

Oracle® Fusion Middleware
Programming JMS for Oracle WebLogic Server

11g Release 1 (10.3.6)

E13727-06

November 2011

This document is a resource for software developers who
want to develop and configure applications that include
WebLogic Server Java Message Service (JMS).

Oracle Fusion Middleware Programming JMS for Oracle WebLogic Server, 11g Release 1 (10.3.6)

E13727-06

Copyright © 2007, 2011, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface ... xv

Documentation Accessibility ... xv
Conventions ... xv

1 Introduction and Roadmap

1.1 Document Scope and Audience.. 1-1
1.2 Guide to this Document ... 1-1
1.3 Related Documentation.. 1-2
1.4 Samples and Tutorials for the JMS Developer.. 1-3
1.4.1 Avitek Medical Records Application (MedRec) and Tutorials..................................... 1-3
1.5 New and Changed JMS Features In This Release ... 1-3

2 Understanding WebLogic JMS

2.1 Overview of the Java Message Service and WebLogic JMS ... 2-1
2.1.1 What Is the Java Message Service?.. 2-1
2.1.2 Implementation of Java Specifications ... 2-2
2.1.2.1 Java EE Specification .. 2-2
2.1.2.2 JMS Specification .. 2-2
2.1.3 WebLogic JMS Architecture ... 2-2
2.1.3.1 Major Components... 2-3
2.2 Understanding the Messaging Models.. 2-3
2.2.1 Point-to-Point Messaging ... 2-3
2.2.2 Publish/Subscribe Messaging ... 2-4
2.2.3 Message Persistence .. 2-4
2.3 Value-Added Public JMS API Extensions ... 2-5
2.3.1 WebLogic Server Value-Added JMS Features... 2-5
2.4 Understanding the JMS API .. 2-6
2.4.1 ConnectionFactory... 2-7
2.4.1.1 Using the Default Connection Factories.. 2-8
2.4.1.2 Configuring and Deploying Connection Factories.. 2-8
2.4.1.3 The ConnectionFactory Class ... 2-9
2.4.2 Connection.. 2-9
2.4.3 Session .. 2-10
2.4.3.1 WebLogic JMS Session Guidelines.. 2-10
2.4.3.2 Session Subclasses ... 2-10

iv

2.4.3.3 Non-Transacted Session ... 2-11
2.4.3.4 Transacted Session .. 2-12
2.4.4 Destination... 2-12
2.4.4.1 Distributed Destinations... 2-13
2.4.5 MessageProducer and MessageConsumer ... 2-14
2.4.6 Message .. 2-15
2.4.6.1 Message Header Fields ... 2-15
2.4.6.2 Message Property Fields .. 2-18
2.4.6.3 Message Body .. 2-19
2.4.7 ServerSessionPoolFactory.. 2-19
2.4.8 ServerSessionPool ... 2-20
2.4.9 ServerSession... 2-20
2.4.10 ConnectionConsumer .. 2-20

3 Best Practices for Application Design

3.1 Message Design... 3-1
3.1.1 Serializing Application Objects ... 3-1
3.1.2 Serializing strings .. 3-2
3.1.3 Server-side serialization.. 3-2
3.1.4 Selection .. 3-2
3.2 Message Compression.. 3-2
3.3 Message Properties and Message Header Fields ... 3-2
3.4 Message Ordering... 3-3
3.5 Topics vs. Queues ... 3-3
3.6 Asynchronous vs. Synchronous Consumers .. 3-3
3.7 Persistent vs. Non-Persistent Messages... 3-4
3.8 Deferring Acknowledges and Commits .. 3-5
3.9 Using AUTO_ACK for Non-Durable Subscribers ... 3-5
3.10 Alternative Qualities of Service, Multicast and No-Acknowledge 3-6
3.10.1 Using MULTICAST_NO_ACKNOWLEDGE.. 3-6
3.10.2 Using NO_ACKNOWLEDGE ... 3-6
3.11 Avoid Multi-threading... 3-6
3.12 Using the JMSXUserID Property .. 3-7
3.13 Performance and Tuning ... 3-7

4 Enhanced Support for Using WebLogic JMS with EJBs and Servlets

4.1 Enabling WebLogic JMS Wrappers.. 4-1
4.1.1 Declaring JMS Objects as Resources In the EJB or Servlet Deployment Descriptors 4-2
4.1.1.1 Declaring a Wrapped JMS Factory using Deployment Descriptors 4-2
4.1.1.2 Declaring JMS Destinations using Deployment Descriptors 4-3
4.1.2 Referencing a Packaged JMS Application Module In Deployment Descriptor Files 4-3
4.1.2.1 Referencing Application Modules In a weblogic-application.xml Descriptor 4-4
4.1.2.2 Referencing JMS Resources In a WebLogic Application .. 4-4
4.1.2.3 Referencing JMS Resources In a Java EE Application... 4-4
4.1.3 Declaring JMS Destinations and Connection Factories using Annotations................ 4-5
4.1.3.1 Injecting Resource Dependency into a Class.. 4-5
4.1.3.2 Non-Injected EJB 3.0 Resource Reference Annotations .. 4-5

v

4.1.4 Avoid Transactional XA Interfaces ... 4-6
4.2 Disabling Wrapping and Pooling... 4-6
4.3 What's Happening Under the JMS Wrapper Covers... 4-6
4.3.1 Automatically Enlisting Transactions... 4-7
4.3.2 Container-Managed Security ... 4-7
4.3.3 Connection Testing.. 4-8
4.3.4 Java EE Compliance .. 4-8
4.3.5 Pooled JMS Connection Objects .. 4-8
4.3.6 Monitoring Pooled Connections.. 4-9
4.4 Improving Performance Through Pooling.. 4-9
4.4.1 Speeding Up JNDI Lookups by Pooling Session Objects .. 4-9
4.4.2 Speeding Up Object Creation Through Caching .. 4-9
4.4.3 Enlisting the Proper Transaction Mode... 4-10
4.5 Simplified Access to Foreign JMS Providers.. 4-10
4.6 Examples of JMS Wrapper Functions ... 4-11
4.6.1 Example of JMS Wrapper Functions.. 4-11
4.6.1.1 ejb-jar.xml ... 4-11
4.6.1.2 weblogic-ejb-jar.xml .. 4-12
4.6.1.3 PoolTest.java... 4-12
4.6.1.4 PoolTestHome.java.. 4-13
4.6.1.5 PoolTestBean.java.. 4-13
4.6.2 Sending a JMS Message In a Java EE Container... 4-15
4.6.2.1 Using comp/env.. 4-15
4.6.3 Dependency Injection... 4-16
4.6.4 EJB 3.0 Wrapper Without Injection .. 4-16

5 Developing a Basic JMS Application

5.1 Importing Required Packages... 5-1
5.2 Setting Up a JMS Application ... 5-2
5.2.1 Step 1: Look Up a Connection Factory in JNDI... 5-4
5.2.2 Step 2: Create a Connection Using the Connection Factory .. 5-4
5.2.2.1 Create a Queue Connection .. 5-4
5.2.2.2 Create a Topic Connection .. 5-5
5.2.3 Step 3: Create a Session Using the Connection ... 5-5
5.2.3.1 Create a Queue Session.. 5-6
5.2.3.2 Create a Topic Session ... 5-6
5.2.4 Step 4: Look Up a Destination (Queue or Topic) .. 5-7
5.2.4.1 Using a JNDI Name.. 5-7
5.2.4.2 Use a Reference ... 5-7
5.2.5 Step 5: Create Message Producers and Message Consumers.. 5-7
5.2.5.1 Create QueueSenders and QueueReceivers ... 5-8
5.2.5.2 Create TopicPublishers and TopicSubscribers... 5-9
5.2.6 Step 6a: Create the Message Object (Message Producers) .. 5-10
5.2.7 Step 6b: Optionally Register an Asynchronous Message Listener 5-11
5.2.8 Step 7: Start the Connection .. 5-12
5.2.9 Example: Setting Up a PTP Application.. 5-12
5.2.9.1 Step 1 ... 5-13

vi

5.2.9.2 Step 2 ... 5-13
5.2.9.3 Step 3 ... 5-13
5.2.9.4 Step 4 ... 5-13
5.2.9.5 Step 5 ... 5-13
5.2.9.6 Step 6 ... 5-13
5.2.9.7 Step 7 ... 5-13
5.2.10 Example: Setting Up a Pub/Sub Application... 5-15
5.2.10.1 Step 1 ... 5-15
5.2.10.2 Step 2 ... 5-16
5.2.10.3 Step 3 ... 5-16
5.2.10.4 Step 4 ... 5-16
5.2.10.5 Step 5 ... 5-16
5.2.10.6 Step 6 ... 5-16
5.2.10.7 Step 7 ... 5-16
5.3 Sending Messages .. 5-17
5.3.1 Create a Message Object .. 5-17
5.3.2 Define a Message .. 5-17
5.3.3 Send the Message to a Destination... 5-18
5.3.3.1 Send a Message Using Queue Sender .. 5-18
5.3.3.2 Send a Message Using TopicPublisher... 5-19
5.3.4 Setting Message Producer Attributes .. 5-21
5.3.5 Example: Sending Messages Within a PTP Application... 5-22
5.3.6 Example: Sending Messages Within a Pub/Sub Application.................................... 5-22
5.4 Receiving Messages ... 5-23
5.4.1 Receiving Messages Asynchronously.. 5-23
5.4.1.1 Asynchronous Message Pipeline... 5-23
5.4.1.1.1 Configuring a Message Pipeline .. 5-23
5.4.1.1.2 Behavior of Pipelined Messages... 5-24
5.4.2 Receiving Messages Synchronously .. 5-24
5.4.2.1 Use Prefetch Mode to Create a Synchronous Message Pipeline......................... 5-25
5.4.2.2 Receiving Messages Synchronously Within a PTP Application......................... 5-25
5.4.2.3 Receiving Messages Synchronously Within a Pub/Sub Application................ 5-25
5.4.3 Recovering Received Messages .. 5-26
5.5 Acknowledging Received Messages ... 5-26
5.6 Releasing Object Resources .. 5-27

6 Managing Your Applications

6.1 Managing Rolled Back, Recovered, Redelivered, or Expired Messages............................. 6-1
6.1.1 Setting a Redelivery Delay for Messages ... 6-1
6.1.1.1 Setting a Redelivery Delay .. 6-2
6.1.1.2 Overriding the Redelivery Delay on a Destination ... 6-2
6.1.2 Setting a Redelivery Limit for Messages .. 6-3
6.1.2.1 Configuring a Message Redelivery Limit On a Destination 6-3
6.1.2.2 Configuring an Error Destination for Undelivered Messages............................... 6-3
6.1.3 Ordered Redelivery of Messages... 6-3
6.1.3.1 Required Message Pipeline Setting for the Messaging Bridge and MDBs 6-4
6.1.3.2 Performance Limitations ... 6-4

vii

6.1.4 Handling Expired Messages .. 6-5
6.2 Setting Message Delivery Times... 6-5
6.2.1 Setting a Delivery Time on Producers .. 6-5
6.2.2 Setting a Delivery Time on Messages ... 6-5
6.2.3 Overriding a Delivery Time ... 6-6
6.2.3.1 Interaction With the Time-to-Live Value .. 6-6
6.2.3.2 Setting a Relative Time-to-Deliver Override .. 6-6
6.2.3.3 Setting a Scheduled Time-to-Deliver Override.. 6-6
6.2.3.4 JMS Schedule Interface .. 6-8
6.3 Managing Connections .. 6-9
6.3.1 Defining a Connection Exception Listener .. 6-9
6.3.2 Accessing Connection Metadata .. 6-10
6.3.3 Starting, Stopping, and Closing a Connection ... 6-10
6.4 Managing Sessions... 6-11
6.4.1 Defining a Session Exception Listener... 6-11
6.4.2 Closing a Session... 6-12
6.5 Managing Destinations ... 6-13
6.5.1 Dynamically Creating Destinations ... 6-13
6.5.2 Dynamically Deleting Destinations ... 6-13
6.5.2.1 Preconditions for Deleting Destinations .. 6-13
6.5.2.2 What Happens when a Destination is Deleted ... 6-14
6.5.2.3 Message Timestamps for Troubleshooting Deleted Destinations...................... 6-15
6.5.2.4 Deleted Destination Statistics .. 6-15
6.6 Using Temporary Destinations.. 6-15
6.6.1 Creating a Temporary Queue ... 6-16
6.6.2 Creating a Temporary Topic ... 6-16
6.6.3 Deleting a Temporary Destination... 6-16
6.7 Setting Up Durable Subscriptions ... 6-16
6.7.1 Defining the Persistent Store... 6-17
6.7.2 Setting the Client ID Policy ... 6-17
6.7.3 Defining the Client ID .. 6-18
6.7.4 Creating a Sharable Subscription Policy ... 6-19
6.7.5 Creating Subscribers for a Durable Subscription... 6-20
6.7.6 Best Practice: Always Close Failed JMS ClientIDs... 6-20
6.7.7 Deleting Durable Subscriptions.. 6-21
6.7.8 Modifying Durable Subscriptions .. 6-21
6.7.9 Managing Durable Subscriptions... 6-22
6.8 Setting and Browsing Message Header and Property Fields ... 6-22
6.8.1 Setting Message Header Fields ... 6-22
6.8.2 Setting Message Property Fields ... 6-24
6.8.3 Browsing Header and Property Fields .. 6-26
6.9 Filtering Messages ... 6-28
6.9.1 Defining Message Selectors Using SQL Statements .. 6-28
6.9.2 Defining XML Message Selectors Using XML Selector Method................................ 6-29
6.9.3 Displaying Message Selectors ... 6-30
6.9.4 Indexing Topic Subscriber Message Selectors To Optimize Performance 6-30
6.10 Sending XML Messages .. 6-31

viii

6.10.1 WebLogic XML APIs.. 6-31
6.10.2 Using a String Representation .. 6-32
6.10.3 Using a DOM Representation ... 6-32

7 Using JMS Module Helper to Manage Applications

7.1 Configuring JMS System Resources Using JMSModuleHelper ... 7-1
7.2 Configuring JMS Servers and Store-and-Forward Agents ... 7-1
7.3 JMSModuleHelper Sample Code.. 7-2
7.3.1 Creating a JMS System Resource... 7-2
7.3.2 Deleting a JMS System Resource ... 7-3
7.4 Best Practices when Using JMSModuleHelper... 7-4

8 Using Multicasting with WebLogic JMS

8.1 Benefits of Using Multicasting .. 8-1
8.2 Limitations of Using Multicasting.. 8-1
8.3 Using WebLogic Server Unicast ... 8-1
8.4 Configuring Multicasting for WebLogic Server ... 8-2
8.4.1 Prerequisites for Multicasting.. 8-2
8.4.2 Step 1: Set Up the JMS Application, Multicast Session and Topic Subscriber............ 8-3
8.4.3 Step 2: Set Up the Message Listener.. 8-3
8.4.4 Dynamically Configuring Multicasting Configuration Attributes 8-4
8.4.5 Example: Multicast TTL.. 8-5

9 Using Distributed Destinations

9.1 What is a Distributed Destination? .. 9-1
9.2 Why Use a Distributed Destination ... 9-1
9.3 Creating a Distributed Destination .. 9-2
9.4 Types of Distributed Destinations.. 9-2
9.4.1 Uniform Distributed Destinations... 9-2
9.4.2 Weighted Distributed Destinations... 9-2
9.5 Using Distributed Destinations .. 9-3
9.5.1 Using Distributed Queues .. 9-3
9.5.1.1 Queue Forwarding ... 9-3
9.5.1.2 QueueSenders ... 9-3
9.5.1.3 QueueReceivers .. 9-4
9.5.1.4 QueueBrowsers... 9-4
9.5.2 Using Replicated Distributed Topics .. 9-4
9.5.2.1 TopicPublishers... 9-5
9.5.2.2 TopicSubscribers... 9-6
9.5.2.3 Deploying Message-Driven Beans on a Distributed Topic 9-7
9.5.3 Using Partitioned Distributed Topics ... 9-7
9.5.4 Accessing Distributed Destination Members .. 9-7
9.5.5 Distributed Destination Failover ... 9-7
9.6 Using Message-Driven Beans with Distributed Destinations .. 9-8
9.7 Common Use Cases for Distributed Destinations ... 9-8
9.7.1 Maximizing Production .. 9-8

ix

9.7.2 Maximizing Availability... 9-9
9.7.2.1 Using Queues .. 9-9
9.7.2.2 Using Topics.. 9-9
9.7.3 Stuck Messages... 9-9

10 Using Message Unit-of-Order

10.1 What Is Message Unit-Of-Order? .. 10-1
10.2 Understanding Message Processing with Unit-of-Order... 10-1
10.2.1 Message Processing According to the JMS Specification.. 10-1
10.2.2 Message Processing with Unit-of-Order ... 10-2
10.2.3 Message Delivery with Unit-of-Order... 10-3
10.3 Message Unit-of-Order Case Study... 10-3
10.3.1 Joe Orders a Book ... 10-3
10.3.2 What Happened to Joe's Order... 10-4
10.3.3 How Message Unit-of-Order Solves the Problem.. 10-5
10.4 How to Create a Unit-of-Order.. 10-5
10.4.1 Creating a Unit-of-Order Programmatically .. 10-6
10.4.2 Creating a Unit-of-Order Administratively.. 10-6
10.4.2.1 Configuring Unit-of-Order for a Connection Factory and Destinations........... 10-6
10.4.3 Unit-of-Order Naming Rules .. 10-7
10.5 Getting the Current Unit-of-Order.. 10-7
10.6 Message Unit-of-Order Advanced Topics.. 10-7
10.6.1 What Happens When a Message Is Delayed During Processing? 10-8
10.6.2 What Happens When a Filter Makes a Message Undeliverable................................ 10-8
10.6.3 What Happens When Destination Sort Keys are Used... 10-8
10.6.4 Using Unit-of-Order with Distributed Destinations ... 10-9
10.6.4.1 Using the Path Service .. 10-9
10.6.4.2 Using Hash-based Routing .. 10-9
10.6.4.3 Configuring Routing on Uniform Distributed Destinations............................... 10-9
10.6.5 Using Unit-of-Order with Topics ... 10-10
10.6.5.1 Unit-of-Order and Distributed Topics.. 10-10
10.6.5.2 Unit-of-Order, Topics, and Message Driven Beans.. 10-10
10.6.5.2.1 Use JTA Transactions... 10-10
10.6.5.2.2 Set Pools Size to One.. 10-10
10.6.6 Using Unit-of-Order with JMS Message Management ... 10-11
10.6.7 Using Unit-of-Order with WebLogic Store-and-Forward .. 10-11
10.6.8 Using Unit-of-Order with WebLogic Messaging Bridge .. 10-11
10.7 Limitations of Message Unit-of-Order.. 10-11

11 Using Unit-of-Work Message Groups

11.1 What Are Unit-of-Work Message Groups?.. 11-1
11.2 Understanding Message Processing With Unit-of-Work... 11-1
11.2.1 Basic UOW Terminology ... 11-2
11.2.2 Rules For Processing UOW Messages ... 11-2
11.2.3 Message Unit-of-Work Case Study .. 11-3
11.2.3.1 Jill Orders Miscellaneous Items From an Online Retailer 11-3

x

11.2.3.2 How Message Unit-of-Work Completes the Order.. 11-3
11.3 How to Create a Unit-of-Work Message Group.. 11-4
11.3.1 How To Write a Producer to Set UOW Message Properties 11-4
11.3.1.1 Example UOW Producer Code.. 11-5
11.3.1.2 UOW Exceptions.. 11-6
11.3.2 How to Write a UOW Consumer/Producer For an Intermediate Destination....... 11-6
11.3.3 Configuring Terminal Destinations ... 11-7
11.3.3.1 UOW Message Routing for Terminal Distributed Destinations......................... 11-8
11.3.4 How to Write a UOW Consumer For a Terminal Destination................................... 11-8
11.4 Message Unit-of-Work Advanced Topics .. 11-8
11.4.1 Message Property Handling ... 11-8
11.4.1.1 System-Generated Properties .. 11-9
11.4.1.2 Final Component Message Properties.. 11-9
11.4.1.3 Component Message Heterogeneity... 11-9
11.4.1.4 ReplyTo Message Property .. 11-9
11.4.2 UOW and Uniform Distributed Destinations... 11-9
11.4.3 UOW and Store-and-Forward Destinations ... 11-10
11.5 Limitations of UOW Message Groups.. 11-10

12 Using Transactions with WebLogic JMS

12.1 Overview of Transactions... 12-1
12.2 Using JMS Transacted Sessions ... 12-2
12.2.1 Step 1: Set Up JMS Application, Creating Transacted Session................................... 12-2
12.2.2 Step 2: Perform Desired Operations .. 12-3
12.2.3 Step 3: Commit or Roll Back the JMS Transacted Session .. 12-3
12.3 Using JTA User Transactions ... 12-3
12.3.1 Step 1: Set Up JMS Application, Creating Non-Transacted Session 12-4
12.3.2 Step 2: Look Up User Transaction in JNDI ... 12-5
12.3.3 Step 3: Start the JTA User Transaction... 12-5
12.3.4 Step 4: Perform Desired Operations .. 12-5
12.3.5 Step 5: Commit or Roll Back the JTA User Transaction .. 12-5
12.4 JTA User Transactions Using Message Driven Beans .. 12-5
12.5 Example: JMS and EJB in a JTA User Transaction .. 12-6
12.5.1 Step 1... 12-6
12.5.2 Step 2... 12-6
12.5.3 Step 3... 12-7
12.5.4 Step 4... 12-7
12.5.5 Step 5... 12-7
12.6 Using Cross Domain Security .. 12-7

13 Developing Advanced Pub/Sub Applications

13.1 Overview of Advanced High Availability Concepts.. 13-1
13.1.1 WebLogic Messaging High Availability Features ... 13-1
13.1.2 Application Design Limitations When using Replicated Distributed Topics 13-2
13.1.3 Advanced Topic Features .. 13-2
13.2 Advanced Messaging Features for High Availability .. 13-3
13.2.1 Shared Subscriptions and Client ID Policy ... 13-3

xi

13.2.1.1 What is the Subscription Key... 13-3
13.2.1.2 Configuring a Shared Subscription... 13-3
13.2.2 How Sharing a Non-Durable Subscription Works .. 13-4
13.2.2.1 How a Shared Subscription Policy for a Non-durable Subscription

is Determined ... 13-4
13.2.2.2 How a Non-durable Subscription is Closed ... 13-5
13.2.3 How Sharing a Durable Subscription Works ... 13-5
13.2.3.1 How a Shared Subscription Policy for a Durable Subscription is Determined 13-5
13.2.3.2 How to Unsubscribe a Durable Subscription.. 13-6
13.2.3.3 Considerations when Unsubscribing a Durable Subscriber 13-6
13.2.3.4 Managing Durable Subscriptions.. 13-7
13.2.3.4.1 Naming Conventions for the JMSDurableSubscriberRuntimeMbean 13-7
13.3 Design Strategies when using Topics ... 13-7
13.3.1 One-copy-per-instance Design Strategy.. 13-8
13.3.2 One-copy-per-application Design Strategy .. 13-8
13.4 Best Practices for Distributed Topics .. 13-8

14 Recovering from a Server Failure

14.1 Automatic JMS Client Failover .. 14-1
14.1.1 Automatic Reconnect Limitations .. 14-2
14.1.2 Automatic Failover for JMS Producers.. 14-2
14.1.2.1 Sample Producer Code ... 14-3
14.1.2.2 Re-usable ConnectionFactory Objects .. 14-3
14.1.2.3 Re-usable Destination Objects ... 14-3
14.1.2.4 Reconnected Connection Objects .. 14-4
14.1.2.4.1 Special Cases for Reconnected Connections .. 14-4
14.1.2.5 Reconnected Session Objects ... 14-5
14.1.2.5.1 Special Cases for Reconnected Sessions.. 14-5
14.1.2.6 Reconnected MessageProducer Objects ... 14-6
14.1.2.6.1 Special Case for Distributed Destinations .. 14-6
14.1.3 Configuring Automatic Failover for JMS Consumers... 14-6
14.1.3.1 Sample Consumer Client Code ... 14-6
14.1.3.2 Configuring Automatic Client Refresh Options ... 14-7
14.1.3.3 Common Cases for Reconnected Consumers ... 14-7
14.1.3.3.1 Synchronous Consumers... 14-7
14.1.3.3.2 Asynchronous Consumers.. 14-8
14.1.3.4 Special Cases for Reconnected Consumers.. 14-8
14.1.3.4.1 Consumers of Distributed Destinations.. 14-8
14.1.3.4.2 Message-Driven EJBs ... 14-8
14.1.3.4.3 Consumer Connections with a ClientID for Durable Subscriptions........... 14-9
14.1.3.4.4 Non-Durable Subscriptions and Possible Missed Messages 14-9
14.1.3.4.5 Duplicate Messages.. 14-9
14.1.3.4.6 Variations Due to Acknowledge Modes ... 14-9
14.1.3.4.7 Reconnecting with Migrated JMS Destinations In a Cluster 14-9
14.1.4 Explicitly Disabling Automatic Failover on JMS Clients .. 14-10
14.1.4.1 Programmatically .. 14-10
14.1.4.2 Administratively.. 14-10

xii

14.1.5 Best Practices for JMS Clients Using Automatic Failover... 14-10
14.1.5.1 Always Catch exceptions.. 14-10
14.1.5.2 Use Transactions to Group Message Work ... 14-10
14.1.5.3 JMS Clients Should Always Call the close() Method ... 14-11
14.2 Programming Considerations for WebLogic Server 9.0 or Earlier Failures.................. 14-11
14.3 Manually Migrating JMS Data to a New Server.. 14-11

15 WebLogic JMS C API

15.1 What Is the WebLogic JMS C API?.. 15-1
15.2 System Requirements .. 15-2
15.3 Design Principles .. 15-2
15.3.1 Java Objects Map to Handles .. 15-2
15.3.2 Thread Utilization... 15-2
15.3.3 Exception Handling.. 15-3
15.3.4 Type Conversions ... 15-3
15.3.4.1 Integer (int) ... 15-3
15.3.4.2 Long (long) ... 15-3
15.3.4.3 Character (char) ... 15-3
15.3.4.4 String ... 15-3
15.3.5 Memory Allocation and Garbage Collection.. 15-4
15.3.6 Closing Connections... 15-4
15.3.7 Helper Functions... 15-5
15.4 Security Considerations .. 15-5
15.5 Implementation Guidelines.. 15-5
15.6 Workarounds for Client Crash Thread Detach Issue ... 15-5

A Deprecated WebLogic JMS Features

A.1 Defining Server Session Pools.. A-1
A.1.1 Step 1: Look Up Server Session Pool Factory in JNDI... A-3
A.1.2 Step 2: Create a Server Session Pool Using the Server Session Pool Factory............. A-3
A.1.2.1 Create a Server Session Pool for Queue Connection Consumers......................... A-3
A.1.2.2 Create a Server Session Pool for Topic Connection Consumers........................... A-4
A.1.3 Step 3: Create a Connection Consumer ... A-4
A.1.3.1 Create a Connection Consumer for Queues .. A-5
A.1.3.2 Create a Connection Consumer for Topics .. A-5
A.1.4 Example: Setting Up a PTP Client Server Session Pool... A-6
A.1.4.1 Step 1 ... A-7
A.1.4.2 Step 2 ... A-7
A.1.4.3 Step 3 ... A-7
A.1.5 Example: Setting Up a Pub/Sub Client Server Session Pool.. A-7
A.1.5.1 Step 1 ... A-8
A.1.5.2 Step 2 ... A-8
A.1.5.3 Step 3 ... A-9

B FAQs: Integrating Remote JMS Providers

B.1 Understanding JMS and JNDI Terminology.. B-1

xiii

B.2 Understanding Transactions .. B-2
B.3 How to Integrate with a Remote Provider ... B-4
B.4 Best Practices when Integrating with Remote Providers ... B-5
B.5 Using Foreign JMS Server Definitions .. B-6
B.6 Using EJB/Servlet JMS Resource References... B-7
B.7 Using WebLogic Store-and-Forward .. B-8
B.8 Using WebLogic JMS SAF Client... B-8
B.9 Using a Messaging Bridge .. B-9
B.10 Using Messaging Beans... B-10
B.11 Using AQ JMS .. B-11
B.12 JMS Interoperability Resources.. B-11

C How to Lookup a Destination

C.1 Use a JNDI Name... C-1
C.2 Use a Create Destination Identifier ... C-1
C.2.1 Default WebLogic CDI Syntax.. C-2
C.2.2 Custom WebLogic CDI Syntax ... C-2
C.2.3 Server Affinity When Looking Up Destinations.. C-2
C.3 Examples of Syntax Used to Lookup Destinations ... C-2
C.3.1 Non-Distributed Destinations... C-3
C.3.1.1 JNDI Syntax for Non-distributed Destinations... C-3
C.3.1.2 CDI Syntax for Non-Distributed destinations... C-3
C.3.2 Uniform Distributed Destinations.. C-3
C.3.2.1 JNDI Syntax for UDDs.. C-4
C.3.2.2 CDI Syntax for UDDs ... C-4
C.3.3 Weighted Distributed Destinations ... C-4
C.3.3.1 JNDI Syntax for WDDs... C-4
C.3.3.2 CDI Syntax for WDDs .. C-5

D Advanced Programming with Distributed Destinations Using the JMS
Destination Availability Helper API

D.1 Introduction .. D-1
D.2 Controlling DD Producer Load Balancing ... D-2
D.2.1 Basic JMS.. D-2
D.2.2 Senders to Distributed Queues (DQs) and Partitioned Distributed Topics (PDTs).. D-2
D.2.3 Senders to Replicated Distributed Topics (RDTs) ... D-3
D.3 Using the JMS Destination Availability Helper API... D-3
D.3.1 Overview.. D-3
D.3.2 General Flow ... D-3
D.3.3 Handling weblogic.jms.extension.DestinationDetail .. D-4
D.3.4 Best Practices for Consumer Containers ... D-5
D.3.4.1 When to Register and Unregister .. D-5
D.3.4.2 URL Handling.. D-5
D.3.4.3 Failure Handling.. D-5
D.3.4.4 JNDI Context Handling .. D-5
D.3.4.5 JMS Connection Handling.. D-6

xiv

D.3.5 Interoperability Guide-Lines... D-6
D.3.5.1 API Availability ... D-6
D.3.5.2 Foreign Contexts.. D-6
D.3.5.3 Destination Type Support .. D-7
D.3.5.4 Unavailable Notifications... D-7
D.3.5.5 Interoperating with Pre WebLogic Server 9.0 Distributed Queues D-7
D.3.5.6 Interoperating with Pre WebLogic Server 10.3.4.0 Distributed Topics D-7
D.3.5.7 DestinationDetail Fields ... D-8
D.3.6 Security Considerations ... D-8
D.3.6.1 WebLogic Server Security Model.. D-8
D.3.6.2 Passing Credentials Between Threads.. D-8
D.3.6.2.1 Using the Same Thread.. D-8
D.3.6.2.2 Pass as Anonymous User .. D-8
D.3.6.2.3 Pass as Anonymous User .. D-8
D.3.6.2.4 Cache and Reuse Subject from the Initial Context .. D-9
D.3.6.3 When to use Cross Domain Security .. D-10
D.3.6.4 Authentication of Users .. D-10
D.3.6.4.1 Specify Credentials for a JNDI Context .. D-10
D.3.6.4.2 Specifying Credentials for a JMS Connection .. D-10
D.3.6.4.3 Using Credentials of a Foreign JMS Server JNDI Context D-11
D.3.6.4.4 Using Credentials of a Foreign JMS Server Connection............................... D-11
D.3.6.5 Securing Destinations ... D-11
D.3.6.6 Securing Wire Data.. D-11
D.3.7 Transaction Considerations... D-11
D.4 Strategies for Uniform Distributed Queue Consumers.. D-11
D.4.1 General Strategies ... D-12
D.4.2 Best Practice for Local Server Consumers... D-12
D.5 Strategies for Subscribers on Uniform Distributed Topics .. D-13
D.5.1 One Copy per Instance... D-13
D.5.1.1 General Pattern Design Strategy for One Copy per Instance D-14
D.5.1.2 Best Practice for Local Server Consumers using One Copy per Instance D-14
D.5.2 One Copy per Application .. D-14
D.5.2.1 General Pattern Design Strategy for One Copy per Application D-15
D.5.2.2 Best Practice for Local Server Consumers using One Copy per Application... D-15

xv

Preface

This preface describes the document accessibility features and conventions used in this
guide—Programming JMS for Oracle WebLogic Server.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xvi

1

Introduction and Roadmap 1-1

1Introduction and Roadmap

This chapter describes the contents and organization of this guide—Programming JMS
for Oracle WebLogic Server.

■ Section 1.1, "Document Scope and Audience"

■ Section 1.2, "Guide to this Document"

■ Section 1.3, "Related Documentation"

■ Section 1.4, "Samples and Tutorials for the JMS Developer"

■ Section 1.5, "New and Changed JMS Features In This Release"

1.1 Document Scope and Audience
This document is a resource for software developers who want to develop and
configure applications that include WebLogic Server Java Message Service (JMS). It
also contains information that is useful for business analysts and system architects
who are evaluating WebLogic Server or considering the use of WebLogic Server JMS
for a particular application

The topics in this document are relevant during the design and development phases of
a software project. The document also includes topics that are useful in solving
application problems that are discovered during test and pre-production phases of a
project.

This document does not address production phase administration, monitoring, or
performance tuning JMS topics. For links to WebLogic Server documentation and
resources for these topics, see Section 1.3, "Related Documentation."

It is assumed that the reader is familiar with Java EE and JMS concepts. This document
emphasizes the value-added features provided by WebLogic Server JMS and key
information about how to use WebLogic Server features and facilities to get a JMS
application up and running.

1.2 Guide to this Document
■ This chapter, Chapter 1, "Introduction and Roadmap," introduces the organization

of this guide.

■ Chapter 2, "Understanding WebLogic JMS," provides an overview of the Java
Message Service. It also describes WebLogic JMS components and features.

■ Chapter 3, "Best Practices for Application Design," provides design options for
WebLogic Server JMS, application behaviors to consider during the design
process, and recommended design patterns.

Related Documentation

1-2 Programming JMS for Oracle WebLogic Server

■ Chapter 4, "Enhanced Support for Using WebLogic JMS with EJBs and Servlets,"
describes "best practice" methods that make it easier to use WebLogic JMS in
conjunction with Java EE components, like Enterprise Java Beans and Servlets.

■ Chapter 5, "Developing a Basic JMS Application," describes how to develop a
WebLogic JMS application.

■ Chapter 6, "Managing Your Applications," describes how to programmatically
manage your JMS applications using value-added WebLogic JMS features.

■ Chapter 7, "Using JMS Module Helper to Manage Applications," describes how to
programatically create and manage JMS servers, Store-and-Forward Agents, and
JMS system resources.

■ Chapter 8, "Using Multicasting with WebLogic JMS," describes how to use
Multicasting to enable the delivery of messages to a select group of hosts that
subsequently forward the messages to subscribers.

■ Chapter 9, "Using Distributed Destinations," describes how to use distributed
destinations with WebLogic JMS.

■ Chapter 10, "Using Message Unit-of-Order," describes how to use Message
Unit-of-Order to provide strict message ordering when using WebLogic JMS
queues.

■ Chapter 11, "Using Unit-of-Work Message Groups," describes how to use
Unit-of-Work Message Groups to provide groups of messages when using
WebLogic JMS.

■ Chapter 12, "Using Transactions with WebLogic JMS," describes how to use
transactions with WebLogic JMS.

■ Chapter 13, "Developing Advanced Pub/Sub Applications," describes the
advanced concepts and functionality of Uniform Distributed Topics (UDTs)
necessary to design high availability applications.

■ Chapter 14, "Recovering from a Server Failure," describes how to terminate a JMS
application gracefully if a server fails and how to migrate JMS data after server
failure.

■ Chapter 15, "WebLogic JMS C API," provides information on how to develop C
programs that interoperate with WebLogic JMS.

■ Appendix A, "Deprecated WebLogic JMS Features," describes features that have
been deprecated for this release of WebLogic Server.

■ Appendix B, "FAQs: Integrating Remote JMS Providers," provides answers to
frequently asked questions about how to integrate WebLogic Server with remote
JMS providers.

■ Appendix C, "How to Lookup a Destination," provides a summary of methods
you can use to lookup a destination.

■ Appendix D, "Advanced Programming with Distributed Destinations Using the
JMS Destination Availability Helper API," provides a means for getting
notifications when destinations become available or unavailable.

1.3 Related Documentation
This document contains JMS-specific design and development information.

For comprehensive guidelines for developing, deploying, and monitoring WebLogic
Server applications, see the following documents:

New and Changed JMS Features In This Release

Introduction and Roadmap 1-3

■ Configuring and Managing JMS for Oracle WebLogic Server for information about
configuring and managing JMS resources.

■ Configuring and Managing Store-and-Forward for Oracle WebLogic Server for
information about the benefits and usage of the Store-and-Forward service with
WebLogic JMS.

■ "Using the WebLogic Persistent Store" for information about the benefits and
usage of the system-wide WebLogic Persistent Store.

■ Deploying Applications to Oracle WebLogic Server is the primary source of
information about deploying WebLogic Server applications.

1.4 Samples and Tutorials for the JMS Developer
In addition to this document, Oracle provides a variety of code samples and tutorials
for JMS developers. The examples and tutorials illustrate WebLogic Server JMS in
action, and provide practical instructions on how to perform key JMS development
tasks.

Oracle recommends that you run some or all of the JMS examples before developing
your own JMS applications.

1.4.1 Avitek Medical Records Application (MedRec) and Tutorials
MedRec is an end-to-end sample Java EE application shipped with WebLogic Server
that simulates an independent, centralized medical record management system. The
MedRec application provides a framework for patients, doctors, and administrators to
manage patient data using a variety of different clients.

MedRec demonstrates WebLogic Server and Java EE features, and highlights
Oracle-recommended best practices. MedRec is included in the WebLogic Server
distribution, and can be accessed from the Start menu on Windows machines. For
Linux and other platforms, you can start MedRec from the WL_
HOME\samples\domains\medrec directory, where WL_HOME is the top-level
installation directory for WebLogic Platform.

MedRec includes a service tier comprised primarily of Enterprise Java Beans (EJBs)
that work together to process requests from web applications, web services, and
workflow applications, and future client applications. The application includes
message-driven, stateless session, stateful session, and entity EJBs.

1.5 New and Changed JMS Features In This Release
This release includes the following new and changed features:

■ Weighted Distributed Destinations are deprecated in WebLogic Server 10.3.4.0.
Oracle recommends using Uniform Distributed Destinations.

■ Advanced WebLogic JMS publish and subscribe (pub/sub) concepts and
functionality of Uniform Distributed Topics (UDTs) necessary to design high
availability applications. See Section 13, "Developing Advanced Pub/Sub
Applications."

■ The JMSDestinationAvailabilityHelper API provides a means for getting
notifications when destinations become available or unavailable. These APIs are
for advanced use cases only. Use this helper only when standard approaches for
solving WebLogic distributed consumer problems have been exhausted. See

New and Changed JMS Features In This Release

1-4 Programming JMS for Oracle WebLogic Server

"Using the JMS Destination Availability Helper APIs with Distributed Queues" in
Programming JMS for Oracle WebLogic Server.

For a comprehensive listing of the new WebLogic Server features introduced in this
release, see What's New in Oracle WebLogic Server.

2

Understanding WebLogic JMS 2-1

2Understanding WebLogic JMS

This chapter reviews the different Java Message Service (JMS) concepts and features,
and describe how they work with other application objects and WebLogic Server.

It is assumed the reader is familiar with Java programming and JMS 1.1 concepts and
features.

■ Section 2.1, "Overview of the Java Message Service and WebLogic JMS"

■ Section 2.2, "Understanding the Messaging Models"

■ Section 2.3, "Value-Added Public JMS API Extensions"

■ Section 2.4, "Understanding the JMS API"

2.1 Overview of the Java Message Service and WebLogic JMS
WebLogic JMS is an enterprise-class messaging system that is tightly integrated into
the WebLogic Server platform. It fully supports the JMS Specification, described at
http://www.oracle.com/technetwork/java/jms/index.html, and also
provides numerous "WebLogic JMS Extensions" that go above and beyond the
standard JMS APIs.

2.1.1 What Is the Java Message Service?
An enterprise messaging system enables applications to communicate with one
another through the exchange of messages. A message is a request, report, and/or
event that contains information needed to coordinate communication between
different applications. A message provides a level of abstraction, allowing you to
separate the details about the destination system from the application code.

The Java Message Service (JMS) is a standard API for accessing enterprise messaging
systems. Specifically, JMS:

■ Enables Java applications sharing a messaging system to exchange messages

■ Simplifies application development by providing a standard interface for creating,
sending, and receiving messages

The following figure illustrates WebLogic JMS messaging.

Overview of the Java Message Service and WebLogic JMS

2-2 Programming JMS for Oracle WebLogic Server

Figure 2–1 WebLogic JMS Messaging

As illustrated in the figure, WebLogic JMS accepts messages from producer applications
and delivers them to consumer applications.

2.1.2 Implementation of Java Specifications
WebLogic Server is compliant with the following Java specifications.

2.1.2.1 Java EE Specification
WebLogic Server is compliant with the Java Platform, Enterprise Edition (Java EE)
Version 5.0 specification, described at
http://download.oracle.com/javaee/5/api/.

2.1.2.2 JMS Specification
WebLogic Server is fully compliant with the JMS 1.1 Specification, at
http://www.oracle.com/technetwork/java/jms/index.html, and can be
used in production.

2.1.3 WebLogic JMS Architecture
The following figure illustrates the WebLogic JMS architecture.

Figure 2–2 WebLogic JMS Architecture

Understanding the Messaging Models

Understanding WebLogic JMS 2-3

2.1.3.1 Major Components
The major components of the WebLogic JMS Server architecture, as illustrated in
Figure 2–2, include:

■ JMS servers that can host a defined set of modules and any associated persistent
storage that reside on a WebLogic Server instance.

■ JMS modules contains configuration resources (such as queues, topics, and
connections factories) and are defined by XML documents that conform to the
http://xmlns.oracle.com/weblogic/weblogic-jms/1.2/weblogic-jm
s.xsd schema.

■ Client JMS applications that either produce messages to destinations or consume
messages from destinations.

■ JNDI (Java Naming and Directory Interface), which provides a resource lookup
facility. JMS resources such as connection factories and destinations are configured
with a JNDI name. The runtime implementations of these resources are then
bound into JNDI using the given names.

■ WebLogic persistent storage (file store or JDBC-accessible) for storing persistent
message data.

2.2 Understanding the Messaging Models
JMS supports two messaging models: point-to-point (PTP) and publish/subscribe
(pub/sub). The messaging models are very similar, except for the following
differences:

■ PTP messaging model enables the delivery of a message to exactly one recipient.

■ Pub/sub messaging model enables the delivery of a message to multiple
recipients.

Each model is implemented with classes that extend common base classes. For
example, the PTP class javax.jms.Queue (described at
http://download.oracle.com/javaee/5/api/javax/jms/Queue.html) and
the pub/sub class javax.jms.Topic (described at
http://download.oracle.com/javaee/5/api/javax/jms/Topic.html)
both extend the class javax.jms.Destination (described at
http://download.oracle.com/javaee/5/api/javax/jms/Destination.ht
ml).

Each message model is described in detail in the following sections.

2.2.1 Point-to-Point Messaging
The point-to-point (PTP) messaging model enables one application to send a message
to another. PTP messaging applications send and receive messages using named
queues. A queue sender (producer) sends a message to a specific queue. A queue receiver
(consumer) receives messages from a specific queue.

The following figure illustrates PTP messaging.

Note: The terms producer and consumer are used as generic
descriptions of applications that send and receive messages,
respectively, in either messaging model. For each specific messaging
model, however, unique terms specific to that model are used when
referring to producers and consumers.

Understanding the Messaging Models

2-4 Programming JMS for Oracle WebLogic Server

Figure 2–3 Point-to-Point (PTP) Messaging

Multiple queue senders and queue receivers can be associated with a single queue, but
an individual message can be delivered to only one queue receiver.

If multiple queue receivers are listening for messages on a queue, WebLogic JMS
determines which one will receive the next message on a first come, first serve basis. If
no queue receivers are listening on the queue, messages remain in the queue until a
queue receiver attaches to the queue.

2.2.2 Publish/Subscribe Messaging
The publish/subscribe (pub/sub) messaging model enables an application to send a
message to multiple applications. Pub/sub messaging applications send and receive
messages by subscribing to a topic. A topic publisher (producer) sends messages to a
specific topic. A topic subscriber (consumer) retrieves messages from a specific topic.

The following figure illustrates pub/sub messaging.

Figure 2–4 Publish/Subscribe (Pub/Sub) Messaging

Unlike with the PTP messaging model, the pub/sub messaging model allows multiple
topic subscribers to receive the same message. JMS retains the message until all topic
subscribers have received it.

The Pub/Sub messaging model supports durable subscribers, allowing you to assign a
name to a topic subscriber and associate it with a user or application. For more
information about durable subscribers, see Section 6.7, "Setting Up Durable
Subscriptions."

2.2.3 Message Persistence
As per the "Message Delivery Mode" section of the JMS Specification, described at
http://www.oracle.com/technetwork/java/jms/index.html, messages can
be specified as persistent or non-persistent:

Value-Added Public JMS API Extensions

Understanding WebLogic JMS 2-5

■ A persistent message is guaranteed to be delivered once-and-only-once. The
message cannot be lost due to a JMS provider failure and it must not be delivered
twice. It is not considered sent until it has been safely written to a file or database.
WebLogic JMS writes persistent messages to a WebLogic persistent store
(disk-base file or JDBC-accessible database) that is optionally targeted by each JMS
server during configuration.

■ Non-persistent messages are not stored. They are guaranteed to be delivered
at-most-once, unless there is a JMS provider failure, in which case messages may be
lost, and must not be delivered twice. If a connection is closed or recovered, all
non-persistent messages that have not yet been acknowledged will be redelivered.
Once a non-persistent message is acknowledged, it will not be redelivered.

For information about using the system-wide, WebLogic Persistent Store, see "Using
the WebLogic Persistent Store" in Configuring Server Environments for Oracle WebLogic
Server.

2.3 Value-Added Public JMS API Extensions
WebLogic JMS is tightly integrated into the WebLogic Server platform, allowing you to
build highly-secure Java EE applications that can be easily monitored and
administered through the WebLogic Server console. In addition to fully supporting XA
transactions, WebLogic JMS also features high availability through its clustering and
service migration features, while also providing seamless interoperability with other
versions of WebLogic Server and third-party messaging providers.

For a detailed listing of these value-added features, see "WebLogic Server
Value-Added JMS Features" in Configuring and Managing JMS for Oracle WebLogic
Server.

2.3.1 WebLogic Server Value-Added JMS Features
In addition to the standard JMS APIs specified by the JMS Specification, WebLogic
Server provides numerous weblogic.jms.extensions APIs, which includes the
classes and methods described in the following table.

Table 2–1 WebLogic JMS Public API Extensions

Interface/Class Function

ConsumerInfo,

DestinationInfo

Provides consumer and destination information to
management clients in CompositeData format.

JMSMessageFactoryImpl,

WLMessageFactory

Provides a factory and methods to:

■ Create JMS messages

■ Create JMS bytes messages

■ Create JMS map messages

■ Creating JMS object messages

■ Creating JMS stream messages

■ Creating JMS text messages

■ Creating JMS XML messages

JMSMessageInfo Provide browsing and message manipulation using JMX.

JMSModuleHelper,

JMSNamedEntityModifier

Monitors JMS runtime MBeans and manages JMS Module
configuration entities in a JMS module.

Understanding the JMS API

2-6 Programming JMS for Oracle WebLogic Server

This API also supports NO_ACKNOWLEDGE and MULTICAST_NO_ACKNOWLEDGE
acknowledge modes, and extended exceptions, including throwing an exception:

■ To the session exception listener (if set), when one of its consumers has been closed
by the server as a result of a server failure, or administrative intervention.

■ From a multicast session when the number of messages received by the session,
but not yet delivered to the message listener, exceeds the maximum number of
messages allowed for that session.

■ From a multicast consumer when it detects a sequence gap (message received out
of sequence) in the data stream.

2.4 Understanding the JMS API
To create a JMS applications, use the javax.jms API at
http://download.oracle.com/javaee/5/api/javax/jms/package-summar
y.html. The API allows you to create the class objects necessary to connect to the JMS,
and send and receive messages. JMS class interfaces are created as subclasses to
provide queue- and topic-specific versions of the common parent classes.

The following table lists the JMS classes described in more detail in subsequent
sections. For a complete description of all JMS classes, see the javax.jms, at

JMSRuntimeHelper Monitors JMS runtime JMX MBeans.

MDBTransaction Associates a message delivered to a MDB (message-driven
bean) with a transaction.

WLDestination Determines if a destination is a queue or a topic.

WLMessage Sets a delivery time for messages, redelivery limits, and
send timeouts.

WLMessageProducer Sets a message delivery times for producers and
Unit-of-Order names.

WLQueueSession,

WLSession,

WLTopicSession

Provides additional fields and methods that are not
supported by javax.jms.QueueSession,
javax.jms.Session, and javax.jms.TopicSession.

XMLMessage Creates XML messages.

Schedule Sets a scheduled delivery times for messages.

JMSHelper Monitors JMS runtime MBeans.

Deprecated in this release of WebLogic Server. Replaced by
JMSModuleHelper.

ServerSessionPoolFactory,

ServerSessionPoolListener

Provides interfaces for creating server session pools and
message listeners.

Note: Session pool configuration objects are deprecated for
this release of WebLogic Server. They are not a required
part of the Java EE specification, do not support JTA user
transactions, and are largely superseded by
message-driven beans (MDBs), which are a required part of
Java EE. For more information on designing MDBs, see
Programming Message-Driven Beans for Oracle WebLogic
Server.

Table 2–1 (Cont.) WebLogic JMS Public API Extensions

Interface/Class Function

Understanding the JMS API

Understanding WebLogic JMS 2-7

http://download.oracle.com/javaee/5/api/javax/jms/package-summar
y.html, or the weblogic.jms.extensions Javadoc.

For information about configuring JMS resources, see "Configuring Basic JMS System
Resources" in Configuring and Managing JMS for Oracle WebLogic Server. The procedure
for setting up a JMS application is presented in Section 5.2, "Setting Up a JMS
Application."

2.4.1 ConnectionFactory
A ConnectionFactory encapsulates connection configuration information, and
enables JMS applications to create a Connection (see Section 2.4.2, "Connection"). A
connection factory supports concurrent use, enabling multiple threads to access the
object simultaneously. You can use the preconfigured default connection factories
provided by WebLogic JMS, or you can configure one or more connection factories to
create connections with predefined attributes that suit your application.

Table 2–2 WebLogic JMS Classes

JMS Class Description

Section 2.4.1, "ConnectionFactory" Encapsulates connection configuration information.
A connection factory is used to create connections.
You look up a connection factory using JNDI.

