ORACLE

Oracle® Coherence
Client Guide

Release 3.7.1
E22839-01

September 2011

Provides detailed instructions for developing
Coherence*Extend clients in various programming
languages.

Oracle Coherence Client Guide, Release 3.7.1

E22839-01

Copyright © 2008, 2011, Oracle and/ or its affiliates. All rights reserved.
Primary Author: Joseph Ruzzi

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the
restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable
by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Contents

PUOIACE ... et s et s e e XXi
AN S Lo T VLT ORRTRRRRRRT XXi
Documentation AcCesSSIDILityccccciiiiiiiiiiiiiiiiii e XXi
Related DOCUITIEIESveevieieeiecieeeeeeeetee ettt et e et e e ete e eaaeeaeesaaeeseesseseseesneseseeesesenseensesensseseeans XXi
(@03 4 NT£=3 115 (o) o - I RTRT PSSRSO XXii

Part| Getting Started

1 Introduction

Components OVeIVIEW...........c.ciiiiiiiiiiiiccc s 1-1
TYPES OFf CHENTSoviiiiiiiii s 1-2

Data CLENES ...t 1-2

Real Time CHENESoucuiiiiiiiic bbb 1-2
CLENE APTS ...ttt sttt ene 1-3
POF Serialization............ccccoooiiiiiiiiiiiiiiiii e 1-3
Understanding Client Configuration Filescccocooviiiiiiii, 1-4

2 Installing a Client Distribution

Installing Coherence for Java..........cccoooiiiiiiiii s 2-1
Installing the C++ Client Distribution ... 2-1
Supported ENVITONMENTScccooviviiiiiiiiiiiiiiiccc s 2-1
Microsoft-Specific ReQUITEMENtSc.ceiiiiiiiiiice 2-2
Extracting the Coherence for C++ Distribution..........oooeeveiiiiiiiiiiicc e 2-3
Installing the .NET Client Distribution.............cccocooiiiiiiiii 2-3
Prer@qUISITES....c.cviviiiiieit s 2-4
Running the INStallerccciiiiiiiii e 2-4
Deploying Coherence for INETccoooiiiiiiii e 2-5
Compatibility Between Coherence*Extend Versionsccccccoviiinninininiiin, 2-5

3 Setting Up Coherence*Extend

OVEIVIBW ...ttt ettt b bbb bbb bbbt 3-1
Configuring the Cluster Side..............ccccooiiiiiiiiiiii s 3-1
Setting Up Extend ProXy SEIVICESccceiiurieiiiicicieiicicie i 3-2
Defining a ProXy SeIviCe..........cooiiiiiiiiiieieiiccieeeecee et 3-2

Defining Multiple Proxy Service INStances............c.ccoovieerniiieieiniiniiiiiieseeeeeeeenns 3-3

Defining Multiple PTOXy SEIVICES.......ccocrueiiiuiieiiiiciee e 3-4
Disabling Cluster Service PTOXIES........cccuiiiiiuiiiiiiiiiicceecciecceeeee e 3-4
Specifying Read-Only NamedCache ACCeSss.........cocueueiiuriiieiiiicieieiiee 3-5
Specifying NamedCache LOCKINGcccoviiiiiiiiiicc s 3-5
Defining Caches for Use By Extend CHENtScccccioiiiiiiiiiiiiicecccccecceeeneieeienennes 3-6
Configuring the Client Side ... 3-7
Defining a Remote Cache...........c.cocuoiiiiiiii e 3-7
Using a Remote Cache as a Back Cache.........cocoviiiiiiiiiiiiiiccccccceeeeeee e 3-8
Defining Remote Invocation SChemes ..o 3-9
Defining Multiple Remote Addresses...........cocoeueiiiirieiiiiicicieiccie e 3-10
Detecting Connection EITOTSccooiiiiiiiiiiiiiiiicc s 3-10
Disabling TCMP CommuUNiCatioNcccueiiiiurieiiiiciete it 3-12
Using an Address Provider for TCP Addressescccocovvivniiiniiniinniiis 3-12
Load Balancing Connections..............c.ccoviiiiiiiiiinii s 3-13
Using Proxy-Based Load Balancing ... 3-14
Understanding the Proxy-Based Load Balancing Default Algorithm 3-14
Implementing a Custom Proxy-Based Load Balancing Strategyc.ccccccccccuvucueucunnnnne. 3-15

Using Client-Based Load Balancingccooeueiiiiiiiiiiiiicc 3-16

4 Building Your First Extend Client

Overview of the Extend Example............cccccocoiiiiiiiiiiiceas 4-1
Step 1: Configure the Cluster Side.............ccccooiiiiiiiiii s 4-1
Step 2: Configure the Client Side.............ccccocooiiiiiiii, 4-2
Step 3: Create the Sample Client ... 4-3
Step 4: Start the Cache Server Process.............ccccccoovuiiiiiiiiiiiiiiiiiiienns 4-5
Step 5: Run the APPLicationccoioiiiiiiiiiiiccee e 4-5

5 Best Practices for Coherence*Extend

Run Proxy Servers with Local Storage Disabledcccooiiiiniiii, 5-1
Do Not Run a Near Cache on a Proxy Server............cccocovvvvinininiiniiii, 5-2
Configure Heap NIO Space to be Equal to the Max Heap Size...........cccccooviiinnniicnnnccnnnee 5-2
Set Worker Thread Pool Sizes According to the Needs of the Applicationcc.cccccceii. 5-2
Be Careful When Making InvocationService Calls.............cccccooriiiiiiiiniiiiiie 5-3
Be Careful When Placing Collection Classes in the Cache................ccccccceeiiiiiiiiii 5-3
Configure POF Serializers for Cache Servers.............ccccoviiiiniiiiiiiniiiccs 5-4
Use Node Locking Instead of Thread LocKing............cccccocovviiininiiiinnne, 5-4

Part Il Creating Java Extend Clients
Part lll Creating C++ Extend Clients

6 Setting Up C++ Application Builds

Setting up the Compiler for Coherence-Based Applications ..., 6-1
Including Coherence Header Files...........cccccoviiiiiiiiiiiiiiniiiciccceece e 6-1
Linking the Coherence Library..........cccocooooiiiiiiiiiiiiiiic s 6-2

Setting the run-time Library and Search Pathccccocoiiiiiii 6-2
Deploying Coherence fOr Ch+ ..o 6-3

7 Configuration and Usage for C++ Clients

General INSErUCHONSccoiiiiiii s 7-1
Implementing the C++ Application ..o 7-2
Compiling and Linking the Application ..., 7-2
Configure Paths ... 7-3
Configure Coherence®Extend ... 7-3
Configure Coherence*Extend in the Cluster ..o, 7-3
Configuring Coherence*Extend on the Clientooooiiii, 7-4
Defining a Local Cache for C++ CHENEScccueuiuiiiiiiiiiiiciciecceeecceeeeeeeeeeeeeeeeeeeeeenes 7-6
Defining a Near Cache for C++ CHentsccoovoiiiiiiiiiiiiei e 7-7
Connection Error Detection and Failover ... 7-9
Obtaining a Cache Reference with CH+ ..o, 7-9
Cleaning up Resources Associated with a Cache...........ccccccooiiiiiii 7-9
Configuring and Using the Coherence for C++ Client Librarycccccoceviiiiiinnninnnnn, 7-9
Setting the Configuration File Location with an Environment Variablecccccccccc...... 7-10
Setting the Configuration File Location Programmaticallyccccooiiiiiiiiiciiina, 7-10
Operational Configuration File (tangosol-coherence-override.xml)ccccoiiiinnncnne. 7-11
Configuring @ LOGEeT..........cccoiiiiiiiiiiii s 7-12
Launching a Coherence DefaultCacheServer Proxy...........cccooviiiiiiiiiiiiniiccceceeennas 7-13

8 Understanding the Coherence for C++ API

CaAChEFACTOTY ...t s 8-1
NAMEACACKE ... 8-2
QUETYIVIAP ...t 8-2
ODSEIVADIEIMIAPouniiiiiiiiiii e 8-3
INVOCADIEIMIAP ... 8-3
FIIEET ..o 8-4
Value EXETACEOTScovviiiiiiiiiiii e 8-5
ENtry PrOCESSOIS.......ocuiiiiiiiiiiiiiiii e 8-5
ENtry AGgregators. ... 8-6

9 Using the Coherence C++ Object Model

Using the Object Model ... 9-1
Coherence NamMESPACES..........ccvuiviiiiiiiiiiiiiieiiiee s 9-1
Understanding the Base ODJectccccciiiiiiiiiiiiiiiiiiiiciceece e 9-1
Automatically Managed MEMOTYccccoccueuiiiiiiieiimieieieieeeieneieteieenese e nesesese s sesesenessaenenes 9-2

Referencing Managed Objects..........ociueiiiiiiiiiiici s 9-2
Using handles ..o 9-2
Assignment of Randles............cooioiiiiiiiiiiceeeeece e 9-3
Dereferencing handlescooooioiiiiiii 9-3
Managed Object Instantiationcccoeveioiriiiiniiiic e 9-3
Managed SEIINES.....c.ceuiuiieiiieirieieice et 9-3
String InStantiation ..o 9-3

10

vi

AUto-BoXed SHIINES.....c.ovviiiiiiiiiiiiciicic s 9-4

Type Safe Casting.........c.oviriiiie 9-4
DOWN CaASHINEvviiiiiiiiiic s 9-4
MaNAZEA ATTAYS.....ceueieiiiiieieiieici ettt 9-5
CoOlleCtion ClASSES.......cvcvviviiiiiiiiiiiiiitc s 9-5
Managed EXCEPLIONS.........cceuruiiiiiiiicieiciiceree et 9-6
Object IMMUtabIlitycooviieiei 9-6
Integrating Existing Classes into the Object Modelccoooiii, 9-7
Writing New Managed Classes ... s 9-7
Specification-Based Managed Class Definition ..o, 9-7
Equality, Hashing, Cloning, Immutability, and Serializationcccccocooeeiiiinnnnnn, 9-11
TRIEAAING ...ttt 9-11
Weak REfEIenCes ... s 9-12
Virtual CoNSEIUCIOTScvoviviiiiiiiiiiciic s 9-13
Advanced Handle TYPeS......ccocciiiiiiiririceececireeeseeeee e 9-14
Thread Safety ... 9-14
Synchronization and Notification ..o 9-14

Thread Safe Handles...........cccooiiiiiiiiiiiii e 9-15

ESCape ANALYSIS......ooiuiieiiiiiciei s 9-17

Shared handles............cccovviiiiiiiiiii s 9-18

Const COITECINESSocvevvriieretee s 9-18
Thread-Local AlIOCALOL ..o s 9-18
Diagnostics and Troubleshooting ... 9-19
Thread DUIMPScoviiiiicrere e 9-19
Memory Leak Detectioncooiurieiiiiiiiice 9-19
Memory Corruption Detection ... 9-20
Application Launcher - Sankaccoioiiiiiiiiiiiiccerceee s 9-21
Command lNe SYNtAX........cceueiiiiiieieiiiet 9-21
Built-in EXeCULADIESc.c.oiiiiiiiiiiiiii s 9-21
Sample Custom Executable Class..........ccccciiiiiiiiiiiiiiiccceeeeeeceeeeeene e 9-21

Building Integration Objects (C++)

POF INEIINSICS ...ttt asa e 10-1
Serialization OPiONS..........ccoooiiiiiiiiiii s 10-2
Managed<T> (Free-Function Serialization) ..o 10-2
PortableObject (Self-Serialization)cccccccvrirriiiirriiiicrccceee s 10-5
PofSerializer (External SerialiZation)ccccoceeeieririenenieneteteee et 10-7
Using POF Object References............ccccoouvuviviiiiiiiiiiiniiiiiiiiiiicse s 10-9
Enabling POF Object REfEIENCES........c.c.ciiuimiiiiiiiiiiiiciciecccicieieee et enenes 10-9
Registering POF Object Identities for Circular and Nested Objects..........ccccceveiiriiriiinnnen. 10-9
Registering Custom CH+ TYPeS.......ccooiiiiiiiiiiiiiiccc s 10-12
Implementing a Java Version of a C++ Object...........cccccocovviiiiiniiiiiiiis 10-12
Understanding Serialization Performance..............ccccoooniiiiiiiiccccnes 10-13
Using POF Annotations to Serialize Objects..............ccooiiiiiiiii 10-13
Annotating Objects for POF SerialiZationcococovviiiinrininininicccicecccecccecececennes 10-13
Registering POF Annotated Objects...........ccceuiiiiiieiiiciec s 10-14
Enabling Automatic INAeXingccccoceiiiiiiiiiiiiiiiiiiii e 10-14

11

12

13

14

Providing a Custom Codec.........ccviviiiiiiiiiiiiiiii 10-15

Performing Continuous Queries (C++)
Uses for Continuous Query Caching.............cccoviiiiiiiiiiiies 11-1
Understanding Continuous Query Caching.............ccococvvviiininiiiiini 11-2
Defining a Continuous Query Cache...........ccccccocooiiiniiiiiiiii 11-2
Cleaning up Continuous Query Cache ReSources...............ccooveuiiiiiiieiiiiiiiiceiiieeeeeeennes 11-3
Caching Only Keys Versus Keys and Values................ccccccoiiiiiiiiiiiiiiccennas 11-3
CacheValues Property and Event Listenerscccccccccueiiiiiiiiiiecicceccccceeeeenenees 11-4
Using ReflectionExtractor with Continuous Query Cachescooooiiiiiiiiiicie, 11-4
Listening to a Continuous Query Cache...........cccccoiiiiiiiiiiiiie 11-4
Avoiding Unexpected RESULLS........ccccccuiuiiiiiiiiiiiiiiiicrcccrrce s 11-4
Achieving a Stable Materialized VIew ..o 11-5
Support for Synchronous and Asynchronous Listenerscccooocreioiiiiniicnciiccee, 11-5
Making a Continuous Query Cache Read-Onlycccccviiiiiiiiiinniiice 11-5
Querying a Cache (C++)
Query Functionality ... 12-1
SIMPLE QUETIES ...ttt sttt ettt st e b a bt sae st sae e naenen 12-2
Querying Partitioned Cachesccooiii 12-3
Querying Near Cachescccccccuiiiiiiiicceecee e 12-3
QUETY CONECEPLS ...ttt 12-3
Queries Involving Multi-Value Attributes ..., 12-4
ChainedEXtractor ..ot 12-5
QUETYRECOTAET ...ttt sttt 12-5
Performing Remote Invocations (C++)
Configuring and Using the Remote Invocation Service.............ccccoooriiiiiiiiiiiiiicn, 13-1
Registering Invocable Implementation Classes..............cccccciiiiiiiiiiiiiiiin 13-2
Using Cache Events (C++)
Listener Interface and Event Object ... 14-1
Caches and Classes that SUPPOrt EVENLtscccoccviiiiiiniiniiceceeeeeeecneee e 14-5
Signing Up for all EVeNts. ... 14-5
MultipleXingMapLiStENercccccviviiiiiiiiiiiiiiiiiic s 14-7
Configuring a MapListener for a Cachecccooiiiiiiiiiii, 14-7
Signing Up for Events on Specific Identitiescccoiiiiiiiiniicce, 14-7
Filtering EVENTSc.ccocoiiiiiiiiiiiiiiiiii s 14-8
"Lite" EVENES ..o s 14-9
Advanced: Listening to QUETiescccccccoviiiiiii 14-10
Advanced: Synthetic EVENts............cccoooiiiiiiiiiiiiiccc e 14-11
Advanced: Backing Map EVents............ccccooiiiiiiiiii 14-12
Advanced: Synchronous Event Listenerscccccoooviiiiiiicccne 14-13

vii

15

16

Performing Transactions (C++)

Using the Transaction API within an Entry Processor..............c.cocoooooiiiiiiiniicceccce 15-1
Creating a Stub Class for a Transactional Entry Processor ..., 15-3
Registering a Transactional Entry Processor User Type.........ccccoviiiiiiiniiiiniiiceceeennns 15-4
Configuring the Cluster-Side Transactional Caches...............ccccccoiiiiiiiiiiiiii 15-4
Configuring the Client-Side Remote Cache ... 15-6
Using a Transactional Entry Processor from a C++ Client............cccooooviiiiiiic 15-6

Sample C++ Application

Prerequisites for Building and Running the Sample Applications...........c.ccccccccniiinninnne 16-2
Starting a Coherence Proxy Service and Cache Server ..., 16-2
Building the Sample Applications.............ccccoviiiiiiiiiiiii 16-2
Starting a Sample Application............ccooiiiiiiiiiiiii s 16-2
Running the hellogrid Examplecccooiiiiiiic e 16-3
Running the console Example ... 16-3
Running the contacts EXample ..o 16-5

Part IV Creating .NET Extend Clients

17

18

viii

Configuration and Usage for .NET Clients

General INStruCtONS ... 17-1
Configuring CoherenceEXtend ..o 17-1
Configuring Coherence*Extend in the CIUSteTccccceiiiiiiiiiiiiiniiicrccereeer s 17-2
Configuring Coherence*Extend on the Client ..o, 17-3
Defining a Local Cache for .NET Clients..........cccocooiiiiiiiiiiiiiiicccc i 17-4
Defining a Near Cache for INET CHENEScccccceeuiiiiiiiiiiiiiccceeeeeeeeceeeeeeeeeenes 17-5
Connection Error Detection and Failover ... 17-7
Starting a Coherence DefaultCacheServer Process ..o 17-7
Obtaining a Cache Reference with INETcccooiiiiiiiiii 17-8
Cleaning Up Resources Associated with a Cache.............ccooiiiii 17-8

Building Integration Objects (.NET)

Overview of Building Integration Objects (NET)ccccocooviiiiiiiiiiiiicccec 18-1
Creating an IPortableObject Implementationcccccoiiiiiiiiiiiiiceccees 18-2
Implementing a Java Version of a .NET Object...........ccccoceviininiiiiiniiiiiiiiccn 18-3
Creating a PortableObject Implementation (Java)..........cccoeeeeiiiiieieiiiiiiiiicccccs 18-4
Registering Custom Types on the .NET Clientcccccocoiiiiiiiiiiiiiiiciceccecenenes 18-4
Registering Custom Types in the Cluster...............ccocoooiiiiiiiiii 18-6
Evolvable Portable User TYPes..........ccoviiiiiiimiiiiiiiciiitcsss st 18-7
Making Types Portable Without Modification..............ccccooiiiiiiiicce, 18-10
Using POF Object References...............cccooiviviiiiiniiiiiiiinii s 18-12
Enabling POF Object References..........ccccoiioiiiiiiiiicic 18-12
Registering POF Object Identities for Circular and Nested Objects..........cccooovvvrrrrirninncnen. 18-13
Using POF Annotations to Serialize Objects............ccccooiiiiiiiiine, 18-14
Annotating Objects for POF Serializationcccooeueiiiiiiiiiiieiecce e, 18-15
Registering POF Annotated ODJects.........cccccoeuiiiiiiiniiiiiiiiiniiinicncsssses 18-15

Enabling Automatic INdeXingccccovvvviiiiiiiiiniiiiii 18-16
Providing a Custom Codec.........ccovuviviiniiiiiiiiiii e 18-16

19 Using the Coherence .NET Client Library

Setting Up the Coherence .NET Client Library............cccccooiiiiiiiiiniiiiiiiccccccnas 19-1
Using the Coherence .NET APIs...........ccccooviiiiiiiiiiiiic s 19-3
CaChEFACTOTYeiit s 19-4
IConfigurableCacheFactOory ..ot 19-4
DefaultConfigurableCacheFactoryccccociuciiriiiirirririirreeee s 19-5
LOZZOT ottt 19-5
Using the Common.Logging Library ... 19-7
INAMEACACKE ... 19-7
IQUETYCACKE ..o 19-8
QUETYRECOTART ...t 19-8
IODbSEIVADIECACKE ..ot 19-9
Responding to Cache EVeNts..........c.couiiviiiiiiiiic s 19-10
IINVOCADIECACKE ...t 19-11
FAIEETS oot 19-11
Value EXTACOTS ...cvviiiiiiiii st 19-12
ENtIY PIOCESSOLS ..ottt 19-13
ENtry AGgregators.o 19-13

20 Performing Continuous Queries (.NET)

Uses for Continuous Query Caching............cccoviiiiniiiiiis 20-1
Understanding Continuous Query Caching.............ccocooviiiiiiiiiiiic 20-2
Constructing a Continuous Query Cache............ccccccoiiiiiiiii e 20-2
Cleaning Up Continuous Query Cache Resources...............cccoviuiiiininiiinniinncne, 20-3
Caching Only Keys Versus Keys and Values................cccoooiiiiiiiiiiiiiccecceenas 20-3
Listening to a Continuous Query Cache............cccccooiiiiiiiiiiiie 20-4

Achieving a Stable Materialized VIEWccccooiiiiiiiiiiirccereeeeee s 20-5

Support for Synchronous and Asynchronous Listenersccccooceiiiiiiieniicciciicene, 20-5
Making a Continuous Query Cache Read-Onlyccccccovvniiiiininiinn 20-5

21 Performing Remote Invocations (.NET)

Configuring and Using the Remote Invocation Service................ccccccoiiiiiiiiiiiiiiiin, 21-1

22 Performing Transactions (.NET)

Using the Transaction API within an Entry Processor..............ccccocovvvvnnnnnnnnnnniinnne, 22-1
Creating a Stub Class for a Transactional Entry Processor ..o, 22-3
Registering a Transactional Entry Processor User Type..........ccccoviiiiiiiiicniiiiiiceeieeeennas 22-3
Configuring the Cluster-Side Transactional Caches..............ccccccooiiiiiiiiiiiiiiccna, 22-4
Configuring the Client-Side Remote Cache ..., 22-5
Using a Transactional Entry Processor from a .NET Client............cccccocovvinniiniinnnnnnnn, 22-6

23

24

25

Managing ASP.NET Session State

OVIVIBW ...ttt ettt 23-1
Setting Up Coherence Session Management...............cccccoiuiiininiiiinininiiies 23-2
Enable the Coherence Session Provider ... 23-2
Configure the Cluster-Side ASP Session Caches...........cooooiiiiiiiii, 23-2
Configure a Client-Side ASP Session Remote Cache..........cccccoeueuiiiiciiiiinciicciccceee, 23-3
Selecting a Session Model ... 23-4
Specify the Session Model..........ccooiii 23-5
Registering the Backing Map LiStENner........cccccccvuriviviiiiirriiricrcceceeeeeeeeeeeeeeeeeeas 23-5
Specifying a Serializer.............coooiiiiiiiiiii e 23-6
Using POF for Session Serialization ... 23-7
Sharing Session State Across Applications.............ccccccoiiiiiiiniii 23-8

Sample Windows Forms Application for .NET Clients

Create a Windows Application Project ... 24-1
Add a Reference to the Coherence for .NET Library...........cccocoviiiiiiiinniiiic 24-3
Create an App.config File ... 24-3
Create Coherence for .NET Configuration Filescccccooiiiin 24-5
Create and Design the Application..............ccooiiiiiiiiiiiii 24-6
Implement the ApPlication ... 24-7

Sample Web Application for .NET Clients

Create an ASP.INET Project...........coooiiiiiiii s 25-1
Add a Reference to the Coherence for NET Library.........ccccccccocevniiinnnnniiie, 25-1
Configure the Web.config File...........cccooiiiiiii e 25-2
Create Coherence for .NET Configuration Filesccccooiiiiin, 25-3
Create the Web FOIm ...t 25-5
Implement the Web Application............ccocooiiiiiiiiiiiiiiiies 25-10
Global.asax File........ccoiiiiiiiiiiiiii e 25-10
Business Object DefiNitioncooviiriiirriiiieccccc e 25-11
Service Layer Implementation ... 25-12
Code-behind the ASP.INET Page........cccccceuviiiriiiiiiiiiiiiiiiiincc s 25-13

PartV Using Coherence REST

26

27

Introducing Coherence Rest

Overview of Coherence RESTccccciiiiiiiiiiiieee et 26-1
Dependencies for Coherence RESTcccoooiiiiiiiiniiiceeeeereeeee e 26-1
Overview of Configuration for Coherence RESTcccoooiiiiiiiiiiiccne 26-2
Understanding Data Format Support ..o 26-2
Using XML as the Data Format..........cccocoviiiiiniiiiiiics 26-2
Using JSON as the Data Format..........coououoiiiiiiiiiiic 26-4

Building Your First Coherence REST Application
Overview of the Coherence REST EXample.........c..cccoeeereinininininineeneeneencenieeneeesieeneeeneenens 27-1

28

29

30

Step 1: Configure the Cluster Side.............ccoiiiiiiiiii 27-1

Step 2: Create a UsSer TYPe ...ttt 27-2
Step 3: Configure REST Services ... 27-3
Step 4: Start the Cache SeVer PrOCESSc.coccvieirieiriiinieirieinceteteesee et e e saenens 27-4
Step 5: Test the Coherence REST API ... 27-4
Using the Coherence REST API
Specifying Key and Value Types..........cccocoiiiiiiiiiiie e 28-1
Performing Single-Object REST Operations..............ccccoviiiiiininiiiininiiiicccees 28-2
Performing Multi-Object REST Operationscccocoviiiiiiiiiiiiiiicceeeeeenennas 28-3
Performing Partial-Object REST Operations..............ccccccoiiiiiiiiiiiiiiiiiiiccceceeenas 28-4
Performing Queries with RESTccccooiiiiiiiii s 28-4
Performing Aggregations with RESTcccocooiiiiiiic e 28-4
Aggregation Syntax for REST..........cccooooiii 28-5
Listing of Pre-Defined AGEIegatorsccccovvvriiiiirirnieiiirrrecereee s 28-5
Creating Custom Aggergatorsccoucueieiiirieiiiiciee e 28-6
Performing Entry Processing with REST.............ccccoooiiiiiiia 28-6
Entry Processor Syntax for RESTcccccoiiiiiiiiiiiiccceeeeeeeeeeeeeeeeee s 28-7
Listing of Pre-defined Entry Processorscccooieiiiiiiiicieiicicieeccc 28-7
Creating Custom Entry ProCessors.. ...ttt 28-8
Understanding Concurrency Control.............cccocooiiiiiiiiies 28-8
Specifying Cache AlLases............ccooiiiiiiiiiiii e 28-8
Deploying Coherence REST
Deploying with the Embedded HTTP Servercccccoooviniiiiiiiiiniiiiiiiccccs 29-1
Deploying to a Java EE SeTVercccccovviiiiiiiiiiiiiiiiiicc s 29-2
Packaging Coherence REST for Deployment.........c.ccococeeciiiiiiiieceeeicceieeeeeeeeeeeeeenees 29-2
Deploying to WebLogic SEIVET ..ot 29-3
Deploying to GIassFishc.oooiiiiii 29-4
Deploying to a Servlet CONtainer...........ccccciiuiiiiiiiiiiiiiiiccccceeeee s 29-4
Modifying the Default REST Implementation
Using Custom Providers and ReSources..............cccocceviviiiiiininiiiiiniiiccccnnens 30-1
Changing the Embedded HTTP Serverccccoooiiiiiiiiiiiiiiiciciicieeeeeeese e 30-2
Using Grizzly HTTP SEIVETc.cccceuiiiiiiiiiiiiiiiiiiiciieice et 30-3
Using Simple HTTP SEIVeT ..o s 30-3

A REST Configuration Elements

REST Configuration File............ccccocooooiiiiiiis A-1
E1eMEnt INAEXcc.ooiiiiiieceeecee ettt ettt ettt et et e ssesseesaesseesseeseessessaesseeseenseessanseans A-3
AZETEZATOT ...t A-4
AGGTEZATOTS ..ot A-5
0 QF N 4=] A F=1 1 1<) TP A-6
PTOCESSOTovivviiiittcnct ettt ettt s e st a bbbt b Rt a et A-7
PTOCESSOTS ...oivviiiiitcicit ittt b bbb A-8

xi

Xii

Integrating with F5 BIG-IP LTM

BaSic COMEEPES ...ceeeieiiiiciieciieeee ettt ettt sttt st a e B-1
Creating NOAEScocooiiiiiiiiii s B-2
Configuring a Load Balancing Pool................ccccooiiiiiiiiii e B-3
Creating a Load Balancing POOL...........cccccciiiiiiiccccececeeeeeeeeeene e B-4
Adding a Load Balancing Pool Member............coooiiiiiiiiiiiici e B-5
Configuring a Virtual Server ... B-6
Configuring Coherence*Extend to Use BIG-IP LTM...........c.ccccocviniiiiiniiiinniiiiccccene B-8
Using Advanced Health MONItoringcccocoviviiiiiiiiiiiics B-9
Creating a Custom Health Monitor to Ping Coherenceccccoooieiiiiiiicniiccec, B-10
Associating a Custom Health Monitor With a Load Balancing Poolcccccccceecccennnee. B-13
Enabling SSL Offloading ... s B-14
Import the Server’s SSL Certificate and Keycccouomiiii B-15
Create the Client SSL PIofile ..o B-15
Associate the Client SSL Profile ... B-16

List of Examples

3-1

CPTTY
PrON—=LOPA®

No ok whNd-—=O

© WO WOWWOWWOWOOWOOOOOOoo

Extend Proxy Service Configuration...........ccoceueieiiiiiioiiiciciiceee e 3-2
Remote Cache DefiNItiONccviiiiiirieeee ettt et eee et e eveeeveeseeeaeeetesereeeseeeaneens 3-7
Remote Invocation Scheme Definition...........covieiiiieeeieieiceeeee ettt eneeas 3-9
Sample Coherence*Extend Application............cooveuiioiiiiiieiiiiccie e 4-4
Disabling StOragecccovuiiiiiiiiiiiiiiiiii s 5-1
Casting an ArrayList ObjJECtcooueviiiiiuiiii e 5-3
Configuring a POFSerializer for a Distributed Cache ..., 5-4
Sample Run of the build.cmd File ..o 7-2
Cache Configuration for Two Clustered Services...........ccccovvvviiniiiiininnniiiiiiiiis 7-4
A Caching Scheme that Connects to a Remote Coherence Clusterccccccevuiiiininnnns 7-5
Local Cache Configurationcccueuiieiiiiccie s 7-6
Near Cache Configuration..........ccceuouiiiiiii e 7-8
Setting the Configuration File Location............c.ooiiioiiiiiiii 7-10
Creating a Coherence Cache Factory ... 7-10
Configuring a CacheFactory and a Local Memberccccccovviiiiiiinniiiiiiien, 7-10
Setting the Cache Configuration File Location for the Server/Cluster...........cccceuvuenene. 7-10
Sample Operational Configurationococeioiiiiiiicee e 7-11
Operational Configuration File that Includes a LOgeTc.ccoeviirciiieiiiciiiic 7-12
Sample Command to Start the DefaultCacheServer............ccccccvviivniiniinnninnnnn 7-13
Using the EqualsFilter Method ..o 8-4
Using the GreaterEqualsFilter Method............cccccoooviiiiinnnnii, 8-4
Using the LikeFilter Method ..., 8-4
Using the AndFilter Methodccccooviiiiiiiiiiiiiiics 8-4
Using the OrFilter Methodccoiiiiiiiii s 8-4
Examples of Constructing String Objects..........ccccovvvviiiiiiniiiin, 9-3
Constructing String Objects with the "<<" Operator...........cccccevviiiiniiniiiiiiiins 9-3
AutoboxXing EXamples ... 9-4
Type Safe Casting EXamples ... 9-4
Down Casting EXamples.........cccoooviviiiiiiiiniiii s 9-4
Object Type Checking with the instanceof<H> Function..........ccccooieiniiiincne 9-4
INAeXing QN ATTAYccvviiiiiiiiiiiiiiii s 9-5
Storing Managed Object INStancescovcueieiiicieiiiccieecc e 9-6
A Try/Catch Block with Managed EXCeptions...........ccccceeiiiiiiiiiiiniiiiiiiiniiiciens 9-6
An Interface Defined by interface_spec..........cccccovviiiiiiiiiiiiiiiiiiiiis 9-8
A Derived Interface Defined by interface_spec.........ccccoovuvivivininninnninniince, 9-8
An Implementation Defined by cloneable_spec...........cccccccoeuiuiiiiniiiiiiiiniiiiiciiiiis 9-9
Defining a Class Without the use 0f SPecscccceviiiiiirviniiiiiiiicc, 9-9
Using specs to Define @ Class..........ccceuiuiiiiiiiiiiiiiiiiiiceeeeees 9-10
Creating a Runnable Instance and Spawning a Thread.............ccccoooviiiiniiiniinces 9-11
A Sample COH_SYNCHRONIZED Macro Code Blockcccccoueiriiiiiinniiiniiiiinne 9-14
Thread-8afe HANAIeoovieuiiieieeeeeeeee ettt ettt ettt ere e enaeennas 9-16
Thread-safe Handle as a Non-Managed Classcocooveiiinimeeniciiecceeccenes 9-17
Sample Thread DUMPccccccuiiiiiiiiiiiiiiiic s 9-19
Data Returned by a Heap Analyzer..........ccccccciiiiiiiiiiiiiiiiiiiiccccccccccees 9-20
Results from a Memory Corruption RUn ..o 9-20
A Non-Managed Classccccoeiiiiriiiiiiiiiiiii s 10-3
Managed Class using SerialiZationccccceeueeiiiiiiinininiiiiciiinr s 10-4
Instances of a Class Wrapped with Managed<T>cccccccoeiiiiiiinnniiiicee, 10-4
A Managed Class that Implements PortableObjectcccccccceeiiiiiiiiiiiiiiiiinine, 10-5
A Managed Class without Managed<T>ccccccecviiiiiiiiiniiiiccccnes 10-6
A non-PortableObject Version of a Managed Class.............ccocoveeiviiciininncieccees 10-7
An External Class Responsible for Serialization ..., 10-8
Using Filters for QUETYINg........ccccciiiiiiiiiiiiiiiiiiiciieiieeee s 11-3
Placing a Listener into a Continuous Query Cacheccccooveiiiiiic 11-4

xiii

Xiv

11-3
11-4
11-5
121
12-2
12-3
12-4
12-5
12-6
12-7
12-8
13-1
13-2
141
14-2
14-3
14-4
14-5
14-6
14-7
14-8
14-9
14-10
14-11
14-12
14-13
14-14
14-15
14-16
14-17
14-18
151
15-2
15-3
16-1
171
17-2
17-3
17-4
17-5
17-6
17-7
18-1
18-2
18-3
18-4
18-5
18-6
18-7
18-8
18-9
18-10
1811
18-12
18-13

Creating a Continuous Query Cache with a Filter and a Listener.............ccccoeveveirennae. 11-4

Processing the Data, then Adding the Listenercccoooiiiiii 11-4
Adding the Listener, then Processing the Dataccoooeuoiiiiiiiiiii, 11-5
Querying Cache CONteNtc.ooeiiiiiiiii s 12-2
Using the LimitFilter Methodccooi 12-2
Indexing a Queryable Attribute..........c.ooouiiiiiiiiii 12-2
Selecting Entries of a Cache that Satisfy a Particular Filtercc.cocoooiii 12-4
Selecting and Sorting ENtriescooooeiiiiiiii i 12-4
Using the keySet Form of @ QUETYc.oouiiiiiiiii 12-4
Indexing and Querying Multi-Value Attributesccoooooiiiiii 12-5
Using a ChainedExtractor Implementationcccouoiiiiioiiiciiii 12-5
Sample Remote Invocation Scheme Configuration ..o 13-1
Reference to a Remote INvocation Service..........couieieiiiciciiiicicce 13-2
Excerpt from the coherence::util::MapListener Class File.........ccccccooeeniiiiiiinnnnnn 14-1
Excerpt from coherence::util::MapEvent ... 14-2
ObservableMap methods...........ccccoiiiiiiiiiiiii s 14-5
Example MapListener implementation ... 14-6
Printing BEVENtSccooiiiiiiii 14-6
Holding a Reference to a LiSteNerc.ccooeueieiiiiiiiiiiiccc 14-6
Removing a Reference to a LiStener.........ccoouevviiiiiiiiiiicinicc s 14-7
Using MultiplexingMapListener to Route Eventscc.coooooiiiiiiiiic, 14-7
Printing Events that Occur Against a Specified Integer Key.........c.ccccoovviiiniiiininnnnns 14-8
Triggering an Event for a Specified Integer Key Value...........ccooooiiii 14-8
Adding a Listener with a Filter that Allows only Deleted Events..........c..ccccooevevnnnniei. 14-8
Inserting and Removing Data from the Cache ... 14-9
Inserting, Updating, and Removing a Valuecccoouiiiiiiioiiiiicce 14-9
Requesting Only "Lite" EVENtSccooviuiiiiiiiiicic s 14-10
Filtering for Cache EVents..........ccoooiiiiiii s 14-10
Filtering for Specialized EVENtScccooeiiiiiiiiiiici s 14-10
Communicating Only Specialized Events over the Networkc.ccoooeiiinnnn 14-11
Differentiating Between Client-Induced and Synthetic Eventscccccocoovniinenn 14-12
Entry Processor for Extend Client Transaction ..., 15-1
Transaction Entry Processor C++ Stub Class..........ccouoiiieiiiiciiiicc 15-3
Transaction Entry Processor C++ Stub Class Header File.........c.cccoooooiiiiiiiiiiiinnn, 15-3
Sample Command to Start the Proxy Service and the Cache Serverc.c.cccoccuevenie. 16-2
Configuration of a Default Cache Server for Coherence*Extend.............ccoooeveiiinennnns 17-2
Configuration to Connect to a Remote Coherence Cluster...........c.cccooeeieiiiiiiiiicennes 17-3
Configuring a Local Cache ..o 17-5
Near Cache Configuration..........c.ccouoviiiiiiiiii e 17-6
Command to Start a Coherence Default Cache Server............ooooooiiiiiiiic 17-8
Obtaining a Reference to @ Cache..........ccooiiii 17-8
Obtaining and Releasing a Reference to a Cache.........ccccoooiiiii 17-8
A User-Defined Portable Classccoocueiiiiieiiiiiec s 18-2
A User-Defined Class iN JAVA ..c.ccecierieiiirininiesieeeetetete ettt et 18-4
Storing Mapping Information in the POF User Type Configuration File 18-4
Using a Serializer in the Cache Configuration File............ccccoooiiiiiniiii 18-5
Specifying a POF Configuration File............coooiioiiiiiiii 18-6
Cluster-side POF Configuration File............ccooiiiii 18-6
Configuring the Server to Use the POF Configurationccccceoiieieiiiieiiiincas 18-6
Modifying a Class to Support Class EVOIUtION........c..c.coviiiiiiiiiiec 18-7
Modifying a Java Type Class to Support Class Evolution..........c.cccocereieiiiiiiiinccins 18-8
An Implementation of [PofSerializer for the NET Typecccccovvvvviivvviniiniiiininnnn 18-10
An Implementation of PofSerializer for the Java Type Class.........cccccevuvivviiinininns 18-10
Registering the IPofSerializer Implementation of the .NET Type........cccccoooevirriinnnnen 18-11
Registering the PofSerializer Implementation of the Java Type ..o 18-11

19-1
19-2
19-3
194
19-5
19-6
19-7
19-8
19-9
19-10
19-11
19-12
19-13
19-14
19-15
19-16
19-17
19-18
19-19
19-20
19-21
201
20-2
20-3
20-4
20-5
20-6
20-7
21-1
21-2
21-3
221
22-2
241
24-2
24-3
244
24-5
24-6
24-7
24-8
24-9
25-1
25-2
25-3
254
25-5
25-6
25—7
25-8
25-9
25-10
25-11
25-12
25-13

Sample Application Configuration File............cccocoeiiiiiiiiiiiii 19-2

Configuring a Factory for INamedCache Instancescccccovvviniiniiiciiiinn, 19-4
Configuring a ConfigurableCacheFactory Implementation............cccccecevviiiiinnnnnnn, 19-5
Specifying a Different Cache Configuration Desriptor Fileccoooeiniiiiiiiiincicine, 19-5
Configuring @ LOZEETccvviiiiiiiiiiiiiiiicc s 19-6
Querying Keys on a Particular Value ..o 19-8
Filtering on an Inserted ObjJect...........cccoviiiiiiiiiiiiiiiiiis 19-10
Filtering on Removed Object..........cccccooviiiiiiiiiiiiiiiiice 19-10
Filtering on a Changed ODbject...........ccccoviiiiiiiniiiiiiiii e 19-10
Marshalling and Executing a Call on the Ul Threadcccccocevviiiiiiinniin 19-10
Calling Methods in Response to a Cache Event..........ccccocovvviinininiiin 19-10
Retrieving Keys Equal to a Numeric Value ..o 19-11
Retrieving Keys Greater Than or Equal To a Numeric Value ..o 19-12
Retrieving Keys Based on a String Value ... 19-12
Retrieving Keys Based on a Case-Sensitive String Value ..., 19-12
Retrieving Cache Entries Greater Than a Numeric Value ..o 19-12
Retrieving Cache Entries Based on a String Valueccccooiiiiiiiins 19-13
Conditional Put of a Key Value Based on a Numeric Value...........ccccocovviiiniinnnnns 19-13
Setting a Key Value Based on a Numeric Value..........cccccooviniinines 19-13
Returning the Size of the Cache...........cccocoviiiiiiiii 19-13
Returning an IDIiCHONATYccccuiveiiiiiiiiiiieiii s 19-14
Obtaining and Releasing a Reference to a Continuous Query Cache...........ccccoceuevennie. 20-3
Caching Only the Keys in a Continuous Query Cache...........ccccocoviiiiiiiiiiiiiennnn, 20-3
Placing a Listener on a Continuous Query Cache.........c.ccocoeiinniiiiiiniiiicie, 20-4
Processing Data, then Placing the Listener ..., 20-4
Placing the Listener, then Processing Datacccccovvuiuiiiieiiiiiniiicicceenens 20-4
Providing the Listener During Continuous Query Cache Constructionc........... 20-4
Making a Continuous Query Cache Read-Only........ccoooviiiiiiiiiiicccene, 20-5
Configuring a Remote Invocation Service..........ooceueeirieiiiinicicciccee, 21-1
Obtaining a Reference to a Remote Invocation Service...........cocoveivveiniciniciiicinicinns 21-2
Executing an Agent on a Grid NOdec.oooiiiiiiiiiiiii 21-2
Entry Processor for Extend Client Transaction ..., 22-1
Transaction Entry Processor .NET Stub Classcooiioiiiiiiii 22-3
Sample App.config File.........cooviiiiiiiiiiiiiiiiiiii s 24-4
Sample coherence.xml File for .NETccccooiiiiiiiiii 24-5
Sample cache-config.xml File for INET.........ccccccoooiiiiiiiii 24-5
Sample pof-config.xml File for INET...........cccooiiiiiii 24-6
Sample Class that Implements IPortableObjectcccccoovviiiiniiiiniiiii 24-7
AddIng LISTENETS.....c.cuoviiiiiiiiiiiiiiiiiciciccce s 24-9
AddINg BVENLS ...t 24-11
Adding Cache Event Handlers ... 24-14
Adding Helper Methods for Event Handlers............ccccooviiiiiiniiinine 24-15
Sample Web.config Configuration File...........ccccooiiiiiiii 25-2
Sample coherence.xml Configuration Fileccccocooriiiiiiiiiii e, 25-3
Sample cache-config.xml Configuration File..........c.ccccocooviiiiiiiii 25-4
Sample pof-config.xml Configuration File...........ccccocoooiiiiiiiiiiiin 25-4
Code for the GridView Data Control.........ccccccooviiiiiiiiiiiiiiiines 25-9
ObjectDataSource Code ...ttt 25-9
Redirecting a User to an Error Page..........ccccccovvviiiinininiiiicccs 25-10
Sample Business Object Definition File ..o 25-11
Providing Data to the Data Bind Control.........c.ccoooiiiiiiiii e 25-12
Event Handler to Provide Data to the Data Bind Controlcccccovvvniiiiiinnnnn, 25-13
Method to Refresh the Grid VIewW ... 25-13
Method to Handle Page Load Eventsccccccovniiiiininininiiiiis 25-13
Retrieving a Business Object from the Cache through a Specified Key...............c........ 25-14

XV

XVi

25-14
25-15
25-16
25-17

Event Handler for a "Save" Button...........
Event Handler for a :Clear" Button
Event Handler for a "Search" Button........
Event Handler for a "Clear Filter" Button

xvii

List of Figures

1-1 Conceptual View of Coherence*Extend Components............cccceueieireiiinicicieiccciccece 1-2
9-1 A Bi-Directional Relationshipccooiiiioiiiiii 9-12
9-2 Establishing a Weak Referenceccccoooiiiiiiiiic 9-12
9-3 Weak and Strong References t0 @ Treeccooouoiiiieiiiiniiiiiccc 9-13
9-4 Artifacts after Deleting the Weak Referencescccooooriiiiii 9-13
19-1 Add Reference Windowcooriiiiiiiiic e 19-2
19-2 File System Displaying the Configuration Files.............c.ccccooiiiiiiii, 19-3
24—1 New Project WINAOWcccccoiiiiiiiiiiiiiiiiiiiic s 24-2
24-2 Solution Explorer with the Created Project Filesc.coooiiiiii 24-2
24-3 Add Reference WindOW.........cccucuiiriiioiiiiiiic s 24-3
24—4 Add New Item WINAOWcccoooiiiiiiniiiiiiie s 24-4
24-5 Contact Cache Client Ul.........ccooiiiiiiiii e 24-7
24-6 Using Data Source Wizard to Bind a Control to a Data Source...........ccccoeeiiieiiinirinnnn. 24-8
24-7 Choosing a Data Source to Bind to the Control............cccooeiiiiiii 24-9
24-8 Properties WINAOW ..ot e 24-11
25-1 Coherence.dll File in the Add Reference Window.........cccooooiriiiiiiiiccc 25-2
25-2 Adding Controls for the .aspX Pageccccoouovoiii e 25-5
25-3 Changing IDs and Properties for Data Controlsc.cooomeieiiiinieiiiicccecee 25-6
25-4 Adding a "Clear" Button to the Applicationcccooiriieioiiiiiiii 25-7
25-5 Adding a Field Validator and Setting its Properties...........cccoooooiiieiniinccic 25-8
25-6 Adding a GridView Control and an ObjectDataSourceccccooeoerieieiicieicicnciciene. 25-8
25—7 S€arch Pane ...t e 25-10
B-1 Conceptual View of FS BIG-IP LTMccooiiiiii B-2
B2 Example Node Configuration ... B-3
B-3 Example Pool Configurationccooeuriiiiiiiiii B-4
B—4 Example POOl MEMDETSc.cormiiiiiiciiiece e B-5
B-5 Example Virtual SEIVeT ...t B-7
B-6 Example Virtual Server Using a Configured Poolc.ccoooriiniiiiiiicc, B-8
B-7 Example Coherence*Extend Ping Health MoONitorccoooriiiiiiiiiiiiiice, B-11
B-8 Example Coherence*Extend Health Monitor Implemented in a Shell Script B-13
B-9 Associating a Coherence*Extend Pool With a Custom Health Monitor.............ccc.c...... B-14
B-10 Example SSL Certificate Configuration in BIG-IP System..........ccccooooiiiiiiriiiinnnn, B-15
B-11 Example SSL Profile Configuration.............ccooooeiiiiiiiiiiiiic, B-16
B-12 Example Virtual Server Configuration That Includes a Client SSL Profile..................... B-17

xviii

List of Tables

2-1
6-1
6-2
6-3
6-4
6-5
9-1
10-1

A-2

Platform and Operating System Support for Coherence for C++cccevvvvvviiiinininnnne. 2-1
Compiler Settings for MSVC (Visual Studio)cccevveiviiiiiiiiiiiiiiiiii 6-1
Compiler Settings fOr g+coiiiiiic e 6-1
Names of Linking Libraries for Release and Debug Versionscccccoovoeueiniiinieieicnnes 6-2
Name of the Coherence for C++ Library and Environment Variables..............ccc..cc........ 6-2
Cache Configuration System Property Value for Various Operating Systems................ 6-2
Advanced Handle Types Supported by Coherence for C++........ccccoevvviviiiininnininene. 9-14
Requirements and Limitations of Serialization Options............cccocevvvvinninnnnininine, 10-2
REST Configuration EIementsccceuoiiiiriiiiiiciic s A-3
aggregator Subelements..........c.ccooiii s A-4
aggregators Subelements ..o A-5
marshaller SUbelemMents............coiiiiiiiii e A-6
ProcesSOr SUDELEMENES.........c.ouiuiiiiiiiiiiiiiiiicc e A-7
Processors SUDELEMENLSccuiviiiiiiiiiiiiici e A-8
1eSOUICe SUDEIEMENTS.......oviviiiiiiiii e A-9
resources SUbEleMENtScociiiiiiiiiii A-10
1eSt SUDEIEMENES ..o A-11

Xix

XX

Audience

Preface

Welcome to Oracle Coherence Client Guide. This document provides detailed
instructions for developing Coherence*Extend clients in various programming
languages.

This document is targeted at software developers and architects. It provides detailed
technical information for writing and deploying C++ and .NET applications that
interact with remote caches that reside in a Coherence cluster. The documentation
assumes users are familiar with these respective technologies. In addition, users must
be familiar with Java when serializing data to the cluster.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Related Documents

For more information, see the following documents that are included in the Oracle
Coherence documentation set:

» Oracle Coherence Administrator’s Guide

» Oracle Coherence Developer's Guide

» Oracle Coherence Getting Started Guide

» Oracle Coherence Management Guide

» Oracle Coherence Security Guide

» Oracle Coherence Integration Guide for Oracle Coherence

» Oracle Coherence Tutorial for Oracle Coherence

XXi

» Oracle Coherence User’s Guide for Oracle Coherence*Web
» Oracle Coherence Java API Reference

» Oracle Coherence C++ API Reference

» Oracle Coherence NET API Reference

» Oracle Coherence Release Notes for Oracle Coherence

Conventions

XXii

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Part |

Getting Started

Part I contains the following chapters:

s Chapter 1, "Introduction”

» Chapter 2, "Installing a Client Distribution"

» Chapter 3, "Setting Up Coherence*Extend"

» Chapter 4, "Building Your First Extend Client"

» Chapter 5, "Best Practices for Coherence*Extend"

1

Introduction

Coherence*Extend "extends" the reach of the core Coherence TCMP cluster to a wider
range of consumers, including desktops, remote servers, and computers located across
WAN connections. Typical uses of Coherence*Extend include providing desktop
applications with access to Coherence caches (including support for Near Cache and
Continuous Query) and linking multiple Coherence clusters connected through a
high-latency, unreliable WAN.

The following sections are included in this chapter:
s Components Overview

s Types Of Clients

s Client APIs

» POF Serialization

= Understanding Client Configuration Files

Components Overview

Coherence*Extend consists of two basic components: an extend client running outside
the cluster and an extend proxy service running in the cluster hosted by one or more
cache servers (DefaultCacheServer). The client APIs includes implementations of
both the CacheService and InvocationService interfaces which route all
requests to the proxy. The proxy responds to client requests by delegating to an actual
Coherence clustered services (for example, a partitioned or replicated cache service or
an invocation service).

Coherence*Extend uses the Extend-TCP transport binding (a low-level messaging
protocol) to communicate between the client and the cluster. The protocol is a high
performance, scalable TCP /IP-based communication layer. The transport binding is
configuration-driven and is completely transparent to the client application that uses
Coherence*Extend.

Figure 1-1 provides a conceptual view of the Coherence*Extend components and
shows an extend client connecting to an extend proxy service using Extend-TCP.

Introduction 1-1

Types Of Clients

Figure 1-1 Conceptual View of Coherence*Extend Components

Invocation
Service
Extend Client E"tg”d Proay
Extend-TCP ervice Cache
(TCP/IP) e

Cache Server

Like cache clients, an extend client retrieves Coherence clustered service using a cache
factory. After a service is obtained, a client uses the service in the same way as if it
were part of the Coherence cluster. The fact that operations are being sent to a remote
cluster node is transparent to the client application.

Types Of Clients

Data Clients

Extend clients can be created for the Java, NET, and C++ platforms and have access to
the same rich API as the standard Coherence API without being full data members of
the cluster. Typically, client applications are granted only read access to cluster data,
although it is possible to enable direct read /write access. There are two categories of
clients: Data Clients and Real Time Extend Clients.

Data clients are extend clients that are able to access (put, get, query) data in the
cluster and also make invocation service requests using standard Coherence APIs. In
particular, data clients provide:

= Key-based cache access through the NamedCache interface
= Attribute-based cache access using filters

» Custom processing and aggregation of cluster side entries using the
InvocableMap interface

s In-Process caching through LocalCache
= Remote invocation of custom tasks in the cluster through the Invocation Service

For a complete list of Data Client features, see Oracle Fusion Middleware Licensing
Information.

Note: Data clients cannot be notified of changes to data in a cluster.
Further, data clients do not have the ability to use Near Caches or
Continuous Query caches, as those capabilities also rely on the ability
to receive notifications of data changes from the cluster. For these
capabilities, real-time clients must be used.

Real Time Clients

Real Time Clients (Extend-TCP) provides the same capabilities associated with data
clients; but, unlike data clients, a real-time client also supports:

1-2 Oracle Coherence Client Guide

POF Serialization

Client APIs

= Event Notifications — Using the standard Coherence event model, data changes
that occur within the cluster are visible to the client application. Only events that a
client application registers for are delivered over the wire. This model results in
efficient use of network bandwidth and client processing.

s Local Caches — While the client application can directly access the caches managed
by the cluster, that may be inefficient depending on the network infrastructure.
For efficiency, a real-time client can use both Near Caching and Continuous Query
Caching to maintain cache data locally. If the server to which the client application
is attached happens to fail, the connection is automatically reestablished to
another server, and any locally cached data is re-synchronized with the cluster.

For a complete list of Real Time Client features, see Oracle Fusion Middleware Licensing
Information.

Java, C++, and .NET (C#) native libraries are available for building extend clients. Each
APl is delivered in its own distribution and must be installed separately. Extend
clients use their respective APIs to perform cache operations such as access, modify,
and query data that is in a cluster. The C++ and C# APIs follow the Java API as close
as possible to provide a consistent experience between platforms.

As an example, a Java client gets a NamedCache instance using the
CacheFactory.getCache method as follows:

NamedCache cache = CacheFactory.getCache("dist-extend");

For C++, the APl is as follows:

NamedCache: :Handle hCache = CacheFactory::getCache("dist-extend");

For C#, the API is as follows:

INamedCache cache = CacheFactory.GetCache("dist-extend");

This and many other API features are discussed throughout this guide:

» Java—See Part II, "Creating Java Extend Clients" for details on using the API and
refer to Oracle Coherence Java API Reference for detailed API documentation.

s C++—See Part III, "Creating C++ Extend Clients" for details on using the API and
refer to Oracle Coherence C++ API Reference for detailed API documentation.

s .NET -See Part IV, "Creating .NET Extend Clients" for details on using the API
and refer to Oracle Coherence .NET API Reference for detailed API documentation.

POF Serialization

Like cache clients, extend clients must serialize objects that are to be stored in the
cluster. C++ and C# clients use Coherence’s Portable Object Format (POF), which is a
language agnostic binary format. Java extend clients typically use POF for serialization
as well; however, there are several other options for serializing Java objects, such as
Java native serialization and custom serialization routines. See Oracle Coherence
Developer’s Guide for details.

Clients that serialize objects into the cluster can perform get and put based operations
on the objects. However, features such as queries and entry processors require
Java-based cache servers to interact with the data object, rather then simply holding

Introduction 1-3

Understanding Client Configuration Files

onto a serialized representation of it. To interact with the object and access its
properties, a Java version of the object must be made available to the cache servers.

See Oracle Coherence Developer’s Guide for detailed information on using POF with Java.
For more information on using POF with C++ and C#, see Chapter 10, "Building
Integration Objects (C++)," and Chapter 18, "Building Integration Objects (.NET),"
respectively.

Understanding Client Configuration Files

Extend clients are configured using several configurations files. The configuration files
are the same as the cluster configuration files. However, client configuration files are
deployed with the client. The files include:

Cache Configuration Deployment Descriptor — This file is used to define
client-side cache services and invocation services and must provide the address
and port of the cluster-side extend proxy service to which the client connects. The
schema for this file is the coherence-cache-config.xsd file for Java and C++
clients and the cache-config.xsd file for .NET clients. See Oracle Coherence
Developer’s Guide for a complete reference of the elements in this file.

At run time, the first cache configuration file that is found on the classpath is used.
The tangosol . coherence. cacheconfig system property can also be used to
explicitly specify a cache configuration file. The file can also be set
programmatically. See Oracle Coherence Developer’s Guide for general information
about the cache configuration deployment descriptor.

POF Configuration Deployment Descriptor — This file is used to specify custom
data types when using POF to serialize objects. The schema for this file is the
coherence-pof-config.xsd file for Java and C++ clients and the
pof-config.xsd file for NETclients. See Oracle Coherence Developer’s Guide for a
complete reference of the elements in this file.

At run time, the first POF configuration file that is found on the classpath is used.
The tangosol.pof.config system property can also be used to explicitly
specify a POF configuration file. When using POF, a client application uses a
Coherence-specific POF configuration file and a POF configuration file that is
specific to the user types used in the client. See Oracle Coherence Developer’s Guide
for general information about the POF configuration deployment descriptor.

Operational Override File — This file is used to override the operational
deployment descriptor, which is used to specify the operational and run-time
settings that are used to create, configure and maintain clustering, communication,
and data management services. For extend clients, this file is typically used to
override member identity, logging, security, and licensing. The schema for this file
is the coherence-operational-config.xsd file for Java and C++ clients and
the coherence. xsd file for NET clients. See Oracle Coherence Developer’s Guide
for a complete reference of the elements in this file.

At run time, the first operational override file
(tangosol-coherence-override.xml) thatis found on the classpath is used.
The tangosol.coherence. override system property can also be used to
explicitly specify an operational override file. The file can also be set
programmatically. See Oracle Coherence Developer’s Guide for general information
about the operational override file,

1-4 Oracle Coherence Client Guide

2

Installing a Client Distribution

This chapter provides instructions for installing the C++ and .NET client distributions.
There is no separate Java client distribution package. Java extend clients are created
using Coherence for Java.

The following sections are included in this chapter:
= Installing Coherence for Java

s Installing the C++ Client Distribution

» Installing the .NET Client Distribution

» Compatibility Between Coherence*Extend Versions

Installing Coherence for Java

The Coherence for Java distribution is used to build and use Java-based extend clients.
To install Coherence for Java, see "Installing Oracle Coherence for Java" in the Oracle
Coherence Developer's Guide.

Installing the C++ Client Distribution

The Oracle Coherence for C++ distribution is used to develop and run C++ extend
clients. The latest version of the distribution can be downloaded from the Coherence
product page on the Oracle Technology Network:

http://www.oracle.com/technology/software/products/ias/htdocs/co
herence.html

This section contains the following topics:
= Supported Environments
= Microsoft-Specific Requirements

= Extracting the Coherence for C++ Distribution

Supported Environments

Table 2-1 lists the supported platforms and operating systems for Coherence for C++:

Table 2—1 Platform and Operating System Support for Coherence for C++

Operating System Compiler Architecture

Microsoft Windows 2000+! MSVC 2005 SP1+%, MSVC 2010 x86

Installing a Client Distribution 2-1

http://www.oracle.com/technology/software/products/ias/htdocs/coherence.html
http://www.oracle.com/technology/software/products/ias/htdocs/coherence.html

Installing the C++ Client Distribution

Table 2-1 (Cont.) Platform and Operating System Support for Coherence for C++

Operating System Compiler Architecture
Microsoft Windows Server 2003+3 MSVC 2005 SP1+2, MSVC 2010 Xx64

Sun Solaris 10 SunPro 5.9* SPARC

Sun Solaris 10 SunPro 5.9° x86

Sun Solaris 10 SunPro 5.9° x64

Linux GCC 3.4+° x86

Linux GCC 3.4+4° x64

Apple OS X 10.4+7 GCC 3.4+° x86

Apple OS X 10.4+8 GCC 3.4+° x64

1 Including Windows 32b XP, Vista, 2000, 2003, and 2008.

% Specifically MSVC 2005 SP1 (14.00.50727.762+), and MSVC 2008 and express versions are supported.
3 Including Windows 64b XP, Vista, 2003, and 2008.

4 Specifically Sun C++ 5.9 SPARC Patch 124863-14 or later are supported.

5 Specifically Sun C++ 5.9 x86/x64 Patch 124864-14 or later are supported.

¢ Specifically GCC 3.4.6-8 and above, and GCC 4.x versions are supported.

7 Including OS X Tiger (10.4), Leopard (10.5), and Snow Leopard (10.6)

8

Including OS X Leopard (10.5), and Snow Leopard (10.6)

Microsoft-Specific Requirements

When deploying on Microsoft Windows, just as with any MSVC based application, the
corresponding MSVC run-time libraries must be installed on the deployment
computer.

= Visual Studio 2005 SP1 and Visual Studio 2008: The following redistributable
run-time libraries for x86 or x64 are required. If developing with Visual Studio
2008, the 2005 SP1 redistributable libraries must still be installed on both the
development and deployment computers.

x86:

http://www.microsoft.com/downloads/details.aspx?familyid=200B
2FD9-AE1A-4A14-984D-389C36F85647&displaylang=en

x64:

http://www.microsoft.com/downloads/details.aspx?familyid=EB4E
BE2D-33C0-4A47-9DD4-B9A6D7BD44DA&displaylang=en

The use of Oracle Coherence for C++ with MSVC 2005 SP1 (x86 and x64) requires
both the Microsoft Visual C++ 2005 Service Pack 1 Redistributable and the
Microsoft Visual C++ 2005 Service Pack 1 Redistributable Package ATL Security
Update. Coherence does not run without the security update. For more
information on the security update, see

http://support.microsoft.com/?kbid=973544

The security update is available from the Microsoft Update Web site or directly
from

http://www.microsoft.com/downloads/details.aspx?displaylang=e
n&FamilyID=766a6af7-ec73-40ff-b072-9112babl19c2

s Visual Studio 2010: Redistributable run-time libraries for x86 or x64.

2-2 Oracle Coherence Client Guide

http://www.microsoft.com/downloads/details.aspx?displaylang=en&FamilyID=766a6af7-ec73-40ff-b072-9112bab119c2
http://www.microsoft.com/downloads/details.aspx?displaylang=en&FamilyID=766a6af7-ec73-40ff-b072-9112bab119c2
http://www.microsoft.com/downloads/details.aspx?familyid=EB4EBE2D-33C0-4A47-9DD4-B9A6D7BD44DA&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=EB4EBE2D-33C0-4A47-9DD4-B9A6D7BD44DA&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=200B2FD9-AE1A-4A14-984D-389C36F85647&displaylang=en
http://www.microsoft.com/downloads/details.aspx?familyid=200B2FD9-AE1A-4A14-984D-389C36F85647&displaylang=en

Installing the .NET Client Distribution

x86:

http://www.microsoft.com/downloads/details.aspx?displaylang=e
n&FamilyID=a7b7a05e-6de6-4d3a-a423-37b£f0912db84

x64:

http://www.microsoft.com/downloads/details.aspx?displaylang=e
n&FamilyID=bd512d9e-43¢c8-4655-81bf-9350143d5867

Extracting the Coherence for C++ Distribution

Coherence for C++ is distributed as a ZIP file. Use a ZIP utility or the unzip
command-line utility to extract the ZIP file to a location on the target computer. The
extracted files are organized within a single directory called coherence-cpp.

The following example uses the unzip utility to extract the distribution to the /opt
directory which is the suggested installation directory on UNIX-based operating
systems. Use the ZIP utility provided with the target operating system if the unzip
utility is not available.

unzip /path_to_zip/coherence-cpp-version_number-platform-architecture-compiler.zip
-d /opt

The following example extracts the distribution using the unzip utility to the C:\
directory on the Windows operating system.

unzip C:\path_to_zip\coherence-cpp-version_
number-platform-architecture-compiler.zip -d C:\

The following list describes the directories that are included in installation directory:

s bin-This directory includes sanka . exe, which is an application launcher that is
used to invoke executable classes embedded within a shared library.

= doc - This directory contains Coherence for C++ documentation including the
API documentation

= examples — This directory includes examples that demonstrate basic
functionality.

= include - This directory contains header files that use the Coherence API and
must be compiled with an application.

s 1lib-This directory includes the Coherence for C++ library. The
coherence.dll file is the main development and run-time library and is
discussed in detail throughout this documentation.

Installing the .NET Client Distribution

The Oracle Coherence for .NET distribution is used to develop and use .NET extend
clients. The latest version of the distribution can be downloaded from the Coherence
product page on the Oracle Technology Network:

http://www.oracle.com/technology/software/products/ias/htdocs/co
herence.html

This section contains the following topics:
ms Prerequisites

= Running the Installer

Installing a Client Distribution 2-3

http://www.microsoft.com/downloads/details.aspx?displaylang=en&FamilyID=a7b7a05e-6de6-4d3a-a423-37bf0912db84
http://www.microsoft.com/downloads/details.aspx?displaylang=en&FamilyID=a7b7a05e-6de6-4d3a-a423-37bf0912db84
http://www.microsoft.com/downloads/details.aspx?displaylang=en&FamilyID=bd512d9e-43c8-4655-81bf-9350143d5867
http://www.microsoft.com/downloads/details.aspx?displaylang=en&FamilyID=bd512d9e-43c8-4655-81bf-9350143d5867
http://www.oracle.com/technology/software/products/ias/htdocs/coherence.html
http://www.oracle.com/technology/software/products/ias/htdocs/coherence.html

Installing the .NET Client Distribution

Prerequisites

Deploying Coherence for .NET

The following are required to use Coherence for .NET:

Microsoft NET 2.0, 3.0, or 3.5 run time
Microsoft NET 2.0,3.0, or 3.5 SDK

Supported Microsoft Windows operating system (see the system requirements for
the appropriate NET run time above)

MSHelp 2.x run time, which is included in Visual Studio 200x and the Microsoft
products listed here:

http://www.helpware.net/mshelp2/h20.htm#MS_H2_Runtime

Microsoft Visual Studio 2005 isrequired to build and run the examples
included with Coherence for .NET:

Running the Installer

Coherence for .NET is distributed as a ZIP file which contains an installer. Use a ZIP
utility or the unzip command-line utility to extract the installer to a location on the
target computer. The following example extracts the installer using the unzip utility
to the C: \ directory:

unzip C:\path_to_zip\coherence-net-version number.zip -d C:\

To run the installer:

1.

2.

From the directory where the ZIP was extracted, double-click the
coherence-net-version.msi file.

Follow the instructions in the installer to complete the installation.

Note: If the installer indicates that it is rolling back the installation,
then run the installer in elevated execution mode. For example,
executing the MSI file from a command prompt that was started as an
Administrator should enable the installation process to complete. For
Windows 7, right-click the command prompt and select run as
Administrator.

The following list describes the directories that are included in the installation
directory:

bin - This directory includes the Coherence for .NET library. The
Coherence.dll file is the main development and run-time library and is
discussed in detail throughout this documentation. A version of the library is
included for .NET 2.0 and higher.

config - This directory contains XML schemas for Coherence configuration files
and also includes a POF configuration file for Coherence-defined user types.

doc — This directory contains Coherence for INET documentation including the
API documentation. The API documentation is available as a compiled HTML
Help (Coherence. chm) or as MSHelp 2.0 Help.

examples — This directory includes examples that demonstrate basic
functionality.

