

Oracle® Fusion Middleware
Oracle WebLogic Scripting Tool

12c Release 1 (12.1.1)

E24491-01

December 2011

This document describes the WebLogic Scripting Tool
(WLST). It explains how you use the WLST command-line
scripting interface to configure, manage, and persist changes
to WebLogic Server instances and WebLogic domains, and
monitor and manage server run-time events.

Oracle Fusion Middleware Oracle WebLogic Scripting Tool, 12c Release 1 (12.1.1)

E24491-01

Copyright © 2007, 2011, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface .. vii

Documentation Accessibility .. vii
Conventions .. vii

1 Introduction and Roadmap

1.1 Document Scope and Audience.. 1-1
1.2 Guide to This Document.. 1-1
1.3 Related Documentation.. 1-2
1.4 WLST Sample Scripts ... 1-2
1.4.1 WLST Online Sample Scripts ... 1-3
1.4.2 WLST Offline Sample Scripts... 1-3
1.5 New and Changed WLST Features in This Release... 1-5

2 Using the WebLogic Scripting Tool

2.1 Using WLST Online or Offline ... 2-1
2.1.1 Using WLST Online... 2-1
2.1.2 Using WLST Offline .. 2-2
2.2 Interactive Mode, Script Mode, and Embedded Mode ... 2-2
2.2.1 Interactive Mode .. 2-2
2.2.2 Script Mode... 2-3
2.2.3 Embedded Mode.. 2-3
2.3 Security for WLST... 2-4
2.3.1 Securing the WLST Connection... 2-4
2.3.2 Securing Access to Configuration Data.. 2-5
2.3.2.1 Securing Access from WLST Online.. 2-5
2.3.2.2 Writing and Reading Encrypted Configuration Values ... 2-6
2.3.3 Securing Access to Security Data .. 2-7
2.4 Main Steps for Using WLST in Interactive or Script Mode .. 2-8
2.4.1 Invoking WLST .. 2-8
2.4.1.1 Invoking WLST Using Provided Shell Scripts ... 2-8
2.4.1.2 Invoking WLST Using the java Command... 2-9
2.4.1.3 Running Scripts.. 2-11
2.4.1.4 Invoking WLST From the Start Menu .. 2-12
2.4.2 Exiting WLST... 2-12
2.4.3 Syntax for WLST Commands.. 2-12

iv

2.4.4 Considerations When Invoking Multiple WLST Instances .. 2-12
2.5 Redirecting Error and Debug Output to a File .. 2-13
2.6 Getting Help ... 2-13
2.7 Running WLST from Ant.. 2-13
2.7.1 Parameters ... 2-14
2.7.2 Parameters Specified as Nested Elements... 2-14
2.7.2.1 script .. 2-14
2.7.2.2 classpath.. 2-14
2.7.3 Examples .. 2-15
2.7.3.1 Example 1.. 2-15
2.7.3.2 Example 2.. 2-15
2.7.3.3 Example 3.. 2-16
2.8 Importing WLST as a Jython Module ... 2-16
2.9 Customizing WLST.. 2-17
2.9.1 Adding Integrated Help for Custom Commands.. 2-18
2.9.2 sample.py Sample Script ... 2-20
2.9.3 wlstLibSample.py Sample Script.. 2-20

3 Creating WebLogic Domains Using WLST Offline

3.1 Creating and Using a Domain Template (Offline)... 3-1
3.1.1 Browsing Information About the Configuration Hierarchy (Offline) 3-2
3.1.2 Editing a WebLogic Domain (Offline) .. 3-3
3.2 Alternative: Using the configToScript Command.. 3-4
3.3 Considerations for Clusters, JDBC, and JMS Resources ... 3-5

4 Managing the Server Life Cycle

4.1 Using WLST and Node Manager to Manage Servers.. 4-1
4.1.1 Using Node Manager to Start Servers on a Machine ... 4-3
4.1.2 Using Node Manager to Start Managed Servers in a WebLogic Domain or Cluster 4-4
4.2 Starting and Managing Servers Without Node Manager ... 4-5
4.2.1 Starting an Administration Server Without Node Manager... 4-5
4.2.2 Managing Server State Without Node Manager... 4-6

5 Navigating MBeans (WLST Online)

5.1 Navigating and Interrogating MBeans .. 5-1
5.1.1 Changing the Current Management Object... 5-2
5.1.2 Navigating and Displaying Configuration MBeans Example 5-3
5.2 Browsing Runtime MBeans ... 5-5
5.2.1 Navigating and Displaying Runtime MBeans Example .. 5-5
5.3 Navigating Among MBean Hierarchies .. 5-7
5.4 Finding MBeans and Attributes.. 5-8
5.5 Accessing Other WebLogic MBeans and Custom MBeans... 5-8
5.5.1 Accessing Custom MBeans in the Domain Runtime MBean Server 5-9

6 Configuring Existing WebLogic Domains

6.1 Using WLST Online to Update an Existing WebLogic Domain .. 6-1

v

6.1.1 Tracking Configuration Changes .. 6-3
6.1.2 Undoing or Canceling Changes... 6-4
6.1.3 Additional Operations and Attributes for Change Management 6-4
6.2 Using WLST Offline to Update an Existing WebLogic Domain .. 6-5
6.3 Managing Security Data (WLST Online)... 6-6
6.3.1 Determining If You Need to Access the Edit Hierarchy.. 6-6
6.3.2 Creating a User... 6-7
6.3.3 Adding a User to a Group .. 6-7
6.3.4 Verifying Whether a User Is a Member of a Group.. 6-7
6.3.5 Listing Groups to Which a User Belongs ... 6-8
6.3.6 Listing Users and Groups in a Security Realm.. 6-9
6.3.7 Changing a Password ... 6-10
6.3.8 Protecting User Accounts in a Security Realm... 6-10
6.3.8.1 Set Consecutive Invalid Login Attempts ... 6-10
6.3.8.2 Unlock a User Account ... 6-11
6.3.9 Configuring Additional LDAP Authentication Providers ... 6-11
6.4 Deploying Applications .. 6-12
6.4.1 Using WLST Online to Deploy Applications.. 6-12
6.4.2 Using WLST Offline to Deploy Applications ... 6-13

7 Updating the Deployment Plan

8 Getting Runtime Information

8.1 Accessing Runtime Information: Main Steps ... 8-1
8.1.1 Script for Monitoring Server State... 8-2
8.1.2 Script for Monitoring the JVM ... 8-2
8.2 Configuring Logging.. 8-3
8.3 Working with the WebLogic Diagnostics Framework.. 8-4

A WLST Deployment Objects

A.1 WLSTPlan Object ... A-1
A.2 WLSTProgress Object .. A-2

B FAQs: WLST

B.1 General WLST... B-1
B.2 Jython Support ... B-2
B.3 Using WLST.. B-2

vi

vii

Preface

This preface describes the document accessibility features and conventions used in this
guide—WebLogic Server Scripting Tool.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

viii

1

Introduction and Roadmap 1-1

1Introduction and Roadmap

This section describes the contents and organization of this guide—Oracle WebLogic
Scripting Tool.

■ Section 1.1, "Document Scope and Audience"

■ Section 1.2, "Guide to This Document"

■ Section 1.3, "Related Documentation"

■ Section 1.4, "WLST Sample Scripts"

■ Section 1.5, "New and Changed WLST Features in This Release"

1.1 Document Scope and Audience
This document describes the Oracle WebLogic Scripting Tool (WLST). It explains how
you use the WLST command-line scripting interface to configure, manage, and persist
changes to WebLogic Server instances and WebLogic domains, and monitor and
manage server run-time events.

This document is written for WebLogic Server administrators and operators who
deploy Java EE applications using the Java Platform, Enterprise Edition (Java EE). It is
assumed that readers are familiar with Web technologies and the operating system
and platform where WebLogic Server is installed.

1.2 Guide to This Document
This document is organized as follows:

■ This chapter, Chapter 1, "Introduction and Roadmap" introduces the organization
of this guide and lists related documentation.

■ Chapter 2, "Using the WebLogic Scripting Tool," describes how the scripting tool
works, its modes of operation, and the basic steps for invoking it.

■ Chapter 3, "Creating WebLogic Domains Using WLST Offline," describes how to
create a new WebLogic domain or update an existing WebLogic domain without
connecting to a running WebLogic Server (that is, using WLST
offline)—supporting the same functionality as the Configuration Wizard.

■ Chapter 4, "Managing the Server Life Cycle," describes using WLST to start and
stop WebLogic Server instances and to monitor and manage the server life cycle.

■ Chapter 5, "Navigating MBeans (WLST Online)," describes how to retrieve
WebLogic domain configuration and run-time information, and edit configuration
or custom MBeans.

Related Documentation

1-2 Oracle Fusion Middleware Oracle WebLogic Scripting Tool

■ Chapter 6, "Configuring Existing WebLogic Domains" describes using scripts to
automate the creation and management of WebLogic domains, servers, and
resources.

■ Chapter 7, "Updating the Deployment Plan," describes using WLST to update an
application's deployment plan.

■ Chapter 8, "Getting Runtime Information," describes using WLST to retrieve
information about the run-time state of WebLogic Server instances.

■ Appendix A, "WLST Deployment Objects," describes WLST deployment objects
that you can use to update a deployment plan or access information about the
current deployment activity.

■ Appendix B, "FAQs: WLST," provides a list of common questions and answers.

1.3 Related Documentation
Detailed information about Oracle WebLogic Server WLST commands, as well as
custom commands for Oracle Fusion Middleware components, can be found in the
WebLogic Scripting Tool Command Reference.

WLST is one of several interfaces for managing and monitoring WebLogic Server. For
information about the other management interfaces, see:

■ "Using Ant Tasks to Configure and Use a WebLogic Server Domain" in Developing
Applications for Oracle WebLogic Server, describes using WebLogic Ant tasks for
starting and stopping WebLogic Server instances and configuring WebLogic
domains.

■ "Deployment Tools" in Deploying Applications to Oracle WebLogic Server describes
several tools that WebLogic Server provides for deploying applications and
stand-alone modules.

■ Oracle WebLogic Server Administration Console Help describes a Web-based graphical
user interface for managing and monitoring WebLogic domains.

■ Creating Domains Using the Configuration Wizard describes using a graphical user
interface to create a WebLogic domain or extend an existing one.

■ Creating Templates and Domains Using the Pack and Unpack Commands describes
commands that recreate existing WebLogic domains quickly and easily.

■ Developing Custom Management Utilities With JMX for Oracle WebLogic Server
describes using Java Management Extensions (JMX) APIs to monitor and modify
WebLogic Server resources.

■ SNMP Management Guide for Oracle WebLogic Server describes using Simple
Network Management Protocol (SNMP) to monitor WebLogic domains.

1.4 WLST Sample Scripts
The following sections describe the WLST online and offline sample scripts that you
can run or use as templates for creating additional scripts. For information about
running scripts, see Section 2.4.1.3, "Running Scripts".

Note: The sample scripts are not installed by default. To install the
server samples, you must select a custom installation of WebLogic
Server and select to install the Server Examples.

WLST Sample Scripts

Introduction and Roadmap 1-3

1.4.1 WLST Online Sample Scripts
The WLST online sample scripts demonstrate how to perform administrative tasks
and initiate WebLogic Server configuration changes while connected to a running
server. WLST online scripts are located in the following directory: SAMPLES_
HOME\server\examples\src\examples\wlst\online, where SAMPLES_HOME
refers to the main examples directory of your WebLogic Server installation, such as
c:\Oracle\Middleware\wlserver_12.1\samples.

Table 1–1 summarizes WLST online sample scripts.

1.4.2 WLST Offline Sample Scripts
The WLST offline sample scripts demonstrate how to create WebLogic domains using
the domain templates that are installed with the software. The WLST offline scripts are
located in the following directory: WL_HOME\common\templates\scripts\wlst,
where WL_HOME refers to the top-level installation directory for WebLogic Server.

Table 1–2 summarizes WLST offline sample scripts.

Table 1–1 WLST Online Sample Scripts

WLST Sample Script Description

cluster_creation.py Connects WLST to an Administration Server, starts an edit
session, and creates 10 Managed Servers. It then creates
two clusters, assigns servers to each cluster, and
disconnects WLST from the server.

cluster_deletion.py Removes the clusters and servers created in cluster_
creation.py.

configJMSSystemResource.py Connects WLST to an Administration Server, starts an edit
session, creates two JMS Servers, and targets them to the
Administration Server. Then creates JMS topics, JMS
queues, and JMS templates in a JMS System module. The
JMS queues and topics are targeted using
sub-deployments.

deleteJMSSystemResource.py Removes the JMS System module created by
configJMSSystemResource.py.

jdbc_data_source_creation.py Connects WLST to an Administration Server, starts an edit
session, and creates a JDBC data source called
myJDBCDataSource.

jdbc_data_source_deletion.py Removes the JDBC data source created by jdbc_data_
source_creation.py.

Table 1–2 WLST Offline Sample Script

WLST Sample Script Description

basicWLSdomain.py Creates a simple WebLogic domain demonstrating how to
open a domain template, create and edit configuration objects,
and write the domain configuration information to the
specified directory.

The sample consists of a single server, representing a typical
development environment. This type of configuration is not
recommended for production environments.

The script uses the Basic WebLogic Server Domain template.

WLST Sample Scripts

1-4 Oracle Fusion Middleware Oracle WebLogic Scripting Tool

In addition, sample scripts are provided that configure WebLogic domain resources
using WLST offline and online on the Oracle Technology Network site at
http://www.oracle.com/technology/index.html. To locate WLST sample
scripts and information about WLST scripts, search for any of the following terms:

■ WLST scripts

basicWLSSdomain.py Creates a simple WebLogic SIP Server domain using the Basic
WebLogic SIP Server Domain template. The script
demonstrates how to open a domain template, create and edit
configuration objects, and write the domain configuration
information to the specified directory.

The sample consists of a single server, representing a typical
development environment. This type of configuration is not
recommended for production environments.

clusterMedRecDomain.py Creates a single-cluster WebLogic domain, creating three
Managed Servers and assigning them to a cluster.

The script uses the Basic WebLogic Server Domain template
and extends it using the Avitek Medical Records Sample
extension template.

distributedQueue.py Demonstrates two methods for creating distributed queues.

The script uses the Basic WebLogic Server Domain template
and extends it using the Avitek Medical Records Sample
extension template.

geo1Domain.py Creates a simple WebLogic SIP Server domain using the
Geographic Redundancy Site 1 Domain template. The script
demonstrates how to open a domain template, create and edit
configuration objects, and write the domain configuration
information to the specified directory.

The sample consists of a single server, representing a typical
development environment. This type of configuration is not
recommended for production environments.

geo2Domain.py Creates a simple WebLogic SIP Server domain using the
Geographic Redundancy Site 2 Domain template. The script
demonstrates how to open a domain template, create and edit
configuration objects, and write the domain configuration
information to the specified directory.

The sample consists of a single server, representing a typical
development environment. This type of configuration is not
recommended for production environments.

replicatedDomain.py Creates a simple WebLogic SIP Server domain using the
Oracle WebLogic SIP Server Replicated Domain template. The
script demonstrates how to open a domain template, create
and edit configuration objects, and write the domain
configuration information to the specified directory.

The sample consists of a single server, representing a typical
development environment. This type of configuration is not
recommended for production environments.

sampleMedRecDomain.py Creates a WebLogic domain that defines resources similar to
those used in the Avitek MedRec sample. This example does
not recreate the MedRec example in its entirety, nor does it
deploy any sample applications.

The script uses the Basic WebLogic Server Domain template.

Table 1–2 (Cont.) WLST Offline Sample Script

WLST Sample Script Description

New and Changed WLST Features in This Release

Introduction and Roadmap 1-5

■ WLST online scripts

■ WLST offline scripts

1.5 New and Changed WLST Features in This Release
For a comprehensive listing of the new WebLogic Server features introduced in this
release, see What’s New in Oracle WebLogic Server.

New and Changed WLST Features in This Release

1-6 Oracle Fusion Middleware Oracle WebLogic Scripting Tool

2

Using the WebLogic Scripting Tool 2-1

2Using the WebLogic Scripting Tool

This chapter describes the WebLogic Scripting Tool (WLST), a command-line scripting
environment that you can use to create, manage, and monitor WebLogic domains. It is
based on the Java scripting interpreter, Jython. In addition to supporting standard
Jython features such as local variables, conditional variables, and flow control
statements, WLST provides a set of scripting functions (commands) that are specific to
WebLogic Server. You can extend the WebLogic scripting language to suit your needs
by following the Jython language syntax (see http://www.jython.org).

This chapter includes the following sections:

■ Section 2.1, "Using WLST Online or Offline"

■ Section 2.2, "Interactive Mode, Script Mode, and Embedded Mode"

■ Section 2.3, "Security for WLST"

■ Section 2.4, "Main Steps for Using WLST in Interactive or Script Mode"

■ Section 2.5, "Redirecting Error and Debug Output to a File"

■ Section 2.6, "Getting Help"

■ Section 2.7, "Running WLST from Ant"

■ Section 2.8, "Importing WLST as a Jython Module"

■ Section 2.9, "Customizing WLST"

2.1 Using WLST Online or Offline
You can use WLST as the command-line equivalent to the WebLogic Server
Administration Console (WLST online) or as the command-line equivalent to the
Configuration Wizard (WLST offline). For information about the WebLogic Server
Administration Console, see Oracle WebLogic Server Administration Console Help. For
information about the Configuration Wizard, see Creating Domains Using the
Configuration Wizard.

2.1.1 Using WLST Online
You can use WLST to connect to a running Administration Server and manage the
configuration of an active WebLogic domain, view performance data about resources
in the domain, or manage security data (such as adding or removing users). You can
also use WLST to connect to Managed Servers, but you cannot modify configuration
data from Managed Servers.

WLST online is a Java Management Extensions (JMX) client. It interacts with a server's
in-memory collection of Managed Beans (MBeans), which are Java objects that provide

Interactive Mode, Script Mode, and Embedded Mode

2-2 Oracle Fusion Middleware Oracle WebLogic Scripting Tool

a management interface for an underlying resource. For information on WebLogic
Server MBeans, see "Understanding WebLogic Server MBeans" in Developing Custom
Management Utilities With JMX for Oracle WebLogic Server.

2.1.2 Using WLST Offline
Without connecting to a running WebLogic Server instance, you can use WLST to
create domain templates, create a new domain based on existing templates, or extend
an existing, inactive domain. You cannot use WLST offline to view performance data
about resources in a WebLogic domain or modify security data (such as adding or
removing users).

WLST offline provides read and write access to the configuration data that is persisted
in the domain's config directory or in a domain template JAR created using Template
Builder. See Section 3.1.1, "Browsing Information About the Configuration Hierarchy
(Offline)" for more information.

Note the following restrictions for modifying configuration data with WLST offline:

■ Oracle recommends that you do not use WLST offline to manage the configuration
of an active WebLogic domain. Offline edits are ignored by running servers and
can be overwritten by JMX clients such as WLST online or the WebLogic Server
Administration Console.

