

Oracle Utilities
Application Framework

SDK Reference

Version 4.0.0

E48407-01

December 2012

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 2

Oracle Utilities Application Framework Software Development Kit Reference

Release 4.0.0

E48407-01

December 2012

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected
by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce,

translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse

engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the

following notice is applicable:

U.S. GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer

software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in

the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR

52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for

use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use this software or
hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy and other measures to

ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in

dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

This software or hardware and documentation may provide access to or information on content, products and services from third parties. Oracle

Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third party content, products

and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third party content, products or services.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 3

Table of Contents

Oracle Utilities Software Development Kit .. 14

User Guide ... 15
Overview ... 15
Development Environment ... 15

Overview .. 15
The App Server Is The Development Environment ... 16
Development App Server Is Local, Not Shared ... 16
Repository for Project .. 16

Components Of The Oracle Utilities Software Development Kit ... 16
Project Development Database ... 18
Project Repository ... 18
Development Workstation ... 18

Directory Structure ... 18
The App Server Directory .. 18

Standard App Server Directory Structure ... 19
Additional Directories for Development... 20

Java .. 20
Project Configuration Information ... 21

Pertinent Directories In the App Server .. 22
Client Directory .. 22

The Oracle Utilities Software Development Kit Client Itself .. 23
Project Directories ... 23
shortcut Directory .. 24

Synchronizing With The Project Repository .. 24
Versions ... 25

Version Number ... 25
Compatibility with Products ... 25
Updates ... 25
Moving Up To A New Update .. 26

Stabilize the Project .. 26
Install the Update .. 26

Moving Up To A New Version of a Product ... 27
Stabilize the Project on the Old Version of the Product .. 27
Prepare the Database for the New Project ... 27
Set Up the Repository for the New Project ... 27
Set Up Development Workstations ... 27

Product Single Fixes .. 27
Build Server .. 28

What is a Build Server?.. 29
The "Build Master" ... 30
Components Of The Build Server .. 30

Version Control System ... 30
CruiseControl ... 31
Maven .. 31
Oracle Utilities Software Development Kit ... 31

Setting Up the Version Control System - Perforce .. 31
The Client Spec ... 31

Setting Up CruiseControl ... 32
The config.xml file .. 32
The Reporting Application ... 33

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 4

Setting Up Maven ... 33
The Launch Script ... 33
The project.xml file .. 33
The maven.xml file .. 33
The project.properties file .. 34

Working Example ... 34
Application Server Refresh ... 47

Application Server Refresh Scripts .. 47
setupEnv2xx.cmd .. 47
setAppserverEnv.bat ... 47
AppServerRefresh.bat ... 48
build.xml ... 48

Application Server Refresh Procedure ... 51
JUnit testing .. 52

Standard test cases ... 52
Testing Searches ... 52
Testing Maintenance Classes ... 54

Testing Add on Maintenance Class .. 54
Testing Change on Maintenance Class .. 55
Testing Delete on Maintenance Class .. 55
Test default actions on Maintenance Class .. 56

Testing Entity Page Maintenance Classes .. 56
Testing Add on Entity Page Maintenance Class ... 57
Testing Change on Entity Page Maintenance Class .. 57
The Comparisons .. 57
Test default actions on Entity Page Maintenance Class... 57

Testing Business Entity Validation .. 58
Test handleChange / handleAdd / etc code .. 63
Testing for Warnings ... 63

Maintenances .. 64
Entity tests ... 64

Technical Background .. 65
Logical Architecture .. 65

Key Advantages .. 66
Portability .. 66
Distribution .. 66

SPL Services .. 66
SPL Service XML Metainfo Files ... 67

Example using Page Service ... 67
Example Using Search Service ... 69

Server Architecture Overview .. 70
Client Architecture Overview .. 71

Introduction .. 71
Client Architecture Discussion ... 71

SPL Client API ... 74
Overview .. 74
Client API Discussion .. 74

JavaScript Invocation Context .. 75
Data Representation and Localization .. 75
Core JavaScript Classes ... 75

CisModel ... 76
DataElement ... 78
List .. 80

Free Functions .. 81

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 5

top.js ... 81
cis.js .. 82

Meta-data Overview ... 86
Generated Tab Menu Meta-data .. 86
Generated UI Program Component Meta-data .. 87
Menu and Navigation Meta-data .. 89
Table-Related Meta-data ... 90
Maintenance Object Meta-data .. 91
Defining Generator Tools Meta-data .. 91

Setting Up Fields ... 92
Fields - Main .. 92
Fields - Tables Using Field ... 94

Setting Up Foreign Key References .. 94
FK References .. 94

Setting Up Lookup Tables ... 96
Lookup Tables ... 96

Setting Up Navigation Options .. 97
Navigation Option - Main .. 98

Setting Up Services ... 101
Services .. 101

Setting Up Tables .. 102
Tables - Main .. 103
Tables - Fields ... 105
Tables - Constraints .. 106
Tables - Referred By Constraints .. 108

Setting Up Menus .. 108
Menus - Main .. 109
Menus - Menu Lines.. 110

Setting Up Maintenance Objects ... 112
Maintenance Objects - Main ... 113
Maintenance Objects – Options .. 114
Maintenance Objects – Algorithms ... 114
Maintenance Object - Maintenance Object Tree .. 116

Development Process .. 116
Hooking into User Exits .. 117

Hooking into UI Javascript User Exits ... 117
Hooking into Java User Exits (interceptors) .. 117

Extending Business Entities ... 117
Extending the Business Interface .. 118
Extending the Specialization Interface .. 118
Creating New Business Entities .. 119
Specifying the Business Interface ... 119
Specifying the Specialization Interface .. 119

Extending Maintenance Classes .. 119
Maintenance extensions .. 119

Creating Business Components .. 120
Plugging in Algorithms ... 121
Creating Portals and Zones ... 122
Creating Background Processes ... 122

Testing Background Processes ... 122
Creating MOs and Maintenance Transactions .. 123
Building the Application Viewer .. 124

Creating Javadocs for CM source code .. 124
Generate CM Javadocs .. 125

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 6

Recreate the Javadoc Indices ... 125
Cookbook .. 125

Hooking into User Exits .. 125
Hooking into Maintenance Class User Exits ... 125

Maintenance extensions ... 126
Developing Maintenance Extensions ... 126

Hooking into UI Javascript User Exits ... 127
Miscellaneous How-To’s ... 128

How do I control the Initial Focus within Tab Pages/Grids/Search Pages? 129
How do I mark fields that won't make the model dirty? .. 129
How do I control the triggering of defaults after a search? 130
How do I avoid automatically setting fields to uppercase? 130
How Can I Force the Save Button to be Enabled? .. 130
How Can I Override the Processing After a Change/Add? 131
How Do I Prevent the System from Setting Focus to a Widget after an Error? 131
How Do I Prevent Attributes From Being Copied Into New List Elements? 131
How Do I Customize New List Elements? .. 132
How can I get my sequence numbers to default in an appropriate and consistent
manner on my List Grid? .. 132
How Do I Override the Tab Page Shown After An Error in a List (Grid/Scroll)? 132
How Do I Disregard Unwanted Criteria From a Search Triggered Search by a Search
Button? ... 133
How Do I Disregard Unwanted Search Result Columns? .. 133
How do I format a value based on a given format? .. 133

Hooking into Java User Exits (interceptors) .. 134
Example .. 134

Maintaining General-Purpose Maintenances ... 135
Maintaining MOs .. 137

Maintaining Maintenance Classes for MOs ... 137
List Maintenances ... 138
Maintenance List Filters .. 139
List Maintenance Get More ... 139

Maintaining Maintenance Objects ... 140
Maintaining Database Meta-data ... 140

Maintaining Fields .. 140
Maintaining Tables .. 140

Maintaining Java Classes .. 140
Maintaining Business Entities .. 141

Business Entity Background ... 141
How do I create a new Business Entity instance? ... 141
How do I change values on an existing Business Entity instance?.......................... 142
How do I delete Business Entity instance? .. 142

Persistent Classes .. 143
Creating the Implementation Class ... 143
Developing Change Handlers ... 144

Creating the Change Handler Class ... 145
Testing the Change Handler Class .. 145
Validation Rules .. 146

Maintaining Business Components ... 149
Creating Business Components ... 149
Component Replacement ... 150
Calling Components .. 151

Maintaining Maintenance Classes, including collections .. 151
Maintaining Services .. 151

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 7

Maintaining Foreign Key References ... 151
Maintaining Lookup Tables .. 151
Maintaining Navigation Keys .. 151
Maintaining Navigation Options ... 152
Maintaining User Interfaces ... 152
Maintaining Menus ... 152
Maintaining Application Security .. 152
Maintaining UI Components (Translation) ... 152

Flushing Server and Client Caches ... 153
User Language .. 153
Modifying Dialog Titles .. 153
Modifying Transaction Titles and Tab Labels .. 156
Modifying Field Labels on Pages... 158
Modifying Button Labels .. 162
Modifying Messages .. 165

Plugging in Algorithms ... 166
Creating Algorithm Spot Implementation Class ... 166

Review Algorithm Spot Definition .. 167
Create Algorithm Component Implementation .. 167

Add Algorithm Type ... 167
Add Algorithm .. 168
Create References to New Algorithm .. 169

Maintaining Portals and Zones .. 170
Implementing Custom Zones ... 171
Key Dependence ... 171
Creating a New Zone ... 171

Zone Types ... 172
Zone Type Interfaces .. 172
Service Zone Type ... 173

Zone Metadata .. 175
Debugging ... 175
Simple Example: LinkValueGrid .. 176

XSLT File (/WEB-INF/xsl/linkValueGrid.xsl) ... 177
XML Meta Info ... 178

Another Example: accountFinancialHistory ... 179
XSLT File (/WEB-INF/xsl/accountFinancialHistory.xsl) .. 179
XML Metainfo .. 181

The Service Data Buffer .. 182
XSLT Debugging ... 182
HTML Standards ... 183

Maintaining Background Processes ... 183
Maintaining Background Processes Overview .. 183
Creating a BatchJob .. 184

The BatchJob Annotation .. 185
Creating JobWork ... 185
Declaring a ThreadWorker Class .. 185

Creating a ThreadWorker .. 185
Initializing ThreadWork ... 186
Executing a WorkUnit.. 186
Finalizing ThreadWork .. 186
Choosing a ThreadExecutionStrategy .. 186

Building the Application Viewer .. 186
Creating Table XMLs ... 187
Creating MO XMLs .. 187

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 8

Creating Algorithm XMLs ... 187
Extending Service XMLs ... 187
Creating Javadocs for CM Source code. ... 187

Upgrade JSP to XSLT .. 188
Create User Exit Files .. 188
Tree User Exit Changes .. 188
Change Template Code in Program Components .. 189
Create XML File with UI Meta-data ... 190
Delete the JSP Files .. 190
Log Into the Application and Test .. 190

Utilities .. 190
Environment Batch Programs .. 190

displayEnvironment.bat ... 191
switchEnvironments.bat ... 191
createNewEnv.bat ... 191

Services ... 191
Batch Program setupSvcXMLPrompted.bat .. 191
Batch Program updateXMLMetaInfo.bat ... 192

Eclipse Tools/Wizards .. 192
Batch Program startEclipse.cmd ... 192
Annotation Editor ... 192
Project database information ... 197
Maintenance Object wizard ... 199

Upgrade JSP to XSLT .. 206
Batch Program convertTreePageExits.pl .. 206

convertTreePageExits Purpose .. 206
convertTreePageExits Description .. 206
convertTreePageExits Usage ... 206

Batch Program convertSubPanelExits.pl .. 206
convertSubPanelExits Purpose .. 207
convertSubPanelExits Description .. 207
convertSubPanelExits Usage ... 207

SQL Script changeTemplateCodesTTRAndPN.pl... 207
changeTemplateCodesTTRAndPN Purpose .. 207
changeTemplateCodesTTRAndPN Description ... 207

Javadocs .. 207
Batch Program generateJavadoc.bat .. 207
Batch Program reindexJavadoc.bat .. 208

Developer Guide .. 209
Overview ... 209
Java Annotations .. 209
Public API ... 214

SQL Return Codes ... 214
Standard Business Methods .. 215
Business Entity Public Methods ... 215

Public Methods .. 215
Protected Methods .. 216
Data Transfer Object Methods .. 216
Id Methods ... 216

Maintenance Class Public Methods ... 217
UI Javascript User Exits ... 217

Client User Exit Flow ... 219
Read Page .. 219

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 9

Delete Page .. 220
Save Page ... 221
Refresh Page .. 222
Prepare Model For Add ... 223
Update Field .. 224

External User Exit Templates .. 225
Template Structure.. 226
Design Approach ... 226
Using The External User Exit Templates .. 227

Create An External User Exit ... 228
Find The Name of The JSP File .. 228
Determine The Base User Exit ... 229
Uncomment The Function And Add Code .. 230
Test Your Code ... 230

Field-level Security Client-Side User Exit Example ... 231
How-To .. 231

How do I control the Initial Focus within Tab Pages/Grids/Search Pages?.................... 232
How do I mark fields that won't make the model dirty? .. 233
How do I control the triggering of defaults after a search? ... 233
How do I avoid automatically setting fields to uppercase? ... 233
How Can I Force the Save Button to be Enabled? ... 234
How Can I Override the Processing After a Change/Add? ... 234
How Do I Prevent the System from Setting Focus to a Widget after an Error? 235
How Do I Prevent Attributes From Being Copied Into New List Elements? 235
How Do I Customize New List Elements? .. 235
How can I get my sequence numbers to default in an appropriate and consistent manner
on my List Grid? .. 235
How Do I Override the Tab Page Shown After An Error in a List (Grid/Scroll)? 236
How Do I Disregard Unwanted Criteria From a Search Triggered Search by a Search
Button? .. 236
How Do I Disregard Unwanted Search Result Columns? .. 237
How do I format a value based on a given format? .. 237

Java User Exits (interceptors) Interfaces and Classes .. 237
IAddInterceptor Interface ... 238

PageBody aboutToAdd(RequestContext, PageBody) .. 238
void afterAdd(RequestContext, PageBody) .. 238

IChangeInterceptor Interface ... 239
PageBody aboutToChange(RequestContext, PageBody).. 239
void afterChange(RequestContext, PageBody) .. 239

IDeleteInterceptor Interface ... 240
boolean aboutToDelete(RequestContext, PageBody).. 240
void afterDelete(RequestContext, PageBody) .. 240

IReadInterceptor Interface ... 240
PageBody aboutToRead(RequestContext, PageHeader) .. 241
void afterRead(RequestContext, PageBody) .. 241

InterceptorError class .. 241
void setMessageNumber(BigInteger messageNumber) ... 242
void setMessageCategory(BigInteger messageCategory) ... 242
void setMessageParameters(List messageParameters) .. 242
void setMessageParameterTypeFlags(List messageParameterTypeFlags) 242

InterceptorWarning class ... 242
InterceptorWarning(ServerMessage warningMessage) ... 242
InterceptorWarning(List warningMessages) ... 242
void addWarningMessage(ServerMessage message) ... 243

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 10

RequestContext Methods... 243
String getLanguageCode() .. 243
String getUserId() .. 243

Data Objects .. 243
PageHeader and PageBody Methods ... 244

Object get(String fieldName) ... 244
String getString(String fieldName) .. 244
boolean getBoolean(String fieldName) ... 244
BigInteger getBigInteger(String fieldName) .. 244
void put(String fieldName, Object value) .. 244

PageHeader... 244
PageBody .. 244

ItemList getList(String name) .. 244
ItemList .. 244

ListHeader getHeader() .. 245
String getName() ... 245
List getList() ... 245
void setList(List list) ... 245

ListHeader ... 245
ListBody ... 245

String getActionFlag() ... 245
CMServiceConfig.xml structure ... 245

Application Logs ... 246
Logging within Business Logic ... 246
Configuring Logging at Runtime .. 247

Property Configuration ... 247
Trace Flags .. 247

Java Programming Standards .. 248
Rationale .. 248
Guidelines .. 248
Naming Standards ... 249

1. General guidelines ... 249
2. Entity Naming Guidelines .. 250
3. Collection Naming Guidelines ... 250

3.1. Class Name .. 250
3.2. Collection Name ... 251

4. Lookup Naming Guidelines ... 251
5. Java/COBOL Naming Guidelines .. 251
6. Special Cases .. 252

6.1. 'Type' Entity Controlling Characteristics for 'Instance' Entities - Characteristic
Controls ... 252

HQL Programming Standards .. 252
Examples ... 253
Union queries ... 254
Performance ... 254
Raw SQL .. 255

SQL Programming Standards .. 255
Composing SQL Statements ... 255

Prerequisite.. 255
Composing A SELECT Statement .. 256

General SELECT Statement Considerations .. 256
Selection List ... 256
Database-specific Features .. 256

Oracle ... 256

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 11

FROM Clause ... 257
WHERE Clause ... 257

General WHERE Clause Considerations ... 258
Use of Sub-Selects ... 258
Use of IN Function .. 259
Use Of Database Functions ... 259
Other ... 259

Sort Order ... 259
Grouping ... 260

Existence Checks .. 260
SQL statements to avoid ... 260

Decimal Delimiter .. 261
Whenever Statement .. 261

Testing SQL Statements .. 261
Result Data .. 261
Performance Testing – Oracle Only .. 261

Overview ... 262
What Is An Explain Plan? ... 262
Generate The SQL’s Explain Plan .. 262
Analyze Explain Plan .. 264

Access Methods ... 264
Common Issues To Be Aware Of ... 265

More Extensive Performance Testing ... 266
Database Design .. 266

Database Object Standard ... 267
Naming Standards ... 267

Table ... 267
Columns .. 267
Indexes .. 268
Sequence .. 268
Trigger ... 269

Column Data Type and Constraints .. 269
User Define Code .. 269
System Assigned Identifier ... 269
Date/Time/Timestamp ... 269
Number ... 269
Fixed Length/Variable Length Character Columns ... 270
Null Constraints ... 270
Default Value Setting .. 270
Foreign Key Constraints ... 270

Standard Columns ... 270
Owner Flag .. 270
Version .. 270

System Table Guide ... 271
What are system tables?.. 271
Why the standard must be observed? ... 271
Guidelines for System Table Updates ... 271

Business Configuration Tables .. 272
Application Security and User Profile .. 272
Currency Code .. 272
DB Process ... 272
Display Profile ... 273
Installation Options.. 273
Language Code ... 273

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 12

To Do priority and Role ... 273
Development and Implementation System Tables .. 274

Standards .. 274
Algorithm Type .. 275
Algorithm ... 275
Application Security... 275
Batch Control .. 275
Business Object .. 276
Business Service ... 276
Characteristics .. 276
Data Area .. 276
Display Icon ... 276
Foreign Key Reference ... 277
Lookup .. 277
Map ... 277
Messages .. 277
Meta data - Table and Field .. 278
Meta data - Constraints ... 279
Meta data – Menu ... 279
Meta data - Program, Location and Services ... 279
Meta data - Maintenance Object ... 280
Meta data - Work Tables ... 280
Meta data - Search Object .. 280
Navigation Option .. 280
Portal and Zone ... 280
Sequence .. 281
Schema ... 281
Script ... 281
To Do Type ... 281
XAI configuration ... 282
XAI Services .. 282

Oracle Utilities Application Framework only Tables .. 282
System Table List ... 283

Key Generation ... 289
Metadata For Key Generation .. 289

Extending the Application Viewer ... 291
Building Source Code Viewer Extension Information .. 291

Development Performance Guidelines ... 292
Object-Relational Mapping: Background ... 292

The ORM defers database calls for performance ... 293
ID Objects .. 294
Counting a collection ... 294
Avoid unnecessary work .. 294
ORM “Navigation” is your friend .. 294
How to Pre-load Entities Using Fetch .. 294
Session Cache .. 295
Level 2 Cache Applicable for Batch .. 295
Flushing – COBOL and Save Points ... 295

Avoid Extra SQL ... 296
Prepared statement – use binding ... 296
Service Script vs. Java services .. 296
Java-To-COBOL Interaction Overhead .. 297
Java Performance Patterns ... 297
Batch Performance .. 297

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 13

Commit Considerations ... 297
Clustered vs. Distributed Mode Performance: Clustered Is Preferred 297
Use ThreadIterationStrategy ... 298

Data Explorer ... 298
Zone Configuration .. 298
Table Indices and SQL .. 299

UI Maps and BPAs ... 300
Diagnosing Performance Issues .. 300

Fiddler .. 300
OUAF “Show Trace” button ... 300
Use JMX to Monitor Service Times ... Error! Bookmark not defined.
Log Service times in spl_service.log ... 300
Extended Access Logs .. Error! Bookmark not defined.

Optimization and Performance Profiling .. 301
Basic Logging .. 301
Timing code ("shootout"): .. 301
Using PerformanceTestResult helpers .. 302
Profiling: ... 302
PerformanceTestHelper API .. 303

References ... 304

Packaging Guide ... 305
CM Packaging Utilities Cookbook .. 305

App Server CM Packaging Procedure ... 305
App Server CM Packaging Overview .. 305
Developing Off-site .. 308

Off-site Process ... 308
On-site Process ... 309

Guidelines .. 309
App Server CM Packaging Tools ... 310

Post Install Setup ... 310
Using the extractCMSource.plx Utility ... 310

Display Usage ... 311
Extract From An App Server ... 311
Extract From Release/Patch Install Package ... 311
FW Utility to extract CM sources from Unix environments ... 311

Using the applyCM Utility .. 312
Using the create_CM_Release Utility .. 313
Using the create_CM_Patch Utility .. 314

CM System Data Packaging Tools .. 315
CM System Data Packaging Overview ... 315
Extract Process ... 316
Upload Process ... 318

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 14

Oracle Utilities Software Development Kit
Oracle Utilities Software Development Kit is a set of utilities designed to build applications based on
Oracle Utilities Application Framework, the application framework built by Oracle. It provides utilities for
implementers to extend applications without compromising upgradeability. This document describes the
software development kit.

This document is divided into the following parts:

 The User Guide describes how to use the software development kit to customize products.

 The Developer Guide presents information that aid the development process including technical
references and standards.

 The Packaging Guide describes the procedures for taking developed code and data to the target
environments.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 15

User Guide

Overview
The Oracle Utilities Software Development Kit is a set of utilities designed to build applications based on
Oracle Utilities Application Framework, the application framework built by Oracle. It provides utilities for
base product developers and implementers to extend SPL applications without compromising
upgradeability. This document discusses the details of application development using software
development kit, including:

 The Development Environment section describes the environment that developers work on while
using the software development kit.

 The Build Server section describes the procedure for setting up a build server.

 The Technical Architecture section describes applications developed on framework. It describes
the framework technical architecture at a high level and then describes its components in detail.

 The Meta-data is the core component of applications built on framework. The meta-data section
describes the purpose, structure, and use of the meta-data tables.

 The Development Process section contains high level, quick reference guides on common tasks in
building applications based on framework.

 The Cookbook section describes the development tasks in detail. The Development Process section
contains links to specific sections in this section.

 The Utilities section describes the tools provided with software development kit. These tools include
batch programs and Perl scripts developed to automate several stages of the development process.

Development Environment

Contents
Overview
Components Of The Oracle Utilities Software Development Kit
Directory Structure
Synchronizing With The Project Repository
Versions
Product Single Fixes

Overview

Contents
The App Server Is The Development Environment
Development App Server Is Local, Not Shared

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 16

Repository for Project

The App Server Is The Development Environment
The Oracle Utilities Software Development Kit development environment is built on a standard app server
install of the product being customized. Put another way, the app server is the development environment.

Source code is written and generated within the app server directory structure and executables are
generated where the app server expects them and are therefore ready to be executed.

For example:

 UI code is written directly where the app server looks for them.

 The jar file for the Java programs is created directly where the app server looks for it.

Development App Server Is Local, Not Shared
Each developer has a development app server in his workstation for each project. This means that a
developer can code and unit test all within his workstation. This also means work-in-progress code
contained within the developer's workstation.

Repository for Project
All finished code is submitted into the project repository. As such, developers synchronize with the
project repository to get their local development environments current with the rest of the team.

The project repository is also set up as a development environment. When developers synchronize with
the project repository, they get a development environment including configuration necessary for that
project.

Components Of The Oracle Utilities Software
Development Kit
The following diagram illustrates the development environment.

Note. Please see the installation guide for instructions on how to set up the Oracle Utilities Software

Development Kit and its components.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 17

Development

Workstation

Development

Workstation

Project

Repository

Project

Repository

S
ystem

 D
ata

Sync / Submit Code

Project

Dev DB

Project

Dev DB

Development Environment

Development

Client

Development

Client

The following are both Development

Clients:

• Project Repository

• Development Workstation

Development Clients have:

• Development App Server

• SPL SDK Client

• Java IDE

Development Client

Contents
Project Development Database
Project Repository
Development Workstation

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 18

Project Development Database
Each project has a development database. This is a regular database install of the product that is being
customized. System data for customizations are stored in this database. Development processes like
code generation connect to this database. In addition, development app servers in development
workstations connect to this database.

Project Repository
The project repository serves the following purposes:

 It is the central storage for all completed, unit-tested code.

 It provides the environment from which to build the latest state of the project.

 It provides the latest state of the project dev app server from which all developers can synchronize
with.

 It is the source for CM Packaging.

To support these purposes:

 It has to be accessible to all developers.

 It is set up as a development client, i.e., similar to a development workstation (see Development
Workstation below).

Development Workstation
Developers write, generate, compile, and test code on development workstations. A development client
is installed for each project that the developer works on.

The main components of a development client are the following:

 Project Dev App Server. Code is developed on and executables built into the project dev app
server.

 Oracle Utilities Software Development Kit Client. This is the primary development tool of the Oracle
Utilities Software Development Kit.

 Eclipse SDK. This is the Java development tool used in the Oracle Utilities Software Development
Kit.

Directory Structure

Contents
The App Server Directory
Client Directory

The App Server Directory
As mentioned earlier, the app server is the development environment. Source code and executables are
therefore placed within the directory structure of the app server.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 19

Contents
Standard App Server Directory Structure
Additional Directories for Development
Pertinent Directories In the App Server

Standard App Server Directory Structure
The following presents the directory structure of a standard app server install. Oracle Utilities Customer
Care and Billing is used as the example:

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 20

Additional Directories for Development

Contents
Java
Project Configuration Information

Java

A directory structure with a base directory of java is used for Java development as shown below.

 source contains the code that the developer writes or generates that is submitted to the repository.
Under this are the following directories:

 com.splwg.cm.domain contains the CM java source code.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 21

 sourcegen contains generated code that is necessary to build the project. All files in this structure
are generated and therefore must not be modified manually in any way.

 target contains the runtime files created from source and sourcegen. The contents of this directory is
what is deployed as a jar file to the app server. All files in this structure are generated and therefore
must not be modified manually in any way.

Project Configuration Information

Project information is stored in the SPLSDKCommon directory structure.

 eclipseLaunchScripts contains the Eclipse launch scripts for various tools.

 eclipseProject contains the project configuration information for Eclipse.

 tools contains the tools that are required for the project.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 22

Pertinent Directories In the App Server

Item Directory Content

Java

sources

java\source\cm\com\splwg\cm.domain Java source code.

AppViewer

files

splapp\applications\appViewer\data\source\CM App viewer source code files.

 splapp\applications\appViewer\data\xml\CM App viewer XML files.

Web

Application

splapp\applications\root\cm UI code.

 splapp\applications\root\WEB-INF\lib cm.jar file is deployed here.

XAI

Application

splapp\applications\XAIApp\WEB-INF\lib CM?*.jar file.

cm.jar file is deployed here.

MPL

Application

splapp\mpl\lib CM?*.jar file.

Standalone

Application

splapp\standalone\\lib CM?*.jar file.

cm.jar file is deployed here.

Help files splapp\applications\help\XXX\cm Help files segregated by language.

XAI

Schemas

splapp\xai\schemas\CM*.xml XAI schemas.

Service

XML files

splapp\xmlMetaInfo\CM*.xml Service XMLs for Java.

Eclipse

Launch

Scripts

SPLSDKCommon\eclipseLaunchScripts Eclipse launch scripts.

Eclipse

Project

SPLSDKCommon\eclipseProject Project configuration information for Eclipse.

Oracle

Utilities

Software

Developme

nt Kit Tools

SPLSDKCommon\tools Tools required by the Oracle Utilities Software

Development Kit.

Client Directory
The Oracle Utilities Software Development Kit client directory contains both the Oracle Utilities Software
Development Kit itself and some project-specific information like the Eclipse workspace.

The location of the Oracle Utilities Software Development Kit client is stored in the environment variable
SPLSDKROOT.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 23

Contents
The Oracle Utilities Software Development Kit Client Itself
Project Directories
shortcut Directory

The Oracle Utilities Software Development Kit Client Itself
The Oracle Utilities Software Development Kit client is installed in SDK/<version>.

Additionally, a copy of Eclipse is installed later into the eclipse directory.

Note. Updates are unique versions of the Oracle Utilities Software Development Kit and therefore have

their own directories.

Note. A separate copy of Eclipse is installed per version of the Oracle Utilities Software Development Kit

client because each version may have its own set of plug-ins and the plug-ins must be in the plugins

directory of Eclipse.

Project Directories
Each project has its own directory.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 24

 eclipseWorkspace contains Eclipse workspace files.

 etc contains additional project-related files. setSPLEnv.bat is in this directory. It is used to set
environment variables appropriate for the project. This script is executed before other scripts so that
succeeding scripts operate on this project.

 eclipseProject (not shown above) exists only in development workstations (not in the project
repository). It is a copy of the same directory in the app server.

Note. setSPLEnv.bat is generated when the project is created/configured.

shortcut Directory
The shortcuts directory contains various scripts used in development.

Synchronizing With The Project Repository
Developers synchronize the whole of the app server directory except for the following:

 java\sourcegen

 java\target

 splapp\xmlMetaInfo

 splapp\applications\root\WEB-INF\lib\cm.jar

 splapp\standalone\lib\cm.jar

 splapp\XAIApp\WEB-INF\lib\cm.jar

 logs\system

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 25

Versions

Contents
Version Number
Compatibility with Products
Updates
Moving Up To A New Update
Moving Up To A New Version of a Product

Version Number
The Oracle Utilities Software Development Kit version number has four (4) components, each of which is
a number separated from the other components by a period ("."), as follows:

<component 1>.<component 2>.<component 3>.<component 4>

The first three components together specify the version of the framework it was built for. So it really is:

<framework version>.<Oracle Utilities Software Development Kit update >

Compatibility with Products
Each version of a product is built on a specific version of the framework. And each version of the Oracle
Utilities Software Development Kit is built for developing applications on a specific version of the
framework. Developers must use the version of the Oracle Utilities Software Development Kit that is built
for the version of the framework that the product is built on.

Unless noted otherwise, a version of the Oracle Utilities Software Development Kit is compatible with the
version of the framework with the same first three (3) components of the version number, i.e., excluding
the update number. For example, for a framework version of 2.1.0, any version of the Oracle Utilities
Software Development Kit that starts with 2.1.0, e.g., 2.1.0.0, 2.1.0.1, … 2.1.0.n, can be used for
development.

Updates
In between new versions of the framework, versions of the Oracle Utilities Software Development Kit that
contain fixes for bugs may be released. These versions are called updates and are indicated by a
change in the fourth component of the version number.

Updates are full packages of the Oracle Utilities Software Development Kit. They install as separate
applications and appear so to the operating system. It does not update an existing earlier version to the
new version. For example, versions 2.0.6.1, 2.0.6.2, 2.0.10.0, and 2.0.10.1 can all be installed at the
same time. And different projects may be on different Oracle Utilities Software Development Kit versions.

Generally, it is best for projects to always be on the latest update. But the Oracle Utilities Software
Development Kit allows different projects to be on different update version s for the following reasons:

 Although a very low possibility, there may be incompatibilities between updates. For example,
libraries may have changed.

 Having separate installs for each update allows the developers move their projects to the next update
on their own pace.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 26

 This allows developers to keep their projects on the same version of the Oracle Utilities Software
Development Kit that is used in the specific implementation. One project may be aggressive by
always being on the latest update version, but another project may stay longer in an older version if it
is more difficult to coordinate all developers to move up to the latest update.

Moving Up To A New Update
Moving up to a new update of the Oracle Utilities Software Development Kit involves updating the tools
while using the same project development environment.

Note. The project repository and all developers of a project must always be on the same version of the

Oracle Utilities Software Development Kit.

Note. Not all projects need to upgrade to the latest update version at the same time. Moving to a new

update version requires coordination among the developers for the project, as well as the on-site

implementation team and so it may take more time for some projects to move to the latest update version.

There following are the steps:

 Stabilize the project.

 Install the update.

Contents
Stabilize the Project
Install the Update

Stabilize the Project

 Make sure that the project is in a stable state and that all developers have submitted all code to the
repository.

Install the Update
The following procedure must be done for the project repository and all development worksations:

 If this is the first project to use the new update, install the Oracle Utilities Software Development Kit
update and specify the information for the selected project to update the development environment.

 Otherwise, run the createCMEnv.cmd script, specifying the information about the existing project to
update the development environment.

At this point, the selected project is configured to use the new update of the Oracle Utilities Software
Development Kit.

Note. Oracle Utilities Software Development Kit V2.0.6.1 introduced a new directory structure for the

development workstation. Consequently, existing installations of Oracle Utilities Software Development

Kit V2.0.5.0 and V2.0.6.0 must be uninstalled first before installing this version.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 27

Moving Up To A New Version of a Product
Moving up to a new version of a product requires creating a new development environment suited for that
version of the product. A new version of a product is likely to be built on a new version of the framework,
which would mean that a new compatible version of the Oracle Utilities Software Development Kit is
required.

The following are the steps:

 Stabilize the project on the old version of the product.

 Prepare the database for the new project.

 Set up the repository for the new project.

 Set up development workstations.

Contents
Stabilize the Project on the Old Version of the Product
Prepare the Database for the New Project
Set Up the Repository for the New Project
Set Up Development Workstations

Stabilize the Project on the Old Version of the Product

 Make sure that the project is in a stable state and that all developers have submitted all code to the
repository.

Prepare the Database for the New Project

 Copy the database of the project in the old version to a new database.

 Upgrade this newly created database to the new version of the product by following the database
upgrade procedures of the product.

Set Up the Repository for the New Project

 Prepare a project repository as described in the installation documentation.

 Copy source code from the repository of the previous version into the project repository.

 Update code, if necessary, as specified in the documentation of the new version of the product.

 Build the entire project. This includes generation of code, compilation, generation of services, etc.

 Test the customizations.

Set Up Development Workstations

 At this point, developers can set up their workstations for the new project on the new version of the
product. Each developer must follow the workstation set up procedure.

Product Single Fixes
When single fixes to products are released, the following should be done for projects for which the single
fixes are required:

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 28

 Stabilize the project by making sure that the project is in a stable state and that all developers have
submitted all code to the repository.

 Apply the single fix to the project repository.

 Each developer of the project must then synchronize with the project repository.

Contents
Build Server
Application Server Refresh

Build Server
Every enterprise has its own software development practices that cover how developers update code,
how changes are tracked and tested and how new releases are created. We generally expect that
whatever practices have historically worked within an organization will continue to work for the
implementation of this application. However, a build methodology was developed that has worked well
for managing concurrent changes to the application that is based on the following principles:

 All of the application should work all of the time. Therefore, changing one small part of the application
requires that all of the application be retested.

 Bugs are more expensive to fix the longer they stay in a system. This principle has been proven time
and time again in software engineering. This truth mostly owes to the fact that it is easiest to find the
offending developer immediately after he or she broke the system and also that developer has less
recollection of how and where the system was broken as time goes by.

 In a complex system malfunctions can occur "far away" from the points of code modification. It is
unreliable to expect selective retesting based on what was likely to malfunction to find the all the
places of actual malfunction.

This section will characterize an approach to setting up a Build Server that might be of use to an
implementing customer.

Contents
What is a Build Server?
The "Build Master"
Components Of The Build Server
Setting Up the Version Control System - Perforce
Setting Up CruiseControl
Setting Up Maven
Working Example

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 29

What is a Build Server?
A build server is a server devoted to continuously build and test the application via a long running agent
process. From the developer’s point of view the process is completely automated. An open source
application named CruiseControl is used for this purpose (http://cruisecontrol.sourceforge.net). By merely
checking changes into the source control system, the application developer has told the build server (or
just the "build" for short) all it needs to know about the change. No direct contact from developer to build
server is required or allowed for that matter. This isn't to say, however, that there is little interaction
between the developer and the build server. The build server is prone to get upset about changes that
cause application not to work right. That is its job. And, frankly, it is not shy about complaining when it
gets upset. Complaining is a nice word but "nagging" is actually more accurate; as a matter of fact our
build server has a configuration value set: nag=true.

The following describes the expected way the build server will behave and how/why we should try to
make it happy:

 Every 10 minutes or so (this is configurable), the build server looks for committed changes in the
appropriate location in the source control system. If none are found, the build waits another 10
minutes and polls again.

 When changes are found it does the following:

 Downloads all changes

 Performs build and test. We use Maven to facilitate this (http://maven.apache.org).

 Removes all artifacts, class files and other remnants from the last build

 Runs the Artifact Generator to create all necessary artifacts

 Compiles all code

 Runs all JUnit tests

 Publishes results to a project build web site.

 If the build was unsuccessful, commonly called "broken", it sends emails to everyone who
committed changes since the last successful build.

 Developers receive emails when the build is broken. These are only the developers that committed
changes since the last successful build. The build is somewhat targeted in this regard, guessing that
those providing new changes are by far the most likely culprits. When developers get these emails
they should go to the project build web site (a link is included in the email) and inspect the problem.

 If the developer thinks the problem is his/her fault, it is customary to:

 Send a note to other developers on the list so they do not waste time on the problem

 Fix the problem, test it locally, commit changes to source control and hope the build is
appeased.

 If no developer takes responsibility for the problem, some collaboration may be required. It may
also require some discussion with the "build master" (see below).

http://cruisecontrol.sourceforge.net/

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 30

 The build server continues to attempt builds per its normal polling interval. For example, if the build is
broken, it will attempt to build every 10 minutes and will fail each time. With each failure it will send
"nagging" emails to each developer committing changes since the last successful build -- the "nag
list". As you may have guessed, this set of developers may grow as different developers commit
changes while the build continues to be broken. This makes the number of "nagged" developers grow
through time. Therefore, it behooves the development community to fix the build as soon as possible.
More specifically, when a developer suspects in his or her heart that he or she was the one who
broke the build, he or she should stop what he or she is doing and fix it. And on the next successful
build, the build will stop nagging that developer and all other developers in the nag list.

The "Build Master"
Someone needs to befriend the build server. While the build server is extremely important, it can be a real
pain to deal with sometimes and can require a human go-between with an established relationship to
smooth things over. The industry term for this person is "build master". Despite the apparent grandness
of title, this is often not a desirable job.

In addition to those who have committed changes since the last successful build, the build master is also
sent the same nagging emails. This is so the build master can monitor the health of the build' and head
off problems. The build master may, at his or her discretion, contact developers and speculate that said
developer was the one who broke the build. Developers should not take exception for two reasons: (1)
the build master is just trying to fix the build; (2) the build master has spent so much time with "the build"
that making wild and unfounded accusations has become second nature.

Developers also should feel empowered to contact the build master when:
 The build log is either not specific enough about a problem or is just plain confusing.

 Some non-source "resource" needs to be added to either the runtime environment or the testing
environment. This would include:

 Jar files

 Configuration files

 Data files (presumably with test data inside)

Components Of The Build Server

Contents
Version Control System
CruiseControl
Maven
Oracle Utilities Software Development Kit

Version Control System
There should be a central storage source code and resources that are needed to create the application.
A change to source code and/or resources done in the version control system triggers the build process.

Note. The product development team uses PerForce for version control.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 31

CruiseControl
CruiseControl is the application that, at certain intervals, checks for changes in the version control
system. If a change is detected, it starts the build process. Otherwise, it waits for the next time interval.
CruiseControl also provides a reporting application with a web interface that:

 Displays the current status of the build server

 Displays the detailed results of a particular build including the files that changed to trigger the build,
the developers that made the changes, and the results for the unit tests that were performed.

 Sends the status of the build via email to the build master and the developers that made changes
during that time interval.

 Re-executes the failed build at the specified time intervals and re-sends the email to developers
associated with the failed build until a successful build is obtained.

Maven
Maven is the application that manages the build process. It is responsible for:

 Verifying the dependencies to build the project are available

 Setting up the build environment

 Compiling and packaging the source

 Running all the unit tests specified

 Generating an error if anything fails

Oracle Utilities Software Development Kit
The Java artifact generator is part of the install. The build server will use the artifact generator during the
build.

Setting Up the Version Control System -
Perforce

Note. The following section describes the use of PerForce. It must be substituted with the vesion control

system being used.

The Client Spec
A client spec strictly for the build server use should be created. The Perforce client spec maps the
Perforce depot structure to the local workstation directory structure by specifying views in the client spec.
The easiest way is to map the entire app server structure to a particular local directory.

For example, to create a client spec that maps a Perforce depot //SPL/CM_PROJ1/… to the
C:\SPL\CM_PROJ1 of the local workstation, the following steps should be performed:

 Select ClientSpec  New from the Perforce Windows client menu

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 32

 Update the client spec Root to be C:\SPL

 Add the line //SPL/CM_PROJ1/… // myClientSpec /SPL/CM_PROJ1/... to the Views section of the
client spec editor

 Add the line //SPL/CM_PROJ1/splapp/applications/root/WEB-INF/lib/…
//myClientSpec/SPL/CM_PROJ1/build/repository/cm-dep/jars/… to the Views section of the client
spec editor

The last line is necessary for Maven. Maven uses a concept of a repository to store all the Java libraries
is will use to satisfy dependencies. Since all the libraries needed are in the app server WEB-INF/lib
directory, this should be mapped to the repository Maven will use. It will be assumed that the build server
will perform the build process in a build directory. For the purpose of this document, the build directory will
be specified under C:\SPL\CCB_PROJ1\build directory.

 Add the following lines to the Views section of the client spec editor

//SPL/CM_PROJ1/runtime/... //SPL/CM_PROJ1/build/runtime/...

//SPL/CM_PROJ1/runtime/CM*.dll //SPL/CM_PROJ1/runtime/CM*.dll

Setting Up CruiseControl

Contents
The config.xml file
The Reporting Application

The config.xml file
CruiseControl uses an XML configuration file to customize its behavior. Refer to the CruiseControl
website for the detailed description of the configuration file. A sample configuration file for version 2.5 is
provided below. Any value starting with “my” should be replaced with the appropriate value for that
environment. The important elements are highlighted below:

 threads – specifies the number of concurrent builds that can occur. If more than one project, set this
to the number of projects.

 P4Bootstrapper – specifies what needs to be synced before a build is run through the view attribute.

 Modificationset – specifies what changes will trigger a build through the view attribute.

 interval – specifies the time interval between builds in seconds.

 maven – specifies that the build will use Maven. The mavenscript attribute specifies the file to launch.
This file should contain any environment specific environment settings, as well a launch maven. The
config file below specifies maven_20X.bat will be used.

 log – specifies the logs for the test. Maven automatically puts it in the target/test-reports directory.
This will be used to display the test results on the status page.

 email – specifies how email notification will be sent. The map attribute maps the Perforce user name
to a valid email address for that user.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 33

The Reporting Application
CruiseControl comes with a reporting application that displays the status/results of builds. To use the
reporting application, the following steps must be performed:

 Install and configure a web server such as Tomcat.

 Add a context path to the server.xml that points to the CruiseControl reporting application. For
example:

 <Context path="" docBase="c:\myCruiseControlDir\webapps\cruisecontrol" debug="0"/>

 Modify the web.xml file in c:\myCruiseControlDir\webapps\cruisecontrol\WEB-INF to update the
param value of the logDir parameter.

 <param-name>logDir</param-name>

 <param-value> c:/myCruiseControlDir/logs</param-value>

Setting Up Maven

Contents
The Launch Script
The project.xml file
The maven.xml file
The project.properties file

The Launch Script
There are environment variables that need to be set prior to launching Maven. This is accomplished by
creating a script that sets the necessary environment variables and then launches Maven. This script is
what is specified in the mavenscript attribute of the CruiseControl config.xml file above. The script should
contain the following lines:

set PATH=c:\spl\CM_PROJ1\runtime\;%PATH%

set COBSW=(+S5)

call c:\myMavenDir\bin\maven.bat %*

The project.xml file
The project file contains information about the project. It is here that dependencies for compilation are
specified, how the application is packaged, and how the unit tests will be performed. See below for
contents and the Maven home page for a detailed description.

The maven.xml file
The maven.xml file contains the actions to perform or goals to achieve to build the project. When Maven
is launched and a goal is passed in as a parameter, it will look in the maven.xml for that goal and execute
any directives in that goal. See below for contents and the Maven home page for a detailed description.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 34

The project.properties file
The project.properties allows for specifying properties that can be used in the maven.xml and the
project.xml files. This allows for a central place to specify file paths for simpler updates. It also allows for
overriding any built-in properties set by Maven.

Working Example
Below is a working example for setting up a build server.

In the working example, the 2.0.5 release of CC&B is shown which is based on SDK 2.0.10. Some
changes are necessary to tailor this example to the actual application and release desired. The following
items can be changed to reflect the specific project:

 Product being customized. In this example, it is Oracle Utilities Customer Care and Billing.

 Project name. In this example, it is CCB_205_101.

 Oracle Utilities Software Development Kit version. In this example, it is 2.0.10.0.

 Source Code Control System. In this example, it is PerForce.

It assumes the following directory structure:

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 35

where

BuildServer – contains the build server files

spl – contains the appserver installation

SPLSDK – contains the SDK installation

The corresponding Perforce structure is as follows:

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 36

It is assumed that the test source files are in C:\spl\CCB_205_101\java\source\cm\test and the test
properties file are in C:\spl\CCB_205_101\java\source\cm\test\properties.

Steps to perform:

1) Download CruiseControl 2.5 and extract to C:\BuildServer directory

2) Download Maven 1.0.2 and extract to C:\BuildServer directory

3) Create a directory for the reporting application in the C:\BuildServer\project_web_site

4) Download Tomcat 4 and extract into the C:\BuildServer\project_web_site directory

5) Download Java 2 SDK and extract into the C:\BuildServer\project_web_site directory

6) Copy the reporting app from C:\BuildServer\cruisecontrol-2.5\webapps\cruisecontrol to the
C:\BuildServer\project_web_site\project_content

7) In the C:\BuildServer\maven-1.0.2\bin directory, create a batch file that will launch Maven called
cmMaven.bat with the following contents:

set PATH=C:\spl\CCB_205_101\runtime;%PATH%

set COBSW=(+S5)

set MAVEN_HOME=C:\BuildServer\maven-1.0.2

set BUILD_DIR=C:\spl\CCB_205_101\build

cd /d %BUILD_DIR%

call %MAVEN_HOME%\bin\maven.bat %*

8) In the C:\BuildServer\ cruisecontrol-2.5 directory, create a batch file that will launch CruiseControl
called cmCruiseControl.bat with the following contents:

SET JAVA_HOME=C:\Program Files\Java\jdk1.5.0_10

cd /d C:\BuildServer\cruisecontrol-2.5

call cruisecontrol.bat -projectname cmbuild -configfile config.xml

9) Create a file called C:\BuildServer\ cruisecontrol-2.5\config.xml with the following contents:

<cruisecontrol>

 <system>

 <configuration>

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 37

 <threads count="1"/>

 </configuration>

 </system>

 <project name="cmbuild">

 <listeners>

 <currentbuildstatuslistener file="logs/cmbuild/status.txt"/>

 </listeners>

 <bootstrappers>

 <P4Bootstrapper p4port="SF-PDNT-006:1686" client="CMClientSpec"

p4user="fjocson" path="//SDK/..." />

 </bootstrappers>

 <modificationset requiremodification="true">

 <!-- trigger a build for any code change -->

 <P4 port="SF-PDNT-006:1686" client="CMClientSpec" user="fjocson"

view="//SDK/..." />

 </modificationset>

 <schedule interval="240">

 <!-- Schedule the regular build -->

 <maven mavenscript="C:/BuildServer/maven-1.0.2/bin/cmMaven.bat"

 projectfile="C:/BuildServer/maven-1.0.2/bin/project.xml"

 goal="cmBuild"

 multiple="1" />

 </schedule>

 <log encoding="UTF-8">

 <merge dir="c:/spl/CCB_205_101/build/cm/target/test-reports" />

 </log>

 <publishers>

 <email mailhost="sf-smtp1.splwg.com"

 returnname="CM Project Build Server"

 returnaddress="CMBuildServer@splwg.com"

 defaultsuffix="@splwg.com"

 buildresultsurl="http://localhost:20230/index.jsp">

 <!--always address="buildmasters" /-->

 <!--failure address="developers" reportWhenFixed="true" /-->

 <failure address="buildmasters" reportWhenFixed="true" />

 <map alias="buildmasters" address="fjocson@splwg.com" />

 <!-- Map perforce usernames to email names -->

 <map alias="fjocson" address="fjocson@splwg.com" />

 </email>

 </publishers>

 </project>

</cruisecontrol>

10) Modify the file C:\BuildServer\project_web_site\tomcatBase\conf\server.xml to add the line:

<Context path="" docBase="C:\BuildServer\project_web_site\project_content"

debug="0"/>

11) Modify the file C:\BuildServer\project_web_site\project_content\WEB-INF\web.xml to add the
lines:

<param-name>logDir</param-name>

<param-value>logs</param-value>

to

<param-name>logDir</param-name>

<param-value>C:/BuildServer/CruiseControl-2.5/logs</param-value>

12) Create a file called C:\spl\CCB_205_101\build\project.xml with the following contents:

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 38

<?xml version="1.0"?>

<project>

 <name>CM Dev</name>

 <groupId>cm</groupId>

 <id>cm</id>

 <currentVersion>SNAPSHOT</currentVersion>

 <package>com.splwg.cm</package>

 <shortDescription>CM Java Development</shortDescription>

 <description>CM Java Development</description>

 <dependencies>

 <dependency>

 <groupId>cm-dep</groupId>

 <artifactId>spl-ccb</artifactId>

 <jar>spl-ccb-2.0.5.jar</jar>

 </dependency>

 <dependency>

 <groupId>cm-dep</groupId>

 <artifactId>spl-shared</artifactId>

 <jar>spl-shared-2.0.10.jar</jar>

 </dependency>

 <dependency>

 <groupId>cm-dep</groupId>

 <artifactId>spl-base</artifactId>

 <jar>spl-base-2.0.10.jar</jar>

 </dependency>

 <dependency>

 <groupId>cm-dep</groupId>

 <artifactId>spl-charter</artifactId>

 <jar>spl-charter-2.0.10.jar</jar>

 </dependency>

 <dependency>

 <groupId>cm-dep</groupId>

 <artifactId>commons-lang</artifactId>

 <jar>commons-lang-2.1.jar</jar>

 </dependency>

 <dependency>

 <groupId>cm-dep</groupId>

 <artifactId>hibernate</artifactId>

 <jar>hibernate-3.0.5.jar</jar>

 </dependency>

 <dependency>

 <groupId>cm-dep</groupId>

 <artifactId>log4j</artifactId>

 <jar>log4j-1.2.11.jar</jar>

 </dependency>

 <dependency>

 <groupId>cm-dep</groupId>

 <artifactId>picocontainer</artifactId>

 <jar>picocontainer-1.1.jar</jar>

 </dependency>

 <dependency>

 <groupId>cm-dep</groupId>

 <artifactId>dom4j</artifactId>

 <jar>dom4j-1.6.1.jar</jar>

 </dependency>

 <dependency>

 <groupId>cm-dep</groupId>

 <artifactId>commons-collections</artifactId>

 <jar>commons-collections-2.1.1.jar</jar>

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 39

 </dependency>

 <dependency>

 <groupId>cm-dep</groupId>

 <artifactId>xstream</artifactId>

 <jar>xstream-1.1.2.jar</jar>

 </dependency>

 <dependency>

 <groupId>cm-dep</groupId>

 <artifactId>cglib</artifactId>

 <jar>cglib-2.1.3.jar</jar>

 </dependency>

 <dependency>

 <groupId>cm-dep</groupId>

 <artifactId>asm-attrs</artifactId>

 <jar>asm-attrs-1.5.3.jar</jar>

 </dependency>

 <dependency>

 <groupId>cm-dep</groupId>

 <artifactId>asm</artifactId>

 <jar>asm-1.5.3.jar</jar>

 </dependency>

 <dependency>

 <groupId>cm-dep</groupId>

 <artifactId>icu4j</artifactId>

 <jar>icu4j-3.4.jar</jar>

 </dependency>

 <dependency>

 <groupId>cm-dep</groupId>

 <artifactId>commons-logging</artifactId>

 <jar>commons-logging-1.0.4.jar</jar>

 </dependency>

 <dependency>

 <groupId>cm-dep</groupId>

 <artifactId>c3p0</artifactId>

 <jar>c3p0-0.9.0.4.jar</jar>

 </dependency>

 <dependency>

 <groupId>cm-dep</groupId>

 <artifactId>ehcache</artifactId>

 <jar>ehcache-1.1.jar</jar>

 </dependency>

 <dependency>

 <groupId>cm-dep</groupId>

 <artifactId>commons-beanutils</artifactId>

 <jar>commons-beanutils-1.6.1.jar</jar>

 </dependency>

 <dependency>

 <groupId>cm-dep</groupId>

 <artifactId>concurrent</artifactId>

 <version>1.3.4</version>

 </dependency>

 <dependency>

 <groupId>cm-dep</groupId>

 <artifactId>commons-httpclient</artifactId>

 <jar>commons-httpclient-2.0.2.jar</jar>

 </dependency>

 </dependencies>

 <build>

 <sourceDirectory>

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 40

 ${build.dir}/source/java

 </sourceDirectory>

 <unitTestSourceDirectory>

 ${build.dir}/source/test

 </unitTestSourceDirectory>

 <resources>

 <resource>

 <directory>${build.dir}/source/java/com/splwg/cm/domain</directory>

 <targetPath>com/splwg/cm/domain</targetPath>

 <includes>

 <include>**/contextManagedObjects.xml</include>

 </includes>

 </resource>

 <resource>

<directory>${spl.build.root.dir}/source/java/com/splwg/cm/domain</directory>

 <targetPath>com/splwg/cm/domain</targetPath>

 <includes>

 <include>**/packageMetaInfo.xml</include>

 </includes>

 </resource>

 <resource>

 <directory>${spl.build.root.dir}/source/java/com/splwg/cm/cobol</directory>

 <targetPath>com/splwg/cm/cobol</targetPath>

 <includes>

 <include>**/packageMetaInfo.xml</include>

 </includes>

 </resource>

 <resource>

 <directory>${spl.build.root.dir}/source/java/com/splwg</directory>

 <targetPath>com/splwg</targetPath>

 <includes>

 <include>**/*.hbm.xml</include>

 </includes>

 </resource>

 <resource>

 <directory>${spl.build.root.dir}/source/java/com/splwg</directory>

 <targetPath>com/splwg</targetPath>

 <includes>

 <include>**/*.info.xml</include>

 </includes>

 </resource>

 <!-- service mapping files -->

 <resource>

 <directory>${spl.build.root.dir}/source/java/services</directory>

 <targetPath>services</targetPath>

 <includes>

 <include>**/*.xml</include>

 </includes>

 </resource>

 <resource>

 <directory>${build.dir}/source/java/cobolServices</directory>

 <targetPath>cobolServices</targetPath>

 <includes>

 <include>*.xml</include>

 </includes>

 </resource>

 <resource>

 <directory>${build.dir}/source/java/com/splwg/cm</directory>

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 41

 <targetPath>com/splwg/cm</targetPath>

 <includes>

 <include>dbregex.txt</include>

 </includes>

 </resource>

 </resources>

 <unitTest>

 <includes>

 <include>com/splwg/AllTests.java</include>

 </includes>

 <resources>

 <resource>

 <directory>${build.dir}/source/test/com/splwg/cm/domain</directory>

 <targetPath>com/splwg/cm/domain</targetPath>

 <includes>

 <include>**/contextManagedObjects.xml</include>

 </includes>

 </resource>

 <resource>

 <directory>${build.dir}/source/test/com/splwg/cm/domain</directory>

 <targetPath>com/splwg/cm/domain</targetPath>

 <includes>

 <include>**/packageMetaInfo.xml</include>

 </includes>

 </resource>

 <resource>

 <directory>${build.dir}/source/test/com/splwg/cm/cobol</directory>

 <targetPath>com/splwg/cm/cobol</targetPath>

 <includes>

 <include>**/packageMetaInfo.xml</include>

 </includes>

 </resource>

 <resource>

 <directory>${build.dir}/source/test/com/splwg</directory>

 <targetPath>com/splwg</targetPath>

 <includes>

 <include>**/*.hbm.xml</include>

 </includes>

 </resource>

 <resource>

 <directory>${build.dir}/source/test/com/splwg</directory>

 <targetPath>com/splwg</targetPath>

 <includes>

 <include>**/*.info.xml</include>

 </includes>

 </resource>

 <!-- service mapping files -->

 <resource>

 <directory>${build.dir}/source/test/com/splwg/cm/services</directory>

 <targetPath>services</targetPath>

 <includes>

 <include>**/*.xml</include>

 </includes>

 </resource>

 <resource>

 <directory>${build.dir}/source/test/cobolServices</directory>

 <targetPath>cobolServices</targetPath>

 <includes>

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 42

 <include>*.xml</include>

 </includes>

 </resource>

 <resource>

 <directory>${build.dir}/TestProperties</directory>

 <includes>

 <include>hibernate.properties</include>

 <include>log4j.properties</include>

 </includes>

 </resource>

 </resources>

 </unitTest>

 </build>

</project>

13) Create a file called C:\spl\CCB_205_101\build\maven.xml with the following contents:

<project

 default="reactor-exec"

 xmlns:ant="jelly:ant"

 xmlns:j="jelly:core"

 xmlns:u="jelly:util"

 xmlns:maven="jelly:maven">

 <goal name="cmBuild">

 <echo message="Copying source files to build location for CM project"/>

 <attainGoal name="refresh-build-dir" />

 <!-- Generate and compile -->

 <attainGoal name="cmGenerate" />

 <attainGoal name="jar:jar" />

 <copy todir="${build.dir}/repository/cm/jars" >

 <fileset dir="${build.dir}/target">

 <include name="*.jar"/>

 </fileset>

 </copy>

 <!--Copy files for appserver refresh -->

 <attainGoal name="save-files" />

 </goal>

 <goal name="refresh-build-dir">

 <echo message="Refreshing build directory for project CM" />

 <echo message="Source root directory is ${java.source.dir}" />

 <delete dir="${build.dir}/source" />

 <delete dir="${build.dir}/target" />

 <!-- Copy over the "java" directories -->

 <copy todir="${build.dir}/source/java" >

 <fileset dir="${java.source.dir}" />

 </copy>

 <!-- Copy over the "test" directories -->

 <copy todir="${build.dir}/source/test" failonerror="false" >

 <fileset dir="${java.source.dir}/test" />

 </copy>

 <!-- Copy over the properties -->

 <copy todir="${build.dir}/properties"

 file="${web.root.dir}/WEB-INF/classes/hibernate.properties"

overwrite="true" failonerror="false" />

 <copy todir="${build.dir}/properties"

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 43

 file="${web.root.dir}/WEB-INF/classes/log4j.properties" overwrite="true"

failonerror="false" />

 <copy todir="${build.dir}/properties"

 file="${web.root.dir}/WEB-INF/classes/spl.properties" overwrite="true"

failonerror="false" />

 <!-- Copy over the Test properties -->

 <!-- Copy over the Test properties -->

 <copy todir="${build.dir}/TestProperties"

 file="${java.source.dir}/test/properties/hibernate.properties"

overwrite="true" failonerror="false" />

 <copy todir="${build.dir}/TestProperties"

 file="${java.source.dir}/test/properties/log4j.properties" overwrite="true"

failonerror="false" />

 <copy todir="${build.dir}/TestProperties"

 file="${java.source.dir}/test/properties/spl.properties" overwrite="true"

failonerror="false" />

 <!-- Refresh the Cobol Runtime files -->

 <delete dir="${build.dir}/runtime"/>

 <copy todir="${build.dir}/runtime" preservelastmodified="true" >

 <fileset dir="${dev.root.dir}/runtime ">

 <include name="cm*.dll"/>

 <include name="CM*.dll"/>

 </fileset>

 </copy>

 </goal>

 <goal name="cmGenerate">

 <!-- Generate the classes -->

 <property name="generated.artifact.dir"

 value="${build.dir}/source/java"/>

 <echo message="Generated artifact directory is

${generated.artifact.dir}" />

 <java classname="com.splwg.tools.artifactgen.ArtifactGenerator" fork="true"

failonerror="true" maxmemory="512m">

 <arg line="-appDirs ${generated.artifact.dir} -appJars

${build.dir}/repository/cm-dep/jars/spl-base-2.0.10.jar ${build.dir}/repository/cm-

dep/jars/spl-ccb-2.0.5.jar" />

 <classpath>

 <pathelement path="${build.dir}/properties" />

 <fileset dir="${build.dir}/repository/cm-dep/jars">

 <include name="*.jar"/>

 </fileset>

 <fileset dir="${dev.root.dir}/SPLSDKCommon/tools">

 <include name="*.jar"/>

 </fileset>

 </classpath>

 <sysproperty key="spl.tools.artifact.manual.sourcedir"

value="${generated.artifact.dir}"/>

 <sysproperty key="spl.tools.artifact.cobol.sourcedir"

value="${dev.root.dir}/cobol/source"/>

 <sysproperty key="spl.tools.artifact.generated.sourcedir"

value="${generated.artifact.dir}"/>

 <sysproperty key="spl.tools.loaded.applications" value="base,ccb,cm"/>

 <sysproperty key="log4j.logger.com.splwg" value="info"/>

 <sysproperty key="log4j.logger.org.hibernate.cfg" value="warn"/>

 <sysproperty key="log4j.logger.org.hibernate.util" value="warn"/>

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 44

 <sysproperty

key="log4j.logger.com.splwg.tools.artifactgen.LookupGenerator" value="warn"/>

 <sysproperty

key="log4j.logger.com.splwg.tools.artifactgen.sourceparser.JavaSourceProcessor"

value="warn"/>

 </java>

 </goal>

 <goal name="save-files">

 <echo message="Deleting previous saved files..." />

 <!-- Put a marker that files are in the process of being saved -->

 <!-- so the appserver refresh won't try to refresh -->

 <copy file="${dev.root.dir}/etc/SPLVERSION.txt"

tofile="${build.dir}/~saving_files"/>

 <delete dir="${build.dir}/saved" />

 <echo message="Saving files from successful build..." />

 <!-- Copy over the root directory -->

 <copy todir="${build.dir}/saved/root/cm">

 <fileset dir="${web.root.dir}/cm" />

 </copy>

 <copy todir="${build.dir}/saved/lib" >

 <fileset dir="${build.dir}/repository/cm/jars" />

 </copy>

 <!-- Copy over the dlls -->

 <copy todir="${build.dir}/saved/runtime" >

 <fileset dir="${build.dir}/runtime">

 <include name="CM*.dll" />

 <include name="cm*.dll" />

 </fileset>

 </copy>

 <delete file="${build.dir}/~saving_files"/>

 </goal>

</project>

14) Create a properties file in the build directory called
C:\spl\CCB_205_101\build\project.properties with the following contents:

The top level directories

dev.root.dir=c:/spl/CCB_205_101

build.dir=${dev.root.dir}/build

java.source.dir=${dev.root.dir}/java/source/cm

web.root.dir=${dev.root.dir}/splapp/applications/root

Properties used during the build process

maven.pmd.cpd.enable=true

JUnit testing properties

log4j.logger.com.splwg=info

log4j.logger.org.hibernate.cfg=warn

log4j.logger.org.hibernate.util=warn

log4j.logger.com.splwg.base.context.ApplicationContextImpl=warn

log4j.logger.com.splwg.base.context.PicoComponentContainer=warn

maven.junit.sysproperties=spl.tools.loaded.applications log4j.logger.com.splwg

log4j.logger.org.hibernate.cfg log4j.logger.org.hibernate.util

log4j.logger.com.splwg.base.context.ApplicationContextImpl

log4j.logger.com.splwg.base.context.PicoComponentContainer

maven.junit.jvmargs=-Xms128m -Xmx512m -XX:MaxPermSize=512m

Define the set of applications to be loaded

spl.tools.loaded.applications=base,ccb

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 45

These "built-in" maven properties need to be here because the property

inheritance of this type is broken in maven 1.0.1

Should be fixed in 1.0.2 (hopefully).