2-4 Oracle Coherence Client Guide

Compatibility Between Coherence*Extend Versions

Deploying Coherence for .NET

Coherence for .NET requires no specialized deployment configuration. Simply add a
reference to the Coherence.dll found in the bin\net\2. 0 folder to your
Microsoft.NET application.

Compatibility Between Coherence*Extend Versions

Compatibility for the extend protocol and POF is maintained between point releases
but not between major releases. In addition, within point releases, only forward
compatibility is maintained from extend clients to cluster proxies. That is, an extend
client can connect to cluster proxies that have either the same or higher version
numbers. Extend clients should not attempt to connect with previous versions of
cluster proxies.

Note: Compatibility requires the use of POF, since POF can support
backward compatible serialization change.

Installing a Client Distribution 2-5

Compatibility Between Coherence*Extend Versions

2-6 Oracle Coherence Client Guide

3

Overview

Setting Up Coherence*Extend

This chapter provides instructions for configuring Coherence*Extend. The instructions
provide basic setup and do not represent a complete configuration reference. In
addition, refer to the platform-specific parts of this guide for additional configuration
instructions. For a complete Java example that also includes configuration and setup,
see Chapter 4, "Building Your First Extend Client."

This chapter includes the following sections:

s Overview

s Configuring the Cluster Side

s Configuring the Client Side

» Using an Address Provider for TCP Addresses

= Load Balancing Connections

Coherence*Extend requires configuration both on the client side and the cluster side.
On the cluster side, extend proxy services are setup to accept client requests. Proxy
services provide access to cache service instances and invocation service instances that
run on the cluster. On the client side, remote cache services and the remote invocation
services are configured and used by clients to access cluster data through the extend
proxy service. Extend clients and extend proxy services communicate using TCP/IP.

Extend proxy services are configured in a cache configuration deployment descriptor.
This deployment descriptor is often referred to as the cluster-side cache configuration
file. It is the same cache configuration file that is used to set up caches on the cluster.
Extend clients are also configured using a cache configuration deployment descriptor.
This deployment descriptor is deployed with the client and is often referred to as the
client-side cache configuration file. See Oracle Coherence Developer’s Guide for detailed
information about the cache configuration deployment descriptor

Configuring the Cluster Side

A Coherence cluster must include an extend proxy service to accept extend client
connections and must include a cache that is used by clients to retrieve and store data.
Both the extend proxy service and caches are configured in the cluster’s cache
configuration deployment descriptor. Extend proxy services and caches are started as
part of a cache server (DefaultCacheServer) process.

The following topics are included this section:

Setting Up Coherence*Extend 3-1

Configuring the Cluster Side

= Setting Up Extend Proxy Services
s Defining Caches for Use By Extend Clients

Setting Up Extend Proxy Services

The extend proxy service (ProxyService) is a cluster service that allows extend
clients to access a Coherence cluster using TCP/IP. A proxy service includes proxies
for two types of cluster services: the CacheService cluster service, which is used by
clients to access caches; and, the InvocationService cluster service, which is used
by clients to execute Invocable objects on the cluster.

The following topics are included in this section:
s Defining a Proxy Service

s Defining Multiple Proxy Service Instances

s Defining Multiple Proxy Services

= Disabling Cluster Service Proxies

= Specifying Read-Only NamedCache Access
s Specifying NamedCache Locking

Defining a Proxy Service

Extend proxy services are configured within a <caching-schemes> node using the
<proxy-scheme> element. The <proxy-scheme> element has a <tcp-acceptor>
child element that includes the address (IP or DNS name) and port that an extend
proxy service listens to for TCP/IP client communication. See the "proxy-scheme"
element reference in the Oracle Coherence Developer’s Guide for a complete list and
description of all <proxy-scheme> subelements.

Example 3-1 defines a proxy service named ExtendTcpProxyService and is set up
to listen for client requests on a TCP/IP ServerSocket that is bound to
198.168.1.5 and port 9099. Both the cache and invocation cluster service proxies
are enabled for client requests. In addition, the <autostart> element is set to true
so that the service automatically starts at a cluster node.

Example 3-1 Extend Proxy Service Configuration

<caching-schemes>
<proxy-scheme>
<service-name>ExtendTcpProxyService</service-name>
<acceptor-config>
<tcp-acceptor>
<local-address>
<address>192.168.1.5</address>
<port>9099</port>
</local-address>
</tcp-acceptor>
</acceptor-config>
<proxy-config>
<cache-service-proxy>
<enabled>true</enabled>
</cache-service-proxy>
<invocation-service-proxy>
<enabled>true</enabled>
</invocation-service-proxy>

3-2 Oracle Coherence Client Guide

Configuring the Cluster Side

</proxy-config>
<autostart>true</autostart>
</proxy-scheme>
</caching-schemes>

Note: For clarity, the above example explicitly enables the cache and
invocation cluster service proxies. However, both proxies are enabled
by default and do not require a <cache-service-proxy> and
<invocation-service-proxy> element to be included in the
proxy scheme definition.

Defining Multiple Proxy Service Instances

Multiple extend proxy service instances can be defined in order to support an
expected number of client connections and to support fault tolerance and load
balancing. Client connections are automatically balanced across proxy service
instances. The algorithm used to balance connections depends on the load balancing
strategy that is configured. See "Load Balancing Connections" on page 3-13, for more
information on load balancing.

To define multiple proxy service instances, include a proxy service definition in
multiple cache servers and use the same service name for each proxy service. Proxy
services that share the same service name are considered peers.

The following examples define two instances of the ExtendTcpProxyService proxy
service that are set up to listen for client requests on a TCP/IP ServerSocket that is
bound to port 9099. The proxy service definition is included in each cache server’s
respective cache configuration file within the <proxy-scheme> element.

On cache server 1:

<caching-schemes>
<proxy-scheme>
<service-name>ExtendTcpProxyService</service-name>
<acceptor-config>
<tcp-acceptor>
<local-address>
<address>192.168.1.5</address>
<port>9099</port>
</local-address>
</tcp-acceptor>
</acceptor-config>
<autostart>true</autostart>
</proxy-scheme>
</caching-schemes>

On cache server 2:

<caching-schemes>
<proxy-scheme>
<service-name>ExtendTcpProxyService</service-name>
<acceptor-config>
<tcp-acceptor>
<local-address>
<address>192.168.1.6</address>

Setting Up Coherence*Extend 3-3

Configuring the Cluster Side

<port>9099</port>
</local-address>
</tcp-acceptor>
</acceptor-config>
<autostart>true</autostart>
</proxy-scheme>
</caching-schemes>

Defining Multiple Proxy Services
Multiple extend proxy services can be defined in order to provide different

applications with their own proxies. Extend clients for a particular application can be

directed toward specific proxies to provide a more predictable environment.

The following example defines two extend proxy services.
ExtendTcpProxyServicel is set up to listen for client requests on a TCP/IP
ServerSocket thatis bound to 198.168.1.5 and port 9099.
ExtendTcpProxyService?2 is set up to listen for client requests on a TCP/IP
ServerSocket thatis bound to 198.168.1.5 and port 9098.

<caching-schemes>
<proxy-scheme>
<service-name>ExtendTcpProxyServicel</service-name>
<acceptor-config>
<tcp-acceptor>
<local-address>
<address>192.168.1.5</address>
<port>9099</port>
</local-address>
</tcp-acceptor>
</acceptor-config>
<autostart>true</autostart>
</proxy-scheme>
<proxy-scheme>
<service-name>ExtendTcpProxyService2</service-name>
<acceptor-config>
<tcp-acceptor>
<local-address>
<address>192.168.1.5</address>
<port>9098</port>
</local-address>
</tcp-acceptor>
</acceptor-config>
<autostart>true</autostart>
</proxy-scheme>
</caching-schemes>

Disabling Cluster Service Proxies

The cache service and invocation service proxies can be disabled within an extend
proxy service definition. Both of these proxies are enabled by default and can be
explicitly disabled if a client does not require a service.

Cluster service proxies are disabled by setting the <enabled> element to false
within the <cache-service-proxy> and <invocation-service-proxy>
respectively.

3-4 Oracle Coherence Client Guide

Configuring the Cluster Side

The following example disables the inovcation service proxy so that extend clients
cannot execute Invocable objects within the cluster:

<proxy-scheme>

<proxy-config>
<invocation-service-proxy>
<enabled>false</enabled>
</invocation-service-proxy>
</proxy-config>

</proxy-scheme>

Likewise, the following example disables the cache service proxy to restrict extend
clients from accessing caches within the cluster:

<proxy-scheme>

<proxy-config>
<cache-service-proxy>
<enabled>false</enabled>
</cache-service-proxy>
</proxy-config>

</proxy-scheme>

Specifying Read-Only NamedCache Access

By default, extend clients are allowed to both read and write data to proxied
NamedCache instances. The <read-only> element can be specified within a
<cache-service-proxy> element to prohibit extend clients from modifying cached
content on the cluster. For example:

<proxy-scheme>

<proxy-config>
<cache-service-proxy>
<read-only>true</read-only>
</cache-service-proxy>
</proxy-config>

</proxy-scheme>

Specifying NamedCache Locking

By default, extend clients are not allowed to acquire NamedCache locks. The
<lock-enabled> element can be specified within a <cache-service-proxy>
element to allow extend clients to perform locking. For example:

<proxy-scheme>
<proxy-config>
<cache-service-proxy>
<lock-enabled>true</lock-enabled>

</cache-service-proxy>
</proxy-config>

</proxy-scheme>

Setting Up Coherence*Extend 3-5

Configuring the Cluster Side

If client-side locking is enabled and a client application uses the

NamedCache.lock () and unlock () methods, it is important that a member-based
(rather than thread-based) locking strategy is configured when using a partitioned or
replicated cache. The locking strategy is configured using the
<lease-granularity> element when defining cluster-side caches. A granularity
value of thread (the default setting) means that locks are held by a thread that
obtained them and can only be released by that thread. A granularity value of member
means that locks are held by a cluster node and any thread running on the cluster
node that obtained the lock can release the lock. Because the extend proxy clustered
service uses a pool of threads to execute client requests concurrently, it cannot
guarantee that the same thread executes subsequent requests from the same extend
client.

The following example demonstrates setting the lease granularity to member for a
partitioned cache

<distributed-scheme>
<scheme-name>dist-default</scheme-name>
<lease-granularity>member</lease-granularity>
<backing-map-scheme>
<local-scheme/>
</backing-map-scheme>
<autostart>true</autostart>
</distributed-scheme>

Defining Caches for Use By Extend Clients

Extend clients read and write data to a cache on the cluster. Any of the cache types can
store client data. For extend clients, the cache on the cluster must have the same name
as the cache that is being used on the client side; see "Defining a Remote Cache" on
page 3-7. For more information on defining caches, see "Using Caches" in the Oracle
Coherence Developer’s Guide.

The following example defines a partitioned cache named dist-extend.

<?xml version="1.0"?>

<cache-config xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
xsi:schemalLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
coherence-cache-config.xsd">
<caching-scheme-mapping>
<cache-mapping>
<cache-name>dist-extend</cache-name>
<scheme-name>dist-default</scheme-name>
</cache-mapping>
</caching-scheme-mapping>

<caching-schemes>
<distributed-scheme>
<scheme-name>dist-default</scheme-name>
<backing-map-scheme>
<local-scheme/>
</backing-map-scheme>
<autostart>true</autostart>
</distributed-scheme>
</caching-schemes>

3-6 Oracle Coherence Client Guide

Configuring the Client Side

</cache-config>

Configuring the Client Side

Extend clients use the remote cache service and the remote invocation service to
interact with a Coherence cluster. The services must be configured to connect to
extend proxy services that run on the cluster. Both remote cache services and remote
invocation services are configured in a cache configuration deployment descriptor that
must be found on the classpath when an extend-based client application starts.

The following topics are included in this section:
= Defining a Remote Cache

= Using a Remote Cache as a Back Cache

s Defining Remote Invocation Schemes

= Defining Multiple Remote Addresses

s Detecting Connection Errors

= Disabling TCMP Communication

Defining a Remote Cache

A remote cache is specialized cache service that routes cache operations to a cache on
the cluster. The remote cache and the cache on the cluster must have the same name.
Extend clients use the NamedCache interface as normal to get an instance of the cache.
At run time, the cache operations are not executed locally but instead are sent using
TCP/IP to an extend proxy service on the cluster. The fact that the cache operations
are delegated to a cache on the cluster is transparent to the extend client.

A remote cache is defined within a <caching-schemes> node using the
<remote-cache-scheme> element. A <tcp-initiator> element is used to define
the address (IP or DNS name) and port of the extend proxy service on the cluster to
which the client connects. See the "remote-cache-scheme" element reference in the
Oracle Coherence Developer’s Guide for a complete list and description of all
<remote-cache-scheme> subelements.

Table 3-2 defines a remote cache named dist-extend that connects to an extend
proxy service that is listening on address 198.168.1.5 and port 9099. To use this
remote cache, there must be a cache defined on the cluster that is also named
dist-extend. See "Defining Caches for Use By Extend Clients" on page 3-6 for more
information on defining caches on the cluster.

Example 3-2 Remote Cache Definition

<?xml version="1.0"?>

<cache-config xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
xsi:schemalocation="http://xmlns.oracle.com/coherence/coherence-cache-config
cache-config.xsd">
<caching-scheme-mapping>
<cache-mapping>
<cache-name>dist-extend</cache-name>
<scheme-name>extend-dist</scheme-name>
</cache-mapping>
</caching-scheme-mapping>

Setting Up Coherence*Extend 3-7

Configuring the Client Side

<caching-schemes>
<remote-cache-scheme>
<scheme-name>extend-dist</scheme-name>
<service-name>ExtendTcpCacheService</service-name>
<initiator-config>
<tcp-initiator>
<remote-addresses>
<socket-address>
<address>198.168.1.5</address>
<port>9099</port>
</socket-address>
</remote-addresses>
<connect-timeout>10s</connect-timeout>
</tcp-initiator>
<outgoing-message-handler>
<request-timeout>5s</request-timeout>
</outgoing-message-handler>
</initiator-config>
</remote-cache-scheme>
</caching-schemes>
</cache-config>

Using a Remote Cache as a Back Cache

Extend clients typically use remote caches as part of a near cache. In such scenarios, a
local cache is used as a front cache and the remote cache is used as the back cache. For
more information, see "Defining a Near Cache for C++ Clients" on page 7-7 and
"Defining a Near Cache for NET Clients" on page 17-5, respectively.

The following example creates a near cache that uses a local cache and a remote cache.

<?xml version="1.0"?>

<cache-config xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
xsi:schemalLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
coherence-cache-config.xsd">
<caching-scheme-mapping>
<cache-mapping>
<cache-name>dist-extend-near</cache-name>
<scheme-name>extend-near</scheme-name>
</cache-mapping>
</caching-scheme-mapping>

<caching-schemes>
<near-scheme>
<scheme-name>extend-near</scheme-name>
<front-scheme>
<local-scheme>
<high-units>1000</high-units>
</local-scheme>
</front-scheme>
<back-scheme>
<remote-cache-scheme>
<scheme-ref>extend-dist</scheme-ref>
</remote-cache-scheme>
</back-scheme>
<invalidation-strategy>all</invalidation-strategy>

3-8 Oracle Coherence Client Guide

Configuring the Client Side

</near-scheme>

<remote-cache-scheme>
<scheme-name>extend-dist</scheme-name>
<service-name>ExtendTcpCacheService</service-name>
<initiator-config>
<tcp-initiator>
<remote-addresses>
<socket-address>
<address>localhost</address>
<port>9099</port>
</socket-address>
</remote-addresses>
<connect-timeout>10s</connect-timeout>
</tcp-initiator>
<outgoing-message-handler>
<request-timeout>5s</request-timeout>
</outgoing-message-handler>
</initiator-config>
</remote-cache-scheme>
</caching-schemes>
</cache-config>

Defining Remote Invocation Schemes

A remote invocation scheme defines an invocation service that is used by clients to
execute tasks on the remote Coherence cluster. Extend clients use the
InvocationService interface as normal. At run time, a TCP/IP connection is made
to an extend proxy service and an InvocationService implementation is returned
that executes synchronous Invocable tasks within the remote cluster JVM to which
the client is connected.

Remote invocation schemes are defined within a <caching-schemes> node using
the <remote-invocation-scheme> element. A <tcp-initiator> elementis
used to define the address (IP or DNS name) and port of the extend proxy service on
the cluster to which the client connects. See the "remote-invocation-scheme" element
reference in the Oracle Coherence Developer’s Guide for a complete list and description of
all <remote-invocation-scheme> subelements.

Example 3-3 defines a remote invocation scheme that is called
ExtendTcpInvocationService and connects to an extend proxy service that is
listening on address 198.168.1.5 and port 9099.

Example 3-3 Remote Invocation Scheme Definition

<caching-schemes>
<remote-invocation-scheme>
<scheme-name>extend-invocation</scheme-name>
<service-name>ExtendTcpInvocationService</service-name>
<initiator-config>
<tcp-initiator>
<remote-addresses>
<socket-address>
<address>198.168.1.5</address>
<port>9099</port>
</socket-address>
</remote-addresses>
<connect-timeout>10s</connect-timeout>

Setting Up Coherence*Extend 3-9

Configuring the Client Side

</tcp-initiator>
<outgoing-message-handler>
<request-timeout>5s</request-timeout>
</outgoing-message-handler>
</initiator-config>
</remote-invocation-scheme>
</caching-schemes>

Defining Multiple Remote Addresses

Remote cache schemes and remote invocation schemes can include multiple extend
proxy service addresses to ensure a client can always connect to the cluster. The
algorithm used to balance connections depends on the load balancing strategy that is
configured. See "Load Balancing Connections" on page 3-13, for more information on
load balancing.

To configure multiple addresses, add additional <socket-address> child elements
within the <tcp-initiator> element of a <remote-cache-scheme> and
<remote-invocation-scheme> node as required. The following example defines
two extend proxy addresses for a remote cache scheme. See "Defining Multiple Proxy
Service Instances” on page 3-3, for instructions on setting up multiple proxy addresses.

<caching-schemes>
<remote-cache-scheme>
<scheme-name>extend-dist</scheme-name>
<service-name>ExtendTcpCacheService</service-name>
<initiator-config>
<tcp-initiator>
<remote-addresses>
<socket-address>
<address>192.168.1.5</address>
<port>9099</port>
</socket-address>
<socket-address>
<address>192.168.1.6</address>
<port>9099</port>
</socket-address>
</remote-addresses>
</tcp-initiator>
</initiator-config>
</remote-cache-scheme>
</caching-schemes>

Detecting Connection Errors

When a Coherence*Extend service detects that the connection between the client and
cluster has been severed (for example, due to a network, software, or hardware
failure), the Coherence*Extend client service implementation (that is, CacheService
or InvocationService) dispatches a MemberEvent . MEMBER_LEFT event to all
registered MemberListeners and the service is stopped. For cases where the
application calls CacheFactory. shutdown (), the service implementation
dispatches a MemberEvent . MEMBER_LEAVING event followed by a

MemberEvent . MEMBER_LEFT event. In both cases, if the client application attempts
to subsequently use the service, the service automatically restarts itself and attempts to

3-10 Oracle Coherence Client Guide

Configuring the Client Side

reconnect to the cluster. If the connection is successful, the service dispatches a
MemberEvent . MEMBER_JOINED event; otherwise, a irrecoverable error exception is
thrown to the client application.

A Coherence*Extend service has several mechanisms for detecting dropped
connections. Some are inherent to the underlying TCP/IP protocol, whereas others are
implemented by the service itself. The latter mechanisms are configured within the
<outgoing-message-handler> element.

The <request-timeout> element is the primary mechanism used to detect dropped
connections. When a service sends a request to the remote cluster and does not receive
a response within the request timeout interval, the service assumes that the connection
has been dropped.

WARNING: If a <request-timeout> value is not specified, a
Coherence*Extend service uses an infinite request timeout. In
general, this is not a recommended configuration, as it could result
in an unresponsive application. For most use cases, specify a
reasonable finite request timeout.

The following example is taken from Example 3-2 and demonstrates setting the
request timeout to 5 seconds.

<initiator-config>
<tcp-initiator>
<remote-addresses>
<socket-address>
<address>198.168.1.5</address>
<port>9099</port>
</socket-address>
</remote-addresses>
<connect-timeout>10s</connect-timeout>
</tcp-initiator>
<outgoing-message-handler>
<request-timeout>5s</request-timeout>
</outgoing-message-handler>
</initiator-config>

The <heartbeat-interval> and <heartbeat-timeout> can also be used to
detect dropped connections. If a service does not receive a response within the
configured heartbeat timeout interval, the service assumes that the connection has
been dropped.

The following example sets the heartbeat interval to 500 milliseconds and the
heartbeat timeout to 5 seconds.

<initiator-config>
<tcp-initiator>
<remote-addresses>
<socket-address>
<address>198.168.1.5</address>
<port>9099</port>
</socket-address>
</remote-addresses>
<connect-timeout>10s</connect-timeout>
</tcp-initiator>

Setting Up Coherence*Extend 3-11

Using an Address Provider for TCP Addresses

<outgoing-message-handler>
<heartbeat-interval>500ms</heartbeat-interval>
<heartbeat-timeout>5s</heartbeat-timeout>
</outgoing-message-handler>
</initiator-config>

Disabling TCMP Communication

Java-based extend clients that are located within the network must disable TCMP
communication to exclusively connect to clustered services using extend proxies. If
TCMP is not disabled, Java-based extend clients may cluster with each other and may
even join an existing cluster. TCMP is disabled in the client-side
tangosol-coherence-override.xml file.

To disable TCMP communication, set the <enabled> element within the
<packet-publisher> element to false. For example:

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
xsi:schemaLocation="http://xmlns.oracle.com/coherence/
coherence-operational-config coherence-operational-config.xsd">
<cluster-config>
<packet-publisher>
<enabled system-property="tangosol.coherence.tcmp.enabled">false
</enabled>
</packet-publisher>
</cluster-config>
</coherence>

The tangosol.coherence. tcmp. enabled system property is used to specify
whether TCMP is enabled instead of using the operational override file. For example:

-Dtangosol.coherence.tcmp.enabled=false

Using an Address Provider for TCP Addresses

An address provider dynamically assigns TCP address and port settings when
binding to a server socket. The address provider must be an implementation of the
com. tangosol.net.AddressProvider interface. Dynamically assigning
addresses is typically used to implement custom load balancing algorithms.

Addpress providers are defined using the <address-provider> element, which can
be used within the <tcp-acceptor> element for extend proxy schemes and within
the <tcp-initiator> element for remote cache and remote invocation schemes.

The following example demonstrates configuring an AddressProvider
implementation called MyAddressProvider for a TCP acceptor when configuring an
extend proxy scheme.

<proxy-scheme>
<service-name>ExtendTcpProxyService</service-name>
<thread-count>5</thread-count>
<acceptor-config>
<tcp-acceptor>

3-12 Oracle Coherence Client Guide

Load Balancing Connections

<address-provider>
<class-name>com.MyAddressProvider</class-name>
</address-provider>
</tcp-acceptor>
</acceptor-config>
<autostart>true</autostart>
</proxy-scheme>

The following example demonstrates configuring an AddressProvider
implementation called MyClientAddressProvider for a TCP initiator when
configuring a remote cache scheme.

<remote-cache-scheme>
<scheme-name>extend-dist</scheme-name>
<service-name>ExtendTcpCacheService</service-name>
<initiator-config>
<tcp-initiator>
<remote-addresses>
<address-provider>
<class-name>com.MyClientAddressProvider</class-name>
</address-provider>
</remote-addresses>
<connect-timeout>10s</connect-timeout>
</tcp-initiator>
<outgoing-message-handler>
<request-timeout>5s</request-timeout>
</outgoing-message-handler>
</initiator-config>
</remote-cache-scheme>

In addition, the <address-provider> element also supports the use of a
<class-factory-name> element to use a factory class that is responsible for
creating AddressProvider instances and a <method-name> element to specify the
static factory method on the factory class that performs object instantiation.

Load Balancing Connections

Extend client connections are load balanced across proxy service members. By default,
a proxy-based strategy is used that distributes client connections to proxy services that
are being utilized the least. Custom proxy-based strategies can be created or the
default strategy can be modified as required. As an alternative, a client-based load
balance strategy can be implemented by creating a client-side address provider or by
relying on randomized client connections to proxy services. The random approach
provides minimal balancing as compared to proxy-based load balancing.

Coherence*Extend can be used with F5 BIG-IP Local Traffic Manager (LTM), which
provides hardware-based load balancing. See Appendix B, "Integrating with F5 BIG-IP
LTM," for detailed instructions.

The following topics are included in this section:
s Using Proxy-Based Load Balancing
= Using Client-Based Load Balancing

Setting Up Coherence*Extend 3-13

Load Balancing Connections

Using Proxy-Based Load Balancing

Proxy-based load balancing is the default strategy that is used to balance client
connections between two or more proxy services. The strategy is weighted by a
proxy’s existing connection count, then by its daemon pool utilization, and lastly by its
message backlog.

The proxy-based load balancing strategy is configured within a <proxy-scheme>
definition using a <load-balancer> element that is set to proxy. For clarity, the
following example explicitly specifies the strategy. However, the strategy is used by
default if no strategy is specified and is not required in a proxy scheme definition.

<proxy-scheme>
<service-name>ExtendTcpProxyService</service-name>
<acceptor-config>
<tcp-acceptor>
<local-address>
<address>192.168.1.5</address>
<port>9099</port>
</local-address>
</tcp-acceptor>
</acceptor-config>
<load-balancer>proxy</load-balancer>
<autostart>true</autostart>
</proxy-scheme>

Note: When using proxy-based load balancing, clients are not
required to list the full set of proxy services in their cache
configuration. However, a minimum of two proxy servers should
always be configured for redundancy sake. See "Defining Multiple
Remote Addresses" on page 3-10 for details on how to define multiple
remote address to be used by a client.

Understanding the Proxy-Based Load Balancing Default Algorithm

The proxy-based load balancing algorithm distributes client connections equally
across proxy service members. The algorithm redirects clients to proxy services that
are being utilized the least. The following factors are used to determine a proxy’s
utilization:

s Connection Utilization — this utilization is calculated by adding the current
connection count and pending connection count. If a proxy has a configured
connection limit and the current connection count plus pending connection count
equals the connection limit, the utilization is considered to be infinite.

= Daemon Pool Utilization — this utilization equals the current number of active
daemon threads. If all daemon threads are currently active, the utilization is
considered to be infinite.

= Message Backlog Utilization — this utilization is calculated by adding the current
incoming message backlog and the current outgoing message backlog.

Each proxy service maintains a list of all proxy services ordered by their utilization.
The ordering is weighted first by connection utilization, then by daemon pool
utilization, and then by message backlog. The list is resorted whenever a proxy
service’s utilization changes. The proxy services send each other their current
utilization whenever their connection count changes or every 10 seconds (whichever
comes first).

3-14 Oracle Coherence Client Guide

Load Balancing Connections

When a new connection attempt is made on a proxy, the proxy iterates the list as
follows:

» If the current proxy has the lowest connection utilization, then the connection is
accepted; otherwise, the proxy redirects the new connection by replying to the
connection attempt with an ordered list of proxy servers that have a lower
connection utilization. The client then attempts to connect to a proxy service in the
order of the returned list.

s If the connection utilizations of the proxies are equal, the daemon pool utilization
of the proxies takes precedence. If the current proxy has the lowest daemon pool
utilization, then the connection is accepted; otherwise, the proxy redirects the new
connection by replying to the connection attempt with an ordered list of proxy
servers that have a lower daemon pool utilization. The client then attempts to
connect to a proxy service in the order of the returned list.

s If the daemon pool utilization of the proxies are equal, the message backlog of the
proxies takes precedence. If the current proxy has the lowest message backlog
utilization, then the connection is accepted; otherwise, the proxy redirects the new
connection by replying to the connection attempt with an ordered list of proxy
servers that have a lower message backlog utilization. The client then attempts to
connect to a proxy service in the order of the returned list.

s If all proxies have the same utilization, then the client remains connected to the
current proxy.

Implementing a Custom Proxy-Based Load Balancing Strategy

The com. tangosol.coherence.net.proxy package includes the APIs that are
used to balance client load across proxy service members. See Oracle Coherence Java API
Reference for details on using the proxy-based load balancing APIs that are discussed
in this section.

A custom strategy must implement the ProxyServiceLoadBalancer interface.
New strategies can be created or the default strategy
(DefaultProxyServiceLoadBalancer) can be extended and modified as required.
For example, to change which utilization factor takes precedence on the list of proxy
services, extend DefaultProxyServerLoadBalancer and pass a custom
Comparator object in the constructor that imposes the desired ordering. Lastly, the
client’s Member object (which uniquely defines each client) is passed to a strategy. The
Member object provides a means for implementing client-weighted strategies. See
Oracle Coherence Developer’s Guide for details on configuring a client’s member identity
information.

To enable a custom load balancing strategy, include an <instance> subelement
within the <load-balancer> element and provide the fully qualified name of a class
that implements the ProxyServiceLoadBalancer interface. The following example
enables a custom proxy-based load balancing strategy that is implemented in the
MyProxyServiceLoadBalancer class:

<load-balancer>
<instance>
<class-name>package.MyProxyServicelLoadBalancer</class-name>
</instance>
</load-balancer>

In addition, the <instance> element also supports the use of a
<class-factory-name> element to use a factory class that is responsible for

Setting Up Coherence*Extend 3-15

Load Balancing Connections

creating ProxyServiceLoadBalancer instances, and a <method-name> element to
specify the static factory method on the factory class that performs object instantiation.
See Oracle Coherence Developer’s Guide for detailed instructions on using the
<instance> element.

Using Client-Based Load Balancing

The client-based load balancing strategy relies upon a client address provider
implementation to dictate the distribution of clients across proxy service members. If
no client address provider implementation is provided, the extend client tries each
configured proxy service in a random order until a connection is successful. See
"Using an Address Provider for TCP Addresses" on page 3-12 for more information on
providing an address provider implementation.

The client-based load balancing strategy is configured within a <proxy-scheme>
definition using a <load-balancer> element that is set to client. For example:

<proxy-scheme>
<service-name>ExtendTcpProxyServicel</service-name>
<acceptor-config>
<tcp-acceptor>
<local-address>
<address>192.168.1.5</address>
<port>9099</port>
</local-address>
</tcp-acceptor>
</acceptor-config>
<load-balancer>client</load-balancer>
<autostart>true</autostart>
</proxy-scheme>

The above configuration sets the client strategy on a single proxy service and must be
repeated for all proxy services that are to use the client strategy. To set the client
strategy as the default strategy for all proxy services if no strategy is specified,
override the 1oad-balancer parameter for the proxy service type in the operational
override file. For example:

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
xsi:schemalocation="http://xmlns.oracle.com/coherence/
coherence-operational-config coherence-operational-config.xsd">
<cluster-config>
<services>
<service id="7">
<init-params>
<init-param id="12">
<param-name>load-balancer</param-name>
<param-value>client</param-value>
</init-param>
</init-params>
</service>
</services>
</cluster-config>
</coherence>

3-16 Oracle Coherence Client Guide

4

Building Your First Extend Client

This chapter demonstrates basic tasks that are required to build and run
Coherence*Extend clients. The example client used in this chapter is a Java-based
extend client; however, the concepts that are demonstrated are common to both C++
and .NET extend clients as well. See the /examples directory in both the C++ and
NET distribution for specific examples for these technologies.

The following sections are included in this chapter:
s Overview of the Extend Example

= Step 1: Configure the Cluster Side

= Step 2: Configure the Client Side

» Step 3: Create the Sample Client

» Step 4: Start the Cache Server Process

= Step 5: Run the Application

Overview of the Extend Example

This chapter is organized into a set of steps that are used to create, configure, and run
a basic Coherence*Extend client. The steps demonstrate many fundamental
Coherence*Extend concepts, such as: configuring an extend proxy, configuring a
remote cache, configuring the remote invocation service, and using the Coherence
APL

Coherence for Java must be installed to complete the steps. For simplicity and ease of
deployment, the client and cache server in this example are run on the same computer.
Typically, extend clients and cache servers are located on separate systems.

Step 1: Configure the Cluster Side

The example extend client requires an extend proxy and cache to be configured in the
cluster’s cache configuration deployment descriptor. The extend proxy is configured
to accept client TCP/IP communication on localhost and port 9099. A distributed
cache named dist-extend is defined and is used to store client data in the cluster.

To configure the cluster side:
1. Create an XML file named example-config.xml.
2. Copy the following XML to the file.

<?xml version="1.0"?>

Building Your First Extend Client 4-1

Step 2: Configure the Client Side

<cache-config xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
xsi:schemalLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
coherence-cache-config.xsd">
<caching-scheme-mapping>
<cache-mapping>
<cache-name>dist-extend</cache-name>
<scheme-name>extend</scheme-name>
</cache-mapping>
</caching-scheme-mapping>

<caching-schemes>

<distributed-scheme>
<scheme-name>extend</scheme-name>
<lease-granularity>member</lease-granularity>
<backing-map-scheme>

<local-scheme/>

</backing-map-scheme>
<autostart>true</autostart>

</distributed-scheme>

<proxy-scheme>
<service-name>ExtendTcpProxyService</service-name>
<thread-count>5</thread-count>
<acceptor-config>
<tcp-acceptor>
<local-address>
<address>localhost</address>
<port>9099</port>
</local-address>
</tcp-acceptor>
</acceptor-config>
<autostart>true</autostart>
</proxy-scheme>
</caching-schemes>
</cache-config>

3. Save and close the file.

Step 2: Configure the Client Side

The example extend client requires a remote cache scheme and a remote invocation
scheme. The remote cache scheme must define a cache on the cluster that is used to
cache data and must provide the address and port of the extend proxy to which the
client connects. For this example (based on Step 1), the remote cache scheme is
configured to use the dist-extend cache and connects to an extend proxy that is
located on localhost and port 9099.

The example extend client queries the remote cache and therefore requires a remote
invocation scheme. The remote invocation scheme must also define the host and port
of the extend proxy to which the client connects.

To configure the client side:
1. Create an XML file named example-client-config.xml.
2. Copy the following XML to the file.

<?xml version="1.0"?>

<cache-config xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

4-2 Oracle Coherence Client Guide

Step 3: Create the Sample Client

xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
xsi:schemalocation="http://xmlns.oracle.com/coherence/coherence-cache-config
coherence-cache-config.xsd">
<caching-scheme-mapping>
<cache-mapping>
<cache-name>dist-extend</cache-name>
<scheme-name>remote</scheme-name>
</cache-mapping>
</caching-scheme-mapping>

<caching-schemes>
<remote-cache-scheme>
<scheme-name>remote</scheme-name>
<service-name>ExtendTcpCacheService</service-name>
<initiator-config>
<tcp-initiator>
<remote-addresses>
<socket-address>
<address>localhost</address>
<port>9099</port>
</socket-address>
</remote-addresses>
<connect-timeout>10s</connect-timeout>
</tcp-initiator>
<outgoing-message-handler>
<request-timeout>5s</request-timeout>
</outgoing-message-handler>
</initiator-config>
</remote-cache-scheme>

<remote-invocation-scheme>
<scheme-name>extend-invocation</scheme-name>
<service-name>ExtendTcpInvocationService</service-name>
<initiator-config>
<tcp-initiator>
<remote-addresses>
<socket-address>
<address>localhost</address>
<port>9099</port>
</socket-address>
</remote-addresses>
<connect-timeout>10s</connect-timeout>
</tcp-initiator>
<outgoing-message-handler>
<request-timeout>5s</request-timeout>
</outgoing-message-handler>
</initiator-config>
</remote-invocation-scheme>
</caching-schemes>
</cache-config>

3. Save and close the file.

Step 3: Create the Sample Client

Example 4-1 is a simple client that increments an Integer value in a remote cache
using the CacheService and then retrieves the value from the cache using the
InvocationService. Lastly, the client writes the value to the system output before
exiting.

Building Your First Extend Client 4-3

Step 3: Create the Sample Client

Note: This example could also be run on a Coherence node (that is,
within the cluster) verbatim. The fact that operations are being sent to
a remote cluster node over TCP/IP is completely transparent to the
client application.

To create the sample application:
1. Create a text file.

2. Copy the following Java code to the file:

Example 4-1 Sample Coherence*Extend Application

import com.tangosol.net.AbstractInvocable;
import com.tangosol.net.CacheFactory;
import com.tangosol.net.InvocationService;
import com.tangosol.net.NamedCache;

import java.util.Map;

public class TestClient {
public static void main(String[] asArgs)
throws Throwable
{
NamedCache cache = CacheFactory.getCache("dist-extend");
Integer IValue = (Integer) cache.get("key");
if (IValue == null)
{
IValue = new Integer(1l);
}
else
{
IValue = new Integer(IValue.intValue() + 1);

}
cache.put ("key", IValue);

InvocationService service = (InvocationService)
CacheFactory.getConfigurableCacheFactory ()
.ensureService ("ExtendTcpInvocationService") ;

Map map = service.query (new AbstractInvocable()
{

public void run()

{
setResult (CacheFactory.getCache ("dist-extend") .get ("key")) ;

}
}, null);

Integer IValuel = (Integer) map.get(service.getCluster().
getLocalMember ()) ;

System.out.print ("The value of the key is " + IValuel);

}

3. Save the file as TestClient . java and close the file.
4. Compile TestClient.java:

javac -cp .;COHERENCE_HOME\lib\coherence.jar TestClient.java

4-4 Oracle Coherence Client Guide

Step 5: Run the Application

Coherence*Extend InvocationService

Since, by definition, a Coherence*Extend client has no direct knowledge of the cluster
and the members running within the cluster, the Coherence*Extend
InvocationService only allows Invocable tasks to be executed on the JVM to
which the client is connected. Therefore, you should always pass a null member set to
the query () method. As a consequence, the single result of the execution is keyed by
the local Member, which is null if the client is not part of the cluster. This Member can
be retrieved by calling service.getCluster () .getLocalMember ().
Additionally, the Coherence*Extend InvocationService only supports
synchronous task execution (that is, the execute () method is not supported).

Step 4: Start the Cache Server Process

Extend Proxies are started as part of a cache server process(DefaultCacheServer).
The cache server must be configured to use the cache configuration that was created in
Step 1. In addition, the cache server process must be able to find the TestClient
application on the classpath at run time.

The following command line starts a cache server process and explicitly names the
cache configuration file created in Step 1 by using the
tangosol.coherence.cacheconfig system property:

java -cp COHERENCE_HOME\coherence.jar; PATH TO_CLIENT
-Dtangosol.coherence.cacheconfig=PATH\example-config.xml
com. tangosol .net.DefaultCacheServer

Check the console output to verify that the proxy service is started. The output
message is similar to the following:

(thread=Proxy:ExtendTcpProxyService:TcpAcceptor, member=1): TcpAcceptor now
listening for connections on 192.168.1.5:9099

Step 5: Run the Application

The TestClient application is started using the java command and must be
configured to use the cache configuration file that was created in Step 2.

The following command line runs the application and assumes that the TestClient
class is located in the current directory. The cache configuration file is explicitly named
using the tangosol.coherence.cacheconfig system property:

java -cp .;COHERENCE_HOME\1lib\coherence.jar

-Dtangosol.coherence.cacheconfig=PATH\example-client-config.xml TestClient

The output displays (among other things) that the client successfully connected to the
extend proxy TCP address and the current value of the key in the cache. Run the client
again to increment the key’s value.

Building Your First Extend Client 4-5

Step 5: Run the Application

4-6 Oracle Coherence Client Guide

O

Best Practices for Coherence*Extend

This chapter describes best practices for configuring and running Coherence*Extend.
The following sections are included in this chapter:

= Run Proxy Servers with Local Storage Disabled

= Do Not Run a Near Cache on a Proxy Server

s Configure Heap NIO Space to be Equal to the Max Heap Size

= Set Worker Thread Pool Sizes According to the Needs of the Application
= Be Careful When Making InvocationService Calls

= Be Careful When Placing Collection Classes in the Cache

= Configure POF Serializers for Cache Servers

= Use Node Locking Instead of Thread Locking

Run Proxy Servers with Local Storage Disabled

Each server in a partitioned cache, including the proxy server, can store a portion of
the data. However, a proxy server has the added overhead of managing potentially
unpredictable client work loads which can be expensive in terms of CPU and memory
usage. Local storage should be disabled on the proxy server to preserve resources.

There are several ways in which you can disable storage:

Local storage for a proxy server can be enabled or disabled with the
tangosol.coherence.distributed. localstorage Java property. For example:

-Dtangosol.coherence.distributed.localstorage=false

You can also disable storage in the cache configuration file. See the description of the
<local-storage> element in "distributed-scheme" in the Oracle Coherence
Developer’s Guide.

Storage can also be disabled for the proxy server by modifying the
<local-storage> setting in the tangosol-coherence-override.xml) file.
Example 5-1 illustrates setting <local-storage> to false.

Example 5-1 Disabling Storage

<?xml version='1.0'?>
<coherence xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
xsi:schemalocation="http://xmlns.oracle.com/coherence/

Best Practices for Coherence*Extend 5-1

Do Not Run a Near Cache on a Proxy Server

coherence-operational-config coherence-operational-config.xsd">
<cluster-config>
<services>
<gservice id="3">
<init-params>
<init-param id="4">
<param-name>local-storage</param-name>
<param-value system-property="tangosol.coherence.distributed.
localstorage">false</param-value>
</init-param>
</init-params>
</service>
</services>
</cluster-config>
</coherence>

Do Not Run a Near Cache on a Proxy Server

By definition, a near cache provides local cache access to both recently and often-used
data. If a proxy server is configured with a near cache, it locally caches data accessed
by its remote clients. It is unlikely that these clients are consistently accessing the same
subset of data, thus resulting in a low hit ratio on the near cache. Running a near cache
on a proxy server results in higher heap usage and more network traffic on the proxy
nodes with little to no benefit. For these reasons, it is recommended that a near cache
not be used on a proxy server. To ensure that the proxy server is not running a near
cache, remove all near schemes from the cache configuration being used for the proxy.

Configure Heap NIO Space to be Equal to the Max Heap Size

NIO memory is used for the TCP connection into the proxy and for POF serialization
and deserialization. Older Java installations tended to run out of heap memory
because it was configured too low. Newer Java JDKs configure off heap NIO space
equal to the maximum heap space. On Sun JVMs, this can also be set manually with
this value:

-XX:MaxDirectMemorySize=512M

Set Worker Thread Pool Sizes According to the Needs of the Application
Client applications can be classified into two general categories: active and passive.

In active applications, the Coherence*Extend client sends many requests, such as put,
get, and so on, to the proxy. These requests are serviced by the proxy service. The
proxy deserializes POF data put into the cache, and serialize data it returns to the
client. For these tasks, configure a larger number of daemon (worker) threads for the
proxy service.

In passive applications, the client waits on events (such as map listeners) based on
some specified criteria. Events are serviced by the DistributedCache service. This
service uses worker threads to push events to the client. For these tasks, the thread
pool configuration for the DistributedCache service should include a enough worker
threads.

Note that near caches on extend clients use map listeners under the covers for the
invalidation strategies of ALL, PRESENT, and AUTO. Applications that are write-heavy
that use near caches generate many map events.

5-2 Oracle Coherence Client Guide

Be Careful When Placing Collection Classes in the Cache

Be Careful When Making InvocationService Calls

InvocationService allows a member of a service to invoke arbitrary code on any node
in the cluster. On Coherence*Extend however, InvocationService calls are serviced by
the proxy that the client is connected to by default. You cannot choose the particular
node on which the code runs when sending the call through a proxy.

Be Careful When Placing Collection Classes in the Cache

If a Coherence*Extend client puts a collection object, (such as an Arraylist,
HashsSet, HashMap, and so on) directly into the cache, it is deserialized as an
immutable array. If you then extract it and cast it to its original type, then a
ClassCastExceptions is returned. As an alternative, use a Java interface object
(such as a List, Set, Map, and so on) or encapsulate the collection object in another
object. Both of these techniques are illustrated in the following example:

Example 5-2 Casting an ArrayList Object

public class ExtendExample
{
@SuppressWarnings ({ "unchecked" })
public static void main(String asArgs[])
{
System.setProperty ("tangosol.coherence.cacheconfig", "client-config.xml");
NamedCache cache = CacheFactory.getCache("test");

// Create a sample collection
List list = new ArrayList();
for (int 1 = 0; 1 < 5; 1++)
{
list.add(String.valueOf (i));
}
cache.put ("list", list);

List listFromCache = (List) cache.get("list");

System.out.println("Type of list put in cache: " + list.getClass());
System.out.println("Type of list in cache: " + listFromCache.getClass());

Map map = new TreeMap();
for (Iterator i = list.iterator(); 1i.hasNext();)
{
Object o = i.next();
map.put (o, o);
}

cache.put ("map", map);

Map mapFromCache = (Map) cache.get("map");
System.out.println("Type of map put in cache: " + map.getClass());
System.out.println("Type of map in cache: " + mapFromCache.getClass());

}

Best Practices for Coherence*Extend 5-3

Configure POF Serializers for Cache Servers

Configure POF Serializers for Cache Servers

Proxy servers are responsible for deserializing POF data into Java objects. If you run
C++ or .NET applications and store data to the cache, then the conversion to Java
objects could be viewed as an unnecessary step. Coherence provides the option of
configuring a POF serializer for cache servers and has the effect of storing POF format
data directly in the cache.

This can have the following impact on your applications:

s .NET or C++ clients that only perform puts or gets do not require a Java version of
the object. Java versions are still required if deserializing on the server side (for
entry processors, cache stores, and so on).

» POF serializers remove the requirement to serialize/deserialze on the proxy, thus
reducing their memory and CPU requirements.

Example 5-3 illustrates a fragment from a cache configuration file, which configures
the default POF serializer that is defined in the operational deployment descriptor.

Example 5-3 Configuring a POFSerializer for a Distributed Cache

<distributed-scheme>
<scheme-name>dist-default</scheme-name>
<serializer>pof</serializer>
<backing-map-scheme>
<local-scheme/>
</backing-map-scheme>
<autostart>true</autostart>
</distributed-scheme>

Use Node Locking Instead of Thread Locking

Coherence*Extend clients can send lock, put, and unlock requests to the cluster. The
proxy holds the locks for the client. The requests for locking and unlocking can be
issued at the thread level or the node level. In thread level locking, a particular thread
instance belonging to the proxy (Thread 1, for example) issues the lock request. If any
other threads (Thread 3, for example) issue an unlock request, they are ignored. A
successful unlock request can be issued only by the thread that issued the initial lock
request. This can cause application errors since unlock requests do not succeed unless
the original thread that issues the lock is also the one that receives the request to
release the lock.

In node level locking, if a particular thread instance belonging to the proxy (Thread 1,
for example) issues the lock request, then any other thread (Thread 3, for example) can
successfully issue an unlock request.

As an alternative to using locks, Coherence recommends that you use the
EntryProcessor APl instead.

5-4 Oracle Coherence Client Guide

Part li

Creating Java Extend Clients

Coherence for Java allows Java applications to access Coherence clustered services,
including data, data events, and data processing from outside the Coherence cluster.
Typical uses for Java extend clients include desktop and Web applications that require
access to Coherence caches.

The Coherence for Java library connects to a Coherence*Extend clustered service
instance running within the Coherence cluster using a high performance

TCP /1P-based communication layer. This library sends all client requests to the
Coherence*Extend clustered service which, in turn, responds to client requests by
delegating to an actual Coherence clustered service (for example, a partitioned or
replicated cache service).

Like cache clients that are members of the cluster, Java extend clients use the
CacheFactory.getCache () API call to retrieve a NamedCache instance. After it is
obtained, a client accesses the NamedCache in the same way as it would if it were part
of the Coherence cluster. The fact that NamedCache operations are being sent to a
remote cluster node (over TCP/IP) is completely transparent to the client application.

Unlike the C++ and .NET distributions, Java does not have a separate client
distribution. The API delivered with Coherence for Java is the same API that is used to
create extend clients. The API is detailed in the Oracle Coherence Developer’s Guide and
not duplicated in this guide. When building Java extend clients, refer to Part I,
"Getting Started" in this guide (for basic setup) and Part IV, "Using the Programming
APL" in the Oracle Coherence Developer’s Guide.

Part lli

Creating C++ Extend Clients

Coherence for C++ allows C++ applications to access Coherence clustered services,
including data, data events, and data processing from outside the Coherence cluster.
Typical uses of Coherence for C++ include desktop and web applications that require
access to Coherence caches.

Coherence for C++ consists of a native C++ library that connects to a
Coherence*Extend clustered service instance running within the Coherence cluster
using a high performance TCP/IP-based communication layer. This library sends all
client requests to the Coherence*Extend clustered service which, in turn, responds to
client requests by delegating to an actual Coherence clustered service (for example, a
partitioned or replicated cache service).

A NamedCache instance is retrieved by using the CacheFactory: :getCache (...)
API call. After it is obtained, a client accesses the NamedCache in the same way as it
would if it were part of the Coherence cluster. The fact that NamedCache operations
are being sent to a remote cluster node (over TCP/IP) is completely transparent to the
client application.

Note: The C++ client follows the interface and concepts of the Java
client, and users familiar with Coherence for Java should find
migrating to Coherence for C++ straight forward.

Coherence for C++ contains the following chapters:

» Chapter 6, "Setting Up C++ Application Builds"

» Chapter 7, "Configuration and Usage for C++ Clients"
» Chapter 8, "Understanding the Coherence for C++ API"
» Chapter 9, "Using the Coherence C++ Object Model"

n Chapter 10, "Building Integration Objects (C++)"

» Chapter 11, "Performing Continuous Queries (C++)"
s Chapter 12, "Querying a Cache (C++)"

» Chapter 13, "Performing Remote Invocations (C++)"

» Chapter 14, "Using Cache Events (C++)"

» Chapter 15, "Performing Transactions (C++)"

s Chapter 16, "Sample C++ Application”

6

The

Setting Up C++ Application Builds

following topics are included in this section:

Setting up the Compiler for Coherence-Based Applications
Including Coherence Header Files

Linking the Coherence Library

Setting the run-time Library and Search Path

Deploying Coherence for C++

Setting up the Compiler for Coherence-Based Applications

When integrating Coherence for C++ into your application's build process, it is
important that certain compiler and linker settings be enabled. Some settings are
optional, but still highly recommended.

MSVC (Visual Studio)

Table 6-1 Compiler Settings for MSVC (Visual Studio)

Setting Build Type Required? Description

/EHsc All Yes Enables C++ exception support

/GR All Yes Enables C++ RTTI

/02 Release No Enables speed optimizations

/MD Release Yes Link against multi-threaded DLLs
/MDd Debug Yes Link against multi-threaded debug DLLs

g++/ SunPro

Table 6-2 Compiler Settings for g++

Setting Build Type Required Description
-O3 Release No Enables speed optimizations
-m32 / -m64 All No Explicitly set compiler to 32 or 64 bit mode

Including Cohe

rence Header Files

Coherence ships with a set of header files that uses the Coherence API and must be
compiled with your application. The header files are available under the installation's

Setting Up C++ Application Builds 6-1

Linking the Coherence Library

include directory. The include directory must be part of your compiler’s include
search path.

Linking the Coherence Library

Coherence for C++ ships with a release version of the Coherence library. This library is
also suitable for linking with debug versions of application code. The library is located
in the installation's 1ib directory. During linking, this directory must be part of your
linkers library path.

Table 6-3 Names of Linking Libraries for Release and Debug Versions

Operating System Library

Windows coherence.lib
Solaris libcoherence.so
Linux libcoherence.so
Apple OS X libcoherence.dylib

Setting the run-time Library and Search Path

During execution of a Coherence enabled application the Coherence for C++ shared
library must be available from your application's library search path. This is achieved
by adding the directory which contains the shared library to an operating system
dependent environment variable. The installation includes libraries in its lib
subdirectory.

Table 6-4 Name of the Coherence for C++ Library and Environment Variables

Operating System Environment Variable
Windows PATH

Solaris LD_LIBRARY_PATH
Linux LD_LIBRARY_PATH
Apple (Mac) OS X DYLD_LIBRARY_PATH

For example, to set the PATH environment variable on Windows execute:

c:\coherence\coherence-cpp\examples> set
PATH=%PATH%; c: \coherence\coherence-cpp\lib

As with the Java version of Coherence, the C++ version supports a concept of System
Properties to override configuration defaults. System Properties in C++ are set by
using standard operating system environment variables, and use the same names as
their Java counterparts. The tangosol . coherence.cacheconfig system property
specifies the location of the cache configuration file. You may also set the configuration
location programmatically (CacheFactory: :configure ()) from application code,
the examples however do not do this.

Table 6-5 Cache Configuration System Property Value for Various Operating Systems

Operating System System Property
Windows tangosol.coherence.cacheconfig
Linux TangosolCoherenceCacheConfig

6-2 Oracle Coherence Client Guide

Deploying Coherence for C++

Table 6-5 (Cont.) Cache Configuration System Property Value for Various Operating

Operating System System Property
Solaris TangosolCoherenceCacheConfig
Apple (Mac) OS X TangosolCoherenceCacheConfig

Note: Some operating system shells, such as the UNIX bash shell,
do not support environment variables which include the '." character.
In this case, you may specify the name in camel case, where the first
letter, and every letter following a '." is capitalized. That is,
"tangosol.coherence.cacheconfig" becomes
"TangosolCoherenceCacheConfig".

For example, to set the configuration location on Windows execute:

c:\coherence\coherence-cpp\examples> set
tangosol.coherence.cacheconfig=config\extend-cache-config.xml

Deploying Coherence for C++

Coherence for C++ requires no specialized deployment configuration. Simply link
your application with the Coherence library. Coherence for C++ includes sample
applications that are discussed in Chapter 16, "Sample C++ Application,” that
demonstrate build scripts and configuration.

Note: When deploying to Microsoft Windows the Visual Studio 2005
SP1 C++ run-time libraries are required. To build the samples, a
version of Visual Studio 2005 SP1 or higher is required.

Setting Up C++ Application Builds 6-3

Deploying Coherence for C++

6-4 Oracle Coherence Client Guide

7

Configuration and Usage for C++ Clients

The following sections are included in this chapter:

General Instructions

Implementing the C++ Application

Compiling and Linking the Application

Configure Paths

Configure Coherence*Extend

Obtaining a Cache Reference with C++

Cleaning up Resources Associated with a Cache

Configuring and Using the Coherence for C++ Client Library
Operational Configuration File (tangosol-coherence-override.xml)
Configuring a Logger

Launching a Coherence DefaultCacheServer Proxy

General Instructions

Configuring and using Coherence for C++ requires five basic steps:

1.

6.
7.

Implement the C++ Application using the Coherence for C++ API See Chapter 8§,
"Understanding the Coherence for C++ APL" for more information on the APL

Compile and Link the application.
Configure paths.

Configure Coherence*Extend on both the client and on one or more JVMs within
the cluster.

Configure a POF context on the client and on all of the JVMs within the cluster
that run the Coherence*Extend clustered service.

Make sure the Coherence cluster is up and running.

Launch the C++ client application.

The following sections describe each of these steps in detail.

Configuration and Usage for C++ Clients 7-1

Implementing the C++ Application

Implementing the C++ Application

Coherence for C++ provides an API that allows C++ applications to access Coherence
clustered services, including data, data events, and data processing from outside the
Coherence cluster.

Coherence for C++ API consists of:

= aset of C++ public header files

= version of static libraries build by all supported C++ compilers
= several samples

The library allows C++ applications to connect to a Coherence*Extend clustered
service instance running within the Coherence cluster using a high performance
TCP/1P-based communication layer. The library sends all client requests to the
Coherence*Extend clustered service which, in turn, responds to client requests by
delegating to an actual Coherence clustered service (for example, a Partitioned or
Replicated cache service).

Chapter 8, "Understanding the Coherence for C++ API", provides an overview of the
key classes in the API. For a detailed description of the classes, see the API itself which
is included in the doc directory of the Coherence for C++ distribution.

Compiling and Linking the Application

The platforms on which you can compile applications that employ Coherence for C++
are listed in the Supported Platforms and Operating Systems topic.

For example, the following build.cmd file for the Windows 32-bit platform builds,
compiles, and links the files for the Coherence for C++ demo. The variables in the file
have the following meanings:

= OPT and LOPT point to compiler options
= INC points to the Coherence for C++ API files in the include directory
= SRC points to the C++ header and code files in the common directory

= OUT points to the file that the compiler/linker should generate when it is finished
compiling the code

= LIBPATH points to the library directory
= LIBS points to the Coherence for C++ shared library file

After setting these environment variables, the file compiles the C++ code and header
files, the API files and the OPT files, links the LOPT, the Coherence for C++ shared
library, the generated object files, and the OUT files. It finishes by deleting the object
files. A sample run of the build. cmd file is illustrated in Example 7-1.

Example 7-1 Sample Run of the build.cmd File

@echo off
setlocal

set EXAMPLE=%1%
if "SEXAMPLE$"=="" (
echo You must supply the name of an example to build.

goto exit

)

7-2 Oracle Coherence Client Guide

Configure Coherence*Extend

set OPT=/c /nologo /EHsc /Zi /RTCl /MD /GR /DWIN32
set LOPT=/NOLOGO /SUBSYSTEM:CONSOLE /INCREMENTAL :NO
set INC=/I%EXAMPLE% /Icommon /I..\include

set SRC=%EXAMPLE%*.cpp common*.cpp

set OUT=%EXAMPLE%\%EXAMPLES.exe

set LIBPATH=..\lib

set LIBS=%LIBPATH%\coherence.lib

echo building %$0UT% ...
cl %0PT% %INC% %SRC%
link %LOPT% $%LIBS% *.obj /OUT:%0UT%

del *.obj
echo To run this example execute 'run $EXAMPLE%$'

rexit

Configure Paths

Set up the configuration path to the Coherence for C++ library. This involves setting
an environment variable to point to the library. The name of the environment variable
and the file name of the library are different depending on your platform
environment. For a list of the environment variables and library names for each
platform, see Chapter 6, "Setting Up C++ Application Builds."

Configure Coherence*Extend

To configure Coherence*Extend, add the appropriate configuration elements to both
the cluster and client-side cache configuration descriptors. The cluster-side cache
configuration elements instruct a Coherence DefaultCacheServer to start a
Coherence*Extend clustered service that listens for incoming TCP/IP requests from
Coherence*Extend clients. The client-side cache configuration elements are used by the
client library connect to the cluster. The configuration specifies the IP address and port
of one or more servers in the cluster that run the Coherence*Extend clustered service
so that it can connect to the cluster. It also contains various connection-related
parameters, such as connection and request timeouts.

Configure Coherence*Extend in the Cluster

For a Coherence*Extend client to connect to a Coherence cluster, one or more
DefaultCacheServer JVMs within the cluster must run a TCP/IP Coherence*Extend
clustered service. To configure a DefaultCacheServer to run this service, a
proxy-scheme element with a child tcp-acceptor element must be added to the cache
configuration descriptor used by the DefaultCacheServer.

For example, the cache configuration descriptor in Example 7-2 defines two clustered
services, one that allows remote Coherence*Extend clients to connect to the Coherence
cluster over TCP/IP and a standard Partitioned cache service. Since this descriptor is
used by a DefaultCacheServer, it is important that the <autostart>
configuration element for each service is set to true so that clustered services are
automatically restarted upon termination. The proxy-scheme element has a
tcp-acceptor child element which includes all TCP /IP-specific information needed
to accept client connection requests over TCP/IP. The acceptor-config has also
been configured to use a ConfigurablePofContext for its serializer. The C++
Extend client requires the use of POF for serialization.

Configuration and Usage for C++ Clients 7-3

Configure Coherence*Extend

See Chapter 10, "Building Integration Objects (C++)" for more information on
serialization and PIF/POF.

The Coherence*Extend clustered service configured below listens for incoming
requests on the localhost address and port 9099. When, for example, a client
attempts to connect to a Coherence cache called dist-extend, the Coherence*Extend
clustered service proxies subsequent requests to the NamedCache with the same name
which, in this example, is a Partitioned cache.

Example 7-2 Cache Configuration for Two Clustered Services

<?xml version="1.0"?>

<cache-config xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
xsi:schemalLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
coherence-cache-config.xsd">
<caching-scheme-mapping>
<cache-mapping>
<cache-name>dist-*</cache-name>
<scheme-name>dist-default</scheme-name>
</cache-mapping>
</caching-scheme-mapping>

<caching-schemes>

<distributed-scheme>
<scheme-name>dist-default</scheme-name>
<lease-granularity>member</lease-granularity>
<backing-map-scheme>

<local-scheme/>

</backing-map-scheme>
<autostart>true</autostart>

</distributed-scheme>

<proxy-scheme>
<service-name>ExtendTcpProxyService</service-name>
<thread-count>5</thread-count>
<acceptor-config>
<tcp-acceptor>
<local-address>
<address>localhost</address>
<port>9099</port>
</local-address>
</tcp-acceptor>
<serializer>
<class-name>com. tangosol.io.pof.ConfigurablePofContext</class-name>
</serializer>
</acceptor-config>
<autostart>true</autostart>
</proxy-scheme>
</caching-schemes>
</cache-config>

Configuring Coherence*Extend on the Client

The key element within the Coherence*Extend client configuration is
<cache-config>. This element contains the path to a cache configuration descriptor
which contains the cache configuration. This cache configuration descriptor is used by
the DefaultConfigurableCacheFactory.

7-4 Oracle Coherence Client Guide

Configure Coherence*Extend

A Coherence*Extend client uses the information within an initiator-config cache
configuration descriptor element to connect to and communicate with a
Coherence*Extend clustered service running within a Coherence cluster.

For example, the cache configuration descriptor in Example 7-3 defines a caching
scheme that connects to a remote Coherence cluster. The remote-cache-scheme
element has a tcp-initiator child element which includes all TCP/IP-specific
information needed to connect the client with the Coherence*Extend clustered service
running within the remote Coherence cluster.

When the client application retrieves a named cache with CacheFactory using, for
example, the name dist-extend, the Coherence*Extend client connects to the
Coherence cluster by using TCP/IP (using the address 1ocalhost and port 9099)
and return a NamedCache implementation that routes requests to the NamedCache
with the same name running within the remote cluster. Note that the
remote-addresses configuration element can contain multiple socket-address
child elements. The Coherence*Extend client attempts to connect to the addresses in a
random order, until either the list is exhausted or a TCP/IP connection is established.

Example 7-3 A Caching Scheme that Connects to a Remote Coherence Cluster

<?xml version="1.0"?>

<cache-config xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
xsi:schemalocation="http://xmlns.oracle.com/coherence/coherence-cache-config
coherence-cache-config.xsd">
<caching-scheme-mapping>
<cache-mapping>
<cache-name>dist-extend</cache-name>
<scheme-name>extend-dist</scheme-name>
</cache-mapping>
</caching-scheme-mapping>

<caching-schemes>
<remote-cache-scheme>
<scheme-name>extend-dist</scheme-name>
<service-name>ExtendTcpCacheService</service-name>
<initiator-config>
<tcp-initiator>
<remote-addresses>
<socket-address>
<address>localhost</address>
<port>9099</port>
</socket-address>
</remote-addresses>
<connect-timeout>10s</connect-timeout>
</tcp-initiator>
<outgoing-message-handler>
<request-timeout>5s</request-timeout>
</outgoing-message-handler>
</initiator-config>
</remote-cache-scheme>
</caching-schemes>
</cache-config>

Configuration and Usage for C++ Clients 7-5

Configure Coherence*Extend

Defining a Local Cache for C++ Clients

A Local Cache is a cache that is local to (completely contained within) a particular C++
application. There are several attributes of the Local Cache that are particularly
interesting:

s The local cache implements the same interfaces that the remote caches implement,
meaning that there is no programming difference between using a local and a
remote cache.

s The Local Cache can be size-limited. Size-limited means that the Local Cache can
restrict the number of entries that it caches, and automatically evict entries when
the cache becomes full. Furthermore, both the sizing of entries and the eviction
policies can be customized, for example allowing the cache to be size-limited
based on the memory used by the cached entries. The default eviction policy uses
a combination of Most Frequently Used (MFU) and Most Recently Used (MRU)
information, scaled on a logarithmic curve, to determine what cache items to evict.
This algorithm is the best general-purpose eviction algorithm because it works
well for short duration and long duration caches, and it balances frequency versus
recentness to avoid cache thrashing. The pure LRU and pure LFU algorithms are
also supported, and the ability to plug in custom eviction policies.

s The Local Cache supports automatic expiration of cached entries, meaning that
each cache entry can be assigned a time-to-live value in the cache. Furthermore,
the entire cache can be configured to flush itself on a periodic basis or at a preset
time.

» The Local Cache is thread safe and highly concurrent.

s The Local Cache provides cache "get" statistics. It maintains hit and miss statistics.
These run-time statistics accurately project the effectiveness of the cache and are
used to adjust size-limiting and auto-expiring settings accordingly while the cache
is running.

The element for configuring the Local Cache is <local-scheme>. Local caches are
generally nested within other cache schemes, for instance as the front-tier of a
near-scheme. The <local-scheme> provides several optional subelements that let
you define the characteristics of the cache. For example, the <low-units> and
<high-units> subelements allow you to limit the cache in terms of size. When the
cache reaches its maximum allowable size, it prunes itself back to a specified smaller
size, choosing which entries to evict according to a specified eviction-policy
(<eviction-policy>). The entries and size limitations are measured in terms of
units as calculated by the scheme's unit-calculator (<unit-calculator>).

You can also limit the cache in terms of time. The <expiry-delay> subelement
specifies the amount of time from last update that entries are kept by the cache before
being marked as expired. Any attempt to read an expired entry results in a reloading
of the entry from the configured cache store (<cachestore-scheme>). Expired
values are periodically discarded from the cache based on the flush-delay.

If a <cache-store-scheme> is not specified, then the cached data only resides in
memory, and only reflect operations performed on the cache itself. See
<local-scheme> for a complete description of all of the available subelements.

Example 7-4 demonstrates a local cache configuration.

Example 7-4 Local Cache Configuration

<?xml version='1.0'?>

<cache-config xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

7-6 Oracle Coherence Client Guide

Configure Coherence*Extend

xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
xsi:schemalocation="http://xmlns.oracle.com/coherence/coherence-cache-config
coherence-cache-config.xsd">
<caching-scheme-mapping>
<cache-mapping>
<cache-name>example-local-cache</cache-name>
<scheme-name>example-local</scheme-name>
</cache-mapping>
</caching-scheme-mapping>
<caching-schemes>
<local-scheme>
<scheme-name>example-local</scheme-name>
<eviction-policy>LRU</eviction-policy>
<high-units>32000</high-units>
<low-units>10</low-units>
<unit-calculator>FIXED</unit-calculator>
<expiry-delay>10ms</expiry-delay>
<cachestore-scheme>
<class-scheme>
<class-name>ExampleCacheStore</class-name>
</class-scheme>
</cachestore-scheme>
<pre-load>true</pre-load>
</local-scheme>
</caching-schemes>
</cache-config>

Defining a Near Cache for C++ Clients

This section describes the Near Cache as it pertains to Coherence for C++ clients. For a
complete discussion of the concepts behind a Near Cache, its configuration, and ways
to keep it synchronized with the back tier, see "Configuring a Near Cache" in the
Oracle Coherence Developer’s Guide.

In Coherence for C++, the Near Cache is a coherence: :net: : NamedCache
implementation that wraps the front cache and the back cache using a
read-through/write-through approach. If the back cache implements the
ObservableCache interface, then the Near Cache can use either the listen None,
Present, All, or Auto strategy to invalidate any front cache entries that might have
been changed in the back cache.

