
Oracle® Financial Services Analytical Applications
Data Model Utilities
User Guide
Release 7.1 / 7.2
Part No. E17560-01

December 2011

Oracle Financial Services Analytical Applications Data Model Utilities User Guide, Release 7.1

Part No. E17560-01

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Primary Author: Surag Ramachandran

Contributing Author: Jilna Surag, Anuradha Muralidharan

Contributor: Aravind Venketaraman

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation
of the programs, including any operating system, integrated software, any programs installed on the
hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the
programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

 iii

Contents

Send Us Your Comments

Preface

1 Introduction
List of Acronyms used in the document... 1-1

2 Object Management
Adding Dimension Tables and Key Dimension (Leaf) Registration...................................... 2-1
Adding Custom Instrument Tables.. 2-16
Adding Custom Transaction Tables... 2-21
Adding Custom Lookup Tables.. 2-24
Object Registration And Validation... 2-29
Defining Alternate Rate Output Columns... 2-40
User Defined Properties.. 2-41
Modifying the precision of Balance Columns In Ledger_Stat...2-45

3 Utilities
Reverse Population..3-1
Product Instrument Mapping... 3-5
Instrument Synchronization... 3-8
Ledger Load Undo... 3-12

4 Data Loaders
Dimension Loaders... 4-1
Historical Rates Data Loader...4-17

iv

Forecast Rate Data Loader... 4-21
Prepayment Rate Data Loader...4-36
Stage Instrument Table Loader... 4-40
Transaction Summary Table Loader... 4-46
Ledger Data Loader... 4-51
Pricing Management Transfer Rate Population Procedure..4-64
ALMBI Transformation...4-66
Hierarchy Transformation...4-67

5 Mapping Export in Metadata Browser
Procedure... 5-1

 v

Send Us Your Comments

Oracle Financial Services Analytical Applications Data Model Utilities User Guide, Release 7.1
Part No. E17560-01

Oracle welcomes customers' comments and suggestions on the quality and usefulness of this document.
Your feedback is important, and helps us to best meet your needs as a user of our products. For example:

• Are the implementation steps correct and complete?
• Did you understand the context of the procedures?
• Did you find any errors in the information?
• Does the structure of the information help you with your tasks?
• Do you need different information or graphics? If so, where, and in what format?
• Are the examples correct? Do you need more examples?

If you find any errors or have any other suggestions for improvement, then please tell us your name, the
name of the company who has licensed our products, the title and part number of the documentation and
the chapter, section, and page number (if available).

Note: Before sending us your comments, you might like to check that you have the latest version of the
document and if any concerns are already addressed. To do this, access the new Oracle E-Business Suite
Release Online Documentation CD available on My Oracle Support and www.oracle.com. It contains the
most current Documentation Library plus all documents revised or released recently.

Send your comments to us using the electronic mail address: appsdoc_us@oracle.com

Please give your name, address, electronic mail address, and telephone number (optional).

If you need assistance with Oracle software, then please contact your support representative or Oracle
Support Services.

If you require training or instruction in using Oracle software, then please contact your Oracle local office
and inquire about our Oracle University offerings. A list of Oracle offices is available on our Web site at
www.oracle.com.

 vii

Preface

Intended Audience
Welcome to Release 7.1 of the Oracle Financial Services Analytical Applications Data Model
Utilities User Guide.

See Related Information Sources on page viii for more Oracle E-Business Suite product
information.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Structure
1 Introduction
This document contains various chapters related to data model utilities and data
loaders available within Oracle Financial Services Analytical Applications (OFSAA).
The four chapters present in this document are: Object Management, Utilities, Data
Loaders, and Mapping Export in Metadata Browser.

2 Object Management
This chapter details the steps involved in adding various client data objects into the
model.

3 Utilities

viii

This chapter details the steps involved in executing various data model utilities that are
available within OFSAA.

4 Data Loaders
This chapter details the steps involved in executing various data loaders that are
available within OFSAA. Data loaders move data from staging layer to processing
layer.

5 Mapping Export in Metadata Browser

Related Information Sources

Do Not Use Database Tools to Modify Oracle E-Business Suite Data
Oracle STRONGLY RECOMMENDS that you never use SQL*Plus, Oracle Data
Browser, database triggers, or any other tool to modify Oracle E-Business Suite data
unless otherwise instructed.

Oracle provides powerful tools you can use to create, store, change, retrieve, and
maintain information in an Oracle database. But if you use Oracle tools such as
SQL*Plus to modify Oracle E-Business Suite data, you risk destroying the integrity of
your data and you lose the ability to audit changes to your data.

Because Oracle E-Business Suite tables are interrelated, any change you make using an
Oracle E-Business Suite form can update many tables at once. But when you modify
Oracle E-Business Suite data using anything other than Oracle E-Business Suite, you
may change a row in one table without making corresponding changes in related tables.
If your tables get out of synchronization with each other, you risk retrieving erroneous
information and you risk unpredictable results throughout Oracle E-Business Suite.

When you use Oracle E-Business Suite to modify your data, Oracle E-Business Suite
automatically checks that your changes are valid. Oracle E-Business Suite also keeps
track of who changes information. If you enter information into database tables using
database tools, you may store invalid information. You also lose the ability to track who
has changed your information because SQL*Plus and other database tools do not keep a
record of changes.

Introduction 1-1

1
Introduction

This document contains various chapters related to data model utilities and data
loaders available within Oracle Financial Services Analytical Applications (OFSAA).
The four chapters present in this document are: Object Management, Utilities, Data
Loaders, and Mapping Export in Metadata Browser.

This chapter covers the following topics:

• List of Acronyms used in the document

List of Acronyms used in the document

Acronym Description

AAI Analytical Applications Infrastructure

ALM Asset Liability Management

AMHM Attributes, Members and Hierarchy
Management

COA Chart Of Accounts

F2T File to Table

FDM Financial Data Manager

GL General Ledger

GTT Global Temporary Table

1-2 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

Acronym Description

ICC Information Command Center

INFODOM Information Domain

IP Internet Protocol

OFS Oracle Financial Services

OFSA Oracle Financial Services Applications

OFSAA Oracle Financial Services Analytical
Applications

OFSAAI Oracle Financial Services Analytical
Applications Infrastructure

PFT Profitability

PL/SQL Procedural Language /Structured Query
Language

T2T Table to Table

TP Transfer Pricing

UDP User-Defined Property

UI User Interface

Object Management 2-1

2
Object Management

This chapter details the steps involved in adding various client data objects into the
model.

This chapter covers the following topics:

• Adding Dimension Tables and Key Dimension (Leaf) Registration

• Adding Custom Instrument Tables

• Adding Custom Transaction Tables

• Adding Custom Lookup Tables

• Object Registration And Validation

• Defining Alternate Rate Output Columns

• User Defined Properties

• Modifying the precision of Balance Columns In Ledger_Stat

Adding Dimension Tables and Key Dimension (Leaf) Registration
The following section details the process in which users can add custom key
dimensions to the OFSAA application. Users can view the registered dimension within
the AMHM screens. Also, users can add members and hierarchies for the dimension
through AMHM screens.

Registering a new Key Dimension (called as Leaf in OFSA 4.5) requires the following
steps:

• Add a set of dimension tables to store leaf values in ERwin model.

• Add the key dimension column to required Entities in ERwin model.

• Assign the Processing Key Column Property (Key Dimension Columns only).

• Upload the model.

2-2 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

• Register the Key Dimension.

• Modify Unique indexes (Key Leaf Dimension only).

• Validate tables.

Each of these steps is discussed in detail in the following sections.

Adding Dimension Tables
Each key dimension contains a set of the following tables:

• DIM_<DIMENSION>_B - Stores leaf and node member codes within the dimension.

• DIM_<DIMENSION>_TL - Stores names of leaf and node and their translations.

• DIM_<DIMENSION>_ATTR - Stores attribute values for the attributes of the
dimension.

• DIM_<DIMENSION>_HIER - Stores parent-child relationship of members and
nodes that are part of hierarchies.

Note: Replace <DIMENSION> with the keyword representing the key
dimension.

Seeded key dimension tables are present in 'Fusion – Dimensions' subject area within
the ERwin model. The above tables need to be created for the new dimension. For more
information on creating dimension tables in ERwin, see leaflet
(AddingAndCustomizingLeaf.pdf).

Note: For ease of use, user can copy an existing set of dimension tables
eg, for ORG_UNIT dimension and rename the tables (in both physical
and logical view) to represent the new dimension.

Table structure of one of the seeded key dimension is given below with remarks on how
this can be used as the basis for modeling new key dimensions.

DIM_ORG_UNIT_B

Stores the ID of the members (leaf and nodes) of the dimension.

Object Management 2-3

Column Name Logical
Column
Name

Datatype NULL Column
Description

Remarks

ORG_UNIT_ID Organizati
on Unit ID

NUMBER(14) NOT
NUL
L

Leaf column
which stores the
id for the
organization unit
dimension

Column name
and description
should reflect
the new
dimension.
Datatype and
other
constraints
should be
retained.

ORG_UNIT_DIS
PLAY_CODE

Organizati
on Unit
Display
Code

NUMBER(14) NUL
L

Leaf column
which stores the
display code for
the organization
unit dimension

Column name
and description
should reflect
the new
dimension.
Datatype and
other
constraints
should be
retained.

ENABLED_FLA
G

Enabled
Flag

VARCHAR2(1
)

NOT
NUL
L

Store if the item is
enabled or not

Internally used
and hence
should be
retained in the
same form
within the new
dimension table.

LEAF_ONLY_FL
AG

Leaf or
Node Flag

VARCHAR2(1
)

NOT
NUL
L

Indicates if the
member is leaf
only or not

Internally used
and hence
should be
retained in the
same form
within the new
dimension table.

2-4 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

Column Name Logical
Column
Name

Datatype NULL Column
Description

Remarks

DEFINITION_L
ANGUAGE

Definition
Language

VARCHAR2(4
)

NOT
NUL
L

Language that is
used to define

Internally used
and hence
should be
retained in the
same form
within the new
dimension table.

CREATED_BY Created
By

VARCHAR2(3
0)

NOT
NUL
L

Indicates who
created this item

Internally used
and hence
should be
retained in the
same form
within the new
dimension table.

CREATION_DA
TE

Creation
Date

TIMESTAMP NOT
NUL
L

Indicates when
was this item
created

Internally used
and hence
should be
retained in the
same form
within the new
dimension table.

LAST_MODIFIE
D_BY

Last
Modified
By

VARCHAR2(3
0)

NOT
NUL
L

Indicates who
modified this item

Internally used
and hence
should be
retained in the
same form
within the new
dimension table.

LAST_MODIFIE
D_DATE

Last
Modified
Date

TIMESTAMP NOT
NUL
L

Indicates when
was this item
modified

Internally used
and hence
should be
retained in the
same form
within the new
dimension table.

Object Management 2-5

Column Name Logical
Column
Name

Datatype NULL Column
Description

Remarks

ORG_UNIT_CO
DE

ORG_UNI
T_CODE

VARCHAR2(2
0)

NUL
L

This column is
used by staging
and contains the
alpha-numeric
codes for each
dimension
member. Staging
dimension table
contains unique
alpha-numeric
codes and a
unique numeric
identifier is
generated while
loading into
Fusion dimension
table.

Column name
and description
should reflect
the new
dimension.
Datatype and
other
constraints
should be
retained.

DIM_ORG_UNIT_TL

Stores the names and descriptions of the members (leaf and nodes) of the dimension in
various languages.

Column Name Logical
Column
Name

Datatype NULL Column
Description

Remarks

LANGUAGE Language VARCHAR2(4) NOT
NULL

Language Internally used
and hence
should be
retained in the
same form
within the new
dimension
table.

2-6 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

Column Name Logical
Column
Name

Datatype NULL Column
Description

Remarks

ORG_UNIT_ID Organizatio
n Unit ID

NUMBER(14) NOT
NULL

Leaf column
which stores
the id for the
organization
unit dimension

Column name
and
description
should reflect
the new
dimension.
Datatype and
other
constraints
should be
retained.

ORG_UNIT_NA
ME

Organizatio
n Unit
Name

VARCHAR2(15
0)

NOT
NULL

Leaf column
which stores
the name for
the
organization
unit dimension

Column name
and
description
should reflect
the new
dimension.
Datatype and
other
constraints
should be
retained.

DESCRIPTION Description VARCHAR2(25
5)

NULL Description of
an Item

Internally used
and hence
should be
retained in the
same form
within the new
dimension
table.

CREATED_BY Created By VARCHAR2(30
)

NOT
NULL

Indicates who
created this
item

Internally used
and hence
should be
retained in the
same form
within the new
dimension
table.

Object Management 2-7

Column Name Logical
Column
Name

Datatype NULL Column
Description

Remarks

CREATION_DAT
E

Creation
Date

TIMESTAMP NOT
NULL

Indicates when
was this item
created

Internally used
and hence
should be
retained in the
same form
within the new
dimension
table.

LAST_MODIFIE
D_BY

Last
Modified
By

VARCHAR2(30
)

NOT
NULL

Indicates who
modified this
item

Internally used
and hence
should be
retained in the
same form
within the new
dimension
table.

LAST_MODIFIE
D_DATE

Last
Modified
Date

TIMESTAMP NOT
NULL

Indicates when
was this item
modified

Internally used
and hence
should be
retained in the
same form
within the new
dimension
table.

DIM_ORG_UNIT_ATTR

Stores the values of the attributes of the members (leaf and nodes) of the dimension.

2-8 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

Column Name Logical
Column
Name

Datatype NULL Column
Descriptio
n

Remarks

ORG_UNIT_ID Organizati
on Unit ID

NUMBER(14) NOT
NULL

Leaf
column
which
stores the id
for the
organisatio
n unit
dimension

Column name
and
description
should reflect
the new
dimension.
Datatype and
other
constraints
should be
retained.

ATTRIBUTE_I
D

Attribute
ID

NUMBER(22) NOT
NULL

Stores
attribute id
number for
a member
of a
dimension

Internally used
and hence
should be
retained in the
same form
within the new
dimension
table.

DIM_ATTRIBU
TE_NUMERIC
_MEMBER

Numeric
Dimension
Value

NUMBER(22) NULL This field
stores the
number
values for
the
attribute of
a member

Internally used
and hence
should be
retained in the
same form
within the new
dimension
table.

DIM_ATTRIBU
TE_VARCHAR
_MEMBER

Varchar
Dimension
Value

VARCHAR2(30) NULL This field
stores the
varchar
values for
the
attribute of
a member

Internally used
and hence
should be
retained in the
same form
within the new
dimension
table.

Object Management 2-9

Column Name Logical
Column
Name

Datatype NULL Column
Descriptio
n

Remarks

NUMBER_ASS
IGN_VALUE

Numeric
Value Of A
Member

NUMBER(22) NULL This field
stores the
number
values for
the
attribute of
a member

Internally used
and hence
should be
retained in the
same form
within the new
dimension
table.

VARCHAR_AS
SIGN_VALUE

Varchar
Member
Value

VARCHAR2(1000) NULL This field
stores the
varchar
values for
the
attribute of
a member

Internally used
and hence
should be
retained in the
same form
within the new
dimension
table.

DATE_ASSIG
N_VALUE

Date Value DATE NULL Date value
that is
assigned

Internally used
and hence
should be
retained in the
same form
within the new
dimension
table.

DIM_ORG_UNIT_HIER

Stores the parent-child relationship of various nodes and leaf within hierarchies of the
dimension.

2-10 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

Column Name Logical
Column
Name

Datatype NULL Column
Description

Remarks

HIERARCHY_I
D

Hierarch
y ID

NUMBER(
10)

NOT
NULL

Unique Id
that is
generated for
every
hierarchy
that is
created

Internally used and
hence should be retained
in the same form within
the new dimension table.

PARENT_ID Parent ID NUMBER(
14)

NOT
NULL

Column that
store the id
of the child
member

Internally used and
hence should be retained
in the same form within
the new dimension table.

CHILD_ID Child
Member
ID

NUMBER(
14)

NOT
NULL

Store child id
number for a
dimension

Internally used and
hence should be retained
in the same form within
the new dimension table.

PARENT_DEPT
H_NUM

Parent
Depth
Number

NUMBER(
14)

NOT
NULL

Stores parent
depth
number

Internally used and
hence should be retained
in the same form within
the new dimension table.

CHILD_DEPTH
_NUM

Child
Depth
Number

NUMBER(
14)

NOT
NULL

Stores child
depth
number

Internally used and
hence should be retained
in the same form within
the new dimension table.

DISPLAY_ORD
ER_NUM

Display
Order
Number

NUMBER(
14)

NOT
NULL

Stores the
display order
number for
the member

Internally used and
hence should be retained
in the same form within
the new dimension table.

SINGLE_DEPT
H_FLAG

Single
Depth
Flag

VARCHAR
2(1)

NOT
NULL

Indicates if
the hierarchy
is of single
depth or not

Internally used and
hence should be retained
in the same form within
the new dimension table.

CREATED_BY Created
By

VARCHAR
2(30)

NOT
NULL

Indicates
who created
this item

Internally used and
hence should be retained
in the same form within
the new dimension table.

Object Management 2-11

Column Name Logical
Column
Name

Datatype NULL Column
Description

Remarks

CREATION_DA
TE

Creation
Date

TIMESTA
MP

NOT
NULL

Indicates
when was
this item
created

Internally used and
hence should be retained
in the same form within
the new dimension table.

LAST_MODIFIE
D_BY

Last
Modified
By

VARCHAR
2(30)

NOT
NULL

Indicates
who
modified this
item

Internally used and
hence should be retained
in the same form within
the new dimension table.

LAST_MODIFIE
D_DATE

Last
Modified
Date

TIMESTA
MP

NOT
NULL

Indicates
when was
this item
modified

Internally used and
hence should be retained
in the same form within
the new dimension table.

Adding Dimension Column To Required Objects
Dimension column can be added to the following set of Client Data Objects:

• Tables classified as 'Instruments' and 'Instrument Profitability'

• Tables classified as 'Transaction Profitability'

• Ledger Stat table.

Dimension can be of the types – Ledger Only or Both. If the dimension is classified as
'Ledger Only', the dimension column needs to be added only to Ledger Stat table. If the
dimension is classified as 'Both', the dimension column needs to be added to Ledger Stat
table and other tables classified as Instruments and Transactions.

For adding key dimension column to tables that are classified as 'Instruments' and
'Instrument Profitability', add the column to LEAF_COLUMNS super-class table.

For adding key dimension column to tables that are classified as 'Transaction
Profitability', add the column to TRANS_LEAF_COLUMNS super-class table.

For adding key dimension column to Ledger Stat table, add the column to
LEDGER_LEAF_COLUMNS super-class table.

Note: Columns of super-class tables that are linked to sub-class table
are rolled down to the sub-class table during 'Model Upload' operation.

2-12 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

Assigning Processing Key Property
'Processing Key' is a column level User Defined Property (UDP) in ERwin model. This
property can have two values – Yes or No. Only those objects where the column was
added to the unique index are affected.

For tables classified as 'Transaction Profitability, this property needs to be set as 'Yes' for
one or more of the key dimension columns.

For Ledger Stat table, this property needs to be set as 'Yes' for all key dimension
columns.

Uploading ERwin Model
ERwin model with the above changes needs to be uploaded in OFSAAI environment.
Uploading the model creates these additional tables and sets these properties within the
atomic schema.

After upload, user can verify the changes in the schema as well as query OFSAAI
metadata tables like REV_COLUMN_PROPERTIES for viewing properties assigned to
each column.

For more information on data model upload process, see OFSAAI User Guide.

Leaf Registration
Oracle Financial Services Analytical Applications Infrastructure (OFSAAI) provides an
Leaf Registration procedure to add the new Key Dimension Column to the Dimensions
metadata registry (REV_DIMENSIONS_B, REV_DIMENSIONS_TL).

Leaf Registration Procedure
This procedure performs the following:

• Registers key dimension

• Invalidates all Client Data Objects.

Executing Leaf Registration Procedure
You can execute this procedure either from SQL*Plus or from within a PL/SQL block or
from ICC Batch screen within OFSAAI framework.

To run the procedure from SQL*Plus, login to SQL*Plus as the Schema Owner. The
function requires 19 parameters. The syntax for calling the procedure is:

Object Management 2-13

function rev_leaf_registration(batch_run_id varchar2,
 mis_date varchar2
 memDataType varchar2,
 dimName varchar2,
 description varchar2,
 memberBTableName varchar2,
 memberTLTableName varchar2,
 hierarchyTableName varchar2,
 attributeTableName varchar2,
 memberCol varchar2,
 memberDispCodeCol varchar2,
 memberNameCol varchar2,
 memberDescCol varchar2,
 dimTypeCode varchar2,
 simpleDimFlag varchar2,
 keyDimFlag char,
 writeFlag varchar2,
 catalogTableType char,
 flattenedTableName varchar2)

• batch_run_id : any string to identify the executed batch.

• mis_date : in the format YYYYMMDD.

• memDataType : member data type of Dimension as in
NUMBER,VARCHAR2,CHAR.

• dimName : name of the dimension to be added (less than 21 chars).

• description : description of the dimension (less than 255 chars).

• memberBTableName : Member Base Table Name input as either null or a value
with suffix '_CD' or '_B'.

• memberTLTableName : Member TL Table Name input as either null or name of the
table.

• hierarchyTableName : Hierarchy Table Name input as either null or name of the
table.

• attributeTableName : Attribute Table Name input as either null or name of the
table.

• memberCol : Member Column Name input as either null or name of the column.

• memberDispCodeCol : Member Display Code Column Name input as either null or
name of the column.

• memberNameCol : Member Name Column input as either null or name of the
column.

• memberDescCol : Member Description Column input as either null or name of the

2-14 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

column.

• dimTypeCode : Code for the dimension Type as in 'PROD for product type', 'ORGN
for Organizational Unit', 'CCOA for Common Chart of Accounts', 'FINELE for
Financial Element', 'GL for General Ledger Account', 'OTHER for any other type'.

All user defined dimensions will have DIMENSION_TYPE_CODE as 'OTHER'.
User defined dimensions which are product related will have
DIMENSION_TYPE_CODE as 'PROD'.

• simpleDimFlag : 'Y' or 'N' to determine Simple Dimension.

Simple dimensions are created to store CODE and Descriptions. These tables are
used by the User Interfaces to list values in drop downs / radio buttons, and so on.
Simple dimensions are not reverse populated.

