
Oracle Knowledge iAuthenticator API
Integration Guide
Integrating Oracle Knowledge Applications with Enterprise Security

Release 8.5.1
Document Number OKIM-IAI85-00

September, 2013

COPYRIGHT INFORMATION

Copyright © 2002, 2013, Oracle and/or its affiliates. All rights reserved.
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are
protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy,
reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please
report them to us in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government,
the following notice is applicable:
U.S. GOVERNMENT RIGHTS
Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are “commercial
computer software” or “commercial technical data” pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license
terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional
rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway,
Redwood City, CA 94065.
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or
hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to
ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in
dangerous applications.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are
trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks
or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. Other names may be trademarks of
their respective owners.
This software or hardware and documentation may provide access to or information on content, products, and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party
content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to
your access to or use of third-party content, products, or services.

Contents
Contents

Preface About This Guide . 1
In This Guide . 1
Examples of Product Screens and Text . 1
Operating System Variations in Examples and Procedures 1
References to Web Content . 2
 . 2

Chapter 1 Introduction to iAuthenticator . 3
Standard Authentication . 3
LDAP Authentication . 3
SSO Authentication . 4

Chapter 2 Using iAuthenticator . 5
Connecting Internal and External User Management Systems 5
Coordinating the Authentication Process . 5
Implementation Overview . 6
iAuthenticator Interfaces and Components . 8

iUser Interface Methods . 8
iRoleBasedUser Interface Method . 9

RoleBasedUser Subclass . 10
iFieldBuilder for Oracle CRM OnDemand . 11

Chapter 3 Implementing iAuthenticator . 12
Configuring Information Manager . 12

Chapter 4 Error Conditions . 14
Error Condition Solutions . 14

Chapter 5 iAuthentication Sample . 15
Implementation Sample Code . 15
ORACLE KNOWLEDGE IAUTHENTICATOR API INTEGRATION GUIDE iii

Contents
Chapter 6 API Reference . 17
Package Names of Classes . 17
Public API Classes and Methods . 17
ORACLE KNOWLEDGE IAUTHENTICATOR API INTEGRATION GUIDE iv

1 IN THIS GUIDE
PREFACE

About This Guide

This guide describes how to use the Oracle Knowledge iAuthenticator API (iAuthenticator) to integrate Oracle
Knowledge applications with existing enterprise security. This guide is intended for application developers who
implement the iAuthenticator API and protocol in pluggable modules, and for systems administrators who
configure the use of the modules.

In This Guide
This guide is divided into the following sections:

“Introduction to iAuthenticator”

Describes how to use the iAuthenticator API to develop
custom authentication solutions that meet various business
requirements.

“Using iAuthenticator”

Describes how to use iAuthenticator API for external
authentication and lists the major interfaces and their methods
and classes.

“Implementing iAuthenticator”
Explains how to implement iAuthenticator to one or more
installations across physical or virtual machines.

“Error Conditions”
Lists the error conditions that you may encounter during the
implementation of a custom authenticator.

“iAuthentication Sample”

Demonstrates an example of iAuthenticator that validates
whether or not a user ID and password match the
corresponding values in the database.

“API Reference”
Lists the full package names of classes mentioned in this
guide.

Examples of Product Screens and Text
The product screens, screen text, and file contents depicted in the documentation are examples. We attempt to
convey the product's appearance and functionality as accurately as possible; however, the actual product
contents and displays may differ from the published examples.

Operating System Variations in Examples and Procedures
We generally use Linux screen displays and naming conventions in our examples and procedures. We include
other operating system-specific procedures or steps as noted in section headings, or within topics, as
appropriate.

