

Oracle® Coherence
Security Guide

Release 3.7.1

E22841-01

September 2011

Explains key security concepts and provides instructions for
implementing various levels of security for both Coherence
clusters and Coherence*Extend clients.

Oracle Coherence Security Guide, Release 3.7.1

E22841-01

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Primary Author: Joe Ruzzi

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

Preface ... v

Audience... v
Documentation Accessibility ... v
Related Documents ... v
Conventions ... vi

1 Introduction to Coherence Security

Conceptual Overview of Coherence Security... 1-1
Overview of Security Configuration .. 1-2

2 Enabling General Security Measures

Specifying Coherence Privileges in the Java Security Policy File .. 2-1
Using Host-Based Authorization .. 2-2

Specifying Cluster Member Authorized Hosts.. 2-2
Specifying Extend Client Authorized Hosts .. 2-3
Using a Filter Class to Determine Authorization .. 2-3

Managing Rogue Clients .. 2-4

3 Using the Access Controller

Overview of the Access Controller ... 3-1
Enabling the Default Access Controller Implementation.. 3-3

4 Securing Extend Client Connections

Using Identity Tokens to Restrict Client Connections ... 4-1
Creating a Custom Identity Transformer ... 4-2
Enabling a Custom Identity Transformer... 4-3
Creating a Custom Identity Asserter... 4-3
Enabling a Custom Identity Asserter .. 4-4
Using Custom Security Types .. 4-4
Understanding Custom Identity Token Interoperability ... 4-5

Associating Identities with Extend Services... 4-5
Implementing Extend Client Authorization ... 4-6

Creating Authorization Interceptor Classes... 4-7
Enabling Authorization Interceptor Classes .. 4-9

iv

5 Using SSL to Secure Communication

Overview of SSL... 5-1
Using SSL to Secure TCMP Communication ... 5-3

Defining a SSL Socket Provider ... 5-4
Using the Pre-Defined SSL Socket Provider .. 5-6

Using SSL to Secure Extend Client Communication .. 5-7
Configuring a Cluster-Side SSL Socket Provider .. 5-7

Configure a SSL Socket Provider Per Proxy Service.. 5-7
Configure a SSL Socket Provider for All Proxy Services .. 5-9

Configure a Java Client-Side SSL Socket Provider... 5-10
Configure a SSL Socket Provider Per Remote Service.. 5-10
Configure a SSL Socket Provider for All Remote Services .. 5-12

Configure a .NET Client-Side Stream Provider.. 5-13

v

Preface

Welcome to Oracle Coherence Security Guide. This document explains key security
concepts and provides instructions for implementing various levels of security for
both Coherence clusters and Coherence*Extend clients.

Audience
This guide is intended for the following audiences:

■ Primary Audience – Application Developers and Operations who want to secure a
Coherence cluster and secure Coherence*Extend client communication with the
cluster.

■ Secondary Audience – System Architects who want to understand the options and
architecture for securing a Coherence cluster and Coherence*Extend clients.

The audience must be familiar with Coherence and Coherence*Extend to use this
guide. In addition, users must be familiar with Java and SSL to use this guide. The
examples in this guide require the installation and use of the Oracle Coherence
product, including Coherence*Extend. The use of an IDE is not required to use this
guide, but is recommended to facilitate working through the examples.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Related Documents
For more information, see the following documents that are included in the Oracle
Coherence documentation set:

■ Oracle Coherence Administrator's Guide

■ Oracle Coherence Developer's Guide

vi

■ Oracle Coherence Client Guide

■ Oracle Coherence Getting Started Guide

■ Oracle Coherence Integration Guide for Oracle Coherence

■ Oracle Coherence Management Guide

■ Oracle Coherence Tutorial for Oracle Coherence

■ Oracle Coherence User's Guide for Oracle Coherence*Web

■ Oracle Coherence Java API Reference

■ Oracle Coherence C++ API Reference

■ Oracle Coherence .NET API Reference

■ Oracle Coherence Release Notes for Oracle Coherence

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

Introduction to Coherence Security 1-1

1Introduction to Coherence Security

This chapter provides an introduction to Coherence security features. Coherence
security features provide varying levels of security and can be implemented as
required. The security features include industry standards and Coherence-specific
features.

The following sections are included in this chapter:

■ Conceptual Overview of Coherence Security

■ Overview of Security Configuration

Conceptual Overview of Coherence Security
Coherence security includes securing both cluster members and extend clients.
Security is enabled as required based on the application or cluster implementation and
an organization’s security concerns and security tolerances. This section provides a
brief discussion of each security feature and describes the area of concern that each
addresses. The features are presented here (and throughout the book) from basic
security measures to more advanced security measures.

Java Policy Security
Coherence provides a Java security policy file that contains the minimum set of
security permissions necessary to run Coherence. The file is edited to change the
permissions based on an application’s requirement. The security policy protects
against malicious use and alterations of the Coherence library and configuration files.
See Chapter 2, "Enabling General Security Measures," for details.

Host-Based Authorization
Host-based authorization is used to explicitly specify which hosts can become
members of a cluster and which extend clients can connect to a cluster. This type of
access control is ideal in environments where host names (or IP addresses) are known
in advance. Host-based authorization protects against unauthorized hosts joining or
accessing a cluster. See Chapter 2, "Enabling General Security Measures," for details.

Note: This guide does not provide detailed instructions for setting
up a cluster or creating Coherence*Extend clients. See the Oracle
Coherence Developer's Guide and Oracle Coherence Client Guide,
respectively, for details on setting up a cluster or creating
Coherence*Extend clients.

Overview of Security Configuration

1-2 Oracle Coherence Security Guide

Client Suspect Protocol
The client suspect protocol is used to automatically determine if an extend client is
acting malicious. If the client is determined to be malicious, it is automatically blocked
from connecting to a cluster. The suspect protocol protects against denial of service
attacks. See Chapter 2, "Enabling General Security Measures," for details.

Client Identity Tokens
Client identity tokens are used to control whether an extend client can access the
cluster. Only clients that present a valid token are permitted to connect to a proxy
server. This feature can leverage existing client authentication implementations.
Identity tokens protect against unwanted or malicious clients from accessing the
cluster. See Chapter 4, "Securing Extend Client Connections," for details.

Client Authorization
Client authorization is used to control which actions a particular user can perform
based on their access control rights. Client authorization is performed on a proxy
server and occurs before an extend client is allowed to access a resource (cache, cache
service, or invocation service). Client authorization is application-specific and protects
against unauthorized use of cluster resources. See Chapter 4, "Securing Extend Client
Connections," for details.

Access Controller Security Framework
The access controller manages access to clustered resources, such as clustered services
and caches, and controls the operations that a user can perform on those resources.
Cluster members use login modules to provide proof of identity and
encrypting/decrypting communication acts as proof of trustworthiness. The
framework requires the use of a keystore and defines permissions within a
permissions file. The access controller protects against malicious cluster members from
accessing and also creating clustered resources. See Chapter 3, "Using the Access
Controller," for details.

SSL
SSL is used to secure TCMP communication between cluster nodes and the TCP
communication between Coherence*Extend clients and proxies. SSL uses digital
signatures to establish identity/trust and key-based encryption to ensure data is
secure. SSL is an industry standard that is used to protect against unauthorized access
and data tampering by malicious clients and cluster members. See Chapter 5, "Using
SSL to Secure Communication," for details.

Overview of Security Configuration
Coherence security features are generally enabled and configured in either an
operational override file or the cache configuration file. See Oracle Coherence
Developer's Guide for detailed information on Coherence configuration.

■ Operational Override File – The tangosol-coherence-override.xml file is
used to override the operational deployment descriptor, which is used to specify
the operational and run-time settings that are used to create, configure and
maintain clustering, communication, and data management services. This file is
used to configure security for the cluster. That is, security between cluster
members.

■ Cache Configuration File – The coherence-cache-config.xml file is the
default cache configuration file and is used to specify the various types of caches

Overview of Security Configuration

Introduction to Coherence Security 1-3

that can be used within a cluster. This configuration file is used to configure
security for Coherence*Extend. A cache configuration file is required on both the
client-side and cluster-side for Coherence*Extend. See Oracle Coherence Client Guide
for details on setting up Coherence*Extend.

Overview of Security Configuration

1-4 Oracle Coherence Security Guide

2

Enabling General Security Measures 2-1

2Enabling General Security Measures

This chapter provides instructions for general security steps that can be taken to help
secure a Coherence environment. The steps can be considered first-line security
measures that should always be set if possible.

The following sections are included in this chapter:

■ Specifying Coherence Privileges in the Java Security Policy File

■ Using Host-Based Authorization

■ Managing Rogue Clients

Specifying Coherence Privileges in the Java Security Policy File
The minimum set of privileges required for Coherence to function are specified in the
security.policy file which is included as part of the Coherence installation. This
file can be found in COHERENCE_HOME/lib/security/security.policy.

