

Oracle® Coherence
Integration Guide for Oracle TopLink with Coherence Grid

Release 3.7.1

E23131-01

September 2011

Oracle Coherence Integration Guide for Oracle TopLink with Coherence Grid, Release 3.7.1

E23131-01

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Primary Author: Tom Pfaeffle

Contributing Author: Shaun Smith, Gordon Yorke, Rick Sapir

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

List of ExamplesList of FiguresList of Tables

Preface ... ix

Audience... ix
Documentation Accessibility ... ix
Related Documents ... ix
Conventions ... x

1 Introduction to Toplink Grid with Oracle Coherence

2 JPA on the Grid Configurations

Understanding JPA on the Grid ... 2-1
JPA on the Grid API.. 2-2
Grid Cache Configuration .. 2-3

Reading Objects in Grid Cache Configuration .. 2-3
Writing Objects in Grid Cache Configuration ... 2-4
Grid Cache Configuration Examples .. 2-5

Configuring the Cache for the Grid Cache Configuration ... 2-5
Configuring an Entity for the Grid Cache Configuration... 2-6
Inserting Objects for the Grid Cache Configuration.. 2-6
Querying Objects for the Grid Cache Configuration... 2-6

Grid Read Configuration .. 2-7
Reading Objects in Grid Read Configuration ... 2-7
Writing Objects in Grid Read Configuration ... 2-9
Grid Read Configuration Examples .. 2-9

Configuring the Cache in Grid Read Configuration ... 2-9
Reading Objects for the Grid Read Configuration.. 2-10
Inserting Objects for the Grid Read Configuration... 2-11
Querying Objects for the Grid Read Configuration.. 2-11

Grid Entity Configuration ... 2-11
Reading Objects in Grid Entity Configuration ... 2-12
Writing Objects in Grid Entity Configuration .. 2-12
Limitations on Writing Objects in Grid Entity Configuration.. 2-13
Grid Entity Configuration Examples .. 2-13

Configuring the Cache for the Grid Entity Configuration .. 2-13
Configuring an Entity for the Grid Entity Configuration ... 2-14

iv

Persisting Objects for the Grid Entity Configuration .. 2-15
Querying Objects for the Grid Entity Configuration ... 2-15

Handling Grid Read and Grid Entity Failovers .. 2-15
Wrapping and Unwrapping Entity Relationships .. 2-16
Working with Queries .. 2-16

Querying Objects by ID.. 2-16
Querying Objects with Criteria ... 2-17
Using Indexes in Queries ... 2-17
Limitations on Queries ... 2-18

3 EclipseLink Native ORM Configurations

Understanding EclipseLink Native ORM ... 3-1
API for EclipseLink Native ORM ... 3-1
Configuring an Amendment Method .. 3-2

Configuring the Amendment Method in JDeveloper... 3-2
Configuring the EclipseLink Native ORM Cache Store and Cache Loader 3-6

4 Using POF Serialization

Implement a Serialization Routine... 4-1
Define a Cache Configuration File ... 4-3
Provide a POF Configuration File... 4-5

5 Best Practices

Changing Compiled Java Classes with Byte Code Weaving ... 5-1
Deferring Database Queries with Lazy Loading ... 5-2
Defining Near Caches for Applications Using TopLInk Grid ... 5-2
Ensuring Prefixed Cache Names Use Wildcard in Cache Configuration...................................... 5-2
Overriding the Default Cache Name.. 5-4

Index

v

List of Examples

2–1 Configuring the Cache in Grid Cache Configuration.. 2-5
2–2 Configuring the Entity in Grid Cache Configuration.. 2-6
2–3 Inserting Objects in Grid Cache Configuration .. 2-6
2–4 Querying Objects in Grid Cache Configuration... 2-6
2–5 Configuring the Cache in Grid Read Configuration .. 2-10
2–6 Configuring the Entity in Grid Read Configuration... 2-11
2–7 Inserting Objects in Grid Read Configuration... 2-11
2–8 Querying Objects in Grid Read Configuration.. 2-11
2–9 Configuring the Cache in Grid Entity Configuration... 2-14
2–10 Configuring an Entity in Grid Entity Configuration .. 2-14
2–11 Persisting Objects in Grid Entity Configuration ... 2-15
2–12 Querying Objects in Grid Entity Configuration .. 2-15
2–13 Unwrapping an Entity .. 2-16
2–14 Exposing a Coherence Query Index to TopLink Grid.. 2-17
3–1 Configuration for an Integrated EclipseLinkNativeCacheStore ... 3-6
3–2 Configuration for an Integrated EclipseLinkNativeCacheLoader 3-7
4–1 Sample Entity Class that Implements PortableObject ... 4-2
4–2 Sample Cache Configuration File ... 4-3
4–3 Sample POF Configuration File .. 4-5
5–1 Session Customizer to Prepend ... 5-3

vi

List of Figures

2–1 JPA on the Grid Approach... 2-2
2–2 Reading Objects in Grid Cache Configuration ... 2-4
2–3 Writing and Persisting Objects in grid Cache Configuration... 2-5
2–4 Reading Objects with a Query .. 2-8
2–5 Writing and Persisting Objects in Grid Read Configuration.. 2-9
2–6 Writing and Persisting Objects in Grid Entity Configuration... 2-13
3–1 tlMap Descriptors in the JDeveloper Structure Pane... 3-3
3–2 Advanced Properties Dialog Box.. 3-4
3–3 After Load Tab for a TopLink Descriptor .. 3-5
3–4 Searching for the Class containing the Amendment Method .. 3-5
3–5 Selecting the Amendment Method... 3-6

vii

List of Tables

2–1 TopLink Grid Classes to Build JPA on the Grid Applications .. 2-2
3–1 EclipseLink Classes for Native ORM Configurations .. 3-1

viii

ix

Preface

Oracle TopLink includes tight integration with Oracle Coherence. This integration,
provided through the TopLink Grid feature, blends the standardization and simplicity
of application development using the Java Persistence API (JPA) with the scalability
and distributed processing power of Oracle Coherence data grid.

This document describes how to:

■ Configure TopLink Grid to use the Coherence data grid as the primary data store
for entities

■ Use Coherence as a distributed shared cache

■ Employ Coherence parallel processing to perform Java Persistence Query
Language (JPQL) queries on cached entities

■ Use the cache store and cache loader interfaces, which have been optimized for
EclipseLink JPA, in Coherence applications that run on the grid

Audience
This guide is intended for developers who build applications using JPA and want to
use the power of the data grid for improved scalability and performance.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Related Documents
For more information about Oracle Coherence and Oracle TopLink, see the following:

■ Oracle Fusion Middleware Developer's Guide for Oracle TopLink

■ Integration Guide for Oracle Coherence

x

■ Getting Started for Oracle Coherence

■ Developers Guide for Oracle Coherence

■ Client Guide for Oracle Coherence

■ Tutorial for Oracle Coherence

■ User's Guide for Oracle Coherence*Web

■ Oracle Coherence Management Guide

■ Oracle Coherence Administrator’s Guide

■ Oracle Coherence Security Guide

Conventions
The following text conventions are used in this guide:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

Introduction to Toplink Grid with Oracle Coherence 1-1

1Introduction to Toplink Grid with Oracle
Coherence

Oracle TopLink enables you to scale out JPA applications using Oracle Coherence.
TopLink Grid provides applications with a number of options on how they can scale,
ranging from using Coherence as a distributed shared (L2) cache up to directing JP QL
queries to Coherence for parallel execution across the grid to reduce database load.
With TopLink Grid, you do not have to rewrite your applications to scale out. You can
use your investment in JPA, and still take advantage of the scalability of Coherence.

TopLink Grid provides the following benefits:

■ Simple application configuration using annotations or XML configurations that
align with standard JPA.

■ The ability to store complex object graphs with relationships in Coherence.

■ The ability to selectively choose which entities are stored in the grid and which are
stored directly in the backing database.

■ Allows you to execute JP QL queries in the Grid or directly against the database.

■ Allows you to store entities with both eager and lazy relationships into Coherence.

TopLink Grid integrates the TopLink JPA implementation (EclipseLink) with Oracle
Coherence and provides these development approaches:

■ You can use the Coherence API with caches backed by TopLink Grid to access
relational data with special cache loader and cache store interfaces which have
been implemented for JPA.

In this traditional Coherence approach, TopLink Grid provides the CacheLoader
and CacheStore implementations in the oracle.eclipselink.coherence.
standalone package that are optimized for EclipseLink JPA. This technique is
described in the Integration Guide for Oracle Coherence.

■ You can build applications using JPA and transparently use the power of the data
grid for improved scalability and performance. In this JPA on the Grid approach,
TopLink Grid provides a set of cache and query configuration options that allow
you to control how EclipseLink JPA uses Coherence. These implementations reside
in the oracle.eclipselink.coherence.integrated package. See
Chapter 2, "JPA on the Grid Configurations" for more information.

If you have existing Native ORM applications, then you can use the EclipseLink
Native Object Relational Mapping (ORM) framework with them. The Native ORM
approach is very similar to JPA on the Grid, however, it does not use annotations to
configure how the cache is used. Instead, this approach employs an amendment

1-2 Oracle Coherence Integration Guide for Oracle TopLink with Coherence Grid

method that defines the appropriate cache behavior. See Chapter 3, "EclipseLink
Native ORM Configurations" for more information.

