

Oracle® Insurance Policy
Administration

Extensibi l i ty

Version 9.7.0.0

Documentation Part Number: E39062_01

May, 2013

Release 9.7.0.0 OIPA Extensibility Guide 2 of 33
 Revised: 4/2/2013

Copyright © 2009, 2013, Oracle and/or its affiliates. All rights reserved.

Trademark Notice

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their
respective owners.

License Restrictions

 Warranty/Consequential Damages Disclaimer

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of
this software, unless required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any
errors, please report them to us in writing.

Restricted Rights Notice

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the
U.S. Government, the following notice is applicable:

 U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, delivered to U.S. Government end users are “commercial computer
software” pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated
software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license
restrictions applicable to the programs. No other rights are granted to the U.S. Government.

 Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate failsafe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates
disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

 Third Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information on content, products and services from
third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind
with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any
loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Release 9.7.0.0 OIPA Extensibility Guide 3 of 33
 Revised: 4/2/2013

Table of Contents

INTRODUCTION... 4

Customer Support ... 4

Overview ... 5

Anonymous Extensions ... 5

Feature Specific Extensions.. 5

Named Extensions .. 5

ANONYMOUS EXTENSIONS ... 7

Math Type Process ... 7

ExternalProcess Business Rule .. 9

FileReceived Web Service .. 11

FEATURE SPECIFIC EXTENSIONS .. 13

External Client Integration ... 13

NAMED EXTENSIONS .. 26

Shared Rules Engine .. 27

FileReceived ... 30

User Interface .. 33

Release 9.7.0.0 OIPA Extensibility Guide 4 of 33
 Revised: 4/2/2013

INTRODUCTION

Extensibility is a critical factor when selecting an architecture that can be enhanced with the speed of your

organizations’ needs. The ability to extend the system and hook in new system capability without making major

infrastructure changes is necessary for system maintainability and for avoiding early obsolescence. The Oracle

Insurance Policy Administration (OIPA) system provides several mechanisms for extensibility. Currently, all

extensions are implemented as Java classes that are injected into specific points or levels in the OIPA

infrastructure. Extension developers need only implement the requisite Java interfaces in order to access this

powerful OIPA feature.

Note: Creating custom extensions should be viewed as a means to enhance the
functionality of OIPA only when there are no means to achieve the same using
OIPA’s built-in configuration ability and when there are no such planned
enhancements announced for near-future versions of the software.

Customer Support

If you have any questions about the installation or use of our products, please visit the My Oracle Support

website: https://support.oracle.com, or call (800) 223-1711.

Oracle customers have access to electronic support through My Oracle Support. For information, visit

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

https://support.oracle.com/
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Release 9.7.0.0 OIPA Extensibility Guide 5 of 33
 Revised: 4/2/2013

Overview

Primarily, there are three types of extensions: Anonymous, Feature Specific and Named.

1. The Anonymous extensions allow for invocation of custom logic using pre-defined methodologies.

2. The Feature Specific extensions allow for extending specific OIPA features.

3. The Named extensions allow for custom logic at pre-defined points through the lifecycle of specific

system events. Named extensions allow for fine-tuned customization.

Anonymous Extensions

Anonymous extensions are provided with data from running transactions, making them powerful tools for

integration. Anonymous extensions can execute when an activity is run or when the FileReceived web service

is invoked. In the example below, the policy lifecycle includes the OIPA transactions Premium Receipt, Issue

and Billing. The first two transactions illustrate how the system can perform messaging over an enterprise

service bus (ESB). The last transaction, Billing, illustrates MQ series integration.

Feature Specific Extensions

Feature Specific extensions provide the ability to enhance a specific OIPA feature. There is only one Feature

Specific extension at this time called External Client Integration which can be used to enhance OIPA’s client

and role management feature to interact with an external agent database.

Named Extensions

When fine-tuned control over the application’s lifecycle is required, Named extensions can be employed.

Named extensions are provided through the Extensibility Framework, which is discussed later in this document.

Release 9.7.0.0 OIPA Extensibility Guide 6 of 33
 Revised: 4/2/2013

Below is a simplified rules engine processing example that illustrates how Named extensions can provide pre-

or post-processing, or can replace a processing step altogether.

1. Default implementation

2. Pre-processing added via an extension

3. Post-processing added via an extension

4. Math processing lifecycle step is replaced with custom math via an extension

Release 9.7.0.0 OIPA Extensibility Guide 7 of 33
 Revised: 4/2/2013

ANONYMOUS EXTENSIONS

There are several facilities in place that enable extensibility using Anonymous extensions. They are in the Math

processing of a transaction rule, via the ExternalProcess business rule and through the FileReceived Web

Service. Each mechanism is explained in detail below. Anonymous Extensions are not included in a

configuration file. Their invocation is governed by configuration of OIPA rules.

Math Type Process

Some tasks may require interaction with custom Java code during the math processing of rules. OIPA has a

dedicated math variable type for this purpose, which can be added to any XML math section that contains the

<MathVariable> element. The math variable type is PROCESS. This has the advantage of allowing for

business rule logic to dictate which extension should execute and which parameters should be passed. Refer

to the OIPA XML Configuration Guide for further detail about the math variable type.

Example XML Configuration

This example illustrates the PROCESS type <MathVariable> and the available attributes and parameter

passing.

<MathVariable NAME=”VariableName”
 TYPE=”PROCESS”
 NAMESPACE=”com.example.package”
 OBJECT=”ClassName”
 ISARRAY=”YES|NO”
 DATATYPE=”DataType*”>
 <Parameters>
 <Parameter NAME=”InputVar” TYPE=”INPUT”>Literal|VariableName</Parameter>
 <Parameter NAME=”OutputVar” TYPE=”OUTPUT”>VariableName</Parameter>
 </Parameters>
</MathVariable>

Note: Data type can be one of the following: TEXT, INTEGER, DECIMAL, BOOLEAN,

DATE.

Java Implementation Details

The above example requires that a class, com.example.package.ClassName, implement the interface

IProcessableObject. This class must be present on the class path of the application’s class loader. The

IProcessableObject interface is defined as follows:

public interface IProcessableObject {

 public Object execute(Map<String, Object> inputParameterMap,
 Map<String, Object> outputParameterMap)
 throws Exception;
}

The implementation will receive two java.util.Map instances. The first, inputParameterMap, contains all of the

values defined as input parameters in the Math XML, keyed on the parameter name. Similarly, the

Release 9.7.0.0 OIPA Extensibility Guide 8 of 33
 Revised: 4/2/2013

outputParamaterMap contains all of the values defined as output parameters in the Math XML, keyed on the

parameter name. Output parameters will be copied back to the original variable name specified as the value of

the parameter. In other words, the value of the output variables will be passed into the extension. Any changes

to that value will be applied to the variable that is provided by the parameter definition. In essence, the variable

is “passed by reference” to the extension.

