

Oracle® Healthcare Master Person Index
Match Engine Reference

Release 3.0

E62304-01

March 2015

Oracle Healthcare Master Person Index Match Engine Reference, Release 3.0

E62304-01

Copyright © 2011, 2015, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

iii

Contents

Preface .. vii

Audience.. vii
Documentation Accessibility .. vii
Related Documents .. vii
Finding Information and Patches on My Oracle Support ... viii
Finding Oracle Documentation... x
Conventions ... x

1 Oracle Healthcare Master Person Index Match Engine Reference

Learning About the OHMPI Match Engine .. 1-1
Data Matching Concepts ... 1-2

Deterministic and Probabilistic Data Matching ... 1-2
Weighting Thresholds .. 1-2
Probabilities and Direct Weights .. 1-2

Understanding How the OHMPI Match Engine Works .. 1-3
OHMPI Match Engine Structure .. 1-4
OHMPI Match Engine Configuration Files... 1-4
OHMPI Match Engine Matching Weight Formulation... 1-4
OHMPI Match Engine Data Types... 1-5
The OHMPI Match Engine and the OHMPI Standardization Engine 1-5

Understanding the OHMPI Standardization and Matching Process... 1-5

2 Match Engine Matching Configuration

Understanding the OHMPI Match Engine Match Configuration File .. 2-1
OHMPI Match Engine Match Configuration File Format.. 2-2

Match Configuration File Sample... 2-2
Probability Type Section .. 2-2
Matching Rules Section.. 2-2

OHMPI Match Engine Matching Comparison Functions at a Glance 2-4
Learning About the OHMPI Match Engine Comparator Definition List 2-6

3 Match Engine Configuration for Common Data

Learning About the OHMPI Match String and Match Types ... 3-1
The OHMPI Match String ... 3-1
OHMPI Match Engine Match String Fields.. 3-2

iv

Person Data Match String Fields .. 3-2
Address Data Match String Fields.. 3-2
Business Name Match String Fields... 3-2

OHMPI Match Engine Match Types ... 3-3
Configuring the Match String for a Master Person Index Application ... 3-4

Configuring the Match String for Person Data.. 3-5
Configuring the Match String for Address Data ... 3-6
Configuring the Match String for Business Names... 3-6

Fine-Tuning Weights and Thresholds for Oracle Healthcare Master Person Index 3-7
Data Analysis Overview ... 3-7
Customizing the Match Configuration and Thresholds .. 3-8

Determining the Match Fields... 3-8
Customizing the Match Configuration.. 3-8
Determining the Weight Thresholds... 3-10

4 Setting Match Field Variations and Agreement/Disagreement

Introducing the New Types of Matching Available in OHMPI.. 4-1
System-dependent Matching.. 4-2
Conditional Matching.. 4-2
Frequency-based Matching... 4-2
Alias Matching and Field Swapping ... 4-2
Cap for Agreement Matching... 4-3
Waterfall Matching .. 4-3

Understanding MatchSet, Conditional Matching, System-based Matching, and Waterfall
Matching 4-3

Using the Design-time Configuration.. 4-4
Understanding the XML Elements .. 4-5

matchSet ... 4-5
frequencyBasedFields... 4-5
fieldsSubstitution .. 4-6

Sample XML File .. 4-7
XML File Explanation.. 4-9
Frequency Weight Reducer Plugin Interface .. 4-11
Default Behavior of Frequency-based Reduction in Agreement Weights.............................. 4-12
Setting Up the match-ext.xml to Perform Matching .. 4-13

Current Matching Configuration ... 4-13
Using Previous Projects with this Release ... 4-14

5 OHMPI Match Engine Comparison Functions

Learning About the OHMPI Match Engine Comparison Functions.. 5-1
Bigram Comparators ... 5-2

Bigram Comparator (b1) .. 5-2
Advanced Bigram Comparator (b2)... 5-2

Uncertainty String Comparators.. 5-2
Advanced Jaro String Comparator (u)... 5-3
Winkler-Jaro String Comparator (ua) .. 5-3
Condensed String Comparator (us) ... 5-3

v

Advanced Jaro Adjusted for First Names (uf) .. 5-4
Advanced Jaro Adjusted for Last Names (ul)... 5-4
Advanced Jaro Adjusted for House Numbers (un) ... 5-4
Advanced Jaro AlphaNumeric Comparator (ujs) .. 5-4
Unicode String Comparator (usu) .. 5-4
Unicode AlphaNumeric Comparator (usus) ... 5-5
Chinese String Comparator (usc) ... 5-6
Chinese String Prefix Comparator (cc) .. 5-6

Exact Character-to-Character Comparator (c) ... 5-6
Numeric Comparators... 5-6

Integer Comparator (nl) ... 5-6
Real Number Comparator (nR) .. 5-7
Chinese Integer Comparator (nIc) .. 5-7

Condensed AlphaNumeric SSN Comparator (nS).. 5-7
Date Comparators .. 5-7

Date Comparator With Years as Units (dY).. 5-8
Date Comparator With Months as Units (dM)... 5-8
Date Comparator With Days as Units (dD) .. 5-8
Date Comparator With Hours as Units (dH).. 5-9
Date Comparator With Minutes as Units (dm) .. 5-9
Date Comparator With Seconds as Units (ds) .. 5-9

Prorated Comparator (p)... 5-9

6 Creating Custom Comparators for the OHMPI Match Engine

Learning About Custom Comparator for the OHMPI Match Engine.. 6-1
Custom Comparator Overview.. 6-1
About the Comparator Package... 6-2

Defining Custom Comparators ... 6-2
Step 1: Create the Custom Comparator Java Class ... 6-3

initialize .. 6-3
compareFields ... 6-4
setRTParameters ... 6-4
stop.. 6-4

Step 2: Register the Comparator in the Comparators List ... 6-5
To Register the Comparators... 6-5

Step 3: Define Parameter Validations (Optional) .. 6-6
To Define Parameter Validations ... 6-6
validateComparatorsParameters .. 6-7

Step 4: Define Data Source Handling (Optional) .. 6-7
To Define Data Source Handling.. 6-7
handleComparatorsDataSources .. 6-7
DataSourcesProperties Class... 6-8

Step 5: Define Curve Adjustment or Linear Fitting (Optional) ... 6-9
To Define Curve Adjustment or Linear Fitting .. 6-9
processCurveAdjustment ... 6-10

Step 6: Compile and Package the Comparator ... 6-10
Step 7: Import the Comparator Package Into Oracle Healthcare Master Person Index 6-10

vi

To Import a Comparison Function.. 6-10
Step 8: Configure the Comparator in the Match Configuration File 6-11

vii

Preface

This user's guide provides conceptual and procedural information for configuring
matching extensions in an Oracle Healthcare Master Person Index (OHMPI) project.
This includes conceptual information about possible configurations used when
creating custom comparators for the OHMPI Match Engine, as well as setting up
variations in sets of match fields and agreement/disagreement weights at runtime
which enable the OHMPI Match Engine to compute more accurate matches when a
specific behavior is desired.

Audience
This document is intended for users of OHMPI applications that require data
comparison to evaluate and confirm the possibility of data matches.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents
For more information and instructions for implementing and using a Master Person
Index application, see the following documents in the Oracle Healthcare Master
Person Index documentation set:

■ Oracle Healthcare Master Person Index Match Engine Reference [This document]

■ Oracle Healthcare Master Person Index Analyzing and Cleansing Data User’s Guide

■ Oracle Healthcare Master Person Index Australia Patient Solution User’s Guide

■ Oracle Healthcare Master Person Index Command Line Reports and Database
Management User’s Guide

■ Oracle Healthcare Master Person Index Configuration Guide

■ Oracle Healthcare Master Person Index Configuration Reference

viii

■ Oracle Healthcare Master Person Index Data Manager User’s Guide

■ Oracle Healthcare Master Person Index Installation Guide

■ Oracle Healthcare Master Person Index Loading the Initial Data Set User’s Guide

■ Oracle Healthcare Master Person Index Message Processing Reference

■ Oracle Healthcare Master Person Index Provider Index User’s Guide

■ Oracle Healthcare Master Person Index Real-time Loader User’s Guide

■ Oracle Healthcare Master Person Index Release Notes

■ Oracle Healthcare Master Person Index Security Guide

■ Oracle Healthcare Master Person Index Standardization Engine Reference

■ Oracle Healthcare Master Person Index United Kingdom Patient Solution User’s Guide

■ Oracle Healthcare Master Person Index United States Patient Solution User’s Guide

■ Oracle Healthcare Master Person Index User’s Guide

■ Oracle Healthcare Master Person Index Working With HPD Profile Application User's
Guide

■ Oracle Healthcare Master Person Index Working With IHE Profiles User’s Guide

Finding Information and Patches on My Oracle Support
Your source for the latest information about Oracle Clinical is Oracle Support's
self-service Web site My Oracle Support (formerly MetaLink).

Before you install and use Oracle Clinical, always visit the My Oracle Support Web site
for the latest information, including alerts, White Papers, installation verification
(smoke) tests, bulletins, and patches.

Creating a My Oracle Support Account
You must register at My Oracle Support to obtain a user name and password account
before you can enter the Web site.

To register for My Oracle Support:

1. Open a Web browser to https://support.oracle.com.

2. Click the Register here link to create a My Oracle Support account. The
registration page opens.

3. Follow the instructions on the registration page.

Signing In to My Oracle Support
To sign in to My Oracle Support:

1. Open a Web browser to https://support.oracle.com.

2. Click Sign In.

3. Enter your user name and password.

4. Click Go to open the My Oracle Support home page.

Note: These documents are designed to be used together when
implementing a master index application.

ix

Finding Information on My Oracle Support
There are many ways to find information on My Oracle Support.

Searching by Article ID
The fastest way to search for information, including alerts, White Papers, installation
verification (smoke) tests, and bulletins is by the article ID number, if you know it.

To search by article ID:

1. Sign in to My Oracle Support at https://support.oracle.com.

2. Locate the Search box in the upper right corner of the My Oracle Support page.

3. Click the sources icon to the left of the search box, and then select Article ID from
the list.

4. Enter the article ID number in the text box.

5. Click the magnifying glass icon to the right of the search box (or press the Enter
key) to execute your search.

The Knowledge page displays the results of your search. If the article is found,
click the link to view the abstract, text, attachments, and related products.

Searching by Product and Topic
You can use the following My Oracle Support tools to browse and search the
knowledge base:

■ Product Focus — On the Knowledge page under Select Product, type part of the
product name and the system immediately filters the product list by the letters
you have typed. (You do not need to type "Oracle.") Select the product you want
from the filtered list and then use other search or browse tools to find the
information you need.

■ Advanced Search — You can specify one or more search criteria, such as source,
exact phrase, and related product, to find information. This option is available
from the Advanced link on almost all pages.

Finding Patches on My Oracle Support
Be sure to check My Oracle Support for the latest patches, if any, for your product. You
can search for patches by patch ID or number, or by product or family.

To locate and download a patch:

1. Sign in to My Oracle Support at https://support.oracle.com.

2. Click the Patches & Updates tab. The Patches & Updates page opens and displays
the Patch Search region. You have the following options:

■ In the Patch ID or Number is field, enter the number of the patch you want.
(This number is the same as the primary bug number fixed by the patch.) This
option is useful if you already know the patch number.

■ To find a patch by product name, release, and platform, click the Product or
Family link to enter one or more search criteria.

3. Click Search to execute your query. The Patch Search Results page opens.

4. Click the patch ID number. The system displays details about the patch. In
addition, you can view the Read Me file before downloading the patch.

x

5. Click Download. Follow the instructions on the screen to download, save, and
install the patch files.

Finding Oracle Documentation
The Oracle Web site contains links to all Oracle user and reference documentation. You
can view or download a single document or an entire product library.

Finding Oracle Health Sciences Documentation
To get user documentation for Oracle Health Sciences applications, go to the Oracle
Health Sciences documentation page at:

http://www.oracle.com/technetwork/documentation/hsgbu-154445.html

Finding Other Oracle Documentation
To get user documentation for other Oracle products:

1. Go to the following Web page:

 http://www.oracle.com/technology/documentation/index.html

Alternatively, you can go to http://www.oracle.com, point to the Support tab, and
then click Documentation.

2. Scroll to the product you need and click the link.

3. Click the link for the documentation you need.

Conventions
The following text conventions are used in this document:

Note: Always check the Oracle Health Sciences Documentation page
to ensure you have the latest updates to the documentation.

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

Oracle Healthcare Master Person Index Match Engine Reference 1-1

1Oracle Healthcare Master Person Index
Match Engine Reference

This chapter introduces you conceptual information about the Oracle Healthcare
Master Person Index (OHMPI) Match Engine and how it matches data in a master
person index application. It also introduces you to the OHMPI Standardization
Engine, with which the OHMPI Match Engine works closely. For more information
about the standardization engine, see Oracle Healthcare Master Person Index
Standardization Engine Reference.

This chapter includes the following sections:

■ Learning About the OHMPI Match Engine on page 1-1

■ Understanding the OHMPI Standardization and Matching Process on page 1-5

Learning About the OHMPI Match Engine
The OHMPI Match Engine provides record matching capabilities for external
applications, such as master person index applications. It works best along with the
OHMPI Standardization Engine, which provides the preprocessing of data that is
required for accurate matching, such as data parsing, data standardization, and also
the OHMPI phonetic encoders. Before records can be compared to evaluate the
possibility of a match, the data contained in those records must be standardized and in
certain cases phonetically encoded. Once the data is conditioned, the match engine
determines a match weight for each field defined for matching. The match weight is
based on the fields on which matching is performed and how the matching logic is
configured. The composite weight is usually the sum of weights generated for all
match fields in the records (but could also be a function of the match field weights).
The composite weight indicates how closely two records match.

The OHMPI Match Engine is the standard match engine designed to work with the
master person index applications created by the Oracle Healthcare Master Person
Index. The match engine can also be called from other applications. It is highly
configurable in the Oracle Healthcare Master Person Index environment and can be
used to match on various types of data. The OHMPI Match Engine works in
conjunction with the OHMPI Standardization Engine to improve the quality of your
data.

The following sections provide information about matching concepts, the match
process, and how the OHMPI Match Engine matches data.

■ Data Matching Concepts on page 1-2

■ Understanding How the OHMPI Match Engine Works on page 1-3

Learning About the OHMPI Match Engine

1-2 Oracle Healthcare Master Person Index Match Engine Reference

Data Matching Concepts
Data matching compares data stored in disparate systems in and across organizations,
helping you reduce data duplication and improve data accuracy. Matching involves
comparing specific fields in two standardized records and returning a weight that
indicates the likelihood of a match between the two records. A higher weight between
two records indicates a greater likelihood of a match. Data matching is based on
proven algorithms that are designed to compare different types of data, such as
strings, dates, integers, and so on. Matching is a key step in managing data quality,
and the algorithms are typically quite complex. Some algorithms are configured to
compare more specialized types of data, including first and last names, social security
numbers, and dates of various formats.

The following topics provide additional information about standard data matching
concepts:

■ Deterministic and Probabilistic Data Matching on page 1-2

■ Weighting Thresholds on page 1-2

■ Probabilities and Direct Weights on page 1-2

Deterministic and Probabilistic Data Matching
Data matching can be either deterministic or probabilistic. In deterministic matching,
either unique identifiers for each record are compared to determine a match or an
exact comparison is used between fields. Unique identifiers can include national IDs,
system IDs, and so on. This can include system IDs, national IDs, and so on.
Deterministic matching is generally not completely reliable since in some cases no
single field can provide a reliable match between two records. This is where
probabilistic, or fuzzy, matching comes in. In probabilistic matching, several field
values are compared between two records and each field is assigned a weight that
indicates how closely the two field values match. The sum of the individual fields’
weights indicates the likelihood of a match between two records.

Weighting Thresholds
In a data management system, you can set duplicate and match threshold weights. The
duplicate threshold is the weight above which two records potentially represent the
same entity. The match threshold is the weight above which two records are
considered to represent the same entity. Any records below the duplicate threshold are
considered to represent completely separate and different entities.

Probabilities and Direct Weights
Optimum (or ceiling) matching weights can be assigned to field values using
matching (m) and unmatching (u) probabilities or using agreement and disagreements
weights in an equivalent way. Both types are based on a logarithmic function.
Optimum agreement and disagreement weights are an equivalent logarithmic
expression of the matching and unmatching probabilities, but for an end user, defining
agreement and disagreement weight ranges is a more direct way to implement
m-probabilities and u-probabilities.

Matching and Unmatching Probabilities

When matching and unmatching conditional probabilities are used, the match engine
uses a logarithmic formula to determine agreement and disagreement weights
between fields. The m-probabilities and u-probabilities you specify determine the
maximum agreement weight and minimum disagreement weight for each field, and so
define the agreement and disagreement weight ranges for each field and for the entire

Learning About the OHMPI Match Engine

Oracle Healthcare Master Person Index Match Engine Reference 1-3

record. These probabilities allow you to specify which fields provide the most reliable
matching information and which provide the least. For example, in person matching,
the gender field is not as reliable as the SSN field for determining a match since a
person's SSN is more specific. Therefore, the SSN field should have a higher
m-probability than the gender field. The more reliable the field, the greater the
m-probability for that field should be.

If a field matches between two records, an agreement weight, determined by the
logarithmic formula using the m-probability and u-probability, is added to the
composite match weight for the record. If the fields disagree, the logarithmic formula
using the m-probability and u-probability is negative, and a disagreement weight is
subtracted from the composite match weight.