We present command syntax, program output, and screen displays:

• in Linux format first
ORACLE KNOWLEDGE IAUTHENTICATOR API INTEGRATION GUIDE

2 REFERENCES TO WEB CONTENT
• in other Unix-specific variants only when necessary for proper operation or to clarify functional
differences

• in Windows format only when necessary for clarity

References to Web Content
For your convenience, this guide refers to Uniform Resource Locators (URLs) for resources published on the
World Wide Web, when appropriate. We attempt to provide accurate information; however, these resources
are controlled by their respective owners and are therefore subject to change at any time.
ORACLE KNOWLEDGE IAUTHENTICATOR API INTEGRATION GUIDE

3 STANDARD AUTHENTICATION
CHAPTER 1

Introduction to iAuthenticator

The Oracle Knowledge iAuthenticator API (iAuthenticator) enables integration of Oracle Knowledge
applications with existing enterprise security realms. You use the iAuthenticator API to separate user
authentication processes from the Oracle Knowledge applications, and customize user authentication
processes without changing the Oracle Knowledge application code.

You can use the iAuthenticator API to develop custom authentication solutions to meet various business
requirements. For example, you can use iAuthenticator to implement authentication for employees using one
security system, and authentication for customers using a separate system.

You implement the API to bridge two security models: your organization's and the Information Manager
security model. Your organization makes the decisions for user role access. For example, the information
repository configuration defines user roles and privileges, so that you could create agent roles with privileges
that customer roles do not have.

With Information Manager, you can implement user authentication in two ways:

• Oracle Knowledge standard authentication

• Oracle Knowledge iAuthenticator API (iAuthenticator)

The standard authentication interface is configured by default as described in Oracle Knowledge Information
Manager Administration Guide. It also integrates with external Lightweight Directory Access Protocol (LDAP)
and Single Sign-On (SSO) systems as described in the “LDAP Authentication” and “SSO Authentication”
sections, respectively.

Standard Authentication
Oracle Knowledge has a built-in security realm that is stored in the Information Manager database. This realm
uses the Oracle Knowledge standard authentication interface, and is entirely internal to Oracle Knowledge.
You implement standard authentication by defining and authorizing application users by using the
Management Console in the Information Manager repository. Oracle Knowledge authorizes users when they
log in based only on the internally stored user information. Oracle Knowledge is not integrated with any
external security systems.

LDAP Authentication
You can configure the standard authentication interface to integrate Oracle Knowledge with an existing LDAP
security realm. Information Manager has built-in LDAP authentication that you can configure to integrate with
an external realm that is stored in an LDAP server and can be configured to map users to roles and views.
LDAP Authentication is available for all Oracle Knowledge applications. The configuration is available through
the Information Manager Management Console application.
ORACLE KNOWLEDGE IAUTHENTICATOR API INTEGRATION GUIDE

4 SSO AUTHENTICATION
When you configure built-in LDAP integration, the external (customer-supplied) LDAP directory stores the
user authentication information, including the list of authorized views and roles assigned to each user. You
configure the list of available roles and views within Information Manager.

When you use LDAP authentication, you perform all user-management tasks within the external LDAP
system, not within Information Manager. Oracle Knowledge's built-in LDAP authentication requires that you
store all user information within a single LDAP branch. You can store roles and views in a separate branch of
the LDAP hierarchy, but, you must store all instances of each type of security object in a single branch.
Information Manager authorizes users based on the security roles that the LDAP system assigns them.

For more information on configuring LDAP, see the “LDAP Configuration” section of the Oracle Knowledge
Information Manager Administrator’s Guide.

SSO Authentication
To configure the standard authentication interface to integrate with an SSO provider, you configure the
provider to work with an LDAP directory so that when the SSO provider authenticates each user, basic
information, such as the userid, is stored in the HTTP Header. The information stored in the HTTP header
validates the user against the LDAP directory, similar to the LDAP authentication process.

“Using iAuthenticator”, in this guide, describes how to implement iAuthenticator with external security
systems.
ORACLE KNOWLEDGE IAUTHENTICATOR API INTEGRATION GUIDE

5 CONNECTING INTERNAL AND EXTERNAL USER MANAGEMENT SYSTEMS
CHAPTER 2

Using iAuthenticator

This section describes how to use the iAuthenticator API for external authentication and lists the major
interfaces and their methods and classes. It also includes a simple example of an implementation.

