable. These are
the MasterControlOutForAgentS and
MasterControlInForAgentS nodes.

<branch> LECSystem The OPC UA branch where this point is located.
Leaving blank indicates no branch.

<NS_Suffix> SYSTEM
The OPC UA namespace suffix for the
MasterControl node. Leaving blank indicates no
NS suffix.

#Heartbeat
The OPC UA server in each LEC Server instance has a heartbeat variable that is updated every
10 seconds. The #Heartbeat table defines the Heartbeat variable within the OPC UA server’s
HeartbeatForAgentS node.

#Heartbeat, <agent>, <branch>, <NS_Suffix>

Heartbeat, AgentS, LECSystem, SYSTEM

Prototype Node
or Property Value Defines

#Heartbeat Heartbeat The OPC UA variable name within HeartbeatForAgentS.

<agent> AgentS The label of the OPC UA server agent that handles
communication for the Heartbeat node.

<branch> LECSystem The OPC UA branch where this point is located. Leaving
blank indicates no branch.

<NS_Suffix> SYSTEM The OPC UA namespace suffix for the Heartbeat node.
Leaving blank indicates no NS suffix.

#HeartBeatFromApp
Each application’s OPC UA server writes to a heartbeat variable in an OPC UA client within
LEC Server. The application’s OPC UA server updates the value of the variable every 10
seconds. The local OPC UA client monitors this heartbeat value, and if it is not updated in 30
seconds, the LEC Server instance will go offline. The #HeartBeatFromApp table defines the
HeartbeatFromApp variable within the local OPC UA client.

55

#HeartBeatFromApp, <active>, <agent>, <branch>, <NS_Suffix>, <type>, <timeout>, <tag>,
<opc_label>

HeartbeatFromApp, 0, AgentC, LECSystem, SYSTEM, <int:32>, 30000, Heartbeat,
HeartbeatFromApp

#ConfigControlIn
The #ConfigControlIn table defines the input control point that a remote application’s OPC UA
client can use to modify an IFE configuration. DBLoadRequest is currently the only input control
point. For more information, see Loading of Batch Files.

Prototype Node
Name or
Property

Node Label or
Property Value Defines

#HeartBeatFrom
App HeartbeatFromApp A node within the OPC UA server that gets data (a

heartbeat) from an application’s OPC UA client.

<active> 0

0 indicates that the Heartbeat variable is not actively
monitored, meaning that LEC Server will not revert to
Passive mode even if the Heartbeat variable ceases to
increment. 1 would indicate that the Heartbeat variable is
actively monitored. If the Heartbeat variable is actively
monitored, the LEC Server instance would revert to Passive
mode if the Heartbeat variable ceases to increment.

Note: This is an internal variable required by the script
that is referenced in the #HeartBeatFromAppMonitor
node.

<agent> AgentC The label of the OPC UA client agent that handles
communication for the HeartbeatFromApp node.

<branch> LECSystem The OPC UA branch where this point is located. Leaving
blank indicates no branch.

<NS_Suffix> SYSTEM
Specifies the OPC UA namespace suffix for the
HeartbeatFromApp node. Leaving blank indicates no NS
suffix.

<type> <int:32> LEC data type of the HeartbeatFromApp node.

<timeout> 30000

Specifies the time in milliseconds that the IFE will wait for
the application’s heartbeat to increment.

Note: This particular value is internal to the workings of
the IFE.

<tag> Heartbeat The name of the variable that is to be passed to the
HeartBeatFromAppMonitor script.

<opc_label> HeartbeatFromApp
The OPC UA variable name that contains the counter
number. This variable name overrides the default name.
The default name is the same as the node label.

56

#ConfigControlIn, <agent>, <branch>, <NS_Suffix>, <type>, <tag>

DBLoadRequest, AgentS, LECSystem, SYSTEM, <v-s:-128>, DBLoadRequest

Prototype Node
Name or
Property

Node Label or
Property Value Defines

#ConfigControlIn DBLoadRequest
The label of the input variable that sets the path to a
command file which will load batch files. Writing to this
variable triggers the execution of the command file.

<agent> AgentS The label of the OPC UA server agent that handles
communication for the DBLoadRequest variable.

<branch> LECSystem The OPC UA branch where the DBLoadRequest variable is
located. Leaving blank indicates no branch.

<NS_Suffix> SYSTEM
Specifies the OPC UA namespace suffix for the
DBLoadRequest variable. Leaving it blank indicates no NS
suffix.

<type> <v-s:-128> LEC data type of the DBLoadRequest variable.

<tag> DBLoadRequest The name of the variable that is to be passed to the
DBLoader script for the DBLoadRequest variable.

#ConfigControlOut
This table defines the output variables that the OPC UA server uses to return error message
data to the OPC UA client. For more information, see the section of this documents called
Loading of Batch Files.

#ConfigControlOut, <agent>, <branch>, <NS_Suffix>, <type>, <tag>

DBLoadCommandLine, AgentS, LECSystem, SYSTEM, <v-s:-128>, DBLoadCommandLine

DBLoadErrorString, AgentS, LECSystem, SYSTEM, <v-s:-128>, DBLoadErrorString

DBLoadState, AgentS, LECSystem, SYSTEM, <int:32>, DBLoadState

DBLoadRequestedCommandFile, AgentS, LECSystem, SYSTEM, <v-s:-128>,
DBLoadRequestedCommandFile

DBLoadCurrentlyLoaded, AgentS, LECSystem, SYSTEM, <v-s:-128>, DBLoadCurrentlyLoaded

Prototype Node
Name or Property

Node Label/Output
Variable or Property

Value
Defines

#ConfigControlOut

DBLoadCommandLine

The label of the output variable that returns the line
on which the error occurred in the command file if an
error occurred.
DBLoadErrorString is the label of the output
variable that returns a string with the load error
message if there is one.

57

DBLoadState is the label of the output variable that
indicates the state of the load. 0 is OK; 1 is failed,
and -1 is busy.
DBLoadRequestedCommandFile is the label of the
output variable that contains the name of the
command file to which DBLoadState refers.
DBLoadCurrentlyLoaded is the label of the output
variable containing the name of the last command file
that loaded successfully; this variable is set just
before DBLoadState changes to 0. If the load fails,
DBLoadState is set to 1.

<agent> AgentS

The label of the OPC UA server agent that handles
communication for this point and for the
DBLoadErrorString, DBLoadState,
DBLoadRequestedCommandFile, and
DBLoadCurrentlyLoaded variables.

<branch> LECSystem

The OPC UA branch where this point and the
DBLoadErrorString, DBLoadState,
DBLoadRequestedCommandFile, and
DBLoadCurrentlyLoaded variables are located.
Leaving blank indicates no branch.

<NS_Suffix> SYSTEM

Specifies the OPC UA namespace suffix for this point
as well as for the DBLoadErrorString, DBLoadState,
DBLoadRequestedCommandFile, and
DBLoadCurrentlyLoaded variables. Leaving blank
indicates no NS suffix.

<type> <v-s:-128>

Specifies the OPC UA data type for this point and for
the DBLoadErrorString,
DBLoadRequestedCommandFile, and
DBLoadCurrentlyLoaded variables.

Note: The data type for DBLoadState is <int:32>.

<tag> DBLoadCommandLine

The name of the variable that is to be passed to the
DBLoader script for the DBLoadCommandLine point.
In addition, the DBLoadErrorString, DBLoadState,
and DBLoadCurrentlyLoaded variables pass the
DBLoadErrorString, DBLoadState, and
DBLoadCurrentlyLoaded tags to the DBLoader
script, respectively.

Note: These particular values are set in points on
the ConfigLoader VMD, which is internal to the
workings of the IFE.

VCC, VMD, Variables, and Node Batch File Definitions for AppTestA1
CSV
The following section shows an example batch file AppTestA1.csv that describes local and
remote VCCs as well as properties, nodes, and transfer sets. AppTestA1.csv contains the
tables that define the VCCs, VMDs, association control variables, and device points that allow
for the following types of communication:

58

• An application’s OPC UA server to pass Block 1 and Block 2 data to a remote ICCP
client.

• An application’s OPC UA server to pass Block 4 data to a remote ICCP client.

• A remote ICCP client to pass Block 5 controls to an application’s OPC UA server.

#sharemode
The share mode is set to none, meaning that its content is not for use by other batch files. It is
set at the beginning of the batch file.

#sharemode

none

#My_VCC
The #My_VCC table defines one or more local VCCs, along with their association configuration
parameters.

#My_VCC, <local_dom>, <remote_vcc>,
<remote_dom>,<assoc_out>,<assoc_in>,<client>,<server>, <iccp_features>, <security_flags>,
<assoc_verify>,<codemap_file>

AppTextA1A, AppLocDom, AppTestA2A, AppRemDom, 0, 1, 0, 1, 110110000000, 0,
1,AbbCodeMapping.csv

Prototype VCC or
Property Value In the VccCreate template, defines or indicates

#My_VCC AppTestA1A The common name of the local ICCP virtual device,
also known as a VCC.

<local_dom> AppLocDom The local domain name for server-side data.

<remote_vcc> AppTestA2A The common name of the remote VCC.

<remote_dom> AppRemDom The remote domain name for server-side data.