Agreement and Disagreement Weight Ranges

Like probabilities, the maximum agreement and minimum disagreement weights you
define for each field allow you to specify the relative reliability of each field; however,
the match weight has a more linear relationship with the numbers you specify. When
you use agreement and disagreement weight ranges to determine the match weight,
you define a maximum weight for each field when they are in complete agreement
and a minimum weight for when they are in complete disagreement. The value
assigned to a field is somewhere between the two numbers based on an underlying
logarithmic formula. This provides a more convenient and intuitive representation of
conditional probabilities.

Using the SSN and gender field example above, the SSN field is assigned a higher
maximum agreement weight and a lower minimum disagreement weight than the
gender field because it is more reliable. If you assign a maximum agreement weight of
"10" and two SSNs match, the match weight for that field is "10". If you assign a
minimum disagreement weight of "-10" and two SSNs are in complete disagreement,
the match weight for that field is "-10".

Understanding How the OHMPI Match Engine Works
The OHMPI Match Engine compares records containing similar data types by
calculating how closely certain fields in the records match. The resulting comparison
weight is either a positive or negative numeric value that represents the degree to
which the two sets of data are similar. The match engine relies on probabilistic
algorithms to compare data of a given type using a comparison function specific to the
type of data being compared. The comparison functions for each matching field are
defined in a match configuration file that you can customize for the type of data you
are indexing. You can also define custom comparison functions to plug in to the match
engine. The formula used to determine the matching weight is based on either
matching and unmatching probabilities, or on agreement and disagreement weight
ranges (described in Probabilities and Direct Weights on page 1-2).

Match Cache
Match Cache improves processing, especially in cases where there are multiple child
objects and the match fields are from both the primary object and child objects. This
means that performance impact due to new a Match Set will be minimal since there is
no extra I/O. However, there might be some extra invocation to Match Engine but
only if new the Match Sets have new match fields. In such cases some CPU processing
will be used by this layer but the performance impact for such cases should be
minimal.

The following sections provide additional information about how the OHMPI Match
Engine works:

Learning About the OHMPI Match Engine

1-4 Oracle Healthcare Master Person Index Match Engine Reference

■ OHMPI Match Engine Structure on page 1-4

■ OHMPI Match Engine Configuration Files on page 1-4

■ OHMPI Match Engine Matching Weight Formulation on page 1-4

■ OHMPI Match Engine Matching Weight Formulation on page 1-4

■ OHMPI Match Engine Data Types on page 1-5

OHMPI Match Engine Structure
The OHMPI Match Engine was designed to be very flexible and generic, allowing you
to customize existing matching rules and to define additional rules using Java. The
match engine framework allows you to create and plug in custom matching
comparison functions, or comparators, to the match engine to enable matching against
any type of data. The OHMPI Match Engine framework includes two main modules.
The real-time module stores the predefined and user-defined Java classes that define
the matching comparator logic. The design-time modules store the configuration and
validation classes for the comparators.

The OHMPI Match Engine provides a wide variety of customizable comparators for
you to choose from. You can also create comparators in the real-time module, and
create new validation and configuration rules in the design-time module. The
structure of the design-time module support validations, weighting curves, and class
dependencies. There is also an option that allows you load information from a data file
and use that information to calculate a matching weight.

OHMPI Match Engine Configuration Files
The OHMPI Match Engine compares two records and returns a match weight
indicating the likelihood of a match between the two records based on information
provided in configuration files. In a master person index application, the match engine
is configured by these two files in the Match Engine node of the master person index
project: the matching configuration file (matchConfigFile.cfg) and the comparators
list (comparatorsList.xml). The matching configuration file defines the configuration
and parameters for the matching comparator functions and the comparators list
defines each comparator available to the match engine.

Matching criteria and logic are defined in the match configuration file in the master
person index project (matchConfigFile.cfg). The data fields that are sent to the
OHMPI Match Engine for matching, known as the match string, are defined in the
MatchingConfig section of mefa.xml in the master person index project. The match
engine configuration files define which matching rules to use to process each match
field. The match engine provides a comprehensive set of comparator functions, and
you can create custom comparators if needed.

OHMPI Match Engine Matching Weight Formulation
The OHMPI Match Engine determines the matching weight between two records by
comparing the match string fields between the two records using the rules defined in
the match configuration file and taking into account the matching logic specified for
each field. The OHMPI Match Engine can use either matching (m) and unmatching (u)
conditional probabilities or agreement and disagreement weight ranges to fine-tune
the match process. It uses the underlying algorithm to arrive at a match weight for
each match string field. The weight generated for each field in the match string
indicates the level of match between each field. The weights assigned to each field are
then summed together for a total, composite matching weight between the two
records. Agreement and disagreement weight ranges or m-probabilities and
u-probabilities are defined in the match configuration file.

Understanding the OHMPI Standardization and Matching Process

Oracle Healthcare Master Person Index Match Engine Reference 1-5

The m-probabilities and u-probabilities are expressed as double values between one
and zero (excluding one and zero) and can have up to 16 decimal points. Agreement
and disagreement weights are expressed as double values and can have up to 16
decimal points. When using agreement and disagreement weights, the OHMPI Match
Engine assigns a matching weight to each field that falls between the agreement and
disagreement weights specified for the field. Thus, the maximum agreement weight
between two records is the sum of the defined agreement weights for each field. The
minimum disagreement weight is the sum of the defined disagreement weights for
each field. For more information about weight calculation, see Determining the Weight
Range on page 3-8.

OHMPI Match Engine Data Types
The OHMPI Match Engine is built on a flexible framework that allows you to
customize and create matching rules for various types of data. The match engine
provides an extensive set of comparison functions for matching on various types of
fields, such as numbers, dates, single characters, and so on. The match engine also
provides more specialized comparison functions for searching on specific types of
data, such as person names, address fields, social security numbers, genders. You can
define custom comparison functions and custom standardization logic for different
data types or variants on data types. These customizations are easily incorporated into
a master person index application, allowing you to completely customize the match
and standardization process for your specific data format.

The OHMPI Match Engine and the OHMPI Standardization Engine
The OHMPI Match Engine works with the OHMPI Standardization Engine to provide
an accurate comparison of two records. The standardization engine reads input data
and determines how to parse, normalize, and standardize the data in order to create a
standard set of values to use for match comparison. The standardization engine can
standardize free-form text fields, such as street address fields or business names, and
separate them into their individual parts, such as house numbers, street names, and so
on, allowing the match engine to generate a more accurate weight for free-form data.

Understanding the OHMPI Standardization and Matching Process
In a default Oracle Healthcare Master Person Index implementation, the master person
index application uses the OHMPI Match Engine and the OHMPI Standardization
Engine to cleanse data in real time. The standardization engine uses configurable
pattern-matching logic to identify data and reformat it into a standardized form. The
match engine uses a matching algorithm with a proven methodology to process and
weight records in the master person index database. By incorporating both
standardization and matching capabilities, you can condition data prior to matching.
You can also use these capabilities to review legacy data prior to loading it into the
database. This review helps you determine data anomalies, invalid or default values,
and missing fields.

In a master person index application, both matching and standardization occur when
two records are analyzed for the probability of a match. Before matching, certain fields
are normalized, parsed, or converted into their phonetic values if necessary. The match
fields are then analyzed and weighted according to the rules defined in a match
configuration file. The weights for each field are combined to determine the overall
matching weight for the two records. After these steps are complete, survivorship is
determined by the master person index application based on how the overall matching
weight compares to the duplicate and match thresholds of the master person index
application.

Understanding the OHMPI Standardization and Matching Process

1-6 Oracle Healthcare Master Person Index Match Engine Reference

In a master person index application, the standardization and matching process
includes the following steps:

1. The master person index application receives an incoming record.

2. The OHMPI Standardization Engine standardizes the fields specified for parsing,
normalization. Phonetic encoding is also performed. These fields are defined in
mefa.xml and the rules for standardization are defined in the standardization
engine configuration files.

3. The master person index application queries the database for a candidate selection
pool (records that are possible matches) using the blocking query specified in
master.xml. If the blocking query uses standardized or phonetic fields, the criteria
values are obtained from the database.

4. For each possible match, the master person index application creates a match
string (based on the match columns in mefa.xml) and sends the string to the
OHMPI Match Engine.

5. The OHMPI Match Engine checks the incoming record against each possible
match, producing a matching weight for each. Matching is performed using the
weighting rules defined in the match configuration file.

2

Match Engine Matching Configuration 2-1

2Match Engine Matching Configuration

This chapter introduces you to the matching configuration files for the Oracle
Healthcare Master Person Index (OHMPI) Match Engine, including certain rules for
formatting and interdependencies that must be followed. The following sections
provide an overview of the two matching configuration files, provided the architecture
of those files, and formatting descriptions. They also include an overview of
comparison functions used in the match configuration file.

This chapter includes the following sections:

■ Understanding the OHMPI Match Engine Match Configuration File on page 2-1

■ Learning About the OHMPI Match Engine Comparator Definition List on page 2-6

Understanding the OHMPI Match Engine Match Configuration File
The matching configuration files define how the OHMPI Match Engine processes
records to assign matching probability weights, allowing the master person index
application to identify matches, potential duplicates, and non-matches. The match
engine includes two configurable files, the match configuration file and the
comparators list. Together these files define additional logic for the OHMPI Match
Engine to use when determining the matching probability between two records.

The matching configuration is very flexible, allowing you to customize the matching
logic according to the type of data being matched and for the record matching
requirements of your business. In a master person index application, the matching
configuration files are stored in the master person index project and are located in the
Match Engine node of the project. The OHMPI Standardization Engine typically
standardizes the data prior to matching, so the match process is performed against the
standardized data.

The match configuration file, matchConfigFile.cfg, contains the matching logic for
each field on which matching is performed. By default, this file defines the matching
logic for the three primary data types (person names, business names, and addresses),
and can also handle generic data types, such as dates, numbers, social security
numbers, and characters.

The match configuration file defines matching logic for each field on which matching
is performed. The OHMPI Match Engine provides several comparison functions that
you can call in this file to fine-tune the match process. Comparison functions contain
the logic to compare different types of data in very specific ways in order to arrive at a
match weight for each field. These functions allow you to define how matching is
performed for different data types and can be used in conjunction with either
matching and unmatching probabilities or agreement and disagreement weight ranges
for each field. This file also defines how to handle missing fields.

Understanding the OHMPI Match Engine Match Configuration File

2-2 Oracle Healthcare Master Person Index Match Engine Reference

The following sections describe the format of the configuration file and provide an
overview of the predefined comparison functions:

■ OHMPI Match Engine Match Configuration File Format on page 2-2

■ OHMPI Match Engine Matching Comparison Functions at a Glance on page 2-4

These sections describe the format of the files so you can modify them directly. You
can also modify the match configuration file using the OHMPI Configuration Editor,
which provides an easy, graphical way to configure matching rules.

OHMPI Match Engine Match Configuration File Format
The match configuration file is divided into two sections. The first section consists of
one line that indicates the matching probability type. The second section consists of the
matching rules to use for each match field. In a master person index application, this
file can be modified from the Matching tab of the Master Person Index Configuration
Editor. For more information, see the Oracle Healthcare Master Person Index
Configuration Guide.

Match Configuration File Sample
Following is an excerpt from the default match configuration file. This excerpt
illustrates the components that are described in the following sections.

ProbabilityType 1

FirstName 15 0 uf 0.99 0.001 10 -8
LastName 15 0 ul 0.99 0.001 10 -10
String 25 0 ua 0.99 0.001 8 -8
DateDays 20 0 dD 0.99 0.001 10 -10 y 15 30
DateMonths 20 0 dM 0.99 0.001 10 -10 n
DateHours 20 0 dH 0.99 0.001 10 -10 y 30 60
DateMinutes 20 0 dm 0.99 0.001 10 -10 y 300 600
DateSeconds 20 0 ds 0.99 0.001 10 -10 y 75 60
Integer 15 0 nI 0.99 0.001 10 -10 n
Real 15 0 nR 0.99 0.001 10 -10 n
Char 1 0 c 0.99 0.001 5 -5
pro 15 0 p 0.99 0.001 10 -10 20 5 5

Probability Type Section
The first line of the match configuration file defines the probability type to use for
matching. Specify "0" (zero) to use m-probabilities and u-probabilities to determine a
field's match weight; specify "1" (one) to use agreement and disagreement weight
ranges. If the probability type is set to use agreement and disagreement weight ranges,
the m-prob and u-prob columns in the matching rules section are ignored. Likewise, if
the probability type is set to use m-probabilities and u-probabilities, the
agreement-weight and disagreement-weight columns in the matching rules section
are ignored. The default is to use agreement and disagreement weight ranges because
they are more intuitive.

For more information about probabilities and weights, see Probabilities and Direct
Weights on page 1-2.

Matching Rules Section
The section after the first line of the match configuration file contains match field rows,
with each row defining how a certain data type or field will be matched. These are the

Understanding the OHMPI Match Engine Match Configuration File

Match Engine Matching Configuration 2-3

rules you specify in the match string you define for a master person index application.
The syntax for this section is:

match-field size null-field function m-prob u-prob agreement disagreement
params data-sources

Table 2–1 describes each element in a match field row.

Table 2–1 Match Configuration File Columns

Column
Number

Column
Name Description

1 match-field A value that indicates to the Master Person Index Match Engine how each field should be
weighted. Each field included in the match string (the MatchingConfig section of mefa.xml) must
have a match type corresponding to a value in this column.

2 size The number of characters in the field on which matching is performed, beginning with the first
character. For example, to match on only the first four characters in a 10-digit field, the value of this
column should be "4."

3 null-field An index that specifies how to calculate the total weight for null fields or fields that only contain
spaces. You can specify any of the following values:

■ 0 - (zero) If one or both fields are empty, the weight used for the field is 0 (zero).

■ 1 - (one) If both fields are empty, the agreement weight is used; if only one field is empty, the
disagreement weight is used.

■ a# - An "a" followed by a number specifies to use the agreement weight if one or both fields
are empty or null. The agreement weight is divided by the number following the "a" to obtain
the match weight for that field. If no number is specified, the default is 2. You can specify any
number from 1 through 10.

■ d# - A "d" followed by a number specifies to use the disagreement weight if one or both fields
are empty or null. The disagreement weight is divided by the number following the "d" to
obtain the match weight for the field. If no number is specified, the default is 2. You can
specify any number from 1 through 10.

■ em# - An "em" (empty multiple) followed by a number specifies the use of a multiplication
factor on disagreement weight if only one field is empty. The disagreement weight is
multiplied by the number following the "em" to obtain the match weight for the field. If no
number is specified, the default is 1. You can specify any number from 1 through 10. If both
fields are empty, the weight used for the field is 0.

■ ef# - An "ef" (empty fraction) followed by a number specifies the use of a fractional factor on
disagreement weight if only one field is empty. The disagreement weight is divided by the
number following the "ef" to obtain the match weight for the field. If no number is specified,
the default is 1. You can specify any number from 1 through 10. If both fields are empty, the
weight used for the field is 0.

Note: In the above descriptions, the agreement and disagreement weights are either specified in the
file or calculated using a logarithmic formula based on the m and u-probabilities (depending on
the probability type).

4 function The type of comparison to perform when weighting the field. For information about the available
comparison functions, see Chapter 5, "OHMPI Match Engine Comparison Functions". An overview
of the comparison functions is provided in Table 2–2.

5 m-prob The initial probability that the specified field in two records will match if the records match. The
probability is a double value between 0 and 1, and can have up to 16 decimal points.

6 u-prob The initial probability that the specified field in two records will match if the records do not match.
The probability is a double value between 0 and 1, and can have up to 16 decimal points.

7 agreement The matching weight to be assigned to a field given that the fields match between two records. This
number can be between 0 and 100 and can have up to 16 decimal points. It represents the
maximum match weight for a field.

Understanding the OHMPI Match Engine Match Configuration File

2-4 Oracle Healthcare Master Person Index Match Engine Reference

OHMPI Match Engine Matching Comparison Functions at a Glance
Match field comparison functions, or comparators, compare the values of a field in
two records to determine whether the fields match. The fields are then assigned a
matching weight based on the results of the comparison function. You can use several
different types of comparison functions in the match configuration file to define how
the OHMPI Match Engine should match the fields in the match string. The OHMPI
Match Engine provides several options to use with each function. You can also define
custom comparison functions. For more information, see Chapter 6, "Creating Custom
Comparators for the OHMPI Match Engine".

Table 2–2 summarizes each comparison function. A complete reference of the
comparison functions and their parameters is included in Chapter 5, "OHMPI Match
Engine Comparison Functions".

8 disagreement The matching weight to be assigned to a field given that the fields do not match between two
records. This number can be between 0 and -100 and can have up to 16 decimal points. It represents
the minimum match weight for a field.

9 params The parameters that correspond to the comparison function specified in column 4. Some
comparison functions do not take any parameters and some take multiple parameters. For
additional information about parameters, see Chapter 5, "OHMPI Match Engine Comparison
Functions".

10 dataSources The complete path to any data sources used by the comparison function specific in column 4. You
can define as many data sources as there are data sources listed for the comparator in the
comparators list file. The default comparators do not use data sources, but you can create a custom
comparator that does.

Note: The names of these comparison functions are configurable.
The following table lists their default names.