When integrating JPA applications with the Coherence data grid, note the potential
benefits and restrictions. You must understand how the grid works and how it relates
to your JPA configurations to realize the full potential.

2

JPA on the Grid Configurations 2-1

2JPA on the Grid Configurations

This chapter contains the following sections:

■ Understanding JPA on the Grid

■ JPA on the Grid API

■ Grid Cache Configuration

■ Grid Read Configuration

■ Grid Entity Configuration

■ Handling Grid Read and Grid Entity Failovers

■ Wrapping and Unwrapping Entity Relationships

■ Working with Queries

Understanding JPA on the Grid
The expression JPA on the Grid refers to using JPA and the power of the data grid to
build applications with improved scalability and performance. In the JPA on the Grid
approach, TopLink Grid provides a set of cache and query configuration options that
allow you to control how EclipseLink JPA uses Coherence.

You can configure Coherence as a distributed shared (L2) cache or use Coherence as
the primary data store. You can also configure entities to execute queries in the
Coherence data grid instead of the database. This allows clustered application
deployments to scale beyond database-bound operations.

Figure 2–1 illustrates the relationship between an application, TopLink, Coherence,
and the database.

JPA on the Grid API

2-2 Oracle Coherence Integration Guide for Oracle TopLink with Coherence Grid

Figure 2–1 JPA on the Grid Approach

JPA on the Grid API
The API used by JPA on the Grid configurations are shipped in the toplink-grid.
jar file. Table 2–1 lists some of the key classes in the oracle.eclipselink.
coherence.integrated package that are used in JPA on the Grid configurations.

The configuration also uses the standard JPA run-time configuration file
persistence.xml and the JPA mapping file orm.xml. You must also use the

Table 2–1 TopLink Grid Classes to Build JPA on the Grid Applications

Class Name Description

oracle.eclipseLink.coherence.integrated.
EclipseLinkJPACacheLoader

Provides JPA-aware versions of the Coherence
CacheLoader interface.

oracle.eclipseLink.coherence.integrated.
EclipseLinkJPACacheStore

Provides JPA-aware versions of the Coherence
CacheStore interface.

oracle.eclipselink.coherence.integrated.
config.CoherenceReadCustomizer

Enables a Coherence read configuration.

oracle.eclipselink.coherence.integrated.
config.CoherenceReadWriteCustomizer

Enables a Coherence read/write configuration.

oracle.eclipselink.coherence.integrated.
config.GridCacheCustomizer

Enables cache instances to be cached in Coherence
instead of in the internal EclipseLink shared cache. All
calls to the internal TopLink L2 cache are redirected to
Coherence.

oracle.eclipselink.coherence.integrated.
querying.IgnoreDefaultRedirector

Allows queries to bypass the Coherence cache and be
sent directly to the database.

Grid Cache Configuration

JPA on the Grid Configurations 2-3

Coherence cache configuration file coherence-cache-config.xml to override the
default Coherence settings and define the cache store caching scheme.

Grid Cache Configuration
The Grid Cache configuration can be considered as the base configuration for TopLink
Grid. In this configuration, Coherence acts as the TopLink shared (L2) cache. This
brings the power of the Coherence data grid to JPA applications that rely on
database-hosted data that cannot be entirely preloaded into a Coherence cache. Some
reasons why the data might not be able to be preloaded include extremely complex
queries that exceed the abilities of Coherence Filters, third-party database updates that
create stale caches, and reliance on native SQL queries, stored procedures, or triggers.

By using Coherence as the TopLink Grid cache, you can scale TopLink up into large
clusters while avoiding the need to coordinate local shared caches. Updates made to
entities are available in all Coherence cluster members immediately, upon committing
a transaction.

In general, read and write operations in a Grid Cache configuration have the following
characteristics:

■ A primary key query will attempt to get entities first from the Coherence cache. If
the attempt is unsuccessful, the database will be queried and the Coherence cache
will be updated with the query results. See the following section, "Reading Objects
in Grid Cache Configuration".

■ A nonprimary key query will be executed against the database and the results will
be checked against the Coherence cache. This is to avoid the negative performance
impact of constructing entities that are already cached. Newly queried entities are
put into the Coherence cache.

■ A write operation will update the database and, if successfully committed, will
put updated entities into the Coherence cache. See "Writing Objects in Grid Cache
Configuration" on page 2-4.

See "Grid Cache Configuration Examples" on page 2-5 for detailed examples.

To use Coherence as a distributed cache for an entity, you must enable shared caching
in EclipseLink. Shared caching is enabled by default for all entities, but the default can
be explicitly set to true or false by setting the eclipselink.cache.shared.
default property in the persistence.xml file. Specific entities can override the
default using the @Cache annotation or by specifying the corresponding XML
<cache> element in the eclipselink-orm.xml file. For more information, see:

http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_
(ELUG)#How_to_Use_the_.40Cache_Annotation

Reading Objects in Grid Cache Configuration
In the Grid Cache configuration, all read queries are directed to the database except
primary key queries, which are directed to the Coherence cache first. Any cache misses
will result in a database query.

All entities queried from the database are placed in the Coherence cache. This makes
the entities immediately available to all members of the cluster. This is valuable
because, by default, TopLink uses the cache to avoid constructing new entities from
database results.

For each row resulting from a query, TopLink uses the primary key of the result row to
query the corresponding entity from the cache. If the cache contains the entity then the

Grid Cache Configuration

2-4 Oracle Coherence Integration Guide for Oracle TopLink with Coherence Grid

entity is used and a new entity is not built. This approach can greatly improve
application performance, especially with a warmed cache, because it reduces the cost
of a query by eliminating the cost associated with object building.

Figure 2–2 illustrates the path of a read query in the Grid Cache configuration:

1. The application issues a find query.

2. For primary key queries, TopLink queries the Coherence cache first.

3. If the object does not exist in the Coherence cache, TopLink queries the database.

For all read queries except primary key queries, TopLink queries the database first.

4. Read objects are put into the Coherence cache.

Figure 2–2 Reading Objects in Grid Cache Configuration

Writing Objects in Grid Cache Configuration
In the Grid Cache configuration, TopLink performs all database write operations
(insert, update, delete). The Coherence cache is then updated to reflect the changes
made to the database. TopLink offers a number of performance features when writing
large amounts of data including batch writing, parameter binding, stored procedure
support, and statement ordering to ensure that database constraints are satisfied.

Figure 2–3 illustrates the path for writing and persisting objects in the Grid Cache
configuration:

1. The application issues a commit query.

2. TopLink updates the database.

3. After a successful transaction, TopLink updates the Coherence cache.

Grid Cache Configuration

JPA on the Grid Configurations 2-5

Figure 2–3 Writing and Persisting Objects in grid Cache Configuration

Grid Cache Configuration Examples
You can obtain the code in these examples at the following URL:

http://www.oracle.
com/technetwork/middleware/toplink/examples-325517-en-ca.html

Configuring the Cache for the Grid Cache Configuration
The cache configuration file (coherence-cache-config.xml) in Example 2–1
defines the cache and configures a wrapper serializer to support serialization of
relationships.

Example 2–1 Configuring the Cache in Grid Cache Configuration

<cache-config>
<caching-scheme-mapping>
<cache-mapping>
<cache-name>*</cache-name>
<scheme-name>eclipselink-distributed</scheme-name>

</cache-mapping>
</caching-scheme-mapping>
<caching-schemes>
<distributed-scheme>
<scheme-name>eclipselink-distributed</scheme-name>
<service-name>EclipseLinkJPA</service-name>
<!--
Configure a wrapper serializer to support serialization of relationships.

-->
<serializer>
<class-name>oracle.eclipselink.coherence.integrated.cache.

WrapperSerializer</class-name>
</serializer>

Grid Cache Configuration

2-6 Oracle Coherence Integration Guide for Oracle TopLink with Coherence Grid

<backing-map-scheme>
<!--
Backing map scheme with no eviction policy.

-->
<local-scheme>
<scheme-name>unlimited-backing-map</scheme-name>

</local-scheme>
</backing-map-scheme>
</backing-map-scheme>
<autostart>true</autostart>

</distributed-scheme>
</caching-schemes>

</cache-config>

Configuring an Entity for the Grid Cache Configuration
To configure an entity to use Grid Cache, use the @Customizer annotation and the
GridCacheCustomizer class as shown in Example 2–2. This class intercepts all
TopLink calls to the internal TopLink Grid cache and redirects them to the Coherence
cache.

Example 2–2 Configuring the Entity in Grid Cache Configuration

import oracle.eclipselink.coherence.integrated.config.GridCacheCustomizer;
import org.eclipse.persistence.annotations.Customizer;

@Entity
@Customizer(GridCacheCustomizer.class)
public class Employee {
...

Inserting Objects for the Grid Cache Configuration
In Example 2–3, TopLink performs the insert to create a new employee. Entities are
persisted through the EntityManager and placed in the database. After a successful
transaction, the Coherence cache is updated.

Example 2–3 Inserting Objects in Grid Cache Configuration

EntityManagerFactory emf = Persistence.createEntityManagerFactory("employee-pu");

// Create an employee with an address and telephone number.
EntityManager em = emf.createEntityManager();
em.getTransaction().begin();
Employee employee = createEmployee();
em.persist(employee);
em.getTransaction().commit();
em.close();

Querying Objects for the Grid Cache Configuration
In Example 2–4, the named JPQL query is directed to the database. Query results are
resolved against the Coherence cache to avoid the cost of building objects that have
previously been cached.