Example
Country, Currencies, Customer Type.

• keyDimFlag : 'Y' or 'N' to determine Key Dimension.

Key dimensions are dimensions which get reverse populated to the legacy tables.

Example
Product, Org Unit, General Ledger.

• writeFlag : 'Y' or 'N' to determine whether Dimension should appear in drop down
list in Dimension Management > Members.

• catalogTableType : 'L' or 'B' to determine table type for key dimensions.

• flattenedTableName : Flattened Table Name input as either null or name of the
table.

For Example

Object Management 2-15

Declare
 num number;
Begin
 num := rev_leaf_registration('BATCH_NO_01',
 '20101216',
 'NUMBER',
 'PRODUCT_1',
 'Cost Transfer Product Type ID',
 'DIM_PRODUCT_1_B',
 'DIM_PRODUCT_1_TL',
 'DIM_PRODUCT_1_HIER',
 'DIM_PRODUCT_1_ATTR',
 'PRODUCT_1_ID',
 'PRODUCT_1_DISPLAY_CODE',
 'PRODUCT_1_NAME',
 'DESCRIPTION',
 'PROD',
 'N',
 'Y',
 'Y',
 'B',
 'FLATTEN_PROD_TABLE');

End;

To execute the procedure from OFSAAI ICC framework, create a new Batch with the
Task as TRANSFORM DATA and specify the following parameters for the task:

• Datastore Type:- Select appropriate datastore from list

• Datastore Name:- Select appropriate name from the list

• IP address:- Select the IP address from the list

• Rule Name:- batch_leaf_registration

• Parameter List:- Member Data type , Dimension Name, Dimension Description,
Member Base Table Name, Member Translation Table Name, Hierarchy Table
Name, Attribute Table Name, Member Column , Member Display Code Column,
Member Name Column, Member Description Column , Dimension Type Code ,
Simple Dimension Flag , Key Dimension Flag , writeFlag, Catalog Table Type ,
Flatten Table Name

Modify Unique Indexes
For tables of 'Transaction Profitability' classification, key dimension column can be part
of the unique index. If this column is intended to be part of the unique index, alter the
unique index in the schema.

For Ledger Stat table, all key dimension columns should form part of the unique index.
Hence, alter the unique index in the schema to include this column.

2-16 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

Executing Object Registration Validation
Since leaf registration invalidates all Client Data Objects, Object Registration Validation
procedure needs to be executed to validate the required tables. For more information on
Executing Object Registration Validation, see Object Registration Validation, page 2-29.

Adding Custom Instrument Tables
Instrument and Account objects are tables storing financial services information about
customers and accounts. These are most commonly used objects for OFSAA processing
and reporting operations. There are seeded instrument tables that are packaged as part
of each OFSAA. You can customize or remove any of them during implementation. In
some cases, you might also require to add a custom instrument table.

The following topics are covered in this section:

• Super-class entities

• Steps in creating a custom instrument table

• Setting Table Classifications

• Unique Index

• Object Registration Validation

Super-class Entities
Most instrument tables are used for OFSAA processing. OFSAA processing mandates
the instrument table to have a certain set of columns. These columns have been put
together in super-class entities. The following are the seeded super-class entities:

• LEAF_COLUMNS – contains the key dimension columns that are part of the
Instrument tables.

• BASIC_INSTRUMENT_REQ – contains the basic instrument columns like
ID_NUMBER, IDENTITY_CODE etc.

• MULTI_CUR_REQ – contains the columns required for multi-currency processing.

• CASH_FLOW_EDIT_REQ – contains the columns required for Cash flow Edit
processing.

• CASH_FLOW_PROC_REQ – contains the columns required for Cash flow
processing.

• TP_BASIC_REQ – contains the columns required for Transfer Pricing processing.

Object Management 2-17

• TP_OPTION_COSTING_REQ – contains the columns required for Transfer Pricing
Option Cost processing.

• PORTFOLIO_REQ – contains the columns required for Portfolio table classification.

• TRANS_LEAF_COLUMNS – contains the key dimension columns that are part of
the transaction tables.

• LEDGER_LEAF_COLUMNS – contains the key dimension columns that are part of
the Ledger Stat table.

For more information on list of columns present in the previous super-class tables, see
Oracle Financial Services Analytical Applications Data Model Data Dictionary.Instrument
table can link to any of the above super-class entities based on its purpose. For example,
if the instrument table is used for Cash Flow Processing, then this table should be linked
to the following super-class entities:

• BASIC_INSTRUMENT_REQ

• MULTI_CUR_REQ

• LEAF_COLUMNS

• CASH_FLOW_EDIT_REQ

• CASH_FLOW_PROC_REQ

Refer to the following mapping table that specifies the list of super-class entities
required for each table classification:

Type of Client Data Object Table Classification List of Super-class entities

Instrument Instrument BASIC_INSTRUMENT_REQ
LEAF_COLUMNS

Instrument ALM Standard BASIC_INSTRUMENT_REQ
LEAF_COLUMNS
MULTI_CUR_REQ
CASH_FLOW_EDIT_REQ
CASH_FLOW_PROC_REQ

2-18 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

Instrument TP Cash Flow BASIC_INSTRUMENT_REQ
LEAF_COLUMNS
MULTI_CUR_REQ
CASH_FLOW_EDIT_REQ
CASH_FLOW_PROC_REQ
TP_BASIC_REQ

Instrument TP Non-Cash Flow BASIC_INSTRUMENT_REQ
LEAF_COLUMNS
MULTI_CUR_REQ
CASH_FLOW_EDIT_REQ
TP_BASIC_REQ

Instrument TP Option Costing BASIC_INSTRUMENT_REQ
LEAF_COLUMNS
MULTI_CUR_REQ
CASH_FLOW_EDIT_REQ
TP_BASIC_REQ
TP_OPTION_COSTING_REQ

Instrument Instrument Profitability BASIC_INSTRUMENT_REQ
LEAF_COLUMNS
MULTI_CUR_REQ

Instrument Portfolio BASIC_INSTRUMENT_REQ
LEAF_COLUMNS
MULTI_CUR_REQ
PORTFOLIO

Transaction Transaction Profitability TRANS_LEAF_COLUMNS

Ledger Stat Ledger Stat LEDGER_LEAF_COLUMNS

Steps in Creating Custom Instrument Table
The following are the steps involved in creating a custom instrument table:

• Create a new subject area within the ERwin model.

• Move the required super-class tables as part of the subject area.

• Create the custom instrument table in ERwin. Specify logical name, physical name
and description for the table. Define any columns that do not come from any of the
standard super-class tables as part of the custom instrument table. Specify logical,
physical names, domain and other column properties for each column.

Object Management 2-19

• Create subtype relationship between the custom instrument table and various
super-class entities.

Setting Table Classifications
Table Classifications can be set for any Client Data Object. Table classification set
against each Client Data Object is validated through Object Registration Validation
process.

The following are the steps involved in setting table classification properties for the
custom instrument table:

• Choose Physical View within the ERwin model.

• Go to UDP tab within Table Properties window.

• Specify 'Yes' against required Table Classifications properties.

Once the model is prepared using the above steps, user should upload the ERwin
model. After uploading the model, user can check if the custom instrument table has
been created in the schema with columns from super-class entities that have been linked
to the custom instrument table as well as the columns present in the custom instrument
table. Model upload also creates metadata entries within the following Object
Registration tables:

• REV_TABLES_B – Contains the list of table names.

• REV_TABLES_TL – contains the list of table display names and descriptions in
various languages.

• REV_TAB_COLUMNS – contains the list of column names.

• REV_TAB_COLUMNS_MLS – contains the list of column display names and
descriptions in various languages.

• REV_COLUMN_PROPERTIES – stores the column properties associated with each
column.

• REV_TABLE_CLASS_ASSIGNMENT – stores the table classification associated
with each table.

Note:

• In case custom instrument table contains the column in the same
name as that of the super-class table, then column present in the
custom instrument table will take precedence over the equivalent
column of the super-class table. In case multiple super-class tables

2-20 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

contain the same column, columns are resolved in the order of table
position from left to right of what you see within the ERwin model.
That is, column present in the left-most super-class table will take
precedence over the same column present in another super-class
table placed to its right.

• Physical order of the columns within the custom instrument table is
determined in the following way:

• Columns present in the custom instrument table.

• Columns present in each of the linked super-class table. In case
multiple super-class tables are linked to the custom instrument
table, columns are rolled down in the order of table position
from left to right of what you see within the ERwin model.

• Within any table, ERwin maintains three different column orders:

• Logical Order – Order of the columns as seen in Logical view of
the model.

• Physical Order – Order of the columns as seen in Physical view
of the model.

• Database Order – Order of the columns as seen in the Database
schema.

Unique Index
Instrument tables require unique index on ID_NUMBER and IDENTITY_CODE
column. This unique index needs to be created on the custom instrument table,
post-model upload operation.

Transaction tables require unique index on ID_NUMBER, IDENTITY_CODE and one of
the key dimension columns. This unique index needs to be created on the custom
transaction table, post-model upload operation.

Adding a new user defined column as a Portfolio column for use in a Data Filter on all
instrument tables

1. Include the column in the PORTFOLIO super-type table in the Erwin Data Model to
ensure that the column rolls down to all subtype tables.

2. Complete incremental model upload to add the column to all subtype Portfolio
tables.

Object Management 2-21

3. Manually insert a row into the Atomic schema REV_PROPERTY_COLUMNS table
with TABLE_PROPERTY_CD = 40:
Insert into REV_PROPERTY_COLUMNS
(TABLE_PROPERTY_CD,COLUMN_NAME,PROTECTED_FLG) values
(40,'APPLE_BRANCH_CD',1);
COMMIT;

Object Registration Validation
Since leaf registration invalidates all Client Data Objects, Object Registration Validation
procedure needs to be executed to validate the required tables. For more information on
Object Registration Validation procedure, see Object Registration Validation, page 2-29.

Adding Custom Transaction Tables
Transaction tables are used within Profitability Management processing. There are
seeded transaction tables that are packaged as part of Profitability Management
application. You can customize or remove any of them during implementation. In some
cases, you might also require to add a custom transaction table.

The following topics are covered in this section:

• Super-class entities

• Steps in creating a custom transaction table

• Setting Table Classifications

• Setting Processing Key property

• Unique Index

• Object Registration Validation

Super-class Entities
Profitability Management processing mandates the transaction table to have a certain
set of columns. These columns have been put together in super-class entities. The
following are the seeded super-class entities:

• TRANS_LEAF_COLUMNS – contains the key dimension columns that are part of
the Transaction tables.

For more information on list of columns present in the above super-class table, see
Oracle Financial Services Analytical Applications Data Model Data Dictionary.

2-22 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

Steps In Creating Custom Transaction Table
The following are the steps involved in creating a custom transaction table:

• Create a new subject area within the ERwin model.

• Move TRANS_LEAF_COLUMNS into the new subject area.

• Create the custom transaction table in ERwin. Specify logical name, physical name
and description for the table. Define any columns that do not come from any of the
standard super-class tables as part of the custom transaction table. Specify logical,
physical names, domain and other column properties for each column.

• Create subtype relationship between the custom transaction table and
TRANS_LEAF_COLUMNS super-class entity.

Setting Table Classifications
Table Classifications can be set for any Client Data Object. Table classification set
against each Client Data Object is validated through Object Registration Validation
process.

The following are the steps involved in setting table classification properties for the
custom transaction table:

• Choose Physical View within the ERwin model.

• Go to UDP tab within Table Properties window.

• Specify 'Yes' for 'Transaction Profitability' user defined property.

Once the model is prepared using the above steps, user should upload the ERwin
model. After uploading the model, user can check if the custom transaction table has
been created in the schema with columns from super-class entities that have been linked
to the custom transaction table as well as the columns present in the custom transaction
table. Model upload also creates metadata entries within the following Object
Registration tables:

• REV_TABLES_B – Contains the list of table names.

• REV_TABLES_TL – contains the list of table display names and descriptions in
various languages.

• REV_TAB_COLUMNS – contains the list of column names.

• REV_TAB_COLUMNS_MLS - contains the list of column display names and
descriptions in various languages.

Object Management 2-23

• REV_COLUMN_PROPERTIES - stores the column properties associated with each
column.

• REV_TABLE_CLASS_ASSIGNMENT - stores the table classification associated with
each table.

Note:

• In case custom transaction table contains the column in the same
name as that of the super-class table, then column present in the
custom transaction table will take precedence over the equivalent
column of the super-class table.

• Physical order of the columns within the custom transaction table is
determined in the following way:

• Columns present in the custom transaction table.

• Columns present in each of the linked super-class table.

• Within any table, ERwin maintains three different column orders:

• Logical Order – Order of the columns as seen in Logical view of
the model.

• Physical Order – Order of the columns as seen in Physical view
of the model.

• Database Order – Order of the columns as seen in the Database
schema.

Setting Processing Key Property
'Processing Key' user defined property needs to be set for the following columns within
the transaction table:

• ID_NUMBER

• IDENTITY_CODE

• Leaf columns that are part of the unique index

The following are the steps to set this property in ERwin:

• Choose Physical View within the ERwin model.

• Choose TRANS_LEAF_COLUMNS super-class table.

2-24 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

• Choose the leaf column that needs to be set 'Processing Key' property.

• Go to UDP tab in Column Properties window for this column.

• Specify 'Yes' against 'Processing Key' user-defined property.

• Choose the custom transaction table.

• Go to UDP tab in Column Properties window for ID_NUMBER and
IDENTITY_CODE columns.

• Specify 'Yes' against 'Processing Key' user-defined property.

Unique Index
Transaction tables require unique index on the following columns:

• ID_NUMBER

• IDENTITY_CODE

• At-least one of the key dimension columns.

This unique index needs to be created on the custom transaction table, post-model
upload operation.

Object Registration Validation
Since leaf registration in-validates all Client Data Objects, Object Registration Validation
procedure needs to be executed to validate the required tables. For more information on
Object Registration Validation procedure, see Object Registration Validation, page 2-29.

Adding Custom Lookup Tables
Lookup tables are used within OFSAA Profitability Management application. Lookup
tables have to be created and registered within OFSAAI, in order to display them in
Lookup Table Driver definition of OFSAA Profitability Management application.

The following topics are covered in this section:

• Steps in creating the lookup table in ERwin

• Setting Column Properties

• Setting Table Classifications

• Registering lookup tables and Validation

Object Management 2-25

• Lookup Table Driver definition

Steps In Creating Lookup Table
Lookup table has to be created in the ERwin model. The following are the steps:

• Open the ERwin model in ERwin Data Modeler tool.

• Create a new subject area.

• Create a table and add columns to the table.

• Lookup table needs to at-least have one primary key column.

• Lookup table needs to at-least have one numeric non-key column. Such numeric
columns will be the return value of the lookup.

• Specify logical names, comments and primary key for the table.

• Specify logical names, domains and comments for the column.

• Domains for the columns can be LEAF, BALANCE, RATE etc.

• Save the model.

Setting Column Properties
'Processing Key' is a column level User Defined Property (UDP) in ERwin model. This
property can have two values – Yes or No. 'Processing Key' property needs to be set for
all the primary key columns of the lookup table.

'Balance Range' is a column level User Defined Property (UDP) in ERwin model. This
property can have two values – Yes or No. 'Balance Range' property needs to be set for
the columns that can have range values in the lookup.

The following are the steps for setting the above properties:

• Open the ERwin model in ERwin Data Modeler tool.

• Go to the subject area where lookup table was created.

• Choose the table and open the columns of the table.

• Go to UDP tab within the column properties for each column.

• Specify the value for the required user defined properties.

• Save the model.

2-26 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

Setting Table Classifications
Table Classifications can be set for any Client Data Object. Table classification set
against each Client Data Object is validated through Object Registration Validation
process.

The following are the steps involved in setting table classification properties for the
custom lookup table:

• Choose Physical View within the ERwin model.

• Go to UDP tab within Table Properties window.

• Specify 'Yes' for 'PA Lookup Tables' user-defined property.

Registering Lookup Tables and Validation
Upload the model and execute the object registration validation.

Lookup Table Driver Definition
Post registration and validation, the lookup table is available within Lookup Table
Driver definition of OFSAA Profitability Management application.

Following is the criteria for columns to be displayed in the Source - Lookup Mapping
grid:

• Column needs to be Primary Key or be part of composite primary key.

• 'Processing Key' user defined property should be set for the column under UDP tab
as shown below.

Object Management 2-27

Mapping of Column to Processing Key

Following is the criteria for columns to be part of the Range:

• 'Balance Range' user defined property should be set for the column under UDP tab
as shown below.

2-28 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

Mapping of Column for Range Property

Following is the criteria for columns to be part Lookup Return Value:

• Column should not be primary key/processing key or be part of composite primary
key.

• Column domain should be defined as NUMBER under General Tab as shown
below.

Object Management 2-29

Mapping of Column for Look up Return Value

Object Registration And Validation
Table Classifications provide a means to designate how tables are used within the
OFSAA suite of applications. Each table classification identifies a specific purpose for
which an assigned table is allowed to be used.

Some Table Classifications have requirements that must be satisfied in order for an
object to be assigned to the classification. These requirements are designated by Table
Properties associated to the Table Classifications. These Table Properties are either
specific column name requirements or logic validations.

Table Classification assignments are stored in REV_TABLE_CLASS_ ASSIGNMENT.

Object Registration is a process of classifying a table with one or more table
classifications depending on the purpose of the table. This step is performed within the
ERwin model by setting various User Defined Properties for a client data object.
Validation procedure validates table class assignment for a client data object and needs
to be executed after model upload operation.

The following topics are covered in this section:

• User-Assignable Table Classifications

2-30 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

• Requirements for each Table Classification

• Validation procedure

• Executing the Validation Procedure

• Exception Messages

User-Assignable Table Classification
User-Assignable Table Classifications are those that can be assigned by the
administrator to user-defined and client data objects, including the OFSAAI Instrument
tables. These Table Classifications identify processing and reporting functions for the
OFSAA. Some of these Table Classifications have requirements that must be met in
order for the classification to be assigned to a table or view.

All User-Assignable Table Classifications are available for assignment within the ERwin
model. The following table lists the User-Assignable Table Classifications:

Code Table Classification Name

20 Instrument

50 Ledger Stat

100 Portfolio

200 TP Cash Flow

210 TP Non-Cash Flow

295 Codes User Defined (base tbl)

296 MLS Descriptions User Defined

300 Transaction Profitability

310 Instrument Profitability

320 User Defined

330 Data Correction Processing

360 RM Standard

Object Management 2-31

Code Table Classification Name

370 TP Option Costing

500 PA Lookup Tables

600 Derivative Instruments

530 Break Funding

197 MLS Descriptions Reserved

198 Codes Reserved (base tbl)

Requirement For Table Classification
OFSAAI requires specific table structures, column names and column characteristics for
OFSAA operations. These structures and requirements are embodied by the
User-Assignable Table Classifications.

Each Table Classification comprises individual Table Properties that define the
requirements for that classification. Table Properties are two distinct types: those
encompassing specific column requirements and those encompassing logic
requirements via stored procedures.

The following table provides the validation checks that are being done for each of the
table classification:

TABLE
_CLAS
SIFICA
TION_C
D

TABLE_CLAS
SIFICATION

TABLE_PROPERT
Y

DESCRIPTION Comments

50 Ledger Stat Ledger Leaf
Column Class

Fields that are part
of core modeling
dimensions for
Fusion PFT

Checks if columns of
super-type Ledger
Leaf Column Class is
present

2-32 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

TABLE
_CLAS
SIFICA
TION_C
D

TABLE_CLAS
SIFICATION

TABLE_PROPERT
Y

DESCRIPTION Comments

100 Portfolio Portfolio
Requirements

Dynamic list of
Portfolio fields

Checks if columns of
super-type Portfolio
Requirements is
present

200 TP Cash Flow Basic Instrument
Requirements

Instrument
Required fields

Checks if columns of
super-type Basic
Instrument
Requirements is
present

200 TP Cash Flow Cash Flow Proc.
Requirements

Fields required by
TP and RM Cash
Flow processing

Checks if columns of
super-type Cash
Flow Proc.
Requirements is
present

200 TP Cash Flow Cash Flow Edit
Requirements

Fields required by
Cash Flow Edits in
addition to Cash
Flow fields

Checks if columns of
super-type Cash
Flow Edit
Requirements is
present

200 TP Cash Flow Multi-Currency
Requirements

Fields required for
Multi-Currency

Checks if columns of
super-type
Multi-Currency
Requirements is
present

200 TP Cash Flow TP Basic
Requirements

Non-cash flow
Transfer Pricing
fields

Checks if columns of
super-type TP Basic
Requirements is
present

Object Management 2-33

TABLE
_CLAS
SIFICA
TION_C
D

TABLE_CLAS
SIFICATION

TABLE_PROPERT
Y

DESCRIPTION Comments

200 TP Cash Flow Validate
Instrument Leaves

Validates that a
table has all 'B'
leaves

Validation . Check if
the table has all the
key dimesion leaf
columns. The leaf
columns should be of
data type NUMBER

200 TP Cash Flow Validate
Instrument Key

Validate the unique
key for Instrument
(PA, TP, RM) tables

Validation .
Instrument table
should have index
present on
ID_NUMBER and
IDENTITY_CODE
column

210 TP Non-Cash
Flow

Basic Instrument
Requirements

Instrument
Required fields

Checks if columns of
super-type Basic
Instrument
Requirements is
present

210 TP Non-Cash
Flow

Multi-Currency
Requirements

Fields required for
Multi-Currency

Checks if columns of
super-type
Multi-Currency
Requirements is
present

210 TP Non-Cash
Flow

TP Basic
Requirements

Non-cash flow
Transfer Pricing
fields

Checks if columns of
super-type TP Basic
Requirements is
present

210 TP Non-Cash
Flow

Validate
Instrument Leaves

Validates that a
table has all 'B'
leaves

Validation . Check if
the table has all the
key dimesion leaf
columns. The leaf
columns should be of
data type NUMBER

2-34 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

TABLE
_CLAS
SIFICA
TION_C
D

TABLE_CLAS
SIFICATION

TABLE_PROPERT
Y

DESCRIPTION Comments

210 TP Non-Cash
Flow

Validate
Instrument Key

Validate the unique
key for Instrument
(PA, TP, RM) tables

Validation .
Instrument table
should have index
present on
ID_NUMBER and
IDENTITY_CODE
column

300 Transaction
Profitability

Basic Instrument
Requirements

Instrument
Required fields

Checks if columns of
super-type Basic
Instrument
Requirements is
present

300 Transaction
Profitability

Multi-Currency
Requirements

Fields required for
Multi-Currency

Checks if columns of
super-type
Multi-Currency
Requirements is
present

300 Transaction
Profitability

Validate
Instrument Leaves

Validates that a
table has all 'B'
leaves

Validation . Check if
the table has all the
key dimesion leaf
columns. The leaf
columns should be of
data type NUMBER

300 Transaction
Profitability

Validate
Transaction Key

Validate the unique
key for Transaction
Profitability tables

Transaction table
should have
composite index
present on
ID_NUMBER and
IDENTITY_CODE
and all the
processing key
columns.