Section 2.4.2, "Connection" Represents an open communication channel to the
messaging system. A connection is used to create
sessions.

Section 2.4.3, "Session" Defines a serial order for the messages produced
and consumed.

Section 2.4.4, "Destination" Identifies a queue or topic, encapsulating the
address of a specific provider. Queue and topic
destinations manage the messages delivered from
the PTP and pub/sub messaging models,
respectively.

Section 2.4.5, "MessageProducer and
MessageConsumer"

Provides the interface for sending and receiving
messages. Message producers send messages to a
queue or topic. Message consumers receive
messages from a queue or topic.

Section 2.4.6, "Message" Encapsulates information to be sent or received.

Section 2.4.7,
"ServerSessionPoolFactory"1

1 Supports an optional JMS interface for processing multiple messages concurrently.

Encapsulates configuration information for a
server-managed pool of message consumers. The
server session pool factory is used to create server
session pools.

Section 2.4.8, "ServerSessionPool"2

2 Supports an optional JMS interface for processing multiple messages concurrently.

Provides a pool of server sessions that can be used
to process messages concurrently for connection
consumers.

Section 2.4.9, "ServerSession"3

3 Supports an optional JMS interface for processing multiple messages concurrently.

Associates a thread with a JMS session.

Section 2.4.10, "ConnectionConsumer"4

4 Supports an optional JMS interface for processing multiple messages concurrently.

Specifies a consumer that retrieves server sessions to
process messages concurrently.

Understanding the JMS API

2-8 Programming JMS for Oracle WebLogic Server

2.4.1.1 Using the Default Connection Factories
WebLogic JMS defines two default connection factories, which you can look up using
the following JNDI names:

■ weblogic.jms.ConnectionFactory

■ weblogic.jms.XAConnectionFactory

You only need to create a user-defined a connection factory if the settings of the
default factories are not suitable for your application. The main difference between the
preconfigured settings for the default connection factories is the default value for the
"XA Connection Factory Enabled" attribute which is used to enable JTA transactions,
as shown in the following table.

An XA factory is required for JMS applications to use JTA user-transactions, but is not
required for transacted sessions. For more information about using transactions with
WebLogic JMS, see Chapter 12, "Using Transactions with WebLogic JMS."

All other default factory configuration attributes are set to the same default values as a
user-defined connection factory.

For more information about the XA Connection Factory Enabled attribute, and to see
the default values for the other connection factory attributes, see "JMS Connection
Factory: Configuration: Transactions" in the Oracle WebLogic Server Administration
Console Help.

Another distinction when using the default connection factories is that you have no
control over targeting the WebLogic Server instances where the connection factory
may be deployed. However, you can disable the default connection factories on a
per-server basis.

For more information on enabling or disabling the default connection factories, see
"Servers: Configuration: Services" in the Oracle WebLogic Server Administration Console
Help.

To deploy a connection factory on specific independent servers, on specific servers
within a cluster, or on an entire cluster, you must configure a new connection factory
and specify the appropriate target, as explained in "Connection Factory Configuration"
in Configuring and Managing JMS for Oracle WebLogic Server.

2.4.1.2 Configuring and Deploying Connection Factories
A system administrator can define and configure one or more connection factories to
create connections with predefined attributes and WebLogic Server will add them to
the JNDI space during startup. The application then retrieves a connection factory
using WebLogic JNDI. Any user-defined connection factories must be uniquely
named.

Table 2–3 XA Transaction(al) Settings for Default Connection Factories

Default Connection Factory. . . XA Connection Factory Enabled setting is. . .

weblogic.jms.ConnectionFactory False

weblogic.jms.XAConnectionFactory True

Note: For backwards compatibility, WebLogic JMS still supports two
deprecated default connection factories. The JNDI names for these
factories are: javax.jms.QueueConnectionFactory and
javax.jms.TopicConnectionFactory.

Understanding the JMS API

Understanding WebLogic JMS 2-9

For information on configuring connection factories, see "Configure connection
factories" in the Oracle WebLogic Server Administration Console Help.

A system administrator establishes cluster-wide, transparent access to JMS
destinations from any server in the cluster by targeting to the cluster or by targeting to
one or more server instances in the cluster. This way, each connection factory can be
deployed on multiple WebLogic Server instances. For more information on JMS
clustering, refer to "Configuring Advanced WebLogic JMS Resources" in Configuring
and Managing JMS for Oracle WebLogic Server.

2.4.1.3 The ConnectionFactory Class
The ConnectionFactory class does not define methods; however, its subclasses
define methods for the respective messaging models. A connection factory supports
concurrent use, enabling multiple threads to access the object simultaneously.

The following table describes the ConnectionFactory subclasses.

To learn how to use the ConnectionFactory class within an application, see
Chapter 5, "Developing a Basic JMS Application," or the javax.jms.ConnectionFactory
Javadoc at
http://download.oracle.com/javaee/5/api/javax/jms/ConnectionFact
ory.html.

2.4.2 Connection
A Connection represents an open communication channel between an application
and the messaging system, and is used to create a Session (see Section 2.4.3,
"Session") for producing and consuming messages. A connection creates server-side
and client-side objects that manage the messaging activity between an application and
JMS. A connection may also provide user authentication.

A Connection is created by a ConnectionFactory (see Section 2.4.1,
"ConnectionFactory"), obtained through a JNDI lookup.

Due to the resource overhead associated with authenticating users and setting up
communications, most applications establish a single connection for all messaging. In
the WebLogic Server, JMS traffic is multiplexed with other WebLogic services on the
client connection to the server. No additional TCP/IP connections are created for JMS.
Servlets and other server-side objects may also obtain JMS Connections.

By default, a connection is created in stopped mode. For information about how and
when to start a stopped connection, see Section 6.3.3, "Starting, Stopping, and Closing
a Connection."

Note: For this release, you can use the JMS Version 1.1 specification
connection factories or you can choose to use the subclasses.

Table 2–4 ConnectionFactory Subclasses

Subclass. . . In Messaging Model. . . Is Used to Create. . .

QueueConnectionFactory PTP QueueConnection to a JMS PTP
provider.

TopicConnectionFactory Pub/Sub TopicConnection to a JMS
Pub/Sub provider.

Understanding the JMS API

2-10 Programming JMS for Oracle WebLogic Server

Connections support concurrent use, enabling multiple threads to access the object
simultaneously.

The following table describes the Connection subclasses.

To learn how to use the Connection class within an application, see Chapter 5,
"Developing a Basic JMS Application," or the javax.jms.Connection Javadoc at
http://download.oracle.com/javaee/5/api/javax/jms/Connection.htm
l.

2.4.3 Session
A Session object defines a serial order for the messages produced and consumed, and
can create multiple message producers and message consumers. The same thread can
be used for producing and consuming messages. If an application wants to have a
separate thread for producing and consuming messages, the application should create
a separate session for each function.

A Session is created by a Connection (see Section 2.4.2, "Connection").

2.4.3.1 WebLogic JMS Session Guidelines
The JMS 1.1 Specification, at
http://www.oracle.com/technetwork/java/jms/index.html, allows for a
generic session to have a MessageConsumer for any type of Destination object.
However, WebLogic JMS does not support having both types of MessageConsumer
(QueueConsumer and TopicSubscriber) for a single session. In addition, having
multiple consumers for a single session is not a common practice. The following
commonly-used scenarios are supported, however:

■ Using a single session with both a QueueSender and a TopicSubscriber (and
vice-versa: QueueConsumer and TopicPublisher).

■ Multiple MessageProducers of any type.

2.4.3.2 Session Subclasses
The following table describes the Session subclasses.

Note: For this release, you can use the JMS Version 1.1 specification
connection objects or you can choose to use the subclasses.

Table 2–5 Connection Subclasses

Subclass. . .
In Messaging
Model. . . Is Used to Create. . .

QueueConnection PTP QueueSessions, and consists of a connection to a
JMS PTP provider created by
QueueConnectionFactory.

TopicConnection Pub/sub TopicSessions, and consists of a connection to a
JMS pub/sub provider created by
TopicConnectionFactory.

Note: A session and its message producers and consumers can only
be accessed by one thread at a time. Their behavior is undefined if
multiple threads access them simultaneously.

Understanding the JMS API

Understanding WebLogic JMS 2-11

To learn how to use the Session class within an application, see Chapter 5, "Developing
a Basic JMS Application," or the javax.jms.Session, at
http://download.oracle.com/javaee/5/api/javax/jms/Session.html,
and weblogic.jms.extensions.WLSession javadocs.

2.4.3.3 Non-Transacted Session
In a non-transacted session, the application creating the session selects one of the five
acknowledge modes defined in the following table.

Table 2–6 Session Subclasses

Subclass. . . In Messaging Model. . . Provides a Context for. . .

QueueSession PTP Producing and consuming messages for a JMS
PTP provider. Created by QueueConnection.

TopicSession Pub/sub Producing and consuming messages for a JMS
pub/sub provider. Created by TopicConnection.

Table 2–7 Acknowledge Modes Used for Non-Transacted Sessions

Acknowledge Mode Description

AUTO_ACKNOWLEDGE The Session object acknowledges receipt of a message once
the receiving application method has returned from
processing it.

CLIENT_ACKNOWLEDGE The Session object relies on the application to call an
acknowledge method on a received message. Once the
method is called, the session acknowledges all messages
received since the last acknowledge.

This mode allows an application to receive, process, and
acknowledge a batch of messages with one call.

Note: In the Administration Console, if the Acknowledge
Policy attribute on the connection factory is set to Previous,
but you want to acknowledge all received messages for a
given session, then use the last message to invoke the
acknowledge method.

For more information on the Acknowledge Policy attribute,
see "JMS Connection Factory: Configuration: General" in the
Oracle WebLogic Server Administration Console Help.

DUPS_OK_ACKNOWLEDGE The Session object acknowledges receipt of a message once
the receiving application method has returned from
processing it; duplicate acknowledges are permitted.

This mode is most efficient in terms of resource usage.

Note: You should avoid using this mode if your application
cannot handle duplicate messages. Duplicate messages may
be sent if an initial attempt to deliver a message fails.

Understanding the JMS API

2-12 Programming JMS for Oracle WebLogic Server

2.4.3.4 Transacted Session
In a transacted session, only one transaction is active at any given time. Any number
of messages sent or received during a transaction are treated as an atomic unit.

When you create a transacted session, the acknowledge mode is ignored. When an
application commits a transaction, all the messages that the application received
during the transaction are acknowledged by the messaging system and messages it
sent are accepted for delivery. If an application rolls back a transaction, the messages
that the application received during the transaction are not acknowledged and
messages it sent are discarded.

JMS can participate in distributed transactions with other Java services, such as EJB,
that use the Java Transaction API (JTA). Transacted sessions do not support this
capability as the transaction is restricted to accessing the messages associated with that
session. For more information about using JMS with JTA, see Section 12.3, "Using JTA
User Transactions."

2.4.4 Destination
A Destination object can be either a queue or topic, encapsulating the address
syntax for a specific provider. The JMS specification does not define a standard
address syntax due to the variations in syntax between providers.

Similar to a connection factory, an administrator defines and configures the destination
and the WebLogic Server adds it to the JNDI space during startup. Applications can
also create temporary destinations that exist only for the duration of the JMS
connection in which they are created.

NO_ACKNOWLEDGE No acknowledge is required. Messages sent to a NO_
ACKNOWLEDGE session are immediately deleted from the
server. Messages received in this mode are not recovered, and
as a result messages may be lost and/or duplicate message
may be delivered if an initial attempt to deliver a message
fails.

This mode is supported for applications that do not require
the quality of service provided by session acknowledge, and
that do not want to incur the associated overhead.

Note: You should avoid using this mode if your application
cannot handle lost or duplicate messages. Duplicate messages
may be sent if an initial attempt to deliver a message fails.

MULTICAST_NO_ACKNOWLEDGE Multicast mode with no acknowledge required.

Messages sent to a MULTICAST_NO_ACKNOWLEDGE session
share the same characteristics as NO_ACKNOWLEDGE mode,
described previously.

This mode is supported for applications that want to support
multicasting, and that do not require the quality of service
provided by session acknowledge. For more information on
multicasting, see Chapter 8, "Using Multicasting with
WebLogic JMS."

Note: Use only with topics. You should avoid using this mode
if your application cannot handle lost or duplicate messages.
Duplicate messages may be sent if an initial attempt to
deliver a message fails.

Table 2–7 (Cont.) Acknowledge Modes Used for Non-Transacted Sessions

Acknowledge Mode Description

Understanding the JMS API

Understanding WebLogic JMS 2-13

On the client side, Queue and Topic objects are handles to the object on the server.
Their methods only return their names. To access them for messaging, you create
message producers and consumers that attach to them.

A destination supports concurrent use, enabling multiple threads to access the object
simultaneously. JMS Queues and Topics extend javax.jms.Destination,
described at
http://download.oracle.com/javaee/5/api/javax/jms/Destination.ht
ml.

The following table describes the Destination subclasses.

To learn how to use the Destination class within an application, see Chapter 5,
"Developing a Basic JMS Application," or the javax.jms.Destination Javadoc at
http://download.oracle.com/javaee/5/api/javax/jms/Destination.ht
ml.

2.4.4.1 Distributed Destinations
A distributed destination resource is a single set of destinations (queues or topics) that
are accessible as a single, logical destination to a client (for example, a distributed topic

Note: Administrators can also configure a distributed destination,
which is a single set of destinations (queues or topics) that are
accessible as a single, logical destination to a client. For more
information, see Section 2.4.4.1, "Distributed Destinations."

Note: For this release, you can use the JMS Version 1.1 specification
destination objects or you can choose to use the subclasses.

Table 2–8 Destination Subclasses

Subclass
Messaging
Model Manages Messages for

Queue PTP JMS point-to-point provider.

TemporaryQueue PTP JMS point-to-point provider, and exists for the
duration of the JMS connection in which the messages
are created. A temporary queue can be consumed only
by the queue connection that created it.

Topic Pub/sub JMS pub/sub provider.

TemporaryTopic Pub/sub JMS pub/sub provider, and exists for the duration of
the JMS connection in which the messages are created.
A temporary topic can be consumed only by the topic
connection that created it.

Note: An application has the option of browsing queues by creating
a QueueBrowser object in its queue session. This object produces a
snapshot of the messages in the queue at the time the queue browser
is created. The application can view the messages in the queue, but the
messages are not considered read and are not removed from the
queue. For more information about browsing queues, see Section 6.8,
"Setting and Browsing Message Header and Property Fields."

Understanding the JMS API

2-14 Programming JMS for Oracle WebLogic Server

has its own JNDI name). The members of the set are typically distributed across
multiple servers within a cluster, with each member belonging to a separate JMS
server. Applications that use a distributed destination are more highly available than
applications that use standalone destinations because WebLogic JMS provides load
balancing and failover for the members of a distributed destination in a cluster.

■ For more information on using a distributed destination with your applications,
see Chapter 9, "Using Distributed Destinations."

■ For instructions on configuring a distributed queue destination, see "Configure
uniform distributed queues" in the Oracle WebLogic Server Administration Console
Help.

■ For instructions on configuring a distributed topic destination, see "Configure
uniform distributed topics" in the Oracle WebLogic Server Administration Console
Help.

2.4.5 MessageProducer and MessageConsumer
A MessageProducer sends messages to a queue or topic. A MessageConsumer
receives messages from a queue or topic. Message producers and consumers operate
independently of one another. Message producers generate and send messages
regardless of whether a message consumer has been created and is waiting for a
message, and vice versa.

A Session (see Section 2.4.3, "Session") creates the MessageProducers and
MessageConsumers that are attached to queues and topics.

The message sender and receiver objects are created as subclasses of the
MessageProducer and MessageConsumer classes.

The following table describes the MessageProducer and MessageConsumer
subclasses.

The PTP model, as shown in the figure Figure 2–3, allows multiple sessions to receive
messages from the same queue. However, a message can only be delivered to one
queue receiver. When there are multiple queue receivers, WebLogic JMS defines the
next queue receiver that will receive a message on a first-come, first-serve basis.

The pub/sub model, as shown in the figure Figure 2–4, allows messages to be
delivered to multiple topic subscribers. Topic subscribers can be durable or
non-durable, as described in Section 6.7, "Setting Up Durable Subscriptions."

Note: For this release, you can use the JMS Version 1.1 specification
message producer and consumer objects or you can choose to use the
subclasses.

Table 2–9 MessageProducer and MessageConsumer Subclasses

Subclass In Messaging Model Performs the Following Function

QueueSender PTP Sends messages for a JMS point-to-point
provider.

QueueReceiver PTP Receives messages for a JMS point-to-point
provider.

TopicPublisher Pub/sub Sends messages for a JMS pub/sub provider.

TopicSubscriber Pub/sub Receives messages for a JMS pub/sub provider.

Understanding the JMS API

Understanding WebLogic JMS 2-15

An application can use the same JMS connection to both publish and subscribe to a
topic. Because topic messages can be delivered to all subscribers, an application can
receive messages it has published itself. To prevent clients from receiving messages
that they publish, a JMS application can set a noLocal attribute on the topic
subscriber, as described in Section 5.2.5, "Step 5: Create Message Producers and
Message Consumers."

To learn how to use the MessageProducer and MessageConsumer classes within
an application, see Section 5.2, "Setting Up a JMS Application," or the
javax.jms.MessageProducer (at
http://download.oracle.com/javaee/5/api/javax/jms/MessageProduce
r.html) and javax.jms.MessageConsumer (at
http://download.oracle.com/javaee/5/api/javax/jms/MessageConsume
r.html) Javadoc.

2.4.6 Message
A Message encapsulates the information exchanged by applications. This information
includes three components:

■ Section 2.4.6.1, "Message Header Fields"

■ Section 2.4.6.2, "Message Property Fields"

■ Section 2.4.6.3, "Message Body"

2.4.6.1 Message Header Fields
Every JMS message contains a standard set of header fields that is included by default
and available to message consumers. Some fields can be set by the message producers.

For information about setting message header fields, see Section 6.8, "Setting and
Browsing Message Header and Property Fields," or to the javax.jms.Message
Javadoc, at
http://download.oracle.com/javaee/5/api/javax/jms/Message.html.

The following table describes the fields in the message headers and shows how values
are defined for each field.

Understanding the JMS API

2-16 Programming JMS for Oracle WebLogic Server

Table 2–10 Message Header Fields

Field Description Defined by

JMSCorrelationID Specifies one of the following: a WebLogic JMSMessageID (described
later in this table), an application-specific string, or a byte[] array. The
JMSCorrelationID is used to correlate messages and is set directly on
the message by the application before send().

There are two common applications for this field.

The first application is to link messages by setting up a
request/response scheme, as follows:

1. When an application sends a message, it stores the JMSMessageID
value assigned to it.

2. When an application receives the message, it copies the
JMSMessageID into the JMSCorrelationID field of a response
message that it sends back to the sending application.

The second application is to use the JMSCorrelationID field to carry
any String you choose, enabling a series of messages to be linked with
some application-determined value.

Application

JMSDeliveryMode Specifies PERSISTENT or NON_PERSISTENT messaging. This field is set
on the producer or as parameter sent by the application before send().

When a persistent message is sent, it is stored in the WebLogic Persistent
Store. The send() operation is not considered successful until delivery
of the message can be guaranteed. A persistent message is guaranteed to
be delivered at least once.

WebLogic JMS does not store non-persistent messages in the persistent
store. This mode of operation provides the lowest overhead. They are
guaranteed to be delivered at least once unless there is a system failure,
in which case messages may be lost. If a connection is closed or
recovered, all non-persistent messages that have not yet been
acknowledged will be redelivered. Once a non-persistent message is
acknowledged, it will not be redelivered.

This value is overwritten by a call to producer.send(), setting this
value directly on the message has no effect. The values set by the
producer can be queried using the message supplied to
producer.send() or when the message is received by a consumer.

send()
method

JMSDeliveryTime Defines the earliest absolute time at which a message can be delivered to
a consumer. This field is set by the application before send() and
depends on timeToDeliver, which is set on the producer.

This field can be used to sort messages in a destination and to select
messages. For purposes of data type conversion, the
JMSDeliveryTime is a long integer.

send()
method

JMSDestination Specifies the destination (queue or topic) to which the message is to be
delivered. This field is set when creating producer or as parameter sent
by the application before send().

This value is overwritten by a call to producer.send(), setting this
value directly on the message has no effect. The values set by the
producer can be queried using the message supplied to
producer.send() or when the message is received by a consumer.
When a message is received, its destination value must be equivalent to
the value assigned when it was sent.

send()
method

Understanding the JMS API

Understanding WebLogic JMS 2-17

JMSExpiration Specifies the expiration, or time-to-live value, for a message. This field is
set by the application before send(). Depends on timeToLive, which
is set on the producer or as a parameter sent by the application to
send().

WebLogic JMS calculates the JMSExpiration value as the sum of the
application's time-to-live and the current GMT. If the application
specifies time-to-live as 0, JMSExpiration is set to 0, which means the
message never expires.

WebLogic JMS removes expired messages from the system to prevent
their delivery.

send()
method

JMSMessageID Contains a string value that uniquely identifies each message sent by a
JMS Provider.This field is set internally by send().

All JMSMessageIDs start with an ID: prefix.

This value is overwritten by a call to producer.send(), setting this
value directly on the message has no effect. The values set by the
producer can be queried using the message supplied to
producer.send() or when the message is received by a consumer.
When the message is received, it contains a provider-assigned value.

send()
method

JMSPriority Specifies the priority level. This field is set on the producer or as
parameter sent by the application before send().

JMS defines ten priority levels, 0 to 9, 0 being the lowest priority. Levels
0-4 indicate gradations of normal priority, and level 5-9 indicate
gradations of expedited priority.

When the message is received, it contains the value specified by the
method sending the message.

You can sort destinations by priority by configuring a destination key, as
described in "Configure destination keys" in the Oracle WebLogic Server
Administration Console Help.

send()
method

JMSRedelivered Specifies a flag set when a message is redelivered because no
acknowledge was received. This flag is of interest to a receiving
application.

If set, the flag indicates that JMS may have delivered the message
previously because one of the following is true:

■ The application has already received the message, but did not
acknowledge it.

■ The session's recover() method was called to restart the session
beginning after the last acknowledged message. For more
information about the recover() method, see Section 5.4.3,
"Recovering Received Messages."

WebLogic JMS

Table 2–10 (Cont.) Message Header Fields

Field Description Defined by

Understanding the JMS API

2-18 Programming JMS for Oracle WebLogic Server

2.4.6.2 Message Property Fields
The property fields of a message contain header fields added by the sending
application. The properties are standard Java name/value pairs. Property names must
conform to the message selector syntax specifications defined in the
javax.jms.Message Javadoc, at
http://download.oracle.com/javaee/5/api/javax/jms/Message.html.
The following values are valid: boolean, byte, double, float, int, long, short, and String.

WebLogic Server supports the use of the following JMS (JMSX) defined properties as
defined in the JMS 1.1. Specification, at
http://www.oracle.com/technetwork/java/jms/index.html:

Although message property fields may be used for application-specific purposes, JMS
provides them primarily for use in message selectors. You determine how the JMS
properties are used in your environment. You may choose to include them in some
messages and omit them from others depending upon your processing criteria. For
more information, see:

■ Section 6.8, "Setting and Browsing Message Header and Property Fields"

■ Section 6.9, "Filtering Messages"

JMSReplyTo Specifies a queue or topic to which reply messages should be sent. This
field is set directly on the message by the application before send().

This feature can be used with the JMSCorrelationID header field to
coordinate request/response messages.

Simply setting the JMSReplyTo field does not guarantee a response; it
simply enables the receiving application to respond.

Application

JMSTimestamp Contains the time at which the message was sent. WebLogic JMS writes
the timestamp in the message when it accepts the message for delivery,
not when the application sends the message.

When the message is received, it contains the timestamp.

The value stored in the field is a Java millis time value.

WebLogic JMS

JMSType Specifies the message type identifier (String) set directly on the message
by the application before send().

The JMS specification allows some flexibility with this field in order to
accommodate diverse JMS providers. Some messaging systems allow
application-specific message types to be used. For such systems, the
JMSType field could be used to hold a message type ID that provides
access to the stored type definitions.

WebLogic JMS does not restrict the use of this field.

Application

Table 2–11 JMSX Property

Type Description

JMSXUserID System generated property that identifies the user sending the
message. See Section 3.12, "Using the JMSXUserID Property."

JMSXDeliveryCount System generated property that specifies the number of
message delivery attempts where first attempt is 1.

JMSXGroupID Identity of the message group.

JMSXGroupSeq Sequence number of a message within a group.

Table 2–10 (Cont.) Message Header Fields

Field Description Defined by

Understanding the JMS API

Understanding WebLogic JMS 2-19

■ JMS 1.1. Specification, described at
http://www.oracle.com/technetwork/java/jms/index.html

2.4.6.3 Message Body
A message body contains the content being delivered from producer to consumer.

The following table describes the types of messages defined by JMS. All message types
extend javax.jms.Message, at
http://download.oracle.com/javaee/5/api/javax/jms/Message.html,
which consists of message headers and properties, but no message body.

For more information, see the javax.jms.Message Javadoc at
http://download.oracle.com/javaee/5/api/javax/jms/Message.html.
For more information about the access methods and, if applicable, the conversion
charts associated with a particular message type, see the Javadoc for that message
type.

2.4.7 ServerSessionPoolFactory

Table 2–12 JMS Message Types

Type Description

javax.jms.BytesMessage Stream of uninterpreted bytes, which must be understood by
the sender and receiver. The access methods for this message
type are stream-oriented readers and writers based on
java.io.DataInputStream and
java.io.DataOutputStream. See
http://download.oracle.com/javaee/5/api/java
x/jms/BytesMessage.html.

javax.jms.MapMessage Set of name/value pairs in which the names are strings and
the values are Java primitive types. Pairs can be read
sequentially or randomly, by specifying a name.

javax.jms.ObjectMessage Single serializable Java object. See
http://download.oracle.com/javaee/5/api/java
x/jms/ObjectMessage.html.

javax.jms.StreamMessage Similar to a BytesMessage, except that only Java primitive
types are written to or read from the stream. See
http://download.oracle.com/javaee/5/api/java
x/jms/StreamMessage.html.

javax.jms.TextMessage Single String. The TextMessage can also contain XML
content. See
http://download.oracle.com/javaee/5/api/java
x/jms/TextMessage.html.

weblogic.jms.extensions.XML
Message

XML content. Use of the XMLMessage type facilitates
message filtering, which is more complex when performed
on XML content shipped in a TextMessage.

Note: Session pool and connection consumer configuration objects
are deprecated in this release of WebLogic Server. They are not a
required part of the Java EE specification, do not support JTA user
transactions, and are largely superseded by message-driven beans
(MDBs), which are simpler, easier to manage, and more capable. For
more information on designing MDBs, see "Message-Driven EJBs" in
Programming WebLogic Enterprise JavaBeans for Oracle WebLogic Server.

Understanding the JMS API

2-20 Programming JMS for Oracle WebLogic Server

A server session pool is a WebLogic-specific JMS feature that enables you to process
messages concurrently. A server session pool factory is used to create a server-side
ServerSessionPool.

WebLogic JMS defines one ServerSessionPoolFactory object, by default:
weblogic.jms.extensions.ServerSessionPoolFactory:<name>, where
<name> specifies the name of the JMS server to which the session pool is created. The
WebLogic Server adds the default server session pool factory to the JNDI space during
startup and the application subsequently retrieves the server session pool factory
using WebLogic JNDI.

To learn how to use the server session pool factory within an application, see
Section A.1, "Defining Server Session Pools," or the
weblogic.jms.extnesions.ServerSessionPoolFactory Javadoc.

2.4.8 ServerSessionPool
A ServerSessionPool application server object provides a pool of server sessions
that connection consumers can retrieve in order to process messages concurrently.

A ServerSessionPool is created by the ServerSessionPoolFactory object (see
Section 2.4.7, "ServerSessionPoolFactory") obtained through a JNDI lookup.

To learn how to use the server session pool within an application, see Section A.1,
"Defining Server Session Pools," or the javax.jms.ServerSessionPool Javadoc at
http://download.oracle.com/javaee/5/api/javax/jms/ServerSessionP
ool.html.

2.4.9 ServerSession
A ServerSession application server object enables you to associate a thread with a
JMS session by providing a context for creating, sending, and receiving messages.

A ServerSession is created by a ServerSessionPool object, described in
Section 2.4.8, "ServerSessionPool."

To learn how to use the server session within an application, see Section A.1, "Defining
Server Session Pools," or the javax.jms.ServerSession Javadoc at
http://download.oracle.com/javaee/5/api/javax/jms/ServerSession.
html.

2.4.10 ConnectionConsumer
A ConnectionConsumer object uses a server session to process received messages. If
message traffic is heavy, the connection consumer can load each server session with
multiple messages to minimize thread context switching. A ConnectionConsumer is
created by a Connection object, described in Section 2.4.2, "Connection."

To learn how to use the connection consumers within an application, see Section A.1,
"Defining Server Session Pools," or the javax.jms.ConnectionConsumer Javadoc
at
http://download.oracle.com/javaee/5/api/javax/jms/ConnectionCons
umer.html.

Note: Connection consumer listeners run on the same JVM as the
server.

3

Best Practices for Application Design 3-1

3Best Practices for Application Design

This chapter describes design options for WebLogic Server JMS, application behaviors
to consider during the design process, and recommended design patterns.

■ Section 3.1, "Message Design"

■ Section 3.2, "Message Compression"

■ Section 3.3, "Message Properties and Message Header Fields"

■ Section 3.4, "Message Ordering"

■ Section 3.5, "Topics vs. Queues"

■ Section 3.6, "Asynchronous vs. Synchronous Consumers"

■ Section 3.7, "Persistent vs. Non-Persistent Messages"

■ Section 3.8, "Deferring Acknowledges and Commits"

■ Section 3.9, "Using AUTO_ACK for Non-Durable Subscribers"

■ Section 3.10, "Alternative Qualities of Service, Multicast and No-Acknowledge"

■ Section 3.11, "Avoid Multi-threading"

■ Section 3.12, "Using the JMSXUserID Property"

■ Section 3.13, "Performance and Tuning"

3.1 Message Design
This section provides information on how to design messages improve messaging
performance:

3.1.1 Serializing Application Objects
The CPU cost of serializing Java objects can be significant. This expense, in turn, affects
JMS Object messages. You can offset this cost, to some extent, by having application
objects implement java.io.Externalizable, but there still will be significant
overhead in marshalling the class descriptor. To avoid the cost of having to write the
class descriptors of additional objects embedded in an Object message, have these
objects implement Externalizable, and call readExternal and writeExternal
on them directly. For example, call obj.writeExternal(stream) rather than
stream.writeObject(obj). Using Bytes and Stream messages is generally a
preferred practice.

Message Compression

3-2 Programming JMS for Oracle WebLogic Server

3.1.2 Serializing strings
Serializing Java strings is more expensive than serializing other Java primitive types.
Strings are also memory intensive, they consume two bytes of memory per Character,
and cannot compactly represent binary data (integers, for example). In addition, the
introduction of string-based messages often implies an expensive parse step in the
application in order to process the String into something the application can make
direct use of. Bytes, Stream, Map and even Object messages are therefore sometimes
preferable to Text and XML messages. Similarly, it is preferable to avoid the use of
strings in message properties, especially if they are large.

3.1.3 Server-side serialization
WebLogic JMS servers do not incur the cost of serializing non-persistent messages.
Serialization of non-persistent message types is incurred by the remote client.
Persistent are serialized by the server.

3.1.4 Selection
Using a selector is expensive. This consideration is important when you are deciding
where in the message to store application data that is accessed via JMS selectors.

3.2 Message Compression
Compressing large messages in a JMS application can improve performance. This
reduces the amount of time required to transfer messages across the network, reduces
the amount of memory used by the JMS server, and, if the messages are persistent,
reduces the size of persistent writes. Text and XML messages can often be compressed
significantly. Of course, compression is achieved at the expense of an increase in the
CPU usage of the client.

Keep in mind that the benefits of compression become questionable for smaller
messages. If a message is less than a few KB in size, compression can actually increase
its size. The JDK provides built-in compression libraries. For details, see the
java.util.zip package.

For information on using JMS connection factories to specify the automatic
compression of messages that exceed a specified threshold size, see "Compressing
Messages" in the Performance and Tuning for Oracle WebLogic Server.

3.3 Message Properties and Message Header Fields
Instead of user-defined message properties, consider using standard JMS message
header fields or the message body for message data. Message properties incur an extra
cost in serialization, and are more expensive to access than standard JMS message
header fields.

Also, avoid embedding large amounts of data in the properties field or the header
fields; only message bodies are paged out when paging is enabled. Consequently, if
user-defined message properties are defined in an application, avoid the use of large
string properties.

For more information, see Section 2.4.6.1, "Message Header Fields" and Section 2.4.6.2,
"Message Property Fields."

Asynchronous vs. Synchronous Consumers

Best Practices for Application Design 3-3

3.4 Message Ordering
You should use the Message Unit-of-Order feature rather than Ordered Redelivery to
guarantee ordered message processing. The advantages of Message Unit-of-Order
over Ordered Redelivery are:

■ Ease of configuration.

– Does not require a custom connection factory for asynchronous receivers, such
as setting MessagingMaximum to 1 when using message-driven beans
(MDBs).

– Simple configuration when using distributed destinations.

■ Preserves message order during processing delays.

■ Preserves message order during transaction rollback or session recovery.

Oracle recommends applications that use Ordered Redelivery upgrade to Message
Unit-of-Order. For more information, see Chapter 10, "Using Message Unit-of-Order."

3.5 Topics vs. Queues
Surprisingly, when you are starting to design your application, it is not always
immediately obvious whether it would be better to use a Topic or Queue. In general,
you should choose a Topic only if one of the following conditions applies:

■ The same message must be replicated to multiple consumers.

■ A message should be dropped if there are no active consumers that would select it.

■ There are many subscribers, each with a unique selector.

It is interesting to note that a topic with a single durable subscriber is semantically
similar to a queue. The differences are as follows:

■ If you change a topic selector for a durable subscriber, all previous messages in the
subscription are deleted, while if you change a queue selector for consumer, no
messages in the queue are deleted.

■ A queue may have multiple consumers, and will distribute its messages in a
round-robin fashion, whereas a topic subscriber is limited to only one consumer.

For more information on configuring JMS queues and topics, see "Queue and Topic
Destination Resources" in Configuring and Managing JMS for Oracle WebLogic Server.

3.6 Asynchronous vs. Synchronous Consumers
In general, asynchronous (onMessage) consumers perform and scale better than
synchronous consumers:

■ Asynchronous consumers create less network traffic. Messages are pushed
unidirectionally, and are pipelined to the message listener. Pipelining supports the
aggregation of multiple messages into a single network call.

Note: In WebLogic Server, your synchronous consumers can also use
the same efficient behavior as asynchronous consumers by enabling
the Prefetch Mode for Synchronous Consumers option on JMS
connection factories, as described in Section 5.4.2.1, "Use Prefetch
Mode to Create a Synchronous Message Pipeline."

Persistent vs. Non-Persistent Messages

3-4 Programming JMS for Oracle WebLogic Server

■ Asynchronous consumers use fewer threads. An asynchronous consumer does not
use a thread while it is inactive. A synchronous consumer consumes a thread for
the duration of its receive call. As a result, a thread can remain idle for long
periods, especially if the call specifies a blocking timeout.

■ For application code that runs on a server, it is almost always best to use
asynchronous consumers, typically via MDBs. The use of asynchronous
consumers prevents the application code from doing a blocking operation on the
server. A blocking operation, in turn, idles a server-side thread; it can even cause
deadlocks. Deadlocks occur when blocking operations consume all threads. When
no threads remain to handle the operations required to unblock the blocking
operation itself, that operation never stops blocking.

For more information, see Section 5.4.1, "Receiving Messages Asynchronously" and
Section 5.4.2, "Receiving Messages Synchronously."

3.7 Persistent vs. Non-Persistent Messages
When designing an application, make sure you specify that messages will be sent in
non-persistent mode unless a persistent QOS is required. We recommend
non-persistent mode because unless synchronous writes are disabled, a persistent QOS
almost certainly causes a significant degradation in performance.

If your messages are truly non-persistent, none should end up in a regular JMS store.
To make sure that none of your messages are unintentionally persistent, check whether
the JMS store size grows when unconsumed messages are accumulating on the JMS
server. Here is how message persistence is determined, in order of precedence:

■ Producer's connection's connection factory configuration:

– PERSISTENT (default)

– NON_PERSISTENT

■ JMS Producer API override on QueueSender and TopicPublisher:

– setDeliveryMode(DeliveryMode.PERSISTENT)

– setDeliveryMode(DeliveryMode.NON_PERSISTENT)

– setDeliveryMode(DeliveryMode.DEFAULT_DELIVERY_MODE) (default)

■ JMS Producer API per message override on QueueSender and TopicPublisher:

– for queues, optional deliveryMode parameter on send()

– for topics, optional deliveryMode parameter on publish()

■ Override on destination configuration:

– Persistent

– Non-Persistent

– No-Delivery (default, implies no override)

■ Override on JMS server configuration:

Note: Take special care to avoid persisting messages unintentionally.
Occasionally an application sends persistent messages even though
the designer intended the messages to be sent in non persistent mode.

Using AUTO_ACK for Non-Durable Subscribers

Best Practices for Application Design 3-5

– No store configured implies using the default persistent store that is available
on each targeted WebLogic Server instance

– Store configured implies no-override.

■ Non-durable subscribers only:

– If there are no subscribers, or there are only non-durable subscribers for a
topic, the messages will be downgraded to non-persistent. (Because
non-durable subscribers exist only for the life of the JMS server, there is no
reason to persist the message.)

■ Temporary destinations:

– Because temporary destinations exist only for the lifetime of their host JMS
server, there is no reason to persist their messages. WebLogic JMS
automatically forces all messages in a temporary destination to non-persistent.

Durable subscribers require a persistent store to be configured on their JMS server,
even if they receive only non-persistent messages. A durable subscription is persisted
to ensure that it continues through a server restart, as required by the JMS
specification.

3.8 Deferring Acknowledges and Commits
Because sends are generally faster than receives, consider reducing the overhead
associated with receives by deferring acknowledgment of messages until several
messages have been received and can be acknowledged collectively. If you are using
transactions substitute the word commit for acknowledge.

Deferment of acknowledgements is not likely to improve performance for non-durable
subscriptions, however, because of internal optimizations already in place.

It may not be possible to implement deferred acknowledgements for asynchronous
listeners. If an asynchronous listener acknowledges only every 10 messages, but for
some reason receives only 5, then the last few messages may not be acknowledged.
One possible solution is to have the asynchronous consumer post synchronous,
non-blocking receives from within its onMessage() callback to receive subsequent
messages. Another possible solution is to have the listener start a timer that, when
triggered, sends a message to the listener's destination in order to wake it up and
complete the outstanding work that has not yet been acknowledged—provided the
wake-up message can be directed solely at the correct listener.

3.9 Using AUTO_ACK for Non-Durable Subscribers
Non-durable, non-transactional topic subscribers are optimized to store local copies of
the message on the client side, thus reducing network overhead when
acknowledgements are being issued. This optimization yields a 10-20% performance
improvement, where the improvement is more evident under higher subscriber loads.

One side effect of this optimization, particularly for high numbers of concurrent topic
subscribers, is the overhead of client-side garbage collection, which can degrade
performance for message subscriptions. To prevent such degradation, we
recommended allocating a larger heap size on the subscriber client. For example, in a
test of 100 concurrent subscribers running in 10 JVMs, it was found that giving clients
an initial and maximum heap size of 64MB for each JVM was sufficient.

Alternative Qualities of Service, Multicast and No-Acknowledge

3-6 Programming JMS for Oracle WebLogic Server

3.10 Alternative Qualities of Service, Multicast and No-Acknowledge
WebLogic JMS provides alternative qualities of service (QOS) extensions that can aid
performance.

3.10.1 Using MULTICAST_NO_ACKNOWLEDGE
Non-durable topic subscribers can subscribe to messages using MULTICAST_NO_
ACKNOWLEDGE. If a topic has such subscribers, the JMS server will broadcast messages
to them using multicast mode. Multicast improves performance considerably and
provides linear scalability, as the network only needs to handle only one message,
regardless of the number of subscribers, rather than one message per subscriber.
Multicast messages may be lost if the network is congested, or if the client falls behind
in processing them. Calls to recover() or acknowledge() have no effect on
multicast messages.

This QOS extension has the same level of guarantee as some JMS implementations
default QOS from vendors other than Oracle WebLogic Server for non-durable topic
subscriptions. The JMS 1.1 specification specifically allows non-durable topic messages
to be dropped (deleted) if the subscriber is not ready for them. WebLogic JMS actually
has a higher QOS for non-durable topic subscriptions by default than the JMS 1.1
specification requires.

3.10.2 Using NO_ACKNOWLEDGE
A no-acknowledge delivery mode implies that the server gives messages to
consumers, but does not expect acknowledge to be called. Instead, the server
pre-acknowledges the message. In this acknowledge mode, calls to recover will not
work, as the message is already acknowledged. This mode saves the overhead of an
additional network call to acknowledge, at the expense of possibly losing a message
when a server failure, a network failure, or a client failure occurs.

Asynchronous consumers that use a NO_ACKNOWLEDGE QOS may wish to tune
down their message pipeline size in order to reduce the number of lost messages in the
event of a crash.

3.11 Avoid Multi-threading
The JMS Specification, at
http://www.oracle.com/technetwork/java/jms/index.html, states that
multi-threading a session, producer, consumer, or message method results in
undefined behavior except when calling close(). For this release, if WebLogic JMS
determines that you created a multi-threaded producer, the server instance throws a
JMSException. If your application is thread limited, try increasing the number of
producers and sessions.

Note: On the client side, each multicasting session requires a
dedicated thread to retrieve messages off the multicast socket.
Therefore, you should increase the JMS client-side thread pool size to
adjust for this.

Note: If an asynchronous client calls close() in this scenario, all
messages in the asynchronous pipeline are lost.

Performance and Tuning

Best Practices for Application Design 3-7

3.12 Using the JMSXUserID Property
For WebLogic Server 9.0 and later, you can configure a JMS connection factory and/or
destination to automatically propagate the message sender's authenticated username.
The username is placed in a javax.jms.Message property named JMSXUserID.

Consider the following points when using the JMSXUserID property in your
application.

■ While the JMS specification makes some mention of JMSXUserID, the behavior is
lightly defined and so will likely be different for different JMS vendors.

■ The JMSXUserID is based on the credential of the thread an application uses to
create the JMS producer. It does not derive from the credential that is on a thread
during the JMS send call itself.

■ JMS will ignore or override any attempt by an application to directly set
JMSXUserID (for example, javax.jms.Message.setXXXProperty() will
not work).

■ JMS messages are not signed or encrypted (similar to any RMI/EJB call).
Therefore, fully secure transfers of the JMSXUserID require sending the message
through secure protocols (for example, t3s or https).

■ WebLogic Store-and-Forward agents do not propagate JMSXUserID (they null it
out).

■ WebLogic Messaging bridges will propagate JMSXUserID of the source
destination's message if the messaging bridges are both are forwarding to a 9.0 or
later JMS server and are configured to Preserve Message Properties. Otherwise,
the forwarded message will either contain no username or the username used by
the bridge sender. The latter behavior is determined by the configuration of the
bridge sender's connection factory and destination.

■ The WebLogic JMS WLMessageProducer.forward() extension can forward a
received message's JMSXUserID.

For instructions on setting the JMSXUserID property on a connection factory or
destination, see the following topics in the Administration Console online help:

■ "Configure connection factory security parameters"

■ "Configure advanced queue parameters"

■ "Configure advanced topic parameters"

■ "Uniform distributed queues - configure advanced parameters"

■ "Uniform distributed topics - configure advanced parameters"

3.13 Performance and Tuning
For information on how to get the most out of your applications, implement the
performance tuning features available with WebLogic JMS at "Tuning WebLogic JMS"
in Performance and Tuning for Oracle WebLogic Server.

Note: The JMSXUserID interop behavior for WebLogic JMS clients
prior to 9.0 is undetermined.

Performance and Tuning

3-8 Programming JMS for Oracle WebLogic Server

4

Enhanced Support for Using WebLogic JMS with EJBs and Servlets 4-1

4Enhanced Support for Using WebLogic JMS
with EJBs and Servlets

This chapter describes WebLogic Server enhancements, such as JMS Wrappers, that
extend the Java EE standard to make it easier to access EJB and servlet containers with
WebLogic JMS or third-party JMS providers. In fact, implementing JMS wrapper
support is the best practice method of how to send a WebLogic JMS message from
inside an EJB or servlet.

■ Section 4.1, "Enabling WebLogic JMS Wrappers"

■ Section 4.2, "Disabling Wrapping and Pooling"

■ Section 4.3, "What's Happening Under the JMS Wrapper Covers"

■ Section 4.4, "Improving Performance Through Pooling"

■ Section 4.5, "Simplified Access to Foreign JMS Providers"

■ Section 4.6, "Examples of JMS Wrapper Functions"

4.1 Enabling WebLogic JMS Wrappers
WebLogic Server uses JMS wrappers that make it easier to use WebLogic JMS inside a
Java EE component, such as an EJB or a servlet, while also providing a number of
enhanced usability and performance features:

■ Automatic pooling of JMS connection and session objects (and some pooling of
message producer objects as well).

■ Automatic transaction enlistment for WebLogic JMS implementations and for
third-party JMS providers that support two-phase commit transactions (XA
protocol).

■ Testing of the JMS connection, as well as reestablishment after a failure.

■ Security credentials that are managed by the EJB or servlet container.

The following sections provide information on how to use WebLogic JMS wrappers:

■ Section 4.1.1, "Declaring JMS Objects as Resources In the EJB or Servlet
Deployment Descriptors"

■ Section 4.1.2, "Referencing a Packaged JMS Application Module In Deployment
Descriptor Files"

■ Section 4.1.3, "Declaring JMS Destinations and Connection Factories using
Annotations"

■ Section 4.1.4, "Avoid Transactional XA Interfaces"

Enabling WebLogic JMS Wrappers

4-2 Programming JMS for Oracle WebLogic Server

4.1.1 Declaring JMS Objects as Resources In the EJB or Servlet Deployment
Descriptors

The following sections provide information on declaring JMS objects as resources:

■ Section 4.1.1.1, "Declaring a Wrapped JMS Factory using Deployment Descriptors"

■ Section 4.1.1.2, "Declaring JMS Destinations using Deployment Descriptors"

For more information about packaging EJBs, see "Implementing Enterprise JavaBeans"
in Programming WebLogic Enterprise JavaBeans for Oracle WebLogic Server. For more
information about programming servlets, see "Creating and Configuring Servlets" in
Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server.

4.1.1.1 Declaring a Wrapped JMS Factory using Deployment Descriptors

You can declare a JMS connection factory as part of an EJB or servlet by defining a
resource-ref element in the ejb-jar.xml or web.xml file, respectively. This
process creates a "wrapped" JMS connection factory that can benefit from the more
advanced session pooling, automatic transaction enlistment, connection monitoring,
and container-managed security features described in Section 4.4, "Improving
Performance Through Pooling."

Here is an example of such a connection factory element:

<resource-ref>
 <res-ref-name>jms/QCF</res-ref-name>
 <res-type>javax.jms.QueueConnectionFactory</res-type>
 <res-auth>Container</res-auth>
 <res-sharing-scope>Shareable</res-sharing-scope>
</resource-ref>

This element declares that a JMS QueueConnectionFactory object be bound into
JNDI, at the location:

java:comp/env/jms/QCF

This JNDI name is only valid inside the context of the EJB or servlet where the
resource-ref is declared, which is what the java:comp/env JNDI context
signifies.

In addition to this element, there must be a matching resource-description
element in the ejb-jar.xml (for EJBs) or weblogic.xml (for servlets) file that tells
the Java EE container which JMS connection factory to put in that location. Here is an
example:

<resource-description>
 <res-ref-name>jms/QCF</res-ref-name>
 <jndi-name>weblogic.jms.ConnectionFactory</jndi-name>
</resource-description>

The connection factory specified here must already exist in the global JNDI tree. (This
example uses one of the default JMS connection factories that is automatically created
when the built-in WebLogic JMS server is used). To use another WebLogic JMS

Note: New applications will likely use EJB 3.0 annotations instead of
deployment descriptors. Annotations are described in Section 4.1.3,
"Declaring JMS Destinations and Connection Factories using
Annotations".

Enabling WebLogic JMS Wrappers

Enhanced Support for Using WebLogic JMS with EJBs and Servlets 4-3

connection factory from the same cluster, simply include that connection factory's
JNDI name inside the jndi-name element. To use a connection factory from another
vendor, or from another WebLogic Server cluster, create a Foreign JMS Server.

If the JNDI name specified in the resource-description element is incorrect, the
application is still deployed. However, you will receive an error when you try to use
the connection factory.

4.1.1.2 Declaring JMS Destinations using Deployment Descriptors

You can also bind a JMS queue or topic destination into the java:comp/env/jms
JNDI tree by declaring it as a resource-env-ref element in the ejb-jar.xml or
web.xml deployment descriptors. The transaction enlistment, pooling, connection
monitoring features take place in the connection factory, not in the destinations.
However, this feature is useful for consistency, and to make an application less
dependent on a particular configuration of WebLogic Server, since destinations can
easily be modified by simply changing the corresponding resource-env-ref
description, without having to recompile the source code.

Here is an example of such a queue destination element:

<resource-env-ref>
 <resource-env-ref-name>jms/TESTQUEUE</resource-env-ref-name>
 <resource-env-ref-type>javax.jms.Queue</resource-env-ref-type>
</resource-env-ref>

This element declares that a JMS Queue destination object will be bound into JNDI, at
the location:

java:comp/env/jms/TESTQUEUE

As with a referenced connection factory, this JNDI name is only valid inside the
context of the EJB or servlet where the resource-ref is declared.

You must also define a matching resource-env-description element in the
weblogic-ejb-jar.xml or weblogic.xml file. This provides a layer of indirection
which allows you to easily modify referenced destinations just by changing the
corresponding resource-env-ref deployment descriptors.

<resource-env-description>
 <resource-env-ref-name>jms/TESTQUEUE</resource-env-ref-name>
 <jndi-name>jmstest.destinations.TESTQUEUE</jndi-name>
</resource-env-description>

The queue or topic destination specified here must already exist in the global JNDI
tree. Again, if the destination does not exist, the application is deployed, but an
exception is thrown when you try to use the destination.

4.1.2 Referencing a Packaged JMS Application Module In Deployment Descriptor Files
When you package a JMS module with an enterprise application, you must reference
the JMS resources within the module in all applicable descriptor files of the Java EE
application components, including:

Note: New applications will likely use EJB 3.0 annotations instead of
deployment descriptors. Annotations are described in Section 4.1.3,
"Declaring JMS Destinations and Connection Factories using
Annotations".