By supporting output parameters, the extension can return any number of values. By default, the extension

returns a single value, which is stored in the variable given by the VARIABLENAME attribute from the XML

Configuration example above.

Example Use of Math Extension

Assume there is a service available in the enterprise that will validate that a postal code provided by the user

matches the city also provided by the user. The extension will return a Boolean value indicating whether or not

the postal code/city pair matches. It will also return the valid city name for the given postal code in the event

that the city and postal code do not match.

Example XML Configuration
<MathVariable NAME=”PostalCodeMV”
 TYPE=”FIELD” DATATYPE=”TEXT”>Policy:IssuePostalCode</MathVariable>
<MathVariable NAME=”CityMV”
 TYPE=”FIELD” DATATYPE=”TEXT”>Policy:IssueCity</MathVariable>
<MathVariable NAME=”CorrectCityMV”
 TYPE=”VALUE” DATATYPE=”TEXT”></MathVariable>
<MathVariable NAME=”PostalCodeAndCityMatch”
 TYPE=”PROCESS”
 NAMESPACE=”com.example.package”
 OBJECT=”VerifyPostalCode”
 ISARRAY=”NO”
 DATATYPE=”BOOLEAN”>
 <Parameters>
 <Parameter NAME=”PostalCode” TYPE=”INPUT”>PostalCodeMV</Parameter>
 <Parameter NAME=”City” TYPE=”INPUT”>CityMV</Parameter>
 <Parameter NAME=”CorrectedCity” TYPE=”OUTPUT”>CorrectCityMV</Parameter>
 </Parameters>
</MathVariable>

Extension Pseudo-Code
 class VerifyPostalCode implements IProcessableObject {
 public Object execute(Map <String, Object> inputVariableMap,
 Map <String, Object> outputVariableMap) throws Exception {
 String postalCode = (String)inputVariableMap.get("PostalCode");
 String city = (String)inputVariableMap.get("City");
 VerificationResult result = ExternalService.verifyPostalCode(postalCode, city);

 if(result.isValid()) {
 return true;
 }
 else {
 outputVariableMap.put("CorrectedCity", result.getCorrectedCity());
 return false;
 }
 }
 }

Release 9.7.0.0 OIPA Extensibility Guide 9 of 33
 Revised: 4/2/2013

ExternalProcess Business Rule

Every transaction in OIPA can have business rules associated with it. These business rules are responsible for

applying logic during the transaction lifecycle. Typical business rules will perform actions at a higher level than

the transaction itself, such as generating a suspense account or writing data to fields (i.e. policy, role, client,

etc.).

In order to facilitate greater flexibility, OIPA includes a special business rule that is capable of calling custom

Java code called ExternalProcess.

Implementing ExternalProcess requires the following:

1. A business rule named ExternalProcess attached to the transaction. The business rule will describe the

Java class to be executed.

2. The business rule name must exist in the TransactionBusinessRulePacket business rule in the order it

should be executed relative to other attached business rules.

3. An extension class that implements the IApeExtension interface.

Example XML Configuration
<ExternalProcess>
 <Process>
 <Assembly>com.example.extension</Assembly>
 <Object>ExternalProcessImpl</Object>
 </Process>
 <Parameters>
 <Parameter NAME=”ParameterName”>ParameterValue</Parameter>
 </Parameters>
</ExternalProcess>

Java Implementation Details

The previous example requires that a class, com.example.extension.ExternalProcessImpl, implement the

interface IApeExtension. This class must be present on the class path of the application’s class loader. The

IApeExtension interface is defined as follows:

public interface IApeExtension {
public void process(IActivityBll activityBll, Map <String, String> parameterCollection);
public void processUndo(IActivityBll activityBll, Map <String, String>
parameterCollection);

}

The process(..) method is executed during forward processing. The processUndo(..) method is executed

during reversal.

Release 9.7.0.0 OIPA Extensibility Guide 10 of 33
 Revised: 4/2/2013

The activityBll parameter exposes the necessary surface area for extension. It’s critical to understand that

activities are executed as a single unit of work. That is, if any operation fails, then no changes will have been

made to the system. To enable this, insert, change and delete operations are exposed by IActivityBll. All

data changes should be made through these mechanisms, as they ensure proper transactional integrity.

Note: Direct modification of the database can lead to undesirable or inaccurate results.

Release 9.7.0.0 OIPA Extensibility Guide 11 of 33
 Revised: 4/2/2013

FileReceived Web Service

The FileReceived Web Service, sometimes referred to as AsFile, exposes extensions before and after the insert

operation occurs. The FileReceived lifecycle is illustrated below, along with the associated insert extension

opportunities.

The basic lifecycle for the FileReceived Web Service is:

1. The FileReceived Web Service receives a request via a SOAP message.

2. The AsFile entry is looked up using the FileID specified in the request.

3. The math in the AsFile entry’s XMLData is processed.

4. The attributes in the AssignAttributes section of the AsFile entry’s XMLData are processed.

5. The XSLT maps the request XML to AsXml.

6. The transformed AsXml is mapped to data objects.

7. PreInsert operations are performed on the objects.

8. Objects are inserted into the database.

9. PostInsert operations are performed on the objects.

10. Output XSLT is loaded from AsFileOutput based on the attributes in AssignAttributes.

11. Response XML is built.

12. If the ValidationError section is configured in the XSLT, then a SOAP fault is created (with embedded

response XML) and sent to the caller. Otherwise, response AsXml is returned.

Example XML Configuration

<File>
 <RequestType>...</RequestType>
 <Math ID="MathVariablePrefix">
 <MathVariables>
 <MathVariable>...</MathVariable>
 ...
 </MathVariables>
 </Math>
 <AssignAttributes>...</AssignAttributes>
 <PreInsert>
 <Object CLASS="com.example.extension.PreInsertExtension">
 <Parameters>
 <Parameter NAME="Name">Value</Parameter>
 <Parameter NAME="Name">Value</Parameter>

 ...
 </Parameters>
 </Object>
 <Object CLASS="com.example.extension.PreInsertExtension2" />
 </PreInsert>
 <PostInsert>
 <Object CLASS="com.example.extension.PostInsertExtension" />
 <Object CLASS="com.example.extension.PostInsertExtension2" />

...