Example 2–4 Querying Objects in Grid Cache Configuration

EntityManagerFactory emf = Persistence.createEntityManagerFactory("employee-pu");

EntityManager em = emf.createEntityManager();
List<Employee> employees = em.createQuery("select e from Employee e where e.

Grid Read Configuration

JPA on the Grid Configurations 2-7

lastName = :lastName").setParameter("lastName", "Smith").getResultList();

for (Employee employee : employees) {
System.err.println(employee);
for (PhoneNumber phone : employee.getPhoneNumbers()) {

System.err.println("\t" + phone);
}

}

emf.close();

Grid Read Configuration
Use the Grid Read configuration for entities that require fast access to large amounts of
(fairly stable) data and write changes synchronously to the database. For these entities,
cache warming would typically be used to populate the Coherence cache, but
individual queries could be directed to the database if necessary.

In general, read and write operations in a Grid Read configuration have the following
characteristics:

■ Read operations get objects from the Coherence cache. Configuring a cache loader
has no impact on JPQL queries. See the next section, "Reading Objects in Grid
Read Configuration".

■ Write operations update the database and, if successfully committed, updated
entities are put into the Coherence cache. See "Writing Objects in Grid Read
Configuration" on page 2-9.

See "Grid Read Configuration Examples" on page 2-9 for detailed examples.

Reading Objects in Grid Read Configuration
In the Grid Read configuration, all primary key and non-primary key queries are
directed to the Coherence cache. To reduce query processing time, TopLink Grid
supports parallel processing of queries across the data grid. Coherence contains data
already in object form, avoiding the performance impact of database communication
and object construction.

With the Grid Read configuration, if Coherence does not contain the entity requested
by the find(...) method, then null is returned. However, if a cache loader is
configured for the entity's cache, Coherence will attempt to load the object from the
database. This is true only for primary key queries.

Configuring a cache loader has no impact on JPQL queries translated to Coherence
filters. When searching with a filter, Coherence will operate only on the set of entities
in the caches; the database will not be queried. However, it is possible to direct a query,
on a query-by-query basis, to the database instead of to Coherence by using the
oracle.eclipselink.coherence.integrated.querying.
IgnoreDefaultRedirector class, as shown in following example:

query.setHint(QueryHints.QUERY_REDIRECTOR, new IgnoreDefaultRedirector());

Any objects retrieved by a database query will be added to the Coherence cache so that
they are available for subsequent queries. Because this configuration resolves all
queries for an entity through Coherence by default, the Coherence cache should be
warmed with all of the data that is to be queried.

In the Grid Read configuration, projection queries (reports) that extract data from a
single entity type will also be directed to Coherence. For example, the following JPQL

Grid Read Configuration

2-8 Oracle Coherence Integration Guide for Oracle TopLink with Coherence Grid

query will return the first and last names of all employees contained in the Coherence
cache.

select e.firstName, e.lastName from Employee e

This type of query is useful when the entire entity is not required, for example when
populating a drop-down list in a user interface.

A cache store is not compatible with the Grid Read configuration because the
EclipseLink JPA will perform all database updates and then propagate the updated
objects into Coherence. If you use a cache store, Coherence will attempt to write the
objects again.

For complete information on using EclipseLink JPA query hints, see the EclipseLink
documentation at this URL:

http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_
(ELUG)#How_to_Use_EclipseLink_JPA_Query_Hints

Figure 2–4 illustrates the path for a query in the Grid Read configuration:

1. The application issues a JPQL query.

2. TopLink executes a Filter on the Coherence cache.

3. TopLink returns results from the Coherence cache only; the database is not
queried.

Figure 2–4 Reading Objects with a Query

Grid Read Configuration

JPA on the Grid Configurations 2-9

Writing Objects in Grid Read Configuration
In the Grid Read configuration, TopLink performs all database write operations
(insert, update, delete) directly. The Coherence caches are then updated to reflect the
changes made to the database. TopLink offers a number of performance features when
writing large amounts of data. These include batch writing, parameter binding, stored
procedure support, and statement ordering to ensure that database constraints are
satisfied.

This approach offers the best possibilities: database updates are performed efficiently
and queries continue to be executed in parallel across the Coherence data grid, with the
option of directing individual queries to the database.

Figure 2–5 illustrates the path for writing and persisting objects in the Grid Read
configuration:

1. The application issues a commit query.

2. TopLink updates the database.

3. After a successful transaction, TopLink updates the Coherence cache.

Figure 2–5 Writing and Persisting Objects in Grid Read Configuration

Grid Read Configuration Examples
You can obtain the code in these examples at the following URL:

http://www.oracle.
com/technetwork/middleware/toplink/examples-325517-en-ca.html

Configuring the Cache in Grid Read Configuration
The cache configuration file (coherence-cache-config.xml) in Example 2–5
defines the cache and configures a wrapper serializer to support serialization of

Grid Read Configuration

2-10 Oracle Coherence Integration Guide for Oracle TopLink with Coherence Grid

relationships. The oracle.eclipselink.coherence.integrated.
EclipseLinkJPACacheLoader class defines the cache store scheme.

Example 2–5 Configuring the Cache in Grid Read Configuration

<cache-config>
<caching-scheme-mapping>
<cache-mapping>
<cache-name>*</cache-name>
<scheme-name>eclipselink-distributed-readonly</scheme-name>

</cache-mapping>
</caching-scheme-mapping>
<caching-schemes>
<distributed-scheme>
<scheme-name>eclipselink-distributed-readonly</scheme-name>
<service-name>EclipseLinkJPAReadOnly</service-name>
<!--
Configure a wrapper serializer to support serialization of relationships.

-->
<serializer>
<class-name>oracle.eclipselink.coherence.integrated.cache.

WrapperSerializer</class-name>
</serializer>
<backing-map-scheme>
<read-write-backing-map-scheme>
<internal-cache-scheme>
<local-scheme />

</internal-cache-scheme>
<!--
Define the cache scheme.

-->
<cachestore-scheme>
<class-scheme>
<class-name>oracle.eclipselink.coherence.integrated.

EclipseLinkJPACacheLoader</class-name>
<init-params>
<param-type>java.lang.String</param-type>
<param-value>{cache-name}</param-value>

</init-param>
<init-param>
<param-type>java.lang.String</param-type>
<param-value>employee-pu</param-value>

</init-param>
</init-params>

</class-scheme>
</cachestore-scheme>
<read-only>true</readonly>

</read-write-backing-map-scheme>
</backing-map-scheme>
<autostart>true</autostart>

</distributed-scheme>
</caching-schemes>

</cache-config>

Reading Objects for the Grid Read Configuration
To configure an entity to read through a Coherence cache, use the @Customizer
annotation and the CoherenceReadCustomizer class as shown in Example 2–6:

Grid Entity Configuration

JPA on the Grid Configurations 2-11

Example 2–6 Configuring the Entity in Grid Read Configuration

import oracle.eclipselink.coherence.integrated.config.CoherenceReadCustomizer;
import org.eclipse.persistence.annotations.Customizer;

@Entity
@Customizer(CoherenceReadCustomizer.class)
public class Employee {
...
}

Inserting Objects for the Grid Read Configuration
In Example 2–7, TopLink performs an insert to create a new employee. If the
transaction is successful, the new object is placed into the Coherence cache under its
primary key.

Example 2–7 Inserting Objects in Grid Read Configuration

EntityManagerFactory emf = Persistence.createEntityManagerFactory("employee-pu");
// Create an employee with an address and telephone number
EntityManager em = emf.createEntityManager();
em.getTransaction().begin();
Employee employee = createEmployee();
em.persist(employee);
em.getTransaction().commit();
em.close();

emf.close();

Querying Objects for the Grid Read Configuration
When finding an employee, the read query is directed to the Coherence cache. The
JPQL query is translated to Coherence filters, as shown in Example 2–8.

Example 2–8 Querying Objects in Grid Read Configuration

EntityManagerFactory emf = Persistence.createEntityManagerFactory("employee-pu");
EntityManager em = emf.createEntityManager();
List<Employee> employees = em.createQuery("select e from Employee e where e.
lastName = :lastName").setParameter("lastName", "Smith").getResultList();
for (Employee employee : employees) {
System.err.println(employee);
for (PhoneNumber phone : employee.getPhoneNumbers()) {
System.err.println("\t" + phone);

}
}

emf.close();

To retrieve an object from the Coherence cache with a specific ID (key), use the em.
find(Entity.class, ID) method. You can also configure a Coherence cache
loader to query the database to find the object, if the cache does not contain the object
with the specified ID.

Grid Entity Configuration
The Grid Entity configuration should be used by applications that require fast access
to large amounts of (fairly stable) data, but perform relatively few updates. This
configuration can be combined with a Coherence cache store using write-behind to
improve application response time by performing database updates asynchronously.

Grid Entity Configuration

2-12 Oracle Coherence Integration Guide for Oracle TopLink with Coherence Grid

In general, read and write operations in a Grid Entity configuration have the following
characteristics:

■ Read operations get objects from the Coherence cache. See "Reading Objects in
Grid Entity Configuration" on page 2-12.

■ Write operations put objects into the Coherence cache. If a cache store is
configured, TopLink also performs write operations on the database. See "Writing
Objects in Grid Entity Configuration" on page 2-12.

See "Grid Entity Configuration Examples" on page 2-13 for detailed examples.

