

Oracle® Fusion Middleware
Configuring and Managing JMS for Oracle WebLogic Server

12c Release 1 (12.1.1)

E24385-04

February 2014

This document is a resource for system administrators who
configure, manage, and monitor WebLogic JMS resources,
including JMS servers, stand-alone destinations (queues and
topics), distributed destinations, and connection factories.

Oracle Fusion Middleware Configuring and Managing JMS for Oracle WebLogic Server, 12c Release 1 (12.1.1)

E24385-04

Copyright © 2007, 2014, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface ... xi

Documentation Accessibility ... xi
Conventions ... xi

1 Introduction and Roadmap

1.1 Document Scope and Audience.. 1-1
1.2 Guide to This Document.. 1-1
1.3 Related Documentation.. 1-2
1.4 JMS Samples and Tutorials for the JMS Administrator .. 1-3
1.4.1 Avitek Medical Records Application (MedRec) and Tutorials..................................... 1-3
1.4.2 JMS Examples in the WebLogic Server Distribution.. 1-3
1.5 WebLogic Server Value-Added JMS Features.. 1-3
1.5.1 Enterprise-Grade Reliability .. 1-3
1.5.2 Enterprise-Level Features... 1-4
1.5.3 Performance ... 1-6
1.5.4 Tight Integration with WebLogic Server.. 1-7
1.5.5 Interoperability With Other Messaging Services .. 1-7
1.6 New and Changed JMS Features.. 1-8
1.6.1 WebLogic Server 10.3.4.0 New and Changed Features.. 1-8
1.6.2 WebLogic Server 10.3.3.0 New and Changed Features.. 1-9
1.6.3 WebLogic Server 10.3.2.0 New and Changed Features ... 1-9

2 Understanding JMS Resource Configuration

2.1 Overview of JMS and WebLogic Server .. 2-1
2.1.1 What Is the Java Message Service?.. 2-1
2.1.2 WebLogic JMS Architecture and Environment... 2-2
2.2 Domain Configuration ... 2-2
2.3 What Are JMS Configuration Resources? ... 2-3
2.4 Overview of JMS Servers ... 2-3
2.4.1 JMS Server Behavior in WebLogic Server 9.x and Later .. 2-4
2.5 Overview of JMS Modules... 2-5
2.5.1 JMS System Modules... 2-6
2.5.2 JMS Application Modules .. 2-6
2.5.3 Comparing JMS System Modules and Application Modules 2-7
2.5.4 Configurable JMS Resources in Modules... 2-7

iv

2.5.5 JMS Schema .. 2-8
2.5.6 JMS Interop Modules .. 2-8
2.6 Other Environment-Related System Resources for WebLogic JMS 2-9
2.6.1 Persistent Stores ... 2-9
2.6.2 JMS Store-and-Forward (SAF) ... 2-9
2.6.3 Path Service... 2-9
2.6.4 Messaging Bridges.. 2-10

3 Configuring Basic JMS System Resources

3.1 Methods for Configuring JMS System Resources .. 3-1
3.2 Main Steps for Configuring Basic JMS System Resources .. 3-2
3.2.1 Advanced Resources in JMS System Modules .. 3-3
3.3 JMS Configuration Naming Requirements ... 3-3
3.4 JMS Server Configuration.. 3-4
3.4.1 JMS Server Configuration Parameters.. 3-4
3.4.2 JMS Server Targeting... 3-5
3.4.3 JMS Server Monitoring Parameters... 3-5
3.4.4 Session Pools and Connection Consumers .. 3-5
3.5 JMS System Module Configuration.. 3-6
3.5.1 JMS System Module and Resource Subdeployment Targeting 3-7
3.5.1.1 Default Targeting.. 3-7
3.5.1.2 Advanced (Subdeployment) Targeting... 3-7
3.6 Connection Factory Configuration... 3-9
3.6.1 Using a Default Connection Factory... 3-9
3.6.2 Connection Factory Configuration Parameters.. 3-10
3.6.3 Connection Factory Targeting .. 3-10
3.7 Queue and Topic Destination Configuration .. 3-11
3.7.1 Queue and Topic Configuration Parameters.. 3-11
3.7.1.1 Creating Error Destinations ... 3-12
3.7.1.2 Creating Distributed Destinations .. 3-12
3.7.2 Queue and Topic Targeting... 3-13
3.7.3 Destination Monitoring and Management Parameters .. 3-13
3.8 JMS Template Configuration.. 3-13
3.8.1 JMS Template Configuration Parameters ... 3-13
3.9 Destination Key Configuration.. 3-14
3.10 Quota Configuration ... 3-14
3.11 Foreign Server Configuration .. 3-14
3.12 Distributed Destination Configuration... 3-15
3.13 JMS Store-and-Forward (SAF) Configuration ... 3-15

4 Configuring Advanced JMS System Resources

4.1 Configuring WebLogic JMS Clustering... 4-1
4.1.1 Advantages of JMS Clustering... 4-1
4.1.2 How JMS Clustering Works... 4-3
4.1.2.1 JMS Clustering Naming Requirements ... 4-3
4.1.2.2 Distributed Destination Within a Cluster ... 4-4
4.1.2.3 JMS Services As a Migratable Service Within a Cluster ... 4-4

v

4.1.3 Configuration Guidelines for JMS Clustering ... 4-4
4.1.4 What About Failover? ... 4-5
4.2 Migration of JMS-related Services .. 4-5
4.2.1 Automatic Migration of JMS Services... 4-6
4.2.2 Manual Migration JMS Services .. 4-6
4.2.3 Persistent Store High Availability... 4-6
4.3 Using the WebLogic Path Service... 4-6
4.3.1 Path Service High Availability... 4-7
4.3.2 Implementing Message UOO With a Path Service ... 4-7
4.4 Configuring Foreign Server Resources to Access Third-Party JMS Providers 4-8
4.4.1 How WebLogic JMS Accesses Foreign JMS Providers... 4-8
4.4.2 Creating Foreign Server Resources ... 4-9
4.4.2.1 Creating Foreign Connection Factory Resources... 4-9
4.4.2.2 Creating a Foreign Destination Resources.. 4-9
4.4.3 Sample Configuration for MQSeries JNDI... 4-9
4.5 Configuring Distributed Destination Resources ... 4-10
4.5.1 Uniform Distributed Destinations vs. Weighted Distributed Destinations............. 4-11
4.5.2 Creating Uniform Distributed Destinations ... 4-11
4.5.2.1 Targeting Uniform Distributed Queues and Topics .. 4-12
4.5.2.2 Pausing and Resuming Message Operations on UDD Members....................... 4-13
4.5.2.3 Monitoring UDD Members.. 4-13
4.5.2.4 Configuring Partitioned Distributed Topics.. 4-13
4.5.2.4.1 Load Balancing Partitioned Distributed Topics... 4-13
4.5.3 Creating Weighted Distributed Destinations ... 4-14
4.5.4 Load Balancing Messages Across a Distributed Destination 4-14
4.5.4.1 Load Balancing Options ... 4-14
4.5.4.1.1 Round-Robin Distribution .. 4-14
4.5.4.1.2 Random Distribution ... 4-15
4.5.4.2 Consumer Load Balancing ... 4-15
4.5.4.3 Producer Load Balancing ... 4-15
4.5.4.4 Load Balancing Heuristics.. 4-16
4.5.4.4.1 Transaction Affinity ... 4-16
4.5.4.4.2 Server Affinity... 4-16
4.5.4.4.3 Queues with Zero Consumers.. 4-16
4.5.4.4.4 Paused Distributed Destination Members.. 4-17
4.5.4.5 Defeating Load Balancing .. 4-17
4.5.4.5.1 Connection Factories.. 4-17
4.5.4.6 Distributed Destination Load Balancing When Server Affinity Is Enabled 4-18
4.5.5 Distributed Destination Migration... 4-19
4.5.6 Distributed Destination Failover .. 4-19
4.6 Configure an Unrestricted ClientID.. 4-20
4.7 Configure Shared Subscriptions .. 4-20

5 Configuring JMS Application Modules for Deployment

5.1 Methods for Configuring JMS Application Modules .. 5-1
5.2 JMS Schema.. 5-2
5.3 Packaging JMS Application Modules In an Enterprise Application 5-2

vi

5.3.1 Creating Packaged JMS Application Modules .. 5-2
5.3.1.1 Packaged JMS Application Module Requirements ... 5-2
5.3.1.2 Main Steps for Creating Packaged JMS Application Modules 5-3
5.3.2 Sample of a Packaged JMS Application Module In an EJB Application 5-3
5.3.2.1 Packaged JMS Application Module References In weblogic-application.xml 5-4
5.3.2.2 Packaged JMS Application Module References In ejb-jar.xml............................... 5-5
5.3.2.3 Packaged JMS Application Module References In weblogic-ejb-jar.xml 5-5
5.3.3 Packaging an Enterprise Application With a JMS Application Module 5-6
5.3.4 Deploying a Packaged JMS Application Module ... 5-6
5.4 Deploying Standalone JMS Application Modules ... 5-6
5.4.1 Standalone JMS Modules.. 5-6
5.4.2 Creating Standalone JMS Application Modules ... 5-7
5.4.2.1 Standalone JMS Application Module Requirements .. 5-7
5.4.2.2 Main Steps for Creating Standalone JMS Application Modules 5-7
5.4.3 Sample of a Simple Standalone JMS Application Module .. 5-7
5.4.4 Deploying Standalone JMS Application Modules .. 5-8
5.4.5 Tuning Standalone JMS Application Modules.. 5-8
5.5 Generating Unique Runtime JNDI Names for JMS Resources .. 5-9
5.5.1 Unique Runtime JNDI Name for Local Applications... 5-9
5.5.2 Unique Runtime JNDI Name for Application Libraries ... 5-10
5.5.3 Unique Runtime JNDI Name for Standalone JMS Modules 5-10
5.5.4 Where to Use the ${APPNAME} String... 5-10
5.5.5 Example Use-Case .. 5-10

6 Using WLST to Manage JMS Servers and JMS System Module Resources

6.1 Understanding JMS System Modules and Subdeployments ... 6-1
6.2 How to Create JMS Servers and JMS System Module Resources.. 6-2
6.3 How to Modify and Monitor JMS Servers and JMS System Module Resources 6-4
6.4 Best Practices when Using WLST to Configure JMS Resources... 6-5

7 Interoperating with Oracle AQ JMS

7.1 Overview.. 7-1
7.1.1 Using AQ Destinations as Foreign Destinations... 7-2
7.1.2 Driver Support ... 7-2
7.1.3 Transaction Support .. 7-2
7.1.4 Oracle RAC ... 7-2
7.1.5 MBean and Console Support ... 7-3
7.1.6 Migrating from OC4J... 7-3
7.2 Configuring WebLogic Server to Interoperate with AQ JMS... 7-3
7.2.1 Configure Oracle AQ in the Database .. 7-3
7.2.1.1 Create Users and Grant Permissions ... 7-4
7.2.1.2 Create AQ Queue Tables ... 7-4
7.2.1.3 Create a JMS Queue or Topic.. 7-5
7.2.1.4 Start the JMS Queue or Topic ... 7-5
7.2.2 Configure WebLogic Server ... 7-5
7.2.2.1 Configure a WebLogic Data Source... 7-5
7.2.2.2 Configure a JMS System Module ... 7-6

vii

7.2.2.3 Configure a JMS Foreign Server... 7-6
7.2.2.3.1 Reference a Data Source ... 7-6
7.2.2.4 Configure JMS Foreign Server Connection Factories.. 7-7
7.2.2.5 Configure AQ JMS Foreign Server Destinations ... 7-8
7.3 Programming Considerations... 7-8
7.3.1 Message Driven Beans ... 7-9
7.3.2 AQ JMS Extensions.. 7-9
7.3.2.1 Using AdtMessage ... 7-10
7.3.3 Resource References ... 7-10
7.3.4 JDBC Connection Utilization .. 7-10
7.3.5 Oracle RAC Support... 7-10
7.3.6 Debugging ... 7-11
7.3.7 Performance Considerations... 7-11
7.4 Advanced Topics.. 7-11
7.4.1 Security Considerations ... 7-11
7.4.1.1 Configuring AQ Destination Security .. 7-11
7.4.1.2 Access to JNDI Advertised Destinations and Connection Factories.................. 7-12
7.4.1.3 Controlling Access to Destinations that are Looked Up using the JMS API 7-12
7.4.1.3.1 Additional Security Configuration for Stand-alone Clients 7-12
7.4.1.3.2 Additional Security Configurations for Server-side Applications 7-13
7.4.2 WebLogic Messaging Bridge... 7-14
7.4.2.1 Create a Messaging Bridge Instance ... 7-14
7.4.3 Stand-alone WebLogic AQ JMS Clients .. 7-15
7.4.3.1 Configure a Foreign Server using a Database's JDBC URL................................. 7-15
7.4.3.2 Limitations when using Stand-alone WebLogic AQ JMS Clients 7-16
7.5 Related Documentation... 7-16

8 Monitoring JMS Statistics and Managing Messages

8.1 Monitoring JMS Statistics .. 8-1
8.1.1 Monitoring JMS Servers.. 8-2
8.1.1.1 Monitoring Active JMS Destinations... 8-2
8.1.1.2 Monitoring Active JMS Transactions... 8-2
8.1.1.3 Monitoring Active JMS Connections, Sessions, Consumers, and Producers 8-2
8.1.1.4 Monitoring Active JMS Session Pools ... 8-2
8.1.2 Monitoring Queues.. 8-3
8.1.3 Monitoring Topics ... 8-3
8.1.4 Monitoring Durable Subscribers for Topics... 8-3
8.1.5 Monitoring Uniform Distributed Queues .. 8-3
8.1.6 Monitoring Uniform Distributed Topics.. 8-4
8.1.7 Monitoring Pooled JMS Connections ... 8-4
8.2 Managing JMS Messages ... 8-4
8.2.1 JMS Message Management Using Java APIs... 8-4
8.2.2 JMS Message Management Using the Administration Console................................... 8-4
8.2.2.1 Monitoring Message Runtime Information .. 8-5
8.2.2.2 Querying Messages .. 8-5
8.2.2.3 Moving Messages ... 8-5
8.2.2.4 Deleting Messages .. 8-6

viii

8.2.2.5 Creating New Messages .. 8-6
8.2.2.6 Importing Messages ... 8-7
8.2.2.7 Exporting Messages ... 8-7
8.2.3 Managing Transactions... 8-8
8.2.4 Managing Durable Topic Subscribers... 8-8

9 Best Practices for JMS Beginners and Advanced Users

9.1 Configuration Best Practices ... 9-1
9.1.1 Configure JMS Servers and Persistent Stores. ... 9-1
9.1.2 Configure a JMS Module ... 9-2
9.1.3 Configure JMS Resources ... 9-3
9.1.4 Configure SAF Agents, Stores, and Imported Destination.. 9-3
9.2 Targeting Best Practices ... 9-3
9.3 Integration and Multi-Domain Best Practices... 9-4
9.4 Understanding WebLogic JMS Client Options... 9-4
9.5 Understanding WebLogic URLs... 9-4
9.5.1 URL syntax ... 9-5
9.6 Strict Message Ordering Best Practices.. 9-5
9.7 High Availability Best Practices.. 9-5
9.7.1 Distributed Queues vs Distributed Topics... 9-6
9.8 JMS Performance and Tuning ... 9-6

10 Troubleshooting WebLogic JMS

10.1 Configuring Notifications for JMS .. 10-1
10.2 Debugging JMS .. 10-1
10.2.1 Enabling Debugging... 10-1
10.2.1.1 Enable Debugging Using the Command Line .. 10-1
10.2.1.2 Enable Debugging Using the WebLogic Server Administration Console 10-2
10.2.1.3 Enable Debugging Using the WebLogic Scripting Tool 10-2
10.2.1.4 Changes to the config.xml File .. 10-3
10.2.2 JMS Debugging Scopes .. 10-3
10.2.3 Messaging Kernel and Path Service Debugging Scopes ... 10-4
10.2.4 Request Dyeing ... 10-5
10.3 Message Life Cycle Logging... 10-5
10.3.1 Events in the JMS Message Life Cycle ... 10-5
10.3.1.1 Message Log Location... 10-6
10.3.2 Enabling JMS Message Logging ... 10-6
10.4 JMS Message Log Content .. 10-7
10.4.1 JMS Message Log Record Format... 10-7
10.4.2 Sample Log File Records.. 10-8
10.4.2.1 Consumer Created Event ... 10-8
10.4.2.2 Consumer Destroyed Event ... 10-8
10.4.2.3 Message Produced Event ... 10-8
10.4.2.4 Message Consumed Event ... 10-9
10.4.2.5 Message Expired Event... 10-9
10.4.2.6 Retry Exceeded Event ... 10-9
10.4.2.7 Message Removed Event.. 10-10

ix

10.4.3 Managing JMS Server Log Files.. 10-10
10.4.3.1 Rotating Message Log Files.. 10-10
10.4.3.2 Renaming Message Log Files... 10-10
10.4.3.3 Limiting the Number of Retained Message Log Files 10-11
10.5 Controlling Message Operations on Destinations .. 10-11
10.5.1 Definition of Message Production, Insertion, and Consumption............................ 10-11
10.5.1.1 Pause and Resume Logging... 10-12
10.5.2 Production Pause and Production Resume .. 10-12
10.5.2.1 Pausing and Resuming Production at Boot-time.. 10-12
10.5.2.2 Pausing and Resuming Production at Runtime.. 10-13
10.5.2.3 Production Pause and Resume and Distributed Destinations.......................... 10-13
10.5.2.4 Production Pause and Resume and JMS Connection Stop/Start 10-13
10.5.3 Insertion Pause and Insertion Resume .. 10-13
10.5.3.1 Pausing and Resuming Insertion at Boot Time .. 10-13
10.5.3.2 Pausing and Resuming Insertion at Runtime.. 10-14
10.5.3.3 Insertion Pause and Resume and Distributed Destination 10-14
10.5.3.4 Insertion Pause and Resume and JMS Connection Stop/Start......................... 10-14
10.5.4 Consumption Pause and Consumption Resume ... 10-14
10.5.4.1 Pausing and Resuming Consumption at Boot-time ... 10-15
10.5.4.2 Pausing and Resuming Consumption at Runtime ... 10-15
10.5.4.3 Consumption Pause and Resume and Queue Browsers 10-15
10.5.4.4 Consumption Pause and Resume and Distributed Destination....................... 10-15
10.5.4.5 Consumption Pause and Resume and Message-Driven Beans 10-16
10.5.4.6 Consumption Pause and Resume and JMS Connection Stop/Start 10-16
10.5.5 Definition of In-Flight Work ... 10-16
10.5.5.1 In-flight Work Associated with Producers .. 10-16
10.5.5.2 In-flight Work Associated with Consumers .. 10-16
10.5.6 Order of Precedence for Boot-time Pause and Resume of Message Operations... 10-17
10.5.7 Security... 10-18

x

xi

Preface

This preface describes the document accessibility features and conventions used in this
guide—Configuring and Managing JMS for Oracle WebLogic Server

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xii

1

Introduction and Roadmap 1-1

1Introduction and Roadmap

This chapter describes the contents and organization of this guide—Configuring and
Managing JMS for Oracle WebLogic Server.

■ Section 1.1, "Document Scope and Audience"

■ Section 1.2, "Guide to This Document"

■ Section 1.3, "Related Documentation"

■ Section 1.4, "JMS Samples and Tutorials for the JMS Administrator"

■ Section 1.5, "WebLogic Server Value-Added JMS Features"

■ Section 1.6, "New and Changed JMS Features"

1.1 Document Scope and Audience
This document is a resource for system administrators who configure, manage, and
monitor WebLogic JMS resources, including JMS servers, stand-alone destinations
(queues and topics), distributed destinations, and connection factories.

The document is relevant to production phase administration, monitoring, and
performance tuning. It does not address the pre-production development or testing
phases of a software project. For links to WebLogic Server documentation and
resources for these topics, see Section 1.3, "Related Documentation."

It is assumed that the reader is familiar with WebLogic Server system administration.
This document emphasizes the value-added features provided by WebLogic Server
JMS and key information about how to use WebLogic Server features and facilities to
maintain WebLogic JMS in a production environment.

1.2 Guide to This Document
■ This chapter, Chapter 1, "Introduction and Roadmap," describes the organization

and scope of this guide.

■ Chapter 2, "Understanding JMS Resource Configuration," is an overview of
WebLogic JMS architecture and features.

■ Chapter 3, "Configuring Basic JMS System Resources," describes how to configure
basic WebLogic JMS resources, such as a JMS server, destinations (queues and
topics), and connection factories.

■ Chapter 4, "Configuring Advanced JMS System Resources," explains how to
configure clustering JMS features, such as JMS servers, migratable targets, and
distributed destinations.

Related Documentation

1-2 Configuring and Managing JMS for Oracle WebLogic Server

■ Chapter 5, "Configuring JMS Application Modules for Deployment," describes
how to prepare JMS resources for an application module that can be deployed as a
stand-alone resource that is globally available, or as part of an Enterprise
Application that is available only to the enclosing application.

■ Chapter 6, "Using WLST to Manage JMS Servers and JMS System Module
Resources," explains how to use the WebLogic Scripting Tool to create and manage
JMS resources programmatically.

■ Chapter 7, "Interoperating with Oracle AQ JMS," provides information on how to
interoperate with Oracle AQ JMS.

■ Chapter 8, "Monitoring JMS Statistics and Managing Messages," describes how to
monitor and manage the run-time statistics for your JMS objects from the
Administration Console.

■ Chapter 9, "Best Practices for JMS Beginners and Advanced Users," provides
advice and best practices for beginning and advanced JMS users.

■ Chapter 10, "Troubleshooting WebLogic JMS," explains how to configure and
manage message logs, and how to temporarily pause message operations on
destinations.

1.3 Related Documentation
This document contains JMS-specific configuration and maintenance information.

For comprehensive information on developing, deploying, and monitoring WebLogic
Server applications:

■ Programming JMS for Oracle WebLogic Server is a guide to JMS API programming
with WebLogic Server.

■ "Understanding WebLogic Server Clustering" in Using Clusters for Oracle WebLogic
Server explains how WebLogic Server clustering works.

■ Deploying Applications to Oracle WebLogic Server is the primary source of
information about deploying WebLogic Server applications, which includes
standalone or application-scoped JMS resource modules.

■ "Using the WebLogic Persistent Store" in Configuring Server Environments for Oracle
WebLogic Server describes the benefits and use of the system-wide WebLogic
Persistent Store.

■ Configuring and Managing Store-and-Forward for Oracle WebLogic Server describes the
benefits and use of the Store-and-Forward service with JMS messages.

■ WebLogic Tuxedo Connector Administration Guide for Oracle WebLogic Server explains
how to configure a messaging bridge between any two messaging
products—thereby providing interoperability between separate implementations
of WebLogic JMS, including different releases, or between WebLogic JMS and
another messaging product.

■ Performance and Tuning for Oracle WebLogic Server contains information on
monitoring and improving the performance of WebLogic Server applications,
including information on how to get the most out of your JMS applications by
using the administrative performance tuning features available with WebLogic
JMS.

WebLogic Server Value-Added JMS Features

Introduction and Roadmap 1-3

1.4 JMS Samples and Tutorials for the JMS Administrator
In addition to this document, Oracle provides JMS code samples and tutorials that
document JMS configuration, API use, and key JMS development tasks. Oracle
recommends that you run some or all of the JMS examples before configuring your
own system.

1.4.1 Avitek Medical Records Application (MedRec) and Tutorials
MedRec is an end-to-end sample Java EE application shipped with WebLogic Server
that simulates an independent, centralized medical record management system. The
MedRec application enables patients, doctors, and administrators to manage patient
data using a variety of different clients.

MedRec demonstrates WebLogic Server and Java EE features, and highlights
Oracle-recommended best practices. MedRec is included in the WebLogic Server
distribution, and can be accessed from the Start menu on Windows machines. For
Linux and other platforms, you can start MedRec from the WL_
HOME\samples\domains\medrec directory, where WL_HOME is the top-level
installation directory for WebLogic Platform.

1.4.2 JMS Examples in the WebLogic Server Distribution
This release of WebLogic Server optionally installs API code examples in WL_
HOME\samples\server\examples\src\examples, where WL_HOME is the
top-level directory of your WebLogic Server installation. You can start the examples
server, and obtain information about the samples and how to run them from the
WebLogic Server Start menu.

1.5 WebLogic Server Value-Added JMS Features
WebLogic JMS provides numerous WebLogic JMS Extension APIs that go above and
beyond the standard JMS APIs specified by the JMS 1.1 Specification, available at
http://www.oracle.com/technetwork/java/jms/index.html. Moreover, it
is tightly integrated into the WebLogic Server platform, allowing you to build secure
Java EE applications that can be easily monitored and administered through the
WebLogic Server console. In addition to fully supporting XA transactions, WebLogic
JMS also features high availability through its clustering and service migration
features, while also providing interoperability with other versions of WebLogic Server
and third-party messaging providers.

The following sections provide an overview of the unique features and powerful
capabilities of WebLogic JMS.

1.5.1 Enterprise-Grade Reliability
WebLogic JMS includes the following reliability features:

■ Out-of-the-box transaction support:

– Fully supports transactions, including distributed transactions, between JMS
applications and other transaction-capable resources using the Java
Transaction API (JTA), as described in "Using Transactions with WebLogic
JMS" in Programming JMS for Oracle WebLogic Server.

– Fully-integrated Transaction Manager, as described in "Introducing
Transactions" in Programming JTA for Oracle WebLogic Server.

WebLogic Server Value-Added JMS Features

1-4 Configuring and Managing JMS for Oracle WebLogic Server

■ File or database persistent message storage (both fully XA transaction capable).
See "Using the WebLogic Persistent Store" in Configuring Server Environments for
Oracle WebLogic Server.

■ Message Store-and-Forward (SAF) is clusterable and improves reliability by
locally storing messages sent to unavailable remote destinations. See
"Understanding the Store-and-Forward Service" in Configuring and Managing
Store-and-Forward for Oracle WebLogic Server.

■ If a server or network failure occurs, JMS producer and consumer objects will
attempt to transparently failover to another server instance, if one is available. See
"Automatic JMS Client Failover" in Programming JMS for Oracle WebLogic Server.

■ Supports connection clustering using connection factories targeted on multiple
WebLogic Servers, as described in Section 4.1, "Configuring WebLogic JMS
Clustering."

■ System-assisted configuration of Uniform Distributed Queues, Replicated
Distributed Topics, and Partitioned Distributed Topics that provide high
availability, load balancing, and failover support in a cluster, as described in
"Using Distributed Destinations" and Developing Advanced Pug/Sub
Applications in Programming JMS for Oracle WebLogic Server.

■ Automatic whole server migration provides improved cluster reliability and
server migration WebLogic Server now supports automatic and manual migration
of a clustered server instance and all the services it hosts from one machine to
another, as described in Section 4.1, "Configuring WebLogic JMS Clustering."

■ Redirects failed or expired messages to error destinations, as described in
"Managing Rolled Back, Recovered, Redelivered, or Expired Messages" in
Programming JMS for Oracle WebLogic Server.

■ Supports the JMS Delivery Count message property JMSXDeliveryCount, which
specifies the number of message delivery attempts, where the first attempt is 1, the
second is 2, and so on. WebLogic Server makes a best effort to persist the delivery
count, so that the delivery count does not reset back to one after a server reboot.
See "Message" in Programming JMS for Oracle WebLogic Server.

■ Provides three levels of load balancing: network-level, JMS connections, and
distributed destinations.

1.5.2 Enterprise-Level Features
WebLogic JMS includes the following enterprise-level features:

■ WebLogic Server fully supports the JMS 1.1 Specification (available at
http://www.oracle.com/technetwork/java/jms/index.html), is fully
compliant with the Java EE 5.0 specification, and provides numerous "WebLogic
JMS Extensions" that go beyond the standard JMS APIs.

■ Provides robust message and destination management capabilities:

– Administrators can manipulate most messages in a running JMS Server, using
either the Administration Console or runtime APIs. See Section 8.2, "Managing
JMS Messages."

– Administrators can pause and resume message production, message insertion
(in-flight messages), and message consumption operations on a given JMS
destination, or on all the destinations hosted by a single JMS Server, using
either the Administration Console or runtime APIs. See Section 10.5,
"Controlling Message Operations on Destinations."

WebLogic Server Value-Added JMS Features

Introduction and Roadmap 1-5

– Message-Driven EJBs (MDBs) also supply message pause and resume
functionality, and can even automatically temporarily pause during error
conditions. See "Programming and Configuring MDBs: Details" in
Programming Message-Driven Beans for Oracle WebLogic Server.

■ Modular deployment of JMS resources, which are defined by an XML so that you
can migrate your application and the required JMS configuration from
environment to environment without opening an enterprise application file, and
without extensive manual JMS reconfiguration. See Section 2.5, "Overview of JMS
Modules."

■ JMS message producers can group ordered messages into a single unit-of-order,
which guarantees that all such messages are processed serially in the order in
which they were created. See "Using Message Unit-of-Order" in Programming JMS
for Oracle WebLogic Server.

■ To provide an even more restricted notion of a group than the Message
Unit-of-Order feature, the Message Unit-of-Work (UOW) feature allows JMS
producers to identify certain messages as components of a UOW message group,
and allows a JMS consumer to process them as such. For example, a JMS producer
can designate a set of messages that need to be delivered to a single client without
interruption, so that the messages can be processed as a unit. See "Using
Unit-of-Work Message Groups" in Programming JMS for Oracle WebLogic Server.

■ Message Life Cycle Logging provides an administrator with better transparency
about the existence of JMS messages from the JMS server viewpoint, in particular
basic life cycle events, such as message production, consumption, and removal.
See Section 10.3, "Message Life Cycle Logging."

■ Timer services available for scheduled message delivery, as described in "Setting
Message Delivery Times" in Programming JMS for Oracle WebLogic Server.

■ Flexible expired message policies to handle expired messages, as described in
"Handling Expired Messages" in Performance and Tuning for Oracle WebLogic Server.

■ Supports messages containing XML (Extensible Markup Language). See "Defining
XML Message Selectors Using the XML Selector Method" in Programming JMS for
Oracle WebLogic Server.

■ The WebLogic Thin T3 Client jar (wlthint3client.jar) is a light-weight,
performant alternative to the wlfullclient.jar and wlclient.jar (IIOP)
remote client jars. The Thin T3 client has a minimal footprint while providing
access to a rich set of APIs that are appropriate for client usage. See "Developing a
WebLogic Thin T3 Client" in Programming Stand-alone Clients for Oracle WebLogic
Server.

■ The JMS SAF Client enables standalone JMS clients to reliably send messages to
server-side JMS destinations, even when the JMS client cannot temporarily reach a
destination (for example, due to a network connection failure). While disconnected
from the server, messages sent by the JMS SAF client are stored locally on the
client and are forwarded to server-side JMS destinations when the client
reconnects. See "Reliably Sending Messages Using the JMS SAF Client" in
Programming Stand-alone Clients for Oracle WebLogic Server.

■ Automatic pooling of JMS client resources in server-side applications via JMS
resource-reference pooling. Server-side applications use standard JMS APIs, but
get automatic resource pooling. See "Enhanced Java EE Support for Using
WebLogic JMS With EJBs and Servlets" in Programming JMS for Oracle WebLogic
Server.

WebLogic Server Value-Added JMS Features

1-6 Configuring and Managing JMS for Oracle WebLogic Server

1.5.3 Performance
WebLogic JMS features enterprise-class performance features, such as automatic
message paging, message compression, and DOM support for XML messages:

■ WebLogic Server uses highly optimized disk access algorithms and other internal
enhancements to provide a unified messaging kernel that improves both
JMS-based and Web Services messaging performance. See "Using the WebLogic
Persistent Store" in Configuring Server Environments for Oracle WebLogic Server.

■ You may greatly improve the performance of typical non-persistent messaging
with One-Way Message Sends. When configured on a connection factory,
associated producers can send messages without internally waiting for a response
from the target destination's host JMS server. You can choose to allow queue
senders and topic publishers to do one-way sends, or to limit this capability to
topic publishers only. You can also specify a "One-Way Window Size" to determine
when a two-way message is required to regulate the producer before it can
continue making additional one-way sends. See "Configure connection factory
flow control" in the Oracle WebLogic Server Administration Console Help.

■ Message paging automatically begins during peak load periods to free up virtual
memory. See "Paging Out Messages To Free Up Memory" in Performance and
Tuning for Oracle WebLogic Server.

■ Administrators can enable the compression of messages that exceed a specified
threshold size to improve the performance of sending messages travelling across
JVM boundaries using either the Administration Console or runtime APIs. See
"Compressing Messages" in Performance and Tuning for Oracle WebLogic Server.

■ Synchronous consumers can also use the same efficient behavior as asynchronous
consumers by enabling the Prefetch Mode for Synchronous Consumers option on
the consumer's JMS connection factory, using either the Administration Console or
runtime APIs. See "Using the Prefetch Mode to Create a Synchronous Message
Pipeline" in Programming JMS for Oracle WebLogic Server.

■ Supplies a wide variety of performance tuning options for JMS messages. See
"Tuning WebLogic JMS" in Performance and Tuning for Oracle WebLogic Server.

■ Supports MDB transaction batching by processing multiple messages in a single
transaction. See "Using Batching with Message-Driven Beans" in Programming
Message-Driven Beans for Oracle WebLogic Server.

■ JMS SAF provides better performance than the WebLogic Messaging Bridge across
clusters. See "Tuning WebLogic JMS Store-and-Forward" in Performance and Tuning
for Oracle WebLogic Server.

■ DOM (Document Object Model) support for sending XML messages greatly
improves performance for implementations that already use a DOM, since those
applications do not have to flatten the DOM before sending XML messages. See
"Sending XML Messages" in Programming JMS for Oracle WebLogic Server.

■ Message flow control during peak load periods, including blocking overactive
senders, as described in "Controlling the Flow of Messages on JMS Servers and
Destinations" and "Defining Quota" in Performance and Tuning for Oracle WebLogic
Server.

■ The automatic pooling of connections and other objects by the JMS wrappers via
JMS resource-reference pooling. See "Enhanced Java EE Support for Using
WebLogic JMS With EJBs and Servlets" in Programming JMS for Oracle WebLogic
Server.

WebLogic Server Value-Added JMS Features

Introduction and Roadmap 1-7

■ Multicasting of messages for simultaneous delivery to many clients using IP
multicast, as described in "Using Multicasting with WebLogic JMS" in
Programming JMS for Oracle WebLogic Server.

1.5.4 Tight Integration with WebLogic Server
WebLogic JMS includes the following features to enable tight integration with
WebLogic Server:

■ JMS can be accessed locally by server-side applications without a network call
because the destinations can exist on the same server as the application.

■ Uses same ports, protocols, and user identities as WebLogic Server (T3, IIOP, and
HTTP tunnelling protocols, optionally with SSL).

■ Web Services, Enterprise Java Beans (including MDBs), and servlets supplied by
WebLogic Server can work in close concert with JMS.

■ Can be configured and monitored by using the same Administration Console, or
by using the JMS API.

■ Supports the WebLogic Scripting Tool (WLST) to initiate, manage, and persist
configuration changes interactively or by using an executable script. See
Chapter 6, "Using WLST to Manage JMS Servers and JMS System Module
Resources."

■ Complete JMX administrative and monitoring APIs, as described in Developing
Custom Management Utilities With JMX for Oracle WebLogic Server.

■ Fully-integrated Transaction Manager, as described in "Introducing Transactions"
in Programming JTA for Oracle WebLogic Server.

■ Leverages sophisticated security model built into WebLogic Server (policy engine),
as described in "Understanding WebLogic Security" and "Resource Types You Can
Secure with Policies" in Securing Resources Using Roles and Policies for Oracle
WebLogic Server.

1.5.5 Interoperability With Other Messaging Services
WebLogic JMS includes the following features for interoperability with other
messaging services:

■ Fully supports direct interoperability with prior WebLogic Server releases as
described in "WebLogic Server Compatibility" in Understanding Oracle WebLogic
Server.

■ Messages forwarded transactionally by the WebLogic Messaging Bridge to other
JMS providers — as well as to other instances and versions of WebLogic JMS, as
described in Configuring and Managing the Messaging Bridge for Oracle WebLogic
Server.

■ Supports mapping of other JMS providers so their objects appear in the WebLogic
JNDI tree as local JMS objects. Also references remote instances of WebLogic
Server in another cluster or domain in the local JNDI tree. See Section 3.11,
"Foreign Server Configuration."

■ Uses MDBs to transactionally receive messages from multiple JMS providers. See
"Programming and Configuring MDBs: Details" in Programming Message-Driven
Beans for Oracle WebLogic Server.