■ As a performance optimization, WebLogic Server does not store most of its default
values in the WebLogic domain's configuration files. In some cases, this
optimization prevents management objects from being displayed by WLST offline
(because WebLogic Server has never written the corresponding XML elements to
the domain's configuration files). For example, if you never modify the default
logging severity level for a WebLogic domain while the domain is active, WLST
offline will not display the domain's Log management object.

If you want to change the default value of attributes whose management object is
not displayed by WLST offline, you must first use the create command to create
the management object. Then you can cd to the management object and change
the attribute value. See "create" in WebLogic Scripting Tool Command Reference.

2.2 Interactive Mode, Script Mode, and Embedded Mode
You can use any of the following techniques to invoke WLST commands:

■ Interactively, on the command line; see Section 2.2.1, "Interactive Mode"

■ In batches, supplied in a file; see Section 2.2.2, "Script Mode"

■ Embedded in Java code; see Section 2.2.3, "Embedded Mode"

2.2.1 Interactive Mode
Interactive mode, in which you enter a command and view the response at a
command-line prompt, is useful for learning the tool, prototyping command syntax,
and verifying configuration options before building a script. Using WLST interactively
is particularly useful for getting immediate feedback after making a critical
configuration change. The WLST scripting shell maintains a persistent connection with
an instance of WebLogic Server.

WLST can write all of the commands that you enter during a WLST session to a file.
You can edit this file and run it as a WLST script. For more information, see
"startRecording" and "stopRecording" in WebLogic Scripting Tool Command Reference.

Interactive Mode, Script Mode, and Embedded Mode

Using the WebLogic Scripting Tool 2-3

2.2.2 Script Mode
Scripts invoke a sequence of WLST commands without requiring your input, much
like a shell script. Scripts contain WLST commands in a text file with a .py file
extension, for example, filename.py. You use script files with the Jython commands
for running scripts.

Using WLST scripts, you can:

■ Automate WebLogic Server configuration and application deployment

■ Apply the same configuration settings, iteratively, across multiple nodes of a
topology

■ Take advantage of scripting language features, such as loops, flow control
constructs, conditional statements, and variable evaluations that are limited in
interactive mode

■ Schedule scripts to run at various times

■ Automate repetitive tasks and complex procedures

■ Configure an application in a hands-free data center

For information about sample scripts that WebLogic Server installs, see Section 1.4,
"WLST Sample Scripts".

2.2.3 Embedded Mode
In embedded mode, you instantiate the WLST interpreter in your Java code and use it
to run WLST commands and scripts. All WLST commands and variables that you use
in interactive and script mode can be run in embedded mode.

Example 2–1 illustrates how to instantiate the WLST interpreter and use it to connect
to a running server, create two servers, and assign them to clusters.

Example 2–1 Running WLST From a Java Class

package wlst;
import java.util.*;
import weblogic.management.scripting.utils.WLSTInterpreter;
import org.python.util.InteractiveInterpreter;

/**
 * Simple embedded WLST example that will connect WLST to a running server,
 * create two servers, and assign them to a newly created cluster and exit.
 * <p>Title: EmbeddedWLST.java</p>
 * <p>Copyright: Copyright (c) 2004</p>
 * <p>Company: Oracle</p>
 */

public class EmbeddedWLST
{
 static InteractiveInterpreter interpreter = null;
 EmbeddedWLST() {
 interpreter = new WLSTInterpreter();
 }

private static void connect() {
 StringBuffer buffer = new StringBuffer();
 buffer.append("connect('weblogic','welcome1')");
 interpreter.exec(buffer.toString());
 }

Security for WLST

2-4 Oracle Fusion Middleware Oracle WebLogic Scripting Tool

private static void createServers() {
 StringBuffer buf = new StringBuffer();
 buf.append(startTransaction());
 buf.append("man1=create('msEmbedded1','Server')\n");
 buf.append("man2=create('msEmbedded2','Server')\n");
 buf.append("clus=create('clusterEmbedded','Cluster')\n");
 buf.append("man1.setListenPort(8001)\n");
 buf.append("man2.setListenPort(9001)\n");
 buf.append("man1.setCluster(clus)\n");
 buf.append("man2.setCluster(clus)\n");
 buf.append(endTransaction());
 buf.append("print 'Script ran successfully ...' \n");
 interpreter.exec(buf.toString());
 }

private static String startTransaction() {
 StringBuffer buf = new StringBuffer();
 buf.append("edit()\n");
 buf.append("startEdit()\n");
 return buf.toString();
 }

private static String endTransaction() {
 StringBuffer buf = new StringBuffer();
 buf.append("save()\n");
 buf.append("activate(block='true')\n");
 return buf.toString();
 }

public static void main(String[] args) {
 new EmbeddedWLST();
 connect();
 createServers();
 }
}

2.3 Security for WLST
WLST uses the WebLogic Security Framework to prevent unauthorized users from
modifying a WebLogic domain or from viewing encrypted data. The following
sections describe the actions you must take to satisfy WLST security requirements:

■ Section 2.3.1, "Securing the WLST Connection"

■ Section 2.3.2, "Securing Access to Configuration Data"

■ Section 2.3.3, "Securing Access to Security Data"

2.3.1 Securing the WLST Connection
If you use WLST to connect to a WebLogic Server instance, Oracle recommends that
you connect to the server instance through the administration port. The
administration port is a special, secure port that all WebLogic Server instances in a
WebLogic domain can use for administration traffic.

By default, this port is not enabled, but Oracle recommends that you enable the
administration port in a production environment. The default value for the
administration port is 9002. Separating administration traffic from application traffic
ensures that critical administration operations (starting and stopping servers,

Security for WLST

Using the WebLogic Scripting Tool 2-5

changing a server's configuration, and deploying applications) do not compete with
high-volume application traffic on the same network connection.

The administration port requires all communication to be secured using SSL. By
default, all servers in a WebLogic domain use demonstration certificate files for SSL,
but these certificates are not appropriate for a production environment.

For information about configuring the administration port, see "Administration Port
and Administrative Channel" in Configuring Server Environments for Oracle WebLogic
Server.

2.3.2 Securing Access to Configuration Data
A WebLogic domain stores its configuration data in a collection of XML documents
that are saved in the domain directory. For example, these configuration documents
describe the names, listen addresses, and deployed resources in the domain. When one
or more servers in a WebLogic domain are running, each server instance maintains an
in-memory representation of the configuration data as a collection of Managed Beans
(MBeans).

You must use your own security measures to make sure that only authorized users can
access your domain's configuration files through the file system. Anyone who is
authorized to access the domain's configuration files through the file system can use a
text editor, WLST offline, or other tools to edit the configuration files.

2.3.2.1 Securing Access from WLST Online
If you use WLST to connect to a running instance of WebLogic Server, you must
provide the credentials (user name and password) of a user who has been defined in
the active WebLogic security realm. Once you are connected, a collection of security
policies determine which configuration attributes you are permitted to view or modify.
(See "Default Security Policies for MBeans" in the Oracle WebLogic Server MBean
Reference.)

When you invoke the WLST connect command, you can supply user credentials by
doing any of the following:

■ Enter the credentials on the command line. This option is recommended only if
you are using WLST in interactive mode.

For example:

connect('weblogic', 'welcome1', 'localhost:7001')

For more information, see "connect" in WebLogic Scripting Tool Command Reference.

■ Enter the credentials on the command line, then use the storeUserConfig
command to create a user configuration file that contains your credentials in an
encrypted form and a key file that WebLogic Server uses to unencrypt the
credentials. On subsequent WLST sessions (or in WLST scripts), supply the name
of the file instead of entering the credentials on the command line. This option is
recommended if you use WLST in script mode because it prevents you from
storing unencrypted user credentials in your scripts.

For example, to create the user configuration file and key file:

connect('weblogic', 'welcome1', 'localhost:7001')
storeUserConfig('c:/myFiles/myuserconfigfile.secure',
 'c:/myFiles/myuserkeyfile.secure')

To use the user configuration file and key file:

Security for WLST

2-6 Oracle Fusion Middleware Oracle WebLogic Scripting Tool

connect(userConfigFile='c:/myfiles/myuserconfigfile.secure',
userKeyFile='c:/myfiles/myuserkeyfile.secure')

For more information, see "connect" and "storeUserConfig" in WebLogic Scripting
Tool Command Reference.

■ Invoke the connect command from a directory that contains the domain's
boot.properties file. By default, when you create an Administration Server,
WebLogic Server encrypts the credentials and stores them in a
boot.properties file. WLST can use this file only if you start WLST from the
domain directory.

For example, if you have not deleted the domain's boot.properties file, you
can start WLST and invoke the connect command as follows:

c:\mydomain\> java weblogic.WLST
wls:/offline> connect()

For more information, see "connect" in WebLogic Scripting Tool Command Reference.

2.3.2.2 Writing and Reading Encrypted Configuration Values
Some attributes of a WebLogic domain's configuration are encrypted to prevent
unauthorized access to sensitive data. For example, the password that a JDBC data
source uses to connect to an RDBMS is encrypted.

The attribute values are saved in the domain's configuration document as an
encrypted string. In a running server instance, the values are available as an MBean
attribute in the form of an encrypted byte array. The names of encrypted attributes end
with Encrypted. For example, the ServerMBean exposes the password that is used to
secure access through the IIOP protocol in an attribute named
DefaultIIOPPasswordEncrypted.

Oracle recommends the following pattern for writing and reading encrypted
attributes:

With WLST offline:

■ To write an encrypted value, pass the name of the encrypted attribute and an
unencrypted string to the set command. For example:

set('DefaultIIOPPasswordEncrypted', 'mypassword')

WLST encrypts the string and writes the encrypted value to the domain's
configuration file.

For more information, see "set" in WebLogic Scripting Tool Command Reference.

■ WLST offline does not display the unencrypted value of an encrypted attribute. If
you use the ls command to display management attributes, WLST offline returns
asterisks as the value of encrypted attributes. If you use the get command, WLST
offline returns a byte array that represents asterisks.

For example:

wls:/offline/wl_server/Server/examplesServer>ls()

returns

...
-rw- DefaultIIOPPasswordEncrypted ********
...

While

Security for WLST

Using the WebLogic Scripting Tool 2-7

wls:/offline/wl_
server/Server/examplesServer>get('DefaultIIOPPasswordEncrypted')

returns

array([42, 42, 42, 42, 42, 42, 42, 42], byte)

For more information, see "ls" and "get" in WebLogic Scripting Tool Command
Reference.

With WLST online, for each encrypted attribute, an MBean also contains an
unencrypted version. For example, ServerMBean contains an attribute named
DefaultIIOPPasswordEncrypted which contains the encrypted value and an
attribute named DefaultIIOPPassword, which contains the unencrypted version of
the value.

To write and read encrypted values with WLST online:

■ To write an encrypted value, start an edit session. Then do either of the following:

– Pass the name of the unencrypted attribute and an unencrypted string to the
set command. For example:

set('DefaultIIOPPassword', 'mypassword')

– Pass the name of the encrypted attribute and an encrypted byte array to the set
command. You can use the encrypt command to create the encrypted byte
array (see "encrypt" in WebLogic Scripting Tool Command Reference). For
example:

set('DefaultIIOPPasswordEncrypted', encrypt('mypassword'))

When you activate the edit, WebLogic Server writes the encrypted value to the
domain's configuration file.

■ To read the encrypted value of the attribute, pass the name of the encrypted
attribute to the get command. For example:

get('DefaultIIOPPasswordEncrypted')

returns

array([105, 114, 111, 110, 115, 116, 101, 101, 108], byte)

■ To read the unencrypted value of the attribute, pass the name of the unencrypted
attribute to the get command. For example:

get('DefaultIIOPPassword')
returns
mypassword

2.3.3 Securing Access to Security Data
The user names and passwords of WebLogic Server users, security groups, and
security roles are not stored in a WebLogic domain's XML configuration documents.
Instead, a WebLogic domain uses a separate software component called an
Authentication provider to store, transport, and provide access to security data.

Note: Do not pass an unencrypted string to the encrypted attribute.
The encrypted attribute assumes that the value you pass to it is
already encrypted.

Main Steps for Using WLST in Interactive or Script Mode

2-8 Oracle Fusion Middleware Oracle WebLogic Scripting Tool

Authentication providers can use different types of systems to store security data. The
Authentication provider that WebLogic Server installs uses an embedded LDAP
server.

When you use WLST offline to create a domain template, WLST packages the
Authentication provider's data store along with the rest of the domain documents. If
you create a domain from the domain template, the new domain has an exact copy of
the Authentication provider's data store from the domain template.

You cannot use WLST offline to modify the data in an Authentication provider's data
store.

You can, however, use WLST online to interact with an Authentication provider and
add, remove, or modify users, groups, and roles. For more information, see Section 6.3,
"Managing Security Data (WLST Online)".

2.4 Main Steps for Using WLST in Interactive or Script Mode
The following sections summarize the steps for setting up and using WLST:

■ Section 2.4.1, "Invoking WLST"

■ Section 2.4.2, "Exiting WLST"

■ Section 2.4.3, "Syntax for WLST Commands"

2.4.1 Invoking WLST
You can invoke WLST in the following ways:

■ Execute the appropriate shell script for your environment.

■ Execute the java weblogic.WLST command.

■ Run a WLST script.

■ Execute the WebLogic Scripting Tool command from the Start menu (Windows
only).

See also Section 2.7, "Running WLST from Ant."

2.4.1.1 Invoking WLST Using Provided Shell Scripts
To invoke WLST using a shell script, execute the commands that are appropriate for
your environment. Environment variables are automatically set when you invoke
WLST this way.

Note: If you notice that it takes a long time to create or update a
domain using WLST on a UNIX or Linux operating system, set the
CONFIG_JVM_ARGS environment variable to the following value to
resolve this issue:

-Djava.security.egd=file:/dev/./urandom

Main Steps for Using WLST in Interactive or Script Mode

Using the WebLogic Scripting Tool 2-9

UNIX
cd WL_HOME/common/bin
./wlst.sh

WL_HOME is the path to your WebLogic Server home directory.

Windows
cd WL_HOME\common\bin
wlst.cmd

WL_HOME is the path to your WebLogic Server home directory.

2.4.1.2 Invoking WLST Using the java Command
To invoke WLST using the java command, you must first set up your environment for
WLST. To set up your environment for WLST:

1. Install and configure the WebLogic Server software, as described in the Installation
Guide for Oracle WebLogic Server.

2. Add WebLogic Server classes to the CLASSPATH environment variable and WL_
HOME\server\bin to the PATH environment variable, where WL_HOME refers to
the top-level installation directory for WebLogic Server.

You can use the setWLSEnv script to set the required variables:

■ Windows: WL_HOME\server\bin\setWLSEnv.cmd

■ UNIX: WL_HOME/server/bin/setWLSEnv.sh

On UNIX operating systems, the setWLSEnv.sh command does not set the
environment variables in all command shells. Oracle recommends that you
execute this command using the Korn shell.

After setting up your environment, use the following syntax to invoke WLST. See
Table 2–1 for a description of the WLST command options. See Table 2–2 for a
description of the SSL arguments.

java
 [-Dweblogic.security.SSL.ignoreHostnameVerification=true
 -Dweblogic.security.TrustKeyStore=DemoTrust]
 [-Dweblogic.security.JavaStandardTrustKeyStorePassPhrase=password]
 [-Dweblogic.security.CustomTrustKeyStoreFileName=filename
 -Dweblogic.security.TrustKeystoreType=jks
 [-Dweblogic.security.CustomTrustKeyStorePassPhrase=password]]
 [-Dweblogic.security.SSL.hostnameVerifier=classname]
 weblogic.WLST
 [-loadProperties propertyFilename]
 [-skipWLSModuleScanning]
 [[-i] filePath.py]

Note: The following commands apply only to standalone WebLogic
Server installations (those that do not include other Fusion
Middleware components). Many Fusion Middleware components
supply custom WLST commands. To use them, you must invoke
WLST from the appropriate directory. See "Using Custom WLST
Commands" in the Oracle Fusion Middleware Administrator's Guide.

Main Steps for Using WLST in Interactive or Script Mode

2-10 Oracle Fusion Middleware Oracle WebLogic Scripting Tool

Table 2–1 Command Options for WLST

Option Description

-loadProperties propertyFilename Use this option to load properties into the WLST session, where
propertyFilename is the name of a file that contains name=value
pairs.

You cannot use this option when you are importing WLST as a Jython
module (see Section 2.8, "Importing WLST as a Jython Module").

Instead of using this command-line option, you can use the
loadproperties WLST command. See "loadProperties" in WebLogic
Scripting Tool Command Reference.

-skipWLSModuleScanning Use this option to reduce startup time by skipping package scanning and
caching for WebLogic Server modules.

[-i] filePath.py Use this option to run a WLST script, where filePath.py is an
absolute or relative pathname for the script.

By default, WLST exits (stops the Java process) after it executes the
script. Include -i to prevent WLST from exiting.

Note: If a WLST script named wlstProfile.py exists in the directory
from which you invoke WLST or in user.home (the home directory of
the operating system user account as determined by the JVM), WLST
automatically runs the wlstProfile.py script; you do not need to
specify the name of this WLST script file on the command-line.

Instead of using this command-line option, you can use the following
command after you start WLST:

execfile('filePath.py').

Table 2–2 SSL Arguments

Argument Definition

-Dweblogic.security.SSL.
ignoreHostnameVerification=true
-Dweblogic.security.TrustKeyStore=
DemoTrust

Use these system properties if you plan to connect WLST to a WebLogic
Server instance through an SSL listen port, and if the server instance is
using the demonstration SSL keys and certificates.

ignoreHostNameVerification disables host name verification.

TrustKeyStore causes WLST to trust the CA certificates in the
demonstration trust keystore (WL_
HOME\server\lib\DemoTrust.jks).

TrustKeyStore is required if the server instance to which you want to
connect is using the demonstration identity and certificates.

By default, WLST trusts only the CA certificates in the Java Standard
Trust keystore (SDK_HOME\jre\lib\security\cacerts).

-Dweblogic.security.JavaStandardTr
ustKeyStorePassPhrase=password

Password that was used to secure the Java Standard Trust keystore.

If the Java Standard Trust keystore is protected by a password, and if you
want to trust its CA certificates, you must use this argument.

By default, the Java Standard Trust keystore is not protected by a
password.

-Dweblogic.security.CustomTrustKey
StoreFileName=filename
-Dweblogic.security.TrustKeystoreT
ype=jks

Causes WLST to trust the CA certificates in a custom keystore that is
located at filename. You must use both arguments to trust custom
keystores. The filename must match exactly the
ServerMBean.CustomTrustKeyStoreFileName value persisted in
config.xml; if the value specified in the
CustomTrustKeyStoreFileName attribute is a relative pathname, you
must also specify the same relative pathname in this argument.

