
Oracle® Insurance Policy
Administration

Load Testing Methods

Version 9.6.0.0

Part number: E35883_01

 January, 2012

Start

Copyright © 2009, 2012, Oracle and/or its affiliates. All rights reserved.
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are
protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use,
copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or
by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please
report them to us in writing.
If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government,
the following notice is applicable:

U.S. GOVERNMENT RIGHTS
Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are “commercial
computer software” or “commercial technical data” pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the
additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle
Parkway, Redwood City, CA 94065.
This software is developed for general use in a variety of information management applications. It is not developed or intended for use in
any inherently dangerous applications, including applications which may create a risk of personal injury. If you use this software in
dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure
the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software in
dangerous applications.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.
This software and documentation may provide access to or information on content, products, and services from third parties. Oracle
Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content,
products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.
Where an Oracle offering includes third party content or software, we may be required to include related notices. For information on third
party notices and the software and related documentation in connection with which they need to be included, please contact the attorney
from the Development and Strategic Initiatives Legal Group that supports the development team for the Oracle offering. Contact
information can be found on the Attorney Contact Chart.
The information contained in this document is for informational sharing purposes only and should be considered in your capacity as a
customer advisory board member or pursuant to your beta trial agreement only. It is not a commitment to deliver any material, code, or
functionality, and should not be relied upon in making purchasing decisions. The development, release, and timing of any features or
functionality described in this document remains at the sole discretion of Oracle.
This document in any form, software or printed matter, contains proprietary information that is the exclusive property of Oracle. Your
access to and use of this confidential material is subject to the terms and conditions of your Oracle Software License and Service
Agreement, which has been executed and with which you agree to comply. This document and information contained herein may not be
disclosed, copied, reproduced, or distributed to anyone outside Oracle without prior written consent of Oracle. This document is not part
of your license agreement nor can it be incorporated into any contractual agreement with Oracle or its subsidiaries or affiliates.

Notice

iii

CONTENTS

Preface

v Audience
v Documentation Accessibility
v Conventions

Chapter 1: Load Testing Oracle Insurance Policy Administration

2 Introduction to Performance Testing
2 Need for Performance Testing
2 Types of Performance Testing
3 Performance Testing Objectives

5 OIPA Product Overview
5 OIPA Architecture

6 The Business Rules
6 The Transactions
6 The User Data

9 Load Testing OIPA
9 Load Testing OIPA Using Apache JMeter

9 Introduction to Apache JMeter
9 Benefits of Using Apache JMeter
10 Load Testing OIPA Using Apache JMeter

21 Load Testing OIPA Using NeoLoad
21 Introduction to NeoLoad
21 Benefits of Using NeoLoad
22 Load Testing OIPA Using NeoLoad

Contents

iv

v

Preface
This chapter includes the following topics:

• Audience

• Documentation Accessibility

• Related Documents

• Conventions

AUDIENCE
This document is intended for professionals involved in testing the performance of
OIPA.

DOCUMENTATION ACCESSIBILITY
This section includes the following topics:

Accessibility of Links to External Web Sites in
Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor
makes any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

CONVENTIONS
The following text conventions are used in this document:

Convention Description

bold Boldface type indicates graphical user interface elements associated with an action.

Preface

vi

italic Italic type indicates book titles, emphasis, or placeholder variables for which you
supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in examples,
text that appears on the screen, or text that you enter.

Convention Description

1

Chapter 1

Load Testing Oracle Insurance Policy
Administration
This module describes performance testing and the procedure to run load tests on
OIPA by using Apache JMeter and NeoLoad. This module also describes the OIPA
architecture because it is important to understand the various parts of the OIPA
application on which testing is performed.
This module includes the following topics:

• Introduction to Performance Testing

• OIPA Product Overview

• Load Testing OIPA

Chapter 1 – Load Testing Oracle Insurance Policy Administration

2

INTRODUCTION TO PERFORMANCE TESTING
Performance testing is the process of determining the speed at which an application
processes input to produce output. Performance testing can involve quantitative tests
performed in a lab, such as measuring the response time or the number of
instructions per second at which an application functions. Qualitative attributes such
as reliability, scalability, and interoperability can also be part of performance test
criteria. The results of performance testing can be used to tune and scale an
application.
This section includes the following topics:

• Need for Performance Testing

• Types of Performance Testing

• Performance Testing Objectives

NEED FOR PERFORMANCE TESTING
Performance testing can serve different purposes. Some of the purposes for doing
performance testing are:

• Demonstrate that the system meets performance criteria

• Removes bottlenecks and helps setting up a baseline for future regression testing

• Optimize the most important application performance trait, and user experience

• Check whether all the test cycles conform to the test plan

• Check whether performance acceptance criteria are met by the system

• Collect the performance metrics

• Determine the performance characteristics for various configuration options

• Ensure the stability of the system being tested

TYPES OF PERFORMANCE TESTING
Several types of performance testing must be used to fully gauge the behavior and
response time of a system during regular usage. In order to test a system prior to
deployment, system usage is simulated using a variety of specialized software
packages. Most commonly, the following types of performance tests are used:

• Load

• Endurance

• Spike

• Scalability

Introduction to Performance Testing

3

Load
Load testing is used to measure the behavior and response times of the system during
a specified amount of utilization. In order to load test a system, system utilization is
simulated using specialized load testing software. In addition to testing the system
for regular utilization loads, systems are also stress tested. Stress testing is the use of
load testing to simulate an abnormally high, or peak, system utilization.

Endurance
Endurance testing, also known as soak testing, is used to determine if the system can
sustain a continuous load over a specified period of time. Endurance testing is an
important testing technique that can be used to identify issues such as memory leaks
and other possible issues that could lead to performance duration in a production
environment.

Spike
Spike testing is used to gauge the system performance when the load placed on the
system is highly variable. The behavior and response times of the system are
measured.

Scalability
Scalability testing is used to identify possible issues that may result in scaling the
system. The ability of the system to adjust, based upon load demands and available
resources, are tested to ensure resources are efficiently utilized.

PERFORMANCE TESTING OBJECTIVES
This section describes the objectives of Performance testing. The following are the
objectives of Performance testing:

• Infrastructure Tuning

• Database Tuning

• Pinpointing Problem Areas

• Growth Needs

Infrastructure Tuning
Infrastructure tuning is undertaken to measure the following performance:

• Network performance

• How is the data stored

• Co-location of servers

Note This module describes only how to perform load testing on OIPA.

Chapter 1 – Load Testing Oracle Insurance Policy Administration

4

Database Tuning
Database tuning is performed in indexes, tablespaces, administrative settings, and
SQL statement origination areas of the system.

Indexes
The following are some points to be considered while tuning a database:

• Ensure that the tables are not over indexed or under indexed

• Indexing must be case-insensitive

• Functional indexing is preferred to column indexing

SQL Statement Configuration
SQL statements can originate from two places in the OIPA - configuration or Java
code.
SQL Statements in business rules can be complex and business logic heavy, or
simple lookup queries. SQL statements originating from configuration not done by
performance (mostly). These statements can be tuned via index optimization.
SQL Statements originating from the Java code are generated by the persistence
layer (TopLink). These statements mostly perform basic Create, Read, Update, and
Delete (CRUD) operations and some complex queries. The SQL statements
originating from the Java code are optimized by Toplink and can only be tuned with
indexing.

Pinpointing Problem Areas
The following problem areas are tested:

• Configuration

• Activity verification

• Code

Growth Needs
The results of performance tests can be used to plan the systematic growth of an
application and the resources used by the application. The application can be scaled
according to the requirements of the organization. However, keep in mind that
performance testing must be performed each time the application is modified. The
results obtained from running tests on a modified application might be significantly
different from earlier results.

OIPA Product Overview

5

OIPA PRODUCT OVERVIEW
The Oracle Insurance Policy Administration (OIPA) system is a highly agile
application that can be deployed across a numerous technology stacks. This
flexibility allows you to align with your enterprise's technology requirements or best
practices while implementing a state-of-the-art, next generation rules based
administration system. This is a system that is unhampered by the limitations of
legacy technologies and offers extensibility that maximizes system life span. It is an
open architecture developed completely in Java which easily integrates into your
organization's current structure.

OIPA ARCHITECTURE
OIPA is a multilayer enterprise application with the presentation, application
processing and data management logically separated by different processes. This
structure provides great flexibility as layers can be added or updated without
affecting other layers, but also adds complexity when initially leaning how the
system behaves.
Figure 1 illustrates the OIPA application, its database, the supporting applications
separately, and the inside of the architectural layers.