New and Changed JMS Features

1-8 Configuring and Managing JMS for Oracle WebLogic Server

■ Reliable Web Services integration with JMS as a transport, as described in "Using
Web Services Reliable Messaging" in Programming Advanced Features of JAX-RPC
Web Services for Oracle WebLogic Server.

■ Automatic transaction enlistment of non-WebLogic JMS client resources in
server-side applications via JMS resource-reference pooling. See "Enhanced Java
EE Support for Using WebLogic JMS With EJBs and Servlets" in Programming JMS
for Oracle WebLogic Server.

■ Integration with Oracle Tuxedo messaging provided by WebLogic Tuxedo
Connector. See "How to Configure the Oracle Tuxedo Queuing Bridge" in the
WebLogic Tuxedo Connector Administration Guide for Oracle WebLogic Server.

■ The WebLogic JMS C API enables programs written in 'C' to participate in JMS
applications. This implementation of the JMS C API uses JNI in order to access a
Java Virtual Machine (JVM). See "WebLogic JMS C API" in Programming JMS for
Oracle WebLogic Server.

■ Oracle Streams Advanced Queuing (AQ) provides database-integrated message
queuing functionality that leverages the functions of the Oracle database to
manage messages. WebLogic Server interoperates with Oracle AQ using a Foreign
JMS and JDBC data source configuration in a WebLogic Server domain. Both local
and remote JMS clients can use Oracle AQ destinations from WebLogic JNDI. See
Chapter 7, "Interoperating with Oracle AQ JMS."

1.6 New and Changed JMS Features
This section includes new and changed features for recent patch sets of WebLogic
Server:

■ Section 1.6.1, "WebLogic Server 10.3.4.0 New and Changed Features"

■ Section 1.6.2, "WebLogic Server 10.3.3.0 New and Changed Features"

■ Section 1.6.3, "WebLogic Server 10.3.2.0 New and Changed Features"

For a comprehensive listing of the new WebLogic Server features introduced in this
release, see What's New in Oracle WebLogic Server.

1.6.1 WebLogic Server 10.3.4.0 New and Changed Features
This release includes the following new and changed features:

■ Weighted Distributed Destinations are deprecated in WebLogic Server 10.3.4.0.
Oracle recommends using Uniform Distributed Destinations.

■ Partitioned Distributed Topics provide the ability to load balance messages to
members which provides a highly scalable and available publishing mechanism.
See Section 4.5.2.4, "Configuring Partitioned Distributed Topics."

■ Unrestricted Client ID Policy allows more than one JMS connection can use the
same Client ID. See Section 4.6, "Configure an Unrestricted ClientID."

■ Shared Subscriptions allow multiple subscribers to share the same subscription
which enables parallel processing of messages of a single subscription. See
Section 4.7, "Configure Shared Subscriptions."

■ New Message-Driven Bean (MDB) activation configuration properties,
configuration permutations, and the deployment actions that provide high
availability and parallel processing. See Configuring and Deploying MDBs Using
Distributed Topics in Programming Message-Driven Beans for Oracle WebLogic Server.

New and Changed JMS Features

Introduction and Roadmap 1-9

1.6.2 WebLogic Server 10.3.3.0 New and Changed Features
This release includes the following new and changed features:

■ The following internal methods of weblogic.jms.extensions.WLMessage have been
included in Oracle's public documentation, but have been removed:

– public void setSAFSequenceName(String safSequenceName);

– public String getSAFSequenceName();

– public void setSAFSeqNumber(long seqNumber);

– public long getSAFSeqNumber();

Your applications should not use these internal methods. Internal methods
may change or be removed in a future release without notice.

■ The JMSDestinationAvailabilityHelper API provides a means for getting
notifications when destinations become available or unavailable. These APIs are
for advanced use cases only. Use this helper only when standard approaches for
solving WebLogic distributed consumer problems have been exhausted. See
"Using the JMS Destination Availability Helper APIs with Distributed Queues" in
Programming JMS for Oracle WebLogic Server.

1.6.3 WebLogic Server 10.3.2.0 New and Changed Features
This release includes support for inter-operating with Oracle Advanced Queueing
(AQ) through Foreign JMS and JDBC data source configuration in a WebLogic Server
domain. Both local and remote JMS clients can use Oracle AQ destinations from
WebLogic JNDI. See Chapter 7, "Interoperating with Oracle AQ JMS."

New and Changed JMS Features

1-10 Configuring and Managing JMS for Oracle WebLogic Server

2

Understanding JMS Resource Configuration 2-1

2Understanding JMS Resource Configuration

This chapter briefly reviews the basic WebLogic JMS concepts and features, and
describe how they work with other application components and WebLogic Server.

It is assumed the reader is familiar with Java programming and JMS 1.1 concepts and
features.

■ Section 2.1, "Overview of JMS and WebLogic Server"

■ Section 2.2, "Domain Configuration"

■ Section 2.3, "What Are JMS Configuration Resources?"

■ Section 2.4, "Overview of JMS Servers"

■ Section 2.5, "Overview of JMS Modules"

■ Section 2.6, "Other Environment-Related System Resources for WebLogic JMS"

2.1 Overview of JMS and WebLogic Server
The WebLogic Server implementation of JMS is an enterprise-class messaging system
that is tightly integrated into the WebLogic Server platform. It fully supports the JMS
1.1 Specification, available at
http://www.oracle.com/technetwork/java/jms/index.html, and also
provides numerous WebLogic JMS Extensions that go beyond the standard JMS APIs.

2.1.1 What Is the Java Message Service?
An enterprise messaging system enables applications to asynchronously communicate
with one another through the exchange of messages. A message is a request, report,
and/or event that contains information needed to coordinate communication between
different applications. A message provides a level of abstraction, allowing you to
separate the details about the destination system from the application code.

The Java Message Service (JMS) is a standard API for accessing enterprise messaging
systems that is implemented by industry messaging providers. Specifically, JMS:

■ Enables Java applications that share a messaging system to exchange messages

■ Simplifies application development by providing a standard interface for creating,
sending, and receiving messages

WebLogic JMS accepts messages from producer applications and delivers them to
consumer applications. For more information on JMS API programming with WebLogic
Server, see Programming JMS for Oracle WebLogic Server.

Domain Configuration

2-2 Configuring and Managing JMS for Oracle WebLogic Server

2.1.2 WebLogic JMS Architecture and Environment
Figure 2–1 illustrates the WebLogic JMS architecture.

Figure 2–1 WebLogic JMS Architecture

In Figure 2–1, A1 and B1 are connection factories, and B2 is a queue.

The major components of the WebLogic JMS architecture include:

■ A JMS server is an environment-related configuration entity that acts as
management container for JMS queue and topic resources defined within JMS
modules that are targeted to specific that JMS server. A JMS server's primary
responsibility for its targeted destinations is to maintain information on what
persistent store is used for any persistent messages that arrive on the destinations,
and to maintain the states of durable subscribers created on the destinations. You
can configure one or more JMS servers per domain, and a JMS server can manage
one or more JMS modules. For more information, see Section 2.4, "Overview of
JMS Servers."

■ JMS modules contain configuration resources, such as standalone queue and topic
destinations, distributed destinations, and connection factories, and are defined by
XML documents that conform to the weblogic-jms.xsd schema. For more
information, see Section 2.3, "What Are JMS Configuration Resources?"

■ Client JMS applications that either produce messages to destinations or consume
messages from destinations.

■ JNDI (Java Naming and Directory Interface), which provides a server lookup
facility.

■ WebLogic persistent storage (a server instance's default store, a user-defined file
store, or a user-defined JDBC-accessible store) for storing persistent message data.

2.2 Domain Configuration
In general, the WebLogic Server domain configuration file (config.xml) contains the
configuration information required for a domain. This configuration information can
be further classified into environment-related information and application-related

Overview of JMS Servers

Understanding JMS Resource Configuration 2-3

information. Examples of environment-related information are the identification and
definition of JMS servers, JDBC data sources, WebLogic persistent stores, and server
network addresses. These system resources are usually unique from domain to
domain.

The configuration and management of these system resources are the responsibility of
a WebLogic administrator, who usually receives this information from an
organization's system administrator or MIS department. To accomplish these tasks, an
administrator can use the WebLogic Administration Console, various command-line
tools, such as WebLogic Scripting Tool (WLST), or JMX APIs for programmatic
administration.

Examples of application-related definitions that are independent of the domain
environment are the various Java EE application components configurations, such as
EAR, WAR, JAR, RAR files, and JMS and JDBC modules. The application components
are originally developed and packaged by an application development team, and may
contain optional programs (compiled Java code) and respective configuration
information (also called descriptors, which are mostly stored as XML files). In the case
of JMS and JDBC modules, however, there are no compiled Java programs involved.
These pre-packaged applications are given to WebLogic Server administrators for
deployment in a WebLogic domain.

The process of deploying an application links the application components to the
environment-specific resource definitions, such as which server instances should host
a given application component (targeting), and the WebLogic persistent store to use
for persisting JMS messages.

Once the initial deployment is completed, an administrator has only limited control
over deployed applications. For example, administrators are only allowed to ensure
the proper life cycle of these applications (deploy, undeploy, redeploy, remove, etc.)
and to tune the parameters, such as increasing or decreasing the number of instances
of any given application to satisfy the client needs. Other than life cycle and tuning,
any modification to these applications must be completed by the application
development team.

2.3 What Are JMS Configuration Resources?
JMS configuration resources, such as destinations and connections factories, are stored
outside of the WebLogic domain as module descriptor files, which are defined by XML
documents that conform to the weblogic-jms.xsd schema. JMS modules do not
include JMS server definitions, which are stored in the WebLogic domain
configuration file, as described in Section 2.4, "Overview of JMS Servers."

You create and manage JMS resources either as system modules, similar to the way they
were managed prior to this release, or as application modules. JMS application modules
are a WebLogic-specific extension of Java EE modules and can be deployed either with
a Java EE application (as a packaged resource) or as stand-alone modules that can be
made globally available. See Section 2.5, "Overview of JMS Modules."

2.4 Overview of JMS Servers
JMS servers are environment-related configuration entities that act as management
containers for destination resources within JMS modules that are targeted to specific
JMS servers. A JMS server's primary responsibility for its targeted destinations is to
maintain information on what persistent store is used for any persistent messages that
arrive on the destinations, and to maintain the states of durable subscribers created on

Overview of JMS Servers

2-4 Configuring and Managing JMS for Oracle WebLogic Server

the destinations. As a container for targeted destinations, any configuration or
run-time changes to a JMS server can affect all of its destinations.

JMS servers are persisted in the domain's config.xml file and multiple JMS servers
can be configured on the various WebLogic Server instances in a cluster, as long as
they are uniquely named. Client applications use either the JNDI tree or the
java:/comp/env naming context to look up a connection factory and create a
connection to establish communication with a JMS server. Each JMS server handles
requests for all targeted modules' destinations. Requests for destinations not handled
by a JMS server are forwarded to the appropriate server instance.

2.4.1 JMS Server Behavior in WebLogic Server 9.x and Later
The current release of JMS server behavior differs in certain respects from the behavior
in pre-9.x releases:

■ Because destination resources are encapsulated in JMS modules, they are not
nested under JMS servers in the configuration file. However, a sub-targeting
relationship between JMS servers and destinations is maintained because each
standalone destination resource within a JMS module is always targeted to a single
JMS server. This way, JMS servers continue to manage persistent messages,
durable subscribers, message paging, and, optionally, quotas for their targeted
destinations. Multiple JMS modules can be targeted to each JMS server in a
domain.

■ JMS servers support the default persistent store that is available to multiple
subsystems and services within a server instance, as described in Section 2.6.1,
"Persistent Stores."

– JMS servers can store persistent messages in a host server's default file store by
enabling the "Use the Default Store" option. In prior releases, persistent
messages were silently downgraded to non-persistent if no store was
configured. Disabling the Use the Default Store option, however, forces
persistent messages to be non-persistent.

– In place of the deprecated JMS stores (JMS file store and JMS JDBC store), JMS
servers now support user-defined WebLogic file stores or JDBC stores, which
provide better performance and more capabilities than the legacy JMS stores.
(The legacy JMS stores are supported for backward compatibility.)

■ JMS servers support an improved message paging mechanism. For more
information on message paging, see Performance and Tuning for Oracle WebLogic
Server.

– The configuration of a dedicated paging store is no longer necessary because
paged messages are stored in a directory on your file system -- either to a
user-defined directory or to a default paging directory if one is not specified.

– Temporary paging of messages is always enabled and is controlled by the
value set on the Message Buffer Size option. When the total size of
non-pending, unpaged messages reaches this setting, a JMS server will
attempt to reduce its memory usage by paging out messages to the paging
directory.

■ You can pause message production or message consumption operations on all the
destinations hosted by a single JMS server, either programmatically with JMX or
by using the Administration Console. For more information see, Section 10.5,
"Controlling Message Operations on Destinations."

Overview of JMS Modules

Understanding JMS Resource Configuration 2-5

■ JMS servers can be undeployed and redeployed without having to reboot
WebLogic Server.

■ Non-persistent messages published to a Uniform Distributed Topic member that is
offline are saved and made available when the member comes back online.

In releases prior to 9.0, if you did not configure a persistent store for a JMS server
or if there was a persistent store defined and storedEnabled=false was set on
the distributed topic (DT) member, non-persistent messages were dropped and not
made available when the DT member came back online. If your application
depends on dropping these messages, you can approximate similar behavior by
setting the Delivery Timeout value for a server to a very low value. This will
allow the messages to be disregarded before an offline DT member would come
back online. New applications developed on WebLogic Server releases 10.3.4.0 and
higher can use partitioned distributed topics with message-driven beans (MDBs)
as message consumers to provide a similar capability. See "Developing Advanced
Pub/Sub Applications" in Programming JMS for Oracle WebLogic Server.

For more information on configuring JMS servers, see Section 3.4, "JMS Server
Configuration."

2.5 Overview of JMS Modules
JMS modules are application-related definitions that are independent of the domain
environment. You create and manage JMS resources either as system modules or as
application modules. JMS system modules are typically configured using the
Administration Console or the WebLogic Scripting Tool (WLST), which adds a
reference to the module in the domain's config.xml file. JMS application modules
are a WebLogic-specific extension of Java EE modules and can be deployed either with
a Java EE application (as a packaged resource) or as stand-alone modules that can be
made globally available.

The main difference between system modules and application modules comes down
to ownership. System modules are owned and modified by the WebLogic
administrator and are available to all applications. Application modules are owned
and modified by the WebLogic developers, who package the JMS resource modules
with the application's EAR file.

With modular deployment of JMS resources, you can migrate your application and the
required JMS configuration from environment to environment, such as from a testing
environment to a production environment, without opening an enterprise application
file (such as an EAR file) or a stand-alone JMS module, and without extensive manual
JMS reconfiguration.

These sections describe the different types of JMS module and the resources that they
can contain:

■ Section 2.5.1, "JMS System Modules"

■ Section 2.5.2, "JMS Application Modules"

■ Section 2.5.3, "Comparing JMS System Modules and Application Modules"

■ Section 2.5.4, "Configurable JMS Resources in Modules"

■ Section 2.5.5, "JMS Schema"

■ Section 2.5.6, "JMS Interop Modules"

Overview of JMS Modules

2-6 Configuring and Managing JMS for Oracle WebLogic Server

2.5.1 JMS System Modules
WebLogic Administrators typically use the Administration Console or the WebLogic
Scripting Tool (WLST) to create and deploy (target) JMS modules, and to configure the
module's configuration resources, such as queues, and topics connection factories.

JMS modules that you configure this way are considered system modules. JMS system
modules are owned by the Administrator, who can at any time add, modify, or delete
resources. System modules are globally available for targeting to servers and clusters
configured in the domain, and therefore are available to all applications deployed on
the same targets and to client applications.

When you create a JMS system module WebLogic Server creates a JMS module file in
the config\jms subdirectory of the domain directory, and adds a reference to the
module in the domain's config.xml file as a JMSSystemResource element. This
reference includes the path to the JMS system module file and a list of target servers
and clusters on which the module is deployed.

The JMS module conforms to the weblogic-jms.xsd schema, as described in
Section 5.2, "JMS Schema." System modules are also accessible through WebLogic
Management Extension (JMX) utilities, as a JMSSystemResourceMBean. The naming
convention for JMS system modules is MyJMSModule-jms.xml.

Figure 2–2 shows an example of a JMS system module listing in the domain's
config.xml file and the module that it maps to in the config\jms directory.

Figure 2–2 Reference from config.xml to a JMS System Module

For more information about configuring JMS system modules, see Section 3,
"Configuring Basic JMS System Resources."

2.5.2 JMS Application Modules
JMS configuration resources can also be managed as deployable application modules,
similar to standard Java EE descriptor-based modules. JMS Application modules can
be deployed either with a Java EE application as a packaged module, where the
resources in the module are optionally made available to only the enclosing
application (i.e., application-scoped), or as a standalone module that provides global
access to the resources defined in that module.

Overview of JMS Modules

Understanding JMS Resource Configuration 2-7

Application developers typically create application modules in an enterprise-level IDE
or another development tool that supports editing XML descriptor files, then package
the JMS modules with an application and pass the application to a WebLogic
Administrator to deploy, manage, and tune.

As discussed in Section 2.2, "Domain Configuration," JMS application modules do not
contain compiled Java programs as part of the package, enabling administrators or
application developers to create and manage JMS resources on demand.

For more information about configuring JMS application modules, see Chapter 5,
"Configuring JMS Application Modules for Deployment."

2.5.3 Comparing JMS System Modules and Application Modules
A key to understanding WebLogic JMS configuration and management is that who
creates a JMS resource and how a JMS resource is created determines how a resource is
deployed and modified. Both WebLogic administrators and programmers can
configure JMS modules:

In contrast to system modules, deployed application modules are owned by the
developer who created and packaged the module, rather than the administrator who
deploys the module, which means the administrator has more limited control over
deployed resources. When deploying an application module, an administrator can
change resource properties that were specified in the module, but the administrator
cannot add or delete resources. As with other Java EE modules, deployment
configuration changes for a application module are stored in a deployment plan for
the module, leaving the original module untouched.

Table 2–1 lists the JMS module types and how they can be configured and modified.

For more information about preparing JMS application modules for deployment, see
Chapter 5, "Configuring JMS Application Modules for Deployment" and "Deploying
Applications and Modules with weblogic.deployer" in Deploying Applications to Oracle
WebLogic Server.

2.5.4 Configurable JMS Resources in Modules
The following configuration resources are defined as part of a system module or an
application module:

■ Queue and topic destinations, as described in Section 3.7, "Queue and Topic
Destination Configuration."

■ Connection factories, as described in Section 3.6, "Connection Factory
Configuration."

Table 2–1 JMS Module Types and Configuration and Management Options

Module
Type

Created
With

Dynamically
Add/Remove
Modules

Modify
With JMX
Remotely

Modify with
Deployment
Tuning Plan
(non-remote)

Modify with
Admin
Console Scoping

Default
Sub-module
Targeting

System Admin
Console or
WLST

Yes Yes No Yes – via JMX Global and
local

No

Application IDE or
XML
editor

No – must be
redeployed

No Yes – via
deployment
plan

Yes – via
deployment
plan

Global,
local, and
application

Yes

Overview of JMS Modules

2-8 Configuring and Managing JMS for Oracle WebLogic Server

■ Templates, as described in Section 3.8, "JMS Template Configuration."

■ Destination keys, as described in Section 3.9, "Destination Key Configuration."

■ Quota, as described in Section 3.10, "Quota Configuration."

■ Distributed destinations, as described in Section 4.5, "Configuring Distributed
Destination Resources."

■ Foreign servers, as described in Section 4.4, "Configuring Foreign Server Resources
to Access Third-Party JMS Providers."

■ JMS store-and-forward (SAF) configuration items, as described in Section 2.6.2,
"JMS Store-and-Forward (SAF)."

All other JMS environment-related resources must be configured by the administrator
as domain configuration resources. This includes:

■ JMS servers (required), as described in Section 2.4, "Overview of JMS Servers."

■ Store-and-Forward agents (optional), as described in Section 2.6.2, "JMS
Store-and-Forward (SAF)."

■ Path service (optional), as described in Section 2.6.3, "Path Service."

■ Messaging bridges (optional), as described in Section 2.6.4, "Messaging Bridges."

■ Persistent stores (optional), as described in Section 2.6.1, "Persistent Stores."

For more information about configuring JMS system modules, see Section 3,
"Configuring Basic JMS System Resources."

2.5.5 JMS Schema
In support of the modular configuration model for JMS resources, Oracle provides a
schema for WebLogic JMS objects: weblogic-jms.xsd. When you create JMS
resource modules (descriptors), the modules must conform to the schema. IDEs and
other tools can validate JMS resource modules based on this schema.

The weblogic-jms.xsd schema is available online at
http://xmlns.oracle.com/weblogic/weblogic-jms/1.2/weblogic-jms.x
sd.

2.5.6 JMS Interop Modules
A JMS interop module is a special type of JMS system resource module. It is created
and managed as a result of a JMS configuration upgrade for this release, and/or
through the use of WebLogic JMX MBean APIs from prior releases.

JMS interop modules differ in many ways from JMS system resource modules, as
follows.

■ The JMS module descriptor is always named as interop-jms.xml and the file
exists in the domain's config\jms directory.

■ Interop modules are owned by the system, as opposed to other JMS system
resource modules, which are owned mainly by an administrator.

■ Interop modules are targeted everywhere in the domain.

■ The JMS resources that exist in a JMS interop module can be accessed and
managed using deprecated JMX (MBean) APIs.

Other Environment-Related System Resources for WebLogic JMS

Understanding JMS Resource Configuration 2-9

■ The MBean of a JMS interop module is JMSInteropModuleMBean, which is a child
MBean of DomainMBean, and can be looked up from DomainMBean like any
other child MBean in a domain.

A JMS interop module can also implement many of the WebLogic Server 9.x or later
features, such as message unit-of-order and destination quota. However, it cannot
implement the following WebLogic Server 9.x or later features:

■ Uniform distributed destination resources

■ JMS store-and forward resources

2.6 Other Environment-Related System Resources for WebLogic JMS
These environment-related resources must be configured by the administrator as
domain configuration resources in order to be accessible to JMS Servers and JMS
modules.

2.6.1 Persistent Stores
The WebLogic Persistent Store provides a built-in, high-performance storage solution
for all subsystems and services that require persistence. For example, it can store
persistent JMS messages or temporarily store messages sent using the
Store-and-Forward feature. Each WebLogic Server instance in a domain has a default
persistent store that requires no configuration and which can be simultaneously used
by subsystems that prefer to use the system's default storage. However, you can also
configure a dedicated file-based store or JDBC database-accessible store to suit your
JMS implementation. For more information on configuring a persistent store for JMS,
see "Using the WebLogic Persistent Store" in Configuring Server Environments for Oracle
WebLogic Server.

2.6.2 JMS Store-and-Forward (SAF)
The SAF service enables WebLogic Server to deliver messages reliably between
applications that are distributed across WebLogic Server instances. For example, with
the SAF service, an application that runs on or connects to a local WebLogic Server
instance can reliably send messages to a destination that resides on a remote server. If
the destination is not available at the moment the messages are sent, either because of
network problems or system failures, then the messages are saved on a local server
instance, and are forwarded to the remote destination once it becomes available.

JMS modules utilize the SAF service to enable local JMS message producers to reliably
send messages to remote JMS queues or topics. For more information, see
"Configuring SAF for JMS Messages" in Configuring and Managing Store-and-Forward for
Oracle WebLogic Server.

2.6.3 Path Service
The WebLogic Server Path Service is a persistent map that can be used to store the
mapping of a group of messages to a messaging resource by pinning messages to a
distributed queue member or store-and-forward path. For more information on
configuring a path service, see Section 4.3, "Using the WebLogic Path Service."

Note: Use of any new features in the current release in a JMS interop
module may possibly break compatibility with JMX clients prior to
WebLogic Server 9.x.

Other Environment-Related System Resources for WebLogic JMS

2-10 Configuring and Managing JMS for Oracle WebLogic Server

2.6.4 Messaging Bridges
The Messaging Bridge allows you to configure a forwarding mechanism between any
two messaging products, providing interoperability between separate
implementations of WebLogic JMS, or between WebLogic JMS and another messaging
product. The messaging bridge instances and bridge source and target destination
instances are persisted in the domain's config.xml file. For more information, see
"Understanding the Messaging Bridge" in Configuring and Managing the Messaging
Bridge for Oracle WebLogic Server.

3

Configuring Basic JMS System Resources 3-1

3Configuring Basic JMS System Resources

This chapter describes how to configure and manage basic JMS system resources, such
as JMS servers and JMS system modules.

■ Section 3.1, "Methods for Configuring JMS System Resources"

■ Section 3.2, "Main Steps for Configuring Basic JMS System Resources"

■ Section 3.3, "JMS Configuration Naming Requirements"

■ Section 3.4, "JMS Server Configuration"

■ Section 3.5, "JMS System Module Configuration"

■ Section 3.6, "Connection Factory Configuration"

■ Section 3.7, "Queue and Topic Destination Configuration"

■ Section 3.8, "JMS Template Configuration"

■ Section 3.9, "Destination Key Configuration"

■ Section 3.10, "Quota Configuration"

■ Section 3.11, "Foreign Server Configuration"

■ Section 3.12, "Distributed Destination Configuration"

■ Section 3.13, "JMS Store-and-Forward (SAF) Configuration"

3.1 Methods for Configuring JMS System Resources
WebLogic Administrators can use these tools to create and deploy (target) system
resources, such as JMS servers and JMS system modules.

■ The WebLogic Server Administration Console enables you to configure, modify,
and target JMS-related resources:

– JMS servers, as described in Section 3.4, "JMS Server Configuration."

– JMS system modules, as described in Section 3.5, "JMS System Module
Configuration."

– Store-and-Forward services for JMS, as described in "Configuring SAF for JMS
Messages" in Configuring and Managing Store-and-Forward for Oracle WebLogic
Server.

– Persistent stores, as described in "Using the WebLogic Persistent Store" in
Configuring Server Environments for Oracle WebLogic Server.

■ The WebLogic Scripting Tool (WLST) is a command-line scripting interface that
allows system administrators and operators to initiate, manage, and persist

Main Steps for Configuring Basic JMS System Resources

3-2 Configuring and Managing JMS for Oracle WebLogic Server

WebLogic Server configuration changes interactively or by using an executable
script. See Chapter 6, "Using WLST to Manage JMS Servers and JMS System
Module Resources."

■ WebLogic Java Management Extensions (JMX) is the Java EE solution for
monitoring and managing resources on a network. See "Overview of WebLogic
Server Subsystem MBeans" in Developing Custom Management Utilities With JMX for
Oracle WebLogic Server.

■ The JMSModuleHelper extension class contains methods to create and manage
JMS module configuration resources in a given module. For more information, see
"Using JMS Module Helper to Manage Applications" in Programming JMS for
Oracle WebLogic Server or the JMSModuleHelper Class Javadoc.

3.2 Main Steps for Configuring Basic JMS System Resources
This section describes how to use the Administration Console to configure a persistent
store, a JMS server, and a basic JMS system module. For instructions about using the
Administration Console to manage a WebLogic Server domain, see the Oracle WebLogic
Server Administration Console Help.

WebLogic JMS provides default values for some configuration options; you must
provide values for all others. Once WebLogic JMS is configured, applications can send
and receive messages using the JMS API. For information on tuning the default
configuration parameters, see Performance and Tuning for Oracle WebLogic Server or
"JMSBean" in the Oracle WebLogic Server MBean Reference.

1. If you require persistent messaging, use one of the following storage options:

■ To store persistent messages in a file-based store, you can simply use the
server's default persistent store, which requires no configuration on your part.
However, you can also create a dedicated file store for JMS. See "Creating a
Custom (User-Defined) File Store" in the Configuring Server Environments for
Oracle WebLogic Server.

■ To store persistent messages in a JDBC-accessible database, you must create a
JDBC store. See "Creating a JDBC Store" in Configuring Server Environments for
Oracle WebLogic Server.

2. Configure a JMS server to manage the messages that arrive on the queue and topic
destinations in a JMS system module. See Section 2.4, "Overview of JMS Servers."

3. Configure a JMS system module to contain your destinations, as well as other
resources, such as quotas, templates, destination keys, distributed destinations,
and connection factories. See Section 2.5.1, "JMS System Modules."

4. Before creating any queues or topics in your system module, you can optionally
create other JMS resources in the module that can be referenced from within a
queue or topic, such as JMS templates, quota settings, and destination sort keys:

■ Define quota resources for your destinations. Destinations can be assigned
their own quotas; multiple destinations can share a quota; or destinations can
share the JMS server's quota. See Section 3.10, "Quota Configuration."

■ Create JMS templates, which allow you to define multiple destinations with
similar option settings. See Section 3.8, "JMS Template Configuration."

Note: For information on configuring and deploying JMS application
modules in an enterprise application, see Chapter 5, "Configuring JMS
Application Modules for Deployment."

JMS Configuration Naming Requirements

Configuring Basic JMS System Resources 3-3

■ Configure destination keys to create custom sort orders of messages as they
arrive on a destination. See Section 3.9, "Destination Key Configuration."

Once these resources are configured, you can select them when you configure your
queue or topic resources.

5. Configure a queue and/or topic destination in your system module:

■ Configure a standalone topic for the delivery of messages to multiple
recipients (publish/subscribe). See Section 3.7, "Queue and Topic Destination
Configuration."

■ Configure a standalone queue for the delivery of messages to exactly one
recipient (point-to-point). See Section 3.7, "Queue and Topic Destination
Configuration."

6. If the default connection factories provided by WebLogic Server are not suitable
for your application, create a connection factory to enable your JMS clients to
create JMS connections.

For more information about using the default connection factories, see
Section 3.6.1, "Using a Default Connection Factory." For more information on
configuring a Connection Factory, see Section 3.6.2, "Connection Factory
Configuration Parameters."

WebLogic JMS provides default values for some configuration options; you must
provide values for all others. Once WebLogic JMS is configured, applications can send
and receive messages using the JMS API.

3.2.1 Advanced Resources in JMS System Modules
Beyond basic JMS resource configuration, you can add these advanced resources to a
JMS system module:

■ Create a Uniform Distributed Destination resource to configure a set of queues or
topics that distributed across the cluster, with each member belonging to a
separate JMS server in the cluster. See Section 4.5, "Configuring Distributed
Destination Resources."

■ Create a JMS Store-and-Forward resource to reliably forward messages to remote
destinations, even when a destination is unavailable at the time a message is sent,
as described in "Configuring and Managing WebLogic Store-and-Forward" in
Configuring and Managing Store-and-Forward for Oracle WebLogic Server.

■ Create a Foreign Server resource to reference third-party JMS providers within a
local WebLogic Server JNDI tree. See Section 4.4, "Configuring Foreign Server
Resources to Access Third-Party JMS Providers."

3.3 JMS Configuration Naming Requirements
Within a domain, each server, machine, cluster, virtual host, and any other resource
type must be named uniquely and must not use the same name as the domain. This
unique naming rule also applies to all configuration objects, including configurable
JMS objects such as JMS servers, JMS system modules, and JMS application modules.

The resource names inside JMS modules must be unique per resource type (for
example, queues, topics, and connection factories). However, two different JMS
modules can have a resource of the same type that can share the same name.

The JNDI name of any bindable JMS resource (excluding quotas, destination keys, and
JMS templates) across JMS modules must use the following naming requirements:

JMS Server Configuration

3-4 Configuring and Managing JMS for Oracle WebLogic Server

■ Global names must be unique across the cluster.

■ Local names must be unique across the server.

■ If there is a naming conflict, JMS resource will not be bound into the JNDI tree. If
there is any doubt, make the JNDI name globally unique.

3.4 JMS Server Configuration
JMS servers are environment-related configuration entities that act as management
containers for JMS queue and topic resources within JMS modules that are specifically
targeted to JMS servers. A JMS server's primary responsibility for its targeted
destinations is to maintain information on what persistent store is used for any
persistent messages that arrive on the destinations, and to maintain the states of
durable subscribers created on the destinations. As a container for targeted
destinations, any configuration or run-time changes to a JMS server can affect all of its
destinations.

3.4.1 JMS Server Configuration Parameters
The WebLogic Server Administration Console enables you to configure, modify, target,
and delete JMS server resources in a system module. For a road map of the JMS server
tasks, see "Configure JMS servers" in the Oracle WebLogic Server Administration Console
Help.

You can configure the following parameters for JMS servers:

■ General configuration parameters, including persistent storage, message paging
defaults, a template to use when your applications create temporary destinations,
and expired message scanning.

■ Threshold and quota parameters for destinations in JMS system modules targeted
to a particular JMS server.

For more information about configuring messages and bytes quota for JMS servers
and destinations, see Performance and Tuning for Oracle WebLogic Server.

■ Message logging parameters for a JMS server's log file, which contains the basic
events that a JMS message traverses, such as message production, consumption,
and removal.

For more information about configuring message life cycle logging on JMS servers,
see Section 10.3, "Message Life Cycle Logging."

■ Destination pause and resume controls that enable you to pause message
production, message insertion (in-flight messages), and message consumption
operations on all the destinations hosted by a single JMS Server.

Note: WebLogic Domain, WebLogic Server, and WebLogic JMS
Server names have additional unique naming requirements when two
different WebLogic domains interoperate with each other, or when a
client communicates with more than one WebLogic domain. See
Section 9.3, "Integration and Multi-Domain Best Practices."

Note: A sample examplesJMSServer configuration is provided
with the product in the Examples Server. For more information about
developing basic WebLogic JMS applications, refer to "Developing a
Basic JMS Application" in Programming JMS for Oracle WebLogic Server.

JMS Server Configuration

Configuring Basic JMS System Resources 3-5

For more information about pausing message operations on destinations, see
Section 10.5, "Controlling Message Operations on Destinations."

Some JMS server options are dynamically configurable. When options are modified at
runtime, only incoming messages are affected; stored messages are not affected. For
more information about the default values for all JMS server options, see
"JMSServerBean" and "JMSServerRuntimeMBean" in the Oracle WebLogic Server MBean
Reference.

3.4.2 JMS Server Targeting
You can target a JMS server to either an independent WebLogic Server instance or to a
migratable target server where it will be deployed.

■ Weblogic Server instance — Server target where you want to deploy the JMS
server. When a target WebLogic Server boots, the JMS server boots as well. If no
target WebLogic Server is specified, the JMS server will not boot.

■ Migratable Target — Migratable targets define a set of WebLogic Server instances
in a cluster that can potentially host an exactly-once service, such as a JMS server.
When a migratable target server boots, the JMS server boots as well on the
specified user-preferred server in the cluster. However, a JMS server and all of its
destinations can be migrated to another server within the cluster in response to a
server failure or due to a scheduled migration for system maintenance. For more
information on configuring a migratable target for JMS services, see Section 4.2,
"Migration of JMS-related Services."

For instructions on specifying JMS server targets using the Administration Console,
see "Change JMS server targets" in the Oracle WebLogic Server Administration Console
Help. For JMS Server targeting best practices, see Section 9.2, "Targeting Best Practices."

3.4.3 JMS Server Monitoring Parameters
You can monitor run-time statistics for active JMS servers, destinations, and server
session pools.

■ Monitor all Active JMS Servers — A table displays showing all instances of the
JMS server deployed across the WebLogic Server domain.

■ Monitor all Active JMS Destinations — A table displays showing all active JMS
destinations for the current domain.

■ Monitor all Active JMS Session Pool Runtimes — A table displays showing all
active JMS session pools for the current domain.

For more information about monitoring JMS objects, see Chapter 8, "Monitoring JMS
Statistics and Managing Messages."

3.4.4 Session Pools and Connection Consumers

Note: Session pool and connection consumer configuration objects
were deprecated in WebLogic Server 9.x. They are not a required part
of the Java EE specification, do not support JTA user transactions, and
are largely superseded by Message-Driven Beans (MDBs), which are a
required part of Java EE. For more information on designing MDBs,
see Programming Message-Driven Beans for Oracle WebLogic Server.

JMS System Module Configuration

3-6 Configuring and Managing JMS for Oracle WebLogic Server

Server session pools enable an application to process messages concurrently. After you
define a JMS server, you can configure one or more session pools for each JMS server.
Some session pool options are dynamically configurable, but the new values do not
take effect until the JMS server is restarted. See "Defining Server Session Pools" in
Programming JMS for Oracle WebLogic Server.

Connection consumers are queues (Point-to-Point) or topics (Pub/Sub) that will
retrieve server sessions and process messages. After you define a session pool,
configure one or more connection consumers for each session pool. See "Defining
Server Session Pools" in Programming JMS for Oracle WebLogic Server.

3.5 JMS System Module Configuration
JMS system modules are owned by the Administrator, who can delete, modify, or add
JMS system resources at any time. With the exception of standalone queue and topic
resources that must be targeted to a single JMS server, the connection factory,
distributed destination, foreign server, and JMS SAF destination resources in system
modules can be made globally available by targeting them to server instances and
clusters configured in the WebLogic domain. These resources are therefore available to
all applications deployed on the same targets and to client applications. The naming
convention for JMS system modules is MyJMSModule-jms.xml.