Table 2–2 Comparison Function Summary

Comparison
Function Name Description

b1 Bigram Comparator Compares two strings using an algorithm based on the Bigram algorithm. This
function compares two strings using all combinations of two consecutive
characters and returns the total number of combinations that are the same.

b2 Advanced Bigram
Comparator

Compares two strings allowing for character transpositions. This function is
similar to the standard Bigram Comparator (b1).

u Advanced Jaro String
Comparator

Compares two strings taking into account uncertainty factors, such as string
length, transpositions, and characters in common. This function is based on the
Jaro algorithm.

ua Winkler-Jaro String
Comparator

Compares two strings similar to the Advanced Jaro String Comparator (u), but
increases the agreement weight if the initial characters of each string are exact
matches. This function takes into account key punch and visual memory errors.
It is based on the Jaro algorithm with variants of Winkler/Lynch and
McLaughlin.

uf Advanced Jaro Adjusted for
First Names

Based on the generic string comparator (u), this function is designed to
specifically weight first name values. The string is analyzed and the weight
adjusted based on statistical data.

ul Advanced Jaro Adjusted for
Last Names

Based on the generic string comparator (u), this function is designed to
specifically weight last name values. The string is analyzed and the weight
adjusted based on statistical data.

Table 2–1 (Cont.) Match Configuration File Columns

Column
Number

Column
Name Description

Understanding the OHMPI Match Engine Match Configuration File

Match Engine Matching Configuration 2-5

un Advanced Jaro Adjusted for
House Numbers

Based on the generic string comparator (u), this function is designed to
specifically weight house number values. The string is analyzed and the weight
adjusted based on statistical data.

us Condensed String
Comparator

Compares two strings similar to the Advanced Jaro String Comparator (u), but
this function is a custom string comparator that compares two strings taking
into account such uncertainty factors as string length, transpositions, key punch
errors, and visual memory errors. Unlike the Advanced Jaro String Comparator,
this function handles diacritical marks. This function also improves processing
speed.

usu Unicode String Comparator Compares two strings similar to the Condensed String Comparator (us), but this
function is based in Unicode to support multiple languages and alphabets. This
comparator takes one parameter indicating the language to use.

usus Unicode AlphaNumeric
Comparator

Compares two strings similar to the Unicode String Comparator, but this
function is designed to match on unique identifiers such as national IDs. This
comparator takes one parameter indicating the language to use plus any of the
following parameters:

■ Field length

■ Character types

■ Invalid values

ujs Advanced Jaro
AlphaNumeric Comparator

Compares two strings similar to the Advanced Jaro String Comparator, but this
function is designed to match on unique identifiers such as national IDs. This
comparator takes any of the following parameters:

■ Field length

■ Character types

■ Invalid values

c Exact Character-to-Character
Comparator

Compares string fields character by character. Each character must match in
order for an agreement weight to be assigned.

nI Integer Comparator Compares integer fields using a relative distance value to determine the match
weight. As the difference between the two fields increases, the match weight
decreases. Once the difference is beyond the relative distance, a disagreement
weight is assigned. This comparator takes two parameters; the first indicates
whether to use a relative distance or direct string comparison and the second
indicates the relative distance to use.

nR Real Number Comparator Compares fields containing real numbers using a relative distance value to
determine the match weight. As the difference between the two fields increases,
the match weight decreases. Once the difference is beyond the relative distance,
a disagreement weight is assigned. This comparator takes two parameters; the
first indicates whether to use a relative distance or direct string comparison, and
the second indicates the relative distance to use.

nS Condensed AlphaNumeric
SSN Comparator

Compares social security numbers or other unique identifiers, taking into
account any of these parameters:

■ Field length

■ Character types

■ Invalid values

dY Date Comparator With Years
as Units

Compares year values using relative distance values prior to and following the
given year to determine the match weight. As the difference between the two
fields increases, the match weight decreases. Once the difference is beyond the
relative distance, a disagreement weight is assigned. The date comparison
functions handle Gregorian years. This comparator takes up to three
parameters; the first indicates whether to use a relative distance or direct string
comparison, and the second and third indicate the relative distance before and
after.

dM Date Comparator With
Months as Units

Compares the month and year using a relative distance as described above for
the year comparison function (dY).

dD Date Comparator With Days
as Units

Compares the day, month, and year using a relative distance as described above
for the year comparison function (dY).

Table 2–2 (Cont.) Comparison Function Summary

Comparison
Function Name Description

Learning About the OHMPI Match Engine Comparator Definition List

2-6 Oracle Healthcare Master Person Index Match Engine Reference

Learning About the OHMPI Match Engine Comparator Definition List
The comparator definition list defines each comparator that is included in a master
person index application. If a comparator is not included in this list, it cannot be used
in the application. If you define a comparator in this list that is not provided with the
OHMPI Match Engine, you need to define the logic of the new comparator in Java
classes (for more information, see Chapter 6, "Creating Custom Comparators for the
OHMPI Match Engine").

Below is an excerpt from the default comparators list file that defines two numeric
comparators, Real Number Comparator and Integer Comparator. Both comparators
take two parameters, and are dependent on a second comparator class named
CondensedStringComparator.

<comparator description="Numerics comparator">
 <className>NumericsComparator</className>
 <codes>
 <code description="Real Number Comparator" name="n[R,]"/>
 <code description="Integer Comparator" name="nI" />
 </codes>
 <params>
 <param description="distance/string comparison option"
 name="switch" type="java.lang.String"/>
 <param description="Spectrum of comparison"
 name="range" type="java.lang.Integer|java.lang.Double"/>
 </params>
 <data-sources/>
 <dependency-classes>
 <dependency-class matchfield="CSC"
 name="com.sun.mdm.matcher.comparators.base.CondensedStringComparator"/>
 </dependency-classes>
 <curve-adjust status="false"/>
</comparator>

The comparators are defined in XML format. Table 2–3 lists and describes each
element in the XML file.

dH Date Comparator With
Hours as Units

Compares the hour, day, month, and year using a relative distance as described
above for the year comparison function (dY).

dm Date Comparator With
Minutes as Units

Compares the minute, hour, day, month, and year using a relative distance as
described above for the year comparison function (dY).

ds Date Comparator With
Seconds as Units

Compares the second, minute, hour, day, month, and year using a relative
distance as described above for the year comparison function (dY).

p Prorated Comparator Prorates the disagreement weight for a date or numeric field based on values
you specify. Differences greater than the amount you specify receive the full
disagreement weight. This comparator takes three parameters indicating the
relative distance and the agreement and disagreement ranges.

Table 2–3 Comparator Definition List Elements

Element Attribute Description

group - An element that contains a list of comparators that all share the same Java package.

group description A brief description of the comparator group.

group path The Java package that contains the code that defines the comparators in the group.

Table 2–2 (Cont.) Comparison Function Summary

Comparison
Function Name Description

Learning About the OHMPI Match Engine Comparator Definition List

Match Engine Matching Configuration 2-7

comparator - A definition for one subgroup of comparators that are all based on the same Java
class, have the same Java class dependencies, accept the same parameters and data
sources, and have the same curve adjustment setting.

comparator description A brief description of the comparator subgroup.

className - The name of the class that defines the logic for the comparators. The class must be
contained in the package specified for the group element, as described above.

codes - A container element for a list of the comparators in the subgroup, with descriptions
and processing codes of each comparator.

code - A description and processing code for one comparator.

code description A description of the comparator. The value you specify here appears in the
comparator drop-down list on the Master Person Index Configuration Editor.

code name A unique identifying name for the comparator. These are the comparator names used
in the rules definitions in the match configuration file (matchConfigFile.cfg).

params - A container element for a list of static parameters for the subgroup of comparators.
Parameters are optional.

param - One parameter definition for the comparators.

param description A brief description of the parameter.

param name A short name for the parameter.

param type The Java data type of the values that can be specified for the parameter.

data-sources - A container element for a list of data files that contain additional information for the
subgroup of comparators. For example, a comparator that generates weights based on
the distance between postal codes might use lookup files containing information
about the zip codes. Data sources are optional.

data-source - A definition for one data source. Currently, only file data sources are supported.

data-source description A brief description of the data source.

data-source name The complete path and filename of the data source.

data-source type The type of data source being used. Currently, the only value you can specify is
"java.io.File".

dependency-classes - A container element that defines a list of Java classes on which the comparator class is
dependent. The current comparator class inherits from the comparator classes you
specify here as well as all the match fields (defined in matchConfigFile.cfg) that use
that comparator.

dependency-class - A definition for one comparator class, called a dependency comparator, on which the
current comparator class is dependent.

dependency-class matchField The name of the dependency comparator's match field.

dependency-class name The name of the dependency comparator class.

curve-adjust - An indicator of whether to apply special adjustments to the weighting curve. The
curve adjustment is defined for each comparator individually in a Java class named
comparator_nameCurveAdjustor.

curve-adjust status The status of the curve adjustor. Specify true to use the curve adjustor; specify false to
disable the curve adjustor.

Table 2–3 (Cont.) Comparator Definition List Elements

Element Attribute Description

Learning About the OHMPI Match Engine Comparator Definition List

2-8 Oracle Healthcare Master Person Index Match Engine Reference

3

Match Engine Configuration for Common Data 3-1

3Match Engine Configuration for Common
Data

This chapter provides conceptual information on how the OHMPI Match Engine can
match on any type of data. Common data types for matching include person names,
addresses, and business names. It also provides information on configuring the match
engine for matching on these data types in a master person index application,
fine-tuning weights and measures, and customizing match configuration and
thresholds.

This chapter includes the following sections:

■ Learning About the OHMPI Match String and Match Types on page 3-1

■ Configuring the Match String for a Master Person Index Application on page 3-4

Learning About the OHMPI Match String and Match Types
This section provides information about the OHMPI match string, match string fields,
and match types.

■ The OHMPI Match String on page 3-1

■ OHMPI Match Engine Match String Fields on page 3-2

■ OHMPI Match Engine Match Types on page 3-3

The OHMPI Match String
The data string that is passed to the OHMPI Match Engine for match processing is
called the match string. For a master person index application, the match string is
defined in the MatchingConfig section of mefa.xml. The match and standardization
engine configuration files, the blocking query, and the matching configuration are
closely linked in the search and matching processes. The blocking query defines the
select statements for creating the candidate selection pool during the matching
process. The matching configuration defines the match string that is passed to the
match engine from the records in the candidate selection pool. Finally, the OHMPI
Match Engine configuration files define how the match string is processed.

The OHMPI Match Engine configuration files are dependent upon the match string,
and it is very important when you modify the match string to ensure that the match
type you specify corresponds to the correct row in the match configuration file
(matchConfigFile.cfg). For example, if you are using person matching and add
"MaritalStatus" as a match field, you need to specify a match type for the MaritalStatus
field that is listed in the first column of the match configuration file. You must also
make sure that the matching logic defined in the corresponding row of the match

Learning About the OHMPI Match String and Match Types

3-2 Oracle Healthcare Master Person Index Match Engine Reference

configuration file is defined appropriately for matching on the MaritalStatus field. For
more information about match types, see OHMPI Match Engine Match Types on
page 3-3.

OHMPI Match Engine Match String Fields
In a master person index application, the match string processed by the OHMPI Match
Engine is defined by the match fields specified in mefa.xml, and the logic for how the
fields are matched is defined in the match configuration file (matchConfigFile.cfg).
The match engine can process any combination of fields you specify for matching
using the predefined comparators or any new comparators you define. Not all fields in
a record need to be processed by the OHMPI Match Engine. Before you define the
match string, analyze your data to determine the fields that are most likely to indicate
a match or non-match between two records.

The following sections provide additional information about the match string for
different data types:

■ Person Data Match String Fields on page 3-2

■ Address Data Match String Fields on page 3-2

■ Business Name Match String Fields on page 3-2

Person Data Match String Fields
By default, the match configuration file (matchConfigFile.cfg) includes rows
specifically for matching on first name, last name, social security numbers, and dates
(such as a date of birth). It also includes a row for matching a single character with
logic specialized for a gender field. You can use any of the existing rows for matching
or you can add rows for the fields you want to match. When matching on person
names, determine whether you want to use the original field values, the normalized
field values, or the phonetic values. The match engine can handle any of these types of
fields, but the best comparator for each type might be different. Also determine how
much weight you want to give each field type and configure the match configuration
file accordingly.

Address Data Match String Fields
By default, the match configuration file (matchConfigFile.cfg) includes rows
specifically for matching on the fields that are parsed from the street address fields,
such as the street number, street direction, and so on. The file also defines several
generic match types you can configure for address fields. You can use any of the
existing rows for matching or you can add rows for the fields you want to match. If
you specify an "Address" match type for any field in the Master Person Index Wizard,
the default fields that store the parsed data are automatically added to the match
string in mefa.xml. These fields include the house number, street direction, street type,
and street name. You can remove any of these fields from the match string.

When matching on address fields, determine whether you want to use the original
field values, the standardized field values, or the phonetic values. The match engine
can handle any of these types of fields, but the best comparator for each type might be
different. Also determine how much weight you want to give each field type and
configure the match configuration file accordingly.

Business Name Match String Fields
By default, the match configuration file (matchConfigFile.cfg) includes rows
specifically for matching on the fields that are parsed from the business name fields.

Learning About the OHMPI Match String and Match Types

Match Engine Configuration for Common Data 3-3

The file also defines several generic match types you can customize to use with
business name fields. You can use any of the existing rows for matching or you can
add rows for the fields you want to match. If you specify a "BusinessName" match
type for any field in the wizard, most of the parsed business name fields are
automatically added to the match string in mefa.xml, including the name, organization
type, association type, sector, industry, and URL. You can remove any of these fields
from the match string.

When matching on business name fields, determine whether you want to use the
original field values, the standardized field values, or the phonetic values. The match
engine can handle any of these types of fields, but the best comparator for each type
might be different. Also determine how much weight you want to give each field type
and configure the match configuration file accordingly.

OHMPI Match Engine Match Types
The default match configuration file, matchConfigFile.cfg, defines several rules that
you can customize for the type of data being processed. Each rule is identified by a
match type in the first column of each row. This value identifies the type of matching
to perform to the match engine. In a master person index application, the match type is
entered for each field in the match string section of mefa.xml.

The match configuration OHMPI Match Engine's matchConfigFile.cfg appears under
the Match Engine node of the master person index project. For more information about
the comparison functions used for each match type and how the weights are tuned,
see Customizing the Match Configuration on page 3-8 and Chapter 5, "OHMPI Match
Engine Comparison Functions".

The following tables list the match types that are typically used in processing different
data types, including:

■ Table 3–1, " Person Data Match Types"

■ Table 3–2, " Address Match Types"

■ Table 3–3, " Business Name Match Types"

■ Table 3–4, " Miscellaneous Match Types"

Table 3–1 lists the match types that are designed for matching on person data.

Table 3–2 lists the match types that are designed for matching on address data.

Table 3–1 Person Data Match Types

This indicator ... processes this data type ...

FirstName A first name field, including middle name, alias first name, and alias middle name
fields.

LastName A last name field, including alias last name fields.

SSN A field containing a social security number.

Gender A field containing a gender code.

Table 3–2 Address Match Types

This indicator ... processes this data type ...

StreetName The parsed street name field of a street address.

Configuring the Match String for a Master Person Index Application

3-4 Oracle Healthcare Master Person Index Match Engine Reference

Table 3–3 lists the match types that are designed for matching on business names.

Miscellaneous match types provide additional logic for matching on a variety of data
types, such as date, numeric, string, and character fields.

Configuring the Match String for a Master Person Index Application
The MatchingConfig section of mefa.xml determines which fields are passed to the
OHMPI Match Engine for matching (the match string). The match types specified in
this section help the match engine determine the algorithm and custom logic to use for
matching on each field.

HouseNumber The parsed house number field of a street address.

StreetDir The parsed street direction field of a street address.

StreetType The parsed street type field of a street address.

Table 3–3 Business Name Match Types

This match type ... processes this data type ...

PrimaryName The parsed name field of a business name.

OrgTypeKeyword The parsed organization type field of a business name.

AssocTypeKeyword The parsed association type field of a business name.

LocationTypeKeyword The parsed location type field of a business name.

AliasList The parsed alias type field of a business name.

IndustrySectorList The parsed industry sector field of a business name.

IndustryTypeKeyword The parsed industry type field of a business name.

Url The parsed URL field of a business name.

Table 3–4 Miscellaneous Match Types

This indicator ... processes this data type ...

Date The year of a date field.

DateDays The day, month, and year of a date field.

DateMonths The month and year of a date field.

DateHours The hour, day, month, and year of a date field.

DateMinutes The minute, hour, day, month, and year of a date field.

DateSeconds The seconds, minute, hour, day, month, and year of a date field.

String A generic string field.

Unistring A generic Unicode string field.

Integer A field containing integers.

Real A field containing real numbers.

Char A field containing a single character.

pro Any field on which you want the OHMPI Match Engine to use prorated weights.

Exac Any field you want the OHMPI Match Engine to match character for character.

CSC A generic string.

DOB A date of birth in string rather than date format.

Table 3–2 (Cont.) Address Match Types

This indicator ... processes this data type ...

Configuring the Match String for a Master Person Index Application

Match Engine Configuration for Common Data 3-5

If you are matching on fields parsed from a free-form text field, define each individual
parsed field you want to use for matching in the Master Person Index Wizard or
Configuration Editor. The match types you can use for each field in this section are
defined in the first column of the match configuration file (matchConfigFile.cfg).
Make sure the match type you specify has the correct matching logic defined in the
match configuration file. See OHMPI Match Engine Match Types on page 3-3 for more
information.

The following topics provide more information about matching on different types of
data:

■ Configuring the Match String for Person Data on page 3-5

■ Configuring the Match String for Address Data on page 3-6

■ Configuring the Match String for Business Names on page 3-6

Configuring the Match String for Person Data
When matching on person data, you can include any field stored in the database for
matching. To configure the match string, see the Oracle Healthcare Master Person Index
Configuration Guide. For the OHMPI Match Engine, each data type has a different
match type (specified by the match-type element in the matching configuration file).
The FirstName, LastName, SSN, Gender, and DOB match types are specific to person
matching. You can specify any of the other match types defined in the match
configuration file as well. For more information, see OHMPI Match Engine Match
Types on page 3-3.