##maven.repo.remote.enabled = false

maven.site.deploy.method = fs

maven.repo.local = ${build.dir}/repository

maven.junit.fork = true

maven.jar.override = on

15) Create script to start Tomcat for the build status website by creating a file called
C:\BuildServer\project_web_site\starttcat.bat with the following contents:

REM This script calls the tomcat startup script in tomcathome\bin.

set SITE_BASE=C:\BuildServer\project_web_site

set JAVA_HOME=%SITE_BASE%\j2sdk1.4.2_11

set JAVA_OPTS=-Xms384m -Xmx384m

set CATALINA_BASE=%SITE_BASE%\tomcatBase

set CATALINA_HOME=%SITE_BASE%\tomcatHome\jakarta-tomcat-4.1.29

pushd %CATALINA_HOME%\bin

call startup.bat

popd

:endofbat

16) Create script to stop Tomcat for the build status website by creating a file called
C:\BuildServer\project_web_site\stoptcat.bat with the following contents:

@REM This script calls the tomcat shutdown script in tomcathome\bin.

set SITE_BASE=C:\BuildServer\project_web_site

set JAVA_HOME=%SITE_BASE%\j2sdk1.4.2_11

set JAVA_OPTS=-Xms384m -Xmx384m

set CATALINA_BASE=%SITE_BASE%\tomcatBase

set CATALINA_HOME=%SITE_BASE%\tomcatHome\jakarta-tomcat-4.1.29

if not exist %SITE_BASE%\tomcatHome\jakarta-tomcat-4.1.29\bin echo Unable to find

directory %SITE_BASE%\tomcatHome\jakarta-tomcat-4.1.29\bin.&&pause&&goto endofbat

pushd %SITE_BASE%\tomcatHome\jakarta-tomcat-4.1.29\bin

call shutdown.bat

popd

:endofbat

17) Create a Perforce client spec named CMClientSpec for this example. The Root should be c:\spl
and has the following view defined:

 //SDK/2.0.10/AppSvrs/CCB_205_101/... //CMClientSpec/CCB_205_101/...

18) Start the build status website by executing the file
C:\BuildServer\project_web_site\starttcat.bat

19) Start CruiseControl by executing the file C:\BuildServer\ cruisecontrol-
2.5\cmCruiseControl.bat. Once it completes, the console should state that is waiting for the next
time to build:

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 46

20) Once the build finishes in the CruiseControl console, view the build status by opening a web
browser to http://localhost:20230. The following status page should be displayed:

http://localhost:20230/

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 47

21) If successful, the resulting cm jar file can be found at c:\spl\CCB_205_101\build\target\cm-
SNAPSHOT.jar.

Application Server Refresh

Contents
Application Server Refresh Scripts
Application Server Refresh Procedure

Application Server Refresh Scripts
The following scripts must be created for Application Server Refresh, substitute Name/Version(xxx)
according to the requirement. The scripts copies the build files from the build server to the shared app
server.

Contents
setupEnv2xx.cmd
setAppserverEnv.bat
AppServerRefresh.bat
build.xml

setupEnv2xx.cmd
 Create a file called setupEnv2xx.cmd in

//C1CM/2.x.0/V2xx_CCB_CM_WIN_TC_ORA/SPLSDKCommon with the following contents:

set JAVA_HOME=C:\jdk\jdk1.5.0_10

set ORACLE_HOME=C:\oracle\oracle10203

set CATALINA_HOME=C:\tomcat\apache-tomcat-5.5.20

set COBDIR=C:\Program Files\Micro Focus\Net Express 5.0\Base

set C3P0_JAR_DIR=C:\c3p0\c3p00904\lib

set HIBERNATE_JAR_DIR=C:\hibernate\hib313

setAppserverEnv.bat
 Create a file called setAppserverEnv.bat in //C1CM/2.x.x/V2xx_CCB_CM_WIN_TC_ORA/bin with

the following contents:

SET MOD=V2xx_CM_DEMO_DEV_WIN_TC_ORA

SET BUILDSERVER_MAP=U:\%MOD%

SET DEVDIR=C:\splcm\%MOD%

SET BINDIR=%DEVDIR%\bin

SET SPLAPPDIR=%DEVDIR%\splapp\applications

SET ANT_HOME=C:\splcm\V2xx_CM_DEMO_DEV_WIN_TC_ORA\product\apache-ant-1.6.3

SET TOMCAT_VER=5.5.20

SET TOMCAT_PORT=7300

SET DEBUG_PORT=7301

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 48

SET ENV_TITLE= Sanity Check for %MOD% %DB_TYPE% %TOMCAT_PORT%

SET PATH=%DEVDIR%\runtime;%PATH%

set ONLINEBILLINI=%DEVDIR%\ect\billdirfile.ini

set ONLINEDOCINI=%DEVDIR%\etc\doc1dirfile.ini

AppServerRefresh.bat
 Create a file called AppServerRefresh.bat in //C1CM/2.x.x/V2xx_CCB_CM_WIN_TC_ORA/bin with

the following contents:

@echo off

rem Setup the Environment Variable for AppServer

rem call setAppserverEnv.bat

rem Setup the Environment Variables for V2xx_CM_DEMO_DEV_WIN_TC_ORA

rem cd /d %DEVDIR%\SPLSDKCommon

rem call setupEnv2xx.cmd

rem Execute splenviron

rem cd /d %BINDIR%

rem cmd /k "call splenviron.cmd -e V2xx_CM_DEMO_DEV_WIN_TC_ORA"

if not exist %BUILDSERVER_MAP% goto map_error

if not exist %SPLAPPDIR% goto app_error

cd /d %SPLAPPDIR%

call %ANT_HOME%\bin\ant.bat -l %SPLAPPDIR%\log.txt

goto end

:map_error

echo Error: Could not find build server path %BUILDSERVER_MAP%

goto end

:app_error

echo Error: App server path %SPLAPPDIR% not found

goto end

:end

build.xml
 Create a file called build.xml in //C1CM/2.x.x/V2xx_CCB_CM_WIN_TC_ORA/ splapp/applications

with the following contents:

<?xml version="1.0" encoding="UTF-8" ?>

<project name="AppserverRefresh" default="refreshAppserver" basedir=".">

 <property name="spl.tcat.port" value="7300"/>

 <property name="spl.tcat.version" value="tomcatBase-5.5.20"/>

 <property name="spl.build.saved.dir"

location="U:/V2xx_CM_DEMO_DEV_WIN_TC_ORA/build/saved"/>

 <property name="spl.base.dir" location="C:/splcm/V2xx_CM_DEMO_DEV_WIN_TC_ORA"/>

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 49

 <property name="spl.bin.dir" location="${spl.base.dir}/bin"/>

 <property name="spl.splapp.dir" location="${spl.base.dir}/splapp"/>

 <property name="spl.splapp.applications.dir"

location="${spl.splapp.dir}/applications/"/>

 <property name="spl.root.dir" location="${spl.splapp.applications.dir}/root"/>

 <property name="spl.runtime.dir" location="${spl.base.dir}/runtime"/>

 <property name="spl.standalone.lib.dir"

location="${spl.splapp.dir}/standalone/lib"/>

 <property name="spl.root.web-inf.lib.dir" location="${spl.root.dir}/WEB-

INF/lib"/>

 <property name="spl.xai.web-inf.lib.dir"

location="${spl.splapp.applications.dir}/XAIApp/WEB-INF/lib"/>

 <target name="deployXAI" depends="deploy" >

 <echo message="Copying CM appserver jar file to ${spl.xai.web-

inf.lib.dir}..."/>

 <copy todir="${spl.xai.web-inf.lib.dir}">

 <fileset dir="${spl.build.saved.dir}\lib">

 <include name="cm*.jar" />

 </fileset>

 </copy>

 </target>

 <target name="starttomcat" depends="deployXAI">

 <echo message="Starting Tomcat..."/>

 <property name="host" value="localhost"/>

 <property name="port" value="${spl.tcat.port}"/>

 <property name="server.url" value="http://${host}:${port}"/>

 <exec dir="${spl.bin.dir}" executable="cmd.exe" spawn="true">

 <arg line="/c spl.cmd start" />

 </exec>

 <waitfor maxwait="180" maxwaitunit="second"

timeoutproperty="server.is.unavailable">

 <http url="${server.url}"/>

 </waitfor>

 <fail if="server.is.unavailable" message="Ant was unable to start the

server..."/>

 <echo message="Finished App Server Refresh..."/>

 </target>

 <target name="deploy" depends="CheckSavedDir">

 <tstamp>

 <format property="TODAY" pattern="MM/dd/yy HH:mm"/>

 </tstamp>

 <echo message="Starting refresh on ${TODAY}"/>

 <fail unless="saved.dir.exist" message="No saved directory exist. Not

refreshing..."/>

 <fail if="saving.files.in.progress" message="Build server save files in

progress. Not refreshing..."/>

 <echo message="Shutting down MPL..."/>

 <exec dir="${spl.splapp.dir}/mpl" executable="cmd.exe" spawn="true">

 <arg line="/c stopMPL.cmd" />

 </exec>

 <echo message="Waiting 30 seconds while MPL shutsdown..."/>

 <sleep seconds="30"/>

 <echo message="Shutting down Tomcat..."/>

 <exec dir="${spl.bin.dir}" executable="cmd.exe" spawn="true">

 <arg line="/c spl.cmd stop" />

 </exec>

 <echo message="Waiting 120 seconds while Tomcat shutsdown..."/>

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 50

 <sleep seconds="120"/>

 <echo message="Refreshing appserver ..."/>

 <echo message="Deleting CM appserver root directory ${spl.root.dir}\cm"/>

 <delete dir="${spl.root.dir}\cm"/>

 <echo message="Deleting CM appserver root directory

${spl.root.dir}\c1\cm"/>

 <delete dir="${spl.root.dir}\c1\cm"/>

 <echo message="Deleting CM appserver dlls in ${spl.runtime.dir}"/>

 <delete>

 <fileset dir="${spl.runtime.dir}">

 <include name="cm*.dll"/>

 <include name="CM*.dll"/>

 </fileset>

 </delete>

 <echo message="Deleting CM appserver jars in ${spl.standalone.lib.dir}"/>

 <delete>

 <fileset dir="${spl.standalone.lib.dir}">

 <include name="cm*.jar"/>

 </fileset>

 </delete>

 <echo message="Deleting CM appserver jars in ${spl.root.web-inf.lib.dir}"/>

 <delete>

 <fileset dir="${spl.root.web-inf.lib.dir}">

 <include name="cm*.jar"/>

 </fileset>

 </delete>

 <echo message="Deleting CM appserver jars in ${spl.xai.web-inf.lib.dir}"/>

 <delete>

 <fileset dir="${spl.xai.web-inf.lib.dir}">

 <include name="cm*.jar"/>

 </fileset>

 </delete>

 <echo message="Create the build saved directory if it doesn't exist

${spl.build.saved.dir}\root\cm..."/>

 <mkdir dir="${spl.build.saved.dir}\root\cm"/>

 <echo message="Copying CM appserver files to ${spl.root.dir}..."/>

 <copy todir="${spl.root.dir}\cm">

 <fileset dir="${spl.build.saved.dir}\root\cm" />

 </copy>

 <echo message="Copying CM appserver dlls to ${spl.runtime.dir}"/>

 <copy todir="${spl.runtime.dir}">

 <fileset dir="${spl.build.saved.dir}\runtime">

 <include name="CM*.dll" />

 <include name="cm*.dll" />

 </fileset>

 </copy>

 <echo message="Copying CM appserver jar file to

${spl.standalone.lib.dir}..."/>

 <copy todir="${spl.standalone.lib.dir}">

 <fileset dir="${spl.build.saved.dir}\lib">

 <include name="cm*.jar" />

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 51

 </fileset>

 </copy>

 <echo message="Copying CM appserver jar file to ${spl.root.web-

inf.lib.dir}..."/>

 <copy todir="${spl.root.web-inf.lib.dir}">

 <fileset dir="${spl.build.saved.dir}\lib">

 <include name="cm*.jar" />

 </fileset>

 </copy>

 </target>

 <target name="refreshAppserver" depends="starttomcat"/>

 <target name="CheckSavedDir">

 <echo message="Checking if saved directory exist..."/>

 <condition property="saved.dir.exist">

 <available file="${spl.build.saved.dir}" type="dir"/>

 </condition>

 <echo message="Checking if build server is in the process of saving

files..."/>

 <condition property="saving.files.in.progress">

 <available file="${spl.build.root.dir}\~saving_files" type="file"/>

 </condition>

 </target>

</project>

Application Server Refresh Procedure

 Share the Appserver installation root directory in the Build Server and give full access.

 From the Application Server, Map the root directory of the Build Server’s appserver installation.

 In a Command prompt, execute setupEnv2xx.cmd in
C:\splcm\V2xx_CM_DEMO_DEV_WIN_TC_ORA\SPLSDKCommon.

 Execute setAppServerRefresh.bat in C:\splcm\V2xx_CM_DEMO_DEV_WIN_TC_ORA\bin

 In the command prompt, execute splenviron –e V2xx_CM_DEMO_DEV_WIN_TC_ORA.

 Execute AppServerRefresh.bat in C:\splcm\V2xx_CM_DEMO_DEV_WIN_TC_ORA\bin.

Windows Scheduler can be used to schedule daily app server refresh.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 52

JUnit testing
JUnit is a Java framework that supports writing unit tests that help ensure your code works as desired,
and existing code is not broken by new changes. It is often useful to create JUnit tests during
development to verify that your code works as expected, and to keep and rerun the tests in the future to
ensure that later changes in your (or someone else’s code) don’t unexpectedly break your code.

More information on JUnit testing philosophy is available at JUnit.org.

Note. This document assumes that you use Eclipse. However you can choose to use different IDE but

then you have to find how to achieve the equivalent functionality that Eclipse provides.

Assuming you have an existing JUnit test class, you can execute them directly within Eclipse by:

 Right-clicking on the class in Package Explorer

 Run -> JUnit Test

All the tests for an application can be run from Eclipse by running the com.splwg.AllTests class in the

"test" directory as a JUnit test.

Standard test cases
There are framework classes that are helpful for specific test cases:

Contents
Testing Searches
Testing Maintenance Classes
Testing Entity Page Maintenance Classes
Testing Business Entity Validation
Test handleChange / handleAdd / etc code
Testing for Warnings

Testing Searches
There is a convenient test superclass for search services,

com.splwg.base.api.testers.SearchTestCase. This test class only requires that you override two

methods:

 String getServiceName() - this method specifies the service name, eg CILCACCS, for the search

 List getSearchTrials() - this method should return a list of SearchTrials

A search trial describes information about a particular invocation of a search. You need to describe the
inputs (the input fields and the search type), and then describe the expected output for that given input:

 Some expected rows, in the order expected

In order to properly test searches, the expected results is not required to contain every search result- if
new rows are added by some other process, they will not cause the test to fail. The search results,
however, must contain at least all of the expected results, in the relative order they are added.

 Possibly some prohibited rows, which the search should not find

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 53

In addition, there may be times when you want to guarantee that a certain row is definitely NOT found in
the search result. This can be accomplished by adding a prohibitedRow, in the same manner as expected
rows are added to the trial.

The search test FW will then use inputs from each search trial to execute the search, and compare the
expected and prohibited results to the actual search results. It expects to find the expected rows in the
order added, and should find all of them. Any different order or missing row results in a failure. What will
not result in a test failure is if new rows have been added interspersed throughout the expected rows.
These are fine. If a given search result row does not match the next expected result row, it is compared
against all of the prohibited rows. If it matches any of them, the test fails.

The search framework will also examine the information about the search, and ensure that each search
type (main, alternate, alternate2, ...) is executed at least once.

Here is a sample search test class:

package com.splwg.base.domain.batch.batchControl;

import com.splwg.base.api.lookup.SearchTypeLookup;

import com.splwg.base.api.testers.SearchTestCase;

import com.splwg.base.api.testers.SearchTestResult;

import com.splwg.base.api.testers.SearchTrial;

import java.util.ArrayList;

import java.util.List;

/**

 * @author bosorio

 * @version $Revision: #2 $

 */

public class BatchControlSearchService_Test

 extends SearchTestCase {

 //~ Methods --

 protected String getServiceName() {

 return "CILTBTCS";

 }

 /**

 * @see com.splwg.base.api.testers.SearchTestCase#getSearchTrials()

 */

 protected List getSearchTrials() {

 List list = new ArrayList();

 // Search using Main Criteria

 SearchTrial trial = new SearchTrial("Main search");

 trial.setSearchType(SearchTypeLookup.constants.MAIN);

 trial.addInput(BatchControlSearchService.INPUT_MAIN.BATCH_CD,

 "ADM");

 SearchTestResult expectedResult = trial.newExpectedResult();

 expectedResult.put(BatchControlSearchService.RESULT.BATCH_CD,

 "ADM");

 list.add(trial);

 // Search using Alternate Criteria

 trial = new SearchTrial("Search by description");

 trial.setSearchType(SearchTypeLookup.constants.ALTERNATE);

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 54

 trial.addInput(BatchControlSearchService.INPUT_ALT.DESCR,

 "AcCount D");

 expectedResult = trial.newExpectedResult();

 expectedResult.put(BatchControlSearchService.RESULT.BATCH_CD,

 "ADM");

 expectedResult.put(BatchControlSearchService.RESULT.DESCR,

 "Account debt monitor");

 list.add(trial);

 return list;

 }

}

Testing Maintenance Classes
There is a convenient test superclass for entity page maintenance,

com.splwg.base.api.testers.EntityPageServiceTestCase. This test class requires several methods

to be implemented to handle setting up the data and validating for each action (Add, Read, Change,
Delete).

In case your maintenance doesn't support add and delete, i.e. it's read and change only, then implement
this method:

 protected boolean isReadAndChangeOnly() {

 return true;

 }

The test framework will only exercise the read action.

Your maintenance test class must provide the name of the service being tested, eg:

 protected String getServiceName() {

 return "CILTBTCP";

 }

Contents
Testing Add on Maintenance Class
Testing Change on Maintenance Class
Testing Delete on Maintenance Class
Test default actions on Maintenance Class

Testing Add on Maintenance Class
First, in order to test an add, we need the data to add. This is provided in the method

protected PageBody getNewEntity(). Here is an example:

protected PageBody getNewEntity() {

 PageBody body = new PageBody();

 body.put(Maintenance.STRUCTURE.BATCH_CD, "ZZTEST2");

 body.put(Maintenance.STRUCTURE.PROGRAM_NAME, "ZZPROG");

 body.put(Maintenance.STRUCTURE.ACCUM_ALL_INST_SW, Boolean.FALSE);

 body.put(Maintenance.STRUCTURE.DESCR, "Test service");

 body.put(Maintenance.STRUCTURE.LAST_UPDATE_DTTM,

 LAST_UPDATE_TIMESTAMP);

 body.put(Maintenance.STRUCTURE.LAST_UPDATE_INST, BigInteger.ZERO);

 body.put(Maintenance.STRUCTURE.NEXT_BATCH_NBR, BigInteger.ZERO);

 ItemList itemList = body.newItemList

 (Maintenance.STRUCTURE.list_BCP.name);

 ListBody listBody = itemList.newListBody();

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 55

 listBody.put(Maintenance.STRUCTURE.list_BCP.BATCH_CD, "ZZTEST2");

 listBody.put(Maintenance.STRUCTURE.list_BCP.SEQ_NUM,

 BigInteger.valueOf(10));

 listBody.put(Maintenance.STRUCTURE.list_BCP.BATCH_PARM_NAME,

 "param1");

 listBody.put(Maintenance.STRUCTURE.list_BCP.BATCH_PARM_VAL, "val1");

 listBody.put(Maintenance.STRUCTURE.list_BCP.REQUIRED_SW,

 Boolean.FALSE);

 listBody.put(Maintenance.STRUCTURE.list_BCP.DESCR50, "Parameter 1");

 listBody.prepareToAdd();

 return body;

}

(This may look like an awful lot of typing, but any IDE like e.g. Eclipse that offers code-completion will
make this kind of code entry very quick).

If the maintenance performs some server-side "defaulting" (changing of the data), and the result after the
add differs from the data above, you will need to override

protected PageBody getNewReadEntity(PageBody original). This method gets the original data

from the method above, and allows manipulation to bring it to the expected form after a read from the
database.

In order to actually perform the read, the read header should be specified in
protected abstract PageHeader getReadHeader(). For example:

 protected PageHeader getReadHeader() {

 PageHeader header = new PageHeader();

 header.put(Maintenance.HEADER.BATCH_CD, "ZZTEST2");

 return header;

 }

Testing Change on Maintenance Class
Next, a new read is performed (using the same read header above), and you can perform a change to the
page body in the method:

protected PageBody changedPageBody(PageBody original).

Here is an example:

 protected PageBody changedPageBody(PageBody original) {

 original.put(Maintenance.STRUCTURE.ACCUM_ALL_INST_SW, Boolean.TRUE);

 ItemList list = original.getList("BCP");

 ListBody param = (ListBody) list.getList().get(0);

 param.put(Maintenance.STRUCTURE.list_BCP.DESCR50,

 "Changed parameter 1");

 param.prepareToChange();

 return original;

 }

A read is performed after the above changes are sent, and the results are compared.

Testing Delete on Maintenance Class
Finally, a delete is issued on the data, and it is verified that the entity no longer exists.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 56

Test default actions on Maintenance Class
In addition, all defaults that are registered for a page maintenance must also be tested. This should be
done through separate tester methods for each default, calling the FW support method

public PageBody executeDefault(PageBody pageBody, String defaultValue) :

 public void testDefaultChg() {

 PageBody input = new PageBody();

 // TODO populate inputs for default

 // e.g.

 input.put(Maintenance.STRUCTURE.FK, "FK CODE");

 PageBody output = executeDefault(input, Maintenance.DEFAULTS.CHG);

 // TODO compare the outputs

 // e.g.

 assertEquals("FK Description",

 output.get(Maintenance.STRUCTURE.FK_DESCR));

 }

Here is an example to test the default on a field under a list.

 public void testDefaultAlogrithm() {

 PageBody input = new PageBody();

 ItemList itemList = input.newItemList

 (Maintenance.STRUCTURE.list_MRRA.name);

 ListBody listBody = itemList.newListBody();

 listBody.put(Maintenance.STRUCTURE.list_MRRA.MRR_ACTN_ALG_CD,

 "MRRCRESVCCC");

 PageBody output = executeDefault(input, Maintenance.DEFAULTS.AAD);

 ItemList outList = output.getList

 (Maintenance.STRUCTURE.list_MRRA.name);

 ListBody body = (ListBody) outList.getList().get(0);

 assertEquals(body.get(Maintenance.STRUCTURE.list_MRRA.MRRA_DESCR),

 "Create Service Customer Contact");

 }

The input page body should be populated with the expected inputs for the default action, while the output
should be compared against the expected output.

Testing Entity Page Maintenance Classes
There is a convenient test superclass for entity page maintenance,

com.splwg.base.api.testers.EntityListPageTestCase.

This test class requires several methods to be implemented to handle setting up the data and validating
for each action (Add, Read, Change, Delete).

The maintenance test class must provide the name of the service being tested, eg:

 protected String getServiceName() {

 return "CILTBTCP";

 }

Contents
Testing Add on Entity Page Maintenance Class

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 57

Testing Change on Entity Page Maintenance Class
The Comparisons
Test default actions on Entity Page Maintenance Class

Testing Add on Entity Page Maintenance Class
First, in order to test an add, we need the data to add. This is provided in the method

protected void populateRowForAdd(ListBody row). Here is an example:

protected void populateRowForAdd(ListBody row) {

 row.put("DESCR50", "description");

 row.put("XAI_IN_SVC_ID", "$");

}

We also need to know the ID field, and an example ID, eg

 protected String getMainHeaderField() {

 return "NT_DWN_TYPE_CD";

 }

 protected StringId getTestId() {

 return new NotificationDownloadType_Id("FOO");

 }

Testing Change on Entity Page Maintenance Class
Also, a change is attempted, using the same keyed row given by the testId method above.

 protected void populateChangedRow(ListBody row) {

 row.put("DESCR50", "changed description");

 row.put("XAI_IN_SVC_ID", "#");

 }

The Comparisons
After the adds and changes above (also a delete is done), the state of the row is compared against the
new row. By default, the framework implementations should work fine, and you don't need to do anything.
However, in the rare case, you may need to override the following methods:

protected void compareAddedRow(ListBody originalListBody,

 ListBody newListBody)

protected void compareChangedRow(ListBody originalListBody,

 ListBody newListBody)

Test default actions on Entity Page Maintenance Class
In addition, all defaults that are registered for a page maintenance must also be tested. This should be
done through separate tester methods for each default, calling the FW support method

public PageBody executeDefault(PageBody pageBody, String defaultValue) :

 public void testDefaultChg() {

 PageBody input = new PageBody();

 // TODO populate inputs for default

 // e.g.

 input.put("FK", "FK CODE");

 PageBody output = executeDefault(input, "CHG");

 // TODO compare the outputs

 // e.g.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 58

 assertEquals("FK Description", output.get("FK_DESCR"));

 }

Another example for testing the default on the field which in on the list.

 public void testDefaultAlogrithm() {

 ItemList itemList = new ItemList();

 itemList.setName("MRRA");

 List list = new ArrayList();

 itemList.setList(list);

 ListBody listBody = new ListBody();

 listBody.put("MRR_ACTN_ALG_CD", "MRRCRESVCCC");

 list.add(listBody);

 PageBody input = new PageBody();

 input.addList(itemList);

 PageBody output = executeDefault(input, "AAD");

 ItemList outList = output.getList("MRRA");

 List outputList = outList.getList();

 ListBody body = (ListBody) outList.getList().get(0);

 assertEquals(body.get("MRRA_DESCR"),

 "Create Service Customer Contact");

 }

The input page body should be populated with the expected inputs for the default action, while the output
should be compared against the expected output.

Testing Business Entity Validation
To test our validation, a test class needs to be created. The one-off generation process has created one
for each of the existing entities in the system. The following is the one it created for the Characteristic
Type entity:

public class CharacteristicType_Test extends AbstractEntityTestCase {

 private static Logger logger =

LoggerFactory.getLogger(CharacteristicType_Test.class);

 /**

 * @see

com.splwg.base.api.testers.AbstractEntityTestCase#getChangeHandlerClass()

 */

 protected Class getChangeHandlerClass() {

 return CharacteristicType_CHandler.class;

 }

}

This is a JUnit test case. Let's run it. From within Eclipse, right-click on the test class from within the
Package Explorer.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 59

Below is the resulting output from JUnit:

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 60

As we see, the tests failed and told us that none of our three validation rules where validated. This is, of
course true, but some explanation is necessary. When we run entity test cases, the framework looks up
the change handler class being tested and collects all of its rules. Then it executes all the tests in the test
class (basically every method starting with "test*"). At the end of each test, it looks to see if the last rule
violated was one of the rules we are testing. At the end of all the tests, if there are still validation rules that
weren't violated, the framework complains. At a minimum, the goal from this point is to create tests that
violate each of our rules at least once. Preferably, tests should be created to violate the rules for all
additional conditions that we can think of that might compromize the state of the entity.

Let's start fixing our tests with the third rule above the "Foreign Key Reference is required for FK
Characteristic Values" rule. With a little head-scratching we determine that this is a "RequireRule" and we
replace it as shown below:

public static ValidationRule

 foreignKeyReferencesRequiredForFkCharValueRule(){

 return RequireRule...someFactoryMethod...(

 "CharacteristicType:Foreign Key Reference is required for FK

 Characteristic Values",

 "If the Characteristic Type Lookup is 'Foreign Key Value' then the

 Foreign Key Reference Cd is required",

 ... some fancy stuff

 fkReferencesRequiredForFKCharacteristicValueMessage);

}

Here's the test that was added to the test class to test it:

 /** Test foreignKeyReferencesRequiredForFkCharValueRule */

 public void testFKReferencesOnlyForFKCharacteristics() {

 // create a new characteristic type

 CharacteristicType charType = createNewTestObject();

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 61

 CharacteristicType_DTO charTypeDTO = charType.getDTO();

 // set the characteristic value to null for some other type

 charTypeDTO.setForeignKeyReference("");

 charTypeDTO.setCharacteristicType

 (CharacteristicTypeLookup.PREDEFINEDVALUE);

 // this should be OK

 charType.setDTO(charTypeDTO);

 // Now make it a FK characteristic. This should violated the rule

 charTypeDTO.setCharacteristicType

 (CharacteristicTypeLookup.FOREIGNKEYVALUE);

 try {

 charType.setDTO(charTypeDTO);

 fail("An error should have been thrown");

 } catch (ApplicationException e) {

 // Make sure the correct rule was violated.

 VerifyViolatedRule

 (CharacteristicType_CHandler.

 foreignKeyReferencesRequiredForFkCharValueRule());

 }

 }

Important note: Both a valid test AND an invalid test were added to the above method.

Finally, when the test is rerun, we have one less validation rule needing to be violated.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 62

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 63

Iterate Until Done

Test handleChange / handleAdd / etc code
Although there is no way to enforce testing of any coding in any of the methods

HandleRegisteredChange

 (BusinessEntity changedBusinessEntity,

 RegisteredChangeDetail changeDetail)

handleAdd(BusinessEntity newBusinessEntity)

handleChange(BusinessEntity changedEntity, DataTransferObject oldDTO)

It is still imperative that this code should also be exercised AND verified when testing the change handler.
Please ensure that every path through these methods is exercised and the results verified.

In general, there is a specific set of classes or functionality that is required to have explicitly defined tests.

 Every entity (and entity extension) class must have each of its validation rules explicitly tested. That
is, each rule should fail once, with an explicit acknowledgement of the failed rule expected.

 Every service must have a test.

 Searches must test each search type once.

 "Page" services must test their complete cycle that are available.

 Queries must test read

 Maintenances must test add/change/read/delete

 Every maintenance extension must have a test class

 Every algorithm implementation must have a test

Note. Currently, the above "must have" tests may still not completely cover all the cases. For example,

one search type may have several inputs, which trigger different code or queries to be executed. The

testing FW as is can not know this, so only requires a single test case for that search type. However, it is

strongly recommended that each specialized case possible be modeled with a test case, in order to

achieve complete code coverage.

Note. In addition, there is a desire to assure that each business component or business entity method

has been tested. Currently these tests are not required. However, after a complete build server run, any

business component methods or business entity methods that have not been explicitly tested will be

reported.

Testing for Warnings
In both maintenances and entity change handlers, there is the possibility of issuing a warning. This code
should be tested just as well as any other entity validation or default action.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 64

Contents
Maintenances
Entity tests

Maintenances
Here is complete valid example of verifying that a maintenance default action issues a proper warning.

 public void testDefaultDEFAULT_FOR_ZONE_HNDL() {

 PageBody input = new PageBody();

 input.put(ContentZoneMaintenance.STRUCTURE.ZONE_CD, "CI_AFH");

 // test the default and expect to get a warning

 try {

 executeDefault(input, "ZH");

 fail("Should have a warning");

 } catch (ApplicationWarning e) {

 verifyWarningContains(e,

 MessageRepository.deleteZoneParametersWarning());

 }

 disableWarnings();

 // test the default and do not expect to get a warning or error

 PageBody output = executeDefault(input, "ZH");

 assertEquals(Boolean.TRUE, output.get("DELETE_SW"));

 }

Note. By default, warnings are enabled, thus nothing special need be done. But you should put the

normal try/catch block around the default execution, and catch an application warning. Once inside the

catch block, you should verify that the warning(s) is/are valid expected ones. (This comparison is only

done via the message category and message number. Thus, if there are parameters to the message

construction, it matters not their values, since it may be difficult to get the values.) Then, you should retry

the default with warnings disabled, and ensure that you get the behavior otherwise expected.

Entity tests
There was no current use of warnings in entity tests that I could easily "improve", so for now I use a
slightly contrived example. (This is slightly contrived, because Installation is a special record, and the
change below is not actually allowed in the application do to some records on the Adjustment Type table,
and a valdiation on Installation.)

 public void testChangeBillSegmentFreeze() {

 Installation installation = getValidTestObject();

 Installation_DTO instDto = (Installation_DTO) installation.getDTO();

 instDto.setBillSegmentFreezeOption

 (BillSegmentFreezeOptionLookup.FREEZE_AT_WILL);

 installation.setDTO(instDto);

 instDto.setBillSegmentFreezeOption

 (BillSegmentFreezeOptionLookup.FREEZE_AT_BILL_COMPLETION);

 installation.setDTO(instDto);

 verifyWarningsContain

 (MessageRepository.changeBillSegmentFreezeWarning());

 }

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 65

Again, by default warnings are enabled, so nothing need be stated at the outset. Additionally, the
conversion of warnings to an exception occurs at a later point, so there is no ApplicationWarning to catch.
Instead, after the offending statement (in this case the setDTO method) you should just verify that the
current warnings contain the specified message.

Technical Background

Contents
Logical Architecture
SPL Services
SPL Service XML Metainfo Files
Server Architecture Overview
Client Architecture Overview
SPL Client API

Logical Architecture

Database Connectivity

(multi-protocol)

ORACLE, DB2,

UDB or SQL Server

HTTP

WebLogic

WebSphere

Tomcat

Oracle AS

Web Browser

User Interface

with AJAX

Java, Cobol

XML

Application

Integration

Tool
Page Server

Business

Logic (core)

Server

Hibernate

Database

Server

XAI

MPL

Custom

Plug-ins

Cache

Logical Architecture of the SPL System

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 66

Information is presented in a web browser (Internet Explorer 6.0) using HTML and JavaScript (not Java,
i.e. no applets). The browser communicates with a Web Application Server via HTTP. The Web
Application Server is divided into several logical tiers: presentation services, business logic, and data
access. Inbound HTTP requests are handled by Java Servlets in the presentation layer, which may in
turn invoke data service objects. In turns, these objects may route control to Java-based business
entities, which use the Hibernate ORM framework for data access and persistence. Various static data
(control tables for drop-downs, language-specific messages/labels, etc.) are cached in the presentation
layer of the Web Application Server. The presentation layer makes use of XSL/T technology to create
HTML for the browser.

As the browser may need several “pages” to show all the information relating to a particular business
entity, a JavaScript “model” is used to manage the data in toto, and the Internet Explorer XMLHTTP
object is used to send the data to the server as an XML document. Data is provided to the browser as
literal JavaScript. The specialized portal and dashboard areas use server-side XSL/T technology to
render the final HTML directly on the server. The HTML for grids in the browser is created using client-
side MSXML XSL/T transforms.

This kind of architecture has been described by the term “AJAX”, meaning Asynchronous Javascript and
XML.

Key Advantages

Contents
Portability
Distribution

Portability
The system is highly portable to various hardware platforms, as web application servers are pure Java
applications and run on myriad operating systems, including Windows clients, servers, and many versions
of UNIX.

In principle, any compliant Java 2 Enterprise Edition container can host the application.

Distribution
The various logical components can be distributed to as many machines as desired. In particular, the
web application server architecture is stateless, so many parallel server machines can be utilized given
an appropriate load-balancing architecture.

SPL Services
The SPL system makes heavy use of “services”, which are data access and update services ultimately
implemented in Java, accessing Oracle or DB/2. Each service invocation represents a distinct database
transaction.

There are three kinds of services: Page, List, and Search.

A Page service defines all the data needed to display data on a single tab menu (e.g. across all child tab
pages). The data structure is logically a tree, with a root object containing attributes as field/value pairs,
and recursively containing lists of similarly structured objects. The typical maximum nesting depth is 4
levels of contained lists. Page service names end with the letter “P”, e.g. CILCACCP. Page services may
be called in five primary “modes”: Read, Change, Add, Copy, Delete, and Default.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 67

List services define a list of objects, possibly containing nested lists. In addition to being accessible
independently for list-oriented data, they can be used to flesh out lists contained in page services where
more data is available than can fit in the (fixed-size) buffer. List services do not support database
updates.

Search services are used to support ad-hoc user searches for data. The results are structurally similar to
List services. The input is a set of criteria and a search mode, with values “MN”, “AL”, “A2”, A3”, etc.

Service requests can return a normal result, or create an error or warning. A warning displays a message
with a list of warning lines, and offers the choice of proceeding (which triggers the same call with a flag
set to suppress warnings), or cancel. Errors create descriptive messages. Search and List services can
only create errors, not warnings, while all Page services except Copy can create warnings and errors.

SPL Service XML Metainfo Files
The SPL system represents the structure of a service using an XML document (loosely akin to an XML
schema). Every service is defined with a single XML document, which is generated based on the Java
class information.

Service XML documents are created by using annotation-based metainformation combined with system
metadata (stored in the database).

Contents
Example using Page Service
Example Using Search Service

Example using Page Service
The following excerpt of the CIPBSTMP.xml file will motivate the discussion.

<?xml version="1.0"?>

<!-- Service CIPBSTMP -->

<page service="CILBSTMP">

The root element of the document has the tag “page” to reflect that this is a page service, and describes
the service name as an attribute.

 <pageHeader>

 <string name="STM_ID" size="12"/>

 </pageHeader>

The <page> element contains exactly one <pageHeader> and one <pageBody>. The <pageHeader>
contains any number of “singleton” fields. This one is a string field named “STM_ID” in the browser, and
with the same name in the original Java source. The field contains up to 12 characters (this is the
“business rule” length, not physical storage).

Other types of singleton fields include <bigInteger>, <bigDecimal>, <money>, <date>, <time>,
<dateTime>, and <boolean>.

The number-related fields (<bigInteger>, <bigDecimal>, and <money>) have a “precision” attribute, which
describes the maximum number of digits that can be represented. Further, <bigDecimal> and <money>
include the “scale” attribute, describing the number of decimal digits appearing after the decimal point.
Thus, an element like this <bigDecimal precision=”4” scale=”2”/> can represent numbers in the range
+/-99.99.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 68

Continuing with the page service example, we have this section:

<pageBody>

 <row actionFlag="ROW_ACTION_FLG">

 <string name="BATCH_CD"

 size="8"/>

 <bigInteger name="BATCH_NBR"

 precision="10"/>

The <pageBody> element contains <row> elements, singleton fields, and <list> elements, in any order.
Here we have another <string> field, as well as a <bigInteger> (an integer value with no decimal fraction),
this one holding (up to) 10 digits. This means numbers in the range +/-9,999,999,999 can be
represented.

The <row> element reflect the java entity (row). In terms of the infoset and browser the fields in the
<row> element are effectively merged into the containing <pageBody>, along with fields from any sibling
<row> elements.

The “actionFlag” attribute names the field that contains a flag that determines the server action that
should occur against the row.

 <string name="STM_CNST_ID"

 size="10"/>

 <date name="STM_DT" />

 <string name="STM_ID"

 size="12"

 isPK="true"/>

 <string name="STM_STAT_FLG"

 size="2"/>

 <bigInteger name="VERSION"

 precision="5"/>

 </row>

The “isPK” attribute marks fields that are part of the logical prime key of the “main” object/table for this
page service.

We then see a <list> element:

 <list name="STM_DTL" size="30" service="CILBSTDL" userGetMore="false">

The <list> element describes an elaborately structured array of objects. The element contains exactly
one <listHeader> and <listBody>. Every list within a service buffer has a unique name attribute. The
number of possible list body objects is given by the “size” attribute. In the event a list service exists
independently for the list, it is named by the “service” attribute. Finally the “userGetMore” attribute
switches the system into one of two modes:

 userGetMore=”false” means the system does not require the consent of the user in order to fetch
more elements, in the event that the physical list buffer is filled to capacity with more elements
available in the database. The system will autonomously call the corresponding list service (if it
exists) in order to fetch the missing elements. In this way clients making one logical page service
call may result in one physical page and several list service invocations.

 userGetMore=”true” means the system requires the affirmative consent of the user (e.g. via a “get
more” button in the browser) to continue fetching available data. The list buffer is truncated.

<listHeader lastIndex="STM_DTL_COLL_CNT"

 actionFlag="LIST_ACTION_FLG"

 moreRows="MORE_ROWS_SW"

 alertRowIndex="ALERT_ROW">

 <string name="STM_ID"

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 69

 size="12"/>

 <string name="LAST_STM_DTL_ID"

 size="12"/>

</listHeader>

The <listHeader> element has a “lastIndex” attribute giving the field name that holds the number of
elements actually returned, an “actionFlag” describing the operation to be performed on the list (e.g.
change, delete), the “moreRows” attribute naming the field that holds the boolean that indicates whether
more data remains un-retrieved in the database for the current list, and the “alertRowIndex” attribute,
naming the field that holds an index into the list to describe the location of a validation error, used to
select the correct item in a browser when presenting the error to the user.

In addition, a <listHeader> can contain any number of singleton fields. These are typically keys
describing how to access this list, and logical “cursor” fields describing how to continue fetching more
items.

 <listBody>

 <row actionFlag="ROW_ACTION_FLG2">

 <bigInteger name="VERSION"

 precision="5"/>

 <string name="STM_DTL_ID"

 size="12"

 isPK="true"/>

 <string name="STM_CNST_DTL_ID"

 size="10"/>

 <string name="STM_ID"

 size="12"/>

 </row>

 <string name="STM_CNST_DTL_DESCR"

 size="50"/>

 </listBody>

</list>

This finishes the <list> element. Some more singleton elements appear before finishing the <pageBody>
and <page>:

 <string name="STM_CNST_DESCR"

 size="50"/>

 <boolean name="ACTION_GENERATE_SW" />

 </pageBody>

</page>

Example Using Search Service
List service XML files essentially contain a <list> element as the document root, and will not be described
further. Search service XML files are very similar to those for page services. Here is an example
illustrating the differences:

<?xml version="1.0"?>

<!-- XML Java/Tuxedo mapping CIPCACCS

 Automatically generated by makeXMLMap Sat Nov 10 09:08:30 2001

 Source copybooks: CICCACCS CICCACCH -->

<search name="ACCT"

 service="CILCACCS"

 size="300">

 <searchHeader lastIndex="ACCT_COLL_CNT"

 actionFlag="SRCH_ACTION_FLG"

 searchByFlag="SEARCH_BY_FLG">

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 70

The <search> element is the root of the document, and contains a <searchHeader> and <listBody>. The
<search> element is similar to the <list> element described above, and includes name, service, and size
attributes. The <searchHeader> includes the “lastIndex” attribute, which gives the name of the field
holding the number of returned elements, “actionFlag” which names the field containing the search action
flag, and “searchByFlag” which names the field holding the search “mode”. The <searchHeader> further
contains singleton fields describing search criteria. These are adorned with extra attributes describing
whether they are distinguished criteria that should always be populated from the search client (optional,
defaults to “false”), and a criteria group designation.

 <string name="ACCT_ID"

 size="10"

 isCriteriaExtract="true"

 criteriaGroup="MN"/>

 <string name="ENTITY_NAME"

 size="50"

 criteriaGroup="AL"/>

 </searchHeader>

The <listBody> was described previously, and describes the structure of the elements matching the
search criteria. In addition, the “isReturn” attribute describes fields that should be returned as the result
data when a particular result row is selected (optional, defaults to “false”).

 <listBody>

 <row actionFlag="ROW_ACTION_FLG">

 <string name="ACCT_ID"

 size="10"

 isReturn="true"/>

 <string name="ENTITY_NAME"

 size="50"/>

 <string name="ACCT_REL_DESCR"

 size="50"/>

 <string name="NAME_TYPE_FLG"

 size="4"/>

 </row>

 </listBody>

</search>

Server Architecture Overview
The Java server is logically divided into several distinct layers, with different responsibilities. Form the
point of view of a request from the browser, there are a handful of general-purpose data-centric servlets
that can handle any service requests. These servlets handle HTTP requests and transform them into
data objects and commands for further processing. Once an appropriate service is identified for handling
a request, its metainfo is used to build a rich Java data structure from the (string-based) browser data
representation. This data, in turn, forms the input to a Java service class.

In our terminology, a page service is a self-contained piece of server functionality that principally acts
upon a particular “root” Java entity object (and table) and its child entities (tables). The framework
automates the process of mapping data to and from these entities by making use of the service XML
metainfo. These Java objects are also known as domain objects. These objects are made persistent via
Hibernate, which offers the simpler HQL query language as an alternative to “raw” SQL. In the simplest
cases, no human-written imperative code need be written to implement a page service.

For updates, validation is handled via both automatic logic determined by database metadata, including
application-level referential integrity checking, and hand-coded validations implemented by change-
handler classes.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 71

For presentation-level requests (e.g. HTML constructs) the server uses XSL/T to create HTML from our
UI metadata structure. Since UI layouts are fairly static the web presentation layer uses caching to help
optimize performance.

The development process is geared to keeping generated and human-maintained artifacts completely
separate. For instance, we generate superclasses that contain generated code that is e.g. required by
Hibernate or the service framework, and programmers will implement subclasses that implement methods
for unusual or extra behavior.

The artifact generation is driven principally by parsing special markup in Java sources known as
annotations, combined with metadata held in the database (principally relating to tables, fields, and
constraints). On a modern machine (eg. 3 GHz P-4) artifact generation for the entire system takes only a
few minutes.

Client Architecture Overview

Contents
Introduction
Client Architecture Discussion

Introduction
The SPL browser client uses many novel mechanisms in order to support the system design goals of high
system performance, including low latency and high throughput. The core design principle is that the
system is stateless, meaning only the browser client itself is aware of the session state, that is the
application’s context--what data is being viewed/modified and all other information related to a user more
typically associated with session state on the server. This document discusses the important design
points that implement a stateless architecture.

Client Architecture Discussion
The web browser client communicates with the Web Application Server via HTTP, and receives two kinds
of dynamic content:

 Views – HTML entities that describe how things look

 Model – Pure data in a convenient representation

The views are served as HTML that contain labels and HTML <SELECT> elements (drop-downs) that are
localized to the user’s language. Since drop-downs are fairly static, the view objects are cached on the
browser via the HTTP 1.1 Cache-Control directive in order to avoid repeatedly accessing the Web
Application Server for the same content.

The web server creates HTML using XSL/T technology. The technique is as follows: the original
metadata that defines HTML documents is copied from the database into XML files residing in the server.
These files are shipped as part of a SPL system deployment. At runtime the server converts these UI
metadata documents into HTML in two steps. First, the logical structure is converted into a nearly-final
HTML structure, lacking only language-specific information (labels and <select> lists), via XSL/T, using
one of a handful of standard XSL/T template files. The result object is then transformed again, in order to
inject language-specfic elements, creating the final HTML.

As a special case, for performance reasons the HTML for grids (lists and search windows) is created
using client-side XSL/T (MSXML).

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 72

Data is provided via servlets, of which there are only a few. The data is represented as literal JavaScript,
which happens to be very convenient to handle by the browser (since it includes a native JavaScript
parser). The model takes the form of a “tree” of JavaScript object nodes and values, with a distinguished
root node. The model is converted into an XML document string when submitted to the server, using the
HTTP POST method. This is convenient for the Web Application Server because it is equipped with
powerful Java-based XML parsers.

Here is a table of servlets, and a brief description of each:

Servlet Name HTTP Method Usage

loginInfo GET Provides useful global data at
login, retained for life of
session, such as a map of all
system URLs and a definition of
menu structures.

pageRead GET Returns a data model object
given one or more key/value
pairs.

pageChange POST Accepts a data model
representing modifications that
should take place against an
existing database entity, returns
modified model.

pageAdd POST Accepts a data model
representing a new entity that
should be inserted into the
database, returns new model.

pageDefault POST Accepts a data model
describing a triggered “default”
operation, returns a model
object containing default values.

pageDelete POST Accepts a data model
representing a database entity
to be deleted, returns nothing.

pageCopy POST Accepts a data model
representing a model that
should be duplicated, returns
the duplicate.

listRead GET Accepts key/value pairs
describing a list of database
entities, returns said list.

Search GET Accepts key/value pairs
containing search criteria,
returns list of objects satisfying
said criteria.

StringSort POST Allows locale-sensitive sorting
of strings. Used for sorting
strings in grids when user clicks

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 73

on the column header.

It is important to remember that the servlets deal with “pure” model data, and have no visible
representation. Since actual business logic and database access resides in the app server, the servlets
take the role of dispatchers and most servlets accept a “service” parameter describing which app server
back-end service to invoke.

The model data is combined with the view on the browser client whenever the model changes or the view
needs to be refreshed. This is done by a name-matching scheme where every HTML element that shows
a model value has a name that “picks out” a corresponding value from the current model. All such HTML
fields must include the string “data” in their HTML class.

The simplest case is showing a value from the “root” object, in which case the field name, also referred to
as the “JS name” simply matches the model’s attribute name.

There is more complexity in the case of lists—every list in the model has a unique name, regardless of
nesting depth, so a JS name that combines the list name with the property name suffices to uniquely
identify a section of the model.

There are two sub cases of displaying properties of lists. The first is where the desired index into the list
is known (e.g. grids). In this case, the JS name combines the list name, index, and property name as
follows: <LIST_NAME>:POSITION$ELEMENT_PROPERTY, e.g. ACCTS:3$ACCT_ID. Note indexes are
always 0-based in the browser (in accordance with JavaScript arrays). This example refers to the fourth
element of the ACCTS list, and retrieves the ACCT_ID.

The other case is where the desired index is inferred as the “current” index (i.e. scrolls). Every list in the
model keeps track of its current position index, which is used when no external index is provided. Hence
the JS name ACCTS$ACCT_ID refers to the ACCT_ID property of the currently selected/visible element
(presumably in a scroll) of the ACCTS list.

In the rare case that header fields should be displayed, they can be accessed using the JS name pattern
LIST_NAME#HEADER_PROPERTY.

Generally, whenever a value is changed in an HTML element or focus is moved after making a change,
the system attempts to “commit” the change back to the model. This involves several steps:

1. Validating the input for syntax, possibly according to the current locale (e.g. dates)

2. Identifying the relevant model node to receive the change

3. Updating the node

4. Marking the node dirty

The last step is important because we wish to know whether the user has made any changes to the
model.

Saving changes to the server generally involves the following steps:

1. Identifying the servlet to be invoked (e.g. pageChange vs. pageAdd) depending on whether the
model represents a new or already persistent entity.

2. Converting the model tree into a literal XML string representation.

3. Submitting the XML string to the Web Application Server via the appropriate servlet using the
POST method, including a parameter describing the service. This is accomplished via the
Internet Explorer XMLHTTP ActiveX object, using a synchronous calling mechanism.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 74

4. The servlet, constituting a core piece of the Web Application Server “web presentation” layer,
retrieves the service parameter, obtains the XML-based metainfo describing the service, and
converts the XML request string into a Java object tree, ready to be passed to the “data service”
layer.

5. The data service layer converts the Java object tree into a Jolt data buffer.

6. The relevant app service is invoked passing in the data buffer.

7. The result buffer is converted into a Java object tree.

8. The Java object tree is converted into a literal JavaScript representation (as needed) and
transmitted to the browser.

9. The returned data (literal JavaScript) is mapped into a new live JavaScript object model.

10. The user interface is refreshed with the new data.

The portal screens make use of XML and XSL/T technology to create HTML. The dashboard relies on a
current application “global context” to drive it. Each distinct zone within the portal is created by a Java
object known as a zone handler. The handler is responsible for acquiring data and rendering the
displayed HTML. Handlers implement the interface com.splwg.base.web.portal.IportalZoneHandler. The
usual handler is com.splwg.base.web.portal.XSLZoneHandler. This handler requires two parameters, a
page service and an XSL stylesheet. It executes the page service in read mode, converts the resulting
Java data structure into an XML document, and executes an XSL/T transform with the stylesheet to
create the final HTML. The portal framework takes care of common features such as zone
expand/collapse. XML stylesheets are kept in DefaultWebApp/WEB-INF/xsl, and the include.xsl file acts
as a common library of XSL templates to provide standard behavior.

User portal preferences are obtained by the server at login and stored on the browser as XML documents
represented as JavaScript strings. These preferences are sent to the web server when displaying a
portal.

SPL Client API

Contents
Overview
Client API Discussion

Overview
The SPL system offers a large number of useful JavaScript functions in the client (browser). These allow
manipulation of widgets, data, and triggering requests to the Web Application Server to view another
page and/or object.

This document discusses functions that developers of user exit functions may wish to use.

Client API Discussion

Contents
JavaScript Invocation Context
Data Representation and Localization
Core JavaScript Classes
Free Functions

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 75

JavaScript Invocation Context
To use client-side JavaScript functions effectively you have to understand the way JavaScript partitions
the client window into independent object spaces (via iframes), and the way common JavaScript
framework code is made available to those spaces.

While this may be old hat for experienced browser-side JavaScript programmers, it is important to
remember that every window or iframe contains an independent object space, with a separate space of
global variables and objects. Adding, modifying, or deleting objects (or classes) in one iframe has no
effect on any objects in other iframes. However, it is possible to refer to objects that “live” in a different
iframe with variables in a different iframe. This is somewhat dangerous; if the iframe that instantiated the
object (where its prototype lives) goes away (by being closed, or having its href modified) the object may
no longer be able to carry out any operations. However, “value” objects such as strings or numbers may
safely be shared across frames, even if the creating frame closes.