Release 9.7.0.0 OIPA Extensibility Guide 12 of 33
 Revised: 4/2/2013

 </PostInsert>
</File>

Java Implementation Details

The PreInsert and PostInsert extensions must implement the IFilePreInsertProcessorBll and

IFilePostInsertProcessorBll, respectively. If the Parameters element is present, the specified parameters will

be passed to the extension. The text of the Parameter elements should contain either a constant or the name of

an attribute from the AssignAttributes section. This allows for the passage of data to the defined extensions.

The PreInsert interface is defined as:

public interface IFilePreInsertProcessorBll {

public <T extends AdminServerPersistentDcl> ArrayList <T> process(ArrayList <T> dclList,

String requestXml, Map <String, String> parameterMap) throws AsExceptionUtl;
}

The PostInsert interface is defined as:

public interface IFilePostInsertProcessorBll {

public <T extends AdminServerPersistentDcl> String process(ArrayList <T> dclList, String

requestXml, Map <String, String> parameterMap) throws AsExceptionUtl;
}

Release 9.7.0.0 OIPA Extensibility Guide 13 of 33
 Revised: 4/2/2013

FEATURE SPECIFIC EXTENSIONS

External Client Integration

OIPA may be integrated with external systems that can provide client information. The external client integration

feature provides support to:

 Display external client data on the OIPA Role screen.

 Attach external clients to OIPA policies.

Rules Configuration

This section describes how to configure business rules to implement the OIPA external client functionality.

1. Make sure that External Client Plan security is enabled (checked) in the Rules Palette Plan Page

Security.

2. Using the Rules Palette Admin Explorer, add codes for new external roles to the AsCodeRole code set

in the AsCode table—navigate to Administration | Code Names. If using the OIPA client search

option, also add codes for external client types to the AsCodeClientType code set. The table below

shows sample values for both codes:

Code Name Code Value Short Description Long Description System Indicator

AsCodeRole 71 External Custom Agent External Custom Agent Unchecked

AsCodeRole 72 External Agent External Agent Unchecked

AsCodeClientType 06 External Client External Client Unchecked

3. If needed, insert authorizations for the ExternalClient page to be able to see the ExternalClientDetail

popup page that is used to view the details of the external client.

4. For the ExternalClientDetailsScreen rule, create a company-level override to configure which external

client role codes and fields are associated with each defined external role. The information in the rule is

used:

 To validate a set of keys identifying a client in the external system; the keys are returned when a

new external role is created.

 To configure the External Client Detail popup page, which is used to view and, in some cases, to

edit external client details on the Policy or Segment role page.

The external client fields configured by the rule may be classified as following:

 Key fields that identify a client in an external system. They are retrieved from an external system

when a new external role is created, and stored in the AsExternalClient/AsExternalClientField

tables in the OIPA database. Later, they are used as keys in requests to an external system

whenever OIPA needs to obtain external client data. The key fields are indicated by a “No” value in

Release 9.7.0.0 OIPA Extensibility Guide 14 of 33
 Revised: 4/2/2013

the ExternalSource tag, which has its KEY attribute set to “Yes”. When a new external role is

created, OIPA validates returned key values for a selected external client against this rule to make

sure keys are not empty.

 OIPA-specific fields that are configured and exist in the OIPA application only. They are stored in

the OIPA database. Values for these types of fields can be entered and modified on the External

Client Detail popup page. The OIPA-specific external client fields are indicated by a “No” value in

the ExternalSource tag, which has its KEY attribute set to “No” (default value) in the

ExternalClientDetailsScreen rule.

 External fields that are always returned from an external system and never stored in the OIPA

database. They are indicated by a “Yes” value in the ExternalSource tag in the

ExternalClientDetailsScreen rule. Fields of this type can be displayed on the External Client Detail

popup page, but cannot be modified.

Example:

<ExternalClientDetailScreen>
 <Client ROLECODE="71">
 <Fields>
 <Field>
 <Name>CLID</Name>
 <Display>External ID</Display>
 <DataType>Text</DataType>
 <ExternalSource KEY="Yes">No</ExternalSource>
 </Field>
 <Field>
 <Name>Address</Name>
 <Display>Address</Display>
 <DataType>Text</DataType>
 <ExternalSource>Yes</ExternalSource>
 </Field>
 <Field>
 <Name>PaymentMethod</Name>
 <Display>Methods</Display>
 <DataType>Combo</DataType>
 <Query TYPE="SQL">SELECT CodeValue,LongDescription FROM AsCode … </Query>
 <DefaultValue>01</DefaultValue>
 <ExternalSource>No</ExternalSource>
 </Field>
 </Fields>
 </Client>

 . . .
</ExternalClientDetailScreen>

5. For the PolicyScreen rule or Segment rule (for segment roles):

a. Create a plan-level override.

b. Add external client roles to the configuration.

c. Identify the name of a class that implements the IExternalClientRowRetriever interface that must be

called to retrieve a row of external client data from an external system.

<Role NAME="External Agent" EXTERNAL="Yes">
<ExternalClientRowRetriever>com.adminserver.externalClient.ExternalClientRows
</ExternalClientRowRetriever>
<RoleCode>72</RoleCode>
<RoleCount>2</RoleCount>
<RolePercent>100</RolePercent>
<ClientType>06</ClientType>

</Role>

Release 9.7.0.0 OIPA Extensibility Guide 15 of 33
 Revised: 4/2/2013

6. For an implementation that uses the OIPA client search screen, the ClientSearchScreen rule needs to

include configuration of the client search screen for the defined external client types. The name of a

class that implements the IExternalClientSearch interface should be specified using the

ExternalClientSearchRetriever tag.

Example:

 <Client TYPECODE="06" EXTERNAL="Yes">
 <ExternalClientSearchRetriever>com.adminserver.externalClient.ExternalClientSearch
 </ExternalClientSearchRetriever>
 <Search>
 <Fields>
 <Field>
 <Name>LastName</Name>
 <Display>Last Name</Display>
 <DataType>Text</DataType>
 </Field>
 <Field>
 <Name>FirstName</Name>
 <Display>First Name</Display>
 <DataType>Text</DataType>
 </Field>
 </Fields>
 </Search>
 <Results DEFAULTRESULTS="Yes">
 . . .

 </Client>

7. If the Custom screen option is implemented, the role configuration in the Policy or SegmentName rule

must include the CustomScreen tag with the name of a class that implements the

IExternalClientSearchScreen interface. See the bolded information in the configuration below.

<Role NAME="External Custom Agent" EXTERNAL="Yes">
<ExternalClientRowRetriever>com.adminserver.externalClient.ExternalClientRows
</ExternalClientRowRetriever>
<CustomScreen>com.adminserver.externalClient.CustomScreen</CustomScreen>
<RoleCode>71</RoleCode>
<RoleCount>2</RoleCount>
<RolePercent>100</RolePercent>

</Role>

Implementing Java Interfaces

In addition to the business rule configuration, integration with an external client system requires implementation

of several OIPA interfaces by a Java developer. The external classes that implement the interfaces described in

this section should be deployed in a shared library, as with other extension classes. Please refer to the OIPA

Deployment Installation instructions for your particular application server for information on how to configure

shared libraries.