A typical Near Cache is configured to use a local cache (thread safe, highly concurrent,
size-limited and possibly auto-expiring) as the front cache and a remote cache as a
back cache. A Near Cache is configured by using the near-scheme which has two child
elements: a front-scheme for configuring a local (front) cache and a back-scheme for
defining a remote (back) cache.

A Near Cache is configured by using the <near-scheme> element in the
coherence-cache-config file. This element has two required subelements:
front-scheme for configuring a local (front-tier) cache and a back-scheme for
defining a remote (back-tier) cache. While a local cache (<local-scheme>)isa
typical choice for the front-tier, you can also use non-JVM heap based caches,
(<external-scheme> or <paged-external-scheme>) or schemes based on Java
objects (<class-scheme>).

The remote or back-tier cache is described by the <back-scheme> element. A
back-tier cache can be either a distributed cache (<distributed-scheme>) or a
remote cache (<remote-cache-scheme>). The <remote-cache-scheme> element
enables you to use a clustered cache from outside the current cluster.

Configuration and Usage for C++ Clients 7-7

Configure Coherence*Extend

Optional subelements of <near-scheme> include <invalidation-strategy> for
specifying how the front-tier and back-tier objects are kept synchronized and
<listener> for specifying a listener which is notified of events occurring on the
cache.

Example 7-5 demonstrates a near cache configuration.

Example 7-5 Near Cache Configuration

<?xml version="1.0"?>

<cache-config xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
xsi:schemalLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
coherence-cache-config.xsd">
<caching-scheme-mapping>
<cache-mapping>
<cache-name>dist-extend-near</cache-name>
<scheme-name>extend-near</scheme-name>
</cache-mapping>
</caching-scheme-mapping>

<caching-schemes>
<near-scheme>
<scheme-name>extend-near</scheme-name>
<front-scheme>
<local-scheme>
<high-units>1000</high-units>
</local-scheme>
</front-scheme>
<back-scheme>
<remote-cache-scheme>
<scheme-ref>extend-dist</scheme-ref>
</remote-cache-scheme>
</back-scheme>
<invalidation-strategy>all</invalidation-strategy>
</near-scheme>

<remote-cache-scheme>
<scheme-name>extend-dist</scheme-name>
<service-name>ExtendTcpCacheService</service-name>
<initiator-config>
<tcp-initiator>
<remote-addresses>
<socket-address>
<address>localhost</address>
<port>9099</port>
</socket-address>
</remote-addresses>
<connect-timeout>10s</connect-timeout>
</tcp-initiator>
<outgoing-message-handler>
<request-timeout>5s</request-timeout>
</outgoing-message-handler>
</initiator-config>
</remote-cache-scheme>
</caching-schemes>
</cache-config>

7-8 Oracle Coherence Client Guide

Configuring and Using the Coherence for C++ Client Library

Connection Error Detection and Failover

When a Coherence*Extend client service detects that the connection between the client
and cluster has been severed (for example, due to a network, software, or hardware
failure), the Coherence*Extend client service implementation (that is, CacheService
or InvocationService) raises a MemberEventType.Left event (by using the
MemberEventHandler delegate)and the service is stopped. If the client
application attempts to subsequently use the service, the service automatically restarts
itself and attempt to reconnect to the cluster. If the connection is successful, the service
raises a MemberEventType . Joined event; otherwise, a irrecoverable error exception
is thrown to the client application.

A Coherence*Extend service has several mechanisms for detecting dropped
connections. Some mechanisms are inherit to the underlying protocol (such as TCP/IP
in Extend-TCP), whereas others are implemented by the service itself. The latter
mechanisms are configured by using the outgoing-message-handler
configuration element.

The primary configurable mechanism used by a Coherence*Extend client service to
detect dropped connections is a request timeout. When the service sends a request to
the remote cluster and does not receive a response within the request timeout interval
(see <request-timeout>), the service assumes that the connection has been
dropped. The Coherence*Extend client and clustered services can also be configured to
send a periodic heartbeat over the connection (see <heartbeat-interval> and
<heartbeat-timeout>). If the service does not receive a response within the
configured heartbeat timeout interval, the service assumes that the connection has
been dropped.

Obtaining a Cache Reference with C++

A reference to a configured Near Cache can be obtained by name by using the
coherence: :net: :CacheFactory class as follows:

NamedCache: :Handle hCache = CacheFactory::getCache("example-near-cache");

Cleaning up Resources Associated with a Cache

Instances of all NamedCache implementations should be explicitly released by calling
the NamedCache: : release () method when they are no longer needed, to free up
any resources they might hold.

If the particular NamedCache is used for the duration of the application, then the
resources are cleaned up when the application is shut down or otherwise stops.
However, if it is only used for a period, the application should call its release ()
method when finished using it.

Configuring and Using the Coherence for C++ Client Library

To use the Coherence for C++ library in your C++ applications, you must link
Coherence for C++ library with your application and provide a Coherence for C++
cache configuration and its location.

The location of the cache configuration file can be set by an environment variable
specified in the sample application section or programmatically.

Configuration and Usage for C++ Clients 7-9

Configuring and Using the Coherence for C++ Client Library

Setting the Configuration File Location with an Environment Variable

As described in "Setting the run-time Library and Search Path" on page 6-2, the
tangosol.coherence.cacheconfig system property specifies the location of the
cache configuration file. To set the configuration location on Windows execute:

c:\coherence_cpp\examples> set
tangosol.coherence.cacheconfig=config\extend-cache-config.xml

Setting the Configuration File Location Programmatically

You can set the location programmatically by using either
DefaultConfigurableCacheFactory: :create or

CacheFactory: :configure (using the CacheFactory: : loadXmlFile helper
method, if needed).

Example 7-6 Setting the Configuration File Location

static Handle coherence: :net::DefaultConfigurableCacheFactory: :create
(String::View vsFile = String::NULL_STRING)

The create method of the DefaultConfigurableCacheFactory class creates a
new Coherence cache factory. The vsFile parameter specifies the name and
location of the Coherence configuration file to load.

Example 7-7 Creating a Coherence Cache Factory

static void coherence: :net::CacheFactory: :configure (XmlElement::View vXmlCache,
XmlElement::View vXmlCoherence = NULL)

The configure method configures the CacheFactory and local member. The
vXmlCache parameter specifies an XML element corresponding to a
coherence-cache-config.xsd and vXmlCoherence specifies an XML element
corresponding to coherence-operational-config.xsd.

Example 7-8 Configuring a CacheFactory and a Local Member

static XmlElement::Handle coherence: :net::CacheFactory::loadXmlFile (String::View
vsFile)

The loadxmlFile method reads an Xm1Element from the named file. This method
does not configure the CacheFactory, but obtains a configuration which can be
supplied to the configure method. The parameter vsFile specifies the name of the
file to read from.

The C++ code in Example 7-9 uses the CacheFactory: : configure method to set
the location of the cache configuration files for the server/cluster
(coherence-extend-config.xml) and for the C++ client
(tangosol-operation-config.xml).

Example 7-9 Setting the Cache Configuration File Location for the Server/Cluster

// Configure the cache
CacheFactory: :configure (CacheFactory::loadXmlFile (String: :create("C:\coherence-ext
end-config.xml")),

CacheFactory: :loadXmlFile(String: :create("C:\tangosol-operation-config.xml")));

7-10 Oracle Coherence Client Guide

Operational Configuration File (tangosol-coherence-override.xml)

Operational Configuration File (tangosol-coherence-override.xml)

The operational configuration override file (called
tangosol-coherence-override.xml by default), controls the operational and
run-time settings used by Oracle Coherence to create, configure and maintain its
clustering, communication, and data management services. As with the Java client use
of this file is optional for the C++ client.

For a C++ client, the file specifies or overrides general operations settings for a
Coherence application that are not specifically related to caching. For a C++ client, the
key elements are for logging, the Coherence product edition, and the location and role
assignment of particular cluster members.

The operational configuration can be configured either programmatically or in the
tangosol-coherence-override.xml file. To configure the operational
configuration programmatically, specify an XML file that follows the
coherence-operational-config.xsd schema and contains an element in the
vXmlCoherence parameter of the CacheFactory: : configure method
(coherence: :net: :CacheFactory: :configure (View vXmlCache, View
vXmlCoherence)):

s license-config—The license-config element contains subelements that
allow you to configure the edition and operational mode for Coherence. The
edition-name subelement specifies the product edition (such as Grid Edition,
Enterprise Edition, Real Time Client, and so on) that the member uses. This allows
multiple product editions to be used within the same cluster, with each member
specifying the edition that it uses. Only the RTC (real time client) and DC (data
client) values are recognized for the Coherence for C++ client. The
license-config is an optional subelement of the coherence element, and
defaults to RTC.

s logging-config— The logging-config element contains subelements that
allow you to configure how messages are logged for your system. This element
enables you to specify destination of the log messages, the severity level for logged
messages, and the log message format. The 1ogging-config is a required
subelement of the coherence element. For more information on logging, see
"Configuring a Logger" on page 7-12.

s member-identity—The member-identity element specifies detailed identity
information that is useful for defining the location and role of the cluster member.
You can use this element to specify the name of the cluster, rack, site, computer
name, role, and so on, to which the member belongs. The member-identity is
an optional subelement of the cluster-config element. Example 7-10
illustrates the contents of a sample tangosol-coherence.xmnl file.

Example 7-10 Sample Operational Configuration

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
xsi:schemalocation="http://xmlns.oracle.com/coherence/
coherence-operational-config coherence-operational-config.xsd">
<cluster-config>
<member-identity>
<site-name>extend site</site-name>
<rack-name>rack l</rack-name>
<machine-name>computer l</machine-name>
</member-identity>

Configuration and Usage for C++ Clients 7-11

Configuring a Logger

</cluster-config>

<logging-config>
<destination>stderr</destination>
<severity-level>5</severity-level>
<message-format> (thread={thread}): {text}</message-format>
<character-1limit>8192</character-limit>

</logging-config>

<license-config>
<edition-name>RTC</edition-name>
<license-mode>prod</license-mode>
</license-config>
</coherence>

Operational Configuration Elements provides more detailed information on the
operational configuration file and the elements that it can define.

Configuring a Logger

The Logger is configured using the 1ogging-config element in the operational
configuration file. The element provides the following attributes that can record
detailed information about logged errors.

= destination—determines the type of LogOutput used by the Logger. Valid
values are:

s stderr for Console.Error
s stdout for Console.Out
= file path if messages should be directed to a file

s severity-level—determines the log level that a message must meet or exceed
to be logged.

= message-format—determines the log message format.

s character-limit—determines the maximum number of characters that the
logger daemon processes from the message queue before discarding all remaining
messages in the queue. Example 7-11 illustrates an operational configuration that
contains a logging configuration. For more information on operational
configuration, see "Operational Configuration File
(tangosol-coherence-override.xml)" on page 7-11.

Example 7-11 Operational Configuration File that Includes a Logger

<?xml version='1.0'?>

<coherence xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns="http://xmlns.oracle.com/coherence/coherence-operational-config"
xsi:schemalocation="http://xmlns.oracle.com/coherence/
coherence-operational-config coherence-operational-config.xsd">
<logging-config>
<destination>stderr</destination>
<severity-level>5</severity-level>
<message-format> (thread={thread}): {text}</message-format>
<character-1imit>8192</character-limit>
</logging-config>
</coherence>

7-12 Oracle Coherence Client Guide

Launching a Coherence DefaultCacheServer Proxy

Launching a Coherence DefaultCacheServer Proxy

To start a DefaultCacheServer that uses the cluster-side Coherence cache
configuration described earlier to allow Coherence for C++ clients to connect to the
Coherence cluster by using TCP/IP, you must do the following:

1. Change the current directory to the Oracle Coherence library directory
($COHERENCE_HOME%\1ib on Windows and $COHERENCE_HOME/1ib on
UNIX).

2. Make sure that the paths are configured so that the Java command runs.

3. Start the DefaultCacheServer using the command line below:

Example 7-12 Sample Command to Start the DefaultCacheServer

java -cp coherence.jar -Dtangosol.coherence.cacheconfig=file://<path to the
server-side cache configuration descriptor>
com. tangosol.net.DefaultCacheServer

Configuration and Usage for C++ Clients 7-13

Launching a Coherence DefaultCacheServer Proxy

7-14 Oracle Coherence Client Guide

8

Understanding the Coherence for C++ API

The Coherence for C++ API allows C++ applications to access Coherence clustered
services, including data, data events, and data processing from outside the Coherence
cluster.

Documentation of the Coherence for C++ APl is available in two locations. The Oracle
Coherence C++ API Reference and also in the doc directory of the Coherence for C++
distribution.

The following sections are included in this chapter:

CacheFactory

CacheFactory
NamedCache
QueryMap
ObservableMap
InvocableMap
Filter

Value Extractors
Entry Processors

Entry Aggregators

CacheFactory provides several static methods for retrieving and releasing
NamedCache instances:

NamedCache: :Handle getCache (String: :View vsName)—retrieves a
NamedCache implementation that corresponds to the NamedCache with the
specified name running within the remote Coherence cluster.

void releaseCache (NamedCache: :Handle hCache)—releases all local
resources associated with the specified instance of the cache. After a cache is
released, it can no longer be used. The content of the cache, however, is not
affected.

void destroyCache (NamedCache: :Handle hCache)—destroys the
specified cache across the Coherence cluster.

Understanding the Coherence for C++ APl 8-1

NamedCache

NamedCache

QueryMap

A NamedCache is a map of resources shared among members of a cluster. The
NamedCache provides several methods used to retrieve the name of the cache and the
service, and to release or destroy the cache:

m String::View getCacheName ()—returns the name of the cache as a String.

m CacheService::Handle getCacheService ()—returns a handle to the
CacheService that this NamedCache is a part of.

s bool isActive ()—specifies whether this NamedCache is active.

m void release ()—releases the local resources associated with this instance of
the NamedCache. The cache is no longer usable, but the cache contents are not
affected.

s void destroy ()—releases and destroys this instance of the NamedCache.

NamedCache interface also extends the following interfaces: QueryMap,
InvocableMap, ConcurrentMap, CacheMap and ObservableMap.

A QueryMap can be thought of as an extension of the Map class with additional query
features. These features allow the ability to query a cache using various filters. Filters
are described in "Filter" on page 8-4.

s Set::ViewkeySet(Filter::View vFilter)—returns a set of the keys
contained in this map for entries that satisfy the criteria expressed by the filter.

m Set::View entrySet(Filter::View vFilter)—returns a set of the entries
contained in this map that satisfy the criteria expressed by the filter. Each element
in the returned set is a Map: : Entry object.

m Set::View entrySet (Filter::View vFilter, Comparator::View
vComparator)—returns a set of the entries contained in this map that satisfy the
criteria expressed by the filter. Each element in the returned set is a Map: : Entry
object. This version of entrySet further guarantees that its iterator traverses the
set in ascending order based on the entry values which are sorted by the specified
Comparator or according to the natural ordering.

Additionally, the QueryMap class includes the ability to add and remove indexes.
Indexes are used to correlate values stored in the cache to their corresponding keys
and can dramatically increase the performance of the keySet and entrySet
methods.

s voidaddIndex(ValueExtractor::View vExtractor, boolean_t
fOrdered, Comparator::View vComparator)—adds an index to this
QueryMap. The index correlates values stored in this indexed Map (or attributes of
those values) to the corresponding keys in the indexed Map and increase the
performance of keySet and entrySet methods.

s void removeIndex (ValueExtractor::View vExtractor)—removes an
index from this QueryMap.

See "Querying a Cache (C++)" on page 12-1 for a more in depth look at queries. See
also the C++ examples in "Simple Queries" on page 12-2

8-2 Oracle Coherence Client Guide

InvocableMap

ObservableMap

An ObservableMap provides an application with the ability to listen for cache
changes. Applications that implement ObservableMap can add key and filter
listeners to receive events from any cache, regardless of whether that cache is local,
partitioned, near, replicated, using read-through, write-through, write-behind,
overflow, disk storage, and so on. ObservableMap also provides methods to remove
these listeners.

s void addKeyListener (MapListener::Handle hListener,
Object::View vKey, bool fLite)—addsa map listener for a specific key.

s void removeKeyListener (MapListener::Handle hListener,
Object::View vKey)—removes a map listener that previously signed up for
events about a specific key.

s void addFilterListener (MapListener::Handle hListener,
Filter::View vFilter = NULL, bool fLite = false)—addsamap
listener that receives events based on a filter evaluation.

s void removeFilterListener (MapListener::Handle hListener,
Filter::View vFilter = NULL)—removes a map listener that previously
signed up for events based on a filter evaluation.

See the C++ examples in "Signing Up for all Events" on page 14-5.

InvocableMap

An InvocableMap is a cache against which both entry-targeted processing and
aggregating operations can be invoked. The operations against the cache contents are
executed by (and thus within the localized context of) a cache. This is particularly
efficient in a distributed environment because it localizes processing: the processing of
the cache contents are moved to the location at which the entries-to-be-processed are
being managed. For more information about processors and aggregators, see "Entry
Processors" on page 8-5 and "Entry Aggregators" on page 8-6.

m Object::Holder invoke(Object::View vKey,
EntryProcessor: :Handle hAgent)—invokes the passed processor
(EntryProcessor) against the entry (Entry) specified by the passed key,
returning the result of the invocation.

m Map::View invokeAll (Collection::View vCollKeys,
EntryProcessor: :Handle hAgent)—invokes the passed processor
(EntryProcessor) against the entries (Entry objects) specified by the passed
keys, returning the result of the invocation for each.

m Map::View invokeAll (Filter::View vFilter,
EntryProcessor: :Handle hAgent)—invokes the passed processor
(EntryProcessor) against the entries (Entry objects) that are selected by the
given filter, returning the result of the invocation for each.

m Object::Holder aggregate(Collection::View vCollKeys,
EntryAggregator: :Handle hAgent)—performs an aggregating operation
against the entries specified by the passed keys.

m Object::Holder aggregate(Filter::View vFilter,
EntryAggregator: :Handle hAgent)—performs an aggregating operation
against the entries that are selected by the given filter.

Understanding the Coherence for C++ APl 8-3

Filter

Filter

Filter provides the ability to filter results and only return objects that meet a given set
of criteria. All filters must implement Filter. Filters are commonly used with the
QueryMap API to query the cache for entries that meet a given criteria. See also
"QueryMap" on page 8-2.

s bool evaluate(Object::View v)—applies a test to the specified object and

returns true if the test passes, false otherwise.

Coherence for C++ includes many concrete Filter implementations in the
coherence: :util:: filter namespace. Below are several commonly used filters:

= EqualsFilter is used to test for equality. To create an EqualsFilter to test
that an object equals 5:

Example 8—-1 Using the EqualsFilter Method

EqualsFilter::View vEqualsFilter =
EqualsFilter::create(IdentityExtractor::getInstance(), Integer32::valueOf(5));

m GreaterEqualsFilter is used to test a "Greater or Equals" condition. To create
a GreaterEqualsFilter that tests that an objects value is >= 55:

Example 8-2 Using the GreaterEqualsFilter Method

GreaterEqualsFilter::View vGreaterEqualsFilter =
GreaterEqualsFilter: :create(IdentityExtractor::getInstance(),
Integer32::valueOf (55));

s LikeFilter is used for pattern matching. To create a LikeFilter that tests that
the string representation of an object begins with "Belg":

Example 8-3 Using the LikeFilter Method

LikeFilter::View vLikeFilter =
LikeFilter::create(IdentityExtractor::getInstance(), "Belg%");

Some filters combine two filters to create a compound condition.

= AndFilter is used to combine two filters to create an "AND" condition. To create
an AndFilter that tests that an objects value is greater than 10 and less than 20:

Example 8—-4 Using the AndFilter Method

AndFilter::View vAndFilter = AndFilter::create(

GreaterFilter: :create(IdentityExtractor::getInstance(),
Integer32::valueOf (10)),

LessFilter: :create(IdentityExtractor::getInstance(),
Integer32::valueOf (20)));

m OrFilter is used to combine two filters to create an "OR" condition. To create an
OrFilter that tests that an object’s value is less than 10 or greater than 20:

Example 8-5 Using the OrFilter Method

OrFilter::View vOrFilter = OrFilter::create(
LessFilter::create(IdentityExtractor::getInstance(),
Integer32::valueOf (10)),
GreaterFilter: :create(IdentityExtractor::getInstance(),
Integer32::valueOf (20)));

8-4 Oracle Coherence Client Guide

Entry Processors

Value Extractors

A value extractor is used to extract values from an object and to provide an identity for
the extraction. All extractors must implement ValueExtractor.

Note: All concrete extractor implementations must also explicitly
implement the hashCode and equals functions in a way that is
based solely on the object's serializable state.

Object: :Holder extract (Object::Holder ohTarget)—extracts the
value from the passed object.

bool equals (Object::View v)—compares the ValueExtractor with
another object to determine equality. Two ValueExtractor objects, vel and
ve2 are considered equal if and only if vel->extract (v) equals
ve2->extract (v) for all values of v.

size32_t hashCode () —determine a hash value for the ValueExtractor
object according to the general Object#hashCode () contract.

Coherence for C++ includes the following extractors:

ChainedExtractor—is a composite ValueExtractor implementation based
on an array of extractors. The extractors in the array are applied sequentially
left-to-right, so a result of a previous extractor serves as a target object for a next
one.

ComparisonValueExtractor—returns a result of comparison between two
values extracted from the same target.

IdentityExtractor—is a trivial implementation that does not actually extract
anything from the passed value, but returns the value itself.

KeyExtractor—is a special purpose implementation that serves as an indicator
that a query should be run against the key objects rather than the values.

MultiExtractor—is a composite ValueExtractor implementation based on an
array of extractors. All extractors in the array are applied to the same target object
and the result of the extraction is a List of extracted values.

ReflectionExtractor—extracts a value from a specified object property.

See the C++ examples in "Query Concepts" on page 12-3.

Entry Processors

An entry processor is an agent that operates against the entry objects within a cache.
All entry processors must implement EntryProcessor.

Object: :Holder process (InvocableMap: :Entry: :Handle
hEntry)—process the specified entry.

Map: :View processAll (Set::View vSetEntries)—process a collection of
entries.

Coherence for C++ includes several EntryProcessor implementations in the
coherence: :util: :processor namespace.

See the hellogrid C++ example in Chapter 16, "Sample C++ Application."

Understanding the Coherence for C++ APl 8-5

Entry Aggregators

Entry Aggregators

An entry aggregator represents processing that can be directed to occur against some
subset of the entries in an InvocableMap, resulting in an aggregated result. Common
examples of aggregation include functions such as minimum, maximum, sum, and
average. However, the concept of aggregation applies to any process that must
evaluate a group of entries to come up with a single answer. Aggregation is explicitly
capable of being run in parallel, for example in a distributed environment.

All aggregators must implement the EntryAggregator interface:

m Object::Holder aggregate(Collection::View vCollKeys)—
processes a collection of entries to produce an aggregate result.

Coherence for C++ includes several EntryAggregator implementations in the
coherence: :util: :aggregator namespace.

Note: Like cached value objects, all custom Filter,
ValueExtractor, EntryProcessor, and EntryAggregator
implementation classes must be correctly registered in the POF
context of the C++ application and cluster-side node to which the
client is connected. As such, corresponding Java implementations of
the custom C++ types must be created, compiled, and deployed on the
cluster-side node. Note that the actual execution of these custom types
is performed by the Java implementation and not the C++
implementation. See Chapter 10, "Building Integration Objects (C++),"
for additional details.

8-6 Oracle Coherence Client Guide

9

Using the Coherence C++ Object Model

The Coherence Extend C++ API contains a robust C++ object model. The object model
is the foundation on which Coherence for C++ is built.

The following sections are included in this chapter:
= Using the Object Model

s Writing New Managed Classes

= Diagnostics and Troubleshooting

= Application Launcher - Sanka

Using the Object Model

The following sections contains general information for writing code which uses the
object model.

Coherence Namespaces

This coherence namespace contains the following general purpose namespaces:
= coherence: : lang—the essential classes that comprise the object model

= coherence: :util—utility code, including collections

m coherence: :net—network and cache

s coherence: :st1—C++ Standard Template Library integration

m coherence: : io—serialization

Although each class is defined within its own header file, you can use
namespace-wide header files to facilitate the inclusion of related classes. As a best
practice include, at a minimum, coherence/lang.ns in code that uses this object
model.

Understanding the Base Object

The coherence: :lang: : Object class is the root of the class hierarchy. This class
provides the common interface for abstractly working with Coherence class instances.
Object is an instantiable class that provides default implementations for the following
functions.

m equals

s hashCode

Using the Coherence C++ Object Model 9-1

Using the Object Model

= clone (optional)
s toStream (thatis, writing an Object to an std: : ostream)

See coherence: : lang: :0Object in the C++ API for more information.

Automatically Managed Memory

In addition to its public interface, the Object class provides several features used
internally. Of these features, the reference counter is perhaps the most important. It
provides automatic memory management for the object. This automatic management
eliminates many of the problems associated with object reference validity and object
deletion responsibility. This management reduces the potential of programming errors
which may lead to memory leaks or corruption. This results in a stable platform for
building complex systems.

The reference count, and other object "life-cycle" information, operates in an efficient
and thread-safe manner by using lock-free atomic compare-and-set operations. This
allows objects to be safely shared between threads without the risk of corrupting the
count or of the object being unexpectedly deleted due to the action of another thread.

Referencing Managed Objects

To track the number of references to a specific object, there must be a level of
cooperation between pointer assignments and a memory manager (in this case the
object). Essentially the memory manager must be informed each time a pointer is set to
reference a managed object. Using regular C++ pointers, the task of informing the
memory manager would be left up to the programmer as part of each pointer
assignment. In addition to being quite burdensome, the effects of forgetting to inform
the memory manager would lead to memory leaks or corruption. For this reason the
task of informing the memory manager is removed from the application developer,
and placed on the object model, though the use of smart pointers. Smart pointers offer a
syntax similar to normal C++ pointers, but they do the bookkeeping automatically.

The Coherence C++ object model contains a variety of smart pointer types, the most
prominent being:

= View—A smart pointer that can call only const methods on the referenced object

» Handle—A smart pointer that can call both const and non-const methods on
the referenced object.

s Holder—A special type of handle that enables you to reference an object as either
const or non-const. The holder remembers how the object was initially
assigned, and returns only a compatible form.

Other specialized smart pointers are described later in this section, but the View,
Handle, and Holder smart pointers are used most commonly.

Note: In this documentation, the term handle (with a lowercase "h")
refers to the various object model smart pointers. The term Handle
(with an uppercase "H") refers to the specific Handle smart pointer.

Using handles

By convention each managed class has these nested-types corresponding to these
handles. For instance the managed coherence: :lang: : String class defines
String::Handle, String: :View, String: :Holder.

9-2 Oracle Coherence Client Guide

Using the Object Model

Assignment of handles Assignment of handles follows normal inheritance assignment
rules. That is, a Handle may be assigned to a View, but a View may not be assigned to
a Handle, just like a const pointer cannot be assigned to a non-const pointer.

Dereferencing handles When dereferencing a handle that references NULL, the system
throws a coherence: :lang: :NullPointerException instead of triggering a
traditional segmentation fault.

For example, this code would throw a NullPointerException if hs == NULL:

String::Handle hs = getStringFromElsewhere() ;
cout << "length is " << hs->length() << endl;

Managed Object Instantiation

All managed objects are heap allocated. The reference count—not the
stack—determines when an object can be deleted. To prevent against accidental
stack-based allocations, all constructors are marked protected, and public factory
methods are used to instantiate objects.

The factory method is named create and there is one create method for each
constructor. The create method returns a Handle rather than a raw pointer. For
example, the following code creates a new instance of a string:

String::Handle hs = String::create("hello world");

By comparison, these examples are incorrect and do not compile:

String str("hello world");
String* ps = new String("hello world");

Managed Strings

All objects within the model, including strings, are managed and extend from Object.
Instead of using char* or std: :string, the object model uses its own managed
coherence: :lang: : String class. The String class supports ASCII and the full
Unicode BML character set.

String Instantiation
String objects can easily be constructed from char* or std: : string strings, as

shown in these examples:

Example 9-1 Examples of Constructing String Objects

const char* pcstr = "hello world";
std:string stdstr (pcstr) ;
String::Handle hs = String::create(pcstr);

String::Handle hs2 = String::create(stdstr);

The managed string is a copy of the supplied string and contains no references or
pointers to the original. You can convert back, from a managed String to any other
string type, by using getCString () method. This returns a pointer to the original
const char*. Strings can also be created using the standard C++ << operator, when
coupled with the COH_TO_STRING macro.

Example 9-2 Constructing String Objects with the "<<" Operator

String::Handle hs = COH_TO_STRING("hello " << getName() << " it is currently " <<
getTime());

Using the Coherence C++ Object Model 9-3

Using the Object Model

Auto-Boxed Strings

To facilitate the use of quoted string literals, the String: :Handle and
String: :View support auto-boxing from const char*, and const std::string.
Auto-boxing allows the code shown in the prior samples to be rewritten:

Example 9-3 Autoboxing Examples

String::Handle hs = "hello world";
String::Handle hs2 = stdstr;

Auto-boxing is also available for other types. See coherence: :lang: : BoxHandle
for details.

Type Safe Casting

Handles are type safe, in the following example, the compiler does not allow you to
assign an Object: :Handle to a String: :Handle, because not all Objects are
Strings.

Object::Handle ho = getObjectFromSomewhere() ;
String::Handel hs = ho; // does not compile

However, Table 94 does compile, as all Strings are Objects.

Example 9-4 Type Safe Casting Examples

String::Handle hs = String::create("hello world");
Object::Handle ho = hs; // does compile

Down Casting

For situations in which you want to down-cast to a derived Object type, you must
perform a dynamic cast using the C++ RTTI (run-time type information) check and
ensure that the cast is valid. The Object model provides helper functions to ease the
syntax.

= cast<H> (o)—attempt to transform the supplied handle o to type H, throwing an
ClassCastException on failure

» instanceof<H> (o)—testif a cast of o to H is allowable, returning true for
success, or false for failure

These functions are similar to the standard C++ dynamic_cast<T>, but do not
require access to the raw pointer.

The following example shows how to down cast a Object: :Handle to a
String: :Handle:

Example 9-5 Down Casting Examples

Object::Handle ho = getObjectFromSomewhere () ;
String::Handle hs = cast<String::Handle> (ho);

The cast<H> function throws a coherence: : lang: :ClassCastException if the
supplied object was not of the expected type. The instanceof<H> function tests if an
Object is of a particular type without risking an exception being thrown. Such checks
or generally only needed for places where the actual type is in doubt.

Example 9-6 Object Type Checking with the instanceof<H> Function
Object::Handle ho = getObjectFromSomewhere() ;

9-4 Oracle Coherence Client Guide

Using the Object Model

if (instanceof<String: :Handle> (ho))
;tring::Handle hs = cast<String::Handle> (ho);

el;e if (instanceof<Integer32::Handle> (ho))
integer32::Hand1e hn = cast<Integer32::Handle> (ho);

}

else

{

Managed Arrays

Managed arrays are provided by using the coherence: : lang: : Array<T> template
class. In addition to being managed and adding safe and automatic memory
management, this class includes the overall length of the array, and bounds checked
indexing.

You can index an array by using its Handle's subscript operator, as shown in this
example:

Example 9-7 Indexing an Array

Array<int32_t>::Handle harr = Array<int32_t>::create(10);

int32_t nTotal = 0;

for (size32_t i = 0, ¢ = harr->length; 1 < c; ++1i)
{
nTotal += harr[i];
}

The object model supports arrays of C++ primitives and managed Objects. Arrays of
derived Object types are not supported, only arrays of Object, casting must be
employed to retrieve the derived handle type. Arrays of Objects are technically
Array<MemberHolder<Object> >, and defined to ObjectArray for easier
readability.

Collection Classes

The coherence: :util* namespace includes several collection classes and interfaces
that may be useful in your application. These include:

m coherence::util::Collection —interface

m coherence::util::List—interface

s coherence::util::Set—interface

m coherence::util: :Queue—interface

m coherence: :util: :Map—interface

m coherence::util::Arrays—implementation

» coherence::util::LinkedList—implementation
m coherence::util::HashSet—implementation

s coherence::util::DualQueue—implementation

Using the Coherence C++ Object Model 9-5

Using the Object Model

s coherence::util::HashSet—implementation

s coherence::util::SafeHashMap—implementation

s coherence::util::WeakHashMap—implementation

m coherence::util::IdentityHashMap—implementation
These classes also appear as part of the Coherence Extend APL

Similar to ObjectArray, Collections contain Object: :Holders, allowing them
to store any managed object instance type.

Example 9-8 Storing Managed Object Instances

Map: :Handle hMap = HashSet::create();
String::View vKey = "hello world";

hMap->put (vKey, Integer32::create(123));

Integer32::Handle hValue = cast<Integer32::Handle>(hMap->get (vKey));

Managed Exceptions

In the object model, exceptions are also managed objects. Managed Exceptions allow
caught exceptions to be held as a local variable or data member without the risk of
object slicing.

All Coherence exceptions are defined by using a throwable_spec and derive from
the coherence: :lang: : Exception class, which derives from Object. Managed
exceptions are not explicitly thrown by using the standard C++ throw statement, but
rather by using a COH_THROW macro. This macro sets stack information and then calls
the exception's raise method, which ultimately calls throw. The resulting thrown
object may be caught an the corresponding exceptions View type, or an inherited
View type. Additionally these managed exceptions may be caught as standard const
std: :exception classes. The following example shows a try/catch block with
managed exceptions:

Example 9-9 A Try/Catch Block with Managed Exceptions

try
{
Object::Handle h = NULL;
h->hashCode(); // trigger an exception
}

catch (NullPointerException::View e)
{
cerr << "caught" << e <<endl;
COH_THROW (e) ; // rethrow
}

Note: This exception could also have been caught as
Exception: :Viewor const std::exceptioné.

Object Immutability

In C++ the information of how an object was declared (such as const) is not available
from a pointer or reference to an object. For instance a pointer of type const Foo*,
only indicates that the user of that pointer cannot change the objects state. It does not

9-6 Oracle Coherence Client Guide

Writing New Managed Classes

indicate if the referenced object was actually declared const, and is guaranteed not to
change. The object model adds a run-time immutability feature to allow the
identification of objects which can no longer change state.

The Object class maintains two reference counters: one for Handles and one for
Views. If an object is referenced only from Views, then it is by definition immutable,
as Views cannot change the state, and Handles cannot be obtained from Views. The
isImmutable () method (included in the Object class) can test for this condition.
The method is virtual, allowing subclasses to alter the definition of immutable. For
example, String contains no non-const methods, and therefore has an isimmutable()
method that always returns true.

Note that when immutable, an object cannot revert to being mutable. You cannot cast
away const-ness to turn a View into a Handle as this would violate the proved
immutability.

Immutability is important with caching. The Coherence NearCache and
ContinuouQueryCache can take advantage of the immutability to determine if a
direct reference of an object can be stored in the cache or if a copy must be created.
Additionally, knowing that an object cannot change allows safe multi-threaded
interaction without synchronization.

Integrating Existing Classes into the Object Model

Frequently, existing classes must be integrated into the object model. A typical
example would be to store a data-object into a Coherence cache, which only supports
storage of managed objects. As it would not be reasonable to require that pre-existing
classes be modified to extend from coherence: : lang: : Object, the object model
provides an adapter which automatically converts a non-managed plain old C++ class
instance into a managed class instance at run time.

This is accomplished by using the coherence: : lang: : Managed<T> template class.
This template class extends from Object and from the supplied template parameter
type T, effectively producing a new class which is both an Object and a T. The new
class can be initialized from a T, and converted back to a T. The result is an easy to use,
yet very powerful bridge between managed and non-managed code.

See the API doc for coherence: : lang: :Managed for details and examples.

Writing New Managed Classes

The following section provides information necessary to write new managed classes,
that is, classes which extend from Object. The creation of new managed classes is
required when you are creating new EventListeners, EntryProcessors, or
Filter types. They are not required when you are working with existing C++ data
objects or making use of the Coherence C++ APL See the previous section for details
on integration non-managed classes into the object model.

Specification-Based Managed Class Definition

Specification-based definitions (specs) enable you to quickly define managed classes in
C++.

Specification-based definitions are helpful when you are writing your own
implementation of managed objects.

There are various forms of specs used to create different class types:

m class_spec—standard instantiatable class definitions

Using the Coherence C++ Object Model 9-7

Writing New Managed Classes

m cloneable_spec—<cloneable class definitions

» abstract_spec—non-instantiatable class definitions, with zero or more pure
virtual methods

» interface_spec—for defining interfaces (pure virtual, multiply inheritable
classes)

s throwable_spec—managed classes capable of being thrown as exceptions
Specs automatically define these features on the class being spec’d:

s Handles, Views, Holders

» static create () methods which delegate to protected constructors

= virtual clone () method delegating to the copy constructor

» virtual sizeOf () method based on : : sizeof ()

= super typedef for referencing the class from which the defined class derives

= inheritance from coherence: : lang: : Object, when no parent class is specified
by using extends<>

To define a class using specs, the class publicly inherits from the specs above. Each of
these specs are parametrized templates. The parameters are as follows:

= The name of the class being defined.

s The class to publicly inherit from, specified by using an extends<> statement,
defaults to extends<Object>

= This element is not supplied in interface_spec
= Except for extends<Object>, the parent class is not derived from virtually

= Alist of interfaces implemented by the class, specified by using an
implements<> statement

= Allinterfaces are derived from using public virtual inheritance
Note that the extends<> parameter is note used in defining interfaces.

Example 9-10 illustrates using interface_spec to define a Comparable interface:

Example 9-10 An Interface Defined by interface_spec

class Comparable
: public interface_spec<Comparable>
{
public:
virtual int32_t compareTo (Object::View v) const = 0;
}i

Example 9-11 illustrates using interface_spec to define a derived interface
Number:

Example 9-11 A Derived Interface Defined by interface_spec

class Number
: public interface_spec<Number,
implements<Comparable> >
{
public:
virtual int32_t getValue() const = 0;
Yi

9-8 Oracle Coherence Client Guide

Writing New Managed Classes

Next a cloneable_spec is used to produce an implementation. This is illustrated in
in Example 9-12.

Note: To support the auto-generated create methods, instantiatable
classes must declare the coherence: :lang: : factory<> template
as a friend. By convention this is the first statement within the class

body.

Example 9-12 An Implementation Defined by cloneable_spec

class Integer
: public cloneable_spec<Integer,
extends<Object>,
implements<Number> >
{
friend class factory<Integer>;

protected:
Integer (int32_t n)
: super (), m.n(n)

Integer (const Integer& that)
super (that), m_n(that.m n)

public:
virtual int32_t getValue() const

{

return m_n;

}

virtual int32_t compareTo (Object::View v) const

{

return getValue() - cast<Integer::View>(v)->getValue();

}

virtual void toStream(std::ostream& out) const

{
out << getValue();

}

private:
int32_t m_n;
}i

The class definition in Example 9-12 is the equivalent the non-spec based definitions
in Example 9-13.

Example 9-13 Defining a Class Without the use of specs
class Integer
: public virtual Object, public virtual Number

{
public:
typedef TypedHandle<const Integer> View; // was auto-generated

Using the Coherence C++ Object Model 9-9

Writing New Managed Classes

typedef TypedHandle<Integer>
typedef TypedHolder<Integer>

typedef super

Handle; // was auto-generated
Holder; // was auto-generated
Object; // was auto-generated

// was auto-generated

static Integer:

{

:Handle create(const int32_t& n)

return new Integer(n);

}

protected:

Integer (int32_t n)

super (), m_n(n)

Integer(const Integer& that)

public:

super (that), m_n(that.n)

virtual int32_t getValue() const

{

return m_n;

}

virtual int32_t compareTo (Object::View v) const

{

return getValue()

}

virtual void toStream(std::ostream& out)

{

- cast<Integer::View> (v)->getValue();

const

out << getValue();

}

// was auto-generated

virtual Object:
{

:Handle clone() const

return new Integer(*this);

}

// was auto-generated
virtual size32_t sizeOf () const

{
return
}
private:
int32_t m_n;
i

::sizeof (Integer);

Example 9-14 illustrates using the spec'd class:

Example 9-14 Using specs to Define a Class

Integer: :Handle hNuml =
Integer: :Handle hNum2 =

9-10 Oracle Coherence Client Guide

Integer: :create(123);
Integer: :create(456);

Writing New Managed Classes

if (hNuml->compareTo (hNum2) > 0)
{

std::cout << hNuml << " is greater then " << hNum2 << std::endl;

}

Equality, Hashing, Cloning, Immutability, and Serialization

Threading

Equality, Hashing, Cloning, Immutability, and Serialization all identify the state of an
object and generally have similar implementation concerns. Simply put, all data
members referenced in one of these methods, are likely referenced in all of the
methods. Conversely any data members which are not referenced by one, should
likely not be referenced by any of these methods.

Consider the simple case of a HashSet : : Entry, which contains the well known key
and value data members. These are to be considered in the equals method and would
likely be tested for equality by using a call to their own equals method rather than
through reference equality. If Entry also contains, as part of the implementation of
the HashSet, a handle to the next Entry within the HashSet's bucket and perhaps
also contains a handle back to the HashSet itself, should these be considered in equals
as well? Likely not, it would seem reasonable that comparing two entries consisting of
equal keys and values from two maps should be considered equal. Following this line
of thought the hashCode method on Entry would completely ignore data members
except for key and value, and hashCode would be computed using the results of its
key and value hashCode, rather then using their identity hashCode. that is, a deep
equality check in equals implies a deep hash in hashCode.

For clone, only the key and value (not all the data members) require cloning. To clone
the parent Map as part of clone, the Entry would make no sense and a similar
argument can be made for cloning the handle to the next Entry. This line of thinking
can be extended to the i sImmutable method, and to serialization as well. While it is
certainly not a hard and fast rule, it is worth considering this approach when
implementing any of these methods.

The object model includes managed threads, which allows for easy creation of
platform independent, multi-threaded, applications. The threading abstraction
includes support for creating, interrupting, and joining threads. Thread local storage is
available from the coherence: : lang: : ThreadlLocalreference class. Thread
dumps are also available for diagnostic and troubleshooting purposes. The managed
threads are ultimately wrappers around the system's native thread type, such as
POSIX or Windows Threads. This threading abstraction is used internally by
Coherence, but is available for the application, if necessary.

Example 9-15 illustrates how to create a Runnable instance and spawn a thread:

Example 9-15 Creating a Runnable Instance and Spawning a Thread

class HelloRunner
: public class_spec<HelloRunner,
extends<Object>,
implements<Runnable> >
{

friend class factory<HelloRunner>;
protected:

HelloRunner (int cReps)
: super (), m_cReps(cReps)

Using the Coherence C++ Object Model 9-11

Writing New Managed Classes

public:
virtual void run()

{

for (int 1 = 0; 1 < m_Reps; ++1)
{
Thread: :sleep(1000) ;
std::cout << "hello world" << std::endl;
}

}

protected:
int m_cReps;

}i

Thread: :Handle hThread = Thread::create(HelloRunner: :create(10));
hThread->start () ;
hThread->join();

Refer to coherence: : lang: : Thread and coherence: : lang: : Runnable for
more information.

Weak References

The primary functional limitation of a reference counting scheme is automatic cleanup
of cyclical object graphs. Consider the simple bi-directional relationship illustrated in
Figure 9-1.

Figure 9-1 A Bi-Directional Relationship

In this picture, both A and B have a reference count of one, which keeps them active.
What they do not realize is that they are the only things keeping each other active, and
that no external references to them exist. Reference counting alone is unable to handle
these self sustaining graphs and memory would be leaked.

The provided mechanism for dealing with graphs is weak references. A weak
reference is one which references an object, but not prevent it from being deleted. As
illustrated in Figure 9-2, the A->B->A issue could be resolved by changing it to the
following.

Figure 9-2 Establishing a Weak Reference

Where A now has a weak reference to B. If B were to reach a point where it was only
referenced weakly, it would clear all weak references to itself and then be deleted. In

9-12 Oracle Coherence Client Guide

Writing New Managed Classes

this simple example that would also trigger the deletion of A, as B had held the only
reference to A.

Weak references allow for construction of more complicated structures then this. But it
becomes necessary to adopt a convention for which references are weak and which are
strong. Consider a tree illustrated in Figure 9-3. The tree consists of nodes A, B, C; and
two external references to the tree X, and Y.

Figure 9-3 Weak and Strong References to a Tree

3
0 U

In this tree parent (A) use strong references to children (B, C), and children use weak
references to their parent. With the picture as it is, reference Y could navigate the
entire tree, starting at child B, and moving up to A, and then down to C. But what if
reference X were to be reset to NULL? This would leave A only being weakly
referenced and it would clear all weak references to itself, and be deleted. In deleting
itself there would no longer be any references to C, which would also be deleted. At
this point reference Y, without having taken any action would now refer to the
situation illustrated in Figure 9—4.

Figure 9—4 Artifacts after Deleting the Weak References

4

W

| ll".--—--\.:“I
— 2
b _/]

This is not necessarily a problem, just a possibility which must be considered when
using weak references. To work around this issue, the holder of Y would also likely
maintain a reference to A to ensure the tree did not dissolve away unexpectedly.

See the Javadoc for coherence: : lang: :WeakReference, WeakHandle, and
WeakView for usage details.

Virtual Constructors

As is typical in C++, referencing an object under construction can be dangerous.
Specifically references to this are to be avoided within a constructor, as the object
initialization has not yet completed. For managed objects, creating a handle to this
from the constructor usually causes the object to be destructed before it ever finishes
being created. Instead, the object model includes support for virtual constructors. The
virtual constructor onInit is defined by Object and can be overridden on derived
classes. This method is called automatically by the object model just after construction
completes, and just before the new object is returned from its static create method.
Within the onInit method, it is safe to reference this to call virtual functions and to
hand out references to the new object to other class instances. Any derived
implementation of onInit must include a call to super: :onInit () to allow the
parent class to also initialize itself.

Using the Coherence C++ Object Model 9-13

Writing New Managed Classes

Advanced Handle Types

In addition to the Handle and View smart pointers (discussed previously), the object
model contains several other specialized variants that can be used. For the most part
use of these specialized smart pointers is limited to writing new managed classes, and
they do not appear in normal application code.

Table 9-1 Advanced Handle Types Supported by Coherence for C++

Type
coherence:lang:TypedHandle<T>

coherence:lang:BoxHandle<T>
coherence:lang:TypedHolder<T>

coherence:lang:Immutable<T>

coherence:lang:WeakHandle<T>
coherence:lang:WeakView<T>
coherence:lang:WeakHolder<T>

coherence:lang:MemberHandle<T>
coherence:lang:MemberView<T>
coherence:lang:MemberHolder<T>

coherence:lang:FinalHandle<T>

coherence:lang:FinalView<T>

coherence:lang:FinalHolder<T>

Thread-safe?

Yes

Yes

Yes
Yes
Yes
Yes

Yes
Yes

View

Conditional
onT

Conditional
onT

Notes

The implementation of Handle and View

Allows automatic creating of managed
objects from primitive types.

May act as a Handle or a View. Basic
types stored in collections

Ensures const-ness of referring object.

Does not prevent destruction of referring
object.

Does not prevent destruction of referring
object.

Does not prevent destruction of referring
object.

Transfers const-ness of enclosing object.
Thread-safe View.
May act a thread-safe Handle or View.

Thread-safe const transferring read-only
Handle.

Thread-safe read-only View.

May act a thread-safe read-only Handle
or View.

Thread Safety

Although the base Object class is thread-safe, this cannot provide automatic thread
safety for the state of derived classes. As is typical it is up to each individual derived
class implementation to provide for higher level thread-safety. The object model
provides some facilities to aid in writing thread-safe code.

Synchronization and Notification

Every Object in the object model can be a point of synchronization and notification.
To synchronize an object and acquire its internal monitor, use a COH_SYNCHRONIZED

macro code block, as shown in Example 9-16:

Example 9-16 A Sample COH_SYNCHRONIZED Macro Code Block

SomeClass: :Handle h = getObjectFromSomewhere() ;

COH_SYNCHRONIZED

{

(h)

// monitor of Object referenced by h has been acquired

if (h->checkSomeState())

9-14 Oracle Coherence Client Guide

Writing New Managed Classes

{
h->actOnThatState() ;

}

} // monitor is automatically released

The COH_SYNCHRONIZED block performs the monitor acquisition and release. You can
safely exit the block with return, throw, COH_THROW, break, continue, and goto
statements.

The Object class includes wait (), wait (timed), notify (), and notifyAll ()
methods for notification purposes. To call these methods, the caller must have
acquired the Objects's monitor. Refer to coherence: :lang: : Object for details.

Read-write locks are also provided, see coherence: :util: : ThreadGate for
details.

Thread Safe Handles

The Handle, View, and Holder nested types defined on managed classes are
intentionally not thread-safe. That is it is not safe to have multiple threads share a
single handle. There is an important distinction here: thread-safety of the handle is
being discussed not the object referenced by the handle. It is safe to have multiple
distinct handles that reference the same object from different threads without
additional synchronization.

This lack of thread-safety for these handle types offers a significant performance
optimization as the vast majority of handles are stack allocated. So long as references
to these stack allocated handles are not shared across threads, there is no thread-safety
issue to be concerned with.

Thread-safe handles are needed any time a single handle may be referenced by
multiple threads. Typical cases include:

= Global handles - using the standard handle types as global or static variable is not
safe.

= Non-managed multi-threaded application code - Use of standard handles within
data structures which may be shared across threads is unsafe.

= Managed classes with handles as data members - It should be assumed that any
instance of a managed class may be shared by multiple threads, and thus using
standard handles as data members is unsafe. Note that while it may not be strictly
true that all managed classes may be shared across threads, if an instance is passed
to code outside of your explicit control (for instance put into a cache), there is no
guarantee that the object is not visible to other threads.

The use of standard handles should be replaced with thread-safe handles in such
cases. The object model includes the following set of thread-safe handles.

m coherence: :lang: :MemberHandle<T>—thread-safe version of T: :Handle
m coherence: :lang: :MemberView<T>—thread-safe version of T: : View
m coherence: :lang: :MemberHolder<T>—thread-safe version of T: :Holder

m coherence: :lang: :FinalHandle<T>—thread-safe final version of
T::Handle

m coherence: :lang: :FinalView<T>—thread-safe final version of T: : View

m coherence::lang: :FinalHolder<T>—thread-safe final version of
T::Holder

m coherence: :lang: :WeakHandle<T>—thread-safe weak handle to T

Using the Coherence C++ Object Model 9-15

Writing New Managed Classes

m coherence: :lang: :WeakView<T>—thread-safe weak view to T
m coherence: :lang: :WeakHolder<T>—thread-safe weak T: :Holder

These handle types may be read and written from multiple thread without the need
for additional synchronization. They are primarily intended for use as the
data-members of other managed classes, each instance is provided with a reference to
a guardian managed Object. The guardian's internal thread-safe atomic state is used
to provide thread-safety to the handle. When using these handle types it is
recommended that they be read into a normal stack based handle if they are
continually accessed within a code block. This assignment to a standard stack based
handle is thread-safe, and, after completed, allows for essentially free dereferencing of
the stack based handle. Note that when initializing thread-safe handles a reference to a
guardian Object must be supplied as the first parameter, this reference can be
obtained by calling self () on the enclosing object.

Example 9-17 illustrates a trivial example:

Example 9-17 Thread-safe Handle
class Employee
: public class_spec<Employee>

{

friend class factory<Employee>;

protected:
Employee (String::View vsName, int32_t nId)
: super (), m_vsName(self(), vsName), m nId(nId)
{
}
public:

String::View getName() const
{
return m_vsName; // read is automatically thread-safe

}

void setName (String::View vsName)
{
m_vsName = vsName; // write is automatically thread-safe

}

int32_t getId() const
{

return m_nId;

}

private:
MemberView<String> m_vsName;
const int32_t m _nId;

}i

The same basic technique can be applied to non-managed classes as well. Since
non-managed classes do not extend coherence: : lang: : Object, they cannot be
used as the guardian of thread-safe handles. It is possible to use another Object as
the guardian. However, it is crucial to ensure that the guardian ObJject outlives the
guarded thread-safe handle. When using another object as the guardian, obtain a
random immortal guardian from coherence: : lang: : System through a call to
System: : common () as illustrated in Example 9-18:

9-16 Oracle Coherence Client Guide

Writing New Managed Classes

Example 9-18 Thread-safe Handle as a Non-Managed Class

class Employee

{

public:
Employee (String::View vsName, int32_t nId)
: m_vsName (System: :common (), vsName), m_nId(nId)
{
}
public:

String::View getName() const
{

return m_vsName;

}

void setName (String::View vsName)

{

m_vsName = vsName;

}

int32_t getId() const
{

return m_nId;

}

private:
MemberView<String> m_vsName;
const int32_t m nId;

Y

When writing managed classes it is preferable to obtain a guardian through a call to
self () thento System: : common ().

Note: In the rare case that one of these handles is declared through
the mutable keyword, it must be informed of this fact by setting
fMutable to true during construction.

Thread-safe handles can also be used in non-class shared data as well. For example,
global handles:

MemberView<NamedCache> MY_CACHE (System: :common ()) ;
int main(int argc, char** argv)

{
MY_CACHE = CacheFactory::getCache(argv[0]);

}

Escape Analysis

The object model includes escape analysis based optimizations. The escape analysis is
used to automatically identify when a managed object is only visible to a single thread
and in such cases optimize out unnecessary synchronizations. The following types of
operations are optimized for non-escaped objects.

= reference count updates

s COH_SYNCHRONIZED acquisition and release

Using the Coherence C++ Object Model 9-17

Writing New Managed Classes

s reading/writing of thread-safe handles
= reading of thread-safe handles from immutables

Escape analysis is automatic and is completely safe so long as you follow the rules of
using the object model. Most specifically is that it is not safe to pass a managed object
between threads without using a provided thread-safe handle. Passing it by an
external mechanism does not allow escape analysis to identify the "escape" which
could cause memory corruption or other run-time errors.

Shared handles Each managed class type includes nested definitions for a Handles,
View, and Holder. These handles are used extensively throughout the Coherence API,
and is application code. They are intended for use as stack based references to
managed objects. They are not intended to be made visible to multiple threads. That is
a single handle should not be shared between two or more threads, though it is safe to
have a managed Object referenced from multiple threads, so long as it is by distinct
Handles, or a thread-safe MemberHandle/View /Holder.

It is important to remember that global handles to managed Objects should be
considered to be "shared", and therefore must be thread-safe, as demonstrated
previously. The failure to use thread-safe handles for globals causes escaped objects to
not be properly identified leading to memory corruption.

In 3.4 these non thread-safe handles could be shared across threads so long as external
synchronization was employed, or if the handles were read-only. In 3.5 and later this
is no longer true, even when used in a read-only mode or enclosed within external
synchronization these handles are not thread-safe. This is due to a fundamental
change in implementation which drastically reduces the cost of assigning one handle
to another, which is an operation which occurs constantly. Any code which was using
handles in this fashion should be updated to make use of thread-safe handles. See
"Thread Safe Handles" on page 9-15 for more information.

Const Correctness Coherence escape analysis, among other things, leverages the
computed mutability of an object to determine if state changes on data members are
still possible. Namely, when an object is only referenced from views, it is assumed that
its data members do not undergo further updates. The C++ language provides some
mechanisms to bypass this const-only access and allow mutation from const methods.
For instance, the use of the mutable keyword in a data member declaration, or the
casting away of constness. The arguably cleaner and supported approach for the object
model is the mutable keyword. For the Coherence object model, when a thread-safe
data member handle is declared as mutable this information must be communicated to
the data member. All thread-safe data members support an optional third parameter
fMutable which should be set to true if the data member has been declared with the
mutable keyword. This informs the escape analysis routine to not consider the data
member as "const" when the enclosing object is only referenced using Views. Casting
away of the constness of managed object is not supported, and can lead to run time
errors if the object model believes that the object can no longer undergo state changes.

Thread-Local Allocator

Coherence for C++ includes a thread-local allocator to improve performance of
dynamic allocations which are heavily used within the API. By default, each thread
grows a pool to contain up to 64KB of reusable memory blocks to satisfy the majority
of dynamic object allocations. The pool is configurable using the following system
properties:

m tangosol.coherence.slot.size controls the maximum size of an object
which is considered for allocation from the pool, the default is 128 bytes. Larger

9-18 Oracle Coherence Client Guide

Diagnostics and Troubleshooting

objects call through to the system's malloc routine to obtain the required
memory.

m tangosol.coherence.slot.count controls the number of slots available to
each thread for handling allocations, the default is 512 slots. If there are no
available slots, allocations fall back on malloc.

m tangosol.coherence.slot.refill controls the rate at which slots misses
trigger refilling the pool. The default of 10000 causes 1/10000 pool misses to force
an allocation which is eligible for refilling the pool.

The pool allocator can be disabled by setting the size or count to 0.

Diagnostics and Troubleshooting

This section provides information which can aid in diagnosing issues in applications
which make use of the object mode.

Thread Dumps

Thread dumps are available for diagnostic and troubleshooting purposes. These
thread dumps also include the stack trace. You can generate a thread dump by
performing a CTRL+BREAK (Windows) or a CTRL+BACKSLASH (UNIX). Example 9-19
illustrates a sample thread dump:

Example 9-19 Sample Thread Dump

Thread dump Oracle Coherence for C++ v3.4b397 (Pre-release) (Apple Mac 0S X x86
debug) pid=0x£853; spanning 190ms

"main" tid=0x101790 runnable: <native>
at coherence::lang::0bject::wait(long long) const
at coherence::lang::Thread: :dumpStacks (std::ostream&, long long)
at main
at start

"coherence::util::logging: :Logger" tid=0x127eb0 runnable: Daemon{State=DAEMON_
RUNNING, Notification=false,
StartTimeStamp=1216390067197, WaitTime=0,
ThreadName=coherence: :util::logging: :Logger}
at coherence::lang::0bject::wait(long long) const
at coherence::component::util::Daemon: :onWait ()
at coherence::component::util::Daemon: :run/()
at coherence::lang::Thread::run()

Memory Leak Detection

While the managed object model reference counting helps prevent memory leaks they
are still possible. The most common way in which they are triggered is through
cyclical object graphs. The object model includes heap analysis support to help
identify if leaks are occurring, by tracking the number of live objects in the system.
Comparing this value over time provides a simple means of detecting if the object
count is consistently increasing, and thereby likely leaking. After a probable leak has
been detected, the heap analyzer can help track it down as well, by provided statistics
on what types of objects appeared to have leaked.

Coherence provides a pluggable coherence: : lang: : HeapAnalyzer interface. The
HeapAnalyzer implementation can be specified by using the

Using the Coherence C++ Object Model 9-19

Diagnostics and Troubleshooting

tangosol.coherence.heap.analyzer system property. The property can be set
to the following values:

= none—No heap analysis is performed. This is the default.

m object—The coherence: :lang: :0bjectCountHeapAnalyzer is used. It
provides simple heap analysis based solely on the count of the number of live
objects in the system.

s class—The coherence: :lang: :ClassBasedHeapAnalyzer is used. It
provides heap analysis at the class level, that is it tracks the number of live
instances of each class, and the associated byte level usage.

» alloc —Specialization of coherence: :lang: :ClassBasedHeapAnalyzer
which additionally tracks the allocation counts at the class level.

= custom—Lets you define your own analysis routines. You specify the name of a
class registered with the SystemClassLoader.

Heap information is returned when you perform a CTRL+BREAK (Windows) or
CTRL+BACKSLASH (UNIX).

Example 9-20 illustrates heap analysis information returned by the class-based
analyzer. It returns the heap analysis delta resulting from the insertion of a new entry
into a Map.

Example 9-20 Data Returned by a Heap Analyzer

Space Count Class

44 B 1 coherence: :lang: : Integer32

70 B 1 coherence: :lang: :String

132 B 1 coherence: :util::SafeHashMap: :Entry

Total: 246 B, 3 objects, 3 classes

Memory Corruption Detection

For all that the object model does to prevent memory corruption, it is typically used
along side non-managed code which could cause corruption. Therefore, the object
model includes memory corruption detection support. When enabled, the object
model's memory allocator pads the beginning and end of each object allocation by a
configurable number of pad bytes. This padding is encoded with a pattern which can
later be validated to ensure that the pad has not been touched. If memory corruption
occurs, and affects a pad, subsequent validations detect the corruption. Validation is
performed when the object is destroyed.

The debug version of the Coherence C++ API has padding enabled by default, using a
pad size of 2*(word size), on each side of an object allocation. In a 32-bit build, this
adds 16 bytes per object. Increasing the size of the padding increases the chances of
corruption affecting a pad, and thus the chance of detecting corruption.

The size of the pad can be configured by using the tangosol.coherence.heap.padding
system property, which can be set to the number of bytes for the pre/post pad. Setting
this system property to a nonzero value enables the feature, and is available even in
release builds.

Example 9-21 illustrates the results from an instance of memory corruption detection:
Example 9-21 Results from a Memory Corruption Run

Error during ~MemberHolder: coherence::lang::IllegalStateException: memory
corruption detected in 5B post-padding at offset 4 of memory allocated at 0x132095

9-20 Oracle Coherence Client Guide

Application Launcher - Sanka

Application Launcher - Sanka

Coherence uses an application launcher for invoking executable classes embedded
within a shared library. The launcher allows for a shared library to contain utility or
test executables without shipping individual standalone executable binaries.

Command line syntax

The launcher named sanka works similar to java, in that it is provided with one or
more shared libraries to load, and a fully qualified class name to execute.

ge: sanka [-options] <native class> [args...]

available options include:
-1 <native library list> dynamic libraries to load, separated by : or ;

-D<property>=<value> set a system property

-version print the Coherence version

-? print this help message

<native class> the fully qualified class. For example,

coherence: :net: :CacheFactory

The specified libraries must either be accessible from the operating system library path
(PATH, LD_LIBRARY_PATH, DYLD_LIBRARY_PATH), or they may be specified with an
absolute or relative path. Library names may also leave off any operating specific
prefix or suffix. For instance the UNIX 1ibfoo. so or Windows foo.d11 can be
specified simply as £oo. The Coherence shared library which the application was
linked against must be accessible from the system's library path as well.

Built-in Executables
Several utility executables classes are included in the Coherence shared library:
m coherence: :net: :CacheFactory runs the Coherence C++ console

m coherence::lang: :SystemClassLoader prints out the registered managed
classes

= coherence::io::pof::SystemPofContext prints out the registered POF
types
The later two executables can be optionally supplied with shared libraries to inspect,

in which case they output the registration which exists in the supplied library rather
then all registrations.

Note: The console which was formerly shipped as an example, is
now shipped as a built-in executable class.

Sample Custom Executable Class

Applications can of course still be made executable in the traditional C++ means using
a global main function. If desired you can make your own classes executable using
Sanka as well. The following is a simple example of an executable class:

#include "coherence/lang.ns"

COH_OPEN_NAMESPACE2 (my, test)

Using the Coherence C++ Object Model 9-21

Application Launcher - Sanka

using namespace coherence::lang;

class Echo
: public class_spec<Echo>

{
friend class factory<Echo>;

public:
static void main(ObjectArray: :View vasArg)
{
for (size32_t i = 0, ¢ = vasArg->length; i < c¢; ++1i)
{

std::cout << vasArg[i] << std::endl;

}

Yi
COH_REGISTER_EXECUTABLE_CLASS (Echo); // must appear in .cpp

COH_CLOSE_NAMESPACE?2

As you can see the specified class must have been registered as an ExecutableClass
and have a main method matching the following signature:

static void main(ObjectArray: :View)

The supplied ObjectArray parameter is an array of String: : View objects

corresponding to the command-line arguments which followed the executable class
name.

When linked into a shared library, for instance 1ibecho.so or echo.dl1l, the Echo
class can be run as follows:

> sanka -1 echo my::test::Echo Hello World
Hello
World

The Coherence examples directory includes a helper script buildlib for building
simple shared libraries.

9-22 Oracle Coherence Client Guide

10

Building Integration Objects (C++)

Enabling C++ clients to successfully store C++ based objects within a Coherence
cluster relies on a platform-independent serialization format known as POF (Portable
Object Format). POF allows value objects to be encoded into a binary stream in such a
way that the platform and language origin of the object is irrelevant. The stream can
then be deserialized in an alternate language using a similar POF-based class
definition. For more information on the POF binary stream, see Oracle Coherence
Developer’s Guide

While the Coherence C++ API includes several POF serializable classes, custom data
types require serialization support as described below.

Note: This document assumes familiarity with the Coherence C++
Object Model, including advanced concepts such as
specification-based class definitions. For more information on these
topics, see Chapter 9, "Using the Coherence C++ Object Model."

The following sections are included in this chapter:
s POF Intrinsics

= Serialization Options

= Using POF Object References

s Registering Custom C++ Types

s Implementing a Java Version of a C++ Object

s Understanding Serialization Performance

= Using POF Annotations to Serialize Objects

POF Intrinsics

The following types are internally supported by POF, and do not require special
handling by the user:

= String

s Integerl6 .. Integer64
s Float32, Float64

= Array<> of primitives

= ObjectArray

Building Integration Objects (C++) 10-1

Serialization Options

s Boolean
s Octet
m Characterl6

Additionally, automatic POF serialization is provided for classes implementing these
common interfaces:

= Map
s Collection

s Exception

Serialization Options

While the Coherence C++ API offers a single serialization format (POF), it offers a
variety of APIs for making a class serializable. Ultimately whichever approach is used,
the same binary POF format is produced. The following approaches are available for
making a class serializable:

» Use the Managed<T> adapter template, and add external free-function serializers.
See "Managed<T> (Free-Function Serialization)" on page 10-2 for more
information.

= Modify the data object to extend Object, and implement the PortableObject
interface, to allow for object to self-serialize. See "PortableObject
(Self-Serialization)" on page 10-5 for more information.

= Modify the data object to extend Object, and produce a PofSerializer class to
perform external serialization. See "PofSerializer (External Serialization)" on
page 10-7 for more information.

Table 10-1 lists some requirements and limitations of each approach.

Table 10-1 Requirements and Limitations of Serialization Options

Coherence Requires Supports External

headers in derivation from const serialization Requires zero-arg
Approach data-object Object data-members routine constructor
Managed<T> No No Yes Yes Yes
PortableObject ~ Yes Yes No No Yes
PofSerializer Yes Yes Yes Yes No

All of these approaches share certain similarities:

m Serialization routines that allow the data items to be encoded to POF must be
implemented.

» The data object's fields are identified by using numeric indexes.

= The data object class and serialization mechanism must be registered with
Coherence.

= Data objects used as cache keys must support equality comparisons and hashing.

Managed<T> (Free-Function Serialization)

For most pre-existing data object classes, the use of Managed<T> offers the easiest
means of integrating with Coherence for C++.

10-2 Oracle Coherence Client Guide

Serialization Options

For a non-managed class to be compatible with Managed<T> it must have the
following characteristics:

= zero parameter constructor (public or protected): CustomType::CustomType()

= copy constructor (public or protected): CustomType::CustomType(const
CustomType&)

= equality comparison operator: bool operator==(const CustomType&, const
CustomType&)

s std::ostreamoutput function: std::ostream&
operator<<(std: :ostream&, const CustomType&)

s hash function: size_t hash_value(const CustomType&)

The following example presents a simple Address class, which has no direct
knowledge of Coherence, but is suitable for use with the Managed<T> template.