Reading Objects in Grid Entity Configuration
In the Grid Entity configuration, querying objects is identical to the Grid Read
configuration. See "Reading Objects in Grid Cache Configuration" on page 2-3 for
more information.

Writing Objects in Grid Entity Configuration
In the Grid Entity configuration, all objects that are persisted, updated, or merged
through an EntityManager instance will be put in the appropriate Coherence cache.
To persist objects in a Coherence cache to the database, an EclipseLink JPA cache store
(oracle.eclipselink.coherence.integrated.
EclipseLinkJPACacheStore) must be configured for each cache.

You can also configure the cache store to use write-behind to asynchronously
batch-write updated objects. See Coherence Developer’s Guide for more information.

Figure 2–6 illustrates the path for writing and persisting objects in the Grid Entity
configuration.

1. The application issues a commit call.

2. TopLink directs all queries to update the Coherence cache.

3. By configuring a Coherence cache store (optional), TopLink will also update the
database.

Grid Entity Configuration

JPA on the Grid Configurations 2-13

Figure 2–6 Writing and Persisting Objects in Grid Entity Configuration

Limitations on Writing Objects in Grid Entity Configuration
When using a cache store, Coherence assumes that all write operations succeed and
will not inform TopLink of a failure. This could result in the Coherence cache differing
from the database. You cannot use optimistic locking to protect against data corruption
that may occur if the database is concurrently modified by Coherence and a
third-party application.

Because the order in which Coherence cache members write updates to the database is
unpredictable, referential integrity cannot be guaranteed. Referential integrity
constraints must be removed from the database. If they are not, write operations could
fail with the following error:

org.eclipse.persistence.exceptions.DatabaseException
Internal Exception: java.sql.BatchUpdateException: ORA-02292: integrity constraint
violated - child record found
Error Code: 2292

Grid Entity Configuration Examples
You can obtain the code in these examples at the following URL:

http://www.oracle.
com/technetwork/middleware/toplink/examples-325517-en-ca.html

Configuring the Cache for the Grid Entity Configuration
The cache configuration file (coherence-cache-config.xml) in Example 2–9
configures a wrapper serializer to support serialization of relationships. The oracle.
eclipselink.coherence.integrated.EclipseLinkJPACacheStore class
defines the cache store scheme.

Grid Entity Configuration

2-14 Oracle Coherence Integration Guide for Oracle TopLink with Coherence Grid

Example 2–9 Configuring the Cache in Grid Entity Configuration

<cache-config>
<caching-scheme-mapping>
<cache-mapping>
<cache-name>*</cache-name>
<scheme-name>eclipselink-distributed-readwrite</scheme-name>

</cache-mapping>
</caching-scheme-mapping>
<caching-schemes>
<distributed-scheme>
<scheme-name>eclipselink-distributed-readwrite</scheme-name>
<service-name>EclipseLinkJPAReadWrite</service-name>
<!--
Configure a wrapper serializer to support serialization of relationships.

-->
<serializer>
<class-name>oracle.eclipselink.coherence.integrated.cache.

WrapperSerializer</class-name>
</serializer>
<backing-map-scheme>
<read-write-backing-map-scheme>
<internal-cache-scheme>
<local-scheme />
</internal-cache-scheme>
<!--
Define the cache scheme

-->
<cachestore-scheme>
<class-scheme>
<class-name>oracle.eclipselink.coherence.integrated.

EclipseLinkJPACacheStore</class-name>
<init-params>
<init-param>
<param-type>java.lang.String</param-type>
<param-value>{cache-name}</param-value>

</init-param>
<init-param>
<param-type>java.lang.String</param-type>
<param-value>employee-pu</param-value>

</init-param>
</init-params>

</class-scheme>
</cachestore-scheme>

</read-write-backing-map-scheme>
</backing-map-scheme>
<autostart>true</autostart>

</distributed-scheme>
</caching-schemes>

</cache-config>

Configuring an Entity for the Grid Entity Configuration
To configure an entity to read through Coherence, use the @Customizer annotation
and the CoherenceReadWriteCustomizer class as shown Example 2–10:

Example 2–10 Configuring an Entity in Grid Entity Configuration

import oracle.eclipselink.coherence.integrated.config.
CoherenceReadWriteCustomizer;
import org.eclipse.persistence.annotations.Customizer;

Handling Grid Read and Grid Entity Failovers

JPA on the Grid Configurations 2-15

@Entity
@Customizer(CoherenceReadWriteCustomizer.class)
public class Employee {
...
}

Persisting Objects for the Grid Entity Configuration
In Example 2–11, TopLink performs the insert to create a new employee. Entities
persist through the EntityManager instance and are placed in the appropriate
Coherence cache.

Example 2–11 Persisting Objects in Grid Entity Configuration

EntityManagerFactory emf = Persistence.createEntityManagerFactory("employee-pu");

// Create an employee with an address and telephone number.
EntityManager em = emf.createEntityManager();
em.getTransaction().begin();
Employee employee = createEmployee();
em.persist(employee);
em.getTransaction().commit();
em.close();

Querying Objects for the Grid Entity Configuration
When finding an employee, the read query is directed to the Coherence cache, as
shown in Example 2–12.

Example 2–12 Querying Objects in Grid Entity Configuration

EntityManagerFactory emf = Persistence.createEntityManagerFactory("employee-pu");

EntityManager em = emf.createEntityManager();
List<Employee> employees = em.createQuery("select e from Employee e where e.
lastName = :lastName").setParameter("lastName", "Smith").getResultList();

for (Employee employee : employees) {
System.err.println(employee);
for (PhoneNumber phone : employee.getPhoneNumbers()) {

System.err.println("\t" + phone);
}

}

emf.close();

To get an object from the Coherence cache with a specific ID (key), use the em.
find(Entity.class, ID) method. You can also configure a Coherence cache store
to query the database to find the object, if the cache does not contain the object with
the specified ID.

Handling Grid Read and Grid Entity Failovers
In the Grid Read and Grid Entity configurations, TopLink Grid will attempt to
translate JPQL queries into Coherence Filters and execute the query in the grid.
However some queries cannot be translated into filters. When TopLink Grid
encounters such a query, it automatically fails over to the database to execute the
query. In TopLink, you can specify a user-defined translation failure delegate object

Wrapping and Unwrapping Entity Relationships

2-16 Oracle Coherence Integration Guide for Oracle TopLink with Coherence Grid

that will be called if the JPQL-to-filter translation fails. You configure the translation
failure delegate by declaring the eclipselink.coherence.query.
translation-failure-delegate persistence unit property. For example:

<property name="eclipselink.coherence.query.translation-failure-delegate"
value="org.example.ExceptionFailoverPolicy"/>

A translation failure delegate must implement oracle.eclipselink.coherence.
integrated.querying.TranslationFailureDelegate class which defines the
single method translationFailed(DatabaseQuery query, Record
arguments, Session session).

Wrapping and Unwrapping Entity Relationships
When storing entities with relationships in the Coherence cache, TopLink Grid
generates a wrapper class that maintains the relationship information. In this way,
when the object is read from the Coherence cache (eager or lazy), the relationships can
be resolved.

If you read entities directly from the Coherence cache using the Coherence API, the
wrappers are not automatically removed. You can configure automatic unwrapping
programatically by calling the setNotEclipseLink(true) method on the
serializer, as shown in Example 2–13. You can also set the system property as
eclipselink.coherence.not-eclipselink to automatically unwrap an entity.

When configured properly, a cache get operation will return the unwrapped entity.

Example 2–13 Unwrapping an Entity

WrapperSerializer wrapperSerializer = (WrapperSerializer)myCache.
getCacheService().getSerializer();
wrapperSerializer.setNotEclipseLink(true); // So the Serializer will unwrap an
Entity when clients use a get() call from the cache.

Working with Queries
This section includes information on the following topics:

■ Querying Objects by ID

■ Querying Objects with Criteria

■ Using Indexes in Queries

■ Limitations on Queries

Querying Objects by ID
To get an entity from the Coherence cache with a specific ID (key), use the em.
find(Entity.class, ID) method. For example, the following code will get the
entity with key 8, from the Coherence Employee cache.

em.find(Employee.class, 8)

If the entity is not found in the Coherence cache, TopLink executes a SELECT
statement against the database. If a result is found, then the entity is constructed and
placed into the Coherence cache. The query’s specific behavior will depend on your
Coherence cache configuration:

Working with Queries

JPA on the Grid Configurations 2-17

■ calling the find method with a Grid Cache Configuration performs a SELECT
statement against the database on a cache miss and then updates the cache.

■ calling the find method with a Grid Read Configuration or a Grid Entity
Configuration performs a get operation on the Coherence cache. A cache miss
results in a SELECT statement against the database by using a CacheLoader
instance, if it is configured.

Querying Objects with Criteria
To retrieve an entity that matches a specific selection criterion, use the em.
createQuery("...") method. The query’s specific behavior will depend on your
Coherence cache configuration:

■ For the Grid Cache Configuration, the query will always execute a SELECT
statement against the database. For example, the following code will execute a
SELECT statement to find employees named John.

em.createQuery("select e from Employee e where e.name=’John’")

■ For the Grid Read Configuration and Grid Entity Configuration, the query will be
executed against the Coherence cache. If the cache does not contain any entities
that match the selection criteria, then nothing will be returned. This is an example
of why the cache should be warmed before performing the query.