Figure 1: The OIPA Architecture

Chapter 1 – Load Testing Oracle Insurance Policy Administration

6

The OIPA presentation layer, which controls the display of information to the user,
is built on an ICEfaces an open source AJAX Framework. ICEfaces enables rich
interactive enterprise development in Java, which is completely transparent to the
user.
The logical layer, which includes the actual business logic through the Rules Engine
and Math Engine, is separate from presentation layer. The Rules Engine processes
the configurable XML business rules stored in the database which information is
then parsed into Java for compilation. and control system behavior. OIPA makes use
of Oracle Coherence for clustering, messaging and caching.
The data access layers are used to retrieve data from the data carrier layer that houses
the OIPA database. Oracle TopLink is used for persistence, as well as providing the
framework for relationally mapping Java objects into XML. The JDBC API is used
for connectivity between the database and the application.
The OIPA database is composed of the following three main areas:

The Business Rules
The Business Rules are configurable XML rules that control the behavior of the
application and get processed by the Rules Engine when invoked by the user in the
presentation layer. These rules control things such as security, what is on the OIPA
screens, the design of insurance products and other pertinent information.

The Transactions
The Transactions are configurable XML rules that are used to execute business
processes and logic. They may be run by users through the presentation layer or by
the separate cycle application that is used for nightly batch processing.

The User Data
The actual user data includes all data entered into the system, such as policy and
client data.
The following four applications are used in conjunction with OIPA:

The Rules Palette
The Rules Palette is a graphical editor that is used to configure business rules and
transactions.

The Palette Web Application Utility
The Palette Web Application Utility is used to both distribute and configure the
Rules Palette.

Cycle
Cycle is a distributed application that is used to process pending transactions in batch
form.

OIPA Product Overview

7

A Utility Application
A utility application is an unsupported application. However, this application allows
for manipulation of the OIPA database for tasks such as creating and deleting policy,
and plan data, as well as bulk policy creation for use with performance testing.
Conceptually the OIPA architecture includes the following layers:

Presentation
The Presentation comprises the user interface, which is a part of the ICEfaces
framework. Within its framework, ICEfaces caches the user data in its own
container. This caching framework is designed to reduce the amount of database
interaction.

Integration
In the Integration layer, AsFile is used for Inbound and MathVariable process for
outbound and extensibility.

Persistence
This layer is used to store data while application is not running. In OIPA, Toplink is
used for this layer.

Database
One of the major differentiators of the OIPA system is the rules-based architecture.
The business and transaction rules are easily configurable XML files that are stored
in the database and can be modified without touching the underlying code. This
drastically reduces the time it takes to build out the administrative support system for
a product. Policy data is also stored in descriptive tables to help identify data needed
for downstream or reporting.
Figure 2 shows the conceptual architecture of the OIPA.

Chapter 1 – Load Testing Oracle Insurance Policy Administration

8

Figure 2: The Conceptual Architecture of OIPA

Note For information about the ICEfaces architecture, refer to:
http://www.icefaces.org/docs/v1_8_2/htmlguide/devguide/
sys_architecture.html#1000126

Load Testing OIPA

9

LOAD TESTING OIPA
This section describes load testing Oracle Insurance Policy Application using
Apache JMeter and NeoLoad. This section includes the following topics:

• Load Testing OIPA Using Apache JMeter

• Load Testing OIPA Using NeoLoad

LOAD TESTING OIPA USING APACHE JMETER
This section describes performance testing OIPA using Apache JMeter. This section
includes the following topics:

• Introduction to Apache JMeter

• Benefits of Using Apache JMeter

• Load Testing OIPA Using Apache JMeter

Introduction to Apache JMeter
Apache JMeter is an open-source, Java desktop application. It can be used to perform
load tests, assess functional behavior, and measure performance.