Main Steps for Using WLST in Interactive or Script Mode

Using the WebLogic Scripting Tool 2-11

Examples
To use WLST in script mode:

java weblogic.WLST
c:/Oracle/Middleware/wlserver/templates/scripts/wlst/distributeQueues.py

To run a WLST script on a WebLogic Server instance that uses the SSL listen port and
the demonstration certificates:

java -Dweblogic.security.SSL.ignoreHostnameVerification=true
-Dweblogic.security.TrustKeyStore=DemoTrust weblogic.WLST
 c:/Oracle/Middleware/wlserver/templates/scripts/wlst/distributeQueues.py

To use WLST in interactive mode:

java weblogic.WLST

To connect to a WebLogic Server instance after you start WLST in interactive mode:

wls:/offline> connect('weblogic','welcome1','localhost:7001')

2.4.1.3 Running Scripts
You can run WLST scripts in the following ways:

■ Include the script in the java weblogic.WLST command. You can either include
the full path to the script, as shown here:

java weblogic.WLST
c:/Oracle/Middleware/wlserver/templates/scripts/wlst/distributedQueues.py

or you can navigate to the directory where the script is located before invoking
WLST, in which case you only need to include the script name in the command:

cd C:/Oracle/Middleware/wlserver_12.1/templates/scripts/wlst
java weblogic.WLST distributeQueues.py

■ After invoking WLST, use the execfile() command:

wls:offline>
execfile(’c:/Oracle/Middleware/wlserver/templates/scripts/wlst/distributedQueue
s.py’)

-Dweblogic.security.CustomTrustKey
StorePassPhrase=password

Password that was used to secure the custom keystore.

You must use this argument only if the custom keystore is protected by a
password.

-Dweblogic.security.SSL.hostnameVe
rifier=classname

Name of a custom Host Name Verifier class. The class must implement
the weblogic.security.SSL.HostnameVerifier interface.

Note: If you use backslashes (\) in the path name, be aware that
WLST interprets them as a special character, which you must escape.
For more information, see Section 2.4.3, "Syntax for WLST
Commands."

Table 2–2 (Cont.) SSL Arguments

Argument Definition

Main Steps for Using WLST in Interactive or Script Mode

2-12 Oracle Fusion Middleware Oracle WebLogic Scripting Tool

2.4.1.4 Invoking WLST From the Start Menu
On Windows, a shortcut on the Start menu sets the environment variables and invokes
WLST (Oracle WebLogic > WebLogic Server > Tools > WebLogic Scripting Tool).

2.4.2 Exiting WLST
To exit WLST, enter the exit() command:

wls:/mydomain/serverConfig> exit()
Exiting WebLogic Scripting Tool ...
c:\>

2.4.3 Syntax for WLST Commands
Follow this syntax when entering WLST commands or writing them in a script:

■ Command names and arguments are case sensitive.

■ Enclose arguments in single or double quotes. For example, 'newServer' or
"newServer".

■ If you specify a backslash character (\) in a string, either precede the backslash
with another backslash or precede the entire string with a lower-case r character.
The \ or r prevents Jython from interpreting the backslash as a special character.

For example when specifying a file path name that contains a backslash:

readTemplate('c:\\userdomains\\mytemplates\\mytemplate.jar')

or

readTemplate(r'c:\userdomains\mytemplates\mytemplate.jar')

■ When using WLST offline, the following characters are not valid in names of
management objects: period (.), forward slash (/), or backward slash (\).

If you need to cd to a management object whose name includes a forward slash
(/), surround the object name in parentheses. For example:

cd('JMSQueue/(jms/REGISTRATION_MDB_QUEUE)')

2.4.4 Considerations When Invoking Multiple WLST Instances
At WLST startup, Jython stores information in a temporary directory based on the
username of the person who started WLST. If the same user invokes two different
WLST instances which will run at the same time, conflicts may occur when saving this
information in the temporary directory.

If you plan to invoke multiple WLST instances with the same username, Oracle
recommends that you define the java.io.tmpdir system property to point to a

Note: When specifying path names in WLST commands on a
Windows machine, you can use a forward slash (/). For example:

readTemplate('c:/userdomains/templates/template.jar')

is as valid as

readTemplate('c:\\userdomains\\templates\\template.jar')

Running WLST from Ant

Using the WebLogic Scripting Tool 2-13

temporary directory that will not be shared by other WLST instances that are running
at the same time. For example, include the following parameter in the java command
you use to start WLST:

-Djava.io.tmpdir=C:\mytempdir

2.5 Redirecting Error and Debug Output to a File
To redirect WLST information, error, and debug messages from standard out to a file,
enter:

redirect(outputFile,[toStdOut])
stopRedirect()

This command also redirects the output of the dumpStack() and dumpVariables()
commands.

For example, to redirect WLST output to the logs/wlst.log file under the directory
from which you started WLST, enter the following command:

wls:/mydomain/serverConfig> redirect('./logs/wlst.log')

For more information, see "redirect" and "stopRedirect" in WebLogic Scripting Tool
Command Reference.

2.6 Getting Help
To display information about WLST commands and variables, enter the help
command.

If you specify the help command without arguments, WLST summarizes the
command categories. To display information about a particular command, variable, or
command category, specify its name as an argument to the help command. To list a
summary of all online or offline commands from the command line using the
following commands, respectively:

 help('online')
 help('offline')

The help command will support a query; for example, help('get*') displays the
syntax and usage information for all commands that begin with get.

For example, to display information about the disconnect command, enter the
following command:

wls:/mydomain/serverConfig> help('disconnect')

The command returns the following:

Description:
Disconnect from a weblogic server instance.
Syntax:
disconnect()
Example:
wls:/mydomain/serverConfig> disconnect()

2.7 Running WLST from Ant
WebLogic Server provides a custom Ant task, wlst, that invokes a WLST script from
an Ant build file. You can create a WLST script (.py) file and then use this task to

Running WLST from Ant

2-14 Oracle Fusion Middleware Oracle WebLogic Scripting Tool

invoke the script file, or you can create a WLST script in a nested element within this
task.

For more information about Ant, see the Apache Ant 1.7.1 Manual at
http://ant.apache.org/manual/.

The wlst task is predefined in the version of Ant that is installed with WebLogic
Server. To add this version of Ant to your build environment, run the following script:

WL_HOME\server\bin\setWLSEnv.cmd (or setWLSEnv.sh on UNIX)

where WL_HOME is the directory in which you installed WebLogic Server.

If you want to use the wlst task with your own Ant installation, include the following
task definition in your build file:

<taskdef name="wlst"
 classname="weblogic.ant.taskdefs.management.WLSTTask" />

2.7.1 Parameters
Table 2–3 lists the wlst task parameters that you specify as attributes of the <wlst>
element.

2.7.2 Parameters Specified as Nested Elements
The following sections describe the wlst task parameters that you specify as nested
elements of the <wlst> element.

2.7.2.1 script
Contains a WLST script. This element is required if you do not use the fileName
attribute to name a script file.

2.7.2.2 classpath
Specifies classes to add to the classpath. Use this element if your script requires classes
that are not already on the classpath.

Table 2–3 wlst Parameters

Attribute Description Required

properties="propsFile" Name and location of a properties file that contains
name-value pairs that you can reference in your WLST script.

No

fileName="fileName" Name and location of the WLST script file that you would like
to execute. If the specified WLST script file does not exist, this
task fails.

Yes, if no nested
<script> is used.

arguments="arglist" List of arguments to pass to the script. These arguments are
accessible using the sys.argv variable.

No

failOnError="value" Boolean value specifying whether the Ant build will fail if this
task fails.

No; default is true.

executeScriptBeforeFile="v
alue"

Boolean value specifying whether this task invokes the script
in the nested <script> element before the script file
specified by the fileName attribute. This attribute defaults to
true, specifying that the embedded script is invoked first.

No; default is true.

debug="value" Boolean value specifying whether debug statements should
be output when this task is executed.

No; default is false.

replaceProperties="value" Boolean value that specifies whether ant property expansion
will work in the specified WLST script.

No; default is true.

Running WLST from Ant

Using the WebLogic Scripting Tool 2-15

This element is the standard Ant classpath element. You can specify a reference to a
path element that you have defined elsewhere in the build file or nest elements that
specify the files and directories to add to the class path. See "Path-like Structures" in
Apache Ant 1.7.1 Manual at
http://ant.apache.org/manual/using.html#path.

2.7.3 Examples
The following sections show examples for the createServer, loop, and error
targets.

2.7.3.1 Example 1
In the following example, the createServer target does the following:

■ Adds classes to the task's classpath.

■ Executes the script in the nested script element. This script connects to a
WebLogic domain's Administration Server at t3://localhost:7001. (Note that
executeScriptBeforeFile is set to true, so this is invoked before the
specified WLST script file.)

■ Executes the script file myscript.py that is specified by the fileName attribute.
The script file is located in the directory from which you started Ant. You could
use such a file to start an edit session, create a new server, save, and activate the
configuration changes.

■ Defines three arguments that are passed to the script. These arguments are
accessible using the sys.argv variable.

■ Continues execution, as per the failOnError="false" setting, even if the wlst
Ant task fails to execute.

■ Disables debugging.

<target name="configServer">
 <wlst debug="false" failOnError="false" executeScriptBeforeFile="true"
 fileName="./myscript.py">
 <classpath>
 <pathelement location="${my.classpath.dir}"/>
 </classpath>
 <script>
 connect('weblogic','welcome1','t3://localhost:7001')
 </script>
 </wlst>
</target>

2.7.3.2 Example 2
In the following example, the loop target does the following:

■ Adds classes to the task's classpath using a path reference.

■ Executes the WLST script file myscript.py in the directory from which you
started Ant. (Note that executeScriptBeforeFile is set to false, so the
WLST script file is executed first, before the embedded script.)

■ Executes the embedded script to connect to the server at t3://localhost:7001
and access and print the list of servers in the WebLogic domain.

■ Results in a build failure if the wlst task fails to execute, as per the
failOnError="true" setting.

Importing WLST as a Jython Module

2-16 Oracle Fusion Middleware Oracle WebLogic Scripting Tool

■ Enables debugging.

<path id="my.classpath">
 <pathelement location="${my.classpath.dir}"/>
</path>

<target name="loop">
 <wlst debug="true" executeScriptBeforeFile="false"
 fileName="./myscript.py" failOnError="true">
 <classpath>
 <pathelement location="${my.classpath.dir}"/>
 </classpath>
 <script replaceProperties="true">
 print 'In the target loop'
 connect('${admin.user}','${admin.password}’,'t3://localhost:7001')
 svrs = cmo.getServers()
 print 'Servers in the domain are'
 for x in svrs: print x.getName()
 </script>
 </wlst>
</target>

2.7.3.3 Example 3
In the following example, the error target:

■ Executes the embedded script to print the variable, thisWillCauseNameError.

■ Continues execution, as per the failOnError="false" setting, even if the
thisWillCauseNameError variable does not exist and the wlst Ant task fails
to execute.

■ Enables debugging.

<target name="error">
 <wlst debug="true" failOnError="false">
 <script>print thisWillCauseNameError</script>
 </wlst>
</target>

2.8 Importing WLST as a Jython Module
Advanced users can import WLST from WebLogic Server as a Jython module. After
importing WLST, you can use it with your other Jython modules and invoke Jython
commands directly using Jython syntax.

The main steps include converting WLST definitions and method declarations to a
.py file, importing the WLST file into your Jython modules, and referencing WLST
from the imported file.

To import WLST as a Jython module:

1. Invoke WLST.

c:\>java weblogic.WLST
wls:/(offline)>

2. Use the writeIniFile command to convert WLST definitions and method
declarations to a .py file.

wls:/(offline)> writeIniFile("wl.py")
The Ini file is successfully written to wl.py
wls:/(offline)>

Customizing WLST

Using the WebLogic Scripting Tool 2-17

3. Open a new command shell and invoke Jython directly by entering the following
command:

c:\>java org.python.util.jython

The Jython package manager processes the JAR files in your classpath. The Jython
prompt appears:

>>>

4. Import the WLST module into your Jython module using the Jython import
command.

>>>import wl

5. Now you can use WLST methods in the module. For example, to connect WLST to
a server instance:

wl.connect('username','password')
....

2.9 Customizing WLST
You can customize WLST using the WLST home directory, which is located at WL_
HOME/common/wlst, by default, where WL_HOME refers to the top-level installation
directory for WebLogic Server. All Python scripts that are defined within the WLST
home directory are imported at WLST startup.

The following table describes ways to customize WLST.

Notes: When using WLST as a Jython module, in all WLST commands that
have a block argument, block is always set to true, specifying that WLST will
block user interaction until the command completes. See "WLST Command
and Variable Reference" in WebLogic Scripting Tool Command Reference.

When running recorded scripts directly in a Jython interpreter, boolean values
of true and false can cause an error. Before running recorded scripts in a
Jython interpreter, make one of the following changes to the script:

■ Add the following two lines to the script to define the true and false
values:

true=1
false=0

■ Change true and false values to wl.true or wl.false, where wl is
the name from the import.

Note: You can customize the default WLST home directory by
passing the following argument on the command line:

-Dweblogic.wlstHome=<another-directory>

Customizing WLST

2-18 Oracle Fusion Middleware Oracle WebLogic Scripting Tool

2.9.1 Adding Integrated Help for Custom Commands
You can customize WLST to include integrated help for any custom WSLT commands
you've defined. To add integrated help, you define the help text for each command
group and command in a resource bundle, which can be either a class or a property
resource file. You can define the help for multiple command groups in the same
resource bundle.

The resource bundle contains the following entries for each command group:

<commandGroup>_ShortDescription=\
 <short description of command group>
<commandGroup>_Description=\
 \n<description of command group>

Table 2–4 Customizing WLST

To define
custom... Do the following... For a sample script, see...

WLST commands Create a Python script defining the
new commands and copy that file to
WL_HOME/common/wlst.

Section 2.9.2, "sample.py Sample Script"

WLST commands
within a library

Create a Python script defining the
new commands and copy that file to
WL_HOME/common/wlst/lib.

The scripts located within this
directory are imported as Jython
libraries.

Section 2.9.3, "wlstLibSample.py Sample Script"

WLST commands
as a Jython
module

Create a Python script defining the
new commands and copy that file to
WL_HOME/common/wlst/modules.

This script can be imported into other
Jython modules, as described in
Section 2.8, "Importing WLST as a
Jython Module."

WL_
HOME/common/wlst/modules/wlstModule.py

A JAR file, jython-modules.jar, which contains
all of the Jython modules that are available in Jython
2.2.1, is also available within this directory.

Integrated help
for custom WLST
commands

Define the help text for each command
group and command in a resource
bundle.

Use addHelpCommandGroup to add a
command group to the list of
command groups that are displayed
by the help() command.

Use addHelpCommand to add a
command to the list of commands that
is displayed by the
help(’commandGroup’) command.

Typically, you will call the
addHelpCommandGroup and
addHelpCommand from the .py file
that contains the definition of your
custom commands.

See Section 2.9.1, "Adding Integrated
Help for Custom Commands" for more
information.

Not applicable.

Note: The resource bundle must be present in the classpath.

Customizing WLST

Using the WebLogic Scripting Tool 2-19

For example, the following lines define the short description and description for the
command group navigate:

navigate_ShortDescription=\
 Lists commands for navigating the hierarchy of beans.
navigate_Description=\
 \n Navigates the hierarchy of beans and controls the prompt display. \n

When you enter the help() command to display a list of command groups, the short
description for navigate is displayed in the listing:

wls:/offline>help()
WLST is a command line scripting tool to configure and administer a WebLogic
Server. Try:
 help(’all’) List all WLST commands available.
 help(’browser’) List commands for browsing the hierarchy.
 help(’navigate’) List commands for navigating the bean hierarchy.

When you enter the help(’navigate’) command, the description is displayed
above the list of commands in the group:

wls:/offline> help(’navigate’)
Navigates the hierarchy of beans and controls the prompt display.
 help(’mycd’) Navigate the hierarchy of beans.
 help(’myprmpt’) Toggle the display of path information at the prompt.

The resource bundle contains help text entries for commands using a standard pattern.
For each command name, there are several entries:

<commandName>_ShortDescription
<commandName>_Description
<commandName>_Example
<commandName>_Syntax

The following defines the help for mycd command:

mycd_ShortDescription=\
 Navigate the hierarchy of beans.

mycd_Description=\
 \nNavigate the hierarchy of configuration or runtime beans. This \
 \ncommand uses a model that is similar to navigating a file system \
 \nin a Windows or UNIX command shell. For example, to navigate back \
 \nto a parent configuration or runtime bean, enter mycd(".."). The \
 \ncharacter string .. (dot-dot) refers to the directory immediately \
 \nabove the current directory. To get back to the root configuration \
 \nbean after navigating to a configuration or runtime bean that is \
 \ndeep in the hierarchy, enter mycd("/"). \

mycd_Example=\
 wls:/mydomain/serverConfig> mycd(’Servers’)\n\
 wls:/mydomain/serverConfig/Servers> mycd(’myserver)\n\
 wls:/mydomain/serverConfig/Servers/myserver>mycd(’../..’)\n\
 wls:/mydomain/serverConfig>

mycd_syntax=\
 mycd(mbeanName)
 \n- mbeanName = Path to the configuration or runtime bean in the namespace.\
 \n
The short description is shown to the right of the command name when you enter the
help(’commandGroup’) command to list all commands in a group:

Customizing WLST

2-20 Oracle Fusion Middleware Oracle WebLogic Scripting Tool

wls:/offline> help(’navigate’)
Navigates the hierarchy of beans and controls the prompt display.
 help(’mycd’) Navigate the hierarchy of beans.
 help(’myprmpt’) Toggle the display of path information at the prompt.

The description, example, and syntax are displayed when you enter the
help(’commandName’) command:

wls:/offline> help(’mycd’)

Description:

Navigate the hierarchy of configuration or runtime beans. This
command uses a model that is similar to navigating a file system
in a Windows or UNIX command shell. For example, to navigate back
to a parent configuration or runtime bean, enter mycd(".."). The
character string .. (dot-dot) refers to the directory immediately
above the current directory. To get back to the root configuration
bean after navigating to a configuration or runtime bean that is
deep in the hierarchy, enter mycd("/").

Syntax:
mycd(mbeanName)
- mbeanName = Path to the configuration or runtime bean in the namespace.

Example:

wls:/mydomaina/serverConfig> mycd(’Servers’)\n\
wls:/mydomain/serverConfig/Servers> mycd(’myserver)\n\
wls:/mydomain/serverConfig/Servers/myserver>mycd(’../..’)\n\
wls:/mydomain/serverConfig>

After defining the help text in the resource bundle, use addHelpCommandGroup to
add the command group name to the list of command groups output by the help()
command. Use addHelpCommand to add each command in a group to the list of
commands displayed by the help(’commandGroup’) command. See
"addHelpCommandGroup" and "addHelpCommand" in the WebLogic Scripting Tool
Command Reference.

For more information on resource bundles and localization, refer to
http://download.oracle.com/javase/6/docs/api/java/util/ResourceB
undle.html.

2.9.2 sample.py Sample Script
This sample script demonstrates how to define a new WLST command.

def wlstHomeSample():
 print 'Sample wlst home command'

Within this script, the wlstHomeSample() command is defined, which prints a
String, as follows:

wls:/(offline)> wlstHomeSample()
Sample wlst home command

2.9.3 wlstLibSample.py Sample Script
This sample script demonstrate usage of the WLST lib directory, where layered
products and ISVs can add commands to WLST in their namespace. The script has the

Customizing WLST

Using the WebLogic Scripting Tool 2-21

same structure as the example in the previous section. It differs only in that it is stored
in the WL_HOME/common/wlst/lib directory instead of the WL_
HOME/common/wlst directory.

def wlstExampleCmd():
 print 'Example command'

Within this script, the wlstExampleCmd() command is defined, which prints a
String, as follows:

wls:/(offline)>wlstLibSample.wlstExampleCmd()
Example command

Customizing WLST

2-22 Oracle Fusion Middleware Oracle WebLogic Scripting Tool

3

Creating WebLogic Domains Using WLST Offline 3-1

3Creating WebLogic Domains Using WLST
Offline

This chapter describes how to create and configure WebLogic domains using
WebLogic Scripting Tool (WLST) offline. WLST enables you to create a new WebLogic
domain or update an existing WebLogic domain without connecting to a running
WebLogic Server (that is, using WLST offline)—supporting the same functionality as
the Configuration Wizard.