<assoc_out> 0

A Boolean value (0 or 1) that indicates whether the
VCC can make an outbound association or not.
0 prevents this VCC from making an outbound
association.

<assoc_in> 1
A Boolean value (0 or 1) that indicates whether the
VCC can make an inbound association or not.
1 enables an inbound association.

<client> 0

A Boolean value (0 or 1) that indicates whether this
VCC can serve the client role or not.
0 prevents this VCC from serving the client role.

Note: A VCC can be configured to be both a
client and a server.

<server> 1 A Boolean value (0 or 1) that indicates whether this
VCC can serve the server role or not.

59

1 enables this VCC to play the server role.

<iccp_features> 110110000000

Locally supported features represented with 12 1s or
0s, or a combination of both. The features represent
the blocks that are supported by the VCC. These
features must be the same as the remote node’s
features.

<security_flag> 0
A Boolean value (0 or 1) that indicates whether this
VCC utilizes secure ICCP or not.
0 indicates that this VCC does not use secure ICCP.

<assoc_verify> 1

A Boolean value (0 or 1). If <assoc_verify> is set to
1, the VCC periodically requests the peer VCC to
identify itself. If the request is not acknowledged by
the time specified in the timeout parameters, then the
ICCP server will abort the association. The ICCP
server can then establish a new association.

<codemap_file> AbbCodeMapping.csv

Text name of alterative codemap file for mapping
ICCP quality to/from OPC UA status. Overrides
default and any OPC UA server or client setting for
this VCC’s points.

#remote_vcc
The #remote_vcc table defines a named list of up to six remote ICCP peer VCCs for incoming
or outgoing associations. Note that the name is only a local identifier and not part of the
exchanged ICCP association information.

#remote_vcc,<remote_vcc_1>,<remote_vcc_2>,<remote_vcc_3>,<remote_vcc_4>,<remote_vc
c_5>,<remote_vcc_6>

AppTestA2A

Prototype VCC or
Property Value

Defines or indicates the names of the remote
VCCs associated with this instance of LEC

Server

#remote_vcc AppTestA2A
The common name of the remote VCC. This remote
VCC is configured to have an association with
AppTestA1A.

<remote_vcc_1> Not set by this batch file.
The common name of another remote VCC. This
remote VCC will also be configured to have an
association AppTestA1A.

<remote_vcc_2> Not set by this batch file.

<remote_vcc_3> Not set by this batch file.

<remote_vcc_4> Not set by this batch file.

<remote_vcc_5> Not set by this batch file.

<remote_vcc_6> Not set by this batch file.

60

#CommonName
The #CommonName table defines the association parameters for each local and remote VCC
defined in the #My_VCC and #remote_vcc tables. You can see these settings in the LDIB
Editor.

#CommonName,IpAddress,TSEL,SSEL,PSEL,ApTitle,AeQualifier,Secure

AppTestA1A, ,01, 01, 01, 1 3 9999 111, 102, 0

AppTestA2A, ,2, 2, 2, 1 3 9999 111, 102, 0

Prototype VCC
or Property Row 1 Row 2 Defines or indicates addressing and

other values in the LDIB

#CommonName AppTestA1A AppTestA2A The common names of two different
VCCs

IpAddress Not set by the
batch file.

Not set by the
batch file.

The IP addresses of each of the named
VCCs

TSEL 01 02 Transport selector

SSEL 01 02 Session selector

PSEL 0001 0002 Presentation selector

ApTitle 1 3 9999 111 1 3 9999 111 The ISO object IDs of the 3 devices

AeQualifier 102 102 Application entity qualifier10

Secure 0 0 Enables Secure ICCP if it is set to 1

#AssocInControl
The #AssocInControl table defines the association control variable and its configuration
parameters.

#AssocInControl
In the #AssocInControl example, the following schematic shows the connection between the
ICCP AssocInControl node and the OPC UA client node that has the specified Agent, Branch,
and Namespace properties.

#AssocInControl AppTestA1A/AssocInCtrl

(which is in a VCC) (which is in the OPC UA server)

AppTestA1A/AssocInControl allows an external OPC UA server that is connected to the local
OPC UA client to enable or disable an ICCP association. This connection is key to receiving

10 The original ISO model terminology talked about entities in each layer that communicated, using the
services of the layer below. There were network entities, transport entities, session entities, presentation
entities, and application entities. Application entity (Ae) refers to the top-level layer, known as the
application layer. An application entity is the Open System Interconnection (OSI) portion of an
Application Process (AP).

61

Block 5 controls from a remote ICCP point or sending Block 1 and Block 2 data to this remote
point.

#AssocInControl, <agent>, <branch>, <NS_Suffix>, <stale_time>, <timeout_valid_bit>

AssocInCtrl, AgentS, LECSystem, SYSTEM, 30000,
|VALID_LOW|VALID_HIGH

Prototype Node Name or
Property Value In the VccAssocControl template or

OpcUaAgent template

#AssocInControl AssocInCtrl Specifies the name of the node that
controls inbound associations.

<agent> AgentS

Specifies the agent label. There is no
Agent label property for AssocInCtrl,
but AssocInCtrl connects to a node
AppTestA1A/AssocInCtrl in the OPC
UA server that requires an Agent label.

<branch> LECSystem

The OPC UA branch where OPC UA
server points are located. There is no
Branch property for AssocInCtrl, but
AssocInCtrl connects to a node
AppTestA1A/AssocInCtrl in the OPC
UA server that require an Agent
branch. Leaving blank indicates no
branch.

<NS_Suffix> SYSTEM
Specifies the OPC UA namespace
suffix for AppTestA1A/AssocInCtrl.
Leaving blank indicates no NS suffix.

<stale_time> 30000

Specifies the period of time in
milliseconds that is allowed to elapse
while there is no association. After the
period of time has elapsed, the
association will time out, and input
points from this association are
assigned a quality code based on the
configured timeout validity bit settings:
VALID_LOW and VALID_HIGH.

<timeout_valid_bit> |VALID_LOW|VALID_HIGH

When the VCC is set to the Alarm
state, specifies whether the
VALID_LOW or the VALID_HIGH flag
is set or if both are set.

#OutboundPeerName and #InboundPeerName
The #OutboundPeerName and #InboundPeerName table defines the OPC UA server point that
provides the text name of the connected outbound or inbound peer VCC.

#OutboundPeerName, <agent>, <branch>, <NS_Suffix>, <opc_label>

OutboundPeer, AgentS, RTISystem, ,

62

#InboundPeerName, <agent>, <branch>, <NS_Suffix>, <opc_label>

InboundPeer, AgentS, RTISystem, ,

Prototype Node Name or
Property Value In the VccAssocControl template or

OpcUaAgent template

#OutboundPeerName/Inbou
ndPeerName OutboundPeer/InboundPeer

Specifies the name of the node that
reports name of outbound/inbound
peer

<agent> AgentS

Specifies the agent label. There is no
Agent label property for AssocInCtrl,
but AssocInCtrl connects to a node
AppTestA1A/AssocInCtrl in the OPC
UA server that requires an Agent label.

<branch> LECSystem

The OPC UA branch where OPC UA
server points are located. There is no
Branch property for AssocInCtrl, but
AssocInCtrl connects to a node
AppTestA1A/AssocInCtrl in the OPC
UA server that require an Agent
branch. Leaving blank indicates no
branch.

#Blk1ToIccp
The #Blk1ToIccp table defines the local ICCP server points that receive telemetry and status
data from an external OPC UA. This data is transferred to a peer ICCP client.

External OPC
UA server

 Local OPC
UA client

 Local ICCP
server

 Remote
ICCP client

#Blk1ToIccp, <NS_Suffix>, <branch>, <type>, <agent>, <dom_scope>, <opc_label>

MEAS_TEST_1A_00000, Reals, , Data_RealQTimeTagExtended, AgentC, 0,
"DevMeas_1A_00000"

MEAS_TEST_1A_FI1, Reals, , Data_RealQ, AgentC, 0, "DevMeas_1A_FI"

MEAS_TEST_1A_FI2, Reals, , Data_RealQ, AgentC, 0, "DevMeas_1A_FI"

STATUS_TEST_1A_00000, Statuses, , Data_StateQTimeTagExtended, AgentC, 1,
"DevStatus_1A_00000"

STATUS_TEST_1A_FI1, Statuses, , Data_StateQ, AgentC, 0, "DevStatus_1A_FI1"

STATUS_TEST_1A_FI2, Statuses, , Data_StateQ, AgentC, 0, "DevStatus_1A_FI2"

Prototype Node Name or
Property Rows 1 through 6 Defines or indicates

#Blk1ToIccp
MEAS_ 1A_00000
MEAS_TEST_1A_FI1
MEAS_TEST_1A_FI2

Specifies local ICCP node names that
receive data from the external OPC UA
server. The nodes beginning with MEAS

63

#Blk5FromIccp
The #Blk5FromIccp table defines local ICCP Block 5 setpoint nodes that originate on a remote
ICCP client; the LEC Server instance writes these setpoint values to nodes on an external OPC
UA server.