An iframe can have JavaScript code defined directly into its HTML page, or it can include JavaScript code
that exists in a separate file. The latter technique allows the creation of standard “library” code that is
available to many iframes, without the network or development overhead of copying the same functions
into hundreds/thousands of files.

The subtle point to remember in the foregoing is that even though the same JavaScript file may be
included in different iframes, each definition is completely independent of every other. If the included
JavaScript defines a global, then every iframe gets its own separate global variable binding.

Since there are some commonly used objects, most iframes define and initialize global variables to
reference these objects. The “main” object usually refers to the main iframe, containing cisMain.jsp. This
iframe is never reloaded during a client session, and holds the central model object. The model itself is
usually available as the “model” global in most iframes.

Data Representation and Localization
The browser handles localization. The client browser object model is logically divided into a display
(“view”) and data (“model”) layer. The responsibility for localizing the data values to the user’s locale
rests with the display layer, not the model layer. All code that retrieves model values and prepares them
for display makes use of formatting code, for instance to display dates in the user’s preferred fashion.
Similarly, all user input is parsed in the context of the current locale to convert the data into the internal
format that is stored in the model (and passed to Servlete Container/Java/database).

The internal format for model properties is to use strings (not JavaScript numbers or dates) for everything
except boolean values.

The functions that are responsible for converting model data values into localized displayable ones are
named convertInternalXYZToLocal(internalValue), while the reverse conversions are named
convertLocalXYZToInternal(localValue). Note that latter can fail and include extensive validation,
possibly triggering error message alerts.

Core JavaScript Classes
These classes are defined in cis.js, which is included by the main frame.

Contents
CisModel
DataElement
List

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 76

CisModel

The CisModel class plays two roles. The first role is to provide the metadata that describes the currently
loaded model instance. The methods that serve this role are static methods, i.e., defined directly on the
CisModel prototype object. These methods are accessible using the syntax CisModel.function(params),
assuming you are in the main frame. If not, use main.CisModel.function(params). Instance methods and
variables are, of course, accessible through any instance of CisModel, e.g. model.pageData or
model.getValue(‘ACCT_ID’).

Contents
Data representation
Navigation
CisModel Instance Variables
Static methods
CisModel Instance Methods

Data representation

The data stored in instances of CisModel uses an internal system representation, not a localized
representation. This means code that manipulates the model is unaware of the user’s locale and display
preferences. For instance, date values are always stored using the ISO 8601 string representation
YYYY-MM-DD, and numbers are always stored as strings, not JavaScript numbers (because the required
precision may exceed that of JavaScript’s native number type).

The data takes the form of a tree of data nodes of two classes, DataElement (the singleton node class
holding data attributes as JavaScript properties), and List, which manages an array of DataElement
instances. Every list has a unique name property, regardless of its position in the tree (i.e. independent of
nesting depth), making it possible to uniquely identify and retrieve any list by its name. The DataElement
instances each keep a “dirty” flag to mark whether the user modified any properties, representing work
that needs to be persisted to the database.

Every element instance is always in one of three logical states:

 Persistent

 New/Dirty

 New/Clean (i.e. a “phantom”)

Phantom elements are used to populate otherwise empty lists, to give a starting point in which to enter
data. Unlike other new objects, phantoms are initially clean so they don’t participate in persistence
operations until explicitly modified.

Many CisModel methods act as starting points for recursive implementation through the data tree, and
methods with the same or similar names are available on the DataElement class.

Navigation

Many methods accept list names as arguments in order to operate a unique list instance within the model
data tree. Since it is possible for lists to be nested inside other lists, the system assumes the intended list
is the one identified by the “current” list positions in the ancestor branch.

CisModel Instance Variables

 pageData

Used to access the root data node (e.g. model.pageData), an instance of the DataElement class.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 77

Static methods

 parseNames(fieldName)

This function accepts a string containing a JS field name (the id of an HTML element) and cracks it into its
constituent components—the list name, index, and property. The result is an object with three attributes,
property and listName (which are null if missing), and position, which is actually a function that takes the
current list position as an integer argument. The reason for this is to allow the calculation of the current
position (no index) and a fixed index. If the list fragment is missing the listName and position are both
null.

CisModel Instance Methods

The most commonly accessed instance of CisModel is the central model containing the data for the
current page, typically available through the “main” global variable in most frames. (Recall again that all
such globals refer to the same object; hence changes made with code running in one iframe are visible
from any other iframe.)

 getValue(fieldName)

This accessor method returns the data value corresponding to the provided fieldName. The field name
string will be cracked into constituent pieces using the static parseNames() method, in order to identify
the instance of DataElement within the data “tree” that contains the desired property, and then to retrieve
the property.

 getOriginalValue(fieldName)

If a model property has been modified, but the change has not yet been committed (i.e. with the Save
button), the system tracks the originally retrieved value of the property. This accessor method can be
used to retrieve the original value. Useful for implementing certain business rules having to do with
logical state transitions.

 canSetValue(fieldName, value)

This method answers a boolean indicating whether the model is capable of accepting the given value for
the provided fieldName. The method would answer false if buffer capacity limits would be exceeded were
the change to be accepted.

 setValue(fieldName, value)

This setter modifies the property identified by fieldName to hold the given value. Defaulting will not be
triggered.

 setLocalValueWithDefault(fieldName, localValue)

Sets the property identified by the given fieldName to the specified localValue. This method does not
handle conversion errors, so the provided localValue should have already passed syntactic validation.

 setValueWithDefault(clientWindow, fieldName, value, element, afterFieldUpdateFunction,
continuation, forceDefault, skipDefault, successFunction)

Sets the property identified by the given fieldName to the specified value. This method may trigger a
default, and therefore requires further parameters:

 clientWindow - the window object containing the element triggering the default.

 element - the HTML element that is attempting to accept the value.

 afterFieldUpdateFunction - a thread-safe continuation to be run after the value has been changed

 continuation - a function to be run whether or not the value can be accepted (may be null)

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 78

 forceDefault - an optional boolean that forces the default checking code to run, bypassing a
shortcut execution path (presumeably to obtain a desired side-effect from defaulting)

 skipDefault - an optional boolean that bypasses the default triggering logic

 successFunction – continuation to execute if the value is accepted by the default logic

Note this function is not ”thread-safe”, in the sense that it cannot be safely called e.g. in a loop that may
issue several calls to this function. The workaround is to make use of the continuation function to
“schedule” the follow-up operation.

 setListPosition(listName, newPosition)

Sets the list identified by the given listName to the position (a zero-based integer value) given by
newPosition. Useful when you want to display a particular element in a scroll.

 getList(listName)

Answers the list object (instance of List) with the given name.

 replaceWithNewList(listName, sourceModel)

Typically called from the default handler callback, this method replaces the entire contents of the given list
in the receiver (i.e. the model whose method is being called) with the list as provided in sourceModel. All
elements in the list are considered new, and are eligible to be added to the database when the Save
button is used.

 hasRealElements(listName)

Answer a boolean indicating whether the indicated list contains any persistent or dirty elements (not
merely a single phantom).

 getElement(fieldName)

Returns the data element (instance of DataElement) corresponding to the given field name. The method
resolves the list name and position index, if any, in order to navigate to the appropriate data element.

 markAsNew()

Mark the model “clean” by recursively clearing all dirty flags throughout the tree structure. Note this is a
very “sensitive” method and should only rarely be needed.

DataElement

Instances of DataElement play the role of the nodes in the data model tree. They have properties
corresponding to business attributes, and also define the tree structure by holding references to their
parent data element and list(s) of children elements. The distinguished root DataElement instance in the
core model instance is accessed using with the “pageData” property.

Contents
DataElement Instance Variables
DataElement Instance Methods

DataElement Instance Variables

 _isDirty

This boolean flag indicates whether the business attributes (stored as JavaScript object properties) have
been modified since the DataElement was created (either using persistent database attributes or as a
new object that will be added later). This attribute should not be modified directly.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 79

 _originalIndex

An integer representing the position of this DataElement in its containing list when it was first retrieved
from the server. For non-persistent data elements this value is –1.

DataElement Instance Methods

 set(property, value)

Set the given property to the given value. This apparently simple method can trigger a variety of side
effects, including intelligently converting key attributes to uppercase (which is the default unless turned off
with the tabMenu.shouldNotAutoUppercase property). The method returns a boolean indicating whether
the setter succeeded; reasons for failure include if the existing value is identical to the current value (this
is needed to avoid needlessly marking the data element dirty), and if the mutation capacity would be
exceeded.

Further, if the modified attribute represents a key value, the change is propagated recursively through all
child data elements by matching the attribute names.

In addition, the original, unmodified, property value is retained for future reference, and can be accessed
using the originalValue function.

 originalValue(property)

Returns the original, unmodified value for the given property name. This is useful for user exit code
implementing business rules that depend not only on the new attribute value but also the original value.

 isNew()

Answers a boolean indicating whether this DataElement instance is new, i.e. created by the user.
Persistent instances answer false. The method uses the _originalIndex attribute to decide.

 isPersistent()

The logical opposite of isNew(); answers true only for persistent data elements. Useful for avoiding
excessive use of logical not (!) operators, thus clarifying the intentions of the code.

 isDirty()

Answers a boolean indicating whether the message receiver data element or any descendant child data
element is marked with the _isDirty flag.

 list(listName)

Answers the list (instance of List) corresponding to the given list name.

 clearDirtyFlag()

Set the receiver’s _isDirty flag to false. Potentially dangerous because it subverts the systems automatic
dirty tracking system.

 canBecomeDirty(property, value)

Answers a boolean indicating whether the receiver can accept the given value for the given property. The
method answers false for various reasons, including if the proposed value matches the previous vaule,
the receiver is not dirty and its parent list may not become dirty, and the property is not known to the
metadata.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 80

List

Instances of List represent a collection of DataElement instances, held by a parent DataElement. Every
List is held by a DataElement, but the pageData “root” node has no parent list (it’s held directly by the
model).

Contents
List Instance Variables
List Instance Methods

List Instance Variables

 parentElement

The instance of DataElement that contains this list.

 name

The name of the list.

 position

The integer index (0-based) of the “current” element.

 header

The JavaScript object representing the list header. This is rarely accessed.

 elements

A JavaScript array containing the current list of elements (instances of DataElement).

List Instance Methods

 size()

Answers the number of elements held by the receiver. Does not include elements scheduled for deletion.

 currentElement()

Answer the DataElement instance from the elements collection referred to by the currentPosition instance
variable.

 isDirty()

Answer a boolean indicating whether any element is dirty. The test is recursive, and answers true if any
descendant has the _isDirty flag set.

 markElementsAsNew()

This convenience method marks all elements in the collection as new, setting the _isDirty flag to true and
setting the originalIndex to –1 for every DataElement. The method acts recursively on all descendant lists
and elements.

 realSize()

Answers the number of elements, disregarding any phantom element.

 hasRealElements()

Answers true if the list contains at least one non-phantom element.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 81

Free Functions

Contents
top.js
cis.js

top.js

This is the set of “free” functions available in top.js, which is included by cis.jsp. You typically access
these functions using the top.xyz() syntax, assuming your code is running in an iframe nested under
cis.jsp.

The trend has been to de-emphasize the use of functions at this level, and migrate them to the main level.
In the future we plan to eliminate the distinction between the top and main frames.

 getNavigationKeyForService(service)

Answers the navigation key corresponding to the given service (string). Since there may be several nav
keys for the same service, the last one is answered. You always get the correct response for tab menus.

 getURL(navigationKey, withoutLanguage)

Answer the URL (string) corresponding to the given navigation key (also a string). If the withoutLanguage
boolean is false, the user’s language code is appended to the URL as a GET parameter.

 getFieldLevelSecurityInfo(navigationKeyOrService)

Answer the field-level security meta-data for the tab menu given by the navigation key or service. The
result takes the form of a simple JavaScript object, with security types as properties, and values as arrays
of all related authentication levels. For example, assume that adjustment maintenance has field-level
security defined for a user for security type “ADJAMT”, with two associated authentication levels, “1”, and
“3”. To retrieve the object defining all field-level security info for the service:

var info = top.getFieldLevelSecurityInfo(‘adjustmentMaint’)

or

var info = top.getFieldLevelSecurityInfo(‘CILAADUP’)

(Note the literal JavaScript representation of the result object would be {ADJAMT: [‘1’, ‘3’]})

To determine the array of authentication levels associated with this service and security type in one step:

 var authenticationLevels = top.getFieldLevelSecurityInfo(‘adjustmentMaint’)[‘ADJAMT’]

or

 var authenticationLevels = top.getFieldLevelSecurityInfo(‘CILAADUP’)[‘ADJAMT’]

 getMain()

This heavily used function returns a reference to the window constituting the “main” iframe, containining
cisMain.jsp and the core model. The typical usage is top.getMain(), but many iframes define a global
variable “main” for convenience.

 tabMenu()

This function returns a reference to the current tabMenu iframe window. The typical usage is
top.tabMenu(). Many iframes define a global variable “topMenu” for convenience.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 82

 tabPage()

This function returns a reference to the current tabPage iframe window. The typical usage is
top.tabPage(). Many iframes define a global variable “topPage” for convenience.

 model()

This convenience accessor method returns a reference to the core model held in the “main” frame.

 openPage(navigationKey, tabName, keys, extraPageState, keepMemento, forceOpen)

This is a convenience function for the same function defined in cis.js. See the description there for a
fuller description.

 getUser()

Returns the user id of the current user.

 getUser()

Returns the user id of the current user.

 getLanguage()

Returns the language code of the current user.

cis.js

The cis.js file contains the bulk of the core framework functions. In addition to defining the major
framework classes (CisModel, DataElement, List, etc.) it contains a number of important functions that are
described here. These functions are typically invoked by navigating to the main level, e.g. main.xyz(),
where the global main has been defined to point to the frame containing cisMain.jsp.

 array_remove_element(array, element)

Remove the indicated element from the given array. Do nothing if it is not found. If the element appears
more than once in the array, remove only the first one. Uses simple object comparison (==).

 array_index_of(array, element)

Return the index (0-based) of the given element in the given array. Answer –1 if the element cannot be
found. If the element appears multiple times, answer the first (lowest) index. Uses simple object
comparsion (==).

 array_remove(array, index)

Compensate for missing functionality in the built-in JavaScript Array class in early versions of JScript.
Answers a new array instance with the element at the given index removed. The length of the new array
is one less than the length of the given one.

 array_includes(array, element)

Answers a boolean indicating whether the given element is present in the given array. Uses simple
object comparison (==).

 array_numeric_sort(array)

Sort the elements of the given array into numeric order, using a simple a < b comparison.

 arrayDo(array, oneArgClosure)

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 83

Perform a loop over the elements of the given array, applying the function given by oneArgClosure to
each element in turn. The oneArgClosure function takes exactly one argument. Extremely useful for
signalling the intention of looping structures. For example, consider this typical code:

var max = array.length;

for (var i = 0; i < max; i++) {

 var element = array[i];

 <do something to element>

}

This common structure can be simplified to the following:

arrayDo(array, oneArgFunction)

where oneArgFunction takes an array element as its parameter, and corresponds to the <do something to
element> block above.

 arraySelect(array, selectClosure)

Returns a new array consisting of elements from the given array that return true when applied to the
selectClosure (a function that takes one argument). For example, do this to find all numbers greater than
3 in an array:

var closure = function(each) {return each > 3};

var resultArray = arraySelect(array, closure);

 arrayReject(array, rejectClosure)

Returns a new array consisting of all elements from the given array except those that return true when
applied to the rejectClosure (a function that takes one argument). For example, do this to find all
numbers not greater than 3 in an array:

var closure = function(each) {return each > 3};

var resultArray = arrayReject(array, closure);

 arrayDetect(array, detectClosure)

Returns the first element in the given array that returns true when applied to detectClosure, a one-
argument function. Return null if no element is found.

 arrayDetectIfFound(array, detectClosure, doClosure)

Similar to arrayDetect(), but proceeds to execute the one-argument function doClosure with the detected
element.

 arrayDetectIndex(array, detectClosure)

Similar to arrayDetect(), but answers the index of the first element that satisfies the detectClosure
function.

 arrayCollect(array, collectClosure)

Return a new array consisting of the results of applying the collectClosure one-argument function in turn
to each element of array. For example, to double the values of an array holding numbers and store the
result in a new array:

var closure = function(each) {return each * 2};

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 84

var resultArray = arrayCollect(array, closure);

 arrayCopy(array)

Answers a new array holding the same elements as the given array. Also known as a “shallow copy”.

 arrayContains(array, detectClosure)

Returns a boolean indicating whether the given array contains an element that satisfies detectClosure, a
one-argument function returning a boolean.

 arrayUniquePush(array, object)

Similar to array_push, but skips appending the given object if an identical object is already present in the
array. Uses simple equality (==) for the comparison.

 configureMainButtons()

Enable or disable the buttons on the main button bar according to the current state of the system. This
method should be triggered only if there is a reason to believe that circumstances have left the buttons in
an inappropriate state.

 openPage(navigationKey, tabName, keys, extraPageState, keepMemento, forceOpen,
extraLoadKeys)

Navigate the system to the tab menu identified by the given navigationKey. The particular tab page may
be identified with the given tabName (string), which can also be identified as an integer index (0-based),
otherwise the first tab page is used. To display a particular object on the tabMenu/tabPage populate the
keys parameter with a key/value object holding the logical keys that identify the object. [The
extraPageState parameter is deprecated]. The boolean keepMemento parameter identifies whether a
memento should be stored for the current location, i.e. whether it will enter the history menu. If not
provided, it defaults to true. The forceOpen boolean (defaults to false) controls whether the system
should still show the tabMenu/tabPage if the desired object cannot be read (e.g. it was deleted from the
database). The optional extraLoadKeys object is merged with keys prior to performing the read query,
allowing the addition or overriding of key values.

 showMessageDescription(categoryNumberFieldName, messageNumberFieldName,
shortDescriptionFieldName)

Open an alert dialog box showing a server message (the long message). The category and message
numbers are given indirectly via the categoryNumberFieldName and messageNumberFieldName, which
are property names in the model from which the actual numbers are fetched. An optional a short
description field name can also be provided. The alertClientWindow is a reference to a window object
that should act as “host” to the alert dialog box, in order to keep focus on the correct window when the
dialog is dismissed.

 basicShowMessageDescription(categoryNumber, messageNumber, shortDescription,
alertClientWindow)

Similar to showMessageDescription() as above, but directly accepts the desired category and message
numbers rather than retrieving them from the model.

 showErrorMessage(categoryNumber, messageNumber, clientSubstitutions, element,
alertClientWindow)

Show the server error message identified by the given category and message numbers, and relating to
the HTMLElement given as element (optional), which should receive focus. The alertClientWindow
parameter provides an optional reference to the “client” of this dialog that can be useful to preserve the
correct focus when the dialog is dismissed. The clientSubstitutions parameter is private.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 85

 restoreElements()

Frequently used in conjunction with setAvailableSignal(), this method clears flags that are used to
implement synchronization control.

 doSave(specialActionField, successFunction, forceSave)

Submit a change request to the server using the current model. The specialActionField, if specified, is set
to boolean true before submitting the model, without otherwise permanently changing the model.
Execute the given successFunction if the save operation succeeds. A “clean” model is not submitted to
the server unless the optional forceSafe boolean is true. The browser will refresh itself to show the
version of the model as returned from the server, unless the operation resulted in a warning or error. In
the first case a dialog shows the warning message line(s), and the user can choose to redo the save
operation, ignoring further warnings. In the second case a descriptive error dialog is shown.

 doDelete()

Submit a delete request to the server using the current model. Clears the window if the operation
succeeds.

 safelySetFocus(element)

Attempt to set focus to the given HTMLElement.

 updateElementFromModel(htmlElement)

Fetch the current value for the model attribute appropriate to the given htmlElement widget (using the
name of the element) and display it.

 setAvailableSignal(aWindow)

Configure the system to accept input after processing a request for the server. Implemented by disabling
the cisDisabled.css stylesheet. Typically used in conjunction with restoreElements().

 convertInternalDateTimeToLocal(value)

Convert the given internal date-time value to the user’s localized format and answer it.

 convertLocalToInternal(htmlElement, value)

Using the datatype associated with the given html element (as described with its className), convert the
given localized value into the internal system value and answer it.

 convertInternalMoneyToLocal(value)

Convert the given money value (a String) into its localized representation and answer it.

 updateField(event)

Update the value of the relevant HTML element based on the given event object. This may involve side
effects such as updating the model.

 moneyToWholeInteger(amount)

This utility function helps you do simple arithmetic with money amounts. Since the precision of SPL
system monetary amounts can exceed that offered by the built-in JavaScript number types, we cannot
perform arithmetic operations with those numbers without risking loss of precision and rounding
problems. The solution is to eliminate the decimal point (if any) in the amounts in order to yield “pure”
integers, which admit to exact arithmetic (for addition, subtraction, and multiplication) to very high orders
of precision. The final result is then converted back into an internal money amount.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 86

This function accepts an internal money amount (String) and returns a JavaScript “integer” representing
the value.

 wholeIntegerToMoney(integer)

Reverse the moneyToWholeInteger operation to yield a monetary amount corresponding to the given
integer.

 getInstallationData(key)

Returns the installation data (string) associated with the given key.

 isUserModified()

Returns a boolean indicating whether the user has made any changes to the model that should be
preserved (e.g. the system will issue a warning if the changes are not saved).

Meta-data Overview
The generation of program components is dependant upon the Oracle Utilities Application Framework

meta-data. The meta-data used by framework consists of program variables, program locations, program

elements, menu options, navigation keys, tables and fields, and many more.

The meta-data itself can be split into distinct groupings. These groupings will be covered in more detail

below.

The basic principle is that a developer enters meta-data for each component to be generated. The
generation process applies the meta-data to the generator templates to create the final, deployable
component, along with any necessary infrastructure changes. This chapter defines the framework meta-
data and its inter-relationships.

Contents
Generated Tab Menu Meta-data
Generated UI Program Component Meta-data
Menu and Navigation Meta-data
Table-Related Meta-data
Maintenance Object Meta-data
Defining Generator Tools Meta-data

Generated Tab Menu Meta-data
The following entity relationship diagram describes the meta-data related to generated tab menus.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 87

Template

Tab Module

Program

Variable

Program

Component

Program

Tab

Program

Location

Module

Generated Tab Menu Meta-data ERD

Note. The tab menu is represented by program component in the ERD above.

Every framework user interface (UI) transaction has a tab menu, which links together the different tab
pages that are available on the transaction.

The software development kit generator creates the tab menu using a specific template that is defined in
the template meta-data. The tab menu’s template is maintained from the UI Program Components
Object View.

The generated tab menu resides in a certain physical directory in the server’s file system. Location, the
abstract name that represents the actual location of the tab menu, is entered in the UI Program
Components Object View. The actual location information and the abstract name are maintained from
the Locations Object View.

Tab menus may have one or more program variables that control its behavior and/or appearance.
These variables are maintained from the Program Variable Collection of the UI Program Components
Object View.

Tab menus also have one or more program tabs, which specify the labels and sequence of the tab
pages in the transaction. These tabs are maintained from the Tab Menu Tabs Collection of the UI
Program Components Object View.

The use of each tab may be restricted, based on the license key, as specified in tab module. This
information is maintained from the Tab Module Collection of the Tab Menu Tabs Collection.

Generated UI Program Component Meta-data
The following entity relationship diagram describes the meta-data related to generated UI programs.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 88

Template

Program

Section

Program

Variable

Program

Component

Program

Element

Program

Location

Program

Element

Attribute

Navigation

Key

Element

Attribute

Type

Element

Type
Element

Type

Attributes

Generated User Interface Program Component Meta-data ERD

Note. The UI program component is represented by program component in the ERD above.

Each tab that is specified on the tab menu is linked to a particular UI program component - more
commonly referred to as "UI page" or "tab page".

Every UI Program Component has a type (i.e. Search Page, List Grid, etc). The software development kit
generator uses this information to know how to create a certain type of program. The types are stored in
the template meta-data table.

Just like tab menus, the generated tab page resides in a certain physical directory in the server’s file
system. Location, the abstract name that represents the actual location of the program, is specified in
the UI Program Components Object View.

Tab pages may have one or more program variables that control its behavior and/or appearance.
These variables are maintained from the Program Variable Collection of the UI Program Components
Object View.

Each tab page has at least one program section. Each section has at least one element of a particular
type. A program element may have one or more element attributes that control its behavior and/or
appearance. For example, an element attribute may specify whether or not a field is hidden. Elements
may be as simple as input text fields or buttons, and as complicated as trees, grids or graphs. The latter
types of elements are actually contained in their own tab page and are referenced from the calling tab
page. Please refer to UI Program Components Object View to see how these components are created
and maintained.

When UI program components are referred to from other UI program components, instead of referencing
these programs by their physical names, pseudo names/aliases (called navigation keys) are used. The
navigation keys abstract the physical name and location of the program component from the application,
making it easier to change and maintain such details. The link between this pseudo address and the
actual location of the program is maintained from the Navigation Keys Object View.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 89

Menu and Navigation Meta-data
The following entity relationship diagram describes the meta-data related to menus and navigation.

Menu

Menu Item

Menu Line

Navigation

Option

Context

Navigation

Option

Navigation

Key

Navigation

Mode
Favorites

Foreign Key

Reference

Campaign

Script Step

• Tab Menu

• Tab Page

• Search Page

Menu

Module

Menu Item

Module

Navigation

Option

Usage

Menu and Navigation Meta-data ERD

Transactions within framework are accessed through menus. The menu framework uses navigation
options to define the information required in navigating between transactions. The most important
attribute of a navigation option is the Target Navigation Key. This identifies the transaction the navigation
option will navigate to.

A navigation key is a logical name/pseudo address for UI components. Its prime responsibility is to
transform a logical address to a specific URL. The link between this pseudo address and the actual
location of the program is maintained from the Navigation Key Object View.

The menu type defines how the menu is used. You have the following options:

 Main defines a menu that appears on the menu bar.

 Admin is a special type of Main menu as admin menu items can be grouped alphabetically or by
functional group. Refer to the user documentation for more information about admin menu
options.

 Context defines a context menu.

 Submenu defines a menu that appears when a menu item is selected. For example, the Main
menu contains numerous submenus. Each submenu contains the navigation options used to
open a page.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 90

Table-Related Meta-data

Table Constraint

Table Field

Field

Constraint

Field

Table Meta-data ERD

Table information is used for various purposes. Table information is stored in meta-data. This includes
which fields are on the table (table field) and business rules for the fields. Constraints define the keys
of tables. Constraints also define relationships between tables. Constraint fields specify the fields
involved in the keys or relationships between tables.

Multi-Language

The framework product is available worldwide. This means that the product must be able to display
information in many languages.

Some field and table information is language-dependent. Table, table / field and field all have child
language tables that hold descriptions specific to each supported language. When field information is
retrieved, the system returns not only the base field information, but also the descriptions associated with
the user's language.

This process is also used for labels (fields with Work Switch set to Y). When a label is needed by the
system, the work field information is obtained and the description (from the language table) is displayed
on the UI.

Note. Developers should not use plain text on the UI. All labels should be defined as work fields so that

the system will recognize the field and obtain the correct, language-based description to display.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 91

Maintenance Object Meta-data

MO

Field

MO Table

Table

Table Field

Program

Component

•Tab Menu

Compare

Type

Table Role

Maintenance Object ERD

A maintenance object (MO) represents a group of tables maintained within framework. These objects
are primarily used by the ConfigLab functionality and by the archiving engine to process archiving or
purging tasks.

MOs also provide structure from which the various program components (needed to maintain an object)
can be created. To be specific, both the front-end user interface (UI) components and the back-end
program components can be generated from the MO. The MO specifies the key program component,
namely:

 UI Tab Menu

MOs have at least one associated table, i.e. a primary table, sometimes referred to as the root table. In
most cases, there are child tables associated with the primary table. E.g. a language table, person name
table (child of person table), etc. The Table Role specifies whether the table is a child or a primary.

The Compare Type indicates the comparison method that is used in the ConfigLab functionality. This
field is not used for the purpose of building program components from MOs.

MO Table information is maintained from the Maintenance Object Tables Collection of the Maintenance
Objects Object View.

Defining Generator Tools Meta-data
Before generating new programs, you must create the meta-data to be used by the generator tools.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 92

Warning! Please refer to the System Table Guide for the standard naming convention of each Meta-data
object below. Compliance to the standard naming conventions is critical in ensuring the ability to

upgrade.

Contents
Setting Up Fields
Setting Up Foreign Key References
Setting Up Lookup Tables
Setting Up Navigation Options
Setting Up Services
Setting Up Tables
Setting Up Menus
Setting Up Maintenance Objects

Setting Up Fields
Fields meta-data is maintained via the Fields Menu Item from the Admin Menu. Fields may describe
columns on a table or they may be labels or work fields that do not appear on a table.

Contents
Fields - Main
Fields - Tables Using Field

Fields - Main
Select Fields from Admin Menu to navigate to the Fields View. Field Metadata can be edited in the
Main Tab

Field MetaData – Main Tab

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 93

Important! If you change a field’s label, the new label appears on ALL transactions on which the field

exists.

Warning! A field’s label can be overridden for a specific table. If this is the case and you change the

field’s name on this transaction, the change will have no effect when the field is displayed for that specific

table. If you find this to be true, change the field’s label on the respective table on which it was

overridden. You do this using the Table Maintenance transaction.

Properties Description

Open this page using Admin Menu, Field.

Many fields on this page are protected as only the product development group may change them. The
following describes fields you may change for records that are part of the base product. Fields containing
information that may be of interest are also described.

Field Name uniquely identifies this field.

Important! If you introduce new fields, you must prefix the field with CM. If you do not do this, there is a

possibility that a future release of the application could introduce a new field with the name you allocated.

Owner indicates if this field is owned by the base package or by your implementation (Customer
Modification). The system sets the owner to Customer Modification when you add a field. This
information is display-only.

Base Field

Data Type indicates if the field will hold Character, Date, DateTime, Number, Time, or Varchar2 data.

Ext Data Type

Precision defines the length of the field. In the case of variable length fields, it is the maximum length
possible.

Scale

Sign

Level

88 Cpybk

Description contains the label of the field. This is the label of the field that appears on the various pages
on which the field is displayed. Note, the field's label can be overridden for a specific table (by specifying
an Override Label on the table / field information).

Java Field Name

Override Label

Check Work Field if the field does not represent a database table column.

Help Text

Special Notescontains any notes or special information about the field.

http://sf-sdk-v11.splwg.com:6500/help/ENG/F1/#SPLINKTable___Main
http://sf-sdk-v11.splwg.com:6500/help/ENG/F1/#SPLINKTable___Table_Field

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 94

Fields - Tables Using Field
Select Admin Menu, Field and navigate to the Tables Using Field tab to view the tables that contain a

field.

Fields - Tables Using Field Tab

Description of Page

The grid on this page contains the Tables that reference the Field. You can use the adjacent go to

button to open the Table Maintenance transaction.

Setting Up Foreign Key References
This object view is used to maintain meta-data related to foreign key references. This meta-data is used
by Foreign Key (compound) element types.

FK References
Select FK Reference from Admin Menu to navigate to the Foreign Key References Window. The Main
tab of the FK References Window maintains the meta-data related to foreign key references on the FK
References List.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 95

FK Reference Property Editor

The FK Reference Property Editor maintains the properties of a foreign key reference record and the
metadata can be edited in this Window.

Properties Description

Enter an easily recognizable FK (foreign key) Reference code and Description for the table.

Enter the name of the Table whose primary key is referenced as a characteristic value. After selecting a
Table, the columns in the table’s primary key are displayed adjacent to Table PK Sequence.

The remaining fields control the behavior of the foreign key reference. See the description that appears
above the page snapshot for more information about these fields.

Use Navigation Option to define the page to which the user will be transferred when they press the go to
button that prefixes a characteristic value.

The Info Program Type indicates whether the program that returns the information displayed adjacent to
a characteristic value is written in Java.

 If the Program Type is Java, use Info Program Name to enter the Java class name.

Use Context Menu Name to specify the context menu that appears to the left of the value.

Context Menu Name. This attribute is only applicable to user interface elements utilizing the foreign key
compound element type. Report parameters that reference foreign key characteristics are an example.

Use Search Navigation Key to define the search page that will be opened when a user searches for

valid characteristic values.

Use Search Type to define the default set of search criteria used by the Search Navigation Key's

search page.

Use Search Tooltip to define a label that describes the Search Navigation Key's search page.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 96

Search Type and Search Tooltip. These attributes are only applicable to user interface elements
utilizing the foreign key compound element type. Report parameters that reference foreign key
characteristics are an example.

Where Used

Follow this link to open the data dictionary where you can view the tables that reference CI_FK_REF.

Setting Up Lookup Tables
Some special fields have values that are defined by the base-package development group. These fields
are called “lookup fields” because the system has to “look up” the descriptions on the Lookup table when
they are displayed on a transaction.

Lookup Tables
Select Admin Menu, Look Up to maintain lookup values.

Lookup Tables Object View

Properties Description

Field Name is the name of the field whose lookup values are maintained in the grid. If you need to add a

new lookup field, you must first add a Field with an extended data type of Flag.

Owner indicates if this lookup field is owned by the base package or by your implementation (Customer

Modification). This information is display-only.

Custom switch is used to indicate whether you are allowed to add valid values for a lookup field whose

owner is not Customer Modification.

 If this switch is turned on, you may add new values to the grid for system owned lookup fields.

 If this switch is turned off, you may not add, remove or change any of the values for system
owned lookup fields, with the exception of the override description.

http://sf-sdk-v11.splwg.com:6500/help/ENG/F1/#SPLINKDefining_Field_Options

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 97

This field is always protected for system owned lookup fields because you may not change a field from
customizable to non-customizable (or vice versa).

Java Field Name indicates the name of the field as it is referenced in Java code.

The grid contains the look up values for a specific field. The following fields may be modified:

Field Value This is the unique identifier of the lookup value. If you add a new value, it

must begin with an X or Y (in order to allow future upgrades to

differentiate between your implementation-specific values and base-

package values).

Description This is the name of the lookup value that appears on the various

transactions in the system

Java Value Name This indicates the unique identifier of the lookup value as it is referenced in

Java code.

Status This indicates if the value is Active or Inactive. The system does not

allow Inactive values to be used (the reason we allow Inactive values is

to support historical data that references a value that is no longer

valid).

Detailed Description A detailed description for a lookup value is provided in certain cases.

Override Description Enter a value in this field if your implementation wishes to override the

description of the value provided by the product.

Note. If you wish the override descriptions of your lookup values to appear in the application viewer, you
must regenerate the data dictionary application viewer background process.

Owner Indicates if this lookup value is owned by the base package or by your

implementation (Customer Modification). The system sets the owner

to Customer Modification when you add lookup values to a field. This

information is display-only.

Setting Up Navigation Options
Every time a user navigates to a transaction, the system retrieves a navigation option to determine which
transaction should open. For example,

 A navigation option is associated with every menu item. When a user selects a menu item, the
system retrieves the related navigation option to determine which transaction to open.

 A navigation option is associated with every favorite link. When a user selects a favorite link, the
system retrieves the related navigation option to determine which transaction to open.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 98

 A navigation option is associated with every node in the various trees. When a user clicks a node
in a tree, the system retrieves the related navigation option to determine which transaction to
open.

 Etc.

Many navigation options are shipped with the base package and cannot be modified as these options
support core functionality. As part of your implementation, you will probably add additional navigation
options to support your specific business processes. For example,

 When you set up a campaign, you can optionally indicate that a transaction should open when an
order linked to the campaign is completed. You do this by specifying the appropriate navigation
option on the campaign.

 A script steps a user through a business process. While a script executes, one or more
transactions can be opened. You indicate which transaction is opened by specifying the
appropriate navigation option on one of the script's steps.

 A user can define their home page on their user preferences. They do this by selecting a
navigation option.

 Etc.

Warning! In order to improve response times, navigation options are cached the first time they are used

after a web server is started. If you change a navigation option and you don't want to wait for the cache

to rebuild, you must clear the cached information so it will be immediately rebuilt using current

information. A special button has been provided on the Main tab of the navigation option transaction that

performs this function. Please refer to Caching Overview for information on the various caches.

Navigation Option - Main
Select Navigation Options from Object Explorer to navigate to the Navigation Options Object View.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 99

Navigation Options - Main

Description of Page

Enter a unique Navigation Option code and Description.

The Flush System Login Info button is used to flush the cached navigation options so you can use any
modified navigation options. Refer to Caching Overview for more information.

Owner indicates if this navigation option is owned by the base package or by your implementation
(Customer Modification). This field is display-only. The system sets the owner to Customer
Modification when you add a navigation option.

Note. You may not change navigation options that are owned by the base package.

Use Navigation Option Type to define if the navigation option navigates to a Transaction or launches a

BPA Script.

For navigation option types of Transaction, enter the related information:

Navigation Mode indicates if the Target Transaction should be opened in Add Mode or Change
Mode. You may also specify a Tab Page if you want to open a tab other than the main tab (i.e., you can

leave this field blank if you want the main tab to be displayed when the transaction opens).

 Add Mode should be used if the option is used to navigate to a transaction ready to add a new
object. You can use the Context Fields at the bottom of the page if you want to transfer the contents
of specific fields to the transactionwhen it opens.

 Change Mode should be used if the option is used to navigate to a transaction ready to update
an object. You have two ways to define the object to be changed:

 Define the name of the fields that make up the unique identifier of the object in the
Context Fields (and make sure to turn on Key Field for each such field).

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 100

 Define the Search Transaction if you want to open a search window to retrieve an object
before the target transaction opens. Select the appropriate Search Type to define which
search method should be used. The options in the drop down correspond with the
sections in the search (where Main is the first section, Alternate is the 2

nd
 section,

Alternate 2 is the 3
rd

 section, etc.). You should execute the search window in order to
determine what each section does. When you select a Search Type, the system defaults
the related fields in Context Fields. This means the system will try to pre-populate the
search transaction with these field values when the search first opens. Keep in mind that
if a search is populated with field values the search is automatically triggered and, if only
one object is found that matches the search criteria, it is selected and the search window
closes.

Finding transaction navigation keys. When populating the Target Transaction and Search
Transaction you are populating an appropriate navigation key. Because the system has a large number
of transactions, we recommend using the "%" metaphor when you search for the transaction identifier.
For example, if you want to find the currency maintenance transaction, enter "%currency" in the search
criteria.

Search Group is only visible if the Development Tools module is not turned off. It is used to define the
correlation between fields on the search page and the tab page. You can view a tab page's Search
Groups by viewing the HTML source and scanning for allFieldPairs.

For navigation option types of script, indicate the Script to launch. You can use the Context Fields at the
bottom of the page if you want to transfer the contents of specific fields to temporary storage variables
available to the script. The script engine creates temporary storage variables with names that match the
Context Field names.

The Go To Tooltip is used to specify the label associated with the tool tip that appears when hovering over
a Go To object. Refer to Usage grid below.

The Usage grid defines the objects on which this navigation option is used:

 Choose Favorites if the navigation option can be used as a favorite link.

 Choose Menus if the navigation option can be used as a user's home page or as a menu or
context menu item.

 Choose Script if the navigation option can be used in a script.

 Choose Foreign Key if the navigation option can be used as a foreign key reference.

 Choose Go To if the navigation option can be used as a "go to" destination ("go to" destinations
are used on Go To buttons, tree nodes, algorithm parameters, and hyperlinks).

 Choose Notification Upload Type if the navigation option can be used on a notification upload
type.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 101

 If you have Oracle Utilities Customer Care and Billing, you may choose Campaign if the
navigation option can be used as a "post completion" transaction on a campaign. For more
information refer to that product's documentation for campaigns.

The Context Fields grid contains the names of the fields whose contents will be passed to the Target
Transaction or Script. The system retrieves the values of these fields from the "current" page and
transfers them to the target transactionor to the script's temporary storage.

No context from menu bar. The standard followed for the base menu navigation options is that
navigation options launched from the menu bar are configured with no context; navigation options
launched from context menus include context.

Where Used

Follow this link to open the data dictionary where you can view the tables that reference CI_NAV_OPT.

Navigation Options - Tree

This page contains a tree that shows how a navigation option is used. Select Admin Menu, Navigation
Option and navigate to the Tree tab to view this page.

Description of Page

The tree shows every menu item, favorite link, and tree node that references the navigation option. This
information is provided to make you aware of the ramifications of changing a navigation option.

Setting Up Services
This object view defines the available services.

Services
Select Admin Menu, Service Program to maintain service programs.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 102

Services Object View

Description of Page

Define a Service Name for your new service.

Important! If you introduce new services, you must prefix them with CM. If you do not do this, there is a

possibility that a future release of the application could introduce a new service name with the name you

allocated.

Owner indicates if this service is owned by the base package or by your implementation (Customer
Modification). The system sets the owner to Customer Modification when you add a service. This
information is display-only.

Description describes the service.

Service Type indicates whether the service is a Java Based Service.

This Program Component grid shows the list of program user interface components associated with the
service. For a stand-alone XAI service this list is optional.

Where Used

Follow this link to open the data dictionary where you can view the tables that reference CI_MD_SVC.

Setting Up Tables
This object view is used to maintain meta-data related to a table. A table represents a database table
used to store framework data or a database view.

Contents
Tables - Main

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 103

Tables - Fields
Tables - Constraints
Tables - Referred By Constraints

Tables - Main
Select Admin Menu, Table to view information about a table, define the fields whose changes should be
audited, and to override a field’s label on a specific table.

Tables Object View - Main

Description of Page

Many fields cannot be changed. You cannot change most attributes on tables that are owned by the
base-package (i.e., those whose Owner is not Customer Modification).

Description contains a brief description of the table.

System Table defines if the table holds rows that are owned by the base-package.

Enable Referential Integrity defines if the system performs referential integrity validation when rows in

this table are deleted.

Data Group ID is used for internal purposes.

Table Usage defines how the table is used in the application. In the current release, only tables that are

part of Oracle Utilities Business Intelligence make use of this field.

Table Type defines if the table is a View or a physical Table.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 104

Date / Time Data Type defines if the system shows times on this table in Local Legal Time or in Standard

Time (Local Legal Time is the time as adjusted for daylight savings).

Audit Table is the name of the table on which this table’s audit logs are stored. Refer to The Audit Trail

File for more information.

Use Audit Program Type to define if the audit program is written in Java. Audit Program is the name of
the program that is executed to store an audit log. Refer to Turn On Auditing For a Table for more
information.

 If the Program Type is Java, enter the Java class name.

View the source. If the program is shipped with the base package, you can use the adjacent button to
display the source code of this program in the source viewer or Java docs viewer.

Upgrade controls what happens to the rows in this table when the system is upgraded to a new release:

 Keep means that the rows on this table are not touched during an upgrade

 Merge means that the rows on this table are merged with rows owned by the base package

 Refresh means that the rows on this table are deleted and refreshed with rows owned by the
base package.

Data Conversion Role controls if / how the table is used by the conversion tool:

 Convert (Retain PK) means that the table's rows are populated from the conversion schema and
the prime key in the conversion schema is used when the rows are converted is not assigned by
the system.

 Convert (New PK) means that the table's rows are populated from the conversion schema and
the prime key is reassigned by the system during conversion.

 Not Converted means that the table's rows are not managed by the conversion tool.

 View of Production means that the conversion tool uses a view of the table in production when
accessing the rows in the table. For example, the customer class table would be set up using this
value so that the conversion tool will use the customer classes in production when it needs to
access customer class codes.

A Language Table is specified when fields containing descriptions are kept in a child table. The child

table keeps a separate record for each language for which a description is translated.

Enable Data Dictionary defines if the table is to be included in the Data Dictionary application viewer.

http://sf-sdk-v11.splwg.com:6500/help/ENG/F1/91AppViewer.html#SPLINKSource_Code_Viewer
http://sf-sdk-v11.splwg.com:6500/help/ENG/F1/91AppViewer.html#SPLINKJava_Docs_Viewer

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 105

A Key Table is specified when the prime-key is assigned by the system. This table holds the identity of

the prime keys allocated to both live and archived rows.

Type of Key specifies how prime key values are generated when records are added to the table:

 Other means a foreign-system allocates the table's prime-key (e.g., the fact and dimension
tables within Oracle Utilities Business Intelligence have their keys assigned by Oracle Warehouse
Builder).

 Sequential means a sequence number is incremented whenever a record is added to the table.
The next number in the sequence determines the key value.

 System-generated means a program generates a random key for the record when it is added.
If the record's table is the child of another table, it may inherit a portion of the random number from its
parent's key.

 User-defined means the user specifies the key when a record is added.

Inherited Key Prefix Length defines the number of most significant digits used from a parent record's
primary key value to be used as the prefix for a child record's key value. This is only specified when the
Type of Key is System-generated and the high-order values of the table's key is inherited from the
parent table.

Help URL is the link to the user documentation that describes this table.

Special Notes contains any notes or special information about the table.

The grid contains an entry for every field on the table. Drilling down on the field takes you to the Table
Field tab where you may modify certain attributes. The following fields may also be modified from the
grid: Description, Override Label, Audit Delete, Audit Insert and Audit Update. Refer to the Table
Field tab for descriptions of these fields.

Tables - Fields
Select Admin Menu, Table and navigate to the Table Field tab to define the fields whose changes
should be audited and to override a field’s label on a specific table (note, you can also maintain a subset
of this information in the grid on the Main tab).

Tables Object View - Fields List

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 106

Description of Page

Many fields on this page are protected as only the product development group may change them. The
following describes fields you may change for records that are part of the base product. Fields containing
information that may be of interest are also described.

Turn on Audit Delete if an audit record should be stored for this field when a row is deleted. Refer to
How To Enable Auditing for more information

Turn on Audit Insert if an audit record should be stored for this field when a row is added. Refer to How
To Enable Auditing for more information.

Turn on Audit Update if an audit record should be stored for this field when it is changed. Refer to How
To Enable Auditing for more information.

The Label column only contains a value if the base-product indicates a value other than the field's label
should be shown on the various pages in the system. The field's label is shown above, adjacent to the
field's code.

The Override Label is provided in case you want to override the base-package's label. If specified, it will
be displayed throughout the application.

Note. If you want the Override Label to be shown in the data dictionary, you must regenerate the data
dictionary.

Special Notes contains any notes or special information about the table.

Field Usage defines how the field is used in the application. In the current release, only tables that are
part of Oracle Utilities Business Intelligence make use of this field.

Tables - Constraints
Select Admin Menu, Table and navigate to the Constraints tab to view the constraints defined on the
table.

Tables Object View - Constraints

Description of Page

The fields on this page are protected as only the product development group may change them.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 107

This page represents a collection of constraints defined for the table. A constraint is a field (or set of
fields) that represents the unique identifier of a given record stored in the table or a field (or set of fields)
that represents a given record's relationship to another record in the system.

Constraint ID is a unique identifier of the constraint.

Owner indicates if this is owned by the base package or by your implementation (Customer

Modification)

Constraint Type Flag defines how the constraint is used in the system:

 Primary Key represents the field or set of fields that represent the unique identifier of a record
stored in a table.

 Logical Key represents an alternate unique identifier of a record based on a different set of
fields than the Primary key.

 Foreign Key represents a field or set of fields that specifies identifying and non-identifying
relationships to other tables in the application. A foreign key constraint references the primary key
constraint of another table.

 Conditional Foreign Key represents rare relationships between tables where a single field (or
set of fields) may reference multiple primary key constraints of other tables within the application as a
foreign key.

When Enable Referential Integrity is checked, the system validates the integrity of the constraint when a

row in the table is modified.

Referring Constraint Owner indicates if this is owned by the base package or by your implementation

(Customer Modification).

Referring Constraint ID is the Primary Key constraint of another table whose records are referenced by

records stored in this table.

Referring Constraint Table displays the table on which the Referring Constraint ID is defined. You can
use the adjacent go-to button to open the table.

Additional Conditional SQL Text is only specified when the constraint is a Conditional Foreign Key.
The SQL represents the condition under which the foreign key represents a relationship to the referring
constraint table.

Additional Conditional SQL Syntax. When specifying additional conditional SQL text, all table names
are prefixed with a pound (#) sign.

The Constraint Field grid at the bottom of the page is for maintaining the field or set of fields that make up
this constraint.

Field The name of the table's field that is a component of the constraint.

Sequence The rank of the field as a component of the constraint.

The Referring Constraint Field grid at the bottom of the page displays the field or set of fields that make
up the Primary key constraint of the referring constraint.

Field The name of the table's field that is a component of the referring constraint.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 108

Sequence The rank of the field as a component of the referring constraint.

Tables - Referred By Constraints
Select Admin Menu, Table and navigate to the Referred By Constraints tab to view the constraints
defined on other tables that reference the Primary Key constraint of this table.

Tables Object View - Referred By Constraints

Description of Page

This page is used to display the collection of constraints defined on other tables that reference the table.

Referred By Constraint Id is the unique identifier of the constraint defined on another table.

Referred By Constraint Owner indicates if this constraint is owned by the base package or by your

implementation (Customer Modification).

Prime Key Constraint Id is the Primary Key constraint of the current table.

Prime Key Owner indicates if this prime key is owned by the base package or by your implementation

(Customer Modification).

Referred By Constraint Table is the table on which Referred By Constraint Idis defined.

When Enable Referential Integrity is checked, the system validates the integrity of the constraint when a

row in the table is modified.

The grid at the bottom of the page displays the Field and Sequence for the fields that make up the

constraint defined on the other table.

Setting Up Menus
This meta-data represents the root of a menu “tree”. A menu contains a list of menu “lines”, which, in
turn, contains a list of menu “items”. Lines can define navigation keys and/or associated actions, or
further submenus.

Contents
Menus - Main
Menus - Menu Lines

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 109

Menus - Main
This transaction is used to define / change any menu in the system. Navigate to this page using Admin
Menu, Menu.

Menus - Main

Description of Page

Enter a meaningful, unique Menu Name.

Owner indicates if this menu line is owned by the base package or by your implementation (Customer
Modification). The system sets the owner to Customer Modification when you add a menu line. This
information is display-only.

The Flush Menu button is used to flush the cached menu items so you can see any modified or newly

created menus. Refer to Caching Overview for more information.

Menu Type defines how the menu is used. You have the following options:

 Enter Admin for the administration menu. The Admin menu is a special type of Main menu as
admin menu items can be grouped alphabetically or by functional group. Refer to the description of
Admin Menu Order on Installation Options - Base for more information about admin menu options.

 Enter Context to define a context menu

 Enter Main to define a menu that appears on the menu bar.

http://sf-sdk-v11.splwg.com:6500/help/ENG/F1/02GeneralFramework.html#SPLINKCaching_Overview
http://sf-sdk-v11.splwg.com:6500/help/ENG/F1/02GeneralFramework.html#SPLINKInstallation_Options___Main

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 110

 Enter Submenu to define a menu that appears when a menu item is selected. For example, the
Main menu contains numerous submenus. Each submenu contains the navigation options used to
open a page.

Long Label is only enabled for Admin and Main menus. It contains the text displayed to identify the

menu when the menu button is clicked.

Menu Bar Description is only enabled for Admin and Main menus. It contains the text displayed to

identify the menu in the menu bar.

Sequence is only enabled for Admin and Main menus. It controls the order of the menu in the list of

menus that appears when the menu button is clicked.

The grid contains a summary of the menu's lines. Refer to the description of Menu Items for how to add
items to a menu line.

 Menu Line ID is the unique identifier of the line on the menu. This information is display-only.

 Sequence is the relative position of the line on the menu. Note, if two lines have the same
Sequence, the system organizes the lines alphabetically (based on the Long Label, which is defined
on the next tab).

 Navigation Option / Submenu contains information about the line's items. If the line's item
invokes a submenu, the submenu's unique identifier is displayed. If the line's item(s) invoke a
transaction, the description of the first item's navigation option is displayed.

 Long Label is the verbiage that appears on the menu line.

 Item Count is the number of menu items on the line.

 Owner indicates if this menu line is owned by the base package or by your implementation
(Customer Modification). The system sets the owner to Customer Modification when you add a
menu line. This information is display-only.

Menus - Menu Lines
After a menu has lines (these are maintained on the main tab), you use this page to maintain a menu
line's items.

Each menu line can contain one or two menu items. The line's items control what happens when a user
selects an option on the menu.

There are two types of menu items: one type causes a transaction to be invoked when it's selected; the
other type causes a submenu to appear. For example,

 The following is an example of a menu line with two items: one opens the account transaction in
update mode, the other (the + icon) opens the account transaction in add mode:

 The following is an example of a menu line with a single item that opens a submenu:

If you want to display an existing menu line's items:

 Navigate to Admin Menu, Menu and display the menu in question.

http://sf-sdk-v11.splwg.com:6500/help/ENG/F1/BP01SWS.html#SPLINKMenu_Button
http://sf-sdk-v11.splwg.com:6500/help/ENG/F1/BP01SWS.html#SPLINKMenu_Bars
http://sf-sdk-v11.splwg.com:6500/help/ENG/F1/BP01SWS.html#SPLINKMenu_Button
http://sf-sdk-v11.splwg.com:6500/help/ENG/F1/#SPLINKMenu___Menu_Items
http://sf-sdk-v11.splwg.com:6500/help/ENG/F1/#SPLINKDefining_Navigation_Options

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 111

 Click the go to button on the line whose menu items should be displayed on this tab.

If you want to add a new line to an existing menu line:

 Navigate to Admin Menu, Menu and display the menu in question.

 Click the + button to add a new line to the grid.

 Use Sequence to specify the relative position of the line on the menu. Note, if two lines have the
same Sequence, the system organizes the lines alphabetically (based on the Long Label,which is
defined on the next tab).

 Save the new line.

 Click the go to button on the new line

Menus - Menu Lines List

Description of Page

Menu Name is the name of the menu on which the line appears. Menu Line ID is the unique identifier of
the line on the menu. Owner indicates if this menu is owned by the base package or by your

implementation (Customer Modification). This information is display-only.

The Menu Line Items scroll contains the line's menu items. The following points describe how to

maintain a line's items:

 Menu Item ID is the unique identifier of the item.

 Owner indicates if this item is owned by the base package or by your implementation (Customer
Modification).

 If the menu item should invoke a submenu (as opposed to a transaction):

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 112

 Use Sub-menu Name to identify the menu that should appear when the line is selected

 Use Long Label to define the verbiage that should appear on the menu line

 If the item should invoke a transaction (as opposed to a submenu):

 Use Sequence to define the order the item should appear in the menu line (we recommend this
be set to 1 or 2 as a menu line can have a maximum of 2 menu items).

 Use Navigation Option to define the transaction to open (and how it should be opened). Refer
to Defining Navigation Options for more information.

 If you want an icon to appear on the menu line (as opposed to text)

 Use Image GIF Location and Name to define the location in which the icon resides on the
web server. For example, you could enter /images/contextAdd.gif if you want the classic "+"
icon to appear. Your icons can be located on the product's web server or on an external web
server. To add a new icon to the product web server, place it under the /cm/images directory
under the DefaultWebApp. Then, in the URL field, specify the relative address of the icon. For
example, if the icon’s file name is myIcon.gif, the URL would be /cm/images/myIcon.gif. If the
icon resides on an external web server, the URL must be fully qualified (for example,
http://myWebServer/images/myIcon.gif).

 Use Image Height and Image Width to define the size of the icon.

 Use Balloon Description if you want a tool tip to appear when the cursor hovers over the
icon.

 Use Long Label to describe what this menu item does (note, this won't appear on the menu
because you are specifying an icon; it's just good practice).

 If you want text to appear on the menu line (as opposed to an icon), use Long Label to define
the text.

 The Override Label is provided in case you want to override the base-package's label.

Note. Owner indicates if this menu line is owned by the base package or by your implementation
(Customer Modification). The system sets the owner to Customer Modification when you add a menu
line. This information is display-only.

Setting Up Maintenance Objects
A maintenance object represents a grouping of tables that are maintained together on the user interface.
When you add a new maintenance transaction, be sure to add a maintenance object that specifies the
tables that are maintained together.

Using a MO, you have access to the back-end program components as well as to the front-end UI
program components created using the Maintenance Object. This Component allows you to easily
identify the objects that are associated with the primary table when you are developing and maintaining
custom transactions.

Contents
Maintenance Objects - Main
Maintenance Objects – Options
Maintenance Objects – Algorithms
Maintenance Object - Maintenance Object Tree

http://sf-sdk-v11.splwg.com:6500/help/ENG/F1/#SPLINKDefining_Navigation_Options

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 113

Maintenance Objects - Main
Select Admin Menu, Maintenance Object to view information about a maintenance object.

Maintenance Object - Main

Description of Page

Most maintenance objects are provided with the base package. An implementation can introduce custom
maintenance objects when needed. Most fields may not be changed if owned by the base package.

Enter a unique Maintenance Object name and Description. Ownerindicates if this business object is

owned by the base package or by your implementation (Customer Modification).

Program Com ID is the name of the program used to call the maintenance object's page program for
validating constraints when objects are archived, purged, or compared. Refer to Archiving and ConfigLab
for more information.

Service Name is the name of the internal service associated with the maintenance object.

The grid displays the following for each table defined under the maintenance object:

Table The name of a given table maintained as part of the maintenance object.

Table Role The table's place in the maintenance object hierarchy. Only one Primary

table may be specified within a maintenance object, but the maintenance

object may contain many Child tables.

Parent Constraint ID Specifies the constraint used to link the table to its parent table within the

maintenance object table hierarchy.

Compare Method Either Normal or Large Table; specifies the comparison method used by

the compare utility in the ConfigLab.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 114

Owner Indicates if this is owned by the base package or by your implementation

(Customer Modification).

Click the View XML hyperlink to view the XML document associated with the maintenance object service
in the Service XML Viewer.

Maintenance Objects – Options
Use this page to maintain a maintenance object's options. Open this page using Admin Menu,
Maintenance Object and then navigate to the Optionstab.

Maintenance Object – Options

Description of Page

The optionsgrid allows you to configure the maintenance object to support extensible options. Select the
Option Type drop-down to define its Value. Detailed Description may display additional information on
the option type. Set the Sequence to 1 unless the option can have more than one value.
Ownerindicates if this is owned by the base package or by your implementation (Customer

Modification).

You can add new option types. Your implementation may want to add additional maintenance option

types. For example, your implementation may have plug-in driven logic that would benefit from a new
option. To do that, add your new values to the customizable lookup field MAINT_OBJ_OPT_FLG.

Maintenance Objects – Algorithms
Use this page to maintain a maintenance object's algorithms. Open this page using Admin Menu,
Maintenance Object and then navigate to the Algorithms tab.