This chapter includes the following sections:

■ Section 3.1, "Creating and Using a Domain Template (Offline)"

■ Section 3.2, "Alternative: Using the configToScript Command"

■ Section 3.3, "Considerations for Clusters, JDBC, and JMS Resources"

For information about sample scripts that you can use to create WebLogic domains,
see Section 1.4.2, "WLST Offline Sample Scripts".

For more information about the Configuration Wizard, see Creating Domains Using the
Configuration Wizard.

3.1 Creating and Using a Domain Template (Offline)
A domain template is a JAR file that contains domain configuration documents,
applications, security data, startup scripts, and other information needed to create a
WebLogic domain. To create and use a domain template, perform the steps described
in Table 3–1.

Note: If you notice that it takes a long time to create or update a
domain using WLST, set the CONFIG_JVM_ARGS environment
variable to the following value to resolve this issue:

-Djava.security.egd=file:/dev/./urandom

Table 3–1 Steps for Creating a Domain Template (Offline)

To... Use this command...
For more
information, see...

Open an existing WebLogic
domain or template

readDomain(domainDirName)

readTemplate(templateFileName)

"readDomain" and
"readTemplate" in
WebLogic Scripting
Tool Command
Reference

Creating and Using a Domain Template (Offline)

3-2 Oracle Fusion Middleware Oracle WebLogic Scripting Tool

3.1.1 Browsing Information About the Configuration Hierarchy (Offline)
WLST offline provides read and write access to the configuration data that is persisted
in the WebLogic domain's config directory or in a domain template JAR created
using Template Builder. This data is a collection of XML documents and expresses a
hierarchy of management objects. The schemas that define a WebLogic domain's
configuration document are in the following locations:

■ http://xmlns.oracle.com/weblogic/domain/1.0/domain.xsd

■ http://xmlns.oracle.com/weblogic/security/1.0/security.xsd

■ http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/weblo
gic-diagnostics.xsd

■ In JAR files under WL_HOME/server/lib/schema, where WL_HOME is the
directory in which you install WebLogic Server. Within this directory:

– The domain.xsd document is represented in the
weblogic-domain-binding.jar under the pathname
META-INF/schemas/schema-0.xsd.

– The security.xsd document is represented in the
weblogic-domain-binding.jar under the pathname
META-INF/schemas/schema-1.xsd.

– The weblogic-diagnostics.xsd document is represented in the
diagnostics-binding.jar under the pathname
META-INF/schemas/schema-0.xsd.

(Optional) Modify the
WebLogic domain

Browsing and editing commands Section 3.1.1,
"Browsing
Information About
the Configuration
Hierarchy (Offline)"

Section 3.1.2, "Editing
a WebLogic Domain
(Offline)".

Set the password for the
default user, if it is not
already set

The default username and
password must be set before
you can write the domain
template.

cd('/Security/domainname/User/
username')

cmo.setPassword('password')

Section 1.4.2, "WLST
Offline Sample
Scripts".

Write the domain
configuration information to
a domain template

writeTemplate(templateName) "writeTemplate" in
WebLogic Scripting
Tool Command
Reference

Use the template to create a
domain

createDomain(domainTemplate,

domainDir, user, password)

Note: The Configuration Wizard can also
use the domain template. See Creating
Domains Using the Configuration Wizard.

"createDomain" in
WebLogic Scripting
Tool Command
Reference

Table 3–1 (Cont.) Steps for Creating a Domain Template (Offline)

To... Use this command...
For more
information, see...

Creating and Using a Domain Template (Offline)

Creating WebLogic Domains Using WLST Offline 3-3

WLST represents this hierarchy as a file system. The root of the file system is the
management object that represents the WebLogic domain. Below the domain directory
is a collection of directories for managed-object types; each instance of the type is a
subdirectory under the type directory; and each management attribute and operation
is a file within a directory. The name of an instance directory matches the value of the
management object's Name attribute. If the management object does not have a Name
attribute, WLST generates a directory name using the following pattern: NO_NAME_
number, where number starts at 0 (zero) and increments by 1 for each additional
instance.

To navigate the hierarchy, you use such WLST commands as cd, ls, and pwd in a
similar way that you would navigate a file system in a UNIX or Windows command
shell (see Table 3–2).

3.1.2 Editing a WebLogic Domain (Offline)
To edit a WebLogic domain using WLST offline, you can perform any of the tasks
defined in the following table.

Note: As a performance optimization, WebLogic Server does not
store most of its default values in the domain's configuration files. In
some cases, this optimization prevents entire management objects
from being displayed by WLST offline (because WebLogic Server has
never written the corresponding XML elements to the domain's
configuration files). For example, if you never modify the default
logging severity level for a WebLogic domain while the domain is
active, WLST offline will not display the domain's Log management
object.

If you want to change the default value of attributes whose
management object is not displayed by WLST offline, you must first
use the create command to create the management object. Then you
can cd to the management object and change the attribute value. See
"create" in WebLogic Scripting Tool Command Reference.

Table 3–2 Displaying WebLogic Domain Configuration Information (Offline)

To... Use this command...

For more information, see this
section in WebLogic Scripting
Tool Command Reference

Navigate the hierarchy of
management objects

cd(path) "cd"

List child attributes or
management objects for the
current management object

ls(['a' | 'c']) "ls"

Toggle the display of the
management object navigation
path information at the prompt

prompt(['off'|'on']
)

"prompt"

Display the current location in the
configuration hierarchy

pwd() "pwd"

Display all variables used by
WLST

dumpVariables() "dumpVariables"

Display the stack trace from the
last exception that occurred while
performing a WLST action

dumpStack() "dumpStack"

Alternative: Using the configToScript Command

3-4 Oracle Fusion Middleware Oracle WebLogic Scripting Tool

3.2 Alternative: Using the configToScript Command
WLST includes a command, configToScript, that reads an existing WebLogic
domain and outputs a WLST script that can recreate the WebLogic domain. See
"configToScript" in WebLogic Scripting Tool Command Reference.

Unlike creating and using a domain template, the configToScript command
creates multiple files that must be used together. (A domain template is a single JAR
file.) In addition, the script that the configToScript command creates:

■ Can only be run by WLST.

A domain template can be used by WLST or the Configuration Wizard.

■ Requires a WebLogic Server instance to be running. If a server isn't running, the
script starts one.

WLST offline or the Configuration Wizard can use domain templates to create
WebLogic domains without starting a server instance.

■ Contains only references to applications and other resources. When you run the
generated script, the applications and resources must be accessible to the
WebLogic domain through the file system.

Note: If you notice that it takes a long time to create or update a
domain using WLST, set the CONFIG_JVM_ARGS environment
variable to the following value to resolve this issue:

-Djava.security.egd=file:/dev/./urandom

Table 3–3 Editing a WebLogic Domain

To... Use this command...

For more information,
see this section in
WebLogic Scripting Tool
Command Reference

Add an application
to a WebLogic
domain

addTemplate(templateFileName) "addTemplate"

Assign resources to
one or more
destinations (such as
assigning servers to
clusters)

assign(sourceType, sourceName,
destinationType, destinationName)

"assign"

Unassign resources unassign(sourceType, sourceName,
destinationType, destinationName)

"unassign"

Create and delete
management objects

create(name, childMBeanType)
delete(name, childMBeanType)

"create"

"delete"

Get and set attribute
values

get(attrName)
set(attrName, value)

"get"

"set"

Set configuration
options

setOption(optionName, value) "setOption"

Load SQL files into a
database

loadDB(dbVersion, connectionPoolName) "loadDB"

Considerations for Clusters, JDBC, and JMS Resources

Creating WebLogic Domains Using WLST Offline 3-5

A domain template is a JAR file that contains all applications and resources
needed to create a WebLogic domain. Because the domain template is
self-contained, you can use it to create WebLogic domains on separate systems that
do not share file systems.

3.3 Considerations for Clusters, JDBC, and JMS Resources
When using WLST offline to create or extend a clustered WebLogic domain with a
template that has applications containing application-scoped JDBC and/or JMS
resources, you may need to perform additional steps (after the domain is created or
extended) to make sure that the application and its application-scoped resources are
targeted and deployed properly in a clustered environment. For more information on
the targeting and deployment of application-scoped modules, see "Deploying
Applications and Modules with weblogic.deployer" in Deploying Applications to Oracle
WebLogic Server.

If you want to use JDBC resources to connect to a database, modify the environment as
the database vendor requires. Usually this entails adding driver classes to the
CLASSPATH variable and vendor-specific directories to the PATH variable. To set the
environment that the sample Derby database requires as well as add an SDK to the
PATH variable and the WebLogic Server classes to the CLASSPATH variable, invoke the
following script:

WL_HOME\samples\domains\wl_server\setExamplesEnv.cmd (on Windows)

WL_HOME/samples/domains/wl_server/setExamplesEnv.sh (on UNIX)

Considerations for Clusters, JDBC, and JMS Resources

3-6 Oracle Fusion Middleware Oracle WebLogic Scripting Tool

4

Managing the Server Life Cycle 4-1

4Managing the Server Life Cycle

This chapter describes how to use WebLogic Scripting Tool (WLST) to manage and
monitor the server life cycle. During its lifetime, a server can transition through a
number of operational states, such as shutdown, starting, standby, admin, resuming,
and running.

This chapter includes the following sections:

■ Section 4.1, "Using WLST and Node Manager to Manage Servers"

■ Section 4.2, "Starting and Managing Servers Without Node Manager"

For more information about the server life cycle, see "Understanding Server Life
Cycle" inManaging Server Startup and Shutdown for Oracle WebLogic Server.

For information on other techniques for starting and stopping server instances, see
"Starting and Stopping Servers" in Managing Server Startup and Shutdown for Oracle
WebLogic Server.

4.1 Using WLST and Node Manager to Manage Servers
Node Manager is a utility that enables you to control the life cycles of multiple servers
through a single WLST session and a single network connection. (It can also
automatically restart servers after a failure.) For more information about Node
Manager, see the Node Manager Administrator’s Guide for Oracle WebLogic Server.

You can use WLST to do the following with Node Manager:

■ Start a Node Manager.

■ Connect to a Node Manager, then use the Node Manager to start and stop servers
on the Node Manager machine. See Figure 4–1.

Using WLST and Node Manager to Manage Servers

4-2 Oracle Fusion Middleware Oracle WebLogic Scripting Tool

Figure 4–1 Starting Servers on a Machine

A Node Manager process is not associated with a specific WebLogic domain but with a
machine. You can use the same Node Manager process to control server instances in
any WebLogic domain, as long as the server instances reside on the same machine as
the Node Manager process.

For information about the commands that WLST can use while acting as a Node
Manager client, see "Node Manager Commands" in WebLogic Scripting Tool Command
Reference.

■ Connect to an Administration Server, then use the Administration Server to start
and stop servers in the domain. See Figure 4–2.

Figure 4–2 Starting Servers in a WebLogic Domain

In this case, WLST is a client of the Administration Server, and the Administration
Server uses one or more Node Managers to start Managed Servers.

Using WLST and Node Manager to Manage Servers

Managing the Server Life Cycle 4-3

For information about the life cycle commands that WLST can use while acting as an
Administration Server client, see "Life Cycle Commands" in WebLogic Scripting Tool
Command Reference.

4.1.1 Using Node Manager to Start Servers on a Machine
WLST can connect to a Node Manager that is running on any machine and start one or
more WebLogic Server instances on the machine. A WebLogic domain's
Administration Server does not need to be running for WLST and Node Manager to
start a server instance using this technique.

To connect WLST to a Node Manager and start servers:

1. Configure Node Manager to start servers.

See "General Node Manager Configuration" in the Node Manager Administrator’s
Guide for Oracle WebLogic Server.

2. Start WLST.

3. Start Node Manager.

Usually, as part of configuring Node Manager, you create a Windows service or a
daemon that automatically starts Node Manager when the host computer starts.
See "Running Node Manager as a Service" in the Node Manager Administrator’s
Guide for Oracle WebLogic Server.

If Node Manager is not already running, you can log on to the host computer and
use WLST to start it:

wls:/offline> startNodeManager()

For more information about startNodeManager, see "startNodeManager" in
WebLogic Scripting Tool Command Reference.

4. Connect WLST to a Node Manager by entering the nmConnect command.

wls:/offline>nmConnect('username','password','nmHost','nmPort',
'domainName','domainDir','nmType')

For example,

nmConnect('weblogic', 'welcome1', 'localhost', '5556',
'mydomain','c:/bea/user_projects/domains/mydomain','SSL')
Connecting to Node Manager ...
Successfully connected to Node Manager.
wls:/nm/mydomain>

For detailed information about nmConnect command arguments, see
"nmConnect" in WebLogic Scripting Tool Command Reference.

5. Use the nmStart command to start a server.

wls:/nm/mydomain>nmStart('AdminServer')
starting server AdminServer
...
Server AdminServer started successfully
wls:/nm/mydomain>

6. Monitor the status of the Administration Server by entering the
nmServerStatus command.

wls:/nm/mydomain>nmServerStatus('serverName')
RUNNING

Using WLST and Node Manager to Manage Servers

4-4 Oracle Fusion Middleware Oracle WebLogic Scripting Tool

wls:/nm/mydomain>

7. Stop the server by entering the nmKill command.

wls:/nm/mydomain>nmKill('serverName')
Killing server AdminServer
Server AdminServer killed successfully
wls:/nm/mydomain>

For more information about WLST Node Manager commands, see "Node Manager
Commands" in WebLogic Scripting Tool Command Reference.

4.1.2 Using Node Manager to Start Managed Servers in a WebLogic Domain or Cluster
To start Managed Servers and clusters using Node Manager:

1. Configure Node Manager to start servers.

See "General Node Manager Configuration" in the Node Manager Administrator’s
Guide for Oracle WebLogic Server.

2. Start WLST.

3. Start Node Manager.

Usually, as part of configuring Node Manager, you create a Windows service or a
daemon that automatically starts Node Manager when the host computer starts.
See "Running Node Manager as a Service" in the Node Manager Administrator’s
Guide for Oracle WebLogic Server

If Node Manager is not already running, you can log on to the host computer and
use WLST to start it:

wls:/offline> startNodeManager()

For more information about startNodeManager, see "startNodeManager" in
WebLogic Scripting Tool Command Reference.

4. Start an Administration Server.

5. Connect WLST to the Administration Server instance using the connect
command.

wls:/(offline)> connect('username','password')

Connecting to weblogic server instance running at t3://localhost:7001 as
username weblogic ...
Successfully connected to Admin Server 'myserver' that belongs to domain
'mydomain'.
Warning: An insecure protocol was used to connect to the server.
To ensure on-the-wire security, the SSL port or Admin port should be used
instead.

wls:/mydomain/serverConfig>

For detailed information about connect command arguments, see "connect" in
WebLogic Scripting Tool Command Reference.

6. Do any of the following:

■ To start a Managed Server, enter the following command, where
managedServerName is the name of the server.

start('managedServerName','Server')

Starting and Managing Servers Without Node Manager

Managing the Server Life Cycle 4-5

■ To start a cluster, enter the following command, where clusterName is the
name of the cluster.

start('clusterName','Cluster')

For more information, see "start" in WebLogic Scripting Tool Command Reference.

4.2 Starting and Managing Servers Without Node Manager
The following sections describe starting and managing server state without using the
Node Manager:

■ Section 4.2.1, "Starting an Administration Server Without Node Manager"

■ Section 4.2.2, "Managing Server State Without Node Manager"

If you do not use Node Manager, WLST cannot start Managed Servers. For
information on other techniques for starting and stopping server instances, see
"Starting and Stopping Servers" in Managing Server Startup and Shutdown for Oracle
WebLogic Server.

4.2.1 Starting an Administration Server Without Node Manager
To start an Administration Server without using Node Manager:

1. If you have not already done so, use WLST to create a WebLogic domain.

For more information, see Chapter 3, "Creating WebLogic Domains Using WLST
Offline"

2. Open a shell (command prompt) on the computer on which you created the
domain.

3. Change to the directory in which you located the domain.

By default, this directory is MW_HOME\user_projects\domains\domain_
name, where MW_HOME is the top-level installation directory of Oracle WebLogic
products.

4. Set up your environment by running one of the following scripts.

■ bin\setDomainEnv.cmd (Windows)

■ bin/setDomainEnv.sh (UNIX: Oracle recommends that you run this script
from the Korn shell.)

On Windows, you can use a shortcut on the Start menu to set your environment
variables and invoke WLST (Tools > WebLogic Scripting Tool).

5. Invoke WLST by as described in Section 2.4.1, "Invoking WLST."

The WLST prompt appears.

wls:/(offline)>

6. Use the WLST startServer command to start the Administration Server.

startServer([adminServerName], [domainName], [url], [username],
[password],[domainDir], [block], [timeout], [serverLog],
[systemProperties], [jvmArgs] [spaceAsJvmArgsDelimiter])

For detailed information about startServer command arguments, see
"startServer" in WebLogic Scripting Tool Command Reference.

For example,

Starting and Managing Servers Without Node Manager

4-6 Oracle Fusion Middleware Oracle WebLogic Scripting Tool

wls:offline/>startServer('AdminServer','mydomain','t3://localhost:7001',
'weblogic','welcome1','c:/bea/user_projects/domains/mydomain',
'true',60000,'false')

After WLST starts a server instance, the server runs in a separate process from WLST;
exiting WLST does not shut down the server.

4.2.2 Managing Server State Without Node Manager
WLST life cycle commands enable you to control the states through which a server
instance transitions. See "Life Cycle Commands" in WebLogic Scripting Tool Command
Reference. Oracle recommends that you enable and use the WebLogic domain's
administration port when you connect to servers and issue administrative commands.
See Section 2.3.1, "Securing the WLST Connection".

The commands in Example 4–1 explicitly move a server instance through the
following server states: RUNNING->ADMIN->RUNNING->SHUTDOWN.

Start WebLogic Server before running this script.

Example 4–1 WLST Life Cycle Commands

Connect to the Administration Server
connect("username","password","t3://localhost:7001")

First enable the Administration Port. This is not a requirement.
After you enable the Administration Port in a domain, WebLogic Server
persists the setting in its configuration files. You do not need to repeat
the process in future WLST sessions.
edit()
startEdit()
cmo.setAdministrationPortEnabled(1)
activate(block="true")

check the state of the server
state("myserver")

now move the server from RUNNING state to ADMIN
suspend("myserver", block="true")

check the state
state("myserver")

now resume the server to RUNNING state
resume("myserver",block="true")

check the state
state("myserver")

now take a thread dump of the server
threadDump("./dumps/threadDumpAdminServer.txt")

finally shutdown the server
shutdown(block="true")

5

Navigating MBeans (WLST Online) 5-1

5Navigating MBeans (WLST Online)

This chapter describes how to navigate, interrogate, and edit MBeans using WebLogic
Scripting Tool (WLST) online.