Benefits of Using Apache JMeter
The following are some of the benefits of using JMeter for performance testing:

• Can load and performance test many different types of servers

• Full multithreading framework allows concurrent sampling by many threads and
simultaneous sampling of different functions by separate thread groups

• Careful GUI design allows faster operation and more precise timings

• Caching and offline analysis/replaying of test results

• Highly extensible:

• Pluggable samplers allow unlimited testing capabilities

• Several load statistics may be chosen with pluggable timers

• Data analysis and visualization plug-ins allow great extensibility as well as
personalization

• Functions can be used to provide dynamic input to a test or provide data
manipulation

• Scriptable Samplers (Bean Shell is fully supported and there is a sampler
which supports BSF-compatible languages)

• Best open-source tool that has the flexibility to create repeatable tests for the
ICEfaces AJAX framework

Chapter 1 – Load Testing Oracle Insurance Policy Administration

10

Load Testing OIPA Using Apache JMeter
This section describes the steps involved in performance testing OIPA using JMeter.
This section includes the following topics:

• Adding Configuration Elements

• Recording

• Converting Fields to Parameters

• Extracting ICEfaces Session Variables

• Adding Listeners

• Adding Timers

• Altering Heap Size

• Defining Scope

Adding Configuration Elements
The first step is to add Configuration Managers to the scenario.
To add elements:

1. Start Apache JMeter, and then right-click TEST PLAN.

A menu is displayed.

2. On the menu, click Add, Config Element, and then HTTP Request Defaults.

The HTTP Request Defaults section is displayed.

3. Enter the following details in the HTTP Request Defaults section:

• In the Server Name field, enter the server name.

• In the Port Number field, enter the port number.

• In the Protocol field, enter the protocol.

• In the Path field, enter the path of the Login screen.

4. Right-click TEST PLAN.

A menu is displayed.

5. On the Menu, click Add, Config Element, and then HTTP Cookie Manager.

The HTTP Cookie Manager section is displayed.

6. Ensure that the Clear cookies each iteration? check box is selected, as shown in
Figure 3.

Load Testing OIPA

11

Figure 3: The HTTP Cookie Manager Section

7. Right-click TEST PLAN.

A menu is displayed.

8. On the menu, click Add, Config Element, and then HTTP Header Manager.

The HTTP Header Manager section is displayed.

9. In the HTTP Header Manager section, retain the default values, as shown in
Figure 4.

Figure 4: The HTTP Header Manager Section

10. Right-click TEST PLAN.

A menu is displayed.

11. On the menu, click Add, and then Thread Group.

The Thread Group section is displayed.

12. Enter the details of the thread properties in the Thread Group section.

Recording
The next step in the process is recording the activity.
To begin scripting the test case:

1. Right-click the Workbench element.

Chapter 1 – Load Testing Oracle Insurance Policy Administration

12

A menu is displayed.

2. On the menu, click Add, Non-Test Elements, and then HTTP Proxy Server.

Ensure that the port listed in the proxy server corresponds to that of your Web
browser. The HTTP Proxy Server section is displayed.

3. Exclude unwanted response elements, as shown in Figure 5.

Figure 5: The HTTP Proxy Server Section

4. Click Start.

5. Open Internet Explorer version 7.

6. From the Tools menu, click Internet Options.

The Internet Options dialog is displayed.

7. Click the Connections tab, and then click LAN settings.

The Local Area Network (LAN) Settings dialog is displayed, as shown in Figure
6.

Load Testing OIPA

13

Figure 6: The Local Area Network (LAN) Settings Dialog

8. Open the desired URL, and begin scripting.

9. Log into Apache JMeter, and then open the Policy Search screen.

10. Search for a policy, open the result, and then log out of Apache JMeter.

11. Create a Thread Group, and copy all of the resulting pages to it, as shown in
Figure 7.

In the thread group, you can edit the number of users, and handle execution loop.

Figure 7: Creating a Thread Group

12. Add controllers, group, and rename pages to make the reports more clear.

Figure 8 shows the result of the test case, after making the naming changes and
grouping the pages for clarity.

Chapter 1 – Load Testing Oracle Insurance Policy Administration

14

Figure 8: Result of the Test Case

Converting Fields to Parameters
In some cases, test scenarios require certain fields to be parameterized with input
files, to allow for multiple users to log in, or multiple policy/client criteria for
searching.
To convert field to parameters:

1. For an example, create a simple text file Logins.txt containing login information
corresponding to valid username and password combinations in the system.

2. Click Add, Config Element, and then CSV Data Set Config to add an input
field.

The CSV Data Set Config section is displayed.