Connecting Internal and External User Management Systems
The first time a user successfully signs in to iAuthenticator, the Information Manager creates a local copy of
each user, and the external system stores the master copy of each user. The local copy ties an internal user
management system with the iAuthenticator's external management system. The local copy is not the true
user record. The true user record is stored in your organization's user management system.

You can modify the local profile copy by using the Management Console, which you can use to update fields
that are not available in the Oracle Knowledge iAuthenticator module. These include such fields as locale,
avatar, and subscription options. On each subsequent user login, iAuthenticator overwrites the fields that it
manages, which typically include first name, last name, e-mail address, and roles. You can use this capability
to store and control sensitive user data in an external realm without requiring you to secure the entire
Information Manager database in the same external realm.

Every time a user logs in, the external user management system updates and overwrites the local copy, which
is subordinate to the external management system.

Coordinating the Authentication Process
The InquiraAuthenticator module coordinates the entire custom authentication process. The
InquiraAuthenticator is the module that delegates to a custom iAuthenticator in the Information Manager
IMTagLibrary and ClientLibrary applications by calling the custom authenticator to bridge authentication
models.

This module calls the iAuthenticator.authenticate method. It is not part of the externally visible API.

If the custom authentication is successful, the InquiraAuthenticator sets the following fields for the local copy
user in Information Manager.

Field Description
loginID Login set on the RoleBasedUser returned by the authenticate method.

repository Known at runtime.

active flag Field is always set to true.

emailAddress E-mail as set on the RoleBasedUser returned by the authenticate method.

admin flag Field is set to true if the user has one or more Information Manager Management
Console roles.

firstname The user’s first name as set on the RoleBasedUser returned by the authenticate
method.
ORACLE KNOWLEDGE IAUTHENTICATOR API INTEGRATION GUIDE

6 IMPLEMENTATION OVERVIEW
Note: InquiraAuthenticator uses no other fields from RoleBasedUser.

The InquiraAuthenticator stores the user’s values in the Information Manager database. If the user does not
exist in the database, the data in the fields is added; if the user exists, the fields are updated.

The Information Manager database is only updated when the user's values are returned from the authenticate
method or are updated manually through the Information Manager Management Console. However, if the
user data is modified using the Information Manager Management Console, the values in fields mentioned
are overwritten the next time the user logs in.

Implementation Overview
The iAuthenticator framework includes an API and an implementation process. Developers implement the
iAuthenticator API and the implementation protocol in pluggable modules, and system administrators can
then configure these modules for use within an application. The following use case diagram shows the
interaction of components for a typical login.

lastname The user’s last name as set on the RoleBasedUser returned by the authenticate
method.

password • If the REMOTE_AUTHENTICATION_STORE_PASSWORD_LOCALLY configuration
parameter is set to TRUE, the supplied password is stored locally in the Information
Manager database.

• If the REMOTE_AUTHENTICATION_STORE_PASSWORD_LOCALLY configuration
parameter is set to FALSE (the default), and the user being authenticated does not
currently have a password stored in the Information Manager database, the
InquiraAuthenticator will generate a random password for the user set to a random
string (GUID) and store it in the Information Manager Database.

• If the ALLOW_PASSWORD_EDITING configuration parameter is set to TRUE, the user's
password can be set when creating a new user, and changed for existing users in the
Information Manager Management Console.

• If ALLOW_PASSWORD_EDITING is set to FALSE, the user's password will not be set
when creating a new user, and existing users' passwords cannot be changed in the
Information Manager Management Console.)

locale Defaults to the repository's default locale. It is only set on the initial user creation.

reportingUserGroup Can be set from external LDAP realm. The roles2PermissionsMap also contains All
UserGroups in repository.

roles User roles as set on the RoleBasedUser returned by the authenticate method.

views User views as set on the RoleBasedUser returned by the authenticate method.
ORACLE KNOWLEDGE IAUTHENTICATOR API INTEGRATION GUIDE

7 IMPLEMENTATION OVERVIEW
a The user name and password are passed to the InQuiraAuthenticator module.

b The InQuiraAuthenticator delegates the user login information and passes it to the iAuthenticator.

c iAuthenticator performs the custom authentication and constructs the iRolebasedUser interface.

d iAuthenticator returns iRolebasedUser to the InQuiraAuthenticator.

e The user record is added using a persist tool.