This chapter includes the following sections:

■ Section 5.1, "Navigating and Interrogating MBeans"

■ Section 5.2, "Browsing Runtime MBeans"

■ Section 5.3, "Navigating Among MBean Hierarchies"

■ Section 5.4, "Finding MBeans and Attributes"

■ Section 5.5, "Accessing Other WebLogic MBeans and Custom MBeans"

5.1 Navigating and Interrogating MBeans
WLST online provides simplified access to MBeans. While JMX APIs require you to
use JMX object names to interrogate MBeans, WLST enables you to navigate a
hierarchy of MBeans in a similar fashion to navigating a hierarchy of files in a file
system.

WebLogic Server organizes its MBeans in a hierarchical data model. In the WLST file
system, MBean hierarchies correspond to drives; MBean types and instances are
directories; MBean attributes and operations are files. WLST traverses the hierarchical
structure of MBeans using commands such as cd, ls, and pwd in a similar way that
you would navigate a file system in a UNIX or Windows command shell. After
navigating to an MBean instance, you interact with the MBean using WLST
commands.

In the configuration hierarchy, the root directory is DomainMBean (see
"DomainMBean" in the Oracle WebLogic Server MBean Reference); the MBean type is a
subdirectory under the root directory; each instance of the MBean type is a
subdirectory under the MBean type directory; and MBean attributes and operations
are nodes (like files) under the MBean instance directory. The name of the MBean
instance directory matches the value of the MBean's Name attribute. If the MBean does
not have a Name attribute, WLST generates a directory name using the following
pattern: NO_NAME_number, where number starts at 0 (zero) and increments by 1 for
each additional MBean instance.

Navigating and Interrogating MBeans

5-2 Oracle Fusion Middleware Oracle WebLogic Scripting Tool

Figure 5–1 Configuration MBean Hierarchy

WLST first connects to a WebLogic Server instance at the root of the server's
configuration MBeans, a single hierarchy whose root is DomainMBean. WLST
commands provide access to all the WebLogic Server MBean hierarchies within a
WebLogic domain, such as a server's run-time MBeans, run-time MBeans for
domain-wide services, and an editable copy of all the configuration MBeans in the
domain. For more information, see "Tree Commands" in WebLogic Scripting Tool
Command Reference.

For more information about MBean hierarchies, see "WebLogic Server MBean Data
Model" in Developing Custom Management Utilities With JMX for Oracle WebLogic Server.

5.1.1 Changing the Current Management Object
WLST online provides a variable, cmo, that represents the current management object.
You can use this variable to perform any get, set, or invoke method on the
management object. For example, the cmo variable enables the following command:

wls:/mydomain/edit> cmo.setAdministrationPort(9092)

The variable is available in all WLST hierarchies except custom and jndi.

WLST sets the value of cmo to the current WLST path. Each time you change
directories, WLST resets the value of cmo to the current WLST path. For example,
when you change to the serverRuntime hierarchy, cmo is set to ServerRuntime. When
you change to the serverConfig hierarchy, cmo is set to DomainMBean. If you change
to the Servers directory under DomainMBean, cmo is set to an instance of
ServerMBean (see Example 5–1).

Example 5–1 Changing the Current Management Object

wls:/(offline)> connect('username','password')
Connecting to weblogic server instance running at t3://localhost:7001 as username
weblogic ...
Successfully connected to Admin Server 'myserver' that belongs to domain
'mydomain'.
Warning: An insecure protocol was used to connect to the server.
To ensure on-the-wire security, the SSL port or Admin port should be used instead.
wls:/mydomain/serverConfig> cmo
[MBeanServerInvocationHandler]com.bea:Name=mydomain,Type=Domain
wls:/mydomain/serverConfig> cd('Servers')
wls:/mydomain/serverConfig/Servers> cmo
[MBeanServerInvocationHandler]com.bea:Name=mydomain,Type=Domain
wls:/mydomain/serverConfig/Servers> cd('myserver')

Navigating and Interrogating MBeans

Navigating MBeans (WLST Online) 5-3

wls:/mydomain/serverConfig/Servers/myserver> cmo
[MBeanServerInvocationHandler]com.bea:Name=myserver,Type=Server

For more information on WLST variables, see "WLST Variable Reference" in WebLogic
Scripting Tool Command Reference.

5.1.2 Navigating and Displaying Configuration MBeans Example
The commands in Example 5–2 instruct WLST to connect to an Administration Server
instance and display attributes, operations, and child MBeans in DomainMBean.

Example 5–2 Navigating and Displaying Configuration MBeans

wls:/offline> connect('username','password')
wls:/mydomain/serverConfig> ls()
dr-- AdminConsole
dr-- AppDeployments
dr-- BridgeDestinations
dr-- Clusters
dr-- CoherenceClusterSystemResources
dr-- CoherenceServers
dr-- CustomResources
dr-- DeploymentConfiguration
dr-- Deployments
...
-r-- AdminServerName myserver
-r-- AdministrationMBeanAuditingEnabled false
-r-- AdministrationPort 9002
-r-- AdministrationPortEnabled false
-r-- AdministrationProtocol t3s
-r-- ArchiveConfigurationCount 5
...
wls:/mydomain/serverConfig> cd('Servers')
wls:/mydomain/serverConfig/Servers> ls()
dr-- AdminServer
dr-- managed1
dr-- myserver
wls:/mydomain/serverConfig/Servers> cd('myserver')
wls:/mydomain/serverConfig/Servers/myserver> ls()
dr-- COM
dr-- CandidateMachines
dr-- Cluster
dr-- CoherenceClusterSystemResource
dr-- DefaultFileStore
dr-- ExecutiveQueues
dr-- FederationServices
dr-- IIOP
dr-- JTAMigrateableTarget
dr-- Log
dr-- Machine
dr-- NetworkAccessPoints
...
-r-- AcceptBacklog 50
-r-- AdminReconnectIntervalSeconds 10
-r-- AdministrationPort 0
-r-- AdministrationProtocol t3s
-r-- AutoKillIfFailed false
-r-- AutoMigrationEnabled false
-r-- AutoRestart true
....

Navigating and Interrogating MBeans

5-4 Oracle Fusion Middleware Oracle WebLogic Scripting Tool

wls:/mydomain/serverConfig/Servers/myserver> cd('Log/myserver')
wls:/mydomain/serverConfig/Servers/myserver/Log/myserver> ls()
dr-- DomainLogBroadcastFilter
dr-- LogFileFilter
dr-- MemoryBufferFilter
dr-- StdoutFilter

-r-- BufferSize 8
-r-- DateForatPattern MMM d, yyyy h:mm:ss a z
-r-- DomainLogBroadcastFilter null
-r-- DomainLogBroadcastSeverity Warning
-r-- DomainLogBroadcasterBufferSize 1
-r-- FileCount 7
-r-- FileMinSize 500
-r-- FileName myserver.log
-r-- FileTimeSpan 24
-r-- Log4jLoggingEnabled false
-r-- LogFileFilter null
-r-- LogFileRotationDir null
-r-- LogFileSeverity Debug
-r-- LoggerSeverity Info
-r-- LoggerSeverityProperties null
-r-- MemoryBufferFilter null
-r-- MemoryBufferSeverity Debug
-r-- MemoryBufferSize 500
-r-- Name myserver
-r-- Notes null
-r-- NumberOfFilesLimited false
-r-- RedirectStderrToServerLogEnabled false
-r-- RedirectStdoutToServerLogEnabled false
-r-- RotateLogOnStartup true
-r-- RotationTime 00:00
-r-- RotationType bySize
-r-- ServerLogBridgeUseParentLoggersEnabled false
-r-- StdoutFilter null
-r-- StdoutFormat standard
-r-- StdoutLogStack true
-r-- StdoutSeverity Warning
-r-- Type Log

-r-x freezeCurrentValue Void : String(attributeName)

-r-x isSet Boolean : String(propertyName)
String(propertyName)
-r-x unSet Void : String(propertyName)

In the ls command output information, d designates an MBean with which you can
use the cd command (analogous to a directory in a file system), r indicates a readable
property, w indicates a writeable property, and x an executable operation.

To navigate back to a parent MBean, enter the cd('..') command:

Note: The read, write, and execute indicators assume that there are
no restrictions to the current user's access privileges. A specific user
might not be able to read values that WLST indicates as readable
because the user might not have been given appropriate permission
by the policies in the WebLogic Security realm. See "Default Security
Policies for MBeans" in the Oracle WebLogic Server MBean Reference.

Browsing Runtime MBeans

Navigating MBeans (WLST Online) 5-5

wls:/mydomain/serverConfig/Servers/myserver/Log/myserver> cmo
[MBeanServerInvocationHandler]mydomain:Name=myserver,Server=myserver,Type=Log
wls:/mydomain/serverConfig/Servers/myserver/Log/myserver> cd('..')
wls:/mydomain/serverConfig/Servers/myserver/Log>
wls:/mydomain/serverConfig/Servers/myserver/Log> cmo
[MBeanServerInvocationHandler]mydomain:Name=myserver,Type=Server

After navigating back to the parent MBean type, WLST changes the cmo from
LogMBean to ServerMBean.

To get back to the root MBean after navigating to an MBean that is deep in the
hierarchy, enter the cd('/') command.

5.2 Browsing Runtime MBeans
Similar to the configuration information, WebLogic Server run-time MBeans are
arranged in a hierarchical data structure. When connected to an Administration Server,
you access the run-time MBean hierarchy by entering the serverRuntime or the
domainRuntime command. The serverRuntime command places WLST at the root
of the server run-time management objects, ServerRuntimeMBean; the
domainRuntime command, at the root of the domain-wide run-time management
objects, DomainRuntimeMBean. When connected to a Managed Server, the root of the
run-time MBeans is ServerRuntimeMBean. The domain run-time MBean hierarchy
exists on the Administration Server only; you cannot use the domainRuntime
command when connected to a Managed Server.

For more information, see "ServerRuntimeMBean" and "DomainRuntimeMBean" in
the Oracle WebLogic Server MBean Reference.

Using the cd command, WLST can navigate to any of the run-time child MBeans. The
navigation model for run-time MBeans is the same as the navigation model for
configuration MBeans. However, run-time MBeans exist only on the same server
instance as their underlying managed resources (except for the domain-wide run-time
MBeans on the Administration Server) and they are all un-editable.

5.2.1 Navigating and Displaying Runtime MBeans Example
The commands in Example 5–3 instruct WLST to connect to an Administration Server
instance, navigate, and display server and domain run-time MBeans.

Example 5–3 Navigating and Displaying Runtime MBeans

wls:/(offline) > connect('username','password')
wls:/mydomain/serverConfig> serverRuntime()
Location changed to serverRuntime tree. This is a read-only tree with
ServerRuntimeMBean as the root.
For more help, use help('serverRuntime')
wls:/mydomain/serverRuntime> ls()
dr-- ApplicationRuntimes
dr-- ClusterRuntime
dr-- ConnectorServiceRuntime
...
dr-- JDBCServiceRuntime
dr-- JMSRuntime
dr-- JTARuntime
dr-- JVMRuntime
dr-- LibraryRuntimes
dr-- MailSessionRuntimes
dr-- RequestClassRuntimes

Browsing Runtime MBeans

5-6 Oracle Fusion Middleware Oracle WebLogic Scripting Tool

dr-- ServerChannelRuntimes
dr-- ServerSecurityRuntime
dr-- ServerServices
dr-- ThreadPoolRuntime
dr-- WLDFAccessRuntime
dr-- WLDFRuntime
dr-- WTCRuntime
dr-- WorkManagerRuntimes

-r-- ActivationTime 1093958848908
-r-- AdminServer true
-r-- AdminServerHost
-r-- AdminServerListenPort 7001
-r-- AdminServerListenPortSecure false
-r-- AdministrationPort 9002
-r-- AdministrationPortEnabled false
...
wls:/mydomain/serverRuntime> domainRuntime()
Location changed to domainRuntime tree. This is a read-only tree with
DomainRuntimeMBean
as the root.
For more help, use help('domainRuntime')
wls:/mydomain/domainRuntime> ls()
dr-- DeployerRuntime
...
dr-- ServerLifecycleRuntimes
dr-- ServerRuntimes

-r-- ActivationTime Tue Aug 31 09:27:22 EDT 2004
-r-- Clusters null
-rw- CurrentClusterDeploymentTarget null
-rw- CurrentClusterDeploymentTimeout 0
-rw- Name mydomain
-rw- Parent null
-r-- Type DomainRuntime

-r-x lookupServerLifecycleRuntime javax.management.ObjectName

: java.lang.String
wls:/mydomain/domainRuntime>

The commands in Example 5–4 instruct WLST to navigate and display run-time
MBeans on a Managed Server instance.

Example 5–4 Navigating and Displaying Runtime MBeans on a Managed Server

wls:/offline> connect('username','password','t3://localhost:7701')
Connecting to weblogic server instance running at t3://localhost:7701 as username
weblogic ...
Successfully connected to managed Server 'managed1' that belongs to domain
'mydomain'.
Warning: An insecure protocol was used to connect to the server.
To ensure on-the-wire security, the SSL port or Admin port should be used instead.
wls:/mydomain/serverConfig> serverRuntime()
wls:/mydomain/serverRuntime> ls()
dr-- ApplicationRuntimes
dr-- ClusterRuntime
...
dr-- JMSRuntime
dr-- JTARuntime

Navigating Among MBean Hierarchies

Navigating MBeans (WLST Online) 5-7

dr-- JVMRuntime
dr-- LibraryRuntimes
dr-- MailSessionRuntimes
dr-- RequestClassRuntimes
dr-- ServerChannelRuntimes
dr-- ServerSecurityRuntime
dr-- ThreadPoolRuntime
dr-- WLDFAccessRuntime
dr-- WLDFRuntime
dr-- WTCRuntime
dr-- WorkManagerRuntimes
-r-- ActivationTime 1093980388931
-r-- AdminServer false
-r-- AdminServerHost localhost
-r-- AdminServerListenPort 7001
-r-- AdminServerListenPortSecure false
-r-- AdministrationPort 9002
-r-- AdministrationPortEnabled false
...
wls:/mydomain/serverRuntime>

5.3 Navigating Among MBean Hierarchies
To navigate to a configuration MBean from the run-time hierarchy, enter the
serverConfig or domainConfig (if connected to an Administration Server only)
command. This places WLST at the configuration MBean to which you last navigated
before entering the serverRuntime or domainRuntime command.

The commands in the following example instruct WLST to navigate from the run-time
MBean hierarchy to the configuration MBean hierarchy and back:

wls:/mydomain/serverRuntime/JVMRuntime/managed1> serverConfig()
Location changed to serverConfig tree. This is a read-only tree with DomainMBean
as the root.
For more help, use help('serverConfig')
wls:/mydomain/serverConfig> cd ('Servers/managed1')
wls:/mydomain/serverConfig/Servers/managed1> cd('Log/managed1')
wls:/mydomain/serverConfig/Servers/managed1/Log/managed1> serverRuntime()
wls:/mydomain/serverRuntime/JVMRuntime/managed1>

Entering the serverConfig command from the run-time MBean hierarchy again
places WLST at the configuration MBean to which you last navigated.

wls:/mydomain/serverRuntime/JVMRuntime/managed1> serverConfig()
wls:/mydomain/serverConfig/Servers/managed1/Log/managed1>

For more information, see "Tree Commands" in WebLogic Scripting Tool Command
Reference.

Alternatively, you can use the currentTree command to store your current MBean
hierarchy location and to return to that location after navigating away from it. See
"currentTree" in WebLogic Scripting Tool Command Reference.

For example:

wls:/mydomain/serverConfig/Servers/managed1/Log/managed1> myLocation =
currentTree()
wls:/mydomain/serverConfig/Servers/managed1/Log/managed1> serverRuntime()
wls:/mydomain/serverRuntime> cd('JVMRuntime/managed1')
wls:/mydomain/serverRuntime/JVMRuntime/managed1>myLocation()

Finding MBeans and Attributes

5-8 Oracle Fusion Middleware Oracle WebLogic Scripting Tool

wls:/mydomain/serverConfig/Servers/managed1/Log/managed1>

5.4 Finding MBeans and Attributes
To locate a particular MBean and attribute, you use the find command. WLST returns
the pathname to the MBean that stores the attribute and its value. You can use the
getMBean command to return the MBean specified by the path. For more information,
see "find" and "getMBean" in WebLogic Scripting Tool Command Reference.

For example:

wls:/mydomain/edit !> find('DebugEjbCaching')

finding ’DebugEjbCaching’ in all registered MBean instances ...

/Servers/AdminServer/ServerDebug/AdminServer false

/Servers/managed2/ServerDebug/managed2 false

wls:/mydomain/edit !> bean=getMBean('Servers/managed2/ServerDebug/managed2')
wls:/mydomain/edit !> print bean
[MBeanServerInvocationHandler]bea.com:Name=managed2,Type=ServerDebug,
Server=managed2
wls:/mydomain/edit !>

Alternatively, the getPath command returns the MBean path for a specified MBean
instance or ObjectName for the MBean in the current MBean hierarchy. See "getPath"
in WebLogic Scripting Tool Command Reference.

wls:/mydomain/serverConfig>path=getPath('com.bea:Name=myserver,Type=Server')
wls:/mydomain/serverConfig> print path
Servers/myserver

5.5 Accessing Other WebLogic MBeans and Custom MBeans
In addition to accessing WebLogic Server MBeans, WLST can access MBeans that
WebLogic Integration and WebLogic Portal provide. It can also access MBeans that you
create and register (custom MBeans) to configure or monitor your own resources. (For
information on creating and registering your own MBeans, see "Instrumenting and
Registering Custom MBeans" in Developing Manageable Applications With JMX for Oracle
WebLogic Server.)

To navigate other WebLogic MBeans or custom MBeans, enter the custom command
or the domainCustom command, depending on the MBean server (Runtime or
Domain Runtime) on which the custom MBean is registered. You can use custom
when WLST is connected to an Administration Server or a Managed Server instance.
You can use domainCustom only when WLST is connected to an Administration
Server. See Section 5.5.1, "Accessing Custom MBeans in the Domain Runtime MBean
Server," for information about domainCustom.

WLST treats all non-WebLogic Server MBeans as custom MBeans:

■ Instead of arranging custom MBeans in a hierarchy, WLST organizes and lists
custom MBeans by JMX object name. All MBeans with the same JMX domain
name are listed in the same WLST directory. For example, if you register all of

Note: getMBean does not throw an exception when an instance is
not found.

Accessing Other WebLogic MBeans and Custom MBeans

Navigating MBeans (WLST Online) 5-9

your custom MBeans with JMX object names that start with mycompany:, then
WLST arranges all of your MBeans in a directory named mycompany.

■ Custom MBeans cannot use the cmo variable because a stub is not available.

■ Custom MBeans are editable, but not subject to the WebLogic Server change
management process. You can use MBean get, set, invoke, and create and
delete commands on them without first entering the startEdit command. See
Section 6.1, "Using WLST Online to Update an Existing WebLogic Domain".