■ For the cache store and cache loader, queries are performed only on primary keys

Using Indexes in Queries
Indexes allow values (or attributes of those values) and corresponding keys to be
correlated within a cache to improve query performance. TopLink Grid allows you to
declare indexes with the @Property annotation. The IntegrationProperties
class provides the INDEXED property.

In Example 2–14, the @Property annotation declares that the name attribute is to be
indexed. TopLink Grid will define an index for that attribute in the Publisher cache.

Example 2–14 Exposing a Coherence Query Index to TopLink Grid

import static oracle.eclipselink.coherence.IntegrationProperties.INDEXED;
import oracle.eclipselink.coherence.integrated.config.CoherenceReadCustomizer;

@Customizer(CoherenceReadCustomizer.class)
public class Publisher implements Serializable {
...
 @Property(name=INDEXED, value="true")
 private String name;
 ...

With an index in place, you can issue a JPQL query, such as the following, to return all
the Publishers in the cache with a name beginning with S.

SELECT Publisher p WHERE p.name like 'S%'

Internally, Coherence will process the query by consulting the name index to find
matches rather than by deserializing and examining every Publisher object stored in
the grid. By avoiding deserialization, you achieve a significant positive improvement
on query execution time, eliminate garbage collection of the temporarily deserialized
objects, and reduce CPU usage.

Working with Queries

2-18 Oracle Coherence Integration Guide for Oracle TopLink with Coherence Grid

Limitations on Queries
The following are limitations on querying Coherence caches:

■ Because the Coherence Filter framework is limited to a single cache, JPQL join
queries cannot be translated to Filters. All join queries will execute on the
database.

■ This release of TopLink Grid does not provide support for JPQL bulk updates and
deletions.

3

EclipseLink Native ORM Configurations 3-1

3EclipseLink Native ORM Configurations

This chapter contains the following sections:

■ Understanding EclipseLink Native ORM

■ API for EclipseLink Native ORM

■ Configuring an Amendment Method

■ Configuring the EclipseLink Native ORM Cache Store and Cache Loader

Understanding EclipseLink Native ORM
EclipseLink Native Object Relational Mapping (ORM) provides an extensible object-
relational mapping framework. It provides high-performance object persistence with
extended capabilities configured declaratively through XML. These extended
capabilities include caching (including support for clustered caching), advanced
database-specific capabilities, and performance tuning and management options.

Like JPA on the Grid configurations, applications that employ EclipseLink ORM can
access Coherence caches. However, unlike JPA on the Grid configurations, EclipseLink
ORM applications do not use the @Customizer annotation to configure how the
cache is used. Instead, they typically call an amendment method that defines the
appropriate cache behavior.

API for EclipseLink Native ORM
The cache store and cache loader API used in EclipseLink Native ORM configurations
are shipped in the toplink-grid.jar file. Table 3–1 describes the API for
EclipseLink Native ORM. These classes can be found in the oracle.eclipselink.
coherence.integrated package.

Table 3–1 EclipseLink Classes for Native ORM Configurations

Class Name Description

EclipseLinkNativeCacheStore(String
cacheName, String sessionName)

Coherence cache store that should be used with native
EclipseLink configuration (sessions.xml).

EclipseLinkNativeCacheLoader(String
cacheName, String sessionName)

Coherence cache loader that should be used with native
EclipseLink configuration (sessions.xml).

Configuring an Amendment Method

3-2 Oracle Coherence Integration Guide for Oracle TopLink with Coherence Grid

Note that the second initialization parameter in the signatures, sessionName,
represents the name of the mapping project that must be listed in the native
EclipseLink configuration file, META-INF/sessions.xml.

The EclipseLinkNativeCacheStore and EclipseLinkNativeCacheLoader
classes allow applications that use EclipseLink Native ORM to access Coherence
caches. Use these classes when Coherence cache behavior has been configured through
an amendment method. These classes can be used to configure a cache store or cache
loader for each persistent class in the same way as described in Chapter 2, "JPA on the
Grid Configurations".

Use the Coherence cache configuration file coherence-cache-config.xml to
define the cache store caching scheme and to override any default Coherence settings.

The configuration uses the native EclipseLink sessions.xml file and the project.
xml file. The sessions.xml file, and all of the deployment XML files (which have
user-defined names) listed in it, must be available on the classpath or packaged within
a JAR file within the META-INF directory.

You must also configure an amendment method to define the appropriate cache
behavior. See "Configuring an Amendment Method" for more information.

Configuring an Amendment Method
An amendment method is a method that uses the EclipseLink descriptor API to
customize the ORM mapping metadata for a class. The method is called when the
descriptor is loaded at runtime. The purpose of the amendment methods provided by
TopLink Grid is to define how the Coherence cache is going to be used. Amendment
methods are the TopLink native ORM alternative to the @Customizer annotation;
they produce the same configuration.

The TopLink Grid customizer classes in the toplink-grid.jar file
(CoherenceReadCustomizer, CoherenceReadWriteCustomizer, and
GridCacheCustomizer) provide an afterLoad amendment method that can be
selected to enable the appropriate Coherence cache behavior.

You can select the amendment method using either JDeveloper or EclipseLink
Workbench. How to configure amendment methods in EclipseLink Workbench is
beyond the scope of this document. You can find information on this topic in
"Amendment and After-Load Methods" at Eclipsepedia:

http://wiki.eclipse.org/Introduction_to_Descriptors_
(ELUG)#Amendment_and_After-Load_Methods

Configuring the Amendment Method in JDeveloper
To configure an amendment method:

oracle.eclipselink.coherence.integrated.
config.CoherenceReadCustomizer

Enables a Coherence read configuration.

oracle.eclipselink.coherence.integrated.
config.CoherenceReadWriteCustomizer

Enables a Coherence read/write configuration.

oracle.eclipselink.coherence.integrated.
config.GridCacheCustomizer

Enables entity instances to be cached in Coherence
instead of in the internal EclipseLink shared cache

Table 3–1 (Cont.) EclipseLink Classes for Native ORM Configurations

Class Name Description

Configuring an Amendment Method

EclipseLink Native ORM Configurations 3-3

1. In the JDeveloper Structure pane, expand the desired tlMap descriptor name.

Figure 3–1 tlMap Descriptors in the JDeveloper Structure Pane

2. Right-click the desired TopLink descriptor element. Select Advanced Properties to
open the Advanced Properties dialog box. Select the After Loading check box and
click OK.

Configuring an Amendment Method

3-4 Oracle Coherence Integration Guide for Oracle TopLink with Coherence Grid

Figure 3–2 Advanced Properties Dialog Box

3. In the After Load tab of the tlMap configuration window, enter the name of the
class containing the afterLoad amendment method you want to use for the
selected TopLink descriptor. You can also use the class browser to search for the
class. Figure 3–3 illustrates the After Load tab of the tlMap configuration window.

Configuring an Amendment Method

EclipseLink Native ORM Configurations 3-5

Figure 3–3 After Load Tab for a TopLink Descriptor

Figure 3–4 illustrates the class browser with the with the
CoherenceReadCustomizer class selected.

Figure 3–4 Searching for the Class containing the Amendment Method

Configuring the EclipseLink Native ORM Cache Store and Cache Loader

3-6 Oracle Coherence Integration Guide for Oracle TopLink with Coherence Grid

4. In the After Load tab of the tlMap configuration window, select the amendment
method from the Static Method dropdown list. For the Coherence Customizer
classes, this will be the afterLoad method.

Figure 3–5 Selecting the Amendment Method

Configuring the EclipseLink Native ORM Cache Store and Cache Loader
The coherence-cache-config.xml file must specify the cache loader or cache
store class and provide parameters for the cache name and session name (that is,
project name). The following examples illustrate that aside from changing the class
name (EclipseLinkNativeCacheStore or EclipseLinkNativeCacheLoader),
you do not have to make any changes to the Coherence cache configuration depending
on whether you are using the cache loader or cache store.

Example 3–1 illustrates a configuration in the coherence-cache-config.xml file
for a cache that can communicate with EclipseLink Native ORM applications. The
class-name element identifies the EclipseLinkNativeCacheStore class as the
cache store scheme. The param-value elements specify the cache name and the
session (project) name that are passed to the class.

Example 3–1 Configuration for an Integrated EclipseLinkNativeCacheStore

...
<distributed-scheme>
 <scheme-name>eclipselink-native-distributed-store</scheme-name>
 <service-name>EclipseLinkNative</service-name>
 <serializer>
 <class-name>oracle.eclipselink.coherence.integrated.cache.
WrapperSerializer</class-name>
 </serializer>
 <backing-map-scheme>
 <read-write-backing-map-scheme>
 <internal-cache-scheme>
 <local-scheme/>
 </internal-cache-scheme>
 <!-- Define the cache scheme -->
 <cachestore-scheme>
 <class-scheme>
 <class-name>oracle.eclipselink.coherence.integrated.
EclipseLinkNativeCacheStore</class-name>

Configuring the EclipseLink Native ORM Cache Store and Cache Loader

EclipseLink Native ORM Configurations 3-7

 <init-params>
 <init-param>
 <param-type>java.lang.String</param-type>
 <param-value>{cache-name}</param-value>
 </init-param>
 <init-param>
 <param-type>java.lang.String</param-type>
 <param-value>coherence-native-project</param-value>
 </init-param>
 </init-params>
 </class-scheme>
 </cachestore-scheme>
 </read-write-backing-map-scheme>
 </backing-map-scheme>
 <autostart>true</autostart>
 </distributed-scheme>
...