The policy file format is fully described in Java SE Security Guide. See

http://download.oracle.com/javase/6/docs/technotes/guides/securi
ty/permissions.html

To specify Coherence privileges:

1. Enter the minimum set of privileges in the policy file.

For example:

grant codeBase "file:${coherence.home}/lib/coherence.jar"
 {
 permission java.security.AllPermission;
 };

2. Sign the binaries using the JDK jarsigner tool, for example:

jarsigner -keystore ./keystore.jks -storepass password coherence.jar admin

and then additionally protected in the policy file:

grant SignedBy "admin" codeBase "file:${coherence.home}/lib/coherence.jar"
 {
 permission java.security.AllPermission;
 };

3. Use operating system mechanisms to protect all relevant files such as policy
format, coherence binaries, and permissions from malicious modifications.

http://download.oracle.com/javase/6/docs/technotes/guides/security/permissions.html
http://download.oracle.com/javase/6/docs/technotes/guides/security/permissions.html

Using Host-Based Authorization

2-2 Oracle Coherence Security Guide

4. To use the security policy file, turn on the Java Security Manager by defining the
java.security.manager system property and setting the
java.security.policy system property to the location of this security policy
file. You must also set the tangosol.home system property to COHERENCE_
HOME. For example:

-Djava.security.manager
-Djava.security.policy=c:/tangosol/lib/security/security.policy
-Dtangosol.home=c:/tangosol

Using Host-Based Authorization
Host-based authorization is a type of access control that allows only specified hosts to
connect to a cluster. The feature can be used for both cluster member connections and
extend client connections. This type of access control is ideal for environments were
known hosts are joining or accessing the cluster.

The following topics are in this section:

■ Specifying Cluster Member Authorized Hosts

■ Specifying Extend Client Authorized Hosts

■ Using a Filter Class to Determine Authorization

Specifying Cluster Member Authorized Hosts
A cluster’s default behavior is to allow any host to connect to the cluster and become a
cluster member. This behavior can be changed to only allow hosts to connect to the
cluster based on their host name or IP address. A customized filter can also be created
to determine whether to accept a particular cluster member.

Authorized hosts for a cluster are configured in an operational override file using the
<authorized-hosts> element within the <cluster-config> element. Specific
addresses are entered using the <host-address> element or a range of addresses
can be defined using the <host-range> element.

The following example configures a cluster to only accept cluster members whose IP
address is either 192.168.0.5, 192.168.0.6, or within the range of 192.168.0.10 to
192.168.0.20:

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config>
 <authorized-hosts>
 <host-address>192.168.0.5</host-address>
 <host-address>192.168.0.6</host-address>
 <host-range>
 <from-address>192.168.0.10</from-address>
 <to-address>192.168.0.20</to-address>

Note: The security policy file assumes the default JRE security
permissions have been granted. Therefore, you must be careful to use
a single equals sign (=) and not two equals signs (==) when setting the
java.security.policy system property.

Using Host-Based Authorization

Enabling General Security Measures 2-3

 </host-range>
 </authorized-hosts>
 </cluster-config>
</coherence>

Specifying Extend Client Authorized Hosts
The extend proxy’s default behavior is to accept all extend client connections. This
behavior can be changed to only allow client connections based on their host name or
IP address. A customized filter can also be created to determine whether to accept a
particular client.

Authorized hosts for a cluster are configured in a cache configuration file using the
<authorized-hosts> element within the <tcp-acceptor> element of a proxy
scheme definition. Specific addresses are entered using the <host-address>
element. A range of addresses can be defined using the <host-range> element.

The following example configures an extend proxy to only accept client connections
from client’s whose IP address is either 192.168.0.5, 192.168.0.6, or within the range of
192.168.0.10 to 192.168.0.20:

<proxy-scheme>
 <service-name>ExtendTcpProxyService</service-name>
 <thread-count>5</thread-count>
 <acceptor-config>
 <tcp-acceptor>
 ...
 <authorized-hosts>
 <host-address>192.168.0.5</host-address>
 <host-address>192.168.0.6</host-address>
 <host-range>
 <from-address>192.168.0.10</from-address>
 <to-address>192.168.0.20</to-address>
 </host-range>
 </authorized-hosts>
 ...
 </tcp-acceptor>
 </acceptor-config>
 <autostart>true</autostart>
</proxy-scheme>

Using a Filter Class to Determine Authorization
A filter class can determine whether to accept a particular host connection. A filter
class can be used for both extend client connections and cluster member connections.
A filter class must implement the com.tangosol.util.Filter interface. The
evaluate() method of the interface is passed the java.net.InetAddress of the
host. Implementations should return true to accept the connection.

To enable a filter class, enter a fully qualified class name using the <class-name>
element within the <host-filter> element. Initialization parameters for the
implementation class can also be set using the <init-params> element. See Oracle
Coherence Java API Reference for details on the Filter interface.

The following example configures a filter named MyFilter, which is used to
determine if a host connection is allowed.

<authorized-hosts>
 <host-address>192.168.0.5</host-address>

Managing Rogue Clients

2-4 Oracle Coherence Security Guide

 <host-address>192.168.0.6</host-address>
 <host-range>
 <from-address>192.168.0.10</from-address>
 <to-address>192.168.0.20</to-address>
 </host-range>
 <host-filter>
 <class-name>package.MyFilter</class-name>
 <init-params>
 <init-param>
 <param-name>sPolicy</param-name>
 <param-value>strict</param-value>
 </init-param>
 </init-params>
 </host-filter>
</authorized-hosts>

Managing Rogue Clients
Extend clients that operate outside of acceptable limits are considered rogue clients.
Rogue clients can be slow responding clients or abusive clients that attempt to overuse
a proxy— as is the case with denial of service attacks. In both cases, the proxy could
run out of memory and become unresponsive.

The suspect protocol is used to safeguard against such abuses. The suspect algorithm
monitors client connections looking for abnormally slow or abusive clients. When a
rouge client connection is detected, the algorithm closes the connection to protect the
proxy server from running out of memory. The protocol works by monitoring both the
size (in bytes) and length (in messages) of the outgoing connection buffer backlog for a
client. Different levels are set to determine when a client is suspect, when it has
returned to normal, or when it is considered rogue.

The suspect protocol is configured within the <tcp-acceptor> element of a proxy
scheme definition. See "tcp-acceptor" in the Oracle Coherence Developer's Guide for
details on using the <tcp-acceptor> element. The suspect protocol is enabled by
default.

The following example demonstrates configuring the suspect protocol and is similar to
the default settings. When the outgoing connection buffer backlog for a client reaches
10 MB or 10000 messages, the client is considered suspect and is monitored. If the
connection buffer backlog for a client returns to 2 MB or 2000 messages, then the client
is considered safe and the client is no longer monitored. If the connection buffer
backlog for a client reaches the 95 MB or 60000 messages, then the client is considered
unsafe and the connection with the client is closed:

<proxy-scheme>
 <service-name>ExtendTcpProxyService</service-name>
 <thread-count>5</thread-count>
 <acceptor-config>
 <tcp-acceptor>
 ...
 <suspect-protocol-enabled>true</suspect-protocol-enabled>
 <suspect-buffer-size>10M</suspect-buffer-size>
 <suspect-buffer-length>10000</suspect-buffer-length>
 <nominal-buffer-size>2M</nominal-buffer-size>
 <nominal-buffer-length>2000</nominal-buffer-length>
 <limit-buffer-size>95M</limit-buffer-size>
 <limit-buffer-length>60000</limit-buffer-length>
 </tcp-acceptor>

Managing Rogue Clients

Enabling General Security Measures 2-5

 </acceptor-config>
 <autostart>true</autostart>
</proxy-scheme>

Managing Rogue Clients

2-6 Oracle Coherence Security Guide

3

Using the Access Controller 3-1

3Using the Access Controller

The Access Controller security framework in Coherence is based on the concept of a
clustered access controller, which can be turned on (activated) by a configurable
parameter or command line attribute.

The following sections are included in this chapter:

■ Overview of the Access Controller

■ Enabling the Default Access Controller Implementation

Overview of the Access Controller
The Access Controller manages access to clustered resources, such as clustered
services and caches and controls operations that include (but are not limited to) the
following:

■ creating a new clustered cache or service

■ joining an existing clustered cache or service

■ destroying an existing clustered cache

The Access Controller serves three purposes:

■ grant or deny access to a protected clustered resource based on the caller's
permissions

■ encrypt outgoing communications based on the caller's private credentials

■ decrypt incoming communications based on the caller's public credentials

Coherence uses a local Login Module (see JAAS Reference Guide for details) to
authenticate the caller and an Access Controller on one or more cluster nodes to verify
the caller's access rights.

The Access Controller is a pluggable component that could be declared in the
Coherence deployment descriptor, tangosol-coherence.xml. The specified class
must implement the com.tangosol.net.security.AccessController
interface.

Coherence provides a default Access Controller implementation that is based on the
Key Management infrastructure that is shipped as a standard part of Sun's JDK.
See"Enabling the Default Access Controller Implementation" on page 3-3.

Note: This chapter does not cover SSL. See Chapter 5, "Using SSL to
Secure Communication," for detailed instructions for using SSL.

Overview of the Access Controller

3-2 Oracle Coherence Security Guide

Each clustered service in Coherence maintains a concept of a senior service member
(cluster node), which serves as a controlling agent for a particular service. While the
senior member does not have to consult anyone when accessing a clustered resource,
any junior node willing to join that service has to request and receive a confirmation
from the senior member, which in turn notifies all other cluster nodes about the
joining node.