Remote
ICCP client

 Local
ICCP
server

 Local
OPC UA
client

 External OPC UA
server

STATUS_TEST_1A_00
000
STATUS_TEST_1A_FI
1
STATUS_TEST_1A_FI
2

receive telemetry data, and the nodes
beginning with STATUS receive status data.

<NS_Suffix>

Reals
Reals
Reals
Statuses
Statuses
Statuses

Specifies the OPC UA namespace suffix for
the external OPC UA server nodes where
the telemetry and status data originate.
Leaving blank indicates no NS suffix.

<branch> Not set.

Specifies the OPC UA branch on the
external OPC UA server where the telemetry
and status data is located.
Leaving blank indicates no branch.

<type>

E
Data_RealQTimeTagE
xtended
Data_RealQ
Data_RealQ
Data_StateQTimeTagE
xtended
Data_StateQ
Data_StateQ

ICCP data type of the data in the ICCP
nodes:
MEAS_TEST_1A_00000
MEAS_TEST_1A_Fl1
MEAS_TEST_1A_Fl2
STATUS_TEST_1A_00000
STATUS_TEST_1A_FI1
STATUS_TEST_1A_FI2

<agent> AgentC

Label that specifies the client OPC UA agent
node that handles the connection to the
application’s OPC UA server.

<branch> RTISystem
The OPC UA server branch where the
variable is located. Leaving blank indicates
no branch.

NS_Suffix>
The OPC UA server namespace suffix for
this variable. Leaving blank indicates no
namespace suffix.

<opc_label> Alternative OPC UA server variable name for
this point.

64

#Blk5FromIccp, <NS_Suffix>, <branch>, <tagging_branch>, <type>, <flags>, <tagging_point>,
<agent>, <ChkBkId>, <dom_scope>, <opc_label>

CONTROL_TEST_1A_00000, Discretes, ASYS, , <int:16>, DISCRETE, , AgentC, 681, 0,
"DevCtrl_1A_00000"

CONTROL_TEST_1A_00001, Discretes, ASYS, , <int:16>, DISCRETE|SBO, , AgentC, 681, 0,
"DevCtrl_1A_00001"

CONTROL_TEST_ 00002, Discretes, ASYS, , <int:16>, DISCRETE|TAGABLE, , AgentC, 681,
0, "DevCtrl_1A_00002"

CONTROL_TEST_ 00003, Discretes, ASYS, , <int:16>, DISCRETE|TAGABLE|SBO, , AgentC,
681, 0, "DevCtrl_1A_00003"

CONTROL_TEST_FO1, Discretes, ASYS, , <int:16>, DISCRETE| SBO, , AgentC, 681, 0,
"DevCtrl_1A_FO1"

CONTROL_TEST_FO2, Discretes, ASYS, , <int:16>, DISCRETE| SBO, , AgentC, 681, 0,
"DevCtrl_1A_FO2"

SETPOINT_TEST_1A_00000, Reals, ASYS, , <f-p:32:8>, REAL, , AgentC, 681, 0,
"DevSet_1A_00000"

SETPOINT _TEST_1A_00001, Reals ASYS, , <f-p:32:8>, REAL|SBO, , AgentC, 9, 0,
"DevSet_1A_00001"

SETPOINT _TEST_1A_00002, Reals, ASYS, , <f-p:32:8>, REAL|TAGABLE, , AgentC, 9, 0,
"DevSet_1A_00002"

SETPOINT_TEST_1A_00003, Reals, ASYS, , <f-p:32:8>, REAL|TAGABLE|SBO, , AgentC, 9,
0, "DevSet_1A_00003"

SETPOINT_TEST_1A_FO1, Reals, ASYS, , <f-p:32:8>, REAL, , AgentC, 9, 0, "DevSet_1A_
FO1"

SETPOINT_TEST_1A_FO2, Reals, ASYS, , <f-p:32:8>, REAL, , AgentC, 9, 0, "DevSet_1A_
FO2"

Prototype Node
Name or Property Rows 1 through 12 Defines or indicates

#Blk5FromIccp

CONTROL_TEST_1A_00000
CONTROL_TEST_1A_00001
CONTROL_TEST_1A_00002
CONTROL_TEST_1A_00003
CONTROL_TEST_1A_ FO1
CONTROL_TEST_1A_ FO2
SETPOINT_TEST_1A_00000
SETPOINT_TEST_1A_00001
SETPOINT_TEST_1A_00002
SETPOINT_TEST_1A_00003
SETPOINT_TEST_1A_ FO1
SETPOINT_TEST_1A_ FO2

Defines names of the local ICCP nodes that
transmit control data from the ICCP peer
through a two-way connector.

<NS_Suffix> Discretes Discretes
Discretes

Specifies the OPC UA namespace suffix for
the external OPC UA server points that

65

Discretes Discretes
Discretes
Reals Reals
Reals Reals
Reals Reals

receive the ICCP controls. Leaving blank
indicates no NS suffix.

<branch> ASYS

The OPC UA branch where these OPC UA
server points are located. Leaving blank
indicates no branch.
In this example, all of the receiving server
points are located in the ASYS branch.

<tagging_branch> Not set.
OPC UA tagging point branch name; the
default is the OPC UA control point branch
name.

<type>

<int:16> <int:16>
<int:16> <int:16>
<int:16> <int:16>
<f-p:32:8> <f-
p:32:8> <f-p:32:8>
<f-p:32:8> <f-
p:32:8> <f-p:32:8>

Specifies the data type of the external,
receiving OPC UA server nodes.
All of the first set of points are <int:16>.
All of the next set of points are <f-
p:32:8>.

<flags>

DISCRETE
DISCRETE|SBO
DISCRETE|TAGABLE
DISCRETE|TAGABLE|SBO
DISCRETE|SBO
DISCRETE|SBO
REAL
REAL|SBO
REAL|TAGABLE
REAL|TAGABLE|SBO
REAL
REAL

Specifies the flag or flags of the receiving
ICCP control points within LEC Server:
REAL – The control point is a floating-point
number
DISCRETE – The control point is an integer
SBO – The control point supports Select
Before Operate
TAGABLE – The control point supports
tagging

<tagging_point> Not set.
OPC UA control tagging point name; the
default is the OPC UA control point name
with _TAG appended.

<agent> AgentC
Label of the local OPC UA client agent node
to handle the connection with the external
OPC UA server.

<ChkBkId>

681 681
681 681
681 681
9 9
9 9
9 9

Expected Check back ID.
The expected Check back ID for the first set
of control points is 681.
The expected Check back ID for the second
set of control points is 9.

<dom_scope> 0

Indicates the scope of the variables in the
remote VCC. The scope in that VCC
is VMD-specific as indicated
by <dom_scope> of 0 for all points. A
<dom_scope> of 1 would indicate Domain-

66

specific scope, which refers to the domain
specified by <remote_dom> in the
#My_VCC table.

<opc_label>

"DevCtrl_1A_00000"
"DevCtrl_1A_00001"
"DevCtrl_1A_00002"
"DevCtrl_1A_00003"
"DevCtrl_1A_ FO1"
"DevCtrl_1A_ FO1"
"DevSet_1A_00000"
"DevSet_1A_00001"
"DevSet_1A_00002"
"DevSet_1A_00003"
"DevSet_1A_ FO1"
"DevSet_1A_ FO1"

OPC UA control point labels. This variable
name overrides the default name. The
default name is the same as the node label.

#ConfirmedBlk4ToIccp
The #ConfirmedBlk4ToIccp table defines local ICCP Block 4 messaging points to hold data that
originate from an external OPC UA client; the local ICCP server sends each message to the
remote ICCP client points. The underlying ConfirmedMessageToIccp node receives the
message from the local OPC UA server node, which is a ConfirmedMessageFromOpcUa node,
through a two-way connector. The ConfirmedMessageToIccp node returns a confirmation to the
originating OPC UA client through the ConfirmedMessageFromOpcUa node. This confirmation
indicates only that the message got to a local ICCP server and is likely to get to the remote
ICCP point, but the remote ICCP client sends no confirmation indicating whether or not it
received the message.

External
OPC UA
client

 Local OPC
UA server

 Local
ICCP
server

 Remote ICCP client

#ConfirmedBlk4ToIccp, <NS_Suffix>, <branch>, <InfoRef>, <LocalRef>, <agent>,
<dom_scope>, <opc_label>

MSG_TEST_1A_1_2, Messages, , 1, 2, AgentS, 0,
DevMess_1A_1_2

MSG_TEST_1A_X_4, Messages, , , 4, AgentS, 0,
DevMess_1A_X_4

MSG_TEST_1A_5_X, Messages, , 5, , AgentS, 0,
DevMess_1A_5_X

MSG_TEST_1A_X_X, Messages, , , , AgentS, 0,
DevMess_1A_X_X

Prototype Node Name or
Property Rows 1 to 3 Defines

#Blk4ToIccp
MSG_TEST_1A_1_2
MSG_TEST_1A_X_4
MSG_TEST_1A_5_X

The local ICCP server point names for
nodes that receive Block 4 message

67

MSG_TEST_1A_X_X data for specific InfoRef/LocalRef pairs
from an OPC UA server.

<NS_Suffix> Messages
Specifies the OPC UA namespace suffix
for these points. Leaving blank indicates
no NS suffix.