Because you must call it to authenticate the user, the most important method is
authenticate(FieldValue[] userInfo, Map roles2PermissionsMap, long timestamp).
The return value is the iUser mentioned above. However, Information Manager expects the value to be the
subclass iRoleBasedUser because Information Manager and Intelligent Search share the same
authentication interface. Refer to Oracle Knowledge Intelligent Search Application Development Guide for
information on iAuthenticator as it relates to the standalone Intelligent Search product and creating a basic
custom authenticator built on the iAuthenticator interface.

iRoleBasedUser must contain all Roles and Views assigned to the user. During the authenticate method, if
an exception condition occurs that cannot be corrected satisfactorily, you must throw an
InquiraAuthenticationException with a description of the problem so that it can be logged properly to the
Information Manager runtime log at the $INQUIRA_ROOT/instances/<company>/Inquira-
InfoManager-infomanager.log.

public interface IAuthenticator {

public IUser authenticate(FieldValue[] userInfo,
Map roles2PermissionsMap,
longtime timestamp) throws InquiraAuthenticationException;

}

ORACLE KNOWLEDGE IAUTHENTICATOR API INTEGRATION GUIDE

8 IAUTHENTICATOR INTERFACES AND COMPONENTS
Method Description
FieldValue[] userInfo The FieldValue is a name-value pair. This array contains the name-value pairs

being used to authenticate the user. It also implements the iFieldNames interface.
This interface defines all requisite as well as common field names.

For example, this array always contains:

• username FieldValue (name = IFieldNames.FIELD_USER_ID,)
• password FieldValue (name = IFieldNames.FIELD_PASSWORD), and
• domain/repository FieldValue (name = IFieldNames.FIELD_DOMAIN).

This array can hold other FieldValues obtained from the request header or the
application as well as from a custom iFieldBuilder. These are extra parameters
that you may need to pass to your own implementation to perform authentication.

Map roles2PermissionsMap Contains all the role, view, and usergroup reference keys in the repository. The
iAuthenticator API passes this map into an implemented authenticate method,
allowing implementers a reference in case they need to map from an external
system to Information Manager's internal role, view, or usergroup.

Implementers of the Oracle Knowledge iAuthenticator APIs authenticate method
must instantiate and return an IRoleBasedUser as part of the API. If that user
contains Information Manager roles, view, or reportingUsergroup, they must be a
subset of what is in this map. The content of this map is configured in Information
Manager.

To distinguish these keys from each other in this multi-purpose map:

• All role reference keys are prefixed with R.
• All view reference keys are prefixed with V.
• All usergroup reference keys are prefixed with G.

longtime timestamp The time when the authenticate call is requested. This allows you to make
authentication decisions based on time, or to track the time. In addition, many API
calls require longtime timestamp, for example, when instantiating a
RoleBasedUser to return.

Perform any steps you need to authenticate the user and return an iRoleBasedUser. Typically, a custom
authenticator communicates with one or more external realms to authenticate the user and then copies or
maps views and roles to the user using the iRoleBasedUser. A null return value results in the user being
denied access to the system.

The InquiraAuthenticator takes the returned user information and adds or updates the values in the
Information Manager database.

iAuthenticator Interfaces and Components
The iUser and iRoleBasedUser interfaces define an interface hierarchy that provides the minimum amount of
information a user needs to have in the Oracle Knowledge system for authentication and authorization
purposes. This information typically includes the user name, user ID, e-mail address, and so on.

iUser Interface Methods
The following table lists iUser interface methods and whether or not Information Manager iAuthenticator uses
them.
ORACLE KNOWLEDGE IAUTHENTICATOR API INTEGRATION GUIDE

9 IAUTHENTICATOR INTERFACES AND COMPONENTS
Method Description
Used by Information
Manager iAuthenticator?

getUserId Returns the user's ID, for example, jdoe. Yes

getDisplayName Returns the user's full name, for example, John Doe. Yes

getEmailAddress Returns the user's e-mail address. Yes

getLoginId Returns the combination of the domain and user ID. Yes

setAttribute(UserAttribute id,
String value)

Sets the value for the given UserAttribute.