The WebLogic Server Administration Console enables you to configure, modify, target,
monitor, and delete JMS system modules in your environment. For a road map of the
JMS system module configuration tasks, see "Configure JMS system modules and add
JMS resources" in the Oracle WebLogic Server Administration Console Help.

You define the following "basic" configuration resources as part of a JMS system
module:

■ Queue and topic destinations, as described in Section 3.7, "Queue and Topic
Destination Configuration."

■ Connection factories, as described in Section 3.6, "Connection Factory
Configuration."

■ Templates, as described in Section 3.8, "JMS Template Configuration."

■ Destination keys, as described in Section 3.9, "Destination Key Configuration."

■ Quota, as described in Section 3.10, "Quota Configuration."

You can also define the following "advanced" clustering configuration resources as
part of a JMS system module:

■ Foreign servers, as described in Section 4.4, "Configuring Foreign Server Resources
to Access Third-Party JMS Providers."

■ Distributed destinations, as described in Section 4.5, "Configuring Distributed
Destination Resources."

■ JMS store-and-forward configurations, as described in "Configuring SAF for JMS
Messages" in Configuring and Managing Store-and-Forward for Oracle WebLogic
Server.

A sample examples-jms module is provided with the product in the Examples
Server. For more information about starting the Examples Server, see "Starting and
Stopping Servers" in Managing Server Startup and Shutdown for Oracle WebLogic Server.

For information on alternative methods for configuring JMS system modules, such as
using the WebLogic Scripting Tool (WLRT), see Section 3.1, "Methods for Configuring
JMS System Resources."

JMS System Module Configuration

Configuring Basic JMS System Resources 3-7

3.5.1 JMS System Module and Resource Subdeployment Targeting
JMS system modules must be targeted to one or more WebLogic Server instances or to
a cluster. Targetable JMS resources defined in a system module must also be targeted
to JMS server or WebLogic Server instances within the scope of a parent module's
targets. Additionally, targetable JMS resources inside a system module can be further
grouped into subdeployments during the configuration or targeting process to provide
further loose coupling of JMS resources in a WebLogic domain.

3.5.1.1 Default Targeting
When using the Administration Console to configure resources in a JMS system
module, you can choose whether to simply accept the parent module's default targets
or to proceed to an advanced targeting page where you can use the subdeployment
mechanism for targeting the resource. However, standalone queue and topic resource
types, cannot use default targets and must be targeted to a subdeployment that is
targeted to a single JMS server.

When you select the default targeting mechanism, it's target status will be reflected by
the Default Targeting Enabled check box on the resource type's Configuration: General
page on the Administration Console.

For more information on configuring JMS system resources, see "Configure resources
for JMS system modules" in the Oracle WebLogic Server Administration Console Help.

3.5.1.2 Advanced (Subdeployment) Targeting
When targeting standalone queue and topic resources, or when bypassing the default
targeting mechanism for other resource types, you must use advanced targeting (also
known as subdeployment targeting). A subdeployment is a mechanism by which
targetable system module resources (such as standalone destinations, distributed
destinations, and connection factories) are grouped and targeted to specific server
resources within a system module's targeting scope.

Although a JMS system module can be targeted to a wide array of WebLogic Server
instances in a domain, a module's standalone queues or topics can only be targeted to
a single JMS server. Whereas, connection factories, uniform distributed destinations
(UDDs), and foreign servers can be targeted to one or more JMS servers, one or more
WebLogic Server instances, or to a cluster.

Therefore, standalone queues or topics cannot be associated with a subdeployment if
other members of the subdeployment are targeted to multiple JMS servers, which
would be the case, for example, if a connection factory is targeted to a cluster that is
hosting JMS servers in a domain. UDDs, however, can be associated with such
subdeployments since the purpose of UDDs is to distribute its members to multiple
JMS servers in a domain.

Table 3–1 shows the valid targeting options for JMS system resource subdeployments:

Note: Default targeting is not recommended for any type of
destination. Instead, use subdeployment targeting. For more
information see Section 9.2, "Targeting Best Practices."

Table 3–1 JMS System Resource Subdeployment Targeting

JMS Resource Valid Targets

Queue JMS server

Topic JMS server

JMS System Module Configuration

3-8 Configuring and Managing JMS for Oracle WebLogic Server

An example of a simple subdeployment for standalone queues or topics would be to
group them with a connection factory so that these resources are co-located on a
specific JMS server, which can help reduce network traffic. Also, if the targeted JMS
server should be migrated to another WebLogic Server instance, the connection factory
and all its connections will also migrate along with the JMS server's destinations.

For example, if a system module named jmssysmod-jms.xml, is targeted to a WebLogic
Server instance that has two configured JMS servers: jmsserver1 and jmsserver2, and
you want to co-locate two queues and a connection factory on only jmsserver1, you can
group the queues and connection factory in the same subdeployment, named
jmsserver1group, to ensure that these resources are always linked to jmsserver1,
provided the connection factory is not already targeted to multiple JMS servers.

<weblogic-jms xmlns="http://xmlns.oracle.com/weblogic/weblogic-jms">
 <connection-factory name="connfactory1">
 <sub-deployment-name>jmsserver1group</sub-deployment-name>
 <jndi-name>cf1</jndi-name>
 </connection-factory>
 <queue name="queue1">
 <sub-deployment-name>jmsserver1group</sub-deployment-name>
 <jndi-name>q1</jndi-name>
 </queue>
 <queue name="queue2">
 <sub-deployment-name>jmsserver1group</sub-deployment-name>
 <jndi-name>q2</jndi-name>
 </queue>
</weblogic-jms>

And here's how the jmsserver1group subdeployment targeting would look in the
domain's configuration file:

Connection factory JMS server(s) | server instance(s) | cluster

Uniform distributed
queue

JMS server(s) | server instance(s) | cluster

Uniform distributed
topic

JMS server(s) | server instance(s) | cluster

Foreign server JMS server(s) | server instance(s) | cluster

SAF imported
destinations

SAF Agent(s) | server instance(s) | cluster

Notes: Connection factory, uniform distributed destination, foreign
server, and SAF imported destination resources can also be configured
to default to their parent module's targets, as explained in
Section 3.5.1.1, "Default Targeting."

Default targeting, server instance targeting, and cluster targeting is
not recommended for any type of destination (including
non-distributed destinations, distributed destinations, or SAF
imported destinations). Instead, use a subdeployment target that
contains JMS servers, or, for SAF imported destinations, that contains
contains SAF agent(s). See Section 9.2, "Targeting Best Practices.""

Table 3–1 (Cont.) JMS System Resource Subdeployment Targeting

JMS Resource Valid Targets

Connection Factory Configuration

Configuring Basic JMS System Resources 3-9

 <jms-system-resource>
 <name>jmssysmod-jms</name>
 <target>wlsserver1</target>
 <sub-deployment>
 <name>jmsserver1group</name>
 <target>jmsserver1</target>
 </sub-deployment>
 <descriptor-file-name>jms/jmssysmod-jms.xml</descriptor-file-name>
 </jms-system-resource>

To help manage your subdeployments for a JMS system module, the Administration
Console provides subdeployment management pages. For more information, see
"Configure subdeployments in JMS system modules" in the Oracle WebLogic Server
Administration Console Help.

For information about deploying stand-alone JMS modules, see "Deploying JDBC,
JMS, and WLDF Application Modules" in Deploying Applications to Oracle WebLogic
Server.

3.6 Connection Factory Configuration
Connection factories are resources that enable JMS clients to create JMS connections. A
connection factory supports concurrent use, enabling multiple threads to access the
object simultaneously. WebLogic JMS provides pre-configured default connection
factories that can be enabled or disabled on a per-server basis, as described in
Section 3.6.1, "Using a Default Connection Factory."

Otherwise, you can configure one or more connection factories to create connections
with predefined options that better suit your application. Within each JMS module,
connection factory resource names must be unique. And, all connection factory JNDI
names in any JMS module must be unique across an entire WebLogic domain, as
defined in Section 3.3, "JMS Configuration Naming Requirements." WebLogic Server
adds them to the JNDI space during startup, and the application then retrieves a
connection factory using the WebLogic JNDI APIs.

You can establish cluster-wide, transparent access to JMS destinations from any server
in the cluster, either by using the default connection factories for each server instance,
or by configuring one or more connection factories and targeting them to one or more
server instances in the cluster. This way, each connection factory can be deployed on
multiple WebLogic Server instances. For more information on configuring JMS
clustering, see Section 4.1, "Configuring WebLogic JMS Clustering."

3.6.1 Using a Default Connection Factory
WebLogic Server defines two default connection factories, which can be looked up
using the following JNDI names:

■ weblogic.jms.ConnectionFactory

■ weblogic.jms.XAConnectionFactory

You only need to configure a new connection factory if the pre-configured settings of
the default factories are not suitable for your application. For more information on
using the default connection factories, see "Understanding WebLogic JMS" in
Programming JMS for Oracle WebLogic Server.

The main difference between the pre-configured settings for the default connection
factories and a user-defined connection factory is the default value for the "XA
Connection Factory Enabled" option to enable JTA transactions. For more information

Connection Factory Configuration

3-10 Configuring and Managing JMS for Oracle WebLogic Server

about the XA Connection Factory Enabled option, and to see the default values for the
other connection factory options, see "JMSConnectionFactoryBean" in the Oracle
WebLogic Server MBean Reference.

Also, using default connection factories means that you have no control over targeting
the WebLogic Server instances where the connection factory may be deployed.
However, you can enable and or disable the default connection factories on a
per-WebLogic Server basis, as defined in "Server: Configuration: Services" in the Oracle
WebLogic Server Administration Console Help.

3.6.2 Connection Factory Configuration Parameters
The WebLogic Server Administration Console enables you to configure, modify, target,
and delete connection factory resources in a system module. For a road map of the JMS
connection configuration tasks, see "Configure connection factories" in the Oracle
WebLogic Server Administration Console Help.

You can modify the following parameters for connection factories:

■ General configuration parameters, including modifying the default client
parameters, default message delivery parameters, load balancing parameters,
unit-of-order parameters, and security parameters.

■ Transaction parameters, which enable you to define a value for the transaction
time-out option and to indicate whether an XA queue or XA topic connection
factory is returned, and whether the connection factory creates sessions that are
JTA aware.

■ Flow control parameters, which enable you to tell a JMS server or destination to
slow down message producers when it determines that it is becoming overloaded.

Some connection factory options are dynamically configurable. When options are
modified at runtime, only incoming messages are affected; stored messages are not
affected. For more information about the default values for all connection factory
options, see "JMSConnectionFactoryBean" in the Oracle WebLogic Server MBean
Reference.

3.6.3 Connection Factory Targeting
You can target connection factories to one or more JMS server, to one or more
WebLogic Server instances, or to a cluster.

■ JMS server(s) — You can target connection factories to one or more JMS servers
along with destinations. You can also group a connection factory with standalone

Note: Oracle recommends using custom connection factories instead
of default connection factories because default connection factories are
not tunable. Custom connection factory tunables often prove useful
for tuning applications even after the application is in production.

Note: When selecting the "XA Connection Factory Enabled" option
to enable JTA transactions with JDBC stores, you must verify that the
configured JDBC data source uses a non-XA JDBC driver. This
limitation does not remove the XA capabilities of layered subsystems
that use JDBC stores. For example, WebLogic JMS is fully XA-capable
regardless of whether it uses a file store or any JDBC store.

Queue and Topic Destination Configuration

Configuring Basic JMS System Resources 3-11

queues or topics in a subdeployment targeted to a specific JMS server, which
guarantees that all these resources are co-located to avoid extra network traffic.
Another advantage of such a configuration would be if the targeted JMS server
needs to be migrated to another WebLogic server instance, then the connection
factory and all its connections will also migrate along with the JMS server's
destinations. However, when standalone queues or topics are members of a
subdeployment, a connection factory can only be targeted to the same JMS server.

■ Weblogic server instance(s) — To establish transparent access to JMS destinations
from any server in a domain, you can target a connection factory to multiple
WebLogic Server instances simultaneously.

■ Cluster — To establish cluster-wide, transparent access to JMS destinations from
any server in a cluster, you can target a connection factory to all server instances in
the cluster, or even to specific servers within the cluster.

For more information on JMS system module subdeployment targeting, see
Section 3.5.1, "JMS System Module and Resource Subdeployment Targeting." For
information on connection factory targeting best practices, see Section 9.2, "Targeting
Best Practices."

3.7 Queue and Topic Destination Configuration
A JMS destination identifies a queue (point-to-point) or topic (publish/subscribe)
resource within a JMS module. Each queue and topic resource is targeted to a specific
JMS server. A JMS server's primary responsibility for its targeted destinations is to
maintain information on what persistent store is used for any persistent messages that
arrive on the destinations, and to maintain the states of durable subscribers created on
the destinations.

You can optionally create other JMS resources in a module that can be referenced from
within a queue or topic, such as JMS templates, quota settings, and destination sort
keys:

■ Quota — Assign quotas to destinations; multiple destinations can share a quota; or
destinations can share the JMS server's quota. See Performance and Tuning for Oracle
WebLogic Server.

■ JMS Template — Define multiple destinations with similar option settings. You
also need a JMS template to create temporary queues. See Section 3.8, "JMS
Template Configuration."

■ Destination Key — Create custom sort orders of messages as they arrive on a
destination. See Section 3.9, "Destination Key Configuration."

3.7.1 Queue and Topic Configuration Parameters
A JMS queue defines a point-to-point destination type for a JMS server. A message
delivered to a queue is distributed to a single consumer. A JMS topic identifies a
publish/subscribe destination type for a JMS server. Topics are used for asynchronous
peer communications. A message delivered to a topic is distributed to all consumers
that are subscribed to that topic.

The WebLogic Server Administration Console enables you to configure, modify, target,
and delete queue and topic resources in a system module. For a road map of queue
and topic tasks, see "Configure queues" and "Configure topics" in the Oracle WebLogic
Server Administration Console Help. Within each JMS module, queue and topic resource
names must be unique. And, all queue and topic JNDI names in any JMS module must
be unique across an entire WebLogic domain, as defined in Section 3.3, "JMS

Queue and Topic Destination Configuration

3-12 Configuring and Managing JMS for Oracle WebLogic Server

Configuration Naming Requirements."

You can configure the following parameters for a queue and/or a topic:

■ General configuration parameters, including a JNDI name, a destination key for
sorting messages as they arrive at the destination, or selecting a JMS template if
you are using one to configure properties for multiple destinations.

■ Threshold and quota parameters, which define the upper and lower message and
byte threshold and maximum quota options for the destination. See Section 3.10,
"Quota Configuration."

■ Message logging parameters, such as message type and user properties, and
logging message life cycle information into a JMS log file.

See Section 10.3, "Message Life Cycle Logging." Pause and resume controls for
message production, message insertion (in-flight messages), and message
consumption operations on a destination. See Section 10.5, "Controlling Message
Operations on Destinations."

■ Message delivery override parameters, such as message priority and
time-to-deliver values, which can override those specified by a message producer
or connection factory.

■ Message Delivery failure parameters, such as defining a message redelivery limit,
selecting a message expiration policy, and specifying an error destination for
expired messages.

■ For topics only, multicast parameters, including a multicast address, time-to-live
(TTL), and port.

Some options are dynamically configurable. When options are modified at run time,
only incoming messages are affected; stored messages are not affected. For more
information about the default values for all options, see "QueueBean" and "TopicBean"
in the Oracle WebLogic Server MBean Reference.

3.7.1.1 Creating Error Destinations
To help manage recovered or rolled back messages, you can also configure a target
error destination for messages that have reached their redelivery limit. The error
destination can be either a topic or a queue, but it must be a destination that is targeted
to same JMS server as the destination(s) it is associated with. For more information, see
"Configuring an Error Destination for Undelivered Messages" in Programming JMS for
Oracle WebLogic Server.

3.7.1.2 Creating Distributed Destinations
A distributed destination resource is a group of destinations (queues or topics) that are
accessible as a single, logical unit to a client (for example, a distributed topic has its
own JNDI name). The members of the set are typically distributed across multiple
servers within a cluster, with each member belonging to a separate JMS server. See
Section 3.12, "Distributed Destination Configuration."

Note: Although queue and topic JNDI names can be dynamically
changed, there may be long-lived producers or consumers, such as
MDBs, that will continue trying to produce or consume messages to
and from the original queue or topic JNDI name.

JMS Template Configuration

Configuring Basic JMS System Resources 3-13

3.7.2 Queue and Topic Targeting
Stand-alone queues and topics can only be deployed to a specific JMS server in a
domain because they depend on the JMS servers they are targeted to for the
management of persistent messages, durable subscribers, and message paging.

If you want to associate a group of queues and/or topics with a connection factory on
a specific JMS server, you can target the destinations and connection factory to the
same subdeployment, which links these resources to the JMS server targeted by the
subdeployment. However, when standalone destinations are members of a
subdeployment, a connection factory can only be targeted to the same JMS server.

For more information on JMS system module subdeployment targeting, see
Section 3.5.1, "JMS System Module and Resource Subdeployment Targeting." For
Queue and Topic targeting best practices, see Section 9.2, "Targeting Best Practices."

3.7.3 Destination Monitoring and Management Parameters
You can monitor run-time statistics for queues and topics in system modules, as well
as manage the messages on queues and durable subscribers on topics.

■ For information on using the Administration Console to monitor queues, see
"Monitoring queues in JMS system modules" in the Oracle WebLogic Server
Administration Console Help.

■ For information on managing messages on queues, as described in Section 8.2,
"Managing JMS Messages."

■ For more information on using the Administration Console to monitor topics, see
"Monitor topics in JMS system modules" in the Oracle WebLogic Server
Administration Console Help

■ For information on managing durable subscriber on topics, as described in
Section 8.2, "Managing JMS Messages."

3.8 JMS Template Configuration
A JMS template is an efficient means of defining multiple destinations with similar
option settings:

■ You do not need to re-enter every option setting each time you define a new
destination; you can use the JMS template and override any setting to which you
want to assign a new value.

■ You can modify shared option settings dynamically simply by modifying the
template.

■ You can specify subdeployments for error destinations so that any number of
destination subdeployments (groups of queue or topics) will use only the error
destinations specified in the corresponding template subdeployments.

3.8.1 JMS Template Configuration Parameters
The WebLogic Server Administration Console enables you to configure, modify, target,
and delete JMS template resources in a system module. For a road map of the JMS
template tasks, see "Configure JMS templates" in the Oracle WebLogic Server
Administration Console Help.

The configurable options for a JMS template are the same as those configured for a
destination. See Section 3.7.1, "Queue and Topic Configuration Parameters."

Destination Key Configuration

3-14 Configuring and Managing JMS for Oracle WebLogic Server

These configuration options are inherited by the destinations that use them, with the
following exceptions:

■ If the destination that is using a JMS template specifies an override value for an
option, the override value is used.

■ If the destination that is using a JMS template specifies a message redelivery value
for an option, that redelivery value is used.

■ The Name option is not inherited by the destination. This name is valid for the
JMS template only. You must explicitly define a unique name for all destinations.
See Section 3.3, "JMS Configuration Naming Requirements."

■ The JNDI Name, Enable Store, and Template options are not defined for JMS
templates.

■ You can configure subdeployments for error destinations, so that any number of
destination subdeployments (groups of queue or topics) will use only the error
destinations specified in the corresponding template subdeployments.

Any options that are not explicitly defined for a destination are assigned default
values. If no default value exists, be sure to specify a value within the JMS template or
as a destination option override.

Some template options are dynamically configurable. When options are modified at
run time, only incoming messages are affected; stored messages are not affected. For
more information about the default values for all topic options, see "TemplateBean"
in the Oracle WebLogic Server MBean Reference.

3.9 Destination Key Configuration
As messages arrive on a specific destination, by default they are sorted in FIFO
(first-in, first-out) order, which sorts ascending based on each message's unique
JMSMessageID. However, you can use a destination key to configure a different
sorting scheme for a destination, such as LIFO (last-in, first-out).

The WebLogic Server Administration Console enables you to configure, modify, target,
and delete destination key resources in a system module. For a road map of the
destination key tasks, see "Configure destination keys" in the Oracle WebLogic Server
Administration Console Help.

For more information about the default values for all destination key options, see
"DestinationKeyBean" in the Oracle WebLogic Server MBean Reference.

3.10 Quota Configuration
A quota resource defines a maximum number of messages and bytes, and is then
associated with one or more destinations and is responsible for enforcing the defined
maximums.

See Performance and Tuning for Oracle WebLogic Server.

3.11 Foreign Server Configuration
A foreign server resource enables you to reference third-party JMS providers within a
local WebLogic Server JNDI tree. With a foreign server resource, you can quickly map
a foreign JMS provider so that its associated connection factories and destinations
appear in the WebLogic JNDI tree as local JMS objects. A foreign server resource can

JMS Store-and-Forward (SAF) Configuration

Configuring Basic JMS System Resources 3-15

also be used to reference remote instances of WebLogic Server in another cluster or
domain in the local WebLogic JNDI tree.

See Section 4.4, "Configuring Foreign Server Resources to Access Third-Party JMS
Providers."

3.12 Distributed Destination Configuration
A distributed destination resource is a single set of destinations (queues or topics) that
are accessible as a single, logical destination to a client (for example, a distributed topic
has its own JNDI name). The members of the set are typically distributed across
multiple servers within a cluster, with each member belonging to a separate JMS
server. Applications that use a distributed destination are more highly available than
applications that use standalone destinations because WebLogic JMS provides load
balancing and failover for the members of a distributed destination in a cluster.

See Section 4.5, "Configuring Distributed Destination Resources."

3.13 JMS Store-and-Forward (SAF) Configuration
JMS SAF resources build on the WebLogic Store-and-Forward (SAF) service to provide
highly-available JMS message production. For example, a JMS message producer
connected to a local server instance can reliably forward messages to a remote JMS
destination, even though that remote destination may be temporarily unavailable
when the message was sent. JMS Store-and-forward is transparent to JMS applications;
therefore, JMS client code still uses the existing JMS APIs to access remote
destinations.

See "Configuring SAF for JMS Messages" in Configuring and Managing
Store-and-Forward for Oracle WebLogic Server.

JMS Store-and-Forward (SAF) Configuration

3-16 Configuring and Managing JMS for Oracle WebLogic Server

4

Configuring Advanced JMS System Resources 4-1

4Configuring Advanced JMS System
Resources

This chapter provides information on configuring advanced WebLogic JMS resources,
such as a distributed destination in a clustered environment.

■ Section 4.1, "Configuring WebLogic JMS Clustering"

■ Section 4.2, "Migration of JMS-related Services"

■ Section 4.3, "Using the WebLogic Path Service"

■ Section 4.4, "Configuring Foreign Server Resources to Access Third-Party JMS
Providers"

■ Section 4.5, "Configuring Distributed Destination Resources"

■ Section 4.6, "Configure an Unrestricted ClientID"

■ Section 4.7, "Configure Shared Subscriptions"

4.1 Configuring WebLogic JMS Clustering
A WebLogic Server cluster is a group of servers in a domain that work together to
provide a more scalable, more reliable application platform than a single server. A
cluster appears to its clients as a single server but is in fact a group of servers acting as
one.

4.1.1 Advantages of JMS Clustering
The advantages of clustering for JMS include the following:

■ Load balancing of destinations across multiple servers in a cluster

An administrator can establish load balancing of destinations across multiple
servers in the cluster by configuring multiple JMS servers and targeting them to
the defined WebLogic Servers. Each JMS server is deployed on exactly one
WebLogic Server instance and handles requests for a set of destinations.

Note: JMS clients depend on unique WebLogic Server names to
successfully access a cluster—even when WebLogic Servers reside in
different domains. Therefore, make sure that all WebLogic Servers that
JMS clients contact have unique server names.

Configuring WebLogic JMS Clustering

4-2 Configuring and Managing JMS for Oracle WebLogic Server

■ High availability of destinations

– Distributed destinations — The queue and topic members of a distributed
destination are usually distributed across multiple servers within a cluster,
with each member belonging to a separate JMS server. Applications that use
distributed destinations are more highly available than applications that use
simple destinations because WebLogic JMS provides load balancing and
failover for member destinations of a distributed destination within a cluster.
For more information on distributed destinations, see Section 4.5,
"Configuring Distributed Destination Resources."

– Store-and-Forward — JMS modules utilize the SAF service to enable local JMS
message producers to reliably send messages to remote queues or topics. If the
destination is not available at the moment the messages are sent, either
because of network problems or system failures, then the messages are saved
on a local server instance, and are forwarded to the remote destination once it
becomes available. For more information, see "Understanding the
Store-and-Forward Service" in Configuring and Managing Store-and-Forward for
Oracle WebLogic Server.

– For automatic failover, WebLogic Server supports migration at the server
level—a complete server instance, and all of the services it hosts can be
migrated to another machine, either automatically, or manually. For more
information, see "Whole Server Migration" in Using Clusters for Oracle
WebLogic Server.

■ Cluster-wide, transparent access to destinations from any server in a cluster

An administrator can establish cluster-wide, transparent access to destinations
from any server in the cluster by either using the default connection factories for
each server instance in the cluster, or by configuring one or more connection
factories and targeting them to one or more server instances in the cluster, or to the
entire cluster. This way, each connection factory can be deployed on multiple
WebLogic Server instances. Connection factories are described in more detail in
Section 3.6, "Connection Factory Configuration."

■ Scalability

– Load balancing of destinations across multiple servers in the cluster, as
described previously.

– Distribution of application load across multiple JMS servers through
connection factories, thus reducing the load on any single JMS server and
enabling session concentration by routing connections to specific servers.

– Optional multicast support, reducing the number of messages required to be
delivered by a JMS server. The JMS server forwards only a single copy of a
message to each host group associated with a multicast IP address, regardless
of the number of applications that have subscribed.

■ Migratability

WebLogic Server supports migration at the server level—a complete server
instance, and all of the services it hosts can be migrated to another machine, either

Note: Load balancing is not dynamic. During the configuration
phase, the system administrator defines load balancing by specifying
targets for JMS servers.

Configuring WebLogic JMS Clustering

Configuring Advanced JMS System Resources 4-3

automatically, or manually. For more information, see "Whole Server Migration" in
Using Clusters for Oracle WebLogic Server.

Also, as an "exactly-once" service, WebLogic JMS takes advantage of the service
migration framework implemented in WebLogic Server for clustered
environments. This allows WebLogic JMS to respond properly to migration
requests and to bring a JMS server online and offline in an orderly fashion. This
includes both scheduled manual migrations as well as automatic migrations in
response to a WebLogic Server failure. For more information, see Section 4.2,
"Migration of JMS-related Services."

■ Server affinity for JMS Clients

When configured for the cluster, load balancing algorithms (round-robin-affinity,
weight-based-affinity, or random-affinity), provide server affinity for JMS client
connections. If a JMS application has a connection to a given server instance, JMS
attempts to establish new JMS connections to the same server instance. For more
information on server affinity, see "Load Balancing in a Cluster" in Using Clusters
for Oracle WebLogic Server.

For more information about the features and benefits of using WebLogic clusters, see
"Understanding WebLogic Server Clustering" in Using Clusters for Oracle WebLogic
Server.

4.1.2 How JMS Clustering Works
An administrator can establish cluster-wide, transparent access to JMS destinations
from any server in a cluster, either by using the default connection factories for each
server instance in a cluster, or by configuring one or more connection factories and
targeting them to one or more server instances in a cluster, or to an entire cluster. This
way, each connection factory can be deployed on multiple WebLogic Servers. For
information on configuring and deploying connection factories, see Section 3.6.2,
"Connection Factory Configuration Parameters."

The application uses the Java Naming and Directory Interface (JNDI) to look up a
connection factory and create a connection to establish communication with a JMS
server. Each JMS server handles requests for a set of destinations. If requests for
destinations are sent to a WebLogic Server instance that is hosting a connection factory,
but which is not hosting a JMS server or destinations, the requests are forwarded by
the connection factory to the appropriate WebLogic Server instance that is hosting the
JMS server and destinations.

The administrator can also configure multiple JMS servers on the various servers in
the cluster—as long as the JMS servers are uniquely named—and can then target JMS
queue or topic resources to the various JMS servers. The application uses the Java
Naming and Directory Interface (JNDI) to look up a connection factory and create a
connection to establish communication with a JMS server. Each JMS server handles
requests for a set of destinations. Requests for destinations not handled by a JMS
server are forwarded to the appropriate WebLogic Server instance. For information on
configuring and deploying JMS servers, see Section 3.4, "JMS Server Configuration."

4.1.2.1 JMS Clustering Naming Requirements
There are naming requirements when configuring JMS objects and resources, such as
JMS servers, JMS modules, and JMS resources, to work in a clustered environment in a
single WebLogic domain or in a multi-domain environment. For more information, see
Section 3.3, "JMS Configuration Naming Requirements."

Configuring WebLogic JMS Clustering

4-4 Configuring and Managing JMS for Oracle WebLogic Server

4.1.2.2 Distributed Destination Within a Cluster
A distributed destination resource is a single set of destinations (queues or topics) that
are accessible as a single, logical destination to a client (for example, a distributed topic
has its own JNDI name). The members of the unit are usually distributed across
multiple servers within a cluster, with each member belonging to a separate JMS
server. Applications that use distributed destinations are more highly available than
applications that use simple destinations because WebLogic Server provides load
balancing and failover for member destinations of a distributed destination within a
cluster. For more information, see Section 4.5, "Configuring Distributed Destination
Resources."

4.1.2.3 JMS Services As a Migratable Service Within a Cluster
In addition to being part of a whole server migration, where all services hosted by a
server can be migrated to another machine, JMS services are also part of the singleton
service migration framework. This allows an administrator, for example, to migrate a
JMS server and all of its destinations to migrate to another WebLogic Server within a
cluster in response to a server failure or for scheduled maintenance. This includes both
scheduled migrations as well as automatic migrations. For more information on JMS
service migration, see Section 4.2, "Migration of JMS-related Services."

4.1.3 Configuration Guidelines for JMS Clustering
In order to use WebLogic JMS in a clustered environment, follow these guidelines:

1. Configure your clustered environment as described in "Setting Up WebLogic
Clusters" in Using Clusters for Oracle WebLogic Server.

2. Identify server targets for any user-defined JMS connection factories using the
Administration Console. For connection factories, you can identify either a
single-server target or a cluster target, which are server instances that are
associated with a connection factory to support clustering.

For more information about these connection factory configuration attributes, see
Section 3.6, "Connection Factory Configuration."

3. Optionally, identify migratable server targets for JMS services using the
Administration Console. For example, for JMS servers, you can identify either a
single-server target or a migratable target, which is a set of server instances in a
cluster that can host an "exactly-once" service like JMS in case of a server failure in
the cluster.

For more information on migratable JMS server targets, see Section 4.2, "Migration
of JMS-related Services." For more information about JMS server configuration
attributes, see Section 3.4, "JMS Server Configuration."

4. Optionally, you can configure the physical JMS destinations in a cluster as part of a
virtual distributed destination set, as discussed in Section 4.1.2.2, "Distributed
Destination Within a Cluster."

Note: You cannot deploy the same destination on more than one JMS
server. In addition, you cannot deploy a JMS server on more than one
WebLogic Server.

Migration of JMS-related Services

Configuring Advanced JMS System Resources 4-5

4.1.4 What About Failover?
If a server or network failure occurs, JMS message producer and consumer objects will
attempt to transparently failover to another server instance, if one is available. In
WebLogic Server release 9.1 or later, WebLogic JMS message producers automatically
attempt to reconnect to an available server instance without any manual configuration
or changes to existing client code. In WebLogic Server release 9.2 or later, you can use
the Administration Console or WebLogic JMS APIs to configure WebLogic JMS
message consumers to attempt to automatically reconnect to an available server
instance. See "Automatic JMS Client Failover" in Developing Applications for Oracle
WebLogic Server.

In addition, implementing the automatic service migration feature ensures that
exactly-once services, like JMS, do not introduce a single point of failure for dependent
applications in the cluster. See Section 4.2, "Migration of JMS-related Services."
WebLogic Server also supports data migration at the server level—a complete server
instance, and all of the services it hosts can be migrated to another machine, either
automatically, or manually. See "Whole Server Migration" in Using Clusters for Oracle
WebLogic Server.

In a clustered environment, WebLogic Server also offers service continuity in the event
of a single server failure by allowing you to configure distributed destinations, where
the members of the unit are usually distributed across multiple servers within a
cluster, with each member belonging to a separate JMS server. See Section 4.1.2.2,
"Distributed Destination Within a Cluster."

Oracle also recommends implementing high-availability clustering software, which
provides an integrated, out-of-the-box solution for WebLogic Server-based
applications.

4.2 Migration of JMS-related Services
JMS-related services are singleton services, and, therefore, are not active on all server
instances in a cluster. Instead, they are pinned to a single server in the cluster to
preserve data consistency. To ensure that singleton JMS services do not introduce a
single point of failure for dependent applications in the cluster, WebLogic Server can
be configured to automatically migrate JMS service to any server instance in the
migratable target list. migratable JMS services can also be manually migrated if the
host server fails. JMS services can also be manually migrated before performing
scheduled server maintenance.

Migratable JMS-related services include:

■ JMS Server – a management container for the queues and topics in JMS modules
that are targeted to them. See Section 3.4, "JMS Server Configuration."

■ Store-and-Forward (SAF) Service – store-and-forward messages between local
sending and remote receiving endpoints, even when the remote endpoint is not
available at the moment the messages are sent. Only sending SAF agents
configured for JMS SAF (sending capability only) are migratable. See
"Understanding the Store-and-Forward Service" in Configuring and Managing
Store-and-Forward for Oracle WebLogic Server.

Note: For WebLogic Server 9.x or earlier JMS client applications,
refer to "Programming Considerations for WebLogic Server 9.x or
Earlier Failures" in Programming JMS for Oracle WebLogic Server.

Using the WebLogic Path Service

4-6 Configuring and Managing JMS for Oracle WebLogic Server

■ Path Service – a persistent map that can be used to store the mapping of a group of
messages in a JMS Message Unit-of-Order to a messaging resource in a cluster.
One path service is configured per cluster. See Section 4.3, "Using the WebLogic
Path Service."

■ Custom Persistent Store – a user-defined, disk-based file store or JDBC-accessible
database for storing subsystem data, such as persistent JMS messages or
store-and-forward messages. See "Using the WebLogic Persistent Store" in
Configuring Server Environments for Oracle WebLogic Server.

You can configure JMS-related services for high availability by using migratable
targets. A migratable target is a special target that can migrate from one server in a
cluster to another. As such, a migratable target provides a way to group migratable
services that should move together. When the migratable target is migrated, all
services hosted by that target are migrated.

See "Understanding the Service Migration Framework" in Using Clusters for Oracle
WebLogic Server.

4.2.1 Automatic Migration of JMS Services
An administrator can configure migratable targets so that hosted JMS services are
automatically migrated from the current unhealthy hosting server to a healthy active
server with the help of the Health Monitoring subsystem. For more information about
configuring automatic migration of JMS-related services, see "Roadmap for
Configuring Automatic Migration of JMS-Related Services" in Using Clusters for Oracle
WebLogic Server.

4.2.2 Manual Migration JMS Services
An administrator can manually migrate JMS-related services to a healthy server if the
host server fails or before performing server maintenance. For more information about
configuring manual migration of JMS-related services, see "Roadmap for Configuring
Manual Migration of JMS-Related Services" in Using Clusters for Oracle WebLogic Server.

4.2.3 Persistent Store High Availability
As discussed in Section 4.1.4, "What About Failover?," a JMS service, including a
custom persistent store, can be migrated as part of the "whole server" migration
feature, or as part of a "service-level" migration for migratable JMS-related services.
Migratable JMS-related services cannot use the default persistent file store, so you
must configure a custom file store or JDBC store and target it to the same migratable
target as the JMS server or SAF agent associated with the store. (As a best practice, a
path service should use its own custom store and migratable target).

Migratable custom file stores can be configured on a shared disk that is available to the
migratable target servers in the cluster or can be migrated to a backup server target by
using pre/post-migration scripts. For more information on migrating persistent stores,
see "Custom Store Availability for JMS Services" in Using Clusters for Oracle WebLogic
Server.

4.3 Using the WebLogic Path Service
The WebLogic Server Path Service is a persistent map that can be used to store the
mapping of a group of messages in a JMS Message Unit-of-Order to a messaging
resource in a cluster. It provides a way to enforce ordering by pinning messages to a
member of a cluster that is hosting servlets, distributed queue members, or

Using the WebLogic Path Service

Configuring Advanced JMS System Resources 4-7

Store-and-Forward agents. One path service is configured per cluster. For more
information on the Message Unit-of-Order feature, see "Using Message Unit-of-Order"
in Programming JMS for Oracle WebLogic Server.