Enabling WebLogic JMS Wrappers

4-4 Programming JMS for Oracle WebLogic Server

■ The WebLogic enterprise descriptor file, weblogic-application.xml

■ Any WebLogic deployment descriptor file, such as weblogic-ejb-jar.xml or
weblogic.xml

■ Any Java EE descriptor file, such as EJB (ejb-jar.xml) or WebApp (web.xml)
files

4.1.2.1 Referencing Application Modules In a weblogic-application.xml Descriptor
When including JMS modules in an enterprise application, you must list each JMS
module as a module element of type JMS in the weblogic-application.xml
descriptor file packaged with the application, and a path that is relative to the root of
the Java EE application. Here's an example of a reference to a JMS module name
Workflows:

<module>
 <name>Workflows</name>
 <type>JMS</type>
 <path>jms/Workflows-jms.xml</path>
</module>

4.1.2.2 Referencing JMS Resources In a WebLogic Application
Within any weblogic-foo descriptor file, such as EJB (weblogic-ejb-jar.xml) or
WebApp (weblogic.xml), the name of the JMS module is followed by a pound (#)
separator character, which is followed by the name of the resource inside the module.
For example, a JMS module named Workflows containing a queue named OrderQueue,
would have a name of Workflows#OrderQueue.

<resource-env-description>
 <resource-env-ref-name>jms/OrderQueue</resource-env-ref-name>
 <resource-link>Workflows#OrderQueue</resource-link>
</resource-env-description>

Note that the <resource-link> element is unique to WebLogic Server, and is how
the resources that are defined in a JMS Module are referenced (linked) from the
various other Java EE Application components.

4.1.2.3 Referencing JMS Resources In a Java EE Application
The name element of a JMS Connection Factory resource specified in the JMS module
must match the res-ref-name element defined in the referring EJB or WebApp
application descriptor file. The res-ref-name element maps the resource name
(used by java:comp/env) to a module referenced by an EJB.

For Queue or Topic destination resources specified in the JMS module, the name
element must match the resource-env-ref field defined in the referring module
descriptor file.

That name is how the link is made between the resource referenced in the EJB or Web
Application module and the resource defined in the JMS module. For example:

<resource-ref>
 <res-ref-name>jms/OrderQueueFactory</res-ref-name>
 <res-type>javax.jms.ConnectionFactory</res-type>
</resource-ref>
<resource-env-ref>
 <resource-env-ref-name>jms/OrderQueue</resource-env-ref-name>
 <resource-env-ref-type>javax.jms.Queue</resource-env-ref-type>
 </resource-env-ref>

Enabling WebLogic JMS Wrappers

Enhanced Support for Using WebLogic JMS with EJBs and Servlets 4-5

4.1.3 Declaring JMS Destinations and Connection Factories using Annotations
WebLogic Server 10.0 and higher releases support the EJB 3.0 programming model
which uses annotations to configure metadata, eliminating the need for deployment
descriptors. You can declare JMS objects using the @Resources annotation as described
in “Standard JDK Annotations Used By EJB 3.0” in Programming WebLogic Enterprise
JavaBeans, Version 3.0 for Oracle WebLogic Server.

4.1.3.1 Injecting Resource Dependency into a Class
If you apply @Resource to a class, the resource is made available in the comp/env
context. The following is an example of how to inject a WebLogic JMS destination and
connection factory resource in a Java EE application, including EJBs, MDBs, and
servlets.

The following is a Wrapped JMS Pooling Annotation example:

Example 4–1 Wrapped JMS Pooling Annotation Example

.

.

.
// The "name=" or "type=" are not always required,
// "mappedName=" is usually sufficient.
@Resource(name="ReplyQueue",
 type=javax.jms.Queue.class,
 mappedName="jms/ReplyQueue") Destination rq;
.
.
.
@Resource(name="ReplyConnectionFactory",
 type=javax.jms.ConnectionFactory.class,
 mappedName = "jms/ConnectionFactory") ConnectionFactory cf;
.
.
.

4.1.3.2 Non-Injected EJB 3.0 Resource Reference Annotations
Injected resource dependencies are resolved when the host EJB or Servlet is
instantiated. This is sometimes undesirable because:

■ The injection may prevent applications from deploying successfully if the
container attempts to resolve references during deployment.

■ You might want to defer reference resolution until the application is first invoked.

One way to setup a non-injected resource reference is to place a @Resources
annotation above the class definition. An application can resolve such references at
runtime by looking up the reference in the bean context. As a best practice, the bean or
servlet should also cache the result in order to avoid the overhead of repeated lookups.
For example:

Example 4–2 Non-Injected Resource Example

.

.

.
@Resources ({
 @Resource(name="targetCFRef",

Disabling Wrapping and Pooling

4-6 Programming JMS for Oracle WebLogic Server

 mappedName="TargetCFJNDIName",
 type=javax.jms.ConnectionFactory.class),

 @Resource(name="targetDestRef",
 mappedName="TargetDestJNDIName",
 type=javax.jms.Destination.class)
})

@Stateless(mappedName="StatelessBean")
public class MyStatelessBean implements MyStateless {

 @Resource
 private SessionContext sctx; // inject the bean context

 private ConnectionFactory targetCF;
 private Destination targetDest;

 public void completeWorkOrder() {

 // Lookup the JMS resources and cache for re-use. Note that a
 // "java:/comp/env" prefix isn't needed for EJB3.0 bean contexts.

 if (targetCF == null) targetCF =
 (javax.jms.ConnectionFactory)sctx.lookup("targetCFRef");

 if (targetDest == null) targetDest =
 (javax.jms.Destination)sctx.lookup("targetDestRef");
.
.
.
For a full example, see Chapter 4.6.4, "EJB 3.0 Wrapper Without Injection."

4.1.4 Avoid Transactional XA Interfaces
With resource wrapping, do not use the javax.jms XA transactional XA interfaces.
The container uses them internally if the JMS code is used inside a transaction context.
This allows your EJB application code to run EJBs in an environment where
transactions are present or in a non-transactional environment, just by changing the
deployment descriptors.

4.2 Disabling Wrapping and Pooling
It is sometimes desirable to leverage resource references but disable resource reference
wrapping and pooling. To do this, use the deployment descriptor approach, but
change the res-type to java.lang.Object.class in the resource-ref stanza
for the connection factory. There is currently no known way to disable wrapping and
pooling using annotations.

4.3 What's Happening Under the JMS Wrapper Covers
This section explains what is actually taking place under the covers when WebLogic
Server creates a set of wrappers around the JMS objects. For example, the code
fragment in Section 4.6.2, "Sending a JMS Message In a Java EE Container," shows an
instance of a WebLogic-specific wrapper class being returned rather than the actual
JMS connection factory because the connection factory was looked up from the
java:comp/env JNDI tree. This wrapper object intercepts certain calls to the JMS

What's Happening Under the JMS Wrapper Covers

Enhanced Support for Using WebLogic JMS with EJBs and Servlets 4-7

provider and inserts the correct Java EE behavior, as described in the following
sections.

■ Section 4.3.1, "Automatically Enlisting Transactions"

■ Section 4.3.2, "Container-Managed Security"

■ Section 4.3.3, "Connection Testing"

■ Section 4.3.4, "Java EE Compliance"

■ Section 4.3.5, "Pooled JMS Connection Objects"

■ Section 4.3.6, "Monitoring Pooled Connections"

4.3.1 Automatically Enlisting Transactions
This feature works for either WebLogic JMS implementations or for third-party JMS
providers that support two-phase commit transactions (XA protocol). If a wrapped
JMS connection sends or receives a message inside a transaction context, the JMS
session being used to send or receive the message is automatically enlisted in the
transaction through the XA capabilities of the JMS provider. This is the case whether
the transaction was started implicitly because the JMS code was invoked inside an EJB
with container-managed transactions enabled, or whether the transaction was started
manually using the UserTransaction interface in a servlet or an EJB that supports
bean-managed transactions.

However, if an EJB or servlet attempts to send or receive a message inside a
transaction context and the JMS provider does not support XA, the send() or
receive() call throws the following exception:

[J2EE:160055] Unable to use a wrapped JMS session in the transaction because
two-phase commit is not available.

Therefore, if you are using a JMS provider that doesn't support XA to send or receive a
message inside a transaction, either declare the EJB with a transaction mode of
NotSupported or suspend the transaction using one of the JTA APIs.

4.3.2 Container-Managed Security
WebLogic JMS uses the security credentials that are present on the thread when the
EJB or servlet container is invoked. For foreign JMS providers, however, when you
declare a JMS connection factory via a resource-ref element in the ejb-jar.xml
or web.xml file, there is an optional sub-element called res-auth. This element may
have one of two settings:

Container — When you set the res-auth element to Container, security to the JMS
provider is managed by the Java EE container. In this case, if the JMS connection
factory was mapped into the JNDI tree using a Foreign JMS Connection Factory
configuration MBean, then the user name and password from that MBean is used.
Otherwise, WebLogic Server connects to the provider with no user name or password
specified and throws an error if the createConnection() method is used to pass a a
user name and password to the connection factory.

Application — When you set the res-auth element to Application, any user
name or password on the MBean is ignored. Instead, the application code must specify
a user name and password to the createConnection(String userName,
String password) method of the JMS connection factory, or use the version of
createConnection() with no parameters if user name or password are not
required.

What's Happening Under the JMS Wrapper Covers

4-8 Programming JMS for Oracle WebLogic Server

4.3.3 Connection Testing
The JMS wrapper classes monitor each connection that is established to the JMS
provider. They do this in two ways:

■ Registering a JMS ExceptionListener object on the connection.

■ Testing the connection every two minutes by sending a message to a temporary
queue or topic and then receiving it again.

4.3.4 Java EE Compliance
The Java EE specification states that you should not be allowed to make certain JMS
API calls inside a Java EE application. The JMS wrappers enforce these restrictions by
throwing the following exceptions when they are violated:

■ On the connection object, the methods createConnectionConsumer(),
createDurableConnectionConsumer(), setClientID(),
setExceptionListener(), and stop() should not be called.

■ On the session object, the methods getMessageListener() and
setMessageListener() should not be called.

■ On the consumer object (a QueueReceiver or TopicSubscriber object), the
methods getMessageListener() and setMessageListener() should not be
called.

Furthermore, the createSession() method, and the associated
createQueueSession() and createTopicSession() methods, are handled
differently. The createSession() method takes two parameters: an
"acknowledgement" mode and a "transacted" flag. When used inside an EJB, these two
parameters are ignored. If a transaction is present, then the JMS session is enlisted in
the transaction as described in Section 4.3.1, "Automatically Enlisting Transactions";
otherwise, it is not. By default, the acknowledgement mode is set to "auto
acknowledge". This behavior is expected by the Java EE specification.

Inside a servlet, however, the parameters to createQueueSession() and
createTopicSession() are handled normally, and users can make use of all the
various message acknowledgement modes.

4.3.5 Pooled JMS Connection Objects
The JMS wrappers pool various session objects in order to make code like the example
provided in Section 4.6.2, "Sending a JMS Message In a Java EE Container" more
efficient. A pooled JMS connection is a session pool used by EJBs and servlets that use
a resource-ref element in their deployment descriptor to define their JMS
connection factories, as discussed in Section 4.1.1.1, "Declaring a Wrapped JMS Factory
using Deployment Descriptors."

Note: This may make it more difficult to receive messages from
inside an EJB, but the recommended way to receive messages from
inside an EJB is to use a MDB, as described in Programming
Message-Driven Beans for Oracle WebLogic Server.

Improving Performance Through Pooling

Enhanced Support for Using WebLogic JMS with EJBs and Servlets 4-9

4.3.6 Monitoring Pooled Connections
You can use the Administration Console to monitor pooled connections. For more
information, see "JMS Servers: Monitoring: Active Pooled Connections" in the Oracle
WebLogic Server Administration Console Help.

4.4 Improving Performance Through Pooling
The automatic pooling of connections and other objects by the JMS wrappers means
that it is efficient to write code as shown in Section 4.6.2, "Sending a JMS Message In a
Java EE Container." Although in this example the Connection Factory, Connection, and
Session objects are created every time a message is sent, in reality these three classes
work together so that when they are used as shown, they do little more than retrieve a
Session object from the pool.

■ Section 4.4.1, "Speeding Up JNDI Lookups by Pooling Session Objects"

■ Section 4.4.2, "Speeding Up Object Creation Through Caching"

■ Section 4.4.3, "Enlisting the Proper Transaction Mode"

4.4.1 Speeding Up JNDI Lookups by Pooling Session Objects
The JNDI lookups of the Connection Factory and Destination objects can be expensive
in terms of performance. This is particularly true if the Destination object points to a
Foreign JMS Destination MBean, and therefore, is a lookup on a non-local JNDI
provider. Because the Connection Factory and Destination objects are thread-safe, they
can be looked up once inside an EJB or servlet at creation time, which saves the time
required to perform the lookup each time.

Inside a servlet, these lookups can be performed inside the init() method. The
Connection Factory and Destination objects may then be assigned to an instance
variable and reused whenever a message is sent.

Inside an EJB, these lookups can be performed inside the ejbCreate() method and
assigned to an instance variable. For a session bean, each instance of the bean will then
have its own copy. Since stateless session beans are pooled, this method is also very
efficient (and is perfectly consistent with the Java EE specifications), because the
number of a times that lookups occur is drastically reduced by pooling the JMS
connection objects. (Caching these objects in a static member of the EJB class may
work, but it is discouraged by the Java EE specification.)

However, if these objects are cached inside the ejbCreate() or init() method,
then the EJB or servlet must have some way to recreate them if there has been a failure.
This is necessary because some JMS providers, like WebLogic JMS, may invalidate a
Destination object after a server failure. So, if the EJB runs on Server A, and JMS runs
on Server B, then the EJB on Server A will have to perform the JNDI lookup of the
objects from Server B again after that server has recovered. The example,
Section 4.6.1.5, "PoolTestBean.java" includes a sample EJB that performs this caching
and re-lookup process correctly.

4.4.2 Speeding Up Object Creation Through Caching
Once Connection Factory object and/or Destination object pooling has been
established, it may be tempting to cache other objects, such as the Connection, Session,
and Producer objects, inside the ejbCreate() method. This will work, but it is not
always the most efficient solution. Essentially, by doing this you are removing a
Session object from the cache and permanently assigning it to a particular EJB,

Simplified Access to Foreign JMS Providers

4-10 Programming JMS for Oracle WebLogic Server

whereas by using the JMS wrappers as designed, that Session object can be shared by
other EJBs and servlets as well. Furthermore, the wrappers attempt to reestablish a
JMS connection and create new session objects if there is a communication failure with
the JMS provider, but this will not work if you cache the Session object on your own.

4.4.3 Enlisting the Proper Transaction Mode
When a JMS send() or receive() operation is performed inside a transaction, the
EJB or servlet automatically enlists the JMS provider in the transaction. A transaction
can be started automatically inside an EJB or servlet that has container-managed
transactions, or it can be started explicitly using the UserTransaction interface. In
either case, the container automatically enlists the JMS provider. However, if the
underlying JMS connection factory used by the EJB or servlet does not support XA, the
container throws an exception.

Performing the transaction enlistment has overhead. Furthermore, if an XA connection
factory is used, but the send() or receive() method is invoked outside a
transaction, the container must still create a JTA transaction to wrap the send() or
receive() method in order to ensure that the operation properly takes place no
matter which JMS provider is used. Although this is only a one-phase commit, it can
still slow down the server.

Therefore, when writing an EJB or servlet that uses a JMS resource in a
non-transactional manner, it is best to use a JMS connection factory that is not
configured to support XA.

4.5 Simplified Access to Foreign JMS Providers
This section briefly describes the Administration Console support for foreign JMS
providers, as documented in "Accessing Foreign JMS Providers" in the Configuring and
Managing JMS for Oracle WebLogic Server. This feature makes it possible to easily map
foreign JMS providers — including remote instances of WebLogic Server in another
cluster or domain — so that they appear in the local JNDI tree as a local JMS object.

Another set of foreign JMS provider features makes it possible to create a "symbolic
link" between a JMS connection factory or destination object in an third-party JNDI
provider to an object inside the local WebLogic Server. This feature can also be used to
reference remote instances of WebLogic Server in another cluster or domain in the
local WebLogic JNDI tree.

There are three System Module MBeans for this task:

■ Foreign Server — Contains information about the remote JNDI provider, including
its initial context factory, URL, and additional parameters. It is the parent of the
Foreign Connection Factory and Foreign Destination MBeans. It can be targeted to
an independent WebLogic Server or to a cluster. For more information see,
"ForeignServerBean" in the Oracle WebLogic Server MBean Reference.

■ Foreign Connection Factory — represents a foreign connection factory. It contains
the name of the connection factory in the remote JNDI provider, the name to map
it to in the server's JNDI tree, and an optional user name and password. The user
name and password are only used when a Foreign Connection Factory is used
inside a resource-reference in an EJB or a servlet, with the "Container" mode
of authentication. It creates non-replicated JNDI objects on each WebLogic Server
instance to which the parent Foreign Connection Factory MBean is targeted. (To
create the JNDI object on every node in a cluster, target the parent MBean to the
cluster.). For more information see, "ForeignConnectionFactoryBean" in the Oracle
WebLogic Server MBean Reference.

Examples of JMS Wrapper Functions

Enhanced Support for Using WebLogic JMS with EJBs and Servlets 4-11

■ Foreign Destination — represents a foreign destination. It contains the name to
look up on the foreign JNDI provider, and the name to map it to on the local
server.

4.6 Examples of JMS Wrapper Functions
■ Section 4.6.1, "Example of JMS Wrapper Functions"

■ Section 4.6.2, "Sending a JMS Message In a Java EE Container"

■ Section 4.6.3, "Dependency Injection"

■ Section 4.6.4, "EJB 3.0 Wrapper Without Injection"

4.6.1 Example of JMS Wrapper Functions
The following files make up a simple stateless EJB session bean that uses the WebLogic
JMS wrapper functions to send a transactional message (sendXATransactional)
when an EJB is called. Although this example uses a session bean, the same XML
descriptors and bean class (with very few changes) can be used for a message-driven
bean.

■ Section 4.6.1.1, "ejb-jar.xml"

■ Section 4.6.1.2, "weblogic-ejb-jar.xml"

■ Section 4.6.1.3, "PoolTest.java"

■ Section 4.6.1.4, "PoolTestHome.java"

■ Section 4.6.1.5, "PoolTestBean.java"

4.6.1.1 ejb-jar.xml
This section describes the EJB components. For the "JMS wrapper" code snippets
provided in this section, note that this section declares the resource-ref and
resource-env-ref elements for the wrapped JMS connection factory
(QueueConnectionFactory) and referenced JMS destination (TESTQUEUE).

<ejb-jar xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd">
<?xml version="1.0"?>
...
<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>PoolTestBean</ejb-name>
 <home>weblogic.jms.pool.test.PoolTestHome</home>
 <remote>weblogic.jms.pool.test.PoolTest</remote>
 <ejb-class>weblogic.jms.pool.test.PoolTestBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>

 <resource-ref>
 <res-ref-name>jms/QCF</res-ref-name>
 <res-type>javax.jms.QueueConnectionFactory</res-type>
 <res-auth>Container</res-auth>
 <res-sharing-scope>Shareable</res-sharing-scope>
 </resource-ref>

Examples of JMS Wrapper Functions

4-12 Programming JMS for Oracle WebLogic Server

 <resource-env-ref>
 <resource-env-ref-name>jms/TESTQUEUE</resource-env-ref-name>
 <resource-env-ref-type>javax.jms.Queue</resource-env-ref-type>
 </resource-env-ref>
 </session>
 </enterprise-beans>

 <assembly-descriptor>
 <container-transaction>
 <method>
 <ejb-name>PoolTestBean</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>
 </assembly-descriptor>
</ejb-jar>

4.6.1.2 weblogic-ejb-jar.xml
This section declares matching resource-description queue connection factory
and queue destination elements that tell the Java EE container which JMS connection
factory and destination to put in that location.

<!DOC<weblogic-ejb-jar xmlns="http://www.bea.com/ns/weblogic/920"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.bea.com/ns/weblogic/920
http://www.bea.com/ns/weblogic/920/weblogic-ejb-jar.xsd">

...
<weblogic-ejb-jar>
 <weblogic-enterprise-bean>
 <ejb-name>PoolTestBean</ejb-name>
 <stateless-session-descriptor>
 <pool>
 <max-beans-in-free-pool>8</max-beans-in-free-pool>
 <initial-beans-in-free-pool>2</initial-beans-in-free-pool>
 </pool>
 </stateless-session-descriptor>

 <resource-description>
 <res-ref-name>jms/QCF</res-ref-name>
 <jndi-name>weblogic.jms.XAConnectionFactory</jndi-name>
 </resource-description>
 <resource-env-description>
 <res-env-ref-name>jms/TESTQUEUE</res-env-ref-name>
 <jndi-name>TESTQUEUE</jndi-name>
 </resource-env-description>
 <jndi-name>PoolTest</jndi-name>
 </weblogic-enterprise-bean>
</weblogic-ejb-jar>

4.6.1.3 PoolTest.java
This section defines the "remote" interface for the PoolTest bean. It declares one
method, called sendXATransactional.

package weblogic.jms.pool.test;

import java.rmi.*;
import javax.ejb.*;

Examples of JMS Wrapper Functions

Enhanced Support for Using WebLogic JMS with EJBs and Servlets 4-13

public interface PoolTest extends EJBObject
{
 public String sendXATransactional(String text)
 throws RemoteException;
}

4.6.1.4 PoolTestHome.java
This section defines the "home" interface for the PoolTest bean. It is required by the
EJB specification.

package weblogic.jms.pool.test;

import java.rmi.*;
import javax.ejb.*;

public interface PoolTestHome
 extends EJBHome
{
 PoolTest create()
 throws CreateException, RemoteException;
}

4.6.1.5 PoolTestBean.java
This section defines the actual EJB code. It sends a message whenever the
sendXATransactional method is called.

package weblogic.jms.pool.test;

import java.lang.reflect.*;
import java.rmi.*;
import javax.ejb.*;
import javax.jms.*;
import javax.naming.*;
import javax.transaction.*;

public class PoolTestBean
 extends PoolTestBeanBase
 implements SessionBean
{
 private SessionContext context;
 private QueueConnectionFactory qcf;
 private Queue destination;

 public void ejbActivate()
 {
 }

 public void ejbRemove()
 {
 }

 public void ejbPassivate()
 {
 }

 public void setSessionContext(SessionContext ctx)
 {
 context = ctx;
 }

Examples of JMS Wrapper Functions

4-14 Programming JMS for Oracle WebLogic Server

 private void lookupJNDIObjects()
 throws NamingException
 {
 InitialContext ic = new InitialContext();
 try {
 qcf =
 (QueueConnectionFactory)ic.lookup
 ("java:comp/env/jms/QCF");
 destination =
 (Queue)ic.lookup("java:comp/env/jms/TESTQUEUE");
 } finally {
 ic.close();
 }
 }

 public void ejbCreate()
 throws CreateException
 {
 try {
 lookupJNDIObjects();
 } catch (NamingException ne) {
 throw new CreateException(ne.toString());
 }
 }

 public String sendXATransactional(String text)
 throws RemoteException
 {
 String id = "Not sent yet";
 try {
 if ((qcf == null) || (destination == null)) {
 lookupJNDIObjects();
 }
 QueueConnection connection = qcf.createQueueConnection();
 try {
 QueueSession session = connection.createQueueSession
 (false, 0);
 TextMessage message = session.createTextMessage
 (text);
 QueueSender sender = session.createSender(destination);
 sender.send(message);
 id = message.getJMSMessageID();
 } finally {
 connection.close();
 }
 } catch (Exception e) {
 // Invalidate the JNDI objects if there is a failure
 // this is necessary because the destination object
 // may become invalid if the destination server has
 // been shut down
 qcf = null;
 destination = null;
 throw new RemoteException("Failure in EJB: " + e);
 }
 return id;
 }
}

Examples of JMS Wrapper Functions

Enhanced Support for Using WebLogic JMS with EJBs and Servlets 4-15

4.6.2 Sending a JMS Message In a Java EE Container
After you declare the JMS connection factory and destination resources, you can use
them to send and/or receive JMS messages inside an EJB or servlet. The following
sections provide examples on how to send a message:

4.6.2.1 Using comp/env
The following code fragment sends a message if you map to the java:comp/env
JNDI tree:

Example 4–3 Sending a Message Using comp/env

.

.

.

InitialContext ic = new InitialContext();
QueueConnectionFactory qcf =
 (QueueConnectionFactory)ic.lookup("java:comp/env/jms/QCF");
Queue destQueue =
 (Queue)ic.lookup("java:comp/env/jms/TESTQUEUE");
ic.close();
QueueConnection connection = qcf.createQueueConnection();
try {
 QueueSession session = connection.createQueueSession(0, false);
 QueueSender sender = session.createSender(destQueue);
 TextMessage msg = session.createTextMessage("This is a test");
 sender.send(msg);
} finally {
 connection.close();
}

This is standard code that complies with the Java EE specification and should run on
any EJB or servlet product that properly supports Java EE — the difference is that it
runs more efficiently on WebLogic Server, because under the covers various objects are
pooled, as described in Section 4.3.5, "Pooled JMS Connection Objects."

Note that this code fragment uses a try...finally block to guarantee that the
close() method on the JMS Connection object is executed even if one of the
statements inside the block throws an exception. If no connection pooling were being
done, then this block would be necessary in order to ensure that the connection is
closed, and to prevent server resources from being wasted. But since WebLogic Server
pools some of the objects that are created by this code fragment, it is even more
important that close() be called; otherwise, the EJB or servlet container will not
know when to return the object to the pool.

Also, none of the transactional XA extensions to the JMS API are used in this code
fragment. Instead, the container uses them internally if the JMS code is used inside a
transaction context. But whether XA is used internally, the user-written code is the
same, and does not use any JMS XA classes. This is what is specified by Java EE.
Writing EJB code in this way enables you to run EJBs in an environment where
transactions are present or in a non-transactional environment, just by changing the
deployment descriptors.

Examples of JMS Wrapper Functions

4-16 Programming JMS for Oracle WebLogic Server

4.6.3 Dependency Injection
The following code fragment sends a message if you have used dependency injection
to a variable.

Example 4–4 Sending a Message using Dependency Injection

package test;
// Example injected annotation.
import javax.annotation.Resource;
import javax.ejb.*;
import javax.jms.*;

@Stateless(mappedName="StatelessBean")
public class MyStatelessBean implements MyStateless {
 @Resource(mappedName="myDestJNDIName")
 private Destination dest;

 @Resource(mappedName="weblogic.jms.XAConnectionFactory")
 private ConnectionFactory connectionFactory;

 public void completeWorkOrder() {
 Connection con = null;
 Session session = null;
 MessageProducer sender = null;
 try {
 System.out.println("completeWorkOrder called!");
 con = connectionFactory.createConnection();
 session = con.createSession(true, Session.AUTO_ACKNOWLEDGE);
 sender = session.createProducer(null);
 Message message = session.createTextMessage("work order complete!");
 sender.send(dest, message);
 } catch(Exception e) {
 throw new EJBException("Exception sending message: " + e, e);
 } finally {
 try {
 if (con != null) con.close();
 } catch(Exception e) {
 e.printStackTrace();
 }
 }
 }
}

4.6.4 EJB 3.0 Wrapper Without Injection
This example demonstrates EJB 3.0 annotations for an MDB that references resources
that are not injected. The references are resolved at runtime when the MDB is invoked
instead of when the MDB instances are instantiated.

Note: When using a wrapped JMS connection factory, which is
obtained by using the resource-ref feature and looked up by using
the java:comp/env/jms JNDI tree context, then the EJB must not
use the javax.jms XA transactional XA interfaces.

Examples of JMS Wrapper Functions

Enhanced Support for Using WebLogic JMS with EJBs and Servlets 4-17

Example 4–5 Non-Injected MDB Example

package test;

import javax.annotation.Resources;
import javax.annotation.Resource;
import javax.naming.*;
import javax.ejb.*;
import javax.jms.*;

import javax.ejb.ActivationConfigProperty;

@MessageDriven(
 name = "MyMDB",
 mappedName = "JNDINameOfMDBSourceDest",
 activationConfig = {

// the JMS interface type for the MDB destination, either javax.jms.Topic or
javax.jms.Queue
 @ActivationConfigProperty(
 propertyName = "destinationType",
 propertyValue = "javax.jms.Queue"),
 // optionally specify a connection factory
 // there's no need to specify a connection factory if the source
 // destination is a WebLogic JMS destination
 @ActivationConfigProperty(
 propertyName = "connectionFactoryJndiName",
 propertyValue = "JNDINameOfMDBSourceCF"),
 })

// resources that are not injected

@Resources ({
 @Resource(name="targetCFRef",
 mappedName="TargetCFJNDIName",
 type=javax.jms.ConnectionFactory.class),

 @Resource(name="targetDestRef",
 mappedName="TargetDestJNDIName",
 type=javax.jms.Destination.class)
})

public class MyMDB implements MessageListener {

 // inject a reference to the MDB context

 @Resource
 private MessageDrivenContext mdctx;

 // cache targetCF and targetDest for re-use (performance)

 private ConnectionFactory targetCF;
 private Destination targetDest;

 @TransactionAttribute(TransactionAttributeType.REQUIRED)
 public void onMessage(Message message) {

 Connection jmsConnection = null;

 try {

Examples of JMS Wrapper Functions

4-18 Programming JMS for Oracle WebLogic Server

 System.out.println("My MDB got message: " + message);

 if (targetCF == null)
 targetCF = (javax.jms.ConnectionFactory)mdctx.lookup("targetCFRef");

 if (targetDest == null)
 targetDest = (javax.jms.Destination)mdctx.lookup("targetDestRef");

 jmsConnection = targetCF.createConnection();
 Session s = jmsConnection.createSession(false, Session.AUTO_ACKNOWLEDGE);
 MessageProducer mp = s.createProducer(null);

 if (message.getJMSReplyTo() != null)
 mp.send(message.getJMSReplyTo(), s.createTextMessage("My Reply"));
 else
 mp.send(targetDest, message);

 } catch (JMSException e) {
 throw new EJBException(e);

 } finally {

 // Return JMS resources to the resource reference pool for later re-use.
 // Closing a connection automatically also closes its sessions, etc.

 try { if (jmsConnection != null) jmsConnection.close(); }
 catch (JMSException ignored) {};
 }
 }
}

5

Developing a Basic JMS Application 5-1

5Developing a Basic JMS Application

This chapter describes the steps required to develop a basic JMS application.

1. Section 5.1, "Importing Required Packages"

2. Section 5.2, "Setting Up a JMS Application"

3. Section 5.3, "Sending Messages"

4. Section 5.4, "Receiving Messages"

5. Section 5.5, "Acknowledging Received Messages"

6. Section 5.6, "Releasing Object Resources"

In addition to the application development steps defined in the previous figure, you
can also optionally perform any of the following steps during your design
development:

■ Manage connection and session processing

■ Create destinations dynamically

■ Create durable subscriptions

■ Manage message processing by setting and browsing message header and
property fields, filtering messages, and/or processing messages concurrently

■ Use JMS within transactions, described in Chapter 12, "Using Transactions with
WebLogic JMS."

5.1 Importing Required Packages
The following table lists the packages that are commonly used by WebLogic JMS
applications.

Note: For more information about the JMS classes described in this
section, access the JMS Javadoc supplied on the Java Web site at
http://www.oracle.com/technetwork/java/index.html.

Setting Up a JMS Application

5-2 Programming JMS for Oracle WebLogic Server

5.2 Setting Up a JMS Application
Before you can send and receive messages, you must set up a JMS application. The
following figure illustrates the steps required to set up a JMS application.

Table 5–1 WebLogic JMS Packages

Package Description

javax.jms JMS API. This package is always used by WebLogic JMS
applications. See
http://download.oracle.com/javaee/5/api/j
avax/jms/package-summary.html.

javax.naming
weblogic.jndi

JNDI packages required for server and destination
lookups. See
http://download.oracle.com/javase/1.4.2/d
ocs/api/javax/naming/package-summary.html.

javax.transaction.UserTransaction JTA API required for JTA user transaction support. See
http://www.javasoft.com/products/jta/java
docs-1.0.1/javax/transaction/UserTransact
ion.html.

weblogic.jms.extensions WebLogic-specific JMS public API that provides
additional classes and methods, as described in
Section 2.3, "Value-Added Public JMS API Extensions."

weblogic.jms.extensions.ServerSessionPoolFactory Deprecated in WebLogic Server 8.1.

Setting Up a JMS Application

Developing a Basic JMS Application 5-3

Figure 5–1 Setting Up a JMS Application

The setup steps are described in the following sections. Detailed examples of setting
up a Point-to-Point (PTP) and Publish/Subscribe (Pub/Sub) application are also
provided. The examples are excerpted from the examples.jms package provided
with WebLogic Server in the WL_
HOME\samples\server\examples\src\examples\jms directory, where WL_
HOME is the top-level directory of your WebLogic Platform installation.

Before proceeding, ensure that the system administrator responsible for configuring
WebLogic Server has configured the required JMS resources, including the connection
factories, JMS servers, and destinations.

■ For more information, see "Configure Messaging" in the Oracle WebLogic Server
Administration Console Help.

Setting Up a JMS Application

5-4 Programming JMS for Oracle WebLogic Server

■ For more information about the JMS classes and methods described in these
sections, see Section 2.4, "Understanding the JMS API," or the javax.jms, at
http://download.oracle.com/javaee/5/api/javax/jms/package-sum
mary.html, or the weblogic.jms.extensions Javadoc.

■ For information about setting up transacted applications and JTA user
transactions, see Chapter 12, "Using Transactions with WebLogic JMS."

5.2.1 Step 1: Look Up a Connection Factory in JNDI
Before you can look up a connection factory, it must be defined as part of the
configuration information. WebLogic JMS provides two default connection factories
that are included as part of the configuration. They can be looked up using the
weblogic.jms.ConnectionFactory JNDI name and the
weblogic.jms.XAConnectionFactory, which is configured to enable JTA
transactions. The administrator can configure new connection factories during
configuration; however, these factories must be uniquely named or the server will not
boot. For information on configuring connection factories and the defaults that are
available, see "Configure connection factories" in the Oracle WebLogic Server
Administration Console Help.

Once the connection factory has been defined, you can look it up by first establishing a
JNDI context (context) using the InitialContext() method, at
http://download.oracle.com/javase/1.4.2/docs/api/javax/naming/In
itialContext.html#InitialContext(). For any application other than a servlet
application, you must pass an environment used to create the initial context.

Once the context is defined, to look up a connection factory in JNDI, execute one of the
following commands, for PTP or Pub/Sub messaging, respectively:

QueueConnectionFactory queueConnectionFactory =
 (QueueConnectionFactory) context.lookup(CF_name);

TopicConnectionFactory topicConnectionFactory =
 (TopicConnectionFactory) context.lookup(CF_name);

The CF_name argument specifies the connection factory name defined during
configuration.

For more information about the ConnectionFactory class, see Section 2.4.1,
"ConnectionFactory," or the javax.jms.ConnectionFactory Javadoc, at
http://download.oracle.com/javaee/5/api/javax/jms/ConnectionFact
ory.html.

5.2.2 Step 2: Create a Connection Using the Connection Factory
You can create a connection for accessing the messaging system by using the
ConnectionFactory methods described in the following sections.

For more information about the Connection class, see Section 2.4.2, "Connection," or
the javax.jms.Connection Javadoc, at
http://download.oracle.com/javaee/5/api/javax/jms/Connection.htm
l.

5.2.2.1 Create a Queue Connection
The QueueConnectionFactory provides the following two methods for creating a
queue connection:

public QueueConnection createQueueConnection(

Setting Up a JMS Application

Developing a Basic JMS Application 5-5

) throws JMSException

public QueueConnection createQueueConnection(
 String userName,
 String password
) throws JMSException

The first method creates a QueueConnection; the second method creates a
QueueConnection using a specified user identity. In each case, a connection is
created in stopped mode and must be started in order to accept messages, as described
in Section 5.2.8, "Step 7: Start the Connection."

For more information about the QueueConnectionFactory class methods, see the
javax.jms.QueueConnectionFactory Javadoc, at
http://download.oracle.com/javaee/5/api/javax/jms/QueueConnectio
nFactory.html. For more information about the QueueConnection class, see the
javax.jms.QueueConnection Javadoc, at
http://download.oracle.com/javaee/5/api/javax/jms/QueueConnectio
n.html.

5.2.2.2 Create a Topic Connection
The TopicConnectionFactory provides the following two methods for creating a
topic connection:

public TopicConnection createTopicConnection(
) throws JMSException

public TopicConnection createTopicConnection(
 String userName,
 String password
) throws JMSException

The first method creates a TopicConnection; the second method creates a
TopicConnection using a specified user identity. In each case, a connection is
created in stopped mode and must be started in order to accept messages, as described
in Section 5.2.8, "Step 7: Start the Connection."

For more information about the TopicConnectionFactory class methods, see the
javax.jms.TopicConnectionFactory Javadoc., at
http://download.oracle.com/javaee/5/api/javax/jms/TopicConnectio
nFactory.html. For more information about the TopicConnection class, see the
javax.jms.TopicConnection Javadoc, at
http://download.oracle.com/javaee/5/api/javax/jms/TopicConnectio
n.html.

5.2.3 Step 3: Create a Session Using the Connection
You can create one or more sessions for accessing a queue or topic using the
Connection methods described in the following sections.

Setting Up a JMS Application

5-6 Programming JMS for Oracle WebLogic Server

For more information about the Session class, see Section 2.4.3, "Session" or the
javax.jms.Session Javadoc, at
http://download.oracle.com/javaee/5/api/javax/jms/Session.html.

5.2.3.1 Create a Queue Session
The QueueConnection class defines the following method for creating a queue
session:

public QueueSession createQueueSession(
 boolean transacted,
 int acknowledgeMode
) throws JMSException

You must specify a boolean argument indicating whether the session will be
transacted (true) or non-transacted (false), and an integer that indicates the
acknowledge mode for non-transacted sessions. The acknowledgeMode attribute is
ignored for transacted sessions. In this case, messages are acknowledged when the
transaction is committed using the commit() method.

For more information about the QueueConnection class methods, see the
javax.jms.QueueConnection Javadoc, at
http://download.oracle.com/javaee/5/api/javax/jms/QueueConnectio
n.html. For more information about the QueueSession class, see the
javax.jms.QueueSession Javadoc, at
http://download.oracle.com/javaee/5/api/javax/jms/QueueSession.h
tml.

5.2.3.2 Create a Topic Session
The TopicConnection class defines the following method for creating a topic
session:

public TopicSession createTopicSession(
 boolean transacted,
 int acknowledgeMode
) throws JMSException

You must specify a boolean argument indicating whether the session will be
transacted (true) or non-transacted (false), and an integer that indicates the
acknowledge mode for non-transacted sessions. The acknowledgeMode attribute is
ignored for transacted sessions. In this case, messages are acknowledged when the
transaction is committed using the commit() method.

For more information about the TopicConnection class methods, see the
javax.jms.TopicConnection Javadoc, at
http://download.oracle.com/javaee/5/api/javax/jms/TopicConnectio
n.html. For more information about the TopicSession class, see the

Note: A session and its message producers and consumers can only
be accessed by one thread at a time. Their behavior is undefined if
multiple threads access them simultaneously.

WebLogic JMS does not support having both types of
MessageConsumer (QueueConsumer and TopicSubscriber) for a
single Session. However, it does support a single session with both a
QueueSender and a TopicSubscriber (and vice-versa: QueueConsumer
and TopicPublisher), or with multiple MessageProducers of any type.

Setting Up a JMS Application

Developing a Basic JMS Application 5-7

javax.jms.TopicSession Javadoc, at
http://download.oracle.com/javaee/5/api/javax/jms/TopicSession.h
tml.

5.2.4 Step 4: Look Up a Destination (Queue or Topic)
Before you can look up a destination, the destination must be configured by the
WebLogic JMS system administrator, as described in "Configure topics" and
"Configure queues" in the Oracle WebLogic Server Administration Console Help. For more
information about the Destination class, see Section 2.4.4, "Destination" or the
javax.jms.Destination Javadoc, at
http://download.oracle.com/javaee/5/api/javax/jms/Destination.ht
ml.

Once the destination has been configured, you can look up a destination using one of
the following procedures:

5.2.4.1 Using a JNDI Name
You can look up a destination by establishing a JNDI context (context), which has
already been accomplished in Section 5.2.1, "Step 1: Look Up a Connection Factory in
JNDI," and executing one of the following commands, for PTP or Pub/Sub messaging,
respectively:

Queue queue = (Queue) context.lookup(Dest_name);

Topic topic = (Topic) context.lookup(Dest_name);

The Dest_name argument specifies the destination's JNDI name defined during
configuration.

5.2.4.2 Use a Reference
If you do not use a JNDI namespace, you can use the following QueueSession or
TopicSession method to reference a queue or topic, respectively:

public Queue createQueue(
 String queueName
) throws JMSException

public Topic createTopic(
 String topicName
) throws JMSException

For the syntax of JNDI name, createQueue(), and createTopic(), see Section C, "How to
Lookup a Destination."

5.2.5 Step 5: Create Message Producers and Message Consumers
You can create message producers and message consumers by passing the destination
reference to the Session methods described in the following sections.

Note: The createQueue() and createTopic() methods do not
create destinations dynamically; they create only references to
destinations that already exist. For information about creating
destinations dynamically, see Chapter 7, "Using JMS Module Helper
to Manage Applications."

Setting Up a JMS Application

5-8 Programming JMS for Oracle WebLogic Server

For more information about the MessageProducer and MessageConsumer classes,
see Section 2.4.5, "MessageProducer and MessageConsumer," or the
javax.jms.MessageProducer, at
http://download.oracle.com/javaee/5/api/javax/jms/MessageProduce
r.html, and javax.jms.MessageConsumer Javadocs, at
http://download.oracle.com/javaee/5/api/javax/jms/MessageConsume
r.html.

5.2.5.1 Create QueueSenders and QueueReceivers
The QueueSession object defines the following methods for creating queue senders
and receivers:

public QueueSender createSender(
 Queue queue
) throws JMSException

public QueueReceiver createReceiver(
 Queue queue
) throws JMSException

public QueueReceiver createReceiver(
 Queue queue,
 String messageSelector
) throws JMSException

You must specify the queue object for the queue sender or receiver being created. You
may also specify a message selector for filtering messages. Message selectors are
described in more detail in Section 6.9, "Filtering Messages."

If you pass a value of null to the createSender() method, you create an anonymous
producer. In this case, you must specify the queue name when sending messages, as
described in Section 5.3, "Sending Messages."

Once the queue sender or receiver has been created, you can access the queue name
associated with the queue sender or receiver using the following QueueSender or
QueueReceiver method:

public Queue getQueue(
) throws JMSException

For more information about the QueueSession class methods, see the
javax.jms.QueueSession Javadoc, at
http://download.oracle.com/javaee/5/api/javax/jms/QueueSession.h
tml. For more information about the QueueSender and QueueReceiver classes, see
the javax.jms.QueueSender, at
http://download.oracle.com/javaee/5/api/javax/jms/QueueSender.ht
ml, and javax.jms.QueueReceiver Javadocs, at

Note: Each consumer receives its own local copy of a message. Once
received, you can modify the header field values; however, the
message properties and message body are read only. (Attempting to
modify the message properties or body at this point will generate a
MessageNotWriteableException.) You can modify the message
body by executing the corresponding message type's clearbody()
method to clear the existing contents and enable write permission.

Setting Up a JMS Application

Developing a Basic JMS Application 5-9

http://download.oracle.com/javaee/5/api/javax/jms/QueueReceiver.
html.

5.2.5.2 Create TopicPublishers and TopicSubscribers
The TopicSession object defines the following methods for creating topic publishers
and topic subscribers:

public TopicPublisher createPublisher(
 Topic topic
) throws JMSException

public TopicSubscriber createSubscriber(
 Topic topic
) throws JMSException

public TopicSubscriber createSubscriber(
 Topic topic,
 String messageSelector,
 boolean noLocal
) throws JMSException

You must specify the topic object for the publisher or subscriber being created. You
may also specify a message selector for filtering messages and a noLocal flag
(described later in this section). Message selectors are described in more detail in
Section 6.9, "Filtering Messages."

If you pass a value of null to the createPublisher() method, you create an
anonymous producer. In this case, you must specify the topic name when sending
messages, as described in Section 5.3, "Sending Messages."

An application can have JMS connections that it uses to both publish and subscribe to
the same topic. Because topic messages are delivered to all subscribers, the application
can receive messages it has published itself. To prevent this behavior, a JMS
application can set a noLocal flag to true.

Once the topic publisher or subscriber has been created, you can access the topic name
associated with the topic publisher or subscriber using the following
TopicPublisher or TopicSubscriber method:

Topic getTopic(
) throws JMSException

In addition, you can access the noLocal variable setting associated with the topic
subscriber using the following TopicSubscriber method:

boolean getNoLocal(
) throws JMSException

Note: The methods described in this section create non-durable
subscribers. Non-durable topic subscribers only receive messages sent
while they are active. For information about the methods used to
create durable subscriptions enabling messages to be retained until all
messages are delivered to a durable subscriber, see Section 6.7.5,
"Creating Subscribers for a Durable Subscription." In this case, durable
subscribers only receive messages that are published after the
subscriber has subscribed.

Setting Up a JMS Application

5-10 Programming JMS for Oracle WebLogic Server

For more information about the TopicSession class methods, see the
javax.jms.TopicSession Javadoc, at
http://download.oracle.com/javaee/5/api/javax/jms/TopicSession.h
tml. For more information about the TopicPublisher and TopicSubscriber
classes, see the javax.jms.TopicPublisher, at
http://download.oracle.com/javaee/5/api/javax/jms/TopicPublisher
.html, and javax.jms.TopicSubscriber Javadocs, at
http://download.oracle.com/javaee/5/api/javax/jms/TopicSubscribe
r.html.

5.2.6 Step 6a: Create the Message Object (Message Producers)

To create the message object, use one of the following Session or WLSession class
methods:

■ Session Methods

public BytesMessage createBytesMessage(
) throws JMSException

public MapMessage createMapMessage(
) throws JMSException

public Message createMessage(
) throws JMSException

public ObjectMessage createObjectMessage(
) throws JMSException

public ObjectMessage createObjectMessage(
 Serializable object
) throws JMSException

public StreamMessage createStreamMessage(
) throws JMSException

public TextMessage createTextMessage(
) throws JMSException

public TextMessage createTextMessage(
 String text
) throws JMSException

■ WLSession Method

public XMLMessage createXMLMessage(
 String text
) throws JMSException

Note: This step applies to message producers only.

Note: These methods are inherited by both the QueueSession and
TopicSession subclasses.

Setting Up a JMS Application

Developing a Basic JMS Application 5-11

For more information about the Session and WLSession class methods, see the
javax.jms.Session, at
http://download.oracle.com/javaee/5/api/javax/jms/Session.html,
and weblogic.jms.extensions.WLSession Javadocs, respectively. For more
information about the Message class and its methods, see Section 2.4.6, "Message," or
the javax.jms.Message Javadoc, at
http://download.oracle.com/javaee/5/api/javax/jms/Message.html.

5.2.7 Step 6b: Optionally Register an Asynchronous Message Listener

To receive messages asynchronously, you must register an asynchronous message
listener by performing the following steps:

1. Implement the javax.jms.MessageListener interface, at
http://download.oracle.com/javaee/5/api/javax/jms/MessageList
ener.html, which includes an onMessage() method.

2. Set the message listener using the following MessageConsumer method, passing
the listener information as an argument:

public void setMessageListener(
 MessageListener listener
) throws JMSException

3. Optionally, implement an exception listener on the session to catch exceptions, as
described in Section 6.3.1, "Defining a Connection Exception Listener."

You can unset a message listener by calling the MessageListener() method with a
value of null.

Once a message listener has been defined, you can access it by calling the following
MessageConsumer method:

public MessageListener getMessageListener(
) throws JMSException

If a message consumer is closed by an administrator or as the result of a server failure,
a ConsumerClosedException is delivered to the session exception listener, if one
has been defined. In this way, a new message consumer can be created, if necessary.

Note: This step applies to message consumers only.

Note: For an example of the onMessage() method interface, see
Section 5.2.9, "Example: Setting Up a PTP Application."

If you wish to issue the close() method within an onMessage()
method call, the system administrator must select the Allow Close In
OnMessage option when configuring the connection factory. For more
information on configuring connection factory options, see
"Configuring Basic JMS System Resources" in Configuring and
Managing JMS for Oracle WebLogic Server.

Note: WebLogic JMS guarantees that multiple onMessage() calls
for the same session will not be executed simultaneously.

Setting Up a JMS Application

5-12 Programming JMS for Oracle WebLogic Server

For information about defining a session exception listener, see Section 6.3.1, "Defining
a Connection Exception Listener."

The MessageConsumer class methods are inherited by the QueueReceiver and
TopicSubscriber classes. For additional information about the MessageConsumer
class methods, see Section 2.4.5, "MessageProducer and MessageConsumer" or the
javax.jms.MessageConsumer Javadoc, at
http://download.oracle.com/javaee/5/api/javax/jms/MessageConsume
r.html.

5.2.8 Step 7: Start the Connection
You start the connection using the Connection class start() method.

For additional information about starting, stopping, and closing a connection, see
Section 6.3.3, "Starting, Stopping, and Closing a Connection" or the
javax.jms.Connection Javadoc, at
http://download.oracle.com/javaee/5/api/javax/jms/Connection.htm
l.

5.2.9 Example: Setting Up a PTP Application
The following example is excerpted from the examples.jms.queue.QueueSend
example, provided with WebLogic Server in the WL_
HOME\samples\server\examples\src\examples\jms\queue directory, where
WL_HOME is the top-level directory of your WebLogic Platform installation. The
init() method shows how to set up and start a QueueSession for a JMS
application. The following shows the init() method, with comments describing each
setup step.