Note: In the interest of brevity, example class definitions are in-lined
within the declaration.

Example 10-1 A Non-Managed Class

class Address
{
public:
Address(const std::string& sCity, const std::String& sState, int nZip)
: m_sCity(sCity), m_sState(sState), m nZip(nZip) {}

Address (const Address& that) // required by Managed<T>
: m_sCity(that.m_sCity), m_sState(that.m sState), m_nZip(that.m_nZip) {}

protected:
Address() // required by Managed<T>
: m_nZip(0) {}

public:
std::string getCity() const {return m_sCity;}
std::string getState() const {return m_sState;}
int getZip() const {return m_nZip;}

private:
const std::string m_sCity;
const std::string m_sState;
const int m_nzip;

}i

bool operator==(const Address& addra, const Address& addrb) // required by
Managed<T>

{

return addra.getZip() == addrb.getZip() &&
addra.getState() == addrb.getState() &&
addra.getCity() == addrb.getCity();

std::ostream& operator<<(std::ostream& out, const Address& addr) // required by
Managed<T>
{
out << addr.getCity() << ", " << addr.getState() << " " << addr.getZip();
return out;

Building Integration Objects (C++) 10-3

Serialization Options

size_t hash_value(const Address& addr) // required by Managed<T>

{
return (size_t) addr.getZip();

}

When combined with Managed<T>, this simple class definition becomes a true
"managed object", and is usable by the Coherence C++ API. This definition has yet to
address serialization. Serialization support is added Example 10-2:

Example 10-2 Managed Class using Serialization

#include "coherence/io/pof/SystemPofContext.hpp"
#include "Address.hpp"
using namespace coherence::io::pof;

COH_REGISTER_MANAGED_CLASS (1234, Address); // type ID registration—this must
// appear in the .cpp not the .hpp

template<> void serialize<Address> (PofWriter::Handle hOut, const Addressé& addr)
{
hOut->writeString (0, addr.getCity());
hOut->writeString(1l, addr.getState());
hOut->writeInt32 (2, addr.getZip());
}

template<> Address deserialize<Address>(PofReader: :Handle hIn)
{
std::string sCity = hIn->readString(0);
std::string sState = hIn->readString(1);
int nzip = hIn->readInt32 (2);
return Address(sCity, sState, nZip);
}

Note: The serialization routines must have knowledge of Coherence.
However, they are not required as part of the class definition file.
They can be placed in an independent source file, and if they are
linked into the final application, they take effect.

With the above pieces in place, Example 10-3 illustrates instances of the Address
class wrapped by using Managed<T> as Managed<Address>, and supplied to the
Coherence APIs:

Example 10-3 Instances of a Class Wrapped with Managed<T>

// construct the non-managed version as usual
Address office("Redwood Shores", "CA", 94065);

// the managed version can be initialized from the non-managed version
// the result is a new object, which does not reference the original
Managed<Address>: :View vOffice = Managed<Address>::create(office);
String::View vKey = "QOracle";

// the managed version is suitable for use with caches

10-4 Oracle Coherence Client Guide

Serialization Options

hCache->put (vKey, vAddr);
vOffice = cast<Managed<Address>::View> (hCache->get (vKey));

// the non-managed class's public methods/fields remain accessible

assert (vOffice->getCity() == office.getCity());
assert (vOffice->getState() == office.getState());
assert (vOffice->getZip() == office.getZip());

// conversion back to the non-managed type may be performed using the
// non-managed class's copy constructor.
Address officeOut = *vOffice;

PortableObject (Self-Serialization)

The PortableObject interface is similar in concept to java.io.Externalizable,
which allows an object to control how it is serialized. Any class which extends from
coherence: :lang: : Object is free to implement the

coherence: :10: :pof: :PortableObject interface to add serialization support.
Note that the class must extend from Object, which then dictates its life cycle.

In Example 104, the above Address example can be rewritten as a managed class,
and implement the PortableObject interface, which fully embraces the Coherence
object model as part of the definition of the class. For example, using

coherence: :lang: : String rather then std: : string for data members.

Example 10-4 A Managed Class that Inplements PortableObject

#include "coherence/lang.ns"

#include "coherence/io/pof/PofReader.hpp"
#include "coherence/io/pof/PofWriter.hpp"
#include "coherence/io/pof/PortableObject.hpp"

#include "coherence/io/pof/SystemPofContext.hpp"
using namespace coherence::lang;

using coherence::io0::pof::PofReader;
using coherence::io0::pof::Pofliriter;

class Address
: public cloneable_spec<Address,
extends<Object>,
implements<PortableObject> >
{

friend class factory<Address>;

protected: // constructors
Address (String::View vsCity, String::View vsState, int32_t nZip)
: m_vsCity(self(), vsCity), m_vsState(self(), vsState), m_nZip(nZip) {}

Address (const Address& that)
: super(that), m vsCity(self(), that.m vsCity), m_sState(self(),
that.m_vsState), m_nZip(that.m_nZip) {}

Address() // required by PortableObject
: m_nZip(0) {}

public: // Address interface
virtual String::View getCity() const {return m_vsCity;}

Building Integration Objects (C++) 10-5

Serialization Options

virtual String::View getState() const {return m_vsState;}
virtual int32 t getZip() const {return m_nZip;}

public: // PortableObject interface virtual void
writeExternal (PofWriter::Handle hOut) const
{
hOut->writeString (0, getCity());
hOut->writeString(1l, getState());
hOut->writeInt32 (2, getZip());

}

virtual void readExternal (PofReader::Handle hIn)
{
initialize(m_vsCity, hIn->readString(0))
initialize(m_vsState, hIn->readString(1)
= hIn->readInt32 (2);

)
m_nzip
}

public: // Objectinterface virtual bool equals(Object::View that) const
{
if (instanceof<Address::View> (that))

{

Address::View vThat = cast<Address::View>(that);

return getZip() == vThat->getZip() &&
Object::equals(getState(), vThat->getState()) &&
Object::equals(getCity (), vThat->getCity());

return false;

}

virtual size32_t hashCode() const

{

return (size32_t) m_nZip;

}

virtual void toStream(std::ostream& out) const

{
out << getCity() << ", " << getState() << " " << getZip();

}

private:
FinalView<String> m_vsCity;
FinalView<String> m_vsState;
const int32_tm_nZip;

}i
COH_REGISTER_PORTABLE_CLASS (1234, Address); // type ID registration—this must
// appear in the .cpp not the .hpp

Example 10-5 illustrates a managed variant of the Address that does not require the
use of the Managed<T> adapter and can be used directly with the Coherence API:

Example 10-5 A Managed Class without Managed<T>

Address::View vAddr = Address::create("Redwood Shores", "CA", 94065);
String::View vKey = "Oracle";

hCache->put (vKey, vAddr) ;
Address: :View vOffice = cast<Address::View> (hCache->get (vKey));

10-6 Oracle Coherence Client Guide

Serialization Options

Serialization by using PortableObject is a good choice when the application has
decided to make use of the Coherence object model for representing its data objects.
One drawback to PortableObject is that it does not easily support const data members,
as the readExternal method is called after construction, and must assign these
values.

PofSerializer (External Serialization)

The third serialization option is also the lowest level one. PofSerializers are
classes that provide the serialization logic for other classes. For example, an
AddressSerializer is written which can serialize a non-PortableObject version
of the above managed Address class. Under the covers the prior two approaches
were delegating through PofSerializers, they were just being created
automatically rather then explicitly. Typically, it is not necessary to use this approach,
as either the Managed<T> or PortableObject approaches suffice. This approach is
primarily of interest when you have a managed object with const data members.
Consider Example 10-6, a non-PortableObject version of a managed Address.

Example 10-6 A non-PortableObject Version of a Managed Class

#include "coherence/lang.ns"
using namespace coherence::lang;

class Address
: public cloneable_spec<Address> // extends<Object> is implied
{

friend class factory<Address>;

protected: // constructors
Address (String::View vsCity, String::View vsState, int32_t nZip)
: m_vsCity(self (), vsCity), m_vsState(self(), vsState), m nZip(nZip) {}

Address (const Addressé& that)
: super(that), m vsCity(self(), that.m vsCity), m_sState(self(), that.m_
vsState), m_nZip(that.m nZzip) {}

public: // Address interface
virtual String::View getCity() const {return m_vsCity;}
virtual String::View getState() const {return m_vsState;}
virtual int32_t getZip() const {return m_nZip;}

public: // Objectinterface
virtual bool equals(Object::View that) const
{
if (instanceof<Address::View> (that)

{
Address::View vThat = cast<Address::View>(that);

return getZip() == vThat->getZip() &&

Object::equals(getState(), vThat->getState()) &&
Object::equals(getCity(), vThat->getCity());

return false;

}

Building Integration Objects (C++) 10-7

Serialization Options

virtual size32_t hashCode() const
{
return (size32_t) m_nZip;

}

virtual void toStream(std::ostream& out) const

{
out << getCity() << ", " << getState() << " " << getZip();

}

private:
const MemberView<String> m_vsCity;
const MemberView<String> m_vsState;
const int32_t m_nzZip;

}i

Note that this version uses const data members, which makes it not well-suited for
PortableObject. Example 10-7 illustrates an external class, AddressSerializer,
which is registered as being responsible for serialization of Address instances.

Example 10-7 An External Class Responsible for Serialization

#include "coherence/lang.ns"

#include "coherence/io/pof/PofReader.hpp"
#include "coherence/io/pof/PofWriter.hpp"
#include "coherence/io/pof/PortableObject.hpp"
#include "coherence/io/pof/SystemPofContext.hpp"

#include "Address.hpp"
using namespace coherence::lang;

using coherence::io::pof::PofReader;
using coherence::io0::pof::Pofliriter;

class AddressSerializer
: public class_spec<AddressSerializer,
extends<Object>,
implements<PofSerializer> >

{
friend class factory<AddressSerializer>;
protected:
AddressSerializer();
public: // PofSerializer interface virtual void serialize(PofWriter::Handle

hOut, Object::View v) const
{
Address::View vAddr = cast<Address::View>(v);
hOut->writeString (0, vAddr->getCity());
hOut->writeString (1, vAddr->getState());
hOut->writeInt32 (2, vAddr->getZip());
hOut->writeRemainder (NULL) ;
}

virtual Object::Holder deserialize(PofReader::Handle hIn) const
{
String::View vsCity = hIn->readString(0);
String::View vsState = hIn->readString(1);

10-8 Oracle Coherence Client Guide

Using POF Object References

int32_t nzip = hIn->readInt32 (2);
hIn->readRemainder () ;

return Address::create(vsCity, vsState, nZip);
}
}i
COH_REGISTER_POF_SERIALIZER (1234, TypedBarrenClass<Address>::create(),
AddressSerializer::create()); // This must appear in the .cpp not the .hpp

Usage of the Address remains unchanged:
Address::View vAddr = Address::create("Redwood Shores", "CA", 94065);

String::View vKey = "Oracle";

hCache->put (vKey, vAddr);
Address::View vOffice = cast<Address::View> (hCache->get (vKey)) ;

Using POF Object References

POF supports the use of object identities and references for objects that occur more
than once in a POF stream. Objects are labeled with an identity and subsequent
instances of a labeled object within the same POF stream are referenced by its identity.
Object references are only supported for user defined object types.

Using references avoids encoding the same object multiple times and helps reduce the
data size. References are typically used when a large number of sizeable objects are
created multiple times or when objects use nested or circular data structures.
However, for applications that contain large amounts of data but only few repeats, the
use of object references provides minimal benefits due to the overhead incurred in
keeping track of object identities and references.

The following topics are included in this section:
= Enabling POF Object References
= Registering POF Object Identities for Circular and Nested Objects

Enabling POF Object References

Object references are not enabled by default and must be enabled using
setReferenceEnabled when creating a POF context. For example:

SystemPofContext: :Handle hCtx = SystemPofContext::getInstance();
hCtx->setReferenceEnabled (true) ;

Note: Objects that have been written out with a POF context that
does not support references cannot be read by a POF context that
supports references. The opposite is also true.

Registering POF Obiject Identities for Circular and Nested Objects

Circular or nested objects must manually register an identity when creating the object.
Otherwise, a child that references the parent will not find the identity of the parent in
the reference map. Object identities can be registered from a serializer during the
deserialization routine using the PofReader .registerIdentity method.

Building Integration Objects (C++) 10-9

Using POF Object References

The following examples demonstrate two objects (Customer and Product) that
contain a circular reference and a serializer implementation that registers an identity
on the Customer object.

The Customer object is defined as follows:

class Customer
: public class_spec<Customer,
extends<Object> >

{
friend class factory<Customer>;
protected:
Customer ()
: m_vsName (self (), String::null_string),

m_vProduct (self (), NULL)
{
}

Customer (String: :View vsName)
: m_vsName (self (), vsName),
m_vProduct (self (), NULL)

{

Customer (String: :View vsName, Product::View vProduct)
: m_vsName (self (), vsName),

m_vProduct (self (), vProduct)

{

}

public:
String::View getName() const
{
return m_vsName;

}

void setName (String::View vsName)
{
m_vsName = vsName;

}

Product: :View getProduct() const
{
return m_vProduct;

}

void setProduct (Product::View vProduct)
{
m_vProduct = vProduct;

}

private:
MemberView<String> m_vsName;
MemberView<Product> m_vProduct;
I

The Product object is defined as follows:

class Product
: public class_spec<Product,

10-10 Oracle Coherence Client Guide

Using POF Object References

extends<Object> >
{

friend class factory<Product>;

protected:
Product ()
: m_vCustomer (self (), NULL)

Product (Customer: :View vCustomer)
m_vCustomer (self (), vCustomer)

public:
Customer: :View getCustomer () const

{

return m_vCustomer;

}

void setCustomer (Customer: :View vCustomer)

{

m_vCustomer= vCustomer;

}

private:
MemberView<Customer> m_vCustomer;

}i
The serializer implementation registers an identity during deserialization and is
defined as follows:

class CustomerSerializer
: public class_spec<CustomerSerializer,
extends<Object>,
implements<PofSerializer> >

{

friend class factory<CustomerSerializer>;

public:
void serialize(PofWriter::Handle hOut, Object::View v) const

{
Customer: :View vCustomer = cast<Customer::View>(v);
hOut->writeString (0, vCustomer->getName());
hOut->writeObject (1, vCustomer->getProduct());
hOut->writeRemainder (NULL) ;

}
Object::Holder deserialize(PofReader::Handle hIn) const

{
String::View vsName = cast<String::View> (hIn->readString(0));

Customer: :Holder ohCustomer = Customer::create(vsName) ;

hIn->registerIdentity(ohCustomer);
ohCustomer->setProduct (cast<Product: :View> (hIn->readObject(1)));

hIn->readRemainder () ;
return ohCustomer;
}

Building Integration Objects (C++)

10-11

Registering Custom C++ Types

Registering Custom C++ Types

In addition to being made serializable, each class must also be associated with numeric
type IDs. These IDs are well-known across the cluster. Within the cluster, the
ID-to-class mapping is configured by using POF user type configuration elements;
within C++, the mapping is embedded within the class definition in the form of an ID
registration, which is placed within the class's . cpp source file.

The registration technique differs slightly with each serialization approach:
s COH_REGISTER_MANAGED_CLASS (ID, TYPE)—for use with Managed<T>

s COH_REGISTER_PORTABLE_CLASS (ID, TYPE)—for use with
PortableObject

] COH_REGISTER_POF_SERIALIZER(ID, CLASS, SERIALIZER) —for use with
PofSerializer

Examples of these registrations can be found in above examples.

Note: Registrations must appear only in the implementation (. cpp)
files. A POF configuration file is only needed on the nodes where
objects are serialized and deserialize.

Implementing a Java Version of a C++ Object

The use of POF allows key and value objects to be stored within the cluster without
the need for parallel Java implementations. This is ideal for performing basic get and
put based operations. In addition, the PofExtractor and PofUpdater APIs directly
manipulate serialized objects and alleviate, in some cases, the need for a parallel Java
implementation. However, a parallel Java implementation is required when using
advanced data grid features because the Java-based cache servers must be able to
interact with a data object rather then simply holding onto a serialized representation
of it. The Java implementation is used to interact with the object and access its
properties and must be located on the cache servers. The approach to making the Java
version serializable over POF is similar to the above examples, see

com. tangosol.io.pof.PortableObject and

com. tangosol.io.pof.PofSerializer for details. These APIs are compatible
with all three of the C++ approaches.

When to Include a Parallel Java Implementation

Most data grid features, beyond basic put and get operations, require that an object
have a parallel Java implementation within the cluster. These features include:

s Queries
= Filters
= Entry Processors and Aggregators

= Data source persistence

Deferring the Key Association Check

Key classes do not require a cluster-side Java implementation even if the key class
specifies data affinity using KeyAssociation. Key classes are checked on the client
side and a decorated binary is created and used by the cluster. However, existing
client implementations that do rely on a Java key class for key association must set the
defer-key-association-check parameter in order to force the use of the Java

10-12 Oracle Coherence Client Guide

Using POF Annotations to Serialize Objects

key class. Existing client applications that use key association but want to leverage
client-side key binaries, must port the getAssociatedKey () implementation from
the existing Java class to the corresponding client class.

To force key association processing to be done on the cluster side instead of by the
extend client, set the <defer-key-association-check> element, within a
<remote-cache-scheme> element, in the client-side cache configuration to true.
For example:

<remote-cache-scheme>

<defer-key-association-check>true</defer-key-association-check>
</remote-cache-scheme>

Note: If the parameter is set to true, a Java key class
implementation must be found on the cluster even if key association is
no being used.

Understanding Serialization Performance

Both Managed<T> and PortableObject behind the scenes use a PofSerializer
to perform serialization. Each of these approaches also adds some of its own overhead,
for instance the Managed<T> approach involves the creation of a temporary version of
non-managed form of the data object during deserialization. For PortableObject,
the lack of support for const data members can have a cost as it avoids optimizations
which would have been allowed for const data members. Overall the performance
differences may be negligible, but if seeking to achieve the maximum possible
performance, direct utilization of PofSerializer may be worth consideration.

Using POF Annotations to Serialize Objects

POF annotations provide an automated way to implement the serialization and
deserialization routines for an object. POF annotations are serialized and deserialized
using the PofAnnotationSerializer class which is an implementation of the
PofSerializer interface. Annotations offer an alternative to using the Managed<T>
adapter, PortableObject interface, and PofSerializer interface and reduce the
amount of time and code that is required to make objects serializable.

The following topics are included in this section:
= Annotating Objects for POF Serialization

= Registering POF Annotated Objects

= Enabling Automatic Indexing

= Providing a Custom Codec

Annotating Objects for POF Serialization

Two annotations are available to indicate that a class and its methods are POF
serializable:

s Portable —Marks the class as POF serializable. The annotation is only permitted
at the class level and has no members.

s PortableProperty —Marks a method accessor as a POF serialized property.
Annotated methods must conform to accessor notation (get, set, is). Members

Building Integration Objects (C++) 10-13

Using POF Annotations to Serialize Objects

can be used to specify POF indexes as well as custom codecs that are executed
before or after serialization or deserialization. Index values may be omitted and
automatically assigned. If a custom codec is not entered, the default codec is used.

The following example demonstrates annotating a class and method and also

explicitly assigns property index values. Note that the class must be registered with
the system class loader COH_REGISTER_CLASS.

class Person
: public class_spec<Person>
{

friend class factory<Person>;

Public:
String::View getFirstName() const
{
return m_vsFirstName;

)

void setFirstName(String::View vsFirstName)
{
m_vsFirstName = vsFirstName;

}

private: String m_firstName;
MemberView<String> m_vsFirstName;
MemberView<String> m_vsLastName;
int32_t m_nAge;

public:
static const int32_t FIRST_NAME
static const int32_t LAST_NAME
static const int32_t AGE

n
= o

}i

COH_REGISTER_CLASS (TypedClass<Person>: :create()

->annotate (Portable: :create())

->declare (COH_PROPERTY (Person, FirstName, String::View)
->annotate (PortableProperty: :create (Person: :FIRST_NAME)))

->declare (COH_PROPERTY (Person, LastName, String::View)
->annotate (PortableProperty: :create (Person: :LAST NAME)))

->declare (COH_PROPERTY (Person, Age, BoxHandle<const Integer32>)
->annotate (PortableProperty: :create (Person: :AGE)))
)i

Registering POF Annotated Objects

POF annotated objects must be registered as a user type using the COH_REGISTER_
POF_ANNOTATED_CLASS macro. The following example registers a user type for an
annotated Person object:

COH_REGISTER_POF_ANNOTATED_CLASS (1001, Person);

Enabling Automatic Indexing

POF annotations support automatic indexing which alleviates the need to explicitly
assign and manage index values. The index value can be omitted whenever defining
the PortableProperty annotation. Any property that does assign an explicit index

10-14 Oracle Coherence Client Guide

Using POF Annotations to Serialize Objects

value is not assigned an automatic index value. The automatic index algorithm can be
described as follows:

Name Explicit Index Determined Index
c 1 1
a omitted 0
b omitted 2

Note: Automatic indexing does not currently support evolvable
classes.

To enable automatic indexing, use the COH_REGISTER_POF_ANNOTATED_CLASS_AI
pre-processor macro when registering the user type. The following example registers a
user type for an annotated Person object that uses automatic indexing;:

COH_REGISTER_POF_ANNOTATED_CLASS_AI (1001, Person);

Providing a Custom Codec

Codecs allow code to be executed before or after serialization or deserialization. The
codec defines how to encode and decode a portable property using the PofWriter
and PofReader interfaces. Codecs are typically used for concrete implementations
that could get lost when being deserialized or to explicitly call a specific method on the
PofWriter interface before serializing an object.

To create a codec, create a class that implements the Codec interface. The following
example demonstrates a codec that defines the concrete implementation of a linked list
type:
class LinkedListCodec
: public class_spec<LinkedListCodec,
extends<Object>,
implements<Codec> >

{

friend class factory<LinkedListCodec>;

public:
void encode (PofWriter::Handle hOut, int32_t nIndex, Object::View ovValue)
const

{

hOut->writeCollection (nIndex, cast<Collection::View> (ovValue));

Object::Holder decode(PofReader::Handle hIn, int32_t nIndex) const

{
LinkedList::Handle hLinkeList = LinkedList::create();
return hIn->readCollection(nIndex, hLinkeList);

I
COH_REGISTER_TYPED_CLASS (LinkedListCodec) ;

To assign a codec to a property, enter the codec as a member of the
PortableProperty annotation. If a codec is not specified, a default codec

Building Integration Objects (C++) 10-15

Using POF Annotations to Serialize Objects

(DefaultCodec) is used. The following example demonstrates assigning the above
LinkedListCodec codec:

COH_REGISTER_CLASS (TypedClass<Person>: :create()

->annotate (Portable: :create())

->declare (COH_PROPERTY (Person, FirstName, String::View)
->annotate (PortableProperty: :create (Person: :FIRST_NAME)))

->declare (COH_PROPERTY (Person, LastName, String::View)
->annotate (PortableProperty: :create (Person: :LAST NAME)))

->declare (COH_PROPERTY (Person, Age, BoxHandle<const Integer32>)
->annotate (PortableProperty: :create (Person: :ALIASES,

SystemClassLoader: :getInstance () ->1loadByType (typeid (LinkedListCodec))

)))
)i

10-16 Oracle Coherence Client Guide

11

Performing Continuous Queries (C++)

While Coherence provides the ability to obtain a point in time query result from a
Coherence cache and the ability to receive events that would change the result of that
query, it also provides a feature that combines a query result with a continuous stream
of related events to maintain an up-to-date query result in a real-time fashion. This
capability is called Continuous Query because it has the same effect as if the desired
query had zero latency and the query were being executed several times every
millisecond!

A continuous query cache is similar to a materialized view in the Oracle database. A
materialized view copies data queried from the database tables into the view. If there
are any changes to the data in the database, then the data in the view is automatically
updated. Materialized views enable you to see changes to the result set. In continuous
query, a local copy of the cache is created on the client. Filters allow you to limit the
size and content of the cache. Combined with an event listener, the cache can be
updated in real time.

For example, to monitor, in real time, all sales orders for several customers. You can
create a continuous query cache and set up an event listener that listens for any events
pertaining to the customers. Coherence queries for all of the data objects on the grid
that pertain to a particular customer and copies them to a local cache. The event
listener on the query listens for any inserts, updates, or deletes that take place on the
grid for the customer. When an event occurs, the local copy of the customer data is
updated.

The following sections are included in this chapter:

= Uses for Continuous Query Caching

s Understanding Continuous Query Caching

= Defining a Continuous Query Cache

s Cleaning up Continuous Query Cache Resources
s Caching Only Keys Versus Keys and Values

s Listening to a Continuous Query Cache

» Making a Continuous Query Cache Read-Only

Uses for Continuous Query Caching
There are several different general use cases for Continuous Query Caching;:

s Itis an ideal building block for Complex Event Processing (CEP) systems and
event correlation engines.

Performing Continuous Queries (C++) 11-1

Understanding Continuous Query Caching

s Itisideal for situations in which an application repeats a particular query and
would benefit from always having instant access to the up-to-date result of that

query.
s A Continuous Query Cache is analogous to a materialized view and is useful for

accessing and manipulating the results of a query using the standard
NamedCache API, and receiving an ongoing stream of events related to that
query.

= A Continuous Query Cache can be used in a manner similar to a Near Cache
because it maintains an up-to-date set of data locally where it is being used, for
example, on a particular server node or on a client. Note that while a Near Cache
is invalidation-based, a Continuous Query Cache actually maintains its data in an
up-to-date manner.

By combining the Coherence*Extend functionality with Continuous Query Caching,
an application can support literally tens of thousands of concurrent users.

Note: Continuous Query Caches are useful in almost every type of
application, including both client-based and server-based
applications, because they provide the ability to very easily and
efficiently maintain an up-to-date local copy of a specified sub-set of a
much larger and potentially distributed cached data set.

Understanding Continuous Query Caching

The Coherence implementation of Continuous Query is found in the
ContinuousQueryCache class. This class, like all Coherence caches, implements the
standard NamedCache interface, which includes the following capabilities:

» Cache access and manipulation using the Map interface: NamedCache extends the
Map interface, which is based on the Map interface from the Java Collections
Framework.

= Events for all object modifications that occur within the cache: NamedCache
extends the ObservableMap interface.

» Identity-based clusterwide locking of objects in the cache: NamedCache extends
the ConcurrentMap interface.

= Querying the objects in the cache: NamedCache extends the QueryMap interface.

s Distributed Parallel Processing and Aggregation of objects in the cache:
NamedCache extends the InvocableMap interface.

Since the ContinuousQueryCache implements the NamedCache interface, which is
the same API provided by all Coherence caches, it is extremely simple to use, and it
can be easily substituted for another cache when its functionality is called for.

Defining a Continuous Query Cache
There are two features that define a Continuous Query Cache:
s The underlying cache that the Continuous Query is based on.

= A query of the underlying cache that produces the sub-set that the Continuous
Query Cache caches.

The underlying cache can be any Coherence cache, including another Continuous
Query Cache. The most straight-forward way of obtaining a cache is by using the

11-2 Oracle Coherence Client Guide

Caching Only Keys Versus Keys and Values

CacheFactory class. This class enables you to create a cache simply by specifying its
name. It is created automatically and its configuration is based on the application's
cache configuration elements. For example, the following line of code creates a cache
named orders:

NamedCache: :Handle hCache = CacheFactory::getCache("orders");

The query is the same type of query that would be used to query any other cache.
Example 11-1 illustrates how you can use code filters to find a given trader with a
given order status:

Example 11-1 Using Filters for Querying

ValueExtractor::Handle hTraderExtractor =
ReflectionExtractor::create("getTrader");
ValueExtractor::Handle hStatusExtractor
ReflectionExtractor::create("getStatus");

Filter::Handle hFilter = AndFilter::create(EqualsFilter::create(hTraderExtractor,
vTraderId),
EqualsFilter: :create(hStatusExtractor, vStatus));

Normally, to query a cache, you could use a method from the QueryMap class. For
example, to obtain a snap-shot of all open trades for this trader:

Set::View vSetOpenTrades = hCache->entrySet (hFilter);

In contrast, the Continuous Query Cache is constructed from the
ContinuousQueryCache: : create method, passing the cache and the filter:

ContinuousQueryCache: :Handle hCacheOpenTrades =
ContinuousQueryCache: :create (hCache, hFilter);

Cleaning up Continuous Query Cache Resources

A Continuous Query Cache places one or more event listeners on its underlying cache.
If the Continuous Query Cache is used for the duration of the application, then the
resources is cleaned up when the node is shut down or otherwise stops. However, if
the Continuous Query Cache is only used for a period, then the application must call
the release() method on the Continuous Query Cache when it is done using it.

Caching Only Keys Versus Keys and Values

When constructing a Continuous Query Cache, you can specify that the cache should
only keep track of the keys that result from the query and obtain the values from the
underlying cache only when they are asked for. This feature may be useful for creating
a Continuous Query Cache that represents a very large query result set or if the values
are never or rarely requested. To specify that only the keys should be cached, pass
false when creating the Cont inuousQueryCache; for example:

ContinuousQueryCache: :Handle hCacheOpenTrades =
ContinuousQueryCache: :create (hCache, hFilter, false);

If necessary, the CacheValues property can be modified after the cache has been
instantiated; for example:

hCacheOpenTrades->setCacheValues (true) ;

Performing Continuous Queries (C++) 11-3

Listening to a Continuous Query Cache

CacheValues Property and Event Listeners

If the Continuous Query Cache has any standard (non-lite) event listeners, or if any of
the event listeners are filtered, then the CachevValues property is automatically set to
true. This is because the Continuous Query Cache uses the locally cached values to
filter events and to supply the old and new values for the events that it raises.

Using ReflectionExtractor with Continuous Query Caches

When the Continuous Query Cache is configured to cache values, the use of the
ReflectionExtractor is not supported. This is because the
ReflectionExtractor does not support reflection in C++. In this case, you must
provide a custom extractor. When the Continuous Query Cache is not caching values
locally, the ReflectionExtractor can be used since it does not perform the
extraction on the client but instead passes the necessary extraction information to the
cluster to perform the query.

Listening to a Continuous Query Cache

Since the Continuous Query Cache is itself observable, it is possible for the client to
place one or more event listeners onto it. For example:

Example 11-2 Placing a Listener into a Continuous Query Cache

ContinuousQueryCache: :Handle hCacheOpenTrades =
ContinuousQueryCache: :create (hCache, hFilter);
hCacheOpenTrades->addFilterListener (hListener) ;

If your application has to perform some processing against every item that is in the
cache and every item added to the cache, then provide the listener during
construction. The resulting cache receives one event for each item that is in the
Continuous Query Cache, whether it was there to begin with (because it was in the
query) or if it got added during or after the construction of the cache. One form of the
factory create method of ContinuousQueryCache enables you to specify a cache, a
filter, and a listener:

Example 11-3 Creating a Continuous Query Cache with a Filter and a Listener

ContinuousQueryCache: :Handle hCacheOpenTrades = ContinuousQueryCache::create (
hRemoteCache, hFilter, true, hListener);

Avoiding Unexpected Results

There are two alternate approaches to processing the items in the Continuous Query
Cache, both of which could yield unexpected and unwanted results. First, if you
perform the processing and then add the listener to handle any later additions, then
events that occur in the split second after the iteration and before the listener is added
are missed. This is illustrated in Example 11-4:

Example 11-4 Processing the Data, then Adding the Listener

ContinuousQueryCache: :Handle hCacheOpenTrades =
ContinuousQueryCache: :create (hCache, hFilter);

for (Iterator::Handle hIter = hCacheOpenTrades->entrySet()->iterator();
hIter->hasNext();)

{

Map: :Entry::View vEntry

cast<Map: :Entry: :View> (hIter->next());

11-4 Oracle Coherence Client Guide

Making a Continuous Query Cache Read-Only

// .. process the cache entry

}

hCacheOpenTrades->addFilterListener (hListener) ;

The second approach is to add a listener first, so that no events are missed, and then
do the processing. Although, the same entry may appear in both an event and in the
Iterator. The events can be asynchronous, so the sequence of operations cannot be
guaranteed.

Example 11-5 Adding the Listener, then Processing the Data

ContinuousQueryCache: :Handle hCacheOpenTrades =
ContinuousQueryCache: :create (hRemoteCache, hFilter);

hCacheOpenTrades->addFilterListener (hListener) ;
for (Iterator::Handle hIter = hCacheOpenTrades->entrySet ()->iterator();
hIter->hasNext();)

{

Map: :Entry::View vEntry = cast<Map::Entry::View>(hIter->next());

// .. process the cache entry

}

Achieving a Stable Materialized View

The Continuous Query Cache implementation faced the same challenge: How to
assemble an exact point-in-time snapshot of an underlying cache while receiving a
stream of modification events from that same cache. The solution has several parts. First,
Coherence supports an option for synchronous events, which provides a set of
ordering guarantees. Secondly, the Continuous Query Cache has a two-phase
implementation of its initial population that allows it to first query the underlying
cache and then subsequently resolve all of the events that came in during the first
phase. Since achieving these guarantees of data visibility without any missing or
repeated events is fairly complex, the Cont inuousQueryCache allows a developer to
pass a listener during construction, thus avoiding exposing these same complexities to
the application developer.

Support for Synchronous and Asynchronous Listeners

By default, listeners to the Continuous Query Cache have their events delivered
asynchronously. However, the ContinuousQueryCache implementation does
respect the option for synchronous events as provided by the
SynchronousListener interface.

Making a Continuous Query Cache Read-Only

The Continuous Query Cache can be made into a read-only cache by using the boolean
setReadOnly method on the ContinuousQueryCache class; for example:

hCacheOpenTrades->setReadOnly (true) ;

A read-only Continuous Query Cache does not allow objects to be added to, changed
in, removed from, or locked in the cache.

When a Continuous Query Cache has been set to read-only, it cannot be changed back
to read /write.

Performing Continuous Queries (C++) 11-5

Making a Continuous Query Cache Read-Only

11-6 Oracle Coherence Client Guide

12

Querying a Cache (C++)

Coherence can perform queries and indexes against currently cached data that meets a
given set of criteria. Queries and indexes can be simple, employing filters packaged
with Coherence, or they can be run against multi-value attributes such as collections
and arrays.

The following sections are included in this chapter:
s Query Functionality

= Simple Queries

s Query Concepts

s Queries Involving Multi-Value Attributes

» ChainedExtractor

s QueryRecorder

Query Functionality

Coherence provides the ability to search for cache entries that meet a given set of
criteria. The result set may be sorted if desired. Queries are evaluated with Read
Committed isolation.

It should be noted that queries apply only to currently cached data (and do not use the
CacheLoader interface to retrieve additional data that may satisfy the query). Thus,
the data set should be loaded entirely into cache before queries are performed. In cases
where the data set is too large to fit into available memory, it may be possible to
restrict the cache contents along a specific dimension (for example, "date") and
manually switch between cache queries and database queries based on the structure of
the query. For maintainability, this is usually best implemented inside a cache-aware
data access object (DAO).

Indexing requires the ability to extract attributes on each Partitioned cache node; For
dedicated CacheServer instances, this implies (usually) that application classes must
be installed in the CacheServer classpath.

For Local and Replicated caches, queries are evaluated locally against unindexed data.
For Partitioned caches, queries are performed in parallel across the cluster, using
indexes if available. Coherence includes a Cost-Based Optimizer (CBO). Access to
unindexed attributes requires object deserialization (though indexing on other
attributes can reduce the number of objects that must be evaluated).

Querying a Cache (C++) 12-1

Simple Queries

Simple Queries

Querying cache content is very simple, as Example 12-1 illustrates:

Example 12-1 Querying Cache Content

ValueExtractor::Handle hExtractor = ReflectionExtractor::create("getAge");
Filter::View vFilter = GreaterEqualsFilter::create(hExtractor,
Integer32::valueOf (18));

for (Iterator::Handle hIter = hCache->entrySet (vFilter)->iterator();
hIter->hasNext();)
{
Map: :Entry::Handle hEntry = cast<Map::Entry::Handle>(hIter->next());
Integer32::View vKey = cast<Integer32::View> (hEntry->getKey());
Person: :Handle hPerson = cast<Person::Handle> (hEntry->getValue());
std::cout << "key=" << vKey << " person=" << hPerson;

}

Coherence provides a wide range of filters in the coherence: :util: :Filter
package. A LimitFilter may be used to limit the amount of data sent to the client,
and also to provide "paging" for users:

Example 12-2 Using the LimitFilter Method

int32_t nPageSize = 25;
ValueExtractor::Handle hExtractor = ReflectionExtractor::create("getAge");
Filter::View vFilter = GreaterEqualsFilter::create(hExtractor,

Integer32::valueOf (18));

// get entries 1-25
LimitFilter: :Handle hLimitFilter = LimitFilter::create(vFilter, nPageSize);
Set::View vEntries = hCache->entrySet (hLimitFilter);

// get entries 26-50
hLimitFilter->nextPage();
vEntries = hCache->entrySet (hLimitFilter);

Any queryable attribute may be indexed with the addIndex method of the QueryMap
class:

Example 12-3 Indexing a Queryable Attribute

// addIndex (ValueExtractor::View vExtractor, boolean_t fOrdered, Comparator::View
vComparator)
hCache->addIndex (hExtractor, true, NULL);

The fOrdered argument specifies whether the index structure is sorted. Sorted
indexes are useful for range queries, including "select all entries that fall between two
dates" and "select all employees whose family name begins with 'S™. For "equality"
queries, an unordered index may be used, which may have better efficiency in terms
of space and time.

The comparator argument provides a custom java.util.Comparator for ordering
the index.

12-2 Oracle Coherence Client Guide

Query Concepts

Note: This method is only intended as a hint to the cache
implementation, and as such it may be ignored by the cache if indexes
are not supported or if the desired index (or a similar index) exists. It
is expected that an application calls this method to suggest an index
even if the index exists, just so that the application is certain that index
has been suggested. For example, in a distributed environment each
server likely suggests the same set of indexes when it starts, and there
is no downside to the application blindly requesting those indexes
regardless of whether another server has requested the same indexes.

Note that queries can be combined by Coherence if necessary, and also that Coherence
includes a cost-based optimizer (CBO) to prioritize the usage of indexes. To take
advantage of an index, queries must use extractors that are equal
((Object->equals ()) to the one used in the query.

Querying Partitioned Caches

The Partitioned Cache implements the QueryMap interface using the Parallel Query
feature and results in high performance queries even for large data sets.

Querying Near Caches

Although queries can be executed through a near cache, the query does not use the
front portion of a near cache. If using a near cache with queries, the best approach is to
use the following sequence:

Set::View vSetKeys = hCache->keySet (vFilter) ;
Map::View vMapResult = hCache->getAll (vSetKeys) ;

Query Concepts

This section goes into more detail on the design of the query interface, building up
from the core components.

The concept of querying is based on the ValueExtractor interface. A value extractor
is used to extract an attribute from a given object for querying (and similarly,
indexing). Most developers only need the ReflectionExtractor implementation
of this interface. The ReflectionExtractor uses reflection to extract an attribute from a
value object by referring to a method name, typically a "getter" method like

getName ().

ReflectionExtractor: :Handle hExtractor = ReflectionExtractor::create("getName");

Any void argument method can be used, including Object methods like
toString () (useful for prototyping/debugging). Indexes may be either traditional
field indexes (indexing fields of objects) or function-based indexes (indexing virtual
object attributes). For example, if a class has field accessors getFirstName and
getLastName, the class may define a function getFul1lName which concatenates
those names, and this function may be indexed.

To query a cache that contains objects with getName attributes, a Filter must be
used. A filter has a single method which determines whether a given object meets a
criterion.

Filter::Handle hEqualsFilter = EqualsFilter::create (hExtractor,

Querying a Cache (C++) 12-3

Queries Involving Multi-Value Attributes

String::create("Bob Smith"));

To select the entries of a cache that satisfy a particular filter:

Example 12-4 Selecting Entries of a Cache that Satisfy a Particular Filter

for (Iterator::Handle hIter = hCache->entrySet (hEqualsFilter)->iterator();
hIter->hasNext();)

{

Map: :Entry::Handle hEntry = cast<Map::Entry::Handle>(hIter->next());
Integer32::View vKey = cast<Integer32::View> (hEntry->getKey());
Person: :Handle hPerson = cast<Person::Handle>(hEntry->getValue());
std::cout << "key=" << vKey << " person=" << hPerson;

}

To select and also sort the entries:

Example 12-5 Selecting and Sorting Entries

// entrySet (Filter::View vFilter, Comparator::View vComparator)
Iterator::Handle hIter = hCache->entrySet (hEqualsFilter, NULL)->iterator();

The additional NULL argument specifies that the result set should be sorted using the
"natural ordering" of Comparable objects within the cache. The client may explicitly
specify the ordering of the result set by providing an implementation of Comparator.
Note that sorting places significant restrictions on the optimizations that Coherence
can apply, as sorting requires that the entire result set be available before sorting.

Using the keySet form of the queries—combined with getall () —may provide
more control over memory usage:

Example 12-6 Using the keySet Form of a Query
// keySet (Filter::View vFilter)

Set::View vSetKeys = hCache->keySet (vFilter) ;

Set::Handle hSetPageKeys = HashSet::create();

int32_t PAGE_SIZE = 100;

for (Iterator::Handle hIter = vSetKeys->iterator(); hIter->hasNext();)

{
hSetPageKeys->add (hIter->next());
if (hSetPageKeys->size() == PAGE_SIZE || !'hIter->hasNext())

{
// get a block of values
Map::View vMapResult = hCache->getAll (hSetPageKeys) ;

// process the block
/...

hSetPageKeys->clear() ;
}

Queries Involving Multi-Value Attributes

Coherence supports indexing and querying of multi-value attributes including
collections and arrays. When an object is indexed, Coherence verifies if it is a
multi-value type, and then indexes it as a collection rather than a singleton. The
ContainsAllFilter, ContainsAnyFilter, and ContainsFilter are used to
query against these collections.

12-4 Oracle Coherence Client Guide

QueryRecorder

Example 12-7 Indexing and Querying Multi-Value Attributes
Set::Handle hSearchTerms = HashSet::create();
hSearchTerms->add (String: :create("java"));
hSearchTerms->add (String: :create("clustering"));
hSearchTerms->add (String: :create ("books")) ;

// The cache contains instances of a class "Document" which has a method

// "getWords" which returns a Collection<String> containing the set of

// words that appear in the document.

ValueExtractor: :Handle hExtractor = ReflectionExtractor::create("getWords");
Filter::View vFilter = ContainsAllFilter::create(hExtractor,
hSearchTerms) ;

Set::View vEntrySet = hCache->entrySet (vFilter);

// iterate through the search results
/...

ChainedExtractor

The ChainedExtractor implementation allows chained invocation of
zero-argument (accessor) methods. In Example 12-8, the extractor first uses reflection
to call getName () on each cached Person object, and then use reflection to call
length () on the returned String. This extractor could be passed into a query,
allowing queries (for example) to select all people with names not exceeding 10 letters.

Example 12-8 Using a ChainedExtractor Implementation

ChainedExtractor: :Handle hExtractor =
ChainedExtractor: :create(ChainedExtractor: :createExtractors("getName.length"));

Method invocations may be chained indefinitely, for example:
getName. trim. length.

QueryRecorder

The QueryRecorder class produces an explain or trace record for a given filter. The
class is an implementation of a parallel aggregator that is capable querying all nodes in
a cluster and aggregating the results. The class supports two record types: an
QueryRecorder: : explain record that provides the estimated cost of evaluating a
filter as part of a query operation and a QueryRecorder: : trace record that
provides the actual cost of evaluating a filter as part of a query operation. Both query
records take into account whether or not an index can be used by a filter. See Oracle
Coherence Developer’s Guide for detailed information on understanding the data
provided in an explain plan record and trace record.

To create a query record, create a new QueryRecorder instance that specifies a
RecordType parameter. Include the instance and the filter to be tested as parameters
of the Aggregate method. The following example creates an explain record:

NamedCache: :Handle hCache = CacheFactory::getCache("MyCache");
IdentityExtractor: :View hExtract = IdentityExtractor::getInstance();

OrFilter::Handle hFilter = OrFilter::create(
GreaterEqualsFilter: :create (hExtract, Integer32::create(50)),

Querying a Cache (C++) 12-5

QueryRecorder

LessEqualsFilter: :create (hExtract, Integer32::create(20)));

QueryRecord: :View vRecord = cast<QueryRecord: :View> (hCache->aggregate (
(Filter::View) hFilter, QueryRecorder::create(QueryRecorder::explain)));

cout << vRecord;

To create a trace record, change the RecordType parameter to trace:

QueryRecord: :View vRecord = cast<QueryRecord: :View> (hCache->aggregate (
(Filter::View) hFilter, QueryRecorder::create(QueryRecorder::trace)));

12-6 Oracle Coherence Client Guide

13

Performing Remote Invocations (C++)

An Invocable can execute any arbitrary action and can use any cluster-side services
(cache services, grid services, and so on) necessary to perform their work. The
Invocable operations can also be stateful, which means that their state is serialized and
transmitted to the grid nodes on which the Invocable is run.

Coherence for C++ provides a Remote Invocation Service which allows the execution
of Invocables within the cluster-side JVM to which the client is connected. In Java,
Invocables are simply runnable application classes that implement the

com. tangosol.net.Invocable interface. To employ an Invocable in Coherence
for C++, you must deploy a compiled Java implementation of the Invocable task on
the cluster-side node, in addition to providing a C++ implementation of Invocable:
coherence: :net: : Invocable. Since execution is server-side (that is, Java), the
C++ invocable need only be concerned with state; the methods themselves can be
no-operations.

The following sections are included in this chapter:
s Configuring and Using the Remote Invocation Service

= Registering Invocable Implementation Classes

Configuring and Using the Remote Invocation Service

A Remote Invocation Service is configured using the remote-invocation-scheme
element in the cache configuration descriptor. Example 13-1 illustrates a sample
remote invocation scheme configuration.

Example 13-1 Sample Remote Invocation Scheme Configuration

<remote-invocation-scheme>
<scheme-name>example-invocation</scheme-name>
<service-name>ExtendTcpInvocationService</service-name>
<initiator-config>
<tcp-initiator>
<remote-addresses>
<socket-address>
<address>localhost</address>
<port>9099</port>
</socket-address>
</remote-addresses>
</tcp-initiator>

<outgoing-message-handler>

<request-timeout>30s</request-timeout>
</outgoing-message-handler>

Performing Remote Invocations (C++) 13-1

Registering Invocable Implementation Classes

</initiator-config>
</remote-invocation-scheme>

A reference to a configured Remote Invocation Service can then be obtained by name
by using the coherence: :net: :CacheFactory class:

Example 13-2 Reference to a Remote Invocation Service

InvocationService: :Handle hService =
hService: :getService ("ExtendTcpInvocationService");

To execute an agent on the grid node to which the client is connected requires only
one line of code:

Map: :View hResult = hService->query (myTask::create(), NULL);

The Map returned from query is keyed by the member on which the query is run. For
Extend clients, there is no concept of membership, so the result is keyed by the local
member which can be retrieved by calling

CacheFactory: :getConfigurableCacheFactory () : :GetLocalMember ()

Registering Invocable Implementation Classes

Like cached value objects, all Invocable implementation classes must be correctly
registered in the POF context of the C++ application (see "PortableObject
(Self-Serialization)" on page 10-5) and cluster-side node to which the client is
connected. As such, a Java implementation of the Invocable task (a

com. tangosol.net.Invocable implementation) must be created, compiled, and
deployed on the cluster-side node.

See "Registering Custom C++ Types" on page 10-12 for additional details.

13-2 Oracle Coherence Client Guide

14

Using Cache Events (C++)

Coherence provides cache events. It is extremely simple to receive the events that you
need, where you need them, regardless of where the changes are actually occurring in
the cluster.

The following sections are included in this chapter:
» Listener Interface and Event Object

» Caches and Classes that Support Events

= Signing Up for all Events

= MultiplexingMapListener

s Configuring a MapListener for a Cache

= Signing Up for Events on Specific Identities
» Filtering Events

» '"Lite" Events

= Advanced: Listening to Queries

= Advanced: Synthetic Events

» Advanced: Backing Map Events

= Advanced: Synchronous Event Listeners

Listener Interface and Event Object

In the event model, there is an EventListener interface that all listeners must
extend. Coherence provides a MapListener interface, which allows application logic
to receive events when data in a Coherence cache is added, modified or removed.
Example 14-1 illustrates a segment of the MapListener APL

Example 14-1 Excerpt from the coherence::util::MapListener Class File

class MapListener
: public interface_spec<MapListener,
implements<EventListener> >

public:

/**
* Handle definition.
*/

Using Cache Events (C++) 14-1

Listener Interface and Event Object

typedef TypedHandle<MapListener> Handle;

/**

* View definition.

*/

typedef TypedHandle<const MapListener> View;

/*‘k

* MapEvent View definition.

*/

typedef TypedHandle<const MapEvent> MapEventView;

public:

/**

* Invoked when a map entry has been inserted.
*

* @param vEvent the MapEvent carrying the insert information
*/
virtual void entryInserted (MapEventView vEvent) = 0;

/**

* Invoked when a map entry has been updated.
*

* @param vEvent the MapEvent carrying the update information
*/
virtual void entryUpdated (MapEventView vEvent) = 0;

/**

* Invoked when a map entry has been removed.
*

* @param vEvent the MapEvent carrying the delete information
*/
virtual void entryDeleted (MapEventView vEvent) = 0;

Y

An application object that implements the MapListener interface can sign up for
events from any Coherence cache or class that implements the ObservableMap
interface, simply by passing an instance of the application's MapListener
implementation to an addMapListener () method.

The MapEvent object that is passed to the MapListener carries all of the necessary
information about the event that has occurred, including the source (ObservableMap)
that raised the event, the identity (key) that the event is related to, what the action was
against that identity (insert, update or delete), what the old value was and what the
new value is. Example 14-2 illustrates a segment of the MapEvent APL

Example 14-2 Excerpt from coherence::util::MapEvent

class COH_EXPORT MapEvent
: public class_spec<MapEvent,
extends<EventObject> >

{

friend class factory<MapEvent>;

14-2 Oracle Coherence Client Guide

Listener Interface and Event Object

public:

/**

* Return an ObservableMap object on which this event has actually
* occurred.

*

* @return an ObservableMap object

*/

virtual TypedHandle<ObservableMap> getMap () const;

/**

* Return this event's id. The event id is an entry_*
* enumerated constants.

*

* @return an id

*/

virtual int32_t getId() const;

/**

* Return a key associated with this event.
*

* @return a key

*/

virtual Object::View getKey() const;

/**

* Return an old value associated with this event.

* <p>

* The old value represents a value deleted from or updated in a map.
* It is always NULL for "insert" notifications.

*

* @return an old value

*/

virtual Object::View getOldvalue() const;

/**

* Return a new value associated with this event.

* <p>

* The new value represents a new value inserted into or updated in
* a map. It is always NULL for "delete" notifications.

*

* @return a new value

*/

virtual Object::View getNewValue() const;

/] —==== Objectinterface —-----=-=-----mmmmmmm
public:

/**

* {@inheritDoc}

*/

virtual void toStream(std::ostream& out) const;
/] ===== helper methods --------------------—--—--—--o -

public:
/*‘k

* Dispatch this event to the specified listeners collection.
* <p>
* This call is equivalent to

Using Cache Events (C++)

14-3

Listener Interface and Event Object

* <pre>
* dispatch(listeners, true);
* </pre>

* @param vListeners the listeners collection

* @throws ClassCastException if any of the targets is not
* an instance of MapListener interface

*/

virtual void dispatch(Listeners::View vListeners) const;

/**

* Dispatch this event to the specified listeners collection.
*

* @param vListeners the listeners collection

* @param fStrict if true then any Run time Exception thrown by event
* handlers stops all further event processing and

* the exception is re-thrown; if false then all

* exceptions are logged and the process continues

*

* @throws ClassCastException if any of the targets is not
* an instance of MapListener interface
*/
virtual void dispatch(Listeners::View vListeners,
bool fStrict) const;

/*‘k

* Dispatch this event to the specified MapListener.
*

* @param hListener the listener
*/
virtual void dispatch(TypedHandle<MaplListener> hListener) const;

/**

* Convert an event ID into a human-readable string.
*

* @param nId an event ID, an entry * enumerated values
*

* @return a corresponding human-readable string, for example
* "inserted"

*/

static String::View getDescription(int32_t nId);

using Describable: :getDescription;

/] —==== Describable interface ------------"-------
public:
/**
* {@inheritDoc}
*/

virtual void outputDescription(std::ostream& out) const;
/] ===== constants —-—-------------omo oo

public:

/*‘k

* This event indicates that an entry has been added to the map.
*/

static const int32_t entry_inserted = 1;

14-4 Oracle Coherence Client Guide

Signing Up for all Events

/‘k‘k

* This event indicates that an entry has been updated in the map.
*/

static const int32_t entry_updated = 2;

/**

* This event indicates that an entry has been removed from the map.
*/

static const int32_t entry_deleted = 3;

Caches and Classes that Support Events

All Coherence caches implement ObservableMap; in fact, the NamedCache interface
that is implemented by all Coherence caches extends the ObservableMap interface.
That means that an application can sign up to receive events from any cache,
regardless of whether that cache is local, partitioned, near, replicated, using
read-through, write-through, write-behind, overflow, disk storage, and so on.

Note: Regardless of the cache topology and the number of servers,
and even if the modifications are being made by other servers, the
events are delivered to the application's listeners.

In addition to the Coherence caches (those objects obtained through a Coherence cache
factory), several other supporting classes in Coherence also implement the
ObservableMap interface:

s ObservableHashMap

s LocalCache

s OverflowMap

m NearCache

s ReadWriteBackingMap

m AbstractSerializationCache, SerializationCache, and
SerializationPagedCache

» WrapperObservableMap, WrapperConcurrentMap, and
WrapperNamedCache

For a full list of published implementing classes, see the Coherence API for
ObservableMap.

Signing Up for all Events

To sign up for events, simply pass an object that implements the MapListener
interface to an addMapListener method on ObservableMap:

Example 14-3 ObservableMap methods

virtual void addKeyListener (MapListener::Handle hListener, Object::View vKey, bool

fLite) = 0;
virtual void removeKeyListener (MapListener::Handle hListener, Object::View vKey) =
0;

Using Cache Events (C++) 14-5

Signing Up for all Events

virtual void addFilterListener (MapListener::Handle hListener, Filter::View vFilter
= NULL, bool fLite = false) = 0;

virtual void removeFilterListener (MapListener::Handle hListener, Filter::View
vFilter = NULL) = 0;

Let's create an example MapListener implementation:

Example 14-4 Example MapListener implementation

#include "coherence/util/MapEvent.hpp"
#include "coherence/util/MapListener.hpp"

#include <iostream>

using coherence::util::MapEvent;
using coherence::util::MapListener;
using namespace std;

/**
* A MapListener implementation that prints each event as it receives
* them.
*/
class EventPrinter
: public class_spec<EventPrinter,
extends<Object>,
implements<MapListener> >
{

friend class factory<EventPrinter>;

public:
virtual void entryInserted (MapEventView vEvent)
{
cout << vEvent << endl;

}

virtual void entryUpdated (MapEventView vEvent)
{
cout << vEvent << endl;

}

virtual void entryDeleted (MapEventView vEvent)
{
cout << vEvent << endl;
}
}i

Using this implementation simplifies printing all events from any given cache (since
all caches implement the ObservableMap interface):

Example 14-5 Printing Events
NamedCache: :Handle hCache;

hCache->addFilterListener (EventPrinter: :create());

Of course, to be able to later remove the listener, it is necessary to hold on to a
reference to the listener:

Example 14-6 Holding a Reference to a Listener

MapListener::Handle hListener = EventPrinter::create();

14-6 Oracle Coherence Client Guide

Signing Up for Events on Specific Identities

hCache->addFilterListener (hListener) ;
m_hListener = hListener; // store the listener in a member field

Later, to remove the listener:

Example 14-7 Removing a Reference to a Listener
MapListener::Handle hListener = m_hListener;
if (hListener != NULL)
{
hCache->removeFilterListener (hListener) ;
m_hlListener = NULL; // clean up the listener field
}

Each add*Listener method on the ObservableMap interface has a corresponding
remove*Listener method. To remove a listener, use the remove*Listener
method that corresponds to the add*Listener method that was used to add the
listener.

MultiplexingMapListener

Another helpful base class for creating a MapListener is the
MultiplexingMapListener, which routes all events to a single method for
handling. Example 14-8 illustrates a simplified version of the EventPrinter
example:

Example 14-8 Using MultiplexingMapListener to Route Events

#include "coherence/util/MultiplexingMapListener.hpp"
#include <iostream>

using coherence::util::MultiplexingMapListener;

class EventPrinter
: public class_spec<EventPrinter,
extends<MultiplexingMapListener> >
{
public:
virtual void onMapEvent (MapEventView vEvent)
{
std::cout << vEvent << std::endl;
}
i

Configuring a MapListener for a Cache

If the listener should always be on a particular cache, then place it into the cache
configuration using the <listener> element and Coherence automatically adds the
listener when it configures the cache.

Signing Up for Events on Specific Identities

Signing up for events that occur against specific identities (keys) is just as simple. The
C++ code in Example 14-9 prints all events that occur against the Integer key 5:

Using Cache Events (C++) 14-7

Filtering Events

Example 14-9 Printing Events that Occur Against a Specified Integer Key

hCache->addKeyListener (EventPrinter::create(), Integer32::create(5), false);

The code in Example 14-10 would only trigger an event when the Integer key 5 is
inserted or updated:

Example 14-10 Triggering an Event for a Specified Integer Key Value

for (int32_t i = 0; i < 10; ++1i)
{
Integer32::View vKey = Integer32::create(i);
Integer32::View vValue = vKey;
hCache->put (vKey, vValue);
}

Filtering Events

Similar to listening to a particular key, it is possible to listen to particular events. In
Example 14-11, a listener is added to the cache with a filter that allows the listener to
only receive delete events.

Example 14-11 Adding a Listener with a Filter that Allows only Deleted Events

// Filters used with partitioned caches must implement
coherence: :i0: :pof::PortableObject

#include "coherence/io/pof/PofReader.hpp"
#include "coherence/io/pof/PofWriter.hpp"
#include "coherence/io/pof/PortableObject.hpp"
#include "coherence/util/Filter.hpp"

#include "coherence/util/MapEvent.hpp"

using coherence::io::pof::PofReader;
using coherence::io0::pof::Pofliriter;
using coherence::io::pof::PortableObject;
using coherence::util::Filter;

using coherence::util::MapEvent;

class DeletedFilter
: public class_spec<DeletedFilter,
extends<Object>,
implements<Filter, PortableObject> >
{
public:
// Filter interface virtual bool evaluate(Object::View v) const
{
MapEvent: :View VEvt = cast<MapEvent::View>(v);
return MapEvent::entry deleted == vEvt->getId();
}

// PortableObject interface virtual void
readExternal (PofReader: :Handle hIn)
{
}

virtual void writeExternal (PofWriter::Handle hOut) const
{
}

14-8 Oracle Coherence Client Guide

"Lite" Events

hCache->addFilterListener (EventPrinter: :create(), DeletedFilter::create(), false);

For example, if the following sequence of calls were made:

Example 14-12 Inserting and Removing Data from the Cache

cache: :put (String::create("hello"), String::create("world"));
cache: :put (String: :create("hello"), String::create("again"));
cache: :remove (String: :create("hello"));

The result would be:

CacheEvent {LocalCache deleted: key=hello, value=again}

For more information, see "Advanced: Listening to Queries" on page 14-10.

Filtering Events Versus Filtering Cached Data

When building a Filter for querying, the object that is passed to the evaluate
method of the Filter is a value from the cache, or, if the Filter implements the
EntryFilter interface, the entire Map: : Entry from the cache. When building a
Filter for filtering events for a MapListener, the object that is passed to the
evaluate method of the Filter is always of type MapEvent.

For more information on how to use a query filter to listen to cache events, see
Advanced: Listening to Queries.

"Lite" Events

By default, Coherence provides both the old and the new value as part of an event.
Consider the following example:

Example 14-13 Inserting, Updating, and Removing a Value
MapListener::Handle hListener = EventPrinter::create();

// add listener with the default"lite" value of
falsehCache->addFilterListener (hListener) ;

// insert a 1KB value
String::View vKey = String::create("test");
hCache->put (vKey, Array<octet_t>::create(1024));

// update with a 2KB value
hCache->put (vKey, Array<octet_t>::create(2048));

// remove the value
hCache->remove (vKey) ;

When the above code is run, the insert event carries the new 1KB value, the update
event carries both the old 1KB value and the new 2KB value and the remove event
carries the removed 2KB value.

When an application does not require the old and the new value to be included in the
event, it can indicate that by requesting only "lite" events. When adding a listener, you
can request lite events by using either the addFilterListener or the
addKeyListener method that takes an additional boolean fLite parameter. In the
above example, the only change would be:

Using Cache Events (C++) 14-9

Advanced: Listening to Queries

Example 14-14 Requesting Only "Lite" Events

cache->addFilterListener (hListener, (Filter::View) NULL, true);

Note: Obviously, a lite event's old value and new value may be
NULL. However, even if you request lite events, the old and the new
value may be included if there is no additional cost to generate and
deliver the event. In other words, requesting that a MapListener
receive lite events is simply a hint to the system that the
MapListener does not require knowledge of the old and new values
for the event.

Advanced: Listening to Queries

All Coherence caches support querying by any criteria. When an application queries
for data from a cache, the result is a point-in-time snapshot, either as a set of identities
(keyset) or a set of identity/value pairs (entrySet). The mechanism for
determining the contents of the resulting set is referred to as filtering, and it allows an
application developer to construct queries of arbitrary complexity using a rich set of
out-of-the-box filters (for example, equals, less-than, like, between, and so on), or to
provide their own custom filters (for example, XPath).

The same filters that are used to query a cache are used to listen to events from a
cache. For example, in a trading system it is possible to query for all open Order
objects for a particular trader.

Note: Executing Queries in the Cluster: Example 14-15 uses the
coherence: :util::extractor::ReflectionExtractor class.
While the C++ client does not support reflection,
ReflectionExtractor can be used for queries which are executed
in the cluster. In this case, the ReflectionExtractor simply passes
the necessary extraction information to the cluster to perform the
query. In cases where the ReflectionExtractor would extract the
data on the client, such as the ContinuousQueryCache when
caching values locally, the use of the ReflectionExtractor is not
supported. For these cases, you must provide a custom extractor.

Example 14-15 Filtering for Cache Events

NamedCache: :Handle hMapTrades = ...

Filter::Handle hFilter = AndFilter::create(
EqualsFilter::create(ReflectionExtractor: :create("getTrader"), vTraderId),
EqualsFilter::create(ReflectionExtractor::create("getStatus"),

Status::0PEN)) ;

Set::View vSetOpenTrades = hMapTrades->entrySet (hFilter);

To receive notifications of new trades being opened for that trader, closed by that
trader or reassigned to or from another trader, the application can use the same filter:

Example 14-16 Filtering for Specialized Events

// receive events for all trade IDs that this trader is interested in
hMapTrades->addFilterListener (hListener, MapEventFilter::create(hFilter), true);

The MapEventFilter converts a query filter into an event filter.

14-10 Oracle Coherence Client Guide

Advanced: Synthetic Events

Note: Filtering events versus filtering cached data: When building a
Filter for querying, the object that is passed to the evaluate
method of the Filter is a value from the cache, or, if the Filter
implements the EntryFilter interface, the entire Map: : Entry from
the cache. When building a Filter for filtering events for a
MapListener, the object that is passed to the evaluate method of
the Filter is always be of type MapEvent.

The MapEventFilter converts a Filter thatis used to do a query
into a Filter that is used to filter events for a MapListener. In
other words, the MapEventFilter is constructed from a Filter
that queries a cache, and the resulting MapEventFilter is a filter
that evaluates MapEvent objects by converting them into the objects
that a query Filter would expect.

The MapEventFilter has several very powerful options, allowing an application
listener to receive only the events that it is specifically interested in. More importantly
for scalability and performance, only the desired events have to be communicated
over the network, and they are communicated only to the servers and clients that have
expressed interest in those specific events. For example:

Example 14-17 Communicating Only Specialized Events over the Network

// receive all events for all trades that this trader is interested in

int32_t nMask = MapEventFilter::e_all;

hMapTrades->addFilterListener (hListener, MapEventFilter::create(nMask, hFilter),
true) ;

// receive events for all this trader's trades that are closed or

// re-assigned to a different trader

nMask = MapEventFilter::e_updated_left \ MapEventFilter::e_deleted;
hMapTrades->addFilterListener (hListener, MapEventFilter::create(nMask, hFilter),
true) ;

// receive events for all trades as they are assigned to this trader

nMask = MapEventFilter::e_inserted | MapEventFilter::e_updated_entered;
hMapTrades->addFilterListener (hListener, MapEventFilter::create(nMask, hFilter),
true);

// receive events only for new trades assigned to this trader

nMask = MapEventFilter::e_inserted;

hMapTrades->addFilterListener (hListener, MapEventFilter::create(nMask, hFilter),
true) ;

For more information on the various options supported, see the API documentation
for MapEventFilter.

Advanced: Synthetic Events

Events usually reflect the changes being made to a cache. For example, one server is
modifying one entry in a cache; while, another server is adding several items to a
cache; while, a third server is removing an item from the same cache; while, fifty
threads on each server in the cluster is accessing data from the same cache. All the
modifying actions produce events that any server within the cluster can choose to
receive. These actions are referred to as client actions and the events as being dispatched
to clients, even though the "clients" in this case are actually servers. This is a natural

Using Cache Events (C++) 14-11

Advanced: Backing Map Events

concept in a true peer-to-peer architecture, such as a Coherence cluster: Each and
every peer is both a client and a server, both consuming services from its peers and
providing services to its peers. In a typical Java Enterprise application, a "peer” is an
application server instance that is acting as a container for the application, and the
"client" is that part of the application that is directly accessing and modifying the
caches and listening to events from the caches.

Some events originate from within a cache itself. There are many examples, but the
most common cases are:

= When entries automatically expire from a cache;

s When entries are evicted from a cache because the maximum size of the cache has
been reached;

= When entries are transparently added to a cache as the result of a Read-Through
operation;

= When entries in a cache are transparently updated as the result of a Read-Ahead
or Refresh-Ahead operation.

Each of these represents a modification, but the modifications represent natural (and
typically automatic) operations from within a cache. These events are referred to as
synthetic events.

When necessary, an application can differentiate between client-induced and synthetic
events simply by asking the event if it is synthetic. This information is carried on a
sub-class of the MapEvent, called CacheEvent. Using the previous EventPrinter
example, it is possible to print only the synthetic events:

Example 14-18 Differentiating Between Client-Induced and Synthetic Events

class EventPrinter
: public class_spec<EventPrinter,
extends<MultiplexingMapListener> >

{

friend class factory<EventPrinter>;

public:
void onMapEvent (MapEvent::View vEvVt)
{
if (instanceof<CacheEvent::View> (VEvt) &&
(cast<CacheEvent: :View> (vEvt)->isSynthetic()))
{
std::cout << VEvVt;

}
Yi

For more information on this feature, see the API documentation for CacheEvent.