<branch> Not set.
The OPC UA branch where this point is
located. Leaving blank indicates no
branch.

<InfoRef>

1
Not set.
5
Not set.

ICCP InfoReference number for this
message. The default is to accept any
number.
MSG_TEST_1A_1_2 sets the number to
1
MSG_TEST_1A_X_4 does not set this
number.
MSG_TEST_1A_5_X sets the number to
5.
MSG_TEST_1A_X_X does not set this
number.
The InfoReference number in
combination with the LocalReference
number are used to identify the context
of a message, and internal to Oracle
Utilities LEC Server to route messages
to and from LEC variables.

<LocalRef>

2
4
Not set.
Not set.

ICCP LocalReference number for this
message. The default is to accept any
number.
MSG_TEST_1A_1_2 sets the number to
2
MSG_TEST_1A_X_4 sets the number to
4.
MSG_TEST_1A_5_X does not set this
number.
MSG_TEST_1A_X_X does not set this
number.

<agent> AgentS
Label of the OPC UA server agent node
to handle the connection to the external
OPC UA client.

<dom_scope> 0

Indicates the scope of the variables in
the local VCC. The scope in this VCC is
VMD-specific as denoted by
<dom_scope> of 0. A <dom_scope> of 1
would indicate Domain-specific scope,
which refers to the domain specified
by <local_dom> in the #My_VCC table.

<opc_label>
DevMess_1A_1_2
DevMess_1A_X_4
DevMess_1A_5_X

Specifies the OPC UA variable name.
These OPC UA variables are in the
external OPC UA client where the Block

68

DevMess_1A_X_X 4 messages originate. They also identify
where the confirmed messages are sent
from the local ICCP client.
These variable names override the
default names. The default name is the
same as the node label.

VCC, VMD, Variables, and Node Batch File Definitions for AppTestA2
CSV
The following section shows an example batch file AppTestA2.csv that describes local and
remote VCCs as well as properties, nodes, and transfer sets. AppTestA2.csv contains the
tables that define the VCCs, VMDs, association control variables, and device points that allow
for the following types of communication:

• A remote ICCP server to pass Block 1 and Block 2 data to an application’s OPC UA
client.

• A remote ICCP server to pass Block 4 data to an application’s OPC UA client.

• An application’s OPC UA client to pass Block 5 controls to a remote server.

#sharemode
The share mode is set to none, meaning that its content is not for use by other batch files. It is
set at the beginning of the batch file.

#sharemode

none

#ts_num
The #ts_num table defines one or more ICCP transfer sets and their configuration parameters.

#ts_num,<do_interval>,<interval_period>,<do_integrity>,<integrity_period>,<do_change>,<buff
er_time>,<do_rbe>,<do_initial_read>,<critical>, <branch>, <NS_Suffix>, <agent>

1,1,10,1,60,1,2,1,1,0

Property Value In DsTransferSet template

#ts_num 1 Assigns a transfer set number that is unique to this VCC.

<do_interval> 1
A Boolean value (0 or 1) that indicates whether or not interval-
based transmissions are enabled.
1 enables interval-based transmissions.

<interval_period> 10 Specifies the interval in seconds between transmissions if interval-
based transmissions are enabled.

<do_integrity> 1
A Boolean value (0 or 1) that indicates whether or not integrity-
based transmissions are enabled.
1 enables integrity-based transmissions.

69

<integrity_period> 60 Specifies the integrity period in seconds between transmissions if
integrity-based transmissions are enabled.

<do_change> 1

A Boolean value (0 or 1) that indicates whether or not change-
based transmissions are enabled. If <do_change> is set to 1, a
change in any point in the transfer set will trigger the sending of a
report.
In this example, <do_change> is set to 1. See the description of
<do_rbe> for more information.

<buffer_time> 2

Indicates the buffer time in seconds. A non-zero buffer time with
change-based transmissions enabled (<do_change> is set to 1)
causes a delay of the specified number of seconds after the first
change before sending a report. This delay allows subsequent
changes to be included in the same report.
In this example, <buffer_time> is set to 2 seconds.

<do_rbe> 1

A Boolean value (0 or 1) that indicates whether report by
exception is enabled. When a report is sent because an object
changed <do_change> or because a specified time period
<do_interval> elapsed:
Only points that changed since the last report are sent if <do_rbe>
is set to 1.
The whole transfer set is sent if <do_rbe> is set to 0.
In this example, <do_rbe> is set to 1.

<do_initial_read> 1
A Boolean value (0 or 1) that indicates whether an initial read of
data values is required. 1 directs LEC Server to perform an initial
read.

<critical> 0 If <critical> is set to 1, acknowledgement is required. If not set to
1, no acknowledgement is required.

<branch> OPC UA server branch for this transfer set’s control and status
variables. Leaving blank indicates no branch.

<NS_Suffix> OPC UA server namespace suffix for this transfer set’s control and
status variables. Leaving blank indicates no namespace suffix.

<agent> AgentS Name of the OPC UA server agent where this transfer set’s
control and status variables are available.

#Blk4_buflen
The #Blk4_buflen table defines a set of local ICCP Block 4 data buffers of various sizes that are
created to hold Block 4 data received from the remote ICCP server. The data flow diagram
shown in #Blk4MessageRouter in the next section outlines the path the buffer data takes from
the remote ICCP server to the OEM’s OPC UA client.

#Blk4_buflen, <BufLen>, <dom_scope>

Info_Buff_16, 16, 0

Info_Buff_64, 64, 0

Info_Buff_256, 256, 0

Info_Buff_1024, 1024, 0

70

Info_Buff_4096, 4096, 0

Prototype Node Name
or Property Rows 1 through 5 Defines

#Blk4_buflen

Info_Buff_16
Info_Buff_64
Info_Buff_256
Info_Buff_1024
Info_Buff_4096

The node name

<BufLen>

16
64
256
1024
4096

The buffer length in bytes.

<dom_scope> 0

Indicates the scope of the variables in the
local VCC. The scope in this VCC is VMD-
specific as denoted by <dom_scope> of 0. A
<dom_scope> of 1 would indicate Domain-
specific scope, which refers to the domain
specified by <local_dom> in
the #My_VCC table.

#Blk4MessageRouter
The #Blk4MessageRouter table defines the fields in the messageRouterToOpcUa template that
are used in the OPC UA server. The messageRouterToOpcUa mechanism provides ICCP Block
4 message routing based on the InfoRef/LocalRef pairs so that a message from ICCP will be
associated with the local OPC UA variable that the remote OPC UA client has subscribed to.

The data point in Blk4FromIccpRouter originates from a remote ICCP server and follows the
path that is described below.

Remote ICCP
server

 Local ICCP
client

 Local OPC
UA server

 External OPC
UA client

Note: The messageRouterToOpcUa template takes merged ICCP message buffers from the local
ICCP client and associates each buffer with the corresponding OPC UA variable in the local OPC UA
server. If the OEM’s OPC UA client subscribes to these variables, it can receive updates through an
update connector.

! Message router to route block 4 messages from external ICCP server to specific OPC UA
points subscribed to by external UPC UA client via LEC IFE.

#Blk4MessageRouter, <agent>

Blk4FromIccpRouter, AgentS

71

Prototype Node Name or
Property Rows 1 through 5 Defines

#Blk4MessageRouter Blk4FromIccpRouter The node name

<agent> AgentS
Specifies whether the OPC UA VMD is a
client or a server. In this case, the VMD is an
OPC UA server.

#Blk4FromIccp
The #Blk4FromIccp table defines local ICCP Block 4 messaging nodes in the local OPC UA
server that hold Block 4 messages originating from a remote ICCP server; the LEC Server
configuration makes this data available to an external OPC UA client that has subscribed to
these points by specifying InfoRef-LocalRef pairs.

Remote ICCP
server

 Local ICCP
client

 Local
OPC UA
server

 External
OPC UA
client

#Blk4FromIccp, <NS_Suffix>, <branch>, <InfoRef>, <LocalRef>, <agent>,
<opc_label>

MSG_TEST_00A_1_2, Messages, , 1, 2, AgentS,
DevMESS_00A_1_2

MSG_TEST_00A_X_4, Messages, , , 4, AgentS,
DevMESS_00A_X_4

MSG_TEST_00A_5_X, Messages, , 5, , AgentS,
DevMESS_00A_5_X

MSG_TEST_00A_X_X, Messages, , , , AgentS,
DevMESS_00A_X_X

Prototype Node Name
or Property Rows 1 to 4 Defines

#Blk4FromIccp

MSG_TEST_00A_1_2
MSG_TEST_00A_X_4
MSG_TEST_00A_5_X
MSG_TEST_00A_X_X

The local ICCP client message names for
nodes that receive ICCP Block 4 message
data in the local OPC UA server from a remote
ICCP server. These batch nodes are
generated from the messageToOpcUa
template.

<NS_Suffix> Messages

Specifies the OPC UA namespace suffix for
local OPC UA server points that are available
to receive this Block 4 messages from the local
ICCP client. Leaving blank indicates no NS
suffix.

<branch> Not set The OPC UA branch where these points are
located. Leaving blank indicates no branch.

<InfoRef> 1 ICCP InfoReference number for this message.