Define the required variables, including the JNDI context, JMS connection factory, and
queue static variables.

public final static String JNDI_FACTORY=
 "weblogic.jndi.WLInitialContextFactory";
public final static String JMS_FACTORY=
 "weblogic.examples.jms.QueueConnectionFactory";
public final static String
 QUEUE="weblogic.examples.jms.exampleQueue";

private QueueConnectionFactory qconFactory;
private QueueConnection qcon;
private QueueSession qsession;
private QueueSender qsender;
private Queue queue;
private TextMessage msg;

Set up the JNDI initial context, as follows:

InitialContext ic = getInitialContext(args[0]);
 .
 .
 .
private static InitialContext getInitialContext(
 String url
) throws NamingException
{
 Hashtable env = new Hashtable();
 env.put(Context.INITIAL_CONTEXT_FACTORY, JNDI_FACTORY);
 env.put(Context.PROVIDER_URL, url);

Setting Up a JMS Application

Developing a Basic JMS Application 5-13

 return new InitialContext(env);
}

Create all the necessary objects for sending messages to a JMS queue. The ctx object is
the JNDI initial context passed in by the main() method.

public void init(
 Context ctx,
 String queueName
) throws NamingException, JMSException
{

5.2.9.1 Step 1
Look up a connection factory in JNDI.

 qconFactory = (QueueConnectionFactory) ctx.lookup(JMS_FACTORY);

5.2.9.2 Step 2
Create a connection using the connection factory.

 qcon = qconFactory.createQueueConnection();

5.2.9.3 Step 3
Create a session using the connection. The following code defines the session as
non-transacted and specifies that messages will be acknowledged automatically. For
more information about transacted sessions and acknowledge modes, see Section 2.4.3,
"Session."

 qsession = qcon.createQueueSession(false,
 Session.AUTO_ACKNOWLEDGE);

5.2.9.4 Step 4
Look up a destination (queue) in JNDI.

 queue = (Queue) ctx.lookup(queueName);

5.2.9.5 Step 5
Create a reference to a message producer (queue sender) using the session and
destination (queue).

 qsender = qsession.createSender(queue);

5.2.9.6 Step 6
Create the message object.

 msg = qsession.createTextMessage();

5.2.9.7 Step 7
Start the connection.

 qcon.start();

Note: When setting up the JNDI initial context for an EJB or servlet,
use the following method:

Context ctx = new InitialContext();

Setting Up a JMS Application

5-14 Programming JMS for Oracle WebLogic Server

}

The init() method for the examples.jms.queue.QueueReceive example is
similar to the QueueSend init() method shown previously, with the one exception.
Steps 5 and 6 would be replaced by the following code, respectively:

qreceiver = qsession.createReceiver(queue);
qreceiver.setMessageListener(this);

In the first line, instead of calling the createSender() method to create a reference
to the queue sender, the application calls the createReceiver() method to create
the queue receiver.

In the second line, the message consumer registers an asynchronous message listener.

When a message is delivered to the queue session, it is passed to the
examples.jms.QueueReceive.onMessage() method. The following code excerpt
shows the onMessage() interface from the QueueReceive example:

public void onMessage(Message msg)
{
 try {
 String msgText;
 if (msg instanceof TextMessage) {
 msgText = ((TextMessage)msg).getText();
 } else { // If it is not a TextMessage...
 msgText = msg.toString();
 }

 System.out.println("Message Received: "+ msgText);

 if (msgText.equalsIgnoreCase("quit")) {
 synchronized(this) {

 quit = true;
 this.notifyAll(); // Notify main thread to quit
 }
 }
 } catch (JMSException jmse) {
 jmse.printStackTrace();
 }
}

The onMessage() method processes messages received through the queue receiver.
The method verifies that the message is a TextMessage and, if it is, prints the text of
the message. If onMessage() receives a different message type, it uses the message's
toString() method to display the message contents.

For more information about the JMS classes used in this example, see Section 2.4,
"Understanding the JMS API" or the javax.jms Javadoc, at
http://www.oracle.com/technetwork/java/jms/index.html.

Note: It is good practice to verify that the received message is the
type expected by the handler method.

Setting Up a JMS Application

Developing a Basic JMS Application 5-15

5.2.10 Example: Setting Up a Pub/Sub Application
The following example is excerpted from the examples.jms.topic.TopicSend
example, provided with WebLogic Server in the WL_
HOME\samples\server\examples\src\examples\jms\topic directory, where
WL_HOME is the top-level directory of your WebLogic Platform installation. The
init() method shows how to set up and start a topic session for a JMS application.
The following shows the init() method, with comments describing each setup step.

Define the required variables, including the JNDI context, JMS connection factory, and
topic static variables.

public final static String JNDI_FACTORY=
 "weblogic.jndi.WLInitialContextFactory";
public final static String JMS_FACTORY=
 "weblogic.examples.jms.TopicConnectionFactory";
public final static String
 TOPIC="weblogic.examples.jms.exampleTopic";

protected TopicConnectionFactory tconFactory;
protected TopicConnection tcon;
protected TopicSession tsession;
protected TopicPublisher tpublisher;
protected Topic topic;
protected TextMessage msg;

Set up the JNDI initial context, as follows:

InitialContext ic = getInitialContext(args[0]);
 .
 .
 .
private static InitialContext getInitialContext(
 String url
) throws NamingException
{
 Hashtable env = new Hashtable();
 env.put(Context.INITIAL_CONTEXT_FACTORY, JNDI_FACTORY);
 env.put(Context.PROVIDER_URL, url);
 return new InitialContext(env);
}

Create all the necessary objects for sending messages to a JMS queue. The ctx object is
the JNDI initial context passed in by the main() method.

public void init(
 Context ctx,
 String topicName
) throws NamingException, JMSException
{

5.2.10.1 Step 1
Look up a connection factory using JNDI.

Note: When setting up the JNDI initial context for a servlet, use the
following method:

 Context ctx = new InitialContext();

Setting Up a JMS Application

5-16 Programming JMS for Oracle WebLogic Server

 tconFactory =
 (TopicConnectionFactory) ctx.lookup(JMS_FACTORY);

5.2.10.2 Step 2
Create a connection using the connection factory.

 tcon = tconFactory.createTopicConnection();

5.2.10.3 Step 3
Create a session using the connection. The following defines the session as
non-transacted and specifies that messages will be acknowledged automatically. For
more information about setting session transaction and acknowledge modes, see
Section 2.4.3, "Session."

 tsession = tcon.createTopicSession(false,
 Session.AUTO_ACKNOWLEDGE);

5.2.10.4 Step 4
Look up the destination (topic) using JNDI.

 topic = (Topic) ctx.lookup(topicName);

5.2.10.5 Step 5
Create a reference to a message producer (topic publisher) using the session and
destination (topic).

 tpublisher = tsession.createPublisher(topic);

5.2.10.6 Step 6
Create the message object.

 msg = tsession.createTextMessage();

5.2.10.7 Step 7
Start the connection.

 tcon.start();
 }

The init() method for the examples.jms.topic.TopicReceive example is
similar to the TopicSend init() method shown previously with on exception.
Steps 5 and 6 would be replaced by the following code, respectively:

tsubscriber = tsession.createSubscriber(topic);
tsubscriber.setMessageListener(this);

In the first line, instead of calling the createPublisher() method to create a
reference to the topic publisher, the application calls the createSubscriber()
method to create the topic subscriber.

In the second line, the message consumer registers an asynchronous message listener.

When a message is delivered to the topic session, it is passed to the
examples.jms.TopicSubscribe.onMessage() method. The onMessage()
interface for the TopicReceive example is the same as the QueueReceive
onMessage() interface, as described in Section 5.2.9, "Example: Setting Up a PTP
Application."

Sending Messages

Developing a Basic JMS Application 5-17

For more information about the JMS classes used in this example, see Section 2.4,
"Understanding the JMS API" or the javax.jms Javadoc, at
http://www.oracle.com/technetwork/java/jms/index.html.

5.3 Sending Messages
Once you have set up the JMS application as described in Section 5.2, "Setting Up a
JMS Application," you can send messages. To send a message, you must, in order,
perform the steps described in the following sections:

1. Section 5.3.1, "Create a Message Object"

2. Section 5.3.2, "Define a Message"

3. Section 5.3.3, "Send the Message to a Destination"

For more information about the JMS classes for sending messages and the message
types, see the javax.jms.Message Javadoc, at
http://download.oracle.com/javaee/5/api/javax/jms/Message.html.
For information about receiving messages, see Section 5.4, "Receiving Messages."

5.3.1 Create a Message Object
This step has already been accomplished as part of the client setup procedure, as
described in Section 5.2.6, "Step 6a: Create the Message Object (Message Producers)."

5.3.2 Define a Message
This step may have been accomplished when setting up an application, as described in
Section 5.2.6, "Step 6a: Create the Message Object (Message Producers)." Whether or
not this step has already been accomplished depends on the method that was called to
create the message object. For example, for TextMessage and ObjectMessage types,
when you create a message object, you have the option of defining the message when
you create the message object.

If a value has been specified and you do not wish to change it, you can proceed to step
3.

If a value has not been specified or if you wish to change an existing value, you can
define a value using the appropriate set method. For example, the method for
defining the text of a TextMessage is as follows:

public void setText(
 String string
) throws JMSException

Subsequently, you can clear the message body using the following method:

public void clearBody(
) throws JMSException

For more information about the methods used to define messages, see the
javax.jms.Session Javadoc, at
http://download.oracle.com/javaee/5/api/javax/jms/Session.html.

Note: Messages can be defined as null.

Sending Messages

5-18 Programming JMS for Oracle WebLogic Server

5.3.3 Send the Message to a Destination
You can send a message to a destination using a message producer—queue sender
(PTP) or topic publisher (Pub/Sub)—and the methods described in the following
sections. The Destination and MessageProducer objects were created when you
set up the application, as described in Section 5.2, "Setting Up a JMS Application."

For more information about the MessageProducer class, see Section 2.4.5,
"MessageProducer and MessageConsumer" or the javax.jms.MessageProducer
Javadoc, at
http://download.oracle.com/javaee/5/api/javax/jms/MessageProduce
r.html.

5.3.3.1 Send a Message Using Queue Sender
You can send messages using the following QueueSender methods:

public void send(
 Message message
) throws JMSException

public void send(
 Message message,
 int deliveryMode,
 int priority,
 long timeToLive
) throws JMSException

public void send(
 Queue queue,
 Message message
) throws JMSException

public void send(
 Queue queue,
 Message message,
 int deliveryMode,
 int priority,
 long timeToLive
) throws JMSException

You must specify a message. You may also specify the queue name (for anonymous
message producers), delivery mode (DeliveryMode.PERSISTENT or
DeliveryMode.NON_PERSISTENT), priority (0-9), and time-to-live (in
milliseconds). If not specified, the delivery mode, priority, and time-to-live attributes
are set to one of the following:

■ Connection factory or destination override configuration attributes defined for the
producer, as described "Configure default delivery parameters" in the Oracle
WebLogic Server Administration Console Help.

Note: If multiple topic subscribers are defined for the same topic,
each subscriber will receive its own local copy of a message. Once
received, you can modify the header field values; however, the
message properties and message body are read only. You can modify
the message body by executing the corresponding message type's
clearbody() method to clear the existing contents and enable write
permission.

Sending Messages

Developing a Basic JMS Application 5-19

■ Values specified using the message producer's set methods, as described in
Section 5.3.4, "Setting Message Producer Attributes."

If you define the delivery mode as PERSISTENT, you should configure a backing store
for the destination, as described in "Configure persistent stores" in the Oracle WebLogic
Server Administration Console Help.

If the queue sender is an anonymous producer (that is, if when the queue was created,
the name was set to null), then you must specify the queue name (using one of the last
two methods) to indicate where to deliver messages. For more information about
defining anonymous producers, see Section 5.2.5.1, "Create QueueSenders and
QueueReceivers."

For example, the following code sends a persistent message with a priority of 4 and a
time-to-live of one hour:

QueueSender.send(message, DeliveryMode.PERSISTENT, 4, 3600000);

For additional information about the QueueSender class methods, see the
javax.jms.QueueSender Javadoc, at
http://download.oracle.com/javaee/5/api/javax/jms/QueueSender.ht
ml.

5.3.3.2 Send a Message Using TopicPublisher
You can send messages using the following TopicPublisher methods:

public void publish(
 Message message
) throws JMSException

public void publish(
 Message message,
 int deliveryMode,
 int priority,
 long timeToLive
) throws JMSException

public void publish(
 Topic topic,

Notes: WebLogic JMS also provides the following proprietary
attributes, as described in Section 5.3.4, "Setting Message Producer
Attributes":

■ TimeToDeliver (that is, birth time), which represents the delay
before a sent message is made visible on its target destination.

■ RedeliveryLimit, which determines the number of times a
message is redelivered after a recover or rollback.

■ SendTimeout, which is the maximum time the producer will
wait for space when sending a message.

Note: If no backing store is configured, then the delivery mode is
changed to NON_PERSISTENT and messages are not written to the
persistent store.

Sending Messages

5-20 Programming JMS for Oracle WebLogic Server

 Message message
) throws JMSException

public void publish(
 Topic topic,
 Message message,
 int deliveryMode,
 int priority,
 long timeToLive
) throws JMSException

You must provide a message. You may also specify the topic name, delivery mode
(DeliveryMode.PERSISTENT or DeliveryMode.NON_PERSISTENT), priority
(0-9), and time-to-live (in milliseconds). If not specified, the delivery mode, priority,
and time-to-live attributes are set to one of the following:

■ Connection factory or destination override configuration attributes defined for the
producer, as described "Configure default delivery parameters" in the Oracle
WebLogic Server Administration Console Help.

■ Values specified using the message producer's set methods, as described in
Section 5.3.4, "Setting Message Producer Attributes."

If you define the delivery mode as PERSISTENT, you should configure a backing
store, as described in "Configure custom persistent stores" in the Oracle WebLogic Server
Administration Console Help.

If the topic publisher is an anonymous producer (that is, if when the topic was created,
the name was set to null), then you must specify the topic name (using either of the
last two methods) to indicate where to deliver messages. For more information about
defining anonymous producers, see Section 5.2.5.2, "Create TopicPublishers and
TopicSubscribers."

For example, the following code sends a persistent message with a priority of 4 and a
time-to-live of one hour:

TopicPublisher.publish(message, DeliveryMode.PERSISTENT,
 4,3600000);

For more information about the TopicPublisher class methods, see the
javax.jms.TopicPublisher Javadoc, at

Notes: WebLogic JMS also provides the following proprietary
attributes, as described in Section 5.3.4, "Setting Message Producer
Attributes":

■ TimeToDeliver (that is, birth time), which represents the delay
before a sent message is made visible on its target destination.

■ RedeliveryLimit, which determines the number of times a
message is redelivered after a recover or rollback.

■ SendTimeout, which is the maximum time the producer will
wait for space when sending a message.

Note: If no backing store is configured, then the delivery mode is
changed to NON_PERSISTENT and no messages are stored.

Sending Messages

Developing a Basic JMS Application 5-21

http://download.oracle.com/javaee/5/api/javax/jms/TopicPublisher
.html.

5.3.4 Setting Message Producer Attributes
As described in the previous section, when sending a message, you can optionally
specify the delivery mode, priority, and time-to-live values. If not specified, these
attributes are set to the connection factory configuration attributes, as described in
"Configure connection factories" in the Oracle WebLogic Server Administration Console
Help.

Alternatively, you can set the delivery mode, priority, time-to-deliver, time-to-live, and
redelivery delay (timeout), and redelivery limit values dynamically using the message
producer's set methods. The following table lists the message producer set and get
methods for each dynamically configurable attribute.

Note: The delivery mode, priority, time-to-live, time-to-deliver,
redelivery delay (timeout), and redelivery limit attribute settings can
be overridden by the destination using the Delivery Mode Override,
Priority Override, Time To Live Override, Time To Deliver Override,
Redelivery Delay Override, and Redelivery Limit configuration
attributes, as described in "Configure message delivery overrides" and
"Configure topic message delivery overrides" in the Oracle WebLogic
Server Administration Console Help.

Table 5–2 Message Producer Set and Get Methods

Attribute Set Method Get Method

Delivery Mode public void setDeliveryMode(
 int deliveryMode
) throws JMSException

public int getDeliveryMode(
) throws JMSException

Priority public void setPriority(
 int defaultPriority
) throws JMSException

public int getPriority(
) throws JMSException

Time-To-Live public void setTimeToLive(
 long timeToLive
) throws JMSException

public long getTimeToLive(
) throws JMSException

Time-To-Deliver public void setTimeToDeliver(
 long timeToDeliver
) throws JMSException

public long getTimeToDeliver(
) throws JMSException

Redelivery
Limit

public void setRedeliveryLimit(
 int redeliveryLimit
) throws JMSException

public int getredeliveryLimit(
) throws JMSException

Send Timeout public void setsendTimeout(
long sendTimeout
) throws JMSException

public long getsendTimeout(
) throws JMSException

Note: JMS defines optional MessageProducer methods for
disabling the message ID and timestamp information. However, these
methods are ignored by WebLogic JMS.

Sending Messages

5-22 Programming JMS for Oracle WebLogic Server

For more information about the MessageProducer class methods, see the
javax.jms.MessageProducer Javadoc, at
http://download.oracle.com/javaee/5/api/javax/jms/MessageProduce
r.html, or the weblogic.jms.extensions.WLMessageProducer Javadoc.

5.3.5 Example: Sending Messages Within a PTP Application
The following example is excerpted from the examples.jms.queue.QueueSend
example, provided with WebLogic Server in the WL_
HOME\samples\server\examples\src\examples\jms\queue directory, where
WL_HOME is the top-level directory of your WebLogic Platform installation. The
example shows the code required to create a TextMessage, set the text of the
message, and send the message to a queue.

msg = qsession.createTextMessage();
 .
 .
 .
public void send(
 String message
) throws JMSException
{
 msg.setText(message);
 qsender.send(msg);
}

For more information about the QueueSender class and methods, see the
javax.jms.QueueSender Javadoc, at
http://download.oracle.com/javaee/5/api/javax/jms/QueueSender.ht
ml.

5.3.6 Example: Sending Messages Within a Pub/Sub Application
The following example is excerpted from the examples.jms.topic.TopicSend
example, provided with WebLogic Server in the WL_
HOME\samples\server\examples\src\examples\jms\topic directory, where
WL_HOME is the top-level directory of your WebLogic Platform installation. It shows
the code required to create a TextMessage, set the text of the message, and send the
message to a topic.

msg = tsession.createTextMessage();
 .
 .
 .
public void send(
 String message
) throws JMSException
{
 msg.setText(message);
 tpublisher.publish(msg);
}

For more information about the TopicPublisher class and methods, see the
javax.jms.TopicPublisher Javadoc, at
http://download.oracle.com/javaee/5/api/javax/jms/TopicPublisher
.html.

Receiving Messages

Developing a Basic JMS Application 5-23

5.4 Receiving Messages
Once you have set up the JMS application as described in Section 5.2, "Setting Up a
JMS Application," you can receive messages.

To receive a message, you must create the receiver object and specify whether you
want to receive messages asynchronously or synchronously, as described in the
following sections.

The order in which messages are received can be controlled by the following:

■ Message delivery attributes (delivery mode and sorting criteria) defined during
configuration or as part of the send() method, as described in Section 5.3,
"Sending Messages."

■ Destination sort order set using destination keys, as described in "Configure
destination keys" in the Oracle WebLogic Server Administration Console Help.

Once received, you can modify the header field values; however, the message
properties and message body are read-only. You can modify the message body by
executing the corresponding message type's clearbody() method to clear the
existing contents and enable write permission.

For more information about the JMS classes for receiving messages and the message
types, see the javax.jms.Message Javadoc, at
http://download.oracle.com/javaee/5/api/javax/jms/Message.html.
For information about sending messages, see Section 5.3, "Sending Messages."

5.4.1 Receiving Messages Asynchronously
This procedure is described within the context of setting up the application. For more
information, see Section 5.2.7, "Step 6b: Optionally Register an Asynchronous Message
Listener."

5.4.1.1 Asynchronous Message Pipeline
If messages are produced faster than asynchronous message listeners (consumers) can
consume them, a JMS server will push multiple unconsumed messages in a batch to
another session with available asynchronous message listeners. These in-flight
messages are sometimes referred to as the message pipeline, or in some JMS vendors as
the message backlog. The pipeline or backlog size is the number of messages that have
accumulated on an asynchronous consumer, but which have not been passed to a
message listener.

5.4.1.1.1 Configuring a Message Pipeline You can control a client's maximum pipeline
size by configuring the Messages Maximum per Session attribute on the client's
connection factory, which is defined as the "maximum number of messages that can
exist for an asynchronous consumer and that have not yet been passed to the message
listener". The default setting is 10. For more information on configuring a JMS
connection factory, see "Configure connection factories" in the Oracle WebLogic Server
Administration Console Help.

Note: You can control the maximum number of messages that may
exist for an asynchronous consumer and that have not yet been passed
to the message listener by setting the Messages Maximum attribute
when configuring the connection factory.

Receiving Messages

5-24 Programming JMS for Oracle WebLogic Server

5.4.1.1.2 Behavior of Pipelined Messages Once a message pipeline is configured, it will
exhibit the following behavior:

■ Statistics — JMS monitoring statistics reports backlogged messages in a message
pipeline as pending (for queues and durable subscribers) until they are either
committed or acknowledged.

■ Performance — Increasing the Messages Maximum pipeline size may improve
performance for high-throughput applications. Note that a larger pipeline will
increase client memory usage, as the pending pipelined messages accumulate on
the client JVM before the asynchronous consumer's listener is called.

■ Sorting — Messages in an asynchronous consumer's pipeline are not sorted
according to the consumer destination's configured sort order; instead, they
remain in the order in which they are pushed from the JMS server. For example, if
a destination is configured to sort by priority, high priority messages will not jump
ahead of low priority messages that have already been pushed into an
asynchronous consumer's pipeline.

5.4.2 Receiving Messages Synchronously
To receive messages synchronously, use the following MessageConsumer methods:

public Message receive(
) throws JMSException

public Message receive(
 long timeout
) throws JMSException

public Message receiveNoWait(
) throws JMSException

In each case, the application receives the next message produced. If you call the
receive() method with no arguments, the call blocks indefinitely until a message is
produced or the application is closed. Alternatively, you can pass a timeout value to
specify how long to wait for a message. If you call the receive() method with a
value of 0, the call blocks indefinitely. The receiveNoWait() method receives the
next message if one is available, or returns null; in this case, the call does not block.

The MessageConsumer class methods are inherited by the QueueReceiver and
TopicSubscriber classes. For additional information about the MessageConsumer
class methods, see the javax.jms.MessageConsumer Javadoc, at
http://download.oracle.com/javaee/5/api/javax/jms/MessageConsume
r.html.

Notes: The Messages Maximum per Session pipeline size setting on
the connection factory is not related to the Messages Maximum quota
settings on JMS servers and destinations.

Pipelined messages are sometimes aggregated into a single message
on the network transport. If the messages are sufficiently large, the
aggregate size of the data written may exceed the maximum value for
the transport, which may cause undesirable behavior. For example,
the t3 protocol sets a default maximum message size of 10,000,000
bytes, and is configurable on the server with the MaxT3MessageSize
attribute. This means that if ten 2 megabyte messages are pipelined,
the t3 limit may be exceeded.

Receiving Messages

Developing a Basic JMS Application 5-25

5.4.2.1 Use Prefetch Mode to Create a Synchronous Message Pipeline
In releases prior to WebLogic Server 9.1, synchronous consumers required making a
two-way network calls for each message, which was an inefficient model because the
synchronous consumer could not retrieve multiple messages, and could also increase
network traffic resources, since synchronous consumers would continually poll the
server for available messages. In WebLogic 9.1 or later, your synchronous consumers
can also use the same efficient behavior as asynchronous consumers by enabling the
Prefetch Mode for Synchronous Consumers option on JMS connection factories, either
using the Administration Console or the JMSClientParamsBean MBean.

Similar to the asynchronous message pipeline, when the Prefetch Mode is enabled on a
JMS client's connection factory, the connection factory's targeted JMS servers will
proactively push batches of unconsumed messages to synchronous message
consumers, using the connection factory's Messages Maximum per Session parameter
to define the maximum number of messages per batch. This may improve
performance because messages are ready and waiting for synchronous consumers
when the consumers are ready to process more messages, and it may also reduce
network traffic by reducing synchronous calls from consumers that must otherwise
continually poll for messages.

Synchronous message prefetching does not support user (XA) transactions for
synchronous message receives or multiple synchronous consumers per session
(regardless of queue or topic). In most such cases, WebLogic JMS will silently and
safely ignore the Prefetch Mode for Synchronous Consumer flag; however, otherwise
WebLogic will fail the application's synchronous receive calls.

For more information on the behavior of pipelined messages, see Section 5.4.1.1,
"Asynchronous Message Pipeline." For more information on configuring a JMS
connection factory, see "Configure connection factories" in the Oracle WebLogic Server
Administration Console Help.

5.4.2.2 Receiving Messages Synchronously Within a PTP Application
The following example is excerpted from the
examples.jms.queue.QueueReceive example, provided with WebLogic Server in
the WL_HOME\samples\server\examples\src\examples\jms\queue
directory, where WL_HOME is the top-level directory of your WebLogic Platform
installation. Rather than set a message listener, you would call
qreceiver.receive() for each message. For example:

qreceiver = qsession.createReceiver(queue);
qreceiver.receive();

The first line creates the queue receiver on the queue. The second line executes a
receive() method. The receive() method blocks and waits for a message.

5.4.2.3 Receiving Messages Synchronously Within a Pub/Sub Application
The following example is excerpted from the
examples.jms.topic.TopicReceive example, provided with WebLogic Server in
the WL_HOME\samples\server\examples\src\examples\jms\topic
directory, where WL_HOME is the top-level directory of your WebLogic Platform
installation. Rather than set a message listener, you would call
tsubscriber.receive() for each message.

For example:

tsubscriber = tsession.createSubscriber(topic);
Message msg = tsubscriber.receive();

Acknowledging Received Messages

5-26 Programming JMS for Oracle WebLogic Server

msg.acknowledge();

The first line creates the topic subscriber on the topic. The second line executes a
receive() method. The receive() method blocks and waits for a message.

5.4.3 Recovering Received Messages

An application can request that JMS redeliver messages (unacknowledge them) using
the following method:

public void recover(
) throws JMSException

The recover() method performs the following steps:

■ Stops message delivery for the session

■ Tags all messages that have not been acknowledged (but may have been
delivered) as redelivered

■ Resumes sending messages starting from the first unacknowledged message for
that session

5.5 Acknowledging Received Messages

To acknowledge a received message, use the following Message method:

public void acknowledge(
) throws JMSException

The acknowledge() method depends on how the connection factory's Acknowledge
Policy attribute is configured, as follows:

■ The default policy of "All" specifies that calling acknowledge on a message
acknowledges all unacknowledged messages received on the session.

■ The "Previous" policy specifies that calling acknowledge on a message
acknowledges only unacknowledged messages up to, and including, the given
message. Messages that are not acknowledged may be redelivered to the client.

Note: This section applies only to non-transacted sessions for which
the acknowledge mode is set to CLIENT_ACKNOWLEDGE.
Synchronously received AUTO_ACKNOWLEDGE messages may not be
recovered; they have already been acknowledged.

Note: Messages in queues are not necessarily redelivered in the same
order that they were originally delivered, nor to the same queue
consumers. For information to guarantee the correct ordering of
redelivered messages, see Section 6.1.3, "Ordered Redelivery of
Messages."

Note: This section applies only to non-transacted sessions for which
the acknowledge mode is set to CLIENT_ACKNOWLEDGE.

Releasing Object Resources

Developing a Basic JMS Application 5-27

This method is effective only when issued by a non-transacted session for which the
acknowledge mode is set to CLIENT_ACKNOWLEDGE. Otherwise, the method is
ignored.

5.6 Releasing Object Resources
When you have finished using the connection, session, message producer or
consumer, connection consumer, or queue browser created on behalf of a JMS
application, you should explicitly close them to release the resources.

Enter the close() method to close JMS objects, as follows:

public void close(
) throws JMSException

When closing an object:

■ The call blocks until the method call completes or until any outstanding
asynchronous receiver onMessage() calls complete.

■ All associated sub-objects are also closed. For example, when closing a session, all
associated message producers and consumers are also closed. When closing a
connection, all associated sessions are also closed.

For more information about the impact of the close() method for each object, see the
appropriate javax.jms Javadoc, at
http://www.oracle.com/technetwork/java/jms/index.html. In addition,
for more information about the connection or Session close() method, see
Section 6.3.3, "Starting, Stopping, and Closing a Connection" or Section 6.4.2, "Closing
a Session," respectively.

The following example is excerpted from the examples.jms.queue.QueueSend
example, provided with WebLogic Server in the WL_
HOME\samples\server\examples\src\examples\jms\queue directory, where
WL_HOME is the top-level directory of your WebLogic Platform installation. This
example shows the code required to close the message consumer, session, and
connection objects.

public void close(
) throws JMSException
{
 qreceiver.close();
 qsession.close();
 qcon.close();
}

In the QueueSend example, the close() method is called at the end of main() to
close objects and free resources.

Releasing Object Resources

5-28 Programming JMS for Oracle WebLogic Server

6

Managing Your Applications 6-1

6Managing Your Applications

This chapter describes how to programatically manage your JMS applications using
value-added WebLogic JMS features.

■ Section 6.1, "Managing Rolled Back, Recovered, Redelivered, or Expired Messages"

■ Section 6.2, "Setting Message Delivery Times"

■ Section 6.3, "Managing Connections"

■ Section 6.4, "Managing Sessions"

■ Section 6.5, "Managing Destinations"

■ Section 6.6, "Using Temporary Destinations"

■ Section 6.7, "Setting Up Durable Subscriptions"

■ Section 6.8, "Setting and Browsing Message Header and Property Fields"

■ Section 6.9, "Filtering Messages"

■ Section 6.10, "Sending XML Messages"

6.1 Managing Rolled Back, Recovered, Redelivered, or Expired Messages
The following sections describe how to manage rolled back or recovered messages:

■ Section 6.1.1, "Setting a Redelivery Delay for Messages"

■ Section 6.1.2, "Setting a Redelivery Limit for Messages"

■ Section 6.1.3, "Ordered Redelivery of Messages"

■ Section 6.1.4, "Handling Expired Messages"

6.1.1 Setting a Redelivery Delay for Messages
You can delay the redelivery of messages when a temporary, external condition
prevents an application from properly handling a message. This allows an application
to temporarily inhibit the receipt of "poison" messages that it cannot currently handle.
When a message is rolled back or recovered, the redelivery delay is the amount of time
a message is put aside before an attempt is made to redeliver the message.

If JMS immediately redelivers the message, the error condition may not be resolved
and the application may still not be able to handle the message. However, if an
application is configured for a redelivery delay, then when it rolls back or recovers a
message, the message is set aside until the redelivery delay has passed, at which point
the messages are made available for redelivery.

Managing Rolled Back, Recovered, Redelivered, or Expired Messages

6-2 Programming JMS for Oracle WebLogic Server

All messages consumed and subsequently rolled back or recovered by a session
receive the redelivery delay for that session at the time of rollback or recovery.
Messages consumed by multiple sessions as part of a single user transaction will
receive different redelivery delays as a function of the session that consumed the
individual messages. Messages that are left unacknowledged or uncommitted by a
client, either intentionally or as a result of a failure, are not assigned a redelivery delay.

6.1.1.1 Setting a Redelivery Delay
A session inherits the redelivery delay from its connection factory when the session is
created. The RedeliveryDelay attribute of a connection factory is configured using
the Administration Console.

For more information, see "Configure connection factories" in the Oracle WebLogic
Server Administration Console Help.

The application that creates the session can then override the connection factory
setting using WebLogic-specific extensions to the javax.jms.Session interface. The
session attribute is dynamic and can be changed at any time. Changing the session
redelivery delay affects all messages consumed and rolled back (or recovered) by that
session after the change except when the message is in a session using non-durable
topics.

The method for setting the redelivery delay on a session is provided through the
weblogic.jms.extensions.WLSession interface, which is an extension to the
javax.jms.Session interface. To define a redelivery delay for a session, use the
following methods:

public void setRedeliveryDelay(
 long redeliveryDelay
) throws JMSException;

public long getRedeliveryDelay(
) throws JMSException;

For more information on the WLSession class, refer to the
weblogic.jms.extensions.WLSession Javadoc.

6.1.1.2 Overriding the Redelivery Delay on a Destination
Regardless of what redelivery delay is set on the session, the destination where a
message is being rolled back or recovered can override the setting. The redelivery
delay override applied to the redelivery of a message is the one in effect at the time a
message is rolled back or recovered.

The RedeliveryDelayOverride attribute of a destination is configured using the
Administration Console. For more information, see:

■ "Configure queue message delivery failure options" in the Oracle WebLogic Server
Administration Console Help

■ "Configure topic message delivery failure options" in the Oracle WebLogic Server
Administration Console Help

Note: When a session is using non-durable topics, the
setRedeliveryDelay method does not apply. This may result in
unexpected behavior if you are using a non-durable topic consumer to
drive a workflow.

Managing Rolled Back, Recovered, Redelivered, or Expired Messages

Managing Your Applications 6-3

6.1.2 Setting a Redelivery Limit for Messages
You can specify a limit on the number of times that WebLogic JMS will attempt to
redeliver a message to an application. Once WebLogic JMS fails to redeliver a message
to a destination for a specific number of times, the message can be redirected to an
error destination that is associated to the message destination. If the redelivery limit is
configured, but no error destination is configured, then persistent or non-persistent
messages are simply deleted when they reach their redelivery limit.

Alternatively, you can set the redelivery limit value dynamically using the message
producer's set method, as described in Section 5.3.4, "Setting Message Producer
Attributes."

6.1.2.1 Configuring a Message Redelivery Limit On a Destination
When a destination's attempts to redeliver a message to a consumer reaches a specified
redelivery limit, then the destination deems the message undeliverable. The
RedeliveryLimit attribute is set on a destination and is configurable using the
Administration Console. This setting overrides the redelivery limit set on the message
producer. For more information, see:

■ "Configure queue message delivery failure options" in the Oracle WebLogic Server
Administration Console Help.

■ "Configure topic message delivery failure options" in the Oracle WebLogic Server
Administration Console Help.

6.1.2.2 Configuring an Error Destination for Undelivered Messages
If an error destination is configured on the JMS server for undelivered messages, then
when a message has been deemed undeliverable, the message will be redirected to a
specified error destination. The error destination can be either a queue or a topic, and
it must be configured on the same JMS server as the destination for which it is defined.
If no error destination is configured, then undeliverable messages are simply deleted.

The ErrorDestination attribute is configured for standalone destinations and
uniform distributed destination using the Administration Console. For more
information, see:

■ "Configure queue message delivery failure options" in the Oracle WebLogic Server
Administration Console Help.

■ "Configure topic message delivery failure options" in the Oracle WebLogic Server
Administration Console Help.

■ "Uniform distributed queues - configure delivery failure parameters" in the Oracle
WebLogic Server Administration Console Help.

■ "Uniform distributed topics - configure delivery failure parameters" in the Oracle
WebLogic Server Administration Console Help.

6.1.3 Ordered Redelivery of Messages

All messages initially delivered to a consumer from a given producer are guaranteed
to arrive at the consumer in the order in which they were produced. WebLogic JMS

Note: Oracle recommends that applications that use Ordered
Redelivery upgrade to Message Unit-of-Order. See Chapter 10, "Using
Message Unit-of-Order."

Managing Rolled Back, Recovered, Redelivered, or Expired Messages

6-4 Programming JMS for Oracle WebLogic Server

goes above and beyond this requirement by providing the "Ordered Redelivery of
Messages" feature, which guarantees the correct ordering of redelivered messages as
well.

In order to provide this guarantee, WebLogic JMS must impose certain constraints.
They are:

■ Single consumers — ordered redelivery is only guaranteed when there is a single
consumer. If there are multiple consumers, then there are no guarantees about the
order in which any individual consumer will receive messages.

■ Sort order — if a given destination is sorted, has JMS destination keys defined, and
another message is produced such that the message would be placed at the top of
the ordering, then no guarantee can be made between the redelivery of an existing
message and the delivery of the incoming message.

■ Message selection — if a consumer is using a selector, then ordering on redelivery
is only guaranteed between the message being redelivered and other messages
that match the criteria for that selector. There are no guarantees of order with
respect to messages that do not match the selector.

■ Redelivery delay — if a message has a redelivery delay period and is recovered or
rolled back, then it is unavailable for the delay period. During that period, other
messages can be delivered before the delayed message—even though these
messages were sent after the delayed message.

■ Messages pending recovery — ordered redelivery does not apply to redelivered
messages that end up in a pending recovery state due to a server failure or a
system reboot.

6.1.3.1 Required Message Pipeline Setting for the Messaging Bridge and MDBs
For asynchronous consumers or JMS applications using the WebLogic Messaging
Bridge or MDBs, the size of the message pipeline must be set to 1. The pipeline size is
set using the Messages Maximum attribute on the JMS connection factory used by the
receiving application. Any value higher than 1 means there may be additional in-flight
messages that will appear ahead of a redelivered message. MDB applications must
define an application-specific JMS connection factory and set the Messages Maximum
attribute value to 1 on that connection factory, and then reference the connection
factory in the EJB descriptor for their MDB application.

For more information about programming EJBs, see "Message-Driven EJBs" in
Programming WebLogic Enterprise JavaBeans for Oracle WebLogic Server.

6.1.3.2 Performance Limitations
JMS applications that implement the Ordered Redelivery feature will incur
performance degradation for asynchronous consumers using JTA transactions
(specifically, MDBs and the WebLogic Messaging Bridge). This is caused by a
mandatory reduction in the number of in-flight messages to exactly 1, so messages are
not aggregated when they are sent to the client.

Note: With respect to MDBs (message-driven beans), the number of
consumers is a function of the number of MDB instances deployed for
a given MDB. The initial and maximum values for the number of
instances must be set to 1. Otherwise no ordering guarantees can be
made with respect to redelivered messages.

Setting Message Delivery Times

Managing Your Applications 6-5

6.1.4 Handling Expired Messages
WebLogic JMS has an active message Expiration Policy feature that allows you to
control how the system searches for expired messages and how it handles them when
they are encountered. This feature ensures that expired messages are cleaned up
immediately, either by simply discarding expired messages, discarding expired
messages and logging their removal, or redirecting expired messages to an error
destination configured on the local JMS server.

6.2 Setting Message Delivery Times
You can schedule message deliveries to an application for specific times in the future.
Message deliveries can be deferred for short periods of time (such as seconds or
minutes) or for long stretches of time (for example, hours later for batch processing).
Until that delivery time, the message is essentially invisible until it is delivered,
allowing you to schedule work at a particular time in the future.

Messages are not sent on a recurring basis; they are sent only once. In order to send
messages on a recurring basis, a received scheduled message must be sent back to its
original destination. Typically, the receive, the send, and any associated work should
be under the same transaction to ensure exactly-once semantics.

6.2.1 Setting a Delivery Time on Producers
Support for setting and getting a time-to-deliver on an individual producer is
provided through the weblogic.jms.extensions.WLMessageProducer
interface, which is an extension to the javax.jms.MessageProducer interface. To
define a time-to-deliver on an individual producer, use the following methods:

public void setTimeToDeliver(
 long timeToDeliver
) throws JMSException;

public long getTimeToDeliver(
) throws JMSException;

For more information on the WLMessageProducer class, refer to the
weblogic.jms.extensions.WLMessageProducer Javadoc.

6.2.2 Setting a Delivery Time on Messages
The DeliveryTime is a JMS message header field that defines the earliest absolute
time at which the message can be delivered. That is, the message is held by the
messaging system and is not given to any consumers until that time.

As a JMS header field, the DeliveryTime can be used to sort messages in a
destination or to select messages. For purposes of data type conversion, the delivery
time is stored as a long integer.

Setting Message Delivery Times

6-6 Programming JMS for Oracle WebLogic Server

The support for setting and getting the delivery time on a message is provided
through the weblogic.jms.extensions.WLMessage interface, which is an
extension to the javax.jms.Message interface. To define a delivery time on a
message, use the following methods:

public void setJMSDeliveryTime(
 long deliveryTime
) throws JMSException;

public long getJMSDeliveryTime(
) throws JMSException;

For more information on the WLMessage class, refer to the
weblogic.jms.extensions.WLMessage Javadoc.

6.2.3 Overriding a Delivery Time
When a producer is created it inherits its TimeToDeliver attribute, expressed in
milliseconds, from the connection factory used to create the connection that the
producer is a part of. Regardless of what time-to-deliver is set on the producer, the
destination to which a message is being sent or published can override the setting. An
administrator can set the TimeToDeliverOverride attribute on a destination in
either a relative or scheduled string format.

6.2.3.1 Interaction With the Time-to-Live Value
If the specified time-to-live value (JMSExpiration) is less than or equal to the
specified time-to-deliver value, then the message delivery succeeds. However, the
message is then silently expired.

6.2.3.2 Setting a Relative Time-to-Deliver Override
A relative TimeToDeliverOverride is a String specified as an integer, and is
configurable using the Administration Console.

6.2.3.3 Setting a Scheduled Time-to-Deliver Override
A scheduled TimeToDeliverOverride can also be specified using the
weblogic.jms.extensions.Schedule class, which provides methods that take a
schedule and return the next scheduled time for delivering messages.

Note: Setting a delivery time value on a message has no effect on this
field, because JMS will always override the value with the producer's
value when the message is sent or published. The message delivery
time methods described here are similar to other JMS message fields
that are set through the producer, including the delivery mode,
priority, time-to-deliver, time-to-live, redelivery delay, and redelivery
limit fields. Specifically, the setting of these fields is reserved for JMS
providers, including WebLogic JMS.

Table 6–1 Message Delivery Schedule

Example Description

0 0 0,30 * * * * Exact next nearest half-hour

* * 0,30 4-5 * * * Anytime in the first minute of the half hours in the 4
A.M. and 5 A.M. hours

Setting Message Delivery Times

Managing Your Applications 6-7

A cron-like string is used to define the schedule. The format is defined by the
following BNF syntax:

schedule := millisecond second minute hour dayOfMonth month
 dayOfWeek

The BNF syntax for specifying the second field is as follows:

second := * | secondList
secondList := secondItem [, secondList]
secondItem := secondValue | secondRange
SecondRange := secondValue - secondValue

Similar BNF statements for milliseconds, minute, hour, day-of-month, month, and
day-of-week can be derived from the second syntax. The values for each field are
defined as non-negative integers in the following ranges:

milliSecondValue := 0-999
milliSecondValue := 0-999
secondValue := 0-59
minuteValue := 0-59
hourValue := 0-23
dayOfMonthValue := 1-31
monthValue := 1-12
dayOfWeekValue := 1-7

Using this syntax, each field can be represented as a range of values indicating all
times between the two times. For example, 2-6 in the dayOfWeek field indicates
Monday through Friday, inclusive. Each field can also be specified as a
comma-separated list. For instance, a minute field of 0,15,30,45 means every
quarter hour on the quarter hour. Lastly, each field can be defined as both a set of
individual values and ranges of values. For example, an hour field of 9-17,0
indicates between the hours of 9 A.M. and 5 P.M., and on the hour of midnight.

Additional semantics are as follows:

■ If multiple schedules are supplied (using a semi-colon (;) as the separator), the
next scheduled time for the set is determined using the schedule that returns the

* * * 9-16 * * * Between 9 A.M. and 5 P.M. (9:00.00 A.M. to 4:59.59 P.M.)

* * * * 8-14 * 2 The second Tuesday of the month

* * * 13-16 * * 0 Between 1 P.M. and 5 P.M. on Sunday

* * * * * 31 * The last day of the month

* * * * 15 4 1 The next time April 15th occurs on a Sunday

0 0 0 1 * * 2-6;0 0 0 2 * * 1,7 1 A.M. on weekdays; 2 A.M. on weekends

Note: These values equate to the same ranges that the
java.util.Calendar class uses, except for monthValue. The
java.util.Calendar range for monthValue is 0-11, rather than
1-12.

Table 6–1 (Cont.) Message Delivery Schedule

Example Description

Setting Message Delivery Times

6-8 Programming JMS for Oracle WebLogic Server

soonest value. One use for this is for specifying schedules that change based on the
day of the week (see the final example below).

■ A value of 1 (one) for the dayOfWeek equates to Sunday.

■ A value of * means every time for that field. For instance, a * in the Month field
means every month. A * in the Hour field means every hour.

■ A value of l or last (not case sensitive) indicates the greatest possible value for a
field.

■ If a day-of-month is specified that exceeds the normal maximum for a month, then
the normal maximum for that month will be specified. For example, if it is
February during a leap year and 31 was specified, then the scheduler will schedule
as if 29 was specified instead. This means that setting the month field to 31 always
indicates the last day of the month.

■ If milliseconds are specified, they are rounded down to the nearest 50th of a
second. The values are 0, 19, 39, 59, ..., 979, and 999. Thus, 0-40 gets rounded to
0-39 and 50-999 gets rounded to 39-999.

6.2.3.4 JMS Schedule Interface
The weblogic.jms.extensions.schedule class has methods that will return the
next scheduled time that matches the recurring time expression. This expression uses
the same syntax as the TimeToDeliverOverride. The time returned in milliseconds
can be relative or absolute.

For more information on the WLSession class, refer to the
weblogic.jms.extensions.Schedule Javadoc.

You can define the next scheduled time after the given time using the following
method:

public static Calendar nextScheduledTime(
 String schedule,
 Calendar calendar
) throws ParseException {

You can define the next scheduled time after the current time using the following
method:

public static Calendar nextScheduledTime(
 String schedule,
) throws ParseException {

You can define the next scheduled time after the given time in absolute milliseconds
using the following method:

public static long nextScheduledTimeInMillis(
 String schedule,
 long timeInMillis
) throws ParseException

You can define the next scheduled time after the given time in relative milliseconds
using the following method:

Note: When a Calendar is not supplied as a method parameter to
one of the static methods in this class, the calendar used is a
java.util.GregorianCalendar with a default
java.util.TimeZone and a default java.util.Locale.

Managing Connections

Managing Your Applications 6-9

public static long nextScheduledTimeInMillisRelative(
 String schedule,
 long timeInMillis
) throws ParseException {

You can define the next scheduled time after the current time in relative milliseconds
using the following method:

public static long nextScheduledTimeInMillisRelative(
 String schedule
) throws ParseException {

6.3 Managing Connections
The following sections describe how to manage connections:

■ Section 6.3.1, "Defining a Connection Exception Listener"

■ Section 6.3.2, "Accessing Connection Metadata"

■ Section 6.3.3, "Starting, Stopping, and Closing a Connection"

6.3.1 Defining a Connection Exception Listener
An exception listener asynchronously notifies an application whenever a problem
occurs with a connection. This mechanism is particularly useful for a connection
waiting to consume messages that might not be notified otherwise.

You can define an exception listener for a connection using the following Connection
method:

public void setExceptionListener(
 ExceptionListener listener
) throws JMSException

You must specify an ExceptionListener object for the connection.

The JMS Provider notifies an exception listener, if one has been defined, when it
encounters a problem with a connection using the following ExceptionListener
method:

public void onException(
 JMSException exception
)

The JMS Provider specifies the exception that describes the problem when calling the
method.

You can access the exception listener for a connection using the following Connection
method:

public ExceptionListener getExceptionListener(
) throws JMSException

Note: The purpose of an exception listener is not to monitor all
exceptions thrown by a connection, but to deliver those exceptions
that would not be otherwise be delivered.

Managing Connections

6-10 Programming JMS for Oracle WebLogic Server

6.3.2 Accessing Connection Metadata
You can access the metadata associated with a specific connection using the following
Connection method:

public ConnectionMetaData getMetaData(
) throws JMSException

This method returns a ConnectionMetaData object that enables you to access JMS
metadata. The following table lists the various type of JMS metadata and the get
methods that you can use to access them.

For more information about the ConnectionMetaData class, see the
javax.jms.ConnectionMetaData Javadoc at
http://download.oracle.com/javaee/5/api/javax/jms/ConnectionMeta
Data.html.

6.3.3 Starting, Stopping, and Closing a Connection
To control the flow of messages, you can start and stop a connection temporarily using
the start() and stop() methods, respectively, as follows.

The start() and stop() method details are as follows:

public void start(
) throws JMSException

public void stop(
) throws JMSException

A newly created connection is stopped—no messages are received until the connection
is started. Typically, other JMS objects are set up to handle messages before the
connection is started, as described in Section 5.2, "Setting Up a JMS Application."
Messages may be produced on a stopped connection, but cannot be delivered to a
stopped connection.

Table 6–2 JMS Metadata

JMS Metadata Get Method

Version public String getJMSVersion(
) throws JMSException

Major version public int getJMSMajorVersion(
) throws JMSException

Minor version public int getJMSMinorVersion(
) throws JMSException

Provider name public String getJMSProviderName(
) throws JMSException

Provider version public String getProviderVersion(
) throws JMSException

Provider major version public int getProviderMajorVersion(
) throws JMSException

Provider minor version public int getProviderMinorVersion(
) throws JMSException

JMSX property names public Enumeration getJMSXPropertyNames(
) throws JMSException

Managing Sessions

Managing Your Applications 6-11

Once started, you can stop a connection using the stop() method. This method
performs the following steps:

■ Pauses the delivery of all messages. No applications waiting to receive messages
will return until the connection is restarted or the time-to-live value associated
with the message is reached.

■ Waits until all message listeners that are currently processing messages have
completed.

Typically, a JMS Provider allocates a significant amount of resources when it creates a
connection. When a connection is no longer being used, you should close it to free up
resources. A connection can be closed using the following method:

public void close(
) throws JMSException

This method performs the following steps to execute an orderly shutdown:

■ Terminates the receipt of all pending messages. Applications may return a
message or null if a message was not available at the time of the close.

■ Waits until all message listeners that are currently processing messages have
completed.

■ Rolls back in-process transactions on its transacted sessions (unless such
transactions are part of an external JTA user transaction). For more information
about JTA user transactions, see Section 12.3, "Using JTA User Transactions."

■ Does not force an acknowledge of client-acknowledged sessions. By not forcing an
acknowledge, no messages are lost for queues and durable subscriptions that
require reliable processing.

When you close a connection, all associated objects are also closed. You can continue to
use the message objects created or received via the connection, except the received
message's acknowledge() method. Closing a closed connection has no effect.

6.4 Managing Sessions
The following sections describe how to manage sessions, including:

■ Section 6.4.1, "Defining a Session Exception Listener"

■ Section 6.4.2, "Closing a Session"

6.4.1 Defining a Session Exception Listener
An exception listener asynchronously notifies a client in the event a problem occurs
with a session. This is particularly useful for a session waiting to consume messages
that might not be notified otherwise.

Note: Attempting to acknowledge a received message from a closed
connection's session throws an IllegalStateException.

Note: The purpose of an exception listener is not to monitor all
exceptions thrown by a session, only to deliver those exceptions that
would otherwise be undelivered.

Managing Sessions

6-12 Programming JMS for Oracle WebLogic Server

You can define an exception listener for a session using the following WLSession
method:

public void setExceptionListener(
 ExceptionListener listener
) throws JMSException

You must specify an ExceptionListener object for the session.

The JMS Provider notifies an exception listener, if one has been defined, when it
encounters a problem with a session using the following ExceptionListener
method:

public void onException(
 JMSException exception
)

The JMS Provider specifies the exception encountered that describes the problem
when calling the method.

You can access the exception listener for a session using the following WLSession
method:

public ExceptionListener getExceptionListener(
) throws JMSException

6.4.2 Closing a Session
As with connections, a JMS Provider allocates a significant amount of resources when
it creates a session. When a session is no longer being used, it is recommended that it
be closed to free up resources. A session can be closed using the following Session
method:

public void close(
) throws JMSException

This method performs the following steps to execute an orderly shutdown:

■ Terminates the receipt of all pending messages. Applications may return a
message or null if a message was not available at the time of the close.

■ Waits until all message listeners that are currently processing messages have
completed.

■ Rolls back in-process transactions (unless such transactions are part of external
JTA user transaction). For more information about JTA user transactions, see
Section 12.3, "Using JTA User Transactions."