3. In the Filename field, enter the name of text file you created. In this example,
enter Logins.txt.

4. In the Variables field, enter appropriate variable names. In this example, enter
clientnumber, password.

These variables will correspond to the entries contained in the Logins.txt file.

Figure 9 shows the CSV Data Set Config section with all the fields populated.

Load Testing OIPA

15

Figure 9: The CSV Data Set Config Section

5. Open the page where the variables are used. In this example, open the Login
command button.

6. Replace the recorded username and password with ${clientnumber} and
${password}. Now, when testing, the values in the input file will be used instead
of what was initially recorded, as shown in Figure 10.

Ensure that you check if the values are used in any other pages and replace where
necessary.

Figure 10: The HTTP Request Section

7. Create an input file, PolicyNumbers.txt, and enter single values, corresponding
to valid policy numbers in the application being tested.

8. Add another CSV Data Set Config element corresponding to the policy numbers,
as shown in Figure 11.

Chapter 1 – Load Testing Oracle Insurance Policy Administration

16

Figure 11: The CSV Data Set Config Element Corresponding to the Policy Numbers

9. Reset the variable for search criteria in the pages where the policy search is
executed, specifically, when the find button is clicked, as shown in Figure 12.

Figure 12: Resetting the Variable for Search Criteria

Extracting ICEfaces Session Variables
In some cases, including the current scenario, special variables will need to be
recorded. In this case, the variables are the ice.session and ice.view values that are
seen in every page. These values must be dynamically set in each and every page
visited.
To configure the ice.session and ice.view values:

1. Right-click TEST PLAN.

A menu is displayed.

2. On the menu, click Add, Post Processors, and then Regular Expression
Extractor for ice.session, as shown in Figure 13.

Load Testing OIPA

17

Figure 13: Configuring the ice.session Value

3. In the Regular Expression field, enter
Ice.Community.Application.*session:'([^,]*)',.

4. Right-click TEST PLAN.

A menu is displayed.

5. On the menu, click Add, Post Processors, and then Regular Expression
Extractor for ice.view, as shown in Figure 14.

Figure 14: Configuring the ice.view Value

6. In the Regular Expression field, enter
Ice.Community.Application.*view:([^,]*),.

7. Open every page, and replace the values for ice.session and ice.view with
${iceSession} and ${iceView}, as shown in Figure 15.

Chapter 1 – Load Testing Oracle Insurance Policy Administration

18

Figure 15: Replacing the Values of the ice.session and ice.view Parameters

8. The dispose_views pages are a special case and must be treated differently. In
these pages, the ice.session and ice.view data must be added manually and the
values parameterized. Every dispose_views page in the test case should look like
Figure 16.

Figure 16: The dispose_views Page

Adding Listeners
Listeners are the report generators of Apache JMeter. To add Listeners to capture
results:

1. Right-click TEST PLAN.

A menu is displayed.

2. On the menu, click Add, Listeners, and then Summary Report.

3. If you want to view the results externally, then enter a filename. The file will be
generated automatically after results are generated, as shown in Figure 17.

Figure 17: The Summary Report Page

4. Right-click TEST PLAN.

Load Testing OIPA

19

A menu is displayed.

5. On the menu, click Add, Listeners, and then View Results Tree.

The results are generated and the request/response screens can be viewed for
every page recorded, so that errors are more visible, as shown in Figure 18.

Figure 18: The View Results Tree Page

Adding Timers
You must add timers to record the time taken for the performance. To add timers:

1. On the menu, click Timer, and then click Uniform Random Timer.

The Uniform Random Timer page is displayed.

2. Set a realistic time that a user would require to between each page interaction. In
this example, set a constant delay of 1000 minutes, with a random delay
maximum of 500 minutes, as shown in Figure 19. This means that every user
think time will be a random real value between 500 and 1500 ms.

Figure 19: The Uniform Random Timer Page

Altering Heap Size
Sometimes if there are many users using Apache JMeter simultaneously, then
Apache JMeter may crash. If the system is high end, then you can increase the
number of users by altering the heap size.
To change the Java heap size allocation for Apache JMeter:

1. Right-click JMeter.bat, and then click Edit.

Chapter 1 – Load Testing Oracle Insurance Policy Administration

20

2. Change the value to whatever best suits the current environment running Apache
JMeter, as shown in Figure 20.

Figure 20: The JMeter.bat File

Defining Scope
Scope is very important, as different elements of the test scenario would affect
different levels of the test execution.
The following are some ways of defining scope:

• All of the Configuration Elements, Listeners, Timers, and CSV Data Sets can be
placed at the top level, outside of the Thread Group, in case other Thread Groups
need to be added in the future for other test cases. One configuration manager,
listener, CSV Data Set, and Timer can encompass all test cases.