72

blank
5
blank

MSG_TEST_00A_1_2 sets the number to 1
MSG_TEST_00A_X_4 does not set the
InfoReference number.
MSG_TEST_00A_5_X sets the number to 5.
MSG_TEST_00A_X_X does not set the
InfoReference number.
This number is a 32-bit signed integer.

<LocalRef>

2
4
blank
blank

ICCP LocalReference number for this
message. The default is to accept any number.
MSG_TEST_00A_1_2 sets the number to 2
MSG_TEST_00A_X_4 sets the number to 4.
MSG_TEST_00A_5_X does not set the
LocalReference number.
MSG_TEST_00A_X_X does not set the
LocalReference number.
This number is a 32-bit signed integer.

<agent> AgentS
Label of the OPC UA server agent node that is
to handle the connection to the external OPC
UA client.

<dom_scope> 0

Indicates the scope of the variables in the
remote VCC. The scope in that VCC is VMD-
specific as indicated by <dom_scope> of 0. A
<dom_scope> of 1 would indicate Domain-
specific scope, which refers to the domain
specified by <remote_dom> in the #My_VCC
table.

<opc_label>

DevMESS_00A_1_2
DevMESS_00A_X_4
DevMESS_00A_5_X
DevMESS_00A_X_X

Specifies the OPC UA variable name in the
external OPC UA client. The default name is
the same as the node label.

#Blk1FromIccp
The #Blk1FromIccp table defines local ICCP Block 1 points. The data points in these nodes
originate from a remote ICCP server and are transferred to an external OPC UA client through
the OPC UA mechanism of subscription.

Remote ICCP
server

 Local ICCP
client

 Local OPC
UA server

 External OPC
UA client

#Blk1FromIccp, <NS_Suffix>, <branch>, <type>, <agent>, <dom_scope>, <ts_num>,
<opc_label>, <filter>, <slope>, <offset>, <s0>, <s1>, <s2>, <s3>, <data_timeout>,
<codemap_file>,,,,,,,,,

MEAS_TEST_1A_00000, Reals, , Data_RealQTimeTagExtended, AgentS, 0, 1,
"DevMeas_1A_00000",,,,,,,,,

MEAS_TEST_1A_FI1, Reals, , Data_RealQ, AgentS, 0, 1, "DevMeas_1A_FI1",,,,,,,,,

MEAS_TEST_1A_Fl2, Reals, , Data_RealQ, AgentS, 0, 1, "DevMeas_1A_ Fl2",,,,,,,,,

73

STATUS _1A_00000, Statuses, , Data_StateQTimeTagExtended, AgentS, 0, 1,
"DevStatus_1A_00000",,,,,,,,,

STATUS_TEST_1A_Fl1, Statuses, , Data_StateQ, AgentS, 0, 1, "DevStatus_1A_ Fl1",,,,,,,,,

STATUS_TEST_1A_Fl2, Statuses, , Data_StateQ, AgentS, 0, 1, "DevStatus_1A_ Fl2",,,,,,,,,

Prototype Node
Name or Property Rows 1 and 2 Defines or indicates

#Blk1FromIccp

MEAS_TEST_1A_00000
MEAS_TEST_1A_Fl1
MEAS_TEST_1A_Fl2
STATUS_TEST_1A_00000
STATUS_TEST_1A_Fl1
STATUS_TEST_1A_Fl2

Specifies local ICCP node names which will
contain data that the configuration transmits
to the local OPC UA server.
The nodes beginning with MEAS will contain
telemetry data, and the nodes beginning with
STATUS will contain status data.

<NS_Suffix>

Reals Reals
Reals
Statuses Statuses
Statuses

Specifies the OPC UA namespace suffix for
the OPC UA server nodes that receive this
data from LEC’s ICCP client nodes. Leaving
blank indicates no NS suffix.

<branch> Not set.
The OPC UA branch where these receiving
points are located. Leaving it blank indicates
no branch.

<type>

Data_RealQTimeTagExtend
ed Data_RealQ
Data_RealQ
Data_StateQTimeTagExten
ded Data_StateQ
Data_StateQ

LEC data type of the data in the local ICCP
client nodes MEAS_TEST_1A_00000,
MEAS_TEST_1A_Fl1, MEAS_TEST_1A_Fl2,
STATUS_TEST_1A_00000,
STATUS_TEST_1A_Fl1, and
STATUS_TEST_1A_Fl2.

<agent> AgentS
Specifies a label for the local OPC UA server
agent node that handles the connection to the
external OPC UA client.

<dom_scope> 0

Indicates the scope of the variables in the
remote VCC. The scope is VMD-specific as
indicated by <dom_scope> of 0. A
<dom_scope> of 1 would indicate Domain-
specific scope, which refers to the domain
specified by <remote_dom> in the #My_VCC
table.

<ts_num> 1 Specifies the transfer set number that is
unique to this VCC.

<opc_label>

"DevMeas_1A_00000"
"DevMeas_1A_Fl1"
"DevMeas_1A_Fl2"
"DevStatus_1A_00000"
"DevStatus_1A_Fl1"
"DevStatus_1A_Fl2"

Specifies the OPC UA data point names. The
default OPC UA point name is the node label.
These points reside on the local OPC UA
server.
The nodes beginning with DevMeas will
receive telemetry data, and the nodes
beginning with DevStatus will receive status
data.

74

<filter>
Name, either STATE or SCALE, of the filter to
use for this point. Leaving blank indicates no
filter.

<slope>
If SCALE filter is used, the slope (multiplier) to
apply to this point. Leaving blank indicates no
slope.

<offset>
If SCALE filter is used, the offset (summand)
to add to this point. Leaving blank indicates
no offset.

<s0>
When STATE filter is used, value to replace
this point’s value with when actual value is 0.
Leaving blank indicates no replacement.

<s1> Same as above but for actual value 1.

<s2> Same as above but for actual value 2.

<s3> Same as above but for actual value 3.

#Blk5ToIccp
The #Blk5ToIccp table defines local ICCP Block 5 setpoint nodes. The data points that are
written to these nodes originate from an external OPC UA client; the LEC Server instance
transfers the values in these setpoint nodes to nodes on a peer ICCP server using the ICCP
Write mechanism. #Blk5ToIccp is based on a ControlFromOpcUa template within the local OPC
UA server.

External OPC
UA client

 Local
OPC UA
server

 Local
ICCP
client

 Remote ICCP server

#Blk5FToIccp, <NS_Suffix>, <branch>, <tagging_branch>, <type>, <flags>, <tagging_point>,
<agent>, <ChkBkId>, <dom_scope>, <timeout>, <tag_pollclass>,<opc_label>

CONTROL_TEST_1A_00000, Discretes, ASYS,,<int:16>, DISCRETE,, AgentS, 681, 0, 6000,
,"DevCtrl_1A_00000"

CONTROL_TEST_1A_00001, Discretes, ASYS, , <int:16>, DISCRETE|SBO, , AgentS, 681, 0,
6000, ,"DevCtrl_1A_00001"

CONTROL_TEST_1A_00002, Discretes, ASYS, , <int:16>, DISCRETE|TAGABLE, , AgentS,
681, 0, 6000, ,"DevCtrl_1A_00002"

CONTROL_TEST_1A_00003, Discretes, ASYS, , <int:16>, DISCRETE|TAGABLE|SBO, ,
AgentS, 681, 0, 6000, ,"DevCtrl_1A_00003"

CONTROL_TEST_1A_FO1, Discretes, ASYS, ,<int:16>, DISCRETE|SBO, , AgentS, 681, 0,
6000, ,"DevCtrl_1A_ FO1"

75

CONTROL_TEST_1A_FO2, Discretes, ASYS, ,<int:16>, DISCRETE|SBO, , AgentS, 681, 0,
6000, ,"DevCtrl_1A_ FO2"

SETPOINT_TEST_1A_00000, Reals, ASYS, , <f-p:32:8>, REAL,, AgentS, 9, 0, 6000, ,
"DevCtrl_1A_00000"

SETPOINT_TEST_1A_00001, Reals, ASYS, , <f-p:32:8>, REAL|SBO, , AgentS, 9, 0, 6000,
,"DevCtrl_1A_00001"

SETPOINT_TEST_1A_00002, Reals, ASYS, , <f-p:32:8>, REAL|TAGABLE, , AgentS, 9, 0,
6000, ,"DevCtrl_1A_00002"

SETPOINT_TEST_1A_00003, Reals, ASYS, , <f-p:32:8>, REAL|TAGABLE|SBO, , AgentS, 9, 0,
6000, ,"DevCtrl_1A_00003"

SETPOINT_TEST_1A_FO1, Reals, ASYS, , <f-p:32:8>, REAL, , AgentS, 9, 0,
6000,,"DevCtrl_1A_ FO1"

SETPOINT_TEST_1A_FO2, Reals, ASYS, , <f-p:32:8>, REAL, , AgentS, 9, 0,
6000,,"DevCtrl_1A_ FO2"

Prototype Node
Name or Property Rows 1 through 12 Defines or indicates

#Blk5ToIccp

CONTROL_TEST_1A_00000
CONTROL_TEST_1A_00001
CONTROL_TEST_1A_00002
CONTROL_TEST_1A_00003
CONTROL_TEST_1A_ FO1
CONTROL_TEST_1A_ FO2
SETPOINT_TEST_1A_00000
SETPOINT_TEST_1A_00001
SETPOINT_TEST_1A_00002
SETPOINT_TEST_1A_00003
SETPOINT_TEST_1A_ FO1
SETPOINT_TEST_1A_ FO2

Defines internal names for passing
setpoint data in the local OPC UA
server.