Object Management 2-35

TABLE
_CLAS
SIFICA
TION_C
D

TABLE_CLAS
SIFICATION

TABLE_PROPERT
Y

DESCRIPTION Comments

310 Instrument
Profitability

Basic Instrument
Requirements

Instrument
Required fields

Checks if columns of
super-type Basic
Instrument
Requirements is
present

310 Instrument
Profitability

Multi-Currency
Requirements

Fields required for
Multi-Currency

Checks if columns of
super-type
Multi-Currency
Requirements is
present

310 Instrument
Profitability

Validate
Instrument Leaves

Validates that a
table has all 'B'
leaves

Validation . Check if
the table has all the
key dimesion leaf
columns. The leaf
columns should be of
data type NUMBER

310 Instrument
Profitability

Validate
Instrument Key

Validate the unique
key for Instrument
(PA, TP, RM) tables

Validation .
Instrument table
should have index
present on
ID_NUMBER and
IDENTITY_CODE
column

330 Data Correction
Processing

Validate Processing
Key

Validate the unique
key for Processing
tables

Processing Key
Column for a table
have a matching
unique index

360 ALM Standard Basic Instrument
Requirements

Instrument
Required fields

Checks if columns of
super-type Basic
Instrument
Requirements is
present

2-36 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

TABLE
_CLAS
SIFICA
TION_C
D

TABLE_CLAS
SIFICATION

TABLE_PROPERT
Y

DESCRIPTION Comments

360 ALM Standard Cash Flow Proc.
Requirements

Fields required by
TP and RM Cash
Flow processing

Checks if columns of
super-type Cash
Flow Proc.
Requirements is
present

360 ALM Standard Cash Flow Edit
Requirements

Fields required by
Cash Flow Edits in
addition to Cash
Flow fields

Checks if columns of
super-type Cash
Flow Edit
Requirements is
present

360 ALM Standard Multi-Currency
Requirements

Fields required for
Multi-Currency

Checks if columns of
super-type
Multi-Currency
Requirements is
present

360 ALM Standard Validate
Instrument Leaves

Validates that a
table has all 'B'
leaves

Validation . Check if
the table has all the
key dimesion leaf
columns. The leaf
columns should be of
data type NUMBER

360 ALM Standard Validate
Instrument Key

Validate the unique
key for Instrument
(PA, TP, RM) tables

Validation .
Instrument table
should have index
present on
ID_NUMBER and
IDENTITY_CODE
column

370 TP Option
Costing

Basic Instrument
Requirements

Instrument
Required fields

Checks if columns of
super-type Basic
Instrument
Requirements is
present

Object Management 2-37

TABLE
_CLAS
SIFICA
TION_C
D

TABLE_CLAS
SIFICATION

TABLE_PROPERT
Y

DESCRIPTION Comments

370 TP Option
Costing

Cash Flow Edit
Requirements

Fields required by
Cash Flow Edits in
addition to Cash
Flow fields

Checks if columns of
super-type Cash
Flow Edit
Requirements is
present

370 TP Option
Costing

Multi-Currency
Requirements

Fields required for
Multi-Currency

Checks if columns of
super-type
Multi-Currency
Requirements is
present

370 TP Option
Costing

TP Option Costing
Requirements

Fields required for
Transfer Pricing
Option Costing
processing

Checks if columns of
super-type TP
Option Costing
Requirements is
present

370 TP Option
Costing

TP Basic
Requirements

Non-cash flow
Transfer Pricing
fields

Checks if columns of
super-type TP Basic
Requirements is
present

370 TP Option
Costing

Validate
Instrument Leaves

Validates that a
table has all 'B'
leaves

Validation . Check if
the table has all the
key dimesion leaf
columns. The leaf
columns should be of
data type NUMBER

370 TP Option
Costing

Validate
Instrument Key

Validate the unique
key for Instrument
(PA, TP, RM) tables

Validation .
Instrument table
should have index
present on
ID_NUMBER and
IDENTITY_CODE
column

2-38 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

TABLE
_CLAS
SIFICA
TION_C
D

TABLE_CLAS
SIFICATION

TABLE_PROPERT
Y

DESCRIPTION Comments

500 PA Lookup
Tables

Validate PA
Lookup

Procedure to check
if there is a primary
key for the lookup
tables.

Validation. All
Lookup table should
have a primary key
present

530 Break Funding Break Funding
Requirements

Fields required as
part of TP break
funding

Checks if columns of
super-type Break
Funding
Requirements is
present

Specific column requirements for each table property can be obtained by querying
REV_COLUMN_REQUIREMENTS table.

Validation Procedure
The OFSA_TAB_CLASS_REQ package contains all of the procedures and supporting
functions that validates if a table meets the requirements for a particular Table
Classification.

The package performs the following validations:

• VALIDATE_INST_KEY

This procedure validates if a table has ID_NUMBER and IDENTITY_CODE, or
ID_NUMBER, IDENTITY_CODE and AS_OF_DATE as its unique index and if the
Processing key designated in Column Properties is ID_NUMBER,
IDENTITY_CODE.

• UPDATABLE_INST_REQ_FIELDS

This procedure checks that all of the Instrument Required Fields are also listed as
updatable in USER_UPDATABLE_COLUMNS for the specified table or view.

• VALIDATE_INST_LEAVES

This procedure will validate a table has all the required leaf columns

• VALIDATE_TRANS_KEY

This procedure validates if a table has ID_NUMBER and IDENTITY_CODE and one

Object Management 2-39

or more 'B' Leaf Columns in its unique index and that these columns match the
Processing key designated in Column Properties.

• VALIDATE_CORR_KEY

This procedure will validate a table has a unique index with updatable columns.

All the above procedures return a success or failure status. The
REV_TAB_CLASS_ASSIGNMENT table is updated as 'Y' if a table is successfully
validated and 'N' in case of failure.

Executing the Validation Procedure
You can execute this procedure either from SQL*Plus or from within a PL/SQL block or
from ICC Batch screen within OFSAAI framework.

To run the procedure from SQL*Plus, login to SQL*Plus as the Schema Owner. The
syntax for calling the procedure is:
Declare
Result number;
begin
 result := fsi_batchtableclassreq(pbatchid, pmis_date);
end;

An example of running the stored procedure from SQL*Plus
SQL> var output number;
SQL> exec fsi_batchtableclassreq('VALIDATE_DATAMODEL' , '20100809');

Note: Since the package contains huge number of dbms_output
statements, user should either increase the output buffer size or disable
the server output.

To execute the procedure from OFSAAI ICC framework, create a new Batch with the
Task as TRANSFORM DATA and specify the following parameters for the task:

• Datastore Type:- Select appropriate datastore from list

• Datastore Name:- Select appropriate name from the list

• IP address:- Select the IP address from the list

• Rule Name:- Batch_Table_Class_Req

• Parameter List:- Batch Identifier and MISDATE

To execute the same procedure in SQL*Plus/PlSQL Developer/SQL PLUS:

2-40 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

set serveroutput off;

begin
 ofsa_tab_class_req.validate_all_tab_class('1236','25-JAN-2010');
end;

Exception Messages
The OFSA_TAB_CLASS_REQ packages throws the following exceptions.

Exception 1: FAILED: Table Property 1030 - Validate Correction Key
This exception occurs when no valid unique index found.

Exception 2: FAILED: Table Property 1030 - Validate Correction Key
This exception occurs when Processing Key Column Properties do not match unique
index

Exception 3: FAILED: Table Property 1030 - Validate Transaction Key
This exception occurs when no valid unique index found.

Exception 4: FAILED: Table Property 1000 - Validate Instrument Leaves
This exception occurs when one or more Leaf Columns are missing or incorrectly
registered. Check if the datatype of the LEAF columns is NUMBER and domain of these
columns is LEAF.

Defining Alternate Rate Output Columns
This section details the steps required for defining Alternate Rate Output columns
within the OFSAA Fund Transfer Pricing Application.

The following topics are covered in this section:

• Setting User Defined Properties in ERwin

• Uploading the model and object registration

User-Defined Properties
The following are the user-defined properties that are available for identifying columns
required for alternate rate output:

• Transfer Pricing Output (Column Property – 80)

• Option Cost Output (Column Property – 81)

Object Management 2-41

• Other Adj Spread Output (Column Property – 82)

• Other Adj Amount Output (Column Property – 83)

User needs to assign one of the above properties to the columns that need to be used as
Alternate Rate Output columns within the Fund Transfer Pricing application.

The following are the steps to set the user-defined property to the column:

• Open the ERwin file in ERwin Data Modeler tool.

• Go to Main Subject Area.

• Go to Physical View.

• Choose the entity that contains the alternate rate output column. This entity can
also be a super-type (like TP_BASIC_REQ).

• Select the column and open the column properties for the column.

• Go to UDP tab within column properties.

• Select 'YES' for one of the above user-defined properties.

• Save the model.

Note: Setting the user-defined property of the columns within a
super-type entity will apply to all the entities that are related to the
super-type.

Uploading the Model
Upload the model in OFSAAI and perform object registration. After uploading the
model, user can execute the below query to check if the user-defined properties are set
for the columns.
select * from rev_column_properties where column_property_cd in
(80,81,82,83)
where TABLE_NAME = <<table_name>>

Replace <<table_name>> with the relevant table name and column name in the above
query and execute the same. Above query returns the columns that are used for
alternate rate outputs.

User Defined Properties
User Defined Properties are set for tables and columns within ERwin.

2-42 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

Table Level User Defined Properties
The following user defined properties can be set for the table:

UDP Name Description List
of
value
s

Instrument Property to identify if the table is classified as a basic instrument
table. (that is, Instrument table classification code 20)

YES /
NO

TP Cash Flow Property to identify if the table is classified as 'TP Cash Flow' for the
purpose of generating Transfer Pricing rates using cash flow
methods.

YES /
NO

TP Non Cash
Flow

Property to identify if the table is classified as 'TP Non-Cash Flow'
for the purpose of generating Transfer Pricing rates using non cash
flow methods.

YES /
NO

Transaction
Profitability

Property to identify if the table is classified as 'Transaction' for the
purpose of executing allocation rules.

YES /
NO

Object Management 2-43

UDP Name Description List
of
value
s

Portfolio Property to identify if the table is classified as 'Portfolio'. YES /
NO

User Defined Property to identify if the table is classified as 'User Defined' table
for storing multi-lingual descriptions for codes.

YES /
NO

Ledger Stat Property to identify if the table is classified as 'Ledger Stat' for the
purpose of executing allocation rules.

YES /
NO

ALM Standard Property to identify if the table is classified as 'ALM Standard' for
the purpose of executing ALM cash flow engine to generate cash
flows.

YES /
NO

TP Option
Costing

Property to identify if the table is classified as 'TP Option Costing'
for the purpose of generating Transfer Pricing rates with option
costing.

YES /
NO

Break Funding Property to identify if the table is classified as 'Break Funding' for the
purpose of generating Break funding charges using Transfer Pricing
engine.

YES /
NO

MLS
Descriptions
Reserved

Property to identify if the table is classified as 'Reserved' table for
storing multi-lingual descriptions for codes.

YES /
NO

Codes Reserved
(base tbl)

Property to identify if the table is classified as 'Reserved' table for
storing codes of simple dimensions.

YES /
NO

Codes User
Defined (base
tbl)

Property to identify if the table is classified as 'User-defined' table for
storing codes of simple dimensions.

YES /
NO

PA Lookup
Tables

Property to identify if the table is classified as 'Lookup Table' for the
purpose of defining lookup table allocation rules.

YES /
NO

Instrument
Profitability

Property to identify if the table is classified as 'Instrument' for the
purpose of executing allocation rules.

YES /
NO

2-44 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

UDP Name Description List
of
value
s

Derivative
Instruments

Property to identify if the table is classified as 'Derivatives' for the
purpose of executing ALM cash flow engine to generate cash flows
for derivative instruments.

YES /
NO

Data Correction
Processing

Property to identify if the table is classified as 'Data Correction
Processing' for the purpose of executing Cash Flow Edits engine.

YES /
NO

Column Level User Defined Properties
The following user defined properties can be set for the column:

UDP Name Description List of
values

Balance Range Property to identify if the column within a table classified as 'PA
Lookup Table' must be displayed under 'Range' within Lookup
table definition.

YES /
NO

Balance Property to identify if the column is of type 'Balance'. YES /
NO

Standard Rate Property to identify if the column is of type 'Standard Rate'. YES /
NO

Balance
Weighted Object

Property to identify if the column is of type 'Balance Weighted
Object'.

YES /
NO

Processing Key Property to identify if this column is used as a 'Processing Key'
within the instrument, transaction and ledger_stat table.

YES /
NO

Frequency
Multiplier

Property to identify if the column is used to store 'Frequency'.
This property is used in Filters UI within OFSAAI.

YES /
NO

Multiplier
Related Field

Property to specify the name of the column that is used to store
the multiplier for the corresponding 'Frequency' column. This
property is used in Filters UI within OFSAAI.

Text

Object Management 2-45

UDP Name Description List of
values

Related Field Property to specify the name of the column that is used to store
the multiplier for the corresponding 'Term' column. This
property is used in Filters UI within OFSAAI.

Text

Term Multiplier Property to identify if the column is used to store 'Term'. This
property is used in Filters UI within OFSAAI.

YES /
NO

Column Alias Property to specify an alias for the column. This is used within
the staging loader program for loading LEDGER_STAT table.

Text

Statistic Property to identify if the column is of type 'Statistic'. YES /
NO

Transfer Pricing
Output

Property to identify if the column must be set as an alternate
output column for writing transfer rates by transfer pricing
engine.

YES /
NO

Option Cost
Output

Property to identify if the column must be set as an alternate
output column for writing option costing output by transfer
pricing engine.

YES /
NO

Other Adj
Spread Output

Property to identify if the column must be set as an alternate
output column for writing other adjustment spread by transfer
pricing engine.

YES /
NO

Other Adj
Amount Output

Property to identify if the column must be set as an alternate
output column for writing other adjustment amount by transfer
pricing engine.

YES /
NO

Modifying the precision of Balance Columns In Ledger_Stat

Steps to modify the Precision
1. Open the ALM/FTP/PFT model using AllFusion ERwin Data Modeler.

2. Switch to Fusion – Ledger Stat subject area.

3. Select Logical view.

4. Edit the Ledger Stat table by double clicking the table in the Logical Layer.

2-46 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

5. Change the data type in Datatype tab to the revised precision and scale (example,
NUMBER (22, 3)) for the following columns:

• Month 01 Amount, Month 02 Amount, Month 03 Amount and so on.

• YTD 01 Amount, YTD 02 Amount, YTD 03 Amount and so on.

6. Save the changes.

7. Select the Physical view.

8. Click LEDGER_STAT table and view the datatype of columns – MONTH_01 till
MONTH_12 and YTD_01 till YTD_12. The data type of these columns should
display the new precision and scale.

9. Save the model as xml in AllFusion Repository Format.

Object Management 2-47

10. Perform incremental model upload.

Note: In case, users decrease the precision and scale for the columns,
such columns should not have any values during model upload.

Utilities 3-1

3
Utilities

This chapter details the steps involved in executing various data model utilities that are
available within OFSAA.

This chapter covers the following topics:

• Reverse Population

• Product Instrument Mapping

• Instrument Synchronization

• Ledger Load Undo

Reverse Population
Reverse population procedure populates dimension members, attributes and
hierarchies from new dimension tables to OFSA legacy set of dimension tables. ALM,
TP and PFT engines refer to OFSA legacy tables for retrieving dimension member
information.

The following topics are covered in this section:

• Tables that are part of Reverse Population

• Reverse Population procedure

• Executing the Reverse Population Procedure

• Exception Messages

Tables As Part Of Reverse Population
Dimension data is stored in the following set of tables:

• DIM_<DIMENSION>_B - Stores leaf and node member codes within the dimension.

3-2 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

• DIM_<DIMENSION>_TL - Stores names of leaf and node and their translations.

• DIM_<DIMENSION>_ATTR - Stores attribute values for the attributes of the
dimension.

• DIM_<DIMENSION>_HIER - Stores parent-child relationship of members and
nodes that are part of hierarchies.

Data present in the above set of dimension tables are transformed into the below set of
OFSA Legacy tables.

The reverse population routine synchronizes the dimension data between the new
dimension tables and the OFSA Legacy tables. Reverse population occurs automatically
if enabled in the AMHMConfig.properties file. In the AMHMConfig.properties file, set
the Parameter value to Y for a specific Dimension Id. The setting in the
AMHMConfig.properties only impacts dimension values entered through the interface.
Reverse population must be executed as a batch for bulk loading. For more information
on how to define the reverse populate parameters in the AMHMConfig.properties file,
see Oracle Financial Services Analytical Applications Infrastructure (OFSAAI) Installation
and Configuration Guide.

• OFSA_LEAF_DESC – Stores the description of leaf members that are part of the
dimension.

• OFSA_NODE_DESC – Stores the description of nodes that are used within the
hierarchy.

• OFSA_DETAIL_LEAVES – Stores the attributes of Common COA dimension.

• OFSA_DETAIL_OTHER_COA – Stores the attributes of GL or Product or any other
key dimension.

• OFSA_DETAIL_ELEM_B/OFSA_DETAIL_ELEM_MLS – Stores the attributes of
Financial Elements dimension.

• OFSA_IDT_ROLLUP – Stores the hierarchy as level-based.

• OFSA_LEVEL_DESC – Stores the hierarchy levels.

Reverse population is done for all key dimensions that are configured within the
OFSAAI framework.

Reverse Population Procedure
The REVERSE_POPULATION package populates the OFSA legacy dimension tables
from new dimension tables.

The procedure performs the following functions:

Utilities 3-3

• Gets the list of source and target tables. The source tables for given dimension is
stored in REV_DIMENSION_B table. The OFSA target table for a given dimension
is stored in OFSA_CATALOG_OF_LEAVES.

• The REVERSE POPULATION transposes the seeded attributes, leaf members and
hierarchy data stored in the form of rows (new dimension table structure) to
columns (OFSA).

• All exception messages are logged in the FSI_MESSAGE_LOG table.

After the Reverse Population procedure is completed, you should query the OFSA
legacy tables to look for dimension members.

Executing the Reverse Population Function
You can execute this function from either within a PL/SQL block or from ICC Batch
screen within OFSAAI framework.

To run the function with a PL/SQL block, follow the below steps:

• Members Reverse Population
Function fsi_batchMemberLoad(batch_run_id varchar2,
 mis_date varchar2,
 pDimensionId varchar2,
 pMemberId varchar2,
 pMode varchar2)

where

• BATCH_RUN_ID is any string to identify the executed batch.

• MIS_DATE in the format YYYYMMDD.

• pDIMENSIONID is the dimension id.

• pMEMBERID. This can be null. If value is provided only that member id gets
reverse populated.

• pMode can have values (1,2, 3). 1 –Insert, 2- Update, 3- Delete. For first time
load user can use pMode 1. For incremental and subsequent updates the user
can use pMode 2.

For Example:
Declare
 num number;
Begin
 num := fsi_batchmemberload ('INFODOM_20100405','20100405'
,1,null,1);
End;

To execute the procedure from OFSAAI ICC framework, create a new Batch with

3-4 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

the Task as TRANSFORM DATA and specify the following parameters for the task:

• Datastore Type:- Select appropriate datastore from list

• Datastore Name:- Select appropriate name from the list

• IP address:- Select the IP address from the list

• Rule Name:- Batch_Member_Load

• Parameter List:- Dimension ID, Member id, Mode (insert /update/ delete)

• Hierarchy Reverse Population
Function fsi_batchhierarchyload(batch_run_id varchar2,
 mis_date varchar2,
 pDimensionId varchar2,
 pHierarchyId varchar2,
 pMode varchar2)

where

• BATCH_RUN_ID is any string to identify the executed batch.

• MIS_DATE in the format YYYYMMDD.

• pDIMENSIONID is the dimension id.

• pHIERARCHYID. This can be null. If value is provided only that Hierarchy gets
reverse populated

• pMode can have values (1,2, 3). 1 –Insert, 2- Update, 3- Delete. For first time load
user can use pMode 1. For incremental and subsequent updates the user can use
pMode 2.

For Example:
Declare
 num number;
Begin
 num := fsi_batchhierarchyload('INFODOM_20100405','20100405'
,1,null,1);
End;

To execute the procedure from OFSAAI ICC framework, create a new Batch with the
Task as TRANSFORM DATA and specify the following parameters for the task:

• Datastore Type:- Select appropriate datastore from list

• Datastore Name:- Select appropriate name from the list

• IP address:- Select the IP address from the list

Utilities 3-5

• Rule Name:-Batch_Hier_Load

• Parameter List:- Dimension ID, Hierarchy id, Mode (insert /update/ delete)

Note: The reverse population fsi_batchMemberLoad and
fsi_batchHierarchyLoad should be executed after fn_drmdataloader.
The fsi_batchMemberLoad reverse populates the members and the
fsi_batchHierarchyLoad reverse populates the hierarchies to the legacy
structures.

Exception Messages
The Reverse Population procedure may cause some exceptions to appear. The text and
explanation for each of these exceptions follows. If you call the procedure from a
PL/SQL block you may want to handle them so that your program can proceed.

Exception 1: Error. While getting dimension details
This exception occurs when the reverse population procedure cannot find any data
configured in the driver table (REV_DIMENSIONS_B).

Exception 2: Error. While generating hierarchy Query
This exception occurs when there is a problem generating hierarchy query dynamically.

Exception 3: Error. While populating Nodes
This exception occurs when there is an error populating the OFSA_NODE_DESC table.