Since Coherence is a system providing distributed data management and computing,
the security subsystem is designed to operate in a partially hostile environment. We
assume that when there is data shared between two cluster nodes either node could be
a malicious one - lacking sufficient credentials to join a clustered service or obtain
access to a clustered resource.

Let's call a cluster node that may try to gain unauthorized access to clustered resources
by using nonstandard means as a "malicious" node. The means of such an access could
vary. They could range from attempts to get protected or private class data using
reflection, replacing classes in the distribution (coherence.jar or other application
binaries), modifying classes on-the-fly using custom class loader(s) and so on.
Alternatively, a cluster node that never attempts to gain unauthorized access to
clustered resources by using nonstandard means is called a "trusted" node. It's
important to note that even a trusted node may attempt to gain access to resources
without having sufficient rights, but it does so in a standard way by using the exposed
standard API.

File system mechanisms (the same that is used to protect the integrity of the Java
run-time libraries) and standard Java security policy could be used to resolve an issue
of guarantying the trustworthiness of a given single node. In a case of inter-node
communications there are two dangers to consider:

■ A malicious node surpasses the local access check and attempts to join a clustered
service or gain access to a clustered resource controlled by a trusted node

■ A malicious node creates a clustered service or clustered resource becoming its
controller

To prevent either of these two scenarios from occurring Coherence uses two-way
encryption algorithm: all client requests must be accompanied by the proof of identity
and all service responses must be accompanied by the proof of trustworthiness.

Proof of Identity
In the case of an active Access Controller, the client code can use the following
construct to authenticate the caller and perform necessary actions:

import com.tangosol.net.security.Security;
import java.security.PrivilegedAction;
import javax.security.auth.Subject;

...

Subject subject = Security.login(sName, acPassword);
PrivilegedAction action = new PrivilegedAction()
 {
 public Object run()
 {
 // all processing here is taking place with access
 // rights assigned to the corresponding Subject
 ...
 }
 };
Security.runAs(subject, action);

Enabling the Default Access Controller Implementation

Using the Access Controller 3-3

During the login call, Coherence uses JAAS that runs on the caller's node to
authenticate the caller. In a case of successful authentication, it uses the local Access
Controller to:

■ Determine whether the local caller has sufficient rights to access the protected
clustered resource (local access check)

■ Encrypt the outgoing communications regarding the access to the resource with
the caller's private credentials retrieved during the authentication phase

■ Decrypt the result of the remote check using the requester's public credentials

■ In the case that access is granted verify whether the responder had sufficient rights
to do so

The encrypt step (above) serves the role of the proof of identity for the responder
preventing a malicious node pretending to pass the local access check phase.

There are two alternative ways to provide the client authentication information. First,
a reference to a CallbackHandler could be passed instead of the user name and
password. Second, a previously authenticated Subject could be used, which could
become handy when Coherence is used by a Java EE application that could retrieve an
authenticated Subject from the application container.

If a caller's request comes without any authentication context, Coherence instantiates
and call a CallbackHandler implementation declared in the Coherence operational
descriptor to retrieve the appropriate credentials. However, that "lazy" approach is
much less efficient, since without externally defined call scope, every access to a
protected clustered resource forces repetitive authentication calls.

Proof of Trustworthiness
Every clustered resource in Coherence is created by an explicit API call. A senior
service member retains the private credentials that are presented during that call as a
proof of trustworthiness. When the senior service member receives an access request
to a protected clustered resource, it use the local Access Controller to:

■ Decrypt the incoming communication using the remote caller's public credentials

■ Encrypt the response of access check using the private credentials of the service

■ Determine whether the remote caller has sufficient rights to access the protected
clustered resource (remote access check)

Since the requester accepts the response as valid only after decrypting it, the last step
in this cycle serves a role of the proof of trustworthiness for the requester preventing a
malicious node pretending to be a valid service senior.

Enabling the Default Access Controller Implementation
Coherence ships with a default Access Controller implementation that uses a standard
Java keystore. The implementation class is the
com.tangosol.net.security.DefaultController class and is configured in
the Coherence operational deployment descriptor.

<security-config>
 <enabled system-property="tangosol.coherence.security">false</enabled>
 <login-module-name>Coherence</login-module-name>
 <access-controller>
 <class-name>com.tangosol.net.security.DefaultController</class-name>
 <init-params>

Enabling the Default Access Controller Implementation

3-4 Oracle Coherence Security Guide

 <init-param id="1">
 <param-type>java.io.File</param-type>
 <param-value>./keystore.jks</param-value>
 </init-param>
 <init-param id="2">
 <param-type>java.io.File</param-type>
 <param-value>./permissions.xml</param-value>
 </init-param>
 </init-params>
 </access-controller>
 <callback-handler>
 <class-name/>
 </callback-handler>
</security-config>

The default access controller implementation is not enabled by default. To enable the
default implementation, override the <enabled> element within the
<security-config> node in an operational override file and set it to true. For
example:

<security-config>
 <enabled>true</enabled>
</security-config>

The default access controller implementation can also by enabled by setting the
tangosol.coherence.security system property to true.

The <login-module-name> element serves as the application name in a login
configuration file (see JAAS Reference Guide for complete details). Coherence is
shipped with a Java keystore (JKS) based login module that is contained in the
coherence-login.jar, which depends only on standard Java run-time classes and
could be placed in the JRE's lib/ext (standard extension) directory. The
corresponding login module declaration would look like:

// LoginModule Configuration for Oracle Coherence(TM)
Coherence {
 com.tangosol.security.KeystoreLogin required
 keyStorePath="${user.dir}${/}keystore.jks";
};

The <access-controller> element defines the Access Controller implementation
that takes two parameters to instantiate.

■ The first parameter is a path to the same keystore that is used by both controller
and login module.

■ The second parameter is a path to the access permission file (see discussion
below).

Note: When Coherence security is enabled, every call to the
CacheFactory.getCache() or
ConfigurableCacheFactory.ensureCache() API causes a
security check. This can negatively impact an application’s
performance if these calls are made very frequently. The best practice
is for the application to hold on to the cache reference and reuse it so
that the security check is only performed on the initial call. When
using this approach, it is the application’s responsibility to ensure that
those references are only used in an authorized way.

Enabling the Default Access Controller Implementation

Using the Access Controller 3-5

The <callback-handler> is an optional element that defines a custom
implementation of the javax.security.auth.callback.CallbackHandler
interface that would be instantiated and used by Coherence to authenticate the client
when all other means are exhausted.

Two more steps have to be performed to make the default Access Controller
implementation usable in your application:

1. Create a keystore with necessary principals.

2. Create the permissions file that would declare the access right for the
corresponding principals.

Consider the following example that creates three principals: admin to be used by the
Java Security framework; manager and worker to be used by Coherence:

keytool -genkey -v -keystore ./keystore.jks -storepass password -alias admin
-keypass password -dname CN=Administrator,O=MyCompany,L=MyCity,ST=MyState

keytool -genkey -v -keystore ./keystore.jks -storepass password -alias manager
-keypass password -dname CN=Manager,OU=MyUnit

keytool -genkey -v -keystore ./keystore.jks -storepass password -alias worker
-keypass password -dname CN=Worker,OU=MyUnit

Consider the following example that assigns all rights to the Manager principal, only
join rights to the Worker principal for caches that have names prefixed by common
and all rights to the Worker principal for the invocation service named invocation:

<?xml version='1.0'?>
<permissions>
 <grant>
 <principal>
 <class>javax.security.auth.x500.X500Principal</class>
 <name>CN=Manager,OU=MyUnit</name>
 </principal>

 <permission>
 <target>*</target>
 <action>all</action>
 </permission>
 </grant>

 <grant>
 <principal>
 <class>javax.security.auth.x500.X500Principal</class>
 <name>CN=Worker,OU=MyUnit</name>
 </principal>

 <permission>
 <target>cache=common*</target>
 <action>join</action>
 </permission>
 <permission>
 <target>service=invocation</target>
 <action>all</action>
 </permission>
 </grant>
</permissions>

Enabling the Default Access Controller Implementation

3-6 Oracle Coherence Security Guide

4

Securing Extend Client Connections 4-1

4Securing Extend Client Connections

Coherence*Extend includes an additional set of features that are used to secure
communication between extend clients and extend proxies. See Oracle Coherence Client
Guide for details on creating Coherence*Extend clients.

The following sections are included in this chapter:

■ Using Identity Tokens to Restrict Client Connections

■ Associating Identities with Extend Services

■ Implementing Extend Client Authorization

Using Identity Tokens to Restrict Client Connections
Extend client can be restricted from accessing a cluster by using an identity token. The
token is sent between extend clients and extend proxies whenever a connection is
attempted. Only extend clients that pass a valid identity token are allowed to access
the cluster.

On the extend client, identity tokens are created by an identity transformer and sent as
part of the connection request. On the cluster side, an identity asserter is used to
validate the identity token before the connection is accepted. Coherence*Extend
includes a default identity transformer (DefaultIdentityTransformer) and
identity asserter (DefaultIdentityAsserter) that use the Subject (Java) or
Principal (.NET) for the identity token. The default behavior can be overridden by
providing custom identity transformer and identity asserter implementations and
enabling them in the Coherence operational override file.