A sample match string for person matching is shown below. This sample matches on
first and last names, date of birth, social security number, gender, and the street name
of the address.

<match-system-object>
 <object-name>Person</object-name>
 <match-columns>
 <match-column>
 <column-name>
 Enterprise.SystemSBR.Person.FirstName_Std
 </column-name>
 <match-type>FirstName</match-type>
 </match-column>
 <match-column>
 <column-name>Enterprise.SystemSBR.Person.LastName_Std
 </column-name>
 <match-type>LastName</match-type>
 </match-column>
 <match-column>
 <column-name>Enterprise.SystemSBR.Person.SSN
 </column-name>
 <match-type>SSN</match-type>
 </match-column>
 <match-column>
 <column-name>Enterprise.SystemSBR.Person.DOB
 </column-name>
 <match-type>DateDays</match-type>
 </match-column>
 <match-column>
 <column-name>Enterprise.SystemSBR.Person.Gender
 </column-name>
 <match-type>Char</match-type>
 </match-column>

Configuring the Match String for a Master Person Index Application

3-6 Oracle Healthcare Master Person Index Match Engine Reference

 <match-column>
 <column-name>Enterprise.SystemSBR.Person.Address.StreetName
 </column-name>
 <match-type>StreetName</match-type>
 </match-column>
 </match-columns>
</match-system-object>

Configuring the Match String for Address Data
For matching on street address fields, make sure the match string you specify in the
MatchingConfig section of mefa.xml contains all or a subset of the fields that contain
the standardized data (the original text in street address fields is generally too
inconsistent to use for matching). You can include additional fields for matching, such
as the city name or postal code.

To configure the match string, see the Oracle Healthcare Master Person Index
Configuration Guide. For the OHMPI Match Engine, each component of a street address
has a different match type (specified by the match-type element in the matching
configuration file). The default match types for addresses are StreetName,
HouseNumber, StreetDir, and StreetType. You can specify any of the other match types
defined in the match configuration file, as well. For more information, see OHMPI
Match Engine Match Types on page 3-3.

A sample match string for address matching is shown below.

<match-system-object>
 <object-name>Person</object-name>
 <match-columns>
 <match-column>
 <column-name>Enterprise.SystemSBR.Person.Address.StreetName
 </column-name>
 <match-type>StreetName</match-type>
 </match-column>
 <match-column>
 <column-name>Enterprise.SystemSBR.Person.Address.HouseNumber
 </column-name>
 <match-type>HouseNumber</match-type>
 </match-column>
 <match-column>
 <column-name>Enterprise.SystemSBR.Person.Address.StreetDir
 </column-name>
 <match-type>StreetDir</match-type>
 </match-column>
 <match-column>
 <column-name>Enterprise.SystemSBR.Person.Address.StreetType
 </column-name>
 <match-type>StreetType</match-type>
 </match-column>
 </match-columns>
</match-system-object>

Configuring the Match String for Business Names
For matching on business name fields, make sure the match string you specify in the
MatchingConfig section of mefa.xml contains all or a subset of the fields that contain
the standardized data (the unparsed business names are typically too inconsistent for
matching). You can include additional fields for matching if required.

Fine-Tuning Weights and Thresholds for Oracle Healthcare Master Person Index

Match Engine Configuration for Common Data 3-7

To configure the match string, see the Oracle Healthcare Master Person Index
Configuration Guide. For the OHMPI Match Engine, each data type has a different
match type (specified by the match-type element of the matching configuration file).
The PrimaryName, OrgTypeKeyword, AssocTypeKeyword, IndustrySectorList,
IndustryTypeKeyword, and Url match types are specific to business name matching.
You can specify any of the other match types defined in the match configuration file,
as well. For more information, see OHMPI Match Engine Match Types on page 3-3.

A sample match string for business name matching is shown below. This sample
matches on the company name, the organization type, and the sector.

<match-system-object>
 <object-name>Company/object-name>
 <match-columns>
 <match-column>
 <column-name>Enterprise.SystemSBR.Company.Name_PrimaryName
 </column-name>
 <match-type>PrimaryName</match-type>
 </match-column>
 <match-column>
 <column-name>Enterprise.SystemSBR.Company.Name_OrgType
 </column-name>
 <match-type>OrgTypeKeyword</match-type>
 </match-column>
 <match-column>
 <column-name>Enterprise.SystemSBR.Company.Name_Sector
 </column-name>
 <match-type>IndustryTypeKeyword</match-type>
 </match-column>
 </match-columns>
</match-system-object>

Fine-Tuning Weights and Thresholds for Oracle Healthcare Master Person
Index

Each Oracle Healthcare Master Person Index implementation is unique, typically
requiring extensive data analysis to determine how to best configure the structure and
matching logic of the master person index application. The following topics provide
an overview of the process of fine-tuning the matching logic in the match
configuration file and fine-tuning the match and duplicate thresholds.

■ Data Analysis Overview on page 3-7

■ Customizing the Match Configuration and Thresholds on page 3-8

Data Analysis Overview
A thorough analysis of the data to be shared with the master person index application
is a must before beginning any implementation. This analysis not only defines the
types of data to include in the object structure, but indicates the relative reliability of
each system's data, helps determine which fields to use for matching, and indicates the
relative reliability of each match field.

To begin the analysis, the legacy data that will be converted into the master person
index database is extracted and analyzed. Once the initial analysis is complete, you
can perform an iterative process to fine-tune the matching and duplicate thresholds
and to determine the level of potential duplication in the existing data. If you plan to
use the Data Profiler and Bulk Matcher tools generated by Oracle Healthcare Master

Fine-Tuning Weights and Thresholds for Oracle Healthcare Master Person Index

3-8 Oracle Healthcare Master Person Index Match Engine Reference

Person Index to analyze data, see Oracle Healthcare Master Person Index Analyzing and
Cleansing Data User's Guide and Oracle Healthcare Master Person Index Loading the Initial
Data Set User's Guide before you extract the legacy data.

Customizing the Match Configuration and Thresholds
There are three primary steps to customizing how records are matched in a master
person index application.

■ Determining the Match Fields on page 3-8

■ Customizing the Match Configuration on page 3-8

■ Determining the Weight Thresholds on page 3-10

Determining the Match Fields
Before extracting data for analysis, review the types of data stored in the messages
generated by each system. Use these messages to determine which fields and objects to
include in the object structure of the master person index application. From this object
structure, select the fields to use for matching. When selecting these fields, keep in
mind how representative each field is of a specific object. For example, in a master
person index, the social security number field, first and last name fields, and birth date
are good representations whereas marital status, suffix, and title are not. Certain
address information or a home telephone number might also be considered. In a
master company index, the match fields might include any of the fields parsed from
the complete company name field, as well as a tax ID number or address and
telephone information.

Customizing the Match Configuration
Once you determine the fields to use for matching, determine how the weights will be
generated for each field. The primary tasks include determining whether to use
probabilities or agreement weight ranges and then choosing the best comparison
functions to use for each match field.

Probabilities or Agreement Weights

The first step in configuring the match configuration is to decide whether to use
m-probabilities and u-probabilities or agreement and disagreement weight ranges.
Both methods will give you similar results, but agreement and disagreement weight
ranges allow you to specify the precise maximum and minimum weights that can be
applied to each match field, giving you control over the value of the highest and
lowest matching weights that can be assigned to each record.

Defining Relative Value

For each field used for matching, define either the m-probabilities and u-probabilities
or the agreement and disagreement weight ranges in the match configuration file.
Review the information provided under OHMPI Match Engine Matching Weight
Formulation on page 1-4 to help determine how to configure these values. Remember
that a higher m-probability or agreement weight gives the field a higher weight when
field values agree.

Determining the Weight Range

In order to find the initial values to set for the match and duplicate thresholds, you
must determine the total range of matching weights that can be assigned to a record.

Fine-Tuning Weights and Thresholds for Oracle Healthcare Master Person Index

Match Engine Configuration for Common Data 3-9

This weight is the sum of all weights assigned to each match field. Using the data
analysis tool provided can help you determine the match and duplicate thresholds.

Weight Ranges Using Agreement Weights
For agreement and disagreement weight ranges, determining the match weight ranges
is very straightforward. Simply total the maximum agreement weights for each field to
determine the maximum match weight. Then total the minimum disagreement
weights for each match field to determine the minimum match weight. The following
table provides a sample agreement/disagreement configuration for matching on
person data. As you can see, the range of match weights generated for a master person
index application with this configuration is from -36 to +38.

Weight Ranges Using Probabilities
Determining the match weight ranges when using m-probabilities and u-probabilities
is a little more complicated than using agreement and disagreement weights. To
determine the maximum weight that will be generated for each field, use the following
formula:

LOG2(m_prob/u_prob)

To determine the minimum match weight that will be generated for each field, use the
following formula:

LOG2((1-m_prob)/(1-u_prob))

The following table illustrates m-probabilities and u-probabilities, including the
corresponding agreement and disagreement weights that are generated with each
combination of probabilities. As you can see, the range of match weights generated for
a master person index application with this configuration is from -35.93 to +38

Table 3–5 Sample Agreement and Disagreement Weight Ranges

Field Name
Maximum Agreement
Weight

Minimum Disagreement
Weight

First Name 8 -8

Last Name 8 -8

Date of Birth 7 -5

Gender 5 -5

SSN 10 -10

Maximum Match Weight 38 -

Minimum Match Weight - -36

Table 3–6 Sample m-probabilities and u-probabilities

Field Name m-probability u-probability
Max Agreement
Weight

Min Disagreement
Weight

First Name .996 .004 7.96 -7.96

Last Name .996 .004 7.96 -7.96

Date of Birth .97 .007 7.11 -5.04

Gender .97 .03 5.01 -5.01

SSN .999 .001 9.96 -9.96

Maximum Match Weight - - 38 -

Minimum Match Weight - - - -35.93

Fine-Tuning Weights and Thresholds for Oracle Healthcare Master Person Index

3-10 Oracle Healthcare Master Person Index Match Engine Reference

Comparison Functions

The match configuration file defines several match types for different types of fields.
You can either modify existing rows in this file or create new rows that define custom
matching logic. To determine which comparison functions to use, review the
information provided in Chapter 5, "OHMPI Match Engine Comparison Functions".
Choose the comparison functions that best suit how you want the match fields to be
processed.

Determining the Weight Thresholds
Weight thresholds tell the master person index application how to process incoming
records based on the matching probability weights generated by the OHMPI Match
Engine. Two parameters in master.xml provide the master person index application
with the information needed to determine if records should be flagged as potential
duplicates, if records should be automatically matched, or if a record is not a potential
match to any existing records.

■ Match Threshold - Specifies the weight at which two profiles are assumed to
represent the same person and are automatically matched (this depends on the
setting for the OneExactMatch parameter).

■ Duplicate Threshold - Specifies the minimum weight at which two profiles are
considered potential duplicates of one another. The matching threshold indicates
the maximum weight for potential duplicates.

Specifying the Weight Thresholds

There are many techniques for determining the initial settings for the match and
duplicate thresholds. This section discusses two methods. You can also use the Data
Profiler and Bulk Matcher to determine these thresholds. For more information, see
Oracle Healthcare Master Person Index Analyzing and Cleansing Data User's Guide and
Oracle Healthcare Master Person Index Loading the Initial Data Set User's Guide.

The first method, the weight distribution method, is based on the calculation of the
error rates of false matches and false non-matches from analyzing the distribution
spectrum of all the weighted pairs. This is the standard method. The second method,
the percentage method relies on measuring the total maximum and minimum weights
of all the matched fields and then specifying a certain percentage of these values as the
initial thresholds.

The weight distribution method is more thorough and powerful but requires
analyzing a large amount of data (match weights) to be statistically reliable. It does not
apply well in cases where one candidate record is matched against very few reference
records. The percentage method, though simple, is very reliable and precise when
dealing with such situations. For both methods, defining the match threshold and the
duplicate threshold is an iterative process.

Weight Distribution Method
Each record pair in the master person index application can be classified into three
categories: matches, non-matches, and potential matches. Your goal is to make sure
that very few records fall into the False Matches region (if any), and that as few as
possible fall into the False Non-matches region. Modifying the thresholds change this
distribution. Balance this against the number of records falling within the Manual
Review section, as these will each need to be reviewed, researched, and resolved
individually.

Percentage Method

Fine-Tuning Weights and Thresholds for Oracle Healthcare Master Person Index

Match Engine Configuration for Common Data 3-11

Using this method, you set the initial thresholds as a percentage of the maximum and
minimum weights. Using the information provided under Weight Ranges Using
Agreement Weights on page 3-9 or Weight Ranges Using Probabilities on page 3-9,
determine the maximum and minimum values that can be generated for composite
match weights. For the initial run, the match threshold is set intentionally high to catch
only the most probable matches. The duplicate threshold is set intentionally low to
catch a large set of possible matches.

Set the match threshold at 70% of the maximum composite weight starting from zero
as the neutral value. Using the weight range samples in Table 17, this would be 70% of
38, or 26.6. Set the duplicate threshold near the neutral value (that is, the value in the
center of the maximum and minimum weight range). The value could be set between
10% of the maximum weight and 10% of the minimum weight. Using the samples
above, this would be between 3.8 (10% of 38) and -3.6 (10% of -36).

Fine-tuning the Thresholds

Achieving the correct thresholds for your implementation is an iterative process. First,
using the initial thresholds described earlier, process the data extracts into the master
person index database. Then analyze the resulting assumed match and potential
duplicates, paying close attention to the assumed match records with matching
weights close to the match threshold, to potential duplicate records close to either
threshold, and to non-matches near the duplicate threshold.

If you find that most or all of the assumed matches at the low end of the match range
are not actually duplicate records, raise the match threshold accordingly. If, on the
other hand, you find several potential duplicates at the high end of the duplicate range
that are actual matches, decrease the match threshold accordingly. If you find that
most or all of the potential duplicate records in the low end of the duplicate range
should not be considered duplicate matches, consider raising the duplicate threshold.
Conversely, if you find several non-matches with weight near the duplicate threshold
that should be considered potential duplicates, lower the duplicate threshold.

Repeat the process of loading and analyzing data and adjusting the thresholds until
you are satisfied with the results.

Fine-Tuning Weights and Thresholds for Oracle Healthcare Master Person Index

3-12 Oracle Healthcare Master Person Index Match Engine Reference

4

Setting Match Field Variations and Agreement/Disagreement 4-1

4Setting Match Field Variations and
Agreement/Disagreement

The OHMPI Match Engine compares records using probabilistic matching to
determine the proximity of the records. This comparison of records is configured at
design time specific to a custom application, and is based on a set of fields and their
agreement and disagreement weights.

OHMPI 2.0 introduces a host of innovative matching options, collectively referred to
as power match options, to the OHMPI Match Engine, including the capability to
create variations in sets of match fields and agreement/disagreement weights. The
bottom-line benefit is availability of sophisticated match options that results in higher
levels of granular matching and higher levels of accuracy in match results. Value
substitution can be used to reduce data entry errors that cause last name and first
name swapping in records. Ability to configure multiple MatchSets based on various
conditions enables customers to configure powerful OHMPI solutions catering to
customers’ requirements for varying levels of data fields and sources of data.

This chapter includes the following sections:

■ Introducing the New Types of Matching Available in OHMPI on page 4-1

■ Using the Design-time Configuration on page 4-4

■ Current Matching Configuration on page 4-13

■ Using Previous Projects with this Release on page 4-14

Introducing the New Types of Matching Available in OHMPI
OHMPI provides a pluggable interface MatcherAPI, which is a matching layer that is
built on top of the Match Engine.

Any previous project will work seamlessly with this release.

■ System-dependent Matching on page 4-2

■ Conditional Matching on page 4-2

■ Frequency-based Matching on page 4-2

■ Alias Matching and Field Swapping on page 4-2

Note: These features will work only if you have not modified default
MatcherAPI implementation - SbmeMatcherAdapter, that is specified
in the <matcher-api> tag of the mefa.xml file.

Introducing the New Types of Matching Available in OHMPI

4-2 Oracle Healthcare Master Person Index Match Engine Reference

■ Cap for Agreement Matching on page 4-3

■ Waterfall Matching on page 4-3

System-dependent Matching
It is possible to associate a different set of match columns with different systems. For
example, if System A has reliable SSN data but System B does not have reliable SSN
data, execute matching with a different set of match columns that do not have SSN
when the data comes from System B.

System-dependent matching matches different configurations for distinct system
sources; that is, two different system sources with the same match field type (for
example, FirstName) will have access to different matching configuration information.
This means that the FirstName/LastName comparators for System A will have
different agreement /disagreement weights when compared with those for System B.

Conditional Matching
Conditional criteria with a set of match columns are capable of determining which set
of columns will be used for matching. This is especially useful when the nature of a
person-identity parameter defines the match columns that are to be used. For example,
if an incoming Person ID is a drivers license, "driverLicense" would be used as the
match field; however, if an incoming Person ID is a medical record, "medicalID" would
be used as the match field, and so on.

Frequency-based Matching
Frequency-based algorithms at the field-level provide frequency-based matching that
result in frequency-based weights. This means that matches on less-frequent data must
obtain a higher match weight than more frequent data (that is, names with higher
frequencies must evaluate to lower match scores). This feature is important when we
deal with an odd distribution of data. For example, if the field is a person's first name,
then we may have to deal with data with very high frequency (for example, "John")
and very low frequency (for example, "Alrik") in a place like California. This feature
helps readjust the associated weights for the first name so that occurrences of "John"
have less impact than "Alrik" in the overall weight. The customer and/or implementer
must be able to set a step-down of the associated weight (as a percentage) and also
manage the lists of field values to be included in a frequency based deployment. As
this feature is pluggable, you can replace the default weight adjustments with plug-in
classes.