Note: Because there can only be one thread per session, an exception
listener and message listener (used for asynchronous message
delivery) cannot execute simultaneously. Consequently, if a message
listener is executing at the time a problem occurs, execution of the
exception listener is blocked until the message listener completes its
execution. For more information about message listeners, see
Section 5.4.1, "Receiving Messages Asynchronously."

Note: The close() method is the only Session method that can be
invoked from a thread that is separate from the session thread.

Managing Destinations

Managing Your Applications 6-13

■ Does not force an acknowledge of client acknowledged sessions, ensuring that no
messages are lost for queues and durable subscriptions that require reliable
processing.

When you close a session, all associated producers and consumers are also closed.

6.5 Managing Destinations
The following sections describe how to create and delete destinations:

■ Section 6.5.1, "Dynamically Creating Destinations"

■ Section 6.5.2, "Dynamically Deleting Destinations"

6.5.1 Dynamically Creating Destinations
See the following topics for information about creating destinations dynamically:

■ Chapter 7, "Using JMS Module Helper to Manage Applications"

■ Section 6.6, "Using Temporary Destinations"

The associated procedures for creating dynamic destinations are described in the
following sections.

6.5.2 Dynamically Deleting Destinations
You can dynamically delete JMS destinations (queue or topic) using any of the
following methods:

■ JMSModuleHelper class (see Chapter 7, "Using JMS Module Helper to Manage
Applications")

■ Administration console

■ User-defined JMX application

The JMS server removes the deleted destination in real time, therefore, it's not
necessary to redeploy the JMS server for the deletion to take effect. The associated
procedures for dynamically deleting destinations are described in the following
sections.

6.5.2.1 Preconditions for Deleting Destinations
In order to successfully delete a destination, the following preconditions must be met:

■ The destination must not be a member of a distributed destination. For more
information, see Chapter 9, "Using Distributed Destinations."

■ The destination must not be the error destination for some other destination. For
more information, see Section 6.1.2.2, "Configuring an Error Destination for
Undelivered Messages."

If either of these preconditions cannot be met, then the deletion will not be allowed.

Note: If you want to issue the close() method within an
onMessage() method call, the system administrator must select the
Allow Close In OnMessage check box when configuring the
connection factory.

Managing Destinations

6-14 Programming JMS for Oracle WebLogic Server

6.5.2.2 What Happens when a Destination is Deleted
When a destination is deleted, the following behaviors and semantics apply:

■ Physical deletion of existing messages — all durable subscribers for the deleted
destination are permanently deleted. All messages, persistent and non-persistent,
stored in the deleted destination are permanently removed from the messaging
system.

■ No longer able to create producers, consumers, and browsers — once a destination
is deleted, applications will no longer be able to create producers, consumers, or
browsers for the deleted destination. Any attempt to do so will result in the
application receiving an InvalidDestinationException — as if the
destination does not exist.

■ Closing of consumers — all existing consumers for the deleted destination are
closed. The closing of a consumer generates a ConsumerClosedException,
which is delivered to the ExceptionListener, if any, of the parent session, and
which will read "Destination was deleted".

When a consumer is closed, if it has an outstanding receive() operation, then
that operation is cancelled and the caller receives a null indicating that no
message is available. Attempts by an application to do anything but close() a
closed consumer will result in an IllegalStateException.

■ Closing of browsers — all browsers for the deleted destination are closed.
Attempts by an application to do anything but close() a closed browser will
result in an IllegalStateException. Closing of a browser implicitly closes all
enumerations associated with the browser.

■ Closing of enumerations — all enumerations for the deleted destination are closed.
The behavior after an enumeration is closed depends on the last call before the
enumeration was closed. If a call to hasMoreElements() returns a value of true,
and no subsequent call to nextElement() has been made, then the enumeration
guarantees that the next element can be enumerated. This produces the specifics.
When the last call before the close was to hasMoreElements(), and the value
returned was true, then the following behaviors apply:

– The first call to nextElement() will return a message.

– Subsequent calls to nextElement() will throw a
NoSuchElementException.

– Calls to hasMoreElements() made before the first call to nextElement()
will return true.

– Calls to hasMoreElements() made after the first call to nextElement()
will return false.

If a given enumeration has never been called, or the last call before the close was
to nextElement(), or the last call before the close was to hasMoreElements()
and the value returned was false, then the following behaviors apply:

– Calls to hasMoreElements() will return false.

– Calls to nextElement() will throw a NoSuchElementException.

■ Blocking send operations cancelled — all blocking send operations posted against
the deleted destination are cancelled. Send operations waiting for quota will
receive a ResourceAllocationException.

■ Uncommitted transactions unaffected — the deletion of a destination does not
affect existing uncommitted transactions. Any uncommitted work associated with

Using Temporary Destinations

Managing Your Applications 6-15

a deleted destination is allowed to complete as part of the transaction. However,
since the destination is deleted, the net result of all operations (rollback, commit,
etc.) is the deletion of the associated messages.

6.5.2.3 Message Timestamps for Troubleshooting Deleted Destinations
If a destination with persistent messages is deleted and then immediately recreated
while the JMS server is not running, the JMS server will compare the version number
of the destination (using the CreationTime field in the configuration config.xml
file) and the version number of the destination in the persistent messages. In this case,
the left over persistent messages for the older destination will have an older version
number than the version number in the config.xml file for the recreated destination,
and when the JMS server is rebooted, the left over persistent messages are simply
discarded.

However, if a persistent message somehow has a version number that is newer than the
version number in the config.xml for the recreated destination, then either the
system clock was rolled back when the destination was deleted and recreated (while
the JMS server was not running), or a different config.xml is being used. In this
situation, the JMS server will fail to boot. To save the persistent message, you can set
the version number (the CreationTime field) in the config.xml to match the
version number in the persistent message. Otherwise, you can change the version
number in the config.xml so that it is newer than the version number in the
persistent message; this way, the JMS server can delete the message when it is
rebooted.

6.5.2.4 Deleted Destination Statistics
Statistics for the deleted destination and the hosting JMS server are updated as the
messages are physically deleted. However, the deletion of some messages can be
delayed pending the outcome of another operation. This includes messages sent
and/or received in a transaction, as well as unacknowledged non-transactional
messages received by a client.

6.6 Using Temporary Destinations
Temporary destinations enable an application to create a destination, as required,
without the system administration overhead associated with configuring and creating
a server-defined destination.

JMS applications can use the JMSReplyTo header field to return a response to a
request. The sender application may optionally set the JMSReplyTo header field of its
messages to its temporary destination name to advertise the temporary destination
that it is using to other applications.

Temporary destinations exist only for the duration of the current connection, unless
they are removed using the delete() method, described in Section 6.6.3, "Deleting a
Temporary Destination."

Because messages are never available if the server is restarted, all PERSISTENT
messages are silently made NON_PERSISTENT. As a result, temporary destinations are
not suitable for business logic that must survive a restart.

Setting Up Durable Subscriptions

6-16 Programming JMS for Oracle WebLogic Server

The following sections describe how to create a temporary queue (PTP) or temporary
topic (Pub/Sub).

6.6.1 Creating a Temporary Queue
You can create a temporary queue using the following QueueSession method:

public TemporaryQueue createTemporaryQueue(
) throws JMSException

For example, to create a reference to a TemporaryQueue that will exist only for the
duration of the current connection, use the following method call:

QueueSender = Session.createTemporaryQueue();

6.6.2 Creating a Temporary Topic
You can create a temporary topic using the following TopicSession method:

public TemporaryTopic createTemporaryTopic(
) throws JMSException

For example, to create a reference to a temporary topic that will exist only for the
duration of the current connection, use the following method call:

TopicPublisher = Session.createTemporaryTopic();

6.6.3 Deleting a Temporary Destination
When you finish using a temporary destination, you can delete it (to release associated
resources) using the following TemporaryQueue or TemporaryTopic method:

public void delete(
) throws JMSException

6.7 Setting Up Durable Subscriptions
WebLogic JMS supports durable and non-durable subscriptions.

For durable subscriptions, WebLogic JMS stores a message in a persistent file or
database until the message has been delivered to the subscribers or has expired, even
if those subscribers are not active at the time that the message is delivered. A
subscriber is considered active if the Java object that represents it exists. Durable
subscriptions are supported for Pub/Sub messaging only.

Note: Temporary destinations are enabled by default via the JMS
server's Hosting Temporary Template attribute. However, if you
want to create temporary destinations with specific settings, you need
to modify the default Temporary Template values using the JMS
server's Temporary Template and Module Containing
Temporary Template attributes, as explained in "Configure general
JMS server properties" in the Oracle WebLogic Server Administration
Console Help.

Setting Up Durable Subscriptions

Managing Your Applications 6-17

For non-durable subscriptions, WebLogic JMS delivers messages only to applications
with an active session. Messages sent to a topic while an application is not listening are
never delivered to that application. In other words, non-durable subscriptions last
only as long as their subscriber objects. By default, subscribers are non-durable.

The following sections describe:

■ Section 6.7.1, "Defining the Persistent Store"

■ Section 6.7.2, "Setting the Client ID Policy"

■ Section 6.7.3, "Defining the Client ID"

■ Section 6.7.4, "Creating a Sharable Subscription Policy"

■ Section 6.7.5, "Creating Subscribers for a Durable Subscription"

■ Section 6.7.6, "Best Practice: Always Close Failed JMS ClientIDs"

■ Section 6.7.7, "Deleting Durable Subscriptions"

■ Section 6.7.8, "Modifying Durable Subscriptions"

■ Section 6.7.9, "Managing Durable Subscriptions"

6.7.1 Defining the Persistent Store
You must configure a persistent file or database store and assign it to your JMS server
so WebLogic JMS can store a message until it has been delivered to the subscribers or
has expired.

■ Create a JMS file store or JMS JDBC backing store using the Stores node.

■ Target the configured store to your JMS server by selecting it from the Store field's
drop-down list on the JMS Server > Configuration > General tab.

6.7.2 Setting the Client ID Policy
The Client ID Policy specifies whether more than one JMS connection can use the same
Client ID in a cluster. Valid values for this policy are:

■ RESTRICTED: The default. Only one connection that uses this policy can exist in a
cluster at any given time for a particular Client ID (if a connection already exists
with a given Client ID, attempts to create new connections using this policy with
the same Client ID fail with an exception).

■ UNRESTRICTED: Connections created using this policy can specify any Client ID,
even when other restricted or unrestricted connections already use the same Client
ID. When a durable subscription is created using an Unrestricted Client ID, it can
only be cleaned up using
weblogic.jms.extensions.WLSession.unsubscribe(Topic topic,

Note: Durable subscriptions cannot be created for distributed topics.
However, you can still create a durable subscription on distributed
topic member and the other topic members will forward the messages
to the member that has the durable subscription. For more
information on using distributed topics, see Chapter 9, "Using
Distributed Destinations."

Note: No two JMS servers can use the same backing store.

Setting Up Durable Subscriptions

6-18 Programming JMS for Oracle WebLogic Server

String name). See Managing Durable Subscriptions in Programming JMS for
Oracle WebLogic Server.

Oracle recommends setting the Client ID policy to Unrestricted for new
applications (unless your application architecture requires exclusive Client IDs),
especially if sharing a subscription (durable or non-durable). Subscriptions created
with different Client ID policies are always treated as independent subscriptions. See
ClientIdPolicy in the Oracle WebLogic Server MBean Reference.

To set the Client ID Policy on the connection factory using the WebLogic
Console, see Configure multiple connections using the same client Id in the Oracle
WebLogic Server Administration Console Help. The connection factory setting can be
overridden programatically using the setClientIDPolicy method of the
WLConnection interface in the Oracle WebLogic Server API Reference.

For more information on advanced concepts and functionality of Uniform Distributed
Topics (UDTs) necessary to design high availability applications, see Section 13.2.1,
"Shared Subscriptions and Client ID Policy."

6.7.3 Defining the Client ID
To support durable subscriptions, a client identifier (client ID) and must be defined for
the connection.

The client ID can be supplied in two ways:

■ The first method is to configure the connection factory with the client ID. For
WebLogic JMS, this means adding a separate connection factory definition during
configuration for each client ID. Applications then look up their own topic
connection factories in JNDI and use them to create connections containing their
own client IDs. See in Oracle WebLogic Server Administration Console Help.

■ Alternatively, the preferred method is for an application that can set its client ID in
the connection after the connection is created by calling the following connection
method:

public void setClientID(
 String clientID
) throws JMSException

 If you use this alternative approach, you can use the default connection factory (if
it is acceptable for your application) and avoid the need to modify the
configuration information. However, applications with durable subscriptions must
ensure that they call setClientID() immediately after creating their topic
connection.

If a client ID is already defined for the connection, an IllegalStateException
is thrown. If the specified client ID is already defined for another connection, an
InvalidClientIDException is thrown.

Note: The JMS client ID is not necessarily equivalent to the
WebLogic Server username, that is, a name used to authenticate a user
in the WebLogic security realm. You can, of course, set the JMS client
ID to the WebLogic Server username, if it is appropriate for your JMS
application.

Setting Up Durable Subscriptions

Managing Your Applications 6-19

To display a client ID and test whether or not a client ID has already been defined,
use the following Connection method:

public String getClientID(
) throws JMSException

6.7.4 Creating a Sharable Subscription Policy
The Subscription Sharing Policy specifies whether subscribers can share subscriptions
with other subscribers on the same connection.aon this connection. Valid values for
this policy are:

■ Exclusive: The default. All subscribers created using this connection factory
cannot share subscriptions with any other subscribers. Use this policy to retain the
functionality of prior to WebLogic Server 10.3.4.0.

■ Sharable: Subscribers created using this connection factory can share their
subscriptions with other subscribers, regardless of whether those subscribers are
created using the same connection factory or a different connection factory.
Consumers can share a non-durable subscriptions only if they have the same
Client ID and Client ID Policy; consumers can share a durable subscription only if
they have the same Client ID, Client ID Policy, and Subscription Name.

WebLogic JMS applications can override the Subscription Sharing Policy specified on
the connection factory configuration by casting a javax.jms.Connection instance
to weblogic.jms.extension.WLConnection and calling
setSubscriptionSharingPolicy(String).

Most applications with a Sharable Subscription Sharing Policy will also use an
Unrestricted Client ID Policy in order to ensure that multiple connections with the
same client ID can exist.

Two durable subscriptions with the same Client ID and Subscription Name are treated
as two different independent subscriptions if they have a different Client ID Policy.
Similarly, two Sharable non-durable subscriptions with the same Client ID are treated
as two different independent subscriptions if they have a different Client ID Policy.

For more information on how to use the Subscription Sharing Policy, see:

Note: When specifying the client ID using the setClientID()
method, there is a risk that a duplicate client ID may be specified
without throwing an exception. For example, if the client IDs for two
separate connections are set simultaneously to the same value, a race
condition may occur and the same value may be assigned to both
connections. You can avoid this risk of duplication by specifying the
client ID during configuration.

Notes: Support for durable subscriptions is a feature unique to the
Pub/Sub messaging model, so client IDs are used only with topic
connections; queue connections also contain client IDs, but JMS does
not use them.

Durable subscriptions should not be created for a temporary topic,
because a temporary topic is designed to exist only for the duration of
the current connection.

Setting Up Durable Subscriptions

6-20 Programming JMS for Oracle WebLogic Server

■ Configure a connection factory subscription sharing policy in Oracle WebLogic
Server Administration Console Help.

■ Chapter 13, "Developing Advanced Pub/Sub Applications."

6.7.5 Creating Subscribers for a Durable Subscription
You can create subscribers for a durable subscription using the following
TopicSession methods:

public TopicSubscriber createDurableSubscriber(
 Topic topic,
 String name
) throws JMSException

public TopicSubscriber createDurableSubscriber(
 Topic topic,
 String name,
 String messageSelector,
 boolean noLocal
) throws JMSException

You must specify the name of the topic for which you are creating a subscriber, and the
name of the durable subscription.

You may also specify a message selector for filtering messages and a noLocal flag
(described later in this section). Message selectors are described in more detail in
Section 6.9, "Filtering Messages." If you do not specify a messageSelector, by
default all messages are searched.

An application can use a JMS connection to both publish and subscribe to the same
topic. Because topic messages are delivered to all subscribers, an application can
receive messages it has published itself. To prevent this, a JMS application can set a
noLocal flag to true. The noLocal value defaults to false. Durable subscriptions
are stored within the file or database.

6.7.6 Best Practice: Always Close Failed JMS ClientIDs
As a best practice, JMS clients should always call the close() method instead of
allowing the application to rely on the JVM's garbage collection to clean up failed JMS
connections. This is particularly important for durable subscription ClientIDs because
the JMS Automatic Reconnect feature keeps a reference to such failed JMS connections.
Therefore, always use connection.close() to clean up your connections. Also,
consider using a finally block to ensure that your connection resources are cleaned
up. Otherwise, WebLogic Server allocates system resources to keep the connection
available.

The following snippet demonstrates using close() and finally in a JMS client to
clean up failed connection resources:

 JMSConnection con = null;
 try {
 con = cf.createConnection();
 con.setClientID("Fred");

Note: Valid durable subscription names cannot include the following
characters: comma ",", equals "=", colon ":", asterisk "*", percent "%", or
question mark"?".

Setting Up Durable Subscriptions

Managing Your Applications 6-21

 // Do some I/O stuff;
 }
 finally {
 if (con != null) con.close();
 }

For more information about the JMS Automatic Reconnect feature, see Section 14.1,
"Automatic JMS Client Failover."

6.7.7 Deleting Durable Subscriptions
To delete a durable subscription, you use the following TopicSession method:

public void unsubscribe(
 String name
) throws JMSException

You must specify the name of the durable subscription to be deleted.

You cannot delete a durable subscription if any of the following are true:

■ A TopicSubscriber is still active on the session.

■ A message received by the durable subscription is part of a transaction or has not
yet been acknowledged in the session.

6.7.8 Modifying Durable Subscriptions
To modify a durable subscription, perform the following steps:

1. Optionally, delete the durable subscription, as described in Section 6.7.7, "Deleting
Durable Subscriptions."

This step is optional. If not explicitly performed, the deletion will be executed
implicitly when the durable subscription is recreated in the next step.

2. Use the methods described in Section 6.7.5, "Creating Subscribers for a Durable
Subscription" to recreate a durable subscription of the same name, but specifying a
different topic name, message selector, or noLocal value.

The durable subscription is recreated based on the new values.

Note: You can also delete durable subscriptions from the
Administration Console. For information on managing durable
subscriptions, see Section 6.7.9, "Managing Durable Subscriptions."

Note: When recreating a durable subscription, be careful to avoid
creating a durable subscription with a duplicate name. For example, if
you attempt to delete a durable subscription from a JMS server that is
unavailable, the delete call fails. If you subsequently create a durable
subscription with the same name on a different JMS server, you may
experience unexpected results when the first JMS server becomes
available. Because the original durable subscription has not been
deleted, when the first JMS server again becomes available, there will
be two durable subscriptions with duplicate names.

Setting and Browsing Message Header and Property Fields

6-22 Programming JMS for Oracle WebLogic Server

6.7.9 Managing Durable Subscriptions
You can monitor and manage durable topic subscribers using either the
Administration Console or through public runtime APIs. This functionality also
enables you to view and browse all messages, and to manipulate most messages on
durable subscribers. This includes message browsing (for sorting), message
manipulation (such as move and delete), and message import and export. For more
information, see and "Managing JMS Messages" in Configuring and Managing JMS for
Oracle WebLogic Server.

6.8 Setting and Browsing Message Header and Property Fields
WebLogic JMS provides a set of standard header fields that you can define to identify
and route messages. In addition, property fields enable you to include
application-specific header fields within a message, extending the standard set. You
can use the message header and property fields to convey information between
communicating processes.

The primary reason for including data in a property field rather than in the message
body is to support message filtering via message selectors. Except for XML message
extensions, data in the message body cannot be accessed via message selectors. For
example, suppose you use a property field to assign high priority to a message. You
can then design a message consumer containing a message selector that accesses this
property field and selects only messages of expedited priority. For more information
about selectors, see Section 6.9, "Filtering Messages."

6.8.1 Setting Message Header Fields
JMS messages contain a standard set of header fields that are always transmitted with
the message. They are available to message consumers that receive messages, and
some fields can be set by the message producers that send messages. Once a message
is received, its header field values can be modified.

When modifying (overriding) header field values, you need to take into consideration
instances when message fields are overwritten by the JMS subsystem. For instance,
setting the priority on a producer affects the priority of the message, but a value
supplied to the send() method overrides the setting on the producer. Similarly,
values set on a destination override values set by the producer or values supplied to
the send() method. The only way to verify the value of header fields is to query the
message after a send() method.

For a description of the standard messages header fields, see Section 2.4.6.1, "Message
Header Fields."

The following table lists the Message class set and get methods for each of the
supported data types.

Note: In some cases, the send() method overrides the header field
value set using the set() method, as indicated in the following table.

Setting and Browsing Message Header and Property Fields

Managing Your Applications 6-23

Table 6–3 JMS Header Field Methods

Header Field Set Method Get Method

JMSCorrelationID public void setJMSCorrelationID(
 String correlationID
) throws JMSException

public String getJMSCorrelationID(
) throws JMSException

public byte[]
getJMSCorrelationIDAsBytes(
) throws JMSException

JMSDestination1 public void setJMSDestination(
 Destination destination
) throws JMSException

public Destination getJMSDestination(
) throws JMSException

JMSDeliveryMode1 public void setJMSDeliveryMode(
 int deliveryMode
) throws JMSException

public int getJMSDeliveryMode(
) throws JMSException

JMSDeliveryTime1 public void setJMSDeliveryTime(
 long deliveryTime
) throws JMSException

public long getJMSDeliveryTime(
) throws JMSException

JMSDeliveryMode1 public void setJMSDeliveryMode(
 int deliveryMode
) throws JMSException

public int getJMSDeliveryMode(
) throws JMSException

JMSMessageID1 public void setJMSMessageID(
 String id
) throws JMSException

Note: In addition to the set method, the
weblogic.jms.extensions.JMSRunti
meHelper class provides the following
methods to convert between pre-WebLogic
JMS 6.0 and 6.1 JMSMessageID formats:

public void oldJMSMessageIDToNew(
 String id,
 long timeStamp
) throws JMSException

public void newJMSMessageIDToOld(
 String id,
 long timeStamp
) throws JMSException

public String getJMSMessageID(
) throws JMSException

JMSPriority1 public void setJMSPriority(
 int priority
) throws JMSException

public int getJMSPriority(
) throws JMSException

JMSRedelivered1 public void setJMSRedelivered(
 boolean redelivered
) throws JMSException

public boolean getJMSRedelivered(
) throws JMSException

JMSRedeliveryLimit1 public void setJMSRedeliveryLimit(
 int redelivered
) throws JMSException

public int getJMSRedeliveryLimit(
) throws JMSException

Setting and Browsing Message Header and Property Fields

6-24 Programming JMS for Oracle WebLogic Server

The examples.jms.sender.SenderServlet example, provided with WebLogic
Server in the WL_
HOME\samples\server\examples\src\examples\jms\sender directory,
where WL_HOME is the top-level directory of your WebLogic Platform installation,
shows how to set header fields in messages that you send and how to display message
header fields after they are sent.

For example, the following code, which appears after the send() method, displays
the message ID that was assigned to the message by WebLogic JMS:

System.out.println("Sent message " +
 msg.getJMSMessageID() + " to " +
 msg.getJMSDestination());

6.8.2 Setting Message Property Fields
To set a property field, call the appropriate set method and specify the property name
and value. To read a property field, call the appropriate get method and specify the
property name.

The sending application can set properties in the message, and the receiving
application can subsequently view them. The receiving application cannot change the
properties without first clearing them using the following clearProperties()
method:

public void clearProperties(
) throws JMSException

This method does not clear the message header fields or body.

JMSReplyTo public void setJMSReplyTo(
 Destination replyTo
) throws JMSException

public Destination getJMSReplyTo(
) throws JMSException

JMSTimeStamp1 public void setJMSTimeStamp(
 long timestamp
) throws JMSException

public long getJMSTimeStamp(
) throws JMSException

JMSType public void setJMSType(
 String type
) throws JMSException

public String getJMSType(
) throws JMSException

1 The corresponding set() method has no impact on the message header field when the send() method is executed. If set, this
header field value will be overridden during the send() operation.

Note: The JMSX property name prefix is reserved for JMS. The
connection metadata contains a list of JMSX properties, which can be
accessed as an enumerated list using the
getJMSXPropertyNames() method. For more information, see
Section 6.3.2, "Accessing Connection Metadata."

The JMS_ property name prefix is reserved for provider-specific
properties; it is not intended for use with standard JMS messaging.

Table 6–3 (Cont.) JMS Header Field Methods

Header Field Set Method Get Method

Setting and Browsing Message Header and Property Fields

Managing Your Applications 6-25

The property field can be set to any of the following types: boolean, byte, double, float,
int, long, short, or string. The following table lists the Message class set and get
methods for each of the supported data types.

In addition to the set and get methods described in the previous table, you can use the
setObjectProperty() and getObjectProperty() methods to use the
objectified primitive values of the property type. When the objectified value is used,
the property type can be determined at execution time rather than during the
compilation. The valid object types are boolean, byte, double, float, int, long, short,
and string.

You can access all property field names using the following Message method:

public Enumeration getPropertyNames(
) throws JMSException

This method returns all property field names as an enumeration. You can then retrieve
the value of each property field by passing the property field name to the appropriate
get method, as described in the previous table, based on the property field data type.

Table 6–4 Message Property Set and Get Methods for Data Types

Data Type Set Method Get Method

boolean public void setBooleanProperty(
 String name,
 boolean value
) throws JMSException

public boolean getBooleanProperty(
 String name
) throws JMSException

byte public void setByteProperty(
 String name,
 byte value
) throws JMSException

public byte getByteProperty(
 String name
) throws JMSException

double public void setDoubleProperty(
 String name,
 double value
) throws JMSException

public double getDoubleProperty(
 String name
) throws JMSException

float public void setFloatProperty(
 String name,
 float value
) throws JMSException

public float getFloatProperty(
 String name
) throws JMSException

int public void setIntProperty(
 String name,
 int value
) throws JMSException

public int getIntProperty(
 String name
) throws JMSException

long public void setLongProperty(
 String name,
 long value) throws JMSException

public long getLongProperty(
 String name
) throws JMSException

short public void setShortProperty(
 String name,
 short value
) throws JMSException

public short getShortProperty(
 String name
) throws JMSException

String public void setStringProperty(
 String name,
 String value
) throws JMSException

public String getStringProperty(
 String name
) throws JMSException

Setting and Browsing Message Header and Property Fields

6-26 Programming JMS for Oracle WebLogic Server

Table 6–5 contains a conversion chart for message properties. It allows you to identify
the type that can be read based on the type that has been written. For each property
type listed in the left-most column in which a message has been written, a YES in one
of the remaining columns indicates that the message can be read as the type listed at
the top of that column.

You can test whether or not a property value has been set using the following
Message method:

public boolean propertyExists(
 String name
) throws JMSException

You specify a property name and the method returns a boolean value indicating
whether or not the property exists.

For example, the following code sets two String properties and an int property:

msg.setStringProperty("User", user);
msg.setStringProperty("Category", category);
msg.setIntProperty("Rating", rating);

For more information about message property fields, see Section 2.4.6.2, "Message
Property Fields," or the javax.jms.Message Javadoc at
http://download.oracle.com/javaee/5/api/javax/jms/Message.html.

6.8.3 Browsing Header and Property Fields

You can browse the header and property fields of messages on a queue using the
following QueueSession methods:

public QueueBrowser createBrowser(
 Queue queue
) throws JMSException

Table 6–5 Message Property Conversion Chart

Property
Written As. . . boolean byte double float int long short String

boolean YES No No No No No No YES

byte No YES No No YES YES YES YES

double No No YES No No No No YES

float No No YES YES No No No YES

int No No No No YES YES No YES

long No No No No No YES No YES

Object YES YES YES YES YES YES YES YES

short No No No No YES YES YES YES

String YES YES YES YES YES YES YES YES

Note: Only queue message header and property fields can be
browsed. You cannot browse topic message header and property
fields.

Setting and Browsing Message Header and Property Fields

Managing Your Applications 6-27

public QueueBrowser createBrowser(
 Queue queue,
 String messageSelector
) throws JMSException

You must specify the queue that you wish to browse. You may also specify a message
selector to filter messages that you are browsing. Message selectors are described in
more detail in Section 6.9, "Filtering Messages."

Once you have defined a queue, you can access the queue name and message selector
associated with a queue browser using the following QueueBrowser methods:

public Queue getQueue(
) throws JMSException

public String getMessageSelector(
) throws JMSException

In addition, you can access an enumeration for browsing the messages using the
following QueueBrowser method:

public Enumeration getEnumeration(
) throws JMSException

The examples.jms.queue.QueueBrowser example, provided with WebLogic
Server in the WL_HOME\samples\server\examples\src\examples\jms\queue
directory, where WL_HOME is the top-level directory of your WebLogic Platform
installation, shows how to access the header fields of received messages.

For example, the following code line is an excerpt from the QueueBrowser example
and creates the QueueBrowser object:

qbrowser = qsession.createBrowser(queue);

The following provides an excerpt from the displayQueue() method defined in the
QueueBrowser example. In this example, the QueueBrowser object is used to obtain
an enumeration that is subsequently used to scan the queue's messages.

 public void displayQueue(
) throws JMSException
 {
 Enumeration e = qbrowser.getEnumeration();
 Message m = null;

 if (! e.hasMoreElements()) {
 System.out.println("There are no messages on this queue.");
 } else {

 System.out.println("Queued JMS Messages: ");
 while (e.hasMoreElements()) {
 m = (Message) e.nextElement();
 System.out.println("Message ID " + m.getJMSMessageID() +
 " delivered " + new Date(m.getJMSTimestamp())
 " to " + m.getJMSDestination());
 }
 }

When a queue browser is no longer being used, you should close it to free up
resources. For more information, see Section 5.6, "Releasing Object Resources."

For more information about the QueueBrowser class, see the
javax.jms.QueueBrowser Javadoc at

Filtering Messages

6-28 Programming JMS for Oracle WebLogic Server

http://download.oracle.com/javaee/5/api/javax/jms/QueueBrowser.h
tml.

6.9 Filtering Messages
In many cases, an application does not need to be notified of every message that is
delivered to it. Message selectors can be used to filter unwanted messages, and
subsequently improve performance by minimizing their impact on network traffic.

Message selectors operate as follows:

■ The sending application sets message header or property fields to describe or
classify a message in a standardized way.

■ The receiving applications specify a simple query string to filter the messages that
they want to receive.

Because message selectors cannot reference the contents (body) of a message, some
information may be duplicated in the message property fields (except in the case of
XML messages).

You specify a selector when creating a queue receiver or topic subscriber, as an
argument to the QueueSession.createReceiver() or
TopicSession.createSubscriber() methods, respectively. For information
about creating queue receivers and topic subscribers, see Section 5.2.5, "Step 5: Create
Message Producers and Message Consumers."

WebLogic JMS assigns a state or current processing condition to messages during
processing. You can use these states as selectors. For information on valid message
states, see weblogic.jms.extensions.JMSMessageInfo in Oracle WebLogic Server API
Reference.

The following sections describe how to define a message selector using SQL
statements and XML selector methods, and how to update message selectors. For more
information about setting header and property fields, see Section 6.8, "Setting and
Browsing Message Header and Property Fields" and Section 6.8.2, "Setting Message
Property Fields," respectively.

6.9.1 Defining Message Selectors Using SQL Statements
A message selector is a boolean expression. It consists of a String with a syntax similar
to the where clause of an SQL select statement.

The following excerpts provide examples of selector expressions.

salary > 64000 and dept in ('eng','qa')

(product like 'WebLogic%' or product like '%T3')
 and version > 3.0

hireyear between 1990 and 1992
 or fireyear is not null

fireyear - hireyear > 4

The following example shows how to set a selector when creating a queue receiver
that filters out messages with a priority lower than 6.

String selector = "JMSPriority >= 6";
qsession.createReceiver(queue, selector);

Filtering Messages

Managing Your Applications 6-29

The following example shows how to set the same selector when creating a topic
subscriber.

String selector = "JMSPriority >= 6";
qsession.createSubscriber(topic, selector);

For more information about the message selector syntax, see the
javax.jms.Message Javadoc at
http://download.oracle.com/javaee/5/api/javax/jms/Message.html.

6.9.2 Defining XML Message Selectors Using XML Selector Method
For XML message types, in addition to using the SQL selector expressions described in
the previous section to define message selectors, you can use the following method:

String JMS_BEA_SELECT(String type, String expression)

JMS_BEA_SELECT is a built-in function in WebLogic JMS SQL syntax. You specify the
syntax type, which must be set to xpath (XML Path Language) and an XPath
expression. The XML path language is defined in the XML Path Language (XPath)
document, which is available at the XML Path Language Web site at:
http://www.w3.org/TR/xpath.

The method returns a null value under the following circumstances:

■ The message does not parse.

■ The message parses, but the element is not present.

■ If a message parses and the element is present, but the message contains no value
(for example, <order></order>).

For example, consider the following XML excerpt:

<order>
 <item>
 <id>007</id>
 <name>Hand-held Power Drill</name>
 <description>Compact, assorted colors.</description>
 <price>$34.99</price>
 </item>
 <item>
 <id>123</id>
 <name>Mitre Saw</name>
 <description>Three blades sizes.</description>
 <price>$69.99</price>
 </item>
 <item>
 <id>66</id>
 <name>Socket Wrench Set</name>
 <description>Set of 10.</description>
 <price>$19.99</price>
 </item>
</order>

Note: Pay careful attention to your XML message syntax, since
malformed XML messages (for example, a missing end tag) will not
match any XML selector.

Filtering Messages

6-30 Programming JMS for Oracle WebLogic Server

The following example shows how to retrieve the name of the second item in the
previous example. This method call returns the string, Mitre Saw.

 String sel = "JMS_BEA_SELECT('xpath', '/order/item[2]/name/text()') = 'Mitre
Saw'";

Pay careful attention to the use of double and single quotes and spaces. Note the use of
single quotes around xpath, the XML tab, and the string value.

The following example shows how to retrieve the ID of the third item in the previous
example. This method call returns the string, 66.

 String sel = "JMS_BEA_SELECT('xpath', '/order/item[3]/id/text()') = '66'";

6.9.3 Displaying Message Selectors
You can use the following MessageConsumer method to display a message selector:

public String getMessageSelector(
) throws JMSException

This method returns either the currently defined message selector or null if a message
selector is not defined.

6.9.4 Indexing Topic Subscriber Message Selectors To Optimize Performance
For a certain class of applications, WebLogic JMS can significantly optimize topic
subscriber message selectors by indexing them. These applications typically have a
large number of subscribers, each with a unique identifier (like a user name), and they
need to be able to quickly send a message to a single subscriber, or to a list of
subscribers. A typical example is an instant messaging application where each
subscriber corresponds to a different user, and each message contains a list of one or
more target users.

To activate optimized subscriber message selectors, subscribers must use the following
syntax for their selectors:

 "identifier IS NOT NULL"

where identifier is an arbitrary string that is not a predefined JMS message
property (e.g., neither JMSCorrelationID nor JMSType). Multiple subscribers can
share the same identifier.

WebLogic JMS uses this exact message selector syntax as a hint to build internal
subscriber indexes. Message selectors that do not follow the syntax, or that include
additional OR and AND clauses, are still honored, but do not activate the optimization.

Once subscribers have registered using this message selector syntax, a message
published to the topic can target specific subscribers by including one or more
identifiers in the message's user properties, as illustrated in the following example:

// Set up a named subscriber, where "wilma" is the name of
// the subscriber and subscriberSession is a JMS TopicSession.
// Note that the selector syntax used activates the optimization.

TopicSubscriber topicSubscriber =
 subscriberSession.createSubscriber(
 (Topic)context.lookup("IMTopic"),
 "Wilma IS NOT NULL",
 /* noLocal= */ true);

Sending XML Messages

Managing Your Applications 6-31

// Send a message to subscribers "Fred" and "Wilma",
// where publisherSession is a JMS TopicSession. Subscribers
// with message selector expressions "Wilma IS NOT NULL"
// or "Fred IS NOT NULL" will receive this message.

TopicPublisher topicPublisher =
 publisherSession.createPublisher(
 (Topic)context.lookup("IMTopic");

TextMessage msg =
 publisherSession.createTextMessage("Hi there!");
msg.setBooleanProperty("Fred", true);
msg.setBooleanProperty("Wilma", true);

topicPublisher.publish(msg);

6.10 Sending XML Messages

The WebLogic Server JMS API provides native support for the Document Object
Model (DOM) to send XML messages.

The following sections provide information on WebLogic JMS API extensions that
provide enhanced support for XML messages.

■ Section 6.10.1, "WebLogic XML APIs"

■ Section 6.10.2, "Using a String Representation"

■ Section 6.10.3, "Using a DOM Representation"

6.10.1 WebLogic XML APIs
You can use the following WebLogic XML APIs for transformation of XML between
String and DOM representations:

■ XMLMessage – Use to send messages with XML content.

■ WLSession.createXMLMessage – Use to create an XML message.

It is possible for the payload of XMLMessage to be set using one XML representation
and retrieved using a different representation. For example, it is valid for the

Notes: The optimized message selector and message syntax is based
on the standard JMS API; therefore, applications that use this syntax
will also work on versions of WebLogic JMS that do not have
optimized message selectors, as well as on non-WebLogic JMS
products. However, these versions will not perform as well as
versions that include this enhancement.

The message selector optimization will have no effect on applications
that use the MULTICAST_NO_ACKNOWLEDGE acknowledge mode.
These applications have no need no need for the enhancement
anyway, since the message selection occurs on the client side rather
than the server side.

Note: This release does not support streaming. Only text and DOM
representations of XML documents are supported.

Sending XML Messages

6-32 Programming JMS for Oracle WebLogic Server

XMLMessage body to be set using a String representation and be retrieved using a
DOM representation.

6.10.2 Using a String Representation
Use the following steps to publish an XML message using a string type:

1. Serialize the XML to a StringWriter.

2. Call toString on the StringWriter and pass it into message.setText.

3. Publish the message.

6.10.3 Using a DOM Representation
Sending XML messages using a DOM representation provides a significant
performance improvement over sending messages as a String. Use the following
steps to publish an XML message using a Dom Representation:

1. If necessary, generate a DOM document from your XML source.

2. Pass the DOM document into XMLMessage.setDocument.

3. Publish the message.

7

Using JMS Module Helper to Manage Applications 7-1

7Using JMS Module Helper to Manage
Applications

This chapter describes how to use the
weblogic.jms.extensions.JMSModuleHelper to programmatically create and
manage JMS servers, Store-and-Forward Agents, and JMS system resources.

■ Section 7.1, "Configuring JMS System Resources Using JMSModuleHelper"

■ Section 7.2, "Configuring JMS Servers and Store-and-Forward Agents"

■ Section 7.3, "JMSModuleHelper Sample Code"

■ Section 7.4, "Best Practices when Using JMSModuleHelper"

7.1 Configuring JMS System Resources Using JMSModuleHelper
JMSModuleHelper provides the following API signatures to manage a system
module and JMS resources, such as queues and topics:

■ Create a resource

■ Create and modify resource

■ Delete a resource

■ Find and modify a resource

■ Find using a template

You can manage a system module, including the JMS resources it contains by
providing the domain MBean or by providing the initial context to the administration
server in the API signature. For more information on JMS system resources, see
"Configuring Basic JMS System Resources" in the Oracle WebLogic Server Administration
Console Help.

7.2 Configuring JMS Servers and Store-and-Forward Agents
JMSModuleHelper provides the following method APIs to manage JMS servers and
Store-and-Forward Agents:

■ Create JMS servers and Store-and-Forward Agents

■ Delete JMS servers and Store-and-Forward Agents

■ Deploy JMS servers and Store-and-Forward Agents

■ Undeploy JMS servers and Store-and-Forward Agents

JMSModuleHelper Sample Code

7-2 Programming JMS for Oracle WebLogic Server

You can manage JMS servers and Store-and-Forward Agents by providing the domain
MBean or by providing the initial context to the administration server in the API
signature. For more information, see:

■ "Configuring Basic JMS System Resources" in the Oracle WebLogic Server
Administration Console Help.

■ "Understanding the Store-and-Forward Service" in the Oracle WebLogic Server
Administration Console Help.

7.3 JMSModuleHelper Sample Code
This section provides sample code to create and delete a JMS system resource module.

7.3.1 Creating a JMS System Resource
The module contains a connection factory and a topic.

Example 7–1 Create JMS System Resources

.

.

.
private static void createJMSUsingJMSModuleHelper(Context ctx){
System.out.println(
 "\n\n.... Configure JMS Resource for C API Topic Example\n\n");

 try {

 MBeanHome mbeanHome =
 (MBeanHome) ctx.lookup(MBeanHome.ADMIN_JNDI_NAME);
 DomainMBean domainMBean = mbeanHome.getActiveDomain();
 String domainMBeanName = domainMBean.getName();
 ServerMBean[] servers = domainMBean.getServers();

 String jmsServerName = "examplesJMSServer";

//
// create a JMSSystemResource "CapiTopic-jms"
//
 String resourceName = "CapiTopic-jms";
 JMSModuleHelper.createJMSSystemResource(
 ctx,
 resourceName,
 servers[0].getName());
 JMSSystemResourceMBean jmsSR =
 JMSModuleHelper.findJMSSystemResource(
 ctx,
 resourceName);
 JMSBean jmsBean = jmsSR.getJMSResource();
 System.out.println("Created JMSSystemResource " + resourceName);

//
// create a JMSConnectionFactory "CConFac"
//
 String factoryName = "CConFac";
 String jndiName = "CConFac";
 JMSModuleHelper.createConnectionFactory(
 ctx,
 resourceName,

JMSModuleHelper Sample Code

Using JMS Module Helper to Manage Applications 7-3

 factoryName,
 jndiName,
 servers[0].getName());
 JMSConnectionFactoryBean factory =
jmsBean.lookupConnectionFactory(factoryName);
 System.out.println("Created Factory " + factory.getName());

//
// create a topic "CTopic"
//
 String topicName = "CTopic";
 String topicjndiName = "CTopic";
 JMSModuleHelper.createTopic(
 ctx,
 resourceName,
 jmsServerName,
 topicName,
 topicjndiName);

 TopicBean topic = jmsBean.lookupTopic(topicName);
 System.out.println("Created Topic " + topic.getName());
 } catch (Exception e) {
 System.out.println("Example configuration failed :" + e.getMessage());
 e.printStackTrace();
 }
}
.
.
.

7.3.2 Deleting a JMS System Resource
The following code removes JMS system resources.

Example 7–2 Delete JMS System Resources

.

.

.
private static void deleteJMSUsingJMSModuleHelper(Context ctx) {

 System.out.println("\n\n.... Remove JMS System Resource for C API Topic
Example\n\n");

 try {

 MBeanHome mbeanHome =
 (MBeanHome) ctx.lookup(MBeanHome.ADMIN_JNDI_NAME);
 DomainMBean domainMBean = mbeanHome.getActiveDomain();
 String domainMBeanName = domainMBean.getName();
 ServerMBean[] servers = domainMBean.getServers();

 String jmsServerName = "examplesJMSServer";

//
// delete JMSSystemResource "CapiTopic-jms"
//
 String resourceName = "CapiTopic-jms";
 JMSModuleHelper.deleteJMSSystemResource(

Best Practices when Using JMSModuleHelper

7-4 Programming JMS for Oracle WebLogic Server

 ctx,
 resourceName
);
 } catch (Exception e) {
 System.out.println("Example configuration failed :" + e.getMessage());
 e.printStackTrace();
 }
}
.
.
.

7.4 Best Practices when Using JMSModuleHelper
This section provides best practices information when using JMSModuleHelper to
configure JMS servers and resources:

■ Trap for Null MBean objects (such as servers, JMS servers, modules) before trying
to manipulate the MBean object.

■ A create or delete method call can fail without throwing an exception. In addition,
a thrown exception does not necessarily indicate that the method call failed.

■ The time required to create the destination on the JMS server and propagate the
information to the JNDI namespace can be significant. The propagation delay
increases if the environment contains multiple servers. It is recommended that you
test for the existence of the queue or topic, respectively, using the session
createQueue() or createTopic() method, rather than perform a JNDI
lookup. By doing so, you can avoid some of the propagation-specific delay.

For example, the following method, findQueue(), attempts to access a
dynamically created queue, and if unsuccessful, sleeps for a specified interval
before retrying. A maximum retry count is established to prevent an infinite loop.

private static Queue findQueue (
 QueueSession queueSession,
 String jmsServerName,
 String queueName,
 int retryCount,
 long retryInterval
) throws JMSException
{
 String wlsQueueName = jmsServerName + "/" + queueName;
 String command = "QueueSession.createQueue(" +
 wlsQueueName + ")";
 long startTimeMillis = System.currentTimeMillis();
 for (int i=retryCount; i>=0; i--) {
 try {
 System.out.println("Trying " + command);
 Queue queue = queueSession.createQueue(wlsQueueName);
 System.out.println(command + "succeeded after " +
 (retryCount - i + 1) + " tries in " +
 (System.currentTimeMillis() - startTimeMillis) +
 " millis.");
 return queue;
 } catch (JMSException je) {
 if (retryCount == 0) throw je;
 }
 try {
 System.out.println(command + "> failed, pausing " +
 retryInterval + " millis.");

Best Practices when Using JMSModuleHelper

Using JMS Module Helper to Manage Applications 7-5

 Thread.sleep(retryInterval);
 } catch (InterruptedException ignore) {}
 }
 throw new JMSException("out of retries");
}

You can then call the findQueue() method after the JMSModuleHelper class
method call to retrieve the dynamically created queue once it becomes available. For
example:

JMSModuleHelper.createPermanentQueueAsync(ctx, domain, jmsServerName,
 queueName, jndiName);
Queue queue = findQueue(qsess, jmsServerName, queueName,
 retry_count, retry_interval);

Best Practices when Using JMSModuleHelper

7-6 Programming JMS for Oracle WebLogic Server

8

Using Multicasting with WebLogic JMS 8-1

8Using Multicasting with WebLogic JMS

This chapter describes how WebLogic JMS Multicasting enables the delivery of
messages to a select group of hosts that subsequently forward the messages to
subscribers in a cluster.

■ Section 8.1, "Benefits of Using Multicasting"

■ Section 8.2, "Limitations of Using Multicasting"

■ Section 8.4, "Configuring Multicasting for WebLogic Server"

8.1 Benefits of Using Multicasting
The benefits of multicasting include:

■ Near real-time delivery of messages to host group.

■ High scalability due to the reduction in the amount of resources required by the
JMS server to deliver messages to topic subscribers in a cluster.

8.2 Limitations of Using Multicasting
The limitations of multicasting include:

■ Multicast messages are not guaranteed to be delivered to all members of the host
group. For messages requiring reliable delivery and recovery, you should not use
multicasting.

■ For interoperability with different versions of WebLogic Server, clients cannot
have an earlier release of WebLogic Server installed than the host. They must all
have at least the same version or higher.

For an example of when multicasting might be useful, consider a stock ticker. When
accessing stock quotes, timely delivery is more important than reliability. When
accessing the stock information in real-time, if all or a portion of the contents is not
delivered, the client can simply request the information to be resent. Clients would not
want to have the information recovered, in this case, as by the time it is redelivered, it
would be out-of-date.

8.3 Using WebLogic Server Unicast
WebLogic Server provides an alternative to using multicast to handle cluster
messaging and communications. Unicast configuration is much easier because it does
not require cross network configuration that multicast requires. Additionally, it
reduces potential network errors that can occur from multicast address conflicts.

Configuring Multicasting for WebLogic Server

8-2 Programming JMS for Oracle WebLogic Server

JMS topics configured for multicasting can access WebLogic clusters configured for
unicast because a JMS topic publishes messages on its own multicast address that is
independent of the cluster address. However, the following considerations apply:

■ The router hardware configurations that allow unicast clusters may not allow JMS
multicast subscribers to work.

■ JMS multicast subscribers need to be in a network hardware configuration that
allows multicast accessibility.

For more details, see "Communications In a Cluster" in Using Clusters for Oracle
WebLogic Server.

8.4 Configuring Multicasting for WebLogic Server
The following figure illustrates the steps required to set up multicasting.

Figure 8–1 Setting Up Multicasting

8.4.1 Prerequisites for Multicasting
Before setting up multicasting, the connection factory and destination must be
configured to support multicasting, as follows:

■ For each connection factory, the system administrator configures the maximum
number of outstanding messages that can exist on a multicast session and whether
the most recent or oldest messages are discarded in the event the maximum is
reached. If the message maximum is reached, a DataOverrunException is
thrown, and messages are automatically discarded. These attributes are also
dynamically configurable, as described in Section 8.4.4, "Dynamically Configuring
Multicasting Configuration Attributes."

■ For each destination, the Multicast Address (IP), Port, and TTL (Time-To-Live)
attributes are specified. To better understand the TTL attribute setting, see
Section 8.4.5, "Example: Multicast TTL."

Note: Multicasting is only supported for the Pub/Sub messaging
model, and only for non-durable subscribers.

Monitoring statistics are not provided for multicast sessions or
consumers.

Note: It is strongly recommended that you seek the advice of your
network administrator when configuring the multicast IP address,
port, and time-to-live attributes to ensure that the appropriate values
are set.

Configuring Multicasting for WebLogic Server

Using Multicasting with WebLogic JMS 8-3

For more information, see "Configure topic multicast parameters" in the Oracle
WebLogic Server Administration Console Help.

8.4.2 Step 1: Set Up the JMS Application, Multicast Session and Topic Subscriber
Set up the JMS application as described in Section 5.2, "Setting Up a JMS Application."
However, when creating sessions, as described in Section 5.2.3, "Step 3: Create a
Session Using the Connection," specify that the session would like to receive multicast
messages by setting the acknowledgeMode value to MULTICAST_NO_ACKNOWLEDGE.

For example, the following method illustrates how to create a multicast session for the
Pub/Sub messaging model.

JMSModuleHelper.createPermanentQueueAsync(ctx, domain, jmsServerName,
 queueName, jndiName);
Queue queue = findQueue(qsess, jmsServerName, queueName,
 retry_count, retry_interval);

In addition, create a topic subscriber, as described in Section 5.2.5.2, "Create
TopicPublishers and TopicSubscribers."

For example, the following code illustrates how to create a topic subscriber:

tsubscriber = tsession.createSubscriber(myTopic);

8.4.3 Step 2: Set Up the Message Listener
Multicast topic subscribers can only receive messages asynchronously. If you attempt
to receive synchronous messages on a multicast session, a JMSException is thrown.

Set up the message listener for the topic subscriber, as described in Section 5.4.1,
"Receiving Messages Asynchronously."

For example, the following code illustrates how to establish a message listener:

tsubscriber.setMessageListener(this);

When receiving messages, WebLogic JMS tracks the order in which messages are sent
by the destinations. If a multicast subscriber's message listener receives the messages
out of sequence, resulting in one or more messages being skipped, a
SequenceGapException will be delivered to the ExceptionListener for the
session(s) present. If a skipped message is subsequently delivered, it will be discarded.
For example, in the following figure, the subscriber is receiving messages from two
destinations simultaneously.