Product Instrument Mapping
ALM and TP processes can be based on a set of data tables or a set of products. In case
products are selected, ALM and TP engine internally gets the list of data tables mapped
to these products and processes those data tables. During the period-ending load cycle,
data is loaded into Client Data Objects such as Instrument tables. During this load
process, all the distinct members of 'Product' type dimension that are present within
each data table will be stored in a separate table (FSI_M_PROD_INST_TABLE_MAP) by
executing Product Instrument mapping procedure.

The following topics are covered in this section:

• Tables requiring Product-Instrument table map

• Product-Instrument table map procedure

• Executing the Product-Instrument table map Procedure

3-6 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

• Exception Messages

Tables Requiring Synchronization
Product-instrument table mapping is required only for Instrument tables. Instrument
tables are defined as all tables with the Instrument Table Classification
(table_classification_cd in (20,600,200,210)) on which all of the defined Leaf Columns
exist.

Product Instrument Table Map Procedure
This function gives exact mapping of a particular 'Product' stored in multiple
Instrument table, and mapping is stored in FSI_M_PROD_INST_TABLE_MAP for given
AS_OF_DATE. The function outputs the mapping information only if the
corresponding 'Product' definition exits in the corresponding dimension table.

The procedure performs the following functions:

• Gets the list of 'Product' type dimensions from dimension registry table
(REV_DIMENSIONS_B).

• Gets the list of Instrument tables from REV_TABLE_CLASS_ASSIGNMENT.

• Fetches the distinct set of members for each 'Product' type dimension from all
instrument tables for a given AS_OF_DATE.

• Stores the above set into a mapping table (FSI_M_PROD_INST_TABLE_MAP).

• The function outputs message in the message log if the member definition which
exists in the Instrument table is not found in the respective dimension table.

After the Product-Instrument table mapping utility run is completed, you should query
the mapping table to look for dimension members that are present as part of each
instrument table.

Executing the PRODUCT_INSTRUMENT_TABLE_MAP Procedure
You can execute this procedure either from SQL*Plus or from within a PL/SQL block or
from ICC Batch screen within OFSAAI framework.

To run the procedure from SQL*Plus, login to SQL*Plus as the Schema Owner. The
procedure requires 3 parameters – Batch Id – which can be used to see the log of the
procedure executed, MISDATE and the AS_OF_DATE. Identify the table name
parameter by enclosing it in single quotes and uppercase, as shown in the following
two examples. The syntax for calling the procedure is:

Utilities 3-7

Declare
output number;
Begin
 Output:= fn_Product_Instrument_Map ('Batch_Id',
'MISDATE','AS_OF_DATE');
End;

• AS_OF_DATE is the date for which mapping is required.

• MISDATE is the date for which batch is run.

Both MISDATE and AS_OF_DATE should be passed as 'YYYYMMDD' format.

An example of running the function from SQL*Plus for the FSI_D_TERM_DEPOSITS
table follows:
SQL> var output number;
SQL> execute :output:= fn_Product_Instrument_Map ('Batch_Id',
'20100131,'19991231');

To execute the stored procedure from within a PL/SQL block or procedure, see the
example that follows. Call the procedure as often as required to synchronize all of your
instrument tables. The appropriate table parameters are enclosed in single quotes.
SQL> declare
 output number;
 begin
 output:= fn_Product_Instrument_Map ('Batch_Id',
'MISDATE','AS_OF_DATE')
 end;
 /

To execute the procedure from OFSAAI ICC framework, create a new Batch with the
Task as TRANSFORM DATA and specify the following parameters for the task:

• Datastore Type :- Select appropriate datastore from list

• Datastore Name :- Select appropriate name from the list

• IP address :- Select the IP address from the list

• Rule Name :- Product_Inst_Mapping

• Parameter List :- AS_OF_DATE

Note: BATCHID and MISDATE will be passed explicitly in ICC
framework.

Exception Messages
The Product to Instrument Mapping function may cause two exceptions to appear. The
text and explanation for each of these exceptions follows. If you call the function from a
PL/SQL block you may want to handle them so that your program can proceed.

3-8 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

Exception 1: Table does not exist
The exception message reads:
Table 'TABLE_NAME' does not exist.

This exception occurs when the function does not find the Instrument table.

Exception 2: Column does not exist
The exception message reads:
Column 'Column_Name' does not exists in the instrument table
'Table_Name' while processing dimension 'Dimension ID'.

This error occurs when leaf column does not exist in the Instrument table.

Instrument Synchronization
During the period-ending load cycle, data is loaded into Client Data Objects such as
Instrument tables and the LEDGER_STAT table. During this load process, it is possible
for new, unidentified Dimension and Code values to be loaded into these tables.

The Instrument Synchronization procedure identifies these new Dimension and Code
values and inserts default description entries for them into the appropriate tables. The
procedure performs both of these synchronizations simultaneously. OFSAAI requires
that all Dimension and Code values have a corresponding description. This is required
for any OFSAA reporting operation to return the correct results. It also ensures that
Hierarchies work properly within the OFS analytical applications.

The following topics are covered in this section:

• Tables Requiring Synchronization

• Dimension Member Synchronization

• Code Synchronization

• Executing the Synchronize Instrument Procedure

• Exception Messages

Tables Requiring Synchronization
Dimension member and Code value synchronization is required only for Instrument
and LEDGER_STAT tables. Instrument tables are defined as all tables with the
Instrument Table Classification (table_classification_cd = 20) on which all of the defined
Key Dimension Columns exist.

Utilities 3-9

Dimension Member Synchronization
The SYNCHRONIZE_INSTRUMENT procedure synchronizes the dimension member
tables and the hierarchy tables with LEDGER_STAT and instrument tables, using
default values for member descriptions and other information columns. You can then
add the correct data to the new dimension members in AMHM member maintenance.

The procedure performs the following functions:

• Checks the specified table (LEDGER_STAT or instrument) for new dimension
members in each of that table's key dimension columns and adds the new
dimension value as leaf members to the respective dimension member tables.

• Adds the new dimension member to the corresponding attribute tables with default
values for mandatory attributes.

• When new dimension members are added to the dimension tables these members
include 'No Description' in the DESCRIPTION column and contain default values
for mandatory attributes.

• Reverse populates the newly added dimension members into legacy OFSA tables.
During reverse population, new members are created as orphan members, under
corresponding hierarchies.

After the SYNCHRONIZE_INSTRUMENT utility run is completed you should look for
any new dimension members using the AMHM member maintenance UI and enter the
correct descriptions and other member information. You should also look at the orphan
node of each Hierarchy for new dimension members and move these members to the
appropriate branch in the rollup.

Codes Synchronization
The SYNCHRONIZE_INSTRUMENT procedure identifies code values in Instrument
and LEDGER_STAT tables for which a corresponding description does not exist and
inserts a default description into the appropriate Code Description object. This applies
only to CODE columns categorized as User-Editable or User-Defined (refer table
classification). CODE columns for which OFSAA reserves all of the values are not
updated by this procedure. The procedure displays a warning message for any
unidentified values in CODE columns where OFSAA reserves the entire range.

For each CODE column (REV_DATA_TYPE_CD equals 3) on the specified object, the
SYNCHRONIZE_INSTRUMENT procedure queries from
REV_DESCRIPTION_TABLES to identify the object storing the corresponding
descriptions. If the resulting object is a User-Editable or User-Defined Code Description
object (checks from REV_TABLE_CLASS_ASSIGNMENT table), then the procedure
inserts a default description for any code values for which a description record does not
already exist. If the resulting object is an OFSAA Reserved Code Description object,
then the procedure outputs a warning message indicating how many invalid code

3-10 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

values exist in the specified Instrument or LEDGER_STAT table in the message log
(FSI_MESSAGE_LOG).

For more information on code value tables, see Oracle Financial Services Analytical
Applications Data Model Data Dictionary.

For example, if you are synchronizing the FSI_D_TERM_DEPOSITS table, the
procedure queries all of the CODE columns on this table. An example of a Reserved
CODE column is ACCRUAL_BASIS_CD. If the procedure finds any code values in this
column that are not present in the corresponding Code Description object
(FSI_ACCRUAL_BASIS_CD), it outputs an error message indicating the number of
invalid values present. OFSAA Reserved Code Description objects are identified by the
following SQL statement:
select table_name from rev_table_class_assignment
where table_classification_cd = 197;

An example of a User-Editable CODE column is SIC_CD. If the procedure finds any
code values in SIC_CD in the FSI_D_TERM_DEPOSITS table that do not have a
description in FSI_SIC_MLS, it creates a default description 'No Description' for each
value. It is then up to the users to update these descriptions as appropriate.
User-Editable Code Description objects are identified by the following SQL statement:
select * from rev_description_tables
 where table_name = 'FSI_D_TERM_DEPOSITS'
 and description_table_name not in
 (select table_name from rev_table_class_assignment
 where table_classification_cd = 197)

Executing the SYNCHRONIZE_INSTRUMENT Procedure
You can execute this procedure either from SQL*Plus or from within a PL/SQL block or
from ICC Batch screen within OFSAAI framework.

To run the procedure from SQL*Plus, login to SQL*Plus as the Schema Owner. The
procedure requires 2 parameters - table name to be synchronized and the As of Date.
Identify the table name parameter by enclosing it in single quotes and uppercase, as
shown in the following two examples. The syntax for calling the procedure is:
Declare
 output number;
Begin
 synchronize_instrument('Batch_Id', 'TABLE_NAME', output)
End;

where table_name is either:

• The name of an Instrument table

• LEDGER_STAT

An example of running the stored procedure from SQL*Plus for the
FSI_D_TERM_DEPOSITS table follows:

Utilities 3-11

SQL> var output number;
SQL>
synchronize_instrument('INFODOM_20101231','FSI_D_TERM_DEPOSITS',:output)
;

To execute the stored procedure from within a PL/SQL block or procedure, see the
example that follows. Call the procedure as often as required to synchronize all of your
instrument tables. The appropriate table name and AS_OF_DATE is enclosed in single
quotes.
SQL> declare
 output number;
 begin
 synchronize_instrument('INFODOM_20101231','LEDGER_STAT',output);
 end;
 /

To execute the procedure from OFSAAI ICC framework, create a new Batch with the
Task as TRANSFORM DATA and specify the following parameters for the task:

• Datastore Type:- Select appropriate datastore from list

• Datastore Name:- Select appropriate name from the list

• IP address:- Select the IP address from the list

• Rule Name:- fn_Synchronize_Instrmts

• Parameter List:- Instrument Table Name or LEDGER_STAT

Exception Messages
The SYNCHRONIZE_INSTRUMENT procedure may cause some exceptions to appear.
The text and explanation for each of these exceptions follows. If you call the procedure
from a PL/SQL block you may want to handle them so that your program can proceed.

Exception 1: Table is not an Instrument or LEDGER_STAT table
The exception message reads:
ORA-20002 Cannot process: table_name is not an OFSA Instrument or Ledger
type table having all leaf columns.

This exception occurs when the table_name parameter is not designated as an
Instrument table or LEDGER_STAT table in the OFSAA Metadata. The procedure
identified such tables based upon the Table Classification (Instrument or
LEDGER_STAT).

Exception 2: Table has invalid seeded FINANCIAL_ELEM_ID values
The exception message reads:
ORA-20004 Cannot process: table_name has new FINANCIAL_ELEM_ID values
that are within seeded range (less than 10000).

3-12 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

This error occurs when user-defined leaf values are found in the
DIM_FINANCIAL_ELEMENTS_B table within the FDM Reserved seeded data range.
The FDM seeded data range for OFSA_LEAF_DESC is WHERE LEAF_NUM_ID=0 and
LEAF_NODE<10000. If more records are found in this range than the seeded count for
FDM version, the Synchronize Instrument procedure displays the error message and
terminates. Delete any user-defined Financial Element leaf values within the FDM
seeded data range in order to resolve this problem.

Exception 3: Description table does not exist
The exception message reads:
WARNING: 'Description Table Name' code table could not be synchronized
due to :ORA-00942: table or view does not exist. These tables must be
synchronized manually. Failure to do so may result in inaccurate
reports.

This error occurs while inserting into the description table when user defined values are
found in the Code column in dimension member and description table does not exist.

Ledger Load Undo
Data loaded into Ledger_Stat table can be undone using the UNDO engine. The
following topics are included in this section:

• Parameters for the Undo engine

• Undo mechanism

• Executing Undo engine

Parameters
The following are the parameters to the UNDO engine:

• Batch Run ID (Typical format is
INFODOM_BATCHNAME_MISDATE_EXECUTIONSEQUENCE)

• IdentityCode-AsOfDate

• Mode Of Execution

Mode of execution for undoing the ledger load is 'L'. Identity Code and As Of Date are
passed in the second parameters with a Hyphen (-) in between.

OFSAAI Batch execution framework is used to invoke the Undo engine.

Utilities 3-13

Undo Mechanism
• Undo Engine will set the STATUS_FLAG column in FSI_DATA_IDENTITY table to

'U' to indicate the start of operation.

• The engine code reads all the records from FSI_DATA_IDENTITY table. For each
record that is read, it checks whether

SOURCE_TYPE = 0

TABLE_NAME = 'ledger_stat'

IDENTITY_CODE = <as entered by user>, and

AS_OF_DATE = <as entered by user>

After reading all the records from FSI_DATA_IDENTITY table, if a matching record
is not found then an error message is logged in the FSI_MESSAGE_LOG table.
However, if a matching record is found, then the Undo engine starts the undo
process as detailed below.

• Based on the IDENTITY_CODE and Year specified in the AS_OF_DATE, engine
prepares and executes an update query to set the amount for the month specified in
the AS_OF_DATE to zero and attaches a decode statement to calculate the Year To
Date amount values from the Period Start month to Period End month. It also
attaches any data filter if present to this query.

• Engine also prepares and executes a delete query on LEDGER_STAT table, to delete
all the records for which all the month values are 0 and IDENTITY_CODE equals to
the value input by user. All entries relevant for the IDENTITY_CODE are also
deleted from FSI_DATA_IDENTITY table.

• If the undo fails for any reason, status would be set as 'C'. If Undo is completed
successfully, the entry will be removed from FSI_DATA_IDENTITY table.

Executing Undo Engine
To execute the engine from OFSAAI ICC framework, create a new Batch with the Task
as RUN EXECUTABLE and specify the following parameters for the task:

• Datastore Type:- Select appropriate datastore from list

• Datastore Name:- Select appropriate name from the list

• IP address:- Select the IP address from the list

• Parameter List:- ./LEDGER_LOAD_UNDO.sh, <Identity Code>-<As_Of_Date>,'L'

To execute the engine from command line, the following is the syntax:

3-14 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

./LEDGER_LOAD_UNDO.sh<parameters>

Parameters: <Batch_Run_Id> <IdentityCode>-<As_of_date> 'L'

Note: AS_OF_DATE should be passed in mm/dd/yyyy format.

Exception Messages
The ledger undo program throws both user defined exceptions and Oracle database
related exceptions. These exception messages could be seen in FSI_MESSAGES_LOG
table with the help of the Batch_Run_Id which was used during execution. The
exception list includes all possible validations on the parameters that were passed and
database related exceptions.

Data Loaders 4-1

4
Data Loaders

This chapter details the steps involved in executing various data loaders that are
available within OFSAA. Data loaders move data from staging layer to processing
layer.

This chapter covers the following topics:

• Dimension Loaders

• Historical Rates Data Loader

• Forecast Rate Data Loader

• Prepayment Rate Data Loader

• Stage Instrument Table Loader

• Transaction Summary Table Loader

• Ledger Data Loader

• Pricing Management Transfer Rate Population Procedure

• ALMBI Transformation

• Hierarchy Transformation

Dimension Loaders
The Dimension Loader procedure populates dimension members, attributes and
hierarchies from Staging dimension tables into dimension tables registered within
OFSAAI AMHM framework. Users can view the members and hierarchies loaded by
the dimension loader through AMHM screens.

The following topics are covered in this section:

• Overview of Dimension Loaders

• Dimension tables that are part of Staging

4-2 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

• Setting up Loading

• Dimension Loader Procedure

• Executing the Dimension Loader

• Executing the Reverse Population Procedure

• Exception Messages

• Executing the Dimension Load Procedure using the Master Table approach

• Updating DIM_<DIMENSION>_B <Dimension>_Code column with values from
DIM_<DIMENSION>_ATTR table

• Executing the Truncate Stage Tables Procedure

Data Loaders 4-3

Dimension Loader Overview

The dimension loader is used to:

• Load dimension members and their attributes from the staging area into Dimension
tables that are registered with the OFSAAI AMHM framework.

• Create hierarchies in AMHM.

• Load hierarchical relationships between members within hierarchies from the
staging area into AMHM.

Some of the features of the dimension loader are:

• Multiple hierarchies can be loaded from staging tables.

• Validations of members and hierarchies are similar to that of being performed
within AMHM screens.

• Members can be loaded incrementally or fully synchronized with the staging tables.

4-4 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

Tables that are Part Of Staging
Dimension data is stored in the following set of tables:

• STG _<DIMENSION>_B_INTF - Stores leaf and node member codes within the
dimension.

• STG_<DIMENSION>_ TL_INTF - Stores names of leaf and node and their
translations.

• STG_<DIMENSION>_ ATTR_INTF - Stores attribute values for the attributes of the
dimension.

• STG_<DIMENSION>_ HIER_INTF - Stores parent-child relationship of members
and nodes that are part of hierarchies.

• STG_HIERARCHIES_INTF - Stores master information related to hierarchies.

Data present in the above set of staging dimension tables are loaded into the below set
of dimension tables.

• DIM_<DIMENSION>_ B - Stores leaf and node member codes within the
dimension.

• DIM_<DIMENSION>_TL - Stores names of leaf and node and their translations.

• DIM_<DIMENSION>_ATTR - Stores attribute values for the attributes of the
dimension.

• DIM_<DIMENSION>_HIER - Stores parent-child relationship of members and
nodes that are part of hierarchies.

• REV_HIERARCHIES - Stores hierarchy related information.

• REV_HIERARCHY_LEVELS - Stores levels of the hierarchy.

For more information on viewing the structure of staging tables, see Oracle Financial
Services Analytical Applications Data Model Data Dictionary.

Staging tables are present for all key dimensions that are configured within the OFSAAI
framework. For any custom key dimension that is added by the Client, respective
staging dimension tables like STG_<DIMENSION>_B_INTF, STG_<
DIMENSION>_TL_INTF, STG_<DIMENSION>_ATTR_INTF, and
STG_<DIMENSION>_HIER_INTF have to be created in the ERwin model.

Populating STG_<DIMENSION>_HIER_INTF Table
The STG_<DIMENSION>_HIER_INTF table is designed to hold hierarchy structure.

Data Loaders 4-5

The hierarchy structure is maintained by storing the parent child relationship in the
table. In the following hierarchy there are 4 levels. The first level node is 100, which is
the Total Rollup. The total Rollup node will have the N_PARENT_DISPLAY_CODE
and N_CHILD_DISPLAY_CODE as the same.

Column Name Column Description

V_HIERARCHY_OBJECT_NAME Stores the name of the hierarchy

N_PARENT_DISPLAY_CODE Stores the parent Display Code

N_CHILD_DISPLAY_CODE Stores the child Display Code

N_DISPLAY_ORDER_NUM Determines the order in which the structure
(nodes, leaves) of the hierarchy should be
displayed. This is used by the UI while
displaying the hierarchy. There is no
validation to check if the values in the column
are in proper sequence.

V_CREATED_BY Stores the created by user. Hard coded as -1

V_LAST_MODIFIED_BY Stores the last modified by user. Hard coded
as -1

4-6 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

Hierarchy Structure

Data Loaders 4-7

Sample Data

V_HIERARCHY_
OBJECT_NAME

N_PARENT_DISP
LAY_CODE

N_CHILD_DISPLAY
_CODE

N_DISPLAY_OR
DER_NUM

V_CREATE
D_BY

V_LAST_MO
DIFIED_BY

INCOME STMT 100 100 1 -1 -1

INCOME STMT 100 12345678901247 2 -1 -1

INCOME STMT 12345678901247 12345678901255 1 -1 -1

INCOME STMT 12345678901255 10001 1 -1 -1

INCOME STMT 12345678901255 10002 2 -1 -1

INCOME STMT 12345678901247 12345678901257 2 -1 -1

INCOME STMT 12345678901257 10006 1 -1 -1

INCOME STMT 12345678901257 10007 2 -1 -1

INCOME STMT 100 12345678901250 3 -1 -1

INCOME STMT 12345678901250 12345678901262 2 -1 -1

INCOME STMT 12345678901262 30005 1 -1 -1

INCOME STMT 12345678901250 12345678901264 1 -1 -1

INCOME STMT 12345678901264 30006 1 -1 -1

INCOME STMT 12345678901264 30007 2 -1 -1

INCOME STMT 12345678901264 30008 3 -1 -1

INCOME STMT 12345678901264 30009 4 -1 -1

INCOME STMT 100 12345678901268 4 -1 -1

INCOME STMT 12345678901268 3912228 1 -1 -1

INCOME STMT 3912228 20020 1 -1 -1

4-8 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

V_HIERARCHY_
OBJECT_NAME

N_PARENT_DISP
LAY_CODE

N_CHILD_DISPLAY
_CODE

N_DISPLAY_OR
DER_NUM

V_CREATE
D_BY

V_LAST_MO
DIFIED_BY

INCOME STMT 3912228 20021 2 -1 -1

INCOME STMT 3912228 20022 3 -1 -1

Dimension Load Procedure
This procedure performs the following functions:

• Gets the list of source and target dimension tables. The dimension tables for a given
dimension are stored in REV_DIMENSIONS_B table. The stage tables for a given
dimension are stored in FSI_DIM_LOADER_SETUP_DETAILS.

• The parameter Synchronize Flag can be used to completely synchronize data
between the stage and the dimension tables. If the flag = 'Y' members from the
dimension table which are not present in the staging table will be deleted. If the flag
is 'N' the program merges the data between the staging and dimension table.

• The Loader program validates the members/attributes before loading them.

• The program validates the number of records in the base members table -
STG_<DIMENSION>_B_INTF and translation members table -
STG_<DIMENSION>_TL_INTF. The program exits if the number of records
does not match.

• In case values for mandatory attributes are not provided in the staging tables,
the loader program populates the default value (as specified in the attribute
maintenance screens within AMHM of OFSAAI) in the dimension table.

• The program validates for data types of attribute value. For example an
attribute that is configured as 'NUMERIC' cannot have non-numeric values.

• If all the member level validations are successful the loader program inserts the
data from the staging tables to the dimension tables.