To configure a path service in a cluster, see "Configure path services" in the Oracle
WebLogic Server Administration Console Help.

4.3.1 Path Service High Availability
For high availability, a cluster's path service can be targeted to a migratable target for
automatic or manual service migration. However, a migratable path service cannot use
the default store, so a custom store must be configured and targeted to the same
migratable target. As an additional best practice, the path service and its custom store
should be the only users of that migratable target. See "Understanding the Service
Migration Framework" in Using Clusters for Oracle WebLogic Server.

4.3.2 Implementing Message UOO With a Path Service
Consider the following when implementing Message Unit-of-Order in conjunction
with Path Service-based routing:

■ Each path service mapping is stored in a persistent store. When configuring a path
service, select a persistent store that takes advantage of a high-availability
solution. See Section 4.2.3, "Persistent Store High Availability."

■ If one or more producers send messages using the same Unit-of-Order name, all
messages they produce will share the same path entry and have the same member
queue destination.

■ If the required route for a Unit-of-Order name is unreachable, the producer
sending the message will throw a JMSOrderException. The exception is thrown
because the JMS messaging system can not meet the quality-of-service required —
only one distributed destination member consumes messages for a particular
Unit-of-Order.

■ A path entry is automatically deleted when the last producer and last message
reference are deleted.

■ Depending on your system, using the Path Service may slow system throughput
due to a remote disk operations to create, read, and delete path entries.

■ A distributed queue and its individual members each represent a unique
destination. For example:

DXQ1 is a distributed queue with queue members Q1 and Q2. DXQ1 also has a
Unit-of-Order name value of Fred mapped by the Path Service to the Q2 member.

– If message M1 is sent to DXQ1, it uses the Path Service to define a route to Q2.

– If message M1 is sent directly to Q2, no routing by the Path Service is
performed. This is because the application selected Q2 directly and the system
was not asked to pick a member from a distributed destination.

– If you want the system to use the Path Service, send messages to the
distributed destination. If not, send directly to the member.

– You can have more than one destination that has the same Unit-of-Order
names in a distributed queue. For example:

Queue Q3 also has a Unit-of-Order name value of Fred. If Q3 is added to
DXQ1, there are now two destinations that have the same Unit-of-Order name
in a distributed queue. Even though, Q3 and DXQ1 share the same

Configuring Foreign Server Resources to Access Third-Party JMS Providers

4-8 Configuring and Managing JMS for Oracle WebLogic Server

Unit-of-Order name value Fred, each has a unique route and destination that
allows the server to continue to provide the correct message ordering for each
destination.

■ Empty queues before removing them from a distributed queue or adding them to
a distributed queue. Although the Path Service will remove the path entry for the
removed member, there is a short transition period where a message produced
may throw a JMSOrderException when the queue has been removed but the
path entry still exists.

4.4 Configuring Foreign Server Resources to Access Third-Party JMS
Providers

WebLogic JMS enables you to reference third-party JMS providers within a local
WebLogic Server JNDI tree. With Foreign Server resources in JMS modules, you can
quickly map a foreign JMS provider so that its associated connection factories and
destinations appear in the WebLogic JNDI tree as local JMS objects. Foreign Server
resources can also be used to reference remote instances of WebLogic Server in another
cluster or domain in the local WebLogic JNDI tree.

For more information on integrating remote and foreign JMS providers, see "Enhanced
2EE Support for Using WebLogic JMS With EJBs and Servlets" in Programming JMS for
Oracle WebLogic Server.

These sections provide more information on how a Foreign Server works and a sample
configuration for accessing a remote MQSeries JNDI provider.

■ Section 4.4.1, "How WebLogic JMS Accesses Foreign JMS Providers"

■ Section 4.4.2, "Creating Foreign Server Resources"

■ Section 4.4.2.1, "Creating Foreign Connection Factory Resources"

■ Section 4.4.2.2, "Creating a Foreign Destination Resources"

■ Section 4.4.3, "Sample Configuration for MQSeries JNDI"

■ Section 7, "Interoperating with Oracle AQ JMS"

4.4.1 How WebLogic JMS Accesses Foreign JMS Providers
When a foreign JMS server is deployed, it creates local connection factory and
destination objects in WebLogic Server JNDI. Then when a foreign connection factory
or destination object is looked up on the local server, that object performs the actual
lookup on the remote JNDI directory, and the foreign object is returned from that
directory.

This method makes it easier to configure multiple WebLogic Messaging Bridge
destinations, since the foreign server moves the JNDI Initial Context Factory and
Connection URL configuration details outside of your Messaging Bridge destination
configurations. You need only provide the foreign Connection Factory and Destination
JNDI name for each object.

For more information on configuring a Messaging Bridge, see Configuring and
Managing the Messaging Bridge for Oracle WebLogic Server.

The ease-of-configuration concept also applies to configuring WebLogic Servlets, EJBs,
and Message-Driven Beans (MDBs) with WebLogic JMS. For example, the
weblogic-ejb-jar.xml file in the MDB can have a local JNDI name, and you can
use the foreign JMS server to control where the MDB receives messages from. For

Configuring Foreign Server Resources to Access Third-Party JMS Providers

Configuring Advanced JMS System Resources 4-9

example, you can deploy the MDB in one environment to talk to one JMS destination
and server, and you can deploy the same weblogic-ejb-jar.xml file to a different
server and have it talk to a different JMS destination without having to unpack and
edit the weblogic-ejb-jar.xml file.

4.4.2 Creating Foreign Server Resources
A Foreign Server resource in a JMS module represents a JNDI provider that is outside
the WebLogic JMS server. It contains information that allows a local WebLogic Server
instance to reach a remote JNDI provider, thereby allowing for a number of foreign
connection factory and destination objects to be defined on one JNDI directory.

The WebLogic Server Administration Console enables you to configure, modify, target,
and delete foreign server resources in a system module. For a road map of the foreign
server tasks, see "Configure foreign servers" in the Oracle WebLogic Server
Administration Console Help.

Some foreign server options are dynamically configurable. When options are modified
at run time, only incoming messages are affected; stored messages are not affected. For
more information about the default values for all foreign server options, see
"ForeignServerBean" in the Oracle WebLogic Server MBean Reference.

After defining a foreign server, you can configure connection factory and destination
objects. You can configure one or more connection factories and destinations (queues
or topics) for each foreign server.

4.4.2.1 Creating Foreign Connection Factory Resources
A Foreign Connection Factory resource in a JMS module contains the JNDI name of the
connection factory in the remote JNDI provider, the JNDI name that the connection
factory is mapped to in the local WebLogic Server JNDI tree, and an optional user
name and password.

The foreign connection factory creates non-replicated JNDI objects on each WebLogic
Server instance that the parent foreign server is targeted to. (To create the JNDI object
on every node in a cluster, target the foreign server to the cluster.)

4.4.2.2 Creating a Foreign Destination Resources
A Foreign Destination resource in a JMS module represents either a queue or a topic. It
contains the destination JNDI name that is looked up on the foreign JNDI provider
and the JNDI name that the destination is mapped to on the local WebLogic Server.
When the foreign destination is looked up on the local server, a lookup is performed
on the remote JNDI directory, and the destination object is returned from that
directory.

4.4.3 Sample Configuration for MQSeries JNDI
The following table provides a possible a sample configuration when accessing a
remote MQSeries JNDI provider.

Note: For information on configuring and deploying JMS application
modules in an enterprise application, see Chapter 5, "Configuring JMS
Application Modules for Deployment."

Configuring Distributed Destination Resources

4-10 Configuring and Managing JMS for Oracle WebLogic Server

4.5 Configuring Distributed Destination Resources
A distributed destination resource in a JMS module represents a single set of
destinations (queues or topics) that are accessible as a single, logical destination to a
client (for example, a distributed topic has its own JNDI name). The members of the
set are typically distributed across multiple servers within a cluster, with each member
belonging to a separate JMS server. Applications that use a distributed destination are
more highly available than applications that use standalone destinations because
WebLogic JMS provides load balancing and failover for the members of a distributed
destination in a cluster.

These sections provide information on how to create, monitor, and load balance
distributed destinations:

■ Section 4.5.1, "Uniform Distributed Destinations vs. Weighted Distributed
Destinations"

■ Section 4.5.2, "Creating Uniform Distributed Destinations"

■ Section 4.5.3, "Creating Weighted Distributed Destinations"

■ Section 4.5.2.3, "Monitoring UDD Members"

■ Section 4.5.4, "Load Balancing Messages Across a Distributed Destination"

■ Section 4.5.5, "Distributed Destination Migration"

■ Section 4.5.6, "Distributed Destination Failover"

Table 4–1 Sample MQSeries Configuration

Foreign JMS Object Option Names Sample Configuration Data

Foreign Server Name

JNDI Initial Context Factory

JNDI Connection URL

JNDI Properties

MQJNDI

com.sun.jndi.fscontext.RefFSConte
xtFactory

file:/MQJNDI/

(If necessary, enter a comma-separated
name=value list of properties.)

Foreign

Connection Factory

Name

Local JNDI Name

Remote JNDI Name

Username

Password

MQ_QCF

mqseries.QCF

QCF

weblogic_jms

weblogic_jms

Foreign

Destination 1

Foreign

Destination 2

Name

Local JNDI Name

Remote JNDI Name

Name

Local JNDI Name

Remote JNDI Name

MQ_QUEUE1

mqseries.QUEUE1

QUEUE_1

MQ_QUEUE2

mqseries.QUEUE2

QUEUE_2

Configuring Distributed Destination Resources

Configuring Advanced JMS System Resources 4-11

4.5.1 Uniform Distributed Destinations vs. Weighted Distributed Destinations

WebLogic Server 9.x and later offers two types of distributed destination: uniform and
weighted. In releases prior to WebLogic Server 9.x, WebLogic Administrators often
needed to manually configure physical destinations to function as members of a
distributed destination. This method provided the flexibility to create members that
were intended to carry extra message load or have extra capacity; however, such
differences often led to administrative and application problems because such a
weighted distributed destination was not deployed consistently across a cluster. This
type of distributed destination is officially referred to as a weighted distributed
destination (or WDD).

A uniform distributed destination (UDD) greatly simplifies the management and
development of distributed destination applications.Using uniform distributed
destinations, you no longer need to create or designate destination members, but
instead rely on WebLogic Server to uniformly create the necessary members on the
JMS servers to which a JMS module is targeted. This feature ensures the consistent
configuration of all distributed destination parameters, particularly in regards to
weighting, security, persistence, paging, and quotas.

The weighted distributed destination feature is still available for users who prefer to
manually fine-tune distributed destination members. However, Oracle strongly
recommends configuring uniform distributed destinations to avoid possible
administrative and application problems due to a weighted distributed destinations
not being deployed consistently across a cluster.

For more information about using a distributed destination with your applications, see
"Using Distributed Destinations" in Programming JMS for Oracle WebLogic Server.

4.5.2 Creating Uniform Distributed Destinations
The WebLogic Server Administration Console enables you to configure, modify, target,
and delete UDD resources in JMS system module.

For a road map of the uniform distributed destination tasks, see the following topics in
the Oracle WebLogic Server Administration Console Help:

■ "Configure uniform distributed queues"

■ "Configure uniform distributed topics"

Some uniform distributed destination options are dynamically configurable. When
options are modified at run time, only incoming messages are affected; stored
messages are not affected. For more information about the default values for all
uniform distributed destination options, see the following entries in the Oracle
WebLogic Server MBean Reference:

■ "UniformDistributedQueueBean"

Note: Weighted Distributed Destinations are deprecated in
WebLogic Server 10.3.4.0. Oracle recommends using Uniform
Distributed Destinations.

Note: For information on configuring and deploying JMS application
modules in an enterprise application, see Chapter 5, "Configuring JMS
Application Modules for Deployment."

Configuring Distributed Destination Resources

4-12 Configuring and Managing JMS for Oracle WebLogic Server

■ "UniformDistributedTopicBean"

The following sections provide additional uniform distributed destination
information:

■ Section 4.5.2.1, "Targeting Uniform Distributed Queues and Topics"

■ Section 4.5.2.2, "Pausing and Resuming Message Operations on UDD Members"

■ Section 4.5.2.3, "Monitoring UDD Members"

■ Section 4.5.2.4, "Configuring Partitioned Distributed Topics"

4.5.2.1 Targeting Uniform Distributed Queues and Topics
Unlike standalone queue and topics resources in a module, which can only be targeted
to a specific JMS server in a domain, UDDs can be targeted to one or more JMS servers,
one or more WebLogic Server instances, or to a cluster, since the purpose of UDDs is to
distribute its members on every JMS server in a domain. For example, targeting a
UDD to a cluster ensures that a member is uniformly configured on every JMS server
in the cluster.

You can also use subdeployment groups when configuring UDDs to link specific
resources with the distributed members. For example, if a system module named
jmssysmod-jms.xml, is targeted to three WebLogic Server instances: wlserver1, wlserver2,
and wlserver3, each with a configured JMS server, and you want to target a uniform
distributed queue and a connection factory to each server instance, you can group the
UDQ and connection factory in a subdeployment named servergroup, to ensure that
these resources are always linked to the same server instances.

Here's how the servergroup subdeployment resources would look in jmssysmod-jms.xml:

<weblogic-jms xmlns="http://xmlns.oracle.com/weblogic/weblogic-jms">
 <connection-factory name="connfactory">
 <sub-deployment-name>servergroup</sub-deployment-name>
 <jndi-name>jms.connectionfactory.CF</jndi-name>
 </connection-factory>
 <uniform-distributed-queue name="UniformDistributedQueue">
 <sub-deployment-name>servergroup</sub-deployment-name>
 <jndi-name>jms.queue.UDQ</jndi-name>
 <forward-delay>10</forward-delay>
 </uniform-distributed-queue>
</weblogic-jms>

And here's how the servergroup subdeployment targeting would look in the domain's
configuration file:

 <jms-system-resource>
 <name>jmssysmod-jms</name>
 <target>cluster1,</target>
 <sub-deployment>
 <name>servergroup</name>
 <target>wlserver1,wlserver2,wlserver3</target>
 </sub-deployment>
 <descriptor-file-name>jms/jmssysmod-jms.xml</descriptor-file-name>
 </jms-system-resource>

Note: Changing the targets of a UDD can lead to the removal of a
member destination and the unintentional loss of messages.

Configuring Distributed Destination Resources

Configuring Advanced JMS System Resources 4-13

4.5.2.2 Pausing and Resuming Message Operations on UDD Members
You can pause and resume message production, insertion, and/or consumption
operations on a uniform distributed destinations, either programmatically (using JMX
and the runtime MBean API) or administratively (using the Administration Console).
In this way, you can control the JMS subsystem behavior in the event of an external
resource failure that would otherwise cause the JMS subsystem to overload the system
by continuously accepting and delivering (and redelivering) messages.

For more information on the "pause and resume" feature, see Section 10.5, "Controlling
Message Operations on Destinations."

4.5.2.3 Monitoring UDD Members
Runtime statistics for uniform distributed destination members can be monitored via
the Administration console, as described in Section 8.1, "Monitoring JMS Statistics."

4.5.2.4 Configuring Partitioned Distributed Topics
The uniform distributed topic message Forwarding Policy specifies whether a sent
message is forwarded to all members.

The valid values are:

■ Replicated: The default. All physical topic members receive each sent message.
If a message arrives at one of the physical topic members, a copy of this message is
forwarded to the other members of that uniform distributed topic. A subscription
on any one particular member will get a copy of any message sent to the uniform
distributed topic logical name or to any particular uniform distributed topic
member.

■ Partitioned: The physical member receiving the message is the only member of
the uniform distributed topic that is aware of the message. When a message is
published to the logical name of a Partitioned uniform distributed topic, it will
only arrive on one particular physical topic member. Once a message arrives on a
physical topic member, the message is not forwarded to the rest of the members of
the uniform distributed destination, and subscribers on other physical topic
members do not get a copy of that message.

Most new applications will use the Partitioned forwarding policy in combination
with a logical subscription topology on a uniform distributed topic that consists of:

■ A same named physical subscription created directly on each physical member.

■ A Client ID Policy of Unrestricted.

■ A Subscription Sharing Policy of Sharable.

For more information on how to create and use the partitioned distributed topic, see:

■ "Create a partitioned uniform distributed topic in a system module" in Oracle
WebLogic Server Administration Console Help.

■ Configuring and Deploying MDBs Using Distributed Topics in Programming
Message-Driven Beans for Oracle WebLogic Server

■ Developing Advanced Pub/Sub Applications in Programming JMS for Oracle
WebLogic Server

4.5.2.4.1 Load Balancing Partitioned Distributed Topics

Partitioned topic publishers have the option of load balancing their messages across
multiple members by tuning the connection factory Affinity and Load Balance

Configuring Distributed Destination Resources

4-14 Configuring and Managing JMS for Oracle WebLogic Server

attributes. The Unit of Order messages are routed to the correct member based on the
UOO routing policy and the subscriber status. See Configure connection factory load
balancing parameters in Oracle WebLogic Server Administration Console Help.

4.5.3 Creating Weighted Distributed Destinations

The WebLogic Server Administration Console enables you to configure, modify, target,
and delete WDD resources in JMS system modules. When configuring a distributed
topic or distributed queue, clearing the "Allocate Members Uniformly" check box
allows you to manually select existing queues and topics to add to the distributed
destination, and to fine-tune the weighting of resulting distributed destination
members.

For a road map of the weighted distributed destination tasks, see the following topics
in the Oracle WebLogic Server Administration Console Help:

■ "Create weighted distributed queues in a system module"

■ "Create weighted distributed topics in a system module"

Some weighted distributed destination options are dynamically configurable. When
options are modified at run time, only incoming messages are affected; stored
messages are not affected. For more information about the default values for all
weighted distributed destination options, see the following entries in the Oracle
WebLogic Server MBean Reference:

■ "DistributedQueueBean"

■ "DistributedTopicBean"

Unlike UDDs, WDD members cannot be monitored with the Administration Console
or though runtime MBeans. Also, WDDs members cannot be uniformly targeted to
JMS server or WebLogic Server instances in a domain. Instead, new WDD members
must be manually configured on such instances, and then manually added to the
WDD.

4.5.4 Load Balancing Messages Across a Distributed Destination
By using distributed destinations, JMS can spread or balance the messaging load
across multiple destinations, which can result in better use of resources and improved
response times. The JMS load-balancing algorithm determines the physical
destinations that messages are sent to, as well as the physical destinations that
consumers are assigned to.

4.5.4.1 Load Balancing Options
WebLogic JMS supports two different algorithms for balancing the message load
across multiple physical destinations within a given distributed destination set. You
select one of these load balancing options when configuring a distributed topic or
queue on the Administration Console.

4.5.4.1.1 Round-Robin Distribution In the round-robin algorithm, WebLogic JMS
maintains an ordering of physical destinations within the distributed destination. The

Note: Weighted Distributed Destinations are deprecated in
WebLogic Server 10.3.4.0. Oracle recommends using Uniform
Distributed Destinations.

Configuring Distributed Destination Resources

Configuring Advanced JMS System Resources 4-15

messaging load is distributed across the physical destinations one at a time in the
order that they are defined in the WebLogic Server configuration (config.xml) file.
Each WebLogic Server maintains an identical ordering, but may be at a different point
within the ordering. Multiple threads of execution within a single server using a given
distributed destination affect each other with respect to which physical destination a
member is assigned to each time they produce a message. Round-robin is the default
algorithm and doesn't need to be configured.

For weighted distributed destinations only, if weights are assigned to any of the
physical destinations in the set for a given distributed destination, then those physical
destinations appear multiple times in the ordering.

4.5.4.1.2 Random Distribution The random distribution algorithm uses the weight
assigned to the physical destinations to compute a weighted distribution for the set of
physical destinations. The messaging load is distributed across the physical
destinations by pseudo-randomly accessing the distribution. In the short run, the load
will not be directly proportional to the weight. In the long run, the distribution will
approach the limit of the distribution. A pure random distribution can be achieved by
setting all the weights to the same value, which is typically 1.

Adding or removing a member (either administratively or as a result of a WebLogic
Server shutdown/restart event) requires a recomputation of the distribution. Such
events should be infrequent however, and the computation is generally simple,
running in O(n) time.

4.5.4.2 Consumer Load Balancing
When an application creates a consumer, it must provide a destination. If that
destination represents a distributed destination, then WebLogic JMS must find a
physical destination that consumer will receive messages from. The choice of which
destination member to use is made by using one of the load-balancing algorithms
described in Section 4.5.4.1, "Load Balancing Options." The choice is made only once:
when the consumer is created. From that point on, the consumer gets messages from
that member only.

4.5.4.3 Producer Load Balancing
When a producer sends a message, WebLogic JMS looks at the destination where the
message is being sent. If the destination is a distributed destination, WebLogic JMS
makes a decision as to where the message will be sent. That is, the producer will send
to one of the destination members according to one of the load-balancing algorithms
described in Section 4.5.4.1, "Load Balancing Options."

The producer makes such a decision each time it sends a message. However, there is
no compromise of ordering guarantees between a consumer and producer, because
consumers are load balanced once, and are then pinned to a single destination
member.

Note: If a producer attempts to send a persistent message to a
distributed destination, every effort is made to first forward the
message to distributed members that utilize a persistent store.
However, if none of the distributed members utilize a persistent store,
then the message will still be sent to one of the members according to
the selected load-balancing algorithm.

Configuring Distributed Destination Resources

4-16 Configuring and Managing JMS for Oracle WebLogic Server

4.5.4.4 Load Balancing Heuristics
In addition to the algorithms described in Section 4.5.4.1, "Load Balancing Options,"
WebLogic JMS uses the following heuristics when choosing an instance of a
destination.

4.5.4.4.1 Transaction Affinity When producing multiple messages within a transacted
session, an effort is made to send all messages produced to the same WebLogic Server.
Specifically, if a session sends multiple messages to a single distributed destination,
then all of the messages are routed to the same physical destination. If a session sends
multiple messages to multiple different distributed destinations, an effort is made to
choose a set of physical destinations served by the same WebLogic Server.

4.5.4.4.2 Server Affinity The Server Affinity Enabled parameter on connection factories
defines whether a WebLogic Server that is load balancing consumers or producers
across multiple member destinations in a distributed destination set, will first attempt
to load balance across any other local destination members that are also running on
the same WebLogic Server.

To disable server affinity on a connection factory:

1. Follow the directions for navigating to the JMS Connection Factory >
Configuration > General page in "Configure connection factory load balancing
parameters" topic in the Oracle WebLogic Server Administration Console Help.

2. Define the Server Affinity Enabled field as follows:

■ If the Server Affinity Enabled check box is selected (True), then a WebLogic
Server that is load balancing consumers or producers across multiple physical
destinations in a distributed destination set, will first attempt to load balance
across any other physical destinations that are also running on the same
WebLogic Server.

■ If the Server Affinity Enabled check box is not selected (False), then a
WebLogic Server will load balance consumers or producers across physical
destinations in a distributed destination set and disregard any other physical
destinations also running on the same WebLogic Server.

3. Click Save.

For more information about how the Server Affinity Enabled setting affects the load
balancing among the members of a distributed destination, see Section 4.5.4.6,
"Distributed Destination Load Balancing When Server Affinity Is Enabled."

4.5.4.4.3 Queues with Zero Consumers When load balancing consumers across multiple
remote physical queues, if one or more of the queues have zero consumers, then those
queues alone are considered for balancing the load. Once all the physical queues in the
set have at least one consumer, the standard algorithms apply.

In addition, when producers are sending messages, queues with zero consumers are
not considered for message production, unless all instances of the given queue have
zero consumers.

Note: The Server Affinity Enabled attribute does not affect queue
browsers. Therefore, a queue browser created on a distributed queue
can be pinned to a remote distributed queue member even when
Server Affinity is enabled.

Configuring Distributed Destination Resources

Configuring Advanced JMS System Resources 4-17

4.5.4.4.4 Paused Distributed Destination Members When distributed destinations are
paused for message production or insertion, they are not considered for message
production. Similarly, when destinations are paused for consumption, they are not
considered for message production.

For more information on pausing message operations on destinations, see Section 10.5,
"Controlling Message Operations on Destinations."

4.5.4.5 Defeating Load Balancing
Applications can defeat load balancing by directly accessing the individual physical
destinations. That is, if the physical destination has no JNDI name, it can still be
referenced using the createQueue() or createTopic() methods.

For instructions on how to directly access uniform and weighted distributed
destination members, see "Accessing Distributed Destination Members" in
Programming JMS for Oracle WebLogic Server.

4.5.4.5.1 Connection Factories Applications that use distributed destinations to
distribute or balance their producers and consumers across multiple physical
destinations, but do not want to make a load balancing decision each time a message is
produced, can use a connection factory with the Load Balancing Enabled parameter
disabled. To ensure a fair distribution of the messaging load among a distributed
destination, the initial physical destination (queue or topic) used by producers is
always chosen at random from among the distributed destination members.

To disable load balancing on a connection factory:

1. Follow the directions for navigating to the JMS Connection Factory >
Configuration > General page in "Configure connection factory load balancing
parameters" topic in the Oracle WebLogic Server Administration Console Help.

2. Define the setting of the Load Balancing Enabled field using the following
guidelines:

■ Load Balancing Enabled = True

For Queue.sender.send() methods, non-anonymous producers are load
balanced on every invocation across the distributed queue members.

For TopicPublish.publish() methods, non-anonymous producers are
always pinned to the same physical topic for every invocation, irrespective of
the Load Balancing Enabled setting.

■ Load Balancing Enabled = False

Producers always produce to the same physical destination until they fail. At that
point, a new physical destination is chosen.

3. Click Save.

Anonymous producers (producers that do not designate a destination when created),
are load-balanced each time they switch destinations. If they continue to use the same
destination, then the rules for non-anonymous producers apply (as stated previously).

Note: Depending on your implementation, the setting of the Server
Affinity Enabled attribute can affect load balancing preferences for
distributed destinations. For more information, see Section 4.5.4.6,
"Distributed Destination Load Balancing When Server Affinity Is
Enabled."

Configuring Distributed Destination Resources

4-18 Configuring and Managing JMS for Oracle WebLogic Server

4.5.4.6 Distributed Destination Load Balancing When Server Affinity Is Enabled
Table 4–1 explains how the setting of a connection factory's Server Affinity Enabled
parameter affects the load balancing preferences for distributed destination members.
The order of preference depends on the type of operation and whether or not durable
subscriptions or persistent messages are involved.

The Server Affinity Enabled parameter for distributed destinations is different from
the server affinity provided by the Default Load Algorithm attribute in the
ClusterMBean, which is also used by the JMS connection factory to create initial
context affinity for client connections.

For more information, refer to the "Load Balancing for EJBs and RMI Objects" and
"Initial Context Affinity and Server Affinity for Client Connections" sections in Using
Clusters for Oracle WebLogic Server.

Table 4–2 Server Affinity Load Balancing Preferences

When the operation is...
And Server Affinity
Enabled is... Then load balancing preference is given to a...

■ createReceiver() for queues

■ createSubscriber() for
topics

True 1. local member without a consumer

2. local member

3. remote member without a consumer

4. remote member

createReceiver() for queues False 1. member without a consumer

2. member

createSubscriber() for topics

(Note: non-durable subscribers)

True or False 1. local member without a consumer

2. local member

■ createSender() for queues

■ createPublisher() for topics

True or False There is no separate machinery for load balancing a
JMS producer creation. JMS producers are created
on the server on which your JMS connection is load
balanced or pinned.

For more information about load balancing JMS
connections created via a connection factory, refer to
the "Load Balancing for EJBs and RMI Objects" and
"Initial Context Affinity and Server Affinity for
Client Connections" sections in Using Clusters for
Oracle WebLogic Server.

For persistent messages using
QueueSender.send()

True 1. local member with a consumer and a store

2. remote member with a consumer and a store

3. local member with a store

4. remote member with a store

5. local member with a consumer

6. remote member with a consumer

7. local member

8. remote member

For persistent messages using
QueueSender.send()

False 1. member with a consumer and a store

2. member with a store

3. member with a consumer

4. member

Configuring Distributed Destination Resources

Configuring Advanced JMS System Resources 4-19

4.5.5 Distributed Destination Migration
For clustered JMS implementations that take advantage of the Service Migration
feature, a JMS server and its distributed destination members can be manually
migrated to another WebLogic Server instance within the cluster. Service migrations
can take place due to scheduled system maintenance, as well as in response to a server
failure within the cluster.

However, the target WebLogic Server may already be hosting a JMS server with all of
its physical destinations. This can lead to situations where the same WebLogic Server
instance hosts two physical destinations for a single distributed destination. This is
permissible in the short term, since a WebLogic Server instance can host multiple
physical destinations for that distributed destination. However, load balancing in this
situation is less effective.

In such a situation, each JMS server on a target WebLogic Server instance operates
independently. This is necessary to avoid merging of the two destination instances,
and/or disabling of one instance, which can make some messages unavailable for a
prolonged period of time. The long-term intent, however, is to eventually re-migrate
the migrated JMS server to yet another WebLogic Server instance in the cluster.

For more information about the configuring JMS migratable targets, see Section 4.2,
"Migration of JMS-related Services."

4.5.6 Distributed Destination Failover
If the server instance that is hosting the JMS connections for the JMS producers and
JMS consumers should fail, then all the producers and consumers using these
connections are closed and are not re-created on another server instance in the cluster.
Furthermore, if a server instance that is hosting a JMS destination should fail, then all
the JMS consumers for that destination are closed and not re-created on another server
instance in the cluster.

If the distributed queue member on which a queue producer is created should fail, yet
the WebLogic Server instance where the producer's JMS connection resides is still
running, the producer remains alive and WebLogic JMS will fail it over to another

For non-persistent messages using
QueueSender.send()

True 1. local member with a consumer

2. remote member with a consumer

3. local member

4. remote member

For non-persistent messages:

■ QueueSender.send()

■ TopicPublish.publish()

False 1. member with a consumer

2. member

createConnectionConsumer()
for session pool queues and topics

True or False local member only

Note: Session pools are now used rarely, as they are
not a required part of the Java EE specification, do
not support JTA user transactions, and are largely
superseded by message-driven beans (MDBs),
which are simpler, easier to manage, and more
capable.

Table 4–2 (Cont.) Server Affinity Load Balancing Preferences

When the operation is...
And Server Affinity
Enabled is... Then load balancing preference is given to a...

Configure an Unrestricted ClientID

4-20 Configuring and Managing JMS for Oracle WebLogic Server

distributed queue member, irrespective of whether the Load Balancing option is
enabled.

For more information about procedures for recovering from a WebLogic Server failure,
see "Recovering From a Server Failure" in Programming JMS for Oracle WebLogic Server.

4.6 Configure an Unrestricted ClientID
The Client ID Policy specifies whether more than one JMS connection can use the same
Client ID in a cluster. Valid values for this policy are:

■ RESTRICTED: The default. Only one connection that uses this policy can exist in a
cluster at any given time for a particular Client ID (if a connection already exists
with a given Client ID, attempts to create new connections using this policy with
the same Client ID fail with an exception).

■ UNRESTRICTED: Connections created using this policy can specify any Client ID,
even when other restricted or unrestricted connections already use the same Client
ID. When a durable subscription is created using an Unrestricted Client ID, it can
only be cleaned up using
weblogic.jms.extensions.WLSession.unsubscribe(Topic topic,
String name). See Managing Subscriptions in Programming JMS for Oracle
WebLogic Server.

Oracle recommends setting the Client ID policy to Unrestricted for new
applications (unless your application architecture requires exclusive Client IDs),
especially if sharing a subscription (durable or non-durable). Subscriptions created
with different Client ID policies are always treated as independent subscriptions. See
ClientIdPolicy in the Oracle WebLogic Server MBean Reference.

To set the Client ID Policy on the connection factory using the WebLogic
Console, see Configure multiple connections using the same client Id in the Oracle
WebLogic Server Administration Console Help. The connection factory setting can be
overridden programmatically using the setClientIDPolicy method of the
WLConnection interface in the Oracle WebLogic Server API Reference.

For more information on how to use the Client ID Policy, see:

■ Configure multiple connections using the same client Id in Oracle WebLogic Server
Administration Console Help.

■ Developing Advanced Pub/Sub Applications in Programming JMS for Oracle
WebLogic Server

4.7 Configure Shared Subscriptions
The Subscription Sharing Policy specifies whether subscribers can share subscriptions
with other subscribers on the same connection.aon this connection. Valid values for
this policy are:

Note: Programmatically changing (overriding) the Client ID policy
settings on a JMS connection runtime object is valid only for that
particular connection instance and for the life of that connection. Any
changes made to the connection runtime object are not
persisted/reflected by the corresponding JMS connection factory
configuration defined in the underlying JMS module descriptor.

Configure Shared Subscriptions

Configuring Advanced JMS System Resources 4-21

■ Exclusive: The default. All subscribers created using this connection factory
cannot share subscriptions with any other subscribers.

■ Sharable: Subscribers created using this connection factory can share their
subscriptions with other subscribers, regardless of whether those subscribers are
created using the same connection factory or a different connection factory.
Consumers can share a non-durable subscriptions only if they have the same
Client ID and Client ID Policy; consumers can share a durable subscription only if
they have the same Client ID, Client ID Policy, and Subscription Name.

WebLogic JMS applications can override the Subscription Sharing Policy specified on
the connection factory configuration by casting a javax.jms.Connection instance
to weblogic.jms.extension.WLConnection and calling
setSubscriptionSharingPolicy(String).

Most applications with a Sharable Subscription Sharing Policy will also use an
Unrestricted Client ID Policy in order to ensure that multiple connections with the
same client ID can exist.

Two durable subscriptions with the same Client ID and Subscription Name are treated
as two different independent subscriptions if they have a different Client ID Policy.
Similarly, two Sharable non-durable subscriptions with the same Client ID are treated
as two different independent subscriptions if they have a different Client ID Policy.

For more information on how to use the Subscription Sharing Policy, see:

■ Configure a connection factory subscription sharing policy in Oracle WebLogic
Server Administration Console Help.

■ Developing Advanced Pub/Sub Applications in Programming JMS for Oracle
WebLogic Server

Configure Shared Subscriptions

4-22 Configuring and Managing JMS for Oracle WebLogic Server

5

Configuring JMS Application Modules for Deployment 5-1

5Configuring JMS Application Modules for
Deployment

This chapter explains how to configure JMS application modules for deployment,
including JMS application modules packaged with a Java EE enterprise application
and globally-available, standalone application modules.

■ Section 5.1, "Methods for Configuring JMS Application Modules"

■ Section 5.2, "JMS Schema"

■ Section 5.3, "Packaging JMS Application Modules In an Enterprise Application"

– Section 5.3.1.2, "Main Steps for Creating Packaged JMS Application Modules"

– Section 5.3.1, "Creating Packaged JMS Application Modules"

– Section 5.3.2, "Sample of a Packaged JMS Application Module In an EJB
Application"

– Section 5.3.3, "Packaging an Enterprise Application With a JMS Application
Module"

– Section 5.3.4, "Deploying a Packaged JMS Application Module"

■ Section 5.4, "Deploying Standalone JMS Application Modules"

■ Section 5.5, "Generating Unique Runtime JNDI Names for JMS Resources"

5.1 Methods for Configuring JMS Application Modules
All JMS resources that can be configured in a JMS system module can also be
configured and managed as deployable application modules, similar to standard Java
EE modules. Deployed JMS application modules are owned by the developer who
created and packaged the module, rather than the administrator who deploys the
module; therefore, the administrator has more limited control over deployed
resources.

For example, administrators can only modify (override) certain properties of the
resources specified in the module using the deployment plan (JSR-88) at the time of
deployment, but they cannot dynamically add or delete resources. As with other Java
EE modules, configuration changes for an application module are stored in a
deployment plan for the module, leaving the original module untouched.

Application developers can use these tools to create and deploy (target) system
resources

JMS Schema

5-2 Configuring and Managing JMS for Oracle WebLogic Server

■ Create a JMS system module, as described in Section 3.5, "JMS System Module
Configuration" and then copy the resulting XML file to another directory and
rename it, using -jms.xml as the file suffix.

■ Create application modules in an enterprise-level IDE or another development
tool that supports editing of XML files, then package the JMS modules with an
application and pass the application to a WebLogic Administrator to deploy.

5.2 JMS Schema
In support of the modular deployment model for JMS resources in WebLogic Server
9.x or higher, Oracle provides a schema for defining WebLogic JMS resources:
weblogic-jms.xsd. When you create JMS modules (descriptors), the modules must
conform to this schema. IDEs and other tools can validate JMS modules based on the
schema.

The weblogic-jms.xsd schema is available online at
http://xmlns.oracle.com/weblogic/weblogic-jms/1.2/weblogic-jms.x
sd.

For an explanation of the JMS resource definitions in the schema, see the
corresponding system module beans in the "System Module MBeans" folder of the
Oracle WebLogic Server MBean Reference. The root bean in the JMS module that
represents an entire JMS module is named "JMSBean".