The following topics are included in this section:

■ Creating a Custom Identity Transformer

■ Enabling a Custom Identity Transformer

Note:

■ At run time, identity transformer implementation classes must be
located on the extend client’s classpath and identity asserter
implementation classes must be located on the extend proxy
server’s classpath.

■ See "Using Custom Security Types" on page 4-4 for more
information on using security object types other than the types
that are predefined in POF.

Using Identity Tokens to Restrict Client Connections

4-2 Oracle Coherence Security Guide

■ Creating a Custom Identity Asserter

■ Enabling a Custom Identity Asserter

■ Using Custom Security Types

■ Understanding Custom Identity Token Interoperability

Creating a Custom Identity Transformer
An identity transformer is a client-side component that converts a Subject, or
Principal, into an identity token that can be passed to an extend proxy. The identity
token can be any type of object useful for identity validation; it is not required to be a
well-known security type. In addition, the identity token can be specific to a remote
service to support clients that connect to multiple proxy servers and authenticate to
each proxy server in a unique fashion. At run time, the token is serialized and sent as
part of the extend connection request.

For Java and C++, the identity transformer must implement the
IdentityTransformer interface. C# clients implement the
IIdentityTransformer interface.

Example 4–1 is a Java implementation that restricts client access by requiring a client
to supply a password to access the proxy. The IdentityTransformer gets a
password from a system property on the client and returns it as an identity token.

Example 4–1 A Sample Identity Transformer Implementation

import com.tangosol.net.security.IdentityTransformer;
import javax.security.auth.Subject;
import com.tangosol.net.Service;

public class PasswordIdentityTransformer
 implements IdentityTransformer
 {
 public Object transformIdentity(Subject subject, Service service)
 throws SecurityException
 {
 return System.getProperty("mySecretPassword");
 }
 }

If client authentication is being done, a new Principal could be added to the Subject,
with the Principal name as the password. The password Principal could be added to
the Subject during JAAS authentication by modifying an existing JAAS login module
or by adding an additional required login module that would add the password
Principal. JAAS allows multiple login modules each of which can modify the Subject.
Similarly, in .NET a password identity could be added to the Principal. The asserter on
the cluster-side would then validate the "normal" Principals plus validate the
password Principal. See "Creating a Custom Identity Asserter" below.

Note: Identity tokens that are of a type that Coherence can serialize
are automatically serialized. For .NET and C++ clients, the type must
be a POF type. See "Using Custom Security Types" on page 4-4 for
more information on using security object types other than the types
that are predefined in POF.

Using Identity Tokens to Restrict Client Connections

Securing Extend Client Connections 4-3

Enabling a Custom Identity Transformer
An identity transformer implementation is enabled in the client-side
tangosol-coherence-override.xml file using the <identity-transformer>
element within the <security-config> node. The element must include the full
name of the implementation class. For example:

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <security-config>
 <identity-transformer>
 <class-name>com.my.PasswordIdentityTransformer</class-name>
 </identity-transformer>
 </security-config>
</coherence>

Creating a Custom Identity Asserter
An identity asserter is a cluster-side component that resides on the cache server that is
hosting an extend proxy service. The asserter validates an identity token that is created
by an identity transformer on the extend client. The asserter can validate identity
tokens unique for each proxy service to support multiple means of token validation.

The token gets passed when an extend client initiates a connection. If the validation
fails, the connection is refused and a security exception is thrown. The transformer and
asserter are also invoked when a new channel within an existing connection is created.
For Java and C++, the identity asserter must implement the IdentityAsserter
interface. C# clients implement the IIdentityAsserter interface.

Example 4–2 is a Java implementation that checks a security token to ensure a valid
password is given. In this case, the password is checked against a system property on
the cache server. This asserter implementation is used for the identity transformer
sample in Example 4–1.

Example 4–2 A Sample Identity Asserter Implementation

import com.tangosol.net.security.IdentityAsserter;
import javax.security.auth.Subject;
import com.tangosol.net.Service;

public class PasswordIdentityAsserter
 implements IdentityAsserter
 {
 public Subject assertIdentity(Object oToken, Service service)
 throws SecurityException
 {
 if (oToken instanceof String)
 {
 if (((String) oToken).equals(System.getProperty("mySecretPassword")))
 {
 return null;
 }
 }
 throw new SecurityException("Access denied");

Using Identity Tokens to Restrict Client Connections

4-4 Oracle Coherence Security Guide

 }
 }

There are many possible variations when creating an identity asserter. For example,
the asserter could reject connections based on a list of Principals, check role Principals,
validate signed Principal name, and so on. The asserter can block any connection
attempt that do not prove the correct identity.

Enabling a Custom Identity Asserter
An identity asserter implementation is enabled in the cluster-side
tangosol-coherence-override.xml file using the <identity-asserter>
element within the <security-config> node. The element must include the full
name of the implementation class. For example:

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <security-config>
 <identity-asserter>
 <class-name>com.my.PasswordIdentityAsserter</class-name>
 </identity-asserter>
 </security-config>
</coherence>

Using Custom Security Types
Security objects are automatically serialized/deserialized using Portable Object
Format (POF) when they are passed between extend clients and extend proxies.
Security objects of types that are predefined in POF can be used without any
configuration or programming changes. Security objects of custom types that are not
predefined in POF (for example, when using Kerberos authentication) causes an error.

For custom security types, an application can choose to either convert the custom type
or define the type in POF:

Convert the Type
In this approach, a custom identity transformer converts a custom security object type
to a type that is predefined for POF such as a character array or string before returning
it as an object token. On the proxy server, a custom identity asserter would convert it
back (after validation) to a subject.

For example, a subject may contain credentials that are not serialized. The identity
transformer would extract the credential and convert it to a character array, returning
that array as the token. On the proxy server, the identity asserter would convert the
character array to the proper credential type, validate it, and then construct a subject to
return.

Define the Custom Type in POF
In this approach, custom security types are defined in a POF configuration file. The
type must be defined in both the client’s POF configuration file and the POF
configuration file on the proxy server.

Associating Identities with Extend Services

Securing Extend Client Connections 4-5

For detailed information on using POF with Java, see Oracle Coherence Developer's
Guide. For more information on using POF with C++, see Oracle Coherence Client Guide.
For more information on using POF with C#, see Oracle Coherence Client Guide.

Understanding Custom Identity Token Interoperability
Solutions that choose to use a custom identity token must always consider what
tokens may be sent by an extend client and what tokens may be received by an extend
proxy. This is particularly important during rolling upgrades and when rolling out a
custom identity token solution.

Coherence Upgrades
Interoperability issues may occur during the process of upgrading Coherence. In this
scenario, there may be different client versions that interoperate with different proxy
server versions. In particular:

■ When a 3.5 extend client is connecting to a 3.6 extend proxy, the custom identity
asserter that is implemented on the extend proxy must be able to handle identity
tokens sent by the 3.5 extend client. A 3.5 extend client sends either a null token
or a Subject. The custom identity asserter must be prepared to handle those
token types in addition to any custom tokens originating from a 3.6 extend client.

■ Conversely, when a 3.6 extend client is connecting to a 3.5 extend proxy, the client
must not use a custom identity transformer that sends a token that the 3.5 extend
proxy cannot handle. The client must send either a null token or a Subject.

Custom Identity Token Rollout
Interoperability issues may occur between extend clients and extend proxies when
rolling out a custom identity token solution. In this scenario, as extend proxies are
migrated to use a custom identity asserter, there are proxies that continue to use the
default asserter until the roll out is completed. Likewise, as extend clients are migrated
to use a custom identity transformer, there are clients that continue to use the default
transformer until the roll out is completed. In both cases, the extend clients and
extend proxies must be able to handle a null token or a Subject until the rollout is
complete.

A possible strategy for such scenarios may be to have a custom identity asserter that
accepts null or Subject tokens temporarily as clients are updated. The identity
asserter could check an external source for a policy that indicates whether those tokens
are accepted. After all clients have been updated to use a custom token, the policy
could be changed and the identity asserter would no longer accept those tokens.

Associating Identities with Extend Services
Subject scoping allows remote cache and remote invocation service references that are
returned to a client to be associated with the identity from the current security context.
By default, subject scoping is disabled, which means remote cache and remote
invocation service references are globally shared.

With subject scoping enabled, clients use their platform-specific authentication APIs to
establish a security context. A subject or principal is obtained from the current security
context whenever a client creates a NamedCache and InvocationService instance.
All requests are then made for the established subject or principal.

Implementing Extend Client Authorization

4-6 Oracle Coherence Security Guide

For example, if the "trader" user calls CacheFactory.getCache("trade-cache")
and the "manager" user calls CacheFactory.getCache("trade-cache"), each
user gets a different remote cache reference object. Since an identity is associated with
that remote cache reference, authorization decisions can be made based on the identity
of the caller. See "Implementing Extend Client Authorization" below for details on
implementing authorization.

For Java and C++ clients, this feature is enabled in the client-side
tangosol-coherence-override.xml file using the <subject-scope> element
within the <security-config> node. The following example enables subject
scoping and ensures each subject gets a unique remote cache and remote invocation
service reference.