Retrieving a Row of External Client Data

The IExternalClientRowRetriever interface should be implemented to retrieve client data from an external

system. The returned data are then displayed as a row in the role summary table on the OIPA Role screen. The

Release 9.7.0.0 OIPA Extensibility Guide 16 of 33
 Revised: 4/2/2013

same interface is also used to retrieve external client information displayed on the External Client Detail screen.

The name of the implementation class (or the name of the Spring bean if the implementation class is registered

as a Spring component) should be specified for each external role in the business rules as described in the

Rules Configuration section above.

/**
 * Interface to retrieve a row of external client data. It is used to retrieve external
 * client data displayed in the role summary table Also, used to display external data
 * on the edit external client details popup screen
 * (for the fields marked with ExternalSource tag set to Yes)
 */
public interface IExternalClientRowRetriever {

 /**
 * Retrieves a row of external client data. Besides returning values to match
 * the columnDcl list, the implementation may return value a named "ClientName"
 * that will be used to display name of the client
 *
 * @param keyVariableDclList
 * list of keys that identify external client
 * @param columnDclList
 * list of columnDcl objects that defines returned values
 * @param locale
 * current user locale
 * @return
 */
 public List <VariableDcl> retrieveRow(List <VariableDcl> keyVariableDclList,
 List <ColumnDcl> columnDclList, Locale locale)
 throws ExternalClientException;
}

Release 9.7.0.0 OIPA Extensibility Guide 17 of 33
 Revised: 4/2/2013

The retrieveRow method of the IExternalClientRowRetriever interface has the following parameters:

 A list of VariableDcl objects containing data to identify a client in an external system. This contains

keys that have been retrieved from an external system when a client has been selected. The key data

are stored in the OIPA database in the AsExternalClient/AsExternalClientField tables and used when a

client needs to be identified in the external system. A VariableDcl object is a POJO (Plain Old Java

Object) bean with the following properties:

 String variableName;
 String dataType;
 Object value;
 String currencyCode;

The values of the dataType property are listed below:

 "01", //Date
 "02", //Text
 "03", //Integer
 "04", //Float

The object type of the value property should match the type of the VariableDcl instance. The

currencyCode property should be set for the currency values.

 A list of ColumnDcl objects describing what values should be returned from the method. The list

consists of columns configured in the RoleScreen business rule (for the role view), as described in the

Rules Configuration section above, that have the Group attribute set to either CLIENT or

CLIENTFIELD. A ColumnDcl object is a POJO bean that has the following properties, which

areimportant in the context of the retrieveRow method:

 private String dataType;
 private String name;

The dataType property may have the following values:

 public static final String DATATYPE_Date = "Date";
 public static final String DATATYPE_Money = "Money";
 public static final String DATATYPE_Integer = "Integer";
 public static final String DATATYPE_Decimal = "Decimal";
 public static final String DATATYPE_Percent = "Percent";
 public static final String DATATYPE_Text = "Text";

The locale of the current user can be used to localize returned values if required.

The retrieveRow method retrieves a list of VariableDcl objects that represents search results in an external

client system based on the key values passed in the first parameter. The elements in the list should match the

elements requested in the second parameter of the method. Additionally, the method may add a VariableDcl

object with the name “ClientName” to the list. This value is used by OIPA to display the client name in the left

side navigation bar on the role screen.

Release 9.7.0.0 OIPA Extensibility Guide 18 of 33
 Revised: 4/2/2013

In case of failure, the method may throw an instance of the ExternalClientException exception class,

derived from the Exception class, that has the following constructors:

public class ExternalClientException extends Exception {

 public ExternalClientException(String message){. . .

public ExternalClientException(Throwable cause) {. . .

 public ExternalClientException(String message, Throwable cause) {. . .

Here is a simple example of the interface implementation:

@Component
@Scope("singleton")
public class ExternalClientRows implements IExternalClientRowRetriever {

 public List <VariableDcl> retrieveRow(List <VariableDcl> keyVariableDclList,
List <ColumnDcl> columnDclList, Locale locale)
throws ExternalClientException {

 if(keyVariableDclList == null || keyVariableDclList.size() != 1) {
 throw new ExternalClientException("Missing or redundant keys");
 }
 VariableDcl keyVarDcl = keyVariableDclList.get(0);
 int key = TypeHelperUtl.getInt(keyVarDcl.getValue());
 ExClientDcl exClientDcl = ExClientDal.findClients(key);
 if(exClientDcl == null) {
 throw new ExternalClientException("Could not find an external client:" + key);
 }
 List <VariableDcl> results = new ArrayList <VariableDcl>();
 for(ColumnDcl columnDcl : columnDclList) {
 String value = "";
 if("Name".equalsIgnoreCase(columnDcl.getName())) {
 value = exClientDcl.getLastName() + ", " + exClientDcl.getFirstName();
 }
 else if("LastName".equalsIgnoreCase(columnDcl.getName())) {
 value = exClientDcl.getLastName();
 }
 else if("FirstName".equalsIgnoreCase(columnDcl.getName())) {
 value = exClientDcl.getFirstName();
 }
 else if("Address".equalsIgnoreCase(columnDcl.getName())) {
 value = exClientDcl.getAddress();
 }
 else if("TaxId".equalsIgnoreCase(columnDcl.getName())) {
 value = exClientDcl.getTaxId();
 }
 VariableDcl varDcl = new VariableDcl(columnDcl.getName(), value,
FieldDataType.TEXT.getTypeCode());
 results.add(varDcl);
 }
 VariableDcl varDcl = new VariableDcl("ClientName",
 exClientDcl.getLastName() + ", " + exClientDcl.getFirstName(),
 FieldDataType.TEXT.getTypeCode());
 results.add(varDcl);
 return results;
 }
}

Release 9.7.0.0 OIPA Extensibility Guide 19 of 33
 Revised: 4/2/2013

Retrieving External Client Search Results

The IExternalClientSearch interface should be implemented for external roles that are configured to use the

OIPA client search tab on the Role screen, which is used to attach external clients to OIPA policies. This

interface provides a method to query an external system using a set of search criteria. The search criteria, and

the columns of search results returned, are configured similarly to the search configuration for clients stored in

the OIPA system. The name of the implementation class (or the name of the Spring bean if the implementation

class is registered as a Spring component) should be specified for each external role in the business rules as

described in the Rules Configuration section above.