Note: The UserAttribute class provided by Oracle
Knowledge pre-defines only three user attributes:
FIRST_NAME, MIDDLE_INITIAL, and LAST_NAME.
The InquiraAuthenticator uses these three attributes
when constructing the local copy user.

Yes

getAttribute(UserAttribute id) Returns the value for the given UserAttribute.

Note: The InquiraAuthenticator uses the
FIRST_NAME, MIDDLE_INITIAL, and LAST_NAME
pre-defined user attributes when constructing the local
copy user.

Yes

getSubject Returns a new Subject object with the user's Principal
added as the only known Principal.

No

getPrincipal Returns the user's Principal. No

getDomain Returns the user's domain. No

getTimestamp Returns the time this user was created or logged-in. No

isAnonymousUser Checks whether the given user object represents the
anonymous user.

No

hasPasswordExpired Returns whether the user's password has expired. No

getDaysTillPasswordExpires Gets the number of days until the user's password
expires.

No

setDaysTillPasswordExpires
(int daysTillPasswordExpires)

Sets the number of days until the user's password
expires.

No

hasAccess(Permission perm) Returns whether the user has access rights to the given
permission.

No

getSecurityPermissions Returns the set of all security permissions this user can
access.

No

getSecurityKeys Returns the set of keys for all security permissions this
user can access.

No

dump Dumps the state of the user object to stdout for
debugging.

No

iRoleBasedUser Interface Method
The iRoleBasedUser interface consists of a Subject (for example, the user), the Subject’s credentials (for
example, the roles and views), and the Subject’s principals (for example, the UserID). This interface extends
the iUser interface. The following table describes the method for iRoleBasedUser.
ORACLE KNOWLEDGE IAUTHENTICATOR API INTEGRATION GUIDE

10 IAUTHENTICATOR INTERFACES AND COMPONENTS
Method for iRoleBasedUser Description

Used by Informatiion
Manager
iAuthenticator?

getActiveRoles Returns the user's active roles as stored on the
remote system.

Yes

RoleBasedUser Subclass

An instance of iRoleBasedUser must be the return value of the iAuthenticator.authenticate()
method described in the following example. If you need to support custom fields, you can implement the
iRoleBasedUser interface, subclass RoleBasedUser or use RoleBasedUser directly.

Use the following method and parameters to construct a RoleBasedUser:
public class RoleBasedUser extends AbstractUser implements IRoleBasedUser,
IAASLogConstants {

public RoleBasedUser(String userId,
String domain,
String displayName,
Principal principal,
Set roles,
Permissions permissions,
long timestamp);

}

Method Description
String userId The subject's User Name. It must be unique in the Information Manager

repository.
String domain The domain of the user. It is also called the repository reference key.

String displayName The name of the user, formatted as firstname lastname.

Principal principal Although the Information Manager implementation of Oracle Knowledge
Authenticator does not use this field, it is required to instantiate a
RoleBasedUser object which is the expected return type of the authenticate
method. To satisfy this requirement, you can use the SimplePrincipal object
provided by Oracle Knowledge as shown in the sample code in
“iAuthentication Sample”.

Set roles A Set<String> that contains all Roles and Views for a user. Any values you
assign must match those found in iAuthenticator roles2PermissionsMap.

Implementers can add the reportingUserGroup field to this set. If more than
one, the first one is used. The reportingUserGroup must be one of the
UserGroups in roles2PermissionMap prefixed with G.

This set must contain at least one valid role and view for the user.