Example 3–2 illustrates an integrated EclipseLinkNativeCacheLoader instance
configuration in the coherence-cache-config.xml file. The cache name
({cache-name}) and session name (coherence-native-project) parameter
values are passed to the class.

Example 3–2 Configuration for an Integrated EclipseLinkNativeCacheLoader

...
<cachestore-scheme>
 <class-scheme>
 <class-name>oracle.eclipselink.coherence.integrated.
EclipseLinkNativeCacheLoader</class-name>
 <init-params>
 <init-param>
 <param-type>java.lang.String</param-type>
 <param-value>{cache-name}</param-value>
 </init-param>
 <init-param>
 <param-type>java.lang.String</param-type>
 <param-value>coherence-native-project</param-value>
 </init-param>
 </init-params>
 </class-scheme>
</cachestore-scheme>
...

Configuring the EclipseLink Native ORM Cache Store and Cache Loader

3-8 Oracle Coherence Integration Guide for Oracle TopLink with Coherence Grid

4

Using POF Serialization 4-1

4Using POF Serialization

Serialization is the process of encoding an object into a binary format. It is a critical
component when working with Coherence as data must be moved around the
network. The Portable Object Format (also referred to as POF) is a language agnostic
binary format. POF was designed to be incredibly efficient in both space and time and
has become a cornerstone element in working with Coherence. Using POF has many
advantages ranging from performance benefits to language independence. It's
recommended that you look closely at POF as your serialization solution when
working with Coherence.

This chapter focuses only on the changes and additions that you need to make to your
TopLink application files to make them eligible to participate in POF serialization. For
more detailed information on using and configuring POF, see "Using Portable Object
Format" in the Developers Guide for Oracle Coherence.

This chapter contains the following sections:

■ Implement a Serialization Routine

■ Define a Cache Configuration File

■ Provide a POF Configuration File

Implement a Serialization Routine
You must implement serialization routines that know how to serialize and deserialize
your Entities. You can do this by implementing the PortableObject interface or by
creating a serializer using the com.tangosol.io.pof.PofSerializer interface.

■ Implement the PortableObject interface in your Entity class files

The com.tangosol.io.pof.PortableObject interface provides classes with
the ability to self-serialize and deserialize their state to and from a POF data
stream. To use this interface, you must also provide implementations of the
required methods readExternal and writeExternal.

Example 4–1 illustrates a sample Entity class file that implements the
PortableObject interface. Note the implementations of the required
readExternal and writeExternal methods.

Also note that the class includes an @OneToOne annotation to define the
relationship mapping between the Trade object and a Security object. TopLink
supports all of the relationship mappings defined by the JPA specification:
one-to-one, one-to-many, many-to-many, and many-to-many. These relationships
can be expressed as annotations. Do not serialize or deserialize relationship
mappings; TopLink Grid will perform these operations automatically.

Implement a Serialization Routine

4-2 Oracle Coherence Integration Guide for Oracle TopLink with Coherence Grid

Example 4–1 Sample Entity Class that Implements PortableObject

package oracle.toplinkgrid.codesample.pof.models.trader;

import java.io.IOException;
import java.io.Serializable;

import javax.persistence.Entity;
import javax.persistence.FetchType;
import javax.persistence.GeneratedValue;
import javax.persistence.Id;
import javax.persistence.OneToOne;

import com.tangosol.io.pof.PofReader;
import com.tangosol.io.pof.PofWriter;
import com.tangosol.io.pof.PortableObject;

/**
 * This class will not be stored within Coherence as Trades are not high
 * throughput objects in this model.
 *
 */
@Entity
public class Trade implements Serializable, PortableObject{
 /**
 *
 */
 private static final long serialVersionUID = -244532585419336780L;
 @Id
 @GeneratedValue
 protected long id;
 @OneToOne(fetch=FetchType.EAGER)
 protected Security security;
 protected int quantity;
 protected double amount;
 public long getId() {
 return id;
 }
 public void setId(long id) {
 this.id = id;
 }
 public Security getSecurity() {
 return security;
 }
 public void setSecurity(Security security) {
 this.security = security;
 }
 public int getQuantity() {
 return quantity;
 }
 public void setQuantity(int quantity) {
 this.quantity = quantity;
 }
 public double getAmount() {
 return amount;
 }
 public void setAmount(double amount) {
 this.amount = amount;
 }
 public void readExternal(PofReader pofreader) throws IOException {
 id = pofreader.readLong(0);

Define a Cache Configuration File

Using POF Serialization 4-3

 quantity = pofreader.readInt(2);
 amount = pofreader.readDouble(3);

 }
 public void writeExternal(PofWriter pofwriter) throws IOException {
 pofwriter.writeLong(0, id);
 pofwriter.writeInt(2, quantity);
 pofwriter.writeDouble(3, amount);

 }
}

■ Create a POFSerializer for the Entities

An alternative to implementing the PortableObject interface is to implement
the com.tangosol.io.pof.PofSerializer interface to create your own
serializer and deserializer. This interface provides you with a way to externalize
your serialization logic from the Entities you want to serialize. This is particularly
useful when you do not want to change the structure of your classes to work with
POF and Coherence. The POFSerializer interface provides these methods:

■ public Object deserialize(PofReader in)

■ public void serialize(PofWriter out, Object o)

Define a Cache Configuration File
In the cache configuration file, create cache mappings corresponding to the Entities
you will be working with. Identify the serializer (such as com.tangosol.io.pof.
ConfigurablePofContext) and the POF configuration file pof-config.xml.
Identify the EclipseLink cache store (such as oracle.eclipselink.coherence.
integrated.EclipseLinkJPACacheStore) in the <cachestore-scheme>
attribute.

Example 4–2 Sample Cache Configuration File

<?xml version="1.0"?>
<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.
com/coherence/coherence-cache-config http://xmlns.oracle.
com/coherence/coherence-cache-config/1.0/coherence-cache-config.xsd">
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>ATTORNEY_JPA_CACHE</cache-name>
 <scheme-name>eclipselink-jpa-distributed</scheme-name>
 </cache-mapping>
 <cache-mapping>
 <cache-name>CONTACT_JPA_CACHE</cache-name>
 <scheme-name>eclipselink-jpa-distributed-load</scheme-name>
 </cache-mapping>
...
additional cache mappings
...
<caching-schemes>
 <distributed-scheme>
 <scheme-name>eclipselink-jpa-distributed-load</scheme-name>
 <service-name>EclipseLinkJPA</service-name>

 <serializer>

Define a Cache Configuration File

4-4 Oracle Coherence Integration Guide for Oracle TopLink with Coherence Grid

 <instance>
 <class-name>com.tangosol.io.pof.ConfigurablePofContext</class-name>
 <init-params>
 <init-param>
 <param-type>String</param-type>
 <param-value>trader-pof-config.xml</param-value>
 </init-param>
 </init-params>
 </instance>
 </serializer>
 <backing-map-scheme>
 <read-write-backing-map-scheme>
 <internal-cache-scheme>
 <local-scheme/>
 </internal-cache-scheme>
 </read-write-backing-map-scheme>
 </backing-map-scheme>
 <autostart>true</autostart>
 </distributed-scheme>
 <distributed-scheme>
 <scheme-name>eclipselink-jpa-distributed</scheme-name>
 <service-name>EclipseLinkJPA</service-name>
 <serializer>
 <instance>
 <class-name>com.tangosol.io.pof.ConfigurablePofContext</class-name>
 <init-params>
 <init-param>
 <param-type>String</param-type>
 <param-value>trader-pof-config.xml</param-value>
 </init-param>
 </init-params>
 </instance>
 </serializer>

 <backing-map-scheme>
 <read-write-backing-map-scheme>
 <internal-cache-scheme>
 <local-scheme/>
 </internal-cache-scheme>
 <!-- Define the cache scheme -->
 <cachestore-scheme>
 <class-scheme>
 <class-name>oracle.eclipselink.coherence.integrated.
EclipseLinkJPACacheStore</class-name>
 <init-params>
 <init-param>
 <param-type>java.lang.String</param-type>
 <param-value>{cache-name}</param-value>
 </init-param>
 <init-param>
 <param-type>java.lang.String</param-type>
 <param-value>coherence-pu</param-value>
 </init-param>
 </init-params>
 </class-scheme>
 </cachestore-scheme>
 </read-write-backing-map-scheme>
 </backing-map-scheme>
 <autostart>true</autostart>
 </distributed-scheme>

Provide a POF Configuration File

Using POF Serialization 4-5

 </caching-schemes>
</cache-config>

Provide a POF Configuration File
Provide a file that identifies the Entity classes that will participate in POF serialization.
Coherence provides a POF configuration file which is named pof-config.xml by
default. Use the file to assign type-ids to the Entity classes.

The POF configuration file must also contain type-id entries for the following
classes:

■ oracle.eclipselink.coherence.integrated.internal.cache.
WrapperInternal—This interface is used to access internal attributes of the
Entity wrappers.

oracle.eclipselink.coherence.integrated.cache.
WrapperPofSerializer—Associated serializer. This class is used to provide
serialization support for the Entity Wrappers within Coherence when you want to
access Coherence caches directly. This includes users who have custom Value
Extractors.