Advanced: Backing Map Events

While it is possible to listen to events from Coherence caches, each of which presents a
local view of distributed, partitioned, replicated, near-cached, continuously-queried,
read-through /write-through, and write-behind data, it is also possible to peek behind
the curtains, so to speak.

For some advanced use cases, it may be necessary to peek behind the curtain—or more
correctly, to "listen to" the "map" behind the "service." Replication, partitioning and
other approaches to managing data in a distributed environment are all distribution

14-12 Oracle Coherence Client Guide

Advanced: Synchronous Event Listeners

services. The service still has to have something in which to actually manage the data,
and that something is called a "backing map".

Backing maps are configurable. If all the data for a particular cache should be kept in
object form on the heap, then use an unlimited and non-expiring LocalCache (or a
SafeHashMap if statistics are not required). If only a small number of items should be
kept in memory, use a LocalCache. If data are to be read on demand from a
database, then use a ReadWriteBackingMap (which knows how to read and write
through an application's DAO implementation), and in turn give the
ReadWriteBackingMap a backing map such as a SafeHashMap or a LocalCache
to store its data in.

Some backing maps are observable. The events coming from these backing maps are
not usually of direct interest to the application. Instead, Coherence translates them into
actions that must be taken (by Coherence) to keep data synchronized and properly
backed up, and it also translates them when appropriate into clustered events that are
delivered throughout the cluster as requested by application listeners. For example, if
a partitioned cache has a LocalCache as its backing map, and the local cache expires
an entry, that event causes Coherence to expire all of the backup copies of that entry.
Furthermore, if any listeners have been registered on the partitioned cache, and if the
event matches their event filter(s), then that event is delivered to those listeners on the
servers where those listeners were registered.

In some advanced use cases, an application must process events on the server where
the data are being maintained, and it must do so on the structure (backing map) that is
actually managing the data. In these cases, if the backing map is an observable map, a
listener can be configured on the backing map or one can be programmatically added
to the backing map. (If the backing map is not observable, it can be made observable
by wrapping it in an WrapperObservableMap.)

See Oracle Coherence C++ API Reference for more information on these APIs.

Advanced: Synchronous Event Listeners

Some events are delivered asynchronously, so that application listeners do not disrupt
the cache services that are generating the events. In some rare scenarios, asynchronous
delivery can cause ambiguity of the ordering of events compared to the results of
ongoing operations. To guarantee that the cache API operations and the events are
ordered as if the local view of the clustered system were single-threaded, a
MapListener must implement the SynchronousListener marker interface.

One example in Coherence itself that uses synchronous listeners is the Near Cache,
which can use events to invalidate locally cached data ("Seppuku").

See Oracle Coherence C++ API Reference for more information on this API.

Using Cache Events (C++) 14-13

Advanced: Synchronous Event Listeners

14-14 Oracle Coherence Client Guide

15

Performing Transactions (C++)

This chapter provides instructions for using the Transaction Framework API to ensure
cache operations are performed within a transaction when using a C++ client. The
instructions do not provide detailed transaction API usage. See "Using the Transaction
Framework API" in Oracle Coherence Developer’s Guide for detailed transaction API
usage.

The following sections are included in this chapter and are required to perform
transactions:

= Using the Transaction API within an Entry Processor

= Creating a Stub Class for a Transactional Entry Processor
= Registering a Transactional Entry Processor User Type

= Configuring the Cluster-Side Transactional Caches

= Configuring the Client-Side Remote Cache

= Using a Transactional Entry Processor from a C++ Client

Using the Transaction API within an Entry Processor

C++ clients perform cache operations within a transaction by leveraging the
Transaction Framework API. The transaction API is not supported natively on C++
and must be used within an entry processor. The entry processor is implemented in
Java on the cluster and an entry processor stub class is implemented in C++ on the
client. Both classes use POF to serialize between Java and C++.

Example 15-1 demonstrates an entry processor that performs a simple update
operation within a transaction using the transaction APL. At run time, the class must
be located on the classpath of the extend proxy server.

Example 15-1 Entry Processor for Extend Client Transaction

package coherence.tests;

import com.tangosol.coherence.transaction.Connection;

import com.tangosol.coherence.transaction.ConnectionFactory;

import com.tangosol.coherence.transaction.DefaultConnectionFactory;

import com.tangosol.coherence.transaction.OptimisticNamedCache;

import

com. tangosol .coherence. transaction.exception.PredicateFailedException;
import com.tangosol.coherence.transaction.exception.RollbackException;
import

com. tangosol.coherence. transaction.exception.UnableToAcquireLockException;
import com.tangosol.util.Filter;

Performing Transactions (C++) 15-1

Using the Transaction API within an Entry Processor

import com.tangosol.util.InvocableMap;

import com.tangosol.util.extractor.IdentityExtractor;
import com.tangosol.util.filter.EqualsFilter;

import com.tangosol.util.processor.AbstractProcessor;

public class MyTxProcessor extends AbstractProcessor implements PortableObject

{
public Object process(InvocableMap.Entry entry)

{
// obtain a connection and transaction cache
ConnectionFactory connFactory = new DefaultConnectionFactory();
Connection conn = connFactory.createConnection ("TransactionalCache");
OptimisticNamedCache cache = conn.getNamedCache ("MyTxCache") ;

conn.setAutoCommit (false) ;

// get a value for an existing entry
String sValue = (String) cache.get("existingEntry");

// create predicate filter
Filter predicate = new EqualsFilter (IdentityExtractor.INSTANCE, sValue);

try
{
// update the previously obtained value
cache.update("existingEntry", "newValue", predicate);
catch (PredicateFailedException e)
// value was updated after it was read
conn.rollback() ;
return false;
catch (UnableToAcquireLockException e)
// row is being updated by another tranaction
conn.rollback() ;
return false;
try
conn.commit () ;
catch (RollbackException e)
// transaction was rolled back

return false;

}

return true;

public void readExternal (PofReader in)
throws IOException

public void writeExternal (PofWriter out)
throws IOException

15-2 Oracle Coherence Client Guide

Creating a Stub Class for a Transactional Entry Processor

Creating a Stub Class for a Transactional Entry Processor

An entry processor stub class allows a client to use the transactional entry processor
on the cluster. The stub class is implemented in C++ and uses POF for serialization.
POF allows an entry processor to be serialized between C++ and Java. The entry
processor stub class does not require any transaction logic and is a skeleton of the
transactional entry processor. See Chapter 10, "Building Integration Objects (C++)," for
detailed information on using POF with C++.

Example 15-2 and Example 15-3 demonstrate a stub class and associated header file
for the transactional entry processor created in Example 15-1. In the example, POF
registration is performed within the class.

Example 15-2 Transaction Entry Processor C++ Stub Class

#include "coherence/tests/MyTxProcessor.hpp"
#include "coherence/io/pof/SystemPofContext.hpp"

COH_OPEN_NAMESPACE?2 (coherence, tests)
COH_REGISTER_PORTABLE_CLASS (1599, MyTxProcessor);

MyTxProcessor: :MyTxProcessor ()
{
}

void MyTxProcessor: :readExternal (PofReader: :Handle hIn)
{
}

void MyTxProcessor::writeExternal (PofWriter::Handle hOut) const
{
}

Object::Holder MyTxProcessor::process (InvocableMap: :Entry::Handle hEntry) const

{
return NULL;

}

COH_CLOSE_NAMESPACE2

Example 15-3 Transaction Entry Processor C++ Stub Class Header File

#ifndef COH_TX_EP_HPP
#define COH_TX_EP_HPP

#include "coherence/lang.ns"

#include "coherence/io/pof/PofReader.hpp"

#include "coherence/io/pof/PofWriter.hpp"

#include "coherence/io/pof/PortableObject.hpp"

#include "coherence/util/InvocableMap.hpp"

#include "coherence/util/processor/AbstractProcessor.hpp";

COH_OPEN_NAMESPACE2 (coherence, tests)

using coherence::io0::pof::PofReader;
using coherence::io0::pof::Pofliriter;

Performing Transactions (C++) 15-3

Registering a Transactional Entry Processor User Type

using coherence::io::pof::PortableObject;
using coherence::util::InvocableMap;
using coherence::util: :processor: :AbstractProcessor;

class MyTxProcessor
: public class_spec<MyTxProcessor,
extends<AbstractProcessor>,
implements<PortableObject> >

{

friend class factory<MyTxProcessor>;

protected:
MyTxProcessor () ;

public:
virtual Object::Holder process(InvocableMap: :Entry: :Handle hEntry) const;

public:
virtual void readExternal (PofReader::Handle hIn);
virtual void writeExternal (PofWriter::Handle hOut) const;

}i

COH_CLOSE_NAMESPACE?2
#endif // COH_TX_EP_HPP

Registering a Transactional Entry Processor User Type

An entry processor class must be registered as a POF user type in the cluster-side POF
configuration file. The registration must use the same type ID that was used to register
the stub class on the client side. The following example demonstrates registering the
MyTxProcessor class that was created in Example 15-1 and uses the same type ID
that was registered in Example 15-2:

<?xml version="1.0"?>

<pof-config xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns="http://xmlns.oracle.com/coherence/coherence-pof-config"
xsi:schemalocation="http://xmlns.oracle.com/coherence/coherence-pof-config
coherence-pof-config.xsd">
<user-type-list>
<include>coherence-pof-config.xml</include>
<include>txn-pof-config.xml</include>
<user-type>
<type-id>1599</type-id>
<class-name>coherence. tests.MyTxProcessor</class-name>
</user-type>
</user-type-list>
</pof-config>

Configuring the Cluster-Side Transactional Caches

Transactions require a transactional cache to be defined in the cluster-side cache
configuration file. Transactional caches are used by the Transaction Framework to
provide transactional guarantees. See "Defining Transactional Caches" in Oracle
Coherence Developer’s Guide for details on transactional caches.

15-4 Oracle Coherence Client Guide

Configuring the Cluster-Side Transactional Caches

The following example creates a transactional cache that is named MyTxCache, which
is the cache name that was used by the entry processor in Example 15-1. The
configuration also includes a proxy scheme and a distributed cache scheme that are
required to execute the entry processor from a remote client. The proxy is configured
to accept client TCP/IP connections on localhost at port 9099. See Chapter 3,
"Setting Up Coherence*Extend," for detailed information on configuring cluster-side
caches when using Coherence*Extend.

<?xml version='1.0'?>

<cache-config xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
xsi:schemalocation="http://xmlns.oracle.com/coherence/coherence-cache-config
coherence-cache-config.xsd">
<defaults>
<serializer>pof</serializer>
</defaults>
<caching-scheme-mapping>
<cache-mapping>
<cache-name>MyTxCache</cache-name>
<scheme-name>example-transactional</scheme-name>
</cache-mapping>
<cache-mapping>
<cache-name>dist-example</cache-name>
<scheme-name>example-distributed</scheme-name>
</cache-mapping>
</caching-scheme-mapping>

<caching-schemes>

<transactional-scheme>
<scheme-name>example-transactional</scheme-name>
<service-name>TransactionalCache</service-name>
<thread-count>7</thread-count>
<high-units>15M</high-units>
<task-timeout>0</task-timeout>
<autostart>true</autostart>

</transactional-scheme>

<distributed-scheme>
<scheme-name>example-distributed</scheme-name>
<service-name>DistributedCache</service-name>
<backing-map-scheme>
<local-scheme/>
</backing-map-scheme>
<autostart>true</autostart>
</distributed-scheme>

<proxy-scheme>
<service-name>ExtendTcpProxyService</service-name>
<thread-count>5</thread-count>
<acceptor-config>
<tcp-acceptor>
<local-address>
<address>localhost</address>
<port>9099</port>
</local-address>
</tcp-acceptor>
</acceptor-config>
<autostart>true</autostart>
</proxy-scheme>

Performing Transactions (C++) 15-5

Configuring the Client-Side Remote Cache

</caching-schemes>
</cache-config>

Configuring the Client-Side Remote Cache

Remote clients require a remote cache to connect to the cluster’s proxy and run a
transactional entry processor. The remote cache is defined in the client-side cache
configuration file. See Chapter 3, "Setting Up Coherence*Extend," for detailed
information on configuring client-side caches.

The following example configures a remote cache to connect to a proxy that is located
on localhost at port 9099. In addition, the name of the remote cache
(dist-example) must match the name of a cluster-side cache that is used when
initiating the transactional entry processor.

<?xml version='1.0'?>

<cache-config xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
xsi:schemalLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
coherence-cache-config.xsd">
<defaults>
<serializer>pof</serializer>
</defaults>
<caching-scheme-mapping>
<cache-mapping>
<cache-name>dist-example</cache-name>
<scheme-name>extend</scheme-name>
</cache-mapping>
</caching-scheme-mapping>

<caching-schemes>
<remote-cache-scheme>
<scheme-name>extend</scheme-name>
<service-name>ExtendTcpCacheService</service-name>
<initiator-config>
<tcp-initiator>
<remote-addresses>
<socket-address>
<address>localhost</address>
<port>9099</port>
</socket-address>
</remote-addresses>
<connect-timeout>30s</connect-timeout>
</tcp-initiator>
<outgoing-message-handler>
<request-timeout>30s</request-timeout>
</outgoing-message-handler>
</initiator-config>
</remote-cache-scheme>
</caching-schemes>
</cache-config>

Using a Transactional Entry Processor from a C++ Client

A client invokes an entry processor stub class the same way any entry processor is
invoked. However, at run time, the cluster-side entry processor is invoked. The client

15-6 Oracle Coherence Client Guide

Using a Transactional Entry Processor from a C++ Client

is unaware that the invocation has been delegated to the Java class. The following
example demonstrates a client that uses the entry processor stub class and results in an
invocation of the transactional entry processor that was created in Example 15-1:

String::View vsCacheName = "dist-example";

String::View vsKey = "AnyKey";

// retrieve the named cache
NamedCache: :Handle hCache = CacheFactory: :getCache (vsCacheName) ;

// invoke the cache

Object::View oResult = hCache->invoke(vsKey, MyTxProcessor::create());
std::cout << "Result of extend transaction execution: " << oResult << std::endl;

Performing Transactions (C++) 15-7

Using a Transactional Entry Processor from a C++ Client

15-8 Oracle Coherence Client Guide

16

Sample C++ Application

The instructions and command line examples in this chapter assume that you have
extracted the Java Coherence archive and the C++ Coherence archive onto your file
system:

= the Java Coherence archive was extracted into the top-level of your file system. For

example, it would appear as C: \coherence on Windows.

s the C++ Coherence archive was extracted into the Java Coherence root directory.
The root directory for the C++ version is coherence-cpp. Thus, on Windows it
would appear in the file system as C: \coherence\coherence-cpp.

See "Installing the C++ Client Distribution" on page 2-1 for more information on
installing Coherence for C++.

Note: Coherence C++ does not have any local dependencies on the
Java installation. While this section assumes that you have installed
both the Java and C++ versions of Coherence on the computer that is
used to run the examples, installation of the Java version is optional. If
the Java version is not installed, the Cache Server must be running on
a remote computer and the Java console example is not available.

Coherence for C++ provides the following sample applications in the
coherence-cpp/examples directory of the installed product:

= hellogrid—An example of basic cache access.

» console—A command line application that enables you to interact with the
cache using simple commands.

= contacts—An example of how to store pre-existing (that is, non-Coherence) C++
classes in the grid.

The following sections are included in this chapter:

» Prerequisites for Building and Running the Sample Applications
= Starting a Coherence Proxy Service and Cache Server

s Building the Sample Applications

= Starting a Sample Application

= Running the hellogrid Example

= Running the console Example

= Running the contacts Example

Sample C++ Application 16-1

Prerequisites for Building and Running the Sample Applications

Prerequisites for Building and Running the Sample Applications
The requirements for running a sample include:

»s The Coherence C++ shared library, found under the platform specific
coherence-cpp/1lib directory of the installation. See "Setting the run-time
Library and Search Path" on page 6-2 for details.

= A Coherence extend cache configuration file, found under the
coherence-cpp/examples/config directory.

= A running Coherence Proxy Service and Cache Server; these are Java components.
See "Configuring the Cluster Side" on page 3-1 for details.

Starting a Coherence Proxy Service and Cache Server

Coherence for C++ applications communicate with the Coherence cluster using a
proxy server. To run the examples against a cluster, the proxy must first be started.

A sample command to start the proxy service and cache server is listed below. You
must be sure to point the proxy at the server cache configuration file, such as
extend-server-config.xml provided in the config directory. For example, on
Windows execute:

Example 16-1 Sample Command to Start the Proxy Service and the Cache Server

c:\coherence\lib> java
-Dtangosol.coherence.cacheconfig=c:\coherence\coherence-cpp\examples\config\extend
-server-config.xml -cp coherence.jar "com.tangosol.net.DefaultCacheServer"

Note: For the contacts example, you must also use the additional
POF configuration and custom classes included in the
examples/java/ContactCache directory.

Building the Sample Applications

The Coherence for C++ distribution includes platform specific build scripts. Each
script takes a single command line parameter, which is the name of the sample to
build. For example, to build the console example on Windows, open a new command
prompt window and execute:

c:\coherence\coherence-cpp\examples> build hellogrid

The sample executable are created within the particular examples subdirectory, that
is:

c:\coherence\coherence-cpp\examples\hellogrid\hellogrid.exe

To use this scripts with your own simple applications, just create a new directory

under the examples directory and place your source files there. Then run build
your_dir_name to compile your application.

Starting a Sample Application

After the configuration has been specified and the proxy/cache server has been
started, you can start the client. The examples directory contains a run script which
runs the examples. This script performs the basic work of setting environment

16-2 Oracle Coherence Client Guide

Running the console Example

variables and library search paths. To use the script, execute the run script and supply
as the first parameter the name of the example you want to run.

For example, to run the hellogrid example on Windows, run the following
command from the examples directory:

c:\coherence\coherence-cpp\examples> run hellogrid

The Coherence logging for the application is directed to hellogrid. log in the
examples directory.

Running the hellogrid Example

The hellogrid example exercises the cache by entering various types of data into the
cache and reading them out, printing cache contents, querying the cache, and so on.
Follow these steps to build and run the hellogrid example:

C:\coherence\coherence-cpp\examples>run hellogrid
retrieved cache "dist-hello" containing 0 entries
put: hello = grid
get: hello = grid
get: dummy = NULL
entire cache contents:

34567 = 8.9
23456 = 7.8
12345 = 6.7
hello = grid
updated cache contents:
34567 = 8.9
23456 = 7.8
12345 = 6.7
45678 = 9.1
filtered cache contents by coherence::util::filter::GreaterFilter: (IdentityExtr
actor, 7)
34567 = 8.9
23456 = 7.8
45678 = 9.1

minimum: 6.7
increment results by 6.7

34567 = 15.6
23456 = 14.5
12345 = 13.4
45678 = 15.8

C:\coherence\coherence-cpp\examples>

Now that you've run the example, you are encouraged to have a look at the code. Each
sample has a corresponding directory under examples which contains its sample
specific source. There is also a common directory which contains source used in all
samples.

Running the console Example

The console example enables you to enter data into the cache through a C++ console,
then read it out through a Java console. After you start the console example (by
running run console), you are provided with the familiar Map (?) : prompt from the
console. The C++ console supports a subset of the commands available from Java.
Enter the help command to get a list of available commands. The caches are defined
within the extend-cache-config.xml configuration file Ensure that local-*

Sample C++ Application 16-3

Running the console Example

caches are local only and dist-* caches are remote and use PIF/POF. Using near-*
pulls remote data into an in-process coherent near cache.

1. Enter cache dist-hello to connect to the cache. Enter the commands illustrated
in the following example to enter data into the cache and display it.

Map(?): cache dist-hello

Map (dist-hello): put hello world
NULL

Map (dist-hello): get hello
world

Map (dist-hello): size
1

Map (dist-hello): put from C++
NULL

Map (dist-hello): list
from = C++
hello = world

Map (dist-hello) :

2. Launch a Java console to interact with the C++ console. Note that in the startup
command, the Java client application must point to the same cache configuration
as the C++ client. For example, on Windows, open a new command prompt
window and execute the following command. (Note, the command is broken into
two lines for formatting purposes).

c:\coherence\lib> java -Dtangosol.coherence.cacheconfig=
c:\coherence\coherence-cpp\examples\config\extend-cache-config.xml -jar
coherence. jar

3. Use the same console syntax that you used in the C++ console to access the cache.
For example, on Windows, open a new command prompt window and execute
the commands illustrated in the following figure:

Map(?): cache dist-hello
2008-04-25 09:01:02.207 Oracle Coherence GE 3.4/396 Alpha <D5>
(thread=DistributedCache, member=3): Service
DistributedCache joined the cluster with senior service member 1
2008-04-25 09:01:02.239 Oracle Coherence GE 3.4/396 Alpha <D5>
(thread=DistributedCache, member=3): Service
DistributedCache: received ServiceConfigSync containing 259 entries
<distributed-scheme>
<scheme-name>example-distributed</scheme-name>
<service-name>DistributedCache</service-name>
<lease-granularity>member</lease-granularity>
<backing-map-scheme>
<local-scheme//>
</backing-map-scheme>
<autostart>true</autostart>
</distributed-scheme>

2008-04-25 09:01:02.264 Oracle Coherence GE 3.4/396 Alpha <D4>
(thread=DistributedCache, member=3): Asking member 1 for 128 out of 128 primary

16-4 Oracle Coherence Client Guide

Running the contacts Example

partitions

Map (dist-hello): list
from = C++
hello = world

Map (dist-hello) :

Now that you've run the example, you are encouraged to have a look at the code.
Each sample has a corresponding directory under examples which contains its
sample specific source. There is also a common directory which contains source
used in all samples.

Running the contacts Example

The contact example enables you to enter names and addresses into the cache, then
query to display the entries. The following commands can be run from the example:

help—returns a list of commands that the example can run
bye—stops the example and returns you to the command prompt

create—responds with prompts for a person's contact information: name, street
address, city, state, zip code

find—prompts you for a name. The example returns the contact information
associated with the name.

Follow these steps to build and run the contacts example:

C:\coherence\coherence-cpp\examples>build contacts
building contacts\contacts.exe ...

contacts.cpp

ContactInfo.cpp

ContactInfoSerializer.cpp

Generating Code...
C:\coherence\coherence-cpp\examples>

Run the contacts example. The window displays output similar to the
following:

C:\coherence\coherence-cpp\examples>run contacts
contacts> help

commands are:

bye

create

find <street | city | state | zip | all>
contacts>

Exercise the example by entering the commands help, create, £ind, and bye.

contacts> help

commands are:

bye

create

find <street | city | state | zip | all>

contacts> create

Name: Tom

Street: Oracle Parkway
City: Redwood Shores
State: California

Sample C++ Application 16-5

Running the contacts Example

Zip: 94065
storing: ContactInfo(Name=Tom, Street=Oracle Parkway, City=Redwood Shores,
State

=California, Zip=94065)

contacts> find

Name: Tom

ContactInfo (Name=Tom, Street=Oracle Parkway, City=Redwood Shores,
State=California, Zip=94065)

contacts> bye
C:\coherence\coherence-cpp\examples>

3. Now that you've run the example, you are encouraged to have a look at the code.
Each sample has a corresponding directory under examples which contains its
sample specific source. There is also a common directory which contains source
used in all samples.

16-6 Oracle Coherence Client Guide

Part IV

Creating .NET Extend Clients

Coherence for .NET allows .NET applications to access Coherence clustered services,
including data, data events, and data processing from outside the Coherence cluster.
Typical uses of Coherence for .NET include desktop and web applications that require
access to Coherence caches.

Coherence for .NET consists of a lightweight .NET library that connects to a
Coherence*Extend clustered service instance running within the Coherence cluster
using a high performance TCP/IP-based communication layer. This library sends all
client requests to the Coherence*Extend clustered service which, in turn, responds to
client requests by delegating to an actual Coherence clustered service (for example, a
Partitioned or Replicated cache service).

An INamedCache instance is retrieved by using the

CacheFactory.GetCache (.. .) API call. After it is obtained, a client accesses the
INamedCache in the same way as it would if it were part of the Coherence cluster.
The fact that INamedCache operations are being sent to a remote cluster node (over
TCP/1IP) is completely transparent to the client application.

Coherence for .NET contains the following chapters:

» Chapter 17, "Configuration and Usage for .NET Clients"

» Chapter 19, "Using the Coherence .NET Client Library"

» Chapter 18, "Building Integration Objects (NET)"

» Chapter 20, "Performing Continuous Queries (NET)."

» Chapter 21, "Performing Remote Invocations ((NET)"

» Chapter 22, "Performing Transactions (.NET)"

s Chapter 23, "Managing ASP.NET Session State"

» Chapter 24, "Sample Windows Forms Application for .NET Clients"
» Chapter 25, "Sample Web Application for .NET Clients"

17

Configuration and Usage for .NET Clients

The following sections are included in this chapter:

General Instructions

Configuring Coherence*Extend

Starting a Coherence DefaultCacheServer Process
Obtaining a Cache Reference with .NET

Cleaning Up Resources Associated with a Cache

General Instructions

Configuring and using Coherence for .NET requires five basic steps:

1.

Configure Coherence*Extend on both the client and on one or more JVMs within
the cluster. See "Configuring Coherence*Extend" below.

Configure a POF context on the client and on all of the JVMs within the cluster
that run the Coherence*Extend clustered service. See "Overview of Building
Integration Objects (NET)" on page 18-1.

Implement the .NET client application using the Coherence for .NET API. See
"Using the Coherence .NET APIs" on page 19-3.

Make sure the Coherence cluster is up and running. See "Starting a Coherence
DefaultCacheServer Process" on page 17-7.

Launch the .NET client application.

Configuring Coherence*Extend

To configure Coherence*Extend, you must add the appropriate configuration elements
to both the cluster and client-side cache configuration descriptors. The cluster-side
cache configuration elements instruct a Coherence DefaultCacheServer to start a
Coherence*Extend clustered service that listens for incoming TCP/IP requests from
Coherence*Extend clients. The client-side cache configuration elements are used by the
client library to determine the IP address and port of one or more servers in the cluster
that run the Coherence*Extend clustered service so that it can connect to the cluster. It
also contains various connection-related parameters, such as connection and request
timeouts.

Configuration and Usage for .NET Clients 17-1

Configuring Coherence*Extend

Configuring Coherence*Extend in the Cluster

In order for a Coherence*Extend client to connect to a Coherence cluster, one or more
DefaultCacheServer JVMs within the cluster must run a TCP/IP
Coherence*Extend clustered service. To configure a DefaultCacheServer to run
this service, a proxy-scheme element with a child tcp-acceptor element must be
added to the cache configuration descriptor used by the DefaultCacheServer. this
is illustrated in Example 17-1.

Example 17-1 Configuration of a Default Cache Server for Coherence*Extend

<?xml version="1.0"?>

<cache-config xmlns="http://schemas.tangosol.com/cache"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://schemas.tangosol.com/cache
assembly://Coherence/Tangosol.Config/cache-config.xsd">
<caching-scheme-mapping>
<cache-mapping>
<cache-name>dist-*</cache-name>
<scheme-name>dist-default</scheme-name>
</cache-mapping>
</caching-scheme-mapping>

<caching-schemes>

<distributed-scheme>
<scheme-name>dist-default</scheme-name>
<lease-granularity>member</lease-granularity>
<backing-map-scheme>

<local-scheme/>

</backing-map-scheme>
<autostart>true</autostart>

</distributed-scheme>

<proxy-scheme>
<service-name>ExtendTcpProxyService</service-name>
<thread-count>5</thread-count>
<acceptor-config>
<tcp-acceptor>
<local-address>
<address>localhost</address>
<port>9099</port>
</local-address>
</tcp-acceptor>
</acceptor-config>
<autostart>true</autostart>
</proxy-scheme>
</caching-schemes>
</cache-config>

This cache configuration descriptor defines two clustered services, one that allows
remote Coherence*Extend clients to connect to the Coherence cluster over TCP/IP and
a standard Partitioned cache service. Since this descriptor is used by a
DefaultCacheServer, it is important that the autostart configuration element for
each service is set to true so that clustered services are automatically restarted upon
termination. The proxy-scheme element has a tcp-acceptor child element which
includes all TCP/IP-specific information needed to accept client connection requests
over TCP/IP.

17-2 Oracle Coherence Client Guide

Configuring Coherence*Extend

The Coherence*Extend clustered service configured above listens for incoming
requests on the localhost address and port 9099. When, for example, a client
attempts to connect to a Coherence cache called dist-extend, the Coherence*Extend
clustered service proxies subsequent requests to the NamedCache with the same name
which, in this example, is a Partitioned cache.

Configuring Coherence*Extend on the Client

A Coherence*Extend client uses the information within an initiator-config cache
configuration descriptor element to connect to and communicate with a
Coherence*Extend clustered service running within a Coherence cluster. This is
illustrated in Example 17-2.

Example 17-2 Configuration to Connect to a Remote Coherence Cluster

<?xml version='1.0'?>

<cache-config xmlns="http://schemas.tangosol.com/cache"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://schemas.tangosol.com/cache
assembly://Coherence/Tangosol.Config/cache-config.xsd">
<caching-scheme-mapping>
<cache-mapping>
<cache-name>dist-extend</cache-name>
<scheme-name>extend-dist</scheme-name>
</cache-mapping>
</caching-scheme-mapping>

<caching-schemes>
<remote-cache-scheme>
<scheme-name>extend-dist</scheme-name>
<service-name>ExtendTcpCacheService</service-name>
<initiator-config>
<tcp-initiator>
<remote-addresses>
<socket-address>
<address>localhost</address>
<port>9099</port>
</socket-address>
</remote-addresses>
</tcp-initiator>
<outgoing-message-handler>
<request-timeout>5s</request-timeout>
</outgoing-message-handler>
</initiator-config>
</remote-cache-scheme>
</caching-schemes>
</cache-config>

This cache configuration descriptor defines a caching scheme that connects to a remote
Coherence cluster. The remote-cache-scheme element hasa tcp-initiator
child element which includes all TCP /IP-specific information needed to connect the
client with the Coherence*Extend clustered service running within the remote
Coherence cluster.

When the client application retrieves a named cache with CacheFactory using, for
example, the name dist-extend, the Coherence*Extend client connects to the
Coherence cluster by using TCP/IP (using the address 1ocalhost and port 9099)
and return a INamedCache implementation that routes requests to the NamedCache

Configuration and Usage for .NET Clients 17-3

Configuring Coherence*Extend

with the same name running within the remote cluster. Note that the

remote-addresses configuration element can contain multiple socket-address
child elements. The Coherence*Extend client attempts to connect to the addresses in a
random order, until either the list is exhausted or a TCP/IP connection is established.

Defining a Local Cache for .NET Clients

A Local Cache is just that: A cache that is local to (completely contained within) a
particular NET application. There are several attributes of the Local Cache that are
particularly interesting:

s The Local Cache implements the same standard cache interfaces that a remote
cache implements (ICache, IObservableCache, IConcurrentCache,
IQueryCache, and IInvocableCache), meaning that there is no programming
difference between using a local and a remote cache.

s The Local Cache can be size-limited. Size-limited means that the Local Cache can
restrict the number of entries that it caches, and automatically evict entries when
the cache becomes full. Furthermore, both the sizing of entries and the eviction
policies are customizable, for example allowing the cache to be size-limited based
on the memory used by the cached entries. The default eviction policy uses a
combination of Most Frequently Used (MFU) and Most Recently Used (MRU)
information, scaled on a logarithmic curve, to determine what cache items to evict.
This algorithm is the best general-purpose eviction algorithm because it works
well for short duration and long duration caches, and it balances frequency versus
recentness to avoid cache thrashing. The pure LRU and pure LFU algorithms are
also supported, and the ability to plug in custom eviction policies.

s The Local Cache supports automatic expiration of cached entries, meaning that
each cache entry can be assigned a time-to-live value in the cache. Furthermore,
the entire cache can be configured to flush itself on a periodic basis or at a preset
time.

s The Local Cache is thread safe and highly concurrent.

s The Local Cache provides cache "get" statistics. It maintains hit and miss statistics.
These run-time statistics accurately project the effectiveness of the cache and are
used to adjust its size-limiting and auto-expiring settings accordingly while the
cache is running.

The Coherence for .NET Local Cache functionality is implemented by the
Tangosol.Net.Cache.LocalCache class. As such, it can be programmatically
instantiated and configured; however, it is recommended that a LocalCache be
configured by using a cache configuration descriptor, just like any other Coherence for
NET cache.

The key element for configuring the Local Cache is <local-scheme>. Local caches
are generally nested within other cache schemes, for instance as the front-tier of a
near-scheme. Thus, this element can appear as a subelement of any of these elements
in the coherence-cache-config file: <caching-schemes>,
<distributed-scheme>, <replicated-scheme>, <optimistic-scheme>,
<near-scheme>, <overflow-scheme>, and <read-write-backing-map>.

The <local-scheme> provides several optional subelements that let you define the
characteristics of the cache. For example, the <low-units> and <high-units>
subelements allow you to limit the cache in terms of size. When the cache reaches its
maximum allowable size, it prunes itself back to a specified smaller size, choosing
which entries to evict according to a specified eviction-policy (<eviction-policy>).
The entries and size limitations are measured in terms of units as calculated by the
scheme's unit-calculator (<unit-calculator>). A custom class can be defined using

17-4 Oracle Coherence Client Guide

Configuring Coherence*Extend

the <class-scheme> subelement for both the <eviction-policy> and
<unit-calculator> element to specify custom behavior as required.

You can also limit the cache in terms of time. The <expiry-delay> subelement
specifies the amount of time from last update that entries are kept by the cache before
being marked as expired. Any attempt to read an expired entry results in a reloading
of the entry from the configured cache store (<cachestore-scheme>). Expired
values are periodically discarded from the cache based on the flush-delay.

If a <cachestore-scheme> is not specified, then the cached data only resides in
memory, and only reflects operations performed on the cache itself. See
<local-scheme> for a complete description of all of the available subelements.

Example 17-3 demonstrates a near cache configuration.

Example 17-3 Configuring a Local Cache

<?xml version='1.0'?>

<cache-config xmlns="http://schemas.tangosol.com/cache"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://schemas.tangosol.com/cache
assembly://Coherence/Tangosol.Config/cache-config.xsd">
<caching-scheme-mapping>
<cache-mapping>
<cache-name>example-local-cache</cache-name>
<scheme-name>example-local</scheme-name>
</cache-mapping>
</caching-scheme-mapping>
<caching-schemes>
<local-scheme>
<scheme-name>example-local</scheme-name>
<eviction-policy>LRU</eviction-policy>
<high-units>32000</high-units>
<low-units>10</low-units>
<unit-calculator>FIXED</unit-calculator>
<expiry-delay>10ms</expiry-delay>
<cachestore-scheme>
<class-scheme>
<class-name>ExampleCacheStore</class-name>
</class-scheme>
</cachestore-scheme>
<pre-load>true</pre-load>
</local-scheme>
</caching-schemes>
</cache-config>

Defining a Near Cache for .NET Clients

This section describes the Near Cache as it pertains to Coherence for .NET clients. See
Oracle Coherence Developer’s Guide for a complete discussion of the concepts behind a
Near Cache, its configuration, and ways to keep it synchronized with the back tier.

In Coherence for .NET, the Near Cache is an INamedCache implementation that
wraps the front cache and the back cache using a read-through/write-through
approach. If the back cache implements the TObservableCache interface, then the
Near Cache can use either the Listen None, Listen Present, Listen All, or
Listen Auto strategy to invalidate any front cache entries that might have been
changed in the back cache

Configuration and Usage for .NET Clients 17-5

Configuring Coherence*Extend

The Tangosol.Net.Cache.NearCache class enables you to programmatically
instantiate and configure NET Near Cache functionality. However, it is recommended
that you use a cache configuration descriptor to configure the NearCache.

A typical Near Cache is configured to use a local cache (thread safe, highly concurrent,
size-limited and possibly auto-expiring) as the front cache and a remote cache as a
back cache. A Near Cache is configured by using the near-scheme element which
has two child elements: front-scheme for configuring a local (front) cache and
back-scheme for defining a remote (back) cache.

A Near Cache is configured by using the <near-scheme> element in the
coherence-cache-config file. This element has two required subelements:
front-scheme for configuring a local (front-tier) cache and a back-scheme for defining a
remote (back-tier) cache. While a local cache (<1ocal-scheme>) is a typical choice for
the front-tier, you can also use non-JVM heap based caches, (<external-scheme> or
<paged-external-scheme>) or schemes based on Java objects
(<class-scheme>).

The remote or back-tier cache is described by the <back-scheme> element. A
back-tier cache can be either a distributed cache (<distributed-scheme>) or a
remote cache (<remote-cache-scheme>). The <remote-cache-scheme> element
enables you to use a clustered cache from outside the current cluster.

Optional subelements of <near-scheme> include <invalidation-strategy> for
specifying how the front-tier and back-tier objects are kept synchronized and
<listener> for specifying a listener which are notified of events occurring on the
cache.

Example 17-4 demonstrates a near cache configuration.

Example 17-4 Near Cache Configuration

<?xml version="1.0"?>

<cache-config xmlns="http://schemas.tangosol.com/cache"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://schemas.tangosol.com/cache
assembly://Coherence/Tangosol.Config/cache-config.xsd">
<caching-scheme-mapping>
<cache-mapping>
<cache-name>dist-extend-near</cache-name>
<scheme-name>extend-near</scheme-name>
</cache-mapping>
</caching-scheme-mapping>

<caching-schemes>
<near-scheme>
<scheme-name>extend-near</scheme-name>
<front-scheme>
<local-scheme>
<high-units>1000</high-units>
</local-scheme>
</front-scheme>
<back-scheme>
<remote-cache-scheme>
<scheme-ref>extend-dist</scheme-ref>
</remote-cache-scheme>
</back-scheme>
<invalidation-strategy>all</invalidation-strategy>
</near-scheme>

17-6 Oracle Coherence Client Guide

Starting a Coherence DefaultCacheServer Process

<remote-cache-scheme>
<scheme-name>extend-dist</scheme-name>
<service-name>ExtendTcpCacheService</service-name>
<initiator-config>
<tcp-initiator>
<remote-addresses>
<socket-address>
<address>localhost</address>
<port>9099</port>
</socket-address>
</remote-addresses>
<connect-timeout>10s</connect-timeout>
</tcp-initiator>
<outgoing-message-handler>
<request-timeout>5s</request-timeout>
</outgoing-message-handler>
</initiator-config>
</remote-cache-scheme>
</caching-schemes>
</cache-config>

Connection Error Detection and Failover

When a Coherence*Extend client service detects that the connection between the client
and cluster has been severed (for example, due to a network, software, or hardware
failure), the Coherence*Extend client service implementation (that is,
ICacheService or IInvocationService) raises a MemberEventType.Left
event (by using the MemberEventHandler delegate) and the service is stopped. If the
client application attempts to subsequently use the service, the service automatically
restarts itself and attempts to reconnect to the cluster. If the connection is successful,
the service raises a MemberEventType.Joined event; otherwise, a irrecoverable
error exception is thrown to the client application.

A Coherence*Extend service has several mechanisms for detecting dropped
connections. Some mechanisms are inherent to the underlying protocol (such as
TCP/1IP in Extend-TCP), whereas others are implemented by the service itself. The
latter mechanisms are configured by using the outgoing-message-handler
configuration element.

The primary configurable mechanism used by a Coherence*Extend client service to
detect dropped connections is a request timeout. When the service sends a request to
the remote cluster and does not receive a response within the request timeout interval
(see <request-timeout>), the service assumes that the connection has been
dropped. The Coherence*Extend client and clustered services can also be configured to
send a periodic heartbeat over the connection (see <heartbeat-interval> and
<heartbeat-timeout>). If the service does not receive a response within the
configured heartbeat timeout interval, the service assumes that the connection has
been dropped.

Starting a Coherence DefaultCacheServer Process

To start a DefaultCacheServer that uses the cluster-side Coherence cache
configuration described earlier to allow Coherence for .NET clients to connect to the
Coherence cluster by using TCP/IP, you must do the following:

Configuration and Usage for .NET Clients 17-7

Obtaining a Cache Reference with .NET

1. Change the current directory to the Oracle Coherence library directory
%$COHERENCE_HOME%\1ib on Windows and $COHERENCE_HOME/1lib on
UNIX).

2. Make sure that the paths are configured so that the Java command runs.

3. Start the DefaultCacheServer command line application with the
-Dtangosol.coherence.cacheconfig system property set to the location of
the cluster-side Coherence cache configuration descriptor described earlier.

Example 17-5 illustrates a sample command line.

Example 17-5 Command to Start a Coherence Default Cache Server

java -cp coherence.jar -Dtangosol.coherence.cacheconfig=file://<path to the
server-side cache configuration descriptor> com.tangosol.net.DefaultCacheServer

Obtaining a Cache Reference with .NET

A reference to a configured cache can be obtained by name by using the
CacheFactory class:

Example 17-6 Obtaining a Reference to a Cache

INamedCache cache = CacheFactory.GetCache ("example-local-cache");

Cleaning Up Resources Associated with a Cache

Instances of all INamedCache implementations, including LocalCache, should be
explicitly released by calling the INamedCache.Release () method when they are
no longer needed, to free up any resources they might hold.

If the particular INamedCache is used for the duration of the application, then the
resources are cleaned up when the application is shut down or otherwise stops.
However, if it is only used for a period, the application should call its Release ()
method when finished using it.

Alternatively, you can leverage the fact that INamedCache extends IDisposable
and that all cache implementations delegate a call to IDisposable.Dispose() to
INamedCache.Release ().If you want to obtain and release a cache instance within
a single method, you can do so with a using block:

Example 17-7 Obtaining and Releasing a Reference to a Cache

using (INamedCache cache = CacheFactory.GetCache ("my-cache"))
{

// use cache as usual

}

After the using block terminates, IDisposable.Dispose () is called on the
INamedCache instance, and all resources associated with it are released.

17-8 Oracle Coherence Client Guide

18

Building Integration Objects (.NET)

Coherence caches are used to cache value objects. Enabling .NET clients to successfully
communicate with a Coherence JVM requires a platform-independent serialization
format that allows both .NET clients and Coherence JVMs (including
Coherence*Extend Java clients) to properly serialize and deserialize value objects
stored in Coherence caches. The Coherence for .NET client library and
Coherence*Extend clustered service use a serialization format known as Portable
Object Format (POF). POF allows value objects to be encoded into a binary stream in
such a way that the platform and language origin of the object is irrelevant. For more
information on the POF binary stream, see Oracle Coherence Developer’s Guide.

The following section is included in this chapter:

Overview of Building Integration Objects (.NET)
Creating an [PortableObject Implementation
Implementing a Java Version of a .NET Object
Registering Custom Types on the .NET Client
Registering Custom Types in the Cluster
Evolvable Portable User Types

Making Types Portable Without Modification
Using POF Object References

Using POF Annotations to Serialize Objects

Overview of Building Integration Objects (.NET)

POF supports all common .NET types out-of-the-box. Custom .NET classes can also be
serialized to a POF stream by completing the following steps:

1.

Create a .NET class that implements the IPortableObject interface. (See
"Creating an IPortableObject Implementation” on page 18-2)

Create a matching Java class that implements the PortableObject interface in
the same way. (See "Creating a PortableObject Implementation (Java)" on
page 18-4)

Register your custom .NET class on the client. (See "Registering Custom Types on
the .NET Client" on page 18-4)

Register your custom Java class on each of the servers running the
Coherence*Extend clustered service. (See "Registering Custom Types in the
Cluster" on page 18-6)

Building Integration Objects (NET) 18-1

Creating an [PortableObject Implementation

After these steps are complete, you can cache your custom .NET classes in a Coherence
cache in the same way as a built-in data type. Additionally, you can retrieve,
manipulate, and store these types from a Coherence or Coherence*Extend JVM using
the matching Java classes.

Creating an IPortableObject Implementation

Each class that implements IPortableObject can self-serialize and deserialize its
state to and from a POF data stream. This is achieved in the ReadExternal
(deserialize) and WriteExternal (serialize) methods. Conceptually, all user types
are composed of zero or more indexed values (properties) which are read from and
written to a POF data stream one by one. The only requirement for a portable class,
other than the requirement to implement the IPortableObject interface, is that it
must have a default constructor which allows the POF deserializer to create an
instance of the class during deserialization.

Example 18-1 illustrates a user-defined portable class:

Example 18-1 A User-Defined Portable Class

public class ContactInfo : IPortableObject
{

private string name;

private string street;

private string city;

private string state;

private string zip;

public ContactInfo()

{}

public ContactInfo(string name, string street, string city, string state,
string zip)

{

Name = name;
Street = street;
City = city;
State = state;
Zip = zip;

}

public void ReadExternal (IPofReader reader)

{

Name = reader.ReadString(0) ;
Street = reader.ReadString(1l);
City = reader.ReadString(2);
State = reader.ReadString(3);
Zip = reader.ReadString(4);

}

public void WriteExternal (IPofWriter writer)

{
writer.WriteString(0, Name);
writer.WriteString(1l, Street);
writer.WriteString(2, City);
writer.WriteString (3, State);
writer.WriteString(4, Zip);

}

// property definitions ommitted for brevity

18-2 Oracle Coherence Client Guide

Implementing a Java Version of a .NET Object

Implementing a Java Version of a .NET Object

The use of POF allows key and value objects to be stored within the cluster without
the need for parallel Java implementations. This is ideal for performing basic get and
put based operations. In addition, the PofExtractor and PofUpdater APIs directly
manipulate serialized objects and alleviate, in some cases, the need for a parallel Java
implementation. However, a parallel Java implementation is required when using
advanced data grid features because the Java-based cache servers must be able to
interact with a data object rather then simply holding onto a serialized representation
of it. The Java implementation is used to interact with the object and access its
properties and must be located on the cache servers. The approach to making the Java
version serializable over POF is similar to the above example and is demonstrated in
"Creating a PortableObject Implementation (Java)" on page 18-4. See the

com. tangosol.io.pof.PortableObject and

com. tangosol.io.pof.PofSerializer APIs for details. These APIs are
compatible with the .NET approaches.

When to Include a Parallel Java Implementation

Most data grid features, beyond basic put and get operations, require that an object
have a parallel Java implementation within the cluster. These features include:

s Queries
» Filters
= Entry Processors and Aggregators

= Data source persistence

Deferring the Key Association Check

Key classes do not require a cluster-side Java implementation even if the key class
specifies data affinity using the IKeyAssociation interface. Key classes are checked
on the client side and a decorated binary is created and used by the cluster. However,
existing client implementations that do rely on a Java key class for key association
must set the defer-key-association-check parameter in order to force the use
of the Java key class. Existing client applications that use key association but want to
leverage client-side key binaries, must port the getAssociatedKey ()
implementation from the existing Java class to the corresponding client class (see
IKeyAssociation.AssociatedKey.

To force key association processing to be done on the cluster side instead of by the
extend client, set the <defer-key-association-check> element, within a
<remote-cache-scheme> element, in the client-side cache configuration to true.
For example:

<remote-cache-scheme>

<defer-key-association-check>true</defer-key-association-check>
</remote-cache-scheme>

Note: If the parameter is set to true, a Java key class
implementation must be found on the cluster even if key association is
no being used.

Building Integration Objects (.NET) 18-3

Registering Custom Types on the .NET Client

Creating a PortableObject Implementation (Java)

An implementation of the portable class in Java is very similar to the one in .NET.
Example 18-2 illustrates the Java version of the .NET class in Example 18-1.

Example 18-2 A User-Defined Class in Java

public class ContactInfo implements PortableObject

{
private String m_sName;

private String m_sStreet;
private String m_sCity;
private String m_sState;
private String m_sZip;
public ContactInfo()

{

}

public ContactInfo(String sName, String sStreet, String sCity, String sState,

String sZip)
{
setName (sName) ;
setStreet (sStreet) ;
setCity(sCity);
setState(sState) ;
setZip(sZip);
}

public void readExternal (PofReader reader)

throws IOException

{

setName (reader.readString(0)
setStreet (reader.readString (
setCity(reader.readString(2)
setState (reader.readString (3
setZip(reader.readString(4))

}

)i
1));
)
)):

’

public void writeExternal (PofWriter writer)

throws IOException

{

writer.writeString (0,
writer.writeString(1,
writer.writeString(2,
writer.writeString(3,
writer.writeString (4,

}

getName ()) ;
getStreet());
getCity ()
getState(
))

getZip(

)
(
)
)):

’

// accessor methods omitted for brevity

Registering Custom Types on the

.NET Client

Each POF user type is represented within the POF stream as an integer value. As such,
POF requires an external mechanism that allows a user type to be mapped to its
encoded type identifier (and visa versa). This mechanism uses an XML configuration
file to store the mapping information. This is illustrated in Example 18-3. See Oracle
Coherence Developer's Guide for a detailed reference of the POF configuration elements.

Example 18-3 Storing Mapping Information in the POF User Type Configuration File

<?xml version="1.0"?>

18-4 Oracle Coherence Client Guide

Registering Custom Types on the .NET Client

<pof-config xmlns="http://schemas.tangosol.com/pof">
<user-type-list>

<!-- include all "standard" Coherence POF user types -->
<include>assembly://Coherence/Tangosol.Config/coherence-pof-config.xml
</include>

<!-- include all application POF user types -->

<user-type>
<type-id>1001</type-id>
<class-name>My.Example.ContactInfo, MyAssembly</class-name>
</user-type>
</user-type-list>
</pof-config>

There are few things to note:

» Type identifiers for your custom types should start from 1001 or higher, as the
numbers below 1000 are reserved for internal use. As shown in the above
example, the <user-type-1list> includes the coherence-pof-config.xml
file. This is where Coherence specific user types are defined and should be
included in all of your POF configuration files

= You need not specify a fully qualified type name within the class-name element.
The type and assembly name is enough.

After you have configured mappings between type identifiers and your custom types,
you must configure Coherence for .NET to use them by adding a serializer element to
your cache configuration descriptor. Assuming that user type mappings from
Example 18-3 are saved into my-dotnet-pof-config.xml, you must specify a
serializer element as illustrated in Example 18—4:

Example 18-4 Using a Serializer in the Cache Configuration File

<remote-cache-scheme>
<scheme-name>extend-direct</scheme-name>
<service-name>ExtendTcpCacheService</service-name>
<initiator-config>

<serializer>
<class-name>Tangosol.I0.Pof.ConfigurablePofContext, Coherence
</class-name>
<init-params>
<init-param>
<param-type>string</param-type>
<param-value>my-dotnet-pof-config.xml</param-value>
</init-param>
</init-params>
</serializer>
</initiator-config>
</remote-cache-scheme>

If a serializer is not explicitly specified, the ConfigurablePofContext type is used
for the POF serializer and uses a default configuration file called pof-config.xml.
The Coherence .Net application looks for the default POF configuration file in both the
folder where the application is deployed and, for Web applications, in the root of the
Web application. If a POF configuration file is not found, it tries to located the file by
the contents of the pof-config element in the Coherence for .NET application
configuration file. For example:

Building Integration Objects (.NET) 18-5

Registering Custom Types in the Cluster

Example 18-5 Specifying a POF Configuration File

<?xml version="1.0"?>
<configuration>
<configSections>
<section name="coherence" type="Tangosol.Config.CoherenceConfigHandler,
Coherence" />
</configSections>
<coherence>
<pof-config>my-dotnet-pof-config.xml</pof-config>
</coherence>
</configuration>

Registering Custom Types in the Cluster

Each Coherence node running the TCP/IP Coherence*Extend clustered service
requires a similar POF configuration for the custom types to be able to send and
receive objects of these types.

The cluster-side POF configuration file looks similar to the one created on the client.
The only difference is that instead of .NET class names, you must specify the fully
qualified Java class names within the class-name element.

Example 18-6 illustrates a sample cluster-side POF configuration file called
my-java-pof-config.xml:

Example 18-6 Cluster-side POF Configuration File

<?xml version="1.0"?>

<pof-config xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns="http://xmlns.oracle.com/coherence/coherence-pof-config"
xsi:schemalocation="http://xmlns.oracle.com/coherence/coherence-pof-config
coherence-pof-config.xsd">
<user-type-list>

<!-- include all "standard" Coherence POF user types -->
<include>coherence-pof-config.xml</include>
<!-- include all application POF user types -->

<user-type>
<type-id>1001</type-id>
<class-name>com.mycompany.example.ContactInfo</class-name>
</user-type>
</user-type-list>
</pof-config>

After your custom types have been added, you must configure the server to use your
POF configuration when serializing objects. This is illustrated in Example 18-7:

Example 18-7 Configuring the Server to Use the POF Configuration

<proxy-scheme>
<service-name>ExtendTcpProxyService</service-name>
<acceptor-config>

<serializer>
<class-name>com. tangosol.io.pof.ConfigurablePofContext</class-name>
<init-params>
<init-param>
<param-type>string</param-type>
<param-value>my-java-pof-config.xml</param-value>

18-6 Oracle Coherence Client Guide

Evolvable Portable User Types

</init-param>
</init-params>
</serializer>
</acceptor-config>

</proxy-scheme>

Evolvable Portable User Types

PIF-POF includes native support for both forward- and backward-compatibility of the
serialized form of portable user types. In .NET, this is accomplished by making user
types implement the TEvolvablePortableObject interface instead of the
IPortableObject interface. The IEvolvablePortableObject interface is a
marker interface that extends both the IPortableObject and IEvolvable
interfaces. The IEvolvable interface adds three properties to support type
versioning.

An IEvolvable class has an integer version identifier n, where n >= 0. When the
contents, or semantics, or both of the serialized form of the IEvolvable class
changes, the version identifier is increased. Two versions identifiers, nl and n2,
indicate the same version if n1 == n2; the version indicated by n2 is newer than the
version indicated by n1 if n2 > n1.

The IEvolvable interface is designed to support the evolution of types by the
addition of data. Removal of data cannot be safely accomplished if a previous version
of the type exists that relies on that data. Modifications to the structure or semantics of
data from previous versions likewise cannot be safely accomplished if a previous
version of the type exists that relies on the previous structure or semantics of the data.

When an IEvolvable object is deserialized, it retains any unknown data that has
been added to newer versions of the type, and the version identifier for that data
format. When the IEvolvable object is subsequently serialized, it includes both that
version identifier and the unknown future data.

When an IEvolvable object is deserialized from a data stream whose version
identifier indicates an older version, it must default and calculate the values for any
data fields and properties that have been added since that older version. When the
IEvolvable object is subsequently serialized, it includes its own version identifier
and all of its data. Note that there is no unknown future data in this case; future data
can only exist when the version of the data stream is newer than the version of the
IEvolvable type.

Example 18-8 demonstrates how the ContactInfo .NET type can be modified to
support class evolution:

Example 18-8 Modifying a Class to Support Class Evolution

public class ContactInfo : IEvolvablePortableObject
{
private string name;
private string street;
private string city;
private string state;
private string zip;
// IEvolvable members
private int version;
private byte[] data;
public ContactInfo()

Building Integration Objects (.NET) 18-7

Evolvable Portable User Types

{}
public ContactInfo(string
string zip)

name, string street, string city, string state,

{
Name = name;
Street = street;
City = city;
State = state;
Zip = zip;
}
public void ReadExternal (IPofReader reader)
{
Name = reader.ReadString(0) ;
Street = reader.ReadString(1);
City = reader.ReadString(2);
State = reader.ReadString(3);
Zip = reader.ReadString(4);
}
public void WriteExternal (IPofWriter writer)
{
writer.WriteString(0, Name);
writer.WriteString(1l, Street);
writer.WriteString (2, City);
writer.WriteString (3, State);
writer.WriteString (4, Zip);
}
public int DataVersion
{
get { return version; }
set { version = value; }
}
public byte[] FutureData
{
get { return data; }
set { data = value; }
}
public int ImplVersion
{
get { return 0; }
}

// property definitions ommitted for brevity

Likewise, the ContactInfo Java type can also be modified to support class evolution
by implementing the EvolvablePortableObject interface:

Example 18-9 Modifying a Java Type Class to Support Class Evolution

public class ContactInfo

implements EvolvablePortableObject
{
private
private
private
private
private

String m_sName;
String m_sStreet;
String m_sCity;
String m_sState;
String m_sZip;

// Evolvable members

private int m_nVersion;
private byte[] m_abData;

18-8 Oracle Coherence Client Guide

Evolvable Portable User Types

public ContactInfo()
{}

public ContactInfo(String sName, String sStreet, String sCity,
String sState, String sZip)
{
setName (sName) ;
setStreet (sStreet) ;
setCity(sCity);
setState(sState) ;
setZip(sZip);
}

public void readExternal (PofReader reader)
throws IOException

{
setName (reader.readString (0
setStreet (reader.readString
setCity(reader.readString(2
setState(reader.readString(
setZip(reader.readString(4)
}

)i
1));
)i
)) i

)
(
)
3
)
public void writeExternal (PofWriter writer)
throws IOException

{

writer.writeString (0, getName ()

writer.writeString(1l, getStreet

writer.writeString(2, getCity()

writer.writeString(3, getState(

writer.writeString (4, getZip())

}

)i
()
)i
)) i

’

public int getDataVersion()
{

return m_nVersion;

}

public void setDataVersion(int nVersion)

{

m_nVersion = nVersion;

}

public Binary getFutureData ()
{

return m_binData;

}

public void setFutureData (Binary binFuture)

{

m_binData = binFuture;
}

public int getImplVersion()
{
return 0;

}

// accessor methods omitted for brevity

Building Integration Objects (.NET)

18-9

Making Types Portable Without Modification

Making Types Portable Without Modification

In some cases, it may be undesirable or impossible to modify an existing user type to
make it portable. In this case, you can externalize the portable serialization of a user
type by creating an implementation of the IPofSerializer in .NET, or an
implementation of the PofSerializer interface in Java, or both.

Example 18-10 illustrates, an implementation of the IPofSerializer interface for
the ContactInfo type.

Example 18-10 An Implementation of IPofSerializer for the .NET Type

public class ContactInfoSerializer : IPofSerializer

{

public object Deserialize(IPofReader reader)

{

string name = reader.ReadString(0);
string street = reader.ReadString(1l);
string city = reader.ReadString(2);
string state = reader.ReadString(3);
string zip = reader.ReadString (4);

ContactInfo info = new ContactInfo(name, street, city, state, zip);
info.DataVersion = reader.VersionId;
info.FutureData = reader.ReadRemainder();

return info;
public void Serialize(IPofWriter writer, object o)
{

ContactInfo info = (ContactInfo) o;

writer.VersionId = Math.Max(info.DataVersion, info.ImplVersion);

writer.WriteString (0, info.Name);
writer.WriteString(1l, info.Street);
writer.WriteString(2, info.City);
writer.WriteString(3, info.State);

writer.WriteString(4, info.Zip);
writer.WriteRemainder (info.FutureData) ;

An implementation of the PofSerializer interface for the ContactInfo Java type
would look similar:

Example 18-11 An Implementation of PofSerializer for the Java Type Class

public class ContactInfoSerializer
implements PofSerializer
{
public Object deserialize(PofReader in)
throws IOException

{

String sName = in.readString(0);
String sStreet = in.readString(1);
String sCity = in.readString(2);

18-10 Oracle Coherence Client Guide

Making Types Portable Without Modification

String sState in.readString(3);
String sZip = in.readString(4);

ContactInfo info = new ContactInfo(sName, sStreet, sCity, sState, sZip);
info.setDataVersion(in.getVersionId());
info.setFutureData (in.readRemainder()) ;

return info;

}

public void serialize(PofWriter out, Object o)
throws IOException

{

ContactInfo info = (ContactInfo) o;

Math.max (info.getDataVersion(), info.getImplVersion()));
info.getName());

out.setVersionId
out.writeString(0,
out.writeString(l, info.getStreet());
out.writeString (2, info.getCity())

out.writeString(3, info.getState()
out.writeString (4, info.getZip());
out.writeRemainder (info.getFutureData());

}

(
0
1
2
3

)

To register the IPofSerializer implementation for the ContactInfo .NET type,

specify the class name of the IPofSerializer within a serializer element under the
user-type element for the ContactInfo user type in the POF configuration file. This
is illustrated in Example 18-12:

Example 18-12 Registering the IPofSerializer Inplementation of the .NET Type

<?xml version="1.0"?>

<pof-config xmlns="http://schemas.tangosol.com/pof"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://schemas.tangosol.com/pof
assembly://Coherence/Tangosol.Config/pof-config.xsd">
<user-type-list>

<!-- include all "standard" Coherence POF user types -->
<include>assembly://Coherence/Tangosol.Config/coherence-pof-config.xml
</include>

<!-- include all application POF user types -->

<user-type>
<type-1d>1001</type-id>
<class-name>My.Example.ContactInfo, MyAssembly</class-name>
<serializer>

<class-name>My.Example.ContactInfoSerializer, MyAssembly</class-name>

</serializer>

</user-type>

</user-type-list>
</pof-config>

Similarly, you can register the Pof Serializer implementation for the
ContactInfo Java type. This is illustrated in Example 18-13.

Example 18-13 Registering the PofSerializer Inplementation of the Java Type

<?xml version="1.0"?>

Building Integration Objects (.NET) 18-11

Using POF Object References

<pof-config xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns="http://xmlns.oracle.com/coherence/coherence-pof-config"
xsi:schemalLocation="http://xmlns.oracle.com/coherence/coherence-pof-config
coherence-pof-config.xsd">
<user-type-list>

<!-- include all "standard" Coherence POF user types -->
<include>example-pof-config.xml</include>
<!-- include all application POF user types -->

<user-type>
<type-id>1001</type-id>
<class-name>com.mycompany .example.ContactInfo</class-name>
<serializer>

<class-name>com.mycompany . example.ContactInfoSerializer</class-name>

</serializer>

</user-type>

</user-type-list>
</pof-config>

Using POF Object References

POF supports the use of object identities and references for objects that occur more
than once in a POF stream. Objects are labeled with an identity and subsequent
instances of a labeled object within the same POF stream are referenced by its identity.
Object references are only supported for user defined object types.

Using references avoids encoding the same object multiple times and helps reduce the
data size. References are typically used when a large number of sizeable objects are
created multiple times or when objects use nested or circular data structures.
However, for applications that contain large amounts of data but only few repeats, the
use of object references provides minimal benefits due to the overhead incurred in
keeping track of object identities and references.

The following topics are included in this section:
= Enabling POF Object References
= Registering POF Object Identities for Circular and Nested Objects

Enabling POF Object References

Object references are not enabled by default and must be enabled either within a
pof-config.xml configuration file or programmatically when using the
SimplePofContext class.

To enable object references in the POF configuration file, include the
<enable-references> element, within the <pof-config> element, and set the
value to true. For example:

<?xml version="1.0"?>
<pof-config xmlns="http://schemas.tangosol.com/pof"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="http://schemas.tangosol.com/pof
assembly: //Coherence/Tangosol.Config/pof-config.xsd">

<enable-references>true</enable-references>
</pof-config>

18-12 Oracle Coherence Client Guide

Using POF Object References

To enable object references when using the SimplePofContext class, call the
setReferenceEnabled method and set it to true. For example:

SimplePofContext ctx = new SimplePofContext();
ctx.IsReferenceEnabled = true;

Note: Objects that have been written out with a POF context that
does not support references cannot be read by a POF context that
supports references. The opposite is also true.

Registering POF Object Identities for Circular and Nested Objects

Circular or nested objects must manually register an identity when creating the object.
Otherwise, a child that references the parent will not find the identity of the parent in
the reference map. Object identities can be registered from a serializer during the
deserialization routine using the
Tangosol.IO.Pof.IPofReader.RegisterIdentity method.

The following examples demonstrate two objects (Customer and Product) that
contain a circular reference and a serializer implementation that registers an identity
on the Customer object.

The Customer object is defined as follows:

public class Customer
{

String m_name;
Product m_product;

public Customer (String name)
{
m_name = name;

}

public Customer (String name, Product product)
{
m_name = name;
m_product = product;
}

public String getName ()
{

return m_name;

}

public Product getProduct ()
{

return m_product;

}

public void setProduct (Product product)
{

m_product = product;
}
}

The Product object is defined as follows:

public class Product

Building Integration Objects (.NET) 18-13

Using POF Annotations to Serialize Objects

private Customer m_customer;

public Product (Customer customer)

{

m_customer = customer;

}

public Customer getCustomer ()

{

return m_customer;
}
}

The serializer implementation registers an identity during deserialization and is
defined as follows:

public class CustomerSerializer : IPofSerializer

{

public void Serialize(IPofWriter pofWriter, object o)
{

var ¢ = (Customer) o;
pofWriter.WriteString (0, c.getName());
pofWriter.WriteObject (1, c.getProduct());
pofWriter.WriteRemainder (null);

public object Deserialize(IPofReader pofReader)

{
String name = pofReader.ReadString(0);
var customer = new Customer (name) ;

pofReader.RegisterIdentity(customer);
customer.setProduct ((Product) pofReader.ReadObject(1l));
pofReader.ReadRemainder () ;

return customer;

}

Using POF Annotations to Serialize Objects

POF annotations provide an automated way to implement the serialization and
deserialization routines for an object. POF annotations are serialized and deserialized
using the PofAnnotationSerializer class which is an implementation of the
IPofSerializer interface. Annotations offer an alternative to using the
IPortableObject and IPofSerializer interfaces and reduce the amount of time
and code that is required to make objects serializable.

The following topics are included in this section:
= Annotating Objects for POF Serialization

= Registering POF Annotated Objects

» Enabling Automatic Indexing

s Providing a Custom Codec

18-14 Oracle Coherence Client Guide

Using POF Annotations to Serialize Objects

Annotating Objects for POF Serialization

Two annotations are available to indicate that a class and its properties are POF
serializable:

= [Portable] — Marks the class as POF serializable. The annotation is only
permitted at the class level and has no members.

s [PortableProperty]—Marks a property, accessor, or member variable as a
POF serialized property. Annotated methods must conform to accessor notation
(Get, set, Is). Members can be used to specify POF indexes as well as custom
codecs that are executed before or after serialization or deserialization. Index
values may be omitted and automatically assigned. If a custom codec is not
entered, the default codec is used.

The following example demonstrates annotating a class, property, and member
variable. In addition PortableProperty indexes are explicitly specified.

[Portable]
public class Person

{
[PortableProperty (0)]
public string GetFirstName ()
{
return m_firstName;

}
private String m_firstName;

[PortableProperty (1)]
public string LastName;
{

get; set;
}

[PortableProperty(2)]
private int m_age;

Registering POF Annotated Objects

POF annotated objects must be registered in a pof-config.xml file within a
<user-type> element. See Oracle Coherence Developer’s Guide for a detailed reference
of the POF configuration elements. POF annotated objects use the
PofAnnotationSerializer serializer if an object does not implement
IPortableObject and is annotated as Portable; however, the serializer is
automatically assumed if an object is annotated and does not need to be included in
the user type definition. The following example registers a user type for an annotated
Person object:

<?xml version='1.0'?>
<pof-config xmlns="http://schemas.tangosol.com/pof">
<user-type-list>

<!-- include all "standard" Coherence POF user types -->
<include>assembly://Coherence/Tangosol.Config/coherence-pof-config.xml
<!-- User types must be above 1000 -->

<user-type>

<type-id>1001</type-id>

<class-name>My.Examples.Person, MyAssembly</class-name>
</user-type>

Building Integration Objects (.NET) 18-15

Using POF Annotations to Serialize Objects

</pof-config>

Enabling Automatic Indexing

POF annotations support automatic indexing which alleviates the need to explicitly
assign and manage index values. The index value can be omitted whenever defining
the [PortableProperty] annotation. Any property that does assign an explicit
index value is not assigned an automatic index value. The automatic index algorithm
can be described as follows:

Name Explicit Index Determined Index
c 1 1
a omitted 0
b omitted 2

Note: Automatic indexing does not currently support evolvable
classes.