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <security-config>
 <subject-scope>true</subject-scope>
 </security-config>
</coherence>

For .NET clients, this feature is enabled in the client-side
tangosol-coherence-override.xml file using the <principal-scope>
element within the <security-config> node. The following example enables
subject scoping and ensures each subject gets a unique remote cache and remote
invocation service reference.

<?xml version='1.0'?>

<cache-config xmlns="http://schemas.tangosol.com/cache"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://schemas.tangosol.com/cache
 assembly://Coherence/Tangosol.Config/coherence.xsd">
 <security-config>
 <principal-scope>true<principal-scope>
 </security-config>
</coherence>

Implementing Extend Client Authorization
Authorization is used to control which actions a particular user can perform based on
their access control rights. In Coherence*Extend, authorization is implemented with
interceptor classes. An extend proxy calls the interceptor classes before a client
accesses a proxied resource (cache, cache service, or invocation service). Interceptor
classes are implementation specific and must provide the necessary authorization
logic before passing the request to the proxied resources.

The following topics are included in this section:

■ Creating Authorization Interceptor Classes

Note: See "Using Custom Security Types" on page 4-4 for more
information on using security object types other than the types that
are predefined in POF.

Implementing Extend Client Authorization

Securing Extend Client Connections 4-7

■ Enabling Authorization Interceptor Classes

The code samples in this section are based on the Java authorization example, which is
included in the Coherence examples that are delivered as part of the documentation
library. The example demonstrates a basic authorization implementation that uses the
Principal obtained from a client request and a role-based policy to determine whether
to allow operations on the requested service. Download the examples for the complete
implementation.

Creating Authorization Interceptor Classes
An interceptor class can be created for both a proxied cache service and a proxied
invocation service by implementing the CacheService and InvocationService
interfaces, respectively. However, a set of wrapper classes are typically extended when
implementing authorization: com.tangosol.net.WrapperCacheService (with
com.tangosol.net.cache.WrapperNamedCache) and
com.tangosol.net.WrapperInvocationService. The wrapper classes delegate
to their respective interfaces and provide a convenient way to create interceptor
classes that apply access control to the wrapped interface methods.

Example 4–3 is taken from the Coherence examples and demonstrates creating an
authorization interceptor class for a proxied cache service by extending
WrapperCacheService. It wraps all CacheService methods on the proxy and
applies access controls based on the Subject passed from an extend client. The
implementation only allows a Principal with the specified role to access the wrapped
CacheService.

Example 4–3 Extending the WrapperCacheService Class for Authorization

public class EntitledCacheService
 extends WrapperCacheService
 {
 public EntitledCacheService(CacheService service)
 {
 super(service);
 }

 public NamedCache ensureCache(String sName, ClassLoader loader)
 {
 SecurityExampleHelper.checkAccess(SecurityExampleHelper.ROLE_READER);
 return new EntitledNamedCache(super.ensureCache(sName, loader));
 }

 public void releaseCache(NamedCache map)
 {
 if (map instanceof EntitledNamedCache)
 {
 EntitledNamedCache cache = (EntitledNamedCache) map;
 SecurityExampleHelper.checkAccess(SecurityExampleHelper.ROLE_READER);
 map = cache.getNamedCache();
 }
 super.releaseCache(map);
 }

 public void destroyCache(NamedCache map)
 {
 if (map instanceof EntitledNamedCache)
 {
 EntitledNamedCache cache = (EntitledNamedCache) map;

Implementing Extend Client Authorization

4-8 Oracle Coherence Security Guide

 SecurityExampleHelper.checkAccess(SecurityExampleHelper.ROLE_ADMIN);
 map = cache.getNamedCache();
 }
 super.destroyCache(map);
 }
}

Notice that this class requires a named cache implementation. For this example, the
WrapperNamedCache class is extended and wraps each method of the NamedCache
instance. This allows access controls to be applied to different cache operations.
Example 4–4 is a code excerpt taken from the Coherence examples that demonstrates
overriding the NamedCache methods and applying access checks before allowing the
method to be executed. See the Coherence examples for the complete class.

Example 4–4 Extending the WrapperNamedCache Class for Authorization

public class EntitledNamedCache
 extends WrapperNamedCache
 {
 public EntitledNamedCache(NamedCache cache)
 {
 super(cache, cache.getCacheName());
 }

 public Object put(Object oKey, Object oValue, long cMillis)
 {
 SecurityExampleHelper.checkAccess(SecurityExampleHelper.ROLE_WRITER);
 return super.put(oKey, oValue, cMillis);
 }

 public Object get(Object oKey)
 {
 SecurityExampleHelper.checkAccess(SecurityExampleHelper.ROLE_READER);
 return super.get(oKey);
 }

 public void destroy()
 {
 SecurityExampleHelper.checkAccess(SecurityExampleHelper.ROLE_ADMIN);
 super.destroy();
 }
...

Example 4–5 is taken from the Coherence examples and demonstrates creating an
authorization interceptor class for a proxied invocation service by extending
WrapperInvocationService. It wraps all InvocationService methods on the
proxy and applies access controls based on the Subject passed from an extend client.
The implementation only allows Principals with a specified role name to access the
wrapped InvocationService.

Example 4–5 Extending the WrapperInvocationService Class for Authorization

public class EntitledInvocationService
 extends WrapperInvocationService
 {
 public EntitledInvocationService(InvocationService service)
 {
 super(service);
 }

Implementing Extend Client Authorization

Securing Extend Client Connections 4-9

 public void execute(Invocable task, Set setMembers, InvocationObserver
 observer)
 {
 SecurityExampleHelper.checkAccess(SecurityExampleHelper.ROLE_WRITER)
 super.execute(task, setMembers, observer);
 }

 public Map query(Invocable task, Set setMembers)
 {
 SecurityExampleHelper.checkAccess(SecurityExampleHelper.ROLE_WRITER)
 return super.query(task, setMembers);
 }
}

When a client attempts to use a remote invocation service, the proxy calls the
query() method on the EntitledInvocationService class, rather than on the
proxied InvocationService instance. The EntitledInvocationService class
decides to allow or deny the call. If the call is allowed, it then calls the query()
method on the proxied InvocationService instance.

Enabling Authorization Interceptor Classes
Interceptor classes for a proxied cache service and a proxied invocation service are
enabled in a proxy scheme definition within the <cache-service-proxy> element
and <invocation-service-proxy> element, respectively. The <class-name>
element is used to enter the fully qualified name of the interceptor class. Initialization
parameters required by the class can be specified using the <init-params> element.
See "cache-service-proxy" and "invocation-service-proxy" in Oracle Coherence
Developer's Guide for detailed information on using these elements.

The following example demonstrates enabling both a proxied cache service and
proxied invocation service interceptor class. The example uses the interceptor classes
that were created in Example 4–3 and Example 4–5.

<proxy-scheme>
 ...
 <proxy-config>
 <cache-service-proxy>
 <class-name>
 com.tangosol.examples.security.EntitledCacheService
 </class-name>
 <init-params>
 <init-param>
 <param-type>com.tangosol.net.CacheService</param-type>
 <param-value>{service}</param-value>
 </init-param>
 </init-params>
 </cache-service-proxy>
 <invocation-service-proxy>
 <class-name>
 com.tangosol.examples.security.EntitledInvocationService
 </class-name>
 <init-params>
 <init-param>
 <param-type>com.tangosol.net.InvocationService</param-type>
 <param-value>{service}</param-value>
 </init-param>
 </init-params>
 </invocation-service-proxy>
</proxy-config>

Implementing Extend Client Authorization

4-10 Oracle Coherence Security Guide

5

Using SSL to Secure Communication 5-1

5Using SSL to Secure Communication

Coherence provides a Secure Socket Layer (SSL) implementation that secures TCMP
communication between cluster nodes and the TCP communication between
Coherence*Extend clients and proxies. Coherence supports the Transport Layer
Security (TLS) 1.0 protocol which is the next version of the SSL 3.0 protocol; however,
the term SSL is used in this documentation since it is the more widely recognized
term.

The following sections are included in this chapter:

■ Overview of SSL

■ Using SSL to Secure TCMP Communication

■ Using SSL to Secure Extend Client Communication

Overview of SSL
This section provides a brief overview of common SSL concepts that are used in this
documentation and is not intended to be a complete guide to SSL. Those new to SSL
should refer to the formal specification maintained at http://www.ietf.org and
the Java SE Security resources located at
http://java.sun.com/javase/technologies/security/index.jsp. Those
familiar with SSL can skip this section.

SSL is a security protocol that secures communication between entities (typically,
clients and servers) over a network. SSL works by authenticating clients and servers
using digital certificates and by encrypting/decrypting communication using unique
keys that are associated with authenticated clients and servers.

Establishing Identity and Trust
An entity’s identity is established using a digital certificate and public and private
encryption keys. The digital certificate contains general information about the entity
and also contains the public encryption key embedded within it. A digital certificate is
verified by a Certificate Authority (CA) and signed using the CA’s digital certificate.
The CA’s digital certificate establishes trust that the entity is authentic.