■ oracle.eclipselink.coherence.integrated.internal.querying.
EclipseLinkExtractor—This interface is used for Coherence POF
serialization to mark an EclipseLink Extractor for serialization. It extracts values
from TopLink Grid entities for Filters.

oracle.eclipselink.coherence.integrated.cache.
ExtractorSerializer—Associated serializer. This class is used to provide
serialization support for the Entity Wrappers within Coherence when you want to
access the Coherence caches directly. This includes users who have custom Value
Extractors.

■ oracle.eclipselink.coherence.integrated.internal.cache.
VersionPutProcessor—An internal file, used for optimistic lock-aware
updates to the grid.

■ oracle.eclipselink.coherence.integrated.internal.cache.
VersionRemoveProcessor—An internal file, used for optimistic lock-aware
removals from the grid.

■ oracle.eclipselink.coherence.integrated.internal.cache.
RelationshipUpdateProcessor—An internal file, used to update lazy-loaded
relationship data into the Grid.

■ oracle.eclipselink.coherence.integrated.internal.querying.
EclipseLinkFilterFactory$SubClassOf—An internal file. This is a Filter
extension that filters on the type of Entity, eliminating superclasses from
polymorphic queries.

Example 4–3 illustrates a sample POF configuration file that includes the TopLink Grid
support files.

Example 4–3 Sample POF Configuration File

<?xml version="1.0"?>
<pof-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-pof-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-pof-config
http://xmlns.oracle.com/coherence/coherence-pof-config/1.0/coherence-pof-config.
xsd">

Provide a POF Configuration File

4-6 Oracle Coherence Integration Guide for Oracle TopLink with Coherence Grid

 <user-type-list>
 <!-- include all "standard" Coherence POF user types -->
 <include>coherence-pof-config.xml</include>
 <user-type>
 <type-id>1163</type-id>
 <class-name>oracle.toplinkgrid.codesample.pof.models.trader.
Attorney</class-name>
 </user-type>
 ...
 additional type IDs for Entity classes
 ...
 <user-type>
 <type-id>1144</type-id>
 <class-name>oracle.eclipselink.coherence.integrated.internal.cache.
WrapperInternal</class-name>
 <serializer>
 <class-name>oracle.eclipselink.coherence.integrated.cache.
WrapperPofSerializer</class-name>
 </serializer>
 </user-type>
 <user-type>
 <type-id>1142</type-id>
 <class-name>oracle.eclipselink.coherence.integrated.internal.querying.
EclipseLinkExtractor</class-name>
 <serializer>
 <class-name>oracle.eclipselink.coherence.integrated.cache.
ExtractorSerializer</class-name>
 </serializer>
 </user-type>
 <user-type>
 <type-id>1141</type-id>
 <class-name>oracle.eclipselink.coherence.integrated.internal.cache.
VersionPutProcessor</class-name>
 </user-type>
 <user-type>
 <type-id>1140</type-id>
 <class-name>oracle.eclipselink.coherence.integrated.internal.cache.
VersionRemoveProcessor</class-name>
 </user-type>
 <user-type>
 <type-id>1139</type-id>
 <class-name>oracle.eclipselink.coherence.integrated.internal.cache.
RelationshipUpdateProcessor</class-name>
 </user-type>
 <user-type>
 <type-id>1138</type-id>
 <class-name>oracle.eclipselink.coherence.integrated.internal.querying.
EclipseLinkFilterFactory$SubClassOf</class-name>
 </user-type>
 </user-type-list>

 <allow-interfaces>true</allow-interfaces>
 <allow-subclasses>true</allow-subclasses>
 </pof-config>

5

Best Practices 5-1

5Best Practices

This chapter contains recommendations of how to use TopLink Grid with byte code
weaving and lazy loading:

■ Changing Compiled Java Classes with Byte Code Weaving

■ Deferring Database Queries with Lazy Loading

■ Defining Near Caches for Applications Using TopLInk Grid

■ Ensuring Prefixed Cache Names Use Wildcard in Cache Configuration

■ Overriding the Default Cache Name

Changing Compiled Java Classes with Byte Code Weaving
Byte code weaving is a technique for changing the byte code of compiled Java classes.
You can configure byte code weaving to enable a number of EclipseLink JPA
performance optimizations, including support for the lazy loading of one-to-one and
many-to-one relationships, attribute-level change tracking, and fetch groups.

Weaving can be performed either dynamically when entity classes are loaded, or
statically as part of the build process. Static byte code weaving can be incorporated
into an Ant build using the weaver task provided by EclipseLink.

Dynamic byte code weaving is automatically enabled in Java EE 5-compliant
application servers such as Oracle WebLogic. However, in Java SE it must be explicitly
enabled by using the JRE 1.5 javaagent JVM command line argument. See "How to
Configure Dynamic Weaving for JPA Entities Using the EclipseLink Agent" at the
following URL for more information about dynamic byte code weaving for JRE 1.5.

http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_
(ELUG)#How_to_Configure_Dynamic_Weaving_for_JPA_Entities_Using_
the_EclipseLink_Agent

To enable byte code weaving in a Coherence cache server, the Java VM should be
invoked with -javaagent:<PATH>\eclipselink.jar. Java SE client applications
should be run with the -javaagent argument.

See "Using EclipseLink JPA Weaving" at Eclipsepedia for more information on
configuring and disabling static and dynamic byte code weaving.

http://wiki.eclipse.org/Using_EclipseLink_JPA_Extensions_
(ELUG)#Using_EclipseLink_JPA_Weaving

Deferring Database Queries with Lazy Loading

5-2 Oracle Coherence Integration Guide for Oracle TopLink with Coherence Grid

Deferring Database Queries with Lazy Loading
Lazy loading is a technique used to defer the querying of objects from the database
until they are required. This can reduce the amount of data loaded by an application
and improve throughput. A TopLink Grid JPA or native ORM application should
lazily load all relationships. Lazy loading is the default for one-to-many and
many-to-many relationships in JPA, but is eager for one-to-one and many-to-one
relationships. You must explicitly select lazy loading on these relationship types. For
example, you can specify lazy loading as an attribute for many of the relationship
annotations:

...
@ManyToOne(fetch=FetchType.LAZY)
private Publisher parent
 ...

For maximum efficiency, lazy loading should be specified for all one-to-one and
many-to-one entity relationships that TopLink Grid stores in the Coherence cache.
Lazy loading is implemented through byte code weaving in EclipseLink and must be
enabled explicitly if not running in a Java EE 5-compliant application server. For more
information, see "Changing Compiled Java Classes with Byte Code Weaving" on
page 5-1.

Defining Near Caches for Applications Using TopLInk Grid
Near cache is one of the standard cache configurations offered by Oracle Coherence.
The use of near caches can improve throughput by avoiding network access when an
object is retrieved repeatedly. For example, in an environment where users are pinned
to a particular Web server, near caching may improve performance.

The near cache is a hybrid cache consisting of a front cache, which is of limited size
and offers fast data access, and a larger back cache, which can be scalable, can load on
demand, and provide failover protection.

For applications using Toplink Grid, you configure the near cache in the same way as
any other application using Oracle Coherence. See "Near Cache" and "Defining Near
Cache Schemes" in the Developers Guide for Oracle Coherence for more information on
near caches.

Ensuring Prefixed Cache Names Use Wildcard in Cache Configuration
When using TopLink Grid with applications that use Coherence caches and
Coherence*Web, you might want to apply different configuration properties to the
TopLink Grid caches for entities and the Coherence*Web caches. The most efficient

Note: Near caches are used only on a Coherence cache get
operation, but not when a Filter operation is executed. This is
because the Filter operation is sent to each member, and they return
results directly to the caller. In this case, a near cache will not add
value.

This can also become an issue if you are using JPQL queries. In the
TopLink Grid Grid Read or Grid Entity configurations, JPQL queries
are mapped to Filter operations. In the case of either of these
configurations, if you execute TopLink JPQL queries, you will not see
any cache hits.

Ensuring Prefixed Cache Names Use Wildcard in Cache Configuration

Best Practices 5-3

way to specify and configure a set of caches is to use a wildcard character ("*").
However, this will match both sets of caches. To separate the Coherence*Web caches
from entity caches, you must create a wildcard pattern that will match entities only.
One way to do this is to prepend a unique prefix to the entity cache names.

The following steps describe how to create and use a custom session customizer to
prepend a specified prefix to TopLink Grid-enabled classes.

1. Create a session customizer class that will prepend TopLink-enabled classes with a
specified prefix.

Example 5–1 illustrates a custom session customizer class,
CacheNamePrefixCustomizer, which implements the EclipseLink
SessionCustomizer class. The class defines a PREFIX_PROPERTY
myapp.cache-prefix that represents the prefix that will be added to the
TopLink-enabled classes. The value of the property can be either specified in the
persistence.xml file (described in Step 2) or passed in an optional property
map to the Persistence.createEntityManagerFactory method.