5.3 Packaging JMS Application Modules In an Enterprise Application
JMS application modules can be packaged as part of an Enterprise Application
Archive (EAR), as a packaged module. Packaged modules are bundled with an EAR or
exploded EAR directory, and are referenced in the weblogic-application.xml
descriptor.

The packaged JMS module is deployed along with the Enterprise Application, and the
resources defined in this module can optionally be made available only to the
enclosing application (i.e., as an application-scoped resource). Such modules are
particularly useful when packaged with EJBs (especially MDBs) or Web Applications
that use JMS resources. Using packaged modules ensures that an application always
has required resources and simplifies the process of moving the application into new
environments.

5.3.1 Creating Packaged JMS Application Modules
You create packaged JMS modules using an enterprise-level IDE or another
development tool that supports editing of XML descriptor files. You then deploy and
manage standalone modules using JSR 88-based tools, such as the
weblogic.Deployer utility or the WebLogic Administration Console.

5.3.1.1 Packaged JMS Application Module Requirements
Inside the EAR file, a JMS module must meet the following criteria:

Note: You can create a packaged JMS module using the
Administration Console, then copy the resulting XML file to another
directory and rename it, using -jms.xml as the file suffix.

Packaging JMS Application Modules In an Enterprise Application

Configuring JMS Application Modules for Deployment 5-3

■ Conforms to the
http://xmlns.oracle.com/weblogic/weblogic-jms/1.2/weblogic-jm
s.xsd schema

■ Uses -jms.xml as the file suffix (for example, MyJMSDescriptor-jms.xml)

■ Uses a name that is unique within the WebLogic domain and a path that is relative
to the root of the Java EE application

5.3.1.2 Main Steps for Creating Packaged JMS Application Modules
Follow these steps to configure a packaged JMS module:

1. If necessary, create a JMS server to target the JMS module to, as explained in
"Configure JMS Servers" in the Oracle WebLogic Server Administration Console Help.

2. Create a JMS system module and configure the necessary resources, such as
queues or topics, as described in "Configure JMS system modules and add JMS
resources" in the Oracle WebLogic Server Administration Console Help.

3. The system module is saved in config\jms subdirectory of the domain directory,
with a "-jms.xml" suffix.

4. Copy the system module to a new location, and then:

a. Give the module a unique name within the domain namespace.

b. Delete the JNDI-Name attribute to make the module application-scoped to only
the application.

5. Add references to the JMS resources in the module to all applicable Java EE
application component's descriptor files, as described in "Referencing a Packaged
JMS Application Module In Deployment Descriptor Files" in Programming JMS for
Oracle WebLogic Server.

6. Package all application modules in an EAR, as described in Section 5.3.3,
"Packaging an Enterprise Application With a JMS Application Module."

7. Deploy the EAR, as described in Section 5.3.4, "Deploying a Packaged JMS
Application Module."

5.3.2 Sample of a Packaged JMS Application Module In an EJB Application
The following code snippet is an example of the packaged JMS module,
appscopedejbs-jms.xml, referenced by the descriptor files in Figure 5–1 below.

<weblogic-jms xmlns="http://xmlns.oracle.com/weblogic/weblogic-jms">
 <connection-factory name="ACF">
 </connection-factory>
 <queue name="AppscopeQueue">
 </queue>
</weblogic-jms>

Figure 5–1 illustrates how a JMS connection factory and queue resources in a packaged
JMS module are referenced in an EJB EAR file.

Packaging JMS Application Modules In an Enterprise Application

5-4 Configuring and Managing JMS for Oracle WebLogic Server

Figure 5–1 Relationship Between a JMS Application Module and Descriptors In an EJB
Application

5.3.2.1 Packaged JMS Application Module References In weblogic-application.xml
When including JMS modules in an enterprise application, you must list each JMS
module as a module element of type JMS in the weblogic-application.xml
descriptor file packaged with the application, and a path that is relative to the root of
the application. For example:

<module>
 <name>AppScopedEJBs</name>
 <type>JMS</type>
 <path>jms/appscopedejbs-jms.xml</path>
</module>

Packaging JMS Application Modules In an Enterprise Application

Configuring JMS Application Modules for Deployment 5-5

5.3.2.2 Packaged JMS Application Module References In ejb-jar.xml
If EJBs in your application use connection factories through a JMS module packaged
with the application, you must list the JMS module as a res-ref element and include
the res-ref-name and res-type parameters in the ejb-jar.xml descriptor file
packaged with the EJB. This way, the EJB can lookup the JMS Connection Factory in
the application's local context. For example:

<resource-ref>
 <res-ref-name>jms/QueueFactory</res-ref-name>
 <res-type>javax.jms.QueueConnectionFactory</res-type>
</resource-ref>

The res-ref-name element maps the resource name (used by java:comp/env) to a
module referenced by an EJB. The res-type element specifies the module type,
which in this case, is javax.jms.QueueConnectionFactory.

If EJBs in your application use Queues or Topics through a JMS module packaged with
the application, you must list the JMS module as a resource-env-ref element and
include the resource-env-ref-name and resource-env-ref-type parameters
in the ejb-jar.xml descriptor file packaged with the EJB. This way, the EJB can
lookup the JMS Queue or Topic in the application's the local context. For example:

<resource-env-ref>
 <resource-env-ref-name>jms/Queue</resource-env-ref-name>
 <resource-env-ref-type>javax.jms.Queue</resource-env-ref-type>
</resource-env-ref>

The resource-env-ref-name element maps the destination name to a module
referenced by an EJB. The res-type element specifies the name of the Queue, which
in this case, is javax.jms.Queue.

5.3.2.3 Packaged JMS Application Module References In weblogic-ejb-jar.xml
You must list the referenced JMS module as a res-ref-name element and include the
resource-link parameter in the weblogic-ejb-jar.xml descriptor file
packaged with the EJB.

<resource-description>
 <res-ref-name>jms/QueueFactory</res-ref-name>
 <resource-link>AppScopedEJBs#ACF</resource-link>
</resource-description>

The res-ref-name element maps the connection factory name to a module
referenced by an EJB. In the resource-link element, the JMS module name is
followed by a pound (#) separator character, which is followed by the name of the
resource inside the module. So for this example, the JMS module AppScopedEJBs
containing the connection factory ACF, would have a name AppScopedEJBs#ACF.

Continuing the example above, the res-ref-name element also maps the Queue
name to a module referenced by an EJB. And in the resource-link element, the
queue AppScopedQueue, would have a name AppScopedEJBs#AppScopedQueue, as
follows:

<resource-env-description>
 <resource-env-ref-name>jms/Queue</resource-env-ref-name>
 <resource-link>AppScopedEJBs#AppScopedQueue</resource-link>
</resource-env-description>

Deploying Standalone JMS Application Modules

5-6 Configuring and Managing JMS for Oracle WebLogic Server

5.3.3 Packaging an Enterprise Application With a JMS Application Module
You package an application with a JDBC module as you would any other enterprise
application. See "Packaging Applications Using wlpackage" in Developing Applications
for Oracle WebLogic Server.

5.3.4 Deploying a Packaged JMS Application Module
The deployment of packaged JMS modules follows the same model as all other
components of an application: individual modules can be deployed to a single server,
a cluster, or individual members of a cluster.

A recommended best practice for other application components is to use the
java:comp/env JNDI environment in order to retrieve references to JMS entities, as
described in "Referencing a Packaged JMS Application Module In Deployment
Descriptor Files" in Programming JMS for Oracle WebLogic Server. (However, this
practice is not required.)

By definition, packaged JMS modules are included in an enterprise application, and
therefore are deployed when you deploy the enterprise application. For more
information about deploying applications with packaged JMS modules, see
"Deploying Applications Using wldeploy" in Developing Applications with WebLogic
Server.

5.4 Deploying Standalone JMS Application Modules
This section presents the following topics:

■ Section 5.4.1, "Standalone JMS Modules"

■ Section 5.4.2, "Creating Standalone JMS Application Modules"

■ Section 5.4.3, "Sample of a Simple Standalone JMS Application Module"

■ Section 5.4.4, "Deploying Standalone JMS Application Modules"

■ Section 5.4.5, "Tuning Standalone JMS Application Modules"

5.4.1 Standalone JMS Modules
A JMS application module can be deployed by itself as a standalone module, in which
case the module is available to the server or cluster targeted during the deployment
process. JMS modules deployed in this manner can be reconfigured using the
weblogic.Deployer utility or the Administration Console, but are not available
through JMX or WLST.

However, standalone JMS modules are available using the basic JSR-88 deployment
tool provided with WebLogic Server plug-ins (without using WebLogic Server
extensions to the API) to configure, deploy, and redeploy Java EE applications and
modules to WebLogic Server. For information about WebLogic Server deployment, see
"Understanding WebLogic Server Deployment" in Deploying Applications to Oracle
WebLogic Server.

JMS modules deployed in this manner are called standalone modules. Depending on
how they are targeted, the resources inside standalone JMS modules are globally
available in a cluster or locally on a server instance. Standalone JMS modules promote
sharing and portability of JMS resources. You can create a JMS module and distribute
it to other developers. Standalone JMS modules can also be used to move JMS
information between domains, such as between the development domain and the
production domain, without extensive manual JMS reconfiguration.

Deploying Standalone JMS Application Modules

Configuring JMS Application Modules for Deployment 5-7

5.4.2 Creating Standalone JMS Application Modules
You can create JMS standalone modules using an enterprise-level IDE or another
development tool that supports editing XML descriptor files. You then deploy and
manage standalone modules using WebLogic Server tools, such as the
weblogic.Deployer utility or the WebLogic Administration Console.

5.4.2.1 Standalone JMS Application Module Requirements
A standalone JMS module must meet the following criteria:

■ Conforms to the
http://xmlns.oracle.com/weblogic/weblogic-jms/1.2/weblogic-jm
s.xsd schema

■ Uses "-jms.xml" as the file suffix (for example, MyJMSDescriptor-jms.xml)

■ Uses a name that is unique within the WebLogic domain (cannot conflict with JMS
system modules)

5.4.2.2 Main Steps for Creating Standalone JMS Application Modules
Follow these steps to configure a standalone JMS module:

1. If necessary, create a JMS server to target the JMS module to, as explained in
"Configure JMS servers" in the Oracle WebLogic Server Administration Console Help.

2. Create a JMS system module and configure the necessary resources, such as
queues or topics, as described in "Configure JMS system modules and add JMS
resources" in the Oracle WebLogic Server Administration Console Help.

3. The system module is saved in config\jms subdirectory of the domain directory,
with a -jms.xml suffix.

4. Copy the system module to a new location and then:

a. Give the module a unique name within the domain namespace.

b. To make the module globally available, uniquely rename the JNDI-Name
attributes of the resources in the module.

c. If necessary, modify any other tunable values, such as destination thresholds
or connection factory flow control parameters.

5. Deploy the module, as described in Section 5.4.4, "Deploying Standalone JMS
Application Modules."

5.4.3 Sample of a Simple Standalone JMS Application Module
The following code snippet is an example of simple standalone JMS module.

<weblogic-jms xmlns="http://xmlns.oracle.com/weblogic/weblogic-jms">
 <connection-factory name="exampleStandAloneCF">
 <jndi-name>exampleStandAloneCF</jndi-name>
 </connection-factory>

Note: You can create a JMS application module using the
Administration Console, then copy the module as a template for use
in your applications, using -jms.xml as the file suffix. You must also
change the Name and JNDI-Name elements of the module before
deploying it with your application to avoid a naming conflict in the
namespace.

Deploying Standalone JMS Application Modules

5-8 Configuring and Managing JMS for Oracle WebLogic Server

 <queue name="ExampleStandAloneQueue">
 <jndi-name>exampleStandAloneQueue</jndi-name>
 </queue>
</weblogic-jms>

5.4.4 Deploying Standalone JMS Application Modules
The command-line for using the weblogic.Deployer utility to deploy a standalone
JMS module (using the example above) would be:

java weblogic.Deployer -adminurl http://localhost:7001 -user weblogic
-password weblogic \
-name ExampleStandAloneJMS \
-targets examplesServer \
-submoduletargets
ExampleStandaloneQueue@examplesJMSServer,ExampleStandaloneCF@examplesServer \
-deploy ExampleStandAloneJMSModule-jms.xml

For information about deploying standalone JMS modules, see "Deploying JDBC, JMS,
and WLDF Application Modules" in Deploying Applications to Oracle WebLogic Server.

When you deploy a standalone JMS module, an app-deployment entry is added to
the config.xml file for the domain. For example:

<app-deployment>
 <name>standalone-examples-jms</name>
 <target>MedRecServer</target>
 <module-type>jms</module-type>
 <source-path>C:\modules\standalone-examples-jms.xml</source-path>
 <sub-deployment>
 ...
 </sub-deployment>
 <sub-deployment>
 ...
 </sub-deployment>
</app-deployment>

Note that the source-path for the module can be an absolute path or it can be a
relative path from the domain directory. This differs from the
descriptor-file-name path for a system resource module, which is relative to the
domain\config directory.

5.4.5 Tuning Standalone JMS Application Modules
JMS resources deployed within standalone modules can be reconfigured using the using
the weblogic.Deployer utility or the Administration Console, as long as the
resources are considered bindable (such as JNDI names), or tunable (such as
destination thresholds). However, standalone resources are not available through
WebLogic JMX APIs or the WebLogic Scripting Tool (WLST).

However, standalone JMS modules are available using the basic JSR-88 deployment
tool provided with WebLogic Server plug-ins (without using WebLogic Server
extensions to the API) to configure, deploy, and redeploy Java EE applications and
modules to WebLogic Server. For information about WebLogic Server deployment, see
"Understanding WebLogic Server Deployment" in Deploying Applications to Oracle
WebLogic Server.

Additionally, standalone resources cannot be dynamically added or deleted with any
WebLogic Server utility and must be redeployed.

Generating Unique Runtime JNDI Names for JMS Resources

Configuring JMS Application Modules for Deployment 5-9

5.5 Generating Unique Runtime JNDI Names for JMS Resources
JMS resources, such as connection factories and destinations, are configured with a
JNDI name. The runtime implementations of these resources are then bound into JNDI
using the given names. In some cases, it is impossible or inconvenient to provide a
static JNDI name for these resources.

An example of such a situation is when JMS resources are defined in a JMS module
within an application library. In this case, the library can be referenced from multiple
applications, each of which receive a copy of the application library (and the JMS
module it contains) when they are deployed. If you were to use static JNDI names for
the JMS resources in this case, all applications that refer to the library would attempt to
bind the same set of JNDI resources at the same static JNDI name.

Therefore, the first application to deploy would successfully bind the JMS resources
into JNDI, but subsequent application deployments would fail with exceptions
indicating that the JNDI names are already bound.

To avoid this problem, WebLogic Server provides a facility to dynamically generate a
JNDI name for the following types of JMS resources:

■ Connection factory

■ Destination (queue and topic)

■ Weighted distributed destination (deprecated)

■ Weighted distributed destination members

■ Uniform distributed destination

The facility to generate unique names is based on placing a special character sequence
called ${APPNAME} in the JNDI name of the above mentioned JMS resources. If you
include ${APPNAME} in the JNDI name element of a JMS resource (either in the JMS
module descriptor, or the weblogic-ejb-jar.xml descriptor), the actual JNDI
name used at runtime will have the ${APPNAME} string replaced with the effective
application ID (name and possibly version) of the application hosting the JMS
resource.

5.5.1 Unique Runtime JNDI Name for Local Applications
In the case of JMS modules in a local application, at runtime ${APPNAME} becomes
the name/ID of the application. For example:

<jndi-name>${APPNAME}/jms/MyConnectionFactory</jndi-name>

When deployed within an application called MyApp, it would result in a runtime JNDI
name of:

MyApp/jms/MyConnectionFactory

Note: The ${APPNAME} facility does not imply that you can define
your own variables and substitute their values into the JNDI name at
runtime. The string ${APPNAME} is treated specially by the JMS
implementation, and no other strings of the form ${<some name>}
have any special meaning.

Generating Unique Runtime JNDI Names for JMS Resources

5-10 Configuring and Managing JMS for Oracle WebLogic Server

5.5.2 Unique Runtime JNDI Name for Application Libraries
In the case of JMS modules in an application library, at runtime ${APPNAME}
becomes the name/ID of the application which refers to the library (not the name of
the library). For example:

<jndi-name>${APPNAME}/jms/MyConnectionFactory</jndi-name>

When deployed within an application library called MyAppLib, and referenced from
an application called MyApp, it would result in a runtime JNDI name of:

MyApp/jms/MyConnectionFactory

5.5.3 Unique Runtime JNDI Name for Standalone JMS Modules
In the case of JMS modules deployed as stand-alone modules, at runtime
${APPNAME} becomes the name/ID of the stand-alone module. For example:

<jndi-name>${APPNAME}/jms/MyConnectionFactory</jndi-name>

When deployed within a stand-alone JMS module MyJMSModule, it would result in a
runtime JNDI name of:

MyJMSModule/jms/MyConnectionFactory

5.5.4 Where to Use the ${APPNAME} String
The ${APPNAME} string can be used anywhere you refer to the JNDI name of a JMS
resource. For example, in the:

■ jndi-name or local-jndi-name element of connection-factory elements
in the JMS module descriptor.

■ jndi-name or local-jndi-name element of queue or topic elements in the
JMS module descriptor.

■ jndi-name element of distributed-queue or distributed-topic elements
in the JMS module descriptor.

■ jndi-name element of uniform-distributed-queue or
uniform-distributed-topic elements in the JMS module descriptor.

■ destination-jndi-name element of message-destination-descriptor
elements in the weblogic-ejb-jar.xml descriptor.

■ jndi-name element of weblogic-enterprise-bean elements in the
weblogic-ejb-jar.xml descriptor.

5.5.5 Example Use-Case
In a single-server environment, Weblogic Integration Worklist uses application-scoped
JMS resources (e.g., queues and connection factories) to support its modular
deployment goals. Application-scoped JMS allows Weblogic Integration to have an
application library define the EJBs, JMS resources, etc., needed by Worklist, and then
have users simply include Worklist into their application by adding a library-ref
to their application. However, this prevents Worklist user from scaling those
destinations to the cluster from an application library.

Note: WebLogic EJB also supports the use of the ${APPNAME}
string.

Generating Unique Runtime JNDI Names for JMS Resources

Configuring JMS Application Modules for Deployment 5-11

In a clustered environment, users can now substitute the ${APPNAME} string for the
queue's JNDI name at runtime to make the global JNDI names for the queues unique.
This way, the JMS ${APPNAME} parameter is replaced at runtime with the application
name of the host application being merged to the application library.

Generating Unique Runtime JNDI Names for JMS Resources

5-12 Configuring and Managing JMS for Oracle WebLogic Server

6

Using WLST to Manage JMS Servers and JMS System Module Resources 6-1

6Using WLST to Manage JMS Servers and
JMS System Module Resources

This chapter describes how to use the WebLogic Scripting Tool (WLST), a
command-line scripting interface, to create and manage JMS servers and JMS system
module resources. See "Using the WebLogic Scripting Tool" and "WLST Sample
Scripts" in Oracle WebLogic Scripting Tool.

■ Section 6.1, "Understanding JMS System Modules and Subdeployments"

■ Section 6.2, "How to Create JMS Servers and JMS System Module Resources"

■ Section 6.3, "How to Modify and Monitor JMS Servers and JMS System Module
Resources"

■ Section 6.4, "Best Practices when Using WLST to Configure JMS Resources"

6.1 Understanding JMS System Modules and Subdeployments
A JMS system module is described by the jms-system-resource MBean in the
config.xml file. Basic components of a jms-system-resource MBean are:

■ name—Name of the module.

■ target—Server, cluster, or migratable target the module is targeted to.

■ sub-deployment—A mechanism by which JMS system module resources (such
as queues, topics, and connection factories) are grouped and targeted to a server
resource (such as a JMS server instance, WebLogic server instance, or cluster).

■ descriptor-file-name—Path and filename of the system module file.

The JMS resources of a system module are located in a module descriptor file that
conforms to the weblogic-jmsmd.xml schema. In Figure 6–1, the module is named
myModule-jms.xml and it contains JMS system resource definitions for a connection
factory and a queue. The sub-deployment-name element is used to group and
target JMS resources in the myModule-jms.xml file to targets in the config.xml.
You have to provide a value for the sub-deployment-name element when using
WLST. For more information on subdeployments, see Chapter 3.5.1, "JMS System
Module and Resource Subdeployment Targeting." In Figure 6–1, the
sub-deployment-name DeployToJMSServer1 is used to group and target the
connection factory CConfac and the queue CQueue in the myModule-jms module.

For more information on how to use JMS resources, see Chapter 2.3, "What Are JMS
Configuration Resources?."

How to Create JMS Servers and JMS System Module Resources

6-2 Configuring and Managing JMS for Oracle WebLogic Server

Figure 6–1 Subdeployment Architecture

6.2 How to Create JMS Servers and JMS System Module Resources
Basic tasks you need to perform when creating JMS system resources with WLST are:

■ Start an edit session.

■ Create a JMS system module that includes JMS resources, such as queues, topics,
and connection factories.

■ Create JMS server resources.

After you have established an edit session, use the following steps configure JMS
servers and system module resources:

1. Get the WebLogic Server MBean object for the server you want to configure
resources. For example:

servermb=getMBean("Servers/examplesServer")
 if servermb is None:
 print '@@@ No server MBean found'

2. Create your system resource. For example:

jmsMySystemResource = create(myJmsSystemResource,"JMSSystemResource")

3. Target your system resource to a WebLogic Server instance. For example:

jmsMySystemResource.addTarget(servermb)

4. Get your system resource object. For example:

theJMSResource = jmsMySystemResource.getJMSResource()

How to Create JMS Servers and JMS System Module Resources

Using WLST to Manage JMS Servers and JMS System Module Resources 6-3

5. Create resources for the module, such as queues, topics, and connection factories.
For example:

connfact1 = theJMSResource.createConnectionFactory(factoryName)
jmsqueue1 = theJMSResource.createQueue(queueName)

6. Configure resource attributes. For example:

connfact1.setJNDIName(factoryName)
jmsqueue1.setJNDIName(queueName)

7. Create a subdeployment name for system resources. See Section 6.1,
"Understanding JMS System Modules and Subdeployments." For example:

connfact1.setSubDeploymentName('DeployToJMSServer1')
jmsqueue1.setSubDeploymentName('DeployToJMSServer1')

8. Create a JMS server. For example:

jmsserver1mb = create(jmsServerName,'JMSServer')

9. Target your JMS server to a WebLogic Server instance. For example:

jmsserver1mb.addTarget(servermb)

10. Create a subdeployment object using the value you provided for the
sub-deployment-name element. This step groups the system resources in
module to a sub-deployment element in the config.xml. For
example:

subDep1mb = jmsMySystemResource.createSubDeployment('DeployToJMSServer1')

11. Target the subdeployment to a server resource such as a JMS server instance,
WebLogic Server instance, or cluster. For example:

subDep1mb.addTarget(jmsserver1mb)

Example 6–1 WLST Script to Create JMS System Resources

"""
This script starts an edit session, creates a JMS Server,
targets the jms server to the server WLST is connected to and creates
a JMS System module with a jms queue and connection factory. The
jms queues and topics are targeted using sub-deployments.
"""

import sys
from java.lang import System

print "@@@ Starting the script ..."

myJmsSystemResource = "CapiQueue-jms"
factoryName = "CConFac"
jmsServerName = "myJMSServer"
queueName = "CQueue"

url = sys.argv[1]
usr = sys.argv[2]
password = sys.argv[3]

connect(usr,password, url)
edit()

How to Modify and Monitor JMS Servers and JMS System Module Resources

6-4 Configuring and Managing JMS for Oracle WebLogic Server

startEdit()

//Step 1
servermb=getMBean("Servers/examplesServer")
 if servermb is None:
 print '@@@ No server MBean found'

else:
 //Step 2
 jmsMySystemResource = create(myJmsSystemResource,"JMSSystemResource")

 //Step 3
 jmsMySystemResource.addTarget(servermb)

 //Step 4
 theJMSResource = jmsMySystemResource.getJMSResource()

 //Step 5
 connfact1 = theJMSResource.createConnectionFactory(factoryName)
 jmsqueue1 = theJMSResource.createQueue(queueName)

 //Step 6
 connfact1.setJNDIName(factoryName)
 jmsqueue1.setJNDIName(queueName)

 //Step 7
 jmsqueue1.setSubDeploymentName('DeployToJMSServer1')
 connfact1.setSubDeploymentName('DeployToJMSServer1')

 //Step 8
 jmsserver1mb = create(jmsServerName,'JMSServer')

 //Step 9
 jmsserver1mb.addTarget(servermb)

 //Step 10
 subDep1mb = jmsMySystemResource.createSubDeployment('DeployToJMSServer1')

 //Step 11
 subDep1mb.addTarget(jmsserver1mb)
.
.
.

6.3 How to Modify and Monitor JMS Servers and JMS System Module
Resources

You can modify or monitor JMS objects and attributes by using the appropriate
method available from the MBean.

■ You can modify JMS objects and attributes using the set, target, untarget, and
delete methods.

■ You can monitor JMS runtime objects using get methods.

For more information, see "Navigating MBeans (WLST Online)" in Oracle WebLogic
Scripting Tool.

Best Practices when Using WLST to Configure JMS Resources

Using WLST to Manage JMS Servers and JMS System Module Resources 6-5

Example 6–2 WLST Script to Modify JMS Objects

.

.
print '@@@ delete system resource'
jmsMySystemResource = delete("CapiQueue-jms","JMSSystemResource")
print '@@@ delete server'
jmsserver1mb = delete(jmsServerName,'JMSServer')
.
.
.

6.4 Best Practices when Using WLST to Configure JMS Resources
This section provides best practices information when using WLST to configure JMS
servers and JMS system module resources:

■ Trap for Null MBean objects (such as servers, JMS servers, modules) before trying
to manipulate the MBean object.

■ Use a meaningful name when providing a subdeployment name. For example, the
subdeployment name DeployToJMSServer1 tells you that all subdeployments with
this name are deployed to JMSServer1.

Best Practices when Using WLST to Configure JMS Resources

6-6 Configuring and Managing JMS for Oracle WebLogic Server

7

Interoperating with Oracle AQ JMS 7-1

7Interoperating with Oracle AQ JMS

This chapter describes how Oracle WebLogic Server applications interoperate with
Oracle Streams Advanced Queuing (AQ) through the JMS API using either WebLogic
Server resources (Web Apps, EJBs, MDBs) or stand-alone clients.

■ Section 7.1, "Overview"

■ Section 7.2, "Configuring WebLogic Server to Interoperate with AQ JMS"

■ Section 7.3, "Programming Considerations"

■ Section 7.4, "Advanced Topics"

■ Section 7.5, "Related Documentation"

See Oracle Streams Advanced Queuing User's Guide.

7.1 Overview
AQ JMS uses a database connection and stored JMS messages in a database accessible
to an entire WebLogic Server cluster, enabling the use of database features and tooling
for data manipulating and backup. Your WebLogic Server installation includes all the
necessary classes, no additional files are required in the WebLogic Server
classpath.to interoperate with Oracle AQ JMS.

WebLogic AQ JMS uses the WebLogic JMS Foreign Server framework to allow
WebLogic Server applications and stand-alone clients to lookup AQ JMS connection
factories and destinations using a standard the WebLogic JNDI context, and to allow
applications and clients to load and invoke AQ JMS using standard Java EE APIs. The
required references to the database, JDBC driver, and data source are configured as
part of this framework.

For applications running within the WebLogic Server's JVM:

■ A configured WebLogic Data Source references a particular JDBC driver, pools
JDBC connections, and provides connectivity to the Oracle database hosting AQ
JMS.

■ A configured WebLogic Foreign Server references the data source.

■ Local JNDI names are defined for AQ JMS connection factories and destinations as
part of the WebLogic JMS Foreign Server configuration. These JNDI names are
configured to map to existing AQ connection factories and destinations.

■ In turn, WebLogic Server applications, such as MDBs, reference the local JNDI
names.

Overview

7-2 Configuring and Managing JMS for Oracle WebLogic Server

7.1.1 Using AQ Destinations as Foreign Destinations
AQ foreign destinations must be local to the server running the application or MDBs
sending/receiving messages. An application that is running on one WebLogic Server
instance cannot look up and use an AQ JMS foreign server and data source that is
registered on another WebLogic Server instance. WebLogic AQ JMS uses a data
source/DB connection that does not support remote connectivity. An alternative is to
use a messaging bridge between AQ destinations in one domain and
applications/MDBs running in another domain. See Section 7.4.2, "WebLogic
Messaging Bridge."

7.1.2 Driver Support
WebLogic AQ JMS requires a JDBC driver to communicate with the Oracle database.
Only the Oracle JDBC 11g thin driver, included in your WebLogic Server installation, is
supported for this release. Oracle OCI JDBC Driver and non-Oracle JDBC Drivers are
not supported.

7.1.3 Transaction Support
Global XA (JTA) transactions and local JMS transacted session transactions are
supported. Global transactions require use of XA based connection factories, while
local transactions use non-XA based JMS connection factories.

■ If you select a non-XA JDBC driver, you can only use WebLogic AQ JMS in local
transactions.

■ If you select an XA JDBC driver, you can use WebLogic AQ JMS in both local and
global transactions.

■ This release does not support non-XA JDBC driver data sources with any of the
global transaction options such as Logging Last Resource (LLR), One-Phase
Commit (JTS), and Emulated Two-Phase Commit. If Supports Global
Transactions is selected, WebLogic Server logs a warning message.

■ Global transactions are only supported with an XA JDBC driver One-Phase
commit optimization. If you use the same XA capable data source for both AQ
JMS and JDBC operations, the XA transactional behavior is equivalent to having
two connections in a single data source that is treated as a single resource by the
transaction manager. Therefore, if the AQ JMS and JDBC operations are invoked
under the same JTA transaction, and no other resources are involved in the
transaction, the transaction uses One-Phase commit optimization instead of
Two-Phase commit; otherwise read-only optimization is used.

See "Understanding Transactions" in Programming JMS for Oracle WebLogic Server

7.1.4 Oracle RAC
WebLogic AQ JMS supports Oracle Real Application Clusters (Oracle RAC) with the
use of WebLogic Multi Data Sources to provide failover in a Oracle RAC environment.
See "Using WebLogic Server with Oracle RAC" in Configuring and Managing JDBC Data
Sources for Oracle WebLogic Server.

Configuring WebLogic Server to Interoperate with AQ JMS

Interoperating with Oracle AQ JMS 7-3

7.1.5 MBean and Console Support
Except for purposes of interoperating with AQ JMS using a JMS Foreign Server, there
are no AQ JMX specific MBeans and no support for configuring AQ JMS in the
Administration Console. Use SQL scripts or other tools for AQ administration and
monitoring, such as AQ queue table creation/removal, destination creation/removal,
and statistics query.

7.1.6 Migrating from OC4J
For information on how to migrate your AQ JMS applications from Oracle OC4J to
Oracle WebLogic Server, see "Upgrading OEMS JMS Database Persistence" in Oracle
Fusion Middleware Upgrade Guide for Java EE.

7.2 Configuring WebLogic Server to Interoperate with AQ JMS
The following sections provide information on one method of configuring AQ JMS
queues and topics in an Oracle database and configuring a JMS foreign server in
WebLogic Server so applications can lookup AQ JMS connection factories and
destinations in the WebLogic JNDI context.

■ Section 7.2.1, "Configure Oracle AQ in the Database"

■ Section 7.2, "Configuring WebLogic Server to Interoperate with AQ JMS"

After you have prepared your AQ JMS queues and topics, you can perform the
remaining configuration tasks using either the WebLogic Console or the WLST
command line interface.

7.2.1 Configure Oracle AQ in the Database
Before you can start configuring your WebLogic Server resources, you need ensure
that there are AQ JMS queues and topics in your Oracle database. The following
sections describe one configuration method:

■ Section 7.2.1.1, "Create Users and Grant Permissions"

■ Section 7.2.1.2, "Create AQ Queue Tables"

■ Section 7.2.1.3, "Create a JMS Queue or Topic"

■ Section 7.2.1.4, "Start the JMS Queue or Topic"

■ Section 7.2.2.4, "Configure JMS Foreign Server Connection Factories"

■ Section 7.2.2.5, "Configure AQ JMS Foreign Server Destinations"

For more detailed information on using and configuring AQ, see Oracle Streams
Advanced Queuing User's Guide.

Note: Oracle does not recommend configuring multi data sources for
Load balancing with AQ JMS. AQ JMS and AQ usage scenarios
have natural hot spots that can cause over synchronization when the
load is spread among Oracle RAC instances. Under the right
circumstances, it can cause significant performance degradation

Configuring WebLogic Server to Interoperate with AQ JMS

7-4 Configuring and Managing JMS for Oracle WebLogic Server

7.2.1.1 Create Users and Grant Permissions
Create users in the database and grant them AQ JMS permissions. Use a database user
with administrator privileges to perform the following task:

■ Using the Oracle SQL*Plus environment, log in with an administrator login.

connect / as sysdba;

■ Create the JMS user schema. For the following example, the user name is jmsuser
and the password is jmsuserpwd.

Grant connect, resource TO jmsuser IDENTIFIED BY jmsuserpwd;

■ Grant the AQ user role to jmsuser.

Grant aq_user_role TO jmsuser;

■ Grant execute privileges to AQ packages.

Grant execute ON sys.dbms_aqadm TO jmsuser;

Grant execute ON sys.dbms_aq TO jmsuser;

Grant execute ON sys.dbms_aqin TO jmsuser;

Grant execute ON sys.dbms_aqjms TO jmsuser;

7.2.1.2 Create AQ Queue Tables
Each JMS queue or topic for AQ JMS is backed by an AQ queue table. Each queue
table serves as a repository for JMS messages. A JMS queue or topic (see
Section 7.2.1.2, "Create AQ Queue Tables") is a logical reference to the underlying AQ
queue table.

AQ queue tables are created within individual JMS user schemas and can be defined
using Oracle SQL*PLUS. For example:

connect jmsuser / jmsuserpwd;

Configuring an AQ queue table requires a minimum of three parameters: the name of
the queue table, the payload type, and a flag for whether the AQ queue table accepts
multiple consumers. For example:

dbms_aqadm.create_queue_table(
 queue_table=>"myQueueTable",
 queue_payload_type=>'sys.aq$_jms_text_message',
 multiple_consumers=>false
);

where:

■ queue_table: The queue table name. Mixed case is supported if the database is 10.0
but the name must be enclosed in double quotes. Queue table names must not be
longer than 24 characters.

■ queue_payload_type: The message type. Use sys.aq$_jms_message to support
all JMS message interface types.

■ multiple_consumers: Set false for queues; set true for topics.

For more information on creating queue tables, see "CREATE_QUEUE_TABLE
Procedure" in Oracle Database PL/SQL Packages and Types Reference.

Configuring WebLogic Server to Interoperate with AQ JMS

Interoperating with Oracle AQ JMS 7-5

7.2.1.3 Create a JMS Queue or Topic
AQ JMS queues are the JMS administrative resource for both queues and topics. Once
the AQ queue table is created, you can create a AQ JMS queue within individual JMS
user schemas using Oracle SQL*PLUS. For example:

connect jmsuser/jmsuserpwd;

The PL/SQL procedure for creating a queue or topic has the following form:

dbms_aqadm.create_queue(
 queue_name=>'userQueue',
 queue_table=>'myQueueTable'
);

where:

■ queue_name is the user defined name for the JMS queue.

■ queue_table must point to an existing AQ queue table.

For more information on creating queue tables, see "CREATE_QUEUE Procedure" in
Oracle Database PL/SQL Packages and Types Reference.

7.2.1.4 Start the JMS Queue or Topic
Before first use, a AQ JMS queue must be started. Using the JMS user schema, execute
the following PL/SQL procedure where queue_name represents the AQ JMS queue
name.

connect jmsuser / jmsuserpwd
dbms_aqadm.start_queue(queue_name=>'userQueue'

For more information on starting queues, see "START_QUEUE Procedure" in Oracle
Database PL/SQL Packages and Types Reference.

7.2.2 Configure WebLogic Server
The following sections provide information on how to configure WebLogic Server to
interoperate with AQ JMS:

■ Section 7.2.2.1, "Configure a WebLogic Data Source"

■ Section 7.2.2.2, "Configure a JMS System Module"

■ Section 7.2.2.3, "Configure a JMS Foreign Server"

■ Section 7.2.2.4, "Configure JMS Foreign Server Connection Factories"

■ Section 7.2.2.5, "Configure AQ JMS Foreign Server Destinations"

7.2.2.1 Configure a WebLogic Data Source
WebLogic Server applications (such as MDBs, EJBs, and Web apps) that use AQ JMS
configure a data source for the Oracle database that provides the AQ JMS service. In
most situations, this data source is dedicated to AQ JMS usage because it uses the JMS
user and password to connect to the schema in the database. It does support multiple
queues and topics if they are created in the schema used in the database connection.
When configuring your data source:

■ Select the Oracle Thin Driver.