Alias Matching and Field Swapping
Swapping or substituting names during matching, such as first and second names (for
example, Karl Robert Els could also be known as Robert Els) so that it is possible to be
match on Karl Els and Robert Els)

Swapping of first and last names (for example, James Dean) sometimes needs to be
done as the first and last names have been wrongly entered into computer systems (for
example, FirstName=Dean, LastName= James).

Note: Frequency-based matching involves calculating frequencies
with representative large data that might use one of the profiler
functions.

Introducing the New Types of Matching Available in OHMPI

Setting Match Field Variations and Agreement/Disagreement 4-3

Matching of a first name must be done with occurrences in aliases as well. This means
that OHMPI matches FirstName=First Name (for example, James) and
FirstName=Alias (for example, Jim).

Cap for Agreement Matching
There is a maximum cap on agreement weights for a certain group of match fields. For
example, if the match fields are DOB, SSN, FirstName, [address, Phone#], the group
[address, Phone#] fields are given individual maximum agreement scores of 10 and 10.
However, since the maximum cap for this group [address, Phone#] is also set to 10, if
any one of these fields matches, the group is considered a good match candidate. In a
cap group, the fields are associated similar to an 'OR' operator, and they are typically
used to reduce false positives. For example, we can get false positives because a street
name [address] and a home phone number [Phone#] would both match for someone
else living at the same address. Since it is probable that this person would also have
the same last name, we would be generating a weight that is too high for this
particular situation. Only one of the weights [street name or home phone number]
should be used, or the weight should be capped as the higher of the two values. This is
a common problem when there are multiples of related fields used for matching. The
matching process assumes that each match field is independent of the other and can
break down when they are not, such as using a home phone number and street name
for matching purposes.

Waterfall Matching
Waterfall Matching includes MatchSet, Conditional Matching, and System-based
Matching.

Understanding MatchSet, Conditional Matching, System-based Matching, and
Waterfall Matching
MatchSet defines a set of match fields along with optional agreement and
disagreement weights. It also contains information about conditional matching based
on systems and/or individual fields.

There are two kinds or pools of MatchSets

■ Conditional MatchSets: These MatchSets are associated with conditions that are
based on a system associated with input data or conditions that are based on
record field values. A given conditional MatchSet qualifies given input data only if
its conditions satisfy input data.

■ Unconditional MatchSets: These MatchSets do not have any condition associated
with them.

The matching system processes all conditional MatchSets first and selects the
MatchSets whose conditions satisfy the input data. Afterwards the system proceeds to
do actual matching of input data with the selected set of MatchSets. Each "MatchSet"
matching evaluation with input data, will yield a score that is based on probabilistic
matching of input data with match fields and agreement and disagreement fields
specified in that MatchSet.

The mefa-ext.xml file supports a tag called ProcessUnconditionalMatchSets which
has two values: true and false.

■ ProcessUnconditionalMatchSets - true: After processing conditional match sets,
the system proceeds to all unconditional match sets. The overall match score is the
maximum of the scores evaluated from all these match sets.

Using the Design-time Configuration

4-4 Oracle Healthcare Master Person Index Match Engine Reference

■ ProcessUnconditionalMatchSets - false: After processing conditional MatchSets,
the system processes an unconditional MatchSets pool only if none of MatchSets in
the conditional MatchSets pool satisfy the input data condition. In other words, if
one or more Conditional MatchSets satisfy input data condition, then the
unconditional MatchSets are not processed.

In Table 4–1, above, X represents the matching will be performed based on weights
defined in corresponding MatchSet in column 1. For example, if the system object
comes in from System A, the matching engine will go through MS ID 1 and 2 and do
the waterfall logic to get the maximum weight based on two sets of comparison.
Similarly, if input comes from system B the only MatchSet that satisfies the system
match is "MS – System A or B" ID 1 which is MS – System A or B so the matching is
done based on configuration in matchset 1 and all other matchsets will be ignored
including default and 6, 7, and 8. Thus there is no waterfall matching invoked.

However if input with system E comes in, notice there is no matchset defined for
system E, the extension matching will go through all matchsets that have no system
attached. In this case the matching will be performed based on 5,6,7,8 matchset and
waterfall logic will kick in to retrieve the maximum weight out of 4 results.

Using the Design-time Configuration
The Design-time configurations are stored in an XML file called match-ext.xml. The
match-ext.xml file has three main sections:

■ <matchSet> allows for multiples of MatchSet and properties of matchSet to
support conditional and System-dependent Matching

■ <frequencyBasedFields> defines fields whose weights are adjusted based upon
the frequency of certain strings

■ <fieldsSubstitution> contains a multiple set of fields whose data is swapped for
matching & blocking

The first five sections below provide information you need to be aware of, as well as
an example of the XML file you will edit to set up your MatchSets. The sixth section
provides a simplistic procedure on where and how to set up the match-ext.xml file for
the matching you require.

Table 4–1 MatchSet, Conditional Matching, and System-based Matching Examples

MatchSet name
MatchSet
ID Description

Input 1 SO
with
System A

Input 2 SO
with
System B

Input 3 SO
with
System C

Input 4 SO
with
System E

MS – System A or B +
Gender = M

1 System A or B and Gender
condition

X X - -

MS – System A +
ColorOfHair = W

2 System A and ColorOfHair
condition

X - - -

MS – System C 3 System C no field condition - - X -

MS – System C or D 4 System C or D no field level
condition

- - X -

MS Default (added by
system based on mefa.xml)

5 Default contains no system
or field level conditions

- - - X

MatchSet Gender =F 6 No system with condition - - - X

MatchSet CoH = black 7 No system with condition - - - X

MatchSet condition = some
other

8 No system with condition - - - X

Using the Design-time Configuration

Setting Match Field Variations and Agreement/Disagreement 4-5

■ Understanding the XML Elements on page 4-5

■ Sample XML File on page 4-7

■ XML File Explanation on page 4-9

■ Frequency Weight Reducer Plugin Interface on page 4-11

■ Default Behavior of Frequency-based Reduction in Agreement Weights on
page 4-12

■ Setting Up the match-ext.xml to Perform Matching on page 4-13

Understanding the XML Elements
The Design-time configurations are stored in an XML file called match-ext.xml. The
match-ext.xml file has three main elements:

■ <matchSet> allows for multiples of MatchSet and properties of matchSet

■ <frequencyBasedFields> defines fields whose weights are adjusted based upon
the frequency of certain strings

■ <fieldsSubstitution> contains a multiple set of fields whose data is swapped for
matching & blocking

matchSet
The MatchSet is set of matching fields and also consists of their agreement and
disagreement weights. The core enhancement in the features set is using some of
Match fields with their agreement/disagreement weights to match pairs of data,
which results in different match score. The highest match score from all sets of match
sets is taken to determine if there is an assumed match, duplicate match, or non-match.

Each MatchSet can be associated with:

■ A set of systems

■ A set of conditions based on [field = value]; each such condition has an AND
operator between themselves

■ scoreMultiplier

When there are many MatchSets to match against, some MatchSets can be more
reliable than others to find assumed or potential thresholds. This factor is
multiplied with the score computed by MatchEngine to normalize it with respect
to the application Match threshold and Duplicate threshold. So if scoreMultiplier
is .8, and total score computed for a MatchSet is 50, then it is normalized to 40.

■ child MatchSet

The MatchSet can contain a child MatchSet. The child MatchSet can be used for
capping agreement/disagreement weights for group of match fields. This
represents the 'OR' functionality within a match set.

frequencyBasedFields
FrequencyBasedFields consists of:

Note: The match threshold and the duplicate thresholds are fixed
irrespective of the type of MatchSet that is used.

Using the Design-time Configuration

4-6 Oracle Healthcare Master Person Index Match Engine Reference

■ set of fields whose max agreement weights will be normalized to a lower weight
depending upon known frequency of field data in the system.

■ maxPercentWeightVariation

maxPercentWeightVariation is the percentage of maximum variation from the
agreement weight. If it is 50%, and the agreement weight for a field is 20, then
regardless of how the agreement weight was reduced via frequency based rules,
the max agreementWeight reduction would be 20*.5 = 10.

■ Computation of weight reduction

A plugin interface is provided that can override default rules on how much
agreement weight should be reduced with the high frequency of a word.

Every name in FrequencyBasedFields has its absolute frequency recorded in a
frequency table (see Table 4–2). You populate this table off-line using a custom process
that is outside the scope of OHMPI.

FrequencyTable map in memory: During startup time of an OHMPI server (for
example WebLogic), the frequency table is loaded in memory and their frequency
percentages for each name are computed. If a name is not in memory it has low
frequency and is given maximum agreement weight.

fieldsSubstitution
fieldsSubstitution consists of:

■ Value Substitution

The feature provides functionality to support swapping of the fields during the
matching process. The swapping functionality helps to resolve cases in which
certain field values such as Last Name is erroneously entered instead of First
Name. Field substitution will allow the match to be performed based on swapped
field values in addition to the normal matching process based on MatchSet.

Note: This is not same score computed by the Match Engine, which
depends upon a match comparison of two field values.

Note: Based upon the frequency of a field value, it only affects the
maximum agreement weight. The disagreement weight is not affected.
For example, If a name has an agreement weight of +10, the
disagreement weight = -10. However, when high frequency words
such as "John" and "John" are matched, the total agreement weight is
lowered to perhaps +5. If one name is "George" and other name is
"John" they do not match, but their disagreement score would still be
-10.

Table 4–2 SBYN Frequency Table

Value Frequency

John 10000

Evans 3000

Chu 200

Using the Design-time Configuration

Setting Match Field Variations and Agreement/Disagreement 4-7

Examples would be:

<fieldSubstitution>
 <matching>
 <substituteField>
 <targetField>Enterprise.SystemSBR.Person.LastName</targetField>
 <sourceField>Enterprise.SystemSBR.Person.FirstName</sourceField>
 </substituteField>
 </matching>
 <blocking>
 <substituteField>
 <targetField>Enterprise.SystemSBR.Person.LastName</targetField>
 <sourceField>Person.FirstName</sourceField>

 </substituteField>

 </blocking>
 </fieldSubstitution>

The absence of the <fieldSubstitution> element from the match-ext.xml file is
treated as if the Value Substitution feature has been turned off.

Description of Various Elements:

■ matching defines the various elements needed to configure the matching part
of value substitution

■ targetField defines the target field whose value will be substituted by one or
more sourceField

■ sourceField defines the source field that will contain input data and also be
queried to get the substitute value

■ Alias Matching

The feature enhances existing matching by enabling matching done based on
previously used names or aliases.

It is a function to match a First Name against FirstName and Aliases. The value
substitution construct described above could be used to achieve this functionality.
The target field would describe the actual field that needs to be matched against
source fields such as Aliases and so on.

Sample XML File
Below is an example of the match-ext.xml file. See XML File Explanation on page 4-9
for details.

<MatchExtConfiguration>
 <processUnconditionalMatchSets>false</processUnconditionalMatchSets>
 <matchSet ID="1">
 <scoreMultiplier>.9</scoreMultiplier>
 <matchColumns>
 <matchColumn>
 <columnName>Enterprise.SystemSBR.Person.FirstName_Std</columnName>
 <matchType>FirstName</matchType>
 <agreementWeight>10</agreementWeight>
 <disagreementWeight>-10</disagreementWeight>
 </matchColumn>
 <matchColumn>
 <columnName>Enterprise.SystemSBR.Person.LastName_Std</columnName>
 <matchType>LastName</matchType>

Using the Design-time Configuration

4-8 Oracle Healthcare Master Person Index Match Engine Reference

 </matchColumn>
 </matchColumns>
 <conditions>
 <fieldCondition>
 <field>Enterprise.SystemSBR.Person.ID</field>
 <value>DL</value>
 </fieldCondition>
 <systems>
 <system>HospitalA</System>
 <system>HospitalB</System>
 </systems>
 </conditions>
 <childMatchSet capAgreement="10" capDisagreement="-10">
 <matchColumns>
 <matchColumn>
 <columnName>Enterprise.SystemSBR.Person.Phone.PhoneNum</columnName>
 <columnName>Enterprise.SystemSBR.Person.Phone.PhoneNum</columnName>
 <matchType>Phone</matchType>
 <agreementWeight>10</agreementWeight>
 <disagreementWeight>-10</disagreementWeight>
 </matchColumn>
 <matchColumn>
 <columnName>Enterprise.SystemSBR.Person.Address.Staddress</columnName>
 <matchType>StAddress</matchType>
 </matchColumn>
 </matchColumns>

 </childMatchSet>
 </matchSet>
 <fieldSubstitution>
 <matching>
 <substituteField>
 <targetField>
 Enterprise.SystemSBR.Person.FirstName
 </targetField>
 <sourceField>
 Enterprise.SystemSBR.Person.LastName
 </sourceField>
 <sourceField>
 Enterprise.SystemSBR.Person.Alias.FirstName
 </sourceField>
 </substituteField>
 </matching>
 <blocking>
 <substituteField>
 <targetField>Enterprise.SystemSBR.Person.FirstName_phon</targetField>
 <sourceField>Person.LastName</sourceField>
 <phoneticEncodertype>Soundex</phoneticEncodertype>
 </substituteField>
 </blocking>
 </fieldSubstitution>

 <frequencyBasedFields>
 <field>
 <fieldName>Enterprise.SystemSBR.Person.FirstName_Std</fieldName>
 </field>
 <alternateMatchColumn>
 <columnName>Enterprise.SystemSBR.Person.FirstName_Std</columnName>
 <matchType>LastName</matchType>
 </alternateMatchColumn>

Using the Design-time Configuration

Setting Match Field Variations and Agreement/Disagreement 4-9

 </field>
 <maxPercentWeightVariation>50</maxPercentWeightVariation>
 <frequencyWeightReducerPlugin>
 customPackage.CustomFreuqencyReducer
 </frequencyWeightReducerPlugin>
 </frequencyBasedFields>
</MatchExtConfiguration>

XML File Explanation
This section explains the match extensions in the match-ext.xml file. When setting up
matching, simply comment out the match extensions you do not want to use for
matching in the match-ext.xml file.

<MatchExtConfiguration>

/** There can be multiple match sets. A matchSet has a unique String ID. Each match
set is evaluated independently. The match score evaluated from all the match sets for a
given tuple is the one having the highest match score. A matchSet can contain
child-matchSets, but a child matchSet should be unconditional.

*/
<matchSet ID="1">
 <scoreMultiplier>.9</scoreMultiplier>
/** A scoreMultiplier, is multiplied with the match score computed for that set of
match fields, to determine total score. */
 <matchColumns>
 <matchColumn>
 <columnName>Enterprise.SystemSBR.Person.FirstName_Std</columnName>
 <matchType>FirstName</matchType>
/** agreementWeight & disagreementWeight are optional fields. The default value is
chosen from matchconfig.cfg */
 <agreementWeight>10</agreementWeight>
 <disagreementWeight>-10</disagreementWeight>
 </matchColumn>
 <matchColumn>
 <columnName>Enterprise.SystemSBR.Person.LastName_Std</columnName>
 <matchType>LastName</matchType>
 </matchColumn>
 </matchColumns>
/*
The given match set has a condition associated with it. A given pair of tuples is
compared using a particular matchSet only if Conditions for this matchSet is evaluated
to true. Conditions can be composed of many individual fieldCondition instances.
Each fieldCondition has an implicit "AND" operator with other fieldCondition
instances. A fieldCondition is true only if the field at run time has a value that is
specified in a value element in the fieldCondition. The set of fieldConditions also has
an implicit "AND" with systems. However, the set of systems within the systems
element has an implicit "OR" operator. So this particular matchSet is run through the
match engine only if the given Person object at run time has ID="DL" and belongs to
either system HospitalA or HospitalB.

Note: The sample match-ext.xml file that is delivered with OHMPI
is commented out. To use this file you must remove these comments at
the beginning (<!--) and end (-->) of the sample file. Also, you need
to modify the object names and field names to your project object
model and configure it based upon your business needs.

Using the Design-time Configuration

4-10 Oracle Healthcare Master Person Index Match Engine Reference

The conditions element can be empty, which implies that it is an unconditional
matchSet. Similarly, the systems element can be empty, which means this "conditions" is
true for all systems.

*/
<conditions>
 <fieldCondition>
 <field>Enterprise.SystemSBR.Person.ID</field>
 <value>DL</value>
 </fieldCondition>
 <systems>
 <system>HospitalA</System>
 <system>HospitalB</System>
 </systems>
</conditions>
/** childMatchSet contains set of match columns. Total cap for aggregate of
agreement and disagreement weights can be specified in childMatchSet attributes*/
<childMatchSet capAgreement="10" capDisagreement="-10">
 <matchColumns>
 <matchColumn>
 <columnName>Enterprise.SystemSBR.Person.Phone.PhoneNum</columnName>
 <matchType>Phone</matchType>
 <agreementWeight>10</agreementWeight>
 <disagreementWeight>-10</disagreementWeight>
 </matchColumn>
 <matchColumn>
 <columnName>Enterprise.SystemSBR.Person.Address.Staddress</columnName>
 <matchType>StAddress</matchType>
 </matchColumn>
 </matchColumns>
</childMatchSet>
</matchSet>
/**
A directive to the Match Enhancer to use values from sourceField as a value for
targetField during the matching of targetField. The values for fields specified in
sourceField will be used in addition to the value for targetField at runtime matching.
For example, If FirstName = John, lastName = Smith, and Alias.FirstName = Jack, then
the first name comparisons would include the values ['John','Smith','Jack']. These can
be used both at matching and for blocking.

Additionally, if PhoneticEncoder-type is specified, then that encoding is executed on
the Blocking.sourceField value, before using it as additional value for targetField
blocking.