Note: Multicasting is only supported for the Pub/Sub messaging
model for non-durable subscribers. An attempt to create a durable
subscriber on a multicast session will cause a JMSException to be
thrown.

Note: On the client side, each multicasting session requires one
dedicated thread to retrieve messages off the socket. Therefore, you
should increase the JMS client-side thread pool size to adjust for this.

Note: The createSubscriber() method fails if the specified
destination is not configured to support multicasting.

Configuring Multicasting for WebLogic Server

8-4 Programming JMS for Oracle WebLogic Server

Figure 8–2 Multicasting Sequence Gap

Upon receiving the "4" message from Destination 1, a SequenceGapException is
thrown to notify the application that a message was received out of sequence. If
subsequently received, the "3" message will be discarded.

8.4.4 Dynamically Configuring Multicasting Configuration Attributes
During configuration, for each connection factory the system administrator configures
the following information to support multicasting:

■ Messages maximum specifying the maximum number of outstanding messages
that can exist on a multicast session.

■ Overrun policy specifying whether recent or older messages are discarded in the
event the messages maximum is reached.

If the messages maximum is reached, a DataOverrunException is thrown and
messages are automatically discarded based on the overrun policy. Alternatively, you
can set the messages maximum and overrun policy using the Session set methods.

The following table lists the Session set and get methods for each dynamically
configurable attribute.

For more information about these Session class methods, see the
weblogic.jms.extensions.WLSession Javadoc. For more information on these
multicast configuration attributes, see "Configure topic multicast parameters" in the
Oracle WebLogic Server Administration Console Help.

Note: The larger the messages being exchanged, the greater the risk
of encountering a SequenceGapException.

Table 8–1 Message Producer Set and Get Methods

Attribute Set Method Get Method

Messages
Maximum

public void setMessagesMaximum(
 int messagesMaximum
) throws JMSException

public int getMessagesMaximum(
) throws JMSException

Overrun Policy public void setOverrunPolicy (
 int overrunPolicy
) throws JMSException

public int getOverrunPolicy(
) throws JMSException

Note: The values set using the set methods take precedence over the
configured values.

Configuring Multicasting for WebLogic Server

Using Multicasting with WebLogic JMS 8-5

8.4.5 Example: Multicast TTL

The following example illustrates how the Multicast TTL destination configuration
attribute impacts the delivery of messages across routers.

For more information, see "Configure topic multicast parameters" in the Oracle
WebLogic Server Administration Console Help.

Consider the following network diagram.

Figure 8–3 Multicast TTL Example

In the figure, the network consists of three subnets: Subnet A containing the multicast
publisher, and Subnets B and C each containing one multicast subscriber.

If the Multicast TTL attribute is set to 0 (indicating that the messages cannot traverse
any routers and are delivered on the current subnet only), when the multicast
publisher on Subnet A publishes a message, the message will not be delivered to any
of the multicast subscribers.

If the Multicast TTL attribute is set to 1 (indicating that messages can traverse one
router), when the multicast publisher on Subnet A publishes a message, the multicast
subscriber on Subnet B will receive the message.

Similarly, if the Multicast TTL attribute is set to 2 (indicating that messages can
traverse two routers), when the multicast publisher on Subnet A publishes a message,
the multicast subscribers on Subnets B and C will receive the message.

Note: The following example is a very simplified illustration of how
the Multicast TTL (time-to-live) destination configuration attribute
impacts the delivery of messages across routers. It is strongly advised
that you seek the assistance of your network administrator when
configuring the multicast TTL attribute to ensure that the appropriate
value is set.

The Multicast TTL is independent of the message time-to-live.

Configuring Multicasting for WebLogic Server

8-6 Programming JMS for Oracle WebLogic Server

9

Using Distributed Destinations 9-1

9Using Distributed Destinations

This chapter describes the concepts and functionality of distributed destinations
necessary to design higher availability (HA) applications.

■ Section 9.1, "What is a Distributed Destination?"

■ Section 9.2, "Why Use a Distributed Destination"

■ Section 9.3, "Creating a Distributed Destination"

■ Section 9.4, "Types of Distributed Destinations"

■ Section 9.5, "Using Distributed Destinations"

■ Section 9.6, "Using Message-Driven Beans with Distributed Destinations"

■ Section 9.7, "Common Use Cases for Distributed Destinations"

9.1 What is a Distributed Destination?
A distributed destination is a set of destinations (queues or topics) that are accessible
as a single, logical destination to a client. A distributed destination has the following
characteristics:

■ It is referenced by its own JNDI name.

■ Members of the set are usually distributed across multiple servers within a cluster,
with each destination member belonging to a separate JMS server.

9.2 Why Use a Distributed Destination
Applications that use distributed destinations are more highly available than
applications that use simple destinations because WebLogic JMS provides load
balancing and failover for member destinations of a distributed destination within a
cluster. Once properly configured, your producers and consumers are able to send and
receive messages through the distributed destination. WebLogic JMS then balances the
messaging load across all available members of the distributed destination. When one
member becomes unavailable due a server failure, traffic is then redirected toward
other available destination members in the set. For more information on how
destination members are load balanced, see "Configuring Distributed Destination
Resources" in Configuring and Managing JMS for Oracle WebLogic Server.

Creating a Distributed Destination

9-2 Programming JMS for Oracle WebLogic Server

9.3 Creating a Distributed Destination
Distributed destinations are created by the system administrator using the
Administration Console. For more information, see "Configuring Distributed
Destination Resources" in Configuring and Managing JMS for Oracle WebLogic Server.

9.4 Types of Distributed Destinations
WebLogic Server supports two types of distributed destinations:

■ Section 9.4.1, "Uniform Distributed Destinations"

■ Section 9.4.2, "Weighted Distributed Destinations"

9.4.1 Uniform Distributed Destinations
In a uniform distributed destination (UDD), each of the member destinations has a
consistent configuration of all distributed destination parameters, particularly in
regards to weighting, security, persistence, paging, and quotas.

Oracle recommends using UDDs because you no longer need to create or designate
destination members, but instead rely on WebLogic Server to uniformly create the
necessary members on the JMS servers to which a UDD is targeted. This feature of
UDDs provides dynamic updating of a UDD when a new member is added or a
member is removed.

For example, if UDD is targeted to a cluster, there is a UDD member on every JMS
server in the cluster. If a new JMS server is added, a new UDD member is dynamically
added to the UDD. Likewise, if a JMS server is removed, the corresponding UDD
member is removed from the UDD. This allows UDDs to provide higher availability
by eliminating bottlenecks caused by configuration errors. For more information, see
"Configuring Distributed Destination Resources" in Configuring and Managing JMS for
Oracle WebLogic Server.

9.4.2 Weighted Distributed Destinations

In a weighted distributed destination, the member destinations do not have a
consistent configuration of all distributed destination parameters, particularly in
regards to weighting, security, persistence, paging, and quotas.

Oracle recommends converting weighted distributed destinations to UDDs because of
the administrative inflexibility when creating members that are intended to carry extra
message load or have extra capacity (more weight). Lack of a consistent member
configuration can lead to unforeseen administrative and application problems because
the weighted distributed destination can not be deployed consistently across a cluster.

For more information, see "Configuring Distributed Destination Resources" in
Configuring and Managing JMS for Oracle WebLogic Server.

Note: Weighted distributed destinations are deprecated in Weblogic
Server 10.3.4.0. Oracle recommends using Uniform Distributed
Destinations.

Using Distributed Destinations

Using Distributed Destinations 9-3

9.5 Using Distributed Destinations
A distributed destination is a set of physical JMS destination members (queues or
topics) that is accessed through a single JNDI name. As such, a distributed destination
can be looked up using JNDI. It implements the javax.jms.Destination interface,
at
http://download.oracle.com/javaee/5/api/javax/jms/Destination.ht
ml, and can be used to create producers, consumers, and browsers.

For information on obtaining a reference to a distributed destination, see Section C,
"How to Lookup a Destination."

■ Section 9.5.1, "Using Distributed Queues"

■ Section 9.5.2, "Using Replicated Distributed Topics"

■ Section 9.5.3, "Using Partitioned Distributed Topics"

9.5.1 Using Distributed Queues
A distributed queue is a set of physical JMS queue members. As such, a distributed
queue can be used to create a QueueSender, QueueReceiver, and a
QueueBrowser. The fact that a distributed queue represents multiple physical queues
is mostly transparent to your application.

The queue members can be located anywhere, but must all be served by JMS servers in
a single server cluster. When a message is sent to a distributed queue, it is sent to
exactly one of the physical queues in the set of members for the distributed queue.
Once the message arrives at the queue member, it is available for receipt by consumers
of that queue member only. '

This section provides information on using distributed queues:

■ Section 9.5.1.1, "Queue Forwarding"

■ Section 9.5.1.2, "QueueSenders"

■ Section 9.5.1.3, "QueueReceivers"

■ Section 9.5.1.4, "QueueBrowsers"

9.5.1.1 Queue Forwarding
Queue members can forward messages to other queue members by configuring the
Forward Delay attribute in the Administration Console, which is disabled by
default. This attribute defines the amount of time, in seconds, that a distributed queue
member with messages, but which has no consumers, will wait before forwarding its
messages to other queue members that do have consumers. By default, WebLogic
Server resets the delivery count when forwarding between distributed queue
members. See Reset Delivery Count On Forward.

9.5.1.2 QueueSenders
After creating a queue sender, if the queue supplied at creation time was a distributed
queue, then each time a message is produced using the sender a decision is made as to
which queue member will receive the message. Each message is sent to a single
physical queue member.

The message is not replicated in any way. As such, the message is only available from
the queue member where it was sent. If that physical queue becomes unavailable
before a given message is received, then the message is unavailable until that queue
member comes back online.

Using Distributed Destinations

9-4 Programming JMS for Oracle WebLogic Server

It is not enough to send a message to a distributed queue and expect the message to be
received by a queue receiver of that distributed queue. Since the message is sent to
only one physical queue member, there must be a queue receiver receiving or listening
on that queue member.

9.5.1.3 QueueReceivers
When creating a queue receiver, if the supplied queue is a distributed queue, then a
single physical queue member is chosen for the receiver at creation time. The created
QueueReceiver is pinned to that queue member until the queue receiver loses its
access to the queue member. At that point, the consumer will receive a
JMSException, as follows:

■ If the queue receiver is synchronous, then the exception is returned to the user
directly.

■ If the queue receiver is asynchronous, then the exception is delivered inside of a
ConsumerClosedException that is delivered to the ExceptionListener
defined for the consumer session, if any.

Upon receiving such an exception, an application can close its queue receiver and
recreate it. If any other queue members are available within the distributed queue,
then the creation will succeed and the new queue receiver will be pinned to one of
those queue members. If no other queue member is available, then the application
won't be able to recreate the queue receiver and will have to try again later.

9.5.1.4 QueueBrowsers
When creating a queue browser, if the supplied queue is a distributed queue, then a
single physical queue member is chosen for the browser at creation time. The created
queue browser is pinned to that queue member until the receiver loses its access to the
queue member. At that point, any calls to the queue browser will receive a
JMSException. Any calls to the enumeration will return a
NoSuchElementException.

9.5.2 Using Replicated Distributed Topics
A distributed topic is a set of physical JMS topic members. As such, a distributed topic
can be used to create a TopicPublisher and TopicSubscriber. The fact that a

Note: For information on the load-balancing heuristics for
distributed queues with zero consumers, see "Configuring Distributed
Destination Resources" in Configuring and Managing JMS for Oracle
WebLogic Server.

Note: For information on the load-balancing heuristics for
distributed queues with zero consumers, see "Configuring Distributed
Destination Resources" in Configuring and Managing JMS for Oracle
WebLogic Server.

Note: The queue browser can only browse the queue member that it
is pinned to. Even though a distributed queue was specified at
creation time, the queue browser cannot see or browse messages for
the other queue members in the distributed destination.

Using Distributed Destinations

Using Distributed Destinations 9-5

distributed topic represents multiple physical topics is mostly transparent to the
application.

The topic members can be located anywhere but must all be served either by a single
WebLogic Server or any number of servers in a cluster. When a message is sent to a
distributed topic, it is sent to all of the topic members in the distributed topic set. This
allows all subscribers to the distributed topic to receive messages published for the
distributed topic.

A message published directly to a topic member of a distributed destination (that is,
the publisher did not specify the distributed destination) is also forwarded to all the
members of that distributed topic. This includes subscribers that originally subscribed
to the distributed topic, and which happened to be assigned to that particular topic
member. In other words, publishing a message to a specific distributed topic member
automatically forwards it to all the other distributed topic members, just as publishing
a message to a distributed topic automatically forwards it to all of its distributed topic
members. For more information about looking up specific distributed destination
members, see Section 9.5.4, "Accessing Distributed Destination Members."

This section provides information on using distributed topics:

■ Section 9.5.2.1, "TopicPublishers"

■ Section 9.5.2.2, "TopicSubscribers"

■ Section 9.5.2.3, "Deploying Message-Driven Beans on a Distributed Topic"

9.5.2.1 TopicPublishers
When creating a topic publisher, if the supplied destination is a distributed
destination, then any messages sent to that distributed destination are sent to all
available topic members for that distributed topic, as follows:

■ If one or more of the distributed topic members is not reachable, and the message
being sent is non-persistent, then the message is sent only to the available topic
members.

■ If one or more of the distributed topic members is not reachable, and the message
being sent is persistent, then the message is stored and forwarded to the other
topic members when they become reachable. However, the message can only be
persistently stored if the topic member has a JMS store configured.

Note: Durable subscribers (DurableTopicSubscriber) cannot be
created for distributed topics. However, you can still create a durable
subscription on distributed topic member and the other topic
members will forward the messages to the topic member that has the
durable subscription.

Note: Every effort is made to first forward the message to distributed
members that utilize a persistent store. However, if none of the
distributed members utilize a store, then the message is still sent to
one of the members according to the selected load-balancing
algorithm, as described in "Configuring Distributed Destination
Resources" in Configuring and Managing JMS for Oracle WebLogic Server.

Using Distributed Destinations

9-6 Programming JMS for Oracle WebLogic Server

■ If all of the distributed topic members are unreachable (regardless of whether the
message is persistent or non-persistent), then the publisher receives a
JMSException when it tries to send a message.

9.5.2.2 TopicSubscribers
When creating a topic subscriber, if the supplied topic is a distributed topic, then the
topic subscriber receives messages published to that distributed topic. If one or more
of the topic members for the distributed topic are not reachable by a topic subscriber,
then depending on whether the messages are persistent or non-persistent the
following occurs:

■ Any persistent messages published to one or more unreachable distributed topic
members are eventually received by topic subscribers of those topic members once
they become reachable. However, the messages can only be persistently stored if
the topic member has a JMS store configured.

■ Any non-persistent messages published to those unreachable distributed topic
members will not be received by that topic subscriber.

Ultimately, a topic subscriber is pinned to a physical topic member. If that topic
member becomes unavailable, then the topic subscriber will receive a JMSException,
as follows:

■ If the topic subscriber is synchronous, then the exception is returned to the user
directly.

■ If the topic subscriber is asynchronous, then the exception is delivered inside of a
ConsumerClosedException that is delivered to the ExceptionListener
defined for the consumer session, if any.

Upon receiving such an exception, an application can close its topic subscriber and
recreate it. If any other topic member is available within the distributed topic, then the
creation should be successful and the new topic subscriber will be pinned to one of
those topic members. If no other topic member is available, then the application will
not be able to recreate the topic subscriber and will have to try again later.

Note: If a JMS store is configured for a JMS server that is hosting a
distributed topic member, then all the Distributed Topic System
Subscribers associated with that member destination are treated as
durable subscriptions, even when a topic member does not have a
JMS store explicitly configured. As such, the saving of all the messages
sent to these distributed topic subscribers in memory can result in
unexpected memory and disk consumption. Therefore, a
recommended best design practice when deploying distributed
destination is to consistently configure all member destinations: either
with a JMS store for durable messages, or without a JMS store for
non-durable messages. For example, if you want all of your
distributed topic subscribers to be non-durable, but some member
destinations implicitly have a JMS store configured because their
associated JMS server uses a JMS store, then you need to explicitly set
the StoreEnabled attribute to False for each member destination to
override the JMS server setting.

Using Distributed Destinations

Using Distributed Destinations 9-7

9.5.2.3 Deploying Message-Driven Beans on a Distributed Topic
For information on how to deploy MDBx on topics, see Configuring and Deploying
MDBs Using Distributed Topics in Programming Message-Driven Beans for Oracle
WebLogic Server.

9.5.3 Using Partitioned Distributed Topics
Starting in WebLogic Server 10.3.4.0, partitioned distributed topics, combined with the
ability to share subscriptions and allow multiple connections to use the same Client
ID, provide the following application design patterns that provide parallel processing
and HA capabilities similar to distributed queues:

■ One-copy-per-instance: Each instance of an application gets one copy of each
message that is published to the Topic.

■ One-copy-per-application: Each application as a whole (that is all instances of the
application together) receives one copy of each message that is published to the
DT. That is each instance only receives a subset of the messages that are sent to the
DT.

For more information on using Partitioned Distributed Topics, see Section 13,
"Developing Advanced Pub/Sub Applications."

9.5.4 Accessing Distributed Destination Members
For information on how to access distributed destinations and their members, see
Section C, "How to Lookup a Destination."

9.5.5 Distributed Destination Failover

A simple way to failover a client connected to a failed distributed destination is to
write reconnect logic in the client code to connect to the distributed destination after
catching onException.

Note: Oracle recommends designing applications that utilize
WebLogic Server MDBs. See Configuring and Deploying MDBs Using
Distributed Topics in Programming Message-Driven Beans for Oracle
WebLogic Server for detailed information on how to design and
implement applications that use message-driven beans to provide
improved HA and scalability.

Note: If the distributed queue member on which a queue producer is
created should fail, yet the WebLogic Server instance where the
producer's JMS connection resides is still running, the producer
remains alive and WebLogic JMS will fail it over to another distributed
queue member, irrespective of whether the Load Balancing option is
enabled. For example, a WebLogic cluster contains WLSServer1,
WLSServer2, and WLSServer3 and you are connected to WLServer2. If
server WLSServer 2 fails, WebLogic JMS fail the producer over to one
of the remaining cluster members. For more information, see
"Configuring Distributed Destination Resources" in Configuring and
Managing JMS for Oracle WebLogic Server.

Using Message-Driven Beans with Distributed Destinations

9-8 Programming JMS for Oracle WebLogic Server

9.6 Using Message-Driven Beans with Distributed Destinations
A message-driven bean (MDB) acts as a JMS message listener, which is similar to an
event listener except that it receives messages instead of events. For more information
on MDBs, see:

■ "MDBs and Messaging Models" in Oracle Fusion Middleware Programming
Message-Driven Beans for Oracle WebLogic Server

■ "Deploying MDBs" in Oracle Fusion Middleware Programming Message-Driven Beans
for Oracle WebLogic Server

9.7 Common Use Cases for Distributed Destinations
The following sections provide common use case scenarios when using distributed
destinations:

■ Section 9.7.1, "Maximizing Production"

■ Section 9.7.2, "Maximizing Availability"

■ Section 9.7.3, "Stuck Messages"

9.7.1 Maximizing Production
To maximize message production, Oracle recommends that each member of a
distributed destination be associated with a producer and a consumer. The following
diagram demonstrates how to efficiently provide maximum message production and
high availability using a UDD without using load balancing:

Figure 9–1 Paired Producers and Consumers

In this situation, UDD1 is a uniform distributed destination composed of two physical
members: D1 and D2. Each physical destination has a producer/consumer pair and
the effective path for a message follows the solid line from the producer through the
destination member to the consumer. If you are using ordering, you should have a
producer for each expected Unit-of-Order. See Section 10.6.4, "Using Unit-of-Order
with Distributed Destinations."

Common Use Cases for Distributed Destinations

Using Distributed Destinations 9-9

9.7.2 Maximizing Availability
This section provides information on how to maximize message availability.

9.7.2.1 Using Queues
Ideally, its best to pair a producer with a consumer but it is not always practical. The
rate that messages are consumed is the limiting factor that determines the message
throughput of your application. You can increase the availability of consumers by
using load balancing between member destinations. In this situation, consumers are
not paired with a producer as the UDD load balances an incoming message to the next
available consumer using the assigned load balancing algorithm.

9.7.2.2 Using Topics
When using a distributed topic, every member destination will forward its messages
to every other member of the distributed topic.

Figure 9–2 Using Distributed Topics

In this situation, UDD1 is a uniform distributed destination composed of two physical
members: D1 and D2. Each physical destination has a producer/consumer pair. Each
consumer receives messages sent by Producer 1 and Producer 2.

9.7.3 Stuck Messages
In this situation, a producer is sending messages to one member of a UDD but there is
no consumer available to get the message. This typically happens as a producer sends
a message to one of the destinations (D1) and a consumer is listening for messages on
another destination (D2).

Note: Some combinations of Unit-of-Order features can result in the
starvation of competing Unit-of-Order message streams, including the
under utilization of resources when the number of consumers exceed
the number of in-flight messages with different Unit-of-Order names.
You will need to test your applications under maximum loads to
optimize your system's performance and eliminate conditions that
under utilize resources.

Common Use Cases for Distributed Destinations

9-10 Programming JMS for Oracle WebLogic Server

Figure 9–3 Stuck Messages

UDD1 is a uniform distributed destination composed of two physical members: D1
and D2. D1 has a producer and D2 has a consumer. Avoid this configuration by using
producer/consumer pairs or by configuring forwarding on the destination.

10

Using Message Unit-of-Order 10-1

10Using Message Unit-of-Order

This chapter describes how to use Message Unit-of-Order to provide strict message
ordering when using WebLogic JMS.

■ Section 10.1, "What Is Message Unit-Of-Order?"

■ Section 10.2, "Understanding Message Processing with Unit-of-Order"

■ Section 10.3, "Message Unit-of-Order Case Study"

■ Section 10.4, "How to Create a Unit-of-Order"

■ Section 10.5, "Getting the Current Unit-of-Order"

■ Section 10.6, "Message Unit-of-Order Advanced Topics"

■ Section 10.7, "Limitations of Message Unit-of-Order"

10.1 What Is Message Unit-Of-Order?
Message Unit-of-Order is a WebLogic Server value-added feature that enables a
stand-alone message producer, or a group of producers acting as one, to group
messages into a single unit with respect to the processing order. This single unit is
called a Unit-of-Order and requires that all messages from that unit be processed
sequentially in the order they were created.

10.2 Understanding Message Processing with Unit-of-Order
The following sections compare message processing as described by the JMS
specification with message processing enhanced by using WebLogic Server's Message
Unit-of-Order feature.

■ Section 10.2.1, "Message Processing According to the JMS Specification"

■ Section 10.2.2, "Message Processing with Unit-of-Order"

■ Section 10.2.3, "Message Delivery with Unit-of-Order"

10.2.1 Message Processing According to the JMS Specification
While the Java Message Service Specification, at
http://www.oracle.com/technetwork/java/jms/index.html, provides an
ordered message delivery, it does so in a very strict sense. It defines order between a
single instance of a producer and a single instance of a consumer, but does not take
into account the following common situations:

■ Many consumers on one queue. See Chapter 9, "Using Distributed Destinations."

Understanding Message Processing with Unit-of-Order

10-2 Programming JMS for Oracle WebLogic Server

■ Multiple producers within a single application acting as a single producer. See
Chapter 9, "Using Distributed Destinations."

■ Message recoveries or transaction rollbacks where other messages from the same
producer can be delivered to another consumer for processing. See Section 10.6.1,
"What Happens When a Message Is Delayed During Processing?".

■ Use of filters and destination sort keys. See Section 10.6, "Message Unit-of-Order
Advanced Topics."

10.2.2 Message Processing with Unit-of-Order
The WebLogic Server Unit-of-Order feature enables a message producer or group of
message producers acting as one, to group messages into a single unit that is
processed sequentially in the order the messages were created. The message
processing of a single message is complete when a message is acknowledged,
committed, recovered, or rolled back. Until message processing for a message is
complete, the remaining unprocessed messages for that Unit-of-Order are blocked.

This section provides information on rules for JMS acknowledgement modes,
described at http://www.oracle.com/technetwork/java/jms/index.html,
when using Message Unit-of-Order:

■ No messages from a Unit-of-Order are processed in parallel when the
acknowledgement mode is CLIENT_ACKNOWLEDGE, AUTO_ACKNOWLEDGE, or
DUPS_OK_ACKNOWLEDGE.

■ When the consumer is closed, the current message processing is completed,
regardless of the session's acknowledge mode.

■ CLIENT_ACKNOWLEDGE – The application calling Message.acknowledge and
Session.recover indicate which messages are completely processed in the
Unit-of-Order.

■ AUTO_ACKNOWLEDGE – The session automatically acknowledges a client's receipt
of a message when it has either successfully returned from a call to receive or
when the MessageListener that was called returns successfully.

– Asynchronous mode: Successful completion or exception of
onMessage(msg) indicates when a message is completely processed.

– Synchronous mode: For a given consumer, such as consumer A,
consumerA.receive is completed when one of the following occurs:
consumerA.receive, consumerA.setMessageListener, or
consumerA.close.

■ DUPS_OK_ACKNOWLEDGE – The session automatically acknowledges a client's
receipt of a message when it has either successfully returned from a call to
receive or when the MessageListener that was called returns successfully.

– Asynchronous mode: Successful completion or exception of
onMessage(msg) indicates when a message is completely processed.

– Synchronous mode: For a given consumer, such as consumer A,
consumerA.receive() is completed when one of the following occurs:
consumerA.receive(), consumerA.setMessageListener(), or
consumerA.close().

■ NO_ACKNOWLEDGE – The session provides no order processing guarantees.
Messages can be processed in parallel to different available consumers.

Message Unit-of-Order Case Study

Using Message Unit-of-Order 10-3

10.2.3 Message Delivery with Unit-of-Order
Message Unit-of-Order provides that messages are delivered in accordance with the
following rules:

■ Member messages of a Unit-of-Order are delivered to queue consumers
sequentially in the order they were created. The message order within a
Unit-of-Order will not be affected by sort criteria, priority, or filters. However,
messages that are uncommitted, have a Redelivery Delay, or have an
unexpired TimetoDeliver timer will delay messages that arrive after them.

■ Unit-of-Order messages are processed one at a time. The processing completion of
one message allows the next message in the Unit-of-Order to be delivered.

■ Unit-of-Order messages sent to a distributed queue reside on only one physical
member of the distributed queue. For more information, see Section 10.6.4, "Using
Unit-of-Order with Distributed Destinations."

■ All uncommitted or unacknowledged messages from the same Unit-of-Order must
be in the same transaction, or if non-transactional, the same JMSSession. When
one message in the Unit-of-Order is uncommitted or unacknowledged, the other
messages are deliverable only to the same transaction or JMSSession. This keeps
all unacknowledged messages from the same Unit-of-Order in one recoverable
operation and allows order to be maintained despite rollbacks or recoveries.

■ A queue that has several messages from the same Unit-of-Order must complete
processing all of them before they can be delivered to any queue consumer or the
next message can be delivered to the queue.

For Example, when Messages M1 through Mn are delivered:

– as part of a transaction and the transaction is rolled back (processing is
complete). Then messages M1 through Mn are delivered to any available
consumer.

– outside of a transaction and the messages are recovered (processing is
complete). Then messages M1 through Mn are delivered to any available
consumer.

– outside of a transaction and the messages are acknowledged (processing is
complete). Then the undelivered message Mn+1 is delivered to any available
consumer.

10.3 Message Unit-of-Order Case Study
This section provides a simple case study for Message Unit-of-Order based on
ordering a book from an online bookstore.

■ Section 10.3.1, "Joe Orders a Book"

■ Section 10.3.2, "What Happened to Joe's Order"

■ Section 10.3.3, "How Message Unit-of-Order Solves the Problem"

10.3.1 Joe Orders a Book
XYZ Online Bookstore implements a simple processing design that uses JMS to
process customer orders. The JMS processing system is composed of:

■ A message producer sending to a queue (Queue1).

Message Unit-of-Order Case Study

10-4 Programming JMS for Oracle WebLogic Server

■ Multiple message driven beans (MDBs), such as MdbX and MdbY, that process
messages from Queue1.

■ A database (myDB) that contains order and order status information.

Joe logs into his XYZ Online Bookstore account and searches his favorite book topics.
He chooses a book, proceeds to the checkout, and completes the sales transaction.
Then Joe realizes he has previously purchased this same item, so he cancels the order.
One week later, the book is delivered to Joe.

10.3.2 What Happened to Joe's Order
In Joe's ordering scenario, his cancel order message was processed before his purchase
order message. The result was that Joe received a book he did not wish to purchase.
The following steps demonstrate how Joe's order was processed.

The following diagram and corresponding actions demonstrate how Joe's order was
processed.

Figure 10–1 Workflow for Joe's Order

1. Joe clicks the order button from his shopping cart.

2. The order message (message A) is placed on Queue1.

3. Joe cancels the order.

4. The cancel order (message B) is placed on Queue1.

5. MdbX takes message A from Queue1.

6. MdbY takes message B from Queue1.

7. MdbY writes the cancel message to the database. Because there is no
corresponding order message, there is no order message to remove from the
database.

8. MdbX writes the order message to the database.

9. An application responsible for shipping books reads the database, sees the order
message, and initiates shipment to Joe's home.

Although the Java Message Service Specification, at
http://www.oracle.com/technetwork/java/jms/index.html, provides an
ordered message delivery, it only provides ordered message delivery between a single
instance of a producer and a single instance of a consumer. In Joe's case, multiple
MDBs where available to consume messages from Queue1 and the processing order of
the messages was no longer guaranteed.

How to Create a Unit-of-Order

Using Message Unit-of-Order 10-5

10.3.3 How Message Unit-of-Order Solves the Problem
To ensure that all messages in Joe's order are processed correctly, the system
administrator for XYZ Bookstore configures a Message Unit-of-Order based on a user
session, such that all messages from a user session have a Unit-of-Order name
attribute with the value of the session id. See Section 10.4, "How to Create a
Unit-of-Order." All messages created during Joe's user session are processed
sequentially in the order they were created because WebLogic Server guarantees that
messages in a Unit-of-Order are not processed in parallel.

The following diagram and corresponding actions demonstrate how Joe's order was
processed using Message Unit-of-Order.

Figure 10–2 Workflow for Joe's Order Using Unit-of-Order

1. Joe clicks the order button from his shopping cart.

2. The order message (message A) is placed on Queue1.

3. Joe cancels the order.

4. The cancel order (message B) is placed on Queue1.

5. MdbX takes message A from Queue1.

6. MdbY takes message B from Queue1.

7. Message B on MdbY is blocked until MdbX acknowledges the order message. See
Section 10.6.1, "What Happens When a Message Is Delayed During Processing?".

8. Message A is committed and written to the database.

9. Message B is committed and written to the database.

Because there is a corresponding order message, Joe's order is removed from the
database and he does not receive a book.

10.4 How to Create a Unit-of-Order
The following sections describe how to create a Message Unit-of-Order. Also see
Section 10.2.3, "Message Delivery with Unit-of-Order" and Section 10.6, "Message
Unit-of-Order Advanced Topics."

■ Section 10.4.1, "Creating a Unit-of-Order Programmatically"

■ Section 10.4.2, "Creating a Unit-of-Order Administratively"

■ Section 10.4.3, "Unit-of-Order Naming Rules"

How to Create a Unit-of-Order

10-6 Programming JMS for Oracle WebLogic Server

10.4.1 Creating a Unit-of-Order Programmatically
Use the setUnitOfOrder() method of the WLMessageProducer interface to
associate a producer with a Unit-of-Order name.

In the following example, the Unit-of-Order name attribute value is set to
myUOOname:

getProducer().setUnitOfOrder("myUOOname");

Once a producer is associated with a Unit-of-Order, all messages sent by this producer
are processed as a Unit-of-Order until either the producer is closed or the association
between the producer and the Unit-of-Order is dissolved.

The following code provides an example of how to associate a producer with a
Unit-of-Order:

Example 10–1 Using the WLMessageProducer Interface to Create a Unit-of-Order

.

.

.
queue = (Queue)(ctx.lookup(destName));
qsender = (WLMessageProducer) qs.createProducer(queue);
qsender.setUnitOfOrder();
uooname = qsender.getUnitOfOrder();
System.out.println("Using UnitOfOrder :" + uooname);
.
.
.

10.4.2 Creating a Unit-of-Order Administratively
The following section provides information on how to configure JMS connection
factories or JMS destinations to enable Message Unit-of-Order.

10.4.2.1 Configuring Unit-of-Order for a Connection Factory and Destinations
Use one of the following methods to configure JMS connection factories and
destinations to enable Message Unit-of-Order:

■ Configure a connection factory to always use a user-generated Unit-of-Order
name. As a result, all producers created from such a connection factory have
Unit-of-Order enabled. See "Configure connection factory unit-of-order
parameters" in the Oracle WebLogic Server Administration Console Help.

■ Configure a connection factory to always use a system-generated Unit-of-Order
name for each session. See "Configure connection factory unit-of-order
parameters" in the Oracle WebLogic Server Administration Console Help.

■ A client can call WLProducer.setUnitOfOrder(name) and change the initial
connection factory setting on the producer.

■ Configure a standalone or distributed destination to always use a
system-generated Unit-of-Order name. See the following topics in the
Administration Console Online Help:

– "Configure advanced topic parameters"

– "Configure advanced queue parameters"

– "Uniform distributed topics - configure advanced parameters"

Message Unit-of-Order Advanced Topics

Using Message Unit-of-Order 10-7

– "Uniform distributed queues - configure advanced parameters"

– "Configure advanced JMS template parameters"

You should administratively configure a Unit-of-Order on a connection factory or
destination when interoperating with legacy JMS applications. This method provides a
simple mechanism to ensure messages are processed in the order they are created
without making any code changes.

10.4.3 Unit-of-Order Naming Rules
A Unit-of-Order is identified by a name attribute. Within a destination, messages that
have the same value for the Unit-of-Order name attribute belong to the same
Unit-of-Order. The name can be provided by either the system or the application.
Messages in the same Unit-of-Order all share the same name. See Section 10.4, "How to
Create a Unit-of-Order."

The name attribute for a Unit-of-Order must adhere to the following rules:

■ A valid value for the Unit-of-Order name attribute is any non-null and non-empty
string.

■ System-generated Unit-of-Order names are timestamp-based and statistically
unique.

■ Applications can supply their own Unit-of-Order names. For example, WebLogic
Integration applications can use Workflow names and Web Services applications
can use conversation names.

■ Message Unit-of-Order has its own name space. A Unit-of-Order does not need to
be unique with respect to other named objects. For instance, it is valid to have a
Unit-of-Order named Foo and a queue named Foo.

■ The scope of a Message Unit-of-Order is limited to a single destination. Two
different Units of Order on two destinations can have the same name.

■ One or more producers can send messages with the same Unit-of-Order name by
using the same string to create the Unit-of-Order.

So a system-generated Unit-of-Order name can be used by more than one
producer. This paradigm works just as well for application-assigned Unit-of-Order
names. It will be most efficient if the information is serialized in only one place, so
a property like Conversation ID can be stored only as the Unit-of-Order name.
This paradigm does not work when the message has been sent through a
non-Unit-of-Order JMS provider (releases prior to WebLogic 9.0 or non-WebLogic
JMS providers).

10.5 Getting the Current Unit-of-Order
The Unit-of-Order name can be extracted from a delivered message. Example:

msg.getStringProperty("JMS_BEA_UnitOfOrder");

10.6 Message Unit-of-Order Advanced Topics
The following sections describe how Unit-of-Order processes messages in advanced or
more complex situations:

■ Section 10.6.1, "What Happens When a Message Is Delayed During Processing?"

Message Unit-of-Order Advanced Topics

10-8 Programming JMS for Oracle WebLogic Server

■ Section 10.6.2, "What Happens When a Filter Makes a Message Undeliverable"

■ Section 10.6.3, "What Happens When Destination Sort Keys are Used"

■ Section 10.6.4, "Using Unit-of-Order with Distributed Destinations"

■ Section 10.6.5, "Using Unit-of-Order with Topics"

■ Section 10.6.6, "Using Unit-of-Order with JMS Message Management"

■ Section 10.6.7, "Using Unit-of-Order with WebLogic Store-and-Forward"

■ Section 10.6.8, "Using Unit-of-Order with WebLogic Messaging Bridge"

10.6.1 What Happens When a Message Is Delayed During Processing?
There are many situations that can occur during message processing that would
normally change the order in which a message is processed. The following is a short
list of typical message processing states that make a message not ready for delivery:

■ A message is within an uncommitted transaction.

■ A message's TimeToDeliver value prevents it from being delivered until the
TimeToDeliver interval has elapsed.

■ A consumer calls a recover or rollback that prevents a message from being
re-delivered until the RedeliveryDelay interval has elapsed.

Suppose messages A and B arrive respectively in the same Unit-of-Order, and message
A cannot be delivered for any reason listed above. Even though nothing is delaying
the delivery of message B, it is not deliverable until message A in its Unit-of-Order has
been delivered.

10.6.2 What Happens When a Filter Makes a Message Undeliverable
Using a filter and a Unit-of-Order can provide unexpected behaviors. Suppose
messages A through Z are in the same Unit-of-Order in the same Queue. Consumer1
has a filter, and messages A, B, and C satisfy the filter, and they are delivered to
Consumer1.

1. Messages D through Z are undeliverable until messages A, B, and C are
acknowledged.

2. Messages A, B, and C are acknowledged or recovered.

3. Message D is available to the message delivery system.

4. Message D does not pass the filter and can never be presented to Consumer1.

5. Messages E through Z are undeliverable until message D is processed.

■ The transaction that contains message D must be rolled back.

■ Once message D is processed, messages E through Z can be delivered.

For more information, see Section 6.9, "Filtering Messages."

10.6.3 What Happens When Destination Sort Keys are Used
Destination sort keys control the order in which messages are presented to consumers
when messages are not part of a Unit-of-Order or are not part of the same
Unit-of-Order.

Message Unit-of-Order Advanced Topics

Using Message Unit-of-Order 10-9

For example, messages A and B arrive and in the same Unit-of-Order on a queue that
is sorted by priority and the sort order is depending, but message B has a higher
priority than A.

Even though message B has a higher priority than message A, message B is still not
deliverable until message A has been processed because they are in the same
Unit-of-Order. If a message C arrives and either does not have a Unit-of-Order or is
not in the same Unit-of-Order as message A, the priority setting of message C and the
priority setting of message A determine the delivery order. See "Configuring Basic JMS
System Resources" in Configuring and Managing JMS for Oracle WebLogic Server.

10.6.4 Using Unit-of-Order with Distributed Destinations
As previously discussed in the Section 10.2.1, "Message Processing According to the
JMS Specification," the Java Message Service Specification (at
http://www.oracle.com/technetwork/java/jms/index.html) does not
guarantee ordered message delivery when applications use distributed queues.
WebLogic JMS directs messages with the same Unit-of-Order and having a distributed
destination target to the same distributed destination member. The member is selected
by the destination's Unit-of-Order configuration:

■ Section 10.6.4.1, "Using the Path Service"

■ Section 10.6.4.2, "Using Hash-based Routing"

10.6.4.1 Using the Path Service
You can configure the "WebLogic Path Service" to provide a persistent map that can
store the information required to route the messages contained in a Unit-of-Order to its
destination resource—a member of a uniform distributed destination. If the WebLogic
Path Service is configured for a uniform distributed destination, the routing path to a
member destination is determined by the server using the run-time load balancing
heuristics for the distributed queue.

10.6.4.2 Using Hash-based Routing
If the "WebLogic Path Service" is not configured, the default routing path to a uniform
queue member is chosen by the server based on the hash codes of the Message
Unit-of-Order name and the uniform distributed queue members. An advantage of
this routing mechanism is that routes to a distributed queue member are calculated
quickly and do not require persistent storage in a cluster.

Consider the following when implementing Message Unit-of-Order in conjunction
with Hash-based routing:

■ If a distributed queue member has an associated Unit-of-Order and is removed
from the distributed queue, new messages are sent to a different distributed queue
member and the messages will not be continuous with older messages.

■ If a distributed Queue member has an associated Unit-of-Order and is
unreachable, the producer sending the message will throw a
JMSOrderException and the messages are not routed to other distributed
Queue members. The exception is thrown because the JMS messaging system can
not meet the quality-of-service required — only one distributed destination
member consumes messages for a particular Unit-of-Order.

10.6.4.3 Configuring Routing on Uniform Distributed Destinations
Refer to one of the following topics to configure either the Path service or Hash-based
routing mechanism on uniform distributed destinations using Message Unit-of-Order:

Message Unit-of-Order Advanced Topics

10-10 Programming JMS for Oracle WebLogic Server

■ "Uniform distributed topics - configure advanced parameters" in the Oracle
WebLogic Server Administration Console Help

■ "Uniform distributed queues - configure advanced parameters" in the Oracle
WebLogic Server Administration Console Help

10.6.5 Using Unit-of-Order with Topics
Assigning a Unit-of-Order does not prohibit parallel processing of a message by two
subscribers on the same topic. Since individual subscribers for a topic have their own
destination and message list, similar to a queue with one consumer, messages are
processed by all subscribers according to the Unit-of-Order assigned at the time of
production.

10.6.5.1 Unit-of-Order and Distributed Topics
The routing of messages between physical topics can affect Unit-of-Order if an
application directly sends to a member of a distributed topic. To ensure correct order
of processing, the application must ensure the messages are sent via the logical
distributed topic (that is, the destination is obtained using the JNDI name of the
distributed topic). WebLogic Server then ensures messages with the same
Unit-of-Order take the same path to the distributed topic member.

10.6.5.2 Unit-of-Order, Topics, and Message Driven Beans
The WebLogic Server message driven bean implementation goes beyond the
requirements of the EJB and JMS specifications to provide parallel processing of an
incoming message stream for a single topic subscription and JMS session. This parallel
processing does not take Unit-of-Order into account, so care is required to ensure that
the processing is still ordered correctly. There are two ways to achieve this – either
process each message in its own JTA transaction, or disable parallel processing by
setting the pool size to one.

When using Unit-of-Order with topics and message driven beans, you must either:

■ Section 10.6.5.2.1, "Use JTA Transactions"

or

■ Section 10.6.5.2.2, "Set Pools Size to One"

Start by configuring MDBs to Section 10.6.5.2.1, "Use JTA Transactions." In the unlikely
event that the transaction overhead is unacceptable, switch to Section 10.6.5.2.2, "Set
Pools Size to One."

10.6.5.2.1 Use JTA Transactions The simplest approach is to use JTA transactions. It has
a processing overhead, but is usually low as WebLogic Server has a highly optimized
transaction engine and the application benefits from parallel processing of messages
that have different Units-of-Order. The JTA transaction may be of benefit for some
application use cases. For example, where it is necessary to ensure atomic interaction
with other operations such as sending JMS messages, or updating a database.

10.6.5.2.2 Set Pools Size to One Setting the pool size to one allows more efficient,
non-transactional messaging to be used, but has a drastic effect on parallelism.

Limitations of Message Unit-of-Order

Using Message Unit-of-Order 10-11

10.6.6 Using Unit-of-Order with JMS Message Management
JMS message management allows a JMS administrator to move and delete most
messages in a running JMS Server. This allows an administrator to violate the delivery
rules specified in Section 10.2.3, "Message Delivery with Unit-of-Order."

If messages A, B, C, and D are produced and sent to destination D1 and belong to
Unit-of-Order foo, consider the following:

■ Moving messages C and D to destination D2 may allow parallel processing of
messages from both destinations.

■ Moving messages B and C to destination D2 may allow parallel processing of
message A and messages B and C. After message A is processed, message D is
deliverable.

For applications that depend on maintaining message order, a best practice is to move
all of the messages in a Unit-of-Order as a single group.

To ensure Unit-of-Order delivery rules are maintained, use the following steps:

1. Pause the source destination and the target destination.

2. Select all of the messages with the Unit-of-Order you would like to move.

3. Move the selected messages to the target destination. If necessary, sort them
according to the order that you want them processed.

4. Resume the source and target destinations.

For more information, see "Troubleshooting WebLogic JMS" in Configuring and
Managing JMS for Oracle WebLogic Server.

10.6.7 Using Unit-of-Order with WebLogic Store-and-Forward
WebLogic Store-and-Forward supports Message Unit-of-Order. For example, a
Store-and-Forward producer sends messages with a Unit-of-Order named Foo. If the
producer disconnects and reconnects through a different connection, the producer
creates another Unit-of-Order with the name Foo and continues sending messages. All
messages sent before and after the reconnect are directed through the same
Store-and-Forward agent. See Configuring and Managing Store-and-Forward for
Oracle WebLogic Server.

10.6.8 Using Unit-of-Order with WebLogic Messaging Bridge
If both the source and target destinations are WebLogic Server 9.0 or later Messaging
Bridge instances, you can enable PreserveMsgProperty on the Messaging Bridge to
preserve the Unit-of Order name and set the producer's Unit-of-Order accordingly. See
WebLogic Tuxedo Connector Administration Guide for Oracle WebLogic Server.

10.7 Limitations of Message Unit-of-Order
This section provides additional general information to consider when using Message
Unit-of-Order:

■ A browser enumeration contains the current queue messages in the order they are
to be received by the browser, where current is defined as those messages that are
deliverable. At most, the first message within a Unit-of-Order is deliverable.
Subsequent messages in the same Unit-of-Order are not deliverable.

Limitations of Message Unit-of-Order

10-12 Programming JMS for Oracle WebLogic Server

■ Some combinations of Unit-of-Order features can result in the starvation of
competing Unit-of-Order message streams, including the under utilization of
resources when the number of consumers exceed the number of in-flight messages
with different Unit-of-Order names. You will need to test your applications under
maximum loads to optimize your system's performance and eliminate conditions
that under utilize resources.

■ This release of WebLogic Server Message Unit-of-Order does not support clients
connecting to a non-Unit-of-Order JMS provider (releases prior to WebLogic 9.0 or
non-WebLogic JMS providers).

11

Using Unit-of-Work Message Groups 11-1

11Using Unit-of-Work Message Groups

This chapter describes how to use Unit-of-Work Message Groups to provide groups of
messages when using WebLogic JMS.

■ Section 11.1, "What Are Unit-of-Work Message Groups?"

■ Section 11.2, "Understanding Message Processing With Unit-of-Work"

■ Section 11.3, "How to Create a Unit-of-Work Message Group"

■ Section 11.4, "Message Unit-of-Work Advanced Topics"

■ Section 11.5, "Limitations of UOW Message Groups"

11.1 What Are Unit-of-Work Message Groups?
Many applications need an even more restricted notion of a group than provided by
the Message Unit-of-Order (UOO) feature. If this is the case for your applications,
WebLogic JMS provides the Unit-of-Work (UOW) Message Groups, which allows
applications to send JMS messages, identifying some of them as a group and allowing
a JMS consumer to process them as such. For example, an JMS producer can designate
a set of messages that need to be delivered to a single client without interruption, so
that the messages can be processed as a unit. Further, the client will not be blocked
waiting for the completion of one unit when there is another unit that is already
complete.

The following sections describe how to use Message UOW to provide strict message
grouping when using WebLogic JMS:

■ Section 11.2, "Understanding Message Processing With Unit-of-Work"

■ Section 11.3, "How to Create a Unit-of-Work Message Group"

■ Section 11.4, "Message Unit-of-Work Advanced Topics"

■ Section 11.5, "Limitations of UOW Message Groups"

11.2 Understanding Message Processing With Unit-of-Work
These sections provide basic conceptual information about UOW message groups.

Note: It is a programming error to use both the Unit-of-Order and
Unit-of-Work features on the same JMS message.

Understanding Message Processing With Unit-of-Work

11-2 Programming JMS for Oracle WebLogic Server

11.2.1 Basic UOW Terminology
Table 11–1 defines the terms used to define UOW.

11.2.2 Rules For Processing UOW Messages
The following rules apply to UOW messages.

■ Rule One: All Messages Required For Processing

No message within the UOW will be available until all of them are available on the
terminal destination.

■ Rule Two: Message Reordering

No matter what order the messages arrive to the terminal destination, they will be
put into the order specified by the UOW producer.

■ Rule Three: Gap Freedom

Table 11–1 Unit-of-Work Terminology

Term Definition

Unit-of-Work (UOW) A set of JMS messages that need to be processed as a single
unit.

UOW Component Message A message that is part of a UOW. In order for WebLogic JMS to
identify a message as part of a UOW, the message must have
the JMS properties described in Section 11.3.1, "How To Write a
Producer to Set UOW Message Properties."

UOW Producer A producer that needs to split its work into multiple parts (i.e.,
a creator of a UOW). Multiple producers can concurrently
contribute component messages to a UOW message, as
illustrated in Section 11.2.3, "Message Unit-of-Work Case
Study."

If fact, a UOW producer can close midway through a UOW
and a new producer can complete the UOW message, while
maintaining the same strict component message integrity (e.g.,
detect duplicates, etc.).

Intermediate Destination A destination whose consumers have the job of processing
component messages separately rather than as a unit. No
special UOW configuration is required for intermediate
destinations.

When a component message arrives on an intermediate
destination it will be made available without waiting for other
component messages to arrive. Further, if the intermediate
destination is a distributed destination, no special routing need
occur. See Section 11.3.2, "How to Write a UOW
Consumer/Producer For an Intermediate Destination."

Terminal Destination A destination whose consumers have the job of processing a
full UOW. A destination is identified as a terminal destination
by the Unit-of-Work Message Handling Policy parameter on
standalone destinations, distributed destinations, or JMS
templates. See Section 11.3.3, "Configuring Terminal
Destinations."

Available/Visible Messages Equivalent JMS terms that refer to a message becoming ready
for consumption, pending the reception of any messages that
precede it. For example, a JMS message is not available until
its birth time has been reached or a JMS message that is sent as
part of a transaction is not visible until that transaction is
committed.

Understanding Message Processing With Unit-of-Work

Using Unit-of-Work Message Groups 11-3

The group of messages will be delivered to the user without gaps. That is, all
messages in the group will be delivered to the user before messages from any
other group (or part of no group at all).

■ Rule Four: Single Consumer Consumption

The group of messages will be delivered to the same consumer.

11.2.3 Message Unit-of-Work Case Study
This section provides a simple case study for Message Unit-of-Work based on an
online order that requires a variety of merchandise from multiple companies.

11.2.3.1 Jill Orders Miscellaneous Items From an Online Retailer
The Megazon online retailer implements a processing design that uses JMS to process
customer orders for a variety of merchandise, some of which need to be routed to
Megazon's partner companies to complete the order. For example, Megazon can
directly fulfill book orders, but must re-route some parts of the order for certain
electronics or houseware items. Since Megazon is configured to use UOW, items in an
order can be routed as UOW messages to these intermediate company destinations
before being passed onto Megazon's terminal destination where all the UOW messages
that comprise the order are gathered before a final invoice can be processed.

The Megazon JMS processing system is composed of:

■ A UOW producer sending order fulfillment component messages with the
required UOW properties to the appropriate intermediate and/or terminal
destinations.