/**
 * Interface to retrieve results of an external client search. This interface is
 * implemented when using OIPA client search screen to retrieve results of
 * the external client search
 */
public interface IExternalClientSearch {

 /**
 * Returns client rows found by an external search for the given search criteria
 *
 * @param criteriaFieldDataDclList
 * list of criteria for external client search collected on
 * the OIPA client search screen
 * @param columnDclList
 * list of columnDcl objects that defines returned values
 * @param pageNumber
 * page number of the search results
 * @param pageSize
 * size of the page of the search results
 * @param locale
 * current user locale
 * @return
 */
 public RowDataListDcl <ExternalClientSearchRowDcl> retrieveClientSearchResults(
 List <IFieldDataDcl> criteriaFieldDataDclList,
 List <ColumnDcl> columnDclList,
 Integer pageNumber,
 Integer pageSize,
 Locale locale
) throws ExternalClientException;
}

The retrieveClientSearchResults method of the IExternalClientSearch interface has the following

parameters:

 A list of search criteria represented by objects that implement the IFieldDataDcl interface. The

following methods of the interface are the most important in the context of the external client search:

public interface IFieldDataDcl {

 /**
 * Gets the value of the field
 */
 public Object getValue();

 /**
 * Gets the fieldName value
 */
 public String getFieldName();

Release 9.7.0.0 OIPA Extensibility Guide 20 of 33
 Revised: 4/2/2013

 /**
 * Returns the value associated with the column: DateValue
 */
 public Date getDateValue();

 /**
 * Returns the value associated with the column: FieldTypeCode
 */
 public String getFieldTypeCode();

 /**
 * Returns the value associated with the column: FloatValue
 */
 public Double getFloatValue();

 /**
 * Returns the value associated with the column: IntValue
 */
 public Integer getIntValue();

 /**
 * Returns the value associated with the column: TextValue
 */
 public String getTextValue();

 /**
 * Returns the currencyCode
 */
 public String getCurrencyCode();

. . .
}

The values of the fieldTypeCode property are the same as the type values for the VariableDcl

objects:

 "01", //Date
 "02", //Text
 "03", //Integer
 "04", //Float

The developer must extract search criteria name/value pairs from the list, and pass them on to an

external system search call.

 A list of ColumnDcl objects describing what values should be returned from the method. The list

consists of columns configured in the ClientSearchScreen business rule as described in the Rules

Configuration section above.

Note: The next two parameters can be used only if an external system supports paginated
search. Otherwise, all external rows found by the search may be returned. This could
affect the external search performance.

 Page number of the search results.

 The size of the search result page.

 The locale of the current user, which could be used to localize the returned values if desired.

Release 9.7.0.0 OIPA Extensibility Guide 21 of 33
 Revised: 4/2/2013

The retrieveClientSearchResults method retrieves a list of ExternalClientSearchRowDcl objects. The

list contains the search results from the external client system that satisfy the search criteria specified. The

elements in the list should match the elements requested in the second parameter of the method. The returned

list is of type RowDataListDcl. Besides a list of objects, this list also contains the total number of rows of

search results. The total number of rows may be different from the number of rows returned if the external

system supports pagination of search results.

public class RowDataListDcl <T> extends ArrayList <T> {

 public int getTotalRowCount()

. . .

The ExternalClientSearchRowDcl objects returned in the list represent individual rows of search results. The

ExternalClientSearchRowDcl class has the following properties that are important in the context of an

external client search:

public class ExternalClientSearchRowDcl extends RowDcl {

 /**
 * List of external client keys that identify client in an external system
 */
 List <VariableDcl> externalKeyVariableDclList;
 /**
 * Client name
 */
 String clientName;

. . .

public class RowDcl {

 List <CellDcl> rowData;

. . .

The externalKeyVariableDclList list should be populated with the keys that identify rows of data in an

external system. When an external client is chosen by a user to map to an external role, the key data will be

stored in the OIPA database. Later, it may be used to retrieve the external client information. The clientName

property may be set so that it can be used in OIPA to display a selected client name. The rowData property is

used to display client data in the search result table. Each CellDcl object represents a value that will be

displayed in a single cell in the search result table. The type of a CellDcl object should match the type of a

corresponding ColumnDcl object in the list passed in as the second parameter of the method. This is shown in

the following table:

ColumnDcl and CellDcl types

ColumnDcl Type CellDcl Type/Constructor

 Money MoneyCellDcl(Double data, CurrencyDcl currencyDcl)

 Date DateCellDcl(Date data)

 Integer IntegerCellDcl(Integer data)

 Percent PercentCellDcl(Double data)

 Decimal DecimalCellDcl(Double data)

 Text TextCellDcl(String data)

Release 9.7.0.0 OIPA Extensibility Guide 22 of 33
 Revised: 4/2/2013

For money values, an instance of the CurrencyDcl class may be created using the following constructor:

public CurrencyDcl(String currencyCode,
String currencyName,
Integer displayRoundPlaces,
Integer currencyRoundPlaces,
String currencyRoundMethod)

In case of a failure, the method may throw an instance of the ExternalClientException exception class.

Here is a simple example of the interface implementation:

public class ExternalClientSearch implements IExternalClientSearch {

 /*
 * An exmaple implementation that always returns a single client
 * regardless of search criteria. It also ignores a list of
 * columns
 **/
 public RowDataListDcl <ExternalClientSearchRowDcl> retrieveClientSearchResults(
 List <IFieldDataDcl> criteriaFieldDataDclList,
 List <ColumnDcl> columnDclList,
 Integer pageNumber, Integer pageSize, Locale locale
) throws ExternalClientException {

 RowDataListDcl <ExternalClientSearchRowDcl> results =
 new RowDataListDcl <ExternalClientSearchRowDcl>();
 ExternalClientSearchRowDcl rowDcl = new ExternalClientSearchRowDcl();
 rowDcl.getRowData().add(new TextCellDcl("LastName, FirstName"));
 rowDcl.getRowData().add(new TextCellDcl("123-23-8970"));
 rowDcl.getRowData().add(new TextCellDcl("100 Street Town, PA 19003"));
 rowDcl.setClientName("LastName, FirstName");
 List <VariableDcl> varDclList = new ArrayList <VariableDcl>();
 VariableDcl varDcl = new VariableDcl("CLID", "12345",
 FieldDataType.TEXT.getTypeCode(), null);
 varDclList.add(varDcl);
 rowDcl.setExternalKeyVariableDclList(varDclList);
 results.add(rowDcl);
 results.setTotalRowCount(5);
 return results;
 }
}

Release 9.7.0.0 OIPA Extensibility Guide 23 of 33
 Revised: 4/2/2013

Implementing Custom External Client Search Page

The IExternalClientSearchScreen interface should be implemented for external roles that are configured to

use a custom Client Search screen included on the OIPA Role screen. This interface provides methods for

OIPA to find an external page Java Server Faces (JSF) include, retrieve an external client selection made on

the custom screen, and map it to an external role. OIPA does not make any assumptions regarding the custom

search screen, but simply includes it within the OIPA Role screen. Then it requests the selection from the

custom screen through the interface. The name of the implementation class (or the name of the Spring bean if

the implementation class is registered as a Spring component) should be specified for each external role in the

business rules as described in the Rules Configuration section above.