• Regular Expression Extractors must be placed inside of each Thread Group, as
the ice.session and ice.view variables need to be different for each Thread
Group.

Figure 21 shows the final result of the test case.

Load Testing OIPA

21

Figure 21: The Final Result of Performance Testing the OIPA by Using Apache JMeter

LOAD TESTING OIPA USING NEOLOAD
This section describes the benefits of using NeoLoad for performance testing and the
steps involved in performance testing OIPA using NeoLoad.
This section includes the following topics:

• Introduction to NeoLoad

• Benefits of Using NeoLoad

• Load Testing OIPA Using NeoLoad

Introduction to NeoLoad
NeoLoad is a load testing software. NeoLoad helps in testing Web applications,
simulating users in a realistic way, and in analyzing the behavior of the server. The
technology used in NeoLoad allows users to test more quickly, efficiently and
repeatedly. Using NeoLoad you can deploy your applications to any architecture
they may use, such GWT and AJAX Push.

Benefits of Using NeoLoad
The following are some of the benefits of using NeoLoad for performance testing:

• Recording and testing of scripts is very simple, without affecting scalability and
test coverage.

• Generating professional looking reports and graphs is quick and easy.

• Automatic handling of application parameters (ICEfaces) and report generation
provides great savings in man-hours during the load testing process.

Chapter 1 – Load Testing Oracle Insurance Policy Administration

22

• Reports include smart pinpointing of the application's critical performance
issues, including highest response time pages.

Load Testing OIPA Using NeoLoad
This section describes performance testing OIP using NeoLoad. This section
includes the following topics:

• Creating a New Project

• Recording Performance Details

• Post-Recording Wizard

• Designing Performance Testing

• Excluding Non-Essential Pattern

• Checking for Errors

• Extracting Variables

• Creating Data Set Input Files

• Designing Populations Tab

• Creating Runtime Parameters

• Executing the Test

• Viewing Results and Generating Reports

• Creating a Standard Report

• Creating a Comparison Report

Creating a New Project
You must create a new NeoLoad project to start performance testing any system
using NeoLoad. To create a new project:

1. On the Welcome Screen, click New Project.

The New dialog is displayed.

2. In the Project name field, enter a name for the project and in the Directory
field, enter a valid directory to save the project in, as shown in Figure 22.

Load Testing OIPA

23

Figure 22: The New Dialog

3. Click Finish.

The NeoLoad window is displayed, as shown in Figure 23.

Figure 23: The NeoLoad Window

4. Click Start recording.

The Recording dialog is displayed.

Recording Performance Details
To record the performance details:

1. In the Name field of the Recording dialog, enter a name for the virtual user, as
shown in Figure 24.

Chapter 1 – Load Testing Oracle Insurance Policy Administration

24

Figure 24: The Recording Dialog

2. Click OK.

The NeoLoad - Recording of Virtual User dialog is displayed, as shown in
Figure 25. Simultaneously, the preferred browser, which is Internet Explorer
version 7 is also displayed.

Figure 25: The NeoLoad - Recording of Virtual User Dialog

The NeoLoad recording window handles Container names. Container names are
used to parse the script into manageable blocks (known also as 'Transactions' in
LoadRunner or 'Controllers' in JMeter). Each new page opened or important
action taken should be given a descriptive container name, which is crucial in
report analysis. For example, log in to NeoLoad, click policysearch, policyload,
then policysave, and then finally log out of NeoLoad.

3. In the Container field of the NeoLoad - Recording of Virtual User dialog, enter
Login.

4. In the address bar of Inter Explorer, enter the URL and begin scripting, changing
container names when necessary.

5. After you have logged out of the application, click the Stop button on the
NeoLoad recording window to end the recording.

Post-Recording Wizard
The Post-recording window shown in Figure 26 appears after you have completed
the recording.