To enable automatic indexing, the PofAnnotationSerializer serializer class must
be explicitly defined when registering the object as a user type in the POF
configuration file. The autoIndex boolean parameter in the constructor enables
automatic indexing and must be set to true. For example:

<user-type>
<type-id>1001</type-id>
<class-name>com.examples.Person</class-name>
<serializer>
<class-name>Tangosol.I0.Pof.PofAnnotationSerializer, Coherence</class-name>
<init-params>
<init-param>
<param-type>int</param-type>
<param-value>{type-id}</param-value>
</init-param>
<init-param>
<param-type>class</param-type>
<param-value>{class}</param-value>
</init-param>
<init-param>
<param-type>boolean</param-type>
<param-value>true</param-value>
</init-param>
</init-params>
</serializer>
</user-type>

Providing a Custom Codec

Codecs allow code to be executed before or after serialization or deserialization. A
codec defines how to encode and decode a portable property using the ITPofWriter
and IPofReader interfaces. Codecs are typically used for concrete implementations
that could get lost when being deserialized or to explicitly call a specific method on the
IPofWriter interface before serializing an object.

18-16 Oracle Coherence Client Guide

Using POF Annotations to Serialize Objects

To create a codec, create a class that implements the ICodec interface. The following
example demonstrates a codec that defines the concrete implementation of a linked list

type:
public class LinkedListCodec<T> : ICodec
{

public object Decode(IPofReader reader, int index)

{

return reader.ReadCollection(index, (ICollection)new LinkedList<T>());

public void Encode(IPofWiriter writer, int index, object value)

{

writer.WriteCollection(index, (ICollection)value);

}

To assign a codec to a property, enter the codec as a member of the
[PortableProperty] attribute. If a codec is not specified, a default codec
(DefaultCodec) is used. The following example demonstrates assigning the above
LinkedListCodec codec:

[PortableProperty (typeof (LinkedListCodec<string>))]

Building Integration Objects (.NET) 18-17

Using POF Annotations to Serialize Objects

18-18 Oracle Coherence Client Guide

19

Using the Coherence .NET Client Library

The following sections are included in this chapter:
» Setting Up the Coherence .NET Client Library
= Using the Coherence .NET APIs

Setting Up the Coherence .NET Client Library

To use the Coherence for .NET library in your .NET applications, you must add a
reference to the Coherence.dll library in your project and create the necessary
configuration files.

Creating a reference to the Coherence.dl11:

1. In your project go to Project->Add Reference... or right click References in the
Solution Explorer and choose Add Reference.... The Add Reference Window
displays.

2. From the Add Reference window, choose the Browse tab and find the
Coherence.dll library on your file system as shown in Figure 19-1.

Using the Coherence .NET Client Library 19-1

Setting Up the Coherence .NET Client Library

Figure 19—-1 Add Reference Window

Add Reference

MET | COM | Projects | Browse | Recent
Lok jr: | [build 1"""| €] ¥ -
Coherence,dl
L’E] Coherence, NET. Tests.dl
Lﬂ loganet.dl
File name: | Coherence.dl b |
Files of type: |EmmmmmFhsﬁdﬁﬂhﬁmfﬂmfﬁmﬁmmﬂmﬂ V|
Ok][Cancel]
3. Click OK.

Next, you must create the necessary configuration files and specify their paths in the
application configuration settings. This is done by adding an application configuration
file to your project (if one does not exist) and adding a Coherence for NET
configuration section (that is, <coherence/>) to it.

Note: If these configuration files are not specified in the
app.config/web.config, Coherence looks for them in both the
folder where the application is deployed or, for Web applications, in
the root of the Web application.

Example 19-1 Sample Application Configuration File

<?xml version="1.0"?>
<configuration>
<configSections>
<section name="coherence" type="Tangosol.Config.CoherenceConfigHandler,
Coherence" />
</configSections>
<coherence>
<cache-factory-config>my-coherence.xml</cache-factory-config>
<cache-config>my-cache-config.xml</cache-config>
<pof-config>my-pof-config.xml</pof-config>
</coherence>
</configuration>

Elements within the Coherence for .NET configuration section are:

19-2 Oracle Coherence Client Guide

Using the Coherence .NET APIs

cache-factory-config—contains the path to a operational configuration
descriptor used by the CacheFactory to configure
IConfigurableCacheFactory and Logger.

cache-config—contains the path to a cache configuration file which contains
the cache configuration (see "Configuring Coherence*Extend" on page 17-1). This
cache configuration descriptor is used by
DefaultConfigurableCacheFactory.

pof-config—contains the path to the configuration descriptor used by the
ConfigurablePofContext toregister custom types used by the application. For
detailed instructions on using POF, see Chapter 19, "Using the Coherence .NET
Client Library."

Figure 19-2 illustrates what the solution should look like after adding the
configuration files:

Figure 19-2 File System Displaying the Configuration Files

J Solukion "ContackCache Windows' (1 project)
= .E ContactCache Windows

4 =d| Properties

= | References

+ Systemn.Data
A3 Syskem, Deployment
+ Systermn, Drawing
A3 Syskem, Windows, Forms
A2 Syskem. <ml

5% App.config

] cache-config.xml

2] coherence. sl

] ContactCacheClient.cs

+- [Z] ContactFaorm.cs
] ContactInfo.cs
2] pof-canfig,xml

Using the Coherence .NET APIs

This section highlights the primary Coherence .NET APIs that are used to interact with
Coherence caches within a .NET application. The following topics are included in this
section:

CacheFactory
IConfigurableCacheFactory
DefaultConfigurableCacheFactory
Logger

Using the Common.Logging Library
INamedCache

Using the Coherence .NET Client Library 19-3

Using the Coherence .NET APIs

CacheFactory

s IQueryCache

s QueryRecorder

n IObservableCache
» IInvocableCache

» Filters

= Value Extractors

= Entry Processors

» Entry Aggregators

The CacheFactory is the entry point for Coherence for .NET client applications. The

CacheFactory is a factory for INamedCache instances and provides various

methods for logging. If not configured explicitly, it uses the default configuration file
coherence.xml which is an assembly embedded resource. It is possible to override
the default configuration file by adding a cache-factory-config element to the

Coherence for .NET configuration section in the application configuration file and
setting its value to the path of the desired configuration file.

Example 19-2 Configuring a Factory for INamedCache Instances

<?xml version="1.0"?>

<configuration>
<configSections>
<section name="coherence" type="Tangosol.Config.CoherenceConfigHandler,
Coherence" />
</configSections>
<coherence>
<cache-factory-config>my-coherence.xml</cache-factory-config>

</coherence>
</configuration>

This file contains the configuration of two components exposed by the
CacheFactory by using static properties:

s CacheFactory.ConfigurableCacheFactory—the

IConfigurableCacheFactory implementation used by the CacheFactory to

retrieve, release, and destroy INamedCache instances.

s CacheFactory.Logger—the Logger instance used to log messages and
exceptions.

When you are finished using the CacheFactory (for example, during application

shutdown), the CacheFactory should be shutdown by using the Shutdown ()
method. This method terminates all services and the Logger instance.

IConfigurableCacheFactory

The IConfigurableCacheFactory implementation is specified by the contents of

the <configurable-cache-factory-config> element:

= class-name—specifies the implementation type by it's assembly qualified name.

19-4 Oracle Coherence Client Guide

Using the Coherence .NET APIs

» init-params—defines parameters used to instantiate the
IConfigurableCacheFactory. Each parameter is specified by using a
corresponding param-type and param-value child element.

Example 19-3 Configuring a ConfigurableCacheFactory Implementation

<coherence>
<configurable-cache-factory-config>
<class-name>Tangosol.Net.DefaultConfigurableCacheFactory,
Coherence</class-name>
<init-params>
<init-param>
<param-type>string</param-type>
<param-value>simple-cache-config.xml</param-value>
</init-param>
</init-params>
</configurable-cache-factory-config>
</coherence>

If an IConfigurableCacheFactory implementation is not defined in the
configuration, the default implementation is used
(DefaultConfigurableCacheFactory).

DefaultConfigurableCacheFactory

Logger

The DefaultConfigurableCacheFactory provides a facility to access caches
declared in the cache configuration descriptor described earlier (see the Client-side
Cache Configuration Descriptor section). The default configuration file used by the
DefaultConfigurableCacheFactory is
$AppRoot/coherence-cache-config.xml, where $AppRoot is the working
directory (for a Windows Forms application) or the root of the application (for a Web
application).

If you want to specify another cache configuration descriptor file, you can do so by
adding a cache-config element to the Coherence for .NET configuration section in
the application configuration file with its value set to the path of the configuration file.

Example 19-4 Specifying a Different Cache Configuration Desriptor File

<?xml version="1.0"?>
<configuration>
<configSections>
<section name="coherence" type="Tangosol.Config.CoherenceConfigHandler,
Coherence" />
</configSections>
<coherence>
<cache-config>my-cache-config.xml</cache-config>

</coherence>
</configuration>

The Logger is configured using the logging-config element:

= destination—determines the type of LogOutput used by the Logger. Valid
values are:

— common-logger for Common .Logging

Using the Coherence .NET Client Library 19-5

Using the Coherence .NET APIs

- stderr for Console.Error
- stdout for Console.Out
- file path if messages should be directed to a file

s severity-level—determines the log level that a message must meet or exceed
to be logged.

= message-format—determines the log message format.

s character-1limit—determines the maximum number of characters that the
logger daemon processes from the message queue before discarding all remaining
messages in the queue.

Example 19-5 Configuring a Logger

<logging-config>
<destination>common-logger</destination>
<severity-level>5</severity-level>
<message-format> (thread={thread}): {text}</message-format>
<character-1limit>8192</character-limit>
</logging-config>

The CacheFactory provides several static methods for retrieving and releasing
INamedCache instances:

m GetCache(String cacheName)—retrieves an INamedCache implementation
that corresponds to the NamedCache with the specified cacheName running
within the remote Coherence cluster.

= ReleaseCache (INamedCache cache)—releases all local resources associated
with the specified instance of the cache. After a cache is release, it can no longer be
used.

s DestroyCache (INamedCache cache)—destroys the specified cache across the
Coherence cluster.

Methods used to log messages and exceptions are:

» IsLogEnabled(int level)-—determines if the Logger would log a message
with the given severity level.

= Log(Exception e, int severity)—logs an exception with the specified
severity level.

» Log(String message, int severity)—logs a text message with the
specified severity level.

» Log(String message, Exception e, int severity)—logsa text
message and an exception with the specified severity level.

Logging levels are defined by the values of the CacheFactory.LogLevel enum
values (in ascending order):

s Always
s Error
s Warn

m Info

= Debug—(default log level)

19-6 Oracle Coherence Client Guide

Using the Coherence .NET APIs

n Quiet

n Max

Using the Common.Logging Library

Common . Logging is an open source library that enables you to plug in various
popular open source logging libraries behind a well-defined set of interfaces. The
libraries currently supported are Log4Net (versions 1.2.9 and 1.2.10) and NLog.
Common . Logging is currently used by the Spring. NET framework and are likely to be
used in the future releases of IBatis.NET and NHibernate, so you might want to
consider it if you are using one or more of these frameworks in combination with
Coherence for .NET, as it allows logging to be consistently configured throughout the
application layers.

Coherence for .NET does not include the Common . Logging library. To use the
common-logger Logger configuration, download the Common . Logging assembly
and include a reference to it in your project. You can download the Common . Logging
assembly for .NET from the following location:

http://netcommon.sourceforge.net/

The Coherence for NET Common.Logging Logger implementation was compiled
against the signed release version of these assemblies.

INamedCache

The INamedCache interface extends IDictionary, so it can be manipulated in ways
similar to a dictionary. When obtained, INamedCache instances expose several
properties:

m CacheName—the cache name.
m Count—the cache size.

» IsActive—determines if the cache is active (that is, it has not been released or
destroyed).

= Keys—collection of all keys in the cache mappings.
s Values—collection of all values in the cache mappings.

The value for the specified key can be retrieved by using cache [key]. Similarly, a
new value can be added, or an old value can be modified by setting this property to
the new value: cache [key] = value.

The collection of cache entries can be accessed by using GetEnumerator () which
iterates over the mappings in the cache.

The INamedCache interface provides several methods used to manipulate the
contents of the cache:

s Clear ()—removes all the mappings from the cache.

= Contains(Object key)—determines if the cache has a mapping for the
specified key.

s GetAll(ICollection keys)—returns all values mapped to the specified keys
collection.

s Insert(Object key, Object value)—places a new mapping into the
cache. If a mapping for the specified key exists, its value is overwritten by the
specified value and the old value is returned.

Using the Coherence .NET Client Library 19-7

Using the Coherence .NET APIs

Insert (Object key, Object value, long millis)—placesanew
mapping into the cache, but with an expiry period specified by several
milliseconds.

InsertAll (IDictionary dictionary)-—copies all the mappings from the
specified dictionary to the cache.

Remove (Object key)—Removes the mapping for the specified key if it is
present and returns the value it was mapped to.

INamedCache interface also extends the following three interfaces: IQueryCache,
IObservableCache, and IInvocableCache.

IQueryCache

The IQueryCache interface exposes the ability to query a cache using various filters.

GetKeys (IFilter filter)—returns a collection of the keys contained in this
cache for entries that satisfy the criteria expressed by the filter.

GetEntries(IFilter filter)—returns a collection of the entries contained
in this cache that satisfy the criteria expressed by the filter.

GetEntries (IFilter filter, IComparer comparer)—returnsa
collection of the entries contained in this cache that satisfy the criteria expressed
by the filter. It is guaranteed that the enumerator traverses the collection in the
order of ascending entry values, sorted by the specified comparer or according to
the natural ordering if the "comparer" is null.

Additionally, the IQueryCache interface includes the ability to add and remove
indexes. Indexes are used to correlate values stored in the cache to their corresponding
keys and can dramatically increase the performance of the GetKeys and GetEntries
methods.

AddIndex (IValueExtractor extractor, bool isOrdered, IComparer
comparator)—adds an index to this cache that correlates the values extracted by
the given IValueExtractor to the keys to the corresponding entries.
Additionally, the index information can be optionally ordered.

RemoveIndex (IValueExtractor extractor)—removes anindex from this
cache.

Example 19-6 illustrates code that performs an efficient query of the keys of all entries
that have an age property value greater or equal to 55.

Example 19-6 Querying Keys on a Particular Value

IValueExtractor extractor = new ReflectionExtractor ("getAge");

cache.AddIndex (extractor, true, null);
ICollection keys = cache.GetKeys (new GreaterEqualsFilter (extractor, 55));

QueryRecorder

The QueryRecorder class produces an explain or trace record for a given filter. The
class is an implementation of a parallel aggregator that is capable querying all nodes in
a cluster and aggregating the results. The class supports two record types: an
Explain record that provides the estimated cost of evaluating a filter as part of a
query operation and a Trace record that provides the actual cost of evaluating a filter
as part of a query operation. Both query records take into account whether or not an
index can be used by a filter. See Oracle Coherence Developer’s Guide for detailed

19-8 Oracle Coherence Client Guide

Using the Coherence .NET APIs

information on understanding the data provided in an explain plan record and trace
record.

To create a query record, create a new QueryRecorder instance that specifies a
RecordType parameter. Include the instance and the filter to be tested as parameters
of the Aggregate method. The following example creates an explain record:

INamedCache cache = CacheFactory.GetCache (MyCache) ;

IFilter filter = new OrFilter(
new GreaterFilter (IdentityExtractor.Instance, 100),
new LessFilter (IdentityExtractor.Instance, 30));

QueryRecorder aggregator = new QueryRecorder (QueryRecorder.RecordType.Explain) ;
IQueryRecord record = (IQueryRecord) cache.Aggregate(filter, aggregator);

Console.WriteLine(record.ToString()) ;

To create a trace record, change the RecordType parameter to Trace:

QueryRecorder aggregator = new QueryRecorder (QueryRecorder.RecordType.Trace) ;

IObservableCache

IObservableCache interface enables an application to receive events when the
contents of a cache changes. To register interest in change events, an application adds
a Listener implementation to the cache that receives events that include information
about the event type (inserted, updated, deleted), the key of the modified entry, and
the old and new values of the entry.

s AddCacheListener (ICacheListener listener)-—adds a standard cache
listener that receives all events (inserts, updates, deletes) emitted from the cache,
including their keys, old, and new values.

= RemoveCacheListener (ICacheListener listener)—removes a standard
cache listener that was previously registered.

s AddCacheListener (ICachelListener listener, object key, bool
isLite)—adds a cache listener for a specific key. If isLite is true, the events
may not contain the old and new values.

s RemoveCacheListener (ICacheListener listener, object
key) —removes a cache listener that was previously registered using the specified
key.

s AddCacheListener (ICachelListener listener, IFilter filter,
bool isLite)—adds a cache listener that receive events based on a filter
evaluation. If isLite is true, the events may not contain the old and new values.

» RemoveCacheListener (ICachelListener listener, IFilter
filter)—removes a cache listener that previously registered using the specified
filter.

Listeners registered using the filter-based method receives all event types (inserted,
updated, and deleted). To further filter the events, wrap the filter in a
CacheEventFilter using a CacheEventMask enumeration value to specify which
type of events should be monitored.

In Figure 19-7 a filter evaluates to true if an Employee object is inserted into a cache
with an IsMarried property value set to true.

Using the Coherence .NET Client Library 19-9

Using the Coherence .NET APIs

Example 19-7 Filtering on an Inserted Object

new CacheEventFilter (CacheEventMask.Inserted, new EqualsFilter("IsMarried",
true));

In Example 19-8 a filter evaluates to true if any object is removed from a cache.

Example 19-8 Filtering on Removed Object
new CacheEventFilter (CacheEventMask.Deleted);

In Example 19-9 a filter that evaluates to true if when an Employee object
LastName property is changed from Smith.

Example 19-9 Filtering on a Changed Object

new CacheEventFilter (CacheEventMask.UpdatedLeft, new EqualsFilter ("LastName",
"Smith"));

Responding to Cache Events

A feature of the INamedCache interface is the ability to add cache listeners that
receive events emitted by a cache as its contents change. These events are sent from the
server and dispatched to registered listeners by a background thread.

The .NET Single-Threaded Apartment model prohibits windows form controls created
by one thread from being updated by another thread. If one or more controls should
be updated because of an event notification, you must ensure that any event handling
code that must run as a response to a cache event is executed on the Ul thread. The
WindowsFormsCacheListener helper class allows end users to ignore this fact and
to handle Coherence cache events (which are always raised by a background thread)
as if they were raised by the Ul thread. This class ensures that the call is properly
marshalled and executed on the UI thread.

Here is the sample of using this class:

Example 19-10 Marshalling and Executing a Call on the Ul Thread

public partial class ContactInfoForm : Form

{
listener = new WindowsFormsCacheListener (this);
listener.EntryInserted += new CacheEventHandler (AddRow) ;
listener.EntryUpdated += new CacheEventHandler (UpdateRow) ;
listener.EntryDeleted += new CacheEventHandler (DeleteRow) ;
cache.AddCacheListener (listener) ;

}

The AddRow, UpdateRow and DeleteRow methods are called in response to a cache
event:

Example 19-11 Calling Methods in Response to a Cache Event

private void AddRow(object sender, CacheEventArgs args)

{
}

private void UpdateRow(object sender, CacheEventArgs args)

19-10 Oracle Coherence Client Guide

Using the Coherence .NET APIs

{
}

private void DeleteRow(object sender, CacheEventArgs args)

{
}

The CacheEventArgs parameter encapsulates the I0bservableCache instance that
raised the cache event; the CacheEventType that occurred; and the Key, NewValue
and 01ldvalue of the cached entry.

linvocableCache

Filters

An IInvocableCache is a cache against which both entry-targeted processing and
aggregating operations can be invoked. The operations against the cache contents are
executed by (and thus within the localized context of) a cache. This is particularly
useful in a distributed environment, because it enables the processing to be moved to
the location at which the entries-to-be-processed are being managed, thus providing
efficiency by localization of processing.

= Invoke(object key, IEntryProcessor agent)—invokes the passed
processor against the entry specified by the passed key, returning the result of the
invocation.

m InvokeAll (ICollection keys, IEntryProcessor agent)—invokes the
passed processor against the entries specified by the passed keys, returning the
result of the invocation for each.

m InvokeAll (IFilter filter, IEntryProcessor agent)—invokes the
passed processor against the entries that are selected by the given filter, returning
the result of the invocation for each.

m Aggregate(ICollection keys, IEntryAggregator agent) —performs
an aggregating operation against the entries specified by the passed keys.

m Aggregate(IFilter filter, IEntryAggregator agent) —performs an
aggregating operation against the entries that are selected by the given filter.

The IQueryCache interface provides the ability to search for cache entries that meet a
given set of criteria, expressed using a IFilter implementation.

All filters must implement the IFilter interface:

= Evaluate(object o)—apply a test to the specified object and return true if
the test passes, false otherwise.

Coherence for .NET includes several IFilter implementations in the
Tangosol.Util.Filter namespace.

The code in Example 19-12 retrieves the keys of all entries that have a value equal to 5.

Example 19-12 Retrieving Keys Equal to a Numeric Value

EqualsFilter equalsFilter = new EqualsFilter (IdentityExtractor.Instance, 5);
ICollection keys = cache.GetKeys (equalsFilter);

The code in Example 19-13 retrieves all keys that have a value greater or equal to 55.

Using the Coherence .NET Client Library 19-11

Using the Coherence .NET APIs

Example 19-13 Retrieving Keys Greater Than or Equal To a Numeric Value

GreaterEqualsFilter greaterEquals = new
GreaterEqualsFilter (IdentityExtractor.Instance, 55);
ICollection keys = cache.GetKeys (greaterEquals) ;

The code in Example 19-14 retrieves all cache entries that have a value that begins
with Belg.

Example 19-14 Retrieving Keys Based on a String Value

LikeFilter 1likeFilter = new LikeFilter (IdentityExtractor.Instance, "Belg%", '\\',
true) ;
ICollection entries = cache.GetEntries(likeFilter);

The code in Example 19-15 retrieves all cache entries that have a value that ends with
an (case sensitive) or begins with An (case insensitive).

Example 19-15 Retrieving Keys Based on a Case-Sensitive String Value

OrFilter orFilter = new OrFilter (new LikeFilter (IdentityExtractor.Instance,
"%an", '\\', false), new LikeFilter(IdentityExtractor.Instance, "An%", '\\'
true));

ICollection entries = cache.GetEntries(orFilter);

Value Extractors

Extractors are used to extract values from an object. All extractors must implement the
IValueExtractor interface:

s Extract(object target)—extract the value from the passed object.
Coherence for .NET includes the following extractors:

» IdentityExtractor isa trivial implementation that does not actually extract
anything from the passed value, but returns the value itself.

» KeyExtractor is a special purpose implementation that serves as an indicator
that a query should be run against the key objects rather than the values.

= ReflectionExtractor extracts a value from a specified object property.

s MultiExtractor is composite IValueExtractor implementation based on an
array of extractors. All extractors in the array are applied to the same target object
and the result of the extraction is a IList of extracted values.

» ChainedExtractor is composite IValueExtractor implementation based on
an array of extractors. The extractors in the array are applied sequentially
left-to-right, so a result of a previous extractor serves as a target object for a next
one.

The code in Example 19-16 retrieves all cache entries with keys greater than 5:

Example 19-16 Retrieving Cache Entries Greater Than a Numeric Value

IValueExtractor extractor = new KeyExtractor (IdentityExtractor.Instance);
IFilter filter = new GreaterFilter (extractor, 5);
ICollection entries = cache.GetEntries(filter);

The code inExample 19-17 retrieves all cache entries with values containing a City
property equal to cityl:

19-12 Oracle Coherence Client Guide

Using the Coherence .NET APIs

Example 19-17 Retrieving Cache Entries Based on a String Value

IValueExtractor extractor = new ReflectionExtractor ("City");
IFilter filter = new EqualsFilter (extractor, "cityl");
ICollection entries = cache.GetEntries(filter);

Entry Processors
An entry processor is an agent that operates against the entry objects within a cache.
All entry processors must implement the IEntryProcessor interface:
m Process(IInvocableCacheEntry entry)—process the specified entry.
m ProcessAll(ICollection entries)—process a collection of entries.

Coherence for .NET includes several IEntryProcessor implementations in the
Tangosol.Util.Processor namespace.

The code in Example 19-18 demonstrates a conditional put. The value mapped to
keyl is set to 680 only if the current mapped value is greater than 600.

Example 19-18 Conditional Put of a Key Value Based on a Numeric Value

IFilter greaterThen600 = new GreaterFilter (IdentityExtractor.Instance,
600) ;
IEntryProcessor processor = new ConditionalPut (greaterThen600, 680);

cache.Invoke("keyl", processor);

The code in Example 19-19 uses the UpdaterProcessor to update the value of the
Degree property on a Temperature object with key BGD to the new value 26.

Example 19-19 Setting a Key Value Based on a Numeric Value

cache.Insert ("BGD", new Temperature(25, 'c', 12));

IValueUpdater updater = new ReflectionUpdater ("setDegree");

IEntryProcessor processor = new UpdaterProcessor (updater, 26);

object result = cache.Invoke("BGD", processor);
Entry Aggregators

An entry aggregator represents processing that can be directed to occur against some
subset of the entries in an IInvocableCache, resulting in an aggregated result.
Common examples of aggregation include functions such as minimum, maximum,
sum and average. However, the concept of aggregation applies to any process that
must evaluate a group of entries to come up with a single answer. Aggregation is
explicitly capable of being run in parallel, for example in a distributed environment.

All aggregators must implement the IEntryAggregator interface:

= Aggregate(ICollection entries)—process a collection of entries to
produce an aggregate result.

Coherence for .NET includes several IEntryAggregator implementations in the
Tangosol.Util.Aggregator namespace.

The code in Example 19-20 returns the size of the cache:
Example 19-20 Returning the Size of the Cache

IEntryAggregator aggregator = new Count();
object result = cache.Aggregate(cache.Keys, aggregator);

Using the Coherence .NET Client Library 19-13

Using the Coherence .NET APIs

The code in Example 19-21 returns an IDictionary with keys equal to the unique
values in the cache and values equal to the number of instances of the corresponding
value in the cache:

Example 19-21 Returning an IDictionary

IEntryAggregator aggregator =
GroupAggregator.CreateInstance (IdentityExtractor.Instance, new Count());
object result = cache.Aggregate(cache.Keys, aggregator);

Note: Example 19-20 and Example 19-21 are simple examples and
not practical for passing a large amount of keys or keys that are
themselves very large. In such scenarios, use the
GroupAggregator.CreatelInstance (String,
IEntryAggregator, IFilter) method and passan
AlwaysFilter object.

Like cached value objects, all custom IFilter, IExtractor, IProcessor and
IAggregator implementation classes must be correctly registered in the POF context
of the .NET application and cluster-side node to which the client is connected. As
such, corresponding Java implementations of the custom .NET types must be created,
compiled, and deployed on the cluster-side node. Note that the actual execution of
these custom types is performed by the Java implementation and not the NET
implementation.

See Chapter 18, "Building Integration Objects (.NET)." for additional details.

19-14 Oracle Coherence Client Guide

20

Performing Continuous Queries (.NET)

While it is possible to obtain a point in time query result from a Coherence for .NET
cache, and it is possible to receive events that would change the result of that query,
Coherence for .NET provides a feature that combines a query result with a continuous
stream of related events to maintain an up-to-date query result in a real-time fashion.
This capability is called Continuous Query, because it has the same effect as if the
desired query had zero latency and the query were being executed several times every
millisecond!

Coherence for .NET implements the Continuous Query functionality by materializing
the results of the query into a Continuous Query Cache, and then keeping that cache
up-to-date in real-time using event listeners on the query. In other words, a Coherence
for NET Continuous Query is a cached query result that never gets out-of-date.

The following sections are included in this chapter:

= Uses for Continuous Query Caching

s Understanding Continuous Query Caching

s Constructing a Continuous Query Cache

s Cleaning Up Continuous Query Cache Resources
s Caching Only Keys Versus Keys and Values

» Listening to a Continuous Query Cache

= Making a Continuous Query Cache Read-Only

Uses for Continuous Query Caching
There are several different general use cases for Continuous Query Caching;:

s Itis an ideal building block for Complex Event Processing (CEP) systems and
event correlation engines.

s Itisideal for situations in which an application repeats a particular query, and
would benefit from always having instant access to the up-to-date result of that
query.

s A Continuous Query Cache is analogous to a materialized view, and is useful for

accessing and manipulating the results of a query using the standard
INamedCache AP, and receiving an ongoing stream of events related to that

query.
= A Continuous Query Cache can be used in a manner similar to a near cache,

because it maintains an up-to-date set of data locally where it is being used, for
example on a particular server node or on a client desktop; note that a Near Cache

Performing Continuous Queries (.NET) 20-1

Understanding Continuous Query Caching

is invalidation-based, but the Continuous Query Cache actually maintains its data
in an up-to-date manner.

An example use case is a trading system desktop in which a trader's open orders and
all related information must always be maintained in an up-to-date manner. By
combining the Coherence*Extend functionality with Continuous Query Caching, an
application can support literally tens of thousands of concurrent users.

Note: Continuous Query Caches are useful in almost every type of
application, including both client-based and server-based
applications, because they provide the ability to very easily and
efficiently maintain an up-to-date local copy of a specified sub-set of a
much larger and potentially distributed cached data set.

Understanding Continuous Query Caching

The Coherence for .NET implementation of Continuous Query is found in the
Tangosol .Net.Cache.ContinuousQueryCache class. This class, like all
Coherence for .NET caches, implements the standard INamedCache interface, which
includes the following capabilities:

» Cache access and manipulation using the IDictionary interface: INamedCache
extends the standard IDictionary interface from the .INET Collections
Framework, which is the same interface implemented by the .NET Hashtable
class.

= Events for all objects modifications that occur within the cache: INamedCache
extends the I0bservableCache interface.

= Identity-based clusterwide locking of objects in the cache: INamedCache extends
the IConcurrentCache interface.

= Querying the objects in the cache: INamedCache extends the IQueryCache
interface.

s Distributed Parallel Processing and Aggregation of objects in the cache:
INamedCache extends the IInvocableCache interface.

Since the ContinuousQueryCache class implements the INamedCache interface,
which is the same API provided by all Coherence for .NET caches, it is extremely
simple to use, and it can be easily substituted for another cache when its functionality
is called for.

Constructing a Continuous Query Cache
There are two items that define a Continuous Query Cache:
s The underlying cache that it is based on;

= A query of that underlying cache that produces the sub-set that the Continuous
Query Cache caches.

The underlying cache is any Coherence for .NET cache, including another Continuous
Query Cache. A cache is usually obtained from a CacheFactory, which allows the
developer to simply specify the name of the cache and have it automatically
configured based on the application's cache configuration information; for example:

INamedCache cache = CacheFactory.GetCache("orders");

20-2 Oracle Coherence Client Guide

Caching Only Keys Versus Keys and Values

The query is the same type of query that would be used to query any other cache; for
example:

Filter filter = new AndFilter (new EqualsFilter ("getTrader", traderid),
new EqualsFilter ("getStatus", Status.OPEN));

Normally, to query a cache, a method from the IQueryCache is used; for examples,
to obtain a snap-shot of all open trades for this trader:

ICollection setOpenTrades = cache.GetEntries(filter);

Similarly, the Continuous Query Cache is constructed from those same two pieces:

ContinuousQueryCache cacheOpenTrades = new ContinuousQueryCache(cache, filter);

Cleaning Up Continuous Query Cache Resources

Instances of all INamedCache implementations, including Cont inuousQueryCache,
should be explicitly released by calling the INamedCache.Release () method when
they are no longer needed, to free up any resources they might hold.

If the particular INamedCache is used for the duration of the application, then the
resources is cleaned up when the application is shut down or otherwise stops.
However, if it is only used for a period, the application should call its Release ()
method when finished using it.

Alternatively, you can leverage the fact that INamedCache extends IDisposable
and that all cache implementations delegate a call to IDisposable.Dispose() to
INamedCache.Release (). If you want to obtain and release a cache instance within
a single method, you can do so by using a using block:

Example 20-1 Obtaining and Releasing a Reference to a Continuous Query Cache

using (INamedCache cache = CacheFactory.GetCache ("my-cache"))
{

// use cache as usual

}

After the using block terminates, IDisposable.Dispose () is called on the
INamedCache instance, and all resources associated with it are released.

Caching Only Keys Versus Keys and Values

When constructing a Continuous Query Cache, it is possible to specify that the cache
should only keep track of the keys that result from the query, and obtain the values
from the underlying cache only when they are asked for. This feature may be useful
for creating a Continuous Query Cache that represents a very large query result set, or
if the values are never or rarely requested. To specify that only the keys should be
cached, use the constructor that allows the IsCachevValues property to be
configured; for example:

Example 20-2 Caching Only the Keys in a Continuous Query Cache

ContinuousQueryCache cacheOpenTrades = new ContinuousQueryCache(cache, filter,
false);

If necessary, the IsCacheValues property can also be modified after the cache has
been instantiated; for example:

cacheOpenTrades.IsCacheValues = true;

Performing Continuous Queries (.NET) 20-3

Listening to a Continuous Query Cache

IsCacheValues Property and Event Listeners

If the Continuous Query Cache has any standard (non-lite) event listeners, or if any of
the event listeners are filtered, then the IsCacheValues property is automatically set
to true, because the Continuous Query Cache uses the locally cached values to filter
events and to supply the old and new values for the events that it raises.

Listening to a Continuous Query Cache

Since the Continuous Query Cache is itself observable, it is possible for the client to
place one or more event listeners onto it. For example:

Example 20-3 Placing a Listener on a Continuous Query Cache

ContinuousQueryCache cacheOpenTrades = new ContinuousQueryCache(cache, filter);
cacheOpenTrades.AddCachelListener (listener) ;

Assuming some processing has to occur against every item that is in the cache and
every item added to the cache, there are two approaches. First, the processing could
occur then a listener could be added to handle any later additions:

Example 204 Processing Data, then Placing the Listener

ContinuousQueryCache cacheOpenTrades = new ContinuousQueryCache(cache, filter);
foreach (ICacheEntry entry in cacheOpenTrades.Entries)

{

// .. process the cache entry

}
cacheOpenTrades .AddCacheListener (listener) ;

However, that code is incorrect because it allows events that occur in the split second
after the iteration and before the listener is added to be missed! The alternative is to
add a listener first, so no events are missed, and then do the processing:

Example 20-5 Placing the Listener, then Processing Data

ContinuousQueryCache cacheOpenTrades = new ContinuousQueryCache(cache, filter);
cacheOpenTrades .AddCacheListener (listener) ;
foreach (ICacheEntry entry in cacheOpenTrades.Entries)

{

// .. process the cache entry

}

However, the same entry may appear in both an event an in the IEnumerator, and
the events can be asynchronous, so the sequence of operations cannot be guaranteed.

The solution is to provide the listener during construction, and it receives one event
for each item that is in the Continuous Query Cache, whether it was there to begin
with (because it was in the query) or if it was added during or after the construction of
the cache:

Example 20-6 Providing the Listener During Continuous Query Cache Construction

ContinuousQueryCache cacheOpenTrades = new ContinuousQueryCache(cache, filter,
listener);

20-4 Oracle Coherence Client Guide

Making a Continuous Query Cache Read-Only

Achieving a Stable Materialized View

The Continuous Query Cache implementation faced the same challenge: How to
assemble an exact point-in-time snapshot of an underlying cache while receiving a
stream of modification events from that same cache. The solution has several parts. First,
Coherence for .NET supports an option for synchronous events, which provides a set
of ordering guarantees. Secondly, the Continuous Query Cache has a two-phase
implementation of its initial population that allows it to first query the underlying
cache and then subsequently resolve all of the events that came in during the first
phase. Since achieving these guarantees of data visibility without any missing or
repeated events is fairly complex, the Continuous Query Cache allows a developer to
pass a listener during construction, thus avoiding exposing these same complexities to
the application developer.

Support for Synchronous and Asynchronous Listeners

By default, listeners to the Continuous Query Cache have their events delivered
asynchronously. However, the Continuous Query Cache does respect the option for
synchronous events as provided by the
CachelListenerSupport.ISynchronousListener interface.

Making a Continuous Query Cache Read-Only

The Continuous Query Cache can be made into a read-only cache; for example:

Example 20-7 Making a Continuous Query Cache Read-Only

cacheOpenTrades.IsReadOnly = true;

A read-only Continuous Query Cache does not allow objects to be added to, changed
in, removed from or locked in the cache.

When a Continuous Query Cache has been set to read-only, it cannot be changed back
to read /write.

Performing Continuous Queries (.NET) 20-5

Making a Continuous Query Cache Read-Only

20-6 Oracle Coherence Client Guide

21

Performing Remote Invocations (.NET)

Coherence for .NET provides a Remote Invocation Service which allows execution of
single-pass agents (called IInvocable objects) within the cluster-side JVM to which
the client is connected. Agents are simply runnable application classes that implement
the IInvocable interface. Agents can execute any arbitrary action and can use any
cluster-side services (cache services, grid services, and so on) necessary to perform
their work. The agent operations can also be stateful, which means that their state is
serialized and transmitted to the grid nodes on which the agent is run.

The following section is included in this chapter:

s Configuring and Using the Remote Invocation Service

Configuring and Using the Remote Invocation Service

A Remote Invocation Service is configured using the
<remote-invocation-scheme> element in the cache configuration descriptor. For
example:

Example 21-1 Configuring a Remote Invocation Service

<remote-invocation-scheme>
<scheme-name>example-invocation</scheme-name>
<service-name>ExtendTcpInvocationService</service-name>
<initiator-config>
<tcp-initiator>
<remote-addresses>
<socket-address>
<address>localhost</address>
<port>9099</port>
</socket-address>
</remote-addresses>
</tcp-initiator>
<outgoing-message-handler>
<request-timeout>30s</request-timeout>
</outgoing-message-handler>
</initiator-config>
</remote-invocation-scheme>

A reference to a configured Remote Invocation Service can then be obtained by name
by using the CacheFactory class:

Performing Remote Invocations (.NET) 21-1

Configuring and Using the Remote Invocation Service

Example 21-2 Obtaining a Reference to a Remote Invocation Service

IInvocationService service = (IInvocationService)
CacheFactory.GetService ("ExtendTcpInvocationService") ;

To execute an agent on the grid node to which the client is connected requires only one
line of code:

Example 21-3 Executing an Agent on a Grid Node

IDictionary result = service.Query(new MyTask(), null);

The single result of the execution are keyed by the local Member, which can be

retrieved by calling
CacheFactory.ConfigurableCacheFactory.LocalMember.

Note: Like cached value objects, all IInvocable implementation
classes must be correctly registered in the POF context of the .NET
application and cluster-side node to which the client is connected. As
such, a Java implementation of the IInvocable task (a

com. tangosol.net.Invocable implementation) must be created,
compiled, and deployed on the cluster-side node. Note that the actual
execution of the task is performed by the Java Invocable
implementation and not the NET IInvocable implementation.

See Chapter 17, "Configuration and Usage for .NET Clients" for
additional details.

21-2 Oracle Coherence Client Guide

22

Performing Transactions (.NET)

This chapter provides instructions for using the Transaction Framework API to ensure
cache operations are performed within a transaction when using a .NET client. The
instructions do not provide detailed transaction API usage. See "Using the Transaction
Framework API" in Oracle Coherence Developer’s Guide for detailed transaction API
usage.

The following sections are included in this chapter and are required to perform
transactions:

= Using the Transaction API within an Entry Processor

= Creating a Stub Class for a Transactional Entry Processor
= Registering a Transactional Entry Processor User Type

= Configuring the Cluster-Side Transactional Caches

= Configuring the Client-Side Remote Cache

= Using a Transactional Entry Processor from a .NET Client

Using the Transaction API within an Entry Processor

NET clients perform cache operations within a transaction by leveraging the
Transaction Framework API. The transaction APl is not supported natively on .NET
and must be used within an entry processor. The entry processor is implemented in
Java on the cluster and an entry processor stub class is implemented in C# on the
client. Both classes use POF to serialize between Java and C#.

Example 22-1 demonstrates an entry processor that performs a simple update
operation within a transaction using the transaction APL. At run time, the class must
be located on the classpath of the Coherence proxy server.

Example 22-1 Entry Processor for Extend Client Transaction

package coherence.tests;

import com.tangosol.coherence.transaction.Connection;

import com.tangosol.coherence.transaction.ConnectionFactory;

import com.tangosol.coherence.transaction.DefaultConnectionFactory;

import com.tangosol.coherence.transaction.OptimisticNamedCache;

import

com. tangosol .coherence. transaction.exception.PredicateFailedException;
import com.tangosol.coherence.transaction.exception.RollbackException;
import

com. tangosol.coherence. transaction.exception.UnableToAcquireLockException;
import com.tangosol.util.Filter;

Performing Transactions (.NET) 22-1

Using the Transaction API within an Entry Processor

import com.tangosol.util.InvocableMap;

import com.tangosol.util.extractor.IdentityExtractor;
import com.tangosol.util.filter.EqualsFilter;

import com.tangosol.util.processor.AbstractProcessor;

public class MyTxProcessor extends AbstractProcessor implements PortableObject

{
public Object process(InvocableMap.Entry entry)

{
// obtain a connection and transaction cache
ConnectionFactory connFactory = new DefaultConnectionFactory();
Connection conn = connFactory.createConnection ("TransactionalCache");
OptimisticNamedCache cache = conn.getNamedCache ("MyTxCache") ;

conn.setAutoCommit (false) ;

// get a value for an existing entry
String sValue = (String) cache.get("existingEntry");

// create predicate filter
Filter predicate = new EqualsFilter (IdentityExtractor.INSTANCE, sValue);

try
{
// update the previously obtained value
cache.update("existingEntry", "newValue", predicate);
catch (PredicateFailedException e)
// value was updated after it was read
conn.rollback() ;
return false;
catch (UnableToAcquireLockException e)
// row is being updated by another tranaction
conn.rollback() ;
return false;
try
conn.commit () ;
catch (RollbackException e)
// transaction was rolled back

return false;

}

return true;

public void readExternal (PofReader in)
throws IOException

public void writeExternal (PofWriter out)
throws IOException

22-2 Oracle Coherence Client Guide

Registering a Transactional Entry Processor User Type

Creating a Stub Class for a Transactional Entry Processor

An entry processor stub class allows a client to use the transactional entry processor
on the cluster. The stub class is implemented in C# and uses POF for serialization. POF
allows an entry processor to be serialized between C# and Java. The entry processor
stub class does not required any transaction logic and is a skeleton of the transactional
entry processor. See Chapter 18, "Building Integration Objects (.NET)," for detailed
information on using POF with .NET.

Example 22-2 demonstrate an entry processor stub class for the transactional entry
processor created in Example 22-1.

Example 22-2 Transaction Entry Processor .NET Stub Class

using Tangosol.IO.Pof;
using Tangosol.Net.Cache;
using Tangosol.Util.Processor;

namespace Coherence.Tests
{
public class MyTxProcessor : AbstractProcessor, IPortableObject
{
public MyTxProcessor ()
{
}

public override object Process(IInvocableCacheEntry entry)
{
return null;

}

public void ReadExternal (IPofReader reader)
{
}

public void WriteExternal (IPofWriter writer)
{
}

Registering a Transactional Entry Processor User Type

Custom user types must be registered for the Java transactional entry processor in the
cluster-side POF configuration file and for the client stub in the client-side POF
configuration file. Both registrations must use the same type ID. The following
example demonstrates registering both the MyTxProcessor class that was created in
Example 22-1 and the client stub class that was created in Example 22-2, respectively.

Cluster-side POF configuration:
<?xml version="1.0"?>
<pof-config xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xmlns="http://xmlns.oracle.com/coherence/coherence-pof-config"
xsi:schemalocation="http://xmlns.oracle.com/coherence/coherence-pof-config

Performing Transactions (.NET) 22-3

Configuring the Cluster-Side Transactional Caches

coherence-pof-config.xsd">
<user-type-list>
<include>coherence-pof-config.xml</include>
<include>txn-pof-config.xml</include>
<user-type>
<type-1d>1599</type-id>
<class-name>coherence. tests.MyTxProcessor</class-name>
</user-type>
</user-type-list>
</pof-config>

Client-side POF configuration:

<?xml version="1.0"?>

<pof-config xmlns="http://schemas.tangosol.com/pof"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://schemas.tangosol.com/pof
assembly://Coherence/Tangosol.Config/pof-config.xsd">
<user-type-list>
<include>coherence-pof-config.xml</include>
<user-type>
<type-id>1599</type-id>
<class-name>Coherence.Tests.MyTxProcessor</class-name>
</user-type>
</user-type-list>
</pof-config>

Configuring the Cluster-Side Transactional Caches

Transactions require a transactional cache to be defined in the cluster-side cache
configuration file. Transactional caches are used by the Transaction Framework to
provide transactional guarantees. See "Defining Transactional Caches" in Oracle
Coherence Developer's Guide for details on transactional caches.

The following example creates a transactional cache that is named MyTxCache, which
is the cache name that was used by the entry processor in Example 22-1. The
configuration also includes a proxy scheme and a distributed cache scheme that are
required to execute the entry processor from a remote client. The proxy is configured
to accept client TCP/IP connections on localhost at port 9099. See Chapter 3,
"Setting Up Coherence*Extend," for detailed information on configuring cluster-side
caches when using Coherence*Extend.

<?xml version='1.0'?>

<cache-config xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
xsi:schemalocation="http://xmlns.oracle.com/coherence/coherence-cache-config
coherence-cache-config.xsd">
<caching-scheme-mapping>
<cache-mapping>
<cache-name>MyTxCache</cache-name>
<scheme-name>example-transactional</scheme-name>
</cache-mapping>
<cache-mapping>
<cache-name>dist-example</cache-name>
<scheme-name>example-distributed</scheme-name>
</cache-mapping>
</caching-scheme-mapping>

22-4 Oracle Coherence Client Guide

Configuring the Client-Side Remote Cache

<caching-schemes>

<transactional-scheme>
<scheme-name>example-transactional</scheme-name>
<service-name>TransactionalCache</service-name>
<thread-count>7</thread-count>
<high-units>15M</high-units>
<task-timeout>0</task-timeout>
<autostart>true</autostart>

</transactional-scheme>

<distributed-scheme>
<scheme-name>example-distributed</scheme-name>
<service-name>DistributedCache</service-name>
<backing-map-scheme>
<local-scheme/>
</backing-map-scheme>
<autostart>true</autostart>
</distributed-scheme>

<proxy-scheme>
<service-name>ExtendTcpProxyService</service-name>
<thread-count>5</thread-count>
<acceptor-config>
<tcp-acceptor>
<local-address>
<address>localhost</address>
<port>9099</port>
</local-address>
</tcp-acceptor>
</acceptor-config>
<autostart>true</autostart>
</proxy-scheme>
</caching-schemes>
</cache-config>

Configuring the Client-Side Remote Cache

Remote clients require a remote cache to connect to the cluster’s proxy and run a
transactional entry processor. The remote cache is defined in the client-side cache
configuration file. See Chapter 3, "Setting Up Coherence*Extend," for detailed
information on configuring client-side caches.

The following example configures a remote cache to connect to a proxy that is located
on localhost at port 9099. In addition, the name of the remote cache
(dist-example) must match the name of a cluster-side cache that is used when
initiating the transactional entry processor.

<?xml version='1.0'?>

<cache-config xmlns="http://schemas.tangosol.com/cache"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://schemas.tangosol.com/cache
assembly://Coherence/Tangosol.Config/cache-config.xsd">
<caching-scheme-mapping>
<cache-mapping>
<cache-name>dist-example</cache-name>
<scheme-name>extend</scheme-name>
</cache-mapping>
</caching-scheme-mapping>

Performing Transactions (.NET) 22-5

Using a Transactional Entry Processor from a .NET Client

<caching-schemes>
<remote-cache-scheme>
<scheme-name>extend</scheme-name>
<service-name>ExtendTcpCacheService</service-name>
<initiator-config>
<tcp-initiator>
<remote-addresses>
<socket-address>
<address>localhost</address>
<port>9099</port>
</socket-address>
</remote-addresses>
<connect-timeout>30s</connect-timeout>
</tcp-initiator>
<outgoing-message-handler>
<request-timeout>30s</request-timeout>
</outgoing-message-handler>
</initiator-config>
</remote-cache-scheme>
</caching-schemes>
</cache-config>

Using a Transactional Entry Processor from a .NET Client

A client invokes an entry processor stub class the same way any entry processor is
invoked. However, at run time, the cluster-side entry processor is invoked on the
cluster. The client is unaware that the invocation has been delegated to the Java class.
The following example demonstrates a client that uses the entry processor stub class
and results in an invocation of the transactional entry processor that was created in
Example 22-1:

INamedCache cache = CacheFactory.GetCache("dist-example");
object result = cache.Invoke("AnyKey", new MyTxProcessor());
Console.Out.WriteLine("Result of extend transaction execution: " + result);

22-6 Oracle Coherence Client Guide

23

Overview

Managing ASP.NET Session State

This chapter provides instructions for managing ASP.NET session state in a Coherence
cluster. The instructions include how to enable and configure the Coherence session
provider.

Note: The Coherence session provider that was included in previous
versions of Coherence for .NET is deprecated and has been replaced
by the Coherence session provider detailed in this chapter.

The following sections are included in this chapter:
s Overview

» Setting Up Coherence Session Management

= Selecting a Session Model

= Specifying a Serializer

= Sharing Session State Across Applications

Coherence for .NET allows ASP.NET session state to be managed in a Coherence
cluster, which has some benefits compared to out-of-the-box options offered by
Microsoft:

= Session state is stored in a highly available Coherence cluster, making sessions
resilient to Web server failures

= Sessions are stored in memory which allows for much faster access than when
they are serialized to disk using SQL Server session provider

= Unlike relational databases, Coherence cluster is easy to scale out to support
additional load

= Insome cases, session data can be accessed at in-process speed by leveraging
Coherence near caching features

ASP.NET applications are configured to use Coherence for session state management
by modifying the web . config file and configuring the custom session state provider.
In addition, the Coherence session provider includes configuration options that can
significantly improve performance and scalability of applications.

Managing ASP.NET Session State 23-1

Setting Up Coherence Session Management

Setting Up Coherence Session Management
The following steps are required to use Coherence for ASP.NET session management:

= Configure Coherence for .NET client library by specifying an operational
configuration, cache configuration, and POF configuration file (if using POF for
session serialization). For details, see "Setting Up the Coherence .NET Client
Library" on page 19-1.

= Enable the Coherence Session Provider
s Configure the Cluster-Side ASP Session Caches
= Configure a Client-Side ASP Session Remote Cache

After the ASP.NET application and cluster are configured properly, start the cluster
and proxy servers to be used by the application and then start the ASP.NET Web
application. The sessions are automatically stored within the Coherence cluster.

Enable the Coherence Session Provider

ASP.NET uses a provider model to allow custom session state management
implementations. Coherence for .NET implements a custom provider that fulfils the
contract defined by Microsoft. To use the Coherence provider, add the following
provider configuration to an application’s web . config file:

<system.web>
<sessionState mode="Custom"
customProvider="CoherenceSessionProvider"
cookieless="false"
timeout="20">
<providers>
<add name="CoherenceSessionProvider"
type="Tangosol.Web.CoherenceSessionStore, Coherence"/>
</providers>
</sessionState>

</system.web>

The above example configures an ASP.NET application to use the
CoherenceSessionStore provider with the default settings. The Coherence session
provider can be customized, as described in this chapter, to take full advantage of its
included features.

Configure the Cluster-Side ASP Session Caches

The Coherence session provider requires two cache scheme definitions within the
cluster’s cache configuration file: A storage cache and an overflow cache. The storage
cache is used for storing session data and the overflow cache is used if the session size
exceeds the limit specified in the externalAttributesSize attribute of the
CoherenceSessionProvider defined in the Web.config file.

When defining the session storage cache and the session overflow cache, the service
name must be AspNetSessionCache and the cache names must be
aspnet-session-storage and aspnet-session-overflow, respectively. In
addition, the storage cache must be configured to use the
ConfigurablePofContext class as the serializer. The scheme name and backing
map configuration can be configured as required.

The following cache scheme definition creates two distributed caches that are used by
the session provider: one for session storage and one for session overflow .

23-2 Oracle Coherence Client Guide

Setting Up Coherence Session Management

<?xml version='1.0'?>

<cache-config xmlns="http://schemas.tangosol.com/cache"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://schemas.tangosol.com/cache
assembly://Coherence/Tangosol.Config/cache-config.xsd">
<caching-scheme-mapping>
<cache-mapping>
<cache-name>aspnet-session-storage</cache-name>
<scheme-name>aspnet-session-scheme</scheme-name>
</cache-mapping>
<cache-mapping>
<cache-name>aspnet-session-overflow</cache-name>
<scheme-name>aspnet-session-overflow-scheme</scheme-name>
</cache-mapping>
</caching-scheme-mapping>

<caching-schemes>
<distributed-scheme>
<scheme-name>aspnet-session-scheme</scheme-name>
<service-name>AspNetSessionCache</service-name>
<serializer>
<class-name>com.tangosol.io.pof.ConfigurablePofContext</class-name>
<init-params>
<init-param>
<param-type>string</param-type>
<param-value>coherence-pof-config.xml</param-value>
</init-param>
</init-params>
</serializer>
<backing-map-scheme>
<local-scheme/>
</backing-map-scheme>
<autostart>true</autostart>
</distributed-scheme>

<distributed-scheme>
<scheme-name>aspnet-session-overflow-scheme</scheme-name>
<scheme-ref>dist-default</scheme-ref>
<service-name>AspNetSessionCache</service-name>
<autostart>true</autostart>

</distributed-scheme>

</caching-schemes>
</cache-config>

Configure a Client-Side ASP Session Remote Cache

The Coherence session provider requires an extend client’s cache configuration file to
include remote cache schemes for the session storage and session overflow caches. As
with any remote cache, the cache on the cluster and the cache on the client must use
the same name. See "Defining a Remote Cache" on page 3-7 for additional details.

The following example configures a client-side ASP session remote cache scheme that
is used by the Coherence session provider to store session data on the cluster.

<?xml version='1.0'?>

<cache-config xmlns="http://schemas.tangosol.com/cache"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

Managing ASP.NET Session State 23-3

Selecting a Session Model

xsi:schemalocation="http://schemas.tangosol.com/cache
assembly://Coherence/Tangosol.Config/cache-config.xsd">
<caching-scheme-mapping>
<cache-mapping>
<cache-name>aspnet-session-storage</cache-name>
<scheme-name>extend-direct</scheme-name>
</cache-mapping>
<cache-mapping>
<cache-name>aspnet-session-overflow</cache-name>
<scheme-name>extend-direct</scheme-name>
</cache-mapping>
</caching-scheme-mapping>

<caching-schemes>
<remote-cache-scheme>
<scheme-name>extend-direct</scheme-name>
<service-name>ExtendTcpCacheService</service-name>
<initiator-config>
<tcp-initiator>
<remote-addresses>
<socket-address>
<address>localhost</address>
<port>9099</port>
</socket-address>
</remote-addresses>
</tcp-initiator>
<outgoing-message-handler>
<request-timeout>30s</request-timeout>
</outgoing-message-handler>
</initiator-config>
</remote-cache-scheme>
</caching-schemes>
</cache-config>

Selecting a Session Model

A session model describes how the Coherence session provider physically represents
and stores session state in the cluster. The provider includes three different session
model implementations out of the box:

s Traditional Model - Stores all session state as a single entity but serializes and
deserializes attributes individually

= Monolithic Model - Stores all session state as a single entity, serializing and
deserializing all attributes as a single operation

= Split Model - Extends the Traditional Model but separates the larger session
attributes into independent physical entities

The traditional model is the default. It is similar to the
SessionStateItemCollection provided by ASP.NET - it deserializes session
items lazily to avoid deserialization penalty for items that are not accessed. However,
there are certain scenarios where monolithic or split model are better choices.

Refer to "Session Model" in Oracle Coherence User’s Guide for Oracle Coherence*Web for
details about each model and their pros and cons. The discussion can help determine
which model is the best fit for a particular application. The discussion is centered
around Coherence*Web; however, the general concepts are the same for ASP.NET
Sessions.

23-4 Oracle Coherence Client Guide

Selecting a Session Model

Specify the Session Model

The split model is the recommended session model for most applications. However,
the traditional model may be more optimal for applications that are known to have
small HTTP session objects.

The monolithic model is designed to solve a specific class of problems related to
multiple session attributes that have references to the same shared object, and that
must maintain that object as a shared object. When migrating to the Coherence session
provider from the ASP.NET InProc provider, the monolithic model ensures that all
shared objects are serialized and deserialized properly.

To specify the Coherence session provider’s session model, add a model attribute
within the provider configuration. The following example specifies a split model.

<system.web>
<sessionState mode="Custom"
customProvider="CoherenceSessionProvider"
cookieless="false"
timeout="20">
<providers>
<add name="CoherenceSessionProvider"
type="Tangosol.Web.CoherenceSessionStore, Coherence"
model="split"
externalAttributeSize="512"/>
</providers>
</sessionState>

</system.web>

The valid values for the model attribute are traditional, monolithic, split,ora
fully qualified name of the class that implements
Tangosol.Web.ISessionModelManager interface and provides a constructor that
accepts a single Tangosol.IO.ISerializer argument. The interface allows custom
model implementations to be created if necessary.

In the example above, the session provider is configured to use the split model. The
split model supports externalAttributesSize attribute, which specifies the
minimum size (in bytes) of the attributes that should be stored separately. If the
externalAttributeSize attribute is omitted, the default value of 1024 bytes is
used.

Registering the Backing Map Listener

Session attributes are partitioned into two regions when utilizing the split session
model. Core HTTP session attributes, such as session ID, creation time, last access, and
so on, are managed within one partition and large attributes are split out into another
partition. This allows support for very large HTTP session objects without incurring
overhead for frequently accessed small attributes.

With the .NET session provider implementation, core attributes and large attributes
are stored in separate caches. Therefore; the backing map listener
(AspNetSessionStoreProvider$SessionCleanupListener class) is
recommended to keep both caches synchronized. This ensures that if a session is
terminated explicitly by the user and removed by eviction or expiry, that both the
removal of the core and large segments of the session are coherently removed from the
two caches.

Managing ASP.NET Session State 23-5

Specifying a Serializer

The following example demonstrates registering the
AspNetSessionStoreProvider$SessionCleanupListener backing map
listener on the cluster-side ASP .NET session cache:

<caching-schemes>
<distributed-scheme>
<scheme-name>aspnet-session-scheme</scheme-name>
<service-name>AspNetSessionCache</service-name>
<serializer>
<class-name>com. tangosol.io.pof.ConfigurablePofContext</class-name>
<init-params>
<init-param>
<param-type>string</param-type>
<param-value>coherence-pof-config.xml</param-value>
</init-param>
</init-params>
</serializer>
<backing-map-scheme>
<local-scheme>
<class-name>com. tangosol.net.cache.LocalCache</class-name>
<listener>
<class-scheme>
<class-name>
com.tangosol.net.internal.AspNetSessionStoreProvider$SessionCleanuplListener
</class-name>
<init-params>
<init-param>
<param-type>
com. tangosol.net .BackingMapManagerContext
</param-type>
<param-value>{manager-context}</param-value>
</init-param>
</init-params>
</class-scheme>
</listener>
</local-scheme>
</backing-map-scheme>
<autostart>true</autostart>
</distributed-scheme>

Specifying a Serializer

The Coherence session provider can be configured to use a specific serializer for
serializing session items. To specify a serializer, add a serializer attribute within
provider definition. The following example specifies the binary serializer.

<system.web>
<sessionState mode="Custom"
customProvider="CoherenceSessionProvider"
cookieless="false"
timeout="20">
<providers>
<add name="CoherenceSessionProvider"
type="Tangosol.Web.CoherenceSessionStore, Coherence"
model="split"
externalAttributeSize="512"
serializer="binary"/>
</providers>
</sessionState>

23-6 Oracle Coherence Client Guide

Specifying a Serializer

</system.web>

The valid values for the serializer attribute are binary (default), pof, or a fully
qualified name of the class that implements the Tangosol.IO.ISerializer
interface. The interface is used to create a custom serializer if necessary. However, the
existing serializers are sufficient more often than not.

Using POF for Session Serialization

Portable Object Format (POF) is the recommended serialization format when using
Coherence to manage ASP.NET sessions and provides many benefits over standard
NET binary serialization. In particular, POF serialization is faster and has a
significantly more compact format. The compact format typically results in a binary
form that is 3 to 5 times smaller than the standard binary serializer. This translates
directly into a lower memory footprint within the cluster and can result in significant
cost savings.

To use POF, ensure that all custom classes that are stored either directly or indirectly
within the session are registered within the POF context and either implement the
IPortableObject interface or have an external IPofSerializer configured. For
detailed instructions on using POF, see Chapter 18, "Building Integration Objects
(.NET)."

The following discussion summarizes some implementation details that should be
considered when using POF. For a detailed description of the POF format, see "The
PIF-POF Binary Format" in the appendix of the Oracle Coherence Developer’s Guide.

When session items are deserialized by the POF serializer, there is no guarantee that
the type of the resulting object equals the type of the original value. For example,
integer values between -1 and 22 (inclusive) are returned as Int32 values, regardless
of the original type, so they may require a cast to the appropriate type.

Collections may also be deserialized to a different type. For example, an ArrayList
might be stored within the session, but an immutable object array may be received
after the object is read back. This is expected behavior and the reason why the
IPofReader interface provides a template to read values as an argument to all
methods that read collections from the POF stream.

Session items are not typed and there is no way to specify how they should be
deserialized. Therefore, a default collection type is always received. This is typically
acceptable when reading from the collection. However, if the collection must be
modified, either of the following two options can be used:

» Create an instance of a mutable collection of a desired type and add elements from
the deserialized collection to it. When using this option, do not forget to update
corresponding session items with the new collection, or the changes are not saved.

= Instead of storing "bare" collections directly, create a wrapper class that
implements necessary serialization logic and register it within the POF context.
This allows full control over collection serialization and can avoid the issues
described above.

These steps do require extra work; however, the performance gains and reduced
memory footprint are likely worth the trouble.

Managing ASP.NET Session State 23-7

Sharing Session State Across Applications

Sharing Session State Across Applications

In some cases, it is beneficial to be able to share sessions across ASP.NET applications.
By default, a session key is determined by combining the application identifier (as
returned by the HostingEnvironment . ApplicationID property) with the session
identifier. This effectively prevents session sharing.

The Coherence session provider can be configured to use a specific application
identifier. To specify an application identifier, add an applicationId attribute
within a provider definition. The following examples specifies MyApplication as the
application ID.

<system.web>
<sessionState mode="Custom"
customProvider="CoherenceSessionProvider"
cookieless="false"
timeout="20">
<providers>
<add name="CoherenceSessionProvider"
type="Tangosol.Web.CoherenceSessionStore, Coherence"
applicationId="MyApplication"
model="split"
externalAttributeSize="512"
serializer="pof"/>
</providers>
</sessionState>

</system.web>

To enable session sharing across the applications, configure multiple applications with
the same applicationId and ensure that they share the cookie containing the
session identifier.

23-8 Oracle Coherence Client Guide

24

Sample Windows Forms Application for

.NET Clients

This chapter provides step-by-step instructions that explains how to create a simple
Windows Forms Application that uses the Coherence for .NET library.

The following sections are included in this chapter:

Create a Windows Application Project

Add a Reference to the Coherence for .NET Library
Create an App.config File

Create Coherence for .NET Configuration Files
Create and Design the Application

Implement the Application

Create a Windows Application Project

To create a Windows Application, follow these steps:

1.
2.

Go to the File->New->Project... tab in Visual Studio 2005.

In the New Project window choose the Visual C# project type and Windows
Application template. Enter the name, location (full path where you want to store
your application), and solution for your project.

Figure 24-1 illustrates the New Project window with the name, location, and
solution for the project.

Sample Windows Forms Application for .NET Clients 24-1

Create a Windows Application Project

Figure 24-1 New Project Window

Hew Project -‘

pr

Project bvpes: Templates: m El
=l Wisual C# visual Studio installed templates
Windows
CFfice _E Windows Application JE Class Library
+- Smatt Device _;E*]Winduws Control Library 3 Console Application
Database ECrystal Reports Application E Device Application
Starker Kibs IEEXEEI Workbook E Cutlook, Add-in
+- Okher Languages
+1- Other Project Types My Templates

4 3earch Online Templates, .,

& project For creating an application with a Windows user interface

hame: Windowsapplication1
Location: C:\Wisual Studio 2005\Projects| "
Solution Mame: Windowsapplicationl Create directory For solution
(0] 4] [Cancel]
3. C(lick OK.

Visual Studio should have created the following files: Program.cs, Forml.cs
and Forml.Designer.cs. Figure 24-2 illustrates the Solution Explorer with the
created project files

Figure 24-2 Solution Explorer with the Created Project Files

Solution Explorer - Solution “WindowsApplicatio... - [3

= | @ [P S
J Solution “Windowsapplication1' (1 projeck)
- _E Windowsapplication1

=d| Properties

wd| References

- [ZZ] Forml.cs
EE] Forml.Designer.cs
] Program.cs

4. Rename these files if you want.

In this example they have been renamed to ContactCacheClient.cs,
ContactForm.cs,and ContactForm.Designer.cs respectively.

24-2 Oracle Coherence Client Guide

Create an App.config File

Add a Reference to the Coherence for .NET Library

To use the Coherence for .NET library in your .NET application, you must first add a
reference to the Coherence.dl1 library.

Adding a reference to the Coherence.dll library:

1. In your project go to Project->Add Reference... or right click References in the
Solution Explorer and choose Add Reference...

2. In the Add Reference window that appears choose the Browse tab and find the
Coherence.dll library on your file system. Figure 24-3 illustrates the .d11 files
in the Add Reference window.

Figure 24-3 Add Reference Window

-

Add Reference

&)

MET | COM || Projects

3 build

Lanok ir:

,’_;I CloverRuntime. dl
“ Coherence.dl
|%] Coherence NET, Tests.di
,’_u-:l lagdnet.di
| %] nunit Frameork. dil

Browse | Recent

o @ i @

File name: Coherence.dll ¥
Files of tppe: | Component Files [*.dI7 Hb: alb:* ook exe:” manifest) V
2k,] [Cancel
3. Click OK.

Create an App.config File

To correctly configure the Coherence for .NET library, you must create an
App.config XML file that contains the appropriate file names for each configuration

file used by the library.

1. Right-click the project in the Solution Explorer and choose the Add->New Item...

tab.

2. Inthe Add New Item window select the Application Configuration File.

Figure 244 illustrates the contents of the Add New Item window.