/**
 * Interface is required to implement custom client search screen. This is a stateful
 * interface. An instance of an object that implements this interface is created
 * and kept in the role page bean (request scope) maintaining the state
 * of the current search for a user
 */
public interface IExternalClientSearchScreen {

 /**
 * Returns URL to an external JSF include. The include file should be deployed
 * on a web server and accessible through HTTP. Please remember to change
 * the include file extension to txt
 *
 * @return
 */
 public String getScreenUrl();

 /**
 * Retrieves the current selection of an external client search screen.
 * The state of the search is maintained by storing an instance of
 * this object in the role page bean
 *
 * @return
 */
 public ExternalClientSearchRowDcl retrieveSelection() throws ExternalClientException;
}

The getScreenUrl method of the interface returns a URL to a JSF subpage that will be included in the tab

normally occupied by the client search on the OIPA Role screen. The custom JSF include should be deployed

as a web application and available to the OIPA system through HTTP protocol.

Note: Please make sure that the file extension of the resource file is changed from JSPX to
TXT. In this case, an include resource is retrieved through HTTP “as is” and included
in the Role screen before the entire page is processed by the JSF engine to render
the content.
If the extension of the include resource remains JSPX, the resource file will be
processed by the JSF engine prior to returning it through HTTP. The generated
content (HTML) then will be included in the Role screen instead of JSF code.

The retrieveSelection method of the IExternalClientSearchScreen interface should return the selection

that the user has made on the custom screen. An instance of the implementation class is kept as a property of

the IceFaces bean, with the name “rolePage,” which is a request scope bean. This conveniently preserves the

Release 9.7.0.0 OIPA Extensibility Guide 24 of 33
 Revised: 4/2/2013

state of the instance that can access and retrieve a custom selection. The result is returned as an object of type

ExternalClientSearchRowDcl (described above for the IExternalClientSearch interface).

In case of a failure, the retrieveSelection method should throw an instance of the

ExternalClientException exception class.

Here is a simple example of the interface implementation:

public class CustomScreen implements IExternalClientSearchScreen {

 public CustomScreen() {
 super();
 }

 public String getScreenUrl() {
 return "http://localhost:8080/includes/ExternalClientSearch.txt";
 }

 public ExternalClientSearchRowDcl retrieveSelection() throws ExternalClientException {

 // The selection result is hardcoded in this implementation.
 // Normally, it should be retrieved from the current selection
 // of the table that displays external search results.
 ExternalClientSearchRowDcl rowDcl = new ExternalClientSearchRowDcl();
 rowDcl.getRowData().add(new TextCellDcl("LastName, FirstName"));
 rowDcl.getRowData().add(new TextCellDcl("123-30-9876"));
 rowDcl.getRowData().add(new TextCellDcl("100 Street Town, PA 19003"));
 rowDcl.setClientName("LastName, FirstName");
 List <VariableDcl> varDclList = new ArrayList <VariableDcl>();
 VariableDcl varDcl = new VariableDcl("CLID", "12345",
 FieldDataType.TEXT.getTypeCode(), null);
 varDclList.add(varDcl);
 rowDcl.setExternalKeyVariableDclList(varDclList);
 return rowDcl;
 }
}

Developing a Custom Page

The OIPA role page, both for policy and segment roles, may be configured to include a custom client search

page allowing OIPA customers to customize external client search to satisfy business requirements that can’t

be satisfied with the standard configurable OIPA client search. It has been discussed in the previous sections

how to configure business rules and create a Java implementation of the IExternalClientSearchScreen

interface. This section will discuss how to create an actual Java Server Face (JSF) page that will be included on

the Client Search tab of the OIPA Role screen.

Typically, a custom search should display a set of search criteria and a table with search results that allows the

selection of a single row of results before the user clicks the “Add” button to create a role mapped to the

selected external client. Please note, the “Add” buttons belongs to the OIPA role page and not the custom

include subpage. The selection is returned to OIPA through the retrieveSelection method of the

IExternalClientSearchScreen interface as described in the previous section. The

IExternalClientSearchScreen interface is stateful, and an instance of the implementation class is kept in the

customScreen property of the IceFaces rolePage bean that has the request scope.

Release 9.7.0.0 OIPA Extensibility Guide 25 of 33
 Revised: 4/2/2013

Below is an example of the IexternalClientSearchScreen interface implementation.

public class CustomScreen implements IExternalClientSearchScreen {

 public CustomScreen() {
 super();
 }

 public String getScreenUrl() {
 return "http://localhost:8080/includes/ExternalClientSearch.txt";
 }

 public ExternalClientSearchRowDcl retrieveSelection() throws ExternalClientException {

 // The selection result is hardcoded in this implementation
 // Normally, it should be retrieved from the current selection
 // of the table that displays external search results
 . . .
 return rowDcl;
 }

 public String getTitleCustom() {
 return "Custom Screen";
 }

 public String getTitleCustomContent() {
 return "External Client Search";
 }
}

The custom JSF include may then look like this

<f:view xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:ice="http://www.icesoft.com/icefaces/component"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:as="http://www.adminserver.com/jsf">
 <ui:decorate template="../includes/StandardBoxTemplate.txt">
 <ui:param name="style"
 value="popupBoxContainer"/>
 <ui:define name="standardBoxTitle">
 <ice:outputText value="#{rolePage.customScreen.titleCustom}"
 styleClass="boxTitle"/>
 </ui:define>
 <ui:define name="standardBoxContent">
 <ice:outputText value="#{rolePage.customScreen.titleCustomContent}"/>
 </ui:define>
 </ui:decorate>
</f:view>

The simplest way to implement a more complex custom include page is to add properties needed in the JSF

subpage to the CustomScreen class. For example, an implementation could have a list that contains the search

results, along with a property that is bound to the row selector of the table that displays search results on the

custom page. Then the retrieveSelection method would need to return the selected row based on these

properties.

It is important to remember that a custom JSF include should be deployed in a web server as a text resource,

not as a JSF file. This will allow retrieving the resource through HTTP protocol and including it in the JSF Role

page before generating the Role screen content.