*/
<fieldSubstitution>
 <matching>
 <substituteField>
 <targetField> Enterprise.SystemSBR.Person.FirstName</targetField>
 <sourceField weightMultiplier=.9>
 Enterprise.SystemSBR.Person.LastName
 </sourceField>
 <sourceField>
 Enterprise.SystemSBR.Person.Alias.FirstName
 </sourceField>
 </substituteField>
 </matching>
 <blocking>
 <substituteField>
 <targetField>
 Enterprise.SystemSBR.Person.FirstName_ph

Using the Design-time Configuration

Setting Match Field Variations and Agreement/Disagreement 4-11

 </targetField>
 <sourceField>
 Enterprise.SystemSBR.Person.lastName
 </sourceField>
 <PhoneticEncoder-type>S oundex</PhoneticEncoder-type>
 </substituteField>
 </blocking>
 </fieldSubstitution>
 /**
Frequency based scoring is applied to set of <field>. A field includes elements:

■ Fieldname is a fieldname whose score is reduced based upon the frequency of the
given string that requires matching.

■ maxPercentWeightVariation specifies the maximum percentage in the score that
can be reduced, regardless of any frequency-based agreement weight reduction
rules.

■ FrequencyWeightReducerPlugin specifies a frequency reducer that can evaluate
how much agreementWeight of a given field should be reduced based upon the
frequency percentage of a given field value.

*/
 <frequencyBasedFields>
 <field>
 <fieldName>
 Enterprise.SystemSBR.Person.FirstName_Std
 </fieldName>
 <alternateMatchColumn>
 <columnName>
 Enterprise.SystemSBR.Person.FirstName_Std
 </columnName>
 <matchType>LastName</matchType>
 </alternateMatchColumn>
 <field>

 <maxPercentWeightVariation>50</maxPercentWeightVariation>
 <frequencyWeightReducerPlugin>
 customPackage.CustomFreuqencyReducer
 </frequencyWeightReducerPlugin>
 </frequencyBasedFields>
 </MatchExtConfiguration>

Use the XML Editor to define the different MatchSets and FrequencyBasedFields.

Frequency Weight Reducer Plugin Interface
package com.sun.mdm.index.matching.matchingext;

import java.util.Map;
import java.util.HashMap;
import java.util.List;
import java.util.Set;
import com.sun.mdm.index.matching.matchingext.generated.FrequencyBasedFields;
import com.sun.mdm.index.matching.matchingext.generated.Field;
import com.sun.mdm.index.util.ConnectionUtil;
import java.sql.Connection;
import java.sql.Statement;
import java.sql.ResultSet;
import java.sql.SQLException;

Using the Design-time Configuration

4-12 Oracle Healthcare Master Person Index Match Engine Reference

/**
 * Computes reduction factor for a corresponding field and value based on its
input frequency. This reduction factor
 * is used to reduce the agreement weight for such field value. String with higher
frequencies
 * should return a lower reduction factor. OHMPI frequency based normalizer has a
reduction factor algorithm based on frequency
 * of a name value. So this plugin should be written only if the default agreement
reduction provided by OHMPI needs to be changed.
 * A (reduction factor returned by this method)*(agreement Weight of a field),
gives the new agreement weight for the field.
 *
 *
 * @author sdua
 * @version $Revision: 1.1 $
 */

public interface FrequencyWeightReducer {

 /**
 returns agreement weight reduction factor for a String that participates in
matching process.
 @param field field name for which reduction factor should be computed
 @param value value for the field name. value typically would mean person's
name.
 @param percentFrequency percentage frequency of this field value relative to
all other values.
 The implementation class for this interface needs to be specified in
match-ext.xml.
 */
double computeReductionFactor(String field, String value, double
percentageFrequency);
}

Default Behavior of Frequency-based Reduction in Agreement Weights
The reduction in agreement weight due to high frequency of a word follows a linear
function but which has not one adjustment rate (slope) but gives different weight
adjustment rates at different frequency ranges. Below are the ranges of frequencies, for
which there are corresponding ranges of agreement adjustment weights. So the lower
and higher word percentFrequency corresponds to lower and higher range of
agreement multiplication factor. Any weight reduction within a range of
percentFrequency is proportionally reduced.

if (percentFrequency > 10%) new agreementWt = 20% of original agreementWt

else if (percentFrequency is 5% - 10%) new agreementWt = 20% - 30% of original
agreeementWt

else if (percentFrequency is 1% - 5%) new agreementWt = 30% - 50% of original
agreeementWt

else if (percentFrequency is .1% - 1%) new agreementWt = 50% - 70% of original
agreeementWt

else if (percentFrequency is .01% - .1%) new agreementWt = 70% - 90% of original
agreeementWt

Current Matching Configuration

Setting Match Field Variations and Agreement/Disagreement 4-13

Setting Up the match-ext.xml to Perform Matching
Basically all you need to do to set up matching is edit the match-ext.xml file. To do
this:

1. Start NetBeans and open a project.

2. Select the Open Project icon in the NetBeans toolbar.

3. In the Open Project window select the project you want to open and click Open
Project.

4. In the Projects pane (on the left side of NetBeans) and under Configuration (which
is open), right-click match-ext.xml and select Edit.

The XML Editor opens.

5. Edit the match-ext.xml file, changing the values based upon your matching needs
and comment out matching that you do not want to use.

6. Save the file.

7. Deploy your project

8. Open your project in the MIDM or in a web services client.

Current Matching Configuration
This section provides sample files of mefa.xml and matchConfigFile.cfg.

Sample of Existing mefa.xml
<match-system-object>
 <object-name>MPI1</object-name>
 <match-columns>
 <match-column>
 <column-name>Enterprise.SystemSBR.MPI1.FirstName_Std</column-name>
 <match-type>FirstName</match-type>
 </match-column>
 <match-column>
 <column-name>Enterprise.SystemSBR.MPI1.LastName_Std</column-name>
 <match-type>LastName</match-type>
 </match-column>
 </match-columns>
<match-system-object>

match-columns, which is defined in the current mefa.xml file, forms a default
MatchSet.

If the agreements and disagreements for any match-columns are not defined in mefa_
ext.xml, they would be used from matchConfigFile.cfg.

Sample of Existing matchConfigFile.cfg
PrimaryName 30 0 us 0.9 0.001 13 -2
StreetName 25 0 us 0.9 0.001 11 0
HouseNumber 8 0 un 0.9 0.001 11 0
StreetDir 15 0 u 0.9 0.001 7 -2
StreetType 10 0 u 0.9 0.001 7 -2

Note: There are no changes in the mefa.xml and
matchConfigFile.cfg files.

Using Previous Projects with this Release

4-14 Oracle Healthcare Master Person Index Match Engine Reference

FirstName 15 0 uf 0.99 0.001 10 -4
LastName 15 0 ul 0.99 0.001 10 -4
String 25 0 us 0.99 0.001 10 -10

The mefa.xml and matchconfig.cfg files contain the default set of agreement and
disagreement weights. Each individual MatchSet has its own set of agreement weights
which override the default weights in the mefa.xml file.

The comparators for match types are stored in MatchEngine and are not configurable
from mefa_ext.xml.

Using Previous Projects with this Release
Any project created in a previous release of OHMPI will work seamlessly with this
release.

■ To use a project from a previous release without any of the new matching features
for a component in this release:

– Import the previous project and re-deploy it.

■ To use a project from a previous release with matching in this release:

– Import the previous project, configure it for the new matching, regenerate,
clean and build, and then re-deploy it.

– If you import a previous project, you also need to copy the sbyn_frequency
table that is associated with the previous project, as the sbyn_frequency table
is created when a project is created.

Note: There is no direct mapping between mefa_ext.xml source field
(match column) such as Enterprise.SystemSBR.Person.FirstName_
Std and the comparator defined in matchConfigFile.cfg. This
mapping is provided via the matchType column in mefa_ext.xml and
match type in matchConfigFile.cfg.

Note: When you import (that is copy) a project from a previous
release of OHMPI into this release of OHMPI, the project from the
previous release has matching and standardization as created in the
previous release. To use the matching and standardization features
that come with this release you need to create a new project, which in
turn creates matching and standardization. You then need to copy the
new matching and standardization files that you just created into the
appropriate directory of the project that you have imported into this
release of OHMPI.

5

OHMPI Match Engine Comparison Functions 5-1

5OHMPI Match Engine Comparison Functions

This chapter introduces you to and provides conceptual information about the OHMPI
Match engine comparison functions.

This chapter includes the following section:

■ Learning About the OHMPI Match Engine Comparison Functions on page 5-1

Learning About the OHMPI Match Engine Comparison Functions
Match field comparison functions, or comparators, compare the values of a field in
two records to determine whether the fields match or how closely they match. The
fields are then assigned a matching weight based on the results of the comparison
function. You can use several different types of comparison functions in the match
configuration file in order to customize how the OHMPI Match Engine matches
records. The comparators themselves are highly configurable and can be configured to
assign differing weights or handle null values. Several comparators accept parameters
that further fine-tune the matching process.

The OHMPI Match Engine provides a comprehensive group of match comparison
functions to enable matching on a wide variety of data. While you should be able to
configure any of the default comparison functions to accurately match your data, you
can create new comparison functions and integrate them into a master person index
application. For more information, see Chapter 6, "Creating Custom Comparators for
the OHMPI Match Engine".

Certain comparison function types are very specific to the type of data being matched,
such as the numeric functions and the date functions. Others, such as the Bigram and
uncertainty functions, are more general and can be applied to various data fields.

■ Bigram Comparators on page 5-2

■ Uncertainty String Comparators on page 5-2

■ Exact Character-to-Character Comparator (c) on page 5-6

■ Numeric Comparators on page 5-6

■ Condensed AlphaNumeric SSN Comparator (nS) on page 5-7

■ Date Comparators on page 5-7

■ Prorated Comparator (p) on page 5-9

Certain comparison function types are very specific to the type of data being matched,
such as the numeric functions and the date functions. Others, such as the Bigram and
uncertainty functions, are more general and can be applied to various data fields.

Learning About the OHMPI Match Engine Comparison Functions

5-2 Oracle Healthcare Master Person Index Match Engine Reference

Be sure to review Table 2–1 for information about how the parameters in the match
configuration file affect the outcome of the comparator functions. For example,
parameters define how null fields are handled and what the actual agreement and
disagreement weights are.

Bigram Comparators
The OHMPI Match Engine provides two different comparison functions based on the
Bigram algorithm, the standard bigram (b1) and the transposition bigram (b2). A
Bigram algorithm compares two strings using all combinations of two consecutive
characters within each string. For example, the word "bigram" contains the following
bigrams: "bi", "ig", "gr", "ra", and "am". The Bigram comparison function returns a
value between 0 and 1, which accounts for the total number of bigrams that are in
common between the strings divided by the average number of bigrams in the strings.
Bigrams handle minor typographical errors well.

Bigram Comparator (b1)
The Bigram Comparator is a standard Bigram comparison function, processing match
fields as described above. This comparison function takes no parameters.

Advanced Bigram Comparator (b2)
The Advanced Bigram Comparator is based on the standard Bigram comparison
function, but handles transpositions of characters within a string. This comparison
function takes no parameters.

Uncertainty String Comparators
The OHMPI Match Engine provides several uncertainty comparison functions for
comparing string fields. Most uncertainty comparison functions are generic, but some
comparison functions are designed for specific types of information (first name, last
name, house number, and national identifiers).

The uncertainty functions include the following:

■ Advanced Jaro String Comparator (u) on page 5-3

■ Winkler-Jaro String Comparator (ua) on page 5-3

■ Condensed String Comparator (us) on page 5-3

■ Advanced Jaro Adjusted for First Names (uf) on page 5-4

■ Advanced Jaro Adjusted for Last Names (ul) on page 5-4

■ Advanced Jaro Adjusted for House Numbers (un) on page 5-4

■ Advanced Jaro AlphaNumeric Comparator (ujs) on page 5-4

■ Unicode String Comparator (usu) on page 5-4

■ Unicode AlphaNumeric Comparator (usus) on page 5-5

■ Chinese String Comparator (usc) on page 5-6

■ Chinese String Prefix Comparator (cc) on page 5-6

Note: The names of the comparators are configurable. The default
names are used here.

Learning About the OHMPI Match Engine Comparison Functions

OHMPI Match Engine Comparison Functions 5-3

Advanced Jaro String Comparator (u)
The Advanced Jaro String Comparator is the standard uncertainty comparison
function for processing string fields. This comparison function is based on the Jaro
algorithm with McLaughlin adjustments for similarities. The Jaro algorithm is a string
comparison function that accounts for insertions, deletions, and transpositions by
performing the following steps.

1. Compute the lengths of both strings to be matched.

2. Determine the number of common characters between the two strings. In order for
characters to be considered common, they must be within one-half the length of
the shorter string.

3. Determine the number of transpositions. A transposition means a character from
the first string is out of order with the corresponding common character from the
second string.

As more differences are found between two fields, the agreement weight decreases
nonlinearly. Thus, the agreement weight can remain high for several differences, but
will drop sharply at a certain point. This comparison function takes no parameters.

Winkler-Jaro String Comparator (ua)
The Winkler-Jaro String Comparator is based on the standard uncertainty comparison
function, u, with variants of Winkler/Lynch and McLaughlin. It has additional
features to handle specific differences between fields, such as key punch and visual
memory errors. Each feature makes use of the information made available from
previous features. This comparison function takes no parameters.

The following features are included in the advanced uncertainty function.

■ The function determines each character in exact agreement and then assigns a
value of 1.0 to each agreeing character. It then determines each disagreeing but
similar character and assigns a value of 0.3 to each. Similar characters might occur
because of scanning errors (for example, inserting "1" the number instead of "l" the
letter) or keypunch errors (for example, typing "S" instead of "D").

■ The function gives increased value to agreement on the beginning characters of a
string. The algorithm adjusts the weighting value up by a fixed amount if the first
four characters in each string agree; it adjusts the weighting value up by smaller
value if only the first three, two, or one characters agree.

■ The function adjusts the string comparison value if the strings are longer than six
characters and more than half of the characters after the fourth character agree.

Condensed String Comparator (us)
The Condensed String Comparator is a custom version of a generic string comparison
function. It is similar to the Advanced Jaro String Comparator, u, but processes data in
a more simple and efficient manner, improving processing speed. The agreement
weights generated by this comparison function decrease in a more uniform manner for
each difference found between two fields.

Like the Advanced Jaro String Comparator, the Condensed String Comparator takes
into account such uncertainty factors as string length, transpositions, key punch errors,
and visual memory errors. Unlike the uncertainty comparison function ("u"), this
function handles diacritical marks. This comparison function takes no parameters.

Learning About the OHMPI Match Engine Comparison Functions

5-4 Oracle Healthcare Master Person Index Match Engine Reference

Advanced Jaro Adjusted for First Names (uf)
The Advanced Jaro Adjusted for First Names comparator is designed specifically for
matching on first name fields, and is based on the Condensed String Comparator, us.
This comparison function analyzes the string and then adjusts the weight based on
statistical data. This comparison function takes no parameters.

Advanced Jaro Adjusted for Last Names (ul)
The Advanced Jaro Adjusted for Last Names comparator is designed specifically for
matching on last name fields, and is based on the Condensed String Comparator, us.
This comparison function analyzes the string and then adjusts the weight based on
statistical data. This comparison function takes no parameters.

Advanced Jaro Adjusted for House Numbers (un)
The Advanced Jaro Adjusted for House Numbers comparator is designed specifically
for matching on house numbers, and is based on the Condensed String Comparator,
us. This comparison function analyzes the string and then adjusts the weight based on
statistical data. This comparison function takes no parameters.

Advanced Jaro AlphaNumeric Comparator (ujs)
The Advanced Jaro AlphaNumeric Comparator is a custom version of a generic string
comparison function. It is based on the Advanced Jaro String Comparator, u, but is
designed specifically for matching on national identifier, such as social security
numbers. This function takes into account such uncertainty factors as string length,
transpositions, key punch errors, and visual memory errors. It can also take into
consideration field length, allowed character types, and invalid values. This
comparison function takes the parameters described in Table 5–1.

Unicode String Comparator (usu)
The Unicode String Comparator is a custom version of a generic string comparison
function. It is similar to the Condensed String Comparator, us, but is based in Unicode
to enable multilingual support. This locale-oriented comparator recognizes the
nuances of each language and supports the complexities and subtleties of each. For
example, when configured to use the German language set, the function recognizes "ß"
and "ss" as equivalent. Like the simplex uncertainty function, the Unicode function
takes into account such uncertainty factors as string length, transpositions, key punch
errors, and visual memory errors. This comparison function takes the parameter
described in Table 5–2.

Table 5–1 ujs Comparison Function Parameters

Parameter Description

ssnLength An optional parameter that takes the length of the field value into account. If a fixed length is specified,
the match engine considers any field of a different length to be a non-match. Specify any integer smaller
than the value specified for the field size in the matching configuration file (for more information, see
Matching Rules Section on page 2-2).

recType An indicator of whether the field must be all numeric. Specify "nu" for numeric only, or specify "an" to
allow alphanumeric characters. The match engine considers any fields containing characters that are not
allowed to be a non-match.

ssnList A list of invalid characters for the field. If you specify a character, the match engine considers fields that
consist of only that character to be a non-match. For example, if you specify "0", then an SSN field cannot
contain all zeros. Specify as many alphanumeric characters as needed, separated by a space.