■ Intermediate destinations for non-book items, where UOW component messages
are processed by consumer and/or producer clients before being passed onto the
final UOW destination.

■ A UOW terminal destination where the component messages are gathered for
final processing.

Jill logs into her Megazon account and does some holiday shopping. She chooses a
book, flash drive, MP3 player, and a lava lamp and then proceeds to the checkout, and
completes the sales transaction.

11.2.3.2 How Message Unit-of-Work Completes the Order
To ensure that all messages in Jill's order are processed as a single unit, the
order-taking JMS producer client sets UOW properties on her order messages to
indicate that they are part of a single unit. These UOW message properties must also
be copied by any consumer and/or producer clients listening on the intermediate
Gadget Planet, Widget World, and Desperate Housewares destinations before they
pass the UOW messages onto the terminal destination. Last, the system administrator
for Megazon configures the terminal destination to UOW Message Handling Policy
parameter to Single Message Delivery. See Section 11.3, "How to Create a Unit-of-Work
Message Group."

The following diagram and corresponding actions demonstrate how Jill's order was
processed using Message Unit-of-Work.

How to Create a Unit-of-Work Message Group

11-4 Programming JMS for Oracle WebLogic Server

Figure 11–1 Workflow for Jill's Order Using Unit-of-Work

1. Jill clicks the order button from her shopping cart.

2. The order is split into three messages that use the same unique UOW name:

■ SEQ#1, which is routed to the intermediate Gadget Planet queue, where a
consumer processes the Flash Drive order before passing SEQ#1 onto a
producer who then routes it to the intermediate Widget World queue, where a
consumer processes the MP3 player order before passing SEQ#1 to the
terminal Megazon queue for final invoice processing.

■ SEQ#2, which is routed to the intermediate Desperate Housewares queue,
where a consumer processes the lava lamp order before passing SEQ#1 onto a
producer who routes it to the Megazon terminal processing queue for final
invoice processing.

■ SEQ#3, which is routed directly to Megazon's terminal queue for book order
fulfillment and for final invoice processing.

3. The terminal Megazon queue gathers the three UOW messages before forming
them into an ObjectMessage list for delivery to Megazon's invoice consumer
client.

4. Jill receives an invoice that shows her entire order has been processed.

11.3 How to Create a Unit-of-Work Message Group
The following sections describe how to create a Message Unit-of-Work.

■ Section 11.3.1, "How To Write a Producer to Set UOW Message Properties"

■ Section 11.3.2, "How to Write a UOW Consumer/Producer For an Intermediate
Destination"

■ Section 11.3.3, "Configuring Terminal Destinations"

■ Section 11.3.4, "How to Write a UOW Consumer For a Terminal Destination"

11.3.1 How To Write a Producer to Set UOW Message Properties
UOW enables a producer to split its work into multiple parts to accomplish its goal.
UOW is, in effect, taking these multiple messages and joining them into one. Whether
component messages are delivered as parts of a single message or as many messages,

How to Create a Unit-of-Work Message Group

Using Unit-of-Work Message Groups 11-5

it is easiest to envision them as a single virtual message, as well as individual
messages.

In order for WebLogic JMS to identify a message as part of a UOW, the message must
have the JMS properties in Table 11–1 set by the producer client.

If the UnitOfWork property is not set, then SequenceNumber and End will be
ignored.

11.3.1.1 Example UOW Producer Code
The following sample client code sample sets the UOW properties defined in
Table 11–1.

Example 11–1 Sample UOW Producer Message Properties

 for (int i=1; i<=100; i++)
 {
 sendMsg.setStringProperty("JMS_BEA_UnitOfWork","joule");
 sendMsg.setIntProperty("JMS_BEA_UnitOfWorkSequenceNumber",i);
 if (i == 100)
 {
 System.out.println("set the end of message flag for message # " + i);
 sendMsg.setBooleanProperty("JMS_BEA_IsUnitOfWorkEnd",true);
 }
 qSender.send(sendMsg, DeliveryMode.PERSISTENT,7,0);
 }

Table 11–2 Unit-of-Work Properties

Type Description

JMS_BEA_UnitOfWork A string property that is set by the standard JMS mechanism for
setting properties. For example:

message.setStringProperty("JMS_BEA_UnitOfWork",
"MyUnitOfWorkName")

To avoid naming conflicts, the UOW ID should never be reused.
For example, if messages are lost or retransmitted, then they
may be perceived as part of a separate UOW. For this reason,
Oracle recommends using a Java universally unique identifier
(UUID). See
http://download.oracle.com/javase/1.5.0/docs/ap
i/java/util/UUID.html.

JMS_BEA_
UnitOfWorkSequenceNumber

An integer property that is set by the standard JMS mechanism
for setting properties. For example,

message.setIntProperty("JMS_BEA_
UnitOfWorkSequenceNumber", 5)

The legal values are integers greater than or equal to 1

JMS_BEA_IsUnitOfWorkEnd A boolean property that is set by the standard JMS mechanism
for setting properties. For example:

message.setBooleanProperty("JMS_BEA_IsUnitOfWorkEnd",
true)

When this property is true, the message is the last in the
unit-of-work. When this property is false or nonexistent, the
message is not last in the unit-of-work.

How to Create a Unit-of-Work Message Group

11-6 Programming JMS for Oracle WebLogic Server

11.3.1.2 UOW Exceptions
The following exceptions may be thrown to the producer when sending JMS messages
to a terminal destination. When a UOW exception is town, the UOW message is not
delivered.

Except for the last one, they are all in the weblogic.jms.extensions package and
are subclasses of JMSException.

■ BadSequenceNumberException – This will occur if (a) UnitOfWork is set on
the message, but SequenceNumber is not or (b) the SequenceNumber is less
than or equal to zero.

■ OutOfSequenceRangeException – This will be thrown if (a) a message is sent
with a SequenceNumber that is higher than the sequence number of the message
which has already been marked as the end of the unit or (b) a message is sent with
a sequence number which is lower than a message which has already arrived in
the same unit, yet the new message is marked as the end message.

■ DuplicateSequenceNumberException – This will be thrown to the producer
if it sends a message with a sequence number which is the same as a previously
sent message in the same UOW.

■ JMSException – A JMS exception will be thrown if a message has both the
UnitOfOrder property set and the UnitOfWork property set.

11.3.2 How to Write a UOW Consumer/Producer For an Intermediate Destination
An intermediate destination is one whose consumers have the job of processing
component messages separately rather than as a unit. A JMS ForwardHelper
extension API is available to assist developers who are writing producers and/or
consumers at intermediate destinations. This is because there are many message
properties that need to be copied from the incoming message to the outgoing message.
For example, the message properties that control the behavior of UOW need to be
copied.

The following intermediate consumer code sample copies the UOW properties defined
in Table 11–1.

Example 11–2 Sample Client Code for UOW Intermediate Destination

 msg = qReceiver1.receive();
 try
 {
 text = msg.getText();
 TextMessage forwardmsg = qsess.createTextMessage();
 forwardmsg.setText(text);
 forwardmsg.setStringProperty("JMS_BEA_UnitOfWork",
 msg.getStringProperty("JMS_BEA_UnitOfWork"));
 forwardmsg.setIntProperty("JMS_BEA_UnitOfWorkSequenceNumber",

Note: As a programming best-practice, consider having your UOW
producers send all component messages that comprise a new UOW
under a single transaction. This way, either all of the work is
completed or none of it is. For example, if a UOW producer gets an
exception or crashes partway through a UOW and wants to then
cancel the current UOW, then the entire transaction will be rolled back
and the application will not need to make a decision for each message
after a failure.

How to Create a Unit-of-Work Message Group

Using Unit-of-Work Message Groups 11-7

 msg.getIntProperty("JMS_BEA_UnitOfWorkSequenceNumber"));
 if (tm.getBooleanProperty("JMS_BEA_IsUnitOfWorkEnd"))
 forwardmsg.setBooleanProperty("JMS_BEA_IsUnitOfWorkEnd",
 msg.getBooleanProperty("JMS_BEA_IsUnitOfWorkEnd"));
 qsend.send(forwardmsg);
 }

Note that the three UOW properties are copied from the incoming message to the
outgoing message.

11.3.3 Configuring Terminal Destinations
A destination is identified as a terminal destination by the Unit-of-Work Message
Handling Policy parameter on standalone destinations, distributed destinations, or
JMS templates. There is also a parameter that allows for expiration of incomplete work
on terminal destinations.

Using the Administration Console, these Advanced configuration options are available
on the General Configuration page for all destination types (or by using the
DestinationBean API), as well as on JMS templates (or by using the
TemplateBean API).

For instructions on configuring unit-of-work parameters on a standalone destinations,
distributed destinations, or JMS templates using the Administration Console, see the
following sections in the Oracle WebLogic Server Administration Console Help:

■ "Configure advanced topic parameters"

■ "Configure advanced queue parameters"

■ "Uniform distributed topics - configure advanced parameters"

■ "Uniform distributed queues - configure advanced parameters"

Table 11–3 Unit-of-Work Configuration Options

Console Label/MBean Name Description

Unit-of-Work (UOW) Message
Handling Policy

UnitOfWorkHandlingPolicy

Specifies whether the Unit-of-Work (UOW) feature is
enabled for a destination.

■ Pass-Through – By default, destinations do not treat
messages as part of a UOW.

■ Single Message Delivery – Select this option if
UOW consumers are receiving component messages on
this terminal destination. When selected, component
UOW messages are formed into a list and are
consumed as an ObjectMessage containing the
java.util.list.

Expiration Time for Incomplete
UOW Messages

IncompleteWorkExpirationTime

The maximum length of time, in milliseconds, before
undeliverable messages in an incomplete UOW are expired.
Such messages will then follow the expiration policy
defined for undeliverable messages. Message expiration
begins once the first UOW message arrives.

This field is effective only if Unit-of-Work Handling Policy
is set to Single Message Delivery. The default value
of -1 means that UOW messages will never expire.

Note: If an expiration time is not configured on terminal
destination, it is possible for a UOW message to wait
indefinitely on the destination when a component message
was either: (A) never sent/committed, (B) expired, or (C)
manually deleted).

Message Unit-of-Work Advanced Topics

11-8 Programming JMS for Oracle WebLogic Server

■ "Configure advanced JMS template parameters"

For more information about these parameters, see DestinationBean and
TemplateBean in the Oracle WebLogic Server MBean Reference.

11.3.3.1 UOW Message Routing for Terminal Distributed Destinations
The Unit-of-Order Routing field is used to determine the routing of UOW messages
for uniform distributed destinations, using either the Path Service or Hash-based
Routing. And similar to UOO, when a UOW terminal destination is also a distributed
destination, all messages within a UOW must go to the same distributed destination
member. For more information on the UOO routing mechanisms, see Section 10.6.4,
"Using Unit-of-Order with Distributed Destinations."

However, basic UOO routing and UOW routing are not exactly the same. Strictly, all
messages within a single UOO do not have to go to the same member: when there are
no more unconsumed messages for a certain UOO, newly arrived messages can go to
any member. In UOW, message routing must be guaranteed until the whole UOW has
arrived at the physical destination and consumption is irrelevant.

11.3.4 How to Write a UOW Consumer For a Terminal Destination
The following sample UOW consumer code shows how a consumer listening on a
terminal destination verifies that all component messages sent are contained within
the final UOW message.

Example 11–3 Sample Client Code For UOW Terminal Destination

 {
 msg = qReceiver1.receive();
 if (msg != null)
 {
 count++;
 System.out.println"Message received: " + msg);
 //Check that this one message contains all the messages sent.
 ArrayList msgList = (ArrayList)(((ObjectMessage)msg).getObject());
 numMsgs = msgList.size();
 System.out.println("no. of messages in the msg = " + numMsgs);
 }
 } while (msg != null);

11.4 Message Unit-of-Work Advanced Topics
The following sections describe how Unit-of-Work processes messages in advanced or
more complex situations.

11.4.1 Message Property Handling
UOW is, in effect, taking multiple messages and joining them into one. This is true
whether the messages are delivered as one message or not. For example, each message
will have an independent expiration time, but if one expires, none of them will ever be
delivered. Therefore, as a best practice your message producers should make sure that
messages that make up a UOW are as uniform as possible.

Whether component messages are delivered as parts of a single message or as many
messages, it is easiest to envision them as a single virtual message, as well as
individual messages. For example, since the messages need to be seen consecutively,
UOW's effect on message sorting can be viewed as determining the correct placement

Message Unit-of-Work Advanced Topics

Using Unit-of-Work Message Groups 11-9

of the virtual message. The same is true of message selection (a consumer must see the
whole group or not see the group at all); WebLogic JMS must determine whether
"consumer A must see the virtual message" before deciding to deliver all of the
messages to consumer A.

11.4.1.1 System-Generated Properties
Some fields of the virtual message will need to be populated independent of the
component messages. For example, the virtual message cannot get its value for
delivery count from a component message. This is the complete list of property values
that are system-generated:

■ Timestamp

■ Delivery count (redelivered)

■ Destination

11.4.1.2 Final Component Message Properties
Otherwise, the message properties will be derived from the component messages.
However, different properties get values derived in different ways, as suits their
nature. One way to derive virtual message properties is to get their values directly
from one of the component messages (this simplifies the handling of component
messages with different property values). For simplicity, the last message in the UOW
is the message from which the values are derived. For example, the message priority
for the virtual message will be the priority of the message marked as last (by having
the property JMS_BEA_IsUnitOfWorkEnd set to true).

This is the complete list of virtual message properties that are derived from the values
contained in the last message in the UOW:

■ Message ID

■ Correlation ID

■ Priority

■ User Properties

■ User ID

11.4.1.3 Component Message Heterogeneity
Another method for handling component message heterogeneity is to coerce all
component messages into the same value. For example, as mentioned earlier, a
mixture of expiration times doesn't make sense. This is the complete list of message
properties that are handled in this way:

■ Delivery Mode

■ Expiration

11.4.1.4 ReplyTo Message Property
The ReplyTo property value is not reflected in the virtual message because it isn't
used in message selection or sorting and is only useful to the application, and is
therefore ignored.

11.4.2 UOW and Uniform Distributed Destinations
As discussed in Section 11.3.3.1, "UOW Message Routing for Terminal Distributed
Destinations," the Unit-of-Order Routing field is used to determine the routing

Limitations of UOW Message Groups

11-10 Programming JMS for Oracle WebLogic Server

mechanism for UOW messages. One other requirement for UOW in distributed
destinations is that all member destinations must have the same value for the UOW
Handling Policy. A configuration that is configured otherwise is invalid.

As a best practice, the use of topics (especially distributed topics) is discouraged for
use as intermediate UOW destinations, as this configuration may possibly lead to
duplicate component messages.

11.4.3 UOW and Store-and-Forward Destinations
The WebLogic Store-and-Forward service supports UOW, with the exception that a
store-and-forward (SAF) imported destination cannot be a terminal destination.
However, SAF obeys the routing rules of UOW messages, just as it does for UOO
messages. See Section 10.6.7, "Using Unit-of-Order with WebLogic
Store-and-Forward."

11.5 Limitations of UOW Message Groups
This section provides additional general information to consider when using UOW.

■ JMS clients created using WebLogic Server prior to 9.0 cannot create messages that
will be processed as part of a UOW.

■ The JMS C JNI client is not able to process UOW messages at a terminal
destination, since they are object messages. It can, however, be used as a UOW
producer or on an intermediate destination.

■ UOW is poorly suited for sets of large file transfers. Ideally, your messaging
environment is configured for lower max message sizes and to facilitate the
streaming transfer of large chunks of data (such as large files) from a single
producer to a single consumer. UOW doesn't handle this use-case because the
individual messages are accumulated back into one giant message on the server
before they are pushed to the consumer, rather than streamed.

12

Using Transactions with WebLogic JMS 12-1

12Using Transactions with WebLogic JMS

This chapter describes how to use transactions with WebLogic JMS.

■ Section 12.1, "Overview of Transactions"

■ Section 12.2, "Using JMS Transacted Sessions"

■ Section 12.3, "Using JTA User Transactions"

■ Section 12.4, "JTA User Transactions Using Message Driven Beans"

■ Section 12.5, "Example: JMS and EJB in a JTA User Transaction"

■ Section 12.6, "Using Cross Domain Security"

12.1 Overview of Transactions
A transaction enables an application to coordinate a group of messages for production
and consumption, treating messages sent or received as an atomic unit.

When an application commits a transaction, all of the messages it received within the
transaction are removed from the messaging system and the messages it sent within
the transaction are actually delivered. If the application rolls back the transaction, the
messages it received within the transaction are returned to the messaging system and
messages it sent are discarded.

When a topic subscriber rolls back a received message, the message is redelivered to
that subscriber. When a queue receiver rolls back a received message, the message is
redelivered to the queue, not the consumer, so that another consumer on that queue
may receive the message.

For example, when shopping online, you select items and store them in an online
shopping cart. Each ordered item is stored as part of the transaction, but your credit
card is not charged until you confirm the order by checking out. At any time, you can
cancel your order and empty your cart, rolling back all orders within the current
transaction.

There are three ways to use transactions with JMS:

■ If you are using only JMS in your transactions, you can create a JMS transacted
session.

Note: For more information about the JMS classes described in this
section, access the latest JMS Specification and Javadoc supplied on
the Java Web site at the following location:
http://www.oracle.com/technetwork/java/jms/index.htm
l.

Using JMS Transacted Sessions

12-2 Programming JMS for Oracle WebLogic Server

■ If you are mixing other operations, such as EJB, with JMS operations, you should
use a Java Transaction API (JTA) user transaction in a non-transacted JMS session.

■ Use message driven beans.

The following sections explain how to use a JMS transacted session and JTA user
transaction.

12.2 Using JMS Transacted Sessions
A JMS transacted session supports transactions that are located within the session. A
JMS transacted session's transaction will not have any effects outside of the session.
For example, rolling back a session will roll back all sends and receives on that session,
but will not roll back any database updates. JTA user transactions are ignored by JMS
transacted sessions.

Transactions in JMS transacted sessions are started implicitly, after the first occurrence
of a send or receive operation, and chained together—whenever you commit or roll
back a transaction, another transaction automatically begins.

Before using a JMS transacted session, the system administrator should adjust the
connection factory (Transaction Timeout) and/or session pool (Transaction) attributes,
as necessary for the application development environment.

The following figure illustrates the steps required to set up and use a JMS transacted
session.

Figure 12–1 Setting Up and Using a JMS Transacted Session

12.2.1 Step 1: Set Up JMS Application, Creating Transacted Session
Set up the JMS application as described in Section 5.2, "Setting Up a JMS Application,"
however, when creating sessions, as described in Section 5.2.3, "Step 3: Create a Session
Using the Connection," specify that the session is to be transacted by setting the
transacted boolean value to true.

For example, the following methods illustrate how to create a transacted session for
the PTP and Pub/sub messaging models, respectively:

Note: When using transactions, it is recommended that you define a
session exception listener to handle any problems that occur before a
transaction is committed or rolled back, as described in Section 6.3.1,
"Defining a Connection Exception Listener."

If the acknowledge() method is called within a transaction, it is
ignored. If the recover() method is called within a transaction, a
JMSException is thrown.

Using JTA User Transactions

Using Transactions with WebLogic JMS 12-3

 qsession = qcon.createQueueSession(
 true,
 Session.AUTO_ACKNOWLEDGE
);

 tsession = tcon.createTopicSession(
 true,
 Session.AUTO_ACKNOWLEDGE
);

Once defined, you can determine whether or not a session is transacted using the
following session method:

 public boolean getTransacted(
) throws JMSException

12.2.2 Step 2: Perform Desired Operations
Perform the desired operations associated with the current transaction.

12.2.3 Step 3: Commit or Roll Back the JMS Transacted Session
Once you have performed the desired operations, execute one of the following
methods to commit or roll back the transaction.

To commit the transaction, execute the following method:

 public void commit(
) throws JMSException

The commit() method commits all messages sent or received during the current
transaction. Sent messages are made visible, while received messages are removed
from the messaging system.

To roll back the transaction, execute the following method:

 public void rollback(
) throws JMSException

The rollback() method cancels any messages sent during the current transaction
and returns any messages received to the messaging system.

If either the commit() or rollback() methods are issued outside of a JMS
transacted session, a IllegalStateException is thrown.

12.3 Using JTA User Transactions
The Java Transaction API (JTA) supports transactions across multiple data resources.
JTA is implemented as part of WebLogic Server and provides a standard Java interface
for implementing transaction management.

You program your JTA user transaction applications using the
javax.transaction.UserTransaction object, described at
http://www.javasoft.com/products/jta/javadocs-1.0.1/javax/transa
ction/UserTransaction.html, to begin, commit, and roll back the transactions.
When mixing JMS and EJB within a JTA user transaction, you can also start the

Note: The acknowledge value is ignored for transacted sessions.

Using JTA User Transactions

12-4 Programming JMS for Oracle WebLogic Server

transaction from the EJB, as described in "Transactions in EJB Applications" in
Programming JTA for Oracle WebLogic Server.

You can start a JTA user transaction after a transacted session has been started;
however, the JTA transaction will be ignored by the session and vice versa.

WebLogic Server supports the two-phase commit protocol (2PC), enabling an
application to coordinate a single JTA transaction across two or more resource
managers. It guarantees data integrity by ensuring that transactional updates are
committed in all of the participating resource managers, or are fully rolled back out of
all the resource managers, reverting to the state prior to the start of the transaction.

Before using a JTA transacted session, the system administrator must configure the
connection factories to support JTA user transactions by selecting the XA Connection
Factory Enabled check box.

The following figure illustrates the steps required to set up and use a JTA user
transaction.

Figure 12–2 Setting Up and Using a JTA User Transaction

12.3.1 Step 1: Set Up JMS Application, Creating Non-Transacted Session
Set up the JMS application as described in Section 5.2, "Setting Up a JMS Application,"
however, when creating sessions, as described in Section 5.2.3, "Step 3: Create a Session
Using the Connection," specify that the session is to be non-transacted by setting the
transacted boolean value to false.

For example, the following methods illustrate how to create a non-transacted session
for the PTP and Pub/sub messaging models, respectively.

 qsession = qcon.createQueueSession(
 false,
 Session.AUTO_ACKNOWLEDGE
);

 tsession = tcon.createTopicSession(
 false,
 Session.AUTO_ACKNOWLEDGE
);

JTA User Transactions Using Message Driven Beans

Using Transactions with WebLogic JMS 12-5

12.3.2 Step 2: Look Up User Transaction in JNDI
The application uses JNDI to return an object reference to the UserTransaction
object for the WebLogic Server domain.

You can look up the UserTransaction object by establishing a JNDI context
(context) and executing the following code, for example:

UserTransaction xact = ctx.lookup("javax.transaction.UserTransaction");

12.3.3 Step 3: Start the JTA User Transaction
Start the JTA user transaction using the UserTransaction.begin() method. For
example:

xact.begin();

12.3.4 Step 4: Perform Desired Operations
Perform the desired operations associated with the current transaction.

12.3.5 Step 5: Commit or Roll Back the JTA User Transaction
Once you have performed the desired operations, execute one of the following
commit() or rollback() methods on the UserTransaction object to commit or
roll back the JTA user transaction.

To commit the transaction, execute the following commit() method:

 xact.commit();

The commit() method causes WebLogic Server to call the Transaction Manager to
complete the transaction, and commit all operations performed during the current
transaction. The Transaction Manager is responsible for coordinating with the resource
managers to update any databases.

To roll back the transaction, execute the following rollback() method:

 xact.rollback();

The rollback() method causes WebLogic Server to call the Transaction Manager to
cancel the transaction, and roll back all operations performed during the current
transactions.

Once you call the commit() or rollback() method, you can optionally start
another transaction by calling xact.begin().

12.4 JTA User Transactions Using Message Driven Beans
Because JMS cannot determine which, if any, transaction to use for an asynchronously
delivered message, JMS asynchronous message delivery is not supported within JTA
user transactions.

However, message driven beans provide an alternative approach. A message driven
bean can automatically begin a user transaction just prior to message delivery.

Note: When a user transaction is active, the acknowledge mode is
ignored.

Example: JMS and EJB in a JTA User Transaction

12-6 Programming JMS for Oracle WebLogic Server

For information on using message driven beans to simulate asynchronous message
delivery, see "Designing Message-Driven EJBs" in Programming WebLogic Enterprise
JavaBeans for Oracle WebLogic Server.

12.5 Example: JMS and EJB in a JTA User Transaction
The following example shows the steps to set up an application for mixed EJB and JMS
operations in a JTA user transaction by looking up a
javax.transaction.UserTransaction using JNDI, and beginning and then
committing a JTA user transaction. In order for this example to run, the XA
Connection Factory Enabled check box must be selected when the system
administrator configures the connection factory.

Import the appropriate packages, including the
javax.transaction.UserTransaction package, at
http://www.javasoft.com/products/jta/javadocs-1.0.1/javax/transa
ction/UserTransaction.html.

import java.io.*;
import java.util.*;
import javax.transaction.UserTransaction;
import javax.naming.*;
import javax.jms.*;

Define the required variables, including the JTA user transaction variable.

public final static String JTA_USER_XACT=
 "javax.transaction.UserTransaction";
 .
 .
 .

12.5.1 Step 1
Set up the JMS application, creating a non-transacted session. For more information on
setting up the JMS application, refer to Section 5.2, "Setting Up a JMS Application."

//JMS application setup steps including, for example:
 qsession = qcon.createQueueSession(false,
 Session.CLIENT_ACKNOWLEDGE);

12.5.2 Step 2
Look up the UserTransaction using JNDI.

UserTransaction xact = (UserTransaction)
 ctx.lookup(JTA_USER_XACT);

Note: In addition to this simple JTA User Transaction example, refer
to the example provided with WebLogic JTA, located in the WL_
HOME\samples\server\examples\src\examples\jta\jmsjdb
c directory, where WL_HOME is the top-level directory of your
WebLogic Platform installation.

Using Cross Domain Security

Using Transactions with WebLogic JMS 12-7

12.5.3 Step 3
Start the JTA user transaction.

xact.begin();

12.5.4 Step 4
Perform the desired operations.

// Perform some JMS and EJB operations here.

12.5.5 Step 5
Commit the JTA user transaction.

xact.commit()

12.6 Using Cross Domain Security
You must correctly configure either Cross Domain Security or Security Interop Mode
for all participating domains.

Keep all the domains used by your process symmetric with respect to Cross Domain
Security configuration and Security Interop Mode. Because both settings are set at the
domain level, it is possible for a domain to be in a mixed mode, meaning the domain
has both Cross Domain Security and Security Interop Mode set. For more information,
see "Configuring Domains for Inter-Domain Transactions" in Programming JTA for
Oracle WebLogic Server.

Using Cross Domain Security

12-8 Programming JMS for Oracle WebLogic Server

13

Developing Advanced Pub/Sub Applications 13-1

13Developing Advanced Pub/Sub Applications

This chapter describes advanced WebLogic JMS publish and subscribe (pub/sub)
concepts and functionality of Uniform Distributed Topics (UDTs) necessary to design
high availability (HA) applications.

■ Section 13.1, "Overview of Advanced High Availability Concepts"

■ Section 13.2, "Advanced Messaging Features for High Availability"

■ Section 13.3, "Design Strategies when using Topics"

■ Section 13.4, "Best Practices for Distributed Topics"

13.1 Overview of Advanced High Availability Concepts
The following sections provide information on WebLogic Server high availability
features and concepts:

■ Section 13.1.1, "WebLogic Messaging High Availability Features."

■ Section 13.1.2, "Application Design Limitations When using Replicated Distributed
Topics"

■ Section 13.1.3, "Advanced Topic Features"

13.1.1 WebLogic Messaging High Availability Features
Oracle’s WebLogic messaging offer high availability (HA) and scalability using the
following features:

■ Chapter 9, "Using Distributed Destinations"

■ Migration of JMS-related Services in Configuring and Managing JMS for Oracle
WebLogic Server

■ "Whole Server Migration" in Using Clusters for Oracle WebLogic Server

Distributed Destinations make a group of JMS physical destinations accessible as a
single, logical destination to a client. Applications that use distributed destinations
usually have higher availability and better scalability because WebLogic JMS provides
load balancing and failover among member destinations of a distributed destination
within a cluster. Automatic Service Migration (ASM) and Whole Server Migration
(WSM) enable restarting either a set of services (including JMS servers and

Note: Oracle recommends designing applications that utilize
WebLogic Server MDBs or the Oracle SOA JMS Adapter rather than
explicitly handling all potential topology changes.

Overview of Advanced High Availability Concepts

13-2 Programming JMS for Oracle WebLogic Server

destinations) or an entire WebLogic Server instance in a new location. These migration
features provide high availability for the individual members of a distributed
destination.

The nature of these technologies means that the topology of a JMS system can be
unknown to a client application as:

■ The scaling of a cluster, along with the scaling of a distributed destination may
exceed the number of consumers defined by the application.

■ The topology may dynamically change in the event of a server or service failure.

Typically, topology changes are handled transparently using MDBs either locally or on
a remote WebLogic Server instance. However, when using other client types, these
topology changes must be explicitly handled by the application, especially if the
application is remote to the servers hosting the JMS destinations.

13.1.2 Application Design Limitations When using Replicated Distributed Topics
Applications implementing Uniform Distributed Topics prior to WebLogic Server
10.3.4.0 were constrained by the following limitations:

■ Messages are always forwarded and duplicated across a distributed topic, which
means that either parallel processing, and/or ensuring that a clustered application
gets exactly one copy of each message, may requires significant additional
configuration, coding, and message hops.

■ Only one consumer at a time can process the messages in a given subscription
except for the limited case of Non-XA MDBs where all processing of the
subscription has to occur on the same server with a thread pool. This prevents
most customers from designing application architectures that intend to have
"round-robin" distributed or parallel processing of a single subscription's topic
messages, instead of single-threaded processing.

■ MDBs only directly support durable subscriptions on distributed topics that are
located in the same cluster.

■ For applications other than MDBs, a durable subscriber created for a distributed
topic can only be created on a distributed topic (DT) member, and the durable
subscription will only exist on that member. If the member hosting the
subscription is down, the subscription will not be available to any subscriber (and
is therefore not "highly available" by definition).

■ Pinning subscribers to a distributed topic member prevents automatic adjustment
to changes in topology in the same way that adjustments are made for distributed
queues.

13.1.3 Advanced Topic Features
Starting in WebLogic Server 10.3.4.0, partitioned distributed topics, combined with the
ability to share subscriptions and allow multiple connections to use the same Client
ID, provide the following application design patterns that provide parallel processing
and HA capabilities similar to distributed queues:

■ One-copy-per-instance: Each instance of an application gets one copy of each
message that is published to the Topic.

■ One-copy-per-application: Each application as a whole (that is all instances of the
application together) receives one copy of each message that is published to the
Topic. That is each instance only receives a subset of the messages that are sent to
the Topic.

Advanced Messaging Features for High Availability

Developing Advanced Pub/Sub Applications 13-3

13.2 Advanced Messaging Features for High Availability
In order to understand how an application can achieve One-copy-per-instance and
One-copy-per-application design patterns, you need to understand the following new
and changed features:

■ Section 13.2.1, "Shared Subscriptions and Client ID Policy"

■ Section 13.2.2, "How Sharing a Non-Durable Subscription Works"

■ Section 13.2.3, "How Sharing a Durable Subscription Works"

■ Section D, "Advanced Programming with Distributed Destinations Using the JMS
Destination Availability Helper API"

13.2.1 Shared Subscriptions and Client ID Policy
Prior to WebLogic Server 10.3.4.0, one subscription, durable or non-durable, could
only be accessed by a single subscriber instance at any given time. Each subscriber
receives all messages that are sent to a topic after the subscription is established and
the messages for each subscription are processed sequentially by one consumer.

In this WebLogic Server release, multiple subscribers can share one subscription
(durable or non-durable). Messages are distributed among multiple consumers that
share the same subscription and can be processed in parallel. Subscription sharing
only occurs on the same destination instance or the same member instance of a DT. See
Configure Shared Subscriptions in Configuring and Managing JMS for Oracle WebLogic
Server.

In order to share a subscription, durable or non-durable subscriptions need to have the
Client Id set on their connection factory or connection. Prior to WebLogic Server
10.3.4.0, a Client ID was exclusively used by one connection at any given time. In this
release of WebLogic Server, this restriction is relaxed and a new Client ID Policy is
used to restricted or not restricted use of a Client ID. The default policy, Restricted,
allows only one Client ID to be used by one connection. The Unrestricted policy
allows multiple connections to use the same client ID. For more information, see
Section 13.2.3, "How Sharing a Durable Subscription Works."

13.2.1.1 What is the Subscription Key
A subscription key is used to uniquely identify a subscription. For non-durable
subscriptions, the key is composed of the Client ID and Client ID Policy. For durable
subscriptions, the key is composed of the Client ID, Client ID Policy, and Subscription
Name.

13.2.1.2 Configuring a Shared Subscription
To configure a shared subscription, you need to configure the Subscription Sharing
Policy attribute on the connection factory. Setting the Subscription Sharing Policy to
Sharable allows subscribers created using a connection factory to share their
subscriptions with other subscribers, regardless of whether those subscribers are

Note: Oracle recommends designing applications that utilize
WebLogic Server MDBs. See Configuring and Deploying MDBs Using
JMS Topics in Programming Message-Driven Beans for Oracle WebLogic
Server for detailed information on how to design and implement
applications that use message-driven beans to provide improved HA
and scalability.

Advanced Messaging Features for High Availability

13-4 Programming JMS for Oracle WebLogic Server

created using the same connection factory or a different connection factory. Consumers
can share a non-durable subscriptions only if they have the same Client ID and Client
ID Policy. Consumers can share a durable subscription only if they have the same
Client ID, Client ID Policy, and Subscription Name. See:

■ Configure a connection factory subscription sharing policy in Oracle WebLogic
Server Administration Console Help

■ ClientIdPolicy in Oracle WebLogic Server MBean Reference

13.2.2 How Sharing a Non-Durable Subscription Works
In order to share a subscription among multiple non-durable subscribers, the
subscribers have to have a Client ID, which serves to identify the subscription. All
subscribers that intend to share a subscription must have the same subscription key
(ClientID and ClientIDPolicy) on their connection. If Subscription Sharing
Policy is set to SHARABLE, but the ClientID is not set on the Connection, the
subscription is not a shared subscription.

The first subscriber that is created with a subscription key creates the subscription. All
subsequently created subscribers with the same subscription key share the
subscription created by the first subscriber if all subscription details (such as: the
selector, noLocal option, and the physical destination) match. For example:

■ If a subscription is created with a selector and noLocal option, a subscriber
creation call that uses the same subscription key but a different selector, noLocal
option or a different physical destination is treated as a different subscription.

■ If a ClientID is used by an EXCLUSIVE subscriber, any current or subsequent
subscribers using the same ClientID, selector, and noLocal option is treated as
a different subscription.

13.2.2.1 How a Shared Subscription Policy for a Non-durable Subscription is
Determined
The Subscription Sharing Policy for a particular non-durable subscription is
dynamically determined by the first active subscriber on the subscription and does not
change for the life of the subscription. Any attempt to change the Shared Subscription
Policy for a subscription throws an InvalidSubscriptionSharingException,
which extends javax.jms.JMSException. For example:

■ If a non-durable subscription has an EXCLUSIVE subscriber on a destination, the
subscription is EXCLUSIVE, and any attempt to create an additional subscriber
using the subscription on the same destination always fails with an
InvalidSubscriptionSharingException, regardless of whether the
yet-to-be-created subscriber is EXCLUSIVE or SHARABLE.

■ If a subscription has active subscribers with a SHARABLE policy, the subscription is
SHARABLE, and any attempt to create a new EXCLUSIVE subscriber on the
subscription fail with an InvalidSubscriptionSharingException.

Note: It is only possible to have the same ClientID if the subscriber
is created with the same connection instance or a connection using the
UNRESTRICTED Client ID policy).

Advanced Messaging Features for High Availability

Developing Advanced Pub/Sub Applications 13-5

13.2.2.2 How a Non-durable Subscription is Closed
After all subscribers that share the same subscription close, the subscription is cleaned
up. Specifically, when the last subscriber consumer on a shared subscription calls
close(), the subscription and all the associated JMS resources cleaned up.

There is no runtime mbean that represents a non-durable subscription, regardless of
whether it is a shared or exclusive subscription. It is possible to monitor individual
susbcribers using the appropriate JMSConsumerRuntimeMBean.

13.2.3 How Sharing a Durable Subscription Works
In previous releases, the subscription key (<ClientID, SubscriptionName>)
uniquely identified a subscription within a cluster where the subscription could only
exist on a single destination instance or a single member of a DT within the cluster. In
this WebLogic Server release, the subscription key becomes <ClientID,
ClientIDPolicy, SubscriptionName>. All durable subscribers that use the
same subscription key share the same subscription if they subscribe to a regular topic,
or if they subscribe to the same member of a distributed topic. Multiple subscriptions
that use the same subscription key can exist on multiple distributed destination
member destinations.

The first subscriber that is created with a particular subscription key creates the
subscription. All subsequently created subscribers with the same subscription key
share the subscription created by the first subscriber if all subscription details (such as:
the selector, noLocal option, and the physical destination) match and they are on the
same physical destination.

If a subscription is created with a selector and the noLocal option, a subscriber
created on the same physical destination using the same subscription key with a
different selector and noLocal option will:

■ Replace the existing durable subscription and cleanup all pending messages that
are saved for the durable subscription if there are no active subscribers using this
existing subscription.

■ Throw InvalidSubscriptionSharingException if there are active
subscribers using the same subscription key with a different selector or noLocal
option.

13.2.3.1 How a Shared Subscription Policy for a Durable Subscription is
Determined
The Subscription Sharing Policy for a particular durable subscription is dynamically
determined by the first active subscriber on the subscription and does not change
unless all current subscribers close and new subscribers attach with a different policy.
Any attempt to change the policy of a subscription that already has active subscribers
throws an InvalidSubscriptionSharingException. For example:

■ If a durable subscription has an EXCLUSIVE subscriber and the Subscription
Sharing Policy is EXCLUSIVE, any attempt to create an additional subscribers on
the subscription throws InvalidSubscriptionSharingException,
regardless of whether the yet-to-be-created subscriber is EXCLUSIVE or
SHARABLE.

■ If a durable subscription has active subscribers with a SHARABLE policy, the
Subscription Sharing Policy is SHARABLE, any attempt to create a new EXCLUSIVE
subscriber on the subscription throws
InvalidSubscriptionSharingException. Please note that changing

Advanced Messaging Features for High Availability

13-6 Programming JMS for Oracle WebLogic Server

Subscription Sharing Policy on an existing durable subscription does not delete
any messages that already exist on the subscription.

13.2.3.2 How to Unsubscribe a Durable Subscription
Before unsubscribing a subscription, you must consider the Client ID Policy for the
subscription:

■ Applications that use a Client ID Policy with a value of RESTRICTED unsubscribe
a durable subscription using the standard Session.unsubscribe(String
name) API.

■ Application that use a Client ID Policy with a value of UNRESTRICTED
unsubscribe a durable subscription using the
WLSession.unsubscribe(String name, Topic topic) extension by
supplying the subscription name and the topic or a DT member object.

13.2.3.3 Considerations when Unsubscribing a Durable Subscriber
The following section provides information on how to unsubscribe or avoid scenarios
that throw an exception:

■ If there are active consumers on the subscription, a call to unsubscribe()
throws a JMSException.

■ If there are no active consumers, on a subscription, a call to unsubscribe()
deletes the matching durable subscription identified by the subscription key
<ClientID, ClientIDPolicy, SubscriptionName>.

■ unsubscribe() of a durable subscription is done per standalone topic or per
member of a DT.

■ A subscription created using a connection with a RESTRICTED Client ID can only
be cleaned up from a connection that uses the same RESTRICTED Client ID.

■ A subscription created using a connection with an UNRESTRICTED Client ID can
only be cleaned up from a connection using the same UNRESTRICTED Client ID.

■ If WebLogic JMS does not find a matching subscription on the topic that was
created with the same Client ID and ClientIDPolicy as the unsubscribe call, an
InvalidDestinationException is thrown.

■ If an unsubscribe call with an UNRESTRICTED Client ID specifies a DT or does
not specify any Topic, an InvalidDestinationException is thrown.

■ Although .Net and C API messaging applications can share subscriptions by using
the Client ID Policy and Subscription Sharing Policy on a connection factory
deployed on WebLogic Server 10.3.4.0 or later, an unsubscribe API extension is not
yet available for subscriptions that use an Unrestricted Client ID. The workaround

Note: Changing the Subscription Sharing Policy on an existing
durable subscription does not delete any messages that already exist
on the subscription.

Note: Prior to WebLogic Server 10.3.4.0, all Client ids are
RESTRICTED by default. A given client id could only be used by one
connection at any given time in a WLS JMS cluster.

Design Strategies when using Topics

Developing Advanced Pub/Sub Applications 13-7

is to use administrative measures described in Section 13.2.3.4, "Managing Durable
Subscriptions."

13.2.3.4 Managing Durable Subscriptions
When there are subscriptions distributed throughout a cluster, it is possible there are
some subscriptions that should have been deleted but have not been deleted. Such
subscriptions are sometimes called "abandoned" subscriptions, and can continue to
accumulate messages even though there's no subscriber processing the messages. If
the accumulating messages never expire, they may eventually cause the topic to begin
throwing resource allocation exceptions (quota exceptions), or if quotas aren't
configured, can even cause a server to run out of memory.

For example, the unsubscribe call fails when there are active subscribers on the
subscription and the unsubscribe call does not reach subscriptions on inactive
(shutdown) members. When this happens, the subscription is left on the member
where the call failed until it is manually removed by an administrator or the call is
repeated.

To help handle these situations, administrators have the following options to monitor
and manage durable subscriptions:

■ There is one instance of the JMSDurableSubscriptionRuntimeMBean for each
durable subscription. Administrators can monitor on a topic or UDT using the
Administration Console or by using WLST command line or scripts. See Monitor
JMS servers in Oracle WebLogic Server Administration Console Help.

■ To find an abandoned or orphaned durable subscription, administrator can check
the LastMessagesReceivedTime on the
JMSDurableSubscriberRuntimeMBean. The
getLastMessagesReceivedTime() method returns the last time a message
was received by a subscriber from the subscription. Based on this information,
together with attributes like the MessagesPendingCount or
BytesPendingCount on the same MBean, an administrator can build a clear
picture of the status of a particular durable subscription and take appropriate
action, such as cleanup the resources.

13.2.3.4.1 Naming Conventions for the JMSDurableSubscriberRuntimeMbean If a durable
subscription is created using the subscription key, <MyClientID,
MySubscriptionName>, the name of the associated
JMSDurableSubscriberRuntimeMBean is either:

■ MyClientID_MySubscriptionName when the Client ID Policy is RESTRICTED.
Where MyClientID is the Client ID for this subscription and
MySubscriptionName is the name of the subscription.

■ MyClientID_MySubscriptionName@topicName@JMSServerName when the
Client ID Policy is UNRESTRICTED. Where MyClientID is the Client ID for this
subscription, MySubscriptionName is the name of the subscription.,
topicName is the name of a standalone topic or a member of a UDT, and
JMSServerName is the name of the JMSServer that the topic or member is
deployed on.

13.3 Design Strategies when using Topics
The following sections provide information on Topic-based design strategies that can
be used to develop high availability applications:

■ Section 13.3.1, "One-copy-per-instance Design Strategy"

Best Practices for Distributed Topics

13-8 Programming JMS for Oracle WebLogic Server

■ Section 13.3.2, "One-copy-per-application Design Strategy"

13.3.1 One-copy-per-instance Design Strategy
One-copy-per-instance is the traditional design pattern and is backward compatible
with WebLogic Server releases prior to 10.3.4.0. One-copy-per-instance has the
following characteristics:

■ Each instance of an application gets one copy of each message that is published to
the Topic.

■ This pattern is usually best implemented by leveraging an MDB, which sets up
policies and subscriptions across a cluster automatically. See Section 13.4, "Best
Practices for Distributed Topics."

13.3.2 One-copy-per-application Design Strategy
One-copy-per-application is a design pattern available in WebLogic Server 10.3.4.0 and
higher releases. One-copy-per-application has the following characteristics:

■ This pattern is usually best implemented by leveraging an MDB, which sets up
policies and subscriptions across a cluster automatically. See Section 13.4, "Best
Practices for Distributed Topics."

■ Each application as a whole (that is all instances of the application together)
receives one copy of each message that is published to the DT. That is each
instance only receives a subset of the messages that are sent to the DT.

■ An UNRESTRICTED Client ID Policy

■ An SHARABLE Subscription Sharing Policy

■ Uses the same subscription name if the subscribers are durable

■ All consumers subscribe to the same topic instance (or member of a DT)

13.4 Best Practices for Distributed Topics
Oracle recommends the following when designing new applications using distributed
topics:

■ Simplify application design and complexity by utilizing MDBs. See:

– Distributed Topic Deployment Scenarios in Programming Message-Driven Beans
for Oracle WebLogic Server

– Configuring and Deploying MDBs Using Distributed Topics in Programming
Message-Driven Beans for Oracle WebLogic Server

■ If MDBs are not an option, consider using an UNRESTRICTED Client ID Policy, a
SHARABLE Subscription Policy, in combination with a Partitioned Topic (a
distributed topic with a PARTITIONED forwarding policy). See:

– Configure an Unrestricted ClientID in Configuring and Managing JMS for Oracle
WebLogic Server

– Configure Shared Subscriptions in Configuring and Managing JMS for Oracle
WebLogic Server

– Configuring Partitioned Distributed Topics in Configuring and Managing JMS
for Oracle WebLogic Server

Best Practices for Distributed Topics

Developing Advanced Pub/Sub Applications 13-9

– Section D, "Advanced Programming with Distributed Destinations Using the
JMS Destination Availability Helper API"

Best Practices for Distributed Topics

13-10 Programming JMS for Oracle WebLogic Server

14

Recovering from a Server Failure 14-1

14Recovering from a Server Failure

This chapter describes how WebLogic JMS client applications reconnect or recover
from a server/network failure and how to migrate JMS data after a server failure.

■ Section 14.1, "Automatic JMS Client Failover"

■ Section 14.2, "Programming Considerations for WebLogic Server 9.0 or Earlier
Failures"

■ Section 14.3, "Manually Migrating JMS Data to a New Server"

14.1 Automatic JMS Client Failover
With the automatic JMS client reconnect feature, if a server or network failure occurs,
some JMS client objects will transparently failover to use a another server instance, as
long as one is available. For example, if a fatal server failure occurs, JMS clients
automatically attempt to reconnect to the server when it becomes available.

A network connection failure could be due to transient reasons (a temporary blip in
the network connection) or non-transient reasons (a server bounce or network failure).
In such cases, some JMS client objects will attempt to automatically operate with
another server instance in a cluster, or possibly with the host server.

By default, JMS producer session objects automatically attempt to reconnect to an
available server instance without any manual configuration or modifications to
existing client code. If you do not want your JMS producers to be automatically
reconnected, then you must explicitly disable this feature either programmatically or
administratively.

In addition, JMS consumer session objects can also be configured to automatically
attempt to reconnect to an available server, but due to their potentially asynchronous
nature, you must explicitly enable this capability using the Administration Console or
public WebLogic JMS APIs.

For more information, refer to the following sections:

■ Section 14.1.1, "Automatic Reconnect Limitations"

Section 14.1.2, "Automatic Failover for JMS Producers"

■ Section 14.1.3, "Configuring Automatic Failover for JMS Consumers"

■ Section 14.1.4, "Explicitly Disabling Automatic Failover on JMS Clients"

■ Section 14.1.5, "Best Practices for JMS Clients Using Automatic Failover"

Automatic JMS Client Failover

14-2 Programming JMS for Oracle WebLogic Server

14.1.1 Automatic Reconnect Limitations
Automatic reconnect logic can provide a seamless failover for clients in many failure
scenarios. However, there are some connection failure scenarios where the result of a
message operation is undetermined and WebLogic Server throws an exception. Your
application must deal with the exception appropriately. For instance:

■ If the message send operation is idempotent, resend the message.

■ Otherwise, your application may need to take some action. For instance, you may
need to check if the message is already available on the queue before resending to
avoid duplicates.

Implicit failover of the following JMS objects is not supported before WebLogic Server
9.2:

■ Queue browsers: javax.jms.QueueBrowser

■ The WebLogic JMS thin client (wljmsclient.jar) does not automatically reconnect.

■ Client statistics are reset on each reconnect, which results in the loss historical data
for the client.

■ Under some circumstances, automatic reconnect is not possible. If it is not
possible, an exception is reported.

■ Temporary destinations (javax.jms.TemporaryQueue and
javax.jms.TemporaryTopic).

14.1.2 Automatic Failover for JMS Producers
In most cases, JMS producer applications will transparently failover to another server
instance if one is available. The following WebLogic JMS producer-oriented objects
will attempt to automatically reconnect to an available sever instance without any
manual configuration or modification to existing client code:

■ Connection

■ Session

■ MessageProducer

If you do not want your JMS clients to be automatically reconnected, then you must
explicitly disable this feature either programatically or administratively, as described
in Section 14.1.4, "Explicitly Disabling Automatic Failover on JMS Clients."

Note: If the destination or distributed destination member is
unavailable, you will not be able to determine if the message send
operation was successful until that member becomes available.

Tip: Temporary destinations may still be accessible after a
sever/network failure. This is because temporary destinations are not
always on the same server instance as the local connection factory due
to server load balancing. Therefore, if a temporary destination
survives a server/network failure and a producer continues sending
messages to it, an auto-reconnected consumer may or may not be able
consume messages from the same temporary destination it was
connected to before the failure occurred.

Automatic JMS Client Failover

Recovering from a Server Failure 14-3

14.1.2.1 Sample Producer Code
In the event of a network failure, the WebLogic JMS client code for message
production will attempt to reconnect to an available server during Steps 3-8 shown in
Example 14–1.

Example 14–1 Sample JMS Client Code for Message Production

 //set exception listener
1. public void onException(javax.jms.JMSException jsme) {
 connection.setExceptionListener
 // handle the exception, which may require checking for duplicates
 // or sending the message again
 }

2. Context ctx = create WebLogic JNDI context with credentials etc.
3. ConnectionFactory cf = ctx.lookup(JNDI name of connection factory)
4. Destination dest = ctx.lookup(JNDI name of destination)
 // the following operations recover from network failures
5. Connection con = cf.createConnection()
6. Session sess = con.createSession(no transactions, ack mode)
7. MessageProducer prod = sess.createProducer(dest)

8. Loop over:
9. Message msg = sess.createMessage()
 // try block to handle destination availablitiy scenarios
10. try {
 prod.send(msg)}
 catch (Some Destination Availability Exception e) {
 //handle the exception, in most cases, the destination or member
 //is not yet available, so the code should try to resend
 }
 //end loop

 // done sending messages
11. con.close(); ctx.close();

The JMS producer will transparently failover to another server instance, if one is
available. This keeps the client code as simple as listed above and eliminates the need
for client code for retrying across network failures.