Maintenance Object – Algorithms

Description of Page

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 115

The Algorithms grid contains algorithms that control important functions for instances of this

maintenance object. You must define the following for each algorithm:

 Specify the System Event with which the algorithm is associated (see the table that follows for a
description of all possible events).

 Specify the Sequence Number and Algorithm for each system event. You can set the
Sequence Number to 10 unless you have a System Event that has multiple Algorithms. In this
case, you need to tell the system the Sequence in which they should execute.

 If the algorithm is implemented as a script, a link to the Script is provided. Refer to Plug-in
Scripts for more information.

 Ownerindicates if this is owned by the base package or by your implementation (Customer
Modification).

The following table describes each System Event.

System
Event

Optional /
Required

Description

Determine BO Optional Algorithm of this type is used to determine the Business Object associated with

an instance of the maintenance object. It is necessary to plug in such an

algorithm on a Maintenance Object to enable the business object rules

functionality.

The system invokes a single algorithm of this type. If more than one algorithm

is plugged-in the system invokes the one with the greatest sequence number.

Information Optional We use the term “Maintenance Object Information” to describe the basic

information that appears throughout the system to describe an instance of the

maintenance object. The data that appears in this information description is

constructed using this algorithm.

The system invokes a single algorithm of this type. If more than one algorithm

is plugged-in the system invokes the one with the greatest sequence number.

Transition Optional The system calls algorithms of this type upon each successful state transition of

a business object as well as when it is first created. These are typically used to

record the transition on the maintenance object's log.

Note that some base maintenance objects are already shipped with an

automatic logging of state transitions. In this case you may use these algorithms

to override the base logging functionality with your own.

Transition

Error

Optional The system calls this type of algorithm when a state transition fails and the

business object should be saved in its latest successful state. The algorithm is

responsible for logging the transition error somewhere, typically on the

maintenance object's log.

Notice that in this case, the caller does NOT get an error back but rather the call

ends successfully and the exception is recorded somewhere, as per the plug-in

logic.

The system invokes a single algorithm of this type. If more than one algorithm

is plugged-in the system invokes the one with the greatest sequence number.

http://sf-sdk-v11.splwg.com:6500/help/ENG/F1/97ConfigurationTools.html#SPLINKKeeping_An_Entity_In_Its_Last_Suc

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 116

Maintenance Object - Maintenance Object Tree
You can navigate to the Maintenance Object Tree to see an overview of the tables and table
relationships associated with the maintenance objects.

Maintenance Object - Maintenance Object Tree

Description of Page

This page is dedicated to a tree that shows the maintenance object's tables as well as business objects, if
you have defined any. You can use this tree to both view high-level information about these objects and
to transfer to the respective page in which an object is maintained.

Development Process
This chapter provides a quick reference for common development tasks. The details are described in the
Cookbook chapter.

Contents
Hooking into User Exits
Extending Business Entities
Extending Maintenance Classes
Creating Business Components
Plugging in Algorithms
Creating Portals and Zones
Creating Background Processes
Creating MOs and Maintenance Transactions
Building the Application Viewer

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 117

Hooking into User Exits

Contents
Hooking into UI Javascript User Exits
Hooking into Java User Exits (interceptors)

Hooking into UI Javascript User Exits
UI pages can have various events extended in order to add to or possibly override base product behavior.
To create a Javascript user exit:

 Identify the page to extend.

 Create a JSP extension file (.xjs file) for the given page containing the necessary method for the
given action.

 Identify user exits to code.

 Code the desired user exit logic into the JSP extension file.

Hooking into Java User Exits (interceptors)
Interceptors allow additional logic to be executed before or after the invocation of a service. To
implement an interceptor:

 Identify the page to extend.

 Identify the interceptor interface to implement.

 Create an interceptor class.

 Code the desired logic into the interceptor class.

 Register the class in CMServiceConfig.xml.

Extending Business Entities
Business entities are the Java representation of persistent data in the system. These objects are
transparently initialized and persisted into the database. Many entities are already defined by the base
application but may be extended through customization. Likewise, new entities may be created which
expose custom tables as business entities.

There are two kinds of hand-coded logic associated with business entities: logic that exposes useful
methods to the outside world and logic that is used within the entity itself to perform validation and handle
the cascading effects of its changes in state.

Logic exposed to outside callers is what is coded on the business entity's implementation class (the
"Impl") class. These "business methods" are then generated onto the entity's "business interface" (e.g.
the Person interface). The business interface is the contract that the entity has with other objects.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 118

Quite another thing is how an entity validates and otherwise deals with its changes of state. This is event-
driven logic that is not exposed to outside callers and never belongs on the business interface. This type
of interface is commonly referred as a "specialization interface" rather than a "business interface" and is
coded in change handlers. Unlike a business interface, which receives messages from other objects, a
specialization interface is one that provides a mechanism purely for extension of some baseline behavior.
In that spirit, the framework design clearly separates the two kinds of code.

Contents
Extending the Business Interface
Extending the Specialization Interface
Creating New Business Entities
Specifying the Business Interface
Specifying the Specialization Interface

Extending the Business Interface
 Create a new implementation class.

 Specify appropriate annotations for an extension implementation class.

 Code business methods.

 Generate artifacts.

 Create a JUnit test.

 Generate artifacts.

 Run JUnit tests.

 Deploy to runtime.

 Test in runtime.

Extending the Specialization Interface
 Create a new change handler.

 Specify appropriate annotations for a change handler.

 Code specialization interface.

 Generate artifacts.

 Create a JUnit test.

 Generate artifacts.

 Run JUnit tests.

 Deploy to runtime.

 Test in runtime.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 119

Creating New Business Entities
Business entities are the object representation of persistent data in the database. To create a new
business entity the tables, fields and other meta-data should have already been defined in corresponding
meta-data tables. Likewise, the schema objects must already be in the database. Having completed
these steps, the business entity is defined to the Java programming and runtime environment by:

Specifying the Business Interface
 Create a new implementation class.

 Specify appropriate annotations for an implementation class.

 Code business methods.

 Create a JUnit test.

 Generate artifacts.

 Run JUnit tests.

 Deploy to runtime.

 Test in runtime.

Specifying the Specialization Interface
 Create a new change handler.

 Specify appropriate annotations for a change handler.

 Code specialization interface, if any.

 Create a JUnit test.

 Generate artifacts.

 Run JUnit tests.

 Deploy to runtime.

 Test in runtime.

Extending Maintenance Classes

Maintenance extensions
Not all maintenance logic can go in the initial application's Maintenance. For instance, how can you
retrieve the description of a foreign key whose table does not exist in that application?

An "extension" methodology exists whereby an existing page can have behavior added to it at
predetermined plug-in points.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 120

This is done by having a list of maintenance extensions that can be supplied for any given maintenance.
At runtime, this list is kept and when a maintenance is initialized, new instances of its extensions are
created. These extensions are called after any original maintenance behavior, and in the order of loaded
applications. This means that the extensions should have no dependence on what other extensions have
run, excepting the original maintenance having run.

To extend a maintenance:

 Create a new maintenance extension class.

 Specify the annotations required for a maintenance extension.

 Code desired logic in appropriate methods (see AbstractMaintenanceExtension).

 Generate artifacts.

 Code JUnit tests.

 Run JUnit tests.

 Deploy to runtime.

 Test in runtime.

Creating Business Components
Business Components provide a mechanism to provide non-persistent business logic (as opposed to
business entities that add to persistent objects). An example business component is as follows:

/**

 * Component used to query for {@link Person} instances based on various

 * predefined criteria.

 *

 * @BusinessComponent

 * (customizationReplaceable = false)

 */

public class PersonFinders_Impl

 extends GenericBusinessComponent

 implements PersonFinders

 /**

 * @param nameType a name type

 * @return count of names by name type

 *

 * @BusinessMethod (customizationCallable = true)

 */

 public int findCountByNameType(Lookup nameType) {

 Query query = createQuery

 ("FROM PersonName name where name.nameType = :type");

 query.bindLookup("type", nameType);

 return (int) query.listSize();

 }

To add a new component:

 Create a new implementation class.

 Specify appropriate annotations for a business component implementation class.

 Code business methods.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 121

 Specify appropriate annotations for business methods.

 Create a JUnit test.

 Generate artifacts.

 Run JUnit tests.

 Deploy to runtime.

 Test in runtime.

Plugging in Algorithms
Algorithms provide a powerful and flexible way of extending applications that use the Oracle Utilities
Software Development Kit.

Algorithm spots in the application identify different areas that can be extended or customized by
implementers. Each algorithm spot defines a set of inputs (typically via set- methods) and output
(typically by get- methods).

During implementation, implementers can either re-use existing algorithm types or create new plug-in
algorithm. To add a new plug-in algorithm, an implementer will follow these steps:

 Identify the plug-in spot.

 Create an algorithm component.

 Specify appropriate annotations for algorithm component.

 Code the desired logic into the invoke() method.

 Code methods to implement the algorithm spot interface.

 Create a JUnit test.

 Generate artifacts.

 Run JUnit tests.

 Deploy to runtime.

 Create a java class to perform a special plug-in action. This typically would be a modified version of
an existing plug-in class. Refer to the algorithm spot definition for the various parameters that are
available. In writing it, look out for possible soft parameters that will add flexibility to the plug-in.

 Add an Algorithm Type to correspond to the new plug-in behavior. This includes naming the java
class that was created in the previous step. In addition, the soft parameters that are expected by the
algorithm are also defined here.

 Create Algorithm specifying the specific algorithm parameter values where applicable. If the
algorithm type is flexible enough, it may end up being reused in multiple algorithms, each having a
different set of soft parameter values.

 Add the algorithm to the appropriate control table's algorithms. With this step, the plug-in is available
to the application.

 Test in runtime.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 122

Creating Portals and Zones
The framework application supports one portal, Dashboard, which can contain a configurable set of zones
that show diverse information.

To create a custom zone:

 Meta-data to define the zone and its parameters

 A Java handler class

To create a new zone:

 Use the ServiceZoneHandler class

 Create a Page Service containing required data

 Create or reuse XSLT template file

 Define meta-data declaring the zone and its parameters

Creating Background Processes
To create a background process, there are three important classes that need to be created.

 An implementation of com.splwg.base.api.batch.BatchJob. This is the "driver" and should:

 Include a "BatchJob" class annotation

 Extend a generated superclass. In the case where the batch job is named "Foo", the generated
superclass will be "Foo_Gen".

 An implementation of com.splwg.base.api.batch.ThreadWorker. This is responsible for processing the
work distributed to a processing thread. By convention, this is coded as a static inner class within the
BatchJob class implementation described above. If the file becomes excessively large, the worker
can be split into its own source file. The worker class extends a generated abstract superclass. In the
case of the "Foo" batch job, the worker should be named FooWorker and extend "FooWorker_Gen".

 At least one test class extending com.splwg.base.api.testers.BatchJobTestCase. This class will
perform automated tests on the batch process. The runs are performed within the test thread and
transaction and all changes are rolled back at the end of the test.

After creating the background process, a corresponding entry should be made in the Batch Control table
referencing the created BatchJob’s class.

An example batch Job is com.splwg.base.domain.todo.batch.BatchErrorToDoCreation and the test is
BatchErrorToDoCreationTest.

Testing Background Processes
BatchJob classes can be tested with JUnit in two ways:

 Extending the BatchJobTestCase class and implementing abstract methods.

 Calling the submitBatchJob(SubmissionParameters) method in any ContextTestCase. This allows
testing a mix of one or more background process and other business logic to be tested.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 123

In both of these approaches, the normal commit and rollback logic of BatchJobs is subverted so that all
updates performed by the batch process are rolled back when the test completes, either successfully or
unsuccessfully. Therefore, these JUnit tests provide a safe way to test batch processes without making
irreversible database updates.

Creating MOs and Maintenance Transactions
A typical development of a new MO and its corresponding maintenance transaction entails the following
steps:

 Create database objects, i.e., tables, indexes, etc.

 Enter database type of meta-data using online application from the Admin Menu. This includes:

 Field

 Table

 Table/Field

 Constraints

 Enter MO meta-data using the online system from the Admin Menu.

 Create the entity, changeHandler, and maintenance impl (implementation) classes using Eclipse.

 Generate artifacts based on the impl classes using the Artifact Generator. The artifact generator
must also be executed whenever annotations and/or meta-data are changed.

 Add business rules on either the entity or changehandler using Eclipse.

 Create business components, if necessary, in Eclipse.

 Create test classes and then execute JUnit tests in Eclipse.

 If necessary, update maintenance impl class annotation to include fields with derived values using
Eclipse. Regenerate artifacts after changing annotation. This generates the service metainfo.

 Add business logic on maintenance impl classes using Eclipse.

 Create maintenance test classes and then execute JUnit tests in Eclipse.

 Create search impl classes using Eclipse.

 Create search test classes and then execute JUnit tests in Eclipse.

 Create a new Maintenance Object from the Admin Menu -> Maintenance Object. This would
automaticaly create the Tab Menus and Tab Pages necessary for a new transaction. This will also
create the appropriate navigation key for each program component.

 Create javascript user exits for UI program components (e.g. tab menu, tab page, list grid, etc.).

 Add security access to the new application service.

 Create Menu entry for new application service.

 Launch Tomcat server and test the new application service.

Building General Purpose Maintenances

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 124

The steps for developing general-purpose maintenances are similar to those for MO-based
maintenances, above, but without the need to rely on entity or MO metadata.

 Create the maintenance impl (implementation) classes using Eclipse.

 Generate artifacts based on the impl classes using the Artifact Generator. The artifact generator
must also be executed whenever annotations and/or meta-data are changed.

 Create business components, if necessary, in Eclipse.

 Create test classes and then execute JUnit tests in Eclipse.

 If necessary, update maintenance impl class annotation to include fields with derived values using
Eclipse. Regenerate artifacts after changing annotation. This generates the service metainfo.

 Add business logic on maintenance impl classes using Eclipse.

 Create maintenance test classes and then execute JUnit tests in Eclipse.

 Create javascript user exits for UI program components (e.g. tab menu, tab page, list grid, etc.).

 Add security access to the new application service.

 Create Menu entry for new application service.

 Launch Tomcat server and test the new application service.

Building the Application Viewer
The Application Viewer is used to display information extracted from products. This information is stored
in the form of XML files. These files are built using a combination of batch jobs (run from Batch Job
Submission) and utility scripts.

Each process (batch job or utility tool) can be run independently as each of them is responsible for
creating separate Application Viewer components.

Creating Javadocs for CM source code
Javadocs can be created for CM source code. They are designed to be integrated into the product’s
Javadocs that are delivered in the Application Viewer.

The product’s Javadocs are only delivered for objects or supporting objects that are intended to be
referenced by CM code. For instance, only the domain and api packages are included, and some of the
files created by the artifact generator are not delivered since they have no practical relevance to CM
code. These files have been deliberately and explicitly omitted when creating the product’s Javadocs.

Note that the process that generates Javadocs on CM source code is not selective, and running
Javadocs on CM source code may include more object types than what is delivered with the product’s
Javadocs.

There is one location that is used for both the product and CM Javadocs. Because they share the same
location, there are two steps involved in creating CM Javadocs.

Contents
Generate CM Javadocs
Recreate the Javadoc Indices

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 125

Generate CM Javadocs
Prerequisite: all artifacts need to be generated and the code needs to be compiled without errors.

The first step is to generate Javadocs for CM code. The standard behavior of the Javadoc tool is to
create indices that show the packages and classes of the source code that the tool was run on. The
resulting indices will only show links to the CM classes and not the product’s. To recreate the indices so
that they include both the CM and the product’s Javadocs, follow the next step.

Recreate the Javadoc Indices
A utility script can recreate the Javadoc indices to include both the CM and the product’s Javadocs. The
script will scan the files in the Javadoc directory and recreate the indices based on the files that it finds.

Cookbook

Contents
Hooking into User Exits
Maintaining General-Purpose Maintenances
Maintaining MOs
Maintaining Database Meta-data
Maintaining Java Classes
Maintaining Services
Maintaining Foreign Key References
Maintaining Lookup Tables
Maintaining Navigation Keys
Maintaining Navigation Options
Maintaining User Interfaces
Maintaining Menus
Maintaining Application Security
Maintaining UI Components (Translation)
Plugging in Algorithms
Maintaining Portals and Zones
Maintaining Background Processes
Building the Application Viewer
Upgrade JSP to XSLT

Hooking into User Exits

Contents
Hooking into Maintenance Class User Exits
Hooking into UI Javascript User Exits
Hooking into Java User Exits (interceptors)

Hooking into Maintenance Class User Exits

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 126

Maintenance extensions
Not all maintenance logic can go in the initial application's Maintenance. For instance, how can you
retrieve the description of a foreign key whose table doesn't exist in that application?

Therefore, an "extension" methodology needs to exist whereby an existing page can have behavior
added to it at predetermined plug-in points.

This is done by having a list of maintenance extensions that can be supplied for any given maintenance.
At runtime, this list is kept and when a maintenance is initialized, new instances of its extensions are
created. These extensions are called after any original maintenance behavior, and in the order of loaded
applications. This means that the extensions should have no dependence on which other extensions
have run, excepting the original maintenance having run.

Developing Maintenance Extensions

Maintenance extensions must use the same buffer structure as the original maintenance. The only
change allowed is to add possible new default values. Thus a maintenance extension with its annotation
might look like this:

/**

 * @version $Revision: #1 $

 * @MaintenanceExtension (serviceName = CILTALTP,

 * newDefaults={ @JavaNameValue (value = TEST, name = test)

 * }

 *)

 */

public class AlgorithmTypeMaintenanceExtension

 extends AlgorithmTypeMaintenanceExtension_Gen {

 }

The maintenance extension will have its superclass generated to give easy access to the STRUCTURE
definition and HEADER and DEFAULT constants, as well as provide an easy hook for any future
functionality that might need to be inserted.

You must use the constants on the STRUCTURE or HEADER structure definitions to reference input
header fields or which output fields to populate.

The maintenance extension can then override any methods needed to provide its functionality. Some
examples of methods available are:

 /**

 * Process a default

 * @param defaultValue the raw string value of the default (can compare

 * against DEFAULTS constants)

 * @param item the item to be modified with default values

 */

 public void processDefault(String defaultValue, DataElement item) {}

 /**

 * Process the data after the whole add (root and chidren) action is

 * done.

 * @param originalItem the input item

 */

 public void afterAdd(DataElement originalItem) {}

 /**

 * Process the data after the whole read (root and children) action is

 * done.

 * @param result the output item

 */

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 127

 public void afterRead(DataElement result) {}

 /**

 * Process the data after an element of the given list has been read.

 * @param listName the list name

 * @param outputElement the output element

 * @param sourceEntity the just read entity

 */

 public void afterPopulateElement(String listName,

 DataElement outputElement, BusinessEntity sourceEntity) {}

 /**

 * Process the data after an element of the given list has been changed.

 * @param listName the list name

 * @param inputElement the input element

 * @param changedEntity the changed entity

 */

 public void afterChangeElement(String listName,

 DataElement inputElement, BusinessEntity changedEntity) {}

 // ...

The complete list can be found in the hierarchy of the extension class (e.g.,

AbstractMaintenanceExtension) http://www.python.org/

Hooking into UI Javascript User Exits
The client-side external user exits are designed to give implementers flexibility and power to extend the
base package user interface. Implementers have the ability to add additional business logic without
changing base html files. These user exits were developed such that developers can create an include-
like file based on external user exit templates.

There are two types of client user exits available. There are process-based user exits that wrap the
similar product user exit code with pre- and post- external user exit calls, and there are also data-based
user exits that simply allow the implementer to add/delete data from the product returned data.

Both types of external user exit are only called if the function exists in the implementer’s external include
JSP file. All available user exits are listed online in the system through the relative URL:
/code/availableUserExits.jsp, with definition examples and links to the Framework code that executes the
call.

http://www.python.org/

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 128

Miscellaneous How-To’s
The following are some how-to examples of typical behavior utilizing some of the standard user exits.

The examples are written for cases of modifying new CM transaction pages, where the function
definitions are put into “extended JavaScipt” files (.xjs) that are meant to contain JavaScript user exits
directly for a page.

If, on the other hand, an implementer wishes to modify the behavior of a shipped product page, each of
the functions below have a corresponding “ext” function that can defined in a /cm/extXXX.jsp file
corresponding to the desired page that will fire after any product function call (see above an example of
hiding the Sequence column in the algorithm maintenance page).

Contents
How do I control the Initial Focus within Tab Pages/Grids/Search Pages?
How do I mark fields that won't make the model dirty?
How do I control the triggering of defaults after a search?
How do I avoid automatically setting fields to uppercase?
How Can I Force the Save Button to be Enabled?
How Can I Override the Processing After a Change/Add?
How Do I Prevent the System from Setting Focus to a Widget after an Error?
How Do I Prevent Attributes From Being Copied Into New List Elements?
How Do I Customize New List Elements?
How can I get my sequence numbers to default in an appropriate and consistent manner
How Do I Override the Tab Page Shown After An Error in a List (Grid/Scroll)?
How Do I Disregard Unwanted Criteria From a Search Triggered Search by a Search Butto
How Do I Disregard Unwanted Search Result Columns?

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 129

How do I format a value based on a given format?

How do I control the Initial Focus within Tab Pages/Grids/Search Pages?

The system automatically places the initial focus on an appropriate widget (generally input fields) within a
Tab Page/Search Page/Grid.

By default it will place focus on the first enabled field with a data class defined on it. (If input fields do not
have the Field Name / Table Name defined within Meta Data they will have no data class)

If there are no fields satisfying this criteria within the tab page it will continue to look (recursively) into all
the contained frames (i.e. list grids etc.)

If no field is found then no element receives focus.

You can override the default behavior at each level via the provision of a focusWidgetOverride()

function within the user exit file which will return the Name of the Field to receive the focus or null.

If null is returned it will ignore all fields within this document and continue to search in lower level
documents.

E.G.

From within a Tab Page (If you want focus to go on to a sub document)

function focusWidgetOverride() {

 return null;

}

From within a List Grid

function focusWidgetOverride() {

 return "TD_TYPE_DRLKY:0$TBL_NAME";

}

from within a Search Page

function focusWidgetOverride() {

 return "LAST_NAME";

}

Note. These functions can be as simple or complicated as you want. You could conditionally return a

field name or null and this code will run each time the window loads. Also, if a tab page has a popup

window or a search window open as it is loading then the initial focus will not be set to the tab page but

stay with the popup window

How do I mark fields that won't make the model dirty?

In certain windows, we have a concept of a "locator" field, which typically acts as a filter on some lists of
the object you're looking at. Examples are user group's filter on description, and several IB windows’ filter
by date.

With the warning about loss of data when throwing away a dirty model, this results in the use of locator
fields giving this warning, which wouldn't be expected. In order to avoid this warning on locator fields, you
can add a function like the one that follows that enumerates the locator fields:

function ignoreModifiedFields(){

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 130

 return ['START_DTTM']

}

You can include any number of fields in the array, e.g.

return ['FIELD_1', 'FIELD_2', 'FIELD_3']

How do I control the triggering of defaults after a search?

If a search returns multiple fields and more than one of these fields can trigger default, then it might be
more efficient to only have one of these fields trigger the defaulting.

This is accomplished by creating a new function called overrideDefaultTriggersFor_SEARCHGROUP
within the tab page that contains the search, where SEARCHGROUP is the name of the searchGroup
you want to override.

The function must return an object with the triggering field(s) are attributes with a true value.

For example

function overrideDefaultTriggersFor_SRCH1() {

 var triggers = {};

 triggers["ACCT_ID"] = true;

 triggers["SA_ID"]=true;

 return triggers;

}

How do I avoid automatically setting fields to uppercase?

Model attributes that are also key fields are automatically coerced to be in uppercase. You can block this

behavior on a field-by-field basis by defining the notUppercaseFields() function in your TabMenu’s user

exit file to return an array of field names that should not be converted.

Example:

function notUppercaseFields() {

 return ['ELEM_ATT$AT_NAME']

}

You can also provide a “global” override for an entire TabMenu by setting the shouldNotAutoUppercase

variable to true:

var shouldNotAutoUppercase = true;

How Can I Force the Save Button to be Enabled?

The save button usually synchronizes itself to the state of the model such that if it hasn’t been “dirtied” the
button is disabled. You may wish to control the state of the save button e.g. because a save should
always/never be allowed.

Simply define the function saveButtonEnablingOverride() on your TabMenu user exit file to return a

boolean indicating whether the save button should be enabled. You can simply return a literal boolean, or
perform any desired processing to determine the return value.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 131

Example:

function saveButtonEnablingOverride() {

 return false;

}

How Can I Override the Processing After a Change/Add?

If you need to intervene in the processing after the system successfully completes a Change or Add

operation, define the function privatePostChangeSucceeded() or privatePostAddSucceeded() in your

TabMenu user exit file. The function should return a boolean to indicate whether the system should
refresh the UI with the newly returned server data. You’d want to return false if e.g. you navigate to a
different TabMenu.

Example :

function privatePostAddSucceeded() {

 var model = parent.model;

 var modeFlag = model.getValue('COMPL_NAV_MODE_FLG');

 var navKey = model.getValue('COMPL_NAV_KEY');

 var complSw = model.getValue('CMPLT_CLICKED_SW');

 if (complSw && model.getValue('ENRL_STATUS_FLG') == '30') {

 if (modeFlg && navKey){

 if (modeFlag == 'G') {

 parent.tabPage.gotoContext(navKey);

 return false;

 } else if(modeFlag == 'A') {

 parent.tabPage.addContext(navKey);

 return false;

 }

 }

 }

 return true;

}

How Do I Prevent the System from Setting Focus to a Widget after an Error?

When a service receives an error and shows a message after calling a back-end service, the browser
attempts to set focus to the relevant widget in error. If you don’t need this behavior, you can define the
TabMenu variable dontSetFocusOnError to boolean “true.

Example:

var dontSetFocusOnError = true;

How Do I Prevent Attributes From Being Copied Into New List Elements?

The system automatically copies key fields (based on name matching) from a parent list element into new
child elements (e.g. created by using the scroll ‘+’ button), in order to keep their prime keys consistent. If
you want to inhibit this operation for certain fields, define the TabMenu function
dontCopyKeyNames_<LIST NAME> to return an array of fields that should not be copied into new
elements of the list named LIST_NAME

Example:

function dontCopyKeyNames_ENRL_FLD() {

 return ['SEQ_NUM']

}

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 132

How Do I Customize New List Elements?

When you use ‘+’ button on a grid or scroll you get a new, empty list element. If you want to customize
the object, define a function in the TabMenu’s user exit file named
initializeNewElement_<LIST_NAME>(newElement).

Example:

function initializeNewElement_ENRL_LOG(newElement) {

 newElement.set(‘ENRL_LOG_TYPE_FLG’, ‘USER’);

 newElement.set(‘USER_INFO’, parent.model.getValue(‘CURRENT_USER_INFO’));

}

How can I get my sequence numbers to default in an appropriate and consistent manner on my List Grid?

If you are working with a List Grid that uses some type of sequence field (e.g. SEQNO, LINE_SEQ,
SORT_SEQ) , there is a handy bit of technology that you can use that will cause the UI to do this job for
you.

Just follow the steps below and you'll have the problem solved in no time. The sequence field will be
populated in your "empty line" and any elements that are added from then on will have an appropriate
value in the sequence field. If the user edits the sequence field at any point, the next element added to
the list will incorporate the change without any problems.

Note. The default Sequence Number functionality will default the next nearest tens value from the

highest sequence. The defaulting will do nothing after the sequence reaches the highest number it can

hold.

 1) In the user exit file of the Tab Menu - not the main Page or the List Grid - copy this JavaScript
code:

function initializeNewElement_LIST_NAME(newElement) {

 var myListName = "LIST_NAME";

 var myListSeqName = "FIELD_NAME";

 var myListMaxSeq = 999;

 defaultSequenceNumber(myListName,myListSeqName,myListMaxSeq,newElement)

}

</SCRIPT>

<SCRIPT src="/zz/defaultSequenceNumber/defaultSequenceNumber.js"></SCRIPT>

<SCRIPT>

 For LIST_NAME, substitute your List Grid's list name. Be careful not to lose that underscore [_] just
in front of LIST_NAME in the first line! Remember that JavaScript is case-sensitive and make sure
that you use all UPPERCASE letters as shown here.

 For FIELD_NAME, substitute the name of your sequence field, whatever that might be in your List.
Don't lose the quotes ["] ! Again, use all UPPERCASE letters.

How Do I Override the Tab Page Shown After An Error in a List (Grid/Scroll)?

When the system receives an error (e.g. after a Save) it attempts to set focus on the relevant widget,
which might require flipping to a different tab page. If the error relates to a list (grid or scroll) the system
might not choose the tab page you’d prefer. In that event you can control the tab page that should be

opened by defining the TabMenu function overrideErrorTabPage_<LIST_NAME>().

Example:

function overrideErrorTabPage_BPA() {

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 133

 return 'bussProcessAssistantStepPage';

}

How Do I Disregard Unwanted Criteria From a Search Triggered Search by a Search Button?

When a search button (currently implemented as an IMG) is pushed, the system launches a search and
“pulls” all applicable criteria values from the current model. It might be that certain criteria fields should be
ignored in a particular case. You can define the function addIgnoreFieldsFor_<triggerFieldName>() on a
tab or search page’s user exit file to specify fields to ignore whenever the IMG button named
triggerFieldName is pushed on that page.

The function takes a single argument, fields, and you should add key/value pairs where the key is a

field name to ignore, and the value is true.

Example:

addIgnoreFieldsFor_ADDRESS1_SRCH = function(fields) {

 fields['CITY_SRCH'] = true

}

addIgnoreFieldsFor_PER_ID = function(fields) {

 fields['ENTITY_NAME_SRCH'] = true

}

How Do I Disregard Unwanted Search Result Columns?

When you accept the result of a NOLOAD search the system tries to populate the selected search result
row into the current model. Sometimes this doesn’t make sense e.g. because there is no corresponding
attribute for a display-only column. You can exclude a column from being returned as part of a search
result by defining the search client’s (Tab Page or Search window) function ignoreResultColumns() in the
corresponding page’s user exit file. Return an object with keys specifying attributes and values all set to
boolean “true”.

Example:

function ignoreResultColumns() {

 return { ADDRESS1: true, CITY: true, POSTAL: true };

}

Since Searches can be shared by many search clients, it is possible that some clients want to get a
specific column, but others don’t. In that case, define the TabMenu function
ignoreResultColumnsFor_<service> as above.

Example:

function ignoreResultColumnsFor_CILCCOPS() {

 return {CONT_OPT_TYPE_CD: true}

}

How do I format a value based on a given format?

If you need to format a value based on a given format, for example, on Person ID Number, if you select
ID Type as SSN (999-99-9999), you can always format the Person ID Number before committing it to the
server.

To do so, you can call the formatValue javascript function.

 In the user exit file of the tab page include the following lines:

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 134

</SCRIPT>

<SCRIPT src="/zz/formatValue/formatValue.js"></SCRIPT>

<SCRIPT>

 Now, you can start using the function to format a value. To use this function, you need to pass in both
the value and the format into the function.

var phFormat = myData.getValue(pureListName + ‘PHONE_TYPE_FORMAT’);

if (pureFieldName == ‘PHONE’) {

 updateField(pureListName + ‘PHONE’ ,

 formatValue(myData.getValue(pureListName + ‘PHONE’), phFormat));

}

Hooking into Java User Exits (interceptors)
Create a class implementing any of the following Interceptor Java Interfaces whenever processing is
required before or after the invocation of a service. The CMServiceConfig.xml contains the mapping
between services and corresponding classes that implement pre/post processing plug-ins. The files
should reside in the same directory as the service xml files, that is, in the <classpath>/services folder.
This can be arranged by placing the files in the web application server’s WEB-INF/classes/services folder,
or placing them in an existing jar file.

Note: CM interceptors defined on the CMServiceConfig.xml override base product interceptors on the

same service and action.

To implement an interceptor:

 Creating a class implementing any of the Interceptor Java Interfaces.

 Register the class in CMServiceConfig.xml.

Example
The following is a sample interceptor and configuration file, where one interceptor class implements all
four interfaces.

Configuration file CMServiceConfig.xml:

<ServiceInterceptors

 <Service name="CMLTBTCP">

 <Interceptor action="add">

 com.splwg.cis.interceptortest.InterceptorTest

 </Interceptor>

 <Interceptor action="change">

 com.splwg.cis.interceptortest.InterceptorTest

 </Interceptor>

 <Interceptor action="delete">

 com.splwg.cis.interceptortest.InterceptorTest

 </Interceptor>

 <Interceptor action="read">

 com.splwg.cis.interceptortest.InterceptorTest

 </Interceptor>

 </Service>

</ServiceInterceptors>

Class com.splwg.cm.interceptortest.InterceptorTest:

package com.splwg.cm.interceptortest;

../../../../../SPL/documentation/User%20Doc/SDK/2.0.6/03Developer%20Guide/03PublicAPI.doc#_ServiceConfig.xml_and_CMServiceConfig.x

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 135

import com.splwg.base.api.serviceinterception.IAddInterceptor;

import com.splwg.base.api.serviceinterception.IChangeInterceptor;

import com.splwg.base.api.serviceinterception.IDeleteInterceptor;

import com.splwg.base.api.serviceinterception.IReadInterceptor;

import com.splwg.base.api.service.PageBody;

import com.splwg.base.api.service.PageHeader;

import com.splwg.base.api.service.RequestContext;

public class InterceptorTest implements IAddInterceptor, IChangeInterceptor,

 IDeleteInterceptor, IReadInterceptor {

 public PageBody aboutToAdd(RequestContext context, PageBody in) {

 System.out.println("aboutToAdd: " + in);

 return null;

 }

 public void afterAdd(RequestContext context, PageBody added) {

 System.out.println("afterAdd: " + added);

 };

 public PageBody aboutToChange(RequestContext context, PageBody in) {

 System.out.println("aboutToChange: " + in);

 return null;

 };

 public void afterChange(RequestContext context, PageBody changed) {

 System.out.println("afterChange: " + changed);

 };

 public boolean aboutToDelete(RequestContext context, PageBody in) {

 System.out.println("aboutToDelete: " + in);

 return true;

 }

 public void afterDelete(RequestContext context, PageBody in) {

 System.out.println("afterDelete: " + in);

 }

 public PageBody aboutToRead(RequestContext context, PageHeader in) {

 System.out.println("aboutToRead: " + in);

 return null;

 }

 public void afterRead(RequestContext context, PageBody result) {

 System.out.println("afterRead: " + result);

 }

}

Maintaining General-Purpose Maintenances

While most page maintenance classes are actually Entity-based (see Maintaining MO’s, below), it is
sometimes necessary to write a general-purpose maintenance class for some specific purpose.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 136

To develop such a Page Maintenance class, you need to create a hand-coded implementation class. This
class subclasses a class (to be generated) with the same name (and package) as your class, but with the

suffix "_Gen". For example, if your class is named SamplePageMaintenance, you'll subclass

SamplePageMaintenance_Gen. Your class must include an annotation providing the metadata that

describes the maintenance. This annotation is essentially a subset of the annotation for an entity page
maintenance (aka MO maintenance), but leaves out details specific to the entity model (also known as

the domain model). For example, the RowField annotation is not supported, since it links directly to an

entity.

Here is an example of a simple PageMaintenance annotation:

@PageMaintenance (secured = false, service = CILABCDE,

 body = @DataElement (contents = { @DataField (name = DATA_FIELD1,

overrideFieldName = FLD_NAME)

 , @DataField (DATA_VALUE1)}),

 actions = { "read"},

 header = { @DataField (name = INPUT_FIELD1, overrideFieldName = FLD_NAME)

 , @DataField (name = INPUT_VALUE1)},

 headerFields = { @DataField (name = CONTEXT_NAME1, overrideFieldName =

FLD_NAME)

 , @DataField (name = CONTEXT_VALUE1, overrideFieldName = FK_VALUE1)

 , @DataField (name = CONTEXT_NAME2, overrideFieldName = FLD_NAME)

 , @DataField (name = CONTEXT_VALUE10, overrideFieldName = FK_VALUE1)},

 modules = { "foundation"})

This example doesn't use any lists, but they are described and supported just like for entity
maintenances.. By definition, any lists here are unmapped--that is, they are not populated by the
framework from the entity model.

The supported actions are read, change, add, and delete. You can leave out the actions annotation

completely if you intend to support all four of these actions. Otherwise, it's useful to declare what methods
you'll support, so the framework can create an appropriate error message when an unsupported method
is invoked.

You must implement one or more of the following action methods.

protected DataElement read(PageHeader header)

protected void change(DataElement item)

protected PageHeader add(DataElement item)

protected PageHeader copy(PageHeader header)

protected void delete(DataElement item)

The body of the implementation is completely up to you. The available API is largely the same as for
entity page maintenance, e.g. you have a current session/transaction in which to execute queries, can

access the entity model, etc. You are expected to throw ApplicationError or ApplicationWarning

Java exceptions, as appropriate (e.g. via addError() and addWarning()), unless a serious or

unforeseen problem occurs, in which case you should throw a LoggedException, or simply let the

underlying Java runtime exception "bubble up".

The usual implementation of the read method would be to retrieve one or more parameters from the input

page header, and construct a DataElement holding the desired return values, including any lists (which

may be recursive).

For the change method, the usual behavior would be to examine the provided DataElement object,

perform some operation, and return a different data element to hold the "changed" values.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 137

The add method is similar to change in that it accepts an input DataElement, and returns the "newly

added" DataElement instance (which should be a different instance than the input).

The delete method accepts a DataElement, but returns nothing after the conclusion of the operation.

Maintaining MOs

Contents
Maintaining Maintenance Classes for MOs
Maintaining Maintenance Objects

Maintaining Maintenance Classes for MOs
For a new MO, use the Eclipse plugin to create the skeletal class structure for a new maintenance object
class.

For other services not linked to a MO, you will need to write a new maintenance subclass and create the
annotation.

To develop an Entity Page Maintenance class, you need to create a hand-coded implementation class.
This class must include an annotation providing the metadata that describes the maintenance. In addition,
the business entities that "back" the maintenance must already have been created.

Let's take a look at a simple maintenance annotation example to illustrate its properties:

@EntityPageMaintenance (

 program = CIPTBTCP,

 service = CILTBTCP,

 entity = batchControl,

 copy = true,

 body = @DataElement (

 contents = {@DataField (DEFAULT_FOR_FLG)

 , @RowField (name=foo, entity=batchControl)

 , @ListField(name=BCP, owner=foo, property =

parameters)

 }

),

 lists = {@List (name = BCP, size = 50, copy = true,

 program=CIPTBCPL, constantName="CI-CONST-CT-MAX-

FIFTY-COLL",

 body = @DataElement (contents = {@RowField

(batchControlParameter)}))

 }

)

First we see that this tag is an EntityPageMaintenance, meaning it is a page maintenance for a single
entity root object. Here it is a batch control, but account, person, premise, etc. would also be examples.
The idea here is that, by default, the maintenance framework tries to read, save, and delete the tree of
data that starts with an instance of batch control. (Another kind of page maintenance is
EntityListPageMaintenance, where you maintain a list of entities without a single root object. It has slightly
different attributes than those discussed below.)

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 138

Next we list some attributes of the top-level annotation. The required program attribute gives the

equivalent COBOL page module name that we're replacing. That's going to become important later when
we create COBOL stubs to call back into Java from COBOL code that wants to call this maintenance,
which will no longer be available as a COBOL implementation.

The service is the name of the page service that we are implementing. This is required so the framework

knows that it should route requests for this service directly to this java class rather than invoking
Jolt/Tuxedo/COBOL.

The required entity property names the entity that this maintenance uses for its root. It should match an

entity that is defined within the system, else the maintenance obviously can't work!

The copy attribute signals that certain copy fields should be defined in the service. Making the framework

explicitly aware of these fields is preferable to "dumb" coding of these fields.

Now we hit the two major structural elements, the body and lists attributes.

The body attribute always resolves to a DataElement, which is simply a way to organize the collection of

"rows", "loose fields", and lists that belong to a particular level in the service data structure. These

contents are simply held in the contents array, which here starts with a simple datafield,

DEFAULT_FOR_FLG. Note that you simply reference the field name, and the generator uses the field

metadata to infer its type and size. The next element of the contents array in this example is RowField.

This is essentially a way of naming a reference to the properties of a single entity/table, including its

language fields, if appropriate. You need to specify its entity and name. Here I use a dummy name,

"foo". Finally we have a ListField, which consists of a reference to a list structure that is defined in a

separate tag (lists). Here we merely name the referenced list by name, provide the owner which

matches the name of the "parent" row, and the property, which tells the system how to access the list

from the parent. Here we deduce that the getParameters() method on a batch control will yield the

desired child list.

Contents
List Maintenances
Maintenance List Filters
List Maintenance Get More

List Maintenances
Writing a new list maintenance class requires you to create a new class, that provides an annotation with
metadata, and lets you implement any user exits you need.

The class should subclass a generated class with the same name, but with suffix _Gen.

The annotation is @ListService, and is the same annotation structure that is used for lists within

PageMaintenance. The service name should end with "L".

If there are child lists, you need to declare them with the lists annotation, just like for PageMaintenance.

You should specify any query criteria (from clause, where clause, order by clause) in the List Service
annotation, see MaintenanceListFilter on how to implement that.

The default test superclass simply tests that at least one result row is returned.

Here is an example for testing this list maintenance:

package com.splwg.base.domain.batch.batchRun;

import com.splwg.base.api.service.ListHeader;

import com.splwg.base.api.testers.ListServiceTestCase;

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 139

import java.math.BigInteger;

public class ThreadListInquiry_Test

 extends ListServiceTestCase {

 //~ Methods ---

 public String getServiceName() {

 return "CILTBTHL";

 }

 /**

 * @see com.splwg.base.api.testers.ListServiceTestCase#getReadListHeader()

 */

 protected ListHeader getReadListHeader() {

 ListHeader header = new ListHeader();

 header.put("BATCH_CD", "TD-BTERR");

 header.put("BATCH_NBR", BigInteger.valueOf(1));

 header.put("BATCH_RERUN_NBR", BigInteger.valueOf(0));

 return header;

 }

}

Maintenance List Filters
A given list on a maintenance may not need to return all the data in the list. Instead, a filter can be applied
to return a subset of the data. In COBOL this was accomplished easily enough, as the developer always
wrote the SQL to retrieve the list. In Java, you get the main list by default. And now, you can modify the

SQL that will be used for the list retrieval by writing HQL to filter the list. This HQL goes into the @List

annotation's "fromClause" and "whereClause" properties. This is written as an HQL filter HQL, where the
main table (and its language alias, if one exists) already "exists" in the background, and can be
referenced by the alias "this" (and "thisLang" for the language row). New entities can be added to the
‘from’ clause, and a ‘where’ clause can be specified. A select clause should not be specified (instead
results can be added in the bindList user exit - see below), and neither should an order by (the order by is
specified separately).

Additionally, if there are extra values that can be retrieved via a join, the loose data fields can be specified

as a @ListDataField, with an hqlPath property specifying the hql path to select the result. And finally,

you can bind parameters and also specify extra results into the query in the bindList user exit specific for
the given list.

List Maintenance Get More
When a list is too large to send to the UI in one shot, there is the ability to "get more" rows. In COBOL,
this was done explicitly through the developer writing the SQL to retrieve all the rows, after some given
input. This depended on the retrieved order, and could be buggy and complex when multiple fields were
used in the order by.

In the Java case, a @List can simply be told its order by (separate from any other Maintenance List Filter
properties). Everything else is automated by the FW. There is no need to add special LAST_ fields to the
annotation/service, nor even to add the parent's PKs.

The order of a maintenance's list can be given in two ways:

 The order can come from the domain _Impl class. However, this is limited as it may only use fields on
the entity table itself (not even language properties).

http://sf-morpheus/ccb/ListDataField

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 140

 The order can be specified on the @List annotation as a string "orderBy", written in hql form, using
the special entity alias "this" to refer to the row (and "thisLang" to refer to the language row if one
exists), and including any other aliases available from the fromClause property.

The list will retrieve rows in chunk sizes given by the size property on the @List annotation.

An example of using this filtering to join extra information is available on the class

MaintenanceObjectMaintenance. Another example on a ListService, is available on the class

NavigationOptionMenuList.

Besides using a MaintenanceListFilter and knowing how to deal with list get mores, lists in a page
maintenance will automatically retrieve (and cache) the language row associated with the main row of the
list. This helps the n+1 select problem (only a single SQL is issued, instead of the main one, plus an extra
one for each of the rows' language row), and also provides the ability to have short hand for the orderBy
property of a list. If the order is simply by a language property, then you can reference it by

thisLang.property, without having to supply a filterClause.

Maintaining Maintenance Objects
A maintenance object is a group of tables maintained together within the system.

For detailed information about Maintenance Objects, please refer to user document Framework
Administration, Database Tools, Defining Maintenance Object Options

Maintaining Database Meta-data

Contents
Maintaining Fields
Maintaining Tables

Maintaining Fields
Field represents a column on a database table. A Field must exist before it can be defined on a Table.

For detailed information about fields, please refer to user document Framework Administration, Database
Tools, Defining Field Options.

Maintaining Tables
Table represents a database table used to store data or a database view.

For detailed information about menus, please refer to user document Framework Administration,

Database Tools, Defining Table Options.

Maintaining Java Classes

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 141

Contents
Maintaining Business Entities
Maintaining Business Components
Maintaining Maintenance Classes, including collections

Maintaining Business Entities

Contents
Business Entity Background
Persistent Classes
Creating the Implementation Class
Developing Change Handlers

Business Entity Background
A central framework concept is the Business Entity that allows for persistent data in the database to be
interacted with as objects. In general there is at least one Business Entity class corresponding to each
table in the system. Likewise an instance of one of these classes corresponds to a row in the database.
Here are some things to remember about Business Entities:

 When you create a new instance of a Business Entity and the current transaction commits, a new row
is committed to the database. Likewise when instances are deleted or changed, corresponding
deletes or updates are performed on the database. There is no concept of a transient entity in our
architecture; application logic is dealing with only persistent objects.

 When the actual insert, update and delete statements are issued to the database is controlled by the
framework and may be deferred for performance reasons. The framework is, however, expected to
issue DML with sufficient timeliness to maintain data consistency so that application code need not
concern itself with when statements are actually executed.

 When you use the query language (HQL) the returned objects are Business Entities (or scalars in the
case of "count" or other aggregate functions). These objects may be modified by application code
and those changes will be persisted to the database.

 The way you change the properties on entities is via the Data Transfer Objects corresponding to the
entity.

Contents
How do I create a new Business Entity instance?
How do I change values on an existing Business Entity instance?
How do I delete Business Entity instance?

How do I create a new Business Entity instance?

Creating a new entity is equivalent to inserting a new row into the database. The first thing you need is to
have the framework create a new instance of the correct Data Transfer Object for you so that you can set
properties for the new entity instance. This can be done via one of the standard framework methods
accessible from the abstract superclasses of classes holding business logic. This method can be told
which DTO to create by passing the business interface class for the entity. In the example below, we are
creating a new Person_DTO.

Person_DTO personDTO = (Person_DTO) createDTO(Person.class);

Alternatively, if you find that you have a reference to an Id class, the appropriate DTO can be created via
a method generated onto that Id class.

Person_Id aPersonId = new Person_Id("123467890");

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 142

Person_DTO personDTO = aPersonId.newDTO();

Now let's set some values for the new Person instance:

personDTO.setStateId(state.getId());

personDTO.setLanguageId(language.getId());

Finally we try to create a persistent instance based on these values. This is equivalent to doing the insert
against the underlying table except that: (1) required validation occurs and (2) the timing of actual insert
occurs at the discretion of the framework.

Person person = (Person) createBusinessEntity(personDTO);

That's it. When the current transaction is committed, a new person will be added to the database.

How do I change values on an existing Business Entity instance?

There are really three steps:

 Ask the existing entity for its DTO.

 Change the appropriate values on the DTO.

 Call setDTO() on the entity instance.

Person_DTO dto = person.getDTO();

dto.setAddress1("invalid value");

person.setDTO(dto);

Necessary Change Handlers will fire to validate the change to this “person” object as well as other
cascading events as specified in the entity’s change handlers.

How do I delete Business Entity instance?

There are a number of ways to delete entities.

1. Delete an instance that you have a reference to:

person.delete();

2. Delete an instance where you have only its Id:

delete(personId);

3. Delete the results of a query

Query query = createQuery("from Person person where exists ("

 + " from PersonName as perName where person = perName.id.person and "

 + "perName.isPrimaryName = :systemBool and perName.entityName "

 + "like :name)");

 query.bindLikableString("name", "ABC", 64);

 query.bindBoolean("systemBool", com.splwg.base.api.datatypes.Bool.TRUE);

 long rowsDeleted = query.delete();

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 143

Persistent Classes
Behind the scenes, the persistence and validation mechanisms are quite complex and require the
collaboration of many classes and pieces of configuration data. Thankfully, most of this complexity is
hidden from the application programmer. Still, there are various classes that the application programmer
will deal with:

 Framework Classes that act as an application programming interface. These API classes are directly
referenced by application code.

 Generated Classes that are created for each business entity that serve two purposes:

 They provide convenient methods (like property “getters” and “setters”) based on the structure of
the specific entity, it’s fields, child collections and key structure for example.

 They are necessary for the persistence mechanisms to work correctly.

 Handcoded classes that the application programmer is expected to write. Many of the handcoded
classes are read by the artifact generator so the framework can “wire up” the handcoded functionality.

Some examples of the above classes are shown below.

Creating the Implementation Class
There is very little that needs to be done by application developers to create a basic business entity. In
addition to the setup of the CI_MD_* tables describing the entity and its constraints only an
implementation class (or "Impl" for short) needs to be added. In this case a developer added
Person_Impl. The following is a simple example of an "Impl" class for the Person entity.

/**

 * @BusinessEntity

 * (tableName = CI_PER,

 * oneToManyCollections = { @Child(collectionName = names,

 * childTableName = CI_PER_NAME,

 * orderByColumnNames = { SEQ_NUM })

 * }

 *)

 */

public class Person_Impl

 extends Person_Gen {

 /**

 * @return the UI Display "info" for this person

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 144

 */

 public String getInfo() {

 return "PrimaryName: " + getPrimaryName().getInfo();

 }

}

Important parts of the implementation class are described below:

 The implementation class name must end with the suffix “_Impl”. For example, if the entity has
a name of “person” then the implementation class name of “some.package.Person_Impl”. It also
means that the generated business interface will have a name of “some.package.Person”.

 A Class Annotation which declares:

 What table this entity represents

 What the owned-child tables are and what they should be called

 Other information. Please see the BusinessEntityAnnotation class for more details.

 The class extends an abstract superclass having the suffix of “_Gen”. Continuing the example
of an entity named “person”, the implementation class would extend a not-yet-created abstract
superclass named “some.package.Person_Gen”. This superclass is created by the artifact generator
based on metadata about the table and contains:

 Getter methods for properties including parent objects and collections

 The getDTO() and setDTO(...) methods that allow for properties to be changed

 Access to standard framework methods like createQuery(...)

 Business methods. Any hand coded public methods are automatically exported onto the generated
business interface (i.e. “some.package.Person”). Client code can then access the added business
method as follows:

 Person aPerson = some logic retrieving a person instance

 String thePersonsInfo = aPerson.getInfo();

 Constants. Any hand coded public static final variables are automatically exported onto the
generated business interface. This will be useful for constants related to the entity.

Having created a new entity, it is likely that validation rules and other behaviors should be added to it.
Please see Adding Change Handlers for more information.

Developing Change Handlers
The creation of Business Entities allows business logic to interact with rows in database tables as objects
and in doing so allows business methods to be invoked on those objects to perform some business
function. Quite another thing is how the entities react to proposed changes in their state. Outside callers
have no business being exposed to the internal validations and cascading state changes within the
objects that they interact with. Because of object encapsulation, they should not be exposed to such
issues. Nonetheless, there needs to be a way to program the internal logic of entities. This is the reason
for Change Handlers, to provide for objects to react to proposed changes in their state.

Change Handlers are classes that add behavior to entities. This behavior takes two forms.

 Validation rules. This allows for proposed changes to be validated against business rules. These
rules are expected to be “side effect free” meaning that the validation does not change the state of
the system. By calling side effect free validations only after all changes to entity state have been
performed, the framework can avoid many complex scenarios where invalid data can “slip past”
validations.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 145

 Cascading change logic. This allows changes to this entity to cause changes to other entities.

Contents
Creating the Change Handler Class
Testing the Change Handler Class
Validation Rules

Creating the Change Handler Class

A Business Entity may have more than one Change Handler. The framework will call each handler
associated with an entity when an attempt is made to modify the state of the underlying entity. The
following are the important parts of a Change Handler class:

 The class should extend the AbstractChangeHandler class and have a class name ending with
“_CHandler”.

 The @ChangeHandler class annotation. This tells the framework which entity to attach the change
handler to at runtime.

 Implement any “handle” methods. These are methods that can implement any cascading effects of
the proposed change to the entity’s state.

 Construct Validation Rules that are returned by public static methods on the change handler class.
There should be one static method per rule. The reason for exposing these methods is to facilitate
testing (see below). Static methods are used instead of static variables to prevent timing problems
associated with the static initialization of static variables.

 Return an array of the rules created above via the getValidationRules() method. The framework
invokes this method at runtime to retrieve the rules.

 Make sure to run the artifact generator and rebuild source code after adding a Change Handler or
modifying its annotation.

Testing the Change Handler Class

When adding behavior to an entity, it is desirable to do the following:

 Break the rules into modular pieces that can be independently maintained and tested.

 Test that each behavior works by creating a JUnit test for each distinct behavior.

The following steps are recommended when adding new change handlers so that the additional behavior
is sufficiently tested.

 Add each rule to the change handler at once using instances of the PlaceHolderRule class. Use an
appropriate RuleId and Description as self-documentation of what the rule is supposed to do.

 Add a new test class by extending AbstractEntityTestCase. This class should reference the change
handler being added and will insure that each rule is violated by at least one test. The test class
name should end with “Test”.

 Run the test class as a JUnit test. The test class should complain that there was at least one rule that
was not violated by the test class. For the rule that was not violated, add a test method to the test
class and also add the “real” validation logic to the change handler class. Try executing the test class
again. Continue implementing more test methods and rules until all rules are tested and the JUnit
class completes successfully. Below is an example, test method for a rule that tests both a
successful change and an unsuccessful change. It is important to insure that the validation error is
thrown by the actual rule being tested.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 146

public void testAddressOneLabelRequiredIfAddressOneIsAvailable() {

 //pass

 Country country = (Country) createQuery(

 "from Country country").firstRow();

 Country_DTO countryDto = country.getDTO();

 country.setDTO(countryDto);

 //fail

 countryDto.setAddress1Available(Bool.TRUE);

 countryDto.setLanguageAddress1("");

 try {

 country.setDTO(countryDto);

 fail("A validation error should have been thrown");

 } catch (ApplicationException e) {

 verifyViolatedRule(Country_Chandler

 .addressOneLabelRequiredIfAddressOneIsAvailable(), e);

 }

 }

 Add other test methods to test “handle” methods on the change handler as well as business methods
that may have been added.

Validation Rules

Validation rules are the mechanism for describing to the runtime system how it should validate business
entities. There are a few important characteristics of these rules:

 The coding style is declarative. That is, every attempt has been made so the programmer specifies
what makes data valid, not how or when the validation should take place.

 Only in the case of "custom rules" does the programmer need to build the step-by-step logic
specifying how the validation should take place.

 Validation rules are side-effect free. That is, they cannot change the persistent state of the system.
This insures that all the validations are performed on the complete set of changes. Likewise, it allows
for the startChange()/saveChanges() logic to safely defer the firing of rules until the end of the
coherent set of changes.

Contents
The Rules
Custom Rules
Conditions

The Rules

A number of useful rules are provided in the interest that the application programmer can use them with a
minimum of programming. These are classes that implement ValidationRule and can be used by
application logic:

 ProtectRule will protect one or more properties on an entity.

 RequireRule will require that a property be populated.

 AllowRule allows a value to be populated.

 AllowAndRequireRule both allows and requires that a property be populated.

 DecimalRule provides some common validations against decimal data types.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 147

 CustomRule will create a rule out of a CustomValidation class implementing logic that just cannot
be handled by existing rules.

 RestrictRule will restrict a property to a set of values

Each of the rules above provides standard rules that represent similarly configured rules that are used
repeatedly in the system. These standard rules can be created via static "factory" methods on the rules
themselves. Consider the following standard rule:

/**

 * Protect the dependant property when the primary property is equal to the

supplied lookup value.

 *

 * @param ruleId a unique ruleId

 * @param description a description

 * @param primaryProperty the property that the condition depends on

 * @param dependantProperty the property that is protected when the condition is

true

 * @param primaryLookupValue a {@link Lookup} value that the primary property must

equal for the dependant property

 * to be protected

 * @return a new rule

 */

public static ProtectRule

 dependantPropertyWhenPrimaryMathesLookup

 (String ruleId,

 String description,

 SingleValueProperty primaryProperty,

 SingleValueProperty dependantProperty,

 Lookup primaryLookupValue)

What this rule does is prevent one property from being changed (the "dependant" property) when another
property (the "primary" property) matches a certain value. An example would be the "freeze date/time
cannot be changed when the status is 'frozen'". In this case, the dependant property would be the freeze
date/time and the primary property would be the status. The lookup value of "frozen" would be passed in
as the lookup value.

Custom Rules

There are situations when custom rules need to be coded. These are for situations too complex for a
declarative rule. The process is as follows:

 Create a class that extends AbstractCustomValidation. Implement one or more of the abstract
methods corresponding to various "events" that may occur with respect to the underlying entity.

 Within any change handler requiring this rule, instantiate a CustomRule passing in the class created
above.

For details on the "events" that can be processed by the custom validation, please refer to the JavaDocs.

When coding a CustomValidation that will be used by a CustomRule. It is important to understand when
these events fire.

 Eager Validations fire "immediately" when the underlying entity is changed (either via delete,
setDTO(), or createEntity()).

 validateAdd() fires only on an add

 validateChange() fires only when an existing entity is changed

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 148

 validateAddOrChange fires in addition to either validateAdd() or validateChange()

 validateDelete fires when the entity is being deleted

 validateRegisteredChange() fires when "some other object is changed" (like a child). This can be
any random entity instance that feels like notifying you regarding a change of state or, more
commonly, the framework automatically registers a change when a child collection is
manipulated. Your custom code can determine if a change has been made to a child it's
interested in by calling the getChangeToList() method on the change detail passed in. You just
pass in the class of your child collection and it passes back changes, if any.

 Lazy Validations fire when a "coherent set of changes" is complete.

 validateSave() can be used to implement validations that needs to be performed "at the end" of
some set of changes. By default a set of changes is both started and saved within individual calls
to setDTO or createBusinessEntity, etc. However, this can be controlled programmatically by
calling the startChanges() and saveChanges() methods that are available from within all business
objects (change handlers, entities, components, etc). Any type of change (add, change, deleted,
register change) will trigger validateSave().