Sample Windows Forms Application for .NET Clients 24-3

Create an App.config File

Figure 24-4 Add New Item Window

Add Mew Item - CoherenceSampleApp

Templates: =
Yisual Studio installed templates]
o] Class ey Interface] Code File
=] Windows Farm (& User Cantrol] Custom Contral
[E]Inherited Form] Inherited User Contral idWeb Custom Control
q&_] Component Class l_J S0L Database I_e____'JDataSet
2] %ML File .ﬂ #ML Schema _;_H #3LT Filz
ﬂ HTML Page A_] Skyle Sheet g Text File
1§ Bitmap File L\ﬂCursor File: 5| Report
\“ngrystal Report j Icon File q&_] Windows Service
q&_" Installer Class ;~=S_1J5cript File ;~=§_1\.-'BScript File
;ﬂWindows Scripk Host cf_=] Assembly Information File J Application Configuration File
i,:,';|Resources File j Settings File EMDI Parent
[55] About Box _EDebugger Wisalizer (2] Class Diagram) |

.v.
& file For storing application configuration and settings values
Mame: App.config
Add l [Cancel
3. Click OK.

Example 241 illustrates a sample valid App . config configuration file.

Example 24-1 Sample App.config File

<?xml version="1.0"?>

<configuration>
<configSections>
<section name="coherence" type="Tangosol.Util.CoherenceConfigHandler,
Coherence" />
</configSections>
<coherence>
<cache-factory-config>coherence.xml</cache-factory-config>
<cache-config>cache-config.xml</cache-config>
<pof-config>pof-config.xml</pof-config>
</coherence>
</configuration>

In <configSections> you must specify a class that handles access to the Coherence
for .NET configuration section.

Elements within the Coherence for .NET configuration section are:

s cache-factory-config—contains the path to a configuration descriptor used
by the CacheFactory to configure the (IConfigurableCacheFactory and Logger)
used by the CacheFactory.

= cache-config—contains the path to a cache configuration descriptor which
contains the cache configuration described earlier (see "Configuring
Coherence*Extend on the Client" on page 17-3). This cache configuration
descriptor is used by the DefaultConfigurableCacheFactory.

» pof-config—contains the path to a configuration descriptor used by the
ConfigurablePofContext to register custom types used by the application.

24-4 Oracle Coherence Client Guide

Create Coherence for .NET Configuration Files

Create Coherence for .NET Configuration Files

Example 24-2 illustrates a sample coherence.xml configuration file

Example 24-2 Sample coherence.xml File for .NET

<?xml version="1.0"?>

<coherence xmlns="http://schemas.tangosol.com/coherence"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://schemas.tangosol.com/coherence
assembly://Coherence/Tangosol.Config/coherence.xsd">
<logging-config>
<destination>ContactCache.log</destination>
<severity-level>5</severity-level>
<message-format>{date} <{level}> (thread={thread}):{text}
</message-format>
<character-1imit>8192</character-limit>
</logging-config>
</coherence>

Example 24-3 illustrates a sample cache-config.xml configuration file.

Example 24-3 Sample cache-config.xml File for .NET

<?xml version="1.0"?>

<cache-config xmlns="http://schemas.tangosol.com/cache"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://schemas.tangosol.com/cache
assembly://Coherence/Tangosol.Config/cache-config.xsd">
<caching-scheme-mapping>
<cache-mapping>
<cache-name>dist-contact-cache</cache-name>
<scheme-name>extend-direct</scheme-name>
</cache-mapping>
</caching-scheme-mapping>

<caching-schemes>
<remote-cache-scheme>
<scheme-name>extend-direct</scheme-name>
<service-name>ExtendTcpCacheService</service-name>
<initiator-config>
<tcp-initiator>
<remote-addresses>
<socket-address>
<address>localhost</address>
<port>9099</port>
</socket-address>
</remote-addresses>
</tcp-initiator>

<outgoing-message-handler>
<request-timeout>30s</request-timeout>
</outgoing-message-handler>

</initiator-config>
</remote-cache-scheme>
</caching-schemes>
</cache-config>

Sample Windows Forms Application for .NET Clients 24-5

Create and Design the Application

Example 244 illustrates a sample pof-config.xml configuration file.

Example 24-4 Sample pof-config.xml File for .NET

<?xml version="1.0"?>

<pof-config xmlns="http://schemas.tangosol.com/pof"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://schemas.tangosol.com/pof
assembly://Coherence/Tangosol.Config/pof-config.xsd">
<user-type-list>

<!-- include all "standard" Coherence POF user types -->
<include>assembly://Coherence/Tangosol.Config/coherence-pof-config.xml
</include>

<!-- include all application POF user types -->

<user-type>
<type-id>1001</type-id>
<class-name>ContactCache.Windows.ContactInfo, ContactCacheClient
</class-name>
</user-type>
</user-type-list>
</pof-config>

Having created these configuration files, everything is now in place to connect to a
Coherence cluster and perform all operations supported by Coherence for .NET.

Create and Design the Application

Next, you must add controls to your Windows form. The example shows you how to
store objects into a INamedCache; read from the cache; query the cache; remove an
item from the cache; and clear the cache. The example uses buttons that raise events
when clicked; a couple of TextBox components for editing objects, and a
DataGridview for displaying the current contents of a INamedCache. The example
demonstrates just a ContactInfo user type, but a similar approach can be used with
any other user defined type.

To add controls in your application follow these steps:
1. Go to View->Toolbox.

2. In the Toolbox window choose the controls you want to use and drag them on the
Windows form.

3. For each control, right-click it, choose Properties tab, and set the necessary
properties.

Figure 24-5 illustrates what the Contact Cache Info application UI should look after
you have finished the previous steps.

24-6 Oracle Coherence Client Guide

Implement the Application

Figure 24-5 Contact Cache Client Ul

ontact Cache Client - Coherence. amp

Contacts: Enter Contact Details:

Mame Street City State Zip Mame: | |

Street: | |

City: | |

State: | |

ZIP; | |

Filter Contacts:

Filker Ot | Mame

Patterr: | |

Implement the Application

The first step in the implementation of the example Windows application is to create a
ContactInfo class that implements the IPortableObject interface.

Example 24-5 Sample Class that Implements IPortableObject

public class ContactInfo : IPortableObject
{

private string name;

private string street;

private string city;

private string state;

private string zip;

public ContactInfo()
{3}

public ContactInfo(string name, string street, string city, string state,
string zip)

{
this.name = name;
this.street = street;
this.city = city;
this.state = state;
this.zip = zip;
}
public void ReadExternal (IPofReader reader)
{
name = reader.ReadString(0);
street = reader.ReadString(1);
city = reader.ReadString(2);
state = reader.ReadString(3);
zZ1ip = reader.ReadString(4);
}

public void WriteExternal (IPofWriter writer)

{

Sample Windows Forms Application for .NET Clients 24-7

Implement the Application

writer.WriteString(0, name);
writer.WriteString(1l, street);
writer.WriteString (2, city);
writer.WriteString(3, state);
writer.WriteString(4, zip);

}

// property definitions omitted for brevity

}

Before the application can start handling events, bind the DataGridview control with
a data source object:

1. In the Toolbox window choose the BindingSource object and drag it onto the
form.

2. Set its properties. Enter contactsBindingSource into the Name field and then
set its data source by clicking the arrow button on the right end of the DataSource
field. In the drop down window choose Add Project Data Source... and the Data
Source Configuration Wizard displays. Chose Object and find the ContactInfo
class in your project.

Figure 24-6 Using Data Source Wizard to Bind a Control to a Data Source

Data Source Configuration Wizard

Choose a Data Source Type
pE ﬂ)

Where will the application get data from?

J &

Database Web Service

Lets vou choose an object that can later be used to generate data-bound controls,

3. The final step is to bind the DataGridview control to the
contactBindingSource. This is done by simply choosing the
contactsBindingSource in the drop down window in the DataSource field
of the DataGridview properties window. This is illustrated in Figure 24-7.

24-8 Oracle Coherence Client Guide

Implement the Application

Figure 24-7 Choosing a Data Source to Bind to the Control

Properties - 0 X

contactsBindingSource System,Windows, Forms,B -

e

(applicationsettings)

(Marne) contactsBindingSource
Allowaew True

DakarMernber

Dakasource .Winduws.[untactlnfu
Fi 5 Mone

& = JJ Other Data Sources

M =-Lf] Project Data Sources

5 “I% ContactInfo

) Add Project Diaka Source...

Currently data bound ko "ContackInfo’,
Dat
Indig

RN

Now, contactsBindingSource is bound to our DataGridview control and all
further interaction with the data, including navigating, sorting, filtering, and updating,
is accomplished with calls to the BindingSource component. IFilter and
CacheEventFilter fields are required to manage filtering and a
WindowsFormsCacheListener field used to ensure that any event handling code
that must run as a response to a cache event is executed on the UI thread. For this to
work, delegate methods for each cache event that is being handled and then register a
listener with the cache by using the AddCacheListener () method. This is explained
in more details in "Responding to Cache Events" on page 19-10. In the constructor,
obtain the INamedCache by using the CacheFactory.GetCache () static method
and initialize the ComboBox used for choosing the search attribute.

Example 24-6 Adding Listeners

/// <summary>

/// Named cache.

/// </summary>

private INamedCache cache;

/// <summary>

/// Listener that allows end users to handle Coherence cache events,
/// which are always raised from a background thread.

/// </summary>

private WindowsFormsCachelListener listener;

/// <summary>
/// Evaluate the specified extracted value.

Sample Windows Forms Application for .NET Clients 24-9

Implement the Application

/// </summary>
private IFilter filter;

/// <summary>
/// Wrapper filter,
/// </summary>
private CacheEventFilter cacheEventFilter;

used by listeners.

/// <summary>

/// Search pattern.

/// </summary>

private string pattern;

/// <summary>

/// Default constructor.
/// </summary>

public ContactForm()

{

listener = new WindowsFormsCacheListener (this);
listener.EntryInserted += new CacheEventHandler (AddRow) ;
listener.EntryUpdated += new CacheEventHandler (UpdateRow) ;

listener.EntryDeleted += new CacheEventHandler (DeleteRow) ;

cache CacheFactory.GetCache("dist-contact-cache");
cache.AddCacheListener (listener) ;

InitializeComponent () ;
InitializeComboBox () ;

/17
/1]
/1]
/17
/17
/// pattern in choosen entry attribute inside the named cache.
/// </remarks>

private void InitializeComboBox ()

{

<summary>
Initialize ComboBox with attribute names.
</summary>
<remarks>

cmbAttribute.Items.Add("Name") ;
cmbAttribute.Items.Add ("Street");
cmbAttribute. "City");
cmbAttribute.Items.Add("State");

Choosing attribute from the ComboBox allows to search for given

(
(
Items.Add(
(
(

cmbAttribute.Items.Add("Zip");

cmbAttribute.SelectedIndex 0;

As with any other Windows application, most of the remaining implementation has to
do with event handling. Since each component in the Windows form can raise an
event, event handlers must be created to handle each event. Event handlers in Visual
Studio can be added to your application by following these steps:

1. Right-click the Window component for which you'd like to implement an event
handler and choose Properties.
2. In the upper toolbar of the Properties window, select the lighting button and all

events that the component can raise are displayed.

24-10 Oracle Coherence Client Guide

Implement the Application

Figure 24-8 Properties Window

Properties

btnPut System.'windows,Forms, Button

AN e 1

B Action

Click, btnPut_Click

Mouse_aptureChanged
MouseClick,
Appearance
Behavior

Data

Drag Drop

Focus

Key

Layout

Mouse

Property Changed

HEEZEHEHHBEBB

« 1 X

3. Choose the event you want to handle and double-click it. Visual Studio adds the
necessary code to your application to enable you to handle the event. Next, you

must implement the empty event handler method.

Example 24-7 illustrates the event code in the sample Windows application:

Example 24-7 Adding Events

/// <summary>

/// Load form event handler.
/// </summary>

/// <param name="sender">
/// The source of the event.
/// </param>

/// <param name="e">

/// An EventArgs that contains no event data.

/// </param>

private void ContactForm_Load(object sender, EventArgs e)

{

RefreshContactsGrid(true) ;
}
/// <summary>
/// Closed form event handler.
/// </summary>
/// <remarks>
/// Removes the event handlers.
/// </remarks>
/// <param name="sender">
/// The source of the event.
/// </param>
/// <param name="e">

/// An EventArgs that contains no event data.

/// </param>

private void ContactForm_FormClosed(object sender, FormClosedEventArgs e)

{

cache.RemoveCachelistener (listener, cacheEventFilter);

Sample Windows Forms Application for .NET Clients 24-11

Implement the Application

/// <summary>
/// Enter cell event handler for the addressDataGridView.
/// </summary>
/// <remarks>
/// Refreshes the TextBoxes with data from selected
/// addressDataGridView row.
/// </remarks>
/// <param name="sender">
/// The source of the event.
/// </param>
/// <param name="e">
/// An EventArgs that contains no event data.
/// </param>
private void addressDataGridvView_CellEnter (object sender,
DataGridViewCellEventArgs e)
{
DataGridviewCellCollection cells = addressDataGridView.CurrentRow.Cells;

txtName.Text = (string) cells[0].Value;
txtStreet.Text = (string) cells[1l].Value;
txtCity.Text = (string) cells[2].Value;
txtState.Text = (string) cells[3].Value;
txtZip.Text = (string) cells[4].Value;

/// <summary>

/// Click event handler for Put button.

/// </summary>

/// <remarks>

/// Stores the <see cref="ContactInfo"/> data entered in
/// TextBoxes into the INamedCache.

/// </remarks>

/// <param name="sender">

/// The source of the event.

/// </param>

/// <param name="e">

/// An EventArgs that contains no event data.
/// </param>

private void btnPut_Click(object sender, EventArgs e)
{

String name = txtName.Text;

ContactInfo contact = new ContactInfo (txtName.Text,
txtStreet.Text,
txtCity.Text,
txtState.Text,
txtZip.Text);

cache.Insert (name, contact);

/// <summary>

/// Click event handler for the Remove button.

/// </summary>

/// <remarks>

/// Removes the <see cref="ContactInfo"/> mapped by the current
/// Name TextBox value. If there is no such entry in the
/// INamedCache, a simple warning box is displayed.

/// </remarks>

/// <param name="sender">

24-12 Oracle Coherence Client Guide

Implement the Application

/// The source of the event.
/// </param>
/// <param name="e">
/// An EventArgs that contains no event data.
/// </param>
private void btnRemove_Click(object sender, EventArgs e)
{
cache.Remove (txtName.Text) ;
ResetTextBoxes () ;

/// <summary>

/// Click event handler for the Clear button.

/// </summary>

/// <remarks>

/// Clears the INamedCache.

/// </remarks>

/// <param name="sender">

/// The source of the event.

/// </param>

/// <param name="e">

/// An EventArgs that contains no event data.

/// </param>

private void btnClear_Click(object sender, EventArgs e)

{
cache.RemoveCachelistener (listener, cacheEventFilter);
cache.Clear();
cache.AddCacheListener (listener, cacheEventFilter, false);

contactsBindingSource.Clear () ;
ResetTextBoxes () ;

/// <summary>
/// Click event handler for Refresh button.
/// </summary>
/// <remarks>
/// Refreshes the addressDataGridView, filtering named cache
/// entries by a given attribute and string pattern. If empty string
/// is provided as a pattern all entries in the named cache are
/// accounted and displayed.
/// </remarks>
/// <param name="sender">
/// The source of the event.
/// </param>
/// <param name="e">
/// An EventArgs that contains no event data.
/// </param>
private void btnRefresh_Click(object sender, EventArgs e)
{
string newPattern = txtPattern.Text;
string attribute = (string) cmbAttribute.SelectedItem;

if (!newPattern.Equals(pattern))

{
pattern = newPattern;
cache.RemoveCachelListener (listener, cacheEventFilter);

if (pattern != String.Empty)
{

Sample Windows Forms Application for .NET Clients 24-13

Implement the Application

IValueExtractor extractor = new ReflectionExtractor("get" +
attribute);
filter = new LikeFilter (extractor, pattern, '\\', false);
cacheEventFilter = new
CacheEventFilter (CacheEventFilter.CacheEventMask.All

filter);

CacheEventFilter.CacheEventMask.UpdatedEntered
CacheEventFilter.CacheEventMask.UpdatedLeft,

}
else
{
filter = null;
cacheEventFilter = null;
}
cache.AddCacheListener (listener, cacheEventFilter, false);
}
RefreshContactsGrid(true) ;

/// <summary>
/// Click event handler for SelectIndexChanged event.
/// </summary>
/// <remarks>
/// Resets the pattern string to Refresh button click event
/// handler would work properly.
/// </remarks>
/// <param name="sender">
/// The source of the event.
/// </param>
/// <param name="e">
/// An EventArgs that contains no event data.
/// </param>
private void cmbAttribute_ SelectedIndexChanged(object sender, EventArgs e)
{
pattern = "";

In addition, cache event handlers must be written as delegated in the constructor.
Example 24-8 illustrates cache event handlers:

Example 24-8 Adding Cache Event Handlers

/// <summary>
/// Event handler for <see cref="ICacheListener.EntryInserted"/>
/// event.
/// <param name="sender">
/// The source of the event.
/// </param>
/// <param name="args">
/// An <see cref="CacheEventArgs"/>.
/// </param>
private void AddRow(object sender, CacheEventArgs args)
{
contactsBindingSource.Add (args.NewValue) ;

/// <summary>
/// Event handler for <see cref="ICacheListener.EntryUpdated"/>

24-14 Oracle Coherence Client Guide

Implement the Application

/// event.

/// </summary>

/// <param name="sender">

/// The source of the event.

/// </param>

/// <param name="args">

/// An <see cref="CacheEventArgs"/>.

/// </param>

public void UpdateRow(object sender, CacheEventArgs args)

{
int index = contactsBindingSource.IndexOf (args.0ldvalue) ;
if (index < 0)

{
// updated entered
contactsBindingSource.Add (args.NewValue) ;
}
else
{
if (SatisfiesFilter (args.NewValue))
{
contactsBindingSource[index] = args.NewValue;
}
else
{
contactsBindingSource.RemoveAt (index) ;
}
}

/// <summary>

/// Event handler for <see cref="ICacheListener.EntryDeleted"/>
/// event.

/// </summary>

/// <param name="sender">

/// The source of the event.

/// </param>

/// <param name="args">

/// An <see cref="CacheEventArgs"/>.

/// </param>

public void DeleteRow(object sender, CacheEventArgs args)
{

contactsBindingSource.Remove (args.0ldvalue) ;

Example 24-9 illustrates helper methods used by the event handlers in the previous
example:

Example 24-9 Adding Helper Methods for Event Handlers

/// <summary>
/// Resets all of the text boxes on the form.
/// </summary>
private void ResetTextBoxes ()
{
txtName.Text = "";
txtStreet.Text = "";
txtCity.Text = "";
txtState.Text = "";
txtZip.Text = ",

Sample Windows Forms Application for .NET Clients 24-15

Implement the Application

/// <summary>
/// Initialize ComboBox with attribute names.
/// </summary>
/// <remarks>
/// Choosing attribute from the ComboBox allows to search for given
/// pattern in choosen entry attribute inside the named cache.
/// </remarks>
private void InitializeComboBox ()
{
cmbAttribute.Items.Add("Name") ;
cmbAttribute.Items.Add("Street");
cmbAttribute.Items.Add("City");
cmbAttribute.Items.Add("State");
cmbAttribute.Items.Add ("Zip");

cmbAttribute.SelectedIndex = 0;

/// <summary>
/// Queries the object with specified filter criteria.
/// </summary>
/// <param name="obj">
/// An object to which the test is applied.
/// </param>
/// <returns>
/// true if the test passes, false otherwise.
/// </returns>
private bool SatisfiesFilter (object obj)
{
IFilter clientFilter = new LikeFilter (new ReflectionExtractor ((string)
cmbAttribute.SelectedItem),
pattern, '\\', false);
return clientFilter.Evaluate(obj);

/// <summary>
/// Refreshes the contacts table.
/// </summary>
/// <param name="updateContacts">
/// Flag specifying whether to query against cache to get
/// the most recent data or not.
/// </param>
private void RefreshContactsGrid(bool updateContacts)
{

if (updateContacts)

{

RefreshContacts () ;
}

contactsBindingSource.ResetBindings (false) ;

/// <summary>
/// Refreshes the contacts table with the most recent data within the
/// cache.
/// </summary>
private void RefreshContacts()
{
contactsBindingSource.Clear () ;
ICollection cacheEntries = (filter == null ? cache.Values

24-16 Oracle Coherence Client Guide

Implement the Application

cache.GetEntries(filter));
foreach (object entry in cacheEntries)
{
if (entry is DictionaryEntry)
{
contactsBindingSource.Add(((DictionaryEntry) entry).Value);
}

else

{

contactsBindingSource.Add (entry) ;

Sample Windows Forms Application for .NET Clients 24-17

Implement the Application

24-18 Oracle Coherence Client Guide

25

Sample Web Application for .NET Clients

This chapter provides step-by-step instructions that explain how to create a simple
Windows ASP.NET Web application that uses the Coherence for .NET library.

The following sections are included in this chapter:

s Create an ASP.NET Project

s Create an ASP.NET Project

= Add a Reference to the Coherence for .NET Library
s Configure the Web.config File

» Create Coherence for .NET Configuration Files

» Create the Web Form

= Implement the Web Application

Create an ASP.NET Project

To create an ASP.NET web application, follow these steps:

1. Choose File->New->Web site in Visual Studio 2005.

2. Under the "Templates", select "ASP.NET Web Site".

3. Select the language that you are most familiar with.

4. Select the location (type and full path) where you want to store your application.

Click the OK button to generate a new solution and empty ASP.NET application.

Add a Reference to the Coherence for .NET Library

To use the Coherence for .NET library in your .NET application, add a reference to the
Coherence.dll library:

1. In your project go to Project->Add Reference... or right click References in the
Solution Explorer and choose Add Reference....

2. In the Add Reference window that appears, choose the Browse tab and find the
Coherence.dll library on your file system.

Sample Web Application for .NET Clients 25-1

Configure the Web.config File

Figure 25-1 Coherence.dll File in the Add Reference Window

rFll!ultl Reference

| MET | COM | Projects | Browse |Recert|

Look ir | 53 build ~Mo 2 m

;_’_é] ClovverRuntirme, dl

"h Coherence.di

d}] Coherence, NET. Tests.dl
L§] logdnet.dl

lj}] nnit. Frarmewark, di

File narne: |D:uherenu:e.dll |vi
Files of type: ! Component Files [7.dll7 Hb:® olb;® oo :* exe™ manifest] 'V}
ik] [Cancel]
3. Click OK.

Configure the Web.config File

To correctly configure the Coherence for .NET library, you must configure the
Web.config XML file with the appropriate file names for each configuration file used
by the Coherence for .NET library. Example 25-1 illustrates a valid Web.config
configuration file:

Example 25-1 Sample Web.config Configuration File

<?xml version="1.0"?>
<configuration>
<configSections>
<section name="coherence" type="Tangosol.Config.CoherenceConfigHandler,
Coherence, Version=3.6.0.0, Culture=neutral,
PublicKeyToken=0ADA89708FDF1F9A" />
</configSections>

<coherence>
<cache-factory-config>web://~/Config/coherence.xml</cache-factory-config>

<cache-config>web://~/Config/cache-config.xml</cache-config>
<pof-config>web://~/Config/pof-config.xml</pof-config>
</coherence>
<appSettings/>
<connectionStrings/>
<system.web>
<globalization culture="en-US" uiCulture="en-US"/>
<sessionState mode="Custom" customProvider="CoherenceSessionProvider"
timeout="20">
<providers>

25-2 Oracle Coherence Client Guide

Create Coherence for .NET Configuration Files

<add name="CoherenceSessionProvider"
type="Tangosol .Web.CoherenceSessionStore, Coherence,
Version=3.6.0.0, Culture=neutral,
PublicKeyToken=0ADA89708FDF1FOA" />
</providers>
</sessionState>
<compilation debug="false" defaultLanguage="c#">
<assemblies>
<add assembly="System.Windows.Forms, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=B77A5C561934E089" />
<add assembly="Coherence, Version=3.6.0.0, Culture=neutral,
PublicKeyToken=0ADA89708FDF1F9A" />
</assemblies>
</compilation>
<authentication mode="Windows"/>
<customErrors mode="Off"/>
</system.web>
</configuration>

In the <configSections> you must specify a class that handles access to the
Coherence for .NET configuration section.

Elements within the Coherence for .NET configuration section are:

s cache-factory-config—contains the path to a configuration descriptor used
by the CacheFactory to configure the (IConfigurableCacheFactory and Logger)
used by the CacheFactory.

= cache-config—contains the path to a cache configuration descriptor which
contains the cache configuration described earlier (see "Configuring
Coherence*Extend on the Client" on page 17-3). This cache configuration
descriptor is used by the DefaultConfigurableCacheFactory.

s pof-config—contains the path to a configuration descriptor used by the
ConfigurablePofContext to register custom types used by the application.

Create Coherence for .NET Configuration Files

Example 25-2 illustrates a sample coherence . xml configuration file:

Example 25-2 Sample coherence.xml Configuration File

<?xml version="1.0"?>

<coherence xmlns="http://schemas.tangosol.com/coherence"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://schemas.tangosol.com/coherence
assembly://Coherence/Tangosol.Config/coherence.xsd">
<logging-config>
<destination>stderr</destination>
<severity-level>5</severity-level>
<message-format>{date} <{level}> (thread={thread}): {text}
</message-format>
<character-1limit>8192</character-limit>
</logging-config>
</coherence>

Example 25-3 illustrates a sample cache-config.xml configuration file:

Sample Web Application for .NET Clients 25-3

Create Coherence for .NET Configuration Files

Example 25-3 Sample cache-config.xml Configuration File

<?xml version="1.0"?>

<cache-config xmlns="http://schemas.tangosol.com/cache"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://schemas.tangosol.com/cache
assembly://Coherence/Tangosol.Config/cache-config.xsd">
<caching-scheme-mapping>
<cache-mapping>
<cache-name>dist-contact-cache</cache-name>
<scheme-name>extend-direct</scheme-name>
</cache-mapping>
<cache-mapping>
<cache-name>aspnet-session-storage</cache-name>
<scheme-name>extend-direct</scheme-name>
</cache-mapping>
<cache-mapping>
<cache-name>aspnet-session-overflow</cache-name>
<scheme-name>extend-direct</scheme-name>
</cache-mapping>
</caching-scheme-mapping>
<caching-schemes>
<remote-cache-scheme>
<scheme-name>extend-direct</scheme-name>
<service-name>ExtendTcpCacheService</service-name>
<initiator-config>
<tcp-initiator>
<remote-addresses>
<socket-address>
<address>localhost</address>
<port>9099</port>
</socket-address>
</remote-addresses>
</tcp-initiator>
<outgoing-message-handler>
<request-timeout>30s</request-timeout>
</outgoing-message-handler>
</initiator-config>
</remote-cache-scheme>
</caching-schemes>
</cache-config>

Example 25-4illustrates a sample pof-config.xml configuration file:

Example 25-4 Sample pof-config.xml Configuration File

<?xml version="1.0"?>

<pof-config xmlns="http://schemas.tangosol.com/pof"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://schemas.tangosol.com/pof
assembly://Coherence/Tangosol.Config/pof-config.xsd">
<user-type-list>

<!-- include all "standard" Coherence POF user types -->
<include>assembly://Coherence/Tangosol.Config/coherence-pof-config.xml
</include>

<!-- include all application POF user types -->

<user-type>
<type-1d>1001</type-id>
<class-name>ContactCache.Web.ContactInfo</class-name>

25-4 Oracle Coherence Client Guide

Create the Web Form

</user-type>
</user-type-list>
</pof-config>

Having creating these configuration files, everything is now in place to connect to a
Coherence cluster and perform all operations supported by Coherence for .NET.

Create the Web Form

Switch to the Design tab for the Default .aspx page and from the Toolbox pane add
the appropriate controls by dragging and dropping them on the page. You need
TextBox controls for the Name, Street, City, State, and Zip fields and
corresponding label controls for each. This is illustrated in Figure 25-2.

Figure 25-2 Adding Controls for the .aspx Page

@9 WebSite1 - Microsoft Yisual Studio

File Edit Wiew Website Build Debug Format Lawvout Tools ReSharper Window Community Help

IR A= = R |9 - = - =L b Debug ~ MET
Hore + Yerdana ~lgptk B L U A S =~ iz i= 0 #HTML 1.0 Transitio
Toalbo:x > B X [m

=l Standard -~

|k Pointer |

A Label Sample Web Application
abl] TextBox

Button i)

LinkBttan Flarme:| [P |
ImmageButton Bireat: FEI |
A HyperLink

=5 DropDownList E:ltv FE |
2 ListBox Biote |TEI |
CheckBox . =

5= CheckBoxList] %IDZ [|
(%) RadioButkon

2= RadioButtonlist

[8] Image

|5 Imagemap

] Table

+= BulletedList

bl HiddenField

After placing them on the page, you should change the ID and Text property for each
control. Labels are not used in the code; therefore, leave their ID property values as
generated and put appropriate labels in the Text property. You should name the ID
and TextBox controls txtName, txtStreet, and so on. Add one button and rename
its ID to btnSave and Text property to Save. This is illustrated in Figure 25-3.

Sample Web Application for .NET Clients 25-5

Create the Web Form

Figure 25-3 Changing IDs and Properties for Data Controls

@% Web5ite1 - Microsoft Visual Studio

File Edit ‘“iew ‘Website Build Debug Format Layout Tools ReSharper Window Community H

-G @ %GB 90 S5 oDk x e

- - B I U A & == = 0 | 3HM 1.0Tran
Ll'l“ Propetties - 1 X Default.aspx*
5 Labell Svystern.Web UL WebContrals.l =
=
1}
g =i Sample Web Application
o (Expressions)
= 0] Labell =l
| aAccessk
;% coessKey : i ®m
H hul
g' AssociatedContre Rjagﬂeg r |
o]
g BackColor ™ Biraet: |_ |
BorderColar]
Borderstyle MotSet Eity: F |
Borderwidth
1 E
CssClass %tate' |— |
Enabled True IE AiIN]
[Jo
EnsbleTheming True z b r |
EnableViewsState True Psave
Fonk
ForeColor]
Height
SkinIDr
TabInde:x 0
Text Name:
TaalTip
Wisible True
Widkh

Add one button and rename its ID to btnClear and Text property to Clear. This is
illustrated in Figure 254

25-6 Oracle Coherence Client Guide

Create the Web Form

Figure 25-4 Adding a "Clear" Button to the Application

@% Web5ite1 - Microsoft Visual Studio

File Edit ‘“iew ‘Website Build Debug Format Layout Tools ReSharper Window Community

- -l g % a9 - - E | P oDebug - MET
- - B I U A & == = 0 yHM 10T
Llll“ Propetties - 1 X Default.aspx*
5 txtMame Syskenn.Wweb. UL WebCortral =
=
1}
g — Sample Web Application
=) (Expressions)
= 0] txtName
>§—L Accesskey i
|| R .
g' AutoCompleteTy) Mone Rjame : r E
= 4 e
g utoPostBack False Biraat: |_ |
BackColor]
BorderColar [E:Itv . F |
BorderStyle MokSet &
Borderwidth %tate : |— |
Causesvalidation False IE B
[Jo
Colurins 0 P r |
CssClass "save
Enabled True

EnableTheming True
Enableviewstate True

Fank
FareColar ™
Height
MaxLength 0
ReadOnly False
Rows 1]
SkinID
TabInde:x 0
Texk
TextMode SingleLine
ToolTip
YalidationGroup
visible True
Width
Wrap True

Add label and rename its ID to 1blTotal. This label is used to display the cache
size. Add a RequiredFieldvalidator from the Validation list of controls on the
Toolbox pane and set its properties. This is illustrated in Figure 25-5:

Sample Web Application for .NET Clients 25-7

Create the Web Form

Figure 25-5 Adding a Field Validator and Setting its Properties

@% Web5ite1 - Microsoft Visual Studio

File Edit ‘“iew ‘Website Buld Debug Format Layout Tools ReSharper Window Community Help
Ed- G- el G % G2 @9 -~ B b Debug ~ MET ~ | [# [MonSerialized]
- - B I 0O

i Propetties ~ 1 X | Default.aspx

= | | ¥HTML 1.0 Transidonal (~ | &, | B _ B

5 MameYalidator System.\Web. UL'Webi »

=

1}

m = Sample Web Application

4

=) (Expressions)

1] -

= (10 MameYalidator

X AccessKey Field "MName" cannot be empt\/!g

4

g BackColar ™ Blarme: F |

o BorderColor ™ : [E: | 0Col 1Col >

= BarderSkyle TiokSet Brraot: |ﬁ | olumn olumn olumn
Borderwidth : abc abc abc
ControlToYalidats bxtMane 'E:H:y |E | abc abc abc
CssClass

I abc abc abc
Display Dynamic %tate- r | b b b
EnsbleClientScrip False %ID |ﬁ | apc anc apc
Enabled True : abc abec abc
EnableTheming True
EnableViewstate True B ool objects: O
ErrorMessage Field "Name" cannc
Fonk

Please note that ControlToValidate property is set to the txtName control.

From the Data list of controls on the Toolbox pane, add a GridView control and an
ObjectDataSource (named dsContact). This is illustrated in Figure 25-6.

Figure 25-6 Adding a GridView Control and an ObjectDataSource

@0 WebSite1 - Microsoft Yisual Studio

File Edit ‘iew ‘website Build Debug Format Layout Tools ReSharper Window — Community Help

RN RAr=N " W= N EENF - 8 - B - EL| B Debug - MET > | [[MonSerislized) - |) g 3R
B L U|A &|=-|i= =@ & | = b ouo@ @ 5E[E 5
LLI:‘ Properties /ﬁm.aspx]
@ gridCache Svstem.'Web UL WebContn =
=
1 1]
g = Sample Web Application
= A
g gridCache T
X || Accesskey Field "Name" canpet be empty!
g AllowrPaging False RJ o]
= AllowSarting False ame. r | EI"E
23 AitermatingRons Tl | ;E':olumn(] Column1 Column2|
AutoGenerateCo True : abc abc abc !
AutoGenerakeDe False 3] E|ty F | abe abe abe
AutoGenerateEdi False
B
AutoGenerateSel False Btate: |_ | GEC GEC GEC
BackiZolar] 'Eip' |ﬁ | a c abc apc
BackImageLt : “abc abc abc
BorderColar [Bgave
Borderstyle MotSet Botal ohjects: 0O
BorderiWidth
Caption

Captionalign MotSet

CellPadding -1

Cellspacing i}

Columns {Collection)
CasClass

DratakeyMames

DataMember

25-8 Oracle Coherence Client Guide

Create the Web Form

Example 25-5 illustrates code for the Gridview control source:

Example 25-5 Code for the GridView Data Control

<asp:GridvView ID="gridCache" runat="server" DataSourceID="dsContact"
AutoGenerateColumns="False" Font-Names="Verdana">
<Columns>
<asp:TemplateField>
<ItemStyle Font-Size="Small"/>
<ItemTemplate>
<asp:HyperLink Text="[Remove]" ID="HyperLinkl" runat="server"
NavigateUrl='<%# "?removeKey=" +
DataBinder.Eval (Container.Dataltem, "Name").ToString() %>'/>
</ItemTemplate>
</asp:TemplateField>
<asp:TemplateField HeaderText="Name">
<HeaderStyle BackColor="#DCE7F7"/>
<ItemTemplate>
<asp:HyperLink runat="server" NavigateUrl='<%# "?getKey=" +
DataBinder.Eval (Container.Dataltem, "Name").ToString() %>'>
<%# DataBinder.Eval (Container.Dataltem, "Name") %>
</asp:HyperLink>
</ItemTemplate>
</asp:TemplateField>
<asp:BoundField DataField="Street" HeaderText="Street">
<HeaderStyle BackColor="#DCE7F7"/>
</asp:BoundField>
<asp:BoundField DataField="City" HeaderText="City">
<HeaderStyle BackColor="#DCE7F7"/>
</asp:BoundField>
<asp:BoundField DataField="State" HeaderText="State">
<HeaderStyle BackColor="#DCE7F7"/>
</asp:BoundField>
<asp:BoundField DataField="Zip" HeaderText="Zip">
<HeaderStyle BackColor="#DCE7F7"/>
</asp:BoundField>
</Columns>
</asp:Gridview>

Example 25-6 illustrates the ObjectDataSource code.

Example 25-6 ObjectDataSource Code

<asp:0bjectDataSource ID="dsContact" runat="server" SelectMethod="GetData"
TypeName="ContactCache.Web.ContactInfoDataSource"
</asp:0bjectDataSource>

Add a Search pane by dragging and dropping a few labels, one DropDownlList for a
filter column, and a TextBox for filter criteria. This is illustrated in Figure 25-7.

Sample Web Application for .NET Clients 25-9

Implement the Web Application

Figure 25-7 Search Pane

@2 Coherence.NET - Microsoft ¥isual Studio

File Edit ‘iew ‘website Build Debug Data Format Layout Tools ReSharper

Wwindow Community Help

EYRREE RN W= N EEN Sl - EL b Debug - Any CPU - | [# 1001 - | ol
= TimesMewRoman - 12t » B 7 O A & = - = i= | ¥HTML 1.0 Transitional { ~ é‘y o2 -

bouo@ @y %E(E % e (@
LILil“ Default.aspr
§' Contact Cache Sample Application Coherenc
;} Field 'Name' cannot be empty!
2 [l || Rame: F | BearcH [Unbound | for [P [Bo| P clear filter
| Btreet: F | " Name Street City State Zip
i Eity: F | [Remove] Databound Databound Databound Databound Databound
o = [Remove] Databound Databound Databound Databound Databound
3 State: || || [Removel Databound Databound Databound Databound Databound
g Bip: B ||| [Removel Databound Databound Databound Databound Databound

Ecave [Remove] Databound Databound Databound Databound Databound

%biectDataSource - dsContact

Rotal objects: O

|E'Clear l

Implement the Web Application

The following topics are included in this section:

= Global.asax File
= Business Object Definition
= Service Layer Implementation

s Code-behind the ASP.NET Page

Global.asax File

To free up resources in the cluster when your ASP.NET application terminates, you
must call CacheFactory.Shutdown () within the Application_End event
handler in Global . asax. Example 25-7 illustrates a Global . asax file and shows
you how to do that, and also adds the call which redirects the user to an error page if

an exception occurs.

Example 25-7 Redirecting a User to an Error Page

<%@ Application Language="C#" %>

<script runat="server">

void Application_Start(object sender, EventArgs e)

{
try
{

Application|["contactCache"] = CacheFactory.GetCache("dist-contact-cache");

25-10 Oracle Coherence Client Guide

Implement the Web Application

catch
{
}
}
void Application_End(object sender, EventArgs e)
{
CacheFactory.Log ("Application terminated.", CacheFactory.LogLevel.Info);
INamedCache contactCache = Application["contactCache"] as INamedCache;
if (contactCache != null)
{
contactCache.Release() ;
}
CacheFactory.Shutdown () ;
}
void Application_Error (object sender, EventArgs e)
{
Server.Transfer ("ConnectionError.html") ;
}
</script>

Business Object Definition

Example 25-8 illustrates the definition of the ContactInfo business object.

Example 25-8 Sample Business Object Definition File

public class ContactInfo : IPortableObject

{

private string name;
private string street;
private string city;
private string state;
private string zip;

public ContactInfo()

{1}

public ContactInfo(string name, string street, string city, string state,
string zip)

{

this.name = name;
this.street = street;
this.city = city;
this.state = state;
this.zip = zip;

public void ReadExternal (IPofReader reader)

{

name = reader.ReadString(0);
street = reader.ReadString(1l);
city = reader.ReadString(2);
state = reader.ReadString(3);
zip = reader.ReadString(4);

Sample Web Application for .NET Clients 25-11

Implement the Web Application

public void WriteExternal (IPofWriter writer)
{
writer.WriteString (0, name);
writer.WriteString(1l, street);
writer.WriteString(2, city);
writer.WriteString (3, state);
writer.WriteString (4, zip);

Service Layer Implementation

Example 25-9 illustrates a class that provides data to the data bind control. It must
have a public GetData () method that returns an ICollection of data to the data
bind control:

Example 25-9 Providing Data to the Data Bind Control

public class ContactInfoDataSource
{

public ICollection Data

{

set { m_col = value; }

public ICollection GetDataf()
{

return m_col;

public ContactInfoDataSource ()

{}

public ContactInfoDataSource(ICollection col)
{

ArrayList results = new ArrayList();
if (col is INamedCache)
{
INamedCache cache = col as INamedCache;

foreach (ContactInfo contactInfo in cache.Values)
{
results.Add (contactInfo);

}
else if (col is ArrayList)
{
foreach (DictionaryEntry entry in col)
{
results.Add (entry.Value);

}

Data = results;

private ICollection m_col = null;

25-12 Oracle Coherence Client Guide

Implement the Web Application

Code-behind the ASP.NET Page

Add an event handler that creates an inner object that provide data to the data bind
control. This is illustrated in Example 25-10.

Example 25-10 Event Handler to Provide Data to the Data Bind Control

protected void dsContact_ObjectCreating(object sender, ObjectDataSourceEventArgs
e)
{

ContactInfoDataSource cds = new ContactInfoDataSource(Contacts == null ?
ContactCache : Contacts);

e.ObjectInstance = cds;

}

The method illustrated in Example 25-11 refreshes the Gridview displayed on the
page, refreshes the total label 1b1Total, and makes the btnClear and all buttons
visible if there are objects in the cache:

Example 25-11 Method to Refresh the Grid View

private void RefreshDataGridAndRenderPage ()

{
gridCache.DataBind() ;

int totalObjects = (Contacts == null ? ContactCache.Count : Contacts.Count);
1blTotal.Text = "Total objects: " + totalObjects;

if (ContactCache.Count > 0)
{
1blTotal.Visible = btnClear.Visible = true;
1blSearch.Visible = listColumnNames.Visible = 1lblFor.Visible
txtFilterCriteria.Visible = btnSearch.Visible = true;
}
else

{

1blTotal.Visible = btnClear.Visible = false;
1blSearch.Visible = listColumnNames.Visible = 1blFor.Visible =
txtFilterCriteria.Visible = btnSearch.Visible = false;
}

btnClearFilter.Visible = (Contacts != null);
}

The method illustrated in Example 25-12 handles page load events. If there is a
getKey value in the Request, then the value mapped to the specified key in the
cache is retrieved and the appropriate fields populated with its properties. If there is a
removeKey value in the Request, the value mapped to the specified key is removed
from the cache.

Example 25-12 Method to Handle Page Load Events

protected void Page_Load(object sender, EventArgs e)
{
if (Request["getKey"] != null)
{
FindObjectInCache (Request["getKey"]);
}

else if (Request["removeKey"] != null)

{

Sample Web Application for .NET Clients 25-13

Implement the Web Application

CacheFactory.Log("Object with key [" + Request["removeKey"] + "] has been
removed from cache.", CacheFactory.LogLevel.Info);
ContactCache.Remove (Request ["removeKey"]) ;

RefreshDataGridAndRenderPage () ;
PopulateFilterColumns () ;

The helper method illustrated in Example 25-13 retrieves an ContactInfo object
from the cache by a specified key:

Example 25-13 Retrieving a Business Object from the Cache through a Specified Key

private void FindObjectInCache (object key)

{
ContactInfo contactInfo = (ContactInfo)ContactCachelkeyl];

if (contactInfo == null)
{

contactInfo = new ContactInfo();

txtName.Text = key as String;
txtStreet.Text = contactInfo.Street;
txtCity.Text = contactInfo.City;
txtState.Text = contactInfo.State;
txtZip.Text = contactInfo.Zip;

Example 25-14 illustrates an the event handler for the btnSave button:

Example 25-14 Event Handler for a "Save" Button

protected void btnSave_Click(object sender, EventArgs e)
{

String name = txtName.Text;

if (name != null && name != "")
{

ContactInfo contactInfo = new ContactInfo (name,
txtStreet.Text,
txtCity.Text,
txtState.Text,
txtZip.Text);

ContactCache.Insert (name, contactInfo);

CacheFactory.Log("Object with key [" + name + "] has been inserted into
cache.", CacheFactory.LogLevel.Info);
RefreshDataGridAndRenderPage () ;

Example 25-15 illustrates the event handler for the btnClear button:
Example 25-15 Event Handler for a :Clear" Button
protected void btnClear Click(object sender, EventArgs e)

{
NameValidator.Enabled = false;

25-14 Oracle Coherence Client Guide

Implement the Web Application

ContactCache.Clear () ;
RefreshDataGridAndRenderPage() ;

NameValidator.Enabled = true;

Example 25-16 illustrates the event handler for the btnSearch button:

Example 25-16 Event Handler for a "Search" Button

protected void btnSearch_Click(object sender, EventArgs e)

{

NameValidator.Enabled = false;

String filterBy = listColumnNames.Items[listColumnNames.SelectedIndex] .Text;
String filterCriteria = txtFilterCriteria.Text.Trim();

if (filterCriteria != "")

{

IValueExtractor extractor = new ReflectionExtractor("get" + filterBy);
IFilter filter = new LikeFilter (extractor, filterCriteria, '\\', true);

ICollection results = ContactCache.GetEntries(filter);

Contacts = results;
dsContact = new ObjectDataSource();

RefreshDataGridAndRenderPage () ;

NameValidator.Enabled = true;

Example 25-17 illustrates the event handler for the btnClearFilter button:

Example 25-17 Event Handler for a "Clear Filter" Button
protected void btnClearFilter_Click(object sender, EventArgs e)

{

NameValidator.Enabled = false;

Contacts = null;
dsContact = new ObjectDataSource();

RefreshDataGridAndRenderPage() ;
NameValidator.Enabled = true;

Lastly, add an ConnectionError.html page to the project with an appropriate
error message in it.

Sample Web Application for .NET Clients 25-15

Implement the Web Application

25-16 Oracle Coherence Client Guide

Part V

Using Coherence REST

Part V contains the following chapters:

» Chapter 26, "Introducing Coherence Rest"

» Chapter 27, "Building Your First Coherence REST Application"
» Chapter 28, "Using the Coherence REST API"

s Chapter 29, "Deploying Coherence REST"

s Chapter 30, "Modifying the Default REST Implementation”

26

Introducing Coherence Rest

This chapter provides an introduction to Coherence REST support. Users should be
familiar with Web services and JAX-RS to use Coherence REST.

The following sections are included in this chapter:
s Overview of Coherence REST

= Dependencies for Coherence REST

s Overview of Configuration for Coherence REST

s Understanding Data Format Support

Overview of Coherence REST

Coherence REST provides easy access to Coherence caches and cache entries over
HTTP protocol. It is somewhat similar to Coherence*Extend, as it allows remote clients
to access data stored in Coherence without being members of the cluster themselves.
However, unlike Coherence*Extend, which is a proprietary protocol that requires POF
serialization to be used both on the client and within the cluster, Coherence REST uses
HTTP as the underlying protocol and can marshal data in multiple representation
formats, such as JSON and XML.

The benefit of Coherence REST is that it allows applications written in others
languages, such as Ruby and Python (that are not natively supported by Coherence),
to interact with cached data.

Dependencies for Coherence REST

Coherence REST depends on the following Oracle and third-party libraries. The Jersey
and Jackson JARS are included in the COHERENCE_HOME/1ib directory. Grizzly JARS can
be downloaded from the Grizzly project page:

http://grizzly.java.net/

Name

Description License Type JAR Files

Jersey 1.8

Reference implementation of JAX-RS(JSR =« CDDL v1.1 = jersey-core-1.8jar
311: The Java API for RESTful Web
Services)

GPL v2 = jersey-json-1.8jar
= jersey-server-1.8jar

= jersey-grizzly2-1.8.jar — must
be downloaded from the
Jersey Project page:

http://jersey.java.net/

Introducing Coherence Rest 26-1

Overview of Configuration for Coherence REST

Name Description

License Type JAR Files

Grizzly 2.1.1 ~ Embedded web server that integrates

well with Jersey (part of Glassfish).

Jackson 1.8.1 JSON serializer

] CDDL v1.1]
GPL v2 .
= grizzly-http-server-2.1.1 jar

grizzly-framework-2.1.1 jar

grizzly-http-2.1.1.jar

Apache 2.0 jackson-all-1.8.1.jar

Overview of Configuration for Coherence REST

Coherence REST is configured using two configurations files. The files include:

s Cache Configuration Deployment Descriptor — This file is used to define
client-side cache services and the HTTP acceptor which accepts connections from
remote REST clients over HTTP. The acceptor includes the address and port of the
cluster-side HTTP server to which clients connects. The schema for this file is the
coherence-cache-config.xsd file. See Oracle Coherence Developer’s Guide for a
complete reference of the <http-acceptor> element.

At run time, the first cache configuration file that is found on the classpath is used.
The tangosol.coherence.cacheconfig system property can also be used to
explicitly specify a cache configuration file. The file can also be set
programmatically. See Oracle Coherence Developer’s Guide for general information
about the cache configuration deployment descriptor.

= REST Configuration Deployment Descriptor — This file is used to configure the
Jersey resource configuration class as well as custom aggregators and custom
entry processors. The default name of the descriptor is
coherence-rest-config.xml and the schema is defined in the
coherence-rest-config.xsd file. The file must be found on the classpath and the
name can be overridden using the tangosol.coherence.rest.config system
property. See Appendix A, "REST Configuration Elements," for a detailed
reference of REST configuration deployment descriptor.

Understanding Data Format Support

Coherence REST supports both XML and JSON formats as input and output. To use
these formats the correct bindings are required when creating a user type. Both
formats are demonstrated in this section.

The following topics are included in this section:

s Using XML as the Data Format
= Using JSON as the Data Format

Using XML as the Data Format

Objects that are represented in XML must have the appropriate JAXB bindings defined
in order to be stored in a cache. The following example creates an object that uses

annotations to add JAXB bindings:

@XmlRootElement (name="Address")

@XmlAccessorType (XmlAccessType. PROPERTY)

public class Address {
private String street;
private String city;
private String country;

26-2 Oracle Coherence Client Guide

Understanding Data Format Support

public String getStreet() {
return street;

public void setStreet (String street) {
this.street = street;

public String getCity() {
return city;

public void setCity(String city) {
this.city = city;

public String getCountry() {
return country;

public void setCountry(String country) {
this.country = country;

@XmlRootElement (name="Person")
@XmlAccessorType (XmlAccessType. PROPERTY)
public class Person {

private Long id;

private String name;

private Address address;

public Long getId() {

return 1id;

public void setId(Long id) {
this.id = id;

public String getName() {
return name;

public void setName (String name) {
this.name = name;

@XmlElement (name = "address")
public AddressXml getAddr() {
return addr;

public void setAddr (AddressXml addr) {
this.addr = addr;

Introducing Coherence Rest 26-3

Understanding Data Format Support

Using JSON as the Data Format

Objects that are represented in JSON must have the appropriate Jackson bindings or
JAXB bindings defined in order to be stored in a cache. The default Coherence REST
JSON marshaller gives priority to Jackson bindings, and if not found, fails safe to JAXB
bindings. Using Jackson annotations gives user more power on controlling the output
JSON format, but in case when both XML and JSON formats are needed, JAXB
annotations can be enough for both formats.

The following example creates an object that uses annotations to add Jackson bindings:

@JsonTypeInfo (use=JsonTypelInfo.Id.CLASS, include= JsonTypelInfo.As.PROPERTY,
property="@type")
public class Address {
private String street;
private String city;
private String country;

public String getStreet() {
return street;

public void setStreet (String street) {
this.street = street;

public String getCity() {
return city;

public void setCity(String city) {
this.city = city;

public String getCountry() {
return country;

public void setCountry(String country) {
this.country = country;

@JsonTypeInfo (use=JsonTypelInfo.Id.CLASS, include= JsonTypelInfo.As.PROPERTY,
property="@type")
public class Person {
private Long id;
private String name;
private Address address;

public Long getId() ({
return 1id;

public void setId(Long id) {
this.id = id;

public String getName() {
return name;

26-4 Oracle Coherence Client Guide

Understanding Data Format Support

public void setName (String name) {
this.name = name;

@JsonProperty ("address")
public AddressJson getAddr () {
return addr;

public void setAddr (AddressJson addr) {
this.addr = addr;

Introducing Coherence Rest 26-5

Understanding Data Format Support

26-6 Oracle Coherence Client Guide

27

Building Your First Coherence REST
Application

This chapter demonstrates basic tasks that are required to build and run Coherence
REST applications. Many of the concepts demonstrated in this chapter are detailed in
subsequent chapters.

The following sections are included in this chapter:
s Overview of the Coherence REST Example

= Step 1: Configure the Cluster Side

m Step 2: Create a User Type

= Step 3: Configure REST Services

= Step 4: Start the Cache Sever Process

» Step 5: Test the Coherence REST API

Overview of the Coherence REST Example

This chapter is organized into a set of steps that are used to configure and run a basic
Coherence REST application. The steps demonstrate fundamental concepts, such as:
configuring a proxy server responsible for handling HTTP request, configuring a
remote cache, and using the Coherence REST APL

The example in this chapter uses an embedded HTTP server in order to deploy a
standalone application that does not require an application server. For details about
deployment options with application servers, such as WebLogic and GlassFish, see
Chapter 29, "Deploying Coherence REST."

Coherence for Java must be installed to complete the steps in this chapter. In addition,
the following user-defined variables are used in this example:

m DEV_ROOT - The path to root folder where user is performing all of the listed steps,
or in other words all of the following folders are relative to DEV_ROOT.

» COHERENCE_HOME - The path to folder containing Coherence JARs (coherence. jar
and coherence-rest.jar)

Step 1: Configure the Cluster Side

Coherence REST requires both a cache and a proxy scheme. The proxy scheme must
defines an HTTP acceptor to handle incoming HTTP request. The cache and proxy are
configured in the cluster-side cache configuration deployment descriptor. For this
example, the proxy is configured to accept client HTTP requests on localhost and

Building Your First Coherence REST Application 27-1

Step 2: Create a User Type

port 8080. A distributed cache named dist-http-example is defined and is used to
store client data in the cluster.

To configure the cluster side:

1. Create an XML file named example-server-config.xml in the DEV_ROOT\config
folder.

2. Copy the following XML to the file:

<?xml version="1.0"?>
<cache-config xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns="http://xmlns.oracle.com/coherence/coherence-cache-config"
xsi:schemaLocation="http://xmlns.oracle.com/coherence/coherence-cache-config
coherence-cache-config.xsd">
<caching-scheme-mapping>
<cache-mapping>
<cache-name>dist-http-example</cache-name>
<scheme-name>dist-http</scheme-name>
</cache-mapping>
</caching-scheme-mapping>

<caching-schemes>

<distributed-scheme>
<scheme-name>dist-http</scheme-name>
<backing-map-scheme>

<local-scheme/>

</backing-map-scheme>
<autostart>true</autostart>

</distributed-scheme>

<proxy-scheme>
<service-name>ExtendHttpProxyService</service-name>
<thread-count>5</thread-count>
<acceptor-config>
<http-acceptor>
<local-address>
<address>localhost</address>
<port>8080</port>
</local-address>
</http-acceptor>
</acceptor-config>
<autostart>true</autostart>
</proxy-scheme>
</caching-schemes>
</cache-config>

3. Save and close the file.

Step 2: Create a User Type

Create the Person user type, which is stored in the cache and used to demonstrate
basic REST operations.

To create the Person object:
1. Create a text file in a DEV_ROOT\example folder.
2. Copy the following Java code to the file:

package example;
import java.io.Serializable;

27-2 Oracle Coherence Client Guide

Step 3: Configure REST Services

import javax.xml.bind.annotation.XmlAccessType;
import javax.xml.bind.annotation.XmlAccessorType;
import javax.xml.bind.annotation.XmlRootElement;

@XmlRootElement (name="person")
@XmlAccessorType (XmlAccessType. PROPERTY)
public class Person implements Serializable {

public Person() {}

public Person(String name, int age)
{
m_name = name;
m_age = age;

}
public String getName() { return m_name; }
public void setName (String name) { m_name = name; }
public int getAge() { return m_age; }
public void setAge(int age) { m_age = age; }

protected String m_name;
protected int m_age;

3. Save the file as Person. java and close the file.
4. Compile Person.java:

javac example\Person.java

Step 3: Configure REST Services

The Coherence RESTful services require metadata about the cache that it exposes. The
metadata includes the cache entry's key and value types as well as key converters and
value marshallers. The key and value types are required in order for Coherence to be
able to use built-in converters and marshallers (XML and JSON supported).

To configure the RESTful services:

1. Create an XML file named coherence-rest-config.xml in DEV_ROOT\config
folder.

2. Copy the following XML to the file:

<?xml version="1.0"?>
<rest xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns="http://xmlns.oracle.com/coherence/coherence-rest-config"
xsi:schemalocation=
"http://xmlns.oracle.com/coherence/coherence-rest-config
coherence-rest-config.xsd">
<resources>
<resource>
<cache-name>dist-http-example</cache-name>
<key-class>java.lang.String</key-class>
<value-class>example.Person</value-class>
</resource>

Building Your First Coherence REST Application 27-3

Step 4: Start the Cache Sever Process

</resources>
</rest>

3. Save and close the file

Step 4: Start the Cache Sever Process

RESTful services are exposed as part of a cache server process (DefaultCacheServer).
The cache server’s classpath must be configured to find all the configuration files that
were created in the previous steps as well as the Person. class. The classpath must
also contain the required dependency libraries (see "Dependencies for Coherence
REST" on page 26-1). For the sake of brevity, all of the above files are placed in DEV_
ROOT\1ibs folder.

The DEV_ROOT folder should appear as follows:

/

/config
/config/example-server-config.xml
/config/coherence-rest-config.xml
/example

/example/Person.class

/1libs

/libs/jersey-server-1.7.jar
/libs/jersey-core-1.7.jar
/libs/jersey-json-1.7.jar
/1libs/jaxb-api.jar
/libs/jaxb-impl.jar
/libs/jacskon-all-1.8.1.jar

The following command line starts a cache server process and explicitly names the
cache configuration file created in Step 1 by using the
tangosol.coherence.cacheconfig system property. In addition in sets all the needed
libraries and configuration files to classpath variable:

java -cp DEV_ROOT\config;DEV_ROOT\example;DEV_ROOT\libs\jersey-server-1.7.jar;DEV_
ROOT\1libs\jersey-core-1.7.jar;DEV_ROOT\libs\jersey-json-1.7.jar;DEV_
ROOT\1ibs\jaxb-api.jar;DEV_ROOT\1libs\jaxb-impl.jar;DEV_
ROOT\1libs\jackson-all-1.8.1.jar; COHERENCE_HOME\coherence. jar; COHERENCE_
HOME\coherence-rest.jar -Dtangosol.coherence.cacheconfig=DEV_
ROOT\config\example-server-config.xml com.tangosol.net.DefaultCacheServer

Check the console output to verify that the proxy service has started. The output
message should include the following:

(thread=Proxy:ExtendHttpProxyService:HttpAcceptor, member=1): Started:
HttpAcceptor{Name=Proxy:ExtendHttpProxyService:HttpAcceptor, State=(SERVICE_
STARTED) , HttpServer=com.tangosol.coherence.rest.server.DefaultHttpServer,
LocalAddress=1localhost, LocalPort=8080,
ResourceConfig=com.tangosol.coherence.rest.server.Defaul tResourceConfig,
RootResource=com. tangosol.coherence.rest.DefaultRootResource}

Step 5: Test the Coherence REST API

The following examples demonstrates using the Coherence RESTful API to invoke
services through an HTTP client. See Chapter 28, "Using the Coherence REST APL" for
complete details on the Coherence RESTful API.

27-4 Oracle Coherence Client Guide

Step 5: Test the Coherence REST API

Put Operations

PUT http://localhost:

8080/dist-http-example/1 Content-Type=application/json

Request Body: {"name":"chris", "age":30}

PUT http://localhost:

8080/dist-http-example/2 Content-Type=application/json

Request Body: {"name":"adam", "age":26}

GET Operations

GET http://localhost:
GET http://localhost:
GET http://localhost:
GET http://localhost:
GET http://localhost:

GET http://localhost:

Post Operation

8080/dist-http-example/1.json
8080/dist-http-example/1.xml
8080/dist-http-example?g=name is 'adam'
8080/dist-http-example;p=name
8080/dist-http-example/count ()

8080/dist-http-example/double-average (age)

POST http://localhost:8080/dist-http-example/increment (age, 1)

Building Your First Coherence REST Application 27-5

Step 5: Test the Coherence REST API

27-6 Oracle Coherence Client Guide

28

Using the Coherence REST API

The Coherence REST API pre-defines many operations that can be used to interact
with a cache. In addition, custom operations such aggregators and entry processors
can be created as required.

The following sections are included in this chapter:
s Specifying Key and Value Types

» Performing Single-Object REST Operations

» Performing Multi-Object REST Operations

s Performing Partial-Object REST Operations

s Performing Queries with REST

» Performing Aggregations with REST

» Performing Entry Processing with REST

s Understanding Concurrency Control

» Specifying Cache Aliases

Specifying Key and Value Types

The Coherence REST services require metadata about the cache that they expose. The
metadata includes the cache entry's key and value types as well as key converters and
value marshallers. The key and value types are required in order for Coherence to be
able to use built-in converters and marshallers (both XML and JSON are supported).

To define the key and value types for a cache entry, edit the
coherence-rest-config.xml file and include the <key-class> and the <value-class>
elements within the <resource> element whose values are set to key and value types,
respectively. See "resource" on page A-9 for a detailed reference of the <resource>
element.

The following example defines a String key class and a value class for a Person user
type:
<resources>
<resource>
<cache-name>dist-http-example</cache-name>
<key-class>java.lang.String</key-class>
<value-class>example.Person</value-class>
</resource>
</resources>

Using the Coherence REST APl 28-1

Performing Single-Object REST Operations

Performing Single-Object REST Operations

The RESTful API includes support for performing GET, PUT, and DELETE operations
on a single object in a cache.

GET Operation
GET http://host:port/cacheName/key

Returns a single object from the cache based on a key. A 404 (Not Found) message is
returned if the object with the specified key does not exist. The get operation supports
partial results (see "Performing Partial-Object REST Operations" on page 28-4 for
details).

The following sample output demonstrates the response of a GET operation:

* Client out-bound request
> GET http://127.0.0.1:8080/dist-http-example/1
> Accept: application/xml

* Client in-bound response

200

Content-Length: 212
Content-Type: application/xml

AN N AN A

<?xml version="1.0" encoding="UTF-8" standalone="yes"?><Person><id>1</id><name>
Mark</name><address><street>500 Oracle Parkway</street><city>Redwood Shores</city>
<country>United States</country></address></Person>

* Client out-bound request
> GET http://127.0.0.1:8080/dist-http-example/1
> Accept: application/json

* Client in-bound response
200
Content-Type: application/json

AN N A

{"@type":"rest.Person", "address": {"@type": "rest.Address", "city":"Redwood Shores",
"country":"United States","street":"500 Oracle Parkway"},"id":1, "name":"Mark"}

PUT Operations
PUT http://host:port/cacheName/key

Creates or updates a single object in the cache. A 200 (0K) message returns if the
object was updated. If optimistic concurrency check fails, a 409 (Conflict) message
returns with the current object as an entity. See "Understanding Concurrency Control"
on page 28-8 for details.

The following sample output demonstrates the response of a PUT operation:

* Client out-bound request

> PUT http://127.0.0.1:8080/dist-test-sepx/1

> Content-Type: application/xml

<?xml version="1.0" encoding="UTF-8" standalone="yes"?><Person><id>1</id><name>
Mark</name><address><street>500 Oracle Parkway</street><city>Redwood Shores</city>
<country>United States</country></address></Person>

* Client in-bound response
< 200
< Content-Length: 0

28-2 Oracle Coherence Client Guide

Performing Multi-Object REST Operations

* Client out-bound request

> PUT http://127.0.0.1:8080/dist-test-sepj/1

> Content-Type: application/json
{"@type":"rest.Person","id":1, "name": "Mark", "address":{"@type": "rest.Address", "str
eet":"500 Oracle Parkway", "city":"Redwood Shores", "country":"United States"}}

* Client in-bound response
< 200

< Content-Length: 0

<

Delete Operation
DELETE http://host:port/cacheName/key

Deletes a single object from the cache based on a key. A 200 (0K) message is returned
if the object is successfully deleted, or a 404 (Not Found) message is returned if the
object with the specified key does not exist.

Performing Multi-Object REST Operations

Multi-object operations allow users to retrieve or delete multiple objects in a single
network request and can significantly reduce the network usage and improve network
performance.

Note: PUT operations are not supported as it may produce tainted
data. Specifically, ut would require that individual objects (in
serialized form) within the entity body to be in the same order as the
corresponding keys in the URL. In addition, since updates result in a
replacement, an entire object serialized form must be provided which
can lead to overhead.

GET Operations
GET http://host:port/cacheName/ (keyl, key2, ...)

Returns a set of objects from the cache based on the specified keys. The ordering of
returned objects is undefined and does not need to match the key order in the URL.
Missing objects are silently omitted from the results. A 200 (OK) message always
returns. An empty result set is returned if there are no objects in the result set. The get
operation supports partial results (see "Performing Partial-Object REST Operations" on
page 28-4 for details).

DELETE Operations
DELETE http://host:port/cacheName/ (keyl, key2, ...)

Deletes multiple objects from the cache based on the specified keys. A 200 (0K)
message is always returned even if no objects for the specified keys were present in the
cache.

Using the Coherence REST APl 28-3

Performing Partial-Object REST Operations

Performing Partial-Object REST Operations

An application may not want (or need) to retrieve a whole object. For example, in
order to populate a drop down with a list of options, the application may only need
two properties of a potentially large object with many other properties. In order to
support this use case, each read operation should accept a list of object properties that
the user is interested in as a matrix parameter p.

The following example performs a get operation that retrieves just the id and name
attributes for a person:

GET http://localhost:8080/people/123;p=1d,name

To include a country attribute of the address as well, the request URL is as follows:
GET http://localhost:8080/people/123;p=1id, name,address: (country)

This approach allows an application to selectively retrieve only the properties that are
required using a simple, URL-friendly notation.

The following sample output demonstrates the response of a GET operation:

* Client out-bound request
> GET http://127.0.0.1:8080/dist-test-sepj/1;p=name
> Accept: application/json

*

Client in-bound response

200

Transfer-Encoding: chunked
Content-Type: application/json

~ A A A A

"name": "Mark"}

Performing Queries with REST

A cache can be queried by passing a CohQL expression as a query parameter q. In
addition, the results can be sorted using a sort matrix parameter, or the set of objects
returned can be limited by specifying start and count matrix parameters. See Oracle
Coherence Developer’s Guide for details on CohQL.

GET http://host:port/cacheName; sort=sortOrder; start=start;count=count?q=query

The query must be specified as a URL-encoded CohQL expression (the predicate part
of CohQL). The sort is an optional parameter and represents a comma-separated list of
properties to sort on, each of which can have an optional :asc (default) or :desc
qualifier that determines the order of the sort. For example, to sort a list of people by

last name with family members sorted from the oldest to the youngest, the sort
parameter is defined as follows:

sort=lastName, age:desc

The start and count parameters are optional integer arguments that determine the
subset of the results to return.

Performing Aggregations with REST

Aggregations can be performed on data in a cache. Coherence REST includes a set of
pre-defined aggergators and custom aggregators can be created as required.

28-4 Oracle Coherence Client Guide

Performing Aggregations with REST

The following topics are included in this section:
= Aggregation Syntax for REST

s Listing of Pre-Defined Aggregators

s Creating Custom Aggergators

Aggregation Syntax for REST
GET http://host:port/cacheName/aggregator(args, ...)
Aggregates all entries in the cache. A 200 (0K) message returns with the aggregation
result as an entity if the aggregation succeeds.
GET http://host:port/cacheName/aggregator(args, ...)?d=query
Aggregates query results. A 200 (OK) message returns with the aggregation result as

an entity if the aggregation succeeds. The query must be specified as a URL-encoded
CohQL expression (the predicate part of CohQL).