Permissions permission Although this value is not used in Information Managed-based
implementations, it cannot be a null value. To satisfy this requirement, create a
Permission Set and add Oracle Knowledge's StandardPermission object to it.

Note: Oracle Knowledge StandardPermission is a concrete
implementation of the Java abstract BasicPermission class.

Long timestamp The user value passed into iAuthenticator constructor.
ORACLE KNOWLEDGE IAUTHENTICATOR API INTEGRATION GUIDE

11 IAUTHENTICATOR INTERFACES AND COMPONENTS
iFieldBuilder for Oracle CRM OnDemand

The iAuthenticator.authenticate method parameter userInfo array always contains the
username, password, and domain FieldValues.

iFieldBuilder is a mechanism to pass additional attributes to the remote authenticator. The iFieldBuilder array
contains any request header or other application-specific values that you decide how to use. If you want to
add additional custom FieldValues to the userInfo, you must implement an iFieldBuilder. The
InquiraAuthenticator uses the configured iFieldBuilder by calling the buildFieldValue method. You can
add any FieldValues. The parameters for this interface method are:

public interface IFieldBuilder {

public void buildFieldValue(Map<String, String> requestHeaderMap,
HttpServletRequest httpRequest);

}

Map<String, String> requestHeaderMap: Map of available request headers, including any fields available from
the HTTP header, such as User-Agent, Accept, Referrer, or custom
fields. For more information, enter this URL into a browser: http://
www.w3.org/Protocols/rfc2616/rfc2616-sec14.html.

HttpServletRequest request: HttpServletRequest object created automatically by the Java Servlet
API when a request comes in to a web application written in Java. The
HttpServletRequest object encapsulates all data needed to respond to
the request.
ORACLE KNOWLEDGE IAUTHENTICATOR API INTEGRATION GUIDE

12 CONFIGURING INFORMATION MANAGER
CHAPTER 3

Implementing iAuthenticator

An implementation of iAuthenticator consists of one or more installations across physical or virtual machines.

Each installation is designated by $INQUIRA_ROOT and may have:

• One Information Manager instance hosting one or more Information Manager-based applications, such
as Management Console (InfoManager), Information Manager Tag Library Custom Applications,
Information Manager Web Services Custom Applications, Client Library Custom Applications and
InfoCenter)

• One Search Scheduler (Indexer) instance

• One or more Search Runtime instances

• One or more Search Workclient instances

• One or more Search Query Coordinator instances

• One or more Search QueryWorker instances

Configuring Information Manager
After you create a custom iAuthenticator, you must configure each Information Manager Instance in the
implementation to use the custom iAuthenticator.

Important! You must perform this procedure for each instance of Information Manager.

1 Copy the jar files that contain your custom iAuthenticator (and IFieldBuilder if applicable) classes to
each of the following locations:

- Deployed Information Manager Management Console
$INQUIRA_ROOT/instances/<company>/appserverim/webapps/InfoManager/WEB-INF/lib/

- Deployed Information Manager Web Services
$INQUIRA_ROOT/instances/<company>/appserverim/webapps/imws/WEB-INF/lib/

- Deployed Information Manager Tag Library based Applications
$INQUIRA_ROOT/instances/<company>/appserverim/webapps/<CONTEXT>/WEB-INF/lib/

2 Configure Information Manager to use the custom iAuthenticator (and iFieldBuilder if applicable):

a Log in to the Management Console and switch to your repository (if you logged into the SYSTEM
repository).

b Navigate to Tools, System Configure, and then Expert Mode.

c Set the REMOTE_AUTHENTICATION_ENABLED configuration parameter to true.

d Set the REMOTE_AUTHENTICATION_CLASS configuration parameter to your fully qualified
custom authenticator class, for example com.company.package.CustomAuthenticator.
ORACLE KNOWLEDGE IAUTHENTICATOR API INTEGRATION GUIDE

13 CONFIGURING INFORMATION MANAGER
e If you are using custom iFieldBuilder, set the REMOTE_FIELD_BUILDER_CLASS configuration
parameter to your fully qualified custom iFieldBuilder class.