• After this, the loader program loads hierarchy data from staging into hierarchy
tables.

• In case of hierarchy data the loader program validates if the members used in the
hierarchy are present in the STG_<DIMENSION>_B_INTF table.

• The program validates if the hierarchy contains multiple root nodes and logs error
messages accordingly, as multiple root notes are not supported.

Data Loaders 4-9

After execution of the dimension loader, the user must execute the reverse population
procedure to populate OFSA legacy dimension and hierarchy tables.

Setting up Dimension Loader
FSI_DIM_LOADER_SETUP_DETAILS table should have record for each dimension that
has to be loaded using the dimension loader. The table contains seeded entries for key
dimensions that are seeded with the application.

The following are sample entries in the setup table:

Column Name Description Sample Value

n_dimension_id This stores the Dimension Id 1

v_intf_b_table_name Stores the name of the Staging Base table Stg_org_unit_b_i
ntf

v_intf_member_colum
n

Stores the name of the Staging Member Column
Name

V_org_unit_id

v_intf_tl_table_name Stores the name of the Staging Translation table Stg_org_unit_tl_i
ntf

v_intf_attr_table_name Stores the name of the Staging Member Attribute
table

Stg_org_unit_attr
_intf

v_intf_hier_table_nam
e

Stores the name of the Staging Hierarchy table Stg_org_unit_hie
r_intf

d_start_time Start time of loader - updated by the loader
program.

d_end_time End time of loader - updated by the loader
program.

v_comments Stores Comments. Dimension
loader for
organization
unit.

v_status Status updated by the Loader program.

v_intf_member_name_
col

Stores the name of the Member V_org_unit_nam
e

4-10 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

Column Name Description Sample Value

v_gen_skey_flag Flag to indicate if surrogate key needs to be
generated for alphanumeric codes in the staging.
Applicable only for loading dimension data from
master tables. Not applicable for loading
dimension data from interface tables.

v_stg_member_colum
n

Name of the column that holds member code in
the staging table. Applicable only for loading
dimension data from master tables. Not
applicable for loading dimension data from
interface tables.

v_stg_member_name_
col

Name of the column that holds member name in
the staging table. Applicable only for loading
dimension data from master tables. Not
applicable for loading dimension data from
interface tables.

v_stg_member_desc_c
ol

Name of the column that holds description in the
staging table. Applicable only for loading
dimension data from master tables. Not
applicable for loading dimension data from
interface tables.

Executing the Dimension Load Procedure
You can execute this procedure either from SQL*Plus or from within a PL/SQL block or
from the ICC Batch screen within OFSAAI framework.

To run the procedure from SQL*Plus, login to SQL*Plus as the Schema Owner. The
function requires 4 parameters – Batch Run Identifier, As of Date, Dimension Identifier,
Synchronize flag (Optional). The syntax for calling the procedure is:
function fn_drmDataLoader(batch_run_id varchar2,
 as_of_date varchar2,
 pDimensionId varchar2,
 pSynchFlag char default 'Y')

where

• BATCH_RUN_ID is any string to identify the executed batch.

• AS_OF_DATE in the format YYYYMMDD.

• pDIMENSIONID dimension id.

Data Loaders 4-11

• pSynchFlag this parameter is used to identify if a complete synchronization of data
between staging and dimension table is required. The default value is 'Y'.

For Example:
Declare
 num number;
Begin
 num := fn_drmDataLoader ('INFODOM_20100405','20100405' ,1,'Y');
End;

To execute the procedure from the OFSAAI ICC framework, create a new Batch with
the Task as TRANSFORM DATA and specify the following parameters for the task:

• Datastore Type:- Select appropriate datastore from list

• Datastore Name:- Select appropriate name from the list

• IP address:- Select the IP address from the list

• Rule Name:- fn_drmDataLoader

• Parameter List:- Dimension ID, Synchronize Flag

The fn_drmdataloader function calls STG_DIMENSION_LOADER package which loads
data from the stg_<dimension>_hier_intf to the dim_<dimension>_hier table.

Exception Messages
The text and explanation for each of these exceptions follows. If you call the procedure
from a PL/SQL block you may want to handle these exceptions appropriately so that
your program can proceed without interruption.

Exception 1: Error. errMandatoryAttributes
This exception occurs when the stage Loader program cannot find any data default
value for mandatory attributes.

Exception 2: Error. errAttributeValidation
This exception occurs when there is a data type mis-match between the attribute value
and configured data-type for the attribute.

Exception 3: Error. errAttributeMemberMissing
If there are member mismatch in the count between the base and the translation table.

Executing the Dimension Load Procedure using Master Table approach
FSI_DIM_LOADER_SETUP_DETAILS table should have a record for each dimension
that has to be loaded. The table contains entries for key dimensions that are seeded with

4-12 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

the application.

The following columns must be populated for user-defined Dimensions.

v_stg_member_column

v_stg_member_name_col

v_stg_member_desc_col

Additionally, the FSI_DIM_ATTRIBUTE_MAP table should be configured with column
attribute mapping data. This table maps the columns from a given master table to
attributes.

N_DIMENSION_ID This stores the Dimension Id

V_STG_TABLE_NAME This holds the source Stage Master table

V_STG_COLUMN_NAME This holds the column from the master table

V_ATTRIBUTE_NAME This holds the name of the attribute the
column maps to

V_UPDATE_B_CODE_FLAG This column indicates if the attribute value
can be used to update the code column in the
DIM_<Dimension>_B table.

Note: fn_STGDimDataLoader does not use
FSI_DIM_ATTRIBUTE_MAP.V_UPDATE_
B_CODE_FLAG

You can execute this procedure either from SQL*Plus or from within a PL/SQL block or
from the ICC Batch screen within OFSAAI framework. To run the procedure from
SQL*Plus, login to SQL*Plus as the Schema Owner. The function requires 5 parameters:
– Batch Run Identifier , As of Date, Dimension Identifier , Mis-Date Required Flag,
Synchronize flag (Optional). The syntax for calling the procedure is:
function fn_STGDimDataLoader(batch_run_id varchar2,
 as_of_date varchar2,
 pDimensionId varchar2,
 pMisDateReqFlag char default 'Y',
 pSynchFlag char default 'N')

where

• BATCH_RUN_ID is any string to identify the executed batch.

• AS_OF_DATE in the format YYYYMMDD.

Data Loaders 4-13

• pDIMENSIONID dimension id.

• pMisDateReqFlag this parameter is used to identify if AS-OF_DATE should be used
in the where clause to filter the data.

• pSynchFlag this parameter is used to identify if a complete synchronization of data
between staging and fusion table is required. The default value is 'Y'.

For Example
Declare
 num number;
Begin
 num := fn_STGDimDataLoader ('INFODOM_20100405','20100405' ,1,'Y','Y'
);
End;

To execute the procedure from OFSAAI ICC framework, create a new Batch with the
Task as TRANSFORM DATA and specify the following parameters for the task:

• Datastore Type:- Select appropriate datastore from list

• Datastore Name:- Select appropriate name from the list

• IP address:- Select the IP address from the list

• Rule Name:- fn_STGDimDataLoader

• Parameter List:- Dimension ID, Mis Date Required Flag , Synchronize Flag

Clients could face a problem while loading customer dimension into AMHM using the
Master table approach.

Configuring the setup table for CUSTOMER dimension is pretty confusing while
dealing with attributes like FIRST_NAME , MIDDLE_NAME and LAST_NAME.

Most clients would like to see FIRST_NAME , MIDDLE_NAME and LAST_NAME
forming the name of the member within the customer dimension.

Currently the STG_DIMENSION_LOADER disallows concatenation of columns.

Moreover the concatenation might not ensure unique values.

As a solution to this problem we can work on the following options:

Approach 1
1. Create a view on STG_CUSTOMER_MASTER table with FIRST_NAME,

MIDDLE_NAME and LAST_NAME concatenated and identify this column as
NAME.

2. Configure the name column from the view in
FSI_DIM_LOADER_SETUP_DETAILS

4-14 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

3. Increase the size of DIM_CUSTOMER_TL.name column.

4. Disable the unique index on DIM_CUSTOMER_TL.NAME or append
Customer_code to the NAME column.

5. The NAME column will be populated into the DIM_CUSTOMER_TL.NAME
column.

Approach 2
Populate customer_code into the DIM_CUSTOMER_TL.NAME column.

Updating DIM_<DIMENSION>_B <Dimension>_Code column with values from
DIM_<DIMENSION>_ATTR table

The stage dimension loader procedure does not insert or update the <Dimension>_code
column in the Dim_<Dimension>_B table. This section explains how the
<Dimension>_code can be updated.

Steps to be followed

1. A new attribute should be created in the REV_DIM_ATTRIBUTES_B / TL table.

Note: You should use the existing "CODE" attribute for the seeded
dimensions.

Example
PRODUCT CODE, COMMON COA CODE and so on.

2. The fsi_dim_attribute_map table should be populated with values.

The following columns must be populated:

N_DIMENSION_ID (Dimension id)

V_ATTRIBUTE_NAME (The attribute name)

V_UPDATE_B_CODE_FLAG (This flag should be 'Y'). Any given dimension can
have only one attribute with V_UPDATE_B_CODE_FLAG as 'Y'. This should only
be specified for the CODE attribute for that dimension.

Example:

N_DIMENSION_ID 4

V_ATTRIBUTE_NAME 'PRODUCT_CODE'

V_UPDATE_B_CODE_FLAG 'Y'

Data Loaders 4-15

V_STG_TABLE_NAME 'stg_product_master'

V_STG_COLUMN_NAME 'v_prod_code'

Note: The values in V_STG_TABLE_NAME and
V_STG_COLUMN_NAME are not used by the
fn_updateDimensionCode procedure, however these fields are set
to NOT NULL and should be populated.

3. Load STG_<DIMENSION>_ATTR_INTF table with data for the new ATTRIBUTE
created.

Note: The attribute values must first be loaded using the stage
dimension loader procedure, fn_drmDataLoader, before running
this procedure. This procedure will pull values from the
DIM_<DIMENSION>_ATTR table. If these rows do not exist for
these members prior to running this procedure, the
DIM_<DIMENSION>_B.<DIMENSION>_CODE field will not be
updated.

4. Execute the fn_updateDimensionCode function. The function updates the code
column with values from the DIM_<DIMENSION>_ATTR table.

You can execute this procedure either from SQL*Plus or from within a PL/SQL block or
from the ICC Batch screen within OFSAAI framework.

To run the procedure from SQL*Plus, login to SQL*Plus as the Atomic Schema Owner.
The function requires 3 parameters – Batch Run Identifier , As of Date, Dimension
Identifier. The syntax for calling the procedure is:
function fn_updateDimensionCode (batch_run_id varchar2,
 as_of_date varchar2,
 pDimensionId varchar2)

where

• BATCH_RUN_ID is any string to identify the executed batch.

• AS_OF_DATE in the format YYYYMMDD.

• pDIMENSIONID dimension id

For Example

4-16 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

Declare
 num number;
Begin
 num := fn_updateDimensionCode ('INFODOM_20100405','20100405',1);
End;

To execute the procedure from OFSAAI ICC framework, create a new Batch with the
Task as TRANSFORM DATA and specify the following parameters for the task:

• Datastore Type:- Select appropriate datastore from list

• Datastore Name:- Select appropriate name from the list

• IP address:- Select the IP address from the list

• Rule Name:- Update_Dimension_Code

• Parameter List:- Dimension ID

Truncate Stage Tables Procedure
This procedure performs the following functions:

• The procedure queries the FSI_DIM_LOADER_SETUP_DETAILS table to get the
names of the staging table used by the Dimension Loader program.

• The function can either delete records from this table for a given MIS_DATE or
completely truncate the data.

Executing the Dimension Load Procedure
You can execute this procedure either from SQL*Plus or from within a PL/SQL block or
from the ICC Batch screen within OFSAAI framework.

To run the procedure from SQL*Plus, login to SQL*Plus as the Schema Owner. The
function requires 4 parameters – Batch Run Identifier, As of Date, Dimension Identifier,
Mis Date Required Flag. The syntax for calling the procedure is:
function fn_truncateStageTable(batch_run_id varchar2,
 as_of_date varchar2,
 pDimensionId varchar2,
 pMisDateReqFlag char default 'Y')

where

• BATCH_RUN_ID is any string to identify the executed batch.

• AS_OF_DATE in the format YYYYMMDD.

• pDIMENSIONID dimension id.

Data Loaders 4-17

• pMisDateReqFlag this parameter is used to identify the data needs to be deleted for
a given MIS Date. The default value is 'Y'.

For Example
Declare
 num number;
Begin
 num := fn_truncateStageTable ('INFODOM_20100405','20100405' ,1,'Y');
End;

To execute the procedure from OFSAAI ICC framework, create a new Batch with the
Task as TRANSFORM DATA and specify the following parameters for the task:

• Datastore Type:- Select appropriate datastore from list

• Datastore Name:- Select appropriate name from the list

• IP address:- Select the IP address from the list

• Rule Name:- fn_truncateStageTable

• Parameter List:- Dimension ID, Mis-Date required Flag

Historical Rates Data Loader
Historical data for currency exchange rates, interest rates and economic indicators can
be loaded into the OFSAA historical rates tables through the common staging area. The
T2T component within OFSAAI framework is used to move data from the Stage
historical rate tables into the relevant OFSAA processing tables. After loading the rates,
users can view the historical rate data through the OFSAA Rate Management UI's.

The following topics are covered in this section:

• Tables related to Historical Rates

• Populating Historical Rate Stage tables

• Executing the Historical Rates Data Loaders

• Re-loading historical rates

• Exception Messages

Tables Related to Historical Rates
Historical rates are stored in the following staging area tables:

• STG_EXCHANGE_RATE_HIST – This staging table contains the historical
exchange rates for Currencies used in the system.

4-18 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

• STG_IRC_RATE_HIST - This staging table contains the historical interest rates for
the Interest Rate codes used in the system.

• STG_IRC_TS_PARAM_HIST – This staging table contains the historical interest rate
term structure parameters, used by the Monte Carlo engine.

• STG_ECO_IND_HIST_RATES - This staging table stores the historical values for the
Economic Indicators used in the system.

Historical rates in OFSAA Rate Management are stored in the following processing
tables:

• FSI_EXCHANGE_RATE_HIST – This table contains the historical exchange rates
for the Currencies used in the system.

• FSI_IRC_RATE_HIST – This table contains the historical interest rates for the
Interest Rate codes used in the system.

• FSI_IRC_TS_PARAM_HIST – This table stores the historical interest rate term
structure parameters, used by the Monte Carlo engine.

• FSI_ECO_IND_HIST_RATES – This table contains the historical values for the
Economic Indicators used in the system.

For more information on viewing the structure of staging tables, see Oracle Financial
Services Analytical Applications Data Model Data Dictionary.

Populating Stage Tables
Data for historical rates commonly comes from external systems. Such data must be
converted into the format of the staging area tables. This data can be loaded into the
staging area using the F2T component of the OFSAAI framework. Users can view the
loaded data by querying the staging tables and various log files associated with the F2T
component.

Executing the Historical Rates Data Loader T2T
There are four pre-defined T2T mappings configured and seeded in OFSAA for the
purpose of loading historical rates. These can be executed from the ICC framework
within OFSAAI.

To execute the Historical Exchange Rates Data Loader, create a new Batch and specify
the following parameters:

• Datastore Type:- Select appropriate datastore from the drop down list

• Datastore Name:- Select appropriate name from the list. Generally it is the Infodom
name.

Data Loaders 4-19

• IP address:- Select the IP address from the list

• Rule Name:- T2T_EXCHANGE_RATE_HIST

• Parameter List:- No Parameter is passed. The only parameter is the As of Date
selection which is made when the process is executed.

To execute the Historical Interest Rates Data Loader, create a new Batch and specify the
following parameters:

• Datastore Type:- Select appropriate datastore from the drop down list

• Datastore Name:- Select appropriate name from the drop down list

• IP address:- Select the IP address from the list

• Rule Name:- T2T_IRC_RATE_HIST

• Parameter List: No Parameter is passed. The only parameter is the As of Date
selection which is made when the process is executed.

To execute the Historical Term Structure Parameter Data Loader, create a new Batch
and specify the following parameters:

• Datastore Type:- Select appropriate datastore from list

• Datastore Name:- Select appropriate name from the list

• IP address:- Select the IP address from the list

• Rule Name:- T2T_IRC_TS_PARAM_HIST

• Parameter List: No Parameter is passed. The only parameter is the As of Date
selection which is made when the process is executed.

To execute the Historical Economic Indicator Data Loader, create a new Batch and
specify the following parameters:

• Datastore Type:- Select appropriate datastore from the drop down list

• Datastore Name: - Select appropriate name from the drop down list

• IP address:- Select the IP address from the list

• Rule Name:- T2T_ECO_IND_HIST_RATES

• Parameter List: No Parameter is passed. The only parameter is the As of Date
selection which is made when the process is executed.

After executing any of the above batch processes, check the T2T component logs and

4-20 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

batch messages to confirm the status of the data load.

The T2T component can fail under the following scenario:

• Unique constraint error – Target table may already contain data with the primary
keys that the user is trying to load from the staging area.

Re-Load Of Historical Rates
The T2T component can only perform "Insert" operations. In case the user needs to
perform updates, previously loaded records should be deleted before loading the
current records. Function fn_deleteFusionTables is used for deleting the records in the
target that are present in the source. This function removes rows in the table if there are
matching rows in the Stage table. This function requires entries in the
FSI_DELETE_TABLES_SETUP table to be configured. Configure the below table for all
columns that need to be part of the join between the Stage table and Equivalent table.

Users can create new or use existing Data Transformations for deleting a Table. The
parameters for the Data Transformation are:

• Table to be deleted

• Batch run ID

• As of Date

Column Name Column Description Sample Value

STAGE_TABLE_NAME Stores the source table name
for forming the join statement

STG_EXCHANGE_RATE_HI
ST

STAGE_COLUMN_NAME Stores the source column
name for forming the join
statement

V_FROM_CURRENCY_CD

FUSION_TABLE_NAME Stores the target table name
for forming the join statement

FSI_EXCHANGE_RATE_HIS
T

FUSION_COLUMN_NAME Stores the target column
name for forming the join
statement

FROM_CURRENCY_CD

Note: Insert rows in FSI_DELETE_TABLES_SETUP for all columns that
can be used to join the stage with the equivalent table. In case if the join
requires other dimension or code tables, a view can be created joining

Data Loaders 4-21

the source table with the respective code tables and this view can be
part of the above setup table.

Forecast Rate Data Loader
The Forecast Rate Data Loader procedure loads forecast rates into the OFSAA ALM
Forecast rates processing area tables from staging tables. In ALM, Forecast Rate
assumptions are defined within the Forecast Rate Assumptions UI. The Forecast Rates
Data Loader supports the Direct Input and Structured Change methods only for
exchange rates, interest rates and economic indicators. Data for all other forecast rate
methods should be input through the User Interface. After executing the forecast rates
data loader, users can view the information in the ALM - Forecast Rates Assumptions
UI.

The following topics are covered in this section:

• Tables related to Forecast Rate Data Loader

• Populating Forecast Rate Stage tables

• Forecast Rate Loader Program

• Executing the Forecast Rate Data Loader

• Exception Messages

Forecast Rate Data Loader Tables
Forecast rate assumption data is stored in the following staging area tables:

• STG_FCAST_XRATES – This table holds the forecasted exchange rate data for the
current ALM modeling period.

• STG_FCAST_IRCS - This table holds the forecasted interest rate data for the current
ALM modeling period.

• STG_FCAST_EI - This table holds the forecasted economic indicator data for the
current ALM modeling period.

Rates present in the above staging tables are copied into the following ALM metadata
tables.

• FSI_FCAST_IRC_DIRECT_INPUT, FSI_FCAST_IRC_STRCT_CHG_VAL.

• FSI_FCAST_XRATE_DIRECT_INPUT, FSI_FCAST_XRATE_STRCT_CHG.

4-22 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

• FSI_FCAST_EI_DIRECT_INPUT, FSI_FCAST_EI_STRCT_CHG_VAL

For more information on viewing the structure of staging tables, see Oracle Financial
Services Analytical Applications Data Model Data Dictionary.

Populating Forecast Rate Stage Tables

STG_FCAST_EI

v_forecast_name The Name of the Forecast Rate
assumption rule as defined.

 The Forecast name indicates the Short
Description for the Forecast Rate Sys ID
as stored in the
FSI_M_OBJECT_DEFINITION_TL table.
In case the forecast sys id is provided,
then populate this field with -1.

v_scenario_name This field indicates the Scenario Name for
which the Forecast Rate data is
applicable.

v_economic_indicator_name This field indicates the Economic
Indicator Name for which the Forecast
data is applicable.

n_from_bucket This field indicates the Start Bucket
Number for the given scenario.

fic_mis_date This field indicates the current period As
of Date applicable to the data being
loaded.

n_fcast_rates_sys_id The System Identifier of the forecast rate
assumption rule to which this data will be
loaded. In case forecast name and folder
are provided, then populate this field
with -1.

v_folder_name Name of the folder that holds the Forecast
Rate assumption rule definition. In case
the forecast sys id is provided, then
populate this field with -1.

Data Loaders 4-23

v_ei_method_cd The Forecast method of economic
indicator values include: Direct Input or
Structured change.

 Use DI - For Direct Input or SC - For
Structured Change

n_economic_indicator_value This field indicates the value for the
Economic Indicator for the given scenario
and time bucket.

n_to_bucket This field indicates the End Bucket
Number for the assumption.

STG_FCAST_XRATES

v_forecast_name The Name of the Forecast Rate
assumption rule as defined.

 The Forecast name indicates the Short
Description for the Forecast Rate Sys ID
as stored in the
FSI_M_OBJECT_DEFINITION_TL table.
In case the forecast sys id is provided,
then populate this field with -1.

v_scenario_name This field indicates the Scenario Name for
which the Forecast Rate data is
applicable.

v_iso_currency_cd From ISO Currency Code (like USD,
EUR, JPY, GBP) of the forecast rate.

n_from_bucket This field indicates the Start Bucket
Number for the given scenario.

fic_mis_date This field indicates the As of Date for
which the data being loaded is applicable.

n_fcast_rates_sys_id The System Identifier of the assumption
rule to which this data will be loaded. In
case forecast name and folder are
provided, then populate this field with -1.