Conditions

The rules wouldn't be very useful if all you could do was always protect or require properties. This
behavior is usually based on conditions. Rules take as input one or more Conditions (i.e. objects
implementing the Condition interface). Right now, there are several conditions that can be used:

 Equals. This condition can compare properties to each other or to constants (lookup values, Strings,
etc). Likewise, the size of a collection can be compared using Equals (i.e. determine personNames'
size equals 0 would mean there are no names for a person). Finally, null values can be tested using a
special constant value "Constant.NULL".

 Not. This is the basic boolean operator that can change the value of other conditions.

 And. This is the basic boolean operator that takes two child condtions, and return true if each of them
are true. This is evaluated "lazily" and won't even evaluate the second condition if the first is false (a
performance enhancement).

 Or. This is the basic boolean operator that takes two child conditions, and return true if either of them
are true. This is evaluated "lazily" and won't even evaluate the second condition if the first is true (a
performance enhancement).

 GreaterThan / GreaterThanOrEquals. This evaluates whether one property/constant is greater than
(or greater than or equal to) to another property/constant.

 LessThan / LessThanOrEquals. This evaluates whether one property/constant is less than (or less
than or equal to) to another property/constant.

 Contains. These are conditions for a collection of children- at least one element has condition x, at
most 2 elements match condition y, etc). The child condition's properties should be referenced from
the point-of-view of the child row.

Each of these conditions is accessible from the corresponding property or condition. There should be no
reason in normal development to use the constructors for the conditions above. Instead, you could say,
for instance

Condition isPrimaryName = PersonName.properties.isPrimaryName.isTrue();

or

Condition isAlias

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 149

 = PersonName.properties.nameType.isEqualTo(NameTypeLookup.ALIAS);

or

 Condition greaterThan

 = PersonName.properties.sequence.isGreaterThan(BigInteger.ZERO);

or

Condition hasOnePrimaryName

 = Person.properties.names.containsAtLeastOne(isPrimaryName);

or

Condition notAlias = isAlias.not();

Maintaining Business Components
Business Components are business objects having two important characteristics.
 They are non-persistent holders of business logic. That is, they are the place to put business logic

not tied to a single business entity instance (i.e. a single "Account" or "Person".) This makes them
analogous to "common routines".

 When allowed, implementations of business components may be replaced at runtime by custom
classes implementing the same business interface. An example of this includes "info" logic.

Contents
Creating Business Components
Component Replacement
Calling Components

Creating Business Components
Much like Business Entities, it is necessary to create an implementation (*_Impl) class containing the
actual logic that is then processed by the artifact generator. Below is an example that would be created
by hand:

/**

 * Component used to query for {@link Person} instances based on various

 * predefined criteria.

 *

 * @BusinessComponent

 * (customizationReplaceable = false)

 */

public class PersonFinders_Impl

 extends GenericBusinessComponent

 implements PersonFinders

 /**

 * @param nameType a name type

 * @return count of names by name type

 *

 * @BusinessMethod (customizationCallable = true)

 */

 public int findCountByNameType(Lookup nameType) {

 Query query = createQuery

 ("FROM PersonName name where name.nameType = :type");

 query.bindLookup("type", nameType);

 return (int) query.listSize();

 }

}

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 150

This example shows a "finder" component that is responsible for holding queries related to the "person"
entity. These queries are not related to any particular person because, in that case, they would rightfully
belong on the entity implementation class itself. Our (cooked up) example shows a single method that
returns a count of PersonName instances by name type.

Let's look at various parts of the component:

 @BusinessComponent class annotation.

 customizationReplaceable attribute specifies whether or not customers can replace this
component at runtime. The default is false. If a component is "replaceable", its methods are
assumed to be "customizationCallable".

 GenericBusinessComponent is extended which gives this class access to framework methods.

 PersonFinders is implemented. This is the name of the generated business interface. Any
customized replacement of the business component would implement this interface as well.

 The business method findCountByNameType. For the method to be exported to the business
interface (and therefore callable by other business objects), it must be public.

 @BusinessMethod is an optional method-level annotation.

 customizationCallable specifies that this method is part of the "supported" API. That is, our
customers are entitled to call this method from their customizations and therefore, we must
change this method with great reluctance in future release.

Component Replacement
Business Components provide a simple extension mechanism where base-package code can be made
available to be replaced by customizations. For this to take place, two things must take place:

 A component is added as described above with the customizationReplaceable annotation
attribute set to true.

 A replacement component is created that implements the business interface of the original
component and also sets the replacementComponent attribute to true.

An example, replacement of the PersonFinders component is shown below. Component implementations
are registered in the same order as the "application stack", that is "base" followed by "ccb" then followed
by “cm”. After the component is defined in one application, derived applications (higher on the stack) can
replace the implementation.

package com.abcutilities.cis.customizations.person;

/**

 * @BusinessComponent

 * (replacementComponent = true)

 */

public class CustomizedPersonFindersImpl

 extends GenericBusinessComponent

 implements PersonFinders {

 public Integer findCountByNameType(PerOrBusLookup nameType) {

 ... customized code ...

 }

 ...

}

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 151

Calling Components
Business Components are accessed via their business interfaces. Following is an example of how to call
the above component from some other business object:

PersonFinders finders = PersonFinders.Factory.newInstance();

int count = finders.findCountByNameType(NameTypeLookup.constants.PRIMARY);

logger.info(count + " primary names found");

Maintaining Maintenance Classes, including collections

Maintaining Services
This defines services available in the system. These include user interface services as well as stand-
alone XAI services. Use this transaction to introduce a new user interface or stand-alone XAI service.

For detailed information about service programs, please refer to user document Framework
Administration, XML Application Integration, Setting Up Your XAI Environment, Setting Up Your Registry,
Service Program.

Maintaining Foreign Key References
You need to setup foreign key references if you have characteristics whose valid values are defined in
another table (i.e., you use “foreign key reference” characteristic types).

For detailed information about foreign keys, please refer to user document Framework Administration,

Defining General Options, Setting Up Foreign Key Reference Information.

Maintaining Lookup Tables
Some special fields are defined as “lookups” in the system. These fields have a predefined set of values
for which language-dependent descriptions are supplied to be displayed in the online system.

For detailed information about lookups, please refer to user document Framework Administration,

Database Tools, Defining Look Up Options.

Maintaining Navigation Keys
Each location to which a user can navigate (e.g., transactions, tab pages, tab menus, online help links,
etc.) is identified by a navigation key. A navigation key is a logical identifier for a URL.

For detailed information about navigation keys, please refer to user document Framework Administration,

User Interface Tools, Defining Navigation Keys.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 152

Maintaining Navigation Options
Every time a user navigates to a transaction, the system retrieves a navigation option to determine which
transaction should open. Many navigation options are shipped with the base package and cannot be
modified as these options support core functionality, but you may need to add additional navigation
options to support your specific business processes.

For detailed information about navigation options, please refer to user document Framework
Administration, User Interface Tools, Defining Navigation Options.

Maintaining User Interfaces
The configuration tools allow you to extend the front-end user interface. The main component of this is a
UI Map, supported by Business Objects and Business Services.

For detailed information about user interfaces, please refer to user document Framework Administration,

Configuration Tools.

Maintaining Menus
This metadata represents the root of a menu “tree”. A menu contains a list of menu “lines”, which, in turn,
contains a list of menu “items”. Lines can define navigation keys and/or associated actions, or further
submenus.

For detailed information about menus, please refer to user document Framework Administration, User

Interface Tools, Defining Menu Options.

Maintaining Application Security
Application security defines how a particular application service is used, namely:

 Which user groups can access the service

 What actions may be performed within the service

For detailed information on how to define application security, please refer to user document Framework
Administration, Defining Security & User Options.

Maintaining UI Components (Translation)
You can use the override fields on some of the system data tables to modify and customize the labels,
buttons, titles, tab names and messages on the standard user interface. This may be helpful to correct
minor interface inconsistencies and inappropriate translations as well as to provide translations for any
single fixes that you may have applied to your environment. (Single fixes release without translation, so
you may need to translate any labels and descriptions for new UI components or messages.)

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 153

You can manually modify the descriptions or translations of the following items:

 Dialog titles

 Transaction titles and tab labels

 Field labels on tab pages

 Button labels

 Messages

Contents
Flushing Server and Client Caches
User Language
Modifying Dialog Titles
Modifying Transaction Titles and Tab Labels
Modifying Field Labels on Pages
Modifying Button Labels
Modifying Messages

Flushing Server and Client Caches
A great deal of information in the user interface changes infrequently, including field labels, menu items,
and drop down lists. In order to avoid accessing the database every time this type of information is
required by an end-user, the system maintains a cache of static information on the web server.
Additionally, depending on how you set up the preferences on your Web browser, these items may also
be cached in the browser.

After you make a change to a user interface item, such as a field label, you may need to flush the
appropriate cache on the Web server as well as the client.

For information about flushing caches on the Web server, refer to the Caching Overview section in the

Defining General Options chapter of the Oracle Utilities Application Framework Administration

documentation.

User Language
You must log in as a user ID that has the same language as the items for which you want to modify the
description. For example, if you want to modify a French message, you must log in with a user ID that is
set to use French. The instructions in the following sections assume that you are logged in with a user ID
that has the appropriate language set.

Modifying Dialog Titles
A dialog can be a search window or dialogs that provide additional functionality, such as the Start / Stop
Confirmation Dialog or the Generate Bill dialog.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 154

Dialog Title

To modify a dialog title:

 Navigate to and open the dialog with the title that you want to change.

 Right-click near the top of the dialog and select View Source from the pop-up menu.

View Dialog Source

Note. Many dialogs and windows have multiple source files; so if you can’t locate the field you are

looking for, try right clicking in a different area (closer to the label you want to modify). For example, if

you right-click in the grid area of the Person Search illustrated above, you will open a different source file.

If you already know the name of the field you want to modify, you can skip this step.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 155

 In the displayed source file, locate the field name that has the value you want to modify. The field for
the dialog title is clearly labelled and the current value of the field is displayed after the hyphen.

Title Field Name

 To modify the field override via the application, navigate to Admin Menu - Database – Field in the
Oracle Utilities Application Framework application.

 When the field search dialog appears, enter the name of the field as it appears in the source.

 Enter an Override Label with a title description to suit your needs and save your changes.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 156

Database - Field

 Flush the server and browser caches and verify that the new dialog title appears correctly.

Modifying Transaction Titles and Tab Labels
You can modify the transaction title and or the tab labels that appear on a transaction.

Transaction Title and Tab Labels

To modify the transaction title and/or tab labels:

 Navigate to the transaction that has the title and/or tab name you want to modify.

 Right-click in the empty area to the right or left of the tab bar and select View Source from the drop-
down menu.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 157

View Transaction Title/Tab Source

Note. Many dialogs and windows have multiple source files; so if you can’t locate the field you are

looking for, try right-clicking in a different area (closer to the label you want to modify). To view the source

for the transaction title and tab bar, right-click directly to the right or left of the tab bar. If you already

know the name of the field you want to modify, you can skip this step.

 In the displayed source file, locate the field name that has the value you want to modify. The fields
for the transaction titles and tab labels are clearly labelled and the current values of the fields are
displayed after the hyphens.

Transaction Title and Tab Field Names

Subsystem Name. If you modify the subsystem field description, your changes will appear on every

transaction that is part of the subsystem.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 158

 To modify the field override via the application, navigate to Admin Menu - Database – Field in the
Oracle Utilities Application Framework application.

 When the field search dialog appears, enter the name of the field as it appears in the source.

 Enter an Override Label with a title or tab description to suit your needs and save your changes.

Database - Field

 Flush the server and browser caches and verify that the new field label appears correctly.

Modifying Field Labels on Pages
You can modify field labels that appear on transactions.

Field Labels

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 159

Field labels may be reused! A field label may be reused on multiple transactions and tabs. If you
override the field’s label, your changes affect all pages and transactions on which that field label appears.

To modify the field labels that appear on transactions:

 Navigate to the transaction that has the field name you want to modify.

 Right-click in an empty area near the label and select View Source from the drop-down menu.

View Page Source

Note. Many dialogs and windows have multiple source files; so if you can’t locate the field you are

looking for, try right-clicking in a different area (closer to the label you want to modify). If you already

know the name of the field you want to modify, you can skip this step.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 160

 In the displayed source file, locate the field name that has the value you want to modify. The fields
for the labels are clearly identified and the current values of the fields are displayed after the hyphens.

Field Label Names and Values

Table-specific Fields. Note that some labels may be specific to the table on which they appear, while

other labels are generic throughout the application. If a field label is specific to a table, the table name

appears before the $ in the field list.

 If the label is table-specific, navigate to Admin Menu - Database - Table in the Oracle Utilities
Application Framework application and search for the name of the table.

Search for Table

 Navigate to the Table Field tab and scroll to the field whose label you wish to modify.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 161

Table Field

 Enter an Override Label to suit your needs and save your changes.

 If the label is not table-specific, navigate to Admin Menu - Database - Field and search for the field
name.

 When the field appears, enter an Override Label to suit your needs and save your changes.

Database - Field

 Flush the server and browser caches and verify that the new field label appears correctly.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 162

Modifying Button Labels
Button labels are just like field labels; they are stored in the field table. You can modify button labels just
like you can field labels.

Button Labels

To modify button labels:

 Navigate to the transaction that has the button label you want to modify.

 Right-click in an empty area near the label and select View Source from the drop-down menu.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 163

View Page Source

Note. Many dialogs and windows have multiple source files; so if you can’t locate the field you are

looking for, try right clicking in a different area (closer to the label you want to modify). If you already

know the name of the field you want to modify, you can skip this step.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 164

 In the displayed source file, locate the field name that has the value you want to modify. The fields
for the labels are clearly identified and the current values of the fields are displayed after the hyphens.

Field Label Names and Values

 Navigate to Admin Menu - Database - Field in the Oracle Utilities Application Framework application
and search for the field name.

 When the field appears, enter an Override Label to suit your needs and save your changes.

Database - Field

 Flush the server and browser caches and verify that the new field label appears correctly.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 165

Modifying Messages
You can modify the message text and description for messages, such as error, warning and validation
messages. The following example shows a validation message:

Message

To edit messages, you need to know the message category and number. The category is the part of the
message number that appears before the comma. In the example message above, the category is 3.
The number is the part of the message number that appears after the comma. In the example message
above, the message number is 253.

To edit the message text or description:

 Navigate to Admin Menu - System - Message.

 Specify the message category in the search dialog.

 Specify the starting message number and click the search icon.

System - Message

 Click the go to button for the message you want to edit. You are transferred to the Details tab for that
message.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 166

Message Details

 Enter the customer specific message text and description as appropriate for your needs.

Message Variables. Messages may have one or more variables. Variables are indicated by a percent

sign (%) followed by a number. A value is substituted for the variable before the message is displayed.

Do not modify the message variables and make sure that your custom message contains the same

number of variables as the original.

 Save your changes.

If possible, you can attempt to verify that the message was changed correctly. However, it is not always
easy to determine and duplicate the situations where a specific message may appear.

For more information about system messages, please refer to user document Framework Administration,

User Interface Tools, Defining System Messages.

Plugging in Algorithms
The following will illustrate the steps to create a new plug-in algorithm. This example will create a new
Adhoc characteristic validation algorithm that is very similar to a delivered plug-in.

Contents
Creating Algorithm Spot Implementation Class
Add Algorithm Type
Add Algorithm
Create References to New Algorithm

Creating Algorithm Spot Implementation Class

Contents
Review Algorithm Spot Definition
Create Algorithm Component Implementation

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 167

Review Algorithm Spot Definition
The algorithm spot definition identifies the purpose of the algorithm spot and the required methods per
implementation. It may also help to look at existing implementations of the relevant algorithm spot.

The relevant algorithm spot in this example is AdhocCharacteristicValueValidationAlgorithmSpot in
com.splwg.base.domain.common.characteristicType.

Create Algorithm Component Implementation
Copy the existing numeric validation plug-in "AdhocDateValidationAlgComp_Impl and name it as "
AdhocDateAgeValidationiiiAlgComp_Impl" where iii is your initials.

Modify the annotation to replace the last Date Format soft parameter with two decimal parameters
(ageFrom and ageTo).

In addition, modify the validateDateInRange method to check that the age (given date less the system's
current date / 365.25) will be greater than the soft parameter ageFrom (if non-zero), and will be less than
the ageTo (if non-zero). Make sure that negative numbers are allowed so that this plug-in can be used to
compare against some future "expiration date" kind of scenarios.

Generate and build the java classes.

The various "Adhoc characteristic value validation" algorithms that come with the Oracle Utilities Software

Development Kit are good references for algorithm plug-ins.

Add Algorithm Type
Add a new algorithm type copying most of the entries for ADHV-DTD:

 Algorithm Type: CM ADHV-iiiJ where iii is your initials.

 Description: Validate Date Field (Age)

 Long Description: <Copy ADHV-DTD description here>. The Parameters From Age and To Age
are optional decimals. The algorithm will check the "age" (current system date less the
characteristic date / 365.25) is not less than the From Age (if non-zero) and is not more than
To Age (if non-zero).

 Algorithm Entity: Char Type - Adhoc Value Validation

 Program Type: Java

 Program name:
com.splwg.cm.domain.common.characteristicType.AdhocDateAgeValidationiiiAlgComp where
iii is your initials.

 Parameters:

 Sequence: 1, Parameter: From Date, Required: Not Checked

 Sequence: 2, Parameter: To Date, Required: Not Checked

 Sequence: 3, Parameter: Date Format1 (Stored Format), Required: Checked

 Sequence: 4, Parameter: Date Format2, Required: Not Checked

 Sequence: 5, Parameter: Date Format3, Required: Not Checked

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 168

 Sequence: 6, Parameter: Date Format4, Required: Not Checked

 Sequence: 7, Parameter: Date Format5, Required: Not Checked

 Sequence: 8, Parameter: Age From, Required: Not Checked

 Sequence: 9, Parameter: Age To, Required: Not Checked

Algorithm Type

Add Algorithm
Add a new algorithm as follows:

 Algorithm: CM EXPDT-iii.

 Description: Date must be a future date

 Algorithm Type: CM ADHV-iiiJ

 Effective Date: 1/1/2005

 Parameters:

 Sequence: 1, Parameter: blank

 Sequence: 2, Parameter: blank

 Sequence: 3, Parameter: YYYY-MM-DD

 Sequence: 4, Parameter: YYYY/MM/DD

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 169

 Sequence: 5, Parameter: MM-DD-YYYY

 Sequence: 6, Parameter: MM/DD/YYYY

 Sequence: 7, Parameter: MM.DD.YYYY

 Sequence: 8, Parameter: 0.001

 Sequence: 9, Parameter: 0

Algorithm

Create References to New Algorithm
Create an ad hoc characteristic type and reference the previously created algorithm on it.

 Char type: CM J-iii

 Description: iii’s Adhoc validation test / Expiration Date

 Type of Characteristic Value: Ad hoc Value

 Validation rule: CM EXPDT-iii

 Allow Search by Char Val: Not Allowed

Characteristic entity: choose Notification Upload Staging.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 170

Characteristic Type

Maintaining Portals and Zones
The framework system has the dashboard, which can contain a configurable set of zones that show
diverse information. Each product can have its own set of portals for e.g. the Oracle Utilities Customer
Care and Billing system has two portals, the account information page in Control Central and the
customer information page apart from the dashboard.

Example Zone

This section describes how to create and implement your own custom zones and use them on the
existing portals provided by the application.

Required Background. As a zone developer you should have some familiarity with HTML. Further,

experience with Extensible Markup Language (XML) and XML Stylesheet Language Transform (XSLT) is

very useful, because XSLT technology provides the easiest way to render information returned from

service calls.

For more information on this topic, please refer to user documents Framework Administration, User
Interface Tools, The Big Picture of Portals and Zones and Setting Up Portals and Zones.

Contents
Implementing Custom Zones
Key Dependence
Creating a New Zone
Debugging
Simple Example: LinkValueGrid
Another Example: accountFinancialHistory
The Service Data Buffer
XSLT Debugging

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 171

HTML Standards

Implementing Custom Zones
Portal zones are implemented as pieces of a single portal HTML page. The portal framework wraps each

zone inside a div element, and provides a title bar and collapse/expand widgets. Note that zones are not

implemented as independent iframes (though the internals of a zone could be).

Zones can be configured to be initially collapsed when the portal page loads, and then execute a deferred
load when they are expanded. This imposes some technical limitations that are discussed below.

While most zones do not depend on anything other than the current global context keys, some dashboard
zones are context-sensitive, meaning they depend on the keys of the current object being displayed.

There are two components that define a portal zone:

 Metadata to define the zone and its parameters

 A Java handler class

Key Dependence
Zones usually depend on one or more of the global context keys. These keys are derived from the global
context lookup. These are lookup values that each application defines for itself. When the web app server
boots, the application will enumerate the available lookup values and make this information available to
the browser. For e.g. Oracle Utilities Customer Care and Billing has ACCT_ID, PER_ID and PREM_ID as
its global context keys.

In addition, context-sensitive zones can depend on model keys. For performance reasons, zones are
reloaded intelligently as needed. Hence, non-context dashboard zones generally redisplay only when
one of the context keys changes.

Creating a New Zone
The simplest way to create a new zone is as follows:

 Use the ServiceZoneHandler

 Create a Page Service containing required data

 Create or reuse XSLT template file

 Define metadata declaring the zone and its parameters

Contents
Zone Types
Zone Metadata

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 172

Zone Types
A content zone is associated with a Java class (actually the interface
com.splwg.base.web.portal.IPortalZoneHandler) that is responsible for creating the zone’s HTML. When
a portal needs to be rendered, the server instantiates a new handler instance for every zone for the
request. In principle the handler could do anything within the bounds of the J2EE architecture to create
its content. In practice, the vast majority of zones need to make a service call and create HTML from the
result. Fortunately the SimpleZoneHandler has been designed to make this easy, and uses XSLT to
perform the transformation from the result data (as an XML document) into HTML. You will usually not
need to implement your own handler classes.

Contents
Zone Type Interfaces
Service Zone Type

Zone Type Interfaces

The interface for the IPortalZoneHandler is illustrated below:

package com.splwg.base.web.portal;

import java.io.IOException;

import java.io.OutputStream;

import javax.servlet.ServletException;

public interface IPortalZoneHandler {

 void handleRequest(IUserZone zone, OutputStream outStream) throws

ServletException, IOException;

 void setParameter(String parameterName, String value);

}

The interface for the IUserZone is illustrated below:

package com.splwg.base.web.portal;

import java.io.IOException;

import java.io.OutputStream;

import javax.servlet.ServletContext;

import javax.servlet.http.HttpServletRequest;

public interface IUserZone {

 HttpServletRequest getRequest();

 ServletContext getServletContext();

 String getLanguage();

 boolean isLanguageLTR();

 String getSequenceId();

 String getName();

 void emitZoneLimitMessage(OutputStream out) throws IOException;

 void emitGetAll(OutputStream out) throws IOException;

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 173

}

Note. OutputStream is a binary stream for UTF-8 encoded characters.

Service Zone Type

You will usually use the ServiceZoneHandler, which also requires you to define a page service to provide
the underlying business data for the zone. The ServiceZoneHandler is a powerful, generic handler that is
suitable for a large number of practical zone implementations.

This handler:

 Retrieves a page service buffer and converts it to XML with appropriate localization

 Executes XSLT transform on the result

 Can display errors

 Is performance optimized with stylesheet caching

In a development environment you may want to flush the stylesheet cache. Simply invoke the
flushPortalMetaInfo.jsp to clear it.

The following table describes the ServiceZoneHandler parameters:

Parameter Description

SERVICE The page service to retrieve data, e.g. CILFAFHP

XSLURL Path to XSLT file (for example, WEB-INF/xsl/linkValueGrid.xsl)

Your files should be under /cm/xsl.

ALLOW_GET_ALL Allow display of “Get All” button if the data that you want to show won’t fit in one

buffer.

KEY1 - KEY5 Defines required keys. If one of these keys is empty the zone is not rendered

(unless null keys are allowed, see below).

ALLOW_NULL_KEYS If ALLOW_NULL_KEYS is “Y”, only one of the keys is required (any will work).

The following diagram illustrates example parameters for the service zone type:

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 174

Content Zone Zone CD: CI_ALERTS

 Zone Handler CD: SERVICE

App Svc: CILCALZP

Zone Width: HALF

Parameters

Value

CILCALZP

/WEB-INF/xsl/linkValueGrid.xsl

ACCT_ID

PER_ID

PREM_ID

Y

Name

Tux Service

XSL URL

KEY_1

KEY_2

KEY_3

ALLOW_NULL

_KEYS

Example Metadata for Service Zone Type

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 175

Zone Metadata

Content
Zone

Favorites User Zone Portal Zone

Portal Page

Zone
Parameter

Application
Service

Context -
Sensitive

Zone

UI Resource
(Navigation K ey)

Zone Type

Zone Type
Parameter

User User Port al

Maintained on User / My
Preference

Portal Zone Metadata

Portals can contain multiple zones, and zones can be used in several portals. Each user can have an
independent definition of zones for his portal, via User Portal and User Zone. A zone requires a zone
type class, which takes parameters. In addition, context-sensitive zones are associated with UI
transactions (tab menus). For security reasons a content zone is associated with an application service.

Debugging
There are several debugging facilities that help make portal zone development easier.

First, you should get the service working properly before worrying about the zone’s HTML. For e.g you
can invoke the service through a browser and see the result (as localized XML) using this URL from a
browser already logged-in to the Oracle Utilities Customer Care and Billing system:

http://<server>:<port>/portal?type=raw&service=CILFAFHP&ACCT_ID=5922116763&PER_ID=...

Note the required parameters are the service and the keys. Don’t put quotes around string arguments.

The example below shows the output of the CILCALZP service
(http://<server>:<port>/portal?type=raw&service=CILCALZP&ACCT_ID=5922116763):

<?xml version="1.0" encoding="UTF-8" ?>

<pageBody actionFlag="" metaInfoKey="CILCALZP">

 <list name="ZONE">

 <listHeader/>

 <listBody>

 <field type="string" name="FIELD_LABEL"></field>

 <field type="string" name="FIELD_VALUE">Comment Exists On Account</field>

 <field type="string" name="TOOLTIP_LBL_FIELD">GO_TO_ACCOUN_LBL</field>

 <field type="boolean" name="CHILD_ROW">false</field>

 <field type="string" name="SORT_KEY">ACCT</field>

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 176

 <field type="string" name="NAVIGATION_KEY">accountMaint</field>

 <field type="string" name="MENU_NAME"></field>

 <list name="KEY">

 <listHeader/>

 <listBody>

 <field type="string" name="KEY_NAME">ACCT_ID</field>

 <field type="string" name="KEY_VALUE">5922116763</field>

 </listBody>

 </list>

 </listBody>

 <listBody>

 <field type="string" name="FIELD_LABEL"></field>

 <field type="string" name="FIELD_VALUE">Account used in Billing test

Plan</field>

 <field type="string" name="TOOLTIP_LBL_FIELD">GO_TO_ACCOUN_LBL</field>

 <field type="boolean" name="CHILD_ROW">false</field>

 <field type="string" name="SORT_KEY">ACCALT</field>

 <field type="string" name="NAVIGATION_KEY">accountMaint:9</field>

 <field type="string" name="MENU_NAME"></field>

 <list name="KEY">

 <listHeader/>

 <listBody>

 <field type="string" name="KEY_NAME">ACCT_ID</field>

 <field type="string" name="KEY_VALUE">5922116763</field>

 </listBody>

 </list>

 </listBody>

 <listBody>

 <field type="string" name="FIELD_LABEL"></field>

 <field type="string" name="FIELD_VALUE">Cable Customer</field>

 <field type="string" name="TOOLTIP_LBL_FIELD">GO_TO_SERVIC_LBL</field>

 <field type="boolean" name="CHILD_ROW">false</field>

 <field type="string" name="SORT_KEY">SATYPE</field>

 <field type="string" name="NAVIGATION_KEY">saMaint</field>

 <field type="string" name="MENU_NAME"></field>

 <list name="KEY">

 <listHeader/>

 <listBody>

 <field type="string" name="KEY_NAME">ACCT_ID</field>

 <field type="string" name="KEY_VALUE">5922116763</field>

 </listBody>

 </list>

 </listBody>

…

 </list>

</pageBody>

Simple Example: LinkValueGrid
The LinkValueGrid is a generic XSLT template that takes a standard copybook structure and creates an
HTML table of clickable links. It uses a standard include.xsl file. As an example, consider the Alert grid.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 177

Alerts Zone

Contents
XSLT File (/WEB-INF/xsl/linkValueGrid.xsl)
XML Meta Info

XSLT File (/WEB-INF/xsl/linkValueGrid.xsl)
The XSLT transform extracts fields by name from the service buffer XML document, and injects them into
the HTML output.

Field Role

FIELD_VALUE Supplies displayed text.

NAVIGATION_KEY Provides navigation option.

KEY List of up to six context keys.

CHILD_ROW Boolean that forces a slight left-indent.

The LabelValueGrid is similar, but it uses MENU_NAME to define the desired context menu.

(Reuse directly).

<?xml version="1.0" encoding="UTF-8" ?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSLTransform">

 <xsl:output method="html" />

 <xsl:strip-space elements="*" />

 <xsl:param name="sequenceId" />

 <xsl:param name="service" />

 <xsl:include href="include.xsl" />

 <xsl:include href="valueGridInclude.xsl" />

 <xsl:template match="listBody">

 <xsl:variable name="navKey" select="field[@name='NAVIGATION_KEY']" />

 <xsl:choose>

 <xsl:when test="string-length($navKey) > 0">

 <xsl:variable name="onclick">

 <xsl:text />handleGotoContext('<xsl:value-of

select="$navKey"/>'<xsl:text />

 <xsl:call-template name="emitKeys" />

 <xsl:text />)<xsl:text />

 </xsl:variable>

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 178

 <tr>

 <xsl:variable name="label">

 <xsl:call-template name="title" />

 </xsl:variable>

 <xsl:call-template name="rowClass" />

 <xsl:call-template name="linkValueCell">

 <xsl:with-param name="value" select="field[@name='FIELD_VALUE']" />

 <xsl:with-param name="onclick" select="$onclick" />

 <xsl:with-param name="indent" select="field[@name='CHILD_ROW']" />

 <xsl:with-param name="label" select="$label" />

 </xsl:call-template>

 </tr>

 </xsl:when>

 <xsl:otherwise>

 <xsl:call-template name="valueCell">

 <xsl:with-param name="value" select="field[@name='FIELD_VALUE']" />

 <xsl:with-param name="indent" select="field[@name='CHILD_ROW']" />

 </xsl:call-template>

 </xsl:otherwise>

 </xsl:choose>

 </xsl:template>

</xsl:stylesheet>

XML Meta Info
The following excerpt shows the XML Meta Info for the link value grid

<?xml version="1.0"?>

<page service="CILCALZP">

 <pageHeader>

 <boolean name="PAGE_READ_SW"/>

 <string name="ACCT_ID" size="10"/>

 <string name="PER_ID" size="10"/>

 <string name="PREM_ID" size="10"/>

 <string name="LAST_KEY_COMBINATION" size="100"/>

 </pageHeader>

 <pageBody>

 <list name="ZONE" size="60">

 <listHeader lastIndex="ZONE_COLL_CNT"></listHeader>

 <listBody>

 <string name="FIELD_LABEL" size="50"/>

 <string name="FIELD_VALUE" size="254"/>

 <string name="TOOLTIP_LBL_FIELD" size="18"/>

 <boolean name="CHILD_ROW"/>

 <string name="SORT_KEY" size="30"/>

 <string name="NAVIGATION_KEY" size="30"/>

 <string name="MENU_NAME" size="30"/>

 <list name="KEY" size="6">

 <listHeader lastIndex="KEY_COLL_CNT"></listHeader>

 <listBody>

 <string name="KEY_NAME" size="18"/>

 <string name="KEY_VALUE" size="30"/>

 </listBody>

 <list>

 </listBody>

 </list>

 </pageBody

</page>

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 179

Another Example: accountFinancialHistory
Zones for regular grids are not generic, but do contain a number of common components. Clicking a
column header sorts that column, according to its data type (string, number, date).

Example Account Financial History Grid

Contents
XSLT File (/WEB-INF/xsl/accountFinancialHistory.xsl)
XML Metainfo

XSLT File (/WEB-INF/xsl/accountFinancialHistory.xsl)
The XSLT transform “pulls” data from the XML result document into HTML by name-matching.

In examining the XSLT file, note the split between header/data rows. You can see how the metainfo
defining the data types for the columns is introduced, via the numberLabelCell and dateLabelCell. You
can see that the XSLT file minimizes explicit formatting (for example, of column widths), preferring to let
the browser lay things out as it sees fit.

<?xml version="1.0" encoding="UTF-8" ?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSLTransform">

 <xsl:output method="html" />

 <xsl:strip-space elements="*" />

 <xsl:param name="sequenceId" />

 <xsl:include href="include.xsl" />

 <xsl:template match="/">

 <xsl:variable name="list"

select="/pageBody/list[@name='ACCT_FT_HIST']/listBody" />

 <xsl:if test="count($list) > 0">

 <table class="dataTable" cellpadding="2" cellspacing="0">

 <tr class="zoneGridLabel">

 <xsl:call-template name="emptyCell" />

 <xsl:call-template name="dateLabelCell">

 <xsl:with-param name="key" select="'$ARS_DT'" />

 </xsl:call-template>

 <xsl:call-template name="labelCell">

 <xsl:with-param name="key" select="'$FT_TYPE_FLG'" />

 </xsl:call-template>

 <xsl:call-template name="numberLabelCell">

 <xsl:with-param name="key" select="'CI_FT$CUR_AMT'" />

 </xsl:call-template>

 <xsl:call-template name="numberLabelCell">

 <xsl:with-param name="key" select="'$CURRENT_BALAN_WRK'" />

 </xsl:call-template>

 <xsl:call-template name="numberLabelCell">

 <xsl:with-param name="key" select="'CI_FT$TOT_AMT'" />

 </xsl:call-template>

 <xsl:call-template name="numberLabelCell">

 <xsl:with-param name="key" select="'$DERIVED_AMT_WRK'" />

 </xsl:call-template>

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 180

 </tr>

 <xsl:apply-templates select="$list" />

 </table>

 </xsl:if>

 </xsl:template>

 <xsl:template match="listBody">

 <xsl:variable name="financialTransactionType">

 <xsl:value-of select="field[@name='FT_TYPE_FLG']" />

 </xsl:variable>

 <xsl:variable name="payEventId">

 <xsl:value-of select="field[@name='PAY_EVENT_ID']" />

 </xsl:variable>

 <xsl:variable name="parentId">

 <xsl:value-of select="field[@name='PARENT_ID']" />

 </xsl:variable>

 <xsl:variable name="siblingId">

 <xsl:value-of select="field[@name='SIBLING_ID']" />

 </xsl:variable>

 <tr>

 <xsl:attribute name="position">

 <xsl:value-of select="position()" />

 </xsl:attribute>

 <xsl:call-template name="rowClass" />

 <td class="gridTd" width="1">

 <img src="/images/goto_sm.gif" xsl:use-attribute-sets="imageButton"

onclick="handleAccountFinancialHistoryContext('{$financialTransactionType}',

'{$payEventId}', '{$parentId}', '{$siblingId}')" />

 </td>

 <xsl:variable name="currentAmount" select="field[@name='CUR_AMT']" />

 <xsl:variable name="currentBalance" select="field[@name='CUR_BAL']" />

 <xsl:variable name="payoffAmount" select="field[@name='TOT_AMT']" />

 <xsl:variable name="payoffBalance" select="field[@name='TOT_BAL']" />

 <xsl:call-template name="dateCell">

 <xsl:with-param name="value" select="field[@name='ARS_DT']" />

 </xsl:call-template>

 <xsl:call-template name="valueCell">

 <xsl:with-param name="value" select="field[@name='DESCR']" />

 </xsl:call-template>

 <xsl:call-template name="numberCell">

 <xsl:with-param name="value" select="$currentAmount" />

 </xsl:call-template>

 <xsl:call-template name="numberCell">

 <xsl:with-param name="value" select="$currentBalance" />

 </xsl:call-template>

 <xsl:call-template name="numberCell">

 <xsl:with-param name="value" select="$payoffAmount" />

 <xsl:with-param name="dimmed" select="$currentAmount = $payoffAmount" />

 </xsl:call-template>

 <xsl:call-template name="numberCell">

 <xsl:with-param name="value" select="$payoffBalance" />

 <xsl:with-param name="dimmed" select="$currentBalance = $payoffBalance" />

 </xsl:call-template>

 </tr>

 <script type="text/javascript" defer="defer">

 function handleAccountFinancialHistoryContext(financialTransactionType,

payEventId, parentId, siblingId) {

 switch (financialTransactionType) {

 case 'PS' :

 case 'PX' : {

 handleGotoContext('paymentEventMaint', 'PAY_EVENT_ID',

payEventId);

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 181

 break;

 }

 case 'BS' :

 case 'BX' : {

 handleGotoContext('billMaint', 'BILL_ID', parentId);

 break;

 }

 case 'AD' :

 case 'AX' : {

 handleGotoContext('adjustmentMaint', 'ADJ_ID', siblingId);

 break;

 }

 }

 }

 </script>

 </xsl:template>

</xsl:stylesheet>

XML Metainfo
The following excerpt shows the XML Meta Info for the Account Financial History.

<?xml version="1.0"?>

<page service="CILFAFHP">

 <pageHeader>

 <boolean name="PAGE_READ_SW"/>

 <string name="ACCT_ID" size="10"/>

 <boolean name="LIMITED_SW"/>

 </pageHeader>

 <pageBody>

 <string name="ENTITY_NAME" size="64"/>

 <string name="ACCT_ID" size="10"/>

 <list name="ACCT_FT_HIST" size="25" service="CILFAFHL">

 <listHeader/>

 <string name="ACCT_ID" size="10"/>

 <boolean name="LIMITED_SW"/>

 <string name="LAST_PARENT_ID" size="14"/>

 <date name="LAST_ARS_DT"/>

 <string name="LAST_CURRENCY_CD" size="3"/>

 <string name="LAST_FT_TYPE_FLG" size="2"/>

 <money name="LAST_CUR_AMT" precision="15" scale="2"/>

 <money name="LAST_TOT_AMT" precision="15" scale="2"/>

 <money name="LAST_CUR_BAL" precision="15" scale="2"/>

 <money name="LAST_TOT_BAL" precision="15" scale="2"/>

 </listHeader>

 <listBody>

 <string name="ACCT_ID" size="10"/>

 <date name="ARS_DT"/>

 <string name="PARENT_ID" size="14"/>

 <string name="PAY_EVENT_ID" size="12"/>

 <string name="SIBLING_ID" size="12"/>

 <string name="FT_TYPE_FLG" size="2"/>

 <string name="DESCR" size="50"/>

 <money name="CUR_AMT" precision="15" scale="2"/>

 <money name="TOT_AMT" precision="15" scale="2"/>

 <money name="CUR_BAL" precision="15" scale="2"/>

 <money name="TOT_BAL" precision="15" scale="2"/>

 <currency tuxedo="CURRENCY_CD"/>

 </listBody>

 </list>

 </pageBody>

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 182

</page>

The Service Data Buffer
The following example output shows the Account Financial History Service data buffer converted to XML.

<?xml version="1.0" encoding="UTF-8" ?>

<pageBody actionFlag="" metaInfoKey="CILFAFHP">

 <field type="string" name="ENTITY_NAME">Brazil,Mark J - Commercial</field>

 <field type="string" name="ACCT_ID">5922116763</field>

 <list name="ACCT_FT_HIST" service="CILFAFHL">

 <listHeader actionFlag="" hasMoreRows="true" alertRowIndex="0">

 <field type="string" name="ACCT_ID">5922116763</field>

 <field type="boolean" name="LIMITED_SW">false</field>

 <field type="string" name="LAST_PARENT_ID">592211607251</field>

 <field type="date" name="LAST_ARS_DT">1998-02-16</field>

 <field type="string" name="LAST_CURRENCY_CD">USD</field>

 <field type="string" name="LAST_FT_TYPE_FLG">PS</field>

 <field type="money" name="LAST_CUR_AMT">-159.33</field>

 <field type="money" name="LAST_TOT_AMT">-159.33</field>

 <field type="money" name="LAST_CUR_BAL">0.00</field>

 <field type="money" name="LAST_TOT_BAL">0.00</field>

 </listHeader>

 <listBody actionFlag="">

 <field type="string" name="ACCT_ID">5922116763</field>

 <field type="date" name="ARS_DT"></field>

 <field type="string" name="PARENT_ID">592211609883</field>

 <field type="string" name="PAY_EVENT_ID"></field>

 <field type="string" name="SIBLING_ID">592211683162</field>

 <field type="string" name="FT_TYPE_FLG">BS</field>

 <field type="string" name="DESCR">Bill Segment</field>

 <field type="money" name="CUR_AMT">177.42</field>

 <field type="money" name="TOT_AMT">177.42</field>

 <field type="money" name="CUR_BAL">-5.50</field>

 <field type="money" name="TOT_BAL">-5.50</field>

 <field type="currency" name="CURRENCY_CD">USD</field>

 </listBody>

 <listBody actionFlag="">

 <field type="string" name="ACCT_ID">5922116763</field>

 <field type="date" name="ARS_DT">2003-03-17</field>

 <field type="string" name="PARENT_ID">592211687290</field>

 <field type="string" name="PAY_EVENT_ID">592211628707</field>

 <field type="string" name="SIBLING_ID">592211605468</field>

 <field type="string" name="FT_TYPE_FLG">PS</field>

 <field type="string" name="DESCR">Pay Segment</field>

 <field type="money" name="CUR_AMT">-5.50</field>

 <field type="money" name="TOT_AMT">-5.50</field>

 <field type="money" name="CUR_BAL">-182.92</field>

 <field type="money" name="TOT_BAL">-182.92</field>

 <field type="currency" name="CURRENCY_CD">USD</field>

 </listBody>

 </list>

</pageBody>

XSLT Debugging
There are some techniques to help debug your XSLT files. Malformed XSLT will cause error messages
to appear in the WebLogic console. In addition, you can test the layout of a portal zone in isolation using
this URL from a browser that is logged-in to the Oracle Utilities Customer Care and Billing system:

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 183

http:<server>:<port>/portal?type=xslTest&service=CILCALZP&xslURL=/WEB-
INF/xsl/linkValueGrid.xsl&ACCT_ID=5922116763

(Ignore any JavaScript errors)

The important parameters are the service, the xslURL, and the service keys.

HTML Standards
Since portal zones are simply div elements within a single HTML page, they must co-exist harmoniously

(for example, don’t assume HTML IDs are unique).

Here are some tips to avoid problems:

Avoid hard-coding sizes (e.g. widths). It’s best to let the browser manage the resizing of zones when the
browser window is resized by the user. One tip: Use width 100% for tables and divs.

There is an IE Bug with JavaScript in documents loaded after the main page has loaded, so-called
deferred loading. To support deferred loading, JavaScript tags must use the defer attribute:

<script type=“text/javascript” defer=“defer”>

Further, such JavaScript code should appear at the bottom of the zone. Refer to the existing XSLT files
for examples.

Rely on the standard Oracle Utilities Customer Care and Billing cascading style sheets (cisDisabled.css),
which are automatically loaded in the portal page. Some useful style classes are “normal”, “label”, and
“biggerText”.

Since an HTML page provides a single global namespace for widget IDs, avoid hard-coding HTML IDs. If

you absolutely must, you may want to make use of the sequenceId XSLT template variable, which

provides a unique ID to every zone when it renders.

Maintaining Background Processes

Contents
Maintaining Background Processes Overview
Creating a BatchJob
Creating a ThreadWorker

Maintaining Background Processes Overview
Each new background processes require the creation of two new classes: a BatchJob and a
ThreadWorker. These classes fit into the “master-worker” pattern used by the background process
runtime infrastructure to overcome the throughput limitations encountered by single-threaded processes.
By splitting work among many concurrent threads often on multiple physical nodes background processes
can achieve excellent scalability and react to changing work demands without additional programming. In
this pattern:

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 184

 A BatchJob is responsible for determining the work to be processed for a batch run and then splitting
that work into pieces that each ThreadWorker will process. When running a single process, a single
BatchJob object is instantiated by the framework. The framework then makes calls to the BatchJob
instance at the appropriate time. One such set of calls to the BatchJob instance is to return to the
framework a collection of ThreadWork instances that will be distributed for execution.

 A ThreadWorker is responsible for processing a single ThreadWork instance for a run. Within the
ThreadWork there are many WorkUnits representing the fine-grained units of work to be processed.
In many cases the WorkUnits represent a complete database transaction, for example, a bill being
created for an account. Whether or not the ThreadWorker executes on the same computer as other
ThreadWorkers or the BatchJob that created its work is left as a configuration choice to be made at
runtime. Within a single process, there may be many ThreadWorker objects. In general, each
ThreadWorker instantiated in a batch run has a corresponding row in the Batch Instance table. The
Batch Instance rows provide persistent state that is needed for the ThreadWorkers to operate
correctly in failure/restart situations.

Creating a BatchJob
A BatchJob class is responsible for determining what work needs to be done within the run and splitting
the work among ThreadWorkers.

Contents
The BatchJob Annotation
Creating JobWork
Declaring a ThreadWorker Class

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 185

The BatchJob Annotation
Each BatchJob class must declare a BatchJob annotation that specifies important attributes of the job.
An example is shown below:

@BatchJob (rerunnable = false,

multiThreaded = true,

modules={todo},

softParameters = { @BatchJobSoftParameter

(name=OUTPUT-DIR, type=string) },

toDoCreation = @ToDoCreation (drillKeyEntity = user,

sortKeys = {lastName, firstName},

messageParameters = {firstName, lastName}

)

)

The annotation declares if the job can be rerun, supports more than one thread of operation, the modules
that the job belongs to, its nonstandard runtime parameters and the details of how “ToDo” entries should
be created in the case of errors. When not specified in the annotation, default values will be used.

Creating JobWork
The most important goal of a BatchJob class is to return an instance of JobWork describing what work
should be done (ThreadWorkUnits) and have that work split into manageable chunks (ThreadWork) that
can be processed by a single ThreadWorker.

Most commonly, ThreadWorkUnits contain only the ID values of the entities to be processed. For
example, one can envision a process that performs an operation on a set of accounts. In general, one
would expect that each ThreadWorkUnit would contain a single AccountId. The ThreadWorker objects
would then be constructed in such a way that when asked to execute for a ThreadWorkUnit it would pull
out the embedded AccountId and then perform the required business function.

There are convenience methods available from the AbstractBatchJob that make it easier to create
JobWork instances. For example, the createJobWorkForEntityQuery(Query) method will accept a query
returning BusinessEntity instances and create a JobWork instance containing the appropriate number of
ThreadWork instances each containing (notwithstanding rounding) the same number of
ThreadWorkUnits.

Declaring a ThreadWorker Class
It is the responsibility of the BatchJob to declare what class defines the ThreadWorkers that should
perform the work. By returning a Class instance rather than ThreadWorker instances, the framework
controls ThreadWorker instantiation which may occur on a different JVM than the one that the BatchJob
instance resides.

Creating a ThreadWorker
The ThreadWorker performs the “heavy lifting” of a batch process. For a given run, there will
ThreadWorkers created equal in number to the “thread count” parameter provided when a process is
requested.

Contents
Initializing ThreadWork
Executing a WorkUnit
Finalizing ThreadWork
Choosing a ThreadExecutionStrategy

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 186

Initializing ThreadWork
Each ThreadWorker instance can expect to have its initializeThreadWork() method called once by the
framework before any actual work is to be performed. This method may be implemented to do any setup
necessary for that thread’s execution, most commonly output files opened or variables initialized.

Warning! It is very important that any setup necessary to execute a WorkUnit is done here and not in the
creation of JobWork, this includes accessing batch parameters. There is no guarantee that static
variables set at the time of JobWork creation will be available at this time. The framework may be calling
ThreadWork in a different process from the creation of JobWork.

Executing a WorkUnit
The ThreadWorker can expect that its executeWorkUnit method will be called once for each
ThreadWorkUnit that that ThreadWorker will process. For example, if the batch process will act upon
10,000 accounts and the process is submitted with a ThreadCount=10, we can expect that there are 10
ThreadWorkers created by the framework and each worker will have its executeWorkUnit method called
by the framework for each of the 1,000 ThreadWorkUnits allocated to that thread.

Finalizing ThreadWork
Each ThreadWorker instance can expect to have its finalizeThreadWork() method called once after all
ThreadWorkUnits have been processed. This gives the opportunity to close any open files or to do any
other “tear down” processing for the ThreadWorker.

Choosing a ThreadExecutionStrategy
ThreadWork instances need to provide a strategy defining the execution policies for its work. That is,
how the work for a thread will be processed. The interface that is implemented is
ThreadExecutionStrategy. The most important aspect of this is how exceptions will be treated with
respect to transactions.

 Should all the ThreadWorkUnits be wrapped in a single transaction with a single rollback on an
exception?

 Should each ThreadWorkUnit be in its own transaction?

 Should the framework attempt to process many ThreadWorkUnits within a single transaction?

 If an exception occurs should the framework "back up" and reprocess the successful units?

In general, new background processes are expected to chose from existing instances of
ThreadExecutionStrategy, not create new ones. Please scan for existing implementations of
ThreadExecutionStrategy.

Building the Application Viewer

Contents
Creating Table XMLs
Creating MO XMLs
Creating Algorithm XMLs
Extending Service XMLs
Creating Javadocs for CM Source code.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 187

Creating Table XMLs
Run batch process F1AVGTBL.

Creating MO XMLs
Run batch process F1AVGMO.

Creating Algorithm XMLs
Run batch process F1AVGALG.

Extending Service XMLs
When new application services are created, new Service XMLs are also created as part of the process.
These files may be accessed via the Application Viewer by copying them to the CM folder for Service
XMLs.

“AVLOC\data\xml\CM”

Where AVLOC is the path to the Application Viewer folder (ie. C:\appViewer).

Creating Javadocs for CM Source code.
Sun’s reference on the Javadoc tool can be found at the following location:
http://java.sun.com/j2se/javadoc/reference/index.html. Please refer to the documentation concerning how
to write tags, troubleshoot warnings and errors, and any other Javadoc tool questions.

Some known warnings are generated as part of the CM Javadoc process. The following two warnings
are safe to ignore:

 The product’s annotations currently use tags that are unrecognized by the Javadoc tool. Currently,
the Javadoc tool is reporting these as warnings. These warnings are safe to ignore. For the list of
tags that are relevant, please refer to the reference guide. For example, the Javadoc tool emits the
following warning when it encounters the product’s EntityPageMaintenance annotation. It is safe to
ignore.

warning - @EntityPageMaintenance is an unknown tag

 The Javadocs tool may also generate warnings that appear from the generated artifacts. These are
easily identifiable by looking at the path for the name “sourcegen.” For example the following warning
can be ignored since path name includes the “sourcegen” directory.

C:\spl\CCB_PROJ1\java\sourcegen\cm\com\splwg\cm\domain\common\cmCisDiv\CmC

isDivisionMaintenance_Gen.java:437

For all other warnings, please refer to the Sun’s documentation.

To generate Javadocs, run the utility script generateJavadoc.bat.

To integrate CM and the product’s Javadocs, run the utility script reindexJavadoc.bat to recreate the
indices to reflect current environment.

http://java.sun.com/j2se/javadoc/reference/index.html

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 188

Upgrade JSP to XSLT
Trees and subpanels should be upgraded to use the application’s XSLTs instead of the JSPs used in
v1.5.x. This section describes the upgrade process.

Note that all other JSPs (tab pages, list grids, etc) must have been upgraded to XSLTs in v1.5.x. Thus,
there is no tool to upgrade such code in V2.

Contents
Create User Exit Files
Tree User Exit Changes
Change Template Code in Program Components
Create XML File with UI Meta-data
Delete the JSP Files
Log Into the Application and Test

Create User Exit Files
The user exits in the JSP-based system were directly placed within the JSP as code snippets within
specially located markers. In the XSLT system, the meta-data is separated from the user exit, and resides
in an .xjs file with the same name as the JSP file, with only user exits and each user exit function explicitly
defined in the file.

Going from JSP to XSLT user exits is thus not trivial. However, a set of supplied scripts will create a new
user exit .xjs file for each of the different JSP template files in your system. The following table lists the
scripts to run for each template file:

Sub Panel convertSubPanel.pl

Tree Page convertTreePage.pl

Tree User Exit Changes
Since the XSLT user exits are now callout functions, five tree user exits need to be coded differently. The
main purpose of these five user exits is to change a variable’s value. The analogous new XSLT user
exits return the desired value instead.

The user exits have been renamed to more accurately reflect their new function. Below is a comparison
of names and purpose of JSP-based user exits versus XSLT-based user exits.

JSP name Main purpose XSLT name Main purpose

setServiceIndex Sets the desired

serviceIndex

variable.

overrideServiceIndex Returns the desired

index of the service.

setNavKey Sets the desired

newNavKey variable.

overrideNavKey Returns the desired

nav key.

setNavKeyIndex Sets the desired

navKeyIndex

variable.

overrideNavKeyIndex Returns the desired

index of the nav key.

setImageOpenIndex Sets the desired

imageIndex variable.

overrideImageOpenIndex

Returns the desired

index of the open

image.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 189

setImageClosedIndex Sets the desired

imageIndex variable.

overrideImageClosedIndex Returns the desired

index of the closed

index.

Each user exit is passed the variable’s original value. If the user exit does not return a value, the original
variable’s value will be used.

Below is an example of a JSP user exit and a converted XSLT user exit inside an .xjs file.

Here is the JSP user exit.

// $#BSES SETSERVICE

if (nodeName == 'newtype') {

 var myLetter = pageKeys.FT_TYPE.substr(0,1);

 if (myLetter == 'A') {

 serviceIndex = 1;

 }

 if (myLetter == 'B') {

 serviceIndex = 2;

 }

 if (myLetter == 'C') {

 serviceIndex = 3;

 }

 if (myLetter == 'P') {

 serviceIndex = 4;

 }

 }

// $#BSEE SETSERVICE

Here is the same user exit coded in an .xjs file:

function overrideServiceIndex(nodeName, services, pageKeys, serviceIndex) {

 var overrideIndex;

 if (nodeName == 'newtype') {

 var myLetter = pageKeys.FT_TYPE.substr(0,1);

 if (myLetter == 'A') {

 overrideIndex = 1;

 }

 if (myLetter == 'B') {

 overrideIndex = 2;

 }

 if (myLetter == 'C') {

 overrideIndex = 3;

 }

 if (myLetter == 'P') {

 overrideIndex = 4;

 }

 }

return overrideIndex;

}

Change Template Code in Program Components
The meta-data on the database for the CM JSP program component pages needs to point to the new
XSLT template codes. There is a set of SQL scripts that update all the CM tree and sub panel program
components with the correct template.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 190

Run the SQLs in the script changeTemplateCodesTTRAndPN.sql against your database to perform this
change.

Create XML File with UI Meta-data
The XSLT framework uses the meta-data at run-time to drive the transform. However, it does not query
the database for this, and instead relies upon an intermediate representation in the form of an XML file
stored with the same name (but with an .xjs extension) and location as the original JSP file.

The XML file is automatically created by the framework the first time the page is viewed if an existing XML
file does not exist. Delete the existing XML file, if one exists, located in the same directory as the original
JSP file. The XML file is named after the program component’s name. To generate the XML file, view the
program component from within the application.

Delete the JSP Files
Once the meta-data is changed and the new files are properly placed, there is no longer a need for the
JSP files for the converted program components, and it would be a good idea to delete them to avoid
confusion.

Find the JSP files in the file system and delete them.

Log Into the Application and Test
For the new XSLT pages to be used by the system, instead of the system looking for the old JSPs, some
server and browser caches need to be flushed. The easiest thing to do is restart the app server and start
a new browser session.

Login and visit the converted pages to test functionality.

Utilities

Contents
Environment Batch Programs
Services
Eclipse Tools/Wizards
Upgrade JSP to XSLT
Javadocs

Environment Batch Programs

Contents
displayEnvironment.bat
switchEnvironments.bat
createNewEnv.bat

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 191

displayEnvironment.bat
Property Detail

Purpose Displays the current configuration.

Description Displays a set of environment variables and settings that may be needed to diagnose

compile issues.

Usage displayEnvironment.bat

Parameters None.

switchEnvironments.bat
Property Detail

Purpose Sets the current development environment (project) for the software development kit.

Description Displays a list of development environments on the development client, allows the user

to select one, and sets it as the current development environment for the software

development kit.

Usage switchEnvironments.bat

Parameters None.

createNewEnv.bat
Property Detail

Purpose Creates a new development environment (project) or configures a development

environment to use the version of the software development kit used for the current

development environment.

Description Configures a new app server to be a development environment.

Also, executing this for an existing development environment configures that

development environment to use the version of the software development kit used by

the current development environment.

Usage createNewEnv.bat -a <appServerDir>

Parameters  -a <appServerDir>. Specify the base directory of the app server to configure.

Services

Contents
Batch Program setupSvcXMLPrompted.bat
Batch Program updateXMLMetaInfo.bat

Batch Program setupSvcXMLPrompted.bat
Property Detail

Purpose Setup service XML.

Description After prompting the user for the program name of the service, this script sets up a

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 192

service by creating the service XML file.

Usage setupSvcXmlPrompted.bat

Parameters None.

Batch Program updateXMLMetaInfo.bat
Property Detail

Purpose Updates the XML Metainfo directory with the latest service XMLs.

Description Updates the XML Metainfo directory of the current development environment with the

latest service XMLs. This is needed, for example, for creating schemas for XAI.

Usage updateXMLMetainfo.bat

Parameters None.

Eclipse Tools/Wizards
There are a few wizards and tools available for developing against the framework within Eclipse plugins.

Contents
Batch Program startEclipse.cmd
Annotation Editor
Project database information
Maintenance Object wizard

Batch Program startEclipse.cmd
Property Detail

Purpose Launch the Ecliipse SDK for the current development environment (project).

Description Launches the Eclipse SDK for the current development environment.

Usage startEclipse.cmd.

Parameters None.

Annotation Editor
A lot of the Java classes that will be created to add behavior to the application require Annotations to
provide meta-data about the implementation (see Java Annotations chapter in the Developer Guides).

The annotation editor plugin provides a convenient way to edit the annotations on these classes. It is
available on any class that has an existing annotation, under the package explorer panel in eclipse. Right
click on the file in the package explorer, and there will be a menu item “Edit Annotation”.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 193

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 194

Choosing this menu item will cause a new dialog window to appear, and the file to open into an editor if it
is not already open. The dialog that appears will allow maintenance of the file’s current annotation
contents.