Learning About the OHMPI Match Engine Comparison Functions

OHMPI Match Engine Comparison Functions 5-5

Unicode AlphaNumeric Comparator (usus)
This comparison function is a custom version of a generic string comparison function.
It is similar to the Unicode String Comparator, but it is also similar to the Advanced
Jaro AlphaNumeric Comparator in that it is designed to work on national identifiers
like social security numbers. This locale-oriented comparator recognizes the nuances
of each language and supports the complexities and subtleties of each. This function
takes into account such uncertainty factors as string length, transpositions, key punch
errors, and visual memory errors. It can also take into consideration field length,
allowed character types, and invalid values. This comparison function takes the
parameters described in Table 5–3.

Table 5–2 usu Comparison Function Parameter

Parameter Description

language An indicator of the language being used for the information stored in the database. Enter one of the
following codes to indicate the language in use.

da - Danish

sv - Swedish

nb - Norwegian Bokmål

nn - Norwegian Nynorsk

nl - Dutch

es - Spanish

fr - French

en - English

it - Italian

de - German

Table 5–3 usus Comparison Function Parameters

Parameter Description

language An indicator of the language being used for the information stored in the database. Enter one of the
following codes to indicate the language in use.

da - Danish

sv - Swedish

nb - Norwegian Bokmål

nn - Norwegian Nynorsk

nl - Dutch

es - Spanish

fr - French

en - English

it - Italian

de - German

fixed-length An optional parameter that takes the length of the field value into account. If a fixed length is specified,
the match engine considers any field of a different length to be a non-match. Specify any integer smaller
than the value specified for the size specified for the field (for more information, see Matching Rules
Section on page 2-2).

character-type An indicator of whether the field must be all numeric. Specify "nu" for numeric only, or specify "an" to
allow alphanumeric characters. The match engine considers any fields containing characters that are not
allowed to be a non-match.

invalid-characters A list of invalid characters for the field. If you specify a character, the match engine considers fields that
consist of only that character to be a non-match. For example, if you specify "0," then an SSN field cannot
contain all zeros. Specify as many alphanumeric characters as needed, separated by a space.

Learning About the OHMPI Match Engine Comparison Functions

5-6 Oracle Healthcare Master Person Index Match Engine Reference

Chinese String Comparator (usc)
The Chinese String Comparator is a custom version of a generic string comparison
function. It is a locale-specific comparator that takes Chinese characters' structure into
consideration during comparison. Character attributes such as radicals, stroke
numbers and several structure-based encoding methods are taken into consideration
when determining the match score between two Chinese characters. This comparison
function takes no parameters.

Chinese String Prefix Comparator (cc)
The Chinese String Prefix Comparator is similar to Chinese String Comparator. The
only difference is it only compares the first pre-determined length of characters
without considering gaps. This comparison function takes no parameters.

Exact Character-to-Character Comparator (c)
The OHMPI Match Engine provides one exact-match comparison function, "c." With
this comparison function, two fields must match exactly on each character in order to
be considered a match. This comparison function takes no parameters.

Numeric Comparators
The OHMPI Match Engine provides two comparison functions for matching on
numeric fields:

■ Integer Comparator (nl) on page 5-6

■ Real Number Comparator (nR) on page 5-7

■ Chinese Integer Comparator (nIc) on page 5-7

The Integer Comparator and Real Number Comparator can perform either numeric
string comparisons or relative distance calculations. When set for a string comparison,
the functions compare numeric strings based on the advanced uncertainty comparator.
When set for relative distance calculations, the matching weight between two numbers
decreases as the numbers become further apart, until the relative distance plus one is
reached. At this point, the numbers are considered non-matches. For example, if the
relative distance is "10" and the base number for comparison is "2," a field value of 8
receives a lower matching weight than a field value of 4; but a field value of 13 is
considered a complete non-match (since the distance between 2 and 13 is 11).

Integer Comparator (nl)
The Integer Comparator matches specifically on integers using the logic describe
above. It accepts the parameters listed in Table 5–4.

Table 5–4 nI Comparison Function Parameters

Parameter Description

switch Specifies whether a relative distance calculation or a direct string comparison is used. Specify "y" to use
a relative distance calculation; specify "n" to use a string comparison.

range The greatest difference between two integers at which the values could still be considered a possible
match. When the difference between two numbers is greater than the relative distance, the numbers are
considered a non-match (the weight becomes zero when the actual difference is the relative distance plus
one).

Learning About the OHMPI Match Engine Comparison Functions

OHMPI Match Engine Comparison Functions 5-7

Real Number Comparator (nR)
The Real Number Comparator function matches specifically on real numbers based on
the logic described above. It accepts the parameters listed in Table 5–5.

Chinese Integer Comparator (nIc)
The Chinese Integer Comparator is an extension of the Integer Comparator (nl) to
support numbers written in Chinese characters. Such numbers are translated into
Arabic numbers before the comparison is done by the Integer Comparator.

Condensed AlphaNumeric SSN Comparator (nS)
The Condensed AlphaNumeric SSN Comparator is designed specifically for matching
on numeric strings and is very useful for matching social security numbers or other
unique identifiers. This comparison function can compare either alphanumeric values
or numeric values, and takes into account such uncertainty factors as string length,
transpositions, key punch errors, and visual memory errors. It can also take into
consideration field length, allowed character types, and invalid values. It accepts the
parameters listed in Table 5–6.

Date Comparators
The OHMPI Match Engine provides various date comparison functions. When
comparing dates, the match engine compares each date component (for example, it
compares the year in the first date against the year in the second date, the month
against the month, and the day against the day). This allows for multiple
transpositions in each date field. The date comparators use the Java date format
(java.sql.Date), allowing the comparator to use the Gregorian calendar and to take into
account the time zone where the date field originated.

The following comparison functions are available for matching on date fields.

■ Date Comparator With Years as Units (dY) on page 5-8

■ Date Comparator With Months as Units (dM) on page 5-8

Table 5–5 nR Comparison Function Parameters

Parameter Description

switch Specifies whether a relative distance calculation or a direct string comparison is used. Specify "y" to use
a relative distance calculation; specify "n" to use a string comparison.

range The greatest difference between two integers at which the values could still be considered a possible
match. When the difference between two numbers is greater than the relative distance, the numbers are
considered a non-match (the weight becomes zero when the actual difference is the relative distance plus
one).

Table 5–6 nS Comparison Function Parameters

Parameter Description

fixed-length An optional parameter that takes the length of the field value into account. If a fixed length is specified,
the match engine considers any field of a different length to be a non-match. Specify any integer smaller
than the value specified for the size specified for the field (for more information, see Matching Rules
Section).

character-type An indicator of whether the field must be all numeric. Specify "nu" for numeric only, or specify "an" to
allow alphanumeric characters. The match engine considers any fields containing characters that are not
allowed to be a non-match.

invalid-characters A list of invalid characters for the field. If you specify a character, the match engine considers fields that
consist of only that character to be a non-match. For example, if you specify "0," then an SSN field cannot
contain all zeros. Specify as many alphanumeric characters as needed, separated by a space.

Learning About the OHMPI Match Engine Comparison Functions

5-8 Oracle Healthcare Master Person Index Match Engine Reference

■ Date Comparator With Days as Units (dD) on page 5-8

■ Date Comparator With Hours as Units (dH) on page 5-9

■ Date Comparator With Minutes as Units (dm) on page 5-9

■ Date Comparator With Seconds as Units (ds) on page 5-9

As with the numeric comparison functions, the date comparison functions can use
either a direct string comparison or a relative distance calculation (see Numeric
Comparators). When using a relative distance calculation, the matching weight
between two dates decreases as the dates become further apart, until the relative
distance is reached. When the difference becomes the relative distance plus one, the
dates are considered non-matches. You can specify different relative distances for
before and after the given date. Any dates falling outside of the specified time period
receive a complete disagreement weight. The relative distances are specified in the
smallest unit of time being matched.

Continuing, as the weight is decreased, when the difference between the two
compared fields reaches either the before or after relative distance. For example, if the
before relative distance is 11 and the after relative distance is 5, if this example had
been charted a light blue line would represent the agreement weight. When the base
date is later than the compared date and the difference between the dates reaches 11
(distance before plus one), the fields are considered a non-match and are given the full
disagreement weight. When the base date is earlier than the compared date and the
difference between the dates reaches 6 (distance after plus 1), the fields are considered
a non-match.

The date comparison functions take the parameters listed in Table 5–7.

Date Comparator With Years as Units (dY)
This date comparison function takes only the 4-character year into account for
matching. If relative distance calculation is specified, the relative distance is specified
in years.

Date Comparator With Months as Units (dM)
This date comparison function takes the month and year into account for matching. If
relative distance calculation is specified, the relative distance is specified in months.

Date Comparator With Days as Units (dD)
This date comparison function takes the day, month, and year into account for
matching. If relative distance calculation is specified, the relative distance is specified
in days.

Table 5–7 Date Comparison Function Parameters

Parameter Description

switch Specifies whether a relative distance calculation or a direct string comparison is used. Specify "y" to use
a relative distance calculation; specify "n" to use a string comparison.

llimit The number of units prior to the reference date/time for which two date fields can still be considered a
match.

ulimit The number of units following the reference date/time for which two date fields can still be considered
a match.

Learning About the OHMPI Match Engine Comparison Functions

OHMPI Match Engine Comparison Functions 5-9

Date Comparator With Hours as Units (dH)
This date comparison function takes the hour, day, month, and year into account for
matching. If relative distance calculation is specified, the relative distance is specified
in hours.

Date Comparator With Minutes as Units (dm)
This date comparison function takes the minute, hour, day, month, and year into
account for matching. If relative distance calculation is specified, the relative distance
is specified in minutes.

Date Comparator With Seconds as Units (ds)
This date comparison function takes the second, minute, hour, day, month, and year
into account for matching. If relative distance calculation is specified, the relative
distance is specified in seconds.

Prorated Comparator (p)
The Prorated Comparator uses a relative distance calculation and allows you to specify
how quickly the agreement weight between two fields decreases. Matching weights
are assigned with a linear adjustment according to the parameters you specify. You
specify an initial agreement range. If the difference between two fields falls within that
range, the fields are considered a complete match. You also specify a disagreement
range ending with the relative distance. If the difference between two fields falls
within that range, the fields are considered a non-match. When the difference between
the fields falls between those two ranges, they are considered to be partial matches and
the agreement weight is adjusted linearly. Any difference greater than the relative
distance is always considered a non-match.

The prorated comparison functions takes the parameters listed in Table 5–8.

Note: Increasing the disagreement weight causes the prorated
agreement weight to decrease more sharply.

Table 5–8 Prorated Comparison Function Parameters

Parameter Description

range The greatest difference between two numbers at which they can still be considered a match or partial
match.

tolerance1 The greatest difference between two numbers at which they are considered a full match. This number
must be less than the relative distance.

tolerance2 This number indicates the minimum difference at which two numbers are considered a non-match and
shortens or lengthens the weighting scale. To find this difference, the match engine subtracts this value
from the relative distance. If the fields differ by that amount or greater, they are considered to be a
non-match.

The weighting scale decreases in size as the value of the full-disagreement parameter increases (see
diagram).

Learning About the OHMPI Match Engine Comparison Functions

5-10 Oracle Healthcare Master Person Index Match Engine Reference

6

Creating Custom Comparators for the OHMPI Match Engine 6-1

6Creating Custom Comparators for the OHMPI
Match Engine

This chapter introduces you to conceptual information about configurable matching
comparators, lists components that complete a comparator package, and provides a
procedure that defines a custom comparator.

This chapter includes the following sections:

■ Learning About Custom Comparator for the OHMPI Match Engine on page 6-1

■ Defining Custom Comparators on page 6-2

Learning About Custom Comparator for the OHMPI Match Engine
The OHMPI Match Engine provides a variety of configurable matching comparators
for you to process and match your data. However, if none of the existing comparators
meet your requirements, the flexible framework of the OHMPI Match Engine allows
you to create custom comparators to plug in to master person index applications. The
comparators are flexible components that can be modified and tailored without
requiring any changes to the framework.

The following sections provide an overview of custom comparators and information
about the comparator package:

■ Custom Comparator Overview on page 6-1

■ About the Comparator Package on page 6-2

Custom Comparator Overview
Creating a custom matching comparator for the OHMPI Match Engine requires coding
the processing and validation logic for the comparator in Java. The OHMPI Match
Engine provides the interfaces and supporting Java classes you need to implement in
order to incorporate the comparators into a master person index application.

The OHMPI Match Engine framework consists of two modules. The real-time module
stores the basic logic for the matching comparators. The design-time module stores all
of the configuration logic for the comparators, including parameter validations, data
source definitions, and curve adjustment logic. The two pieces are pulled together by
the configuration in the comparators list file (comparatorsList.xml). For each custom
comparator package you create, you need to create a comparators list file.

You can define the following information in the comparators list for each comparator
you create.

Defining Custom Comparators

6-2 Oracle Healthcare Master Person Index Match Engine Reference

■ A code that is used to reference the comparator in the match configuration file
(matchCOnfigFile.cfg).

■ The class that defines the comparator logic.

■ Parameters for the comparator. Parameter values are entered in the match
configuration file for any entries that reference the comparator.

■ Any classes from which the comparator class inherits.

■ Data sources that provide additional information to the comparator during the
match process.

■ Whether to use curve adjustment logic for the comparator.

After you create the package, you can import the custom comparators into NetBeans
using the easy import function of Oracle Healthcare Master Person Index. When you
import the files, OHMPI automatically validates the files and merges the comparators
list information into the comparators list for the application. You can then add and
configure entries in matchConfigFile.cfg that reference the comparator, which makes
the comparator available to be used in the match string.

About the Comparator Package
After you register your custom comparators and you create and compile the
comparators and any configuration classes, you need to package the files in a ZIP file
so they are available for import into NetBeans. For optimal usage, it is best to package
all similar comparators in a unique ZIP file. You can create single packages for each
comparator, or combine them into one package.

The ZIP file includes the following:

■ The comparator Java classes

■ The comparators list file (comparatorsList.xml)

■ Any parameter validation classes (only if the comparators take parameters)

■ Any data source loading or validation classes (only if the comparators use external
data files)

■ Any curve adjustment classes (only if the comparators use curve adjustment for
weight calculation)

For the ZIP file to have the correct structure, the comparatorsList.xml file should be
at the same level as the com folder that contains the Java classes. The following figure
shows a sample ZIP file for custom comparators.

Defining Custom Comparators
The following topics provide instructions for each step of creating custom
comparators. You might need to create multiple Java files and Java packages for the
comparator, depending on the validations, data sources, dependency classes, and
curve adjustments you use. Create them in the same directory structure because you
will need to package them up into a ZIP file when you are through.

Before you create your custom comparators, take into account the following
requirements for the comparators.

■ Determine how many comparators you need to create and whether each will
require a different Java class or some can use the same Java class.

■ Determine what parameters, if any, you need to define for each comparator.

Defining Custom Comparators

Creating Custom Comparators for the OHMPI Match Engine 6-3

■ Determine what validations, if any, need to be created.

■ Determine whether you need to use a data source.

■ Decide if the comparators you create will have a dependency on any other
comparator classes.

■ Decide whether you will use curve adjustment, linear fitting, or neither.

The following steps lead you through creating a custom comparator:

■ Step 1: Create the Custom Comparator Java Class on page 6-3

■ Step 2: Register the Comparator in the Comparators List on page 6-5

■ Step 3: Define Parameter Validations (Optional) on page 6-6

■ Step 4: Define Data Source Handling (Optional) on page 6-7

■ Step 5: Define Curve Adjustment or Linear Fitting (Optional) on page 6-9

■ Step 6: Compile and Package the Comparator on page 6-10

■ Step 7: Import the Comparator Package Into Oracle Healthcare Master Person
Index on page 6-10

■ Step 8: Configure the Comparator in the Match Configuration File on page 6-11

Step 1: Create the Custom Comparator Java Class
The first step to creating custom comparators is defining the matching logic in custom
comparator Java classes that are stored in the real-time module of the OHMPI Match
Engine. Follow these guidelines when creating the class:

■ Create a working directory that will contain all the Java packages and the
comparators list file for the new comparators.

■ The Java classes need to implement
com.sun.mdm.matcher.comparators.MatchComparator.java interface, located in
Matcher.jar. This class includes the methods described below.

Once you create the Java classes, continue to Step 2: Register the Comparator in the
Comparators List on page 6-5.

initialize
■ Description: The initialize method initializes the values for the parameters, data

sources, and dependency class used for each custom comparator. It provides the
necessary information to access the comparator's configuration in the match
configuration file and the comparators list file.

■ Syntax: void initialize(Map<String, Map> params, Map<String, Map>
dataSources, Map<String, Map> dependClassList)

■ Parameters:

Table 6–1 initialize Parameters

Parameter Type Description

params Map A mapping of all the parameters associated with a match field in
matchConfigFile.cfg.

dataSources Map A mapping of all the data sources associated with a match field in
matchConfigFile.cfg.

dependClassList Map A mapping of all the dependency classes associated with a match field in
matchConfigFile.cfg.

Defining Custom Comparators

6-4 Oracle Healthcare Master Person Index Match Engine Reference

■ Return Value: None.

■ Throws: None.

compareFields
■ Description: The compareFields method contains all the comparison logic needed

to compare two field values and calculate a matching weight that shows how
similar the values are.

■ Syntax: double compareFields(String recordA, String recordB, Map
context)

■ Parameters:

■ Return Value: A number between zero and one that indicates how closely two
field values match.

■ Throws: MatchComparatorException

setRTParameters
■ Description: The setRTParameters method sets the runtime parameters for the

comparator, providing the ability to customize every call to the parameter.

■ Syntax: void setRTParameters(String key, String value)

■ Parameters:

■ Return Value: None.

■ Throws: None.

stop
■ Description: The stop method closes any related connections to the data sources

used by the comparator.