Load Testing OIPA

25

Figure 26: The Post-recording Wizard

To handle dynamic parameters in the application:

1. Under Look for dynamic parameters, select both the options.

2. Click Next.

This will automatically find and correlate the ICEfaces session and view
variables, which is absolutely crucial in the OIPA application.

3. NeoLoad will report having found ICEfaces dynamic parameters. Select Apply
the Changes, and then click Next twice.

4. Overwrite the recorded think times with a desired amount in minutes. This value
can be changed at any time in the main screen.

The main NeoLoad design window with the Virtual User script you entered is
displayed.

Designing Performance Testing
In the main NeoLoad design window, you can override the think time, and add a
random delay percentage. For example, you can add 1500 ms +/- 50% to any random
real time from 1-2 seconds, as shown in Figure 27.

Chapter 1 – Load Testing Oracle Insurance Policy Administration

26

Figure 27: The NeoLoad Design Window

Excluding Non-Essential Pattern
Certain pages must be omitted from the script recording, including locations of
embedded images, as they can cause NeoLoad to throw errors during testing. To
exclude non-essential patterns:

1. On the menu, click Record, Recording Preferences.

The Preferences dialog is displayed.

2. Under the General setting tab, select HTTP Recorder.

3. In the Patterns to exclude field, enter any non-essential page patterns. For
example: http://.*/Themes/.* & http://.*/Scripts/.* , as shown in Figure 28.

Load Testing OIPA

27

Figure 28: The Preferences Dialog

Checking for Errors
To prove the validity of the script, and handle any errors

1. Click Check.

The Check Virtual User window is displayed, as shown in Figure 29.

Chapter 1 – Load Testing Oracle Insurance Policy Administration

28

Figure 29: The Check Virtual User Window

2. Click Start checking to run a single user test.

If there are any errors, they will be reported here. Also, by clicking on any page,
the HTML can be rendered in order to check that the screen loads properly and
that the correct information is present.

Extracting Variables
Sometimes, values must be extracted from the server response to be applied to other
areas of the test. An example of this is creating an OIPA policy, extracting the
generated policy number, and using it in a search operation.
To extract variables:

1. In the NeoLoad window, click the Policy Save page, and then click Advanced,
as shown in Figure 30.

The Advanced dialog is displayed.

Note This step must always be performed prior to extensive testing.

Load Testing OIPA

29

Figure 30: The NeoLoad Window

2. Click the Variable Extractors tab and then click +, as shown in Figure 31.

Figure 31: The Advanced Dialog

The Variable Extractor dialog is displayed. The variable extractors are defined
by regular expressions in this dialog.

3. Enter the left and right bound information based on the context of the desired
value in the response, as shown in Figure 32.

If the value is extracted correctly, then the value is validated at the bottom of the
screen.

Chapter 1 – Load Testing Oracle Insurance Policy Administration

30

Figure 32: The Variable Extractor Dialog

After the policy number is correctly extracted, apply this value to the policy
search screen.

4. Open the Policy Search page, and replace the policynumberinputtext field value
with ${PolicyNumber}, as shown in Figure 33.

Load Testing OIPA

31

Figure 33: Changing the Policy Number in the Policy Search Page

Now, the test creates a policy and a search for the policy that was just created.

Creating Data Set Input Files
Often, tests require several values to be used, which will have to be passed into the
script through comma separated variable (CSV) files. To create data set input files:

1. Create a file named PolicyNumber.csv with the following information, as shown
in Figure 34.

Chapter 1 – Load Testing Oracle Insurance Policy Administration

32

Figure 34: The PolicyNumber.csv File

2. Replace policy numbers with valid numbers in the system.

3. In the NeoLoad window, click Edit, and then click Variables.

4. Click New Variable, and then select File from the list.

5. Navigate to the file you just created, and select it, as shown in Figure 35.

Load Testing OIPA

33

Figure 35: The Variables Dialog

6. In the Column separator field, enter ,.

7. Select Use first line in the field as column heading?.

8. Under Value Change Policy, select For each virtual user.

9. Click OK.

10. Navigate to the Policy Search screen, and replace the policynumberinputtext
value with a variable ${filename.columnname} --- ${PolicyNumber.Number},
as shown in Figure 36.

Chapter 1 – Load Testing Oracle Insurance Policy Administration

34

Figure 36: The Policy Search Screen

The policy number used in the search will be pulled in to the script from the CSV
file during execution.