The appearance of the dialog is dependent upon the particular annotation, but the standard dialog will
present a layout of two columns, a label and an input for each annotation property. The bottom of the
dialog will always present the Finish and Cancel buttons. The Cancel button is always available, and will
throw away any changes made, leaving the file with the annotation unchanged.

The Finish button will only be enabled when the annotation has no errors. The annotation is validated
after any change, and errors will be displayed near the top of the dialog and the Finish button disabled.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 195

When the property value is itself a list of values or another annotation, there will a button instead of an
input text box. Clicking the button will bring up another dialog to edit its information. In the case of lists,
there is a standard dialog where elements can be added, deleted, or reordered.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 196

To add a new element, click the ‘+’ button. This will popup a new dialog for the annotation being added
(or sometimes a choice of the new annotation’s type might need to be chosen first). Clicking the ‘-‘ button
will delete the highlighted element. The ‘up’ and ‘down’ buttons can be used to move the highlighted
element up or down within the list. To modify an existing element, double click its row in the list dialog,
and a new dialog will open to edit its values.

Finally, there is a special list dialog for lists of strings. Instead of editing the elements in the list in a new
dialog, a single input field near the bottom of the dialog is used to edit the highlighted entry.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 197

When the finish button is finally pressed, the annotation (and only the annotation) in the file will change to
contain the new values entered into the annotation dialogs. The changed file’s annotation may be slightly
reformatted. The changed file will also remain unsaved, pending user review of the annotation’s changes.

Project database information
In order to use the Maintenance Object Wizard described in the next section, some information will have
to be provided in order for eclipse to connect to the database to retrieve the Maintenance Object meta
data.

There are two ways to specify the database connection information.

The first is a way for each project to possibly specify different connection information. This is done in the
.project stored in the project’s directory. This is an xml file that describes the project. The database
information can be supplied in a buildCommand node under buildSpec under the projectDescription root
node:

 <buildSpec>

 <buildCommand>

 <name>com.splwg.tools.dbConnection</name>

 <arguments>

 <dictionary>

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 198

 <key>url</key>

 <value><URL></value>

 </dictionary>

 <dictionary>

 <key>username</key>

 <value><USERNAME></value>

 </dictionary>

 <dictionary>

 <key>password</key>

 <value><PASSWORD></value>

 </dictionary>

 </arguments>

 </buildCommand>

 …

 </buildSpec>

The values <URL>, <USERNAME>, <PASSWORD> should be replaced (including the surrounding ‘<’
and ‘>’) with the appropriate values for the database for the project.

This file will need to be hand edited, and eclipse should be restarted after the edit is complete.

The second way is to provide a workspace-wide database connection. This is available in an eclipse
preference- go to “Window | Preferences…”. Then in the tree pane on the left of the Preferences dialog,
choose “SPL Preferences”. Under SPL preferences, choose “Database Connection”. The preference
pane on the right will now show inputs for the database connection information.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 199

Click the override default DB connection if the database contains materialized views to the true
development database for performance reasons. Enter the information into the appropriate text boxes
and click OK. This will take effect immediately, without need of restarting eclipse.

Maintenance Object wizard
In cases where a whole new “Maintenance object” is being added to the application, and the data is first
entered onto the CI_MD_MO and related tables, there is a wizard that will use that meta data as a
starting point and with some developer input, create all of the manually coded Java Entity_Impl classes
with their proper tree structure, and also optionally create a Java Maintenance class “starting point”.

The “Maintenance Object Wizard” is available under the “New ..” menu item, either under the file menu, or
by right clicking a node in the package explorer (the package explorer option is recommended, as it will
default the project and source directory selected). From the list of new wizards available, choose
“Other…”.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 200

This will open a new dialog, where the maintenance object wizard is under SPL:

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 201

(Note that you can configure eclipse so that in the future the “Maintenance Object implementation
classes” wizard appears directly under the first “New…” menu.)

The first page of the wizard asks for the project and source path to place the new files. Then it asks for
the some information it uses to construct the package name for the new files. The standard is that the
new classes go under the application’s domain path, with a possible extra sub package (e.g., a
subsystem, like ‘common’ or ‘customerInformation’), followed by the top level entity’s name (e.g.,
account). The top level entity’s name, along with lots of data used by the next page, comes from the
maintenance object itself.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 202

Finally, you can optionally choose to Generate the UI Maintenance (the default is to generate it).

The maintenance object input has a “Browse…” button associated with it that will launch a search dialog
where the maintenance object can be searched for by either the Maintenance Object’s code, or by the
primary table for the maintenance object.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 203

Both of these searches are “likable” in that partial matches starting with the input will be shown.

Pressing OK on the search or double clicking a row will bring the selected maintenance object back into
the Maintenance Object input on the main wizard.

Once the main wizard’s inputs are specified, the next button can be pressed. This will display the second
detailed wizard page. A tree view is displayed with the tree representation of the Maintenance object
selected, with its child tables.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 204

Each node in the tree must be visited in order to enter some information or at least verify that the default
data is correct. The nodes themselves show the list property name, the table, whether the table has a
language table, and whether the node has been verified.

The selected node’s data is shown in the “Info” box below the tree. Only editable information is available
to be changed- other values may be disabled. The values that can be changed for each node include the
list property name, the order by fields, the clustering parent property, and whether the Id can contain
mixed case.

The list property name is the name on the parent that the child collection will be accessed by. For
example, in the above Maintenance Object for Table, the table’s child collection of rows on the table
CI_MD_CONST will be accessed via the property ‘constraints’. And likewise, each constraint will then
have a child collection called fields.

The order by is an optional property. It is a comma-separated list of columns that specify the order in
which the list will be retrieved when the collection is read from the database. An example for the
constraints collection would be “CONST_ID, OWNER_FLG”.

The clustering parent property comes into play for generated IDs. In some cases, it is beneficial to cluster
the generated keys for related objects so that batch threading is more efficient. An example is every
Service Agreement can have its ID generated with some portion of its account ID. The account will be
accessed off of a serviceAgreement via the property account. Thus the Service Agreement root node in
the above dialog would probably have a value of ‘account’ for the clustering parent property.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 205

In case of user defined string keys, most of the time the application only uses uppercase keys. However,
in some cases, mixed case keys are allowed. The “Allow mixed case Id” check box should be checked in
this event.

Finally, to ensure that the developer reviews each node’s values, the Verified check box must be checked
for each node, prior to proceeding to the next page or finishing.

If the option to generate the Maintenance was not chosen, the Finish button will be enabled when the tree
nodes’ data is complete and valid. Clicking finish will cause all of the entity classes to be created in the
specified package, and will open an editor window on each new class.

If the option to generate the Maintenance was chosen on the first page, the “Next>” button should be
enabled after all the tree nodes data is finished and valid. Clicking “Next” will then present the final wizard
page, where information about the maintenance class can be entered.

On this page, the maintenance class name and maintenance type can be chosen. The maintenance class
name is something like the root entity name followed by ‘Maintenance” by convention, although it can
differ. The maintenance type choices are ‘Entity’, which is a standard maintenance for a single instance of
the maintenance object at a time, with nested child lists, etc. The other choice is ‘List”, which is a
simplified maintenance where many instances of the maintenance object are edited at once in a grid. This
is usually limited to simple objects with a code and description, and maybe one or two other fields.
Anything more complex would be difficult to present in the single grid.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 206

(Note that changing the Maintenance Type will clear out any existing information on the annotation.)

After the class name and maintenance type is chosen, there is more information required to be edited on
the Annotation. See Java Annotation in the Developer Guide for details about annotations. Clicking on the
“Edit Annotation” button will launch a new dialog window for editing the annotation. The most important
information that every maintenance must specify on the annotation is the service name. This field is
immediately visible on the main dialog for the annotation, and must have a value entered. Most
everything else will have been defaulted with appropriate values from the Maintenance Object meta data.
See the developer guide mentioned above for more information on using the annotation editor.

After the maintenance information and annotation is complete and valid, pressing finish will cause the
entity files and an empty maintenance class to be created, and editor windows opened on each of them.

Upgrade JSP to XSLT

Note. JSPs other than trees and subpanels must have been upgraded to XSLTs in v1.5.x. Thus, there

is no tool to upgrade such code in V2.

Contents
Batch Program convertTreePageExits.pl
Batch Program convertSubPanelExits.pl
SQL Script changeTemplateCodesTTRAndPN.pl

Batch Program convertTreePageExits.pl

Contents
convertTreePageExits Purpose
convertTreePageExits Description
convertTreePageExits Usage

convertTreePageExits Purpose
Creates user exit files from tree JSP files.

convertTreePageExits Description
This program creates user exit .xjs files for all tree JSP files under the current and child directories. The
.xjs file will be created in the same directory with the same name as the JSP.

This should be run from a command prompt in the directory or parent directory of the JSP files.

convertTreePageExits Usage
Perl convertTreePageExits.pl

Batch Program convertSubPanelExits.pl

Contents

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 207

convertSubPanelExits Purpose
convertSubPanelExits Description
convertSubPanelExits Usage

convertSubPanelExits Purpose
Creates user exit files from subpanel JSP files.

convertSubPanelExits Description
This program creates .xjs files for all subpanel JSP files under the current and child directories. The .xjs
file will be created in the same directory with the same name as the JSP.

This should be run from a command prompt in the directory or parent directory of the JSP files.

convertSubPanelExits Usage

Perl convertSubPanelExits.pl

SQL Script changeTemplateCodesTTRAndPN.pl

Contents
changeTemplateCodesTTRAndPN Purpose
changeTemplateCodesTTRAndPN Description

changeTemplateCodesTTRAndPN Purpose
Changes the tree and subpanel template codes to the XSLT template codes.

changeTemplateCodesTTRAndPN Description
This changes the template codes of from JSP to XSLT template codes. This template code instructs the
application to use the XSLT engine instead of the referring to a JSP.

These SQL commands should be run against the database.

Javadocs

Contents
Batch Program generateJavadoc.bat
Batch Program reindexJavadoc.bat

Batch Program generateJavadoc.bat
Property Detail

Purpose Create javadocs from custom source code.

Description This script runs the javadoc tool bundled with the jdk against CM source code in the

standard directory and targets the javadocs directory in the Application Viewer. To

integrate the javadocs with the product’s javadocs the reindex tool needs to be run.

Usage generateJavadoc.bat

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 208

Parameters None.

Batch Program reindexJavadoc.bat
Property Detail

Purpose Recreate the Javadoc indices.

Description This script recreates the Javadoc indices so that it shows all of the Javadocs in the

Javadoc folder. If Javadocs have been generated for CM code, this will update the

indices to include both the CM and the product’s classes and packages.

Usage reindexJavadoc.bat

Parameters None.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 209

Developer Guide

Overview
The Oracle Utilities Application Framework provides a rich environment for developing applications. This
document provides a reference for various topics that will help developers make the most of this
application development framework. The sections in this document include:

 The Java Annotations section describes the meta-data that can be embedded in Java code for
various purposes.

 The Public API section describes available methods, interfaces, etc., in the various Java classes like
entities, maintenances, etc.

 The Application Logs section describes how logs are set up and used.

 The Java Programming Standards section describes Java coding practices that promote efficient
development and maintenance as well as upgradeability.

 The HQL Programming Standards section describes HQL coding practices that promote efficient
development and maintenance as well as upgradeability.

 The SQL Programming Standards section describes SQL coding practices that promote efficient
development and maintenance as well as upgradeability.

 The Database Design Standards section describes database design practices that promote an
efficient database, maintenance as well as upgradeability.

 The System Table Guide section describes the set of database tables that contain crucial
information for the configuration and operation of the application. It also describes standards to be
followed to ensure upgradeability.

 The Key Generation section describes the automatic generation of random and sequential primary
keys.

Java Annotations
In order to direct the application how to deal with the code in certain classes, annotations are employed.
These annotations can direct the generator how to generate the superclass, how to register the class,
and at runtime can effect the behavior of the class. The annotations are potent metadata used at several
levels in the application.

Technically, the annotations are structures described inside a JavaDoc comment prior to the start of
classes or methods. They are structured via starting with a ‘@’ sign, followed by the annotation name,
and the body of the annotation inside parenthesis. The body can be either comma separated key=value
pairs or a single value which specifies a value for a unique default key. The values can be any of strings
(needing to be bound by quotes if there are special characters inside the string itself), lists (of either
annotations or strings) bound by curly braces {} and separated by commas, or other annotations.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 210

Each managed class (entity, change handler, business component, maintenance, etc.) typically has its
own annotation. Each of these annotations has an underlying Java class in the
com.splwg.shared.annotations package, where the name of the class is the name of the annotation
suffixed by Annotation. The JavaDoc comments of these annotation classes should give more detail for
each specific annotation.

An example will help illuminate:

Here is the entity annotation for batch control:

/**

 * @BusinessEntity (tableName = CI_BATCH_CTRL,

 oneToManyCollections = { @Child (collectionName = parameters, childTableName

= CI_BATCH_CTRL_P,

 orderByColumnNames = { "SEQ_NUM"})})

*/

public class BatchControl_Impl

The name of the annotation is BusinessEntity. It has specified properties tableName, and
oneToManyCollections (there are others available, but they need not all be specified). The property
tableName specifies the CI_BATCH_CTRL table as the table that this entity maintains. It also contains
some oneToMany child collections, specified by the list of Child annotations. In this case, there is a single
child, with a collection name of parameters, pointing to the child table CI_BATCH_CTRL_P, with a native
order given by the column name SEQ_NUM.

Once an annotation exists, the annotation wizard (in the eclipse editors plugin) can be used to maintain
the annotation, showing all of the available annotation properties, and with some validation of the values
entered. Thus, one way to create an annotation from scratch is to create a purely empty annotation with
the correct name at the start of the class, and then use the annotation editor to fill in the details, and
assure against typographical errors and not have to hunt down the allowed properties.

Here is a list of top-level annotations and their corresponding purpose or managed class type, and a
pointer to an example class in the FW code where available.

 BatchJobAnnotation for batch jobs, defining such properties as whether the batch is
multithreaded and what soft parameters it uses. An example batch job in Java is defined in the
class com.splwg.base.domain.todo.batch .BatchErrorToDoCreation.

 BusinessComponentAnnotation for business components. This will register the business
component either as a new one (and define whether it can be replaced or not), or a replacement
of an existing one. An example business component is
com.splwg.base.domain.todo.toDoEntry.ToDoEntryAssigner_Impl.

 AlgorithmComponentAnnotation for defining algorithm implementations. This is used to create a
new algorithm implementation, defining which algorithm spot it is for, and what soft parameters it
uses. An example algorithm component is
com.splwg.base.domain.common.characteristicType.AdhocNumericValidationAlgComp_Impl.

 EntityChangeAuditorAnnotation for implementing audit behavior when an entity is modified. An
example auditing component is com.splwg.base.domain.common.audit.DefaultTableAuditor_Impl.

 BusinessEntityAnnotation for defining or extending business entities, with properties defining the
table maintained and any one-to-many child tables, etc. An example entity is
com.splwg.base.domain.batch.batchControl.BatchControl_Impl.

 ChangeHandlerAnnotation for extending entity persistence behavior- adding validations, or
adding extra code to execute on add/change/delete actions. An example change handler is
com.splwg.base.domain.common.characteristicType.CharacteristicType_CHandler.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 211

 CodeDescriptionQueryAnnotation for adding services to handle drop down lists for the UI. There
are no examples of this general component- the Oracle Utilities Application Framework
implements only entity code descriptions.

 EntityCodeDescriptionQueryAnnotation for adding services to handle drop down lists for the UI,
that are directly related to entities. An example of an entity code description component is
com.splwg.base.domain.common.country.CountryCodeDescriptionQuery.

 MaintenanceExtensionAnnotation for extending a maintenance. There are no examples of
maintenance extensions in the framework. It is purely an implementer component. Please see
Maintenance Extensions (User Guide: Cookbook: , Hooking into User exits: Hooking into
Maintenance Class User Exits).

 QueryPageAnnotation for creating a new query page service. An example is
com.splwg.base.domain.todo.toDoQueryByCriteria.ToDoQueryByCriteriaMaintenance.

 PageMaintenanceAnnotation for creating a new generic page maintenance. An example is
com.splwg.base.domain.security.user.SwitchUserLanguageMaintenance.

 EntityListPageMaintenanceAnnotation for creating a new maintenance for an entity-type, with a
list based front end. An example is
com.splwg.base.domain.common.phoneType.PhoneTypeListMaintenance.

 EntityPageMaintenanceAnnotation for creating a new entity maintenance, that maintains a single
instance at a time. An example is
com.splwg.base.domain.batch.batchControl.BatchControlMaintenance.

 ListServiceAnnotation for creating a list service (read only), meant for trees for example. An
example is com.splwg.base.domain.security.user.UserAccessGroupCountListInquiry.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 212

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 213

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 214

Public API

Contents
SQL Return Codes
Standard Business Methods
Business Entity Public Methods
Maintenance Class Public Methods
UI Javascript User Exits
Java User Exits (interceptors) Interfaces and Classes
RequestContext Methods
Data Objects

SQL Return Codes
The framework generally returns the database-specific return codes from SQL execution. However, the
framework returns SPL-specific return codes for commonly-used SQL execution result messages. These
SPL-specific return codes are the same regardless of the database. This allows programs to be portable
across different databases.

The following lists the SPL-specific return codes:

SQL Execution Result SPL Return Code

OK 0

* Unnumbered SQL Error 999999990

Warning 999999991

End / no (more) row retrieved 999999992

Duplicate / unique index violation 999999993

More / multiple rows retrieved in single-row select 999999994

Deadlock 999999995

No connection 999999996

* Application Error 999999997

* Hibernate Error 999999998

* Programmatic Error 999999999

Note. The SQL return codes marked with an asterisk ("*") are for errors peripheral to the actual execution

of the SQL and do not have equivalent database return codes.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 215

Standard Business Methods
In general, classes that are created to implement business logic, including change handlers, business
entities, maintenances, and business components have access to standard methods intended to give
application code access to framework functionality. Commonly, these classes extend the
GenericBusinessObject class within their inheritance hierarchy. Below are some general descriptions of
the provided methods. Please refer to the JavaDocs for more detail.

 createQuery(String)—Create an HQL query.

 createPreparedStatement(String)—Create a “raw” SQL statement. It is preferable to use the
createQuery method.

 getActiveContextLanguage()/getActiveContextUser()—Get the language and user associated with the
current request.

 createDTO(Class)—Create a new DataTransferObject instance for the entity corresponding to the
provided business interface class.

 getDynamicComponent(various)—Get a Business Component instance corresponding to the input
business interface for the component.

 getSystemDateTime()—Get the current DateTime instance appropriate for business logic.

 IsNull(Object)/notNull(Object)—Methods that answer the question if an object is null or is equivalent
to null.

 isNullOrBlank(String)/notBlank(String)—Methods that answer the question if a String reference is null,
zero length, or all blank.

 startChanges()/saveChanges()—Used to defer validation when making complex changes to entities.
It may be the case where a valid entity can only be constructed by passing through one or more
invalid states. By calling startChanges() at the beginning of the set of changes and saveChanges() at
the end, some validations may be deferred until the entire coherent change is complete.

Business Entity Public Methods
BusinessEntity classes implement a combination of methods inherited from their generated superclasses
as well as the framework classes that those generated superclasses extend. The generated methods are
typically “convenience” methods based on the specific features of the entity. The framework methods are
ones implemented by many or all entities. Similarly, some methods are expected to be invoked from
other objects (public methods) and others are to facilitate business logic coded into the entities’ business
methods themselves.

Contents
Public Methods
Protected Methods
Data Transfer Object Methods
Id Methods

Public Methods
These methods are exposed via the generated “business interface” of the entity.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 216

 registerChange(Change)—Allows for another entity to register the fact that that entity has changed so
that any dependant change handler logic in this entity may fire. This is most useful in situations
where the changed object and the dependant object (the one needing to know about the change) are
not directly related by parent-child relationships.

 getDTO()—Get a DataTransferObject representing the current state of the entity.

 setDTO(DataTransferObject)—Update the state of the entity based on the passed values in the DTO.

 getId()—Each entity has a method by this name with retrieves and Id instance of the appropriate
class for the entity.

 getFoo()—Get the value of the persistent property “foo”.

 fetchBar()—Convenience method that will fetch the value of “bar” where “bar” is a parent entity
referenced by an optional foreign key refernce. The word “fetch” is used to denote that navigation to
that entity is not provided from within HQL.

 getBazzes()—Get the EntityList containing members of the entity “baz”. For example, a
getPersonNames() method on the “person” entity might return an instance of an EntityList containing
PersonName instances.

Protected Methods
These methods are exposed via the extended generated superclass of an entity (the “_Gen” class) for the
use of business methods implemented on the entity. With few exceptions, the methods exposed as
public methods on business entities are also exposed “within” the entity as protected methods for the
convenience of business logic. Additionally, the following methods are added:

 thisEntity()—Returns the instance of the current entity. Generally, this is used when an entity needs
to pass itself as an argument in a method call.

 addError(ServerMessage)—Add an error relating to the current entity.

 addError(ServerMessage, Property)—Add an error relating to the passed property on the current
entity.

 addWarning(ServierMessage)—Add a warning to the current warning list.

Data Transfer Object Methods
DataTransferObjects (or DTOs) are transient objects meaning that changes to their state are not directly
persisted. They provide a mechanism where the set of properties of an entity can be passed around in
business logic without the implication that changes to their values will be transparently persisted to the
database.

 getFoo()/setFoo(Bar)—Get or set the value of the property “foo”.

 newEntity()—Create a new persistent entity based on the values currently held in the DTO.

Id Methods
Entities generally have an Id class created for them by the artifact generator. This provides clarity in the
application code as to what “kind” of Id is being held or passed. Likewise, there are useful methods on
these Id classes. Id instances are immutable.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 217

 getEntity()—Get the business entity that this Id refers to or null if no such entity instance exists.

 getFoo()—In the case where the Id contains a persistent entity “foo”, return that entity.

 getBarId()—Get the contained Id referring to the entity “bar”.

 newDTO()—Create a new DTO instance with the Id property already set to this Id’s value.

Maintenance Class Public Methods

Please refer to the Javadocs for the public API.

UI Javascript User Exits
The client-side external user exits are designed to give implementers flexibility and power to extend the
user interface of a SPL products. Implementers have the ability to add additional business logic without
changing SPL product html files. These user exits were developed such that developers can create an
include-like file based on external user exit templates.

There are two types of client user exits available. There are process-based user exits that wrap the
similar product user exit code with pre- and post- external user exit calls, and there are also data-based
user exits that simply allow the implementer to add/delete data from the product returned data.

Both types of external user exit are only called if the function exists in the implementers external include
JSP file. All available user exits are listed online in the system through the relative URL:
/code/availableUserExits.jsp, with definition examples and links to the framework code that executes the
call.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 218

UI Available User Exits – Online Reference

The location of the external JSP file is the \cm directory under the web application root directory:

JSP JSP

HTML/

XSLT

Includes
External

JSP

"\cm"

This document assumes that you are familiar with the framework architecture and its UI program
component templates (XSLT) and that you know how the base exits work. It also assumes that you are
proficient in JavaScript and HTML.

Contents
Client User Exit Flow
External User Exit Templates
Create An External User Exit
Field-level Security Client-Side User Exit Example
How-To

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 219

Client User Exit Flow
The following flowcharts illustrate the most common user exit functions used to modify the user interface.
The flowcharts are designed to help you see the coordination of processing between the client and the
server as well as where the pre and post external user exits can be used.

The following diagram explains the shapes used on subsequent flowcharts:

Start of a function

Location where a pre user

exit can be inserted

A function

A function that is illustrated in

greater detail in another

diagram

A decision based on a

parameter value

End or return to main

function

Location where a post user

exit can be inserted

Request

(Server-side)

...

A call to a page maintenance

program on the server

Flowchart Legend

Whenever you see a request for a server-side page service, you can refer to the Page Maintenance
Program flowchart to see the server-side processing. You can determine the Page Action based on the
service being requested: Read, Add, Change, Delete, or Default.

Contents
Read Page
Delete Page
Save Page
Refresh Page
Prepare Model For Add
Update Field

Read Page
The Read Page function is executed whenever data needs to be presented from the database to the
user. It is called after a root item is selected from a search page or when navigating to another
transaction via a Go To button or a Context menu.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 220

Start Read

Do Page Read

End

Load Object

Model

Request

(Server-side)

Read Page

Service

Redisplay

Page

Delete Page
The Delete Page function is executed when the user clicks the Delete icon.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 221

Start Delete

Do Page Delete

End

Request

(Server-side)

Delete Page

Service

Refresh

Page

Prepare

Model for Add

Save Page
The Save Page function is called whenever a user clicks the save icon (or the associated accelerator
key). If the user has displayed an existing object on a maintenance page, the Action Flag and therefore
the Change Page Service is requested. If an existing object is not displayed on a maintenance page and
the user presses save (i.e., they are adding a new object to the database), the Action Flag does not equal
change and therefore the Add Page Service is called.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 222

Start Save

Do Page Save

End

Load Object

Model

Request

(Server-side)

Change Page

Service

Refresh

Page

Action Flag =

Change

Request

(Server-side)

Add Page

Service

NoYes

Refresh Page
The Refresh Page function is called from the Read, Delete, and Save page processes. It is also called
when the user clicks the Refresh Page icon (or the related accelerator key) or when the user navigates to
a different tab page.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 223

Start Refresh

Page

Tab Page Window

Load

Contains List

Grid(s)?

Pre User

Exit

Back

Post

User

Exit

List Grid - Before

List Processing

Pre User

Exit

Post

User

Exit

List Grid - Row

Processing

Pre User

Exit

Post

User

Exit

List Grid - After

List Processing

Pre User

Exit

Post

User

Exit

Yes

No

The pre/post Tab Page Window Load user exit is a good place to implement Field Level Security logic.
By using the getFieldLevelSecurityInfo() function found on the "top" object (please refer to the Free
Functions section found within the Technical Background chapter of the Development Tools
documentation), an implementer can extend the behavior or look of the window. For example, a field can
be made "read-only" if the user's Field Level security is lower than the required security level. This
prevents the user from changing the value of the field.

You can use pre/post List Grid Row Processing exit to manipulate fields within the grid. For example, you
can calculate the default value of a column depending on the values of other columns.

Prepare Model For Add
Prepare Model for Add is called when a user enters a page in Add mode (i.e., they click the + button next
to a menu item). It is also called by Delete Page to load an empty model, which displays page with empty
fields.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 224

Start Prepare

Model for Add

Default for

Add?

End

Create Empty

Model

Request

(Server-side)

Default Page

Service

Load Defaults to

Model

Refresh

Page

Yes

No

Update Field
The Update Field function is called when a user changes the focus from one field on the page to another
(i.e. when a user tabs out of a field or clicks on another field).

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 225

Start Field Update

Before Field
Update

Triggers
Default?

Pre User
Exit

End

Post
User
Exit

After Field Update

Pre User
Exit

Post
User
Exit

Yes

No

Basic Validation

Request
(Server-side)
Default Page

Service

Load Object
Model

The pre/post After Field Update user exit is a good place to manipulate HTML elements (e.g., hiding /
unhiding or enabling / disabling) depending on the value entered by a user.

External User Exit Templates
Below is the list of all available external template files. They are located under the "\cm_templates" folder
of the application root directory.

Note. The flowcharts above illustrate user exits in the Tab Page and List Grid templates only; these are

the templates in which most of your customizations will occur.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 226

Accordion: accordionPage.jsp

Graph Panel: graphPanelExit.jsp

List Grid: listGridExit.jsp

Search Data: newSearchDataExit.jsp

Search Page: newSearchPageExit.jsp

Sub Panel: subPanelExit.jsp

Tab Page: tabPageExit.jsp

Tree Page: treePageExit.jsp

Contents
Template Structure
Design Approach
Using The External User Exit Templates

Template Structure
Each template has three main sections into which you insert your code.

 User Variable Declaration contains global variable declarations. (Do not declare any global
variables unless it is absolutely necessary.)

 User Function Declarations contains your own functions. Your own functions are not called from
the corresponding JSP file. Take coupling and cohesion into consideration when you design your
functions.

 Functions Called from the Corresponding HTML page contains functions that are called from the
HTML page. Uncomment the functions you need to use and add your code. You can find more
technical information about the behavior of these functions in the external template files.

Design Approach
Examine the partial template below to see how the external include file looks. As you might notice
everything is commented out. If you want to call a certain function, you have to uncomment the functions
and/or sections. Please note that only declared functions in the external files can be called from the
HTML Page. To see the entire external file templates or available functions, examine the
"\cm_templates" folder under the application root directory.

<%@page contentType="text/html;charset=UTF-8"%>

<%@ taglib uri="spl.tld" prefix="spl" %>

<spl:initializeLocale/>

<!--

 **

 * *

 * Copyright (c) 2000, 2007, Oracle. All rights reserved. *

 * *

 **

 * *

$#BSES* REVISION-INFO Start Exit, Do not modify - Dev. Only.

 * $DateTime$

 * $File$

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 227

 * $Revision$

$#BSEE* REVISION-INFO End Exit, Do not modify - Dev. Only.

 **

-->

<script type="text/javascript">

// User Variable Declarations

//---

/*

Replace With Your Code

*/

// User Function Declarations

//---

/*

Replace With Your Code

*/

// User Functions That Are CALLED From According JSP File

//---

/*

function extPreOnWindowLoadNoListBefore(){

//This should be used to set values/attributes when the page loads.

//This includes actions after a default.

//

//This function is called BEFORE SPL's internal functions are called

// Your Code

}

*/

The following discussion explains how the external file is included. The external file is a JSP file. This
JSP is executed with appropriate HTTP request header data from within the XSLT engine that creates the
HTML from the UI meta-data. The XSLT engine will output the rendered JSP code textually into the final
HTML. If the file does not exist the server will not include the external file, otherwise every defined
function (uncommented) in the file will be included and called at the appropriate times.

Using The External User Exit Templates
All the external user exit templates are located in the \cm_templates directory. Once the UI Program to be
extended is known, the appropriate user exit template can be selected from the templates directory.

 Use any editor that supports the JSP file editing and open the approprite user exit.

 Determine the base user exit around which to insert your external user exit.

 Uncomment the necessary functions, and add your code.

 Save the external user exit file as ext_<JSPfilename>.jsp under the \cm directory. Where
JSPfilename is the JSP file you want to extend.

 Test.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 228

Create An External User Exit
The following example shows the process of creating an external user exit. In this example, we would
like to disable the Start Date on the Pay Plan page and default it to “today’s” date.

Contents
Find The Name of The JSP File
Determine The Base User Exit
Uncomment The Function And Add Code
Test Your Code

Find The Name of The JSP File
In Utilities CC&B, navigate to the Pay Plan Maintenance page (Main Menu -> Credit & Collection -> Pay
Plan) and find the section where the Start Date field is displayed. From the screenshot below we can see
that Start Date is under the main section of the page.

Pay Plan Maintenance Page

Determine the name of the program component we need to extend. Right click on the page and select
the menu option View Source.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 229

Pay Plan Maintenance Page – View Source

View Source would open the page source in a text editor.

JSP Source Code View - payPlanMaintPlanPage

From the menu bar or the program file information section you can identify the program name as
payPlanMaintPlanPage (look for the Program name in the source code comments).

Determine The Base User Exit
For this example, we want to disable the input element corresponding to the start date and display a
message that the start date is disabled. This means we want to disable the field when the page loads;
and therefore we want to insert our code inside the onWindowLoad() function. The external user exit
function that allows us to do this is the extPostOnWindowLoad() function.

You can check the field names under the payPlanMaintPlanPage’s Labels section.

 * Program name: payPlanMaintPlanPage

 * Program location: /ci/payPlan

 * Program version: 68

 * Program template: UIXTP

 * Template file: //FW/2.2.0/Code/modules/web/source/root/WEB-

INF/uiXSL/tabPage2.xsl

 * Template revision: 4

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 230

 * Included XSL versions:

 * common

 * commonPage

 * commonPageSingleRecord 3

 *

 * Labels:

 * Table$Field - label (element type, js_name)

 * $PP_LBL - Pay Plan (element type='L' , jsName='PP_LBL')

 * ...

 * Widget Info:

 * Widget_ID , Element Type - label info - label

 * ...

 * START_DT, IT - $START_DT - Start Date

 * PAY_METH_CD, IS - $PAY_METH_CD - Pay Method

 * ...

The two important pieces of information in this source view are:

1. The Program name definition – payPlanMainPlanPage in this example;

2. The Template file definition – tabPage2.xsl in this example.

Uncomment The Function And Add Code
Once the program name to be extended (e.g. payPlanMainPlanPage) and the template (e.g.
tabPage2.xsl) to use are known, the associated template jsp file can be copied from the web application
source’s /cm_templates directory to the /cm directory and renamed to have the form ext_XXXX.jsp,
where “XXXX” is the name of the program to be extended.

For example, in this case the jsp user exit template ./cm_examples/tabPageExit.jsp would be copied
and renamed to ./cm/ext_payPlanMaintPlanPage.jsp. The following coding change inside the
extPostOnWindowLoad() function would then be made for the modified behavior.

function extPostOnWindowLoad(){

//This should be used to set values/attributes when the page loads.

//This includes actions after a default.

//This function is called AFTER SPL's internal functions are called

protectField("START_DT");

alert ("Start Date Field is disabled. Defaulted to Current Date.");

}

Test Your Code
Now let's see if it works. First make sure that the user exit file is copied under the \cm folder of the
application root directory. Reload the page by right clicking on the page and choosing refresh.

NOTE: It may also be necessary to delete the cache of the browser before refreshing the page.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 231

Pay Plan Main Page after implementing External User Exit

Field-level Security Client-Side User Exit Example
Field level security information is exposed on the browser side.

Use the following function to retrieve a user's field level security for a given service or Navigation Key:

top.getFieldLevelSecurityInfo(serviceNameOrNavigationKey) ---> returns an Object keyed
by security type.

The following example illustrates how to implement security for adjustment amount on the client. In the
example, User Group 1 is authorized to freeze adjustments less than $10,000, and User Group 2 can
authorize any adjustment. We want to disable the Freeze button, if the user's security doesn't meet the
condition. There is a security type ADJAMT defined for the Adjustment Maintenance.

Refer to Field Level Security in the Administration Guide, Defining General Options chapter for

information about the data setup.

The following example code would be added to the extPreOnWindowLoad user exit:

var secInfo = top.getFieldLevelSecurityInfo("adjustmentMaint");

var adjAmtSecInfo = secInfo["ADJAMT"];

if (adjAmtSecInfo < "2" && parseFloat(model.getValue("ADJ_AMT")) > 10000) {

 //disable the field

 protectField("FREEZE_SW")

}

How-To
The following are some how-to examples of typical behavior utilizing some of the standard user exits.

The examples are written for cases of modifying new CM transaction pages, where the function
definitions are put into “extended JavaScipt” files (.xjs) that are meant to contain JavaScript user exits
directly for a page.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 232

If, on the other hand, an implementer wishes to modify the behavior of a shipped product page, each of
the function below have a corresponding “ext” function that can defined in a /cm/extXXX.jsp file
corresponding to the desired page that will fire after any product function call (see above example of
hiding the Sequence column in the algorithm maintenance page).

Contents
How do I control the Initial Focus within Tab Pages/Grids/Search Pages?
How do I mark fields that won't make the model dirty?
How do I control the triggering of defaults after a search?
How do I avoid automatically setting fields to uppercase?
How Can I Force the Save Button to be Enabled?
How Can I Override the Processing After a Change/Add?
How Do I Prevent the System from Setting Focus to a Widget after an Error?
How Do I Prevent Attributes From Being Copied Into New List Elements?
How Do I Customize New List Elements?
How can I get my sequence numbers to default in an appropriate and consistent manner on
How Do I Override the Tab Page Shown After An Error in a List (Grid/Scroll)?
How Do I Disregard Unwanted Criteria From a Search Triggered Search by a Search Button?
How Do I Disregard Unwanted Search Result Columns?
How do I format a value based on a given format?

How do I control the Initial Focus within Tab Pages/Grids/Search Pages?
The system automatically places the initial focus on an appropriate widget (generally input fields) within a
Tab Page/Search Page/Grid.

By default it will place focus on the first enabled field with a data class defined on it. (If input fields do not
have the Field Name / Table Name defined within Meta Data they will have no data class)

If there are no fields satisfying this criteria within the tab page it will continue to look (recursively) into all
the contained frames (i.e. list grids etc.)

If no field is found then no element receives focus.

You can override the default behavior at each level via the provision of a focusWidgetOverride()

function within the user exit file which will return the Name of the Field to receive the focus or null.

If null is returned it will ignore all fields within this document and continue to search in lower level
documents.

E.G.

From within a Tab Page (If you want focus to go on to a sub document)

function focusWidgetOverride() {

 return null;

}

From within a List Grid

function focusWidgetOverride() {

 return "TD_TYPE_DRLKY:0$TBL_NAME";

}

from within a Search Page

function focusWidgetOverride() {

 return "LAST_NAME";

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 233

}

Note. These functions can be as simple or complicated as you want. You could conditionally return a

field name or null and this code will run each time the window loads. Also, if a tab page has a popup

window or a search window open as it is loading then the initial focus will not be set to the tab page but

stay with the popup window

How do I mark fields that won't make the model dirty?
In certain windows, we have a concept of a "locator" field which typically acts as a filter on some lists of
the object you're looking at. Examples are user group's filter on description, and several IB windows filter
by date.

With the warning about loss of data when throwing away a dirty model, this results in the use of locator
fields giving this warning, which wouldn't be expected. In order to avoid this warning on locator fields, you
can add a function like the one that follows that enumerates the locator fields:

function ignoreModifiedFields(){

 return ['START_DTTM']

}

You can include any number of fields in the array, e.g.

return ['FIELD_1', 'FIELD_2', 'FIELD_3']

How do I control the triggering of defaults after a search?
If a search returns multiple fields and more than one of these fields can trigger default, then it might be
more efficient to only have one of these fields trigger the defaulting.

This is accomplished by creating a new function called overrideDefaultTriggersFor_SEARCHGROUP
within the tab page that contains the search. Where SEARCHGROUP is the name of the searchGroup
you want to override.

The function must return an object with the triggering field(s) are attributes with a true value.

For example

function overrideDefaultTriggersFor_SRCH1() {

 var triggers = {};

 triggers["ACCT_ID"] = true;

 triggers["SA_ID"]=true;

 return triggers;

}

How do I avoid automatically setting fields to uppercase?
Model attributes that are also key fields are automatically coerced to be in uppercase. You can block this

behavior on a field-by-field basis by defining the notUppercaseFields() function in your TabMenu’s user

exit file to return an array of field names that should not be converted.

Example:

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 234

function notUppercaseFields() {

 return ['ELEM_ATT$AT_NAME']

}

You can also provide a “global” override for an entire TabMenu by setting the shouldNotAutoUppercase

variable to true:

var shouldNotAutoUppercase = true;

How Can I Force the Save Button to be Enabled?
The save button usually synchronizes itself to the state of the model such that if it hasn’t been “dirtied” the
button is disabled. You may wish to control the state of the save button e.g. because a save should
always/never be allowed.

Simply define the function saveButtonEnablingOverride() on your TabMenu user exit file to return a

boolean indicating whether the save button should be enabled. You can simply return a literal boolean, or
perform any desired processing to determine the return value.

Example:

function saveButtonEnablingOverride() {

 return false;

}

How Can I Override the Processing After a Change/Add?
If you need to intervene in the processing after the system successfully completes a Change or Add

operation, define the function privatePostChangeSucceeded() or privatePostAddSucceeded() in your

TabMenu user exit file. The function should return a boolean to indicate whether the system should
refresh the UI with the newly returned server data. You’d want to return false if e.g. you navigate to a
different TabMenu.

Example :

function privatePostAddSucceeded() {

 var model = parent.model;

 var modeFlag = model.getValue('COMPL_NAV_MODE_FLG');

 var navKey = model.getValue('COMPL_NAV_KEY');

 var complSw = model.getValue('CMPLT_CLICKED_SW');

 if (complSw && model.getValue('ENRL_STATUS_FLG') == '30') {

 if (modeFlg && navKey){

 if (modeFlag == 'G') {

 parent.tabPage.gotoContext(navKey);

 return false;

 } else if(modeFlag == 'A') {

 parent.tabPage.addContext(navKey);

 return false;

 }

 }

 }

 return true;

}

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 235

How Do I Prevent the System from Setting Focus to a Widget after an Error?
When a service receives an error and shows a message after calling a back-end service, the browser
attempts to set focus to the relevant widget in error. If you don’t need this behavior, you can define the
TabMenu variable dontSetFocusOnError to boolean “true.

Example:

var dontSetFocusOnError = true;

How Do I Prevent Attributes From Being Copied Into New List Elements?
Key fields are automatically copied (based on name matching) from a parent list element into new child
elements (e.g. created by using the scroll ‘+’ button), in order to keep their prime keys consistent. If you
want to inhibit this operation for certain fields, define the TabMenu function dontCopyKeyNames_<LIST
NAME> to return an array of fields that should not be copied into new elements of the list named
LIST_NAME

Example:

function dontCopyKeyNames_ENRL_FLD() {

 return ['SEQ_NUM']

}

How Do I Customize New List Elements?
When you use ‘+’ button on a grid or scroll you get a new, empty list element. If you want to customize
the object, define a function in the TabMenu’s user exit file named
initializeNewElement_<LIST_NAME>(newElement).

Example:

function initializeNewElement_ENRL_LOG(newElement) {

 newElement.set(‘ENRL_LOG_TYPE_FLG’, ‘USER’);

 newElement.set(‘USER_INFO’, parent.model.getValue(‘CURRENT_USER_INFO’));

}

How can I get my sequence numbers to default in an appropriate and consistent
manner on my List Grid?
If you are working with a List Grid that uses some type of sequence field (e.g. SEQNO, LINE_SEQ,
SORT_SEQ) , there is a handy bit of technology that you can use that will cause the UI to do this job for
you.

Just follow the steps below and you'll have the problem solved in no time. The sequence field will be
populated in your "empty line" and any elements that are added from then on will have an appropriate
value in the sequence field. If the user edits the sequence field at any point, the next element added to
the list will incorporate the change without any problems.

Note. The default Sequence Number functionality will default the next nearest tens value from the

highest sequence. The defaulting will do nothing after the sequence reaches the highest number it can

hold.

 1) In the user exit file of the Tab Menu - not the main Page or the List Grid - copy this JavaScript
code:

function initializeNewElement_LIST_NAME(newElement) {

 var myListName = "LIST_NAME";

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 236

 var myListSeqName = "FIELD_NAME";

 var myListMaxSeq = 999;

 defaultSequenceNumber(myListName,myListSeqName,myListMaxSeq,newElement)

}

</SCRIPT>

<SCRIPT src="/zz/defaultSequenceNumber/defaultSequenceNumber.js"></SCRIPT>

<SCRIPT>

 For LIST_NAME, substitute your List Grid's list name. Be careful not to lose that underscore [_] just
in front of LIST_NAME in the first line! Remember that JavaScript is case-sensitive and make sure
that you use all UPPERCASE letters as shown here.

 For FIELD_NAME, substitute the name of your sequence field, whatever that might be in your List.
Don't lose the quotes ["] ! Again, use all UPPERCASE letters.

How Do I Override the Tab Page Shown After An Error in a List (Grid/Scroll)?
When an error is received (e.g. after a Save) it attempts to set focus on the relevant widget, which might
require flipping to a different tab page. If the error relates to a list (grid or scroll) the system might not
choose the tab page you’d prefer. In that event you can control the tab page that should be opened by
defining the TabMenu function overrideErrorTabPage_<LIST_NAME>().

Example:

function overrideErrorTabPage_BPA() {

 return 'bussProcessAssistantStepPage';

}

How Do I Disregard Unwanted Criteria From a Search Triggered Search by a
Search Button?
When a search button (currently implemented as an IMG) is pushed, the system launches a search and
“pulls” all applicable criteria values from the current model. It might be that certain criteria fields should be
ignored in a particular case. You can define the function addIgnoreFieldsFor_<triggerFieldName>() on a
tab or search page’s user exit file to specify fields to ignore whenever the IMG button named
triggerFieldName is pushed on that page.

The function takes a single argument, fields, and you should add key/value pairs where the key is a

field name to ignore, and the value is true.

Example:

addIgnoreFieldsFor_ADDRESS1_SRCH = function(fields) {

 fields['CITY_SRCH'] = true

}

addIgnoreFieldsFor_PER_ID = function(fields) {

 fields['ENTITY_NAME_SRCH'] = true

}

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 237

How Do I Disregard Unwanted Search Result Columns?
When you accept the result of a NOLOAD search the system tries to populate the selected search result
row into the current model. Sometimes this doesn’t make sense e.g. because there is no corresponding
attribute for a display-only column. You can exclude a column from being returned as part of a search
result by defining the search client’s (Tab Page or Search window) function ignoreResultColumns() in the
corresponding page’s user exit file. Return an object with keys specifying attributes and values all set to
boolean “true”.

Example:

function ignoreResultColumns() {

 return { ADDRESS1: true, CITY: true, POSTAL: true };

}

Since Searches can be shared by many search clients, it is possible that some clients want to get a
specific column, but others don’t. In that case, define the TabMenu function
ignoreResultColumnsFor_<service> as above.

Example:

function ignoreResultColumnsFor_CILCCOPS() {

 return {CONT_OPT_TYPE_CD: true}

}

How do I format a value based on a given format?
If you need to format a value based on a given format, for example, on Person ID Number, if you select
ID Type as SSN (999-99-9999), you can always format the Person ID Number before committing it to the
server.

To do so, you can call the formatValue javascript function.

 In the user exit file of the tab page include the following lines:

</SCRIPT>

<SCRIPT src="/zz/formatValue/formatValue.js"></SCRIPT>

<SCRIPT>

 Now, you can start using the function to format a value. To use this function, you need to pass in both
the value and the format into the function.

var phFormat = myData.getValue(pureListName + ‘PHONE_TYPE_FORMAT’);

if (pureFieldName == ‘PHONE’) {

 updateField(pureListName + ‘PHONE’ ,

 formatValue(myData.getValue(pureListName + ‘PHONE’), phFormat));

}

Java User Exits (interceptors) Interfaces and
Classes
The following are the interfaces used for Java User Exits (interceptors).

Contents
IAddInterceptor Interface
IChangeInterceptor Interface

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 238

IDeleteInterceptor Interface
IReadInterceptor Interface
InterceptorError class
InterceptorWarning class

IAddInterceptor Interface
This interface defines the processing plug-in spots before or after invoking a service in add mode.

Interface com.splwg.base.api.serviceinterception.IAddInterceptor

Methods

Contents
PageBody aboutToAdd(RequestContext, PageBody)
void afterAdd(RequestContext, PageBody)

PageBody aboutToAdd(RequestContext, PageBody)
This method is called before the service is invoked.

Input

 RequestContext – contains session parameters, such as, language cd, user id and etc.

Input/Output

 PageBody – The input page body to be added.

Return value

 PageBody or null -- If a page body is returned, this is considered the result of the service and the
underlying service will not be executed. If null is returned, the service will run normally.

Throws

InterceptorError – throw this exception when an error occurs.

InterceptorWarning – throws this exception to signal an application warning

void afterAdd(RequestContext, PageBody)
This method is called after the service invoked in add mode.

Input

 RequestContext – contains session parameters, such as, language cd, user id and etc.

Input/Output

 PageBody – This contains the information that was added by the underlying service.

Return value

 Void.

Throws

InterceptorError – throw this exception when an error occurs

InterceptorWarning – throws this exception to signal an application warning

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 239

IChangeInterceptor Interface
This interface defines the processing plug-in spots before or after invoking a page service in change
mode.

Interface com.splwg.base.api.serviceinterception.IChangeInterceptor

Methods

Contents
PageBody aboutToChange(RequestContext, PageBody)
void afterChange(RequestContext, PageBody)

PageBody aboutToChange(RequestContext, PageBody)
This method is called before the service invoked in change mode.

Input

 RequestContext – contains session parameters, such as, language cd, user id and etc.

Input/Output

 PageBody – this object contains the information that is to be submitted to the underlying service.

Return value

PageBody or null – if a page body is returned, this is considered the result of the invocation and the
underlying service will not be called. If null is returned, the underlying service will be invoked normally.

Throws

InteceptorError – throw this exception when an error occurs.

InterceptorWarning – throws this exception to signal an application warning

void afterChange(RequestContext, PageBody)
This method is called after change action is invoked in change mode.

Input

 RequestContext – contains session parameters, such as, language cd, user id and etc.

Input/Output

 PageBody – This holds the result of the underlying change service.

Return value

 Void.

Throws

InterceptorError – throw this exception when an error occurs.

InterceptorWarning – throws this exception to signal an application warning

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 240

IDeleteInterceptor Interface
This interface defines the processing plug-in spots before or after invoking a service in delete mode.

Interface com.splwg.base.api.serviceinterception.IDeleteInterceptor

Methods

Contents
boolean aboutToDelete(RequestContext, PageBody)
void afterDelete(RequestContext, PageBody)

boolean aboutToDelete(RequestContext, PageBody)
This method is called before the service with a delete action.

Input

 RequestContext – contains session parameters, such as, language cd, user id and etc.

Input/Output

 PageBody – the data to be deleted.

Return value

 Boolean – indicates whether or not to continue processing of the service. If true, continue with the
normal underlying invocation. If false, do not continue (but the service returns “success” to the client
invoker).

 Throws

InterceptorError – throw this exception when an error occurs.

InterceptorWarning – throws this exception to signal an application warning

void afterDelete(RequestContext, PageBody)
This method is called after the service invoked in delete mode.

Input

 RequestContext – contains session parameters, such as, language cd, user id and etc.

Input/Output

 PageBody – the data that was deleted by the underlying service

Return value

 Void.

Throws

InterceptorError – throw this exception when an error occurs.

InterceptorWarning – throws this exception to signal an application warning

IReadInterceptor Interface
This interface defines the processing plug-in spots before or after a service retrieves information.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 241

Interface com.splwg.base.api.serviceinterception.IReadInterceptor

Methods

Contents
PageBody aboutToRead(RequestContext, PageHeader)
void afterRead(RequestContext, PageBody)

PageBody aboutToRead(RequestContext, PageHeader)
This method is called before a service retrieves information.

Input

 RequestContext – contains session parameters, such as, language cd, user id and etc.

Input/Output

 PageHeader – The data describing the information that should be read.

Return value

 PageBody or null – If a page body is returned, this is considered the result of the service and
underlying will not be invoked. If null is returned, the underlying service will be invoked normally.

Throws

InterceptorError – throw this exception when an error occurs.

InterceptorWarning – throws this exception to signal an application warning

void afterRead(RequestContext, PageBody)
This method is called after the service retrieved the information.

Input

 RequestContext – contains session parameters, such as, language cd, user id and etc.

Input/Output

 PageBody – result of read service

Return value

 Void.

Throws

InterceptorError – throw this exception when an error occurs.

InterceptorWarning – throws this exception to signal an application warning

InterceptorError class
The class com.splwg.base.api.serviceinterception.InterceptorError subclasses the java.lang.Exception
class. This class contains information regarding an error condition that occurred during the pre/post
processing plug-in. This exception is caught by the framework and is used to build the appropriate
application error object.

Attributes

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 242

 Message Category

 Message Number

 List of Parameters (Strings) and types

Methods

Contents
void setMessageNumber(BigInteger messageNumber)
void setMessageCategory(BigInteger messageCategory)
void setMessageParameters(List messageParameters)
void setMessageParameterTypeFlags(List messageParameterTypeFlags)

void setMessageNumber(BigInteger messageNumber)
Set the message number (required)

void setMessageCategory(BigInteger messageCategory)
Set the message category (required)

void setMessageParameters(List messageParameters)
Set the message parameters list

void setMessageParameterTypeFlags(List messageParameterTypeFlags)
Set the message parameter type flags list. The size should match the message parameters list.

InterceptorWarning class
The class com.splwg.base.api.serviceinterception.InterceptorWarning subclasses the java.lang.Exception
class. This class contains information regarding one or more warning conditions that occurred during the
pre/post processing plug-in. This exception is caught by the framework and is used to build the
appropriate application warning object(s).

Attributes

 List of warning server messages

Constructors

Contents
InterceptorWarning(ServerMessage warningMessage)
InterceptorWarning(List warningMessages)
void addWarningMessage(ServerMessage message)

InterceptorWarning(ServerMessage warningMessage)
Create a new InterceptorWarning with the given warning message as its sole message

InterceptorWarning(List warningMessages)
Create a new InterceptorWarning with the given List of warning messages

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 243

Methods

void addWarningMessage(ServerMessage message)
Add the given server message to the list of warning messages

RequestContext Methods
Class com.splwg.base.api.service.RequestContext includes the following accessor methods:

Contents
String getLanguageCode()
String getUserId()

String getLanguageCode()
Returns the current user’s language code

String getUserId()
Return the user id

Data Objects
Both PageHeader and PageBody are "wrappers" on underlying Maps that hold datatypes of various
types, keyed by field names (Strings). The valid field names for a service are described in the service
meta info file (an xml document). Null values are not allowed; use empty strings to represent missing
values (e.g. for null date).

Note that most system datatypes are represented in these Java objects as simple Strings. Note the
following:

 Booleans are represented by the Java Boolean class

 Date values are represented as Strings in the format YYYY-MM-DD

 Date/Time values are represented as Strings in the format YYYY-MM-DD-HH:MM:SS

 Time values are represented as Strings in the format HH:MM:SS

 BigInteger values are represented as Java BigInteger values

 BigDecimal and Money values are represented as Java BigDecimal values, with the appropriate
scale.

Contents
PageHeader and PageBody Methods
PageHeader
PageBody
ItemList
ListHeader
ListBody

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 244

CMServiceConfig.xml structure

PageHeader and PageBody Methods
Both PageHeader and PageBody implement the following methods:

Contents
Object get(String fieldName)
String getString(String fieldName)
boolean getBoolean(String fieldName)
BigInteger getBigInteger(String fieldName)
void put(String fieldName, Object value)

Object get(String fieldName)
Returns the Object value of the field named fieldName (may need to cast the result to the appropriate
datatype)

String getString(String fieldName)
Convenience method that returns the String value of the field named fieldName.

boolean getBoolean(String fieldName)
Convenience method that returns the Boolean value of the field named fieldName.

BigInteger getBigInteger(String fieldName)
Convenience method that returns the BigInteger value of the field name fieldName.

void put(String fieldName, Object value)
Set the value at the given fieldName to the given value.

PageHeader
The methods for class com.splwg.base.api.service.PageHeader are described above.

PageBody
Class com.splwg.base.api.service.PageBody implements the methods described above. In addition, it
supports the following methods:

ItemList getList(String name)
Return the ItemList with the given name

ItemList
Class com.splwg.base.api.service.ItemList is the Java representation of a list header and list children
objects. The methods are as follows:

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 245

Contents
ListHeader getHeader()
String getName()
List getList()
void setList(List list)

ListHeader getHeader()
Return the list header object.

String getName()
Return the ItemList’s name

List getList()
Return the java.util.List of ListBody child objects.

void setList(List list)
Set the underlying list to the provided list of ListBody instances.

ListHeader
The class com.splwg.base.api.service.ListHeader is functionally equivalent to the class PageHeader,
above.

ListBody
The class com.splwg.base.api.service.ListBody is functionally identical to the class PageBody, above. In
addition, it has this useful method:

String getActionFlag()
Return the flag describing the pending action for this ListBody (e.g. add, change, delete).

CMServiceConfig.xml structure
The ServiceConfig.xml and CMServiceConfig.xml will look similar to the following:

<ServiceInterceptors>

 <Service name=”CMLPXXXX”>

 <Interceptor action=”add”>

 com.splwg.interceptor.CMLPXXXXAddInterceptor

 </Interceptor>

 <Interceptor action=”change”>

 com.splwg.interceptor.CMLPXXXXChangeInterceptor

 </Interceptor>

 </Service>

</ServiceInterceptors>

The above example illustrates how interceptors are defined for the service CMLPXXXX. You can define
one or more interceptors, depending on the action, for each service. The valid actions are “add”,
“change”, “delete”, and “read”.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 246

Note. It is valid to have the same interceptor class for more than one action as long as the class

implements the corresponding interceptor interface.

Application Logs
Logging has many purposes. Notably, it allows tracing of what is happening when something goes wrong.
However, a user/developer does not always want to see EVERY log entry-besides clutter, it may slow
down the application. In this light, the framework has wrapped the powerful and flexible log4j logging
framework as an API. There are two important aspects:

 Placing logging statements within application code so that logging entries may be created at runtime.

 Configuring logging at runtime so that the appropriate logging entries are created and directed to the
appropriate log destination.

Contents
Logging within Business Logic
Configuring Logging at Runtime

Logging within Business Logic
The following describes how to implement logging when adding a class that implements business logic:

 Add a constant referencing the logger for the class. By convention logger should be named “logger”
and should pass the declaring class as its argument. For example, a logger in the
Adjustment_CHandler class would be declared as follows:

private static final Logger logger

= LoggerFactory.getLogger(Adjustment_CHandler.class);

 Add entries with the appropriate logging level. The levels are: “debug”, “info”, “warn”, “error” and
“fatal”. The following will log a warning entry to the log:

logger.warn("Unexpected status for frozen adjustment: " + status);

 In general, we expect entries of level “info” or more severe to be rare and therefore not to impose a
substantial performance penalty. However, “debug” entries we can expect to be very fine grained
and that they usually will not find their way to actual logs but will be filtered out via runtime
configuration. To lessen the performance impact of debug logging, the logging statement should be
wrapped as follows:

if (logger.isDebugEnabled()) {

 logger.debug("Processing adjustment " + adjustment.getId());

}

 There are times when you want to know how long code block takes to execute. In general, the
logging provides the time each log statement is issued. However, it is clearer to see an actual
elapsed time of some process being investigated. In this case, there are some additional methods on
the logger:

debugStart(message) or infoStart(message)

debugTime(message, start) or infoTime(message, start)

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 247

These should be used in the pairs given, as such:

long start = debugStart("Starting process");

//... code for process

debugTime("End process", start);

This will cause each statement to be logged, plus the final "End Process" statement will give the
elapsed time since debugStart was called.

Please refer to the JavaDocs on the com.splwg.shared.logging.Logger class for more detail.

Configuring Logging at Runtime
Having instrumented the code to create logging entries, the question remains, how to cause the various
logger level messages to actually trigger at runtime? A very detailed description of this can be found at
http://logging.apache.org/log4j/docs/manual.html.