<NS_Suffix>

Discretes
Discretes
Discretes
Discretes
Discretes
Discretes
Reals Reals
Reals Reals
Reals Reals

Specifies the OPC UA namespace suffix
for the local OPC UA server points that
transmit the ICCP data. Leaving blank
indicates no NS suffix.

<branch> ASYS

The OPC UA branch where these OPC
UA server points are located. Leaving it
blank indicates no branch.
All of these points are in the ASYS
branch.

<tagging_branch> Not set.
OPC UA tagging point branch name; the
default is the OPC UA point branch
name.

76

In this example, the tagging branch
name for all points is the default branch
ASYS.

<type>

<int:16> <int:16>
<int:16> <int:16>
<int:16> <int:16>
<f-p:32:8> <f-
p:32:8> <f-p:32:8>
<f-p:32:8> <f-
p:32:8> <f-p:32:8>

Specifies the data type of the local OPC
UA server nodes from where the control
information is passed.

<flags>

DISCRETE
DISCRETE|SBO
DISCRETE|TAGABLE
DISCRETE|TAGABLE|SBO
DISCRETE|SBO
DISCRETE|SBO
REAL REAL|SBO
REAL|TAGABLE
REAL|TAGABLE|SBO REAL
REAL

Specifies the control flags of the
receiving local ICCP control points:
REAL – The control point is a floating-
point number
DISCRETE – The control point is an
integer
SBO – The control point supports Select
Before Operate
TAG – The control point supports
tagging
The bar (|) represents an AND.
INTEGER|SBO indicates that the value
is an integer number and that the control
point supports Select Before Operate.

<tagging_point> Not set.

OPC UA tagging point name. The OPC
UA tagging point name is a variable
contained in the local OPC UA server.
The default is the external OPC UA point
name with _TAG appended.

<agent> AgentS
Label of the OPC UA server agent node
to handle the connection with the
external OPC UA client.

<ChkBkId>

681 681
681 681
681 681
9 9
9
9 9
9

Expected Check back ID.
The expected Check back ID for the first
set of control points is 681.
The expected Check back ID for the
second set of control points is 9.

<dom_scope> 0

Indicates the scope of the variables in
the local VCC. The scope in this VCC is
VMD-specific as denoted by
<dom_scope> of 0. A <dom_scope> of 1
would indicate Domain-specific scope,
which refers to the domain specified
by <local_dom> in the #My_VCC table.

<timeout> 6000
Specifies the timeout in milliseconds to
abort a pending control or set point
operation.

77

<tag_pollclass> Not set.

Defines the poll period. The available
poll periods are as follows:
1 to specify 10 seconds
4 to specify one minute
Any number between 4 and 1024 will
resolve to the default, which is one
minute.

<opc_label>

"DevCtrl_1A_00000"
"DevCtrl_1A_00001"
"DevCtrl_1A_00002"
"DevCtrl_1A_00003"
"DevCtrl_1A_ FO1" "DevCtrl_1A_
FO2"
"DevSet_1A_00000"
"DevSet_1A_00001"
"DevSet_1A_00002"
"DevSet_1A_00003"
"DevSet_1A_ FO1" "DevSet_1A_
FO2"

Specifies the OPC UA control point
name. The default OPC UA control point
name is the node label.
These control points reside on the local
OPC UA server.

Repeated Table Headers with Additional Points
At the end of the AppTestA2.csv file, you will find three tables that have the same header
information as those in sections: #Blk4_buflen, #Blk4MessageRouter, and #Blk4FromIccp.

Except for the #Blk4MessageRouter table, these tables add additional points to the
configuration. For more information about these tables, see the previously described tables in
the sections mentioned above.

 ! Information buffer for receipt of block 4 messages from external ICCP server.

#Blk4_buflen, <BufLen>, <dom_scope>

Info_Buff_1A_16, 16, 0

Info_Buff_1A_64, 64, 0

Info_Buff_1A_256, 256, 0

Info_Buff_1A_1024, 1024, 0

Info_Buff_1A_4096, 4096, 0

! Message router to route block 4 messages from external ICCP server to specific OPC
UA points subscribed to by external UPC UA client via LEC IFE.

#Blk4MessageRouter, <agent>

Blk4FromIccpRouter, AgentS

! ICCP block 4 messages from external ICCP server routed to external OPC UA client via
LEC IFE.

#Blk4FromIccp, <NS_Suffix>, <branch>, <InfoRef>, <LocalRef>, <agent>,
<opc_label>

78

MSG_TEST_1A_1_2, Messages, , 1, 2, AgentS,
MSG_TEST_1A_1_2

MSG_TEST_1A_X_4, Messages, , 0, 4, AgentS,
MSG_TEST_1A_X_4

MSG_TEST_1A_5_X, Messages, , 5, , AgentS,
MSG_TEST_1A_5_X

Initial Batch File that is Loaded Remotely
This section shows an example of the initial batch file that is loaded by the remotely executed
command file. For more information on the mechanism for loading batch files, see Loading of
Batch Files and Command Files.

#DBCurrentlyLoaded
#DBCurrentlyLoaded table defines a single static node that identifies the last command file
executed whether or not the command file succeeded in loading all of the batch files within it.
The command file is stored as part of the configuration, and therefore persists across LEC
Server restarts.

#DBCurrentlyLoaded, <value>

DBCurrentlyLoaded, """AppTestA.txt"""

Prototype VCC or
Property Value In the BatchScriptFilter template, defines or

indicates

#DBCurrentlyLoaded DBCurrentlyLoaded The label used in referencing this node.

<value> """AppTestA.txt"""
The output variable name, indicating the last command
file that was executed whether or not it loaded the batch
files successfully or not.

Command Files
This section shows an example of the sample command files that can be executed remotely
from any one of the OEM’s machines.

AppTestA1.txt

load file=AppTestA_Loaded.csv

load file=A1, from=AppTestA1.csv, share=False

load file=A2, from=AppTestA2.csv, share=False TestA_Loaded.csv

load file=A1, from=TestA1.csv, share=ileA2, from=TestA2.csv, share=False

This example command file loads three batch files:

79

• AppTestA_Loaded.csv contains the #DBCurrentlyLoaded table which defines the
variable that returns the name of the last loaded command file. See Loading of Batch
Files for more information.

• AppTestA1.csv contains the tables that define the VCCs, VMDs, association control
variables, and device points that allow for the following types of communication:

o An application’s OPC UA server to pass Block 1 and Block 2 data to a remote
ICCP client.

o A remote ICCP client to pass Block 5 controls to the application’s OPC UA
server.

See the VCC, VMD, Variables, and Node Batch File Definitions for AppTestA1 section for more
information on these tables.

• AppTestA2.csv contains the tables that define the VCCs, VMDs, association control
variables, and device points that allow for the following types of communication:

o A remote ICCP client to transfer Block 1 and Block 2 data to an application’s
OPC UA server.

o An application’s OPC UA server to pass Block 5 controls to the remote ICCP
client.

See the VCC, VMD, Variables, and Node Batch File Definitions for AppTestA2.csv section for
more information on these tables.

AppTestARemove.txt
This file removes AppTestA_Loaded.csv, AppTestA1.csv, and AppTestA2.csv.

AppTestARemoveAll.txt
This file removes all of the batch files that have been loaded by AppTestA1.txt and
AppTestA_Loaded.txt as well as the header batch file AppTestAHeader.csv.

Note: It is unlikely you will need to use this command file once the IFE is in production.

Fault Tracing with LEC Configuration Manager
To start LEC Configuration Manager, click on the Oracle Utilities LEC Configuration Manager
icon from the Windows Start screen.

The default layout will be displayed as shown in Figure 13.

80

Figure 13: Click on the Log Files tab of the Node Table

Log Files
The Log Files tab shows a running log of the activity in your configuration as shown in Figure
14.

Figure 14: Log Files

81

From the top of the Log Files screen, events and data are shown in reverse chronological order
staLECng with the most recent at the top of the log. You can use the scroll bar to the right side
of the panel to see the beginning of the log by scrolling down to the bottom of the screen.

Figure 15 shows how you can change Transport and Manager Level logging and edit the active
log to search for specific errors.

Figure 15: Change the Trace Level and Edit the Active Log File

Moving the scroll bar to the top of the screen temporarily stops the scrolling display of
messages.

Transport and Manager Levels
Log file information is divided into two types: Transport and Manager.

The transport layer is responsible for end-to-end communication over a network. It provides
logical communication between application processes running on different hosts within a
layered architecture of protocols and other network components. Transport Level logging
displays information from the transport layer and other lower protocol layers. You can specify
the amount of information that you would like to receive from least to most by selecting (0)
Default, (1) Diagnostics, (2) Trace Some Events, (3) Trace All Events, and (4) Trace All Data
from the Transport Level drop-down list.