■ Select the driver type based on the type of transactions required for AQ JMS:

– Select a non-XA based JDBC driver for use with AQ JMS in local transactions.

Configuring WebLogic Server to Interoperate with AQ JMS

7-6 Configuring and Managing JMS for Oracle WebLogic Server

– Select a XA based JDBC driver for use with AQ JMS in either in global
transactions or in local transactions.

■ When configuring a data source for non-XA drivers, do not select the Supports
Global Transactions option. This release does not support non-XA JDBC
driver data sources with any of the global transaction options such as LLR, JTS,
and Emulate Two-Phase Commit. If the global transaction option is selected, the
server instance logs a warning message. Global transactions are supported with
XA-based JDBC drivers.

■ Configure the database user name and password in the data source connection
pool configuration. Identity-based connection pools are not supported.

See "Configuring JDBC Data Sources" in Configuring and Managing JDBC Data Sources
for Oracle WebLogic Server.

7.2.2.2 Configure a JMS System Module
Configure a dedicated JMS system module to host a JMS foreign server for AQ
resources. Target the module at the WebLogic Server instances or the cluster that needs
to host the foreign JNDI names. See:

■ "Overview of JMS Modules" in Configuring and Managing JMS for Oracle WebLogic
Server.

■ "Create foreign servers in a system module" in Oracle WebLogic Server
Administration Console Help.

7.2.2.3 Configure a JMS Foreign Server
In your JMS Foreign Server configuration:

■ Specify oracle.jms.AQjmsInitialContextFactory as the JNDI Initial
Context Factory.

■ Configure the JDBC data sources needed for your application environment.

See:

■ Section 4.4, "Configuring Foreign Server Resources to Access Third-Party JMS
Providers"

■ "Configure foreign servers" in Oracle WebLogic Server Administration Console Help.

7.2.2.3.1 Reference a Data Source Specify the datasource JNDI property which is the
JNDI location of a locally bound WLS data source.

For Example:

<foreign-server>
<initial-context-factory>oracle.jms.AQjmsInitialContextFactory</initial-context-fa
ctory>
<jndi-property>
<key>datasource</key>
<value>jdbc/aqjmsds</value>
</jndi-property>
</foreign-server>

The value of the datasource JNDI property is the name of the data source
configured to access the AQ JMS Oracle database. No other configuration information
is required.

See Section 7.2.2.1, "Configure a WebLogic Data Source."

Configuring WebLogic Server to Interoperate with AQ JMS

Interoperating with Oracle AQ JMS 7-7

7.2.2.4 Configure JMS Foreign Server Connection Factories
Once you have created a JMS Foreign Server, you can create JNDI mappings for the
AQ JMS connection factories in the WebLogic Server JNDI tree. Unlike destinations,
AQ JMS does not require connection factories to be redefined in the Oracle database.
Instead, a predefined JNDI name is specified when identifying the remote JNDI name
for a connection factory. The remote JNDI name for the AQ JMS connection factory is
one of the following:

For example, consider two connection factories configured for an AQ JMS Foreign
Server:

When a WebLogic application looks up a JMS factory at jms/aq/myCF, the
application gets the AQ JMS object which implements the JMS
javax.jms.ConnectionFactory interface. When a WebLogic application looks up
a JMS factory at aq/orderXaTopicFactory, the application gets the AQ JMS object
which implements the JMS javax.jms.XAToicConnectionFactory interface.

To configure a AQ JMS foreign server connection factory, you need to:

■ Specify Local and Remote JNDI names

– The local JNDI name is the name that WebLogic uses to bind the connection
factory into the WebLogic JNDI tree. The local JNDI name must be unique so
that it doesn't conflict with an other JNDI name advertised on the local
WebLogic Server.

– The Remote JNDI name is the name that WebLogic passes to AQ JMS to
lookup AQ JMS connection factories.

When configuring AQ JMS for use in global transactions, use an XA based
connection factory; otherwise configure a non-XA based connection factory.

■ No other configuration parameters are required.

See:

■ Section 4.4.2.1, "Creating Foreign Connection Factory Resources"

■ "Create foreign connection factories" in Oracle WebLogic Server Administration
Console Help.

Table 7–1 Remote JNDI names for AQ JMS Connection Factories

<AQ JMS Prefix Value> JMS Interface

QueueConnectionFactory javax.jms.QueueConnectionFactory

TopicConnectionFactory javax.jms.TopicConnectionFactory

ConnectionFactory javax.jms.ConnectionFactory

XAQueueConnectionFactory javax.jms.XAQueueConnectionFactory

XATopicConnectionFactory javax.jms.XATopicConnectionFactory

XAConnectionFactory javax.jms.XAConnectionFactory

Table 7–2 AQ JMS Foreign Server Example Connection Factories

Local JNDI Name RemoteJNDI Name

jms/aq/myCF ConnectionFactory

aqjms/orderXaTopicFactory XATopicConnectionFactory

Programming Considerations

7-8 Configuring and Managing JMS for Oracle WebLogic Server

7.2.2.5 Configure AQ JMS Foreign Server Destinations
When configuring an AQ JMS foreign destination, you need to configure the
following:

■ Local JNDI name—the name that WLS uses to bind the destination into the
WebLogic JNDI tree. The local JNDI name must be unique so that it doesn't
conflict with any other JNDI names advertised on the local WebLogic Server
instance.

■ Remote JNDI name—the name that WLS passes to AQ JMS to do a lookup. AQ
JMS requires the Remote JNDI name to be in the following syntax:

– If the destination is a queue, the remote JNDI name must be Queues/<queue
name>.

– If the destination is a topic, the remote JNDI name must be Topics/<topic
name>

Similar to connection factories, AQ JMS destinations require a remote JNDI name with
a prefix to identify the JMS object type. There are two values for destinations:

Unlike AQ JMS connection factory JNDI names, the value for the destination name
represents the AQ JMS destination defined in the database. See Chapter 7.2.1.3, "Create
a JMS Queue or Topic." For example, consider the two destinations configured for an
AQ JMS Foreign Server in the following table:

A WebLogic application looking up the location jms/myQueue references the AQ JMS
queue defined by userQueue. Looking up the location AqTopic references the AQ
JMS topic defined by myTopic.

See:

■ Section 4.4.2.1, "Creating Foreign Connection Factory Resources"

■ "Create foreign destinations" in Oracle WebLogic Server Administration Console Help.

7.3 Programming Considerations
The following sections provide information on advanced WebLogic AQ JMS topics:

■ Section 7.3.1, "Message Driven Beans"

■ Section 7.3.2, "AQ JMS Extensions"

■ Section 7.3.3, "Resource References"

■ Section 7.3.4, "JDBC Connection Utilization"

Table 7–3 AQ JMS Prefix Value of the JMS Interface

AQ JMS Prefix Value JMS Interface

Queues Javax.jms.Queue

Topics javax.jms.Topic

Table 7–4 Example AQ JMS Foreign Server Destinations

Local JNDI Name Remote JNDI Name

jms/myQueue Queues/userQueue

AqTopic Topics/myTopic

Programming Considerations

Interoperating with Oracle AQ JMS 7-9

■ Section 7.3.5, "Oracle RAC Support"

■ Section 7.3.6, "Debugging"

■ Section 7.3.7, "Performance Considerations"

7.3.1 Message Driven Beans
MDBs interoperate with AQ JMS by using a configured foreign server. See
Section 7.2.2.3, "Configure a JMS Foreign Server." The message driven parameters
initial-context-factory and provider-url are not supported as these
parameters are supplied as part of the JMS Foreign Server configuration. The
destination type for the MDB destination in the ejb-jar.xml file should be
configured to either: javax.jms.Queue or javax.jms.Topic. Additional MDB
configuration is required to enable container managed transactions, durable topic
subscriptions, and other MDB features.

SeeProgramming Message-Driven Beans for Oracle WebLogic Server.

7.3.2 AQ JMS Extensions
AQ JMS extension API's are supported by AQ JMS specific classes. You can invoke the
AQ JMS extensions, after casting the standard JMS objects (such as connection factories
and destinations) to proprietary AQ JMS classes. For example:

. . .
import oracle.jms.AQjmsFactory;
. . .
ConnectionFactory myCF = (ConnectionFactory) jndiCtx.lookup("aqjms/testCF");
AQjmsFactory myCF = (AQjmsFactory) myCF;
myCF.someProprietaryAQJMSmethod(..);
. . .
When you use resource references for a AQ JMS connection factory, WebLogic Server
wraps the underlying AQ JMS connection factory with a wrapper object. This wrapper
object implements the JMS standard API, but it cannot cast it to an AQ JMS class
which provides AQ JMS extension APIs. For example:

. . .
// Implements wrapping and can’t cast to AQ JMS
<resource-ref>
 <res-ref-name>aqjms/testCF</res-ref-name>
 <res-type>javax.jms. ConnectionFactory</res-type>
 <res-auth>Application</res-auth>
 </resource-ref>
. . .

 To avoid the wrapping, users can specify the java.lang.Object as the resource
type of the resource reference instead of javax.jms.XXXConnectionFactory in
the deployment descriptor. This limitation is specific to AQ JMS, as resource references
only support extensions that are exposed using Java interfaces. For example:

. . .
// Use for AQ JMS extensions
<resource-ref>
 <res-ref-name>aqjms/testCF</res-ref-name>
 <res-type>java.lang.Object</res-type>
 <res-auth>Application</res-auth>
 </resource-ref>
. . .

Programming Considerations

7-10 Configuring and Managing JMS for Oracle WebLogic Server

AQ JMS does not define Java interfaces for its extensions. With AQ JMS, avoiding
wrapping does not disable automatic JTA transaction enlistment, nor does it prevent
pooling, as AQ JMS obtains these capabilities implicitly through its embedded use of
WebLogic data sources.

7.3.2.1 Using AdtMessage
An AdtMessage is a special type of AQ JMS extension that supports Oracle Abstract
Data Types (ADTs). ADTs consists of a data structure and subprograms that
manipulate data in an Oracle database.

See:

■ "Using Oracle Java Message Service (OJMS) to Access Oracle Streams Advanced
Queuing" and "Object Type Support" in Oracle Streams Advanced Queuing User's
Guide

■ "Data Abstraction" in Oracle Database PL/SQL Language Reference

7.3.3 Resource References
If you choose to use the resource references and the resource type is
javax.jms.XXXConnectionFactory, WebLogic wraps the AQ JMS objects passed
to a user application. If you also use the AQ JMS extension APIs, they must be
unwrapped as described in Section 7.3.2, "AQ JMS Extensions."

WebLogic resource reference wrappers do not automatically pool AQ JMS connections.
Instead, AQ JMS server-side integration depends on data source connection pooling to
mitigate the overhead of opening and closing JMS connections and sessions. WebLogic
resource references disable pooling because the AQ JMS provider JMS connection
factory is always pre-configured with a client identifier, which in turn, causes
WebLogic resource references to disable its pooling feature.

7.3.4 JDBC Connection Utilization
An AQ JMS session holds a JDBC connection until the JMS session is closed, regardless
of whether the connection uses a data source or a JDBC URL. Oracle recommends that
you close an AQ JMS session if the session becomes idle for an extended period of
time. Closing the JMS session releases the JDBC connection back to the WebLogic data
source pool or releases the database and network resources for a JDBC URL.

7.3.5 Oracle RAC Support
The following section provides information on limitations in Oracle RAC
environments:

■ Oracle RAC environments require the configuration of WebLogic Multi Data
Sources to provide AQ JMS Oracle RAC failover. See "Using WebLogic Server with
Oracle RAC" in Configuring and Managing JDBC Data Sources for Oracle WebLogic
Server.

■ Oracle RAC failover is not supported when using a WebLogic AQ JMS stand-alone
client for this release.

Note: Not supported with Message-Driven Beans (MDBs).

Advanced Topics

Interoperating with Oracle AQ JMS 7-11

7.3.6 Debugging
To use AQ JMS tracing and debugging, set the following system property:
oracle.jms.traceLevel.

The value of this property is an integer ranging from 1 to 6 where a setting of 6
provides the finest level of detail. The trace output is directed to the standard output
of the running JVM.

7.3.7 Performance Considerations
In releases prior to Oracle RDBMS 11.2.0.2, statistics on the queue table are locked by
default which causes a full table scan for each dequeue operation. To work around this
issue, unlock the queue tables and collect the statistics. For example:

exec DBMS_STATS.UNLOCK_TABLE_STATS ('<schema>','<queue table>');

exec DBMS_STATS.gather_table_stats('<schema>','<queue table>');

exec DBMS_STATS.LOCK_TABLE_STATS ('<schema>','<queue table>');

7.4 Advanced Topics
The following sections provide information on advanced interoperability topics when
WebLogic Server applications interoperate with AQ JMS.

■ Section 7.4.1, "Security Considerations"

■ Section 7.4.2, "WebLogic Messaging Bridge"

■ Section 7.4.3, "Stand-alone WebLogic AQ JMS Clients"

7.4.1 Security Considerations
Stand-alone clients and server-side applications have different security semantics and
configuration. If security is a concern, read this section carefully and also reference the
WebLogic lock-down document for general information on how to secure a WebLogic
Server or Cluster (see Securing a Production Environment for Oracle WebLogic Server). The
following section outlines security considerations for this release:

■ Section 7.4.1.1, "Configuring AQ Destination Security"

■ Section 7.4.1.2, "Access to JNDI Advertised Destinations and Connection Factories"

■ Section 7.4.1.3, "Controlling Access to Destinations that are Looked Up using the
JMS API"

7.4.1.1 Configuring AQ Destination Security
ENQUEUE and/or DEQUEUE permission must be configured for the database user in
AQ to allow destination lookups as well as to allow enqueues and dequeues.

The following usernames must be given enqueue and/or dequeue permission:

■ For stand-alone clients:

– The configured JMS Foreign Server username, as specified using the
java.naming.security.principal property.

– For Java code that passes a username using the JMS ConnectionFactory API
createConnection() method, this username requires permission.

■ For server-side applications:

Advanced Topics

7-12 Configuring and Managing JMS for Oracle WebLogic Server

– The Database User Name is configured on the WebLogic Data Source.

– Do not give permission for a username specified for JDBC Data Source clients
that pass a username using the JMS ConnectionFactory API
createConnection() method: this username is a WebLogic username,
not a database username.

To understand which JDBC connection credentials and permissions that are used for
AQ lookups, enqueues, and dequeues, see "Queue Security and Access Control" in
Oracle Streams Advanced Queuing User's Guide.

7.4.1.2 Access to JNDI Advertised Destinations and Connection Factories
As described earlier, local JNDI names for connection factories and destinations must
be configured as part of the JMS Foreign Server configuration task. You can optionally
configure security policies on these JNDI names, so access checks occur during JNDI
lookup based on the current WebLogic credentials. The current WebLogic credentials
depend on the client type.

Once an application's WebLogic JNDI lookup security policy credential check passes
for a destination, a JMS Foreign Server destination automatically looks up the
destination resources in Oracle AQ using a JDBC connection.

For stand-alone clients, the credential used for the second part of a destination lookup
process are based on the username and password that is configured on the JMS
Foreign Server.

For server-side application JDBC Data Source clients, the credential used for this
second destination lookup is based on the database username and password
configured as part of the data source. Note that the credential used to gain access to
this data source is the current WebLogic credential. It is possible to configure a
WebLogic security policies on the data source. The WebLogic data source Identity
Based Connection Pooling feature is not supported for this purpose.

As previously mentioned, the database credential must have AQ JMS enqueue or
dequeue permission on a destination in order to be able to successfully lookup the
destination. See Section 7.4.1.1, "Configuring AQ Destination Security."

7.4.1.3 Controlling Access to Destinations that are Looked Up using the JMS API
The JMS QueueSession and TopicSession APIs provide an alternative to JNDI
for looking up destinations, named createQueue() and createTopic()
respectively. See "How to Lookup a Destination" in Programming JMS for Oracle
WebLogic Server.

 The createQueue() and createTopic() calls use the database credential
associated with the JMS connection. The following sections describe how to set this
credential.

7.4.1.3.1 Additional Security Configuration for Stand-alone Clients The following section
provides security configuration information for stand-alone clients:

■ Network communication from a client into WebLogic occurs when establishing a
JNDI initial context and when performing any subsequent JNDI lookups. To
ensure secure communication and avoid plain text on the wire, use an SSL capable

Note: A permission failure while looking up a destination will
manifest as a "name not found" exception thrown back to application
caller, not a security exception.

Advanced Topics

Interoperating with Oracle AQ JMS 7-13

protocol (such as t3s or https). The credentials used for WebLogic login, as well as
the JMS Foreign Server credentials that are configured for database login, are
passed plain-text on the wire unless SSL is configured.

■ Network communication is direct from the client to the database when
communicating with AQ. This communication is controlled by the JDBC URL
configuration, and is in plain text unless the JDBC URL is configured to use SSL.
Stand-alone clients communicate directly with the database over a database
connection when using the AQ JMS APIs, their JMS requests do not route through
a WebLogic server.

■ WebLogic Server username and password: The network login from a client into
WebLogic is performed as part of establishing the JNDI initial context. The
username and password properties that are optionally supplied when creating the
context become the WebLogic identity (the property names are
Context.SECURITY_PRINCIPAL = "java.naming.security.principal"
and Context.SECURITY_CREDENTIALS =
"java.naming.security.credentials" respectively). This becomes the
credential that is checked for subsequent JNDI lookups. The credential is also
implicitly associated with current thread, and so becomes the credential used for
subsequent WebLogic operations on the same thread, but this is not the credential
used for AQ JMS operations.

■ The javax.jms.ConnectionFactory createConnection() method has an
optional username and password. For stand-alone clients, these override the
context credentials that were configured as part of the JMS Foreign Server
configuration. AQ JMS creates a database connection with the specified user
identity. If createConnection() is called without a username and password,
then the database connection is created using the username and password that
was configured as part of the JMS Foreign Server configuration.

■ Do not include a username/password directly in the JDBC URL. Instead use the
JMS Foreign Server username and password.

■ Do not configure a username and password on the JMS Foreign Server connection
factory. The resulting behavior is unsupported.

7.4.1.3.2 Additional Security Configurations for Server-side Applications The following
section provides security configuration information for server-side applications.

■ Do not configure a java.naming.security.principal or a credential on the
JMS Foreign Server unless the same JMS Foreign Server is also being used to
support stand-alone clients.

■ Do not configure a username and password on the JMS Foreign Server connection
factory. The resulting behavior is unsupported.

■ Network communication from the server to the database (server-side applications)
is controlled by data source configuration, and is in plain text unless the data
source is configured to use SSL.

■ The javax.jms.ConnectionFactory createConnection() method has an
optional username and password. For server-side JMS AQ applications, the
method assumes the username is for a WebLogic user and authenticates it with the
WebLogic server. This behavior deviates from other kinds of JMS AQ clients,
where the username is instead treated as a database user. When configured with a
WebLogic data source, AQ JMS delegates the authentication to the WebLogic data
source and AQ JMS inherits the WebLogic user semantics.

Advanced Topics

7-14 Configuring and Managing JMS for Oracle WebLogic Server

■ When an AQ JMS foreign server is configured with a WebLogic data source, the
data source is exposed to general-purpose JDBC usage. Oracle recommends that
you secure the data source as described in "Using Roles and Policies to Secure
JDBC Data Sources" in Configuring and Managing JDBC Data Sources for Oracle
WebLogic Server.

■ WebLogic Server username and password: WebLogic credentials are checked
when accessing secured names in JNDI, and accessing secured data sources.
Server side applications automatically assume the same WebLogic credentials as
the caller that invoked the application, or, in the case of MDBs, this credential is
configurable as part of the MDB configuration.

■ The WebLogic data source Identity Based Connection Pooling feature is not
supported.

■ JNDI context credentials: Specifying credentials as part of setting up a JNDI
context within a server-side application is usually not necessary, and is not
normally recommended. This creates a new credential that overrides the
application's current credentials. In other words, the username and password
properties that are optionally supplied when creating the context become the
WebLogic identity and replace any current identity (the property names are
Context.SECURITY_PRINCIPAL = "java.naming.security.principal"
and Context.SECURITY_CREDENTIALS =
"java.naming.security.credentials" respectively). The optional new
credential is implicitly associated with current thread, and so becomes the
credential used for subsequent WebLogic operations on the same thread, such as
JNDI lookups. The new credential is not the credential used for AQ JMS
operations.

7.4.2 WebLogic Messaging Bridge
A WebLogic Messaging Bridge communicates with the configured source and target
bridge destinations. For each mapping of a source destination to a target destination,
you must configure a messaging bridge instance. Each messaging bridge instance
defines the source and target destination for the mapping, a message filtering selector,
a QOS, transaction semantics, and various reconnection parameters.

If you have AQ foreign destinations that are not local to the server running the
application or MDBs sending and receiving messages, you must configure a
messaging bridge instance on the server that is local to the AQ foreign destinations. A
local database connection is used in the process of sending and receiving messages
from AQ destinations.

For more information on the WebLogic Messaging Bridge, see "Understanding the
Messaging Bridge" in Configuring and Managing the Messaging Bridge for Oracle
WebLogic Server.

7.4.2.1 Create a Messaging Bridge Instance
The section provides the major steps in creating a messaging bridge between AQ
destinations configured as foreign destinations in one domain and applications/MDBs
running in another domain:

1. Create the bridge instance on the server where AQ destinations configured as
foreign destinations.

2. Create source and target bridge destinations.

Select Other JMS in the default Messaging Provider drop down when a Foreign
AQ JMS destination is specified for a source or target destination.

Advanced Topics

Interoperating with Oracle AQ JMS 7-15

3. Deploy a resource adapter.

4. Create a messaging bridge instance.

The Messaging Bridge Exactly-Once quality of service requires a data source
configured with the XA based JDBC driver and must use an AQ JMS connection
factory that implements an XA JMS connection factory interface. See
Section 7.2.2.1, "Configure a WebLogic Data Source" and Section 7.2.2.4, "Configure
JMS Foreign Server Connection Factories."

5. Target the messaging bridge.

The Administration Console assists you in creating a messaging bridge by deploying
an appropriate resource adapter and setting the values of some attributes. Consider
changing messaging bridge settings to better suit your environment. See "Create
Messaging Bridge Instances" in Oracle WebLogic Server Administration Console Help

7.4.3 Stand-alone WebLogic AQ JMS Clients
You can create WebLogic AQ JMS stand-alone clients that can lookup AQ JMS
connection factories and destinations defined by a JMS Foreign Server using a JDBC
URL. The client must have the following jars on the client-side classpath: aqapi.jar,
ojdbc6.jar, orai18n.jar and one of the following WebLogic client jars:
wlthint3client.jar, wlclient.jar, or wlfullclient.jar.

For applications running outside the WebLogic Server's JVM:

■ A configured WebLogic JMS Foreign Server references the database's URL, as well
as other JDBC driver configurations. See Section 7.4.3.1, "Configure a Foreign
Server using a Database's JDBC URL."

■ Local JNDI names are defined for AQ JMS connection factories and destinations as
part of the WebLogic JMS Foreign Server configuration. These JNDI names are
configured to map to existing AQ connection factories and destinations.

■ Stand-alone clients reference local JNDI names. Unlike applications that run on
WebLogic Server, stand-alone clients need to ensure that the driver and AQ client
are on the classpath.

7.4.3.1 Configure a Foreign Server using a Database's JDBC URL
Specify the db_url, java.naming.security.principal JNDI properties and a
password in jndi-properties-credentials.

For Example:

<foreign-server>

<initial-context-factory>oracle.jms.AQjmsInitialContextFactory</initial-context-fa
ctory>

<jndi-properties-credential-encrypted>{3DES}g8yFFu1AhP8=</jndi-properties-credenti
al-encrypted>

<jndi-property>
<key>java.naming.security.principal</key>
<value>j2ee</value>
</jndi-property>

<jndi-property>
<key>db_url</key>
<value>jdbc:oracle:thin:@{hostname}:{port}:{sid}</value>

Related Documentation

7-16 Configuring and Managing JMS for Oracle WebLogic Server

</jndi-property>

</foreign-server>

where:

■ The value of the db_url JNDI property is the JDBC URL used to connect to the
AQ JMS Oracle database.

■ The value of the java.naming.security.principal is the database user
name AQ JMS uses to connect to the database.

■ jndi-properties-credentials contains the database password.

 No other configuration properties are required.

7.4.3.2 Limitations when using Stand-alone WebLogic AQ JMS Clients
The following section provides limitations to consider when creating and using
stand-alone WebLogic JMS clients. This release does not support:

■ Use of a WebLogic AQ JMS stand-alone client to automatically participate in
global transactions managed by WLS.

■ Connection pooling for WebLogic AQ JMS stand-alone clients.

■ Looking up JMS objects defined by an AQ JMS foreign server using a data source.

7.5 Related Documentation
The following section provides links to related documentation:

■ Oracle Streams Advanced Queuing User's Guide

■ Performance and Tuning for Oracle WebLogic Server

■ "FAQs: Integrating Remote JMS Providers" in Programming JMS for Oracle WebLogic
Server

■ Configuring and Managing JMS for Oracle WebLogic Server

■ Programming Stand-alone Clients for Oracle WebLogic Server

8

Monitoring JMS Statistics and Managing Messages 8-1

8Monitoring JMS Statistics and Managing
Messages

This chapter describes how to monitor and manage JMS statistics. You can create,
collect, analyze, archive, and access diagnostic data generated by a running server and
the applications deployed within its containers.

For WebLogic JMS, you can use the enhanced runtime statistics to monitor the JMS
servers and destination resources in your WebLogic domain to see if there is a
problem. If there is a problem, you can use profiling to determine which application is
the source of the problem. Once you've narrowed it down to the application, you can
then use JMS debugging features to find the problem within the application.

For more information on configuring JMS diagnostic notifications, debugging options,
message life cycle logging, and controlling message operations on JMS destinations,
see Chapter 10, "Troubleshooting WebLogic JMS."

Message administration tools in this release enhance your ability to view and browse
all messages, and to manipulate most messages in a running JMS Server, using either
the Administration Console or through new public runtime APIs. These message
management enhancements include message browsing (for sorting), message
manipulation (such as create, move, and delete), message import and export, as well as
transaction management, durable subscriber management, and JMS client connection
management.

The following sections explain how to monitor JMS resource statistics and how to
manage your JMS messages from the Administration Console:

■ Section 8.1, "Monitoring JMS Statistics"

■ Section 8.2, "Managing JMS Messages"

For more information about the WebLogic Diagnostic Service, see Configuring and
Using the Diagnostics Framework for Oracle WebLogic Server.

8.1 Monitoring JMS Statistics
Once WebLogic JMS has been configured, applications can begin sending and
receiving messages through the JMS API, as described in "Developing a Basic JMS
Application" in Programming JMS for Oracle WebLogic Server.

You can monitor statistics for the following JMS resources: JMS servers, connections,
queue and topic destinations, JMS server session pools, pooled connections, active
sessions, message producers, message consumers, and durable subscriptions on JMS
topics.

Monitoring JMS Statistics

8-2 Configuring and Managing JMS for Oracle WebLogic Server

JMS statistics continue to increment as long as the server is running. Statistics are reset
only when the server is rebooted.

8.1.1 Monitoring JMS Servers
You can monitor statistics on active JMS servers defined in your domain via the
Administration Console or through the JMSServerRuntimeMBean. JMS servers act
as management containers for JMS queue and topic resources within JMS modules that
are specifically targeted to JMS servers.

For more information on using the Administration Console to monitor JMS servers,
see "Monitor JMS servers" in the Oracle WebLogic Server Administration Console Help.

When monitoring JMS servers with the Administration Console, you can also monitor
statistics for active destinations, transactions, connections, and session pools.

8.1.1.1 Monitoring Active JMS Destinations
You can monitor statistics on all the active destinations currently targeted to a JMS
server. JMS destinations identify queue or topic destination types within JMS modules
that are specifically targeted to JMS servers.

For more information, see "JMS Server: Monitoring: Active Destinations" in the Oracle
WebLogic Server Administration Console Help.

8.1.1.2 Monitoring Active JMS Transactions
You can monitor view active transactions running on a JMS server.

For more information on the runtime statistics provided for active JMS transactions,
see "JMS Server: Monitoring: Active Transactions" in the Oracle WebLogic Server
Administration Console Help.

8.1.1.3 Monitoring Active JMS Connections, Sessions, Consumers, and Producers
You can monitor statistics on all the active JMS connections to a JMS server. A JMS
connection is an open communication channel to the messaging system.

For more information on the runtime statistics provided for active JMS server
connections, see "JMS Server: Monitoring: Active Connections" in the Oracle WebLogic
Server Administration Console Help.

Using the JMS server's Active Connections monitoring page, you can also monitor
statistics on all the active JMS sessions, consumers, and producers on your server. A
session defines a serial order for both the messages produced and the messages
consumed, and can create multiple message producers and message consumers. The
same thread can be used for producing and consuming messages.

For more information on using the Administration Console to monitor session,
consumers, and producers, see the following topics in the Oracle WebLogic Server
Administration Console Help:

■ "JMS Servers Monitoring: Active Connections: Sessions"

■ "JMS Server: Monitoring: Active Connections: Sessions: Consumers"

■ "JMS Server: Monitoring: Active Connections: Sessions: Producers"

8.1.1.4 Monitoring Active JMS Session Pools
You can monitor statistics on all the active JMS session pools defined for a JMS server.
Session pools enable an application to process messages concurrently.

Monitoring JMS Statistics

Monitoring JMS Statistics and Managing Messages 8-3

For more information on the runtime statistics provided for active JMS session pools,
see "JMS Server: Monitoring: Active Session Pools" in the Oracle WebLogic Server
Administration Console Help.

8.1.2 Monitoring Queues
You can monitor statistics on queue resources in JMS modules via the Administration
Console or through the JMSDestinationRuntimeMBean. A JMS queue defines a
point-to-point destination type for a JMS server. Queues are used for synchronous peer
communications. A message delivered to a queue will be distributed to one consumer.

For more information on using the Administration Console to monitor queue
resources, see "Monitor queues in JMS system modules" in the Oracle WebLogic Server
Administration Console Help.

You can also use the Administration Console to manage messages on queues, as
described in Section 8.2, "Managing JMS Messages."

8.1.3 Monitoring Topics
You can monitor statistics on topic resources in JMS modules via the Administration
Console or through the JMSDestinationRuntimeMBean. A JMS topic identifies a
publish/subscribe destination type for a JMS server. Topics are used for asynchronous
peer communications. A message delivered to a topic will be distributed to all topic
consumers.

For more information on using the Administration Console to monitor topic resources,
see "Monitor topics in JMS system modules" in theOracle WebLogic Server
Administration Console Help.

8.1.4 Monitoring Durable Subscribers for Topics
You can monitor statistics on all the durable subscribers that are running on your JMS
topics via the Administration Console or through the
JMSDurableSubscriberRuntimeMBean. Durable subscribers allow you to assign a
name to a topic subscriber and associate it with a user or application. WebLogic stores
durable subscribers in a persistent file-base store or JDBC-accessible database until the
message has been delivered to the subscribers or has expired, even if those subscribers
are not active at the time that the message is delivered.

You can use the Administration Console to manage durable subscribers running on
topics, as described in Section 8.2, "Managing JMS Messages."

8.1.5 Monitoring Uniform Distributed Queues
You can monitor statistics on uniform distributed queue resources in JMS modules via
the Administration Console or through the JMSDestinationRuntimeMBean. A
distributed queue resource is a single set of queues that are accessible as a single,
logical destination to a client (for example, a distributed topic has its own JNDI name).
The members of the unit are usually distributed across multiple servers within a
cluster, with each member belonging to a separate JMS server.

For more information on using the Administration Console to monitor uniform
distributed queue resources, see "Uniform distributed queues - monitor statistics" in
the Oracle WebLogic Server Administration Console Help.

You can also use the Administration Console to manage messages on distributed
queues, as described in Section 8.2, "Managing JMS Messages."

Managing JMS Messages

8-4 Configuring and Managing JMS for Oracle WebLogic Server

8.1.6 Monitoring Uniform Distributed Topics
You can monitor statistics on uniform distributed topic resources in JMS modules via
the Administration Console or through the JMSDestinationRuntimeMBean. A
distributed topic resource is a single set of topics that are accessible as a single, logical
destination to a client (for example, a distributed topic has its own JNDI name). The
members of the unit are usually distributed across multiple servers within a cluster,
with each member belonging to a separate JMS server.

For more information on using the Administration Console to monitor uniform
distributed topic resources, see "Uniform distributed queues - monitor statistics" in the
Oracle WebLogic Server Administration Console Help.

8.1.7 Monitoring Pooled JMS Connections
You can monitor statistics on all the active pooled JMS connections on your server. A
pooled JMS connection is a session pool used by EJBs and servlets that use a
resource-reference element in their EJB or servlet deployment descriptor to define their
JMS connection factories.

For more information, see "JMS Server: Monitoring: Active Pooled Connections" in the
Oracle WebLogic Server Administration Console Help.

8.2 Managing JMS Messages
The WebLogic JMS message monitoring and management features allow you to create
new messages, delete selected messages, move messages to another queue, export
message contents to another file, import message contents from another file, or drain
all the messages from the queue.

8.2.1 JMS Message Management Using Java APIs
WebLogic Java Management Extensions (JMX) enables you to access the
JMSDestinationRuntimeMBean and JMSDurableSubscriberRuntimeMBean to
manage messages on JMS queues and topic durable subscribers. For more information,
see "Accessing WebLogic Server MBeans with JMX" in Developing Custom Management
Utilities With JMX for Oracle WebLogic Server.

In WebLogic JMS, there are various states for messages. You can use these states to
help manage your messages as described in the following sections. For information on
valid message states, see weblogic.jms.extensions.JMSMessageInfo in Oracle WebLogic
Server API Reference.

8.2.2 JMS Message Management Using the Administration Console
The JMS Message Management page of the Administration Console summarizes the
messages that are available on the standalone queue, distributed queue, or durable
topic subscriber you that you are monitoring. You can page through messages and/or
retrieve a set of messages that meet filtering criteria you specify. You can also
customize the message display to show only the information you need. From this
page, you can select a message to display its contents, create new messages, delete one
or more messages, move messages, import and export messages, and drain (delete) all
of the messages from the queue or durable subscription.

For more information on using the Administration Console to manage messages on
standalone queues, distributed queues, and durable subscribers, see the following
instructions in the Oracle WebLogic Server Administration Console Help:

Managing JMS Messages

Monitoring JMS Statistics and Managing Messages 8-5

■ "Manage queue messages"

■ "Manage distributed queue messages"

■ "Manage topic durable subscribers"

Each message management function is described in detail in the following sections.

8.2.2.1 Monitoring Message Runtime Information
By default, the JMS Message Management page displays the information about each
message on a queue or durable subscriber in a table with the following columns.

■ ID - A unique identifier for the message.

■ Type - The JMS message type, such as BytesMessage, TextMessage,
StreamMessage, ObjectMessage, MapMessage, or XMLMessage.

■ CorrId - A correlation ID is a user-defined identifier for the message, often used to
correlate messages about the same subject

■ Priority - An indicator of the level of importance or urgency of the message, with 0
as the lowest priority and 9 as the highest. Usually, 0-4 are gradients of normal
priority and 5-9 are gradients of expedited priority. Priority is set to 4 by default.

■ Timestamp - The time the message arrived on the queue.

You can change the order in which the columns are listed and choose which of the
columns will be included in and which excluded from the display. You can also
increase the number of messages displayed on the page from 10 (default) to 20 or 30.

By default, messages are displayed in the order in which they arrived at the
destination. You can choose to display the messages in either ascending or descending
order by message ID instead by clicking on the ID column header. However, you
cannot restore the initial sort order once you have altered it; you must return to the
JMS System Module Resources page and reselect the queue to see the messages in
order of arrival again.

8.2.2.2 Querying Messages
The Message Selector field at the top of the JMS Message Management page enables
you to filter the messages on the queue based on any valid JMS message header or
property with the exception of JMSXDeliveryCount. A message selector is a boolean
expression. It consists of a String with a syntax similar to the where clause of an SQL
select statement.

The following are examples of selector expressions.

salary > 64000 and dept in ('eng','qa')
(product like 'WebLogic%' or product like '%T3')
 and version > 3.0
hireyear between 1990 and 1992
 or fireyear is not null
fireyear - hireyear > 4

For more information about the message selector syntax, see the javax.jms.Message
Javadoc, available at
http://download.oracle.com/javaee/5/api/javax/jms/Message.html.