■ Syntax: void stop()

■ Parameters: None.

■ Return Value: None.

■ Throws: None.

Table 6–2 compareFields Parameters

Parameter Type Description

recordA String A field value from the record against which the reference record is being
compared.

recordB String A field value from the reference record.

context Map A set of arguments passed to the comparator.

Table 6–3 setRTParameters Parameters

Parameter Type Description

key string The key to map the parameter value.

value string The value of the parameter.

Defining Custom Comparators

Creating Custom Comparators for the OHMPI Match Engine 6-5

Step 2: Register the Comparator in the Comparators List
In order to include new comparators in a master person index application, you need to
create a comparators list file defining the configuration of the comparators. When you
import the comparator package into the master person index application, this file is
read and the entries are added to the comparators list for the project.

Below is a sample comparators list file. Note that the first comparator includes all
possible configurations (parameters, dependency classes, data sources, and curve
adjust). Most comparators will not be that complex. The second comparator class
defines two comparators, Approx and Adjust.

<?xml version="1.0" encoding="UTF-8"?>
<comparators-list xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="comparatorsList.xsd">
 <group description="New group of comparators"
 path="com.mycomparators.matchcomparators">
 <comparator description="New Exact Comparator">
 <className>NewExactComparator</className>
 <codes>
 <code description="New Exact Comparator" name="Exact" />
 </codes>
 <params>
 <param description="Fixed length" name="length"
 type="java.lang.Integer" />
 <param description="Data type" name="dataType"
 type="java.lang.String" />
 </params>
 <data-sources>
 <datasource description="Serial numbers" type="java.io.File" />
 </data-sources>
 <dependency-classes>
 <dependency-class matchfield="Serial"
 name="com.genericcomparaotrs.StringComparator" />
 </dependency-classes>
 <curve-adjust status="true" />
 </comparator>
 <comparator description="New Approximate Comparator">
 <className>NewApproxComparator</className>
 <codes>
 <code description="New approximate comparator" name="Approx" />
 <code description="New adjustable comparator" name="Adjust" />
 </codes>
 </comparator>
 </group>
</comparators-list>

To Register the Comparators
1. Complete Step 1: Create the Custom Comparator Java Class on page 6-3.

2. In the same folder where you created the custom Java class package, create a new
file named comparatorsList.xml.

3. Add the following header information to the file. You can copy this from the
comparatorList.xml file in a master person index application.

Tip: The comparators list file needs to be in the same working
directory you created for the custom comparator Java classes.

Defining Custom Comparators

6-6 Oracle Healthcare Master Person Index Match Engine Reference

<?xml version="1.0" encoding="UTF-8"?>
<comparators-list xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="comparatorsList.xsd">
 ...
</comparators-list>

4. Define the following properties, using the XML structure described in Learning
About the OHMPI Match Engine Comparator Definition List on page 2-6. Use the
sample above as an example.

■ The group description and Java package for the group.

■ A description for each comparator.

■ The Java class name for each comparator or comparator subgroup.

■ The unique identifying name for each comparator.

■ A list of static parameters for each comparator or comparator subgroup
(optional). If you define parameters, you must also perform the steps under
Step 3: Define Parameter Validations (Optional) on page 6-6.

■ A list of data sources for each comparator or comparator subgroup (optional).
If you define data sources, you must also perform Step 4: Define Data Source
Handling (Optional) on page 6-7.

■ A list of dependency classes for each comparator or comparator subgroup
(optional).

■ Whether to use curve adjustment for each comparator or comparator
subgroup (optional). If you set curve adjustment to true, you must perform the
steps under Step 5: Define Curve Adjustment or Linear Fitting (Optional) on
page 6-9.

5. Continue to Step 3: Define Parameter Validations (Optional) on page 6-6.

Step 3: Define Parameter Validations (Optional)
If your custom comparators take parameters, you should create a Java class that
validates the parameter properties. You need to perform this step if you defined
parameters for the comparator in comparatorsList.xml. You do not need to create this
file in the same package as the Java comparator class, but for packaging purposes,
create it in the same working folder.

To Define Parameter Validations
1. Complete Step 2: Register the Comparator in the Comparators List on page 6-5.

2. Create a Java class named the same name as the Java class that defines the
comparator with "ParamsValidator" appended.

For example, if the comparator is defined by a class named ExactComparator, the
parameter validation class would be ExactComparatorParamsValidator.

3. In this class, implement:
com.sun.mdm.matcher.comparators.validator.ParametersValidator

The method contained in this class is described below.

4. Continue to Step 4: Define Data Source Handling (Optional) on page 6-7.

Defining Custom Comparators

Creating Custom Comparators for the OHMPI Match Engine 6-7

validateComparatorsParameters
■ Description: The ParametersValidator class contains one method,

validateComparatorsParameters, that allows you to validate parameter types,
ranges, and other properties. For logging purposes, you can use net.java.hulp.i18n,
which is used within matcher.jar, or you can use your own logger.

■ Syntax: void validateComparatorsParameters(Map<String, Object> params)

■ Parameters:

■ Return Value: None.

■ Throws: MatcherException

Step 4: Define Data Source Handling (Optional)
If your custom comparators use external data sources to provide additional
information for matching weight calculations, you need to create a Java class that lets
you load the file to memory or have real-time access to the data file content. You can
also define validations to perform. You do not need to create this file in the same
package as the Java comparator class, but for packaging purposes, create it in the same
working folder.

You need to perform this step if you defined lines similar to the following in
comparatorsList.xml:

<data-sources>
 <datasource description="Serial numbers" type="java.io.File" />
</data-sources>

To Define Data Source Handling
1. Complete Step 3: Define Parameter Validations (Optional) on page 6-6.

2. Create a Java class named the same name as the Java class that defines the
comparator with "SourcesHandler" appended.

For example, if the comparator is defined by a class named ExactComparator, the
parameter validation class would be ExactComparatorSourcesHandler.

3. In this class, implement
com.sun.mdm.matcher.comparators.validator.DataSourcesHandler.

The method in this class is described below.

4. Continue to Step 5: Define Curve Adjustment or Linear Fitting (Optional) on
page 6-9.

handleComparatorsDataSources
■ Description: The DataSourcesHandler class contains one method,

handleComparatorsDataSources, that allows you to define properties for the data
source. This method takes one parameter that is a DataSourcesProperties object.
This class and its methods are described in DataSourcesProperties Class.

Table 6–4 validateComparatorsParameters Parameters

Parameter Type Description

params Map A list of parameters to validate.

Defining Custom Comparators

6-8 Oracle Healthcare Master Person Index Match Engine Reference

■ Syntax: Object handleComparatorsDataSources(DataSourcesProperties
dataSources)

■ Parameters:

■ Return Value: Object

■ Throws:

– MatcherException

– IOException

DataSourcesProperties Class
The DataSourcesProcerties interface is used as a parameter to the
handleComparatorsDataSources described in Step 4: Define Data Source Handling
(Optional) on page 6-7. The methods in the class are listed and described below.

getDataSourcesList

■ Description: The getDataSourcesList returns the comparator's list of associated
data source paths.

■ Syntax: List getDataSourcesList(String codeName)

■ Parameters:

■ Return Value: A list of paths and filenames as specified in comparatorsList.xml.

■ Throws: None.

isDataSourceLoaded

■ Description: The isDataSourceLoaded method checks whether a specific file has
already been loaded or opened.

■ Syntax: boolean isDataSourceLoaded(String sourcePath)

■ Parameters:

■ Return Value: A boolean indicator of whether the specified file has already been
loaded or opened.

Table 6–5 handleComparatorsDataSources Parameters

Parameter Type Description

dataSources DataSourceProp
erties

A list of properties for the data handler (see DataSourcesProperties Class).

Table 6–6 getDataSourcesList Parameters

Parameter Type Description

codeName string The name of the comparator. The name is defined in comparatorsList.xml in
the name attribute of the code element. In the example below, the
comparator's code name is "Exact".

<code description="New exact comparator" name="Exact" />

Table 6–7 isDataSourceLoaded Parameters

Parameter Type Description

sourcePath string The path and filename of the file to check.

Defining Custom Comparators

Creating Custom Comparators for the OHMPI Match Engine 6-9

■ Throws: None.

setDataSourceLoaded

■ Description: The setDataSourceLoaded method sets the loading status of a data
source.

■ Syntax: void setDataSourceLoaded(String sourcePath, boolean status)

■ Parameters:

■ Return Value: None.

■ Throws: None.

getDataSourceObject

■ Description: The getDataSourceObject method returns the file located at the
specified source path.

■ Syntax: Object getDataSourceObject(String sourcePath)

■ Parameters:

■ Return Value: An object containing the data source information.

■ Throws: None.

Step 5: Define Curve Adjustment or Linear Fitting (Optional)
If your custom comparators use curve adjustment or linear fitting to adjust matching
weight calculations, you need to create a Java class that defines the curve. You do not
need to create this file in the same package as the Java comparator class, but for
packaging purposes, create it in the same working folder.

You need to perform this step if you defined the following line in
comparatorsList.xml for the comparator:

<curve-adjust status="true" />

To Define Curve Adjustment or Linear Fitting
1. Complete Step 4: Define Data Source Handling (Optional) on page 6-7.

2. Create a Java class named the same name as the Java class that defines the
comparator with "CurveAdjustor" appended.

For example, if the comparator is defined by a class named ExactComparator, the
parameter validation class would be ExactComparatorCurveAdjustor.

Table 6–8 setDataSourceLoaded Parameters

Parameter Type Description

sourcePath string The path and filename of the file.

status boolean The load status of the file. Specify true if the file is loaded; otherwise specify
false.

Table 6–9 getDataSourceObject Parameters

Parameter Type Description

sourcePath string The path and filename of the file you want to load.

Defining Custom Comparators

6-10 Oracle Healthcare Master Person Index Match Engine Reference

3. In this class, implement com.sun.mdm.matcher.configurator.CurveAdjustor.

The method in this class is described below.

4. Continue to Step 6: Compile and Package the Comparator on page 6-10.

processCurveAdjustment
■ Description: The processCurveAdjustment method provides handling for curve

adjustment within a specific match comparator.

■ Syntax: double[] processCurveAdjustment(String compar, double[] cap)

■ Parameters:

■ Return Value: An array of curve adjustment values.

■ Throws: MatcherException

Step 6: Compile and Package the Comparator
Before you perform these steps, make sure you have completed Step 1: Create the
Custom Comparator Java Class on page 6-3 through Step 5: Define Curve Adjustment
or Linear Fitting (Optional) on page 6-9.

When you are finished defining all the Java classes for the comparators and have
registered each comparator in your comparators list file, you can compile the Java
code and package the files into a ZIP file that you can then import into a master person
index application. Compile the classes using the compiler of your choice.

To package the files, create a temporary directory and copy the comparators list file to
the directory. Copy all the class folders and files to the same directory. The top level of
the temporary directory should include comparatorsList.xml and a com folder
(which contains all the Java classes). Create a ZIP file of the directory. For more
information about the ZIP package, see About the Comparator Package on page 6-2.

After you compile and package the comparator, continue to Step 7: Import the
Comparator Package Into Oracle Healthcare Master Person Index on page 6-10.

Step 7: Import the Comparator Package Into Oracle Healthcare Master Person Index
You need to import the new comparators into NetBeans to make them available to all
master person index applications or only the current application.

To Import a Comparison Function
1. Launch NetBeans IDE, and open the master person index project that will use the

new comparators.

2. In the Projects window, expand the main master person index project.

3. Right-click Match Engine, and select Import Comparator Plug-in.

4. In the dialog box that appears, navigate to the location of the plug-in ZIP file.

Table 6–10 processCurveAdjustment Parameters

Parameter Type Description

compar string The name of the comparator, as defined in the name attribute of the code
element for the comparator.

cap double[] An array of values that define the curve adjustment.

Defining Custom Comparators

Creating Custom Comparators for the OHMPI Match Engine 6-11

5. Select the file containing the plug-in, and then click Open.

6. Do one of the following:

■ To import the plug-in and make it available to all future master person index
applications, click Yes.

■ To import the plug-in and make it only available to the current master person
index application, click No.

The contents of the ZIP file are imported into the Match Engine node and the new
comparators are added to the list of comparator definitions in
comparatorsList.xml.

7. In the Match Engine node, navigate to the /lib folder that was added and verify
that all of the required files are there.

8. Open comparatorsList.xml and verify the new comparator definitions are
included.

Step 8: Configure the Comparator in the Match Configuration File
After you import custom comparators, you need to add them to the match
configuration file (matchConfigFile.cfg) and define the matching configuration. This
makes the comparator available for use in the master person index match string. For
information about this file, see Understanding the OHMPI Match Engine Match
Configuration File on page 2-1. For instructions on modifying the file, see the Oracle
Healthcare Master Person Index Configuration Guide.

Defining Custom Comparators

6-12 Oracle Healthcare Master Person Index Match Engine Reference

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Finding Information and Patches on My Oracle Support
	Finding Oracle Documentation
	Conventions

	1 Oracle Healthcare Master Person Index Match Engine Reference
	Learning About the OHMPI Match Engine
	Data Matching Concepts
	Deterministic and Probabilistic Data Matching
	Weighting Thresholds
	Probabilities and Direct Weights

	Understanding How the OHMPI Match Engine Works
	OHMPI Match Engine Structure
	OHMPI Match Engine Configuration Files
	OHMPI Match Engine Matching Weight Formulation
	OHMPI Match Engine Data Types
	The OHMPI Match Engine and the OHMPI Standardization Engine

	Understanding the OHMPI Standardization and Matching Process

	2 Match Engine Matching Configuration
	Understanding the OHMPI Match Engine Match Configuration File
	OHMPI Match Engine Match Configuration File Format
	Match Configuration File Sample
	Probability Type Section
	Matching Rules Section

	OHMPI Match Engine Matching Comparison Functions at a Glance

	Learning About the OHMPI Match Engine Comparator Definition List

	3 Match Engine Configuration for Common Data
	Learning About the OHMPI Match String and Match Types
	The OHMPI Match String
	OHMPI Match Engine Match String Fields
	Person Data Match String Fields
	Address Data Match String Fields
	Business Name Match String Fields

	OHMPI Match Engine Match Types

	Configuring the Match String for a Master Person Index Application
	Configuring the Match String for Person Data
	Configuring the Match String for Address Data
	Configuring the Match String for Business Names

	Fine-Tuning Weights and Thresholds for Oracle Healthcare Master Person Index
	Data Analysis Overview
	Customizing the Match Configuration and Thresholds
	Determining the Match Fields
	Customizing the Match Configuration
	Determining the Weight Thresholds

	4 Setting Match Field Variations and Agreement/Disagreement
	Introducing the New Types of Matching Available in OHMPI
	System-dependent Matching
	Conditional Matching
	Frequency-based Matching
	Alias Matching and Field Swapping
	Cap for Agreement Matching
	Waterfall Matching
	Understanding MatchSet, Conditional Matching, System-based Matching, and Waterfall Matching

	Using the Design-time Configuration
	Understanding the XML Elements
	matchSet
	frequencyBasedFields
	fieldsSubstitution

	Sample XML File
	XML File Explanation
	Frequency Weight Reducer Plugin Interface
	Default Behavior of Frequency-based Reduction in Agreement Weights
	Setting Up the match-ext.xml to Perform Matching

	Current Matching Configuration
	Using Previous Projects with this Release

	5 OHMPI Match Engine Comparison Functions
	Learning About the OHMPI Match Engine Comparison Functions
	Bigram Comparators
	Bigram Comparator (b1)
	Advanced Bigram Comparator (b2)

	Uncertainty String Comparators
	Advanced Jaro String Comparator (u)
	Winkler-Jaro String Comparator (ua)
	Condensed String Comparator (us)
	Advanced Jaro Adjusted for First Names (uf)
	Advanced Jaro Adjusted for Last Names (ul)
	Advanced Jaro Adjusted for House Numbers (un)
	Advanced Jaro AlphaNumeric Comparator (ujs)
	Unicode String Comparator (usu)
	Unicode AlphaNumeric Comparator (usus)
	Chinese String Comparator (usc)
	Chinese String Prefix Comparator (cc)

	Exact Character-to-Character Comparator (c)
	Numeric Comparators
	Integer Comparator (nl)
	Real Number Comparator (nR)
	Chinese Integer Comparator (nIc)

	Condensed AlphaNumeric SSN Comparator (nS)
	Date Comparators
	Date Comparator With Years as Units (dY)
	Date Comparator With Months as Units (dM)
	Date Comparator With Days as Units (dD)
	Date Comparator With Hours as Units (dH)
	Date Comparator With Minutes as Units (dm)
	Date Comparator With Seconds as Units (ds)

	Prorated Comparator (p)

	6 Creating Custom Comparators for the OHMPI Match Engine
	Learning About Custom Comparator for the OHMPI Match Engine
	Custom Comparator Overview
	About the Comparator Package

	Defining Custom Comparators
	Step 1: Create the Custom Comparator Java Class
	initialize
	compareFields
	setRTParameters
	stop

	Step 2: Register the Comparator in the Comparators List
	To Register the Comparators

	Step 3: Define Parameter Validations (Optional)
	To Define Parameter Validations
	validateComparatorsParameters

	Step 4: Define Data Source Handling (Optional)
	To Define Data Source Handling
	handleComparatorsDataSources
	DataSourcesProperties Class

	Step 5: Define Curve Adjustment or Linear Fitting (Optional)
	To Define Curve Adjustment or Linear Fitting
	processCurveAdjustment

	Step 6: Compile and Package the Comparator
	Step 7: Import the Comparator Package Into Oracle Healthcare Master Person Index
	To Import a Comparison Function

	Step 8: Configure the Comparator in the Match Configuration File

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