The manager level displays information from the upper protocol layers: Session, Presentation,
and ACSE. You can specify the amount of information that you would like to receive from least
to most by selecting (0) Default, (1) Diagnostics, (2) Trace Some Events, (3) Trace All Events,
and (4) Trace All Data from the Manager Level drop-down list.

Note: For both Transport and Manager Levels, start with Level 2 logging to trace some events so that
you capture.

Editing a Log File
You might see an error as the log is scrolling that you would like to look at more closely. You
can search for the error or a VMD or node by searching the log file in an editor.

When you open a log file in an editor, LEC Server stops writing to the file unless you use an
editor that allows LEC Server to continue writing to the file after you have opened it for
inspection. One such editor is Notepad++. If you would like to use an editor other than Notepad,
you first must install it on your system.

82

To select an alternative editor:

1. Right-click the log file's pathname and select Open With from the drop-down list.

2. Select the editor you want to use. If it does not appear in the list, click More options.

If the desired editor still does not appear, click Look for another app on this PC at
the bottom of the list to search for an editor.

Examine Messages to and from a Remote Peer VMD
You can see formatted MMS message logging to and from a remote peer by specifying the
name of the peer in the Messages To/From field as shown below.

Note: you can use a wildcard (*) to get information from all remote peers.

By typing the name of a remote VMD, you can receive detailed messages from and to the
specified remote peer as shown on the next page.

83

Stop and Start the Live Log
You can stop or start the Live Log by unchecking or checking the box next to Live Log.

Note: The log is only live when Live Log is checked, and you have scrolled to the end of the log.

Delete Logs
You can delete all log files and start with a new log by clicking Delete Logs from the top-right of
the Log Files panel. While debugging a configuration, it is helpful to stop the service, delete the
existing log files, and restart the service to see if there are any issues when the configuration
first starts.

Roll Logs
Alternatively, you can roll the contents of the active log in LIVEDATA.LOG to another file named
LD_00001.LOG by clicking on the Roll Logs button in the top-right corner of the Log Files
panel.

The contents that were in LD_00001.LOG would be rolled into the file named LD_00002.LOG.
The number of log files that you can have is configurable as is the size of a log file.

Note: Since LEC Server actually rolls the log files, LEC Server must be running in order to use this
function.

For more information, contact My Oracle Support.

https://support.oracle.com/

84

Refresh Logs
If you or another engineer has edited the log levels in the LDIB.ini file (see LDIB Editor), you can
update the log levels by clicking Refresh in the right-corner of the Log Files panel.

Node Monitor
After you have a working configuration, you can start the configuration and examine the
contents of each node in the Node Monitor.

To examine the nodes in your configuration:

1. Click the Node Monitor tab at the bottom of the Node Table.

2. Click Start service in the LEC Configuration Manager header if LEC Server is not
already started.

3. Click each of the checkboxes next to the nodes whose values you want to monitor.

Network Monitor
To examine the connections between VMDs/VCCs in your configuration, click the Network
Monitor tab at the bottom of the Node Table.

The Network Monitor shows the status of each VMD connection.

The Network Monitor panel shows the MMS association statuses: Listening, Attempting,
Connected, and Disabled.

• Listening means the device is waiting for an inbound connection.

85

• Attempting means that the device is attempting to make an outbound connection

• Connected means that the two devices are connected.

• Disabled means that the device's ability to connect has been turned off.

To display a legend of the different types of endpoint VMDs and Connection Statuses:

1. Click View and then Legend from the command bar.

2. Check Show network status monitor legend.

Note: VMDs in the example are local and are connected because the VMD names are outlined in light
green and the connections are outlined in forest green as shown in the legend.

LDIB Editor
The LDIB Editor allows you to check the network addresses and other parameters and make
any changes that are necessary.

86

To see the LDIB Editor click the LDIB Editor tab at the bottom of the Node Table.

If you have loaded a new or changed batch file, click Refresh to see the current values.

If you need to change the IP address of a VMD, you can change it in the Network Address
column and then click Apply from the bottom of the screen

If you think your VMD or VCC addressing parameters are incorrect, you can check under the
TSEL, SSEL, PSEL, AP Title, and AE Qualifier columns to see what they are set to in your
configuration, make any necessary changes, and apply your changes by clicking Apply.

Note: These changes will override values that you set if you or someone else loaded one or more
batch files. However, you can restore these values if you reload the original batch file(s).

The following are descriptions of other columns:

• IS - International Standard is mutually exclusive with DIS. Select either IS or DIS.

• DIS - Draft International Standard is mutually exclusive with IS. Select either IS or DIS.
Secure

• ICCP - Uncheck the box in order to disable Secure ICCP.

• Monitoring - Check the box to enable monitoring. Uncheck it to disable monitoring.

• UCA - Check the box in order to disable the Utility Communications Architecture.

LDIB File for LEC Server’s OCX ActiveX MMS Client Interface
If your configuration needs to communicate with the LiveData MMS Client ActiveX Control
facility, and you change an address or any of the networking parameters of a VMD in LDIB, you
need to use the Write LDIB.ini button. Clicking Write LDIB.ini exports your VMD network

87

addressing records into the requisite INI file format, which the LiveData MMS Client ActiveX
Control facility requires to resolve VMD names to network addresses. Note that you do not have
to click this button for changes to prototype nodes, nodes, or connectors.

Another use of the Write LDIB.ini button is to generate the LDIB.ini file, which allows you to
validate your configured VMD addressing information.

Clicking on the Write LDIB.ini button will replace the existing LDIB.ini with one that matches the
LDIB for the current configuration. Existing entries in LDIB.ini will be overwritten.

Gather Diagnostic Data
There are two options under the Help menu: Gather Diagnostic Data and About.

You can use Gather Diagnostic Data if LEC Server crashes or runs into other problems. If you
select Gather Diagnostic Data, LEC Configuration Manager will display a form in which you
can select all or some of the configuration, initialization, log, and dump files that you want LEC
Configuration Manager to compress into a ZIP file. You can then send this ZIP file to Oracle
Utilities Professional Services for further examination.

The form contains four labeled sections labeled as follows:

• Describe the issue here: Always provide a description of the issue.

• Select an option set: This section provides a drop-down list of sets of files that you
can select to send to have compressed: all, dump_files_only, or log_files_only.

• Add or remove diagnostic options: This section allows you to add or remove
specific files.

88

• Review the diagnostic file selection: This section allows you to review the files that
you have selected and deselect any that you think are not necessary.

After reviewing your selections, click on the Save Data button to generate, name, and save the
compressed .zip file. After generating the ZIP file, you can send it to Oracle Utilities Professional
Services or to another team member at your company who could help debug the issue.

Glossary of System Components
This section is intended to be a reference for clarification on terms used throughout this
document.

Batch Files
The batch files define the OPC UA client and server virtual devices, the OPC UA client and
server agents, the local and remote VCCs, their properties, and their nodes/points as well as the
association variables and client-side transfer sets.

Heartbeats
Application’s Heartbeat: Each application OPC UA server writes to a heartbeat variable in an
OPC UA server within an LEC Server instance. The application’s OPC UA server updates the
value of the variable every 10 seconds. The local OPC UA client monitors this heartbeat value,
and if it is not updated in 30 seconds, the instance of LEC Server will go offline.

LEC’s Heartbeat: The OPC UA server in each LEC Server instance has a heartbeat variable
that is updated every 10 seconds. Each external OPC UA client monitors this heartbeat
variable, and if the heartbeat is not updated in 30 seconds, the client OPC UA application will
failover to another instance of LEC Server instance.

IFE (ICCP Front End)
LEC Server is configured to act as an IFE for an OEM’s application and handle associations
between the application’s OPC UA clients and servers and devices of remote ICCP peers’
devices. The processing engine behind each instance of LEC IFE is LiveData LEC Server.

Local ICCP Client
See ICCP Client (LEC).

Local OPC UA Client
See OPC UA Client (LEC).

Local OPC UA Server
See OPC UA Server (LEC).

Network Manager SCADA/EMS
In this context, the OEM’s application interacts with LEC Server instances and controls which
LEC Server instances are in Active or Passive mode.

89

• Active Mode: If the Network Manager SCADA switches an IFE to be in Active mode, the
IFE is turned on and each of its virtual devices are set up to make an association with
specified remote virtual devices.

• Passive Mode: If the Network Manager SCADA switches an LEC Server instance to be
in Passive mode, the instance is/remains turned off, preventing any associations from
being made.

OPC UA Client (OEM Applications)
Each OPC UA client is under the control of the Network Manager SCADA. An OPC UA client
will subscribe to telemetered data as well as status and statistical data from active and standby
LEC Servers. For telemetered data, the OPC UA client will have an active subscription only to
the active LEC Server instance. For statistical data, the OPC UA client will have active
subscriptions to all LEC Server instances, regardless of their state, active or standby. In addition
to subscribing to telemetry data, an OPC UA client will subscribe to a heartbeat variable from
the active LEC Server instance.

Figure 15: An Application’s OPC UA client Receiving Block 1 and 2 Data from the local OPC UA Client

The conformance block data that the application’s OPC UA client receives from the remote VCC
server is shown in Figure 15. This data is received by the LEC VCC client, and then processed
in the LEC Processor so that it is compatible with the OPC UA data types.