Designing Populations Tab
To design populations tab:

1. In the NeoLoad window, click the Populations tab to create a population.

2. In the Name field, enter descriptive name. In this example, enter
PolicySearch_Users, as shown in Figure 37.

Load Testing OIPA

35

Figure 37: Creating a Population

On this screen, the population can be set to the PolicySearch test or any other
test, if more than one is scripted. If two or more populations are created, then the
Percent option sets their overall percentage. Generally, these will be set evenly,
such as 1=100%, 2=50%, 3=33%, and 4=25%.

Creating Runtime Parameters
To create the runtime parameters:

1. When the Design phase is completed, on the NeoLoad window, click Runtime.

The Runtime screen is displayed, as shown in Figure 38.

Figure 38: The Runtime Screen

This Runtime screen handles all of the runtime parameters.

• Duration: duration can be handled by time, by number of script iterations, or
can be set to run continuously until the user intervenes.

• Load policy: load policy defines how the virtual users are added to the test.
Constant or Ramp Up are the most commonly used, but custom policies can
be defined if desired.

• User count: here, the number of users is defined. Any number of users can
be included, license permitting.

2. Click the green Play button to begin running the test.

3. Enter a descriptive name for the test. For example,
IPA_10Users_10Minutes_Datetime.

Chapter 1 – Load Testing Oracle Insurance Policy Administration

36

Executing the Test
The following screens can be monitored live during test execution:

• Runtime Overview: includes real-time graphs and general runtime statistics, as
shown in Figure 39.

Figure 39: The Runtime Statistics of the Test

• Runtime Monitors: more detailed graphs, including those of included load
generators, as shown in Figure 40.

Load Testing OIPA

37

Figure 40: The Runtime Monitors

• Runtime Errors: displays errors (when applicable)

• Runtime Users: follows script execution per virtual user, as shown in Figure 41.

Figure 41: The Runtime Users

Chapter 1 – Load Testing Oracle Insurance Policy Administration

38

Viewing Results and Generating Reports
After test execution, the Results page opens automatically, and the following results
summary is given:
Values, Graphs, and Errors can also be viewed if desired, as shown in Figure 42.

Figure 42: The Result Summary of the Test

To view graphs and add them to the report:

1. Highlight a predefined template and then click the > symbol to add it to the list
of graphs, as shown in Figure 43.

Load Testing OIPA

39

Figure 43: Graphical Result of the Test

2. On the Test Summary screen, click Generate Report to create the report.

The Generate Report dialog is displayed.

Creating a Standard Report
To create a standard report:

1. In the Generate Report dialog, select Standard Report.

This generates a common single-test report.

2. Click Next.

The Test Result Report dialog is displayed.

3. Select the output format, the content to be included, and the output folder, as
shown in Figure 44.

Chapter 1 – Load Testing Oracle Insurance Policy Administration

40

Figure 44: The Test Result Report Dialog

4. Select Include custom graph from the graphs pane to include or exclude any
included graphs.

5. Click Next.

The Test Result Report dialog is displayed, as shown in Figure 45.

Load Testing OIPA

41

Figure 45: The Test Result Report Dialog

6. Click OK.

The report is saved and displayed in the specified format, as shown in Figure 46.

Figure 46: Summary of the Test result

Chapter 1 – Load Testing Oracle Insurance Policy Administration

42

Creating a Comparison Report
A Comparison report compares two different test executions. To create a
Comparison report:

1. In the Generate Report dialog, select Comparison Report.

The comparison report is generated with graphs. This is an example of
comparing a 10 and 60 user report. The 60 user response times are much higher
than the 10 user response times, which is to be expected.

2. Click Next.

A Comparison report is displayed, as shown in Figure 47 is displayed.

Figure 47: The Comparison Report

	Start
	Notice
	Preface
	Audience
	Documentation Accessibility
	Conventions

	Load Testing Oracle Insurance Policy Administration
	Introduction to Performance Testing
	Need for Performance Testing
	Types of Performance Testing
	Performance Testing Objectives

	OIPA Product Overview
	OIPA Architecture

	Load Testing OIPA
	Load Testing OIPA Using Apache JMeter
	Load Testing OIPA Using NeoLoad