If the Management Console Application is not implemented on a particular Information Manager instance, you
can manually modify the parameters in this procedure by editing the repository configuration file located at:

$IM_HOME/config/[REPOSITORY]/config.properties

The following example shows how to manually modify the parameters:

REMOTE_AUTHENTICATION_STORE_PASSWORD_LOCALLY=10;false

REMOTE_AUTHENTICATION_CLASS=10;oracle.km.test.authenticator.OKTestAuthenticator
ORACLE KNOWLEDGE IAUTHENTICATOR API INTEGRATION GUIDE

ORACLE KNOWLEDGE IAUTHENTICATOR API INTEGRATION GUIDE

 ERROR CONDITION SOLUTIONS

CHAPTER 4

Error Conditions

During the implementation of a custom authenticator, you may encounter one or more of the following errors.

Error Condition Solutions
Note: Each condition logs a detailed error message to the Information Manager runtime log.

Error Conditions Possible Solutions
ClassNotFoundException exception Verify that the custom iAuthenticator is in the Information

Manager-based application's class path.

The custom iAuthenticator is not used during
authentication

Verify that REMOTE_AUTHENTICATION_ENABLED is
set to true in config.properties.

InstantiationException or ClassNotFoundException
thrown

Verify that REMOTE_AUTHENTICATION_CLASS is set
to the full and correct path to the custom iAuthenticator.

The custom iFieldValues is not being added to
FieldValues array of iAuthenticator.authenticate method
call

Verify that the REMOTE_FIELD_BUILDER_CLASS is set
to the full and correct path of the custom IFieldBuilder that
is being used.

ClassCastException thrown Verify that your custom authenticator returns an instance
of iRoleBasedUser.

“Authentication denied" is logged to the InfoManager
runtime log at the following location: $INQUIRA_ROOT/
instances/<company>/Inquira-InfoManager-
infomanager.log

Verify that the user who is being authenticated is
authorized to log in and that the passed-in username and
password match the username and password stored in
the remote system.

An IllegalStateException is thrown and the message
More than one User was found is logged to the
InfoManager runtime log at this location:
$INQUIRA_ROOT/instances/<company>/Inquira-
InfoManager-infomanager.log

Verify that your Information Manager database does not
contain duplicate usernames.

The user is not authenticated and the following message
No valid roles and/or valid views is logged to the
InfoManager runtime log at this location:
$INQUIRA_ROOT/instances/<company>/Inquira-
InfoManager-infomanager.log

Verify that the user who is being authenticated has valid
roles and views in the remote system.

 IMPLEMENTATION SAMPLE CODE

CHAPTER 5

iAuthentication Sample

This section shows a simple example of iAuthenticator that validates whether or not a user ID and password
match the values in the database. After the user validation, iAuthenticator assigns a set of roles and views to
the user.

Implementation Sample Code
Note: The following code is an example of an implementation. An actual implementation requires contact
with an external realm to authenticate and create the RoleBasedUser.

public class CEGTestAuthenticator implements IAuthenticator, IFieldNames {"

private static final Logger logger =
Logger.getLogger(CEGTestAuthenticator.class.getName());

/* {@inhereitDoc} */
IUser authenticate(FieldValue[] userInfo, Map roles2PermissionsMap, long timestamp)

throws InquiraAuthenticationException {
IUser user = null;
String userId = null;
String password = null;

String repository = null;

logger.info("CEGTestAuthenticator.authenticate() called...");

//loop thru the userInfo values to get username, password, and domain
for (int i=0 ; i<userInfo.length ; i++) {