4-24 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

v_folder_name Name of the folder that holds the
Forecast Rate assumption rule definition.
In case the forecast sys id is provided,
then populate this field with -1.

n_to_bucket This field indicates the End Bucket
Number for the given scenario.

v_xrate_method_cd The Forecast method for exchange rate
values include: Direct Input or Structured
change.

 Use DI - For Direct Input or SC - For
Structured Change

n_exchange_rate This field indicates the Exchange rate for
the Currency and given bucket Range.

STG_FCAST_IRCS

v_forecast_name The Name of the Forecast Rate
assumption rule as defined.

 The Forecast name indicates the Short
Description for the Forecast Rate Sys ID
as stored in the
FSI_M_OBJECT_DEFINITION_TL table.
In case the forecast sys id is provided,
then populate this field with -1.

v_scenario_name This field indicates the Scenario Name
for which the Forecast Rate data is
applicable.

v_irc_name The IRC Name indicates the Name of
Interest Rate Code .

n_interest_rate_term This field indicates the Interest Rate
Term applicable for the row of data.

v_interest_rate_term_mult This field indicates the Interest Rate
Term Multiplier for the row of data
being loaded.

Data Loaders 4-25

n_from_bucket This field indicates the Start Bucket
Number for the given scenario.

fic_mis_date This field indicates the As of Date for
which the data being loaded is
applicable.

n_fcast_rates_sys_id The System Identifier of the interest rate
code forecast rate definition. In case the
forecast name and folder are provided,
then populate this field with -1.

v_folder_name Name of the folder that holds the
Forecast Rate assumption rule definition.
In case the forecast sys id is provided,
then populate this field with -1.

n_interest_rate This field indicates the Interest Rate
Change for the specified Term and for
the given scenario.

n_to_bucket This field indicates the End Bucket
Number for the given scenario.

v_irc_method_cd The Forecast method of interest rate code
values include: Direct Input or
Structured change.

 Use DI - For Direct Input or SC - For
Structured Change

Forecast Rate Loader Program
The Forecast Rate Loader program updates the existing forecast rates to new forecast
rates in the ALM Forecast Rate tables for Direct Input and Structured Change
forecasting methods.

Note: The Forecast Rate Loader can only update existing forecast rate
assumption rule definitions. The initial Forecast Rate assumption rule
definition and initial methods must be created through the Forecast
Rates user interface within Oracle ALM.

The Forecast Rates Data Loader performs the following functions:

4-26 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

1. The User can load forecast rate assumptions for either a specific Forecast Rate
assumption rule or multiple forecast rates assumption rules.

2. To Load a specific Forecast Rate assumption rule, the user should provide either the
Forecast Rate name and a folder name as defined in Oracle ALM or the Forecast
Rate System Identifier.

3. When the load parameter is to load a specific Forecast Rate assumption rule for a
given As of Date, the loader checks for Forecast Name/Forecast Rate System
Identifier's presence in the Object Definition Registration Table. If it's present, then
the combination of Forecast Name/Forecast Rate system Identifier and As of Date is
checked in each of the Forecast Rate Staging Tables one by one.

4. The data loading is done from each of the staging tables for the Direct Input and
Structured change methods where the Forecast Name and As of Date combination
is present.

5. When the load parameter is the Load All Option (Y), the Distinct Forecast Name
from the 3 staging tables is verified for its presence in Object Definition Registration
table and the loading is done for each of the Forecast Names.

6. Messages for each of the steps is written into the FSI_MESSAGE_LOG table.

After the Forecast rate loader processing is completed, the user should query the ALM
Forecast Rate tables to look for the new forecast rates. Also, the user can verify the data
just loaded using the Forecast Rate Assumption UI.

Executing the Forecast Rate Data Load Procedure
The user can execute this Forecast Rate Loader from either SQL*Plus, from within a
PL/SQL block or from the ICC Batch screen within OFSAAI framework.

Forecast Rate Loader – Method 1
To run the Forecast Rate Loader from SQL*Plus, login to SQL*Plus as the Schema
Owner. The procedure requires 6 parameters

1. Batch Execution Identifier (batch_run_id)

2. As of Date (mis_date)

3. Forecast Rate System Identifier (pObject_Definition_ID)

4. Option for Loading All or any Specific Forecast Rate assumption rule. If the Load
All option is 'N' then either the Forecast Rate Assumption rule Name Parameter
with the Folder Name or Forecast Rate Sys ID should be provided else it raises an
error (pLoad_all)

Data Loaders 4-27

5. Forecast Rate assumption rule Name (pForecast_name)

6. Folder name (pFolder_Name)

The syntax for calling the procedure is:
fn_stg_forecast_rate_loader(batch_run_id varchar2,
 mis_date varchar2,
 pObject_Definition_ID number,
 pLoad_all char default 'N',
 pForecast_name varchar2,
 pFolder_Name varchar2)

where

• BATCH_RUN_ID is any string to identify the executed batch.

• mis_date in the format YYYYMMDD.

• pObject_Definition_ID -The Forecast Rate System Identifier in ALM

• pLoad_all indicates option for loading all forecast rates.

• pForecast_Name. This can be null i.e '' when the pLoad_all is 'Y' else provide a valid
Forecast Rate assumption rule Name.

• pFolder_Name indicates the name of the Folder where the forecast rate assumption
rule was defined.

For Example:

1. If the user wants to Load all forecast rates assumption rules defined within a folder, say "
RTSEG" then
Declare
 num number;
Begin
Num:= fn_stg_forecast_rate_loader('INFODOM_FORECAST_RATE_LOADER',
 '20100419',
 null,
 'Y',
 Null,
 'RTSEG');
End;

The loading is done for all forecast rates under folder 'RTSEG' for as of Date
20100419.

4-28 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

Sample Data for STG_FCAST_IRCS to Load all forecast rates defined within a folder

Sample Data for STG_FCAST_XRATES to Load all forecast rates defined within a
folder

Sample Data for STG_FCAST_EI to Load all forecast rates defined within a folder

Note: To Load all forecast rates defined within a folder, the value of
Forecast rate System identifier in the staging tables should be "-1".

2. If the user wants to Load a specific forecast rate assumption rule, they should provide the
unique Forecast Rate System Identifier
Declare
 num number;
Begin
Num:= fn_stg_forecast_rate_loader('INFODOM_FORECAST_RATE_LOADER',
 '20100419',
 10005,
 'N',
 Null,
 Null);
End;

Data Loaders 4-29

Sample Data for STG_FCAST_IRCS to load data for specific Forecast Rate providing
the Forecast Rate System Identifier

Sample Data for STG_FCAST_XRATES to load data for specific Forecast Rate
providing the Forecast Rate System Identifier

Sample Data for STG_FCAST_EI to load data for specific Forecast Rate providing the
Forecast Rate System Identifier

Note: To Load data for specific Forecast Rate providing the Forecast Rate
System Identifier, the value of Forecast rate Name and Folder Name in the
staging tables should be "-1".

3. If the user wants to Load a specific forecast rate assumption rule within the Folder providing
the name of Forecast Rate as defined in ALM
Declare
 num number;
Begin
Num:= fn_stg_forecast_rate_loader('INFODOM_FORECAST_RATE_LOADER',
 '20100419',
 Null,
 'N',
 'LOADER_TEST',
 'RTSEG');
End;

4-30 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

Sample Data for STG_FCAST_IRCS to Load a specific forecast rate within the Folder
providing the name of Forecast Rate as defined in ALM

Sample Data for STG_FCAST_XRATES to Load a specific forecast rate within the
Folder providing the name of Forecast Rate as defined in ALM

Sample Data for STG_FCAST_EI to Load a specific forecast rate within the Folder
providing the name of Forecast Rate as defined in ALM

Note: To Load a specific forecast rate assumption rule within the Folder
providing the name of the Forecast Rate assumption rule as defined in
ALM, the value of the Forecast rate System identifier in the staging tables
should be "-1".

If the NUM value is 1, it indicates the load completed successfully, check the
FSI_MESSAGE_LOG for more details.

Forecast Rate Loader – Method 2
To execute Forecast Rate Loader from OFSAAI ICC framework, a seeded Batch is
provided.

Steps
1. "<INFODOM>_FORECAST_RATE_LOADER" is the Batch ID and "Forecast Rate

Loader" is the description of the batch.

Data Loaders 4-31

2. The batch has a single task. Edit the task.

3. If the user intends to load data for all Forecast Rates under a Folder, then provide
the batch parameters as shown.

• Datastore Type:- Select the appropriate datastore from list

• Datastore Name:- Select the appropriate name from the list

• IP address:- Select the IP address from the list

• Rule Name:- Forecast_Rate_loader

4-32 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

Sample Data for STG_FCAST_IRCS to Load all forecast rates defined within a folder

Sample Data for STG_FCAST_XRATES to Load all forecast rates defined within a
folder

Sample Data for STG_FCAST_EI to Load all forecast rates defined within a folder

Note: To Load all forecast rates defined within a folder, the value of
Forecast rate System identifier in the staging tables should be "-1".

4. If the user wants to load data for a specific Forecast Rate assumption rule, provide
the Forecast Rate System Identifier, then define the batch parameters as shown.

• Datastore Type:- Select the appropriate datastore from list

Data Loaders 4-33

• Datastore Name:- Select the appropriate name from the list

• IP address:- Select the IP address from the list

• Rule Name:- Forecast_Rate_loader

Sample Data for STG_FCAST_IRCS to load data for a specific Forecast Rate
assumption rule, with the Forecast Rate System Identifier already provided

Sample Data for STG_FCAST_XRATES to load data for a specific Forecast Rate
assumption rule with the Forecast Rate System Identifier already provided

4-34 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

Sample Data for STG_FCAST_EI to load data for a specific Forecast Rate assumption
rule with the Forecast Rate System Identifier already provided

Note: To Load data for specific Forecast Rate assumption rules, provide
the Forecast Rate System Identifier and the value of Forecast rate Name
and Folder Name in the staging tables should be "-1".

5. If the user wants to load data for specific Forecast Rate assumption rules, provide
the Forecast Rate Name as defined in ALM, then define the batch parameters as
shown.

• Datastore Type:- Select an appropriate datastore from list

• Datastore Name:- Select an appropriate name from the list

• IP address:- Select the IP address from the list

• Rule Name:- Forecast_Rate_loader

Data Loaders 4-35

Sample Data for STG_FCAST_IRCS to Load a specific forecast rate assumption rule,
within the Folder, provide the name of Forecast Rate rule as defined in ALM

Sample Data for STG_FCAST_XRATES to Load a specific forecast rate assumption
rule, within the Folder, provide the name of Forecast Rate rule as defined in ALM

Sample Data for STG_FCAST_EI to Load a specific forecast rate assumption rule,
within the Folder, provide the name of Forecast Rate rule as defined in ALM

Note: To Load a specific forecast rate assumption rule within the Folder,
provide the name of the Forecast Rate rule as defined in ALM. The
Forecast rate System identifier in the staging tables should be "-1".

6. Save the Batch.

7. Execute the Batch for the required As of Date.

4-36 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

Exception Messages
The Forecast Rate Data Loader can have the following exceptions:

Exception 1: Error. While fetching the Object Definition ID from Object Registration Table
This exception occurs if the forecast rate assumption rule name is not present in the
FSI_M_OBJECT_DEFINTION_TL table short_desc column.

Exception 2: Error. More than one Forecast Sys ID is present.
This exception occurs when there is more than one Forecast Sys ID present for the given
forecast rate assumption rule name.

Exception 3: Error. Forecast Rate assumption rule Name and As of Date combination do not exist in the
Staging Table.

This exception occurs when the Forecast Rate assumption rule Name and as of date
combination do not exist in the Staging Table.

Prepayment Rate Data Loader
The Prepayment Rate Data Loader procedure populates prepayment model rates (used
in ALM and FTP) into the OFSAA metadata tables from the corresponding staging
tables. Prepayment model assumptions are defined within the Prepayment Model
Assumptions User Interfaces in OFSAA ALM and FTP applications. This data loader
program can be used to update the prepayment model rates on a periodic basis. After
loading the prepayment rates, users can view the latest data in the Prepayment Model
assumptions UI.

The following topics are covered in this section:

• Tables related to the Prepayment rate data loader

Data Loaders 4-37

• Prepayment Rate Data Load Procedure

• Executing the Prepayment Rate Data Loader

• Exception Messages

Prepayment Rate Loader Tables
The following are the tables used by the loader:

• FSI_PPMT_MODEL_HYPERCUBE – This table contains rates defined for different
Prepayment Dimensions present in FSI_PPMT_MODEL_HYPERCUBE_MAP table.

• STG_PPMT_MDL_HYPERCUBE – contains prepayment rates for the selected
prepayment dimensions.

For more information on viewing the structure of staging tables, see Oracle Financial
Services Analytical Applications Data Model Data Dictionary.

Prepayment Rate Data Loader
The Prepayment Rate Data Loader program populates the OFSAA Prepayment Model
tables with the values from the staging table. The procedure will load prepayment
assumption data for all Prepayment models that are present in the staging table. The
program assumes that the prepayment model definitions have already been defined
using OFSAA Prepayment Model assumptions UIs before loading prepayment model
rates.

The program performs the following functions:

1. The Data Loader accepts the AS_OF_DATE as a parameter, that is, date to load all
prepayment rates from the Staging table into the OFSAA metadata table for the
specific as of date.

2. The program performs certain checks to determine if:

• The prepayment model dimensions present in staging are the same as those
present in the OFSAA Prepayment Model metadata tables.

• The members of each of the dimensions present in staging are same as those
present in the metadata tables.

• The number of records present in the STG_PPMT_MDL_HYPERCUBE table for
a Prepayment model is less than or equal to the maximum number of records
that are allowed which is determined by multiplying the number of buckets per
dimension of the prepayment model.

4-38 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

Example

PPMT_MDL_SYS_ID DIMENSION_ID NUMBER_OF_BUCKETS

20100405 8 2

20100405 4 3

Then the maximum number of records = number of buckets of dimension 8 *
number of buckets of dimension 4

That is, maximum number of records = 2 * 3

Therefore, maximum number of records = 6 records

Check is made by Prepayment Rate Data Loader whether the number of
records present in STG_PPMT_MDL_HYPERCUBE table for a Prepayment
model 20100405 is less than or equal to 6 or not.

If the above quality checks are satisfied, then the rates present in the Staging table
are updated to the OFSAA prepayment model metadata table.

3. Any error messages are logged in the FSI_MESSAGE_LOG table and can be viewed
in OFSAAI Log Viewer UI.

After the Prepayment Rate loader is completed, you should query the
FSI_PPMT_MODEL_HYPERCUBE table to look for the new rates. Also, you can verify
the data using the Prepayment Model Assumption UI.

Executing the Prepayment Model Data Loader
You can execute this function within a PL/SQL block or from an ICC Batch screen
within OFSAAI framework.

To run the function from SQL*Plus, login to SQL*Plus as the Schema Owner. The loader
requires 2 parameters

• Batch Execution Name

• As Of Date

fn_PPMT_RATE_LOADER(batch_run_id IN VARCHAR2, as_of_date IN VARCHAR2)

BATCH_RUN_ID is any string to identify the executed batch.

As_of_Date is the execution date in the format YYYYMMDD.

For Example:

Data Loaders 4-39

Declare
 num number;
Begin
 Num:= fn_PPMT_RATE_LOADER('INFODOM_20100405','20100405');
End;

The loader is executed for the given as of date. If the return value (NUM) is 1, this
indicates the load completed successfully. Check the FSI_MESSAGE_LOG for more
details.

To execute the procedure from OFSAAI ICC framework, create a new Batch with the
Task as PPMTMODELRATELOADER and specify the following parameters for the
task:

Datastore Type:- Select appropriate datastore from list

Datastore Name:- Select appropriate name from the list

IP address:- Select the IP address from the list

Rule Name:- ppmt_rate_loader

Parameter List: None

Exception Messages
The Prepayment Model Rate Loader can have the following exceptions:

Exception 1: Error while fetching the Object Definition ID from Object Definition Table.
This exception occurs if the prepayment model name is not present in the
FSI_M_OBJECT_DEFINTION_TL table.

Exception 2: Error. More than one prepayment model sys ID is present for the given definition.
This exception occurs when there is more than one Prepayment Model System ID
present for the prepayment model name in staging.

Exception 3: Error. Data is present in additional dimension ID column than those defined in
FSI_M_PPMT_MODEL.

This exception occurs if rates are specified in staging for the dimensions that are not
part of the Prepayment Model definition.

Exception 4: The value in the Dimension ID column is not matching with the value present in the
corresponding column in metadata table.

This exception occurs if rates are specified in staging for the dimension members that
are not part of the Prepayment Model definition.

4-40 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

model name.
This exception occurs if there are excess records in staging compared to OFSAA
metadata tables for the given prepayment model.

Stage Instrument Table Loader
Data in staging instrument tables are moved into respective OFSAA processing
instrument tables using OFSAAI T2T component. After loading the data, users can view
the loaded data by querying the processing instrument tables.

The following topics are covered in this section:

• Stage Tables

• Populating Stage tables

• Mapping between staging and OFSAA processing tables

• Populating Account Dimension

• Executing T2T data movement tasks

• Re-loading records

Stage Tables
The following are the various staging instrument tables:

• STG_LOAN_CONTRACTS – holds contract information related to various loan
products including mortgages.

• STG_TD_CONTRACTS – holds contract information related to term deposit
products.

• STG_CASA – holds information related to Checking and Savings Accounts.

• STG_OD_ACCOUNTS – holds information related to over-draft accounts.

• STG_CARDS – holds information related to credit card accounts.

• STG_LEASES – holds contract information related to leasing products.

• STG_ANNUITY_CONTRACTS – holds contract information related to annuity
contracts.

• STG_INVESTMENTS – holds information related to investment products like bond,

Data Loaders 4-41

equities etc.

• STG_MM_CONTRACTS – holds contract information related to short term
investments in money market securities.

• STG_BORROWINGS – holds contract information related to various inter-bank
borrowings.

• STG_FX_CONTRACTS – holds contract information related to FX products like FX
Spot, FX Forward etc. Leg level details, if any, are stored in various leg-specific
columns within the table.

• STG_SWAPS_CONTRACTS – holds contract information related to various types of
swaps. Leg level details, if any, are stored in various leg-specific columns within the
table.

• STG_OPTION_CONTRACTS – holds contract information related to various types
of options. Leg level details, if any, are stored in various leg-specific columns within
the table.

• STG_FUTURES – holds contract information related to interest rate forwards and
all types of futures. Leg level details, if any, are stored in various leg-specific
columns within the table.

For more information on viewing the structure of the above staging tables, see Oracle
Financial Services Analytical Applications Data Model Data Dictionary.

Populating Stage Tables
Data can be loaded into staging tables through F2T component of OFSAAI. After data is
loaded, check for data quality within the staging tables, before moving into OFSAA
processing tables. Data quality checks can include:

• Number of records between external system and staging instrument tables.

• Valid list of values in code columns of staging.

• Valid list of values in dimension columns like product, organization unit, general
ledger etc. These members should be present in the respective dimension tables.

• Valid values for other significant columns of staging tables.

Mapping To OFSAA Processing Tables
The following are the pre-defined T2T mappings between the above staging tables to
processing tables:

4-42 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

• T2T_LOAN_CONTRACTS – for loading data from STG_LOAN_CONTRACTS to
FSI_D_LOAN_CONTRACTS.

• T2T_MORTGAGES – for loading data from STG_LOAN_CONTRACTS to
FSI_D_MORTGAGES.

• T2T_CASA – for loading data from STG_CASA to FSI_D_CASA.

• T2T_CARDS – for loading data from STG_CARDS to FSI_D_CREDIT_CARDS.

• T2T_TD_CONTRACTS – for loading data from STG_TD_CONTRACTS to
FSI_D_TERM_DEPOSITS.

• T2T_ANNUITY_CONTRACTS – for loading data from
STG_ANNUITY_CONTRACTS to FSI_D_ANNUITY_CONTRACTS.

• T2T_BORROWINGS – for loading data from STG_BORROWINGS to
FSI_D_BORROWINGS.

• T2T_FORWARD_CONTRACTS – for loading data from STG_FUTURES to
FSI_D_FORWARD_RATE_AGMTS.

• T2T_FUTURE_CONTRACTS – for loading data from STG_FUTURES to
FSI_D_FUTURES.

• T2T_FX_CONTRACTS – for loading data from STG_FX_CONTRACTS to
FSI_D_FX_CONTRACTS.

• T2T_INVESTMENTS – for loading data from STG_INVESTMENTS to
FSI_D_INVESTMENTS.

• T2T_LEASES_CONTRACTS – for loading data from STG_LEASES_CONTRACTS
to FSI_D_LEASES.

• T2T_MM_CONTRACTS – for loading data from STG_MM_CONTRACTS table to
FSI_D_MM_CONTRACTS.

• T2T_OPTION_CONTRACTS – for loading data from STG_OPTION_CONTRACTS
to FSI_D_OPTION_CONTRACTS.

• T2T_SWAP_CONTRACTS – for loading data from STG_SWAPS_CONTRACTS to
FSI_D_SWAPS.

• T2T_OD_ACCOUNTS – for loading data from STG_OD_ACCOUNTS to
FSI_D_CREDIT_LINES.

For more information regarding the details of the above mappings, see Oracle Financial
Services Analytical Applications Data Model Data Dictionary.

Data Loaders 4-43

User can view the extract definitions by going through the following steps:

• Go to Data Integrator -> Source Designer -> Define Extracts.

• Under FUSION_APPS application, click on STAGING_SOURCE_T2T.

• Click on any of the T2T definition to view the extract definition.

User can view the mapping definitions by going through the following steps:

• Go to Data Integrator -> Warehouse Designer -> Define Mapping.

• Under FUSION_APPS application, click on STAGING_SOURCE_T2T.

• Click on any of the T2T definition to view the mapping definition.

Note: Staging instrument tables contain alphanumeric display codes for
various IDENTIFIER and CODE columns. T2T mapping looks up in
respective dimension tables for fetching an equivalent numeric ID and
CODE corresponding to the alphanumeric display code. Hence, these
dimension tables should be populated with the alphanumeric display
code before executing any data movement tasks.

Populating Accounts Dimension
Account Number is an alphanumeric unique identifier within each staging instrument
tables. ID_NUMBER is a numeric unique identifier within processing instrument tables.
Hence, there is a need to generate a numeric surrogate key for each of the account
number. This information is stored in DIM_ACCOUNT table.