Release 9.7.0.0 OIPA Extensibility Guide 26 of 33
 Revised: 4/2/2013

NAMED EXTENSIONS
1

The Extensibility Framework provides a mechanism by which system event lifecycles can be extended. The

various lifecycle steps are given specific names in the system, so they have to be accessed using those names.

Custom Java code can be added before or after a lifecycle step, or it can replace the lifecycle step altogether.

The Extensibility Framework is present at the transaction processing, Web Service and user interface levels.

The Extensibility Framework maps custom Java classes to named points in the system. These names vary

based on the context, and are described in detail later in this document. A single Java class can be mapped to

multiple extension points and, conversely, a single extension point can have multiple Java classes mapped to it.

The Extensibility Framework allows for wildcards in the specification of the extension point name. For instance,

Activity.* will call a custom Java class for every extension point starting with Activity. If “*” is used by itself,

then all extension points will be processed by the Java class.

Wildcard Options

Specification Example Explanation

<Qualifier>.<Name> Activity.StartProcessing Only the StartProcessing event will be intercepted.

<Qualifier>.* Activity.* All extension points starting with Activity will be

intercepted.

* * All extension points will be intercepted.

Lifecycle flow control is managed through the two methods exposed by every extension point interface,

processPre(..) and processPost(..). The processPre(..) method is executed prior to the lifecycle event.

This method always returns a Boolean where true indicates that the lifecycle step should execute and false

indicates that it should be skipped. This allows for lifecycle steps to be overridden by custom code. The

processPost(..) method is called after the lifecycle step has completed. If that lifecycle step generated any

data, it will be present in the context map as “Result”.

It’s important to note that extensions are not thread-safe. That means, for performance, a single instance is

created and continually executed. The use of member variables in an extension is discouraged unless proper

locking is in place.

All extension points contain context data in the form of a java.util.Map. The contents of this map will vary

depending on the extension point. This map is shared between the processPre(..) and processPost(..)

1
 Coding custom named extensions requires a great deal of knowledge about the internal data structures and logical processes used by

OIPA. Improperly used, such extensions can adversely affect the operational accuracy and/or efficiency of the system. For that reason,

Oracle recommends that, with a few exceptions, (redirecting the Login page start method to accomplish single sign-on, for example), named

extensions only be used when critical functionality cannot be attained by the use of OIPA’s native configuration language and such

functionality is not planned for a future version of OIPA that is to be released in a time frame suitable to the customer.

Further, because there is no guarantee that the internal code structures utilized by the extension framework will not change from one

release of OIPA to the next, when it is deemed necessary to code a named extension, Oracle also recommends that the customer informs

Oracle or Oracle’s implementation partner about such usage so that the customer may be advised of any internal change that might affect

their custom extension code or its usage.

Release 9.7.0.0 OIPA Extensibility Guide 27 of 33
 Revised: 4/2/2013

methods, but it is not shared with other extension points. Inter-extension communication can be achieved

through the use of some context data mechanism, depending on the implementation. This could be in the form

of a ThreadLocal variable or an HTTP/Servlet request context.

Each extension point can have one or more extensions registered to it. These extensions are executed in the

order in which they appear in the XML configuration.

Example XML Configuration

<extensions>
<extensionPoint type="com.example.extension.ExtensionPointClassName"
extensionPointName="ExtensionPoint.Name">

<register extension="com.example.extension.ExtensionClassName1" />
<register extension="com.example.extension.ExtensionClassName2" />

</extensionPoint>
</extensions>

Shared Rules Engine

The Shared Rules Engine (SRE) can be extended through the use of the extensibility framework. The SRE

powers activity processing, and can be extended at many critical lifecycle points.

Example XML Configuration
 <extensionPoint type="com.adminserver.sre.extensibility.SreExtensionPoint"
 extensionPointName="Activity.*">
 <register extension="com.example.SreExtension" />
 </extensionPoint>

All extensions written for the SreExtensionPoint must implement ISreExtension.

public interface ISreExtension {
 public boolean processPre(SreExtensionContext extensionContext);
 public void processPost(SreExtensionContext extensionContext);

}

Release 9.7.0.0.0 OIPA Extensibility 28 of 33
 Revised: 4/2/2013

SRE Extension Points

Forward Processing

Lifecycle Step Extension Point Available Variables

ActivityBll.Process Activity.InitializeProcessing ClientNumber, ActivityProcessType

 ActivityProcessorBll.Process Activity.StartProcessing InputVariableMap, ApplicationCallback, ActivityProcessType

 DoSuspense Activity.StartSuspense Activity, Transaction

 ProcessSuspense Activity.ProcessSuspense Activity

 ProcessMultiSuspense Activity.ProcessMultiSuspense Activity

 DoValuation Activity.StartValuation Activity, Transaction

 PolicyValuation.Value Activity.ValuePolicy ValuationInformation, Activity

 DoMath Activity.ProcessMath Activity

 DoBusinessLogic Activity.StartBusinessLogic Activity

 ProcessRule Activity.ProcessBusinessRule BusinessRule, RuleOption, Activity

 DoAssignment Activity.StartAssignment Activity, Transaction

 ProcessAssignments Activity.ProcessAssignments AssignmentList, Activity, ExpressionValidator

 ProcessAssignment Activity.ProcessAssignment Assignment, Activity

 DoDisbursement Activity.StartDisbursement Activity, Transaction

 ProcessDisbursements Activity.ProcessDisbursements DisbursementDetails, Activity

 ProcessBalanced Activity.ProcessBalancedDisbursements DisbursementDetails, Activity, DisbursementData

 ProcessUnbalanced Activity.ProcessUnBalancedDisbursements DisbursementDetails, Activity, DisbursementData

 DoAccounting Activity.StartAccounting Activity

 ProcessAccounting Activity.ProcessAccounting Activity

 DoSpawn Activity.ProcessSpawn Activity, Transaction

 PrepareValuationChanges Activity.CompleteValuation Activity,

 PrepareActivityChanges Activity.ProcessActivityChanges Activity

 DoWrite Activity.Persist ActivityProcessResult

 DoWriteOnSystemError Activity.SystemError Exception

Release 9.7.0.0.0 OIPA Extensibility 29 of 33
 Revised: 4/2/2013

Reverse Processing

Lifecycle Step Extension Point Available Variables

ActivityBll.Process Activity.InitializeProcessing ClientNumber, ActivityProcessType

 UndoProcessor.Process Activity.StartUndoProcessing InputVariableMap, ApplicationCallback

 DoBusinessLogicForNuvPending Activity.StartNuvPendingBusinessLogic Activity, Transaction