Here is an example of navigating custom MBeans on the Runtime MBean Server:

wls:/mydomain/serverConfig> custom()
Location changed to custom tree. This is a writable tree with No root.
For more help, use help('custom')
wls:/mydomain/custom> ls()
drw- mycompany
drw- anothercompany
wls:/mydomain/custom> cd("mycompany")
wls:/mydomain/custom/mycompany> ls()
drw- mycompany:y1=x
drw- mycompany:y2=x
wls:/mydomain/custom/mycompany> cd("mycompany:y1=x")
wls:/mydomain/custom/mycompany/mycompany:y1=x> ls()
-rw- MyAttribute 10
wls:/mydomain/custom/mycompany/mycompany:y1=x>

5.5.1 Accessing Custom MBeans in the Domain Runtime MBean Server
Use the domainCustom() command to browse and invoke methods or perform
operations on custom MBeans that are registered in the Domain Runtime MBean
Server. This is similar to using the custom() command to access custom MBeans that
are registered in the Runtime MBean Server, as described in Section 5.5. You can use
the domainCustom() command only when WLST is connected to the Administration
Server.

For information on using domainCustom(), see "domainCustom" in the WebLogic
Scripting Tool Command Reference.

For information on how to access custom MBeans in the Domain Runtime MBean
server, see "Make Local Connections to the Domain Runtime MBean Server" in
Developing Custom Management Utilities With JMX for Oracle WebLogic Server. For
information on creating and registering your own MBeans, see "Instrumenting and
Registering Custom MBeans" in Developing Manageable Applications With JMX for Oracle
WebLogic Server.

Accessing Other WebLogic MBeans and Custom MBeans

5-10 Oracle Fusion Middleware Oracle WebLogic Scripting Tool

6

Configuring Existing WebLogic Domains 6-1

6Configuring Existing WebLogic Domains

This chapter describes how to use WebLogic Scripting Tool (WLST) both online and
offline to update an existing WebLogic domain.

This chapter includes the following sections:

■ Section 6.1, "Using WLST Online to Update an Existing WebLogic Domain"

■ Section 6.2, "Using WLST Offline to Update an Existing WebLogic Domain"

■ Section 6.3, "Managing Security Data (WLST Online)"

■ Section 6.4, "Deploying Applications"

6.1 Using WLST Online to Update an Existing WebLogic Domain
Because WLST online interacts with an active WebLogic domain, all online changes to
a domain are controlled by the change management process, which loosely resembles
a database transaction. For more information on making and managing configuration
changes, see "Configuration Change Management Process" in Understanding Domain
Configuration for Oracle WebLogic Server.

Table 6–1 describes the steps for using WLST online to update an existing WebLogic
domain.

Table 6–1 Steps for Updating an Existing WebLogic Domain (Online)

To... Use this command...

For more information,
see this section in
WebLogic Scripting
Tool Command
Reference

Access the edit MBean
hierarchy

edit()

This command places WLST at the root
of the edit MBean hierarchy, which is
the editable DomainMBean.

"edit"

Obtain a lock on the
current configuration

To indicate that
configuration changes are
in process, an exclamation
point (!) appears at the end
of the WLST command
prompt.

startEdit([waitTimeInMillis],
[timeoutInMillis], [exclusive])

"startEdit"

Modify the WebLogic
domain

Browsing and online editing
commands

"Browse Commands"

"Editing Commands"

Using WLST Online to Update an Existing WebLogic Domain

6-2 Oracle Fusion Middleware Oracle WebLogic Scripting Tool

The WLST online script in Example 6–1 connects WLST to an Administration Server,
initiates an edit session that creates a Managed Server, saves and activates the change,
initiates another edit session, creates a startup class, and targets it to the newly created
server.

The interactive edit session in Example 6–2 changes an Administration Server running
in development mode to production mode.

Example 6–1 Creating a Managed Server

connect("username","password")
edit()
startEdit()
svr = cmo.createServer("managedServer")
svr.setListenPort(8001)
svr.setListenAddress("address")
save()
activate(block="true")

startEdit()
sc = cmo.createStartupClass("my-startupClass")
sc.setClassName("com.bea.foo.bar")
sc.setArguments("foo bar")

get the server mbean to target it
tBean = getMBean("Servers/managedServer")
if tBean != None:
 print "Found our target"
 sc.addTarget(tBean)
save()
activate(block="true")
disconnect()
exit()

Example 6–2 Changing to Production Mode

wls:/offline> connect('username','password')
wls:/mydomain/serverConfig> edit()

(Optional) Validate your
edits

validate() "validate"

Save your changes save() "save"

Distribute your changes to
the working configuration
MBeans on all servers in
the WebLogic domain

activate([timeout], [block]) "activate"

Release your lock on the
configuration

stopEdit([defaultAnswer]) "stopEdit"

(Optional) Determine if a
change you made to an
MBean attribute requires
you to re-start servers

isRestartRequired([attributeName]) "isRestartRequired"

Table 6–1 (Cont.) Steps for Updating an Existing WebLogic Domain (Online)

To... Use this command...

For more information,
see this section in
WebLogic Scripting
Tool Command
Reference

Using WLST Online to Update an Existing WebLogic Domain

Configuring Existing WebLogic Domains 6-3

wls:/mydomain/edit> startEdit()
Starting an edit session ...
Started edit session, please be sure to save and activate your changes once you
are done.
wls:/mydomain/edit !> cmo.setProductionModeEnabled(true)
wls:/mydomain/edit !> activate()
Activating all your changes, this may take a while ...
The edit lock associated with this edit session is released
once the activation is completed.
The following non-dynamic attribute(s) have been changed on MBeans
that require server re-start:
MBean Changed : com.bea:Name=AdminServer,Type=WebServerLog,Server=AdminServer,
WebServer=AdminServer
Attributes changed : RotateLogOnStartup
MBean Changed : com.bea:Name=AdminServer,Type=WebServerLog,Server=AdminServer,
WebServer=AdminServer
Attributes changed : RotateLogOnStartup
MBean Changed : com.bea:Name=Domain1,Type=Log
Attributes changed : RotateLogOnStartup
Activation completed
wls:/mydomain/edit> exit()

6.1.1 Tracking Configuration Changes
For all changes that are initiated by WLST, you can use the showChanges command
which displays all the changes that you made to the current configuration from the
start of the WLST edit session, including any MBean operations that were implicitly
performed by the server. See Example 6–3.

Example 6–3 Displaying Changes

connect("username","password")
wls:/mydomain/serverConfig> edit()
wls:/mydomain/edit> startEdit()
Starting an edit session ...
Started edit session, please be sure to save and activate your
changes once you are done.
wls:/mydomain/edit !> cmo.createServer('managed2')
[MBeanServerInvocationHandler]mydomain:Name=managed2,Type=Server
wls:/mydomain/edit !> cd('Servers/managed2')
wls:/mydomain/edit/Servers/managed2 !> cmo.setListenPort(7702)
wls:/mydomain/edit/Servers/managed2 !> cmo.setListenAddress("localhost")
wls:/mydomain/edit/Servers/managed2 !> showChanges()
Changes that are in memory and saved to disc but not yet activated are:

All changes that are made but not yet activated are:

MBean Changed : com.bea:Name=Len,Type=Domain
Operation Invoked : create
Attribute Modified : Servers
Attributes Old Value : null
Attributes New Value : managed2
Server Restart Required : false

MBean Changed : com.bea:Name=managed2,Type=Server
Operation Invoked : modify
Attribute Modified : ListenPort
Attributes Old Value : null
Attributes New Value : 7702

Using WLST Online to Update an Existing WebLogic Domain

6-4 Oracle Fusion Middleware Oracle WebLogic Scripting Tool

Server Restart Required : false

wls:/mydomain/edit/Servers/managed2 !> save()
Saving all your changes ...
Saved all your changes successfully.
wls:/mydomain/edit !> activate()
Activating all your changes, this may take a while ...
The edit lock associated with this edit session is released
once the activation is completed.
Activation completed
wls:/mydomain/edit/Servers/managed2>

The WLST online script in Example 6–4 connects WLST to a running server instance as
an administrator, gets the activation task, and prints the user and the status of the task.
It also prints all the changes that took place.

The getActivationTask function provides information about the activation request
and returns the latest ActivationTaskMBean which reflects the state of changes that
a user is currently making or made recently in the current WLST session. You invoke
the methods that this interface provides to get information about the latest activation
task in progress or just completed. For detailed information, see
"ActivationTaskMBean" in the Oracle WebLogic Server MBean Reference.

Example 6–4 Checking the Activation Task

at = getActivationTask()
changes = at.getChanges()
newstate = at.getState()
print "The user for this Task is "+at.getUser()+ "and the state is:"
print newstate
print "The changes are:"
print changes

6.1.2 Undoing or Canceling Changes
WLST offers two commands to undo or cancel changes:

■ The undo command reverts all unsaved or unactivated edits.

You specify whether to revert all unactivated edits (including those that have been
saved to disk), or all edits made since the last save operation. See "undo" in
WebLogic Scripting Tool Command Reference.

■ The cancelEdit command releases the edit lock and discards all unsaved
changes. See "cancelEdit" in WebLogic Scripting Tool Command Reference.

6.1.3 Additional Operations and Attributes for Change Management
The standard change-management commands described in the previous section are
convenience commands for invoking operations in the
ConfigurationManagerMBean. In addition to these operations, the
ConfigurationManagerMBean contains attributes and operations that describe edit
sessions. For detailed information, see "ConfigurationManagerMBean" in the Oracle
WebLogic Server MBean Reference.

To access this MBean, use the WLST getConfigManager command. See
"getConfigManager" in WebLogic Scripting Tool Command Reference.

The WLST online script in Example 6–5 connects WLST to a server instance as an
administrator (weblogic), checks if the current editor making changes is not the

Using WLST Offline to Update an Existing WebLogic Domain

Configuring Existing WebLogic Domains 6-5

administrator, then cancels the configuration edits. The script also purges all the
completed activation tasks. You can use this script to make a fresh start to edit
changes, but you should verify that the changes made by other editors are not needed.

Example 6–5 Using the Configuration Manager

connect(’weblogic’,’welcome1’)
user = cmgr.getCurrentEditor()
if user != "weblogic":
 cmgr.undo()
 cmgr.cancelEdit()
cmgr.purgeCompletedActivationTasks()

6.2 Using WLST Offline to Update an Existing WebLogic Domain
To update an existing WebLogic domain using WLST offline, perform the steps
described in Table 6–2.

Notes: Oracle recommends that you do not use WLST offline to
manage the configuration of an active WebLogic domain. Offline edits
are ignored by running servers and can be overwritten by JMX clients
such as WLST online or the WebLogic Server Administration Console.

The commands in the following table are used to read an existing
domain, update the domain as needed, and close the domain in offline
mode. During this process, if a connection factory is targeted to a
subdeployment, after running the updateDomain command and
restarting the domain, default-targeting-enabled is set to
true for the connection factory.

Table 6–2 Steps for Updating an Existing WebLogic Domain (Offline)

To... Use this command... For more information, see ...

Open an existing
WebLogic domain for
update

readDomain(domainDirName) "readDomain" in WebLogic
Scripting Tool Command
Reference

Extend the current
WebLogic domain
(optional)

addTemplate(templateFileName) "addTemplate" in WebLogic
Scripting Tool Command
Reference

Modify the WebLogic
domain (optional)

Browsing and editing commands Section 3.1.1, "Browsing
Information About the
Configuration Hierarchy
(Offline)"

Section 3.1.2, "Editing a
WebLogic Domain (Offline)".

Save the WebLogic
domain

updateDomain() "updateDomain" in WebLogic
Scripting Tool Command
Reference

Close the WebLogic
domain

closeDomain() "closeDomain" in WebLogic
Scripting Tool Command
Reference

Managing Security Data (WLST Online)

6-6 Oracle Fusion Middleware Oracle WebLogic Scripting Tool

6.3 Managing Security Data (WLST Online)
In the WebLogic Security Service, an Authentication provider is the software
component that proves the identity of users or system processes. An Authentication
provider also remembers, transports, and makes that identity information available to
various components of a system when needed.

A security realm can use different types of Authentication providers to manage
different sets of users and groups. (See "Authentication Providers" in Developing
Security Providers for Oracle WebLogic Server. You can use WLST to invoke operations on
the following types of Authentication providers:

■ The default WebLogic Server Authentication provider, AuthenticatorMBean.
By default, all security realms use this Authentication provider to manage users
and groups.

■ Custom Authentication providers that extend
weblogic.security.spi.AuthenticationProvider and extend the
optional Authentication SSPI MBeans. See "SSPI MBean Quick Reference" in
Developing Security Providers for Oracle WebLogic Server

The following sections describe basic tasks for managing users and groups using
WLST:

■ Section 6.3.1, "Determining If You Need to Access the Edit Hierarchy"

■ Section 6.3.2, "Creating a User"

■ Section 6.3.3, "Adding a User to a Group"

■ Section 6.3.4, "Verifying Whether a User Is a Member of a Group"

■ Section 6.3.5, "Listing Groups to Which a User Belongs"

■ Section 6.3.6, "Listing Users and Groups in a Security Realm"

■ Section 6.3.7, "Changing a Password"

■ Section 6.3.8, "Protecting User Accounts in a Security Realm"

■ Section 6.3.9, "Configuring Additional LDAP Authentication Providers"

For information about additional tasks that the AuthenticationProvider MBeans
support, see "AuthenticationProviderMBean" in the Oracle WebLogic Server MBean
Reference.

6.3.1 Determining If You Need to Access the Edit Hierarchy
If you are using WLST to change the configuration of a security MBean, you must
access the edit hierarchy and start an edit session. For example, if you change the
value of the LockoutThreshold attribute in UserLockoutManagerMBean, you
must be in the edit hierarchy.

If you invoke security provider operations to add, modify, or remove data in a security
provider data store, WLST does not allow you to be in the edit hierarchy. Instead,
invoke these commands from the serverConfig or domainConfig hierarchy. For
example, you cannot invoke the createUser operation in an AuthenticatorMBean
MBean from the edit hierarchy. WLST enforces this restriction to prevent the
possibility of incompatible changes. For example, an edit session could contain an
unactivated change that removes a security feature and will invalidate modifications
to the provider's data.

Managing Security Data (WLST Online)

Configuring Existing WebLogic Domains 6-7

6.3.2 Creating a User
To create a user, invoke the UserEditorMBean.createUser method, which is
extended by the security realm's AuthenticationProvider MBean. For more
information, see the "createUser" method of the UserEditorMBean in the Oracle
WebLogic Server MBean Reference.

The method requires three input parameters. The password must be at least eight
characters, with one special character or numeric character.

username password user-description

WLST cannot invoke this command from the edit hierarchy, but it can invoke the
command from the serverConfig or domainConfig hierarchy.

The following WLST online script invokes createUser on the default authentication
provider.

Example 6–6 Creating a User

from weblogic.management.security.authentication import UserEditorMBean

print "Creating a user ..."
atnr=cmo.getSecurityConfiguration().getDefaultRealm().lookupAuthentication
Provider("DefaultAuthenticator")
atnr.createUser('new_user','welcome1','new_admin')
print "Created user successfully"

6.3.3 Adding a User to a Group
To add a user to a group, invoke the GroupEditorMBean.addMemberToGroup
method, which is extended by the security realm's AuthenticationProvider
MBean. For more information, see the "addMemberToGroup" method in the Oracle
WebLogic Server MBean Reference.

The method requires two input parameters:

groupname username

WLST cannot invoke this command from the edit hierarchy, but it can invoke the
command from the serverConfig or domainConfig hierarchy.

The following WLST online script invokes addMemberToGroup on the default
Authentication Provider. For information on how to run this script, see Section 2.4.1,
"Invoking WLST".

Example 6–7 Adding a User to a Group

from weblogic.management.security.authentication import GroupEditorMBean

print "Adding a user ..."
atnr=cmo.getSecurityConfiguration().getDefaultRealm().lookupAuthenticationProvider
("DefaultAuthenticator")
atnr.addMemberToGroup('Administrators','my_user')
print "Done adding a user"

6.3.4 Verifying Whether a User Is a Member of a Group
To verify whether a user is a member of a group, invoke the
GroupEditorMBean.isMember method, which is extended by the security realm's
AuthenticationProvider MBean. For more information, see the "isMember"
method in the Oracle WebLogic Server MBean Reference.

Managing Security Data (WLST Online)

6-8 Oracle Fusion Middleware Oracle WebLogic Scripting Tool

The method requires three input parameters:

groupname username boolean

where boolean specifies whether the command searches within child groups. If you
specify true, the command returns true if the member belongs to the group that you
specify or to any of the groups contained within that group.

WLST cannot invoke this command from the edit hierarchy, but it can invoke the
command from the serverConfig or domainConfig hierarchy.

The following WLST online script invokes isMember on the default Authentication
Provider. For information on how to run this script, see Section 2.4.1, "Invoking
WLST".

Example 6–8 Verifying Whether a User is a Member of a Group

from weblogic.management.security.authentication import GroupEditorMBean
user = "my_user"
print "Checking if "+user+ " is a Member of a group ... "
atnr=cmo.getSecurityConfiguration().getDefaultRealm().lookupAuthenticationProvider
("DefaultAuthenticator")
if atnr.isMember('Administrators',user,true) == 0:
 print user+ " is not member of Administrators"
else:
 print user+ " is a member of Administrators"

6.3.5 Listing Groups to Which a User Belongs
To see a list of groups that contain a user or a group, invoke the
MemberGroupListerMBean.listMemberGroups method, which is extended by
the security realm's AuthenticationProvider MBean. For more information, see
the "listMemberGroups" method of the MemberGroupListerMBean in the WebLogic
Server MBean Reference.

The method requires one input parameter:

memberUserOrGroupName

where memberUserOrGroupName specifies the name of an existing user or a group.

WLST cannot invoke this command from the edit hierarchy, but it can invoke the
command from the serverConfig or domainConfig hierarchy.

The following WLST online script invokes listMemberGroups on the default
Authentication provider. For information on how to run this script, see Section 2.4.1,
"Invoking WLST".

Example 6–9 Listing Groups to Which a User Belongs

from weblogic.management.security.authentication import MemberGroupListerMBean

print "Listing the member groups ..."
atnr=cmo.getSecurityConfiguration().getDefaultRealm().lookupAuthenticationProvider
("DefaultAuthenticator")
x = atnr.listMemberGroups('my_user')
print x

The method returns a cursor value (for example, Cursor_16), which refers to a list of
names. The NameLister.haveCurrent, getCurrentName, and advance
operations iterate through the returned list and retrieve the name to which the current

Managing Security Data (WLST Online)

Configuring Existing WebLogic Domains 6-9

cursor position refers. See "NameListerMBean" in the Oracle WebLogic Server MBean
Reference.

6.3.6 Listing Users and Groups in a Security Realm
To see a list of user or group names, you invoke a series of methods, all of which are
available through the AuthenticationProvider interface:

■ The GroupReaderMBean.listGroups and UserReaderMBean.listUsers
methods take two input parameters: a pattern of user or group names to search
for, and the maximum number of names that you want to retrieve.

Because a security realm can contain thousands (or more) of user and group
names that match the pattern, the methods return a cursor, which refers to a list of
names.