Function fn_popDimAccount is a function to populate numeric surrogate key for each
account number. The function performs the following:

• In case surrogate key generation is required, then it uses a sequence to populate
DIM_ACCOUNT table.

• In case surrogate key generation is not required, then it expects that the account
number to be numeric and populates DIM_ACCOUNT with that information.

Create a new Batch with the Task and specify the following parameters for the task to
populate DIM_ACCOUNT table:

• Datastore Type:- Select appropriate datastore from the drop down list.

• Datastore Name: - Select appropriate name from the list. Generally it is the Infodom
name.

• IP address:- Select the IP address from the list.

4-44 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

• Rule Name:- fn_popDimAccount

• Parameter List:

• Surrogate Key Required Flag – Y or N

Batch run ID and As Of Date are passed internally by the batch to the Data
Transformation task.

Executing T2T Data Movement Tasks
Before executing T2T data movement tasks, user should ensure that all the dimension
tables that are required for instruments data are loaded. The following are some of the
mandatory dimensions:

• DIM_ACCOUNTS

• DIM_PRODUCTS_B

• DIM_GENERAL_LEDGER_B

• DIM_COMMON_COA_B

• DIM_ORG_UNIT_B

Create a new Batch with the Task and specify the following parameters for the task for
loading Historical Exchange Rates:

• Datastore Type:- Select appropriate datastore from the drop down list.

• Datastore Name: - Select appropriate name from the list. Generally it is the Infodom
name.

• IP address:- Select the IP address from the list.

• Rule Name:- Select the appropriate T2T name from the above list.

• Parameter List: No Parameter is passed. The only parameter is the As of Date
Selection while execution.

Check T2T component logs and batch messages for checking the status of load.

T2T component can fail because of following cases:

• Unique constraint error – Target table may already contain the primary keys that
are part of the staging tables.

• NOT NULL constraint error – do not have values for NOT NULL columns in the
target table.

Data Loaders 4-45

Re-Load Of Instrument Data
T2T component can only perform "Insert" operations. In case user needs to perform
updates, previously loaded records should be deleted before loading the current
records.

Function fn_deleteFusionTables is used for deleting the records in the target that are
present in the source. This function removes rows in the table if there are matching
rows in the Stage table. This function needs FSI_DELETE_TABLES_SETUP to be
configured. Configure the below table for all columns that need to be part of the join
between Stage table and Equivalent table.

Create a new Batch with the Task and specify the following parameters for the task to
delete existing records:

• Datastore Type: - Select appropriate datastore from the drop down list.

• Datastore Name: - Select appropriate name from the list. Generally it is the Infodom
name.

• IP address:- Select the IP address from the list.

• Rule Name:- fn_deleteFusionTables

• Parameter List:

• Table to be deleted

Batch run ID and As Of Date are passed internally by the batch to the Data
Transformation task.

Sample record for FSI_DELETE_TABLES_SETUP table is given below:

Column Name Column Description Sample Value

STAGE_TABLE_NAME Stores the source table name
for forming the join statement

STG_EXCHANGE_RATE_HI
ST

STAGE_COLUMN_NAME Stores the source column
name for forming the join
statement

V_FROM_CURRENCY_CD

FUSION_TABLE_NAME Stores the target table name
for forming the join statement

FSI_EXCHANGE_RATE_HIS
T

4-46 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

Column Name Column Description Sample Value

FUSION_COLUMN_NAME Stores the target column
name for forming the join
statement

FROM_CURRENCY_CD

Note: Insert rows in FSI_DELETE_TABLES_SETUP for all columns that
can be used to join the stage with the equivalent table. In case if the join
requires other dimension or code tables, a view can be created joining
the source table with the respective code tables and that view can be
part of the above setup table.

Transaction Summary Table Loader
Data in staging transaction summary tables are moved into respective OFSAA
processing transaction summary tables using OFSAAI T2T component. After loading
the data, users can view the loaded data by querying the processing transaction tables.

The following topics are covered in this section:

• Stage Tables

• Populating Stage tables

• Mapping between staging and OFSAA processing tables

• Dependencies

• Executing T2T data movement tasks

• Re-loading records

Stage Tables
The following are the various staging transaction summary tables:

• STG_LOAN_CONTRACT_TXNS_SUMMARY – holds transaction summary
information related to the loan contracts that are present in staging instrument table
for loan contracts i.e, STG_LOAN_CONTRACTS.

• STG_CARDS_TXNS_SUMMARY – holds transaction summary information related
to the credit cards present that are present in staging instrument table for credit
cards i.e, STG_CARDS.

Data Loaders 4-47

• STG_CASA_TXNS_SUMMARY – holds transaction summary information related
to the checking and saving accounts that are present in staging instrument table for
CASA i.e, STG_CASA.

• STG_MERCHANT_CARD_TXNS_SUMMARY – holds transaction summary
information related to the merchant cards that are present in staging instrument
table for merchant cards i.e, STG_MERCHANT_CARDS.

• STG_OTHER_SERVICE_TXNS_SUMMARY – holds transaction summary
information related to other services that are present in staging instrument table for
other services i.e, STG_OTHER_SERVICES.

• STG_TERMDEPOSITS_TXNS_SUMMARY – holds transaction summary
information related to the term deposits that are present in staging instrument table
for term deposits i.e, STG_TD_CONTRACTS.

• STG_TRUSTS_TXNS_SUMMARY – holds transaction summary information related
to the trust accounts that are present in staging instrument table for trusts i.e,
STG_TRUSTS.

For more information on viewing the structure of the above staging tables, see Oracle
Financial Services Analytical Applications Data Model Data Dictionary.

Populating Stage Tables
Data can be loaded into staging tables through F2T component of OFSAAI. After data is
loaded, check for data quality within the staging tables, before moving into OFSAA
processing tables. Data quality checks can include:

• Number of records between external system and staging transaction summary
tables.

• Valid list of values in code columns of staging.

• Valid list of values in dimension columns like product, organization unit, general
ledger etc. These members should be present in the respective dimension tables.

• Valid list of values in dimension columns like product, organization unit, general
ledger etc. These members should be present in the respective dimension tables.

• Valid values for other significant columns of staging tables.

Mapping To OFSAA Processing Tables
The following are the pre-defined T2T mappings between the above staging tables to
processing tables:

4-48 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

• T2T_STG_CARDS_TXNS_SUMMARY – for loading data from
STG_CARDS_TXNS_SUMMARY to FSI_D_CREDIT_CARDS_TXNS.

• T2T_STG_CASA_TXNS_SUMMARY – for loading data from
STG_CASA_TXNS_SUMMARY to FSI_D_CASA_TXNS.

• T2T_LOAN_CONTRACT_TXNS_SUMMARY – for loading data from
STG_LOAN_CONTRACT_TXNS_SUMMARY to
FSI_D_LOAN_CONTRACTS_TXNS.

• T2T_STG_MERCHANT_CARD_TXNS_SUMMARY – for loading data from
STG_MERCHANT_CARD_TXNS_SUMMARY to
FSI_D_MERCHANT_CARDS_TXNS.

• T2T_STG_OTHER_SERVICE_TXNS_SUMMARY – for loading data from
STG_OTHER_SERVICE_TXNS_SUMMARY to FSI_D_OTHER_SERVICES_TXNS.

• T2T_STG_TERMDEPOSITS_TXNS_SUMMARY – for loading data from
STG_TERMDEPOSITS_TXNS_SUMMARY to FSI_D_TERM_DEPOSITS_TXNS.

• T2T_STG_TRUSTS_TXNS_SUMMARY – for loading data from
STG_TRUSTS_TXNS_SUMMARY to FSI_D_TRUSTS_TXNS.

For more information regarding the details of the above mappings, see Oracle Financial
Services Analytical Applications Data Model Data Dictionary.

User can view the extract definitions by going through the following steps:

• Go to Data Integrator -> Source Designer -> Define Extracts.

• Under FUSION_APPS application, click on STAGING_SOURCE_T2T.

• Click on any of the T2T definition to view the extract definition.

User can view the mapping definitions by going through the following steps:

• Go to Data Integrator -> Warehouse Designer -> Define Mapping.

• Under FUSION_APPS application, click on STAGING_SOURCE_T2T.

• Click on any of the T2T definition to view the mapping definition.

Note: Staging transaction summary tables contain alphanumeric
display codes for various IDENTIFIER and CODE columns. T2T
mapping looks up in respective dimension tables for fetching an
equivalent numeric ID and CODE corresponding to the alphanumeric
display code. Hence, these dimension tables should be populated with
the alphanumeric display code before executing any data movement

Data Loaders 4-49

tasks.

Dependencies
• Instrument tables should be loaded before loading the transaction summary

information related to those instruments.

• Account Number is an alphanumeric unique identifier within each staging
transaction summary tables. ID_NUMBER is a numeric unique identifier within
processing transaction summary tables. Hence, there is a need to look up into a
DIM_ACCOUNT dimension table for a numeric surrogate key for each of the
alphanumeric account number. This dimension table DIM_ACCOUNT will be
populated as part of the process that loads instrument tables. For more information
on loading instrument tables, see Loading Instrument Table Data, page 4-40.

• Before executing T2T data movement tasks, user should ensure that all the
dimension tables that are required for instruments data are loaded. The following
are some of the mandatory dimensions:

• DIM_ACCOUNTS

• DIM_PRODUCTS_B

• DIM_GENERAL_LEDGER_B

• DIM_COMMON_COA_B

• DIM_ORG_UNIT_B

Executing T2T Data Movement Tasks
Create a new Batch with the Task and specify the following parameters for the task for
loading Historical Exchange Rates:

• Datastore Type: - Select appropriate datastore from the drop down list.

• Datastore Name: - Select appropriate name from the list. Generally it is the Infodom
name.

• IP address:- Select the IP address from the list.

• Rule Name: - Select the appropriate T2T name from the above list.

• Parameter List: - No Parameter is passed. The only parameter is the As of Date
Selection while execution.

4-50 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

Check T2T component logs and batch messages for checking the status of load.

T2T component can fail because of following cases:

• Unique constraint error – Target table may already contain the primary keys that
are part of the staging tables.

• NOT NULL constraint error – Staging table do not have values for mandatory
columns of the target table.

Re-Load Of Transaction Summary Data
T2T component can only perform "Insert" operations. In case user needs to perform
updates, previously loaded records should be deleted before loading the current
records.

Function fn_deleteFusionTables is used for deleting the records in the target that are
present in the source. This function removes rows in the table if there are matching
rows in the Stage table. This function needs FSI_DELETE_TABLES_SETUP to be
configured. Configure the below table for all columns that need to be part of the join
between Stage table and Equivalent table.

Create a new Batch with the Task and specify the following parameters for the task to
delete existing records:

• Datastore Type: - Select appropriate datastore from the drop down list.

• Datastore Name: - Select appropriate name from the list. Generally it is the Infodom
name.

• IP address: - Select the IP address from the list.

• Rule Name:- fn_deleteFusionTables

• Parameter List:

• Table to be deleted

Batch run ID and As Of Date are passed internally by the batch to the Data
Transformation task.

Sample record for FSI_DELETE_TABLES_SETUP table is given below:

Column Name Column Description Sample Value

STAGE_TABLE_NAME Stores the source table name
for forming the join statement

STG_EXCHANGE_RATE_HI
ST

Data Loaders 4-51

Column Name Column Description Sample Value

STAGE_COLUMN_NAME Stores the source column
name for forming the join
statement

V_FROM_CURRENCY_CD

FUSION_TABLE_NAME Stores the target table name
for forming the join statement

FSI_EXCHANGE_RATE_HIS
T

FUSION_COLUMN_NAME Stores the target column
name for forming the join
statement

FROM_CURRENCY_CD

Note: Insert rows in FSI_DELETE_TABLES_SETUP for all columns that
can be used to join the stage with the equivalent table. In case if the join
requires other dimension or code tables, a view can be created joining
the source table with the respective code tables and that view can be
part of the above setup table.

Ledger Data Loader
The LEDGER_STAT load utility is an Oracle stored procedure used to load your ledger
data into the Oracle Financial Services Analytical Applications (OFSAA)
LEDGER_STAT table. The following topics are included in this section:

• Features of the load procedure

• Overview of the load procedure

• Setup for the LEDGER_STAT load utility

• Executing LEDGER_STAT load procedure

Features of the load procedure
The LEDGER_STAT load utility is the only supported method for loading your ledger
data into the LEDGER_STAT table. The LEDGER_STAT load utility offers the following
features:

• You can load ledger data for one month or for a range of months.

• You can also load ledger data based on calendar as-of-dates.

4-52 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

• A month can be undone individually, using the Ledger Load Undo process. You
can do this even though the month to be undone is included in a multiple-month
load.

• You can update columns in existing LEDGER_STAT rows using either the additive
or replacement functionality.

• You can bypass the upsert logic and insert all the rows from the load table using the
INSERT_ONLY mode. This functionality can be used either for first-time loads or to
reload for all months with each load.

Overview of the Load Process
There are three types of load tables that can be used for loading ledger data.

• Type I (FISCAL_ONE_MONTH) – Load table contains ONE_MONTH column for
storing data corresponding to one of the twelve fiscal months.

• Type II (FISCAL_RANGE) – Load table contains M1 to M12 columns for storing
data corresponding to twelve fiscal months.

• Type III (CALENDAR_MONTHS) – Load table contains AS_OF_DATE for storing
data corresponding to an as-of-date. While Type II table contains ledger data across
fiscal months in a single row, Type III contains the same information in multiple
rows. Type III supports calendar dates and data can be for one or multiple dates.

ASCII Ledger data is loaded into any of the above staging or load tables using F2T
component of OFSAAI framework. This component can be used for loading any flat file
data into tables. For more information on how to load data using F2T, see OFSAAI User
Guide.

LEDGER_STAT load utility is a PL/SQL procedure and loads data from the above
staging tables into LEDGER_STAT table, based on the configuration. Runtime
parameters, such as the name of the load table, which all columns to load, ADD or
REPLACE update functionality, and whether or not to create offset records are passed
as parameters to the procedure and these are inserted into the Load Batch table
(FSI_LS_LOAD_BATCH).

The procedure is implemented as an Oracle PL/SQL stored procedure so it can be
invoked from SQL*Plus or Batch execution screen within OFSAAI ICC framework
component. Input parameters are read from the batch/parameter table and validated for
correctness, completeness and consistency before the load begins. Parameter errors are
written to a Message column in the batch/parameter table and FSI_MESSAGE_LOG
table. Runtime statistics are written to the batch/parameter record following completion
of the load for that record.

Note: For supporting loading LEDGER_STAT from Type III staging

Data Loaders 4-53

table, a global temporary table (GTT) is created within database. Data is
moved from global temporary table into LEDGER_STAT table.

Limitations
The following are the limitations.

• Load Table Rows Must Be Unique

A restriction imposed by the use of bulk SQL (as opposed to row-by-row)
processing is that all the rows in the load table(s) must be unique. This means that
there is one row in the load table for one row in LEDGER_STAT. A unique index is
created on each load table to enforce this uniqueness and provide acceptable
performance.

• Defining Financial Elements in AMHM

Occasionally, your load table may contain dimension member values for one or
more dimensions that are not defined in AMHM. The LEDGER_STAT load
procedure loads these rows anyway, except for the rows containing undefined or
incompletely defined FINANCIAL_ELEM_ID values.

Any new values for FINANCIAL_ELEM_ID must first be defined in AMHM before
running the load. Specifically, the load procedure needs the AGGREGATE_
METHOD value for each FINANCIAL_ELEM_ID value so that the YTD columns in
LEDGER_STAT can be computed using the appropriate method.

Setup for the LEDGER_STAT load utility

Setting up and Executing a Type III (or Type 3) Ledger Stat Load Using STG_GL_DATA
The Type 3 load takes data from STG_GL_DATA and transfers it into the
LEDGER_STAT table.

Steps to follow to setup and run a Type III Ledger Stat Load:

Step 1: Populate STG_GL_DATA

The following columns in STG_GL_DATA must be populated with valid values:

V_GL_CODE General Ledger "Code" value.

FIC_MIS_DATE This field indicates the current period As of
Date applicable to the data being loaded.

V_ORG_UNIT_CODE Org Unit "Code" value.

4-54 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

V_SCENARIO_CODE Populate with a value from the
CONSOLIDATION_DISPLAY_CODE column
from the FSI_CONSOLIDATION_CD table
(ex. ACTUAL, BUDGET).

V_CCY_CODE ISO Currency Code from FSI_CURRENCIES
(ex. USD)

V_PROD_CODE Product "Code" value.

V_FINANCIAL_ELEMENT_CODE Populate with a value from the
FINANCIAL_ELEM_CODE column from the
DIM_FINANCIAL_ELEMENTS_B table (ex.
ENDBAL, AVGBAL).

V_COMMON_COA_CODE Common COA "Code" value.

N_AMOUNT_LCY Balance

The following columns in STG_GL_DATA must be populated because they are defined
as NOT NULL but can be defaulted to the value of your choice because they are not
used: V_LV_CODE

V_BRANCH_CODE

F_CONSOLIDATION_FLAG

V_GAAP_CODE

Step 2: Verify data exists in the view STG_GL_DATA_V

The following SQL statement is used to populate this view:

Data Loaders 4-55

SELECT v_data_origin DS,
 f_consolidation_flag ACCUM_TYPE,
 fcc.consolidation_cd CONSOLIDAT,
 v_ccy_code ISOCRNCYCD,
 dfeb.financial_elem_id FINANC_ID,
 doub.org_unit_id ORG_ID,
 dglb.gl_account_id GL_ACCT_ID,
 dccb.common_coa_id CMN_COA_ID,
 dpb.product_id PRDCT_ID,
 fic_mis_date AS_OF_DATE,
 n_amount_lcy VALUE
FROM STG_GL_DATA SGD,
DIM_GENERAL_LEDGER_B DGLB,
DIM_ORG_UNIT_B DOUB,
DIM_PRODUCTS_B DPB,
DIM_FINANCIAL_ELEMENTS_B DFEB,
DIM_COMMON_COA_B DCCB,
FSI_CURRENCIES FC,
FSI_CONSOLIDATION_CD FCC
WHERE NVL(n_amount_lcy, 0) <> 0
AND SGD.V_GL_CODE = DGLB.GL_ACCOUNT_CODE
AND SGD.V_ORG_UNIT_CODE = DOUB.ORG_UNIT_CODE
AND SGD.V_PROD_CODE = DPB.PRODUCT_CODE
AND SGD.V_FINANCIAL_ELEMENT_CODE = DFEB.FINANCIAL_ELEM_CODE
AND SGD.V_COMMON_COA_CODE = DCCB.COMMON_COA_CODE
AND SGD.V_CCY_CODE = FC.ISO_CURRENCY_CD
AND SGD.V_SCENARIO_CODE = FCC.CONSOLIDATION_DISPLAY_CODE;

Important: As seen in the code above, the view references the "_CODE"
columns on the dimension tables. For example,
COMMON_COA_CODE on DIM_COMMON_COA_B and
ORG_UNIT_CODE on DIM_ORG_UNIT_B. These code columns must
be populated for data to exist in STG_GL_DATA_V.

The "Update_Dimension_Code" (fn_updatedimensioncode) program populates these
Code columns using data from values in the "Code" dimension Attribute (ex.
COMMON COA CODE, ORG UNIT CODE, etc.)

Step 3: If using the Type 3 Ledger Stat Load for the first time, run the GTT table
creation procedure.

The GTT table creation procedure creates the Global Temporary Table
LS_LOAD_TABLE_GTT_V.

The fn_ledger_load_create_gtt function creates the table LS_LOAD_TABLE_GTT_V and
the index UK_GTT for use in the Type 3 Ledger Stat Load.

Note: If the GTT table has not been created and you try to execute the
Ledger Stat Load, you will get the following error in
FSI_MESSAGE_LOG:
WRAPPER_LEDGER_STAT_LOAD- Error: -942: ORA-00942: table or
view does not exist

Step 4: Populate FSI_LS_LOAD_BATCH

4-56 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

You need to populate the following columns:

RUN_FLAG Y

SEQUENCE Sequence value (ex. 1)

LOAD_TABLE_NAME STG_GL_DATA

ONE_MONTH_ONLY N

UPDATE_MODE ADD or REPLACE

INSERT_ONLY Y or N

CREATE_OFFSETS N

IS_CALENDAR_MONTH Y

START_CALENDAR_MONTH Starting date to load in format YYYYMMDD.

END_CALENDAR_MONTH Ending date to load in format YYYYMMDD.

Step 5: Run the Ledger Stat Load

Use the following command to run the Type 3 Ledger Stat Load in SQL*Plus as the
atomic user:
DECLARE
x NUMBER :=0;
BEGIN
x :=
ofsa_util.wrapper_ledger_stat_load('BATCH_ID ','MIS_DATE','TABLE_NAME',
TABLE_TYPE', 'UPDATE_MODE', 'INSERT_ONLY', 'START_DATE', 'END_DATE')
dbms_output.put_line ('The return variable is ' || x);
END;

Example
DECLARE x NUMBER :=0; BEGIN x :=
ofsa_util.wrapper_ledger_stat_load('ARALSLOADTYPE3_4','20110111','STG_GL_DATA',
'CALENDAR_MONTHS', 'ADD', 'Y', '20101231', '20101231'); dbms_output.put_line ('The
return variable is ' || x); END;

After the Ledger Load completes, check the tables FSI_MESSAGE_LOG and
FSI_LS_LOAD_BATCH for errors.

Creating View on LEDGER_STAT table
A view is created on the LEDGER_STAT table called LSL. The purpose of this view is to
provide shorter column names for the load procedure. The LSL view must contain the

Data Loaders 4-57

same columns as LEDGER_STAT. Column alias for each columns within the view
should match the COLUMN_ALIAS user-defined property that is set for each column
of LEDGER_STAT table in the ERwin model.

For any user-defined dimensions in your LEDGER_STAT you must complete the
following steps.

• In ERwin model, look up the COLUMN_ALIAS User Defined Property (UDP) for
added dimension columns within LEDGER_STAT table.

• Specify the value of the property COLUMN_ALIAS.

• Modify the view to include new dimension columns. Use the same
COLUMN_ALIAS that was mentioned in the ERwin model in the load table view.