 Rule.ProcessNuvPending Activity.ProcessBusinessRuleNuvPending BusinessRule, Activity

 ProcessValuationForUndo Activity.ProcessValuationForUndo Activity, UndoActivityStatusCode

 DoAccounting Activity.StartAccounting Activity,

 ProcessAccounting Activity.ProcessAccounting Activity

 DoBusinessLogicForUndo Activity.StartUndoBusinessLogic Activity, Transaction

 Rule.ProcessUndo Activity.ProcessBusinessRuleUndo BusinessRule, Activity

 DoWrite Activity.Persist ActivityProcessResult

 DoWriteOnSystemError Activity.SystemError Exception

Scheduled Valuation

Lifecycle Step Extension Point Available Variables

GenerateScheduledValuation ScheduledValuation.GenerateScheduledValuation ValuesRequestTask

Release 9.7.0.0.0 OIPA Extensibility 30 of 33
 Revised: 4/2/2013

FileReceived

The FileReceived Web Service can be extended through the use of the extensibility framework by implementing

one of two interfaces.

Example XML Configuration

 <extensionPoint type="com.adminserver.webservice.extensibility.FileReceivedExtensionPoint"

 extensionPointName="FileReceived.*">

 <register extension="com.example.FileReceivedExtension" />

 </extensionPoint>

All extensions written for the FileReceivedExtensionPoint must implement IFileReceivedExtension.

public interface IFileReceivedExtension {

 public boolean processPre(FileReceivedExtensionContext extensionContext);

 public void processPost(FileReceivedExtensionContext extensionContext);

}

Release 9.7.0.0.0 OIPA Extensibility 31 of 33
 Revised: 4/2/2013

File Received Extension Points

Lifecycle Step Extension Point Available Variables

FileReceived FileReceived.StartProcessingFileReceived FileId, IncomingXml

 RetrieveFileProcessDcl FileReceived.StartRetrievingFileRecord FileId

 FindByFileId FileReceived.FindRecord FileProcessData

 PopulateFileProcessDcl FileReceived.CreateDataCarrier XmlHelperUtility, FileProcessData

 ProcessAssignAttributes FileReceived.ProcessAssignAttributes FileProcessData

 ProcessRequest FileReceived.StartProcessingRequest FileProcessData

 TransformtoAsXml FileReceived.TransformToXml FileProcessData

 ValidateAsXml FileReceived.ValidateXml AsXmlDocument

 MapXmlToObject FileReceived.Deserialize FileProcessData

 ProcessImportedObject FileReceived.StartProcessingDataCarriers

FileProcessData, PendingImportedObject,

AsXmlDocument

 PerformPreInsert FileReceived.StartPreInsert FileProcessData, PendingInsertObjects

 RetrieveDclList FileReceived.StartRetrievingDataCarriers PendingImportedObject

 BuildDclListFromAsXml FileReceived.BuildDataCarriersList PendingImportedObject

 DoPreInsert FileReceived.PreInsert FileProcessData, PendingInsertObjects

 PerformInsert FileReceived.InsertData PendingInsertObjects

 PerformPostInsert FileReceived.StartPostInsert FileProcessData, PendingInsertObjects, AsXmlDocument

 DoPostInsertProcessing FileReceived.StartPostInsertProcessing FileProcessData, PendingInsertObjects, AsXmlDocument

 DoPostInsert FileReceived.PostInsert FileProcessData, PendingInsertObjects

 BuildResultString FileReceived.StartBuildingResult FileProcessData

 LoadOutputXslt FileReceived.LoadOutputXslt FileProcessData

Release 9.7.0.0.0 OIPA Extensibility 32 of 33
 Revised: 4/2/2013

Example XML Configuration

 <extensionPoint type="com.adminserver.webservice.extensibility.WebserviceExtensionPoint"
 extensionPointName=" XsltHelper.XmlTransform">
 <register extension="com.example.WebServiceExtension" />
 </extensionPoint>

All extensions written for the WebserviceExtensionPoint must implement IWebserviceExtension.

public interface IWebserviceExtension {
public boolean processPre(WebserviceExtensionContext extensionContext);
public void processPost(WebserviceExtensionContext extensionContext);

}

This extension point allows for the overriding of the default XSLT transformer at two stages during processing of

the FileReceived web service.

1. When Input Xml is transformed to AsXml.

2. When an Xslt is applied to the response Xml.

This extension will receive the following parameters in the context map:

SourceDocument XML Document for transformation.

Parameters The parameters available for passing to the transformer. These are values of

attributes set using AssignAttribute in AsFile

In the processPost method, the context map will contain TransformedXml, which holds the result of the Xslt

transformation.

Release 9.7.0.0.0 OIPA Extensibility 33 of 33
 Revised: 4/2/2013

User Interface

The extension point names for the user interface are convention based. They take the form of

<PageName>.<StartProcessing/Process[Action]>. An example would be Policy.ProcessSave.

Example XML Configuration

 <extensionPoint type="com.adminserver.pas.uip.extensibility.UipExtensionPoint"

 extensionPointName="*">

 <register extension="com.example.UipExtension" />

 </extensionPoint>

All extensions written for the UipExtensionPoint must implement IUipExtension.

public interface IUipExtension {
public boolean processPre(UipExtensionContext extensionContext);
public void processPost(UipExtensionContext extensionContext);

}

The UI extension point names can be discovered by writing a “catch-all” extension point and logging the

extension point names. For example the following steps can be followed to discover available named extension

points on the client screen.

1. Create a Java class called OIPAExtension.java. This class can be given any name.

2. Add the following code to the class.

public class OIPAExtension implements IUipExtension {
public boolean processPre(UipExtensionContext extensionContext){

boolean result = true;
// Use the System.out.println() or java logger to print all extension points using
extensionContext
String extensionName = extensionContext.getExtensionPoint().getName();
System.out.println(“ UI Client Page Extension Name : ” + extensionName);

}

@SuppressWarnings("boxing")
public void processPost(UipExtensionContext extensionContext) {
}

}

3. Generate OIPAExtension.jar and deploy it to the application server. In WebSphere, include the

absolute path of the OIPAExtension.jar in sharedlib. In WebLogic, drop the OIPAExtension.jar within

WEB-INF/lib of the OIPA war included in the OIPA media pack.

4. Add the following to the extensions xml configuration.

 <extensionPoint type="com.adminserver.pas.uip.extensibility.UipExtensionPoint"

 extensionPointName="*">

 <register extension="com.example.OIPAExtension" />

 </extensionPoint>

5. Login to OIPA application.

6. Navigate to the Client Screen.

7. The JVM console output will list all the extension point names.

Follow the same steps for different screens.