For more information, see the "listGroups" operation in the GroupReaderMBean
and the "listUsers" operation in the UserReaderMBean in the Oracle WebLogic
Server MBean Reference.

■ The NameLister.haveCurrent, getCurrentName, and advance operations
iterate through the returned list and retrieve the name to which the current cursor
position refers. For more information, see "NameListerMBean" in the Oracle
WebLogic Server MBean Reference.

■ The NameLister.close operation releases any server-side resources that are held
on behalf of the list.

WLST cannot invoke these commands from the edit hierarchy, but it can invoke them
from the serverConfig or domainConfig hierarchy.

The WLST online script in Example 6–10 lists all the users in a realm and the groups to
which they belong. For information on how to run this script, see Section 2.4.1,
"Invoking WLST".

Example 6–10 Listing Users and Groups

from weblogic.management.security.authentication import UserReaderMBean
from weblogic.management.security.authentication import GroupReaderMBean

realm=cmo.getSecurityConfiguration().getDefaultRealm()
atns = realm.getAuthenticationProviders()
for i in atns:
 if isinstance(i,UserReaderMBean):
 userReader = i
 cursor = i.listUsers("*",0)
 print 'Users in realm '+realm.getName()+' are: '
 while userReader.haveCurrent(cursor):
 print userReader.getCurrentName(cursor)
 userReader.advance(cursor)
 userReader.close(cursor)

for i in atns:
 if isinstance(i,GroupReaderMBean):
 groupReader = i
 cursor = i.listGroups("*",0)
 print 'Groups in realm are: '
 while groupReader.haveCurrent(cursor):
 print groupReader.getCurrentName(cursor)
 groupReader.advance(cursor)
 groupReader.close(cursor)

Managing Security Data (WLST Online)

6-10 Oracle Fusion Middleware Oracle WebLogic Scripting Tool

6.3.7 Changing a Password
To change a user's password, invoke the
UserPasswordEditorMBean.changeUserPassword method, which is extended
by the security realm's AuthenticationProvider MBean. For more information,
see the "changeUserPassword" method in the Oracle WebLogic Server MBean Reference.

WLST cannot invoke this command from the edit hierarchy, but it can invoke the
command from the serverConfig or domainConfig hierarchy.

The following WLST online script invokes changeUserPassword on the default
Authentication Provider: For information on how to run this script, see Section 2.4.1,
"Invoking WLST".

Example 6–11 Changing a Password

from weblogic.management.security.authentication import UserPasswordEditorMBean

print "Changing password ..."
atnr=cmo.getSecurityConfiguration().getDefaultRealm().lookupAuthenticationProvider
("DefaultAuthenticator")
atnr.changeUserPassword('my_user','my_password','new_password')
print "Changed password successfully"

6.3.8 Protecting User Accounts in a Security Realm
The UserLockoutManagerMBean provides a set of attributes to protect user
accounts from intruders. By default, these attributes are set for maximum protection.
You can decrease the level of protection for user accounts. For example, you can set
whether or not lockout is enabled, increase the time period in which invalid login
attempts are made before locking the user account, or change the amount of time a
user account is locked.

The UserLockoutManagerRuntimeMBean provides a set of attributes for collecting
lockout statistics, and operations for managing user lockouts. For example, you can get
the number of users currently locked out, get the number of invalid login attempts
since the server was started, or clear the lockout on a user account.

For more information about lockout configuration, see the
"UserLockoutManagerMBean" interface in the Oracle WebLogic Server MBean Reference.
For information about collecting lockout statistics and performing lockout operations,
see the "UserLockoutManagerRuntimeMBean" interface in the Oracle WebLogic Server
MBean Reference

The following tasks provide examples for invoking
UserLockoutManagerRuntimeMBean methods:

■ Section 6.3.8.1, "Set Consecutive Invalid Login Attempts"

■ Section 6.3.8.2, "Unlock a User Account"

Note that because these tasks edit MBean attributes, WLST must connect to the
Administration Server, navigate to the edit hierarchy, and start an edit session.

6.3.8.1 Set Consecutive Invalid Login Attempts
The following WLST online script sets the number of consecutive invalid login
attempts before a user account is locked out. For information on how to run this script,
see Section 2.4.1, "Invoking WLST".

Managing Security Data (WLST Online)

Configuring Existing WebLogic Domains 6-11

Example 6–12 Setting Consecutive Invalid Login Attempts

from weblogic.management.security.authentication import UserLockoutManagerMBean

edit()
startEdit()

#You have two choices for getting a user lockout manager to configure
1 - to configure the default realm's UserLockoutManager:
ulm=cmo.getSecurityConfiguration().getDefaultRealm().getUserLockoutManager()

2 - to configure another realm's UserLockoutManager:
#ulm=cmo.getSecurityConfiguration().lookupRealm("anotherRealm").getUserLockoutMana
ger()

ulm.setLockoutThreshold(3)
save()
activate()

6.3.8.2 Unlock a User Account
The following WLST online script unlocks a user account. For information on how to
run this script, see Section 2.4.1, "Invoking WLST".

Example 6–13 Unlocking a User Account

from weblogic.management.runtime import UserLockoutManagerRuntimeMBean

serverRuntime()
ulm=cmo.getServerSecurityRuntime().getDefaultRealmRuntime().getUserLockoutManagerR
untime()
#note1 : You can only manage user lockouts for the default realm starting from
#when the server was booted (versus other non-active realms).
#note2 : If the default realm's user lockout manager's LockoutEnabled attribute
#is false, then the user lockout manager's runtime MBean will be null.
#That is, you can only manage user lockouts in the default realm if its user
#lockout manager is enabled.

if ulm != None:
 ulm.clearLockout("myuser")

6.3.9 Configuring Additional LDAP Authentication Providers
In some cases, such as when installing some Oracle Fusion Middleware products, you
must add an additional external LDAP authentication provider to the WebLogic Server
security providers. This can be done either by using the WebLogic Server
Administration Console (see "Configure Authentication and Identity Assertion
Providers") or by using WLST.

Example 6–14 shows how to use WLST to add an Oracle Internet Directory (OID)
authentication provider. To add other types of LDAP authentication providers,
substitute the appropriate class type in the createAuthenticationProvider
command, as shown in Table 6–3.

Note: For important information about switching LDAP
authentication providers if the corresponding LDAP server will
contain the user or users who start the domain, see "Requirements for
Using an LDAP Authentication Provider" in Securing Oracle WebLogic
Server.

Deploying Applications

6-12 Oracle Fusion Middleware Oracle WebLogic Scripting Tool

Example 6–14 Adding an Authentication Provider

connect (’adminUser’,’adminPassword’,'t3://'+adminServerHost+':'+adminServerPort)
edit()
startEdit()
cd('/SecurityConfiguration/'+domainName+'/Realms/myrealm')
In the following command, substitute the appropriate class type
cmo.createAuthenticationProvider(LDAPProviderName,
'weblogic.security.providers.authentication.OracleInternetDirectoryAuthenticator')
cd('/SecurityConfiguration/'+domainName+'/Realms/myrealm/AuthenticationProviders
/'+LDAPProviderName)
cmo.setControlFlag('SUFFICIENT')
cd('/SecurityConfiguration/'+domainName+'/Realms/myrealm/
AuthenticationProviders/'+LDAPProviderName)
cmo.setHost(LDAPHost)
cmo.setPort(LDAPPort)
cmo.setPrincipal(LDAPAdmin)
set("Credential",LDAPAdminPassword)
cmo.setGroupBaseDN(LDAPGroupBase)
cmo.setUserBaseDN(LDAPUserBase)
cmo.setUserNameAttribute(usernameattribute)
cmo.setUserObjectClass('inetOrgPerson')
cd('/SecurityConfiguration/'+domainName+'/Realms/myrealm/AuthenticationProviders
/DefaultAuthenticator')
cmo.setControlFlag('SUFFICIENT')
cd('/SecurityConfiguration/'+domainName+'/Realms/myrealm')
set('AuthenticationProviders',jarray.array([ObjectName('Security:Name=myrealm'
+LDAPProviderName), ObjectName('Security:Name=myrealmDefaultAuthenticator'),
ObjectName('Security:Name=myrealmDefaultIdentityAsserter')], ObjectName))
activate()

6.4 Deploying Applications
The process for deploying applications varies depending on whether you use WLST
offline or WLST online.

6.4.1 Using WLST Online to Deploy Applications
When WLST is connected to a domain's Administration Server, use the deploy
command to deploy applications. (See "deploy" in WebLogic Scripting Tool Command
Reference.)

Table 6–3 Class Types for External LDAP Authentication Providers

Provider Class Type

Oracle
Internet
Directory

weblogic.security.providers.authentication.OracleInternetDirectoryAuthenticator

Oracle
Virtual
Directory

weblogic.security.providers.authentication.OracleVirtualDirectoryAuthenticator

Microsoft
AD

weblogic.security.providers.authentication.ActiveDirectoryAuthenticator

OpenLDAP weblogic.security.providers.authentication.OpenLDAPAuthenticator

eDirectory weblogic.security.providers.authentication.NovellAuthenticator

SunOne
LDAP

weblogic.security.providers.authentication.IPlanetAuthenticator

Deploying Applications

Configuring Existing WebLogic Domains 6-13

The command in Example 6–15 deploys a sample application from the WebLogic
Server ExamplesServer domain.

Example 6–15 Deploying Applications

Deploying Applications

deploy("examplesWebApp","C:/Oracle/Middleware/wlserver_
12.1/samples/server/examples/build/examplesWebApp")

For more information using WLST for deploying applications, see "Deployment Tools"
in Deploying Applications to Oracle WebLogic Server.

6.4.2 Using WLST Offline to Deploy Applications
Table 6–4 describes the steps for using WLST offline to deploy applications in an
existing domain.

For an example of using the addTemplate command, see the following sample WLST
script:

WL_HOME\common\templates\scripts\wlst\clusterMedRecDomain.py,
where WL_HOME refers to the top-level installation directory for WebLogic Server.

Note: Please note the following when using WLST online to deploy
applications:

■ Deployment operations must be performed through the
Administration Server. Your WLST client must connect to the
Administration Server to invoke deployment commands.

■ You do not need to be in an edit session to deploy applications.

Table 6–4 Steps for Deploying Applications (Offline)

To... Use this command... For more information, see ...

Use the Template
Builder to create an
application template.

not applicable Creating Domain Templates Using
the Domain Template Builder

Open an existing
WebLogic domain or
template

readDomain(domainDirName) "readDomain" and
"readTemplate" in WebLogic
Scripting Tool Command Reference

Add the application
template to the
WebLogic domain.

addTemplate(templateFileName) "addTemplate" in WebLogic
Scripting Tool Command Reference

Save the WebLogic
domain

updateDomain() "updateDomain" in WebLogic
Scripting Tool Command Reference

Close the WebLogic
domain

closeDomain() "closeDomain" in WebLogic
Scripting Tool Command Reference

Deploying Applications

6-14 Oracle Fusion Middleware Oracle WebLogic Scripting Tool

7

Updating the Deployment Plan 7-1

7Updating the Deployment Plan

This chapter describes how to use WebLogic Scripting Tool (WLST) to retrieve and
update an application's deployment plan. When using WLST to update an
application's deployment plan, you define variable definitions and variable
assignments. A variable definition identifies a new value; a variable assignment
associates the new value with the descriptor entity to be changed.

The following procedure describes how to use WLST in interactive mode. For
information about using WLST in script or embedded mode, see Chapter 2, "Using the
WebLogic Scripting Tool"

To update a deployment plan using WLST in interactive mode, perform the following
steps:

1. Create a deployment plan for the application.

For more information, see "Create a deployment plan" in the Oracle WebLogic
Server Administration Console Help.

2. Start WLST in interactive mode.

3. Enter the following command to load the application and deployment plan. For
example:

plan=loadApplication(loadApplication('c:/Oracle/Middleware/user_projects/
applications/mydomain/modules/medrec/assembly/target/medrec.ear',
'c:/Oracle/Middleware/user_projects/applications/mydomain/modules/medrec/
assembly/target/Plan.xml')

The WLST loadApplication command returns a WLSTPlan object that you can
access to make changes to the deployment plan. For more information about the
WLSTPlan object, see Section A.1, "WLSTPlan Object".

4. Identify the configuration options that you want to update and their
corresponding XPath values. You can determine the XPath value for configuration
options by using the weblogic.PlanGenerator utility. You can copy and paste
the XPath from the generated plan into your active deployment plan. See
"weblogic.PlanGenerator Command Line Reference" in Deploying Applications to
Oracle WebLogic Server.

Note: The example commands provided in the following procedure
demonstrate how to update and configure the MedRec application,
which is installed on your system if you installed the Server Examples.

7-2 Oracle Fusion Middleware Oracle WebLogic Scripting Tool

5. Determine if variable definitions and variable assignments are currently defined in
your deployment plan for the configuration options identified in the previous
step. To do so, enter one of the following commands:

a. To display variables:

plan.showVariables()
Name Value
----- -----
SessionDescriptor_cookieMaxAgeSecs_12910569321171 -1
SessionDescriptor_invalidationIntervalSecs_12910568567990 75
SessionDescriptor_maxInMemorySessions_12910569321170 -1
SessionDescriptor_timeoutSecs_12900890060180 3600

b. To display variable assignments:

plan.showVariableAssignments()

medrec.ear
 |
 META-INF/weblogic-application.xml
 |
 SessionDescriptor_timeoutSecs_12900890060180
medrec.ear
 |
 META-INF/weblogic-application.xml
 |
 SessionDescriptor_invalidationIntervalSecs_12910568567990
medrec.ear
 |
 META-INF/weblogic-application.xml
 |
 SessionDescriptor_maxInMemorySessions_12910569321170
medrec.ear
 |
 META-INF/weblogic-application.xml
 |
 SessionDescriptor_cookieMaxAgeSecs_12910569321171

6. If the variable definition and assignment are not defined, create them and set the
XPath value for the variable assignment, as follows:

a. Create the variable definition. Use the createVariable() method to specify
the variable name and value. For example:

v=plan.createVariable('new_var', '3')

b. Create the variable assignment. Use the createVariableAssignment()
method to specify the name of the variable, the application to which is applies,
and the corresponding deployment descriptor. For example:

va=plan.createVariableAssignment('new_var', 'medrec.ear', 'META-INF/
weblogic-application.xml')
Creating VariableAssignment for ModuleOverride medrec.ear and
ModuleDescriptor with URI META-INF/weblogic-application.xml.
Created VariableAssignment with name new_var successfully.

c. Set the XPath value for the variable assignment by pasting the XPath value
from the deployment plan you generated with weblogic.PlanGenerator
in Step 4. For example:

va.setXpath('weblogic-application/session-descriptor/new_var')

Updating the Deployment Plan 7-3

7. Save the deployment plan. For example:

plan.save()

7-4 Oracle Fusion Middleware Oracle WebLogic Scripting Tool

8

Getting Runtime Information 8-1

8Getting Runtime Information

This chapter describes how to use WebLogic Scripting Tool (WLST) to retrieve
information that WebLogic Server instances produce to describe their run-time state.

This chapter includes the following sections:

■ Section 8.1, "Accessing Runtime Information: Main Steps"

■ Section 8.2, "Configuring Logging"

■ Section 8.3, "Working with the WebLogic Diagnostics Framework"

8.1 Accessing Runtime Information: Main Steps
The Administration Server hosts the domain run-time hierarchy which provides access
to any MBean on any server in the WebLogic domain. If the Administration Server is
not running for a WebLogic domain, WLST can connect to individual Managed
Servers to retrieve run-time data.

Accessing the run-time information for a WebLogic domain includes the following
main steps:

1. Invoke WLST and connect to a running Administration Server instance. See
Section 2.4.1, "Invoking WLST".

2. Navigate to the domain run-time MBean hierarchy by entering the
domainRuntime command.

wls:/mydomain/serverConfig>domainRuntime()

The domainRuntime command places WLST at the root of the domain-wide
run-time management objects, DomainRuntimeMBean.

3. Navigate to ServerRuntimes and then to the server instance which you are
interested in monitoring.

wls:/mydomain/domainRuntime>cd('ServerRuntimes/myserver')

4. At the server instance, navigate to and interrogate run-time MBeans.

wls:/mydomain/domainRuntime/ServerRuntimes/myserver>cd('JVMRuntime/myserver')>
wls:/mydomain/domainRuntime/ServerRuntimes/myserver/JVMRuntime/myserver>ls()

-r-- HeapFreeCurrent 191881368
-r-- HeapFreePercent 87
-r-- HeapSizeCurrent 259588096
-r-- HeapSizeMax 518979584
-r-- JavaVMVendor Sun Microsystems Inc.
-r-- JavaVendor Sun Microsystems Inc.

Accessing Runtime Information: Main Steps

8-2 Oracle Fusion Middleware Oracle WebLogic Scripting Tool

-r-- JavaVersion 1.6.0_21
-r-- Name AdminServer
-r-- OSName Windows XP
-r-- OSVersion 5.1
-r-- Type JVMRuntime
-r-- Uptime 409141

-r-x preDeregister Void :
...

The following sections provide example scripts for retrieving run-time information
about WebLogic Server server instances and WebLogic domain resources.

8.1.1 Script for Monitoring Server State
The WLST online script in Example 8–1 navigates the domain run-time hierarchy and
checks the status of a Managed Server every 5 seconds. It restarts the server if the
server state changes from RUNNING to any other status. It assumes that WLST is
connected to the WebLogic domain's Administration Server.

Example 8–1 Monitoring Server State

Node Manager needs to be running to run this script.

import thread
import time

def checkHealth(serverName):
 while 1:
 slBean = getSLCRT(serverName)
 status = slBean.getState()
 print 'Status of Managed Server is '+status
 if status != "RUNNING":
 print 'Starting server '+serverName
 start(serverName, block="true")
 time.sleep(5)

def getSLCRT(svrName):
 domainRuntime()
 slrBean = cmo.lookupServerLifecycleRuntime(svrName)
 return slrBean

checkHealth("myserver")

8.1.2 Script for Monitoring the JVM
The WLST online script in Example 8–2 monitors the HJVMHeapSize for all running
servers in a WebLogic domain; it checks the heap size every 3 minutes and prints a
warning if the heap size is greater than a specified threshold. It assumes that the URL
for the WebLogic domain's Administration Server is t3://localhost:7001.

For information on how to run this script, see Section 2.4.1, "Invoking WLST".

Example 8–2 Monitoring the JVM Heap Size

waitTime=180000
THRESHOLD=300000000
uname = "weblogic"
pwd = "welcome1"
url = "t3://localhost:7001"

Configuring Logging

Getting Runtime Information 8-3

def monitorJVMHeapSize():
 connect(uname, pwd, url)
 while 1:
 serverNames = getRunningServerNames()
 domainRuntime()
 for name in serverNames:
 print 'Now checking '+name.getName()
 try:
 cd("/ServerRuntimes/"+name.getName()+"/JVMRuntime/"+name.getName())
 heapSize = cmo.getHeapSizeCurrent()
 if heapSize > THRESHOLD:
 # do whatever is neccessary, send alerts, send email etc
 print 'WARNING: The HEAPSIZE is Greater than the Threshold'
 else:
 print heapSize
 except WLSTException,e:
 # this typically means the server is not active, just ignore
 # pass
 print "Ignoring exception " + e.getMessage()
 java.lang.Thread.sleep(waitTime)

def getRunningServerNames():
 # only returns the currently running servers in the domain
 return domainRuntimeService.getServerRuntimes()

if __name__== "main":
 monitorJVMHeapSize()

8.2 Configuring Logging
Using WLST, you can configure a server instance's logging and message output.

To determine which log attributes can be configured, see "LogMBean" and
"LogFileMBean" in the Oracle WebLogic Server MBean Reference. The reference also
indicates valid values for each attribute.