Creating Load Table
This step is applicable for loading ledger data from Type I or Type II load table. Staging
table STG_GL_DATA (used for Type III load) is packaged with the application. For
information on columns present in the staging table, see Oracle Financial Services
Analytical Applications Data Model Data Dictionary. Multiple load tables (Type I or Type
II) can be created as required by the System Administrator. Table structure for the Type
I and Type II load tables is given in the following sections:

4-58 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

-- --
-- Uncomment the m1..m12 columns if you plan to load a range of months
(Type II Load Table).
-- Add lines for all of the LEDGER_STAT user-defined leaf columns in the
place
-- indicated below. Don't forget to add commas if you need to.
-- ---
CREATE TABLE &load_table_name(
 ds VARCHAR2(12) NOT NULL, -- data_source
 year_s NUMBER(5) NOT NULL,
 accum_type char(1) NOT NULL,
 consolidat NUMBER(5) NOT NULL,
 isocrncycd VARCHAR2(3) DEFAULT '002' NOT NULL,
 financ_id NUMBER(14) NOT NULL,
 org_id NUMBER(14) NOT NULL,
 gl_acct_id NUMBER(14) NOT NULL,
 cmn_coa_id NUMBER(14) NOT NULL,
 prdct_id NUMBER(14) NOT NULL,
 --
 -- m1 NUMBER(15,4),
 -- m2 NUMBER(15,4),
 -- m3 NUMBER(15,4),
 -- m4 NUMBER(15,4),
 -- m5 NUMBER(15,4),
 -- m6 NUMBER(15,4),
 -- m7 NUMBER(15,4),
 -- m8 NUMBER(15,4),
 -- m9 NUMBER(15,4),
 -- m10 NUMBER(15,4),
 -- m11 NUMBER(15,4),
 -- m12 NUMBER(15,4),
 --
 one_month_amt NUMBER(15,4)
 --
 --
--
 -- Other leaf columns (PROPERTY_COLUMN from REV_COLUMN_PROPERTIES
for LEDGER_STAT):
 --
--
 -- . . .
 --
)

Creating Unique Index on Load Table
This step is applicable for loading ledger data from Type I or Type II load table. A
unique index has to be created on each load table specifying the column alias for each
column within the load table. Column alias should match the column alias specified for
columns within LEDGER_STAT table. LEDGER_STAT load procedure identifies the
source columns that need to be loaded using the column aliases and not by the physical
column names. Column alias for LEDGER_STAT columns are specified in the
user-defined property (UDP) COLUMN_ALIAS within ERwin model. Refer to ERwin
model for getting the column alias for each of the LEDGER_STAT columns. Definition
of the unique index is given below:

Data Loaders 4-59

CREATE UNIQUE INDEX &load_table_name
 ON &load_table_name (ds,
 year_s,
 accum_type,
 consolidat,
 isocrncycd,
 financ_id,
 org_id,
 gl_acct_id,
 cmn_coa_id,
 prdct_id
 -- ---
 -- Include all additional LEDGER_STAT primary key
 -- leaf columns here (use PROPERTY_COLUMN from
REV_COLUMN_PROPERTIES):
 -- ---
 -- . . .
 --
)

The unique key of the load table must be identical to the unique key of LEDGER_STAT,
with the exception that instead of IDENTITY_CODE, which is in LEDGER_STAT, the
load table has a column called DS (Data Source).

Creating Views on Load Table
This step is applicable for loading ledger data from Type I or Type II load table. In
addition to load tables, views have to be created on the staging tables similar to the
view LSL that was created on LEDGER_STAT. A view has to be created on each load
table specifying the columns alias for each column within the load table. Column alias
should match the column alias specified for columns within LEDGER_STAT table.
LEDGER_STAT load procedure identifies the source columns that need to be loaded
using the column alias. Column alias for LEDGER_STAT columns are specified in the
user-defined property (UDP) COLUMN_ALIAS within ERwin model. Refer to ERwin
model for getting the column alias for each of the LEDGER_STAT columns. View
definition is given below:

4-60 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

-- --
-- Uncomment the m1..m12 columns if you plan to load a range of months
(Type II Load table).
-- Add lines for all of the LEDGER_STAT user-defined leaf columns in the
place
-- indicated below. Don't forget to add commas if you need to.
-- --
CREATE OR REPLACE VIEW &load_table_name._v AS
 SELECT ds,
 year_s,
 accum_type,
 consolidat,
 isocrncycd,
 financ_id,
 org_id,
 gl_acct_id,
 cmn_coa_id,
 prdct_id,
 --
 -- NVL(m1,0) AS m1,
 -- NVL(m2,0) AS m2,
 -- NVL(m3,0) AS m3,
 -- NVL(m4,0) AS m4,
 -- NVL(m5,0) AS m5,
 -- NVL(m6,0) AS m6,
 -- NVL(m7,0) AS m7,
 -- NVL(m8,0) AS m8,
 -- NVL(m9,0) AS m9,
 -- NVL(m10,0) AS m10,
 -- NVL(m11,0) AS m11,
 -- NVL(m12,0) AS m12,
 --
 NVL(one_month_amt,0) AS one
 --
 --
--
 -- Other leaf columns (PROPERTY_COLUMN from REV_COLUMN_PROPERTIES
for LEDGER_STAT):
 --
--
 -- . . .
 --
 FROM &load_table_name
 WHERE NVL(one_month_amt,0) <> 0;
 --
 -- OR NVL(m1,0) <> 0
 -- OR NVL(m2,0) <> 0
 -- OR NVL(m3,0) <> 0
 -- OR NVL(m4,0) <> 0
 -- OR NVL(m5,0) <> 0
 -- OR NVL(m6,0) <> 0
 -- OR NVL(m7,0) <> 0
 -- OR NVL(m8,0) <> 0
 -- OR NVL(m9,0) <> 0
 -- OR NVL(m10,0) <> 0
 -- OR NVL(m11,0) <> 0
 -- OR NVL(m12,0) <> 0;

In case, the custom dimensions are added to the load table, views need to be modified

Data Loaders 4-61

to reflect the same.

Setting up Global Temporary Table
This step is applicable for loading ledger data from Type III. Calendar dates present in
the data of Load table are converted to the corresponding Fiscal Year/Month.
Conversion from calendar date to fiscal year & month is done based on the
START_MONTH column present in FSI_FISCAL_YEAR_INFO table. These derived
fiscal year & fiscal month are then inserted in an intermediate Global Temporary Table
(GTT) after aggregating the rows of same months/years. Therefore, if 12 rows are
present for the same fiscal year each corresponding to a different month, then global
temporary table may have maximum of one row corresponding to the fiscal months,
these 12 rows represent.

GTT needs to contain valid dimension member identifiers and numeric codes. Since
staging table contains alphanumeric identifiers and codes, a view is created on
STG_GL_DATA table joining with other relevant dimension and CD/MLS tables before
being used in the GTT creation.

Global temporary table can be created in 2 ways as described below:

1. Using PL/SQL
Declare
output number;
Begin
 Output:= fn_ledger_load_create_gtt('BATCH_ID', 'AS_OF_DATE',
'TABLE_NAME');
End;

AS_OF_DATE is the date for which GTT is created, in YYYYMMDD format.

TABLE_NAME is the staging table name STG_GL_DATA.

An example of running the function from SQL*Plus is as follows:
SQL> var output number;
SQL> execute :output:= fn_ledger_load_create_gtt('BATCH_ID',
'20100519', 'STG_GL_DATA');

2. Using OFSAAI ICC Framework

To execute the procedure from OFSAAI ICC framework, run the batch mentioned
below and specify the following parameters:

• Datastore Type:- Select appropriate datastore from list

• Datastore Name:- Select appropriate name from the list

• IP address:- Select the IP address from the list

• Rule Name:- fn_ledgerLoadGTTCreation

• Parameter List:- AS_OF_DATE and TABLE_NAME

4-62 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

TABLE_NAME is the staging table name STG_GL_DATA.

AS_OF_DATE should be passed as 'YYYYMMDD' format.

Note: BATCHID will be passed explicitly in ICC framework. The
appropriate table parameters are enclosed in single quotes.

Tables Related to LEDGER_STAT Load Procedure
LEDGER_STAT Loader utility uses the following tables:

• FSI_FISCAL_YEAR_INFO – The table contains the fiscal year information. This is a
setup table.

• FSI_LS_LOAD_BATCH – The table contains the parameters for the load batch that
needs to be executed for loading ledger data from staging or load table into
LEDGER_STAT. This is a setup table.

• STG_GL_DATA – The staging table contains the ledger data for various as-of-dates.

• LEDGER_STAT – The processing table contains the ledger data for various fiscal
months. This is loaded from staging table.

For more information on viewing the structure of the previous tables, see Oracle
Financial Services Analytical Applications Data Model Data Dictionary.

Populating Stage Tables
Data for ledger can come from external systems. Such data has to be in the format of the
staging table. This data can be loaded into staging through F2T component of OFSAAI
framework. Users can view the loaded data by querying the staging tables and various
log files associated with F2T component.

Executing LEDGER_STAT Load Procedure
You can execute this procedure either from SQL*Plus or from within a PL/SQL block or
from ICC Batch screen within OFSAAI framework.

To run the procedure from SQL*Plus, login to SQL*Plus as the Schema Owner. The
procedure/batch requires the following 8 parameters:

1. BATCH_ID-Any unique number to identify the execution run.

2. MIS_DATE- Date on which the loading is done expressed in YYYYMMDD format.

3. TABLE_NAME- STG_GL_DATA(Type III) or any other load table (TYPE I or TYPE II)

4. TABLE_TYPE- FISCAL_ONE_MONTH or FISCAL_RANGE (TYPE I or TYPE II)

Data Loaders 4-63

CALENDAR_MONTHS (TYPE III)

5. UPDATE_MODE-ADD/REPLACE

6. INSERT_ONLY- Y/N

7. START_DATE- Calendar start date in YYYYMMDD

8. END_DATE- Calendar end date in YYYYMMDD

The input parameter logic for the Type III, Type II and Type I tables.

CALENDAR_MONTHS
• If Start_Date and End_Date are null then month part of MIS_Date is taken for

processing a particular month. (Ex: if MIS_DATE is 20101231 then the December
calendar month data is processed).

• In this case the Start_Date and End_Date becomes optional.

FISCAL_ONE_MONTH
• The Start_Date and End_Date parameters will hold numeric values identifying the

fiscal month. The value of these parameters will be between 1 and 12 (i.e. M1 till
M12).

• The Start_Date and End_Date should be same.

• In this case the Start_Date and End_Date are mandatory.

FISCAL_RANGE
• The Start_Date and End_Date parameters will hold numeric values identifying the

fiscal month. The value of these parameters will be between 1 and 12 (i.e. M1 till
M12).

• The Start_Date and End_Date parameters will specify the range of fiscal months
which are to be processed. Ex: M1 till M6 in case the Start_Date and End_Date
values are 1 and 6.

• In this case the Start_Date and End_Date are mandatory.

Ledger Load can be executed in 2 different ways:

1. Using PL/SQL:

4-64 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

By using the function-
ofsa_util.wrapper_ledger_stat_load('BATCH_ID ','MIS_DATE',
TABLE_NAME', TABLE_TYPE',
UPDATE_MODE','INSERT_ONLY','START_DATE','END_DATE');

Example:
DECLARE
x NUMBER :=0;
BEGIN
x :=
ofsa_util.wrapper_ledger_stat_load('batch_id_1','20090202','STG_GL_D
ATA','CALENDAR_MONTHS','ADD','Y','20070430','20080331');
dbms_output.put_line ('The return variable is ' || x);
END;

2. To execute the procedure from OFSAAI ICC framework, create a new Batch with
the Task as TRANSFORM DATA and specify the following parameters for the task:

• Datastore Type:- Select appropriate datastore from list

• Datastore Name:- Select appropriate name from the list

• IP address:- Select the IP address from the list

• Rule Name:- fn_ledgerDataLoader

• Parameter List:- <Same as mentioned above in the parameter list>

Exception Messages
The ledger load program throws both user defined exceptions and Oracle database
related exceptions. These exception messages could be seen in FSI_MESSAGES_LOG
table with the help of the batch_id which was used during execution. The exception list
includes all possible validations on the parameters that were passed and database
related exceptions.

Pricing Management Transfer Rate Population Procedure
This function populates FSI_M_PROD_TRANSFER_RATE table from
FSI_PM_GENERATED_INSTRMTS table for particular Effective date.

After executing this procedure, you should query FSI_M_PROD_TRANSFER_RATE
table.

Executing the POPULATE_PM_TRANS_RATE_TABLE (earlier known as
POPULATE_TPOL_TRANS_RATE) Procedure

You can execute this procedure either from SQL*Plus or from within a PL/SQL block or
from ICC Batch screen within OFSAAI framework.

Data Loaders 4-65

To run the procedure from SQL*Plus, login to SQL*Plus as the Schema Owner.

The procedure requires the following 6 parameters:

1. Batch Id (Batch_Id) – can be used to see the log of the procedure executed.

2. Misdate (Mis_date) - the date for which batch is run.

3. Run Id (p_v_run_id) - Unique Run ID for the run.

4. Process Id (p_v_process_id) - Unique Process ID for the batch.

5. Run Execution Id (p_v_run_execution_id) - Unique Run Execution Id for the Run.

6. Run skey (p_n_run_skey) – Unique run skey generated by the run.

The syntax for calling the procedure is:
Declare
output number;
Begin
Output:= POPULATE_PM_TRANS_RATE_TABLE (Batch_Id varchar2,
 Mis_date varchar2,
 p_v_run_id varchar2,
 p_v_process_id varchar2,
 p_v_run_execution_id varchar2,
 p_n_run_skey varchar2);
End;

Mis_date should be passed as 'YYYYMMDD' format.

An example of running the function from SQL*Plus is as follows:
SQL> var output number;
SQL> execute: output:= POPULATE_PM_TRANS_RATE_TABLE('Batch_Id',
'20100131,' $RUNID=1306182237482', '$PHID=1228363751510',
'$EXEID=RQEXE016','$RUNSK=99');

To execute the stored procedure from within a PL/SQL block or procedure, see the
example that follows.
SQL> declare
output number;
begin
Output:= POPULATE_PM_TRANS_RATE_TABLE ('Batch_Id','Mis_date',
'p_v_run_id','p_v_process_id','p_v_run_execution_id',' p_n_run_skey');
End;
/

To execute the procedure from OFSAAI ICC framework, create a new Batch with the
Task as TRANSFORM DATA and specify the following parameters for the task:

• Datastore Type :- Select appropriate datastore from the list

• Datastore Name :- Select appropriate name from the list

• IP address :- Select the IP address from the list

4-66 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

• Rule Name :- POPULATE_PM_TRANS_RATE_TABLE

Note: BATCHID and MISDATE will be passed explicitly in ICC
framework

ALMBI Transformation
ALM_BI_TRANSFORMATION data definition transforms the Asset Liability
Management (ALM) processing results of an executed ALM process to ALMBI fact
tables.

This internally calls PL/SQL function FN_ALM_BI_TRANSFORMATION.
function FN_ALM_BI_TRANSFORMATION(p_batch_run_id varchar2,
 p_as_of_date varchar2,
 PID number,
 p_re_run_flag char)

Where the parameters are,

1. p_batch_run_id - It is the batch run id. Batch Run ID value is passed from the Batch
execution UI. Therefore, it is not required to define it as a parameter value in Batch
Maintenance.

2. p_as_of_date - This parameter value is passed from the Batch execution UI.
Therefore, it is not required to define it as a parameter value in Batch Maintenance.

3. PID - Pass the ALM Process Sys ID for which the transformation has to be done.

4. p_re_run_flag - This parameter value determines whether the transformation for
the ALM process is for the first time or not.

Possible values are 'Y' or 'N'

Where

'Y' - Yes (This means that the transformation was already done and the user is
trying to redo the transformation once again for the ALM process).

'N' - No (This means that the user is executing the transformation for the first time
for the ALM process).

Note: The values for parameters PID and p_re_run_flag has to be
entered in the Parameter List during the batch definition.

Example
If the user is trying to do transformation of ALM process 200009 for the first time, then
the values that must be entered in the Parameter List are 200009, 'N'.

If the user is trying to do transformation of ALM process 200011, for which he had

Data Loaders 4-67

already done the transformation, then the values that must be entered in the Parameter
List are 200011, 'Y'.

Hierarchy Transformation
Hierarchy Flattening Transformation is used to move the hierarchy data from the
parent child storage structure in EPM AMHM (Attribute, Member and Hierarchy
Management) model to a level based storage structure in OFS Profitability Analytics. In
EPM AMHM model, hierarchy data for any hierarchy created on seeded or user defined
dimensions using the AMHM is stored within hierarchy tables of respective
dimensions. This is moved to the REV_HIER_FLATTENED table in OFS Profitability
Analytics after flattening by the Hierarchy flattening process.

batch_hierTransformation is a seeded Data Transformation program installed as part of
the OFSPA solution installer.

Executing the Hierarchy Flattening Transformation
You can execute this procedure from SQL Plus/PLSQL/ICC Batch screen within
OFSAAI framework.

1. Using SQL Plus/PLSQL

Function Name: rev_batchHierFlatten

Parameters: batch_run_id, mis_date, pDimensionId, pHierarchyId
function rev_batchHierFlatten(batch_run_id varchar2,
 mis_date varchar2,
 pDimensionId varchar2,
 pHierarchyId varchar2,
)

Where the parameters are,

• batch_run_id - It is the batch run id. Batch Run ID value is passed from the
Batch execution UI. Therefore, it is not required to define it as a parameter
value in Batch Maintenance.

• mis_date - This parameter value is passed from the Batch execution UI.
Therefore, it is not required to define it as a parameter value in Batch
Maintenance. Follow the date format, YYYYMMDD

• pDimensionId- Enter the Dimension id . To find dimension id, execute the
following query in database to find the value and use the value in dimension id
column for the dimension name / description to be processed:

Select b.dimension_id,t.dimension_name,t.description from
rev_dimensions_b b inner join rev_dimensions_tl t on b.dimension_id =
t.dimension_id and t.dimension_name like '<dimension name>'

4-68 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

Replace <dimension name> in the preceding query with the Dimension Name
you find in the UI (Financial Service Application >Master Maintenance >
Dimension Management) for the dimension on which the Hierarchy you want
to flatten is configured.

• pHierarchyId – Enter Hierarchy id. If all the hierarchies belonging to a
dimension are to be processed then, provide NULL as the parameter value.
Else, provide the System Identifier of the hierarchy that needs to be
transformed.

Execute the following query in database if only a single hierarchy is to be
processed and use the value in hierarchy_id column as parameter for the
hierarchy to be processed:

select b.object_definition_id , short_desc,long_desc from
fsi_m_object_definition_b b inner join fsi_m_object_definition_tl t on
b.object_definition_id = t.object_definition_id and b.id_type = 5

Example
If all the hierarchies for GL Account dimension must be processed, the
parameter list should be given as follows (where '2' is the dimension id for the
seeded dimension GL Account):

'2',null

Example
If a particular hierarchy with code 1000018112 must be processed (you can
obtain this code by executing the preceding query in the database), the
parameter list should be given as follows:

'2', '1000018112'

SQL Example
SQL> var fn_return_val number;
SQL> execute :fn_return_val:= rev_batchHierFlatten ('Batch1 ',
'20091231 ', '2 ', '1000018112');
SQL> print fn_return_val

PLSQL Example:

Data Loaders 4-69

DECLARE
 fn_return_val number := null;
BEGIN
 fn_return_val := rev_batchHierFlatten('Batch1',
 '20091231',
 '2',
 1000018112');
 IF fn_return_val = 1 THEN

 Dbms_output.put_line('Execution status of batchHierFlatten is'
 ||fn_return_val || ' --Successful');
 ELSIF fn_return_val = 0 THEN

 Dbms_output.put_line('Execution status of batchHierFlatten is'
 ||fn_return_val || ' --FAILURE');
 END IF;
EXCEPTION

 WHEN OTHERS THEN
 Dbms_output.put_line('Execution status of batchHierFlatten is'
 || SQLCODE || '-' || SQLERRM);

END;

On successful execution of rev_batchHierFlatten function in Database, value
returned will be 1 or 0. 1 indicates successful execution and 0 indicates failure in
execution. This function will be present in Atomic Schema.

2. Using OFSAAI ICC Framework

To execute the procedure from OFSAAI ICC framework, run the batch mentioned
below and specify the following parameters:

• Datastore Type:- Select appropriate datastore from the list

• Datastore Name:- Select appropriate name from the list

• IP address:- Select the IP address from the list

• Rule Name:- batch_hierTransformation

• Parameter List:- Dimension ID, Hierarchy ID

For more information on Hierarchy Transformation, see Oracle Financial Services
Profitability Analytics User Guide.

Mapping Export in Metadata Browser 5-1

5
Mapping Export in Metadata Browser

Procedure
1. Login to OFSAAI Screen.

2. Click Unified Metadata Manager. Then, navigate to Metadata Browser.

Metadata Browser window will open.

3. Select the correct Segment from the dropdown.

4. Then select the corresponding Source Model as shown in the below screenshots.

5-2 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

Mapping Export in Metadata Browser 5-3

5. In the Top Banner , select the Export button.

6. Export window will open as shown in the below screenshots.

5-4 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

7. Again select the same Source Model and map to the Right Hand Side as shown
below for exporting.

8. Select the Export Type. Click Export.

Mapping Export in Metadata Browser 5-5

9. Export is progressing message is displayed.

10. Successfully Exported message is displayed. Click Ok..

5-6 Oracle Financial Services Analytical Applications Data Model Utilities User Guide

	Oracle Financial Services Analytical Applications Data Model Utilities User Guide
	Preface
	Introduction
	List of Acronyms used in the document

	Object Management
	Adding Dimension Tables and Key Dimension (Leaf) Registration
	Adding Custom Instrument Tables
	Adding Custom Transaction Tables
	Adding Custom Lookup Tables
	Object Registration And Validation
	Defining Alternate Rate Output Columns
	User Defined Properties
	Modifying the precision of Balance Columns In Ledger_Stat

	Utilities
	Reverse Population
	Product Instrument Mapping
	Instrument Synchronization
	Ledger Load Undo

	Data Loaders
	Dimension Loaders
	Historical Rates Data Loader
	Forecast Rate Data Loader
	Prepayment Rate Data Loader
	Stage Instrument Table Loader
	Transaction Summary Table Loader
	Ledger Data Loader
	Pricing Management Transfer Rate Population Procedure
	ALMBI Transformation
	Hierarchy Transformation

	Mapping Export in Metadata Browser
	Procedure