Contents
Property Configuration
Trace Flags

Property Configuration
Control of log4j occurs based on properties typically set in the log4j.properties file in the application
classpath. You can change the log level of a given logger in this file. Note, however, that values may be
overridden on the command line by specifying system properties (i.e. via “–Dlog4j…”). Note that
"inheritance" of logger levels works such that (in our standard of qualified class name as the logger name)
you can change a whole package’s log level by specifying only a portion of the logger name. Note that
you may commonly desire to enable ("global") debug logging on your local environment. To do this, you
can simply change the line

 log4j.logger.com.splwg=info

to

 log4j.logger.com.splwg=debug

Trace Flags
Trace flags allow for specialized logging that cuts across many classes. They can be set for user
requests by entering the online system in “debug” mode and setting the “trace” flags appropriately.
Likewise, they can be set in batch either by interactive prompts for the trace flag values when a job starts
or by setting system property values. See the JobSubmitterConfiguration class for specific system
property names.

 traceProgramStart, traceProgramEnd, traceProgramStandardOut—These parameters are specific to
COBOL programs and will cause entries for the start and end of program execution and enable any
embedded logging statements within the COBOL code.

 traceSQL—Causes special detail of SQL being submitted. This can be useful when troubleshooting
performance problems.

http://logging.apache.org/log4j/docs/manual.html

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 248

 traceTime—This can only be enabled for online requests or JUnit tests by setting traceTime(true) on
the request context. Enabling time tracing will cause special profiling entries to be placed in the
application log for the purpose of attributing request latency to the various layers of the application or
to specific SQL statements. These entries are queued in memory until after profiling entries are no
longer being generated and then spooled to the logs so as not to corrupt the performance
instrumentation with logging overhead. The ProfilingReport standalone Java program can be run to
post-process these logs, or a portion of them and generate a report.

Java Programming Standards

Contents
Rationale
Guidelines
Naming Standards

Rationale
In order to make it easier for programmers working on the same codebase to easily read each other's
(and their own!) code, we need to enforce certain standard coding conventions. These conventions will
also be helpful when comparing code revisions under version control, as the code should be formatted
consistently and no irrelevant formatting-related differences will appear in the diff.

Guidelines
First, Sun has their own code standards guidelines here:
http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html. Like most coding guidelines, these are
quite reasonable and differ only in minor details from other guidelines.

The web page http://geosoft.no/development/javastyle.html also has some very nice tips. Note that we
won't prefix instance variable names with underscores--instead we use Eclipse syntax coloring to make
ivars easily visible.

We use the prefix fetch in method names in entity implementation classes, in order to perform object
navigations that aren't already defined by Hibernate mappings.

Here are some additional notes:

Not surprisingly, a lot can be learned from good Smalltalk style. The books "Smalltalk With Style" (Klimas,
Skublics, Thomas) and "Smalltalk Best Practices Patterns" (Kent Beck) provide a lot of good ideas for
code organization and naming that are applicable to Java as well as Smalltalk.

All code should be:

 Written with tabs equal to 4 spaces, not "hard" tabs. Each level of indentation should be one
"tab".

 Generally free of hard-coded "magic" strings or numbers (e.g. max number of items in some list).
If you need such a string or number value, you should use (or create) a constant or property.

http://geosoft.no/development/javastyle.html

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 249

Classes should use specific, not package-based imports, where practical. I.e. import
com.foo.UsefulClass, not com.foo.*.

Variables should generally be private. Only create accessor (e.g. get/set) methods when absolutely
needed ("Dont reveal your private parts").

Prefix "getter" methods with "get", e.g. "getFoo()", setters with "set", e.g. "setBar(aBar)". Don't use "Flag"
or "Switch", or abbreviations thereof, i.e. "getAllowedSw()" should be "getIsAllowed(), and
"setAllowedSw(aBoolean)" should be "setIsAllowed(aBool)".

Use camel-case instance and parameter variable names, without underscore prefixes or suffixes (do use
uppercase for constants, as suggested in the guidelines reference above). Instance variables start with
lower-case letters.

Methods should generally be public or private (again, to allow future subclassing). Use of interfaces is
encouraged to declare useful sets of public methods.

Don't abbreviate except for standard industry abbreviations (i.e. HTML, HTTP). Use long, meaningful
class, method, and variable names.

Methods should be short and clear. Instead of placing comments before a section of code in a method,
rather create another method that describes what is being done by the method name.

When using Java API collections, reference them through generic interfaces, not specific implementation
classes, e.g.

 List someList = new ArrayList();

 ...

 Map someMap = new HashMap();

 ...

This lets you change your mind about implementation (e.g. ArrayList to LinkedList) without breaking any
code.

Naming Standards

Contents
1. General guidelines
2. Entity Naming Guidelines
3. Collection Naming Guidelines
4. Lookup Naming Guidelines
5. Java/COBOL Naming Guidelines
6. Special Cases

1. General guidelines

 Don't use reserved java words

 Don't use spaces

 Don't abbreviate

 Don't use punctuation

 Don't start the name with a number

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 250

Here are our project guidelines for naming properties:

 Generally, don't abbreviate. The exceptions are SA, SP when the name would get too long if
written as e.g. ServiceAgreement as part of a much longer field name

 In line with the above, spell out amount and total

 Boolean values (SW) are prefixed with is, has, can, are, or should, according to what is
grammatically correct.

 Date fields end with Date

 Time fields end with Time

 Datetime fields end with DateTime

 Id is spelled Id

 Don't include a final Flag (FLG) or Code (CD)

 Use min instead of minimum, and max instead of maximum

 Can be generic- that is, for the field BILL_STATUS, you can just name it status

2. Entity Naming Guidelines

 Be specific- the name MUST be unique

 Language tables (_L) don't need to be named

 Don't append "View" to a view.

 Don't abbreviate

 Don't use plural names (e.g. BillMessages)

3. Collection Naming Guidelines

Contents
3.1. Class Name
3.2. Collection Name

3.1. Class Name
The class name for a collection includes the owning entity name and the collection name in singular form.

<owning_entity><collection_name_in_singular_form>

Examples:

 AdjustmentTypeAlgorithm

 AdjustmentTypeCharacteristic

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 251

 BillableChargeTemplateLine

3.2. Collection Name
For collections, the one-off generation created a large number of collection names. Many of these are
overly verbose, and should be shortened. Simply modify the collectionName in the entity annotation. Here
are guidelines:

 Shorten adjustmentTypeAlgorithms to algorithms

 Shorten adjustmentTypeCharacteristics to characteristics (in rare cases you may have more
than one kind of characteristic, in which case you need more specific names)

 Remove the owning entity name from the front of the collection name, e.g.
billableChargeTemplateLines becomes lines

4. Lookup Naming Guidelines
Here are guidelines for naming Lookups (on the Lookup Field maintenance):

 Be specific- the name MUST be unique across all lookups

 Don't include a final standard suffix Flag or Lookup (The suffix Lookup is automatically added by
the generator to the classes generated for each Lookup field.)

 Examples:

o WO_STATUS_FLG -> writeOffStatus

o STM_RTG_METH_FLG -> statementRoutingMethod

Here are guidelines for naming Lookups Value properties (on Lookup Value maintenance):

 Try to word the name in a way that makes sense when prepended by is, and is also valid when
standing alone as a constant. (eg {isComplete, COMPLETE}, {isFrozen, FROZEN})

 The name might match the english description of the lookup value.

 Examples:

o HOW_TO_USE_FLG : - -> subtractive

o ITEM_STATUS_FLG : A -> active

o DGRP_PRIO_FLG : 10 -> highest10

o DGRP_PRIO_FLG : 20 -> priority20

5. Java/COBOL Naming Guidelines
When coding Java classes for Java -> Cobol processing, the following standards should be applied.

 The Cobol program Java class should be named "CobolProgramCIPXXXXX_Impl" where
CIPXXXXX is the name of the Cobol program being called. It should reside in the package
"com.splwg.cis.cobol.XX" where XX is the current subsystem id (i.e. CI, AD, etc.).

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 252

 The Cobol copybook Java class should be named "CobolCopybookCICXXXXX_Impl" where
CICXXXXX is the name of the Cobol copybook being used. It should reside in the package
"com.splwg.cis.cobol.XX" where XX is the current subsystem id (i.e. CI, AD, etc.).

6. Special Cases

6.1. 'Type' Entity Controlling Characteristics for 'Instance' Entities - Characteristic
Controls
There are 'type' entities that control the characteristics for their 'instance' entities. These are tables
typically named CI_CHTY_<type_entity>, e.g., CI_CHTY_CCTY. These type entities specify a list for its
instances the valid characteristic types, default characteristic types, required characteristic types, etc.
This list is the type entity's Characteristic Controls.

The following are the naming conventions for the characteristic controls:

Characteristic control class <type_entity>CharacteristicControl

Characteristic control collection characteristicControls

For example, the class name for characteristic control of Customer Contact Type is
CustomerContactTypeCharacteristicControl.

And the collection is defined as follows:

/**

 * @version $Revision: #1 $

 * @BusinessEntity (tableName = CI_CC_TYPE,

 oneToManyCollections = { @Child (collectionName = characteristicControls,

childTableName = CI_CHTY_CCTY)})

*/

HQL Programming Standards
The applications use an object relational mapping library called Hibernate (information available at
http://www.hibernate.org/). This library handles persistence operations against the database for changed
entities, and also provides a querying language.

The Hibernate Query Language (http://www.hibernate.org/hib_docs/reference/en/html/queryhql.html)
provides a more object oriented approach to querying against the database. Joins can more clearly be
indicated via “navigation” to the related foreign key, letting hibernate fill in the join when it constructs the
SQL.

Note that in most situations only a subset of the hibernate query language is used. For instance, when
constructing a query whose order is important, the query must programmatically specify the order by, as
opposed to placing the order by clause into the HQL itself. This allows the application to perform
additional operations upon the HQL that may be required for different databases, and also to apply
validations to the HQL.

Here are some examples of creating and using queries. The convenience methods to create the query
are available on any “context managed object”- that is, entities, change handlers, business components,
maintenances, and the implementer extensions of any of them.

http://www.hibernate.org/
http://www.hibernate.org/hib_docs/reference/en/html/queryhql.html

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 253

To select all algorithms with a given algorithm type:

AlgorithmType algorithmType = … ;

Query query = createQuery(“from Algorithm algorithm where “ +

“algorithm.algorithmType = :algorithmType”);

query.bindEntity(“algorithmType”, algorithmType);

List algorithms = query.list();

The above algorithms list will contain as elements the algorithms for that algorithm type.

To sort the above query by the algorithm’s code/id:

AlgorithmType algorithmType = … ;

Query query = createQuery(“from Algorithm algorithm where “ +

“algorithm.algorithmType = :algorithmType”);

query.bindEntity(“algorithmType”, algorithmType);

query.addResult(“algorithm”, “algorithm”);

query.addResult(“algorithmId”, “algorithm.id”);

query.orderBy(“algorithmId”, Query.ASCENDING);

List queryResults = query.list();

The above queryResults list will contain as elements instances of the interface QueryResultRow. Each
query result row will have two values, keyed by “algorithm” and “algorithmId”. The list will be ordered (on
the database) ascending by the algorithm’s IDs.

Since HQL works with the entity’s properties instead of the tables’ column names, there may be extra
research required when writing queries. The source of the property information is in the hibernate
mapping document for each entity class- they are documents that exist in the same package as the entity,
have the same root file name as the entity’s interface, and end with .hbm.xml. These files will give the list
of properties available for each entity that can be referenced when writing HQL.

More information can be found in the JavaDocs associated with the Query interface.

Contents
Examples
Union queries
Performance
Raw SQL

Examples
Even with all of the above, there are a few cases that stand out with possibly needing examples in order
to help. Notably, dealing with language entries and lookups may be confusing.

Here is an example of selecting all algorithm types where the description is like some input:

String likeDescription = …;

Query query = createQuery(“from AlgorithmType_Language algTypeLang join

algTypeLang.id.parent algType where algTypeLang.description like :likeDescription

and algTypeLang.id.language = :language”);

query.bindEntity(“language”, getActiveContextLanguage());

query.addResult(“algType”, “algType);

query.bindLikableStringProperty(“likeDescription”,

AlgorithmType.properties.languageDescription, likeDescription);

List algorithmTypes = query.list();

The algorithmTypes list will contain as elements the algorithm types whose description is like
likeDescription. Note that the string likeDescription will have a trailing ‘%’ appended when it is bound to
the query.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 254

Here is an example of selecting particular lookup values, with descriptions like an input value:

 String description = header.getString(STRUCTURE.HEADER.DESCR);

 Query query = createQuery("from LookupValue_Language lookupValLang "

 + "where upper(lookupValLang.description) like upper(:description)

and lookupValLang.id.language = :language and "

 + "lookupValLang.id.parent.id.fieldName = 'RPT_OPT_FLG');

 query.bindLikableStringProperty("description",

LookupValue.properties.languageDescription, description);

 query.bindEntity("language", getActiveContextLanguage());

 query.addResult(“lookupValue”, "lookupValLang.id.parent");

 query.addResult("description", "lookupValLang.description");

 query.orderBy("description");

 List results = query.list();

The list results will contain QueryResultRows, with values keyed by “lookupValue” and “description”.

Union queries
You may note that hibernate’s HQL does not allow unions, as this does not reconcile with the object
oriented approach of HQL. However, as this can be a common technique to apply, a programmatic union
has been provided in the Oracle Utilities Application Framework. The application will actually open two
cursors and flip back and forth between rows from each cursor when each would be the next one, based
upon the order by clause. This should at most read one extra row from each cursor opened than may be
needed (in the case of limited maximum rows).

In order to union two queries, they must have identical result columns, order by clauses, and max rows
setting. Note that some of the properties of the union query be modified directly, leaving the individual
queries to omit those properties.

Creating a union query is simple. Given two queries that need to be unioned together, simply issue:

 UnionQuery union = query.unionWith(query2);

If a third (or later) query needs to be unioned, add it to the union directly:

 union.addQueryToUnion(query3);

Performance
In order to evaluate the performance of HQL queries, it is necessary to first run the HQL through the
hibernate engine at run-time in order to produce the equivalent SQL. First, code the initial HQL into the
application or a unit test or standalone executable program. Start the application or test program with
SQL tracing turned on. When the HQL under construction executes, grab the SQL from the log/console.
Then follow the directions in the SQL Programming Standards section to check the performance of the
SQL.

In general, most of the advice under the SQL programming standards applies equally for coding HQL
when applicable at all.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 255

Raw SQL
In rare cases, it may be necessary to forgo the use of HQL and instead use raw SQL. This is not a
preferred approach, as the data returned will not be Java entities, but columns of primitive data types.
However, for possible performance reasons (no db hints are allowed in HQL) or if a table is not mapped
into a Java entity, this approach exists.

There are parallel methods available on subclasses of GenericBusinessObject that create spl
PreparedStatements, instead of Query objects. So, instead of createQuery, the method
createPreparedStatement should be called on a Raw SQL statement.

The PreparedStatement is similar to the regular jdbc PreparedStatement, but has some extra
functionality, and a slightly different interface so that it is similar to the regular HQL Query interface (they
are interchangeable in some cases).

The main difference is that the prepared statement is created with raw SQL—use the actual table and
column names instead of the Java entity names and property names. Also, the select clause must exist
as in normal SQL but not HQL.

Additionally, this break-out into raw SQL allows SQL statements that update table data. Again, this is
normally frowned upon, and instead should be done by entity manipulation. However, in cases where a
set-based SQL could update many rows at once, this option is available, whereas HQL is ONLY meant
for querying without any updates.

For more help on constructing raw SQL queries please see SQL Programming Standards.

SQL Programming Standards
This document describes the SQL programming standards to be used in any database query. These
standards will ensure that all database queries across the system have been structured properly and thus
have less chance to cause performance issues. All developers must adhere to these standards.

Contents
Composing SQL Statements
Testing SQL Statements

Composing SQL Statements

Contents
Prerequisite
Composing A SELECT Statement
Existence Checks
SQL statements to avoid

Prerequisite

This document assumes that you have a basic knowledge of SQL syntax and database functions.

07SQLProgrammingStandards.doc

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 256

Composing A SELECT Statement

Contents
General SELECT Statement Considerations
Selection List
Database-specific Features
FROM Clause
WHERE Clause
Sort Order
Grouping

General SELECT Statement Considerations

 Before composing an SQL statement, you should have in front of you the ERD of the tables involved
in that SQL. You should make sure you fully understand the relationships between the tables.

 As you may know, an SQL may return a single record or a set of records as its result set. When a set
is to be returned, it is managed by a cursor that loops through that set and issues a separate
database call for each record in the set.

Therefore, when you design your SQL, think carefully if the task can be easily achieved in a single
SQL or rather that the nature of task is such that a row-by-row processing would make more sense.
Examples for the latter could be a list processing or simply because the calculation per row is too
complicated to be handled by the database.

Selection List

 If a list of fields is to be returned, specify them prefixed by their table’s alias name as specified in the
From Clause.

 Use the DISTINCT option when the result list of records may contain duplicate rows in respect to the
specified list of fields AND only one copy of the duplicated rows is needed.

 For top-level batch programs, always specify the WITH HOLD keyword on the main SQL of a cursor
based processing. This is to keep the cursor open after a commit or rollback. Without this, main
cursor will be closed and fetch of the next record or restart processing will fail (specific to DB2) with
SQL error 501.

Database-specific Features

Oracle

 Oracle7 or later provides new approach for optimization: cost-based optimization (CBO). CBO
evaluates the cost to, or impact on, your system of the execution path for each specific query and
then select the lowest-cost path. The CBO was designed to save you the trouble of fiddling with your
queries. Occasionally, it is not giving you the results you want and you have exhausted all other
possible problem areas, you can specify hints to direct the CBO as it evaluates a query and creates
an execution plan. If you have used hints before, you know that a hint starts with /*+ and ends with */.
A hint applies only to the statement in which it resides; nested statements consider as separate
statement and require their own hints. Furthermore, a hint currently has a 255-character limit. Since
the use of hint is database-specific, we should make use of Database Functions to accomplish it.

 The most effective hints for use with the CBO are:

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 257

 FULL – tells the optimizer to perform a full table scan on the table specified in the hint

SELECT /*+FULL(table_name)*/ COLUMN1,COLUMN2…..

 INDEX – tells the optimizer to use one or more indexes for executing a given query.
Note: If you just want to ensure the optimizer doesn’t perform a table scan, use INDEX hint
without specifying an index name and the optimizer will use the most restrictive index. A specific
index should not be used as the actual index name may differ on the client’s site.

SELECT /*+INDEX(table_name index_name1 indexname2…) */
 COLUMN1, COLUM2

 ORDERED – tells the optimizer to access tables in particular order, based on the order in the
query’s FROM clause (often referred to as the driving order for a query)

SELECT /*+ORDERED*/ COLUMN1, COLUMN2
FROM TABLE1, TABLE2

 ALL_ROWS – tells the optimizer to choose the fastest path for retrieving all the rows of a query,
at the cost of retrieving a single row more slowly.

SELECT /*+ALL_ROWS*/ COLUMN1, COLUMN2…

 FIRST_ROWS – tells the optimizer to choose the approach that returns the first row as quickly as
possible.
Note: the optimizer will ignore the first rows hint in DELETE and UPDATE statements and in
SELECT statements that contain any of the following: set operators, group by clauses, for update
clause, group functions, and the distinct operators.

SELECT /*+FIRST_ROWS*/ COLUMN1, COLUMN2…

 USE_NL – tells the optimizer to use nested loops by using the tables listed in the hint as the inner
(non-driving) table of the nested loop. Note: if you use an alias for a table in the statement, the
alias name, not the table name, must appear in the hint, or the hint will be ignored.

SELECT /*+USE_NL(tableA table B) */ COLUMN1, COLUMN2…

 Hints are an Oracle specific feature and are not supported by the DB2 SQL syntax.
If you need to add a hint to your SQL make sure that a different SQL version is used for DB2 where
the hint is not used.
Base product developers should not duplicate their SQL in this case but rather use the special
database functions file “dbregex.txt”. In this file you should add a new hint-code that in Oracle
translates into the specific hint whereas in DB2 it translates into an empty string.

FROM Clause

 Any table that has least one of its fields specified in the Selection List and/or any table that is directly
referred to in the Where Clause (excluding sub-selects if any) must be specified in this section.

 Label each table with a meaningful short alias and use this alias to reference the table anywhere in
the SQL.

WHERE Clause

Contents
General WHERE Clause Considerations

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 258

Use of Sub-Selects
Use of IN Function
Use Of Database Functions
Other

General WHERE Clause Considerations

 All tables specified in the From Clause must participate in a join statement with another table. Table
left not joined, would cause a Cartesian join to be applied for this table and any other table on the list,
resulting in an incorrect result list let alone very poor performance.

 Note that there is no such thing as “conditional” join where the only join statement for a table is under
a condition. In cases where the condition is not met and thus the join is not performed, one would end
up with the same problem described previously.

 The final result set is built up by taking the full population of the tables involved and applying the
restricting criteria to it one after another where the intermediate result population of one step is the
input for the next step. Therefore, it is recommended to specify the most restrictive criteria first so that
at the end of one step, lesser records are processed in the next step.

This is of course a very schematic and simplified way to describe the internal process. This is not
necessarily how the database is actually processing the statements. However, setting up the criteria
as described would direct the database to use the right path.

Use of Sub-Selects

 When you need to further test each processed record in the Where clause for meeting an additional
condition, AND that condition can NOT be checked directly on the Where clause level, you probably
need a sub-select.

 As it is performed once for each outer level record it is considered as quite an expensive tool.
Therefore if the criteria checked in a sub-select can be moved to the outer where clause level, it is
preferable. If you still need to use a sub-select, it is very important to restrict the outer where clause
population to the very minimum possible so that lesser records would need to be further checked for
the sub-select condition.

 When no value needs to be returned from the sub-select query but rather simply use it to check if a
certain condition is true or false, use the EXISTS function as follows:

Select …
From …
Where … AND EXISTS (<sub-select>)

 A sub-select query may refer to any value of the outer level record as its input parameters. Notice that
if your sub-select does NOT refer to any of the processed record fields, it means that the result set of
the sub-select would be the same for ALL the processed records.

Note that this could, but not necessarily, be an indication that your sub-select is set up wrong. One
case where it is definitely wrong is when the sub-select result is input to an EXISTS function.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 259

Use of IN Function

 Whenever a field needs to be tested against a list of valid values it is recommended to use the IN
function and not compare the field against each and every value.

Wrong way:

Select …
From …
Where … (A = ‘10’ or A=’20’ or A=’30’)

Right way:

Select …
From …
Where … A IN (‘10’,’20’,’30’)

Use Of Database Functions

 Not all database functions available for one database are valid for others. Make sure that when you
do use a database function the SQL works properly on every database supported by the product.

 Avoid using LIKE as this will cause table scans. To achieve the ‘LIKE’ function where the first part of
the string is specified, e.g., "CM%", BETWEEN may be used with the input criteria padded with high
and low values.

Other

 Depending on the data distribution, search on optional index column will likely to cause time out. See
example –

Select BSEG_ID
From CI_BSEG
Where MASTER_BSEG_ID = &IN.MASTER-BSEG-ID

For such cases, consider additional restrictions or re-create the index to become composite –
MASTER_BSEG_ID + BSEG_ID.

Sort Order

 When a result list should be displayed in a specific order, sorting should take place on the database
level and NOT on the client. This is especially important in cases when the list cannot be returned in
full but rather in batches of records. Sorting each batch of records separately would not guarantee the
sort order between records of different batches.

 Columns in the sort order list must be specified in the selection list.

 Prefix each field used in this clause with its table’s alias name.

 Explicitly specify whether sorting should be ascending or descending and do not rely on database
defaults.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 260

Grouping

 When a set of records needs to be grouped together by a simple and straightforward condition, it is
recommended to use the database Group By Clause. In this case only the final summarized records
are to be returned to the client resulting in a lesser number of database calls as opposed to
processing the full list let alone a simpler program without any special grouping logic.

Existence Checks
 The common technique used to check whether a certain condition is met or not, obviously when no

data needs to be returned, is simply COUNT how many records match that condition. A zero number
indicates that no record has met that condition.

Notice that this is not very efficient as we are asking the database to scan the records for an accurate
number that we don’t really care about. All we really want to know if there is at least one such record
and NOT how many they are.

When the tables involved are of low volume there should be no problem using this technique. It is
very simple and uses common SQL syntax to all databases.

 However, when that condition is checked against a high volume table that many of its records meet
that condition, scanning all the matching records to get a count we don’t need should be avoided.

In this case use the EXISTS function as follows:

Select ‘x’
From <The main table of the searched field, where it is defined as the PK of that table>
Where <search field> = <search value> and
 EXISTS
 (<sub-select with the desired condition. This is the high volume table>);

For example :
Select ‘x’
From CI_UOM
Where UOM_CD = input UOM_CD and
 EXISTS (select ‘x’
 From CI_BSEG_CALC_LN
 Where UOM_CD = input UOM_CD);

If this does not work for your special case, use the following option :

Select ‘x’
From CI_INSTALLATION
Where EXISTS
 (<sub-select with the desired condition>) ;
Remember : This type of existence check using the Installation Options record should only be used in
rare cases and should be consulted with the DBA first before implementation.

Note that we use CI_INSTALLATION as this table has only one row.

SQL statements to avoid

Contents

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 261

Decimal Delimiter
Whenever Statement

Decimal Delimiter

In Europe the decimal delimiter is often set to be comma character. DB2 database configured this way
will return SQL syntax error in the following cases:

 select,1,

 insertvalues(...1,2,3...)

 insertvalues(...1 ,2,...)

 order by 1,2,3

 order by 1 ,2

 update...set abc=1,def='XX'

 case (? as varchar(50),12

To avoid this problem, surround the comma with spaces.

Whenever Statement
Expand Cobol pre compiler function does not support WHENEVER statement.

Testing SQL Statements

Contents
Result Data
Performance Testing – Oracle Only
More Extensive Performance Testing

Result Data
Once your SQL is ready, it is essential to test that it actually returns the expected result.

Create sample data for each condition checked by your SQL. Then execute the SQL and make sure it
returns the expected result for each case.

Performance Testing – Oracle Only

Contents
Overview
What Is An Explain Plan?
Generate The SQL’s Explain Plan
Analyze Explain Plan

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 262

Overview
An SQL may perform reasonably well even if not efficiently written in cases where the volume of
processed data is low, like in a development environment. However, the same SQL may perform very
poorly when executed in a real high volume environment. Therefore, any SQL should be carefully
checked to make sure it would provide reasonable performance at execution time.

Obviously there could be many reasons for an SQL to perform poorly and not all of them are easy to
predict or track.

In general, these could be subcategorized into two main groups:

 Basic issues related to the SQL code. These may be missing JOIN statements, inefficient path to the
desired data, inefficient use of database functions, etc.

 More complicated issues having to do with lack of indexes, database tuning and handling of high
volume of data, efficiency of I/O system etc.

The latter group of issues may only be truly tested on a designated environment simulating a real
production configuration. These performance tests are typically conducted by a team of database and
operating system experts as part of a thorough performance testing of a predefined set of process.

It is the first group of issues that can and should be tested by the programmer at this stage. This is done
by analysis of the SQL’s Explain Plan result.

What Is An Explain Plan?
An explain plan is a representation of the access path that is taken when an SQL is executed within
Oracle.

The optimal access path for an SQL is determined by the database optimizer component. With the Rule
Based Optimizer (RBO) it uses a set of heuristics to determine access path. With the Cost Based
Optimizer (CBO) we use statistics to analyze the relative costs of accessing objects.

Since the Cost Based optimizer relies on actual data volume statistics to determine the access path, to
generate an accurate Explain Plan using the cost based optimizer requires a database set up with the
proper statistics of a real high volume data environment.

Note. A cost based optimizer Explain Plan generated on an inadequate database, would be totally

inaccurate and misleading!

Obviously, our development database does not qualify as an optimal environment of cost based
optimizations. Since the Rule Based optimizer is not data dependant it would provide a more reliable
Explain Plan for this database.

Note. An efficient rule based Explain Plan does not guarantee an efficient cost based one when the SQL
is finally executed on the real target database. However, a poor rule based Explain Plan would most
probably remain such on a database with a higher volume of data.

Note. When the SQL is complicated and mainly designed to process high volume tables it is

recommended to also analyze its Explain Plan on an appropriate high volume database.

Generate The SQL’s Explain Plan

 Let’s assume this is the SQL to be checked

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 263

SQL To Check

 Adjust SQL Statement:

 Extract the tested SQL into Toad SQL editor.

 Replace the COBOL name of each Host Variable with the equivalent database identifier :b<n>
where n is a unique number identifying that host variable. If the same variable appears more
than one in the SQL use the same database host variable id in all occurrences.

 Force the database to analyze the SQL in Rule Base mode by introducing the RULE database
hint phrase.

Adjust SQL Statement

 Generate the Explain Plan:

 Position the cursor on the SQL area

 Choose the “Explain Plan Current SQL” option on the SQL-Window menu. Alternatively, use
CTRL+E.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 264

Get Explain Plan

 The generated plan appears on the result section of the editor.

Explain Plan

Analyze Explain Plan

Contents
Access Methods
Common Issues To Be Aware Of

Access Methods

Logically Oracle finds the data to read by using the following methods:

 Full Table Scan (FTS). Using this method the whole table is read.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 265

 Index Lookup (unique & non-unique). Using this method, data is accessed by looking up key values
in an index and returning rowids where a rowid uniquely identifies an individual row in a particular
data block.

 Rowid. This is the quickest access method available Oracle simply retrieves the block specified and
extracts the rows it is interested in. Most frequently seen in explain plans as Table access by Rowid.

Common Issues To Be Aware Of

Contents
Cartesian Product
Full Table Scan
Join Order
Nested Loops
Sort

Cartesian Product

 A Join is a predicate that attempts to combine 2 row sources. Cartesian Product is created when
there are no join conditions between 2 row sources and there is no alternative method of accessing
the data. Typically this is caused by a coding mistake where a join has been left out. The
CARTESIAN keyword in the Explain Plan indicates this situation.

Full Table Scan

 A Full Table Scan, i.e. TABLE ACCESS FULL phrase, found in the Explain Plan usually indicates an
inefficient access path. This means that the only way the database found to get to the desired data is
by reading every single row in the table.

Notice that if the logic indeed requires reading all data, then this database decision is indeed correct.
However, if you intended to get a small subset of rows from a large table and ended up reading all of
it this is definitely not efficient and should be fixed. If this is the case, try and find a better SQL
structure that would avoid a full table access. If you can’t find such, please consult a DBA as this
SQL may require an additional Index to be created for the table.

 Sometimes there would be a proper index on a particular table but still a full table scan would be
chosen for the access path of that table. This may be as result of an inefficient Join Order. Please
see details below.

Join Order

A Join is a predicate that attempts to combine 2 row sources. We only ever join 2 row sources together.
Join steps are always performed serially even though underlying row sources may have been accessed
in parallel. The join order makes a significant difference to the way in which the query is executed. By
accessing particular row sources first, certain predicates may be satisfied that are not satisfied by with
other join orders. This may prevent certain access paths from being taken.

 Make sure the join between 2 tables is done via indexed fields as much as possible.

 Also, if such an index exists, make sure you specify fields in the order they are defined by that index.

Nested Loops

This is a common type of processing a join between 2 row sources. First we return all the rows from row
source 1, then we probe row source 2 once for each row returned from row source 1.

Row source 1

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 266

Row 1 -------------- -- Probe -> Row source 2

Row 2 -------------- -- Probe -> Row source 2

Row 3 -------------- -- Probe -> Row source 2

Row source 1 is known as the outer table. Row source 2 is known as the inner table. Accessing row
source 2 is known a probing the inner table. For nested loops to be efficient it is important that the first
row source returns as few rows as possible as this directly controls the number of probes of the second
row source. Also it helps if the access method for row source 2 is efficient as this operation is being
repeated once for every row returned by row source 1.

Sort

Sorts are expensive operations especially on large tables where the rows do not fit in memory and spill to
disk.

There are a number of different operations that promote sorts:

 Order by clauses

 Group by

 Sort merge join

Note that if the row source is already appropriately sorted then no sorting is required. In other words, if
the fields you sort by happen to be defined by an Index in that particular order then sort operation is
avoided. Therefore, whenever you see that an explicit sort operation has taken place, check if it can be
avoided by using an index or sometimes just by making sure your are using an index’s fields in the right
order.

If no such index exists and the number of rows to be sorted is of high volume, please consult a DBA as
this may justify adding a new index.

More Extensive Performance Testing
Special attention should be paid to background processes that are designed to process high volume
tables. A thorough performance testing exercise in a benchmark format may be called upon.

Database Design
The objective of this document is to provide a standard for database objects (such as tables, columns,
and indexes) for products using Oracle Utilities Application Framework. This standard is introduced to
insure clean database design, to promote communications, and to reduce errors leading to smooth
integration and upgrade processes. Just as Oracle Utilities Application Framework goes thorough
innovation in every release of the software, it is also inevitable that the product will take advantage of
various database vendors’ new features in each release. The recommendations in the database
installation section include only the ones that have been proved by vigorous QA processes, field tests and
benchmarks.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 267

Database Object Standard
This section discusses the rules applied to naming database objects and the attributes that are
associated with these objects.

Contents
Naming Standards
Column Data Type and Constraints
Standard Columns

Naming Standards
The following naming standards must be applied to database objects.

Contents
Table
Columns
Indexes
Sequence
Trigger

Table
Table names are prefixed with the owner flag value of the product. For customer modification CM must
prefix the table name. The length of the table names must be less than or equal to 30 characters. A
language table should be named by suffixing _L to the main table. The key table name should be named
by suffixing _K to the main table.

It is recommended to start a table name with the 2-3 letter acronym of the subsystem name that the table
belongs to. For example, MD stands for meta-data subsystem and all meta data table names start with
CI_MD.

Some examples are:

 CI_ADJ_TYPE

 CI_ADJ_TYPE_L

A language table stores language sensitive columns such as a description of a code. The primary key of

a language table consists of the primary key of the code table plus language code (LANGAGUE_CD).

A key table accompanies a table with a surrogate key column. A key value is stored with the environment

id that the key value resides in the key table.

The tables prior to V2.0.0 are prefixed with CI_ or SC_.

Columns
The length of a column name must be less than or equal to 30 characters. The following conventions
apply when you define special types of columns in the database.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 268

 Use the suffix FLG to define a lookup table field. Flag columns must be CHAR(4). Choose lookup
field names carefully as these column names are defined in the lookup table (CI_LOOKUP_FLD) and
must be prefixed by the product owner flag value.

 Use the suffix CD to define user-defined codes. User-defined codes are primarily found as the key
column of the admin tables.

 Use the suffix ID to define system assigned key columns.

 Use the suffix SW to define Boolean columns. The valid values of the switches are ‘Y’ or ‘N’. The
switch columns must be CHAR(1)

 Use the suffix DT to define Date columns.

 Use the suffix DTTM to define Date Time columns.

 Use the suffix TM to define Time columns.

Some examples are:

 ADJ_STATUS_FLG

 CAN_RSN_CD

Indexes
Index names are composed of the following parts:

[X][C/M/T]NNN[P/S]

 X – letter X is used as a leading character of all base index names prior to Version 2.0.0. Now the first
character of product owner flag value should be used instead of letter X. For client specific
implementation index in Oracle, use CM.

 C/M/T – The second character can be either C or M or T. C is used for control tables (Admin tables).
M is for the master tables. T is reserved for the transaction tables.

 NNN – A three-digit number that uniquely identifies the table on which the index is defined.

 P/S/C – P indicates that this index is the primary key index. S is used for indexes other than primary
keys. Use C to indicate a client specific implementation index in DB2 implementation.

Some examples are:

 XC001P0

 XT206S1

 XT206C2

 CM206S2

Warning! Do not use index names in the application as the names can change due to unforeseeable

reasons.

Sequence
The base sequence name must be prefixed with the owner flag value of the product.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 269

Trigger
The base trigger name must be prefixed with the owner flag value of the product.

When implementers add database objects, such as tables, triggers and sequences, the name of the
objects should be prefixed by CM. For example, Index names in base product are prefixed by X; the

Implementers’ index name must not be prefixed with X.

Column Data Type and Constraints

Contents
User Define Code
System Assigned Identifier
Date/Time/Timestamp
Number
Fixed Length/Variable Length Character Columns
Null Constraints
Default Value Setting
Foreign Key Constraints

User Define Code
User Defined Codes are defined as CHAR type. The length can vary by the business requirements but a
minimum of eight characters is recommended. You will find columns defined in less than eight characters
but with internationalization in mind new columns should be defined as CHAR(10) or CHAR(12). Also
note that when the code is referenced in the application the descriptions are shown to users in most
cases.

System Assigned Identifier
System assigned random numbers is defined as CHAR type. The length of the column varies to meet the
business requirements. Number type key columns are used when a sequential key assignment is
allowed or number type is required to interface with external software. For example, Notification Upload
Staging ID is a Number type because most EDI software uses a sequential key assignment mechanism.
For sequential key assignment implementation, the DBMS sequence generator is used in conjunction
with Number Type ID columns.

Date/Time/Timestamp
Date, Time and Timestamp columns are defined physically as DATE in Oracle. In DB2 the DATE, TIME
and TIMESTAMP column types, respectively, are used to implement them. Non-null constraints are
implemented only for the required columns.

Number
Numeric columns are implemented as NUMBER type in Oracle and DECIMAL type in DB2. The precision
of the number should always be defined. The scale of the number might be defined. Non-null constraints
are implemented for all number columns.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 270

Fixed Length/Variable Length Character Columns
When a character column is a part of the primary key of a table define the column in CHAR type. For the
non-key character columns, the length should be the defining factor. If the column length should be
greater than 10, use VARCHAR2 type in Oracle and VARCHAR type in DB2.

Null Constraints
The Non-null constraints are implemented for all columns except optional DATE, TIME or TIMESTAMP
columns.

Default Value Setting
The rule to set the database default value is the following:

 When a predefined default value is not available, set the default value of Non-null CHAR or
VARCHAR columns to blank except the primary key columns.

 When a predefined default value is not available, set the default value Non-null Number columns to 0
(zero) except the primary key columns.

 No database default values should be assigned to the Non Null Date, Time, and Timestamp columns.

Foreign Key Constraints
Referential Integrity is enforced by the application. In database, do not define FK constraints. Indexes are
created on most of Foreign Key columns to increase performance.

Standard Columns

Contents
Owner Flag
Version

Owner Flag
Owner Flag (OWNER_FLG) columns exist on the system tables that are shared by multiple products.
Oracle Utilities Application Framework limits the data modification of the tables that have owner flag to the
data owned by the product.

Version
The Version column is used to for optimistic concurrency control in the application code. Add the Version
column to all tables that are maintained by a Row Maintenance program irrespective of the language
used (COBOL or JAVA).

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 271

System Table Guide
This document lists the system tables owned by the Oracle Application Framework product V2.2.0 and
explains the data standards of the system tables. The data standards are required for the Oracle Utilities
Application Framework installation, development within the Oracle Utilities Application Framework,
configuration of Oracle Utilities products, and customization of the Oracle Utilities products. Adhering to
the data standards is a prerequisite for seamless upgrade to the next release of the product(s).

Contents
What are system tables?
Why the standard must be observed?
Guidelines for System Table Updates
System Table List

What are system tables?

System tables are a subset of the tables that must be populated at the time of installation of the
product(s). They include Meta Data tables and configuration tables. The data stored in the system tables
are the information that Oracle Utilities Application Framework product operations are based on.

As the product adds more functionality, the list of system table can grow. The complete list of the system
tables can be found in System Table List section.

Why the standard must be observed?
 This standard must be observed for the following reasons

 The product installation and upgrade process and customer modification data extract processes
depend on the data prefix and owner flag values to determine the system data owned by each
product.

 The standard ensures that there will be no data conflict in the product being developed and the future
Oracle Utilities Application Framework release.

 The standard ensures that there will be no data conflict between customer modifications and future
Oracle Utilities product releases.

 The data prefix is used to prevent the test data from being released to production.

Developer’s Note > All test data added to the system data tables must be prefixed by ZZ (all upper case)

in order for the installation and upgrade utility to recognize them as test data.

Guidelines for System Table Updates

Contents

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 272

Business Configuration Tables
Development and Implementation System Tables
Oracle Utilities Application Framework only Tables

Business Configuration Tables
The majority of data in the tables in this group belongs to the customer. But these tables are shipped with
some initial data in order for the customer to login to the system and begin configuring the product.
Unless specified otherwise, the initial Data is maintained by Oracle Utilities Application Framework and
subject to subsequent upgrade.

Contents
Application Security and User Profile
Currency Code
DB Process
Display Profile
Installation Options
Language Code
To Do priority and Role

Application Security and User Profile
These tables define the access rights of a User Group to Application Services and Application Users.

Properties Description

Tables SC_ACCESS_CNTL, SC USER, SC_USR_GRP_PROF, SC_USR_GRP_USR,

SC_USER_GROUP, SC_USER_GROUP_L

Initial Data User Group All SERVICES and default system user SYSUSER. Upon installation the

system default User Group All SERVICES is given unrestricted accesses to all services

defined in Oracle Utilities Application Framework.

Developer’s Note> When a new service is added to the system, all actions defined for the service must

be made available to the User Group All SERVICES.

Currency Code
The ISO 4217 three-letter codes are taken as the standard code for the representation of the currency.

Properties Description

Tables CI_LANGUAGE

Initial Data United States Dollar (USD).

DB Process

Properties Description

Tables CI_DB_PROC, CI_DB_PROC_L, CI_DB_INSTR, CI_DB_INSTR_L, CI_DB_INSTR_OVRD

Initial Data Copy DB Process (CL-COPDB). This DB process allows users to copy a DB process from

one database to another using Config Lab utility.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 273

Display Profile
The Display Profile Code is referenced in User (SC_USER) table.

Properties Description

Tables CI_DISP_PROF, CI_DISP_PROF_L

Initial Data North America (NORTHAM) and Europe (EURO).

Installation Options
Installation option has only one row that is shipped with the initial installation of the Oracle Utilities
Application Framework. The updatable columns in these tables are customer data and will not be
overridden by the upgrade process unless a special script is written and included in the upgrade process.

Properties Description

Tables F1_INSTALLATION, CI_INSTALL_ALG, CI_INSTALL_MSG, CI_INSTALL_MSG_L,

CI_INSTALL_PROD

Initial Data Option 11111.

Developer’s Note > The system data owner of an environment is defined in the Installation Option. This
Owner Flag value is stamped on all system data that is added to this environment. The installation default
value is Customer Modification (CM). This value must be changed in the base product development

environments.

Language Code
Language code must be valid code defined in ISO 639-2 Alpha-3. Adding a new language code to the
table without translating all language dependent objects in the system can cause errors when a user
chooses the language.

Properties Description

Tables CI_LANGUAGE

Initial Data English (ENG).

To Do priority and Role
New To Do Types released will be linked to the default To Do Role and set to the product assigned
priority value initially. These initial settings can be overridden by the implementation.

Properties Description

Tables CI_ROLE(L), CI_TD_VAL_ROLE

Initial Data F1_DFLT

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 274

Development and Implementation System Tables
This chapter defines the standard for the system tables that contain data that are for the application
development. The data in these tables implement business logic and UI functions shared by various
products and product extensions in the same database.

Contents
Standards
Algorithm Type
Algorithm
Application Security
Batch Control
Business Object
Business Service
Characteristics
Data Area
Display Icon
Foreign Key Reference
Lookup
Map
Messages
Meta data - Table and Field
Meta data - Constraints
Meta data – Menu
Meta data - Program, Location and Services
Meta data - Maintenance Object
Meta data - Work Tables
Meta data - Search Object
Navigation Option
Portal and Zone
Sequence
Schema
Script
To Do Type
XAI configuration
XAI Services

Standards

 When adding a new data, the owner flag value of the environment must prefix certain fields of these
tables. For example, when a developer adds a new algorithm type to an Oracle Utilities Business

Intelligence development environment B1 should prefix the new Algorithm Type code. The fields that
are subject to this rule are listed in Standard Data Fields property.

 The data that is already in these tables are not allowed for modification if the data owner is different
from your environment owner. This is to prevent the developers from accidentally modifying system
data that belong to Oracle Utilities Application Framework or other Base products. However, some fields
are exempt from this rule and can be modified by Customer Modification. These fields are listed in
Customer Modification Fields property.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 275

Starting V2.2, we introduce a new system data upgrade rule – override Owner flag. If duplicate data rows

(data row with same primary key values) found at the time of upgrade, the owner flag values will get

overridden. The lower level application system data will override the upper level system data. For

example, F1 overrides C1, F1&C1 overrides CM etc. This rule will be applied to the following tables:

CI_CHAR_ENTITY, CI_MD_MO_ALG, F1_BUS_OBJ_ALG, F1_BUS_OBJ_STATUS_ALG, CI_MD_MO_OPT,

F1_BUS_OBJ_OPT, F1_BUS_OBJ_STATUS_OPT, F1_BUS_OBJ_STATUS, F1_BUS_OBJ_STATUS_L

Algorithm Type

Properties Description

Tables CI_ALG_TYPE, CI_ALG_TYPE_L, CI_ALG_TYPE_PRM, CI_ALG_TYPE_PRM_L

Standard Data Fields Algorithm Type (ALG_TYPE_CD)

Customer Modification None

Algorithm

Properties Description

Tables CI_ALG, CI_ALG _L, CI_ALG_PARM, CI_ALG_VER

Standard Data Fields Algorithm (ALG_CD)

Customer Modification None

Application Security

Properties Description

Tables SC_APP_SERVICE, SC_APP_SERVICE_L, CI_APP_SVC_ACC

Standard Data Fields Application Service Id (APP_SVC_ID). CC&B product prior to version 2.0 will continue

to use CI as prefix of the application service.

Customer Modification None

Batch Control

Properties Description

Tables CI_BATCH_CTRL, CI_BATCH_CTRL_L, CI_BATCH_CTRL_P, CI_BATCH_CTRL_P_L

Standard Data Fields Batch Process (BATCH_CD), Program Name (PROGRAM_NAME)

Customer Modification Next Batch Number (NEXT_BATCH_NBR), Last Update Instance (

LAST_UPDATE_INST), Last Update Date time (LAST_UPDATE_DTTM). These

columns are updated by the batch processes.

Batch Parameter Value (BATCH_PARM_VAL)

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 276

Business Object

Properties Description

Tables F1_BUS_OBJ, F1_BUS_OBJ_L, F1_BUS_OBJ_ALG, F1_BUS_OBJ_OPT,

F1_BUS_OBJ_STATUS, F1_BUS_OBJ_STATUS_L, F1_BUS_OBJ_STATUS_ALG,

F1_BUS_OBJ_STATUS_OPT, F1_BUS_OBJ_TR_RULE, F1_BUS_OBJ_TR_RULE_L

Standard Data Fields Business Object (BUS_OBJ_CD)

Customer Modification None

Business Service

Properties Description

Tables F1_BUS_SVC, F1_BUS_SVC_L

Standard Data Fields Business Service (BUS_SVC_CD)

Customer Modification None

Characteristics

Properties Description

Tables CI_CHAR_TYPE, CI_CHAR_TYPE_L, CI_CHAR_ENTITY, CI_CHAR_VAL,

CI_CHAR_VAL_L

Standard Data Fields Characteristic Type (CHAR_TYPE_CD)

Customer Modification Adhoc Characteristic Value Validation Rule (ADHOC_VAL_ALG_CD) on

Characteristic Entity Table (CI_CHAR_ENTITY)

Data Area

Properties Description

Tables F1_DATA_AREA, F1_DATA_AREA_L

Standard Data Fields Data Area Code (DATA_AREA_CD)

Customer Modification None

Display Icon

Properties Description

Tables CI_DISP_ICON, CI_DISP_ICON_L

Standard Data Fields Display Icon Code (DISP_ICON_CD)

Customer Modification None

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 277

Foreign Key Reference

Properties Description

Tables CI_FK_REF, CI_FK_REF_L

Standard Data Fields FK reference code (FK_REF_CD)

Customer Modification None

Lookup

Properties Description

Tables CI_LOOKUP_FIELD, CI_LOOKUP_VAL, CI_LOOKUP_VAL_L

Standard Data Fields Field Name (FIELD_NAME)

 A lookup field name must have a corresponding field meta data. The name of the

lookup field column must be assigned to avoid conflicts among different products. If

you follow the standard of database field name, a Customer Modification lookup

field name will be automatically Customer Modification prefixed.

Field Value (FIELD_VALUE)

 If a lookup field is customizable, Customer Modification can insert new lookup

values. X or Y must prefix when implementers introduce a new lookup value.

 Product development can extend the Oracle Utilities Application Framework owned

lookup field’s value with caution. When it needs to be extended, prefix the first letter

of the Owner Flag to the value. For example, when adding a new value to the

algorithm entity flag (ALG_ENTITY_FLG), prefix with B1 if you are developing a

Oracle Utilities Business Intelligence product.

Customer Modification Override Description (DESCR_OVRD)

A new Feature option is defined through adding a value to EXT_SYS_TYP_FLG. The field value for this

look up field must be prefixed by the Owner flag value.

Map

Properties Description

Tables F1_MAP, F1_MAP_L

Standard Data Fields Map ode (MAP_CD)

Customer Modification None

Messages

Properties Description

Tables CI_MSG_CATEGORY, CI_MSG_CATEGORY_L, CI_MSG, CI_MSG_L

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 278

Properties Description

Standard Data Fields Message Category (MESSAGE_CAT_NBR)

 Messages are grouped in categories and each category has message numbers

between 1 and 99999. A range of message categories is assigned to a product. You

must use only the assigned category for your product.

 Oracle Utilities Customer Care and Billing and Oracle Utilities Business Intelligence

– 00001 thru 00100

 Oracle Utilities Application Framework Java - 11001 thru 11100

 Oracle Utilities Customer Care and Billing Java - 11101 thru 11200

 Oracle Utilities Business Intelligence Java - 11201 thru 11300

 Implementer COBOL - 90000

 Implementer WSS - 90001

 Implementer Java – 90002

 Reserved for Tests - 99999

Message Number (MESSAGE_NBR) for COBOL message categories

 Message numbers below 1000 are reserved for common messages. Implementers

must not use message numbers below 1000.

Message Number (MESSAGE_NBR) for Java message categories

 Subsystem Standard Messages - 00001 thru 02000

 Reserved - 02001 thru 09999

 Published Messages - 10001 thru 11000

 Package Messages - 10001 thru 90000

 Reserved - 90001 thru 99999

 Each package is allocated 100 message numbers, each starting from 101.

 Published Messages are messages that are special-interest messages that

implementations need to know about and are therefore published in the user docs.

Examples of these include messages that are highly likely to be changed for an

implementation, or messages that are embedded into other texts/messages and

therefore the message number is never shown

 Reserved message number ranges are for future use and therefore must not be

used by all products.

Customer Modification Override Description (DESCRLONG_OVRD), Message Text Override

(MESSAGE_TEXT_OVRD)

Meta data - Table and Field

Properties Description

Tables CI_MD_TBL, CI_MD_TBL_FLD, CI_MD_TBL_L, CI_MD_TBL_FLD_L, CI_MD_FLD,

CI_MD_FLD_L

Standard Data Fields Table Name (TBL_NAME)

 Table names must match with the physical table name or view name in the

database.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 279

Properties Description

 Field Name (FLD_NAME)

 Field name must match with the physical column name in the database unless the

field is a work field. Field name does not have to follow the prefixing standard

unless the field is a work field or customer modification field.

Customer Modification Audit Switches (AUDIT_INSERT_SW, AUDIT_UPDATE_SW, AUDIT_DELETE_SW),

Audit Program Name (AUDIT_PGM_NAME), Audit Table Name (AUDIT_TBL_NAME),

Override label (OVRD_LABEL)

Meta data - Constraints

Properties Description

Tables CI_MD_CONST, CI_MD_CONST_FLD

Standard Data Fields Constraint Id (CONST_ID)

 AA_CXXXXXP00 for Primary Constraints

 AA_CXXXXXRnn for Foreign Key Constraints Where

o AA : Product owner flag value

o XXXXX : First 5 letters of the primary index name of the table

o nn: integer 01..99

Customer Modification None

Meta data – Menu
Menus can be extended to support multiple products by adding a new menu line to an existing menu. The
sequence number on the menu line language table (CI_MD_MENU_LINE_L) determines the order the
menu lines appear. Within the same sequence, alphabetic sorting is used.

Properties Description

Tables CI_MD_MENU, CI_MD_MENU_L, CI_MD_MENU_ITEM, CI_MD_MENU_ITEM_L,

CI_MD_MENU_LINE, CI_MD_MENU_LINE_L

Standard Data Fields Menu Name (MENU_NAME), Menu Item Id (MENU_ITEM_ID), Menu Line Id

(MENU_LINE_ID)

Customer Modification None

Meta data - Program, Location and Services

Properties Description

Tables CI_MD_PRG_COM, CI_MD_PRG_LOC, CI_MD_SVC, CI_MD_SVC_L,

CI_MD_SVC_PRG, CI_MD_PRG_REF, CI_MD_PRG_MOD, CI_MD_PRG_EL_AT,

CI_MD_PRG_ELEM, CI_MD_PRG_SEC, CI_MD_PRG_SQL, CI_MD_PRG_VAR,

CI_MD_PRG_TAB

Standard Data Fields Program Component Id (PROG_COM_ID), Location Id (LOC_ID), Program

Component Name (PROG_COM_NAME), Service Name (SVC_NAME), Navigation

Key (NAVIGATION_KEY)

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 280

Properties Description

Customer Modification User Exit Program Name (USER_EXIT_PGM_NAME on CI_MD_PRG_COM),

Meta data - Maintenance Object

Properties Description

Tables CI_MD_MO, CI_MD_MO_L, CI_MD_MO_TBL, CI_MD_MO_OPT, CI_MD_MO_ALG

Standard Data Fields Maintenance Object Name (MO_NAME)

Customer Modification None

Meta data - Work Tables

Properties Description

Tables CI_MD_WRK_TBL, CI_MD_WRK_TBL_L, CI_MD_WRK_TBLFLD, CI_MD_MO_WRK

Standard Data Fields Work Table Name (WRK_TBL_NAME)

Customer Modification None

Meta data - Search Object

Properties Description

Tables CI_MD_SO, CI_MD_SO_L, CI_MD_SO_RSFLD, CI_MD_SO_RSFLDAT,

CI_MD_SOCG, CI_MD_SOCG_FLD, CI_MD_SOCG_FLDAT, CI_MD_SOCG_L,

CI_MD_SOCG_SORT

Standard Data Fields Search Object Name (SO_CD)

Customer Modification None

Navigation Option

Properties Description

Tables CI_NAV_OPT, CI_NAV_OPT_L, CI_NAV_OPT_CTXT, CI_NAV_OPT_USG,

CI_MD_NAV

Standard Data Fields Navigation Option Code (NAV_OPT_CD), Navigation Key (NAVIGATION_KEY)

Customer Modification Navigation Key Override (NAV_KEY_OVRD)

Portal and Zone

Properties Description

Tables CI_PORTAL_ZONE, CI_ZONE, CI_ZONE_L, CI_ZONE_PARM, CI_ZONE_HDL,

CI_ZONE_HDL_L, CI_ZONE_HDL_PRM, CI_ZONE_HDL_PRM_L, CI_UI_ZONE

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 281

Properties Description

Standard Data Fields Portal Code (PORTAL_CD), Zone Code (ZONE_CD), Zone Type Code

(ZONE_HDL_CD)

 A new Zone can be added to the Product owned Portal Pages.

 The existing Zones cannot be removed from the Product owned Portal Pages.

Customer Modification Sort Sequence (SORT_SEQ)

Sequence

Properties Description

Tables CI_SEQ

Standard Data Fields Sequence Name (SEQ_NAME)

Customer Modification Sequence Number (SEQ_NBR)

 This field is updated by the application process and must be set to 1 initially.

Schema

Properties Description

Tables F1_SCHEMA

Standard Data Fields Schema Name (SCHEMA_NAME)

Customer Modification None

Script

Properties Description

Tables CI_SCR, CI_SCR_L, CI_SCR_CRT, CI_SCR_CRT_GRP, CI_SCR_CRT_GRP_L,

CI_SCR_DA, CI_SCR_FLD_MAP, CI_SCR_PRMPT, CI_SCR_PRMPT_L,

CI_SCR_STEP, CI_SCR_STEP_L

Standard Data Fields Script Code (SCR_CD)

Customer Modification None

To Do Type

Properties Description

Tables CI_TD_TYPE, CI_TD_TYPE_L, CI_TD_SRTKEY_TY, CI_TD_DRLKEY_TY,

CI_TD_SRTKEY_TY_L

Standard Data Fields To Do Type Code (TD_TYPE_CD)

Customer Modification Creation Batch Code (CRE_BATCH_CD), Route Batch Code (RTE_BATCH_CD),

Priority Flag (TD_PRIORITY_FLG)

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 282

XAI configuration

Properties Description

Tables CI_XAI_ADAPTER, CI_XAI_ADAPTER_L, CI_XAI_CLASS, CI_XAI_CLASS_L,

CI_XAI_ENV_HNDL , CI_XAI_ENV_HNDL_L, CI_XAI_FORMAT, CI_XAI_FORMAT_L,

CI_XAI_RCVR, CI_XAI_RCVR_L, CI_XAI_RCVR_CTX, CI_XAI_RCVR_RSP,

CI_XAI_RCVR_RGRP, CI_XAI_SENDER, CI_XAI_SERNDER_L, CI_XAI_SNDR_CTX,

CI_XAI_OPTION

Standard Data Fields Adapter Id (XAI_ADAPTER_ID), Class Id (XAI_CLASS_ID), Envelope Handler Id

(XAI_ENV_HNDL_ID), XAI Format Id (XAI_FORMAT_ID), Receiver Id

(XAI_RCVR_ID), Sender Id (XAI_SENDER_ID)

Customer Modification Option Value (OPTION_VALUE on CI_XAI_OPTION)

The following XAI tables might have system data installed upon the initial installation but a subsequence
system data upgrade process will not update the content of these table unless the change is documented
in the database upgrade guide : CI_XAI_RCVR, CI_XAI_RCVR_L, CI_XAI_RCVR_CTX,
CI_XAI_RCVR_RSP, CI_XAI_RCVR_RGRP, CI_XAI_SENDER, CI_XAI_SERNDER_L,
CI_XAI_SNDR_CTX

XAI Services

Properties Description

Tables CI_XAI_IN_SVC, CI_XAI_IN_SVC_L, CI_XAI_SVC_PARM

Standard Data Fields To Do Type Code (TD_TYPE_CD), XAI Inbound Service Id (XAI_IN_SVC_ID), XAI

Inbound Service Name (XAI_IN_SVC_NAME)

Customer Modification XAI_IN_SVC_ID, XAI_IN_SVC_NAME, XAI_VERSION_ID, POST_ERROR_SW

Oracle Utilities Application Framework only Tables
All data of the tables in this group belong to the Oracle Utilities Application Framework. No data
modification or addition is allowed for these tables by base product development and customer
modification. When an environment is upgraded to the next release of the Oracle Utilities Application
Framework, the upgrade process will refresh the data in these tables.