The WLST online script in Example 8–3 sets attributes of LogMBean (which extends
LogFileMBean). For information on how to run this script, see Section 2.4.1,
"Invoking WLST".

Example 8–3 Configuring Logging

Connect to the server
connect("weblogic","welcome1","t3://localhost:7001")
edit()
startEdit()

set CMO to the server log config
cd("Servers/myserver/Log/myserver")
ls ()

change LogMBean attributes
set("FileCount", 5)
set("FileMinSize", 400)

list the current directory to confirm the new attribute values
ls ()

save and activate the changes
save()

Working with the WebLogic Diagnostics Framework

8-4 Oracle Fusion Middleware Oracle WebLogic Scripting Tool

activate()

all done...
exit()

8.3 Working with the WebLogic Diagnostics Framework
The WebLogic Diagnostic Framework (WLDF) is a monitoring and diagnostic
framework that can collect diagnostic data that servers and applications generate. You
configure WLDF to collect the data and store it in various sources, including log
records, data events, and harvested metrics. For more information, see Configuring and
Using the Diagnostics Framework for Oracle WebLogic Server.

For example scripts that demonstrate using WLST to configure the WebLogic
Diagnostic Framework, see "WebLogic Scripting Tool Examples" in Configuring and
Using the Diagnostics Framework for Oracle WebLogic Server.

To view the collected diagnostics information using WLST, use one of the following
commands to export the data from the WLDF repositories:

■ From WLST offline, use the exportDiagnosticData command (see
"exportDiagnosticData" in WebLogic Scripting Tool Command Reference).

■ From WLST online, use the exportDiagnosticDataFromServer command
(see "exportDiagnosticDataFromServer" in WebLogic Scripting Tool Command
Reference)).

A

WLST Deployment Objects A-1

AWLST Deployment Objects

The following sections describe the WLST deployment objects:

■ Section A.1, "WLSTPlan Object"

■ Section A.2, "WLSTProgress Object"

A.1 WLSTPlan Object
The WLSTPlan object enables you to make changes to an application deployment plan
after loading an application using the loadApplication command, as described in
"loadApplication" in WebLogic Scripting Tool Command Reference.

The following table describes the WLSTPlan object methods that you can use to
operate on the deployment plan.

Table A–1 WLSTPlan Object Methods

To operate
on the... Use this method... To...

Deployment
Plan

DeploymentPlanBean getDeploymentPlan() Return the DeploymentPlanBean
for the current application.

Deployment
Plan

void save() throws FileNotFoundException,
ConfigurationException

Saves the deployment plan to a file
from which it was read.

Module
Descriptors

ModuleDescriptorBean createModuleDescriptor(String
uri, String moduleOverrideName)

Create a ModuleDescriptorBean
with the specified uri for the
ModuleOverrideBean
moduleOverrideName

Module
Overrides

ModuleOverrideBean[] getModuleOverride(String
name)

Return the ModuleOverrideBean
name.

Module
Overrides

ModuleOverrideBean[] getModuleOverrides() Return all ModuleOverrideBean
objects that are available in the
deployment plan.

Module
Overrides

void showModuleOverrides() Prints all of the
ModuleOverrideBean objects that
are available in the deployment plan
as name/type pairs.

Variables VariableBean createVariable(String name,
String value)

Create a VariableBean name with
this specified value that can override
the value in the deployment plan.

Variables void destroyVariable(String name) Destroy the VariableBean name.

Variables VariableBean getVariable(String name) Return the VariableBean name.

WLSTProgress Object

A-2 Oracle Fusion Middleware Oracle WebLogic Scripting Tool

A.2 WLSTProgress Object
The WLSTProgress object enables you to check the status of an executed deployment
command. The WLSTProgress object is returned by the following commands (refer to
the associated command section in WebLogic Scripting Tool Command Reference for more
information:

■ deploy

■ distributeApplication

■ redeploy

■ startApplication

■ stopApplication

■ updateApplication

The following table describes the WLSTProgress object methods that you can use to
check the status of the current deployment action.

Variables VariableBean[] getVariables() Return all VariableBean objects
that are available in the deployment
plan.

Variables void setVariableValue(String name, String value) Set the variable name to the specified
value.

Variables void showVariables() Print all of the VariableBean objects
in the deployment plan as
name/value pairs.

Variable
Assignment

VariableAssignmentBean
createVariableAssignment(String name, String
moduleOverrideName, String moduleDescriptorUri)

Create a VariableAssignmentBean
for the ModuleDescriptorBean
moduleDescriptorUri for the
ModuleOverrideBean
moduelOverrideName.

Variable
Assignment

void destroyVariableAssignment(String name, String
moduleOverrideName, String moduleDescriptorName)

Destroy the
VariableAssignmentBean name
for the ModuleDescriptorBean
moduleOverrideName for the
ModuleDescriptorBean
moduleDescriptorName.

Variable
Assignment

VariableAssignmentBean
getVariableAssignment(String name, String
moduleOverrideName, String moduleDescriptorName)

Return the
VariableAssignmentBean name
for the ModuleDescriptorBean
moduleOverrideName for the
ModuleDescriptorBean
moduleDescriptorName.

Table A–2 WLSTProgress Object Methods

Use this method... To...

String getCommandType() Return the deployment CommandType of this
event.This command returns one of the following
values: distribute, redeploy, start, stop, or
undeploy.

String getMessage() Return information about the status of this event.

Table A–1 (Cont.) WLSTPlan Object Methods

To operate
on the... Use this method... To...

WLSTProgress Object

WLST Deployment Objects A-3

ProgressObject
getProgressObject()

Return the ProgressObject that is associated with
the current deployment action.

String getState() Retrieve the state of the current deployment action.
CommandType of this event.This command returns
one of the following values: running, completed,
failed, or released (indicating that the object has
been released into production).

boolean isCompleted() Determine if the current deployment action has been
completed.

boolean isFailed() Determine if the current deployment action has
failed.

boolean isRunning() Determine if the current deployment action is
running.

void printStatus() Print the current status of the deployment action,
including the command type, the state, additional
messages, and so on.

Table A–2 (Cont.) WLSTProgress Object Methods

Use this method... To...

WLSTProgress Object

A-4 Oracle Fusion Middleware Oracle WebLogic Scripting Tool

B

FAQs: WLST B-1

BFAQs: WLST

This appendix lists various frequently asked questions relating to WLST.

B.1 General WLST
On which versions of WebLogic Server is WLST supported?

WLST online is supported on WebLogic Server 11g Release 1 (10.3.1, 10.3.2, 10.3.3, and
10.3.4), 10.3, 10.0, 9.x, 8.1, and 7.0. WLST offline is supported on WebLogic Server 11g
Release 1 (10.3.1, 10.3.2, 10.3.3, and 10.3.4), 10.3, 10.0, 9.x and 8.1 SP5.

What is the relationship between WLST and the existing WebLogic Server
command-line utilities, such as wlconfig and weblogic.Deployer?

WLST functionality includes the capabilities of the following WebLogic Server
command-line utilities:

■ wlconfig Ant task tool for making WebLogic Server configuration changes (see
"Using Ant Tasks to Configure and Use a WebLogic Server Domain" in Developing
Applications for Oracle WebLogic Server)

■ weblogic.Deployer utility for deploying applications. (see "Deployment Tools"
in Deploying Applications to Oracle WebLogic Server)

When would I choose to use WLST over the other command-line utilities or the
Administration Console?

You can create, configure, and manage WebLogic domains using WLST, command-line
utilities, and the Administration Console interchangeably. The method that you choose
depends on whether you prefer using a graphical or command-line interface, and
whether you can automate your tasks by using a script.

What is the distinction between WLST online and offline?

You can use WLST online (connected to a running Administration Server or Managed
Server instance) and offline (not connected to a running server).

WLST online interacts with an active WebLogic domain and provides simplified access
to Managed Beans (MBeans), WebLogic Server Java objects that you can also manage
through JMX. Online, WLST provides access to information that is persisted as part of
the internal representation of the configuration.

WLST offline enables you to create a new WebLogic domain or update an existing
WebLogic domain without connecting to a running WebLogic Server—supporting the
same functionality as the Configuration Wizard. Offline, WLST only provides access to
information that is persisted in the config directory.

Jython Support

B-2 Oracle Fusion Middleware Oracle WebLogic Scripting Tool

B.2 Jython Support
What version of Jython is used by WLST?

The WLST scripting environment is based on the Java scripting interpreter, Jython
2.2.1.

Can I run regular Jython scripts from within WLST?

Yes. WebLogic Server developers and administrators can extend the WebLogic
scripting language to suit their environmental needs by following the Jython language
syntax. For more information, see http://www.jython.org.

B.3 Using WLST
If I have SSL or the administration port enabled for my server, how do I connect
using WLST?

If you will be connecting to a WebLogic Server instance through an SSL listen port on a
server that is using the demonstration SSL keys and certificates, invoke WLST using
the following command:

java -Dweblogic.security.SSL.ignoreHostnameVerification=true
-Dweblogic.security.TrustKeyStore=DemoTrust weblogic.WLST

Otherwise, at a command prompt, enter the following command:

java weblogic.WLST

In the event of an error, can I control whether WLST continues or exits?

Yes, using the exitonerror variable. Set this variable to true to specify that
execution should exit when WLST encounters an error, or false to continue
execution. This variable defaults to true. For more information, see "WLST Variable
Reference" in WebLogic Scripting Tool Command Reference.

Why do I have to specify (and) after each command, and enclose arguments in
single- or double-quotes?

This is the proper Jython syntax. For more information, see
http://www.jython.org.

Can I start a server, deploy applications, and then shut down the server using
WLST?

Yes, see documentation for the following groups of WLST commands:

■ "Life Cycle Commands" in WebLogic Scripting Tool Command Reference

■ "Deployment Commands" in WebLogic Scripting Tool Command Reference

Can WLST connect to a Managed Server?

Yes. You can connect to a Managed Server using the connect command. While
connected to a Managed Server, you can view run-time data for the server and manage
the security data that is in your Authentication provider's data store (for example, you
can add and remove users). You cannot modify the WebLogic domain's configuration.
For more information, see "connect" in WebLogic Scripting Tool Command Reference.

Can WLST use variables that I define in a properties file?

Yes. You can use the loadProperties command to load your variables and values
from a properties file. When you use the variables in your script, during execution, the

Using WLST

FAQs: WLST B-3

variables are replaced with the actual values from the properties file. See
"loadProperties" in WebLogic Scripting Tool Command Reference.

Does the configToScript command convert security MBeans in config.xml?

Yes, the security MBeans are converted. However, the information within the
Embedded LDAP is not converted.

How can I access custom MBeans that are registered in the WebLogic MBeanServer?

To navigate to the custom MBean hierarchy on the Runtime MBean Server, use the
custom command. To navigate to the custom MBean hierarchy on the Domain
Runtime MBean Server, use the domainCustom command. For more information, see
"Tree Commands" in WebLogic Scripting Tool Command Reference.

Why am I not seeing all the MBeans that are registered in the MBeanServer?

There are internal and undocumented MBeans that are not shown by WLST.

Why does WLST offline not display the same MBeans as WLST online?

As a performance optimization, WebLogic Server does not store most of its default
values in the WebLogic domain's configuration files. In some cases, this optimization
prevents entire management objects from being displayed by WLST offline (because
WebLogic Server has never written the corresponding XML elements to the WebLogic
domain's configuration files). For example, if you never modify the default logging
severity level for a WebLogic domain while the domain is active, WLST offline will not
display the domain's Log management object.

If you want to change the default value of attributes whose management object is not
displayed by WLST offline, you must first use the create command to create the
management object. Then you can cd to the management object and change the
attribute value. See "create" in WebLogic Scripting Tool Command Reference.

When browsing custom MBeans, why do I get the following error message: No
stub Available?

When browsing the custom MBeans, the cmo variable is not available.

Can I connect to a WebLogic Server instance via HTTP?

If you are connecting to a WebLogic Server instance via HTTP, ensure that the
TunnelingEnabled attribute is set to true for the WebLogic Server instance. For
more information, see "TunnelingEnabled" in Oracle WebLogic Server MBean Reference.

Can I invoke WLST via Ant?

Yes, you can initiate a new weblogic.WLST process inside an Ant script and pass
your script file as an argument.

Can WLST scripts execute on the server side?

Yes. You can create an instance of the WLST interpreter in your Java code and use it to
run WLST commands and scripts. You can then call the WLST scripts as a startup class
or as part of ejbCreate so that they execute on the server side. For more information,
see Section 2.2.3, "Embedded Mode".

Can I customize WLST?

Yes. You can update the WLST home directory to define custom WLST commands,
WLST commands within a library, and WLST commands as a Jython module. For
more information, see Section 2.9, "Customizing WLST".

How do I execute custom WLST commands?

Using WLST

B-4 Oracle Fusion Middleware Oracle WebLogic Scripting Tool

You execute custom WLST commands in the same way as WebLogic Server WLST
commands. Once you define custom commands in a .py file, they are available for use
from the WLST command line and within scripts.

Similarly, if you have installed Fusion Middleware (FMW) components that include
custom WLST commands, the commands are available for use from the WLST
command line or within scripts. For information on how to use the FMW Custom
WLST commands, see "Using Custom WLST Commands" in the Oracle Fusion
Middleware Administrator's Guide.

The FMW custom commands are WLST versions of many (but not all) of the existing
Oracle ASCTL commands. For a complete list and description of the available FMW
commands, see WebLogic Scripting Tool Command Reference. You can display help for
these commands by entering the help(), help(’commandGroup’), and
help(’commandName’) commands on the WLST command line.

	Contents
	Preface
	Documentation Accessibility
	Conventions

	1 Introduction and Roadmap
	1.1 Document Scope and Audience
	1.2 Guide to This Document
	1.3 Related Documentation
	1.4 WLST Sample Scripts
	1.4.1 WLST Online Sample Scripts
	1.4.2 WLST Offline Sample Scripts

	1.5 New and Changed WLST Features in This Release

	2 Using the WebLogic Scripting Tool
	2.1 Using WLST Online or Offline
	2.1.1 Using WLST Online
	2.1.2 Using WLST Offline

	2.2 Interactive Mode, Script Mode, and Embedded Mode
	2.2.1 Interactive Mode
	2.2.2 Script Mode
	2.2.3 Embedded Mode

	2.3 Security for WLST
	2.3.1 Securing the WLST Connection
	2.3.2 Securing Access to Configuration Data
	2.3.2.1 Securing Access from WLST Online
	2.3.2.2 Writing and Reading Encrypted Configuration Values

	2.3.3 Securing Access to Security Data

	2.4 Main Steps for Using WLST in Interactive or Script Mode
	2.4.1 Invoking WLST
	2.4.1.1 Invoking WLST Using Provided Shell Scripts
	2.4.1.2 Invoking WLST Using the java Command
	2.4.1.3 Running Scripts
	2.4.1.4 Invoking WLST From the Start Menu

	2.4.2 Exiting WLST
	2.4.3 Syntax for WLST Commands
	2.4.4 Considerations When Invoking Multiple WLST Instances

	2.5 Redirecting Error and Debug Output to a File
	2.6 Getting Help
	2.7 Running WLST from Ant
	2.7.1 Parameters
	2.7.2 Parameters Specified as Nested Elements
	2.7.2.1 script
	2.7.2.2 classpath

	2.7.3 Examples
	2.7.3.1 Example 1
	2.7.3.2 Example 2
	2.7.3.3 Example 3

	2.8 Importing WLST as a Jython Module
	2.9 Customizing WLST
	2.9.1 Adding Integrated Help for Custom Commands
	2.9.2 sample.py Sample Script
	2.9.3 wlstLibSample.py Sample Script

	3 Creating WebLogic Domains Using WLST Offline
	3.1 Creating and Using a Domain Template (Offline)
	3.1.1 Browsing Information About the Configuration Hierarchy (Offline)
	3.1.2 Editing a WebLogic Domain (Offline)

	3.2 Alternative: Using the configToScript Command
	3.3 Considerations for Clusters, JDBC, and JMS Resources

	4 Managing the Server Life Cycle
	4.1 Using WLST and Node Manager to Manage Servers
	4.1.1 Using Node Manager to Start Servers on a Machine
	4.1.2 Using Node Manager to Start Managed Servers in a WebLogic Domain or Cluster

	4.2 Starting and Managing Servers Without Node Manager
	4.2.1 Starting an Administration Server Without Node Manager
	4.2.2 Managing Server State Without Node Manager

	5 Navigating MBeans (WLST Online)
	5.1 Navigating and Interrogating MBeans
	5.1.1 Changing the Current Management Object
	5.1.2 Navigating and Displaying Configuration MBeans Example

	5.2 Browsing Runtime MBeans
	5.2.1 Navigating and Displaying Runtime MBeans Example

	5.3 Navigating Among MBean Hierarchies
	5.4 Finding MBeans and Attributes
	5.5 Accessing Other WebLogic MBeans and Custom MBeans
	5.5.1 Accessing Custom MBeans in the Domain Runtime MBean Server

	6 Configuring Existing WebLogic Domains
	6.1 Using WLST Online to Update an Existing WebLogic Domain
	6.1.1 Tracking Configuration Changes
	6.1.2 Undoing or Canceling Changes
	6.1.3 Additional Operations and Attributes for Change Management

	6.2 Using WLST Offline to Update an Existing WebLogic Domain
	6.3 Managing Security Data (WLST Online)
	6.3.1 Determining If You Need to Access the Edit Hierarchy
	6.3.2 Creating a User
	6.3.3 Adding a User to a Group
	6.3.4 Verifying Whether a User Is a Member of a Group
	6.3.5 Listing Groups to Which a User Belongs
	6.3.6 Listing Users and Groups in a Security Realm
	6.3.7 Changing a Password
	6.3.8 Protecting User Accounts in a Security Realm
	6.3.8.1 Set Consecutive Invalid Login Attempts
	6.3.8.2 Unlock a User Account

	6.3.9 Configuring Additional LDAP Authentication Providers

	6.4 Deploying Applications
	6.4.1 Using WLST Online to Deploy Applications
	6.4.2 Using WLST Offline to Deploy Applications

	7 Updating the Deployment Plan
	8 Getting Runtime Information
	8.1 Accessing Runtime Information: Main Steps
	8.1.1 Script for Monitoring Server State
	8.1.2 Script for Monitoring the JVM

	8.2 Configuring Logging
	8.3 Working with the WebLogic Diagnostics Framework

	A WLST Deployment Objects
	A.1 WLSTPlan Object
	A.2 WLSTProgress Object

	B FAQs: WLST
	B.1 General WLST
	B.2 Jython Support
	B.3 Using WLST