8.2.2.3 Moving Messages
You can forward a message from a source destination to a target destination under the
following conditions:

Managing JMS Messages

8-6 Configuring and Managing JMS for Oracle WebLogic Server

■ The source destination is either a queue or a topic durable subscriber in the
consumption-paused state.

■ The message state is either visible, delayed, or ordered.

■ The target destination is:

– in the same cluster as the source destination

– either a queue, a topic, or a topic durable subscriber

– not in the production-paused state

The message identifier does not change when you move a message. If the message
being moved already exists on the target destination, a duplicate message with the
same identifier is added to the destination.

8.2.2.4 Deleting Messages
You can delete a specific message or drain all messages from a queue or topic durable
subscriber under the following conditions:

■ The destination is in the consumption-paused state.

■ The message state is either visible, delayed, or ordered.

The destination is locked while the delete operation occurs. If there is a failure during
the delete operation, it is possible that only a portion of the messages selected will be
deleted.

8.2.2.5 Creating New Messages
You can create new messages to be sent to a destination. To produce a new message,
provide the following information:

■ Message type – such as BytesMessage, TextMessage, StreamMessage,
ObjectMessage, MapMessage, or XMLMessage.

■ Correlation ID – a user-defined identifier for the message, often used to correlate
messages about the same subject.

■ Expiration – specifies the expiration, or time-to-live value, for a message.

■ Priority – an indicator of the level of importance or urgency of the message, with 0
as the lowest priority and 9 as the highest. Usually, 0-4 are gradients of normal
priority and 5-9 are gradients of expedited priority. Priority is set to 4 by default.

■ Delivery Mode – specifies PERSISTENT or NON_PERSISTENT messaging.

Note: For more information about consumption-paused states, see
Section 10.5.4, "Consumption Pause and Consumption Resume."

Note: For more information about production-paused states, see
Section 10.5.2, "Production Pause and Production Resume."

Note: For more information about consumption-paused states, see
Section 10.5.4, "Consumption Pause and Consumption Resume."

Managing JMS Messages

Monitoring JMS Statistics and Managing Messages 8-7

■ Delivery Time – defines the earliest absolute time at which a message can be
delivered to a consumer.

■ Redelivery Limit – the number of redelivery tries a message can have before it is
moved to an error destination.

■ Header – every JMS message contains a standard set of header fields that is
included by default and available to message consumers. Some fields can be set by
the message producers.

■ Body – the message content.

For more information on JMS message properties, see "Understanding WebLogic JMS"
in Programming JMS for Oracle WebLogic Server.

8.2.2.6 Importing Messages
Importing a message in XML format results in the creation or replacement of a
message on the specified destination. The target destination for an imported message
can be either a queue or a topic durable subscriber. The destination must be in a
production-paused state.

If a message being replaced with an imported file is associated with a JMS transaction,
the imported replacement will still be associated with the transaction.

When a new message is created or an existing message is replaced with an imported
file, the following rules apply:

■ Quota limits are enforced for both new messages and replacement messages.

■ The delivery count of the imported message is set to zero.

■ A new message ID is generated for each imported message.

■ If the imported message specifies a delivery mode of PERSISTENT and the target
destination has no store, the delivery mode is changed to NON-PERSISTENT.

8.2.2.7 Exporting Messages
Exporting a message results in a JMS message that is converted to either XML or
serialized format. The source destination must be in a production-paused state.

Note: For more information about production-paused states, see
Section 10.5.2, "Production Pause and Production Resume."

Note: While importing a JMS message is similar in result to creating
or publishing a new JMS message, messages with a defined (non-zero)
ExpirationTime behave differently when imported, but since the
message management API's ExpirationTime is absolute for
imported messages. Whereas, the message send API's
ExpirationTime is relative to the time the message is sent.

Note: For more information about production-paused states, see
Section 10.5.2, "Production Pause and Production Resume."

Managing JMS Messages

8-8 Configuring and Managing JMS for Oracle WebLogic Server

Temporary destinations enable an application to create a destination, as required,
without the system administration overhead associated with configuring and creating
a server-defined destination.

8.2.3 Managing Transactions
When a message is produced or consumed as part of a global transaction, the message
is essentially locked by the transaction and will remain locked until the transaction
coordinator either commits or aborts the JMS branch. If the coordinator is not able to
communicate the outcome of the transaction to the JMS server due to a failure, the
message(s) associated with the transaction may remain pending for a long time.

The JMS server transaction management features available through the
Administration Console allow you to:

■ Identify in-progress transactions for which a JMS server is a participant.

■ Identify messages associated with a JMS transaction branch.

■ Force the outcome of pending JMS transaction branches, either by committing
them or rolling them back.

■ Manage JMS client connections.

You can view all the JMS connections on a particular WebLogic Server instance and get
address and port information for each process that is holding a connection. You can
also terminate a connection. For more information on using the Administration
Console to manage transactions for a JMS server, see "JMS Server: Monitoring: Active
Transactions" in the Oracle WebLogic Server Administration Console Help.

For more information on JMS transactions, see "Using Transactions with WebLogic
JMS" in Programming JMS for Oracle WebLogic Server.

8.2.4 Managing Durable Topic Subscribers
You can view a list of durable subscribers for a given topic, browse messages
associated with a subscriber, create and delete subscribers, and delete selected
messages or purge all messages for a subscription.

For more information, see "Manage topic durable subscribers" in the Oracle WebLogic
Server Administration Console Help.

Note: Generally, JMS applications can use the JMSReplyTo header
field to return a response to a request. However, the information in the
JMSReplyTo field is not a usable destination object and will not be
valid following export or import.

9

Best Practices for JMS Beginners and Advanced Users 9-1

9Best Practices for JMS Beginners and
Advanced Users

This chapter provides advice and best practices for beginning JMS users as well as
advanced JMS users. Topics include targeting, integration options, understanding
URLs, high availability (HA), and tuning.

■ Section 9.1, "Configuration Best Practices"

■ Section 9.2, "Targeting Best Practices"

■ Section 9.3, "Integration and Multi-Domain Best Practices"

■ Section 9.4, "Understanding WebLogic JMS Client Options"

■ Section 9.5, "Understanding WebLogic URLs"

■ Section 9.6, "Strict Message Ordering Best Practices"

■ Section 9.7, "High Availability Best Practices"

■ Section 9.8, "JMS Performance and Tuning"

9.1 Configuration Best Practices
The following sections outline a basic procedure on how to configure JMS
applications:

1. Section 9.1.1, "Configure JMS Servers and Persistent Stores."

2. Section 9.1.2, "Configure a JMS Module"

3. Section 9.1.3, "Configure JMS Resources"

4. Section 9.1.4, "Configure SAF Agents, Stores, and Imported Destination"

9.1.1 Configure JMS Servers and Persistent Stores.
Before you start configuring JMS servers and persistent stores, consider the following:

■ Destinations, connection factories, and other JMS resources are configured
separately from their host JMS servers and persistent stores. The best practice
steps for configuring JMS resources will be described later.

■ If you plan to leverage WebLogic distributed destinations, you will need to
configure a WebLogic cluster with a JMS server and a custom persistent store on
each WebLogic server in the cluster. WebLogic JMS distributed destination features
require a WebLogic cluster to work.

Configuration Best Practices

9-2 Configuring and Managing JMS for Oracle WebLogic Server

■ Migratable targets are only supported with clusters. If you are not using a cluster,
you may want to reconsider and use a cluster of size one. This enables the use of
migratable targets, and migratable targets enable a useful restart-in-place
capability as mentioned below. This also helps "future-proof" your application, as
it simplifies the process of expanding from a single server to multiple servers.

Use the following steps to configure JMS servers and persistent stores:

1. Create a custom store on each WebLogic server that will host a JMS server. If
there's already a custom store on a WebLogic server, you can skip this step as its
usually more convenient and improves performance for services to share a store.
(Why use a custom store? Custom stores provide more flexibility in tuning and
administration. In addition, the default file store is not migratable -- only custom
stores are migratable.)

2. In a cluster, target each store to its host server's "default migratable target". If you
have decided not to use a cluster, target each store directly to its host server.
Migratable targets enable restart-in-place options on a store failure, and also
enable service migration options.

It is recommended to always target to migratable targets when available (instead
of direct server targets). Migratable targets are compatible with the whole server
migration option, and usually should be configured even when whole server
migration is the primary fail-over option.

3. Configure a JMS server on each WebLogic server. Configure the JMS server to
reference the store that was created in step 1. Target the JMS server to the same
target that was used for the store. Multiple JMS servers can reference the same
store.

4. Configure message count quotas on each JMS server. There is no default quota, so
configuring one helps protect against out-of-memory conditions. Rule of thumb:
conservatively assume that each message consumes 512 bytes of memory even if it
is paged out.

5. Although JMS paging is enabled by default, verify that the default behavior is
valid for your environment.

9.1.2 Configure a JMS Module
A homogenous set of JMS servers is either a single JMS server that is meant to host
non-distributed destinations, or a set of similarly configured JMS servers that each
host the same distributed destination. Configure a JMS module and a single associated
subdeployment for each homogenous set of JMS servers:

1. Create a system module. Target it to a single cluster (if using clusters) or a single
WebLogic Server instance. You must always target the module even when
leveraging subdeployments.

It is almost always preferable to use system modules instead of deployable
application modules. System modules can be created using the administration
console, the JMX API (Java MBeans), or WLST, there is no equivalent tooling for
deployable modules. The only way to modify deployable modules is to manually
edit the XML and redeploy.

2. Create exactly one subdeployment per module. Subdeployments are sometimes
referred to as "advanced targeting" on the administration console. A single
subdeployment aids simplicity - it's much easier for third parties to understand
the targeting, and it reduces the chances of making configuration errors. If a single
subdeployment is not sufficient, create two modules.

Targeting Best Practices

Best Practices for JMS Beginners and Advanced Users 9-3

3. Populate the subdeployment only with JMS servers - not WebLogic servers. Only
include the JMS servers that you wish to host destinations. This ensures that when
the JMS resources are configured, they are targeted to the correct JMS servers. For
modules that support non-distributed destinations, the subdeployment must only
reference a single JMS Server. If you have a mix of distributed and non-distributed
destinations, use two modules each with its own subdeployment.

9.1.3 Configure JMS Resources
Configure your JMS resources and target them properly.

1. Create destinations and target them to a single subdeployment (called "advanced
targeting" on the console). Note that only distributed destinations can be targeted
to a subdeployment target that resolves to multiple JMS servers. If you have a mix
of distributed destinations, stand-alone destinations, and imported destinations,
use two modules each with its own subdeployment. See Section 9.2, "Targeting
Best Practices."

2. Create and use custom connection factories instead of using default connection
factories. Default connection factories are not tunable.

In most cases, you can use default targeting with connection factories as default
targeting causes the resource to inherit the module's target. For connection
factories that are only used by remote clients, use the module's subdeployment
target.

9.1.4 Configure SAF Agents, Stores, and Imported Destination
SAF agents, their stores, and their imported destinations should follow the same best
practices as JMS servers, their stores, and JMS destinations. Avoid targeting a SAF
agent at a cluster, as such a SAF agent is not be able to use migratable targets.

9.2 Targeting Best Practices
Oracle recommends the following targeting guidelines for JMS resources:

■ Avoid default targeting, WebLogic server targeting, and cluster targeting with
destinations. Instead use advanced targeting (subdeployment targeting) for
destinations and ensure that the subdeployment references only JMS servers or
SAF agents.This applies to all destination types, including non-distributed,
distributed, and imported.

Even if the current JMS Servers or SAF Agents in your domain are only used for
your specific application, this is a best practice because:

– New JMS Servers or SAF Agents that are unrelated to your current application
can be introduced by other applications, web services, or 3rd-party products.

– In the future, your application may require different destinations and different
JMS Servers or SAF Agents for scalability or management purposes.

■ Always use advanced targeting when configuring Web Services deployments and
error queues, this includes both development and production environments.

■ To use an error destination within a distributed queue, it must be targeted to the
same subdeployment as its parent destination.

■ In most cases, you can use default targeting with connection factories as default
targeting causes the resource to inherit the module's target. For connection

Integration and Multi-Domain Best Practices

9-4 Configuring and Managing JMS for Oracle WebLogic Server

factories that are only used by remote clients, use the module's subdeployment
target.

9.3 Integration and Multi-Domain Best Practices
The following section provides best practice information for integration and
multi-domain environments using WebLogic Server:

■ For server side applications that communicate with destinations in a remote
WebLogic cluster or server, see "Integrating Remote JMS Providers" in
Programming JMS for Oracle WebLogic Server.

■ Interoperating WebLogic Server domains have the following restrictions:

– Domain names must be unique.

– WebLogic server names must be unique, even if they are in two different
domains.

– JMS server names must be unique, even if they are in two different domains.

– Interoperating domains may have special Security considerations.

■ For applications that interoperate with AQ JMS, see Section 7, "Interoperating with
Oracle AQ JMS."

■ To configure your domain to enable inter-domain transactions, see "Configuring
Communication for Inter-Domain Transactions" in Programming JTA for Oracle
WebLogic Server.

9.4 Understanding WebLogic JMS Client Options
For client applications (applications that have a runtime environment independent of
WebLogic Server) there are multiple JMS client options, including: Java, .NET, and C
clients. See "JMS Clients" in Programming Stand-alone Clients for Oracle WebLogic Server.

9.5 Understanding WebLogic URLs
Applications that are communicating with a remote WebLogic Server instance or
cluster must specify a URL when creating their JNDI InitialContext objects and/or
setting application attributes in order to connect to a server or a cluster.

■ Do not specify URLs for applications that run on the same server or cluster as their
JMS resources. When an initial context is created without specifying URLs, it
automatically references the local server or cluster JNDI.

■ If a URL resolves to multiple addresses, WebLogic Server clients will randomly
select an address in the list to start with and then automatically try each address in
turn until one succeeds.

■ In production systems, consider using DNS round robin or a hardware load
balancer for initial hostname resolution rather than using the multiple host/port
URL notation shown in Section 9.5.1, "URL syntax."

Note: WebLogic JMS clients do not directly support foreign
transaction managers. Use the WebLogic TM if possible. For advanced
users, the transaction subsystem Interposed Transaction Manager
feature may be used as an XA resource.

High Availability Best Practices

Best Practices for JMS Beginners and Advanced Users 9-5

9.5.1 URL syntax
The WebLogic URL syntax is:

[t3|t3s|http|https|iiop|iiops]://address[,address]...

where

■ address = hostlist : portlist

■ hostlist = hostname [,hostname]...

■ portlist = portrange [+portrange]...

■ portrange = port [-port]

Use port-port to indicate a port range, and + to separate multiple port ranges. For
example, a simple address is typically something like t3://hostA:7001; the address
t3://hostA,hostB:7001-7002 is equivalent to the following addresses.

■ t3://hostA,hostB:7001+7002

■ t3://hostA:7001-7002,hostB:7001-7002

■ t3://hostA:7001+7002,hostB:7001+7002

■ t3://hostA:7001,hostA:7002,hostB:7001,hostB:7002

9.6 Strict Message Ordering Best Practices
If strictly ordered message processing is required, then application design and
configuration needs to carefully take this requirement into account.

The simplest and most capable option is to leverage the WebLogic JMS Unit-of-Order
feature. This option normally requires minimal or even no changes to applications,
plus it works with distributed destinations, scheduled messages, delayed messages,
transactions, and store-and-forward. See "Using Message Unit-of-Order" in
Programming JMS for Oracle WebLogic Server.

9.7 High Availability Best Practices
If High Availability (HA) or scalability is a concern, develop applications so that they
leverage clustered WebLogic features. This approach is best taken in the early
configuration and application design stage as it is usually difficult process to change a
non-clustered application into a clustered application.

In WebLogic JMS, a message is only available if its host JMS server for the destination
is running. If a message is in a central persistent store, the only JMS server that can
access the message is the server that originally stored the message. WebLogic includes
features for automatically restarting and/or migrating a JMS server after a failure. It
also includes features for clustering (distributing) a destination across multiple JMS
servers within the same cluster.

HA is normally accomplished using both:

■ Distributed destinations

■ HA Servers/Services. JMS Servers can be automatically restarted and/or migrated
using either Whole Server Migration or Automatic Service Migration.

JMS Performance and Tuning

9-6 Configuring and Managing JMS for Oracle WebLogic Server

9.7.1 Distributed Queues vs Distributed Topics
Distributed queues are generally fairly easy to apply to an arbitrary clustered
queueing use case. Distributed topics are best applied when:

■ Subscribers are non-durable, or

■ You use MDBs to subscribe (direct durable subscribers have limitations and may
require use of sophisticated extensions).

See "Configuring and Deploying MDBs Using JMS Topics" in Programming
Message-Driven Beans for Oracle WebLogic Server and "Using Distributed Destinations"
in Programming JMS for Oracle WebLogic Server.

9.8 JMS Performance and Tuning
The following section provides a link to a checklist of items to consider when tuning
WebLogic JMS:

■ "JMS Performance & Tuning Check List" in Performance and Tuning for Oracle
WebLogic Server.

10

Troubleshooting WebLogic JMS 10-1

10Troubleshooting WebLogic JMS

This chapter provides information on how to troubleshoot WebLogic JMS messages
and configurations.

■ Section 10.1, "Configuring Notifications for JMS"

■ Section 10.2, "Debugging JMS"

■ Section 10.3, "Message Life Cycle Logging"

■ Section 10.4, "JMS Message Log Content"

■ Section 10.5, "Controlling Message Operations on Destinations"

For more information on monitoring JMS statistics and managing JMS messages, see
Chapter 8, "Monitoring JMS Statistics and Managing Messages."

10.1 Configuring Notifications for JMS
A notification is an action that is triggered when a watch rule evaluates to true. JMS
notifications are used to post messages to JMS topics and/or queues in response to the
triggering of an associated watch. In the system resource configuration file, the
elements <destination-jndi-name> and <connection-factory-jndi-name>
define how the message is to be delivered.

For more information, see "Configuring Notifications" in Configuring and Using the
Diagnostics Framework for Oracle WebLogic Server.

10.2 Debugging JMS
Once you have narrowed the problem down to a specific application, you can activate
WebLogic Server's debugging features to track down the specific problem within the
application.

10.2.1 Enabling Debugging
You can enable debugging by setting the appropriate ServerDebug configuration
attribute to true. Optionally, you can also set the server StdoutSeverity to Debug.

You can modify the configuration attribute in any of the following ways.

10.2.1.1 Enable Debugging Using the Command Line
Set the appropriate properties on the command line. For example,

-Dweblogic.debug.DebugJMSBackEnd=true
-Dweblogic.log.StdoutSeverity="Debug"

Debugging JMS

10-2 Configuring and Managing JMS for Oracle WebLogic Server

This method is static and can only be used at server startup.

10.2.1.2 Enable Debugging Using the WebLogic Server Administration Console
Use the WebLogic Server Administration Console to set the debugging values:

1. If you have not already done so, in the Change Center of the Administration
Console, click Lock & Edit (see "Using the Change Center" in Understanding Oracle
WebLogic Server).

2. In the left pane of the console, expand Environment and select Servers.

3. On the Summary of Servers page, click the server on which you want to enable or
disable debugging to open the settings page for that server.

4. Click Debug.

5. Expand default.

6. Select the check box for the debug scopes or attributes you want to modify.

7. Select Enable to enable (or Disable to disable) the debug scopes or attributes you
have checked.

8. To activate these changes, in the Change Center of the Administration Console,
click Activate Changes.

Not all changes take effect immediately—some require a restart (see "Using the
Change Center" in Understanding Oracle WebLogic Server).

This method is dynamic and can be used to enable debugging while the server is
running.

10.2.1.3 Enable Debugging Using the WebLogic Scripting Tool
Use the WebLogic Scripting Tool (WLST) to set the debugging values. For example, the
following command runs a program for setting debugging values called debug.py:

java weblogic.WLST debug.py

The main scope, weblogic, does not appear in the graphic; jms is a sub-scope within
weblogic. Note that the fully-qualified DebugScope for DebugJMSBackEnd is
weblogic.jms.backend.

The debug.py program contains the following code:

user='user1'
password='password'
url='t3://localhost:7001'
connect(user, password, url)
edit()
cd('Servers/myserver/ServerDebug/myserver')
startEdit()
set('DebugJMSBackEnd','true')
save()
activate()

Note that you can also use WLST from Java. The following example shows a Java file
used to set debugging values:

import weblogic.management.scripting.utils.WLSTInterpreter;
import java.io.*;
import weblogic.jndi.Environment;
import javax.naming.Context;

Debugging JMS

Troubleshooting WebLogic JMS 10-3

import javax.naming.InitialContext;
import javax.naming.NamingException;

public class test {
 public static void main(String args[]) {
 try {
 WLSTInterpreter interpreter = null;
 String user="user1";
 String pass="pw12ab";
 String url ="t3://localhost:7001";
 Environment env = new Environment();
 env.setProviderUrl(url);
 env.setSecurityPrincipal(user);
 env.setSecurityCredentials(pass);
 Context ctx = env.getInitialContext();

 interpreter = new WLSTInterpreter();
 interpreter.exec
 ("connect('"+user+"','"+pass+"','"+url+"')");
 interpreter.exec("edit()");
 interpreter.exec("startEdit()");
 interpreter.exec
 ("cd('Servers/myserver/ServerDebug/myserver')");
 interpreter.exec("set('DebugJMSBackEnd','true')");
 interpreter.exec("save()");
 interpreter.exec("activate()");

 } catch (Exception e) {
 System.out.println("Exception "+e);
 }
 }
}

Using the WLST is a dynamic method and can be used to enable debugging while the
server is running.

10.2.1.4 Changes to the config.xml File
Changes in debugging characteristics, through console, or WLST, or command line are
persisted in the config.xml file.

This sample config.xml fragment shows a transaction debug scope (set of debug
attributes) and a single JMS attribute.

Example 10–1 Example Debugging Stanza for JMS

<server>
<name>myserver</name>
<server-debug>
<debug-scope>
<name>weblogic.transaction</name>
<enabled>true</enabled>
</debug-scope>
<debug-jms-back-end>true</debug-jms-back-end>
</server-debug>
</server>

10.2.2 JMS Debugging Scopes
The following are registered debugging scopes for JMS:

Debugging JMS

10-4 Configuring and Managing JMS for Oracle WebLogic Server

■ DebugJMSBackEnd (scope weblogic.jms.backend) – prints information for
debugging the JMS Back End (including some information used for distributed
destinations and JMS SAF).

■ DebugJMSFrontEnd (scope weblogic.jms.frontend) – prints information for
debugging the JMS Front End (including some information used for multicast).

■ DebugJMSCommon (scope weblogic.jms.common) – prints information for
debugging JMS common methods (including some information from the client
JMS producer).

■ DebugJMSConfig (scope weblogic.jms.config) – prints information related
to JMS configuration (backend, distributed destinations, and foreign servers).

■ DebugJMSBoot (scope weblogic.jms.boot) – prints some messages at boot
time regarding what store the JMS server is using and its configured destinations.

■ DebugJMSDispatcher (scope weblogic.jms.dispatcher) – prints
information related to PeerGone() occurrences.

■ DebugJMSDistTopic (scope weblogic.jms.config) – prints information
about distributed topics, and primary bind and unbind information.

■ DebugJMSPauseResume (scope weblogic.jms.pauseresume) – prints
information about (backend) pause/resume destination operations.

■ DebugJMSModule (scope weblogic.jms.module) – prints a lot of information
about JMS module operations and message life cycle.

■ DebugJMSMessagePath (scope weblogic.jms.messagePath) – prints
information following a message through the message path (client, frontend,
backend), including the message identifier.

■ DebugJMSSAF (scope weblogic.jms.saf) – prints information about JMS SAF
(store-and-forward) destinations.

■ DebugJMSCDS (scope weblogic.jms.CDS) – prints detailed information about
JMS "Configuration Directory Service" (used by various sub-systems to get the
notification of configuration changes to the JMS resources configured in the server
from within a cluster as well as across the clusters and domains).

■ DebugJMSWrappers (scope weblogic.jms.wrappers) – prints information
pooling and wrapping of JMS connections, sessions, and other objects, used inside
an EJB or servlet using the resource-reference element in the deployment
descriptor.

10.2.3 Messaging Kernel and Path Service Debugging Scopes
The following are registered debugging scopes for the messaging kernel and the Path
service.

■ DebugMessagingKernel (scope weblogic.messaging.kernel) – prints
information about the messaging kernel.

■ DebugMessagingKernelBoot (scope weblogic.messaging.kernelboot) –
prints information about booting the messaging kernel (processing messages).

■ DebugPathSvc (scope weblogic.messaging.pathsvc) – prints limited
information about some unusual conditions in the path service.

■ DebugPathSvcVerbose (scope weblogic.messaging.pathsvcverbose) –
prints limited information about unusual conditions in the path service.

Message Life Cycle Logging

Troubleshooting WebLogic JMS 10-5

10.2.4 Request Dyeing
Another option for debugging is to trace the flow of an individual (typically "dyed")
application request through the JMS subsystem. For more information, see
"Configuring the Dye Vector via the DyeInjection Monitor" in Configuring and Using the
Diagnostics Framework for Oracle WebLogic Server.

10.3 Message Life Cycle Logging
JMS logging is enabled by default when you create a JMS server, however, you must
specifically enable it on message destinations in the JMS modules targeted to this JMS
server (or on the JMS template used by destinations). For more information on
WebLogic logging services, see "Understanding WebLogic Logging Services" in
Configuring Log Files and Filtering Log Messages for Oracle WebLogic Server.

The message life cycle is an external view of the events that a JMS message traverses
through once it has been accepted by the JMS server, either through the JMS APIs or
the JMS Message Management APIs. Message life cycle logging provides an
administrator with easy access to information about the existence and status of JMS
messages from the JMS server viewpoint. In particular, each message log contains
information about basic life cycle events such as message production, consumption,
and removal.

Logging can occur on a continuous basis and over a long period of time. It can be also
be used in real-time mode while the JMS server is running, or in an off-line fashion
when the JMS server is down. For information about configuring message logging, see
the following sources in the Oracle WebLogic Server Administration Console Help:

■ "View and configure logs"

■ "Configure JMS server message log rotation"

■ "Configure topic message logging"

■ "Configure queue message logging"

■ "Configure JMS template message logging"

■ "Uniform distributed topics - configure message logging"

■ Uniform distributed queues - configure message logging

10.3.1 Events in the JMS Message Life Cycle
When message life cycle logging is enabled for a JMS destination, a record is added to
the JMS server's message log file each time a message meets the conditions that
correspond to a basic message life cycle event. The life cycle events that trigger a JMS
message log entry are as follows:

■ Produced – This event is logged when a message enters a JMS server via the
WebLogic Server JMS API or the JMS Management API.

■ Consumed – This event is logged when a message leaves a JMS server via the
WebLogic Server JMS API or the JMS Management API.

■ Removed – This event is logged when a message is manually deleted from a JMS
server via the WebLogic Server JMS API or the JMS Management API.

■ Expired – This event is logged when a message reaches the expiration time stored
on the JMS server. This event is logged only once per message even though a
separate expiration event occurs for each topic subscriber who received the
message.

Message Life Cycle Logging

10-6 Configuring and Managing JMS for Oracle WebLogic Server

■ Retry exceeded – This event is logged when a message has exceeded its redelivery
retry limit. This event may be logged more than one time per message, as each
topic subscriber has its own redelivery count.

■ Consumer created – This event is logged when a JMS consumer is created for a
queue or a JMS durable subscriber is created for a topic.

■ Consumer destroyed – This event is logged when a JMS consumer is closed or a
JMS durable subscriber is unsubscribed.

10.3.1.1 Message Log Location
The message log is stored under your domain directory, as follows:

USER_DOMAIN\servers\servername\logs\jmsServers\jms_server_name\jms.messages.log

where USER_DOMAIN is the root directory of your domain, typically
c:\Oracle\Middleware\user_projects\domains\USER_DOMAIN, which is
parallel to the directory in which WebLogic Server program files are stored, typically
c:\Oracle\Middleware\wlserver_10.3.

10.3.2 Enabling JMS Message Logging
You can enable or disable JMS message logging for a queue, topic, JMS template,
uniform distributed queue, and uniform distributed topic using the WebLogic Server
Administration Console. For more information see the following sources in the Oracle
WebLogic Server Administration Console Help:

■ "Configure topic message logging"

■ "Configure queue message logging"

■ "Configure JMS template message logging"

■ "Uniform distributed topics - configure message logging"

■ "Uniform distributed queues - configure message logging"

WebLogic Java Management Extensions (JMX) enables you to access the
JMSSystemResourceMBean and JMSRuntimeMBean MBeans to manage JMS message
logs. For more information see "Overview of WebLogic Server Subsystem MBeans" in
Developing Custom Management Utilities With JMX for Oracle WebLogic Server.

You can also use the WebLogic Scripting Tool to configure JMS message logging for a
JMS servers and JMS system resources. For more information, see Chapter 6, "Using
WLST to Manage JMS Servers and JMS System Module Resources."

When you enable message logging, you can specify whether the log entry will include
all the message header fields or a subset of them; all system-defined message
properties or a subset of them; all user-defined properties or a subset of them. You
may also choose to include or to exclude the body of the message. For more
information about message headers and properties see "Developing a Basic JMS
Application" in Programming JMS for Oracle WebLogic Server.

Note: Logging JMS messages for non-durable subscribers is not
enabled in the default configuration. To enable, set the following
system property:
weblogic.jms.message.logging.logNonDurableSubscriber
=true.

JMS Message Log Content

Troubleshooting WebLogic JMS 10-7

10.4 JMS Message Log Content
Each record added to the log includes basic information such as the message ID and
correlation ID for the subject message. You can also configure the JMS server to
include additional information such as the message type and user properties.

10.4.1 JMS Message Log Record Format
Except where noted, all records added to the JMS Message Life Cycle Log contain the
following pieces of information in the order in which they are listed:

■ Date – The date and time the message log record is generated.

■ Transaction identifier – The transaction identifier for the transaction with which
the message is associated

■ WLS diagnostic context – A unique identifier for a request or unit of work flowing
through the system. It is included in the JMS message log to provide a correlation
between events belonging to the same request.

■ Raw millisecond value for "Date" – To aid in troubleshooting high-traffic
applications, the date and time the message log record is generated is displayed in
milliseconds.

■ Raw nanosecond value for "Date" – To aid in troubleshooting high-traffic
applications, the date and time the message log record is generated is displayed in
nanoseconds.

■ JMS message ID – The unique identifier assigned to the message.

■ JMS correlation ID – A user-defined identifier for the message, often used to
correlate messages about the same subject.

■ JMS destination name – The fully-qualified name of the destination server for the
message.

■ JMS message life cycle event name – The name of the message life cycle event that
triggered the log entry.

■ JMS user name – The name of the user who (produced? consumed? received?) the
message.

■ JMS message consumer identifier – This information is included in the log only
when the message life cycle event being logged is the "Consumed" event, the
"Consumer Created" event, or the "Consumer Destroyed" event. If the message
consumed was on a queue, the log will include information about the origin of the
consumer and the OAM identifier for the consumer known to the JMS server. If
the consumer is a durable subscriber, the log will also include the client ID for the
connection and the subscription name.

The syntax for the message consumer identifier is as follows:

MC:CA(…):OAMI(wls_server_name.jms.connection#.session#.consumer#)

where

– MC stands for message consumer,

– CA stands for client address,

– OAMI stands for OA&M identifier,

– and, when applicable, CC stands for connection consumer.

JMS Message Log Content

10-8 Configuring and Managing JMS for Oracle WebLogic Server

If the consumer is a durable subscriber the additional information will be shown
using the following syntax:

DS:client_id.subscription_name[message consumer identifier]

where DS stands for durable subscriber.

■ JMS message content – This field can be customized on a per destination basis.
However, the message body will not be available.

■ JMS message selector – This information is included in the log only when the
message life cycle event being logged is the "Consumer Created" event. The log
will show the "Selector" argument from the JMS API.

10.4.2 Sample Log File Records
The sample log file records that follow show the type of information that is provided
in the log file for each of the message life cycle events. Each record is a fixed length,
but the information included will vary depending upon relevance to the event and on
whether a valid value exists for each field in the record. The log file records use the
following syntax:

####<date_and_time_stamp> <transaction_id> <WLS_diagnostic_context>
<date_in_milliseconds> <date_in_nanoseconds> <JMS_message_id>
<JMS_correlation_id> <JMS_destination_name> <life_cycle_event_name>
<JMS_user_name> <consumer_identifier> <JMS_message_content>
<JMS_message_selector>

10.4.2.1 Consumer Created Event
####<May 13, 2005 4:06:33 PM EDT> <> <> <1116014793818> <345063> <> <>
 <jmsfunc!TestQueueLogging> <ConsumerCreate> <system>
<MC:CA(/10.61.6.56):OAMI(myserver.jms.connection456.session460.consumer462)> <> <>

10.4.2.2 Consumer Destroyed Event
####<May 13, 2005 4:06:33 PM EDT> <> <> <1116014793844> <40852> <> <>
<jmsfunc!TestQueueLogging> <ConsumerDestroy> <system>
<MC:CA(/10.61.6.56):OAMI(myserver.jms.connection456.session460.consumer462)> <> <>

10.4.2.3 Message Produced Event
####<May 13, 2005 4:06:43 PM EDT> <> <> <1116014803018> <693671>
<ID:<327315.1116014803000.0>> <testSendRecord> <jmsfunc!TestQueueLoggingMarker>
 <Produced> <system> <> <<?xml version="1.0" encoding="UTF-8"?>
<mes:WLJMSMessage

xmlns:mes="http://www.bea.com/WLS/JMS/Message"><mes:Header><mes:JMSCor
relationID>testSendRecord</mes:JMSCorrelationID><mes:JMSDeliveryMode
>NON_PERSISTENT</mes:JMSDeliveryMode><mes:JMSExpiration>0<
/mes:JMSExpiration><mes:JMSPriority>4</mes:JMSPriority><
mes:JMSRedelivered>false</mes:JMSRedelivered><mes:JMSTimestamp>
1116014803000</mes:JMSTimestamp><mes:Properties><mes:property

Note: If you choose to include the JMS message content in the log
file, note that any occurrences of the left-pointing angle bracket (<)
and the right-pointing angle bracket (>) within the contents of the
message will be escaped. In place of a left-pointing angle bracket you
will see the string "<" and in place of the right-pointing angle
bracket you will see ">" in the log file.