In response to this data, the application’s OPC UA client will send control data back to the VCC
server. This data is processed into ICCP-compatible data by the LEC Processor.

OPC UA Agent
The OPC UA Agent is a node within the LEC Server instance that can enable or disable and
monitor the OPC UA connection to the application’s system.

OPC UA Server (LEC)
The OPC UA server is a virtual device (resource mapper) that transmits telemetry data (Block 1)
from an LEC processor virtual device to an application’s OPC UA client. The processor virtual
device translates ICCP data into an OPC UA compatible form, having received the data from an
LEC VCC that received that data from a remote ICCP server.

The OPC UA server also serves a role in transmitting control directives from the application’s
OPC UA client to the LEC Processor as shown in Figure 15.

90

Telemetry Data
The telemetry data received by the application’s OPC UA client will provide the following
statistical information:

• Number of points

• Last update time

• Number of points with bad quality as set by the remote system

• Number of points with bad quality as set by the local system

• CPU loading

• Memory consumption

• Uptime

OPC UA Tag
Tagging is the mechanism through which OPC UA clients can protect utilities technicians and
equipment (usually during maintenance) by hanging a “red tag” (logically, not physically) on a
device to prevent the device from executing subsequent operations. OPC UA clients can set,
clear, and monitor tags in remote ICCP servers. Setting, clearing, and monitoring are all Block 5
operations.

ICCP Client (LEC)
The ICCP client represents an ICCP virtual device, also known as a VCC in LEC Server. In this
configuration, the VCC receives telemetry data (Block 1) from a remote VCC server. This data is
processed in the LEC Processor so that it is compatible with the OPC UA data types as shown
in Figure 3. The VCC client also serves a role in transmitting control directives (Block 5) from
the processor to the remote VCC server also shown in Figure 15.

OPC UA Client (LEC)
The OPC UA client is a virtual device that receives telemetry data from an application’s OPC UA
server. It then transmits this data to an LEC processor virtual device, which transforms this data
into ICCP Block 1 and/or Block 2 data and transmits it to the local ICCP server. The ICCP
server then transfers the ICCP data to a specified remote ICCP client. In response to the
transmitted data from the application’s OPC UA server, the remote ICCP device transmits
control directives (Block 5) through the reverse path (VCC Server -> Processor -> OPC UA
client virtual device -> application’s OPC UA server) as shown in Figure 16.

Figure 16: OPC UA Server to OPC UA Client (LEC) to Processor to VCC Server to Remote ICCP Devices

91

Inbound Association Control (VccAssocInControl): The Inbound Association Control node
enables and disables the inbound ICCP association from another VCC.

Outbound Association Control (VccAssocOutControl): The Outbound Association Control
node enables and disables the outbound ICCP association to another VCC.

Connection
This term refers to the underlying connection between a local and remote VMD or local and
remote VCC.

Sessions
All OPC UA communications are made possible through sessions. In the IFE, the number of
sessions per connection is configurable and specified in the node named AgentC of the
OpcUaClient VMD and in the node named AgentS of the OpcUaServer VMD. Both AgentC and
AgentS are based on the OpcUaAgent template in LEC Configuration Manager. Note that these
values are set in the #IccpUaServerAgent and #IccpUaClientAgent tables in the sample header
batch file AppTestAHeader.csv.

Subscription
This term describes a set of one or more points selected by the OPC UA client that the OPC UA
server periodically monitors for the existence of some condition, and for which the OPC UA
server sends Notifications to the client when the condition is detected. In the IFE, the number of
subscriptions per connection is configurable and specified in the node AgentC of the
OpcUaClient VMD and in the node AgentS of the OpcUaServer VMD. Both AgentC and AgentS
are based on the OpcUaAgent template in LEC Configuration Manager. Note that these values
are set in the #IccpUaServerAgent and #IccpUaClientAgent tables in the sample header batch
file.

VCC
A VCC is an ICCP VMD.

VMD
A VMD is a container of nodes. Each VMD is associated with a specific type of communications
protocol or interface. Most VMD types are intended to handle communications in and out of LEC
Server using a particular communications protocol or interface, such as ICCP, DNP-3, Modbus,
database access, or others. Thus, a VMD can map a device from the outside world to Oracle
Utilities LEC's internal variable model, which allows LEC Server to capture, transform, and route
data to other devices, systems, or applications in a form that the other device, system, or
application can understand. Each instance of a VMD has a network address

	Preface
	System Overview
	System Limits and Other Considerations
	LEC OPC UA Limits
	LEC Server Limits

	Subscriptions and Associations
	OPC Clients and Servers, LEC Server Instances, and Remote ICCP Peers
	Blocks 1 and/or 2 Top Dataflow
	Blocks 1 and/or 2 Bottom Dataflow
	Block 4 (ConfirmedMessageFromOpcUa and ConfirmedMessageToIccp)
	Block 4 Subscription
	Block 5 Top Dataflow
	Block 5 Bottom Dataflow

	Configuration Setup, Startup, and Remote Batch Load
	Generating and Staging Batch and Command Files
	Staging the IFE Configuration on a Development Machine
	Deploying the IFE Configuration
	Loading Batch Files
	Setting Security within a Batch File

	Provisioning a New System
	Oracle LEC Server Requirements

	Updating an Existing System
	Heartbeat Monitor
	OPC UA Control Over ICCP Devices
	Select Before Operate (SBO) and Direct Operate (DO)
	Commands and Setpoints
	LEC Flags for SBO and DO Controls
	Issue a Command or Set the Value of a Setpoint Using SBO
	Issue a Command or Set the Value of a Setpoint using DO
	Tagging
	Setting and Clearing Tags
	Subscribing to a Tag

	Redundancy
	Master Control and Active/Passive Mode
	Association Control Variables

	Alarm State
	Setting the Stale Time Property and Association Flags
	#ConfigControlOut

	Determining Which ICCP Points LEC Server Sets in the Alarm State

	Secure OPC and ICCP
	Secure OPC
	Setting Secure OPC Properties in an LEC IFE Instance
	Disabling Secure OPC in an LEC Server Instance
	Windows Certificate Stores
	Certificate Details and Requirements

	Secure ICCP

	Server Health
	Mapping ICCP to OPC UA and Vice Versa
	ICCP Service Modeling
	Default ICCP Mapping Exposed by a Local OPC UA Server
	ICCP/OPC UA Mapping for Data from Each ICCP Conformance Block
	Quality Bits in LEC Configuration Manager
	Mapping Quality Bit Values from ICCP to OPC UA Status Names and States for Block 1 Data
	Mapping OPC UA Status Names and States to ICCP Quality Bit Values for Block 1 Data
	Mapping of ICCP Measurement Data Types to OPC UA Data Types for Block 1 Data
	Mapping of ICCP Control and Tag Data Types to OPC Data Types for Block 5 Data
	Mapping between Returned ICCP Status Names and OPC UA Status Names for Block 5 Data
	Mapping between OPC UA Status Codes and ICCP Access Results for Block 5 Data

	Header Batch File Definitions
	#IccpUaServerAgent
	#IccpUaClientAgent
	#Master Control
	#Heartbeat
	#HeartBeatFromApp
	#ConfigControlIn
	#ConfigControlOut

	VCC, VMD, Variables, and Node Batch File Definitions for AppTestA1 CSV
	#sharemode
	#My_VCC
	#remote_vcc
	#CommonName
	#AssocInControl
	#AssocInControl
	#OutboundPeerName and #InboundPeerName
	#Blk1ToIccp
	#Blk5FromIccp
	#ConfirmedBlk4ToIccp

	VCC, VMD, Variables, and Node Batch File Definitions for AppTestA2 CSV
	#sharemode
	#ts_num
	#Blk4_buflen
	#Blk4MessageRouter
	#Blk4FromIccp
	#Blk1FromIccp
	#Blk5ToIccp
	Repeated Table Headers with Additional Points

	Initial Batch File that is Loaded Remotely
	#DBCurrentlyLoaded

	Command Files
	AppTestA1.txt
	AppTestARemove.txt
	AppTestARemoveAll.txt

	Fault Tracing with LEC Configuration Manager
	Log Files
	Transport and Manager Levels
	Editing a Log File
	Examine Messages to and from a Remote Peer VMD
	Stop and Start the Live Log
	Delete Logs
	Roll Logs
	Refresh Logs

	Node Monitor
	Network Monitor
	LDIB Editor
	LDIB File for LEC Server’s OCX ActiveX MMS Client Interface

	Gather Diagnostic Data
	Glossary of System Components
	Batch Files
	Heartbeats
	IFE (ICCP Front End)
	Local ICCP Client
	Local OPC UA Client
	Local OPC UA Server
	Network Manager SCADA/EMS
	OPC UA Client (OEM Applications)
	OPC UA Agent
	OPC UA Server (LEC)
	Telemetry Data
	OPC UA Tag
	ICCP Client (LEC)
	OPC UA Client (LEC)
	Connection
	Sessions
	Subscription
	VCC
	VMD

	OULEC_Configuring_IFE_to_OEM_Application_Cover.pdf
	Configuring Oracle Utilities Live Energy Connect as an OPC UA/ICCP Front End (IFE) to an OEM Application