Encrypting and Decrypting Data
An entity’s digital certificate contains a public encryption key that is paired with the
entity’s private encryption key. Certificates are passed between entities during an
initial connection. Data is then encrypted using the public key. Data that is encrypted
using an entity’s public key can only be decrypted by the entity’s private key. This
ensures that only the entity that owns the public encryption key can decrypt the data.

Overview of SSL

5-2 Oracle Coherence Security Guide

Using One-Way Authentication Versus Two-Way Authentication
SSL communication between clients and servers can be set up using either one-way or
two-way authentication. With one-way authentication, a server is required to identify
itself to a client by sending its digital certificate for authentication. The client is not
required to send the server a digital certificate and remains anonymous to the server.
Two-Way authentication requires both the client and the server to send their
respective digital certificates to each other for mutual authentication. Two-way
authentication provides stronger security by assuring that the identity on both sides of
the communication are known.

Generating Java SSL Artifacts
The Java keytool utility that is located in the JDK_HOME/bin directory is used to
generate and manage SSL artifacts. This includes: creating a key store; generating a
unique public/private key pair; creating a self-signed digital certificate that includes
the public key, associating the certificate with the private key; and storing these
artifacts in the key store.

The following example creates a key store named server.jks that is located in the
/test directory. A public and private key pair are generated for the entity identified
by the -dname value ("cn=administrator, ou=Coherence, o=Oracle,
c=US"). A self-signed certificate is created that includes the public key and identity
information. The certificate is valid for 180 days and is associated with the private key
in a key store entry referred to by the alias (admin). Passwords must be entered for
both the key store and private key.

keytool -genkeypair -dname "cn=administrator, ou=Coherence, o=Oracle, c=US"
-alias admin -keypass password -keystore /test/server -storepass password
-validity 180

The certificate generated by this command is adequate for development purposes.
However, certificates are typically verified by a trusted CA (such as VeriSign). To have
the certificate verified, use the keytool utility to generate a Certificate Signing
Request (CSR) file:

keytool -certreq -file admin.csr

This CSR file must be sent to the CA, which returns a signed certificate. Use the
keytool utility to import the returned certificate which replaces the self-signed
certificate in the key store:

keytool -importcert -trustcacerts -file signed_admin.cer

Lastly, the keytool utility is used to create a second key store that acts as a trust
store. The trust store contains digital certificates of trusted CAs. Certificates that have
been verified by a CA are only considered trusted if the CA’s certificate is also found
in the trust store. For example, in a typical one-way authentication scenario, a client
must have a trust store that contains a digital certificate of the CA that signed the
server’s certificate. For development purposes, a self-signed certificate can be used for
both identity and trust; moreover, a single keystore can be used as both the identity
store and the trust store.

Generating Windows SSL Artifacts
The following steps describe how to setup two-way authentication on Windows and is
required when securing Coherence*Extend .NET clients. See "Configure a .NET
Client-Side Stream Provider" on page 5-13. Refer to the Windows documentation for
complete instructions on setting up SSL on Windows:

Using SSL to Secure TCMP Communication

Using SSL to Secure Communication 5-3

http://technet.microsoft.com/en-us/library/cc782338%28WS.10%29.a
spx

To setup two-way authentication on Windows:

1. Run the following commands from the Visual Studio command prompt:

c:\>makecert -pe -n "CN=Test And Dev Root Authority" -ss my -sr LocalMachine -a
sha1 -sky signature -r "Test And Dev Root Authority.cer"

c:\>makecert -pe -n "CN=MyServerName" -ss my -sr LocalMachine -a sha1 -sky
exchange -eku 1.3.6.1.5.5.7.3.1 -in "Test And Dev Root Authority" -is MY -ir
LocalMachine -sp "Microsoft RSA SChannel Cryptographic Provider" -sy 12

c:\>makecert -pe -n "CN=MyClient" -ss my -sr LocalMachine -a sha1 -sky exchange
-eku 1.3.6.1.5.5.7.3.1 -in "Test And Dev Root Authority" -is MY -ir
LocalMachine -sp "Microsoft RSA SChannel Cryptographic Provider" -sy 12

2. Create the certificate trusted root certification authority (for tests only).

makecert -pe -n "CN=Test And Dev Root Authority" -ss my -sr LocalMachine -a
sha1 -sky signature -r "Test And Dev Root Authority.cer"

3. Copy the created certificate from the personal store to the trusted root certification
authority store.

4. Create the server certificate based on the trusted root certification.

makecert -pe -n "CN=MyServerName" -ss my -sr LocalMachine -a sha1 -sky exchange
-eku 1.3.6.1.5.5.7.3.1 -in "Test And Dev Root Authority" -is MY -ir
LocalMachine -sp "Microsoft RSA SChannel Cryptographic Provider" -sy 12

5. From the certificate store of the trusted root certification authority (Test And Dev
Root Authority), export a certificate file without a public key (.cer).

6. From the certificate store of the trusted root certification authority (Test And Dev
Root Authority), export a certificate file with a private key (.pfx).

7. On each client machine, copy the .cer file on a location accessible for the
sslstream client program.

8. On each client machine, copy the .pfx file.

9. On each client machine, import the .pfx file to the trusted root certification
authority certificate store

10. On each client machine, delete the .pfx file (this step ensure the client can not
communicate or export the private key).

Using SSL to Secure TCMP Communication
A Coherence cluster can be configured to use SSL with TCMP. Coherence supports
both one-way and two-way authentication. Two-Way authentication is typically used
more often than one-way authentication, which has fewer use cases in a cluster
environment. In addition, it is important to realize that TCMP is a peer-to-peer
protocol that generally runs in trusted environments where many cluster nodes are
expected to remain connected with each other. The implications of SSL on
administration and performance should be carefully considered.

The following topics are include in this section:

■ Defining a SSL Socket Provider

http://technet.microsoft.com/en-us/library/cc782338%28WS.10%29.aspx
http://technet.microsoft.com/en-us/library/cc782338%28WS.10%29.aspx

Using SSL to Secure TCMP Communication

5-4 Oracle Coherence Security Guide

■ Using the Pre-Defined SSL Socket Provider

Defining a SSL Socket Provider
SSL for TCMP is configured in an operational override file by overriding the
<socket-provider> element within the <unicast-listener> element. The
preferred approach is to use the <socket-provider> element to reference a SSL
socket provider configuration that is defined within a <socket-providers> node.
The <socket-provider> element can also be used to define a full configuration
within the <unicast-listener> element. Both approaches are demonstrated
below. See Oracle Coherence Developer's Guide for a detailed reference of the
<socket-provider> element.

Example 5–1 demonstrates a SSL two-way authentication setup and requires both an
identity store and trust store to be located on each node in the cluster. The example
uses the default values for the <protocol> and <algorithm> element (TLS and
SunX509, respectively). These are shown for completeness but may be left out when
using the default values. The example uses the preferred approach where the SSL
socket provider is defined within the <socket-providers> node and referred to
from within the <unicast-listener> element.

Example 5–1 Sample SSL Configuration for TCMP Communication

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config>
 <unicast-listener>
 <socket-provider>mySSLConfig</socket-provider>
 <well-known-addresses>
 <socket-address id="1">
 <address>198.168.1.5</address>
 <port>8088</port>
 </socket-address>
 </well-known-addresses>
 </unicast-listener>

 <socket-providers>
 <socket-provider id="mySSLConfig">
 <ssl>
 <protocol>TLS</protocol>
 <identity-manager>
 <algorithm>SunX509</algorithm>
 <key-store>
 <url>file:server.jks</url>
 <password>password</password>
 <type>JKS</type>
 </key-store>
 <password>password</password>
 </identity-manager>

Note: A cluster must be configured to use well known addresses to
use SSL with TCMP. See Oracle Coherence Developer's Guide for details
on setting up well known addresses.

Using SSL to Secure TCMP Communication

Using SSL to Secure Communication 5-5

 <trust-manager>
 <algorithm>SunX509</algorithm>
 <key-store>
 <url>file:trust.jks</url>
 <password>password</password>
 <type>JKS</type>
 </key-store>
 </trust-manager>
 </ssl>
 </socket-provider>
 </socket-providers>
 </cluster-config>
</coherence>

As an alternative, the SSL socket provider can also be directly defined in the
<unicast-listener> element as shown below:

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config>
 <unicast-listener>
 <socket-provider>
 <ssl>
 <protocol>TLS</protocol>
 <identity-manager>
 <algorithm>SunX509</algorithm>
 <key-store>
 <url>file:server.jks</url>
 <password>password</password>
 <type>JKS</type>
 </key-store>
 <password>password</password>
 </identity-manager>
 <trust-manager>
 <algorithm>SunX509</algorithm>
 <key-store>
 <url>file:trust.jks</url>
 <password>password</password>
 <type>JKS</type>
 </key-store>
 </trust-manager>
 </ssl>
 </socket-provider>
 <well-known-addresses>
 <socket-address id="1">
 <address>198.168.1.5</address>
 <port>8088</port>
 </socket-address>
 </well-known-addresses>
 </unicast-listener>
 </cluster-config>
</coherence>

Using SSL to Secure TCMP Communication

5-6 Oracle Coherence Security Guide

Using the Pre-Defined SSL Socket Provider
Out-of-box, a pre-defined SSL socket provider is included that allows for configuration
of two-way SSL connections that is based on peer trust where every trusted peer
resides within a single JKS key store. The proprietary peer trust algorithm (PeerX509)
works by assuming trust (and only trust) of the certificates that are in the key store.
The peer algorithm can increase the performance of SSL by leveraging the fact that
TCMP is a peer-to-peer protocol.