JMS Message Log Content

Troubleshooting WebLogic JMS 10-9

name="JMSXDeliveryCount"><mes:Int>0</mes:Int></mes:property
></mes:Properties></mes:Header><mes:Body><mes:Text/>
</mes:Body></mes:WLJMSMessage>> <>

10.4.2.4 Message Consumed Event
####<May 13, 2005 4:06:45 PM EDT> <> <> <1116014805137> <268791>
<ID:<327315.1116014804578.0>> <hello> <jmsfunc!TestQueueLogging> <Consumed>
<system>
<MC:CA(/10.61.6.56):OAMI(myserver.jms.connection456.session475.consumer477)>
<<?xml version="1.0" encoding="UTF-8"?>
<mes:WLJMSMessage
 xmlns:mes="http://www.bea.com/WLS/JMS/Message"><mes:Header><mes:
JMSCorrelationID>hello</mes:JMSCorrelationID><mes:JMSDeliveryMode
>PERSISTENT</mes:JMSDeliveryMode><mes:JMSExpiration>0</mes:
JMSExpiration><mes:JMSPriority>4</mes:JMSPriority><mes:
JMSRedelivered>false</mes:JMSRedelivered><mes:JMSTimestamp>
1116014804578</mes:JMSTimestamp><mes:JMSType>SendRecord</mes:
JMSType><mes:Properties><mes:property name="JMS_BEA_
RedeliveryLimit"><mes:Int>1</mes:Int></mes:property><mes:
property
name="JMSXDeliveryCount"><mes:Int>1</mes:Int></mes:property>
</mes:Properties></mes:Header><mes:Body><mes:Text/></me
s:Body></mes:WLJMSMessage>> <>

10.4.2.5 Message Expired Event
####<May 13, 2005 4:06:47 PM EDT> <> <> <1116014807258> <445317>
<ID:<327315.1116014807234.0>> <bar> <jmsfunc!TestQueueLogging> <Expired> <<WLS
 Kernel>> <> <<?xml version="1.0" encoding="UTF-8"?>
<mes:WLJMSMessage
 xmlns:mes="http://www.bea.com/WLS/JMS/Message"><mes:Header><mes:
JMSCorrelationID>bar</mes:JMSCorrelationID><mes:JMSDeliveryMode>
PERSISTENT</mes:JMSDeliveryMode><mes:JMSExpiration>1116014806234
</mes:JMSExpiration><mes:JMSPriority>4</mes:JMSPriority><
mes:JMSRedelivered>false</mes:JMSRedelivered><mes:JMSTimestamp>
1116014807234</mes:JMSTimestamp><mes:JMSType>ExpireRecord</mes:
JMSType><mes:Properties><mes:property name="JMS_BEA_
RedeliveryLimit"><mes:Int>1</mes:Int></mes:property><mes:
property
name="JMSXDeliveryCount"><mes:Int>0</mes:Int></mes:property>
</mes:Properties></mes:Header><mes:Body><mes:Text/></me
s:Body></mes:WLJMSMessage>> <>

10.4.2.6 Retry Exceeded Event
####<May 13, 2005 4:06:53 PM EDT> <> <> <1116014813491> <394206>
<ID:<327315.1116014813453.0>> <bar> <jmsfunc!TestQueueLogging> <Retry exceeded>
<<WLS Kernel>> <> <<?xml version="1.0" encoding="UTF-8"?>
<mes:WLJMSMessage
xmlns:mes="http://www.bea.com/WLS/JMS/Message"><mes:Header><mes:
JMSCorrelationID>bar</mes:JMSCorrelationID><mes:JMSDeliveryMode>
PERSISTENT</mes:JMSDeliveryMode><mes:JMSExpiration>0</mes:
JMSExpiration><mes:JMSPriority>4</mes:JMSPriority><mes:
JMSRedelivered>true</mes:JMSRedelivered><mes:JMSTimestamp>
1116014813453</mes:JMSTimestamp><mes:JMSType>RetryRecord</mes:
JMSType><mes:Properties><mes:property name="JMS_BEA_
RedeliveryLimit"><mes:Int>1</mes:Int></mes:property><mes:
property
name="JMSXDeliveryCount"><mes:Int>2</mes:Int></mes:property
></mes:Properties></mes:Header><mes:Body><mes:Text/>

JMS Message Log Content

10-10 Configuring and Managing JMS for Oracle WebLogic Server

</mes:Body></mes:WLJMSMessage>> <>

10.4.2.7 Message Removed Event
####<May 13, 2005 4:06:45 PM EDT> <> <> <1116014805071> <169809>
<ID:<327315.1116014804859.0>> <hello> <jmsfunc!TestTopicLogging> <Removed>
 <system> <DS:messagelogging_client.foo.SendRecordSubscriber> <<?xml
version="1.0" encoding="UTF-8"?>
<mes:WLJMSMessage xmlns:mes="http://www.bea.com/WLS/JMS/Message"><mes:
Header><mes:JMSCorrelationID>hello</mes:JMSCorrelationID><mes:
JMSDeliveryMode>PERSISTENT</mes:JMSDeliveryMode><mes:JMSExpiration
>0</mes:JMSExpiration><mes:JMSPriority>4</mes:JMSPriority>
<mes:JMSRedelivered>false</mes:JMSRedelivered><mes:JMSTimestamp
>1116014804859</mes:JMSTimestamp><mes:JMSType>
SendRecordSubscriber</mes:JMSType><mes:Properties><mes:property
 name="JMSXDeliveryCount"><mes:Int>0</mes:Int></mes:property
></mes:Properties></mes:Header><mes:Body><mes:Text/><
;/mes:Body></mes:WLJMSMessage>> <>

10.4.3 Managing JMS Server Log Files
After you create a JMS server, you can configure criteria for moving (rotating) old log
messages to a separate file. You can also change the default name of the log file.

10.4.3.1 Rotating Message Log Files
You can choose to rotate old log messages to a new file based on a specific file size or
at specified intervals of time. Alternately, you can choose not to rotate old log
messages; in this case, all messages will accumulate in a single file and you will have
to erase the contents of the file when it becomes too large.

If you choose to rotate old messages whenever the log file reaches a particular size you
must specify a minimum file size. After the log file reaches the specified minimum
size, the next time the server checks the file size it will rename the current log file and
create a new one for storing subsequent messages.

If you choose to rotate old messages at a regular interval, you must specify the time at
which the first new message log file is to be created, and then specify the time interval
that should pass before that file is renamed and replaced.

For more information about setting up log file rotation for JMS servers, see "Configure
JMS server message log rotation" in the Oracle WebLogic Server Administration Console
Help.

10.4.3.2 Renaming Message Log Files
Rotated log files are numbered in order of creation. For example, the seventh rotated
file would be named myserver.log00007. For troubleshooting purposes, it may be
useful to change the name of the log file or to include the time and date when the log
file is rotated. To do this, you add java.text.SimpleDateFormat variables to the
file name. Surround each variable with percentage (%) characters. If you specify a
relative pathname when you change the name of the log file, it is interpreted as
relative to the server's root directory.

For more information about renaming message log files for JMS servers, see
"Configure JMS server message log rotation" in the Oracle WebLogic Server
Administration Console Help.

Controlling Message Operations on Destinations

Troubleshooting WebLogic JMS 10-11

10.4.3.3 Limiting the Number of Retained Message Log Files
If you choose to rotate old message log files based on either file size or time interval,
you may also wish to limit the number of log files this JMS server creates for storing
old messages. After the server reaches this limit, it deletes the oldest log file and
creates a new log file with the latest suffix. If you do not enable this option, the server
will create new files indefinitely and you will have to manually clean up these files.

For more information about limiting the number of message log files for JMS servers,
see "Configure JMS server message log rotation" in the Oracle WebLogic Server
Administration Console Help.

10.5 Controlling Message Operations on Destinations
WebLogic JMS configuration and runtime APIs enable you to pause and resume
message production, insertion, and/or consumption operations on a JMS destination
or temporary destination, on a group of destinations configured using the same
template, or on all the destinations hosted by a single JMS Server, either
programmatically (using JMX and the runtime MBean API) or administratively (using
the Administration Console). In this way, you can control the JMS subsystem behavior
in the event of an external resource failure that would otherwise cause the JMS
subsystem to overload the system by continuously accepting and delivering (and
redelivering) messages.

You can boot a JMS server and its destinations in a "paused" state which prevents any
message production, insertion, or consumption on those destinations immediately
after boot. To resume message operation activity, the administrator can later change
the state of the paused destination to "resume" normal message production, insertion,
or consumption operations. In addition, new runtime options allow an administrator
to change the current state of a running destination to either allow or disallow new
message production, insertion, or consumption.

■ Section 10.5.1, "Definition of Message Production, Insertion, and Consumption"

■ Section 10.5.2, "Production Pause and Production Resume"

■ Section 10.5.3, "Insertion Pause and Insertion Resume"

■ Section 10.5.4, "Consumption Pause and Consumption Resume"

■ Section 10.5.5, "Definition of In-Flight Work"

■ Section 10.5.6, "Order of Precedence for Boot-time Pause and Resume of Message
Operations"

■ Section 10.5.7, "Security"

10.5.1 Definition of Message Production, Insertion, and Consumption
There are several operations performed on messages on a destination:

■ Messages are produced when a producer creates and sends a new message to that
destination.

■ Messages are inserted as a result of in-flight work completion, as when a message
is made available upon commitment of a transaction or when a message scheduled
to be made available after a delay is made available on a destination.

■ Messages are consumed when they are removed from the destination.

You can pause and resume any or all of these operations either at boot time or during
runtime, as described in the sections below.

Controlling Message Operations on Destinations

10-12 Configuring and Managing JMS for Oracle WebLogic Server

10.5.1.1 Pause and Resume Logging
When message production, insertion, or consumption on a destination is successfully
"paused" or "resumed" either at boot time or at runtime, a message is added to the
server log to indicate the same. In the event of failure to pause or resume message
production, insertion, or consumption on a destination, the appropriate
error/exceptions are logged.

10.5.2 Production Pause and Production Resume
When a JMS destination is "paused for production," new and existing producers
attached to that destination are unable to produce new messages for that destination.
A producer that attempts to send a message to a paused destination receives an
exception that indicates that the destination is paused. When a destination is "resumed
from production pause," production of new messages is allowed again. Pausing
message production does not prevent the insertion of messages that are the result
in-flight work.

10.5.2.1 Pausing and Resuming Production at Boot-time
You can pause or resume production effective at boot-time for all the destinations on a
JMS server, for a group of destinations that point to the same JMS template, or for
individual destinations. If you configure production-paused-at-startup, the
next time you boot the server, message production activities will be disallowed for the
specified destination(s) until you explicitly change the state to "production enabled"
for that destination. If you configure production to resume, the next time you boot the
server, message production activities will be allowed on the specified destination(s)
until the state is explicitly changed to "production paused" for that destination.

For more information about pausing and resuming message production at boot-time
using the Administration console, see the following sources in the Oracle WebLogic
Server Administration Console Help:

■ "Pause JMS server message operations on restart"

■ "Pause topic message operations on server restart"

■ "Pause queue message operations on server restart"

■ "Pause JMS template message operations on server restart"

■ "Uniform distributed topics - pause message operations on server restart"

■ "Uniform distributed queues - pause message operations on server restart"

Note: For an explanation of what constitutes in-flight work, see
Section 10.5.5, "Definition of In-Flight Work."

Note: Because it is possible that this operation may be configured
differently at each level (i.e., the JMS Server level, the JMS template
level, and the standalone destination or uniform distributed
destination level), there is an established order of precedence. For
more information, see Section 10.5.6, "Order of Precedence for
Boot-time Pause and Resume of Message Operations."

Controlling Message Operations on Destinations

Troubleshooting WebLogic JMS 10-13

10.5.2.2 Pausing and Resuming Production at Runtime
You can pause or resume production during runtime for all the destinations targeted
on a JMS server, for a group of destinations that point to the same JMS template, or for
individual destinations. The most recent configuration change always take precedence,
regardless of the level at which it is made (JMS server level, JMS template level, or
destination level).

For more information about pausing and resuming production at runtime, see the
following sources in the Oracle WebLogic Server Administration Console Help:

■ "Pause JMS server message operations at runtime"

■ "Pause topic message operations at runtime"

■ "Pause queue message operations at runtime"

10.5.2.3 Production Pause and Resume and Distributed Destinations
If a member destination is paused for production, that member destination will not be
considered for production by the producer. Messages will be steered away to other
member destinations that are available for production.

10.5.2.4 Production Pause and Resume and JMS Connection Stop/Start
Stopping or starting a JMS connection has no effect on the production pause or
production resume state of a destination.

10.5.3 Insertion Pause and Insertion Resume
When a JMS destination is paused for "insertion," both messages inserted as a result of
in-flight work and new messages sent by producers are prevented from appearing on
the destination. Use insertion pause to stop all messages from appearing on a
destination.

You can determine whether there is any in-flight work pending by looking at the
statistics on the Administration Console. When you pause the destination for message
"insertion", messages related to in-flight work completion are made "not deliverable"
and new message production operations fail. All of those messages become "invisible"
to the consumers and the statistics are adjusted to reflect that the messages are no
longer pending.

The "insertion" pause operation supersedes the "production" pause operation. In other
words, if the destination is currently in the "production paused" state, you can change
it to the "insertion paused" state.

You must explicitly "resume" a destination for message insertion to allow in-flight
messages to appear on that destination. Successful completion of the insertion
"resume" operation will change the state of the destination to "insertion enabled" and
all the "invisible" in-flight messages will be made available.

10.5.3.1 Pausing and Resuming Insertion at Boot Time
You can pause or resume insertion effective at boot-time for all the destinations on a
JMS server, for a group of destinations that point to the same JMS template, or for
individual destinations. If you configure insertion-paused-at-startup, the next
time you boot the server, message insertion and production activities will be
disallowed on the specified destination(s) until you explicitly change the state to
"insertion enabled" for that destination. If you configure insertion to resume, the next
time you boot the server, message insertion activities will be allowed on the specified

Controlling Message Operations on Destinations

10-14 Configuring and Managing JMS for Oracle WebLogic Server

destination(s) until the state is explicitly changed to "insertion paused" for that
destination.

For more information about pausing and resuming message insertion at boot-time, see
the following sources in the Oracle WebLogic Server Administration Console Help:

■ "Pause JMS server message operations on restart"

■ "Pause topic message operations on server restart"

■ "Pause queue message operations on server restart"

■ "Pause JMS template message operations on server restart"

■ "Uniform distributed topics - pause message operations on server restart"

■ "Uniform distributed queues - pause message operations on server restart"

10.5.3.2 Pausing and Resuming Insertion at Runtime
You can pause or resume insertion during runtime for all the destinations on a JMS
server, for a group of destinations that point to the same JMS template, or for
individual destinations. The most recent configuration change always take precedence,
regardless of the level at which it is made (JMS Server level, JMS Template level, or
destination level).

For more information about pausing and resuming insertion at runtime, see the
following sources in the Oracle WebLogic Server Administration Console Help:

■ "Pause JMS server message operations at runtime"

■ "Pause topic message operations at runtime"

■ "Pause queue message operations at runtime"

10.5.3.3 Insertion Pause and Resume and Distributed Destination
If a member destination is paused for insertion, that member destination will not be
considered for message forwarding. Messages will be steered away to other member
destinations that are available for insertion.

10.5.3.4 Insertion Pause and Resume and JMS Connection Stop/Start
Stopping or starting a JMS Connection has no effect on the insertion pause or insertion
resume state of a destination.

10.5.4 Consumption Pause and Consumption Resume
When a JMS destination is "paused for consumption," messages on that destination are
not available for consumption. When the destination is "resumed from consumption
pause", both new and existing consumers attached to that destination are allowed to
consume messages on the destination again.

When the destination is paused for consumption, the destination's state is marked as
"consumption paused" and all new, synchronous receive operations will block until
consumption is resumed and there are messages available for consumption. All

Note: Because it is possible that this operation may be configured
differently at each level (i.e., the JMS Server level, the JMS template
level, and the destination level), there is an established order of
precedence. For more information, see Section 10.5.6, "Order of
Precedence for Boot-time Pause and Resume of Message Operations."

Controlling Message Operations on Destinations

Troubleshooting WebLogic JMS 10-15

synchronous receive with blocking time-out operations will block for the specified
length of time. Messages will not be delivered to synchronous consumers attached to
that destination while the destination is paused for consumption.

After a successful consumption "pause" operation, the user has to explicitly "resume"
the destination to allow consume operations on that destination.

10.5.4.1 Pausing and Resuming Consumption at Boot-time
You can pause or resume consumption effective at boot-time for all the destinations on
a JMS server, for a group of destinations that point to the same JMS template, or for
individual destinations. If you configure consumption-paused-at-startup, the
next time you boot the server, message consumption activities will be disallowed on
the specified destination(s) until you explicitly change the state to "consumption
enabled" for that destination. If you configure consumption to resume, the next time
you boot the server, message consumption activities will be allowed on the specified
destination(s) until the state is explicitly changed to "consumption paused" for that
destination.

For more information about pausing and resuming consumption at boot-time, see the
following sources in the Oracle WebLogic Server Administration Console Help:

■ "Pause JMS server message operations on restart"

■ "Pause topic message operations on server restart"

■ "Pause queue message operations on server restart"

■ "Pause JMS template message operations on server restart"

■ "Uniform distributed topics - pause message operations on server restart"

■ "Uniform distributed queues - pause message operations on server restart"

10.5.4.2 Pausing and Resuming Consumption at Runtime
You can pause or resume consumption during runtime for all the destinations on a
JMS server, for a group of destinations that point to the same JMS template, or for
individual destinations. The most recent configuration change always take precedence,
regardless of the level at which it is made (JMS Server level, JMS Template level, or
destination level).

For more information about pausing and resuming consumption at runtime, see the
following sources in the Oracle WebLogic Server Administration Console Help:

■ "Pause JMS server message operations at runtime"

■ "Pause topic message operations at runtime"

■ "Pause queue message operations at runtime"

10.5.4.3 Consumption Pause and Resume and Queue Browsers
Queue Browsers are special type of consumers that are only allowed to "peek" into
queue destinations. A browse operation on a destination paused for consumption is
perfectly legitimate and is allowed.

10.5.4.4 Consumption Pause and Resume and Distributed Destination
Member destinations that are currently paused for consumption are not considered by
the consumer load balancing algorithm.

Controlling Message Operations on Destinations

10-16 Configuring and Managing JMS for Oracle WebLogic Server

10.5.4.5 Consumption Pause and Resume and Message-Driven Beans
Pausing a destination for consumption will prevent a message-driven bean (MDB)
from getting any messages from its associated destination. This feature gives you more
flexible control over the delivery of messages delivery to MDBs from the individual
destination level as opposed to using connection start/stop. In other words, if you use
the consumption pause/resume feature, you can share the JMS connection among the
multiple MDBs and still be able to prevent message delivery to selected MDBs by
pausing the associated destination for consumption.

For more information on using MDBs, see "Configuring Suspension of Message
Delivery During JMS Resource Outages" inProgramming Message-Driven Beans for
Oracle WebLogic Server.

10.5.4.6 Consumption Pause and Resume and JMS Connection Stop/Start
The JMS connection stop/start feature determines whether a consumer can
successfully invoke the receive APIs or not. The consumption pause/resume feature
on a destination determines whether the receive call will get any messages from the
destination or not. Stopping or starting a consumer's connection does not have any
impact on the destination's consumption pause state.

If the consumer's connection is "started" from the "stopped" state, synchronous receive
operations might block or time-out if the destination is currently paused for
consumption. Asynchronous consumers will not receive any messages if the
associated destination is in "consumption paused" state.

10.5.5 Definition of In-Flight Work
■ Section 10.5.5.1, "In-flight Work Associated with Producers"

■ Section 10.5.5.2, "In-flight Work Associated with Consumers"

10.5.5.1 In-flight Work Associated with Producers
The following types of messages are inserted on a destination as a result of in-flight
work associated with message producers.

■ Unborn Messages – Messages that are created by the producer with "birth time"
(TimeToDeliver) set in the future. Until delivered, unborn messages are counted as
"pending" messages in the destination statistics and are not available for
consumption.

■ Uncommitted Messages – Messages that are produced as part of a transaction
(using either user transaction or transacted session) and have not yet been either
committed or rolled back. Until the transaction has been completed, uncommitted
messages are counted as "pending" messages in the destination statistics and are
not available for consumption.

■ Quota Blocking Send – Messages that, if initially prevented from reaching a
destination due to a quota limit, will block for a specific period of time while
waiting for the destination to become available. The message may exceed the
message quota limit, the byte quota limit, or both quota limits on the destination.
While blocking, these messages are invisible to the system and are not counted
against any of the destination statistics.

10.5.5.2 In-flight Work Associated with Consumers
The following types of messages are inserted on a destination as a result of in-flight
work associated with message consumers.

Controlling Message Operations on Destinations

Troubleshooting WebLogic JMS 10-17

■ Unacknowledged (CLIENT ACK PENDING) Messages – Messages that have been
received by a client and are awaiting acknowledgement from the client. These are
"pending messages" which are removed from the destination/system when the
acknowledgement is received.

■ Uncommitted Messages – Messages that have been received by a client within a
transaction which has not yet been committed or rolled back. When the client
successfully commits the transaction the messages are removed from the system.

■ Rolled-back Messages – Messages that are put back on a destination because of the
successful rollback of a transaction.

These messages might or might not be ready for redelivery to the clients
immediately, depending on the redelivery parameters (i.e., RedeliveryDelay
and/or RedeliveryDelayOverride and RedeliveryLimit) configured on the
associated connection factory and destination, or whether rollback requests are
internally processed asynchronously. Consequently, a message that’s involved in a
consume operation subject to a rollback request may not be visible to a consumer
receiveNoWait() call if the call is made immediately after the rollback request.

If there is a redelivery delay configured, then, for the duration of that delay, the
messages are not available for redelivery and the messages are counted as
"pending" in the destination statistics. After the delay period, if the redelivery limit
has not been exceeded, then they are delivered and are counted as "current"
messages in the destination statistics. If the redelivery limit has been exceeded,
then the messages are moved to the error destination, if one has been configured,
or are dropped, if no error destination has been configured.

Rollbacks can affect the order in which messages are processed. A rolled back
message can be redelivered after subsequent messages in the same queue or
subscription are processed. If strict message ordering is required, see Using
Message Unit-of-Order in Programming JMS for Oracle WebLogic Server.

■ Recovered Messages – Messages that appear on the queue because of an explicit
call to session "recover" by the client. These messages are similar to the
Rolled-back Messages discussed above.

■ Redelivered Messages – Messages that reappear on the destination because of an
unsuccessful delivery attempt to the client. These messages are similar to the
Rolled-back Messages discussed above.

10.5.6 Order of Precedence for Boot-time Pause and Resume of Message Operations
You can pause and resume destinations at boot-time by setting attributes at several
different levels:

■ If you are using a JMS server to host a group of destinations, you can pause or
resume message operations on the entire group of destinations.

■ If you are using a JMS template to define the attribute values of groups of
destinations, you can pause or resume message operations on all of the
destinations in a group.

■ You can pause and resume message operations on a single destination.

If the values at each of these levels are not in agreement at boot-time, the following
order of precedence is used to determine the behavior of the message operations on
the specified destination(s). For each of the attributes used to configure pausing and
resumption of message operations:

Controlling Message Operations on Destinations

10-18 Configuring and Managing JMS for Oracle WebLogic Server

1. If the hosting JMS server for the destination has the attribute set with a valid
value, then that value determines the state of the destination at boot time.
Server-level settings have first precedence.

2. If the hosting JMS server does not have the attribute set with a valid value, then
the value of the attribute on the destination level has second highest precedence
and determines the state of the destination at boot time.

3. If neither the hosting JMS server nor the destination has the attribute set with a
valid value, then the value of the attribute on the JMS template determines the
state of the destination at boot time.

4. If the attribute has not been set at any of the three levels, then the value is assumed
to be "false".

10.5.7 Security
The administrative user/group can override the current state of a destination
irrespective of whether the destination's state is currently being controlled by other
users.

If two non-administrative users are trying to control the state of the destination, then
the following rules apply.

1. Only a user who belongs to the same group as the user who changed the state of
the destination to "paused" is allowed to "resume" the destination to the normal
operation.

2. If the state change is attempted by two different users who belong to two different

	Contents
	Preface
	Documentation Accessibility
	Conventions

	1 Introduction and Roadmap
	1.1 Document Scope and Audience
	1.2 Guide to This Document
	1.3 Related Documentation
	1.4 JMS Samples and Tutorials for the JMS Administrator
	1.4.1 Avitek Medical Records Application (MedRec) and Tutorials
	1.4.2 JMS Examples in the WebLogic Server Distribution

	1.5 WebLogic Server Value-Added JMS Features
	1.5.1 Enterprise-Grade Reliability
	1.5.2 Enterprise-Level Features
	1.5.3 Performance
	1.5.4 Tight Integration with WebLogic Server
	1.5.5 Interoperability With Other Messaging Services

	1.6 New and Changed JMS Features
	1.6.1 WebLogic Server 10.3.4.0 New and Changed Features
	1.6.2 WebLogic Server 10.3.3.0 New and Changed Features
	1.6.3 WebLogic Server 10.3.2.0 New and Changed Features

	2 Understanding JMS Resource Configuration
	2.1 Overview of JMS and WebLogic Server
	2.1.1 What Is the Java Message Service?
	2.1.2 WebLogic JMS Architecture and Environment

	2.2 Domain Configuration
	2.3 What Are JMS Configuration Resources?
	2.4 Overview of JMS Servers
	2.4.1 JMS Server Behavior in WebLogic Server 9.x and Later

	2.5 Overview of JMS Modules
	2.5.1 JMS System Modules
	2.5.2 JMS Application Modules
	2.5.3 Comparing JMS System Modules and Application Modules
	2.5.4 Configurable JMS Resources in Modules
	2.5.5 JMS Schema
	2.5.6 JMS Interop Modules

	2.6 Other Environment-Related System Resources for WebLogic JMS
	2.6.1 Persistent Stores
	2.6.2 JMS Store-and-Forward (SAF)
	2.6.3 Path Service
	2.6.4 Messaging Bridges

	3 Configuring Basic JMS System Resources
	3.1 Methods for Configuring JMS System Resources
	3.2 Main Steps for Configuring Basic JMS System Resources
	3.2.1 Advanced Resources in JMS System Modules

	3.3 JMS Configuration Naming Requirements
	3.4 JMS Server Configuration
	3.4.1 JMS Server Configuration Parameters
	3.4.2 JMS Server Targeting
	3.4.3 JMS Server Monitoring Parameters
	3.4.4 Session Pools and Connection Consumers

	3.5 JMS System Module Configuration
	3.5.1 JMS System Module and Resource Subdeployment Targeting
	3.5.1.1 Default Targeting
	3.5.1.2 Advanced (Subdeployment) Targeting

	3.6 Connection Factory Configuration
	3.6.1 Using a Default Connection Factory
	3.6.2 Connection Factory Configuration Parameters
	3.6.3 Connection Factory Targeting

	3.7 Queue and Topic Destination Configuration
	3.7.1 Queue and Topic Configuration Parameters
	3.7.1.1 Creating Error Destinations
	3.7.1.2 Creating Distributed Destinations

	3.7.2 Queue and Topic Targeting
	3.7.3 Destination Monitoring and Management Parameters

	3.8 JMS Template Configuration
	3.8.1 JMS Template Configuration Parameters

	3.9 Destination Key Configuration
	3.10 Quota Configuration
	3.11 Foreign Server Configuration
	3.12 Distributed Destination Configuration
	3.13 JMS Store-and-Forward (SAF) Configuration

	4 Configuring Advanced JMS System Resources
	4.1 Configuring WebLogic JMS Clustering
	4.1.1 Advantages of JMS Clustering
	4.1.2 How JMS Clustering Works
	4.1.2.1 JMS Clustering Naming Requirements
	4.1.2.2 Distributed Destination Within a Cluster
	4.1.2.3 JMS Services As a Migratable Service Within a Cluster

	4.1.3 Configuration Guidelines for JMS Clustering
	4.1.4 What About Failover?

	4.2 Migration of JMS-related Services
	4.2.1 Automatic Migration of JMS Services
	4.2.2 Manual Migration JMS Services
	4.2.3 Persistent Store High Availability

	4.3 Using the WebLogic Path Service
	4.3.1 Path Service High Availability
	4.3.2 Implementing Message UOO With a Path Service

	4.4 Configuring Foreign Server Resources to Access Third-Party JMS Providers
	4.4.1 How WebLogic JMS Accesses Foreign JMS Providers
	4.4.2 Creating Foreign Server Resources
	4.4.2.1 Creating Foreign Connection Factory Resources
	4.4.2.2 Creating a Foreign Destination Resources

	4.4.3 Sample Configuration for MQSeries JNDI

	4.5 Configuring Distributed Destination Resources
	4.5.1 Uniform Distributed Destinations vs. Weighted Distributed Destinations
	4.5.2 Creating Uniform Distributed Destinations
	4.5.2.1 Targeting Uniform Distributed Queues and Topics
	4.5.2.2 Pausing and Resuming Message Operations on UDD Members
	4.5.2.3 Monitoring UDD Members
	4.5.2.4 Configuring Partitioned Distributed Topics
	4.5.2.4.1 Load Balancing Partitioned Distributed Topics

	4.5.3 Creating Weighted Distributed Destinations
	4.5.4 Load Balancing Messages Across a Distributed Destination
	4.5.4.1 Load Balancing Options
	4.5.4.1.1 Round-Robin Distribution
	4.5.4.1.2 Random Distribution

	4.5.4.2 Consumer Load Balancing
	4.5.4.3 Producer Load Balancing
	4.5.4.4 Load Balancing Heuristics
	4.5.4.4.1 Transaction Affinity
	4.5.4.4.2 Server Affinity
	4.5.4.4.3 Queues with Zero Consumers
	4.5.4.4.4 Paused Distributed Destination Members

	4.5.4.5 Defeating Load Balancing
	4.5.4.5.1 Connection Factories

	4.5.4.6 Distributed Destination Load Balancing When Server Affinity Is Enabled

	4.5.5 Distributed Destination Migration
	4.5.6 Distributed Destination Failover

	4.6 Configure an Unrestricted ClientID
	4.7 Configure Shared Subscriptions

	5 Configuring JMS Application Modules for Deployment
	5.1 Methods for Configuring JMS Application Modules
	5.2 JMS Schema
	5.3 Packaging JMS Application Modules In an Enterprise Application
	5.3.1 Creating Packaged JMS Application Modules
	5.3.1.1 Packaged JMS Application Module Requirements
	5.3.1.2 Main Steps for Creating Packaged JMS Application Modules

	5.3.2 Sample of a Packaged JMS Application Module In an EJB Application
	5.3.2.1 Packaged JMS Application Module References In weblogic-application.xml
	5.3.2.2 Packaged JMS Application Module References In ejb-jar.xml
	5.3.2.3 Packaged JMS Application Module References In weblogic-ejb-jar.xml

	5.3.3 Packaging an Enterprise Application With a JMS Application Module
	5.3.4 Deploying a Packaged JMS Application Module

	5.4 Deploying Standalone JMS Application Modules
	5.4.1 Standalone JMS Modules
	5.4.2 Creating Standalone JMS Application Modules
	5.4.2.1 Standalone JMS Application Module Requirements
	5.4.2.2 Main Steps for Creating Standalone JMS Application Modules

	5.4.3 Sample of a Simple Standalone JMS Application Module
	5.4.4 Deploying Standalone JMS Application Modules
	5.4.5 Tuning Standalone JMS Application Modules

	5.5 Generating Unique Runtime JNDI Names for JMS Resources
	5.5.1 Unique Runtime JNDI Name for Local Applications
	5.5.2 Unique Runtime JNDI Name for Application Libraries
	5.5.3 Unique Runtime JNDI Name for Standalone JMS Modules
	5.5.4 Where to Use the ${APPNAME} String
	5.5.5 Example Use-Case

	6 Using WLST to Manage JMS Servers and JMS System Module Resources
	6.1 Understanding JMS System Modules and Subdeployments
	6.2 How to Create JMS Servers and JMS System Module Resources
	6.3 How to Modify and Monitor JMS Servers and JMS System Module Resources
	6.4 Best Practices when Using WLST to Configure JMS Resources

	7 Interoperating with Oracle AQ JMS
	7.1 Overview
	7.1.1 Using AQ Destinations as Foreign Destinations
	7.1.2 Driver Support
	7.1.3 Transaction Support
	7.1.4 Oracle RAC
	7.1.5 MBean and Console Support
	7.1.6 Migrating from OC4J

	7.2 Configuring WebLogic Server to Interoperate with AQ JMS
	7.2.1 Configure Oracle AQ in the Database
	7.2.1.1 Create Users and Grant Permissions
	7.2.1.2 Create AQ Queue Tables
	7.2.1.3 Create a JMS Queue or Topic
	7.2.1.4 Start the JMS Queue or Topic

	7.2.2 Configure WebLogic Server
	7.2.2.1 Configure a WebLogic Data Source
	7.2.2.2 Configure a JMS System Module
	7.2.2.3 Configure a JMS Foreign Server
	7.2.2.3.1 Reference a Data Source

	7.2.2.4 Configure JMS Foreign Server Connection Factories
	7.2.2.5 Configure AQ JMS Foreign Server Destinations

	7.3 Programming Considerations
	7.3.1 Message Driven Beans
	7.3.2 AQ JMS Extensions
	7.3.2.1 Using AdtMessage

	7.3.3 Resource References
	7.3.4 JDBC Connection Utilization
	7.3.5 Oracle RAC Support
	7.3.6 Debugging
	7.3.7 Performance Considerations

	7.4 Advanced Topics
	7.4.1 Security Considerations
	7.4.1.1 Configuring AQ Destination Security
	7.4.1.2 Access to JNDI Advertised Destinations and Connection Factories
	7.4.1.3 Controlling Access to Destinations that are Looked Up using the JMS API
	7.4.1.3.1 Additional Security Configuration for Stand-alone Clients
	7.4.1.3.2 Additional Security Configurations for Server-side Applications

	7.4.2 WebLogic Messaging Bridge
	7.4.2.1 Create a Messaging Bridge Instance

	7.4.3 Stand-alone WebLogic AQ JMS Clients
	7.4.3.1 Configure a Foreign Server using a Database's JDBC URL
	7.4.3.2 Limitations when using Stand-alone WebLogic AQ JMS Clients

	7.5 Related Documentation

	8 Monitoring JMS Statistics and Managing Messages
	8.1 Monitoring JMS Statistics
	8.1.1 Monitoring JMS Servers
	8.1.1.1 Monitoring Active JMS Destinations
	8.1.1.2 Monitoring Active JMS Transactions
	8.1.1.3 Monitoring Active JMS Connections, Sessions, Consumers, and Producers
	8.1.1.4 Monitoring Active JMS Session Pools

	8.1.2 Monitoring Queues
	8.1.3 Monitoring Topics
	8.1.4 Monitoring Durable Subscribers for Topics
	8.1.5 Monitoring Uniform Distributed Queues
	8.1.6 Monitoring Uniform Distributed Topics
	8.1.7 Monitoring Pooled JMS Connections

	8.2 Managing JMS Messages
	8.2.1 JMS Message Management Using Java APIs
	8.2.2 JMS Message Management Using the Administration Console
	8.2.2.1 Monitoring Message Runtime Information
	8.2.2.2 Querying Messages
	8.2.2.3 Moving Messages
	8.2.2.4 Deleting Messages
	8.2.2.5 Creating New Messages
	8.2.2.6 Importing Messages
	8.2.2.7 Exporting Messages

	8.2.3 Managing Transactions
	8.2.4 Managing Durable Topic Subscribers

	9 Best Practices for JMS Beginners and Advanced Users
	9.1 Configuration Best Practices
	9.1.1 Configure JMS Servers and Persistent Stores.
	9.1.2 Configure a JMS Module
	9.1.3 Configure JMS Resources
	9.1.4 Configure SAF Agents, Stores, and Imported Destination

	9.2 Targeting Best Practices
	9.3 Integration and Multi-Domain Best Practices
	9.4 Understanding WebLogic JMS Client Options
	9.5 Understanding WebLogic URLs
	9.5.1 URL syntax

	9.6 Strict Message Ordering Best Practices
	9.7 High Availability Best Practices
	9.7.1 Distributed Queues vs Distributed Topics

	9.8 JMS Performance and Tuning

	10 Troubleshooting WebLogic JMS
	10.1 Configuring Notifications for JMS
	10.2 Debugging JMS
	10.2.1 Enabling Debugging
	10.2.1.1 Enable Debugging Using the Command Line
	10.2.1.2 Enable Debugging Using the WebLogic Server Administration Console
	10.2.1.3 Enable Debugging Using the WebLogic Scripting Tool
	10.2.1.4 Changes to the config.xml File

	10.2.2 JMS Debugging Scopes
	10.2.3 Messaging Kernel and Path Service Debugging Scopes
	10.2.4 Request Dyeing

	10.3 Message Life Cycle Logging
	10.3.1 Events in the JMS Message Life Cycle
	10.3.1.1 Message Log Location

	10.3.2 Enabling JMS Message Logging

	10.4 JMS Message Log Content
	10.4.1 JMS Message Log Record Format
	10.4.2 Sample Log File Records
	10.4.2.1 Consumer Created Event
	10.4.2.2 Consumer Destroyed Event
	10.4.2.3 Message Produced Event
	10.4.2.4 Message Consumed Event
	10.4.2.5 Message Expired Event
	10.4.2.6 Retry Exceeded Event
	10.4.2.7 Message Removed Event

	10.4.3 Managing JMS Server Log Files
	10.4.3.1 Rotating Message Log Files
	10.4.3.2 Renaming Message Log Files
	10.4.3.3 Limiting the Number of Retained Message Log Files

	10.5 Controlling Message Operations on Destinations
	10.5.1 Definition of Message Production, Insertion, and Consumption
	10.5.1.1 Pause and Resume Logging

	10.5.2 Production Pause and Production Resume
	10.5.2.1 Pausing and Resuming Production at Boot-time
	10.5.2.2 Pausing and Resuming Production at Runtime
	10.5.2.3 Production Pause and Resume and Distributed Destinations
	10.5.2.4 Production Pause and Resume and JMS Connection Stop/Start

	10.5.3 Insertion Pause and Insertion Resume
	10.5.3.1 Pausing and Resuming Insertion at Boot Time
	10.5.3.2 Pausing and Resuming Insertion at Runtime
	10.5.3.3 Insertion Pause and Resume and Distributed Destination
	10.5.3.4 Insertion Pause and Resume and JMS Connection Stop/Start

	10.5.4 Consumption Pause and Consumption Resume
	10.5.4.1 Pausing and Resuming Consumption at Boot-time
	10.5.4.2 Pausing and Resuming Consumption at Runtime
	10.5.4.3 Consumption Pause and Resume and Queue Browsers
	10.5.4.4 Consumption Pause and Resume and Distributed Destination
	10.5.4.5 Consumption Pause and Resume and Message-Driven Beans
	10.5.4.6 Consumption Pause and Resume and JMS Connection Stop/Start

	10.5.5 Definition of In-Flight Work
	10.5.5.1 In-flight Work Associated with Producers
	10.5.5.2 In-flight Work Associated with Consumers

	10.5.6 Order of Precedence for Boot-time Pause and Resume of Message Operations
	10.5.7 Security