Example 5–1 Session Customizer to Prepend

import java.util.Collection;

import oracle.eclipselink.coherence.IntegrationProperties;
import oracle.eclipselink.coherence.integrated.cache.CoherenceInterceptor;
import
oracle.eclipselink.coherence.integrated.internal.cache.CoherenceCacheHelper;
import org.eclipse.persistence.config.SessionCustomizer;
import org.eclipse.persistence.descriptors.ClassDescriptor;
import org.eclipse.persistence.sessions.Session;

public class CacheNamePrefixCustomizer implements SessionCustomizer {

 private static final String PREFIX_PROPERTY = "myapp.cache-prefix";

 public void customize(Session session) throws Exception {
 // Look up custom persistence unit cache prefix property
 String prefix = (String) session.getProperty(PREFIX_PROPERTY);
 if (prefix == null) {
 throw new RuntimeException(
 "Cache name prefix customizer configured but prefix property '" +
 PREFIX_PROPERTY + "' not specified");
 }
 // Iterate over all entity descriptors
 Collection<ClassDescriptor> descriptors = session.getDescriptors().values();
 for (ClassDescriptor classDescriptor : descriptors) {
 // If entity is TopLink Grid-enabled, prepend cache name with prefix
 if
(CoherenceInterceptor.class.equals(classDescriptor.getCacheInterceptorClass())) {
 String cacheName = CoherenceCacheHelper.getCacheName(classDescriptor);
 classDescriptor.setProperty(IntegrationProperties.COHERENCE_CACHE_
NAME, prefix + cacheName);
 }
 }
 }
}

2. Edit the persistence.xml file to declare a value for the prefix property.

In the following example, MyApp_ is defined as the value of the prefix property
myapp.cache-prefix in the persistence.xml file. The

Overriding the Default Cache Name

5-4 Oracle Coherence Integration Guide for Oracle TopLink with Coherence Grid

myapp.cache-prefix prefix property is defined in the custom session
customizer file.

<property name="myapp.cache-prefix" value="MyApp_"/>

See http://www.eclipse.org/eclipselink/ for more information on the
EclipseLink SessionCustomizer class.

3. Edit the persistence.xml file to add the name of the custom session customizer
class as the value of the eclipselink.session.customizer context property.

<property name="eclipselink.session.customizer"
value="CacheNamePrefixCustomizer"/>

4. Edit the coherence-cache-config.xml file to add the name of the prefix with
a wildcard character to the cache mapping.

<cache-mapping>
 <cache-name>MyApp_*</cache-name>
 <scheme-name>eclipselink-distributed-readonly</scheme-name>
</cache-mapping>

Overriding the Default Cache Name
There may be situations where you want to override the default name given to an
entity cache. In TopLink Grid, entity cache names default to the entity name. The
following list describes how the name of the cache can be determined, and how you
can change it explicitly:

Cache Name—the cache name can be set either by default, or set explicitly:

■ Default: cache name defaults to entity name. The entity name, in turn can be set
either by default, or set explicitly:

– Default: Entity name defaults to class short name.

– Explicit: Entity name can be set explicitly by using the name property of the
@Entity annotation.

■ Explicit: the cache name can be set explicitly by using the @Property annotation.

For example, the following code fragment illustrates the Employee class. By default,
the entity cache name would be Employee. However, you can force the name of the
Employee entity cache to be EMP_CACHE by using the @Property annotation.

import static oracle.eclipselink.coherence.IntegrationProperties.COHERENCE_CACHE_
NAME;
import org.eclipse.persistence.annotations.Property;

 ...
 @Entity(name="Emp")
 @Property(name=COHERENCE_CACHE_NAME, value="EMP_CACHE")
 public class Employee implements Serializable {
...

Notice that the code explicitly specifies the entity name as Emp. If the name="Emp"
value were not present, then the entity name would have defaulted to the short class
name Employee.

Index-1

Index

Symbols
@Cache annotation, 2-3
@Customizer annotation, 2-6, 2-10, 2-14, 3-1
@Property annotation, 2-17

A
afterLoad amendment method, 3-2, 3-4
amendment method

afterLoad, 3-4
configuring, 3-2

B
byte code weaving

enabling, 5-1
lazy loading, 5-2

C
cache loader

EclipseLink Native ORM, 3-6
JPA on the Grid configuration, 2-2

cache store
EclipseLink Native ORM, 3-6
JPA on the Grid configuration, 2-2

CacheStore interface, 2-3, 3-2
class-name element, 3-6
Coherence Filter framework, 2-3, 2-15, 2-18
coherence-cache-config.xml file, 2-3, 2-5, 2-9, 2-13,

3-2, 3-6, 3-7
CoherenceReadCustomizer class, 2-2, 2-10, 3-2, 3-5
CoherenceReadWriteCustomizer class, 2-2, 2-14, 3-2
commit method, 2-12
commit query, 2-4
createQuery method, 2-17

D
descriptor elements, 3-3

E
EclipseLink Native ORM

API descriptions, 3-1
cache loader, 3-6

cache store, 3-6
configuration, 3-1

eclipselink.cache.shared.default property, 2-3
EclipseLinkJPACacheLoader class, 2-2, 2-10
EclipseLinkJPACacheStore class, 2-2, 2-12, 2-13
EclipseLinkNativeCacheLoader class, 3-1, 3-6
EclipseLinkNativeCacheStore class, 3-1, 3-6
eclipselink-orm.xml file, 2-3
entity relationships, wrapping and

unwrapping, 2-16
EntityManager class, 2-6, 2-12, 2-15

F
failovers, handling for Grid Read and Grid Entity

configurations, 2-15
find method, 2-16
find query, 2-4

G
Grid Cache configuration, 2-3

configuring a cache, 2-5
configuring an entity, 2-6
examples, 2-5
inserting objects, 2-6
querying objects, 2-6
reading objects, 2-3
writing objects, 2-4

Grid Entity configuration, 2-11
configuring an entity, 2-14
configuring the cache, 2-13
examples, 2-13
limitations, 2-13
persisting objects, 2-15
querying objects, 2-15
reading objects, 2-12
writing objects, 2-12

Grid Read configuration, 2-7
configuring the cache, 2-9
examples, 2-9
inserting objects, 2-11
querying objects, 2-11
reading objects, 2-7, 2-10
writing objects, 2-9

GridCacheCustomizer class, 2-2, 2-6, 3-2

Index-2

I
IgnoreDefaultRedirector class, 2-2, 2-7
INDEXED property, 2-17
IntegrationProperties class, 2-17

J
javaagent Java VM argument, 5-1
JDeveloper, 3-2
join queries, 2-18
JPA on the Grid configuration, 1-1, 2-1, 3-1

API descriptions, 2-2
cache loader, 2-2
cache store, 2-2

L
lazy loading, 5-1, 5-2

byte code weaving, 5-2

N
near caches, using, 5-2
nonprimary key query, 2-3
not-eclipselink property, 2-16

O
orm.xml file, 2-2

P
param-value element, 3-6
persistence.xml file, 2-2, 2-3
primary key query, 2-3, 2-4
projection queries, 2-7
project.xml file, 3-2

Q
query hints, 2-8
querying, 2-16

limitations, 2-18
objects by ID, 2-16
objects with criteria, 2-17
using indexes, 2-17

S
SELECT statement, 2-16, 2-17
sessions.xml file, 3-2
setNotEclipseLink method, 2-16
standalone package, 1-1

T
tlMap descriptor, 3-3
TopLink Grid integration, defined, 1-1
translationFailed method, 2-16
TranslationFailureDelegate class, 2-16
translation-failure-delegate property, 2-16

W
weaver EclipseLink Ant task, 5-1
write operation, 2-3

	Contents
	List of Examples
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Introduction to Toplink Grid with Oracle Coherence
	2 JPA on the Grid Configurations
	Understanding JPA on the Grid
	JPA on the Grid API
	Grid Cache Configuration
	Reading Objects in Grid Cache Configuration
	Writing Objects in Grid Cache Configuration
	Grid Cache Configuration Examples
	Configuring the Cache for the Grid Cache Configuration
	Configuring an Entity for the Grid Cache Configuration
	Inserting Objects for the Grid Cache Configuration
	Querying Objects for the Grid Cache Configuration

	Grid Read Configuration
	Reading Objects in Grid Read Configuration
	Writing Objects in Grid Read Configuration
	Grid Read Configuration Examples
	Configuring the Cache in Grid Read Configuration
	Reading Objects for the Grid Read Configuration
	Inserting Objects for the Grid Read Configuration
	Querying Objects for the Grid Read Configuration

	Grid Entity Configuration
	Reading Objects in Grid Entity Configuration
	Writing Objects in Grid Entity Configuration
	Limitations on Writing Objects in Grid Entity Configuration
	Grid Entity Configuration Examples
	Configuring the Cache for the Grid Entity Configuration
	Configuring an Entity for the Grid Entity Configuration
	Persisting Objects for the Grid Entity Configuration
	Querying Objects for the Grid Entity Configuration

	Handling Grid Read and Grid Entity Failovers
	Wrapping and Unwrapping Entity Relationships
	Working with Queries
	Querying Objects by ID
	Querying Objects with Criteria
	Using Indexes in Queries
	Limitations on Queries

	3 EclipseLink Native ORM Configurations
	Understanding EclipseLink Native ORM
	API for EclipseLink Native ORM
	Configuring an Amendment Method
	Configuring the Amendment Method in JDeveloper

	Configuring the EclipseLink Native ORM Cache Store and Cache Loader

	4 Using POF Serialization
	Implement a Serialization Routine
	Define a Cache Configuration File
	Provide a POF Configuration File

	5 Best Practices
	Changing Compiled Java Classes with Byte Code Weaving
	Deferring Database Queries with Lazy Loading
	Defining Near Caches for Applications Using TopLInk Grid
	Ensuring Prefixed Cache Names Use Wildcard in Cache Configuration
	Overriding the Default Cache Name

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	I
	J
	L
	N
	O
	P
	Q
	S
	T
	W