GET http://host:port/cacheName/ (keyl, key2, ...)/aggregator(args, ...)
Aggregates specified entries. A 200 (OK) message returns with the aggregation result
as an entity if the aggregation succeeds.

Coherence REST provides a simple strategy for aggregator creation (out of aggregator
related URL segments). Out-of-box, Coherence REST can resolve any registered (either
built-in or user registered) aggregator with a constructor that accepts a single
parameter of type com. tangosol.util.ValueExtractor (such as LongMax, DoubleMax,
and so on). If an aggregator call within a URL doesn't contain any parameters, the
aggregator is created using com. tangosol.util.extractor.IdentityExtractor.

If an aggregator segment within URL doesn't contain any parameters nor a constructor
accepting a single ValueExtractor exists, Coherence REST tries to instantiate the
aggregator using a default constructor which is the desired behavior for some built-in
aggregators (such as Count).

The following example retrieves the oldest person in a cache:

GET http://host:port/people/long-max (age)

The following example calculates the max number in a cache containing only
numbers:

GET http://host:port/numbers/comparable-max ()

The following example calculates the size of the people cache:

GET http://host:port/people/count ()

Listing of Pre-Defined Aggregators

The following pre-defined aggregators are supported:

Aggregator Name Aggregator
big-decimal-average BigDecimalAverage.class
big-decimal-max BigDecimalMax.class
big-decimal-min BigDecimalMin.class

Using the Coherence REST APl 28-5

Performing Entry Processing with REST

Aggregator Name

Aggregator

big-decimal-sum
double-average
double-max
double-min
double-sum
long-max
long-min
long-sum
comparable-max
comparable-min
distinct-values

Count

BigDecimalSum.class
DoubleAverage.class
DoubleMax.class
DoubleMin.class
DoubleSum.class
LongMax.class
LongMin.class
LongSum.class
ComparableMax.class
ComparableMin.class
DistinctValues.class

Count.class

Creating Custom Aggergators

Custom aggregator types can be defined by specifying a name to be used in the
RESTful URL and either a class implementing the

com. tangosol.util.EntryAggregator interface or the

com. tangosol.coherence.rest.util.aggregator.AggregatorFactory interface.

An EntryAggregator implementation is used for simple scenarios when aggregation is
either performed on single property or on cache value itself (as most of the pre-defined

aggregators do).

The AggregatorFactory interface is used when a more complex creation strategy is
require. The implementation must be able to resolve the URL segment containing
aggregator parameters and use the parameters to create the appropriate aggregator.

Custom aggregators are configured in the coherence-rest-config.xml file within the
<aggregators> elements. See "aggregator" on page A-4 for a detailed reference. The
following example configures both a custom EntryAggregator implementation and a
custom AggregatorFactory implementation:

<aggregators>
<aggregator>

<name>my-simple-aggr</name>

<class-name>com. foo.MySimpleAggregator</class-name>

</aggregator>
<aggregator>

<name>mny-complex-aggr</name>

<class-name>com. foo.MyAggreagatorFactory</class-name>

</aggregator>
</aggregators>

Performing Entry Processing with REST

Entry Processors can be invoked on one or more objects in a cache. Coherence REST
includes a set of pre-defined entry processors and custom entry processors can be

created as required.

The following topics are included in this section:

28-6 Oracle Coherence Client Guide

Performing Entry Processing with REST

= Entry Processor Syntax for REST
= Listing of Pre-defined Entry Processors

s Creating Custom Entry Processors

Entry Processor Syntax for REST

POST http://host:port/cacheName/processor(args, ...)

Process all entries in the cache. A 200 (OK) message returns with the processing result
as an entity if the processing succeeds.

POST http://host:port/cacheName/processor(args, ...)?q=query

Process query results. A 200 (OK) message returns with the processing result as an
entity if the processing succeeds.

POST http://host:port/cacheName/ (keyl, key2, ...)/processor (args, ...)

Process specified entries. A 200 (OK) message returns with the processing result as an
entity if the processing succeeds.

Unlike aggregators, processors (even the pre-defined processors) have more diverse
creation patterns, so Coherence REST does not assume anything about processor
creation. Instead, for each entry processor implementation, there needs to be an
implementation of the

com. tangosol.coherence.rest.util.processorProcessorFactory interface that can
handle input the string from a URL segment and instantiate the processor instance.
Out-of-box, Coherence REST provides two such factories for NumberIncrementor and
NumberMultiplier.

The following example increment each person's age in a cache by 5:

GET http://localhost:8080/people/increment (age, 5)

The following example multiplies each number in a cache containing only numbers by
the factor 10:

GET http://localhost:8080/numbers/multiply(10)

Listing of Pre-defined Entry Processors

The following pre-defined processors are supported:

Processor Name Processor

increment A NumberIncrementor instance that always returns the new
(incremented) value

post-increment A NumberIncrementor instance that always returns the old (not
incremented) value

multiply A NumberMultiplier instance that always returns the new
(multiplied) value

post-multiply A NumberMultiplier instance that always returns the old (not
multiplied) value

Using the Coherence REST APl 28-7

Understanding Concurrency Control

Creating Custom Entry Processors

Custom entry processors can be defined by specifying a name to be used in a RESTful
URL and a class that implements the
com. tangosol.coherence.rest.util.processor.ProcessorFactory interface.

Custom entry processors are configured in the coherence-rest-config.xml file
within the <processors> elements. See "processors" on page A-8 for a detailed
reference. The following example configures a custom ProcesorFactory
implementation:

<processors>
<processor>
<name>my-processor</name>
<class-name>com. foo.MyProcessorFactory</class-name>
</processor>
</processors>

Understanding Concurrency Control

Coherence REST supports optimistic concurrency only as it maps cleanly to the HTTP
protocol. When the user submits a PUT request to update an object and the cached
objects implements the com. tangosol.util.Versionable interface, Coherence REST
performs an update only if the existing and new object versions match; otherwise, a
409 (Conflict) message is returned and the existing entity is returned to the client so
that the application can reapply the changes and retry.

Specifying Cache Aliases

Cache aliases are used to specify simplified cache names that are used when a cache
name is not ideal for the RESTful URL path segment. The simplified names are
mapped to the real cache names.

To define a cache alias, edit the coherence-rest-config.xml file and include the
<alias> element within the <resource> element whose value is set to a simplified
cache name.

The following example creates and cache alias named people for a cache with the
name dist-extend-not-ideal-name-for-a-cache*:

<resources>
<resource>
<cache-name>dist-extend-not-ideal-name-for-a-cache*</cache-name>
<alias>people</alias>

</resource>
</resources>

28-8 Oracle Coherence Client Guide

29

Deploying Coherence REST

This chapter provides instructions for deploying Coherence REST to an embedded
HTTP server, WebLogic server, and GlassFish server. Generic servlet container
instructions are also provided.

The following sections are included in this chapter:
s Deploying with the Embedded HTTP Server

= Deploying to WebLogic Server

= Deploying to GlassFish

= Deploying to a Servlet Container

Deploying with the Embedded HTTP Server

Coherence provides two embedded HTTP servers that can be used to host RESTful
Web services: com. tangosol. coherence.rest.server.DefaultHttpServer (backed by
Oracle's lightweight HTTP server) and

com. tangosol.coherence.rest.server.GrizzlyHttpServer (backed by Grizzly). See
"Changing the Embedded HTTP Server" on page 30-2 for details on changing the
default HTTP server.

The HTTP server must be enabled on a Coherence proxy server. To enable the HTTP
server, edit the proxy’s cache configuration file and add an <http-acceptor> element,
within the <proxy-scheme> element, and include the host and port for the HTTP
server.

The following example configures the HTTP server to accept requests on localhost
127.0.0.1 and port 8080.

<proxy-scheme>
<service-name>ExtendHttpProxyService</service-name>
<acceptor-config>
<http-acceptor>
<class-name>
com. tangosol.coherence.rest.server.DefaultHttpServer</class-name>
<local-address>
<address>127.0.0.1</address>
<port>8080</port>
</local-address>
<resource-config>
<instance>
<class-name>
com. tangosol.coherence.rest.server.Defaul tResourceConfig
</class-name>
</instance>

Deploying Coherence REST 29-1

Deploying to a Java EE Server

</resource-config>
</http-acceptor>
</acceptor-config>
<autostart>true</autostart>
</proxy-scheme>

The above configuration explicitly defines the HTTP server class and Jersey resource
configuration class. However; these are default values and need not be included. See
Oracle Coherence Developer’s Guide for a detailed reference of all <http-acceptor>
subelements.

Deploying to a Java EE Server

This section provides instructions for deploying Coherence Rest to a Java EE
environment:

The following topics are included in this section:
= Packaging Coherence REST for Deployment
= Deploying to WebLogic Server

= Deploying to GlassFish

= Deploying to a Servlet Container

Packaging Coherence REST for Deployment
To package a Coherence REST application:

1. Create a basic Web application directory structure as follows:

/

/WEB-INF
/WEB-INF/classes
/WEB-INF/1lib

2. Copy the following JARs from the COHERENCE_HOME/11ib directory to the
/WEB-INF/1ib directory:
m coherence.jar
m coherence-rest.jar
m Jjackson-all-1.8.1.jar
m jersey-core-1.7.jar
m jersey-json-1.7.jar
m Jjersey-server-1.7.jar

3. Create a Web application deployment descriptor (web.xml) and include the
following servlet definition:

<web-app>
<servlet>
<servlet-name>Coherence REST</servlet-name>
<servlet-class>
com.sun.jersey.spi.container.servlet.ServletContainer</servlet-class>
<init-param>
<param-name>
com.sun.jersey.config.property.resourceConfigClass</param-name>
<param-value>

29-2 Oracle Coherence Client Guide

Deploying to a Java EE Server

com. tangosol.coherence.rest.server.Defaul tResourceConfig
</param-value>
</init-param>
<load-on-startup>1</load-on-startup>
</servlet>

</web-app>
4. Save the web.xml file to the /WEB-INF/ directory.

5. Copy the coherence-rest-config.xml file to the /WEB-INF/classes directory.

6. Copy your coherence-cache-config.xml file and
tangosol-coherence-override.xml file to the WEB-INF/classes directory.

7. Create a Web ARchive file (WAR) using the jar utility. For example, issue the
following command from a command prompt at the root of the Web application
directory:

jar -cvf coherence_rest.war *

The archive should contain the following files

/WEB-INF/web.xml
/WEB-INF/classes/coherence-rest-config.xml
/WEB-INF/classes/tangosol-coherence-override.xml
/WEB-INF/classes/coherence-cache-config.xml
/WEB-INF/1lib/coherence.jar
/WEB-INF/1lib/coherence-rest.jar
/WEB-INF/lib/jackson-all-1.8.1.jar
/WEB-INF/lib/jersey-core-1.7.jar
/WEB-INF/lib/jersey-json-1.7.jar
/WEB-INF/1lib/jersey-json-1.7.jar

Deploying to WebLogic Server
To deploy Coherence REST to WebLogic server:

1. Package Coherence REST as a WAR file as described in "Packaging Coherence
REST for Deployment" on page 29-2. To ensure the correct version of Coherence is
used, add the following WebLogic-specific deployment descriptor to the /WEB-INF
directory:

<?xml version="1.0" encoding="UTF-8"?>

<wls:weblogic-web-app
xmlns:wls="http://xmlns.oracle.com/weblogic/weblogic-web-app"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd
http://xmlns.oracle.com/weblogic/weblogic-web-app
http://xmlns.oracle.com/weblogic/weblogic-web-app/1.0/weblogic-web-app.xsd">
<wls:container-descriptor>

<wls:prefer-web-inf-classes>true</wls:prefer-web-inf-classes>

</wls:container-descriptor>

</wls:weblogic-web-app>

2. Deploy the WAR using the WebLogic administration console
(http://localhost:7001/console).

3. From a browser, access the data in a Coherence cache by navigating to
http://localhost:7001/ {cacheName}.

Deploying Coherence REST 29-3

Deploying to a Java EE Server

Deploying to GlassFish
To deploy Coherence REST to GlassFish server:

1. From GlassFish administration console, click Configuration->JVM Settings.
switch to the JVM Options tab and add the following option:

2, Click the JVM Options tab and add the following option:

-Dcom.sun.enterprise.overrideablejavaxpackages=javax.ws.rs, javax.ws.rs.
core, javax.ws.rs.ext

3. Package Coherence REST as a WAR file as described in "Packaging Coherence
REST for Deployment" on page 29-2. In addition, override the version of Jersey
distributed in GlassFish with the version of Jersey distributed with Coherence
REST by setting the class loader delegation to false in WEB-INF/sun-web.xml or
WEB-INF/glassfish-web.xml. For example:

<sun-web-app error-url="">
<class-loader delegate="false"/>
</sun-web-app>

4. Deploy the WAR using the GlassFish administration console.
(http://localhost:4848/).

5. From a browser, access the data in Coherence caches by navigating to
http://localhost:8080/ {cacheName}.

Deploying to a Servlet Container

Coherence REST can be deployed to any servlet container by packaging Coherence
REST as a WAR file. See "Packaging Coherence REST for Deployment" on page 29-2
for details. Refer to your vendors documentation for details on deploying WAR files.
In addition, See the Jersey user guide for additional servlet container deployment
options:

http://jersey.java.net/nonav/documentation/latest/user-guide.html#d4el194

29-4 Oracle Coherence Client Guide

30

Modifying the Default REST Implementation

This chapter provides instructions for changing the default behavior of the Coherence
REST implementation.

The following sections are included in this chapter:
= Using Custom Providers and Resources

s Changing the Embedded HTTP Server

Using Custom Providers and Resources

Custom providers and resources can be created as required. This section demonstrates
how to register custom providers, and how to override Coherence's default root
resource.

The com. tangosol.coherence.rest.server.DefaultResourceConfig class supports
package scanning, which can be used to register custom providers or resources. The
following example demonstrates registering a custom provider and resource using
package scanning:

public class MyResourceConfig extends DefaultResourceConfig

{

public MyResourceConfig()
{
super ("com.my.providers;com.my.resources") ;
}

}

As an alternative, the following example demonstrates how to override one or more of
the register methods defined in the DefaultResourceConfig class in order to use
custom providers, a custom root resource, or to add filters and filter factories.

Note: Never override (unregister) Coherence default Providers
without overriding the root resource class as well (the
DefaultRootResource class depends on the default providers to
provide the necessary dependencies and configuration).

public class MyResourceConfig extends DefaultResourceConfig
{
protected void registerRootResource()
{
// remove if you don't want Coherence defaults to be registered
super.registerRootResource() ;
getClasses () .add (MyRootResource.class) ;

Modifying the Default REST Implementation 30-1

Changing the Embedded HTTP Server

protected void registerProviders()

{

// remove if you don't want Coherence defaults to be registered
super.registerRootResource () ;

getSingletons () .add (new MyProvider());

}

protected void registerContainerRequestFilters()

{

// remove if you don't want Coherencedefaults to be registered
super.registerRootResource () ;
getContainerRequestFilters () .add(new MyRequestFilter());

}

protected void registerContainerResponseFilters()

{
// remove if you don't want Coherence defaults to be registered

super.registerRootResource() ;
getContainerResponseFilters () .add(new MyResponseFilter());

}

protected void registerResourceFilterFactories()

{

// remove if you don't want Coherence defaults to be registered

super.registerRootResource() ;
getResourceFilterFactories () .add(new MyResourceFilterFactory());

}

Custom resource configuration class are enabled in the cache configuration file by
adding the fully qualified name of the class using the <resource-config> element
within an HTTP acceptor configuration. For example:

<proxy-scheme>
<service-name>ExtendHttpProxyService</service-name>

<acceptor-config>
<http-acceptor>

<resource-config>
<instance>
<class-name>package.MyResourceConfig</class-name>

</instance>
</resource-config>
</http-acceptor>
</acceptor-config>
<autostart>true</autostart>
</proxy-scheme>

Changing the Embedded HTTP Server

Coherence REST uses Oracle’s lightweight HTTP server by default to handle requests.
However, the implementation is not recommended for production environments and
is typically used during development and testing. As an alternative, Coherence
includes a Grizzly HTTP server implementation and the Simple HTTP server can be
used as well. Refer to the Jersey documentation for instructions on integrating
additional HTTP servers, which are beyond the scope of this documentation.

30-2 Oracle Coherence Client Guide

Changing the Embedded HTTP Server

http://jersey.java.net/

The following topics are included in this section:
s Using Grizzly HTTP Server

s Using Simple HTTP Server

Using Grizzly HTTP Server

Coherence REST provides a Grizzly 2 HTTP server implementation
(com. tangosol.coherence.rest.server.GrizzlyHttpServer) that can be used instead
of the default HTTP server. For more information on the Grizzly HTTP server see:

http://grizzly.java.net/

The Grizzly server is enabled in the cache configuration file by adding the fully
qualified name of the implementation as a value of the <class-name> element within
an HTTP acceptor configuration. For example:

<proxy-scheme>
<service-name>ExtendHttpProxyService</service-name>
<acceptor-config>
<http-acceptor>
<class-name>com. tangosol.coherence.rest.server.GrizzlyHttpServer
</class-name>

</http-acceptor>
</acceptor-config>
<autostart>true</autostart>
</proxy-scheme>

Using Simple HTTP Server

The Simple framework can be used as an embedded HTTP server since it's supported
within Jersey. For more information on the Simple framework see:

http://www.simpleframework.org/

To use the Simple framework as an embedded HTTP server, extend the
com. tangosol.coherence.rest.server.AbstractHttpServer class and then enable
the class in the cache configuration file.

The following example creates a SimpleHttpServer class:

public class SimpleHttpServer extends AbstractHttpServer
{
public void start()
{
Closeable connection = m_connection;
if (connection == null)
{
try
{
connection = SimpleServerFactory.create("http://" +
getLocalAddress() + ":" + getLocalPort(),getResourceConfig());
}
catch (IOException e)
{
throw new WrapperException(e);
}

m_connection = connection;

Modifying the Default REST Implementation 30-3

Changing the Embedded HTTP Server

public void stop()
{
Closeable connection = m_connection;
if (connection != null)
{
try
{
connection.close();
}
catch (IOException e)
{

throw new WrapperException(e);

}
finally

{
m_connection = null;

}

protected Closeable m_connection;

}

The simpleHttpServer class must be enabled in the cache configuration file by adding
the fully qualified name as a value of the <class-name> element within an HTTP

acceptor configuration. For example:

<proxy-scheme>

<service-name>ExtendHttpProxyService</service-name>

<acceptor-config>
<http-acceptor>

<class-name>package.SimpleHttpServer</class-name>

</http-acceptor>
</acceptor-config>
<autostart>true</autostart>
</proxy-scheme>

30-4 Oracle Coherence Client Guide

A

REST Configuration Elements

This appendix provides a detailed reference of the REST configuration deployment
descriptor and includes a brief overview of the descriptor.

The following sections are included in this appendix:
= REST Configuration File

s Element Index

REST Configuration File

The REST configuration deployment descriptor specifies the configuration for the
REST implementation. The default name of the descriptor is
coherence-rest-config.xml and must be found on the classpath. The name can be
overridden using the tangosol.coherence.rest.config system property. For
example:

-Dtangosol.coherence.rest.config=MyConfig.xml

The REST configuration deployment descriptor schema is defined in the
coherence-rest-config.xsd file. The XSD file is located in the root of the
coherence. jar library and at the following Web URL:

http://xmlns.oracle.com/coherence/coherence-rest-config/1.0/coherence-rest
-config.xsd

The <rest> element is the root element of the configuration file and typically includes
an XSD and Coherence namespace reference and the location of the
coherence-rest-config.xsd file. For example:

<?xml version='1.0'?>
<cache-config xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns="http://xmlns.oracle.com/coherence/coherence-rest-config"

xsi:schemalocation="http://xmlns.oracle.com/coherence/coherence-rest-config
coherence-rest-config.xsd">

REST Configuration Elements A-1

http://xmlns.oracle.com/coherence/coherence-cache-config/1.0/coherence-cache-config.xsd
http://xmlns.oracle.com/coherence/coherence-cache-config/1.0/coherence-cache-config.xsd

REST Configuration File

Notes:

s The schema located in the coherence. jar library is always used at
run time even if the xsi:schemaLocation attribute references the
Web URL.

s The xsi:schemaLocation attribute can be omitted to disable
schema validation.

= When deploying Coherence into environments where the default
character set is EBCDIC rather than ASCII, ensure that the
deployment descriptor file is in ASCII format and is deployed into
its run-time environment in the binary format.

A-2 Oracle Coherence Client Guide

Element Index

Element Index

Table A-1 lists all non-terminal REST configuration elements.

Table A-1 REST Configuration Elements

Element Used In
aggregator aggregators
aggregators rest
marshaller resource
processor processors
processors rest
resource resources
resources rest

rest root element

REST Configuration Elements A-3

aggregator

aggregator
Used in: aggregators

Description
The aggregator element is used to define custom aggregators that are used to
aggregate data in a cache. Each aggregator element must contain a single binding
between a name and an aggregator class or aggregator factory class.

Elements

Table A-2 describes the subelements of the aggregator element.

Table A-2 aggregator Subelements

Required/
Element Optional Description
<name> Required Specifies a name to be used in a RESTful URL that is bound to an aggregator
class or aggregator factory class.
<class> Required Specifies the fully qualified name of a custom aggregator class or custom

aggregator factory class that is bound to a name. The class must implement
the com. tangosol.util.EntryAggregator or
com.tangosol.coherence.rest.util.aggregator.AggregatorFactory
interfaces, respectively.

A-4 Oracle Coherence Client Guide

Element Index

aggregators

Used in: rest
Description

The aggregators element contains any number of custom aggregator definitions.
Elements

Table A-3 describes the subelements of the aggregators element.

Table A-3 aggregators Subelements

Required/
Element Optional Description
<aggregator> Required Specifies a single binding between a name and an aggregator class or

aggregator factory class.

REST Configuration Elements A-5

marshaller

marshaller
Used in: resource
Description
The marshaller element contains bindings between cache entry key/value classes and
a marshaller class that is used to marshall and unmarshall instances of those classes.
Elements

Table A—4 describes the subelements of the marshaller element.

Table A-4 marshaller Subelements

Required/
Element Optional Description
<media-type> Required Specifies the name of the medium that is used to for marshalling. Coherence
provides default implementations for XML and JSON data output.
<class-name> Required Specifies the fully qualified name of a custom class that implements the

com. tangosol.coherence.rest.io.Marshaller interface. The
implementation is used to marshall/unmarshall cache entry values that are
stored in the cache. Marshallers are configured for each object type and media

type.

A-6 Oracle Coherence Client Guide

Element Index

processor
Used in: processors

Description
The processor element is used to define custom entry processors that are used to
process data in a cache. Each processor element must contain a single binding
between a name and the processor factory class.

Elements

Table A-5 describes the subelements of the processor element.

Table A-5 processor Subelements

Required/
Element Optional Description
<name> Required Specifies a name to be used in a RESTful URL that is bound to a processor
factory class.
<class-name> Required Specifies the fully qualified name of a custom processor factory class that is

bound to a name. The class must implement the
com. tangosol.coherence.rest.util.processor.ProcessorFactory
interface.

REST Configuration Elements A-7

processors

processors

Used in: rest
Description

The processors element contains any number of custom processor definitions.
Elements

Table A-6 describes the subelements of the processors element.

Table A-6 processors Subelements

Required/
Element Optional Description
<processor> Required Specifies a single binding between a name and a processor factory class.

A-8 Oracle Coherence Client Guide

Element Index

resource
Used in: resources

Description
The resource element provides the metadata that is used to marshall and unmarshall
cache entries. The metadata includes a single binding between a cache name and cache
entry key and value classes.

Elements

Table A-7 describes the subelements of the resource element.

Table A-7 resource Subelements

Required/
Element Optional Description

<cache-name> Required Specifies the name of the cache exposed by this resource. The cache must be
defined in the cache configuration file.

<alias> Optional Specifies an alias for the <cache-name> element when the name is not ideal for
the RESTful URL path segment. The value defaults to the value of the
<cache-name> element if a value is not specified.

<key-class> Required Specifies the type of the entry keys stored in this cache.
<value-class> Required Specifies the type of the entry values stored in this cache.

<key-converter> Optional Specifies the fully qualified name of a class that implements the
com. tangosol.coherence.rest.KeyConverter interface. The class is used to
convert cache entry keys to string and string representations of the keys that
are used in the RESTful URL into an appropriate object instance that can be
used to access cache entries. The
com. tangosol.coherence.rest.DefaultKeyConverter class is used by
default if no value is provided. The default class offers reasonable to string
and from string conversions for Java primitives, dates, and UUIDs. See Oracle
Coherence Java API Reference for details.

<marshaller> Optional Specifies the fully qualified name of a class that implements the
com. tangosol.coherence.rest.io.Marshaller interface. The class is used to
marshall/unmarshall cache entry values that are stored in a cache. Coherence
provides default implementations for XML and JSON data output.

REST Configuration Elements A-9

resources

resources
Used in: rest

Description
The resources element contains any number of resource definitions. A resource
definition provides the metadata that is used to marshall and unmarshall cache
entries.

Elements

Table A-8 describes the subelements of the resources element.

Table A-8 resources Subelements

Required/
Element Optional Description
<resource> Required Specifies a single binding between a cache name and cache entry key and

value classes.

A-10 Oracle Coherence Client Guide

Element Index

rest
root element

Description
The rest element is the root element of the coherence-rest-config.xml file which is
used to configure the Coherence REST implementation. The implementation uses
RESTful Web services to allow remote clients to access data in the cluster over HTTP
and does not require the use of POF serialization.

Elements

Table A-9 describes the subelements of each rest element.

Table A-9 rest Subelements

Required/
Element Optional Description
<resources> Optional Specifies any number of resource definitions that provide the metadata that is
used to marshall and unmarshall cache entries.
<processors> Optional Specifies any number of custom processor definitions that are used to
process data in a cache.
<aggregators> Optional Specifies any number of custom aggregator definitions that are used to

aggregate data in a cache.

REST Configuration Elements A-11

rest

A-12 Oracle Coherence Client Guide

B

Integrating with F5 BIG-IP LTM

This appendix provides instructions for using the F5 BIG-IP Local Traffic Manager
(LTM) hardware load balancer to balance Coherence*Extend client connections.
Instructions are also included to use the BIG-IP system to off load SSL processing.

The instructions are specific to using the BIG-IP Configuration Utility as it pertains to
Coherence*Extend setup. Refer to the Help included with the utility for complete
usage instructions. In addition, the instructions were created based on BIG-IP LTM
10.2.1 and may not be accurate for future releases of BIG-IP LTM.

The following sections are included in this chapter:

= Basic Concepts

= Creating Nodes

= Configuring a Load Balancing Pool

s Configuring a Virtual Server

= Configuring Coherence*Extend to Use BIG-IP LTM
s Using Advanced Health Monitoring

= Enabling SSL Offloading

Basic Concepts

The F5 BIG-IP LTM is a hardware device that sits between one or more computers
running Coherence*Extend clients (client tier) and one or more computers running
Coherence*Extend proxy servers (proxy tier). The LTM spreads client connections
across multiple clustered proxy servers using a broad range of techniques to secure,
optimize, and load balance application traffic.

Figure B-1 shows a conceptual view of the BIG-IP system that is setup between
external network clients and internal network servers.

Integrating with F5 BIG-IP LTM B-1

Creating Nodes

Figure B-1 Conceptual View of F5 BIG-IP LTM

A R
=

(

Extomal Natao

O

Creating Nodes

A node is a logical object on the BIG-IP system that identifies the IP address of a
physical resource on the network. For Coherence*Extend, configure a node for each
computer on the internal network that hosts one or more proxy servers.

To create a node:

1.
2.
3.

4.
5.
6.

Log into the BIG-IP Configuration Utility.
From the Main tab of the navigation pane, expand Local Traffic and click Nodes.

In the upper-right corner of the screen, click Create. The New Node screen
displays.

For the Address setting, type the IP address of the node.
Specify, retain, or change each of the other settings.

Click Finished.

Figure B-2 shows an example node configuration.

B-2 Oracle Coherence Client Guide

Configuring a Load Balancing Pool

Figure B-2 Example Node Configuration

[alalel

| (L G-PE - bigig900.cohe
= 5 O e
o Coberence Clowe Claa Dome Cme Corr Cmer Cweb D Metwork CoMac i O] Solars C]windown # [] Other Bookmarky

ﬁs || unit: Active

&

=2

el
Trafo Sussrary
Perammance
SLEsis

Bashboand

Templaten and Wiskidn
(Craads comamon spplc sborn, rafc
i Ay T OO e

Local Traff
Habwork Map
Vil SEfvig

Prisblics
Huylet
Foois
st s
leyicr
Trafic Class
SHATS

850 Candoauy

Ll

Carfgure metwork. pleements o
oRsne wnd wwEcReng

®
ook

19, 140, 59,990 xui

Lol TralMie = Heded | Hade Lt

o - Pepatas

Gesmral Properties
Addriis

Ma=e

Farigon

Arvailabity

Houm Mofulees
Cument Confacont.

[updare) Delere

| A

W NEE 2

omimen

i Avasabiy (Enabhed] - Hode B3Iress & valatie
Ben

-]

15 Enabled (A1 rafic aliowed)
() Db |y [elBhnr & bbb dentfiniBernd Widnnbd|
LI Foroed Ofne (Only active connections alowed)

Wit Spesinic 4]
ALt Axarabos
o [1L
(=< hips_443 D
komp_B0
>3 TEEl_ Seres . L
L]
n & Healf: Wonitonsh

Configuring a Load Balancing Pool

A load balancing pool is a group of logical devices, such as proxy servers, that receive
and process traffic. Instead of sending client traffic to the destination IP address
specified in the client request, the BIG-IP system sends the request to any of the
servers that are members of that pool. This helps efficiently distribute the load on your
server resources.

When you create a pool, you assign pool members to the pool. A pool member is a
logical object that represents a server endpoint on the network. For Coherence*Extend,
create a pool member for each proxy server JVM running on your proxy tier
computers.

The specific pool member to which the BIG-IP system chooses to send the request is
determined by the load balancing method that you have assigned to that pool. A load
balancing method is an algorithm that the BIG-IP system uses to select a pool member
for processing a request. For example, the default load balancing method is Round
Robin, which causes the BIG-IP system to send each incoming request to the next
available member of the pool, thereby distributing requests evenly across the servers
in the pool.

The following topics are included in this section:

Integrating with F5 BIG-IP LTM B-3

Configuring a Load Balancing Pool

s Creating a Load Balancing Pool

= Adding a Load Balancing Pool Member

Creating a Load Balancing Pool

To create a load balancing pool:
1. Loginto the BIG-IP Configuration Utility.

2. From the Main tab of the navigation pane, expand Local Traffic and click Pools.
The Pools screen displays.

3. In the upper-right corner of the screen, click Create. The New Pool screen
displays.

4. From the Configuration list, select Advanced.

5. For the Name setting, type a name for the pool.

6. Specify, retain, or change each of the other settings.

7. Click Finished.

Figure B-3 demonstrates an example pool configuration.

Figure B-3 Example Pool Configuration

[l ol N Y
| J G-I - b Rohers B N0 |
= = | S b 00,140,599 wul A

Clcobennce Cloe Cloa Dime Cime Chorr Cimer Ciweb Clseowork Cimac Clumes CSolarn [lwindown w [Other Bookmarky

f | unit: Active
S

Mit | Help | Amcuw [REIETRRT] MU

.] Overview

et

Trafls Su=mary Gt 1] Properiies

Perammance Masig S paal

LATLNEeS Parssion Cammen

Duaihhoand Avvailabiity @ Availabls {Enabled)) « The pool is arailable
P — Comtiguration: [(buic %)

¥ [-Ap——————

e T O ep .QI'IM
i "
F sl Waritcry (2t) [axiend_kp
Local Tralli p—
@ 22)
g Fargric Map haps

Vi s Cpaane] Delere)
P— e e L W
[T
Poois
s
(N]
Trafic Crags
SHATS
551 Cendcars

Ll

Gl o Setworh, pltvrents b
roagdng and vwiching

= =======

B-4 Oracle Coherence Client Guide

Configuring a Load Balancing Pool

Adding a Load Balancing Pool Member

To add pool members to load balancing pool:

1. From the Members tab, click the number shown. This lists the existing members of
the pool.

2. In the right side of the screen, click Add. The New Pool Member screen displays.
3. In the Address box, select Node List and select an IP address.

4. In the Service Port box, type the port number on which the corresponding proxy
server is listening.

5. Retain or change each of the other settings.
6. Click Finished.

Figure B—4 shows an example pool configuration. It shows two proxy server pool
members running on the previously created node and listening on ports 9099 and
9100, respectively. Additionally, the pool is configured to use a Least Connections load
balancing policy.

Figure B-4 Example Pool Members

oo —
| [GG IPE - bigieasE.cohere % o)
= = 2 S s 00,140,599, %0 sl 77| A

Dcohennes o Caa Dim D Dore Diser Diwd Do Diese Dlumes O Sslarn L windoan

Lacsl Tewifie « Pooli - Pool Livt
Ndgemibea i
1
Traflc Susmary Load Balancing |
Perimance Lioaed Basanscing Methed [Leats Corneinnm (memben = |
LATTALE
' Prisriny Geoap Aobvaton [Wuabies 9‘
Cuahbcand
“lpdate
. s u
'3 Termplaten dnd Wizards Cusrent Membars (Asa)
- Crasts coumamaan Sppie st walc - Staken 5 llembar = Hioo Name = RabG 8 & Conmscion Lis
e ke i i < e
a] 1921681 28100 1 0 [Aaiive] [} |
@ Local Traiic m @ 192 168 1 5098 1 0 [Aewwn) a |
gy e |
dabwork Map Enable | Dinatde)| Remowe |
ViFal Servens |
|
Pt |
[T
Foois
oS
Mlgieri hat
Trafc Class
SHATs
851 Camboai-d
Mertarcic
ﬁ Conlgure retwork plements o
Toadng dned vedchimg I

Integrating with F5 BIG-IP LTM B-5

Configuring a Virtual Server

Configuring a Virtual Server

A virtual server is a trafficcmanagement object on the BIG-IP system that is
represented by an IP address and port. Clients on an external network can send
application traffic to a virtual server, which then directs the traffic according to your
configuration instructions. The main purpose of a virtual server is often to balance
traffic load across a pool of servers on an internal network. Virtual servers increase the
availability of resources for processing client requests. For Coherence*Extend, you
should configure a virtual server that directs traffic to the pool of proxy servers that
you configured earlier.

To create a virtual server:

1.
2.

6.
7.
8.

Log into the BIG-IP Configuration Utility.

From the Main tab of the navigation screen, expand Local Traffic and click Virtual
Servers. The Virtual Servers screen displays.

From the upper right portion of the screen, click Create. The New Virtual Server
screen displays.

In the Name box, type a name for the virtual server.

In the Destination box, assign an external IP address on the BIG-IP device and in
the Service Port box, specify a listen port. This is the IP address and port to which
Coherence*Extend clients connect.

Select the pool created earlier in the Default Pool drop-down box.
Retain or change each of the other settings.

Click Finished.

Figure B-5 shows an example virtual configuration that listens for TCP/IP connections
onl10.196.21.3:9099.

B-6 Oracle Coherence Client Guide

Configuring a Virtual Server

Figure B-5 Example Virtual Server

M'P“*“"‘"m“ﬁ" |
| 3 O | e e/ 101485000,) 5y
Ccsteresss [Joew [Joa st Ciax Cior Dwer Cwes oo [wac Cumes DJsotars [Jwinsown = (] Other Bostmarks

Dirbo s -Tm 1 Higat O Mabwark
o Address: 107184213
Tempiyies and Wzards Serdice Por i e T [ot E
Grpate corrren B aon Fafi 1
2 b i contguratons Avaiatity @
@ Local Trafc S [Eraied i)
hhitarcrs Adigy CBasic E
Virkaal Sarvank T T
Tipe | Standard =)
Profiss |
Rekes | Protocol (E8
Pooiy Oy Connect Prolis | M E
! L
Modss NTLM Cionn Possl
Hans HTTP Protie [Hose =
Tea Class
|
- | TP Pl [oe 1)
551 Corsbeans S84 Protg (Chest) | Hant -+
531 Profile (Sanver) |_vona =
Mot
P refwon. samaeiy o \Cuamarier Profie | e
PRI W0 B A T J E
5P Prodie | roe)

Additionally, this virtual server directs traffic to the configured pool as shown in
Figure B-6.

Integrating with F5 BIG-IP LTM B-7

Configuring Coherence*Extend to Use BIG-IP LTM

Figure B-6 Example Virtual Server Using a Configured Pool

o

| {1 WG IPE - bigip 1900 cbes

= Yol

= = O S e 101455900 00
Clcahenence Cloee Cloa Cipe

fs | uni: Actren

1|_. ey iew

e o COMer Cweb [T Metwork

Local Traftc » Virtual Sery ual Server List

Veicoime
Tende: Summmary Load Balancing
Parormancs Dbt Poaol axiend_pos]
Snstes DCataal Paruisience Protie bt]
DD
Fallack Parsisnce Paodia R ;“
Temples sl Waards [pdata)
Crests common appication bafic
W A O B A iRubes
L

@ Local Trathc
et Mlag
Wirksl Sanvers

Prolias

(11520

i NiEdS, 1 ey

[HTTP Ciass Prodies
Hame
Hia netowss i disglary

Trale Class
SHATS

855 Carmdcami

Matwesi
@ ol rataGrs seTai For

P e WAt

Configuring Coherence*Extend to Use BIG-IP LTM

Coherence*Extend must be configured to use a BIG-IP LTM virtual server. The

configuration must be completed both on the cluster side and the client side cache

configuration files.
To configure Coherence*Extend to use BIG-IP LTM:

1. Open the proxy server’s cache configuration file.

2. Edit the proxy scheme definition and specify a client load balancing strategy by

entering client within the <load-balancer> element. For example:

<proxy-scheme>

<service-name>ExtendTcpProxyService</service-name>

<acceptor-config>
<tcp-acceptor>
<local-address>
<address>192.168.1.2</address>
<port>9099</port>
</local-address>
</tcp-acceptor>
</acceptor-config>

B-8 Oracle Coherence Client Guide

Using Advanced Health Monitoring

<load-balancer>client</load-balancer>
<autostart>true</autostart>
</proxy-scheme>

3. Save and close the proxy server’s cache configuration file. Repeat step 2 for
additional proxy servers.

4. Open the client’s cache configuration file.

5. Inthe <remote-cache-scheme> element, list the IP address and port of the
BIG-IP virtual server. See "Configuring a Virtual Server" on page B-6. In addition,
specify a <heartbeat-interval> element within the
<outgoing-message-handler> element. This causes the client to periodically
send a heartbeat message over its TCP/IP connection at the configured time
interval. This is required to prevent the BIG-IP device from disconnecting idle
clients. For example:

<remote-cache-scheme>
<scheme-name>extend-direct</scheme-name>
<service-name>ExtendTcpCacheService</service-name>
<initiator-config>
<tcp-initiator>
<remote-addresses>
<socket-address>
<address>10.196.21.3</address>
<port>9099</port>
</socket-address>
</remote-addresses>
</tcp-initiator>
<outgoing-message-handler>
<heartbeat-interval>5s</heartbeat-interval>
</outgoing-message-handler>
</initiator-config>
</remote-cache-scheme>

6. Save and close the client’s cache configuration file.

Using Advanced Health Monitoring

A health monitor helps ensure that a server is in an operational state and able to
receive traffic. The BIG-IP system contains many different preconfigured health
monitors that you can associate with pools, depending on the type of traffic you want
to monitor.

For Coherence*Extend, you can use a TCP health monitor to monitor a pool of proxy
servers. This type of monitor marks a proxy server up if the BIG-IP device can
establish a TCP/IP connection with the proxy server. While this is a fairly decent
indication that a proxy server is functional, it does not guarantee that the proxy server
can actually process client traffic. For more detailed monitoring, BIG-IP enables you to
create custom health monitors that send a Coherence*Extend ping request to a proxy
server and validate that an appropriate response is returned. This ensures that the
proxy server is up and able to process client traffic.

The following topics are included in this section:
s Creating a Custom Health Monitor to Ping Coherence

= Associating a Custom Health Monitor With a Load Balancing Pool

Integrating with F5 BIG-IP LTM B-9

Using Advanced Health Monitoring

Creating a Custom Health Monitor to Ping Coherence

To create a custom Coherence*Extend health monitor that sends a Coherence*Extend
ping request to a proxy server to ensure that it is operational:

1.
2.

8.

Log into the BIG-IP Configuration Utility.

From the Main tab of the navigation pane, expand Local Traffic and click
Monitors. The Monitors screen displays.

In the upper-right corner of the screen, click Create. The New Monitor screen
displays.

Enter a name for the monitor in the Name box.
Select TCP in the Type drop-down box.
Enter the following in the Send String box:

\x07\x00\x03\x00\x00\x42\x00\x40

Enter the following in the Receive String box:

\x09\x00\x04\x02\x00\x42\x00\x03\x64\x40

Click Finished.

Figure B-7 shows an example custom Coherence*Extend health monitor configuration.

B-10 Oracle Coherence Client Guide

Using Advanced Health Monitoring

Figure B-7 Example Coherence*Extend Ping Health Monitor

Imﬂm_. T . .
= = O S e 101455900 00 7 | A

(O coheresce (Joee CJoa COpe R Do T Ciwen Cbeoword CMac Cllne lSelars [Windows =] Other Beokmarks

f; | Uni: Aectien
L

1
]
Local TraMe » Morlion |
frr— 0 = Froperies :
Accatn vlalnicn performance |
o Epe an bk s i e |
Ganaral Properties
Templaies ared Wizards
Hame e
At T e e ¥ S
ang vnien coniguratom, Parison Common |
|
Ezij Local Trathe e e :
— R) |
]
Viral Sarvers nierval s " swconss |
§
Fretias Timeout 18 wron |
iRy |
I]
Pt |
Send SiFng |
Moder |
Moniees
1 4 4 4]
Tl Clidd |
Racatvn Sring |
SMNAT |
SEL Carvioaes |
]
]
Mabwrsrls Receive Disatde Thing |
e Febbaieh, et f "
raing and wwiching
Toavaria O e @ Mo
System C
I ves) Ho
Cardgune 51T ancers, fagh L e - -
irelalelily fepirliry) el e
Uptate | Dalete |

The preceding approach only works with BIG-IP version 10.2.1 or higher. On older
versions of BIG-IP, you must manually configure an external health monitor. To do so,
create an executable shell script called extend_ping in the /usr/bin/monitors
directory of the BIG-IP device with the following contents:

#! /bin/bash
S R
EXTERNAL MONITOR FOR COHERENCE*EXTEND

#H# INPUTS:

#H# $1 The IPV6 formatted IP address of the pool member to test

#H# $2 The port number of the pool member to test

#H $3+ White space delimited parms as listed in the monitor "args"

OUTPUTS:

#h# If null is returned, the member is "down"

#H# If any string of one or more characters is returned, the member is "up"

FHEEH AR A R R R R R R e

IP=${1:-"127.0.0.1"}

IP=${IP##*:} # This removes the leading ::ffff:
PORT=${2:-"80"}

TIMEOUT=${3:-1}

SLEEP=${4:-1}

Integrating with F5 BIG-IP LTM B-11

Using Advanced Health Monitoring

PID_FILE="/var/run/extend_ping.$IP.S$PORT.pid"
HEX_REQUEST="0700030000420040"
HEX_RESPONSE="09000402004200036440"

#iH#
Terminate existing process, if any
#i4
if [-f SPID_FILE]
then
kill -9 ‘cat $PID _FILE' > /dev/null 2>&1
fi

echo "$$" > $PID FILE

##

Ping the server and return a user friendly result

#H#

RESULT="/bin/echo "$HEX REQUEST" | /usr/bin/xxd -r -p | /usr/bin/nc -i \
$SLEEP -w $TIMEOUT $IP $PORT | /usr/bin/xxd -p | /bin/grep \
"$HEX_RESPONSE" 2> /dev/null’

if ["SRESULT" != ""] ; then
/bin/echo "$IP:S$SPORT is \"UP\""
fi

rm -f $PID_FILE

To configure BIG-IP to use the extend_ping script:

1. From the Main tab of the navigation pane, expand Local Traffic and click
Monitors. The Monitors screen displays.

2. In the upper-right corner of the screen, click Create. The New Monitor screen
displays.

3. Enter a name for the monitor in the Name box.
4. Select External in the Type drop-down box.
5. Enter the following in the External Program box:

/usr/bin/monitors/extend_ping

6. Click Finished.

Figure B-8 shows an example external Coherence*Extend health monitor
configuration.

B-12 Oracle Coherence Client Guide

Using Advanced Health Monitoring

Figure B-8 Example Coherence*Extend Health Monitor Implemented in a Shell Script

[N s
) 1 EIGIPE - 900 ok =

£ B O | b 10495800 oA
Clcoheresce Coew Clow st Cmx Cor s Cwes Ddewort I Juma Csolas [Windows = L] Other Bookmarks |

ol

Local Trastic = Mondors
i_,l_ Dveryien - Froperies
ll 1] Acceus wisinScn parformarcs
QRO B W b Pl N
enesal Properies
Tem
F pistes. sl Warards =
D il e e e I
and wyninm conlguraionm Farran Coeramcn
ﬁﬁ Lacal Traffic L. £
et Mag Conligurasion: E
Vinasl Jancan iereal 5 secondy
Pros
e Thmsonwi 5 SHCONEL
iR
Exieral Program Asnbinmosdiorsuxdend _ping
Faoah
Hodes v
s Pichrray Wik
Teafe Cladd —
[
EMATE
Wanabies
SEL Carvloanss
Mubwiwria o
@ Confgue retaorh semacts for :_[H: ‘_Bﬂﬂ!_:
raing and swiching
s Vs .1
[Upsdant | Culene L

- System
E ARG BT B R
v aliablity reporiing. and St

Associating a Custom Health Monitor With a Load Balancing Pool

Custom health monitors must be associated with a load balancing pool. After creating
a custom Coherence*Extend monitor, associate it with the Coherence*Extend load
balancing pool.

To associate a custom health monitor with a load balancing pool:
1. Log into the BIG-IP Configuration Utility.

2. From the Main tab of the navigation pane, expand Local Traffic and click Pools.
The Pools screen displays.

3. Click the name of your Coherence*Extend pool. The Pool screen displays.

4. Select the name of your custom Coherence*Extend health monitor in the Health
Monitors box.

5. Click Update.

Figure B-9 shows a Coherence*Extend pool that uses a custom health monitor.

Integrating with F5 BIG-IP LTM B-13

Enabling SSL Offloading

Figure B-9 Associating a Coherence*Extend Pool With a Custom Health Monitor

[l e K e I e
B - b da0n.caber =) [

£ O R e L0 1495000 0 | A
D tahermsce oo Con Dpe Cm Do Daer Diwet Ddeowsrs Ddac Clume Dol CWindows = [Gther Beokmarks

Local Traffic w Pools © Pool Lisi
P
1] Acceas siaascy pariormancs
B B R S Pl
: Ganarul Propriies
- Temipyles srd Wizards
=z Crusle common appi afen bafle s ool
3 A e BT Parison Commen
Avalatelty Axaitabie (Enabded] - The % Al atie
@ Local Trate e ! = Bk
Natten Mg Configuration: | ask &)
Wirkel Sanvery ALt AroilnlBEH
Protias nana_ping T ey e 0
Healh Mosilsrs [) (PER
iRdird .: . (e
[mx>) hops_443
Poaody i
HNodes - - -
[updane | Delete
[re— —t—
Traa Clavs
SHATS
858 Carcawmi
Mutwod i ”
@ Conligus redaor st ko
PO B bk e
I Sysbem
Carliguin § e sooikd, hagh &
reninbdfy reporiing. and more -

Enabling SSL Offloading

Coherence*Extend can be configured to use SSL to secure communication between
client and proxy server processes. However, this confidentially comes at a price.
Specifically, enabling SSL dramatically increases CPU utilization in the proxy tier and
increases the latency of each request. BIG-IP SSL Acceleration frees up proxy servers
from the difficult task of encrypting and decrypting data secured for privacy reasons.
CPU-intensive decryption is migrated onto a high-performance device designed to
handle SSL transactions more efficiently. This approach is known as SSL offloading.

The following steps are required to enable SLL offloading and should be completed in
the order presented:

1. Enable SSL in the Coherence*Extend client cache configuration file. See Oracle
Coherence Security Guide for details on configuring an extend client to use SSL.

2. Import the Server’s SSL Certificate and Key
3. Create the Client SSL Profile
4. Associate the Client SSL Profile

B-14 Oracle Coherence Client Guide

Enabling SSL Offloading

Import the Server’s SSL Certificate and Key
To import the server’s SSL certificate and key to the BIG-IP system:

1. Log into the BIG-IP Configuration Utility.

2. From the Main tab of the navigation pane, expand Local Traffic and hover over
SSL Certificates then select Import. The SSL Certificate screen displays.

3. From the Import Type drop-down box, select PKCS12.

4. Enter a name for the certificate in the Certificate Name box.
5. Click Choose File and browse to the server’s PKCS12 file.
6. Enter the password for the PKCS12 file.

7. Click Import.

Figure B-10 shows an example server SSL certificate configuration:

Figure B-10 Example SSL Certificate Configuration in BIG-IP System

o
| o G- IPE - e R X TR

= = O B baps) 10, 149.50000) 00 oA
Cgehermac oo Con Ot Omn Coe Domer Dwee Dmersort wae Cumes Dsotans [wingows] Orher Begtmarky

f5 | Uni: Actie

Main H’H | Apout | Local Trashe w S50 Carfcase
[T S
Accaun alnlen perlormans
PFRERA. BG W b gl S
Ganeral Properiles
Templaies and Wiaards —
AR DR] R I
) wpnbers corlguesbom, ol Subjecis) sebont, Demcia
@ el Tratfic Cariific sie Properies
iRl Wl Expites Fisli 5, 2021
ikl Sl Visrsion 3
Profiesy Saerinl Murnbees s
rowne Common Hame: seres
Crganizaian Cracly
Pl Diwisian:
- S Lty Bururgin
® Siake O Prorinoe LA
Wonines € ¥ s
Tenile: s S T, L
Organizatonal Unit Cowte
SMATY Diwision:
. Loty Burkngsn
SEL Cartvloamss Sale O Peoreincs: WA
Couniny: us
Mrbwraric
ﬁ o - . e [emgers_ J Barew....) Lxport_. J{ Oelein
radng and eadching
Sritem -

E + Conligui 8 LT BOTELE, hagh
v adaldly cegeatiny sl —oree

Create the Client SSL Profile

To create the client SSL profile:

Integrating with F5 BIG-IP LTM B-15

Enabling SSL Offloading

1. From the Main tab of the navigation pane, expand Local Traffic and hover over
Profiles then SSL and select Client. The Client SSL Profiles screen displays

2. In the upper-right corner of the screen, click Create. The New Client SSL profile
screen displays.

3. Enter a name for the client SSL profile in the Name box.
4. Click the Custom check box on the right.

5. Select the name of the server certificate that you imported earlier in both the
Certificate and Key drop-down boxes.

6. Click Finished.

Figure B-11 shows an example client SSL profile configuration:

Figure B-11 Example SSL Profile Configuration

oo i
| [G-I - b 1ML .
= = O B e) 10.149.59.90) 50 | A

Cgehermac oo Con Ot Omn Coe Domer Dwee Dmersort wae Cumes Dsotans [wingows] Orher Begtmarky

f5 | Uni: Actie

Local Trafic Profiles © 350 . Chent
[r— 0 = Properies
Accaun alnlen perlormans |
PFRERA. BG W b gl S
Ganaral Properies :
- L i = Rame wdesned_clisnd_sal |
AR DR] R I
ard vpnles corlgursinm [— i - =] :
@ Locai Traific , [l) Cusom]l ||
iRl Wl |
Carteat [eereer 18] LI
ikl Sl o |
Profiay ey J"'" :
iRdes Eribiad Opton |
Pt Dot insen smpty Fagment .
Nodes |
Wonines
i n ;
. " | D sable
Tenle: Clads ‘Oplons List s
SMATE Wmmumrwmmrﬁ
- Mool by STV bafar
SEL Cervboaes WicrosoR® IE 55142 R4 pacsing
S5 wary 080 clieni OH bup worfimeound
- ..TLE it bug wirand L
_ﬁ Corligen febanirh, e b e B
radng and eadching
G At R dtion Cusiom]
e Caent Conibam [lamem 2] -
Conligui 8 LT BOTELE, hagh -
A Carvbonm Ravocaton Lt [
cL)

i i .
\!.lnﬂt__,-_mlﬂl__,

Associate the Client SSL Profile

To modify the Coherence*Extend virtual server configuration to use the client SSL
profile:

1. From the Main tab of the navigation screen, expand Local Traffic and click Virtual
Servers. The Virtual Servers screen displays.

B-16 Oracle Coherence Client Guide

Enabling SSL Offloading

2. Click the name of the virtual server.
3. Select the name of the client SSL profile in the SSL Profile (Client) drop-down box.
4, Click Update.

Figure B-12 shows an example virtual server configuration that uses a client SSL
profile:

Figure B-12 Example Virtual Server Configuration That Includes a Client SSL Profile

BE e | MG IPE = egip 19000t ie X 'l"i—

= S O B b 101485000 0 |

[Coherence Cloev Cloa COps CImx I CIMeT Cweb CMetsork CMac Cluea O Solwis O windows -Dmm-l

|
|
|
|
TN W |
ﬂ& Acians Wl |
AP S a L b g |
Ganeral Properiies |
==ty Templaies and Wiards I T |
Tl conate common appann var |
and irpuies conligurainn, Pariton LT :
== Type: B risat D Matwork |
@ L Lol Address 10189214 |
Wesaoet Mag |
Wikl S fvlid Servce Port S .M I
f— Aucababuly -] I
1oy ‘Dade Emalbded E |
N
Pati r
Confguramon: | Bak 4 }
Modes I
Ty | Standard B |
WAIHEE :
Tewde Clady LIE (ER |
SMNATY ‘OraConne Prolis u l.
SEL Carvdcames IWTLM Conn Pesl [[Mone 2]
ek HTTP Prafie i 7]
E g fabairt, sersety fof FTP Prog [1)
roing and waching
T e e Pt
v adabdy Gegratesy aeed e Rarvar)
Devmaier Profie | b E I3
v
SIF Profis | Hore E

Integrating with F5 BIG-IP LTM B-17

Enabling SSL Offloading

B-18 Oracle Coherence Client Guide

	Contents
	List of Examples
	List of Figures
	Preface
	Part I Getting Started
	1 Introduction
	Components Overview
	Types Of Clients
	Data Clients
	Real Time Clients

	Client APIs
	POF Serialization
	Understanding Client Configuration Files

	2 Installing a Client Distribution
	Installing Coherence for Java
	Installing the C++ Client Distribution
	Supported Environments
	Microsoft-Specific Requirements
	Extracting the Coherence for C++ Distribution

	Installing the .NET Client Distribution
	Prerequisites
	Running the Installer
	Deploying Coherence for .NET

	Compatibility Between Coherence*Extend Versions

	3 Setting Up Coherence*Extend
	Overview
	Configuring the Cluster Side
	Setting Up Extend Proxy Services
	Defining a Proxy Service
	Defining Multiple Proxy Service Instances
	Defining Multiple Proxy Services
	Disabling Cluster Service Proxies
	Specifying Read-Only NamedCache Access
	Specifying NamedCache Locking

	Defining Caches for Use By Extend Clients

	Configuring the Client Side
	Defining a Remote Cache
	Using a Remote Cache as a Back Cache
	Defining Remote Invocation Schemes
	Defining Multiple Remote Addresses
	Detecting Connection Errors
	Disabling TCMP Communication

	Using an Address Provider for TCP Addresses
	Load Balancing Connections
	Using Proxy-Based Load Balancing
	Understanding the Proxy-Based Load Balancing Default Algorithm
	Implementing a Custom Proxy-Based Load Balancing Strategy

	Using Client-Based Load Balancing

	4 Building Your First Extend Client
	Overview of the Extend Example
	Step 1: Configure the Cluster Side
	Step 2: Configure the Client Side
	Step 3: Create the Sample Client
	Step 4: Start the Cache Server Process
	Step 5: Run the Application

	5 Best Practices for Coherence*Extend
	Run Proxy Servers with Local Storage Disabled
	Do Not Run a Near Cache on a Proxy Server
	Configure Heap NIO Space to be Equal to the Max Heap Size
	Set Worker Thread Pool Sizes According to the Needs of the Application
	Be Careful When Making InvocationService Calls
	Be Careful When Placing Collection Classes in the Cache
	Configure POF Serializers for Cache Servers
	Use Node Locking Instead of Thread Locking

	Part II Creating Java Extend Clients
	Part III Creating C++ Extend Clients
	6 Setting Up C++ Application Builds
	Setting up the Compiler for Coherence-Based Applications
	Including Coherence Header Files
	Linking the Coherence Library
	Setting the run-time Library and Search Path
	Deploying Coherence for C++

	7 Configuration and Usage for C++ Clients
	General Instructions
	Implementing the C++ Application
	Compiling and Linking the Application
	Configure Paths
	Configure Coherence*Extend
	Configure Coherence*Extend in the Cluster
	Configuring Coherence*Extend on the Client
	Defining a Local Cache for C++ Clients
	Defining a Near Cache for C++ Clients

	Connection Error Detection and Failover

	Obtaining a Cache Reference with C++
	Cleaning up Resources Associated with a Cache
	Configuring and Using the Coherence for C++ Client Library
	Setting the Configuration File Location with an Environment Variable
	Setting the Configuration File Location Programmatically

	Operational Configuration File (tangosol-coherence-override.xml)
	Configuring a Logger
	Launching a Coherence DefaultCacheServer Proxy

	8 Understanding the Coherence for C++ API
	CacheFactory
	NamedCache
	QueryMap
	ObservableMap
	InvocableMap
	Filter
	Value Extractors
	Entry Processors
	Entry Aggregators

	9 Using the Coherence C++ Object Model
	Using the Object Model
	Coherence Namespaces
	Understanding the Base Object
	Automatically Managed Memory
	Referencing Managed Objects
	Using handles
	Assignment of handles
	Dereferencing handles

	Managed Object Instantiation

	Managed Strings
	String Instantiation
	Auto-Boxed Strings

	Type Safe Casting
	Down Casting

	Managed Arrays
	Collection Classes
	Managed Exceptions
	Object Immutability
	Integrating Existing Classes into the Object Model

	Writing New Managed Classes
	Specification-Based Managed Class Definition
	Equality, Hashing, Cloning, Immutability, and Serialization
	Threading
	Weak References
	Virtual Constructors
	Advanced Handle Types
	Thread Safety
	Synchronization and Notification
	Thread Safe Handles
	Escape Analysis
	Shared handles
	Const Correctness

	Thread-Local Allocator

	Diagnostics and Troubleshooting
	Thread Dumps
	Memory Leak Detection
	Memory Corruption Detection

	Application Launcher - Sanka
	Command line syntax
	Built-in Executables
	Sample Custom Executable Class

	10 Building Integration Objects (C++)
	POF Intrinsics
	Serialization Options
	Managed<T> (Free-Function Serialization)
	PortableObject (Self-Serialization)
	PofSerializer (External Serialization)

	Using POF Object References
	Enabling POF Object References
	Registering POF Object Identities for Circular and Nested Objects

	Registering Custom C++ Types
	Implementing a Java Version of a C++ Object
	Understanding Serialization Performance
	Using POF Annotations to Serialize Objects
	Annotating Objects for POF Serialization
	Registering POF Annotated Objects
	Enabling Automatic Indexing
	Providing a Custom Codec

	11 Performing Continuous Queries (C++)
	Uses for Continuous Query Caching
	Understanding Continuous Query Caching
	Defining a Continuous Query Cache
	Cleaning up Continuous Query Cache Resources
	Caching Only Keys Versus Keys and Values
	CacheValues Property and Event Listeners
	Using ReflectionExtractor with Continuous Query Caches

	Listening to a Continuous Query Cache
	Avoiding Unexpected Results
	Achieving a Stable Materialized View
	Support for Synchronous and Asynchronous Listeners

	Making a Continuous Query Cache Read-Only

	12 Querying a Cache (C++)
	Query Functionality
	Simple Queries
	Querying Partitioned Caches
	Querying Near Caches

	Query Concepts
	Queries Involving Multi-Value Attributes
	ChainedExtractor
	QueryRecorder

	13 Performing Remote Invocations (C++)
	Configuring and Using the Remote Invocation Service
	Registering Invocable Implementation Classes

	14 Using Cache Events (C++)
	Listener Interface and Event Object
	Caches and Classes that Support Events
	Signing Up for all Events
	MultiplexingMapListener
	Configuring a MapListener for a Cache
	Signing Up for Events on Specific Identities
	Filtering Events
	"Lite" Events
	Advanced: Listening to Queries
	Advanced: Synthetic Events
	Advanced: Backing Map Events
	Advanced: Synchronous Event Listeners

	15 Performing Transactions (C++)
	Using the Transaction API within an Entry Processor
	Creating a Stub Class for a Transactional Entry Processor
	Registering a Transactional Entry Processor User Type
	Configuring the Cluster-Side Transactional Caches
	Configuring the Client-Side Remote Cache
	Using a Transactional Entry Processor from a C++ Client

	16 Sample C++ Application
	Prerequisites for Building and Running the Sample Applications
	Starting a Coherence Proxy Service and Cache Server
	Building the Sample Applications
	Starting a Sample Application
	Running the hellogrid Example
	Running the console Example
	Running the contacts Example

	Part IV Creating .NET Extend Clients
	17 Configuration and Usage for .NET Clients
	General Instructions
	Configuring Coherence*Extend
	Configuring Coherence*Extend in the Cluster
	Configuring Coherence*Extend on the Client
	Defining a Local Cache for .NET Clients
	Defining a Near Cache for .NET Clients

	Connection Error Detection and Failover

	Starting a Coherence DefaultCacheServer Process
	Obtaining a Cache Reference with .NET
	Cleaning Up Resources Associated with a Cache

	18 Building Integration Objects (.NET)
	Overview of Building Integration Objects (.NET)
	Creating an IPortableObject Implementation
	Implementing a Java Version of a .NET Object
	Creating a PortableObject Implementation (Java)

	Registering Custom Types on the .NET Client
	Registering Custom Types in the Cluster
	Evolvable Portable User Types
	Making Types Portable Without Modification
	Using POF Object References
	Enabling POF Object References
	Registering POF Object Identities for Circular and Nested Objects

	Using POF Annotations to Serialize Objects
	Annotating Objects for POF Serialization
	Registering POF Annotated Objects
	Enabling Automatic Indexing
	Providing a Custom Codec

	19 Using the Coherence .NET Client Library
	Setting Up the Coherence .NET Client Library
	Using the Coherence .NET APIs
	CacheFactory
	IConfigurableCacheFactory
	DefaultConfigurableCacheFactory
	Logger
	Using the Common.Logging Library
	INamedCache
	IQueryCache
	QueryRecorder
	IObservableCache
	Responding to Cache Events

	IInvocableCache
	Filters
	Value Extractors
	Entry Processors
	Entry Aggregators

	20 Performing Continuous Queries (.NET)
	Uses for Continuous Query Caching
	Understanding Continuous Query Caching
	Constructing a Continuous Query Cache
	Cleaning Up Continuous Query Cache Resources
	Caching Only Keys Versus Keys and Values
	Listening to a Continuous Query Cache
	Achieving a Stable Materialized View
	Support for Synchronous and Asynchronous Listeners

	Making a Continuous Query Cache Read-Only

	21 Performing Remote Invocations (.NET)
	Configuring and Using the Remote Invocation Service

	22 Performing Transactions (.NET)
	Using the Transaction API within an Entry Processor
	Creating a Stub Class for a Transactional Entry Processor
	Registering a Transactional Entry Processor User Type
	Configuring the Cluster-Side Transactional Caches
	Configuring the Client-Side Remote Cache
	Using a Transactional Entry Processor from a .NET Client

	23 Managing ASP.NET Session State
	Overview
	Setting Up Coherence Session Management
	Enable the Coherence Session Provider
	Configure the Cluster-Side ASP Session Caches
	Configure a Client-Side ASP Session Remote Cache

	Selecting a Session Model
	Specify the Session Model
	Registering the Backing Map Listener

	Specifying a Serializer
	Using POF for Session Serialization

	Sharing Session State Across Applications

	24 Sample Windows Forms Application for .NET Clients
	Create a Windows Application Project
	Add a Reference to the Coherence for .NET Library
	Create an App.config File
	Create Coherence for .NET Configuration Files
	Create and Design the Application
	Implement the Application

	25 Sample Web Application for .NET Clients
	Create an ASP.NET Project
	Add a Reference to the Coherence for .NET Library
	Configure the Web.config File
	Create Coherence for .NET Configuration Files
	Create the Web Form
	Implement the Web Application
	Global.asax File
	Business Object Definition
	Service Layer Implementation
	Code-behind the ASP.NET Page

	Part V Using Coherence REST
	26 Introducing Coherence Rest
	Overview of Coherence REST
	Dependencies for Coherence REST
	Overview of Configuration for Coherence REST
	Understanding Data Format Support
	Using XML as the Data Format
	Using JSON as the Data Format

	27 Building Your First Coherence REST Application
	Overview of the Coherence REST Example
	Step 1: Configure the Cluster Side
	Step 2: Create a User Type
	Step 3: Configure REST Services
	Step 4: Start the Cache Sever Process
	Step 5: Test the Coherence REST API

	28 Using the Coherence REST API
	Specifying Key and Value Types
	Performing Single-Object REST Operations
	Performing Multi-Object REST Operations
	Performing Partial-Object REST Operations
	Performing Queries with REST
	Performing Aggregations with REST
	Aggregation Syntax for REST
	Listing of Pre-Defined Aggregators
	Creating Custom Aggergators

	Performing Entry Processing with REST
	Entry Processor Syntax for REST
	Listing of Pre-defined Entry Processors
	Creating Custom Entry Processors

	Understanding Concurrency Control
	Specifying Cache Aliases

	29 Deploying Coherence REST
	Deploying with the Embedded HTTP Server
	Deploying to a Java EE Server
	Packaging Coherence REST for Deployment
	Deploying to WebLogic Server
	Deploying to GlassFish
	Deploying to a Servlet Container

	30 Modifying the Default REST Implementation
	Using Custom Providers and Resources
	Changing the Embedded HTTP Server
	Using Grizzly HTTP Server
	Using Simple HTTP Server

	A REST Configuration Elements
	REST Configuration File

	B Integrating with F5 BIG-IP LTM
	Basic Concepts
	Creating Nodes
	Configuring a Load Balancing Pool
	Creating a Load Balancing Pool
	Adding a Load Balancing Pool Member

	Configuring a Virtual Server
	Configuring Coherence*Extend to Use BIG-IP LTM
	Using Advanced Health Monitoring
	Creating a Custom Health Monitor to Ping Coherence
	Associating a Custom Health Monitor With a Load Balancing Pool

	Enabling SSL Offloading
	Import the Server’s SSL Certificate and Key
	Create the Client SSL Profile
	Associate the Client SSL Profile