 CI_MD_AT_DTL / CI_MD_AT_DTL_L

 CI_MD_ATT_TY

 CI_MD_CTL / CI_MD_CTL_L

 CI_MD_CTL_TMPL

 CI_MD_ELTY / CI_MD_ELTY_L

 CI_MD_ELTY_AT

 CI_MD_LOOKUP / CI_MD_LOOKUP_F

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 283

 CI_MD_PDF / CI_MD_PDF_VAL

 CI_MD_MSG / CI_MD_MSG_L

 CI_MD_SRC_TYPE / CI_MD_SRC_TYPE_L

 CI_MD_TMPL / CI_MD_TMPL_L

 CI_MD_TMPL_ELTY

 CI_MD_TMPL_VAR / CI_MD_TMPL_VAR_L

 CI_MD_VAR / CI_MD_VAR_DTL / CI_MD_VAR_DTL_L

 CI_XAI_EXECUTER / CI_XAI_EXECUTER_L

 System Table List

This section contains the names of system tables, upgrade actions, and a brief description of the tables.
The upgrade actions are explained below.

Keep (KP): The data of the table in the customer’s database is kept untouched. No insert or delete is
performed to this table by the upgrade process. The initial installation will add necessary data for the
system

Merge (MG): The non-base product data of the table in the database is kept untouched. If the data
belongs to the base product, any changes pertaining to the new version of the software are performed.

Refresh (RF): The existing data in the table is replaced with the data from the base product table.

Note. New product data is also inserted into tables marked as ‘Merge’. If implementers add rows for a
customer specific enhancement, it can cause duplication when the system data gets upgraded to the next
version. We strongly recommend following the guidelines on how to use designated range of values or
prefixes to segregate the implementation data from the base product data.

Table Name Upgrade Action Description

CI_ALG
MG Algorithm

CI_ALG_L
MG Algorithm Language

CI_ALG_PARM
MG Algorithm Parameters

CI_ALG_TYPE
MG Algorithm Type

CI_ALG_TYPE_L
MG Algorithm Type Language

CI_ALG_TYPE_PRM
MG Algorithm Type Parameter

CI_ALG_TYPE_PRM_L
MG Algorithm Type Parameter Language

CI_ALG_VER
MG Algorithm Version

CI_APP_SVC_ACC
MG Application Service Access Mode

CI_BATCH_CTRL
MG Batch Control

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 284

CI_BATCH_CTRL_L
MG Batch Control Language

CI_BATCH_CTRL_P
MG Batch Control Parameters

CI_BATCH_CTRL_P_L
MG Batch Control Parameters Language

CI_CHAR_ENTITY
MG Characteristic Type Entity

CI_CHAR_TYPE
MG Characteristic Type

CI_CHAR_TYPE_L
MG Characteristic Type Language

CI_CHAR_VAL
MG Characteristic Type Value

CI_CHAR_VAL_L
MG Characteristic Type Value Language

CI_DISP_ICON
MG Display Icon

CI_DISP_ICON_L
MG Display Icon Language

CI_FK_REF MG Foreign Key Reference

CI_FK_REF_L MG Foreign Key Reference Language

CI_LANGUAGE MG Language Code

CI_LOOKUP_FIELD MG Lookup Field

CI_LOOKUP_VAL MG Lookup Field Value

CI_LOOKUP_VAL_L MG Lookup Field Value Language

CI_MD_ATT_TY RF MD Element Attribute Type

CI_MD_AT_DTL RF MD Element Attribute Type Detail

CI_MD_AT_DTL_L RF MD Element Attribute Type Detail Language

CI_MD_CONST MG Constraints

CI_MD_CONST_FLD MG Constraint Fields

CI_MD_CTL RF Generator Control

CI_MD_CTL_L RF Generator Control Language

CI_MD_CTL_TMPL RF Generator Control Template

CI_MD_ELTY RF MD Element Type

CI_MD_ELTY_AT RF Element Type Attributes

CI_MD_ELTY_L RF Element Type Language

CI_MD_FLD MG Field

CI_MD_FLD_L MG Field Language

CI_MD_LOOKUP RF MD Lookup Field Value

CI_MD_LOOKUP_F RF MD Lookup Field

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 285

CI_MD_MENU MG Menu Information

CI_MD_MENU_IMOD MG Menu Item Module Maint

CI_MD_MENU_ITEM MG Menu Item

CI_MD_MENU_ITEM_L MG Menu Item Language

CI_MD_MENU_L MG Menu Language

CI_MD_MENU_LINE MG Menu Line

CI_MD_MENU_LINE_L MG Menu Line Language

CI_MD_MENU_MOD MG Menu Product Components

CI_MD_MO MG Maintenance Object

CI_MD_MO_ALG MG Maintenance Object Algorithm

CI_MD_MO_L MG Maintenance Object Language

CI_MD_MO_OPT MG Maintenance Object Option

CI_MD_MO_TBL MG Maintenance Object Table

CI_MD_MO_WRK MG Maintenance Object Work Tables

CI_MD_MSG RF MD Message

CI_MD_MSG_L RF MD Message Language

CI_MD_NAV MG Navigation Key

CI_MD_PDF RF Predefined Fields

CI_MD_PDF_VAL RF Predefined Values

CI_MD_PRG_COM MG Program Components

CI_MD_PRG_ELEM MG UI Page Elements

CI_MD_PRG_EL_AT MG UI Page Element Attributes

CI_MD_PRG_LOC MG Program Location

CI_MD_PRG_MOD MG Program Module

CI_MD_PRG_SEC MG UI Page Sections

CI_MD_PRG_SQL MG MD SQL Meta Data

CI_MD_PRG_TAB MG UI Tab Meta Data

CI_MD_PRG_VAR MG Program Variable

CI_MD_SO MG Search Object

CI_MD_SOCG MG Search Object Criteria Group

CI_MD_SOCG_FLD MG Search Object Criteria Group Field

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 286

CI_MD_SOCG_FLDAT MG Search Object Criteria Group Field Attribute

CI_MD_SOCG_L MG Search Object Criteria Group Language

CI_MD_SOCG_SORT MG Search Object Criteria Group Result Sort Order

CI_MD_SO_L MG Search Object Language

CI_MD_SO_RSFLD MG Search Object Result Field

CI_MD_SO_RSFLDAT MG Search Object Result Field Attribute

CI_MD_SRC_TYPE RF Source Type

CI_MD_SRC_TYPE_L RF Source Type Language

CI_MD_SVC MG MD Service

CI_MD_SVC_L MG MD Service Language

CI_MD_SVC_PRG MG MD Service Program

CI_MD_TAB_MOD MG UI Tab Module

CI_MD_TBL MG MD Table

CI_MD_TBL_FLD MG MD Table Field

CI_MD_TBL_FLD_L MG MD Table Field Language

CI_MD_TBL_L MG MD Table Language

CI_MD_TMPL RF Template

CI_MD_TMPL_ELTY RF Template Element Types

CI_MD_TMPL_L RF Template Language

CI_MD_TMPL_VAR RF Template Variable

CI_MD_TMPL_VAR_L RF Template Variable Language

CI_MD_VAR RF Variable

CI_MD_VAR_DTL RF Variable Detail

CI_MD_VAR_DTL_L RF Variable Detail Language

CI_MD_WRK_TBL MG Work Table

CI_MD_WRK_TBLFLD MG Work Table Field

CI_MD_WRK_TBL_L MG Work Table Language

CI_MSG MG Message

CI_MSG_CATEGORY MG Message Category

CI_MSG_CATEGORY_L MG Message Category Language

CI_MSG_L MG Message Language

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 287

CI_NAV_OPT MG Navigation Option

CI_NAV_OPT_CTXT MG Navigation Option Context

CI_NAV_OPT_L MG Navigation Option Language

CI_NAV_OPT_USG MG Navigation Option Usage

CI_PORTAL MG Portal Page

CI_PORTAL_L MG Portal Page Language

CI_PORTAL_ZONE MG Portal Zone

CI_SCR MG Script

CI_SCR_CRT MG Script Criteria

CI_SCR_CRT_GRP MG Script Criteria Group

CI_SCR_CRT_GRP_L MG Script Criteria Group Language

CI_SCR_DA MG Script Data Area

CI_SCR_FLD_MAP MG Script Field Mapping

CI_SCR_L MG Script Language

CI_SCR_PRMPT MG Script Prompt

CI_SCR_PRMPT_L MG Script Prompt Language

CI_SCR_STEP MG Script Step

CI_SCR_STEP_L MG Script Step Language

CI_SEQ MG Sequence

CI_TD_DRLKEY_TY MG To Do Type Drill Key

CI_TD_SRTKEY_TY MG To Do Type Sort Key

CI_TD_SRTKEY_TY_L MG To Do Type Sort Key Language

CI_TD_TYPE MG To Do Type

CI_TD_TYPE_L MG To Do Type Language

CI_XAI_ADAPTER MG XAI Adapter

CI_XAI_ADAPTER_L MG XAI Adapter Lang

CI_XAI_CLASS MG XAI Class

CI_XAI_CLASS_L MG XAI Class Language

CI_XAI_ENV_HNDL MG XAI Envelope Handler

CI_XAI_ENV_HNDL_L MG XAI Envelope Handler Language

CI_XAI_EXECUTER RF XAI Executer

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 288

CI_XAI_EXECUTER_L RF XAI Executer Language

CI_XAI_FORMAT RF XAI Format

CI_XAI_FORMAT_L RF XAI Format Language

CI_XAI_IN_SVC MG XAI Inbound Service

CI_XAI_IN_SVC_L MG XAI Inbound Service Language

CI_XAI_SVC_PARM MG XAI Inbound Service Parameters

CI_XAI_SVC_VERS MG XAI Inbound Service Version

CI_XAI_SVC_VERS_L MG XAI Inbound Service Version Language

CI_ZONE MG Zone

CI_ZONE_HDL MG Zone Type

CI_ZONE_HDL_L MG Zone Type Language

CI_ZONE_HDL_PRM MG Zone Type Parameters

CI_ZONE_HDL_PRM_L MG Zone Type Parameters Language

CI_ZONE_L MG Zone Language

CI_ZONE_PRM MG Zone Parameters

F1_BUS_OBJ MG Business Object

F1_BUS_OBJ_ALG MG Business Object Algorithm

F1_BUS_OBJ_L MG Business Object Language

F1_BUS_OBJ_OPT MG Business Object Option

F1_BUS_OBJ_STATUS MG Business Object Status

F1_BUS_OBJ_STATUS_ALG MG Business Object Status Algorithm

F1_BUS_OBJ_STATUS_L MG Business Object Status Language

F1_BUS_OBJ_STATUS_OPT MG Business Object Status Option

F1_BUS_OBJ_TR_RULE MG Business Object Transition Rule

F1_BUS_OBJ_TR_RULE_L MG Business Object Transition Rule Language

F1_BUS_SVC MG Business Service

F1_BUS_SVC_L MG Business Service Language

F1_DATA_AREA MG Data Area

F1_DATA_AREA_L MG Data Area Language

F1_MAP MG UI Map

F1_MAP_L MG UI Map Language

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 289

F1_SCHEMA MG Schema

SC_ACCESS_CNTL MG User Group Access Control

SC_APP_SERVICE MG Application Service

SC_APP_SERVICE_L MG Application Service Language

SC_USR_GRP_PROF MG User Group Profile

Key Generation
Key generation is performed for tables that have sequential or system generated prime key. This is
performed automatically for java instances via the SPL enTegrity.

Tables with a system-generated key contain their own unique key that is replicated in a related ‘key table’
suffixed with ‘_K’. The purpose of the key table is to store the table identifier as well as the identifier of the
environment in which the data row exists. An example is the Account table containing the Account
identifier and the Account Key table containing the Account identifier and the Environment identifier.

These key tables support the Archiving and ConfigLab functionality by ensuring that a key will be unique
across environments.

Metadata For Key Generation
The required table metadata that is used by the key generator indicates:

 The type of key, i.e. whether it is system-generated or sequential

 The key table in which key values are stored

 The length of the inherited portion of the key.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 290

Example Table Metadata Key Information

In the Service Agreement table metadata example above, the metadata key information is shown by the
values in the fields Key Table, Type of Key and Inherited Key Prefix Length.

Example Table Metadata Constraint Information

The primary key constraint is used to retrieve the name of the key field for the table from the field
metadata.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 291

Example Field Metadata Information

The field metadata shown provides the field data type and length.

Key Types. Although there are more types of keys indicated in metadata drop-down list, the only types

currently supported by the key generator in the SPL Framework are system-generated and sequential.

Special Annotation. If a table's inherited key prefix length is non-zero, a special entry

"clusteringParentProperty" must be in the business entity annotation for this table.

Extending the Application Viewer
This document describes the how to add extension (i.e., CM or customer modification) information into

the SPL V2.2.0 Application Viewer.

Building Source Code Viewer Extension
Information

Prerequisite. You must have a valid SPL Development Environment defined on the computer in order to

run this process.

You will need a local folder in which to build the information. This may be called anything you wish and it
may reside anywhere (locally) you desire as long as you have write access to the folder.

Note. If you have run this process previously, old Source Code XML files will still be present. Previous

information is NOT deleted.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 292

Open a Command Prompt window and run the script buildAppViewerSrcXML.bat. This script is
available in SDK shortcuts folder. e.g. C:\SPLSDK\SDK\shortcuts.

This will prompt you for the location of the Source Code Folder, the location of the Destination Folder and
the location of the “desc.wrk” file.

Enter the FULL path name to the folder where the source code resides (quotes are not required). Source
in this location will be processed to build the required XML files. The process does NOT drill down
through different levels of folders; only the folder specified is examined. For example:

C:\spl\<CCB_INSTALLATION>\cobol\source\cm

Enter the FULL path name to the folder where the information is to be built (quotes are not required).
These folders need to exist before the script is run. Script will not create the folders. For example:

C:\temp\appViewerData

Enter the FULL path name to the location of the “desc.wrk” file. This is normally found in the Application
Viewer under /data/source. This file can be copied locally or used from the Application Viewer location (it
is not updated). For example:

C:\spl\<CCB_INSTALLATION>\splapp\applications\appViewer\data\source

The process will then run automatically displaying each source file being processed.

Each source file is processed twice. This first pass extracts a program description from the source file.
This should be a quick process as the file is only examined until a description is located. The second pass
reads the entire source file and builds the XML file. This process also accesses the current database to
check the meta-data for tables used by SQLs within the source.

When the process is complete, the extension information will be present under the destination folder you
specified. The structure under the destination will mirror the structure under the data/source/ folder of the
Application Viewer (only the CM folder is created). Move the XML files from the CM folder to the
corresponding CM folder under the Application Viewer. The information is immediately available.

e.g. if the destination directory is c:\temp\appViewerData then the processed data is available at
c:\temp\appViewerData\source\CM. Copy the contents under c:\temp\appViewerData\source\CM to
Application Viewer folder C:\spl\<CCB_INSTALLATION>\splapp\applications\appViewer\data\source\CM.

Development Performance Guidelines
This document includes information, guidelines, and strategies to help designers and developers
understand performance impacts when developing a feature using the Oracle Utilities Application
Framework.

Object-Relational Mapping: Background
OUAF uses an Object-Relational Mapping (ORM) engine, which maps tables to entities using the
system's table, table/field, field, and constraint metadata to guide the creation of mapping definitions
during artifact generation.

Entities represent database tables. They are created as Java objects during a database "session", which
has the lifetime of a single DB transaction.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 293

DONT: Entities are not safe to use for reference, calling methods, etc., after the session that created
them has ended. For example, don’t copy entities into application caches. DO: Instead, let the application
cache do the data retrieval and return the data to the session. ID objects are safe to store across
sessions. Note in the following example that the entity AlgorithmType is not stored:

public class AlgorithmTypeInfoCache implements ApplicationCache {

 private static final AlgorithmTypeInfoCache INSTANCE = new

AlgorithmTypeInfoCache();

 private final ConcurrentMap<AlgorithmType_Id, AlgorithmTypeInfo>

algorithmTypeInfoById = new ConcurrentHashMap<AlgorithmType_Id,

AlgorithmTypeInfo>();

 protected AlgorithmTypeInfoCache() {

ContextHolder.getContext().registerCache(this); }

 public String getName() { return "AlgorithmTypeInfoCache"; }

 public void flush() {algorithmTypeInfoById.clear(); }

 public static AlgorithmTypeInfo getAlgorithmTypeInfo(AlgorithmType_Id algTypeId)

{

 return INSTANCE.privateGetAlgorithmTypeInfo(algTypeId);

 }

 private AlgorithmTypeInfo privateGetAlgorithmTypeInfo(AlgorithmType_Id algTypeId)

{

 AlgorithmTypeInfo algTypeInfo = algorithmTypeInfoById.get(algTypeId);

 if (algTypeInfo != null) return algTypeInfo;

 AlgorithmType type = algTypeId.getEntity();

 if (type == null) return null;

 AlgorithmTypeInfo info = new AlgorithmTypeInfo(type);

 AlgorithmTypeInfo prev = algorithmTypeInfoById.putIfAbsent(algTypeId, info);

 if (prev != null) return prev;

 return info;

 }

}

DO: it is safe to use XML documents (to be consumed by BOs, BSs, or SSs) for moving data between
sessions.

Every entity has a unique corresponding "id" class, e.g. BatchControl has BachControlId. The ORM
framework automatically generates correct SQL to perform the following essential tasks:

 Read, update, insert, delete one entity (row) from the database

 Navigate between related entities as per their key/constraint relationships, for example from a

parent entity to a collection of children.

The ORM defers database calls for performance
The ORM tries to be as "lazy" as possible; its basic stance is to avoid loading any data from the DB until
the last possible moment. Let’s use the following example to describe how the data is only loaded at last
moment possible:

BatchControl someBatchControl = batchControlId.getEntity();

BatchControlParameters parms = someBatchControl.getParameters();

for (BatchControlParameter each : parms) {

String name = each.getBatchParameterName();

}

In the above example, the getEntity() call only retrieves the parent ID as a proxy. The
“someBatchControl” is not fully “hydrated” until some other property is accessed. “Hydrating Entities” is
the process of taking a row from the database and turning it into an entity.

The getParameters() call only retrives the child IDs, again as proxies.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 294

Only when the getBatchParameterName() is called, is a row (the child row) actually retrieved.

ID Objects
When you create an ID, the ID object will not be null. After you use an ID to retrieve an entity (using
getEntity()), that is when you find out if the entity actually exists. Just because an ID exists, doesn’t mean
the entity itself exists! DO: So you must check for null before attempting to use the entity you retrieved.
For example:

BatchControlId id = ...

BatchControl batchControl = id.getEntity();

if (batchControl == null) { /* oh oh */ }

Counting a collection
DO: If you want to count the number of batch control parameters that belong to a parent batch control,
use the size() method as in the following example:

BatchControl someBatchControl = ...;

BatchControlParameters parms = someBatchControl.getParameters();

int count = parms.size();

The framework implementation code has an optimized implementation of the size() method, which either
counts the existing in-memory collection elements, if they are already present, or issues a SQL count(*)
query, if they aren't.

Avoid unnecessary work
DON’T: In the example, below, the call to listSize() is unnessary. In most cases, you shouldn’t need to
write something to loop over a collection:

if(query.listSize() > 0) {

 while (iter.next()) { }

}

The call to listSize() will make an unnecessary call to “select count(*)”. Let the iterator do the work. Avoid
the extra call to the database.

ORM “Navigation” is your friend
Don’t be tempted to hand-write queries that are equivalent to navigations between entities:

BatchControlId batchControlId = ...

Query<BatchControlParameter> query = createQuery("from BatchControlParameter parm

where parm.id.batchControlId = :parentId");

query.bindId("parentId", batchControlId);

List<BatchControlParameter> list = query.list();

DO: Use this instead – it’ll use the cache and will almost certainly be faster:

BatchControl batchControl = id.getEntity();

if (batchControl == null) { /* oh oh */ }

BatchControlParameters list = batchControl.getParameters();

How to Pre-load Entities Using Fetch
This technique is for performance intensive jobs that are doing too many single-row SQL retrieves. The
“fetch” command will pre-load the entities, resulting in one fewer database calls.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 295

Write a query using “left join fetch” to select all data. The ORM will fetch the associated collection for
every retrieved table into the session cache. Subsequent navigation to the underlying collection is then an
in-memory operation with no database IO. Again, PREFER code that performs standard navigation.

As a general strategy:

 For most jobs, navigation is just fine.

 Write code using navigation first, then ADD the fetch query later, only if it’s needed.

This is a link to the hibernate help on “fetch”:
http://docs.jboss.org/hibernate/stable/core/reference/en/html_single/#performance-fetching

Session Cache
If an entity is retrieved previously within a session - in most cases - it does not have to be retrieved again
since it is stored in the session cache.

So, multiple BO reads against Java-backed MO's do not re-execute SQL.

The exception is when a call to COBOL is made. Since Java does not know what COBOL could have
changed, the entities must be refreshed from the database. Similary BO Reads against COBOL will
always re-execute SQL.

Level 2 Cache Applicable for Batch
Hibernate’s Level 2 cache is a second level of caching that allows sharing of data between sessions.
This is useful for static, admin data like rates, type codes, etc since objects that are added to this cache
cannot be updated. The caching is enabled per entity on the Table transaction’s Caching Regime Flag
with values of “Not Cached” and “Cached for Batch.”

Flushing – COBOL and Save Points
Flushing means writing the changes to the database. It syncs the database with the session cache.
Flushing is expensive but necessary to maintain data integrity. The system flushes under the following
conditions:

 Before commit

 Calling COBOL from Java

 Before raw SQL queries

 Before most HQL queries

 When specifically requested

 Savepoints

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 296

Avoid Extra SQL
Inspect generated SQL for extra calls. Tools like Oracle’s tkprof, Yourkit java profiler, or debug
application logs can help identify extra database calls. The screen capture below shows how Yourkit is
able to reveal SQL statements behind PreparedStatement calls.

Yourkit Demo: http://www.yourkit.com/docs/demo/JavaEE/JavaEE.htm

Prepared statement – use binding
DON’T: Never concatenate values – DO: use binding instead. Besides helping to reduce security
concerns with SQL injection, concatenation results in reparsing of SQL statements by the database. You
could also lose the benefits of any PreparedStatement caching by the jdbc drivers.

Service Script vs. Java services
Service Scripts perform slower than java services. There is an overhead on scripting that comes from xml
manipulation and xpath evaluation. Lots of moves, complicated XPath - proportional to amount of XPath.
Here are some tips:

 One complicated XPath expression should be faster than several smaller ones – the overhead is

in the setup.

 Smaller documents will process faster – think about that when designing script schemas – only

send what you need.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 297

Java-To-COBOL Interaction Overhead
DO: For optimal performance, avoid Java-to-COBOL and COBOL-to-Java calls. Jumping between Java-
to-COBOL interactions incur additional overhead that could lead to performance penalties. The
framework must execute additional flushes and object re-reads (since Java has to sync itself with
COBOL’s objects). These reads will only need to be made if the session is “dirty,” meaning modifications
have been done by COBOL.

The framework will issue a log entry whenever the flush called is made such as in the following entry. In
some cases when we find that a session is not dirty, the log entry may be written, but no flush acutally
occurs. For example, the following log entries were issued in less than 1 millisecond duration and
indicates that no flush occurred.

16:33:01,742 [CobolThread 2] INFO

(com.splwg.base.support.context.FrameworkSession) Issuing flush

16:33:01,742 [CobolThread 2] INFO

(com.splwg.base.support.context.FrameworkSession) Issuing flush

The following are general recommendations related to COBOL:

 We recommend include rewriting COBOL code in Java

 If the maintenance object is written in COBOL, keep the plug-in algorithms in COBOL as well.

Java Performance Patterns
 Loop over entryset of a hashmap, not the entities

 Concatenate strings using StringBuilder

 Use Findbugs – it will help expose patterns to be avoided.

Batch Performance

Commit Considerations
DON’T: Do not commit too frequently. For example, we do not commit ever record since each commit
has overhead at the database; however, sessions with lots of objects in the cache should commit more
frequently. Adjust your default value accordingly.

Clustered vs. Distributed Mode Performance: Clustered Is
Preferred

No coding changes required for clustered mode and no reason to use the distributed mode
anymore.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 298

Clustered mode was created for stability, not performance; however, clustered mode should have less
overhead because “tspace” table is not continually accessed. This tspace table stored the batch job’s
instructions and information used by the distributed mode and accessed by the batch threads. There
have been cases where this table is in high contention.

Use ThreadIterationStrategy
The ThreadIterationStrategy idea is for each thread to only get one piece ThreadWorkUnit at a time.
Regardless of volume, threads start executing almost immediately – unlike other strategies where lots of
data can be selected in getJobWork(), leading to out-of-memory conditions if there is too much work.

Here are some technical highlights about how the ThreadIterationStrategy works:

 The Thread worker class creates Query and QueryIterator and iterates over that – similar to how

COBOL uses cursors

 Frequent commits can slow down these types of batch jobs. Each commit closes the

database connection and query iterators, so it requires a new Query and QueryIterator each

time.

 Flat file processing works.

 The specified commit frequency is adhered to.

 There is no need to construct ThreadWorkUnit per record in getJobWork()

Data Explorer
It is important to understand that Data Explorers process ALL records returned from the database, even if
they are not displayed. For example, FK ref info strings, BS calls, SS calls, Inhibit Row in Explorers – all
can cause per-row processing even if they are not displayed.

Data Explorers are rendered using JavaScript. They are not designed to display many records, and
trying to do so will result in possibly unacceptable performance. DO: Consider limiting the results returned
and asking Users to add additional filter criteria to narrow down the results. DON’T: Don’t try to display
hundreds of records.

Zone Configuration
 DO: Consider limiting the number of rows retrieved by the database limiting the query size. Specify

this on the zone parameter and the query will use the “rownum” technique to restrict the number of

rows returned.

 DO: As a rule-of-thumb: 10 columns (even if not visible) in a data explorer zone should be an alert to

really think about performance implications.

 DO: Try to perform all processing in the SQL instead fkInfo, BS or SS calls in other columns. As

described before these would be additional processes run on a per-row basis.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 299

Table Indices and SQL
Here are some more common patterns to look out for. (This is not meant to be a complete SQL tuning
guide.)

 Put Indexes on the most commonly used criteria. If there is no proper index, the optimizer does a full

table scan. Consider:

 Primary keys, foreign keys, ORDER BY fields.

 Secondary Unique Indexes

 DO: Use a JOIN instead of EXISTS. This is faster for unique scan indexes.

 DO: Use EXISTS instead of IN when working with ID fields, use ‘=‘ instead of LIKE. Using LIKE on a

system-generated key isn’t “reasonable”

 CONSIDER: Using functions like TO_DATE(), SUBSTR() etc. means indexes on those fields won’t be

used! Use only when necessary.

 DO: Use the power of optional filters – and not just in the WHERE clause.

FROM d1_tou_map tm, d1_tou_map_l tml

FROM d1_tou_map tm, [(F1) d1_tou_map_l tml,]

 DO: Only include necessary tables:

SELECT A.usg_grp_cd, A.usg_rule_cd,

A.exe_seq,A.referred_usg_grp_cd,A.usg_rule_cat_flg, B.crit_seq, C.descr100 DESCR

FROM D1_USG_RULE A, d1_usg_rule_elig_crit B, d1_usg_rule_elig_crit_l C

WHERE A.usg_grp_cd= :H1

AND A.usg_grp_cd = B.usg_grp_cd

AND A.usg_rule_cd = B.usg_rule_cd

AND b.usg_grp_cd = C.usg_grp_cd

AND b.usg_rule_cd = C.usg_rule_cd

AND b.crit_seq = C.crit_seq

AND C.language_cd= :language

Note that Table B is not necessary; you could instead simply link directly from A to C.

 Offload tasks, like string manipulations, concatenations, row numbering, case conversions, type

conversions etc., to the front-end applications

 Do basic validations in the front-end during data entry. This saves unnecessary network roundtrips.

 Avoid using UNION - use UNION ALL if it is possible.

 Operators <> and != will NOT use the index! Also the word “NOT” Use the Greater Than or Less

Than operators.

select * from ci_scr_step where (scr_cd <> 'ZZCW03') has cost 68

select * from ci_scr_step where (scr_cd > 'ZZCW03' or scr_cd < 'ZZCW03') has cost 1!!!

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 300

UI Maps and BPAs
UI maps will not be able to display many rows very quickly. DONT display hundreds of rows in a UI Map.
Alternatively, the zone type “SERVICE” can display a large number of records faster.

DO: Ensure that the html code is proper. Malformed HTML in UI maps (for example, opening a <div> and
not closing it) can cause significant performance degradations at the browser. It is possible to copy and
paste HTML into Eclipse to check its validity. There are also various tools like html tidy that can help to
identify bad html.

DO: Minimize browser-to-server calls. Namely, invokeBO/BS/SS will perform a call to a server to retrieve
the data, which can be slow. Many of these such calls on load of the UI Map will result in slow
performance.

 Use service script instead of BPA if multiple calls need to be made to BO, BS, SS.

 Create a “bulk” processing service script instead of calling the same one multiple times. Instead of

multiple invokeBS calls on load of a UI map, write a pre-processing service script instead.

Diagnosing Performance Issues
Execution times can be obtained in a number of ways.

Fiddler
In a UI-oriented scenario, the first recommended analysis tool is to use an http logger like fiddler
(http://www.fiddler2.com). This tool should make it apparent if there are excessive calls from the client
browser to the server and the server response times as seen from the browser. The timings can then be
categorized as server-side or client side calls. When using fidder be sure to enable the following:

 "Time-to-Last-Byte"

 "Response Timestamp"

OUAF “Show Trace” button
Enable debug mode by adding debug=true to the url. Then use the “Start Debug”, “Stop Debug” and
“Show Trace” buttons

Log Service times in spl_service.log
in log4j.properties, add the following to log service execution times:

log4j.logger.com.splwg.base.api.service.ServiceDispatcher=debug

http://www.fiddler2.com/

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 301

Optimization and Performance Profiling
To squeeze every second of a given program for mission critical optimizations, it may be necessary to
craft a repeatable unit test and profile the results using a profiling tool such as YourKit (www.yourkit.com).
This section will include some code samples to log execution times. Attaching a profiler could give clues
to optimization points. A common pattern to follow in testing code is to allow the System to “warm up,” for
example to load up the necessary application caches which are only done once and are not relevant to
the code being optimized.

Basic Logging
The following code can be placed in a junit test to log execution times:

long start = logger.debugStart("Starting process");

//... code for process

logger.debugTime("End process", start);

Timing code ("shootout"):
The code below will run a BO Update 100 times and report the amount of time taken. Note the 5
“warmup” executions before the repeated 100 runs.

 public void testMultiplePluginScripts() throws Exception {

 String docString1 =

"<DR_ShortCreateIntervalRecords><factId>219250542869</factId><longDescr>REEE</longD

escr></DR_ShortCreateIntervalRecords>";

 Document doc1 = DocumentHelper.parseText(docString1);

 String docString2 =

"<DR_ShortCreateIntervalRecords2><factId>219250542869</factId><longDescr>REEE</long

Descr></DR_ShortCreateIntervalRecords2>";

 Document doc2 = DocumentHelper.parseText(docString2);

 // warmups

 for (int i = 0; i < 5; i++) {

 BusinessObjectDispatcher.execute(doc1,

BusinessObjectActionLookup.constants.FAST_UPDATE);

 rollbackAndContinue();

 BusinessObjectDispatcher.execute(doc2,

BusinessObjectActionLookup.constants.FAST_UPDATE);

 rollbackAndContinue();

 }

 long totalElapsed = 0;

 // speed

 for (int i = 0; i < 100; i++) {

 long start = System.nanoTime();

 BusinessObjectDispatcher.execute(doc1,

BusinessObjectActionLookup.constants.FAST_UPDATE);

 flush();

 totalElapsed += System.nanoTime() - start;

 rollbackAndContinue();

 }

 System.out.println("Script (100): " + totalElapsed / 1000000 + "ms");

 totalElapsed = 0;

 for (int i = 0; i < 100; i++) {

 long start = System.nanoTime();

http://www.yourkit.com/

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 302

 BusinessObjectDispatcher.execute(doc2,

BusinessObjectActionLookup.constants.FAST_UPDATE);

 flush();

 totalElapsed += System.nanoTime() - start;

 rollbackAndContinue();

 }

 System.out.println("Java (100): " + totalElapsed / 1000000 + "ms");

}

Using PerformanceTestResult helpers
A performance helper suite of classes was introduced, allowing "shoot-out"s like the above to be more
simple:

 Callable<Void> exprCallable = new Callable<Void>() {

 @Override

 public Void call() throws Exception {

 expression.value(context);

 return null;

 }

 };

 Callable<Void> javaCallable = new Callable<Void>() {

 @Override

 public Void call() throws Exception {

 function(x);

 return null;

 }

 };

 PerformanceTestCallable exprPerfCallable = new

PerformanceTestCallable("Expression "

 + expression.getExpressionString(), exprCallable);

 PerformanceTestCallable javaPerfCallable = new

PerformanceTestCallable("Java", javaCallable);

 PerformanceTestResult compareResult = PerformanceTestHelper.compare(20,

200000, exprPerfCallable,

 javaPerfCallable);

 compareResult.printResults();

The API is com.splwg.base.api.testers.performance.PerformanceTestHelper:

 public static PerformanceTestResult compare(int warmups, int reps,

PerformanceTestCallable... callables)

 throws Exception {

Each of the performance callables is treated the same. It gets a series of warmup executions, in order to
populate caches, and allow hotspot JVM optimizations of any methods. Then the accurate system nano
timing (i.e., System.nanoTime()) is called around the loop of the given number of reps.

Profiling:
The code below uses YourKit’s controll classes to create a snapshot.

 public void testProfilePluginScripts() throws Exception {

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 303

 String docString =

"<DR_ShortCreateIntervalRecords><factId>219250542869</factId><longDescr>REEE</longD

escr></DR_ShortCreateIntervalRecords>";

 Document doc = DocumentHelper.parseText(docString);

 // warmups

 for (int i = 0; i < 5; i++) {

 BusinessObjectDispatcher.execute(doc,

BusinessObjectActionLookup.constants.FAST_UPDATE);

 rollbackAndContinue();

 }

 Controller controller = new Controller();

 controller.forceGC();

 controller.startCPUProfiling(ProfilingModes.CPU_SAMPLING,

Controller.DEFAULT_FILTERS);

 for (int i = 0; i < 500; i++) {

 BusinessObjectDispatcher.execute(doc,

BusinessObjectActionLookup.constants.FAST_UPDATE);

 rollbackAndContinue();

 }

 controller.captureSnapshot(ProfilingModes.SNAPSHOT_WITHOUT_HEAP);

 }

PerformanceTestHelper API
As before, the PerformanceTestHelper helps by providing a seamless interface into the yourkit profiler, for
various options of sampling, tracing, monitoring threads or timing in threads:

 public static PerformanceTestCallableResult profileSample(int warmups, int

reps, PerformanceTestCallable callable)

 throws Exception {

 public static PerformanceTestCallableResult profileTrace(int warmups, int reps,

PerformanceTestCallable callable)

 throws Exception {

 public static PerformanceTestCallableResult monitor(int warmups, int reps, int

numThreads,

 PerformanceTestCallable callable) throws Exception {

 public static PerformanceTestCallableResult timeInThreads(int warmups, int

reps, int numThreads,

 PerformanceTestCallable callable) throws Exception {

The PerformanceTestHelper utility class uses reflection to know whether the yourkit library is available or
not. If it is not available (such as on the build server), the behavior reverts to simple timing protocols of
the corresponding callable iterations. If it is available (such as on a developer's workstation, and they
want to profile a test), then the yourkit profiler is connected to. This would require actually running the
test under a profile session, else an error is produced.

Profiling a callable is somewhat similar to the simple timing of a callable, except for some added steps:

4. Performs some warmups

5. Forces garbage collection via the yourkit API

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 304

6. Starts the given profile type (sample vs trace)- the test should be run without automatically starting

the profiler

7. Wrap the repetition loop in a timer

8. Capture a snapshot

This design approach allows profile/performance tests to be checked into version control, for re-profiling
at a later point, and for documentation examples of how to profile code, etc.

References
SQL tips:

//documentation/Dev Doc/Database_Documentation/SQL Development and Tuning Best Practices.doc

Hibernate fetching strategies:

http://docs.jboss.org/hibernate/stable/core/reference/en/html_single/#performance-fetching

Yourkit profiling demo:

http://www.yourkit.com/docs/demo/JavaEE/JavaEE.htm

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 305

Packaging Guide

CM Packaging Utilities Cookbook

This document describes the installation, configuration, and operation of the packaging utilities provided

with the software development kit. These utilities enable developers to prepare releases of their custom

modifications, called CM releases, to the products.. Releases prepared using these utilities may be

installed on top of an existing base product environment.

Note. CM releases will correspond to a specific base product version and can only be installed on base
product environments of that version. Customers installing a CM release must first verify the

corresponding base product version with the Implementation team.

Note. This document describes CM packaging utilities operation for Oracle database only. The
application server can be Unix or Windows/DOS operating system. In Unix you must execute the script
with .sh suffix, in window the script with .cmd suffix. They both will execute the same Perl script with .plx
suffix. For instance:

applyCM.sh: Unix driver script

applyCM.cmd: Windows driver script

applyCM.plx: Perl script

All the examples in this document are related to Unix. If you are in Windows/DOS simply execute the
same scripts, but using .cmd extension instead .sh.

Contents
App Server CM Packaging Procedure
App Server CM Packaging Tools
CM System Data Packaging Tools

App Server CM Packaging Procedure

Contents
App Server CM Packaging Overview
Developing Off-site
Guidelines

App Server CM Packaging Overview
The following diagrams describe the app server CM packaging procedure.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 306

Packaging

App Server

Packaging

App Server

Release

Install Package

Release

Install Package
Project

Repository

Project

Repository

S
ou

rc
e

S
ource

Packaging

Directory

Packaging

Directory

S
ou

rc
e

/ O
bj
ec

t

extractCMSource

applyCM

create_CM_Release

The starting point of packaging the app server component is the project repository. The tool
extractCMSource is used to get the source from the project repository into the packaging directory.

Note. The packaging directory must not be used for any other purpose except for storing the extracts.

Mixing other files into the packaging directory will result in errors in succeeding processes.

applyCM copies the extracted source to the packaging app server. It then does all the necessary steps
like generate, compile, etc., to update the packaging app server runtime based on the extracted source.

create_CM_Release is then used to create CM release install package from the packaging app server.
The CM release install package contains all CM code that has been applied to the packaging app server.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 307

Production

App Server

Production

App Server

Release

Install Package

Release

Install Package

Project QA

App Server

Project QA

App Server

S
ou

rc
e

/ O
bj
ec

t

install

S
ource / O

bject

install

The install tool applies the CM release install files to either QA or production app servers.

Note. Release install packages are usually applied only to fresh environments, i.e., to apply the first

batch of CM code or when upgrading to a new version of the product. To install additional code to an

existing environment, patch install packages (described next) are used.

Patch

Install Package

Patch

Install Package

Old Release

Install Package

Old Release

Install Package

New Release

Install Package

New Release

Install Package

Source + O
bject

create_CM_Patch

Sou
rc

e
+

O
bj
ec

t

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 308

CM patch install packages are used to update an existing installation with the changes since it was last
updated. A patch install package is created by create_CM_Patch as the difference between two CM
release install packages (a newer one and an older one), e.g., for a monthly update schedule, CM release
install packages are created every month and every month, a cm patch install package is created using
the release install packages from the previous and the current month.

To create a patch install package, a new release install package must be created first. Note that a
release (not patch) install package must be available for the previous period. Executing
create_CM_Patch with the two CM release install packages as input creates the patch install package.

Production

App Server

Production

App Server

Patch

Install Package

Patch

Install Package

Project QA

App Server

Project QA

App Server

S
ou

rc
e

/ O
bj
ec

t

install

S
ource / O

bject

install

Developing Off-site
When developing off-site, there may be no available environments on the target platform. In this case,
development and QA must be done off-site, but packaging and QA must be re-done on-site using
environments on the target platform.

Contents
Off-site Process
On-site Process

Off-site Process
Development and QA (and the packaging) is done using the same procedure as on-site except for the
following:

 Packaging and QA are done on environments that may not match the target platform.

 Instead of sending a release or patch install package to the implementation site, only the source from
the install package is sent. This package is called the release/patch source package. It is created by
executing extractCMSource with the data directory of the install package as the source directory.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 309

Release/Patch

Install Package

Release/Patch

Install Package

Sou
rc

e

Release/Patch

Source Package

Release/Patch

Source Package

On-Site TeamOn-Site Team

Source

extractCMSource

Off-site Development Release

On-site Process
Upon receiving the release/patch source package, the on-site team proceeds with the regular packaging
procedure starting from the applyCM step using the release/patch source package as the source
directory.

Packaging

App Server

Packaging

App ServerRelease/Patch

Source Package

Release/Patch

Source Package Source

applyCM

. . .

On-site Packaging

Guidelines
Applying a CM patch install package to QA or production app servers is the same as for release install
package, i.e., it is done simply by executing the install tool from the the package directory. By using these
scripts, implementation developers can prepare an installation package containing the contents of their
custom modifications. Developers need to build a packaging environment on a server of the same
operating system platform as used by the target environment to create CM release packages. A version
number must be used to identify each custom modifications (CM) release version. Once developers
select a version number format, the version number must be stored on the environment in the file
$SPLEBASE/etc/CMVERSION.txt, to achieve this place CMVERSION.txt file in etc subdirectory in your
patch directory.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 310

Implementers are strongly recommended to use CM packaging utilities for implementation delivery to
customer site. It will ensure the correct installation complying with base product rules and will keep an
environment upgradable. Please, note, that web files can be also packaged in archive war format (if
$isExpanded environment variable is set to false), in that case it is not possible to just manually copy
changes to the directories.

App Server CM Packaging Tools
The following utilities are provided in this package for maintaining the packaging environment and
creating release versions of customer modifications (CM):

 extractCMSource utility, used to extract source from an app server or from a release or patch
install package.

 applyCM utility, used to apply a CM patch to a packaging environment.

 create_CM_Release utility, used to create a full CM release version.

 create_CM_Patch utility, used to create CM patch release version utility.

Instructions for using these utilities are described in the following sections.

Contents
Post Install Setup
Using the extractCMSource.plx Utility
Using the applyCM Utility
Using the create_CM_Release Utility
Using the create_CM_Patch Utility

Post Install Setup
After the CM Packaging Tools installation, it is required to copy the proper spl-toos-<VERSION>.jar to
the actual jar location, e.g.:

 cp <CM script dir>/tools/spl-tools-4.1.0.jar <CM script dir>/lib/

Using the extractCMSource.plx Utility
This utility written in perl extracts source code from an app server, typically the project repository, or from
a release or patch install package.

Note. extractCMSource.plx is a Windows-only utility.

Contents
Display Usage
Extract From An App Server
Extract From Release/Patch Install Package
FW Utility to extract CM sources from Unix environments

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 311

Display Usage
To display the usage information, just execute the utility without any parameters from the Windows
command prompt.

perl extractCMSource.plx

 extractCMSource.plx -s sourceDirectory -d destinationDirectory -v Version

 [-n subDirectoryName]

 -v Version

 The Version Number to attach to this release of

 the Customer Modifications.

 -s sourceDirectory

 sourceDirectory is the location to extract from.

 -d destinationDirectory

 destinationDirectory is where the extracted files

 will be placed. This program will then create a

 subdirectory under that directory for the patch.

 -n subDirectoryName

 Subdirectory under "Directory" to put this patch

 in. If this parameter is not provided an

 automatic directory name will be generated based

 on the environment name and date time.

Extract From An App Server
To extract the source from a development app server, specify the app server directory as the source
directory. For example, the following invocation extracts source from an app server named CM_PROJ1
in the C:\SPL directory into C:\CMExtarct and marks the extract as version CM1.0:

perl extractCMSource.plx -s C:\SPL\CM_PROJ1 -d C:\CMExtract -v CM1.0

Extract From Release/Patch Install Package
To extract the source from a release or patch install package, specify the data directory in the install
package as the source directory. For example, the following invocation extracts source from a patch
install package named CM1.0_1 in the C:\CMInstall directory into C:\CMExtract and marks the extract as
version CM1.0_1:

perl extractCMSource.plx -s C:\CMInstall\CM1.0_1\CMCCB\data

 -d C:\CMExtract -v CM1.0_1

FW Utility to extract CM sources from Unix environments
The following utility, delivered with the Oracle Utility Application Framework, is to extract CM sources from
a Unix environment (note that extractCMSource.plx is the Window only utility):

$SPLEBASE/bin/extractCMSourceUNIX.sh

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 312

Usage:

-v <version>

The Version Number to attach to this release of the Customer Modifications. (Example:
CM001)

-t <target directory>

Target Direcory is where the extracted files will be placed. This program will then create
a subdirectory under that directory for the patch with a timestamp. with a timestamp.

-e

Include CM Application Viewer and Help files (optional).

-l

Language Code when extracting CM Help files (optional).

Using the applyCM Utility
After an Implementation team has completed CM development on a Windows server or prepared a fix in
a development environment, they’ll need to copy and apply the CM modules to a packaging environment
on the same platform as the target (e.g. production, testing). In other words, if the target system is a Unix
platform, the packaging environment must be on Unix as well.

The applyCM.sh utility (applyCM.cmd for Windows installations) serves this need. It can be used to copy
and apply all CM development modules to a packaging environment or any specific extract (patch) of CM
development. The script needs to be executed using the full pathname (this is necessary because you
need to be located in a different folder, see below). In addition, you need to be set to a target environment
(e.g. packaging environment).

Script: <CM scripts>/applyCM.sh

Usage:

(no options)

Apply patch on top of the existing base product and possibly CM integration environment. This
mode will add new CM files from patch to the environment and replace the changed ones. But it
will not delete the previously existing in the environment CM modules that are not part of the
patch.

It needs to be executed from the source root folder.

-d

Remove all previous CM modules from the environment and apply patch on clean base product
environment. This option is useful when needed to create the CM integration environment from
scratch.

It needs to be executed from the source root folder.

-b

Recompile the existing sources in current environemnt. Usually it is used to execute full recompile
a development environment.

It needs to be executed from the application folder root, e.g. $SPLEBASE.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 313

-n

It won’t stop/start automatically the target environment.

The input for applyCM.sh utility is current folder (source root folder), which contains the following
subfolders:

 java

 scripts

 etc

 services

 splapp

These subdirectories contain only CM modules created according to the rules of the document “Naming
conventions for tailoring application implemetation” (see Installation Guide of the product). This directory
structure should be prepared and filled with relevant CM modules on development Windows server, then
copied over to the server that hosts a packaging environment by ftp utility. After that you can apply the
patch to the packaging environment. Modules that are not created using these conventions will be
ignored by applyCM.sh utility. You have to reside in the patch directory to apply the patch. ApplyCM
utility will generate and compile java code, will create java jar file (cm.jar) required for customer
implementation platform.

Using the create_CM_Release Utility
The create_CM_Release.sh utility is used to create a CM full release package that will contain only

customer modification (CM) files. This is used to install a full set of customizations on top of the base

product environment.

In order to build a CM release version that is compatible with the target platform, you need a packaging

environment on the same operating system as the one on which the receiving product is installed. The

target environment for installing the release version on a customer site can either be a pure base product

environment, or an environment that already contains previous CM versions. In the second case, all

previous CM modules will be removed by the install utility at the beginning of the installation process.

It is mandatory that every implementation version is identified by its own release version number. This

number may be in any free standard and must be recorded in the $SPLEBASE/etc/CMVERSION.txt file

on the environment.

Here are the detailed instructions for creating the full release version for CMs:

 Log in to the server with the administrator user id and initialize a packaging environment. You will
use this environment to create the CM release version.

 Change the directory to the directory that contains the Developers Tool Suite utilities
(CM_packaging).

 Execute the utility using the following command:

./create_CM_Release.sh -e $SPLENVIRON -v $VERNO -d $RELEASEHOME,

where

$SPLENVIRON is the target packaging environment

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 314

$VERNO is the CM version number (the content of the file CMVERSION.txt)

$RELEASEHOME is the name of the directory on the server where you want to place the resulting
CM release package.

For example:

./create_CM_Release.sh -e M4_Q1_SUNDB2 -v M.4.0.0 –d /versions

Tar and zip the resulting CM release directory for Unix platform or zip it for Windows platform and ship it
to your customer.

The customer who wishes to install the delivered package onsite will follow the instructions:

 Decompress and untar the installation media to a temporary directory for the Unix server or unzip it
for Windows server.

 Change directory to the target directory.

 Login and initialize the target environment.

 Change to the Installation directory using the following command

cd CMCCB.$VERNO

where

$VERNO is the version number (the content of the file CMVERSION.txt)

 Run the following script

./install.sh - for Unix

install.cmd - for Windows

Using the create_CM_Patch Utility
The utility create_CM_Patch.sh is used to create a patch release of CMs. A patch release version is

created as a difference between a previous CM version and a new CM version. This type of release may

be useful if the implementation team wants to ship only an update of the previously released version by

preparing a smaller package that can be delivered easily by email or ftp to the customer.

Important: Before executing the utility, be sure that both packages are available in the same directory on

the server. During the installation process at the customer site, the patch install utility will not remove the

previous version of CM modules, and will only install the patch content on top of the previous CM version.

Here is the process for creating a patch release CM version:

 Log in to the server with the administrator user id.

 Change directory to the name of the directory that contains the SDK packaging utilities
(CM_packaging).

 Execute the utility by entering the following command:

./create_CM_Patch.sh -d $RELEASEHOME

where:

$RELEASEHOME is the directory that currently holds your CM full release packages - and where you
also want to put your new patch package.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 315

Tar and zip the resulting CM patch directory for Unix platform or zip it for Windows platform and ship it to
your customer. The customer who wishes to install the delivered package onsite will follow the
instructions:

 Decompress and untar the installation media (on Unix) or unzip (on Windows) to a temporary
directory.

 Change directory to that directory.

 Login and initialize the target environment.

 Change to the Installation directory by using the following command

cd CMCCB.$VERNO

where

$VERNO is the version number (the content of the file CMVERSION.txt)

 Run the following script

./install.sh - on Unix

 install.cmd - on Windows

CM System Data Packaging Tools

Contents
CM System Data Packaging Overview
Extract Process
Upload Process

CM System Data Packaging Overview
CM System Data Packaging Tools allow the implementers to extract and package ‘CM’ system data from
their databases and deliver it to the customers.

Oracle and MS SQL Server are both supported. The example below utilizes the oracle database platform
to illustrate the extract and upload process. MS SQL Server requires a different ODBC connection for the
extract and upload processes. A description of the ODBC setup is in the extract and upload bat files
provided as samples.

As a standard release process, the implementers can add the CM system and Meta data records to the
base product database or change base product system and Meta data records according to the specific
rules (see “System Table Guide” document in the Installation Guide of the product). Implementers can
then choose to migrate the CM data to a customer database as a full extract of CM data, or incremental
differences between the current version of the system data on the customer site and the new version of
the implementation development database.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 316

Blueprint

File

Blueprint

File
Create Copy

OraSDBP

Project

Dev DB

Project

Dev DB

Project

Release DB

Project

Release DB
System Data

Packaging CM system data starts by creating a copy of the project dev database into a project release
database. A blueprint file of the system data is then created by executing the OraSDBP tool.

Blueprint

File

Blueprint

File

B
lu
ep

rin
t

B
lueprint

OraSDUp

OraSDUp

Project

QA DB

Project

QA DB

Production

DB

Production

DB

To apply the latest changes to a QA or production database, execute OraSDUp with the blueprint file as
input and then specifying the target database.

Extract Process
Extract process involves extracting CM system data based on the rules defined in a parameter file and
packaging it in a binary file – blueprint. This file can then be used as an input source by the data upload
process.

Oracle and MS SQL Server are both supported. The example below utilizes the oracle database platform
to illustrate the extract and upload process. MS SQL Server requires 2 different ODBC connections for
the extract process and upload process. A description of the ODBC setup is in the extract and upload bat
files provided as samples.

OraSdBp.exe, included in this package, is the extract utility that reads an input parameter file for the list of
Oracle database tables, extracts data from these tables and compresses into a binary file (blueprint).

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 317

A sample extract parameter file extract_cmsystbls.lst is included in this package to provide the
implementers a starting point. This parameter file, as can be seen, defines rules for the tool to extract CM
data based on their key definition. However, in some cases, CM data may be stored on ‘CI’ rows. The
column user_exit_pgm on CI_MD_PRG_COM table is one such case. For cases like these, the
implementers can choose to change the extraction rules in this file to match their requirements.

To extract your data, make a copy of extract_cmsystbls.lst file and edit it to match your requirements.
Execute the extract process from a Command-window and provide it with the required parameter when
prompted.

The data in input parameter must match the following format:

CI_ALG_TYPE_L;LANGUAGE_CD = 'ENG';VERSION

Where, the first field stores the table name, second field stores the selection criteria (where clause for
selecting data) and the third field stores the list of column that should be ignored during extraction. The
character semi-colon is used as the field separator. If there are multiple columns that need to be ignored
(not included in the data being extracted), comma can be used in the third field as the separator.

OraSdBp accepts the following parameters:

 -d Connect String

Where the Connect String contains:

 Schema owner name (say CISADM)

 Password for schema owner.

 Database name.

This is a mandatory parameter. If not entered, the utility will prompt the user to build the connect
string.

Connect String should be entered in the following format:

CISADM,CISADMPSWD,DBNAME

(Comma-separated and no space).

 -i Input Parameter file name.

Name of the input parameter file that the utility reads to get the list of tables and their selection
criteria. This parameter is optional. The default input parameter file name is CDXSdBp.Inp.

 -o Output File Name.

This is the name of the binary file that the utility creates. This parameter is optional. The default
output file name is “OraSdBp” (without extension).

 -c NLS characterset of the target database

The utility uses this parameter to set the NLS_LANG parameter on the client side. This parameter is
then validated against the character set of the source database and is saved in the blueprint. This is
mandatory parameter and is prompted for if not set by the user.

 -h Help.

This option will list all the accepted parameters with a brief description.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 318

Upload Process
Data upload process compares the data included in the blueprint file (generated by the extract process)
and that extracted from a target database and generates output SQL to synchronize them.

The utility OraSdUpg, included in this package, is used by the process utility to compare and synchronize
the data in the target database with that in the input blueprint file.

OraSdUpg reads an input parameter file for the list of the tables to be upgraded along with the selection
criteria and upgrade rules for each table.

Each table has a corresponding record in the file with following 6 fields separated by semi-colon:

 Table Name

 The instance of the table. This number should be always set to 1. The cases where more than one
instances of a table are processed are extremely rare and are not discussed here.

 Selection Criteria for the table.

 Insert allowed indicator (T/F): Whether records should be inserted into the target database table if
they missing in the database but exist in the binary file.

 Update allowed indicator (T/F): Whether records should be updated in the table if they have different
values than in the binary file.

 Delete allowed indicator (T/F): Whether the obsolete data in table in the target database. Obsolete
records exist in target database but not in the binary file.

 Fresh Install Indicator (T/F): Whether the table should be seeded during the very first install. This
indicator is only used when the utility is invoked with “-f” switch.

 List of columns not updated can be specified in the sixth field. Use a comma to separate the column
names if multiple columns are to be ignored during updates. These columns will be inserted but will
not be updated during the data synchronization process.

Following is the example of how these records should look like in the file:

CI_LOOKUP;1;LANGUAGE_CD = 'ENG';T;T;F;T;DESCR

A sample file upload_cmsystbls.lst has been included in this package. Implementer can make a copy of
this file and edit it to match their requirements.

Before making connection to the target database, the utility reads the header from the blueprint and sets
NLS_LANG environment variable on the client machine. It then validates this character set setting to the
character set of the target db after making a connection and warns user if there is a mismatch.

The utility can be executed in verification and modification modes. In verification modes, the action SQL
statements are simply written to the log file but in modification mode they are applied the target database.

It is very important to note that the primary requirement for OraSdUpg is definition (column and primary
key) of tables being upgrade in the target database should be same as that in the database from which
the binary file was extracted.

Be careful while selecting the table and the selection criteria because to compare the data, the utility, for
each table, first loads the data from the binary file and the database in the memory. If a table has huge
amount of data and selection criteria set causes the utility to work on large quantity of data, it may run out
of memory.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 319

To avert unique key constraint violation error that can be caused by improper sequence of data deletion
and insertion on a table and also the foreign key issues, the utility first gathers all the generated action
statements for all the tables before executing them. The execution of all the generated statements is done
in multiple iterations. After each iteration, all the failed statements during that iteration are collected and
executed again in the next iteration. The iterations are repeated till either all the statements in iteration
are executed successfully or they fail.

The utility disables and enables all the triggers on the tables being upgraded before and after applying
database changes. No triggers get executed during the system data upgrade.

OraSdUpg accepts the following parameters:

 -d Connect String

Where the Connect String contains:

 Schema owner name (say CISADM)

 Password for schema owner.

 Database name.

This is a mandatory parameter. If not entered, the utility will prompt the user to build the connect
string.

Connect String should be entered in the following format:

CISADM,CISADMPSWD,DBNAME

(Comma-separated and no space).

 -b Bypass the database character set validation.

Before upgrading data in database, the utility validates character set stored in the blueprint by
OraSDBp against that of target database. The user can bypass this validation step by setting this
switch.

 -p Input Parameter file name.

Name of the input parameter file that the utility reads to get the list of tables and their selection
criteria. This parameter is mandatory.

 -i Input Binary File.

This is the name of the binary file that the utility reads to extract the data that it then uses to upgrade
the target database. This is a mandatory parameter.

 -f

Treats the data synchronize process as New install. When set, the flag forces OraSdUpg to use
“fresh install indicator” for the tables where INSERT indicator is set to false and compels it to insert
missing records in all of them. Optional.

 -u

Makes OraSdUpg run in the modification mode. Optional.

 -l Log File Name.

This is the name of the file that OraSdUpg creates, if it is missing and starts appending the
information about the action it is performing.

 -h Help.

Oracle Utilities Software Development Kit V4.0.0

Copyright © 2012 Oracle Corporation. All Rights Reserved. 320

This option will list all the accepted parameters with a brief description.

Note. It is recommend that the implementers execute the upload process first in the verification mode

and review the SQL before running the tool in the modification mode.