The pre-defined SSL socket provider is located within the <socket-providers>
element in the operational deployment descriptor:

...
<cluster-config>
 <socket-providers>
 <socket-provider id="ssl">
 <ssl>
 <identity-manager>
 <key-store>
 <url system-property="tangosol.coherence.security.keystore">
 file:keystore.jks
 </url>
 <password system-property="tangosol.coherence.security.
 password"/>
 </key-store>
 <password system-property="tangosol.coherence.security.password"/>
 </identity-manager>
 <trust-manager>
 <algorithm>PeerX509</algorithm>
 <key-store>
 <url system-property="tangosol.coherence.security.keystore">
 file:keystore.jks
 </url>
 <password system-property="tangosol.coherence.security.
 password"/>
 </key-store>
 </trust-manager>
 </ssl>
 </socket-provider>
 </socket-providers>
</cluster-config>
...

As configured, the pre-defined SSL socket provider requires a Java key store named
keystore.jks that is found on the classpath. This name can be overridden using the
tangosol.coherence.security.keystore system property to specify a different
key store. In addition, the tangosol.coherence.security.password system
property can specify the required password for the key store and certificate. As an
alternative, an operational override file may be used to modify the pre-defined SSL
socket provider definition as required.

To use the pre-defined SSL socket provider, override the <socket-provider>
element in the <unicast-listener> configuration and reference the SSL socket
provider using it’s id attribute. The following example configures a unicast listener to
use the pre-defined SSL socket provider.

Note: Ensure that certificates for all nodes in the cluster have been
imported into the key store.

Using SSL to Secure Extend Client Communication

Using SSL to Secure Communication 5-7

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/
 coherence-operational-config coherence-operational-config.xsd">
 <cluster-config>
 <unicast-listener>
 <socket-provider>ssl</socket-provider>
 <well-known-addresses>
 <socket-address id="1">
 <address>198.168.1.5</address>
 <port>8088</port>
 </socket-address>
 </well-known-addresses>
 </unicast-listener>
 </cluster-config>
</coherence>

Using SSL to Secure Extend Client Communication
Communication between extend clients and extend proxies can be secured using SSL.
SSL requires configuration on both the client side and the cluster side. SSL is
supported for both Java and .NET clients but not for C++ clients.

The configuration examples in this section assume that valid digital certificates for all
clients and servers have been created as required and that the certificates have been
signed by a Certificate Authority (CA). The digital certificates must be found in an
identity store, and the trust store must include the signing CA’s digital certificate.
Self-Signed certificates may be used during development as needed.

The following topics are included in this section:

■ Configuring a Cluster-Side SSL Socket Provider

■ Configure a Java Client-Side SSL Socket Provider

■ Configure a .NET Client-Side Stream Provider

Configuring a Cluster-Side SSL Socket Provider
SSL is configured in the cluster-side cache configuration file by defining a SSL socket
provider for a proxy service. There are two options for configuring a SSL socket
provider depending on the level of granularity that is required:

■ Per Proxy Service – Each proxy service defines a SSL socket provider configuration
or references a pre-defined configuration that is included in the operational
configuration file.

■ All Proxy Services – All proxy services use the same global SSL socket provider
configuration. Proxy services that provide their own configuration override the
global configuration. The global configuration can also reference a predefined
configuration that is included in the operational configuration file.

Configure a SSL Socket Provider Per Proxy Service
To configure a SSL socket provider for a proxy service, add a <socket-provider>
element within the <tcp-acceptor> element of each <proxy-scheme> definition.

Using SSL to Secure Extend Client Communication

5-8 Oracle Coherence Security Guide

See "socket-provider" in Oracle Coherence Developer's Guide for a detailed reference of
the <socket-provider> element.

Example 5–2 demonstrates a proxy scheme that configures a SSL socket provider that
uses the default values for the <protocol> and <algorithm> element (TLS and
SunX509, respectively). These are shown for completeness but may be left out when
using the default values.

Example 5–2 configures both an identity key store (server.jks) and a trust key store
(trust.jks). This is typical of two-way SSL authentication where both the client and
proxy must exchange their digital certificate and confirm each other’s identity. For
one-way SSL authentication, the proxy server configuration must include an identity
key store but need not include a trust key store.

Example 5–2 Sample Cluster-Side SSL Configuration

...
<proxy-scheme>
 <service-name>ExtendTcpSSLProxyService</service-name>
 <acceptor-config>
 <tcp-acceptor>
 <socket-provider>
 <ssl>
 <protocol>TLS</protocol>
 <identity-manager>
 <algorithm>SunX509</algorithm>
 <key-store>
 <url>file:server.jks</url>
 <password>password</password>
 <type>JKS</type>
 </key-store>
 <password>password</password>
 </identity-manager>
 <trust-manager>
 <algorithm>SunX509</algorithm>
 <key-store>
 <url>file:trust.jks</url>
 <password>password</password>
 <type>JKS</type>
 </key-store>
 </trust-manager>
 </ssl>
 </socket-provider>
 <local-address>
 <address>192.168.1.5</address>
 <port>9099</port>
 </local-address>
 </tcp-acceptor>
 </acceptor-config>
 <autostart>true</autostart>
</proxy-scheme>
...

The following example references a SSL socket provider configuration that is defined
in the <socket-providers> node of the operational deployment descriptor by
specifying the configuration’s id attribute (ssl). See "socket-providers" in Oracle
Coherence Developer's Guide for a detailed reference of the <socket-providers>
element.

Using SSL to Secure Extend Client Communication

Using SSL to Secure Communication 5-9

...
<proxy-scheme>
 <service-name>ExtendTcpSSLProxyService</service-name>
 <acceptor-config>
 <tcp-acceptor>
 <socket-provider>ssl</socket-provider>
 <local-address>
 <address>192.168.1.5</address>
 <port>9099</port>
 </local-address>
 </tcp-acceptor>
 </acceptor-config>
 <autostart>true</autostart>
</proxy-scheme>
...

Configure a SSL Socket Provider for All Proxy Services
To configure a global SSL socket provider for use by all proxy services, use a
<socket-provider> element within the <defaults> element of the cache
configuration file. With this approach, no additional configuration is required within a
proxy scheme definition. See "defaults" in Oracle Coherence Developer's Guide for a
detailed reference of the <default> element.

The following example uses the same SSL socket provider configuration from
Example 5–2 and configures it for all proxy services:

<?xml version='1.0'?>

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
 coherence-cache-config.xsd">
 <defaults>
 <socket-provider>
 <ssl>
 <protocol>TLS</protocol>
 <identity-manager>
 <algorithm>SunX509</algorithm>
 <key-store>
 <url>file:server.jks</url>
 <password>password</password>
 <type>JKS</type>
 </key-store>
 <password>password</password>
 </identity-manager>
 <trust-manager>

Note: Out-of-box, a pre-defined SSL socket provider is included in
the operational deployment descriptor and is named ssl. The
pre-defined SSL socket provider is configured for two-way SSL
connections and is based on peer trust where every trusted peer
resides within a single JKS key store. See "Using the Pre-Defined SSL
Socket Provider" on page 5-6 for details. To configure a different SSL
socket provider, use an operational override file to modify the
pre-defined SSL socket provider or to create a socket provider
configuration as required.

Using SSL to Secure Extend Client Communication

5-10 Oracle Coherence Security Guide

 <algorithm>SunX509</algorithm>
 <key-store>
 <url>file:trust.jks</url>
 <password>password</password>
 <type>JKS</type>
 </key-store>
 </trust-manager>
 </ssl>
 </socket-provider>
 </defaults>
 ...

The following example configures a global SSL socket provider by referencing a SSL
socket provider configuration that is defined in the operational deployment descriptor:

<defaults>
 <socket-provider>ssl</socket-provider>
</defaults>

Configure a Java Client-Side SSL Socket Provider
SSL is configured in the client-side cache configuration file by defining a SSL socket
provider for a remote cache scheme and, if required, for a remote invocation scheme.
There are two options for configuring a SSL socket provider depending on the level of
granularity that is required:

■ Per Remote Service – Each remote service defines a SSL socket provider
configuration or references a pre-defined configuration that is included in the
operational configuration file.

■ All Remote Services – All remote services use the same global SSL socket provider
configuration. Remote services that provide their own configuration override the
global configuration. The global configuration can also reference a predefined
configuration that is included in the operational configuration file.

Configure a SSL Socket Provider Per Remote Service
To configure a SSL socket provider for a remote service, add a <socket-provider>
element within the <tcp-initiator> element of a remote scheme definition. See
"socket-provider" in Oracle Coherence Developer's Guide for a detailed reference of the
<socket-provider> element.

Example 5–3 demonstrates a remote cache scheme that configures a socket provider
that uses SSL. The example uses the default values for the <protocol> and
<algorithm> element (TLS and SunX509, respectively). These are shown for
completeness but may be left out when using the default values.