FieldValue fieldValue = userInfo[i];
if(userId==null && fieldValue.getName().equals(FIELD_USER_ID)) {

userId = fieldValue.getValue();
}
if(password==null && fieldValue.getName().equals(FIELD_PASSWORD)) {

password = fieldValue.getValue();
}
if(repository==null && fieldValue.getName().equals(FIELD_DOMAIN)) {

repository = fieldValue.getValue();
}

}

//userid and password must exist
if(userId!=null && password!=null) {

if(repository!=null && repository.equals(getDomain())) {

//only allow jdoe to authenticate the text, "Users roles, views, and
reportingUserGroup should exist in roles2PermissionsMap (sans prefix)."
if(userId.equals("jdoe") && password.equals("password")) {

HashSet<String> roles = new HashSet<String>();
roles.add("R_DEFAULT_ADMINISTRATION_ROLE");
ORACLE KNOWLEDGE IAUTHENTICATOR API INTEGRATION GUIDE

16 IMPLEMENTATION SAMPLE CODE
roles.add("V_TEST");
roles.add("G_AN_REPORTING_USERGROUP");
Permissions permissions = new Permissions();
permissions.add(new StandardPermission("none"));

try {
user = new RoleBasedUser(userId,

repository,
"John Doe",
new SimplePrincipal(userId),
roles,
permissions,
timestamp,
null);

} catch(InquiraSecurityException ise) {
throw new InquiraAuthenticationException(ise);

}

((RoleBasedUser)user).setEmailAddress("jdoe@inquira.com");
}

}
else {

new InquiraAuthenticationException("Invalid authentication domain");
}

}
else {

throw new InquiraAuthenticationException("Username and password required to
authenticate");

}

return user;
}

/** {@inheritDoc} */
public Field[] getAuthenticationFields() throws InquiraAuthenticationException {

//this authenticator requires a username, password, and repository to authenticate.
return new Field[] {new InputField(FIELD_USER_ID),

new InputField(FIELD_PASSWORD, true),
new InputField(FIELD_DOMAIN)};

}

/** {@inheritDoc} */
public String getDomain() {

return "TESTREPOSITORY";
}

}

ORACLE KNOWLEDGE IAUTHENTICATOR API INTEGRATION GUIDE

ORACLE KNOWLEDGE IAUTHENTICATOR API INTEGRATION GUIDE

17 PACKAGE NAMES OF CLASSES

CHAPTER 6

API Reference

The following is a list of the full package names of classes mentioned in this guide.

Package Names of Classes
• com.inquira.infra.IRoleBasedUser

• com.inquira.infra.IUser

• com.inquira.infra.security.AbstractUser

• com.inquira.infra.security.Field

• com.inquira.infra.security.FieldValue

• com.inquira.infra.security.InputField

• com.inquira.infra.security.InquiraAuthenticationException

• com.inquira.infra.security.IAuthenticator

• com.inquira.infra.security.IFieldNames

• com.inquira.infra.security.StandardPermission

• com.inquira.infra.security.impl.RoleBasedUser

• com.inquira.services.ldapservices.IFieldBuilder

• com.inquira.util.security.SimplePrincipal

• java.security.Permissions

• java.security.BasicPermission

• java.security.Principal

• javax.security.auth.Subject

Public API Classes and Methods
API classes and methods are available as HTML files. In a default installation, the files are placed in
the InfoManager/docs/iAuthentication directory.

Tip: You can drill down on each Java package by first opening the index.html file.

	Preface
	About This Guide
	In This Guide
	Examples of Product Screens and Text
	Operating System Variations in Examples and Procedures
	References to Web Content
	References to Web Content

	Introduction to iAuthenticator
	Standard Authentication
	LDAP Authentication
	SSO Authentication

	Using iAuthenticator
	Connecting Internal and External User Management Systems
	Coordinating the Authentication Process
	Implementation Overview
	iAuthenticator Interfaces and Components
	iUser Interface Methods
	iRoleBasedUser Interface Method
	RoleBasedUser Subclass
	iFieldBuilder for Oracle CRM OnDemand

	Implementing iAuthenticator
	Configuring Information Manager

	Error Conditions
	Error Condition Solutions

	iAuthentication Sample
	Implementation Sample Code

	API Reference
	Package Names of Classes
	Public API Classes and Methods