Example 5–3 configures both an identity key store (server.jks) and a trust key store
(trust.jks). This is typical of two-way SSL authentication where both the client and
proxy must exchange their digital certificate and confirm each other’s identity. For
one-way SSL authentication, the client configuration must include a trust key store but
need not include an identity key store, which indicates the client does not exchange its
digital certificate to the proxy and remains anonymous. The client’s trust key store
must includes the CA’s digital certificate that was used to sign the proxy’s digital
certificate.

Example 5–3 Sample Java Client-Side SSL Configuration

<?xml version="1.0"?>

Using SSL to Secure Extend Client Communication

Using SSL to Secure Communication 5-11

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
 coherence-cache-config.xsd">
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>dist-extend</cache-name>
 <scheme-name>extend-dist</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

 <caching-schemes>
 <remote-cache-scheme>
 <scheme-name>extend-dist</scheme-name>
 <service-name>ExtendTcpSSLCacheService</service-name>
 <initiator-config>
 <tcp-initiator>
 <socket-provider>
 <ssl>
 <protocol>TLS</protocol>
 <identity-manager>
 <algorithm>SunX509</algorithm>
 <key-store>
 <url>file:server.jks</url>
 <password>password</password>
 <type>JKS</type>
 </key-store>
 <password>password</password>
 </identity-manager>
 <trust-manager>
 <algorithm>SunX509</algorithm>
 <key-store>
 <url>file:trust.jks</url>
 <password>password</password>
 <type>JKS</type>
 </key-store>
 </trust-manager>
 </ssl>
 </socket-provider>
 <remote-addresses>
 <socket-address>
 <address>198.168.1.5</address>
 <port>9099</port>
 </socket-address>
 </remote-addresses>
 <connect-timeout>10s</connect-timeout>
 </tcp-initiator>
 <outgoing-message-handler>
 <request-timeout>5s</request-timeout>
 </outgoing-message-handler>
 </initiator-config>
 </remote-cache-scheme>
 </caching-schemes>
</cache-config>

The following example references a SSL socket provider configuration that is defined
in the <socket-providers> node of the operational deployment descriptor by
specifying the configuration’s id attribute (ssl). See "socket-providers" in Oracle

Using SSL to Secure Extend Client Communication

5-12 Oracle Coherence Security Guide

Coherence Developer's Guide for a detailed reference of the <socket-providers>
element.

<?xml version="1.0"?>

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
 coherence-cache-config.xsd">
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>dist-extend</cache-name>
 <scheme-name>extend-dist</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

 <caching-schemes>
 <remote-cache-scheme>
 <scheme-name>extend-dist</scheme-name>
 <service-name>ExtendTcpSSLCacheService</service-name>
 <initiator-config>
 <tcp-initiator>
 <socket-provider>ssl</socket-provider>
 <remote-addresses>
 <socket-address>
 <address>198.168.1.5</address>
 <port>9099</port>
 </socket-address>
 </remote-addresses>
 <connect-timeout>10s</connect-timeout>
 </tcp-initiator>
 <outgoing-message-handler>
 <request-timeout>5s</request-timeout>
 </outgoing-message-handler>
 </initiator-config>
 </remote-cache-scheme>
 </caching-schemes>
</cache-config>

Configure a SSL Socket Provider for All Remote Services
To configure a global SSL socket provider for use by all remote services, use a
<socket-provider> element within the <defaults> element of the cache
configuration file. With this approach, no additional configuration is required within a
remote scheme definition. See "defaults" in Oracle Coherence Developer's Guide for a
detailed reference of the <default> element.

Note: Out-of-box, a pre-defined SSL socket provider is included in
the operational deployment descriptor and is named ssl. The
pre-defined SSL socket provider is configured for two-way SSL
connections and is based on peer trust where every trusted peer
resides within a single JKS key store. See for "Using the Pre-Defined
SSL Socket Provider" on page 5-6 for details. To configure a different
SSL socket provider, use an operational override file to modify the
pre-defined SSL socket provider or to create a socket provider
configuration as required.

Using SSL to Secure Extend Client Communication

Using SSL to Secure Communication 5-13

The following example uses the same SSL socket provider configuration from
Example 5–3 and configures it for all remote services:

<?xml version='1.0'?>

<cache-config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
 xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
 coherence-cache-config.xsd">
 <defaults>
 <socket-provider>
 <ssl>
 <protocol>TLS</protocol>
 <identity-manager>
 <algorithm>SunX509</algorithm>
 <key-store>
 <url>file:server.jks</url>
 <password>password</password>
 <type>JKS</type>
 </key-store>
 <password>password</password>
 </identity-manager>
 <trust-manager>
 <algorithm>SunX509</algorithm>
 <key-store>
 <url>file:trust.jks</url>
 <password>password</password>
 <type>JKS</type>
 </key-store>
 </trust-manager>
 </ssl>
 </socket-provider>
 </defaults>
 ...

The following example configures a global SSL socket provider by referencing a SSL
socket provider configuration that is defined in the operational deployment descriptor:

<defaults>
 <socket-provider>ssl</socket-provider>
</defaults>

Configure a .NET Client-Side Stream Provider
SSL is configured in the .NET client-side cache configuration file by defining an SSL
stream provider for remote services. The SSL stream provider is is defined using the
<stream-provider> element within the <tcp-initiator> element.

Note: Certificates are managed on Window servers at the operating
system level using the Certificate Manager. The sample configuration
assumes that the extend proxy’s certificate is included in the
Certificate Manager and that the CA’s certificate that was used to sign
the proxy’s certificate is included as a trusted certificate authority. See
"Generating Windows SSL Artifacts" on page 5-2 for a generic
example. For more information on managing certificates, see

http://technet.microsoft.com/en-us/library/cc782338(
WS.10).aspx

Using SSL to Secure Extend Client Communication

5-14 Oracle Coherence Security Guide

Example 5–4 demonstrates a remote cache scheme that configures a SSL stream
provider. Refer to the cache configuration XML schema (INSTALL_
DIR\config\cache-config.xsd) for details on the elements used to configure a
SSL stream provider.

Example 5–4 Sample .NET Client-Side SSL Configuration

<?xml version="1.0"?>

<cache-config xmlns="http://schemas.tangosol.com/cache"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://schemas.tangosol.com/cache
 assembly://Coherence/Tangosol.Config/cache-config.xsd">
 <caching-scheme-mapping>
 <cache-mapping>
 <cache-name>dist-extend</cache-name>
 <scheme-name>extend-dist</scheme-name>
 </cache-mapping>
 </caching-scheme-mapping>

 <caching-schemes>
 <remote-cache-scheme>
 <scheme-name>extend-dist</scheme-name>
 <service-name>ExtendTcpSSLCacheService</service-name>
 <initiator-config>
 <tcp-initiator>
 <stream-provider>
 <ssl>
 <protocol>Tls</protocol>
 <local-certificates>
 <certificate>
 <url>C:\</url>
 <password>password</password>
 <flags>DefaultKeySet</flags>
 </certificate>
 </local-certificates>
 </ssl>
 </stream-provider>
 <remote-addresses>
 <socket-address>
 <address>198.168.1.5</address>
 <port>9099</port>
 </socket-address>
 </remote-addresses>
 <connect-timeout>10s</connect-timeout>
 </tcp-initiator>
 <outgoing-message-handler>
 <request-timeout>5s</request-timeout>
 </outgoing-message-handler>
 </initiator-config>
 </remote-cache-scheme>
 </caching-schemes>
</cache-config>

	Contents
	Preface
	1 Introduction to Coherence Security
	Conceptual Overview of Coherence Security
	Overview of Security Configuration

	2 Enabling General Security Measures
	Specifying Coherence Privileges in the Java Security Policy File
	Using Host-Based Authorization
	Specifying Cluster Member Authorized Hosts
	Specifying Extend Client Authorized Hosts
	Using a Filter Class to Determine Authorization

	Managing Rogue Clients

	3 Using the Access Controller
	Overview of the Access Controller
	Enabling the Default Access Controller Implementation

	4 Securing Extend Client Connections
	Using Identity Tokens to Restrict Client Connections
	Creating a Custom Identity Transformer
	Enabling a Custom Identity Transformer
	Creating a Custom Identity Asserter
	Enabling a Custom Identity Asserter
	Using Custom Security Types
	Understanding Custom Identity Token Interoperability

	Associating Identities with Extend Services
	Implementing Extend Client Authorization
	Creating Authorization Interceptor Classes
	Enabling Authorization Interceptor Classes

	5 Using SSL to Secure Communication
	Overview of SSL
	Using SSL to Secure TCMP Communication
	Defining a SSL Socket Provider
	Using the Pre-Defined SSL Socket Provider

	Using SSL to Secure Extend Client Communication
	Configuring a Cluster-Side SSL Socket Provider
	Configure a SSL Socket Provider Per Proxy Service
	Configure a SSL Socket Provider for All Proxy Services

	Configure a Java Client-Side SSL Socket Provider
	Configure a SSL Socket Provider Per Remote Service
	Configure a SSL Socket Provider for All Remote Services

	Configure a .NET Client-Side Stream Provider