The WebLogic JMS does not reconnect MessageConsumers by default. For this to
automatically occur programmatically, your client application code must call the
WebLogic WLConnection extension, with the setReconnectPolicy set to "all",
as explained in Section 14.1.3, "Configuring Automatic Failover for JMS Consumers."

14.1.2.2 Re-usable ConnectionFactory Objects
A ConnectionFactory object looked up via JNDI (see Step 1 in Example 14–1 and
Example 14–2) is re-usable after a server or network failure without requiring a
re-lookup. A network failure could be between the JMS client JVM and the remote
WebLogic Server instance it is connected to as part of the JNDI lookup, or between the
JMS client JVM and any remote WebLogic Server instance in the same cluster where
the JMS client subsequently connects.

14.1.2.3 Re-usable Destination Objects
A Destination object (queue or topic) looked up via JNDI (see Step 2 in Example 14–1
and Example 14–2) is re-usable after a server or network failure without requiring
another lookup. The same principle applies to producers that send to a distributed

Automatic JMS Client Failover

14-4 Programming JMS for Oracle WebLogic Server

destinations, since the client looks up the distributed destination in JNDI, and not the
unavailable distributed member.

A network failure could be between the client JVM and the WebLogic Server instance
it is connected to, or between that WebLogic Server instance and the WebLogic Server
instance that actually hosts the destination. The Destination object will also be robust
after restarting the WebLogic Server instance hosting the destination.

14.1.2.4 Reconnected Connection Objects
The JMS Connection object is used to map one-to-one to a physical network
connection between the client JVM and a remote WebLogic Server instance. With the
JMS client reconnect feature, the JMS Connection object that the client gets from the
ConnectionFactory.createConnection() method (see Step 3 in Example 14–1
and Example 14–2) maps in a one-to-one-at-a-time fashion to the physical network
connection. One consequence is that while the JMS client continues to use the same
Connection object, it could be actually communicating with a different WebLogic
Server instance after an implicit failover.

If there is a network disconnect and a subsequent implicit refresh of the connection, all
objects derived from the connection (such as javax.jms.Session and
javax.jms.MessageProducer objects) are also implicitly refreshed. During the
refresh, any synchronous operation on the connection or its derived objects that go to
the server (such as producer.send() or connection.createSession()), may
block for a period of time before giving up on the connection refresh. This time is
configured using the Administration Console or the
setReconnectBlockingMillis(long) API in the
weblogic.jms.extension.WLConnection interface.

The reconnect feature keeps trying to reconnect to the WebLogic Server instance's
ConnectionFactory object in the background until the application calls
connection.close(). The ReconnectBlockingMillis parameter is the
time-out for a synchronous caller trying to use the connection when the connection in
being retried in the background.

If a synchronous call does time out without seeing a refreshed connection, it then
behaves in exactly the same way (that is, throws the same Exceptions) as without the
implicit reconnect (that is, it will behave as if it was called on a stale connection
without the reconnect feature).

The caller can then decide to simply retry the synchronous call (with a potentially
lower quality of service, like duplicate messages), or decide to call
connection.close(), which will terminate the background retries for that
connection.

14.1.2.4.1 Special Cases for Reconnected Connections There are special cases that can
occur when producer connections are refreshed:

■ Connections with a ClientID for Durable Subscribers – If your Reconnect Policy field is
set to None or Producer, and a JMS Connection has a Client ID specified at the
time of a network/server failure, then the Connection will not be automatically
refreshed. The reason for this restriction is backward compatibility, which avoids
breaking existing JMS applications that try to re-create a JMS Connection with the
same connection name after a failure. If implicit failover also occurs on a network

Note: For information on how consumers of distributed destinations
behave with automatic JMS client reconnect, see Section 14.1.3.4.1,
"Consumers of Distributed Destinations."

Automatic JMS Client Failover

Recovering from a Server Failure 14-5

failure, then the application's creation of the connection will fail due to a duplicate
ClientID.

■ Closed Objects Are Not Refreshed – When the application calls
javax.jms.Connection.close(), javax.jms.Session.close(), etc., that
object and it descendents are not refreshed. Similarly, when the JMS client is told
its Connection has been administratively destroyed, it is not refreshed.

■ Connection with Registered Exception Listener – If the JMS Connection has an
application ExceptionListener registered on it, that ExceptionListener's
onException() callback will be invoked even if the connection is implicitly
refreshed. This notifies the application code of the network disconnect event. The
JMS client application code might normally call connection.close() in
onException; however, if it wants to take advantage of the reconnect feature, it
may choose not to call connection.close(). The registered ExceptionListener
is also migrated transparently to the internally refreshed connection to listen for
exceptions on the refreshed connection.

■ Multiple Connections – If there are multiple JMS Connections created off the same
ConnectionFactory object, each connection will behave independently of the other
connections as far as the reconnect feature is concerned. Each connection will have
its own connection status, its own connection retry machinery, etc.

14.1.2.5 Reconnected Session Objects
As described in Section 14.1.2.4, "Reconnected Connection Objects," JMS Session
objects are refreshed when their associated JMS connection gets refreshed (see Step 4 in
Example 14–1 and Example 14–2). Session states, such as acknowledge mode and
transaction mode, are preserved across each refresh occurrence. The same session
object can be used for calls, like createMessageProducer(), after a refresh.

14.1.2.5.1 Special Cases for Reconnected Sessions These sections discuss special cases
that can occur when Sessions are reconnected.

■ Transacted Sessions With Pending Commits or Rollbacks – Similar to non-transacted
JMS Sessions, transacted JMS sessions are automatically refreshed. However, if
there were send or receive operations on a Session pending a commit or rollback at
the time of the network disconnect, then the first commit call after the Session
refresh will fail throwing a javax.jms.TransactionRolledBackException.
When a JMS Session transaction spans a network refresh, the commit for that
transaction cannot vouch for the operations done prior to the refresh as part of that
transaction (from an application code perspective).

After a Session refresh, operations like send() or receive() will not throw an
exception; it is only the first commit after a refresh that will throw an exception.
However, the first commit after a Session refresh will not throw an exception if
there were no pending transactional operations in that JMS session at the time of
the network disconnect. In case of Session.commit() throwing the exception,
the client application code can simply retry all the operations in the transaction
again with the same (implicitly refreshed) JMS objects. The stale operations before
a refresh will not be committed and will not be duplicated.

Note: For information on how a consumer connection with a
ClientID behaves, see Section 14.1.3.4.3, "Consumer Connections with
a ClientID for Durable Subscriptions."

Automatic JMS Client Failover

14-6 Programming JMS for Oracle WebLogic Server

■ Pending Unacknowledged Messages – If a Session had unacknowledged messages
prior to the Session refresh, then the first WLSession.acknowledge() call after
a refresh throws a weblogic.jms.common.LostServerException. This
indicates that the acknowledge() call may not have removed messages from the
server. As a result, the refreshed Session may receive duplicate messages that were
also delivered before the disconnect.

14.1.2.6 Reconnected MessageProducer Objects
As described in Section 14.1.2.4, "Reconnected Connection Objects," JMS
MessageProducer objects are refreshed when their associated JMS connection gets
refreshed (see Step 5 in Example 14–1). If producers are non-anonymous, that is, they
are specific to a Destination object (standalone or distributed destination), then the
producer's destination is also implicitly refreshed, as described in Section 14.1.2.3,
"Re-usable Destination Objects." If a producer is anonymous, that is not specific to a
Destination object, then the possibly-stale Destination object specified on the
producer's send() operation is implicitly refreshed.

14.1.2.6.1 Special Case for Distributed Destinations It is possible that a producer can send
a message at the same time that a distributed destination member becomes
unavailable. If WebLogic JMS can determine that the distributed destination member
is not available, or was not available when the message was sent, the system will retry
sending the message to another distributed member. If there is no way to determine if
the message made it through the connection all the way to the distributed member
before it went down, the system will not attempt to resend the message because doing
so may create a duplicate message. In that case, WebLogic JMS will throw an
exception. It is up to the application to catch that exception and decide whether or not
to resend the message.

14.1.3 Configuring Automatic Failover for JMS Consumers
JMS MessageConsumer objects that are part of a JMS Connection (via a JMS Session)
can be refreshed during a JMS connection refresh (see Step 5 in Example 14–2).
However, due to the stateful nature of JMS consumers, as well as their potential
asynchronous nature, you must explicitly enable this capability using either the
weblogic.jms.extension.WLConnection API or the Administration Console.

Explicitly enabling automatic refresh of consumers also refreshes connections with a
configured Client ID for a durable subscriber, as described in Section 14.1.3.4.3,
"Consumer Connections with a ClientID for Durable Subscriptions." However,
refreshed consumers does not include QueueBrowser clients, which are never
refreshed, as described in Section 14.1.1, "Automatic Reconnect Limitations."

14.1.3.1 Sample Consumer Client Code
When Message Consumer refresh is explicitly activated, in the event of a network
failure, the WebLogic JMS client code for message consumption will attempt to
reconnect during Steps 3-8 in Example 14–2.

Example 14–2 Sample JMS Client Code for Message Consumption

0. Context ctx = create WebLogic JNDI context with credentials etc.
1. ConnectionFactory cf = ctx.lookup(JNDI name of connection factory)
2. Destination dest = ctx.lookup(JNDI name of destination)
 // the following operations recover from network failures
3. Connection con = cf.createConnection()
 (weblogic.jms.extensions.WLConnection)con).setReconnectPolicy("all")
4. Session sess = con.createSession(no transactions, auto ack)

Automatic JMS Client Failover

Recovering from a Server Failure 14-7

5. MessageConsumer cons = sess.createConsumer(dest, message selector)
 - also for async consumers : cons.setMessageListener(onMessage impl)
6. con.start()
7. Loop over:
 for sync consumers: Message msg = consumer.receive()
 for async consumers (in different thread): onMessage() invoked
8. con.close(), ctx.close()

Note that the connection factory does not refresh MessageConsumer objects by
default. For this to occur programmatically, your client application code must call the
WebLogic WLConnection extension, with the setReconnectPolicy set to "all",
as shown in Step 3 in Example 14–2.

14.1.3.2 Configuring Automatic Client Refresh Options
The JMS client reconnect API includes the following configuration parameters, which
allow you to make some choices that affect the behavior of the reconnect feature for
consumers.

For instructions on configuring client parameters on a connection factory using the
Administration Console, see "Configure connection factory client parameters" in the
Oracle WebLogic Server Administration Console Help. For more information about these
parameters, see ClientParamsBean in the Oracle WebLogic Server MBean Reference.

14.1.3.3 Common Cases for Reconnected Consumers
This section describes the common scenarios when refreshing synchronous and
asynchronous consumers.

14.1.3.3.1 Synchronous Consumers Synchronous consumers use
MessageConsumer.receive(), MessageConsumer.receive(timeout), and
MessageConsume.receiveNoWait() methods to consume messages. The first two
methods are already expected to be potentially block the application code, while the
third method is not expected to block the application code. To retain these semantics,
the following rules describe interaction of the reconnect feature with the synchronous
consumer calls:

Table 14–1 Automatic JMS Client Reconnect Options

Console Label/MBean
Attribute Value Description

Reconnect Policy

ReconnectPolicy

■ None

■ Producer
(default)

■ All

Determines which JMS client objects are implicitly refreshed
upon a network disconnect or server reboot. It only affects the
implicit refresh of Connections, Sessions, Producers, and
Consumers derived from this Connection Factory. This attribute
does not affect Destination or ConnectionFactory objects in the
JMS client, since those objects are always refreshed implicitly. Nor
does it affect the QueueBrowser object in the JMS client, since that
object is never refreshed.

Reconnect Blocking Time

ReconnectBlockingTimeMillis

6000 Determines how long any synchronous JMS calls, such as
producer.send(), consumer.receive(), and
session.createBrowser() will block the calling thread
before giving up on a JMS client reconnect in progress.

TotalReconnectPeriodMillis -1 Determines how long JMS clients should keep retrying to connect
after either the initial network disconnect or the last synchronous
JMS call attempt (whichever occurs most recently), before giving
up retrying.

Automatic JMS Client Failover

14-8 Programming JMS for Oracle WebLogic Server

■ MessageConsumer.receive()– If there is a network disconnect during this
call, this method can block for up to Reconnect Blocking Time property (described
in the configuration section) for a reconnect to go through before throwing an
Exception.

■ MessageConsumer.receive(timeout) – This call will block for the at-most
timeout milliseconds specified by caller. If the Reconnect Blocking Time property
is less than timeout, the receive will still block up to the Reconnect Blocking Time
setting; if the Reconnect Blocking Time value is more than timeout, the receive will
only block up to timeout.

■ MessageConsumer.receiveNoWait() – This call will not block if the JMS
Connection is in the process of reconnecting. The Reconnect Blocking Time value
will have no effect on this call.

If these methods eventually reach their respective timeout/wait periods, they all will
throw the same Exceptions. as without reconnect. If a reconnect succeeds while these
methods are blocked/called, these methods will continue returning messages, but
with a potentially lowered quality-of-service and with generally similar semantics of
receiving messages (like Redelivered messages), as after a recover. The application is
notified of this possibility by a Connection ExceptionListener callback with
LostServerException. In addition, for non-AUTO_ACK acknowledge modes, the
first acknowledge call after a refresh will throw a LostServerException to notify
the application of this possibility.

14.1.3.3.2 Asynchronous Consumers In the context of a reconnect, the behavior for
asynchronous consumers will be governed by the setting on the Total Reconnect
Period property. The JMS Consumer's registered message listener's onMessage() will
continue to be invoked if the reconnect framework is able to successfully re-establish a
connection within the Total Reconnect Period setting after a connection failure. If the
user explicitly calls a close() on the JMS Connection (or on the JMS Session
corresponding to the asynchronous Consumer), then the reconnect framework will not
invoke any further onMessages for that Consumer. The onMessage() should expect
post-recover behavior (like Redelivered messages) if the Connection
ExceptionListener's onException is invoked with a LostServerException.

14.1.3.4 Special Cases for Reconnected Consumers
These sections discuss special cases that can occur when consumers are refreshed.

14.1.3.4.1 Consumers of Distributed Destinations Previous to WebLogic Server 9.2,
consumers of distributed destinations (DDs) were pinned to a particular destination
member of the DD for the life of the pinned consumer. This applies to queue
consumers of distributed queues, and non-durable subscribers of distributed topics
(durable subscribers are not supported distributed topics).

With MessageConsumer reconnect, DD consumers are also refreshed; however, the
refreshed consumer is almost never on the same destination member as the stale
consumer. Therefore, even though the application is using the same DD consumer
across a refresh, it is effectively not pinned to the same destination member across a
refresh.

14.1.3.4.2 Message-Driven EJBs Message-driven EJBs (MDBs) are a special sub-case of
asynchronous consumers that have their own behavior requirements and their own
refresh framework. As such, MDBs are not expected to participate in
MessageConsumer refreshes, and are not expected to be affected in any other way by
the JMS client reconnect framework.

Automatic JMS Client Failover

Recovering from a Server Failure 14-9

14.1.3.4.3 Consumer Connections with a ClientID for Durable Subscriptions Durable
subscriptions on standalone topics will not notice any difference due to the client
reconnect feature if the topic is still available across a disconnect. The JMS client
reconnect framework implicitly refreshes the durable subscriber on that topic and
continue from where it was interrupted. Note that if your Reconnect Policy is set to
All, JMS Connections with a ClientID will also refresh automatically, thus allowing
durable subscriptions (which are scoped by ClientID) to refresh automatically.
Connections with a ClientID set will not reconnect for any other Reconnect Policy
setting.

14.1.3.4.4 Non-Durable Subscriptions and Possible Missed Messages For consumers that are
non-durable subscribers of topics, though the consumption apparently continues
successfully across a refresh from an application perspective, it is possible for
messages to have been published to the topic and dropped (e.g., for lack of consumers)
while the reconnect was happening. Such missed messages can occur with either
synchronous or asynchronous non-durable subscribers.

14.1.3.4.5 Duplicate Messages Due to the nature of the consumer refresh feature, there is
a possibility of redelivered messages without the client application code calling
recover explicitly because a consumer refresh effectively does an implicit equivalent of
a recover upon a refresh. This is the main reason why implicit Consumer refresh is not
on by default. The semantics of never redelivering a successfully acknowledged
message still hold true.

There is also an unlikely case when non-durable subscribers of distributed topics can
receive duplicate messages that are not marked redelivered (e.g., when failover
happens faster than messages are discarded in topics). This is a consequence of a
non-durable subscriber refresh for the distributed topic not being pinned to a topic
member across a refresh.

14.1.3.4.6 Variations Due to Acknowledge Modes There will be no difference in the
reconnect behaviors of Consumers due to different acknowledge modes. However, the
first acknowledge call after a refresh for non-AUTO_ACK modes will throw a
LostServerException as described earlier to notify user of potential lowered quality of
service.

14.1.3.4.7 Reconnecting with Migrated JMS Destinations In a Cluster Consumers will not
always reconnect after a JMS server (and its destinations) is migrated to another server
in a cluster. If consumers do not get migrated with the destinations, either an
exception is thrown or onException will occur to inform the application that the
consumer is no longer valid. As a workaround, an application can refresh the
consumer either in the exception handler or through onException.

Note: If a JMS Connection has a ClientID specified at the time of a
network/server failure, then reconnecting that client make take
significantly longer than your other clients. For example, in a cluster
the JMS server must wait for the WebLogic Server "heartbeat"
notification that is broadcast from other members of the cluster, as
explained in "Failover and Replication in a Cluster" in Using Clusters
for Oracle WebLogic Server.

WebLogic JMS does not support durable subscriptions on distributed
topics, so there is no issue of failover to another distributed topic
member during a refresh.

Automatic JMS Client Failover

14-10 Programming JMS for Oracle WebLogic Server

14.1.4 Explicitly Disabling Automatic Failover on JMS Clients
If you do not want your JMS clients to be automatically reconnected, then you must
explicitly disable this feature either programatically or administratively.

14.1.4.1 Programmatically
If you do not want your JMS clients to be automatically reconnected, then your
applications should call the following code:

 ConnectionFactory cf = (javax.jms.ConnectionFactory)ctx.lookup
 (JNDI name of connection factory)
 javax.jms.Connection con = cf.createConnection();
 ((weblogic.jms.extensions.WLConnection)con).setReconnectPolicy("none")

For more information about the setReconnectPolicy method, refer to the
weblogic.jms.extension.WLConnection API.

14.1.4.2 Administratively
Administrators that do not want JMS clients to automatically reconnect should use the
following steps to disable the Reconnect Policy on the JMS connection factory:

1. Follow the directions for navigating to the JMS Connection Factory: Configuration:
Client pages, see "Configure connection factory client parameters" in the Oracle
WebLogic Server Administration Console Help.

2. In the Reconnect Policy field, select None to disable the JMS client reconnect
feature on this connection factory.

For more information about the Reconnect Policy field, see JMS Connection
Factory: Configuration: Client in the Oracle WebLogic Server Administration Console
Help.

3. Click Save.

For more information about the other JMS connection factory client parameters, see
ClientParamsBean in the Oracle WebLogic Server MBean Reference.

14.1.5 Best Practices for JMS Clients Using Automatic Failover
Oracle recommends the following best practices for JMS clients when using the
Automatic JMS Client Reconnect feature:

14.1.5.1 Always Catch exceptions
There are some connection failure scenarios where the result of a message operation is
undetermined and WebLogic Server throws an exception. Your application must deal
with the exception appropriately. See:

■ Section 14.1.1, "Automatic Reconnect Limitations"

■ Section 14.1.2.5.1, "Special Cases for Reconnected Sessions"

■ Section 14.1.2.6.1, "Special Case for Distributed Destinations"

14.1.5.2 Use Transactions to Group Message Work
Use transacted sessions (JMS) or user transactions (JTA) to group related or dependent
work, including messaging work, so that either all of the work is completed or none of
it is. If a server instance goes down and a message is lost in the middle of a transaction,

Manually Migrating JMS Data to a New Server

Recovering from a Server Failure 14-11

the entire transaction is rolled back and the application does not need to make a
decision for each message after a failure.

14.1.5.3 JMS Clients Should Always Call the close() Method
As a best practice, your applications should not rely on the JVM's garbage collection to
clean up JMS connections because the JMS automatic reconnect feature keeps a
reference to the JMS connection. Therefore, always use connection.close() to
clean up your connections. Also consider using a Finally block to ensure that your
connection resources are cleaned up. Otherwise, WebLogic Server allocates system
resources to keep the connection available.

For more information closing JMS client connections, see Section 6.7.6, "Best Practice:
Always Close Failed JMS ClientIDs."

14.2 Programming Considerations for WebLogic Server 9.0 or Earlier
Failures

JMS client applications running on WebLogic Server 9.0 or earlier had to reestablish
javax.jms objects after a server failure. If you are still running release 9.0 or earlier JMS
clients, you may want to program your JMS clients to terminate gracefully in the event
of a server failure. For example:

14.3 Manually Migrating JMS Data to a New Server
WebLogic JMS uses the migration framework to allow WebLogic JMS respond
properly to migration requests and bring a WebLogic JMS server online and offline in
an orderly fashion. This includes both scheduled migrations as well as migrations in
response to a WebLogic Server failure.

Once properly configured, a JMS server and all of its destinations can migrate to
another WebLogic Server within a cluster.

Howeer, you can manually recover JMS data from a failed WebLogic Server by starting
a new server and doing one or more of the tasks in Table 14–1.

Tip: Be aware of transaction commit failures after a server reconnect,
which may occur if the transaction subsystem cannot reach all the
participants involved in the transaction.

Table 14–2 Programming Considerations for Server Failures

If a WebLogic Server Instance
Fails and... Then...

You are connected to the failed
WebLogic Server instance

A JMSException is delivered to the connection exception
listener. You must restart the application once the server is
restarted or replaced.

A JMS Server is targeted on the
failed WebLogic Server instance

A ConsumerClosedException is delivered to the
session exception listener. You must re-establish any
message consumers that have been lost.

Manually Migrating JMS Data to a New Server

14-12 Programming JMS for Oracle WebLogic Server

For information about starting a new WebLogic Server, see the "Starting and Stopping
Servers: Quick Reference." For information about recovering a failed server, refer to
"Avoiding and Recovering From Server Failure" in Managing Server Startup and
Shutdown for Oracle WebLogic Server.

For more information about defining migratable services, see "Service Migration" in
Using Clusters for Oracle WebLogic Server.

Note: There are special considerations when you migrate a service
from a server instance that has crashed or is unavailable to the
Administration Server. If the Administration Server cannot reach the
previously active host of the service at the time you perform the
migration, see "Migrating a Service From an Unavailable Server" in
Using Clusters for Oracle WebLogic Server.

Table 14–3 Migration Task Guide

If Your JMS Application Uses. . . Perform the Following Task. . .

Persistent messaging—JDBC Store ■ If the JDBC database store physically exists on the
failed server, migrate the database to a new server
and ensure that the JDBC connection pool URL
attribute reflects the appropriate location reference.

■ If the JDBC database does not physically exist on the
failed server, access to the database has not been
impacted, and no changes are required.

Persistent messaging—File Store Migrate the file to the new server, ensuring that the
pathname within the WebLogic Server home directory is
the same as it was on the original server.

Transactions To facilitate recovery after a crash, WebLogic Server
provides the Transaction Recovery Service, which
automatically attempts to recover transactions on system
startup. The Transaction Recovery Service owns the
transaction log for a server.

For detailed instructions on recovering transactions from a
failed server, see "Transaction Recovery After a Server
Fails" in Programming JTA for Oracle WebLogic Server.

Note: JMS persistent stores can increase the amount of memory
required during initialization of WebLogic Server as the number of
stored messages increases. When rebooting WebLogic Server, if
initialization fails due to insufficient memory, increase the heap size of
the Java Virtual Machine (JVM) proportionally to the number of
messages that are currently stored in the JMS persistent store and try
the reboot again.

15

WebLogic JMS C API 15-1

15WebLogic JMS C API

This chapter describes the requirements, design principles, security considerations and
implementation guidelines need to use the WebLogic JMS C API to create C clients
that can access WebLogic JMS applications and resources.

■ Section 15.1, "What Is the WebLogic JMS C API?"

■ Section 15.2, "System Requirements"

■ Section 15.3, "Design Principles"

■ Section 15.4, "Security Considerations"

■ Section 15.5, "Implementation Guidelines"

15.1 What Is the WebLogic JMS C API?
The WebLogic JMS C API is an application program interface that enables you to
create C client applications that can access WebLogic JMS applications and resources.
The C client application then uses the Java Native Interface (JNI), described at
http://download.oracle.com/javase/1.5.0/docs/guide/jni/index.htm
l, to access the client-side Java JMS classes. See Figure 15–1.

For this release, the WebLogic JMS C API adheres to the JMS Version 1.1 specification
to promote the porting of Java JMS 1.1 code. For more information, see the Oracle
WebLogic Server JMS C API Reference.

Figure 15–1 WebLogic JMS C API Client Application Environment

System Requirements

15-2 Programming JMS for Oracle WebLogic Server

15.2 System Requirements
The following section provides information on the system requirements needed to use
the WebLogic JMS C API in your environment:

■ A list of supported operating systems for the WebLogic JMS C API is available
from the Oracle Fusion Middleware Supported System Configurations page. See
"Supported Configurations" at What's New in Oracle WebLogic Server.

■ A supported JVM for your operating system.

■ An ANSI C compiler for your operating system.

■ Use one of the following WebLogic clients to connect your C client applications to
your JMS applications:

– The WebLogic Thin T3 Client jar (wlthint3client.jar). See "Developing a
WebLogic Thin T3 Client" in Programming Stand-alone Clients for Oracle
WebLogic Server.

– The WebLogic application client (wlfullclient.jar file). See "Using the
WebLogic JarBuilder Tool" in Programming Stand-alone Clients for Oracle
WebLogic Server.

– The WebLogic JMS thin client (wljmsclient.jar file). See the "WebLogic
JMS Thin Client" in Programming Stand-alone Clients for Oracle WebLogic Server.

15.3 Design Principles
The following sections discuss guiding principals for porting or developing
applications for the WebLogic JMS C API:

■ Section 15.3.1, "Java Objects Map to Handles"

■ Section 15.3.2, "Thread Utilization"

■ Section 15.3.3, "Exception Handling"

■ Section 15.3.4, "Type Conversions"

■ Section 15.3.5, "Memory Allocation and Garbage Collection"

■ Section 15.3.6, "Closing Connections"

■ Section 15.3.7, "Helper Functions"

15.3.1 Java Objects Map to Handles
The WebLogic JMS C API is handle-based to promote modular code implementation.
This means that in your application, you implement Java objects as handles in C code.
The details of how a JMS object is implemented is hidden inside a handle. However,
unlike in Java, when you are done with a handle, you must explicitly free it by calling
the corresponding Close or Destroy methods. See Section 15.3.5, "Memory
Allocation and Garbage Collection."

15.3.2 Thread Utilization
The handles returned from the WebLogic JMS C API are as thread safe as their Java
counterparts. For example:

■ javax.jms.Session objects are not thread safe, and the corresponding
WebLogic JMS C API handle, JmsSession, is not thread safe.

Design Principles

WebLogic JMS C API 15-3

■ java.jms.Connection objects are thread safe, and the corresponding WebLogic
JMS C API handle, JmsConnection, is thread safe.

As long as concurrency control is managed by the C client application, all objects
returned by the WebLogic JMS C API may be used in any thread.

15.3.3 Exception Handling

Exceptions in the WebLogic JMS C API are local to a thread of execution. The
WebLogic JMS C API has the following exception types:

■ JavaThrowable represents the class java.lang.Throwable.

■ JavaException represents the class java.lang.Exception.

■ JmsException represents the class javax.jms.JMSException. All standard
subclasses of JMSException are determined by bits in the type descriptor of the
exception. The type descriptor is returned with a call to JmsGetLastException.

15.3.4 Type Conversions
When you interoperate between Java code and C code, typically one of the main tasks
is converting a C type to a Java type. For example, a short type is a two-byte entity in
Java as well as in C. The following type conversions that require special handling:

15.3.4.1 Integer (int)
Integer (int) converts to JMS32I (4-byte signed value).

15.3.4.2 Long (long)
Long (long) converts to JMS64I (8-byte signed value).

15.3.4.3 Character (char)
Character (char) converts to short (2-byte java character).

15.3.4.4 String
String converts to JmsString.

Java strings are arrays of two-byte characters. In C, strings are generally arrays of
one-byte UTF-8 encoded characters. Pure ASCII strings fit into the UTF-8 specification
as well. For more information on UTF-8 string, see http://www.unicode.org. It is
inconvenient for C programmers to translate all strings into the two-byte Java
encoding. The JmsString structure allows C clients to use native strings or Java
strings, depending on the requirements of the application.

JmsString supports two kinds of string:

■ Native C string (CSTRING)

■ JavaString (UNISTRING)

A union of the UNISTRING and CSTRING called uniOrC has a character pointer called
string that can be used for a NULL terminated UTF-8 encoded C string. The uniOrC
union provides a structure called uniString, which contains a void pointer for the
string data and an integer length (bytes).

Note: The WebLogic JMS C API uses integer return codes.

Design Principles

15-4 Programming JMS for Oracle WebLogic Server

When the stringType element of JmsString is used as input, you should set it to
CSTRING or UNISTRING, depending on the type of string input. The corresponding
data field contains the string used as input.

The UNISTRING encoding encodes every two bytes as a single Java character. The
two-byte sequence is big-endian. Unicode calls this encoding UTF-16BE (as opposed to
UTF-16LE, which is a two-byte sequence that is little-endian). The CSTRING encoding
expects a UTF-8 encoded string.

When the stringType element of JmsString is used as output, the caller has the
option to let the API allocate enough space for output using malloc, or you can
supply the space and have the system copy the returned string into the provided
bytes. If the appropriate field in the union (either string or data) is NULL, then the API
allocates enough space for the output using malloc. It is the callers responsibility to
free this allocated space using free when the memory is no longer in use. If the
appropriate field in the union (string or data) is not NULL, then the allocatedSize
field of JmsString must contain the number of bytes available to be written.

If there is not enough space in the string to contain the entire output, then
allocatedSize sets to the amount of space needed and the API called returns JMS_
NEED_SPACE. The appropriate field in the JmsString (either string or data) contains
as much data as could be stored up to the allocatedSize bytes. In this case, the
NULL character may or may not have been written at the end of the C string data
returned. Example:

To allocate one hundred bytes for the string output from a text message, you would set
the data pointer and the allocatedSize field to one hundred. The
JmsMessageGetTextMessage API returns JMS_NEED_SPACE with
allocatedSize set to two hundred. Call realloc on the original string to reset the
data pointer and call the function again. Now the call succeeds and you are able to
extract the string from the message handle. Alternatively, you can free the original
buffer and allocate a new buffer of the correct size.

15.3.5 Memory Allocation and Garbage Collection
All resources that you allocate must also be disposed of it properly. In Java, garbage
collection cleans up all objects that are no longer referenced. However, in C, all objects
must be explicitly cleaned up. All WebLogic JMS C API handles given to the user must
be explicitly destroyed. Notice that some handles have a verb that ends in Close
while others end in Destroy. This convention distinguishes between Java objects that
have a close method and those that do not. Example:

■ The javax.jms.Session object has a close method so the WebLogic JMS C
API has a JmsSessionClose function.

■ The javax.jms.ConnectionFactory object does not have a close method so
the WebLogic JMS C API has a JmsConnectionFactoryDestroy function.

15.3.6 Closing Connections
In Java JMS, closing a connection implicitly closes all subordinate sessions, producers,
and consumers. In the WebLogic JMS C API, closing a connection does not close any
subordinate sessions, producers, or consumers. After a connection is closed, all
subordinate handles are no longer available and need to be explicitly closed.

Note: A handle that has been closed or destroyed should never be
referenced again.

Workarounds for Client Crash Thread Detach Issue

WebLogic JMS C API 15-5

15.3.7 Helper Functions
The WebLogic JMS C API provides some helper functions that do not exist in
WebLogic JMS. These helpers are explained fully in the Oracle WebLogic Server JMS C
API Reference. For example:

JmsMessageGetSubclass operates on a JmsMessage handle and returns an integer
corresponding to the subclass of the message. In JMS, this could be accomplished
using instanceof.

15.4 Security Considerations
The WebLogic JMS C API supports WebLogic compatibility realm security mode based
on a username and password. The username and password must be passed to the
initial context in the SECURITY_PRINCIPAL and SECURITY_CREDENTIALS fields of
the hash table used to create the InitialContext object.

15.5 Implementation Guidelines
Be aware of the following when you implement the WebLogic JMS C API:

■ It does not support WebLogic Server JMS extensions, including XML messages.

■ It does not support JMS Object messages.

■ It creates an error log if an error is detected in the client. This error log is named
ULOG.mmddyy (month/day/year). This log file is fully internationalized using the
NLSPATH, LOCALE, and LANG environment variables of the client.

■ Users who want to translate the message catalog can use the gencat utility
provided on Windows or the gencat utility of the host platform. If the generated
catalog file is placed according to the NLSPATH, LOCALE, and LANG variables, then
the translated catalog will be used when writing messages to the log file.

■ You can set the following environment variables in the client environment:

– JMSDEBUG— Provides verbose debugging output from the client.

– JMSJVMOPTS—Provides extra arguments to the JVM loaded by the client.

– ULOGPFX— Configures the pathname and file prefix where the error log file is
placed.

15.6 Workarounds for Client Crash Thread Detach Issue
A C program that uses the JMS C client library may crash with a JVM failure. This
could be related to a known, intermittent race-condition that occurs only with certain
JVM products. The likelihood of failure can change based on the JVM version and
patch level, operating system, and hardware combination. Specifically, the JMS
C-Client library implicitly attaches C-threads to the JVM, but fails to detach them
when it is done with them. Suggested workarounds are as follows:

■ Upgrade to a newer JVM. Version 1.5 and later of the Sun JVM, and version R27.6
of the JRockit JVM do not have this problem, although it is still recommended to
call detach even with the updated JVMs. For more information about this issue
with the Sun JVM, see http://bugs.sun.com/bugdatabase/view_
bug.do?bug_id=6219874.

■ Add code in the client to detach the JVM from any C thread that exits and that has
previously called into the JMS C-API.

Workarounds for Client Crash Thread Detach Issue

15-6 Programming JMS for Oracle WebLogic Server

■ Do not allow any C thread that has previously called into the JMS C-API to exit
before the entire process exits.

The sample Java JNI code shown in Example 15–1 describes how to detach the thread
from the JVM.

Example 15–1 Sample Java JNI Code

#include <jni.h>

...

JavaVM *jvmList[JVM_LIST_SIZE];
jsize retSize = -1;
jint retVal = JNI_GetCreatedJavaVMs(jvmList, JVM_LIST_SIZE, &retSize);
if ((retVal != 0) || (retSize < 1)) {
 printf('ERROR: got %d/%d on JNI_getCreatedJavaVMs\n', retVal, retSize);
 return;
}
printf('INFO: got %d/%d on JNI_getCreatedJavaVMs\n', retVal, retSize);
/* The following line assumes that there's exactly one JVM: */
(*(jvmList[0]))->DetachCurrentThread(jvmList[0]);

If a program is not directly making JNI calls already, it may be necessary to add
compiler and linker parameters for access to the Java JNI libraries. For example, in
MicroSoft Visual C++, do the following:

■ Add -I$(JAVA_HOME)/include and -I$(JAVA_HOME)/include/win32 to
the compile

■ Add $(JAVA_HOME)/lib/jvm.lib to the link

A

Deprecated WebLogic JMS Features A-1

ADeprecated WebLogic JMS Features

This chapter describes how to configure and use Server Session Pools, a deprecated
JMS facility for defining a server-managed pool of server sessions. This facility enables
an application to process messages concurrently a deprecated release of WebLogic
Server.

■ Section A.1, "Defining Server Session Pools"

A.1 Defining Server Session Pools

WebLogic JMS implements an optional JMS facility for defining a server-managed
pool of server sessions. This facility enables an application to process messages
concurrently.

The server session pool:

■ Receives messages from a destination and passes them to a server-side message
listener that you provide to process messages. The message listener class provides
an onMessage() method that processes a message.

■ Processes messages in parallel by managing a pool of JMS sessions, each of which
executes a single-threaded onMessage() method.

The following figure illustrates the server session pool facility, and the relationship
between the application and the application server components.

Note: Session pools are now used rarely, as they are not a required
part of the Java EE specification, do not support JTA user transactions,
and are largely superseded by message-driven beans (MDBs), which
are simpler, easier to manage, and more capable. For more
information on designing MDBs, see "Message-Driven EJBs" in
Programming WebLogic Enterprise JavaBeans for Oracle WebLogic Server.

Defining Server Session Pools

A-2 Programming JMS for Oracle WebLogic Server

Figure A–1 Server Session Pool Facility

As illustrated in the figure, the application provides a single-threaded message
listener. The connection consumer, implemented by JMS on the application server,
performs the following tasks to process one or more messages:

1. Gets a server session from the server session pool.

2. Gets the server session's session.

3. Loads the session with one or more messages.

4. Starts the server session to consume messages.

5. Releases the server session back to pool when finished processing messages.

The following figure illustrates the steps required to prepare for concurrent message
processing.

Figure A–2 Preparing for Concurrent Message Processing

Applications can use other application server providers' session pool implementations
within this flow. Server session pools can also be implemented using message-driven
beans. For information on using message driven beans to implement server session
pools, see "Message-Driven EJBs" in Programming WebLogic Enterprise JavaBeans for
Oracle WebLogic Server.

Defining Server Session Pools

Deprecated WebLogic JMS Features A-3

If the session pool and connection consumer were defined during configuration, you
can skip this section. For more information on configuring server session pools and
connection consumers, see "Configuring Basic JMS System Resources" in Configuring
and Managing JMS for Oracle WebLogic Server.

Currently, WebLogic JMS does not support the optional
TopicConnection.createDurableConnectionConsumer() operation. For
more information on this advanced JMS operation, refer to the JMS Specification,
described at http://www.oracle.com/technetwork/java/jms/index.html.

A.1.1 Step 1: Look Up Server Session Pool Factory in JNDI
You use a server session pool factory to create a server session pool.

WebLogic JMS defines one ServerSessionPoolFactory object, by default:
weblogic.jms.extensions.ServerSessionPoolFactory:<name>, where
<name> specifies the name of the JMS server to which the session pool is created.

Once it has been configured, you can look up a server session pool factory by first
establishing a JNDI context (context) using the
NamingManager.InitialContext() method, at
http://download.oracle.com/javase/1.4.2/docs/api/javax/naming/In
itialContext.html#InitialContext(). For any application other than a servlet
application, you must pass an environment used to create the initial context. For more
information, see the NamingManager.InitialContext() Javadoc, at
http://download.oracle.com/javase/1.4.2/docs/api/javax/naming/In
itialContext.html#InitialContext().

Once the context is defined, to look up a server session pool factory in JNDI use the
following code:

factory = (ServerSessionPoolFactory) context.lookup(<ssp_name>);

The <ssp_name> specifies a qualified or non-qualified server session pool factory
name.

For more information about server session pool factories, see Section 2.4.7,
"ServerSessionPoolFactory" or the
weblogic.jms.extensions.ServerSessionPoolFactory Javadoc.

A.1.2 Step 2: Create a Server Session Pool Using the Server Session Pool Factory
You can create a server session pool for use by queue (PTP) or topic (Pub/Sub)
connection consumers, using the ServerSessionPoolFactory methods described
in the following sections.

For more information about server session pools, see Section 2.4.8, "ServerSessionPool"
or the javax.jms.ServerSessionPool Javadoc, at
http://download.oracle.com/javaee/5/api/javax/jms/ServerSessionP
ool.html.

A.1.2.1 Create a Server Session Pool for Queue Connection Consumers
The ServerSessionPoolFactory provides the following method for creating a
server session pool for queue connection consumers:

public ServerSessionPool getServerSessionPool(
 QueueConnection connection,
 int maxSessions,
 boolean transacted,

Defining Server Session Pools

A-4 Programming JMS for Oracle WebLogic Server

 int ackMode,
 String listenerClassName
) throws JMSException

You must specify the queue connection associated with the server session pool, the
maximum number of concurrent sessions that can be retrieved by the connection
consumer (to be created in step 3), whether or not the sessions are transacted, the
acknowledge mode (applicable for non-transacted sessions only), and the message
listener class that is instantiated and used to receive and process messages
concurrently.

For more information about the ServerSessionPoolFactory class methods, see
the weblogic.jms.extensions.ServerSessionPoolFactory Javadoc. For
more information about the ConnectionConsumer class, see the
javax.jms.ConnectionConsumer Javadoc, described at
http://download.oracle.com/javaee/5/api/javax/jms/ConnectionCons
umer.html.

A.1.2.2 Create a Server Session Pool for Topic Connection Consumers
The ServerSessionPoolFactory provides the following method for creating a
server session pool for topic connection consumers:

public ServerSessionPool getServerSessionPool(
 TopicConnection connection,
 int maxSessions,
 boolean transacted,
 int ackMode,
 String listenerClassName
) throws JMSException

You must specify the topic connection associated with the server session pool, the
maximum number of concurrent sessions that can be retrieved by the connection (to be
created in step 3), whether or not the sessions are transacted, the acknowledge mode
(applicable for non-transacted sessions only), and the message listener class that is
instantiated and used to receive and process messages concurrently.

For more information about the ServerSessionPoolFactory class methods, see
the weblogic.jms.extensions.ServerSessionPoolFactory Javadoc. For
more information about the ConnectionConsumer class, see the
javax.jms.ConnectionConsumer Javadoc, described at
http://download.oracle.com/javaee/5/api/javax/jms/ConnectionCons
umer.html.

A.1.3 Step 3: Create a Connection Consumer
You can create a connection consumer for retrieving server sessions and processing
messages concurrently using one of the following methods:

■ Configuring the server session pool and connection consumer during the
configuration, as described in "Configuring Basic JMS System Resources" in
Configuring and Managing JMS for Oracle WebLogic Server.

■ Including in your application the Connection methods described in the following
sections.

For more information about the ConnectionConsumer class, see Section 2.4.10,
"ConnectionConsumer" or the javax.jms.ConnectionConsumer Javadoc,
described at

Defining Server Session Pools

Deprecated WebLogic JMS Features A-5

http://download.oracle.com/javaee/5/api/javax/jms/ConnectionCons
umer.html.

A.1.3.1 Create a Connection Consumer for Queues
The QueueConnection provides the following method for creating connection
consumers for queues:

public ConnectionConsumer createConnectionConsumer(
 Queue queue,
 String messageSelector,
 ServerSessionPool sessionPool,
 int maxMessages
) throws JMSException

You must specify the name of the associated queue, the message selector for filtering
messages, the associated server session pool for accessing server sessions, and the
maximum number of messages that can be assigned to the server session
simultaneously. For information about message selectors, see Section 6.9, "Filtering
Messages."

For more information about the QueueConnection class methods, see the
javax.jms.QueueConnection Javadoc, at
http://download.oracle.com/javaee/5/api/javax/jms/QueueConnectio
n.html. For more information about the ConnectionConsumer class, see the
javax.jms.ConnectionConsumer Javadoc, at
http://download.oracle.com/javaee/5/api/javax/jms/ConnectionCons
umer.html.

A.1.3.2 Create a Connection Consumer for Topics
The TopicConnection provides the following two methods for creating
ConnectionConsumers for topics:

public ConnectionConsumer createConnectionConsumer(
 Topic topic,
 String messageSelector,
 ServerSessionPool sessionPool,
 int maxMessages
) throws JMSException

public ConnectionConsumer createDurableConnectionConsumer(
 Topic topic,
 String messageSelector,
 ServerSessionPool sessionPool,
 int maxMessages
) throws JMSException

For each method, you must specify the name of the associated topic, the message
selector for filtering messages, the associated server session pool for accessing server
sessions, and the maximum number of messages that can be assigned to the server
session simultaneously. For information about message selectors, see Section 6.9,
"Filtering Messages."

Each method creates a connection consumer; but, the second method also creates a
durable connection consumer for use with durable subscribers. For more information
about durable subscribers, see Section 6.7, "Setting Up Durable Subscriptions."

For more information about the TopicConnection class methods, see the
javax.jms.TopicConnection Javadoc, at

Defining Server Session Pools

A-6 Programming JMS for Oracle WebLogic Server

http://download.oracle.com/javaee/5/api/javax/jms/TopicConnectio
n.html. For more information about the ConnectionConsumer class, see the
javax.jms.ConnectionConsumer Javadoc, at
http://download.oracle.com/javaee/5/api/javax/jms/ConnectionCons
umer.html.

A.1.4 Example: Setting Up a PTP Client Server Session Pool
The following example illustrates how to set up a server session pool for a JMS client.
The startup() method is similar to the init() method in the
examples.jms.queue.QueueSend example, as described in Section 5.2.9,
"Example: Setting Up a PTP Application." This method also sets up the server session
pool.

The following illustrates the startup() method, with comments highlighting each
setup step.

Include the following package on the import list to implement a server session pool
application:

Define the session pool factory static variable required for the creation of the session
pool.

private final static String SESSION_POOL_FACTORY=
 "weblogic.jms.extensions.ServerSessionPoolFactory:examplesJMSServer";

private QueueConnectionFactory qconFactory;
private QueueConnection qcon;
private QueueSession qsession;
private QueueSender qsender;
private Queue queue;
private ServerSessionPoolFactory sessionPoolFactory;
private ServerSessionPool sessionPool;
private ConnectionConsumer consumer;

Create the required JMS objects.

public String startup(
 String name,
 Hashtable args
) throws Exception

{
 String connectionFactory = (String)args.get("connectionFactory");
 String queueName = (String)args.get("queue");
 if (connectionFactory == null || queueName == null) {
 throw new
IllegalArgumentException("connectionFactory="+connectionFactory+
 ", queueName="+queueName);
 }
 Context ctx = new InitialContext();
 qconFactory = (QueueConnectionFactory)
 ctx.lookup(connectionFactory);
 qcon =qconFactory.createQueueConnection();
 qsession = qcon.createQueueSession(false,
 Session.AUTO_ACKNOWLEDGE);
 queue = (Queue) ctx.lookup(queueName);
 qcon.start();

Defining Server Session Pools

Deprecated WebLogic JMS Features A-7

A.1.4.1 Step 1
Look up the server session pool factory in JNDI.

 sessionPoolFactory = (ServerSessionPoolFactory)
 ctx.lookup(SESSION_POOL_FACTORY);

A.1.4.2 Step 2
Create a server session pool using the server session pool factory, as follows:

 sessionPool = sessionPoolFactory.getServerSessionPool(qcon, 5,
 false, Session.AUTO_ACKNOWLEDGE,
 examples.jms.startup.MsgListener);

The code defines the following:

■ qcon as the queue connection associated with the server session pool

■ 5 as the maximum number of concurrent sessions that can be retrieved by the
connection consumer (to be created in step 3)

■ Sessions will be non-transacted (false)

■ AUTO_ACKNOWLEDGE as the acknowledge mode

■ The examples.jms.startup.MsgListener will be used as the message
listener that is instantiated and used to receive and process messages concurrently.

A.1.4.3 Step 3
Create a connection consumer, as follows:

The code defines the following:

 consumer = qcon.createConnectionConsumer(queue, "TRUE",
 sessionPool, 10);

■ queue as the associated queue

■ TRUE as the message selector for filtering messages

■ sessionPool as the associated server session pool for accessing server sessions

■ 10 as the maximum number of messages that can be assigned to the server session
simultaneously

For more information about the JMS classes used in this example, see Section 2.4,
"Understanding the JMS API," or the javax.jms Javadoc at
http://www.oracle.com/technetwork/java/jms/index.html.

A.1.5 Example: Setting Up a Pub/Sub Client Server Session Pool
The following example illustrates how to set up a server session pool for a JMS client.
The startup() method is similar to the init() method in the
examples.jms.topic.TopicSend example, as described in Section 5.2.10,
"Example: Setting Up a Pub/Sub Application." It also sets up the server session pool.

The following illustrates startup() method, with comments highlighting each setup
step.

Include the following package on the import list to implement a server session pool
application:

import weblogic.jms.extensions.ServerSessionPoolFactory

Defining Server Session Pools

A-8 Programming JMS for Oracle WebLogic Server

Define the session pool factory static variable required for the creation of the session
pool.

private final static String SESSION_POOL_FACTORY=
 "weblogic.jms.extensions.ServerSessionPoolFactory:examplesJMSServer";

private TopicConnectionFactory tconFactory;
private TopicConnection tcon;
private TopicSession tsession;
private TopicSender tsender;
private Topic topic;
private ServerSessionPoolFactory sessionPoolFactory;
private ServerSessionPool sessionPool;
private ConnectionConsumer consumer;

Create the required JMS objects.

public String startup(
 String name,
 Hashtable args
) throws Exception

{
 String connectionFactory = (String)args.get("connectionFactory");
 String topicName = (String)args.get("topic");
 if (connectionFactory == null || topicName == null) {
 throw new
IllegalArgumentException("connectionFactory="+connectionFactory+
 ", topicName="+topicName);
 }
 Context ctx = new InitialContext();
 tconFactory = (TopicConnectionFactory)
 ctx.lookup(connectionFactory);
 tcon = tconFactory.createTopicConnection();
 tsession = tcon.createTopicSession(false,
 Session.AUTO_ACKNOWLEDGE);
 topic = (Topic) ctx.lookup(topicName);
 tcon.start();

A.1.5.1 Step 1
Look up the server session pool factory in JNDI.

 sessionPoolFactory = (ServerSessionPoolFactory)
 ctx.lookup(SESSION_POOL_FACTORY);

A.1.5.2 Step 2
Create a server session pool using the server session pool factory, as follows:

 sessionPool = sessionPoolFactory.getServerSessionPool(tcon, 5,
 false, Session.AUTO_ACKNOWLEDGE,
 examples.jms.startup.MsgListener);

The code defines the following:

■ tcon as the topic connection associated with the server session pool

■ 5 as the maximum number of concurrent sessions that can be retrieved by the
connection consumer (to be created in step 3)

■ Sessions will be non-transacted (false)

Defining Server Session Pools

Deprecated WebLogic JMS Features A-9

■ AUTO_ACKNOWLEDGE as the acknowledge mode

■ The examples.jms.startup.MsgListener will be used as the message
listener that is instantiated and used to receive and process messages concurrently.

A.1.5.3 Step 3
Create a connection consumer, as follows:

 consumer = tcon.createConnectionConsumer(topic, "TRUE",
 sessionPool, 10);

The code defines the following:

■ topic as the associated topic

■ TRUE as the message selector for filtering messages

■ sessionPool as the associated server session pool for accessing server sessions

■ 10 as the maximum number of messages that can be assigned to the server session
simultaneously

For more information about the JMS classes used in this example, see Section 2.4,
"Understanding the JMS API," or the javax.jms Javadoc described at
http://www.oracle.com/technetwork/java/jms/index.html.

Defining Server Session Pools

A-10 Programming JMS for Oracle WebLogic Server

B

FAQs: Integrating Remote JMS Providers B-1

BFAQs: Integrating Remote JMS Providers

This chapter provides information on how to integrate WebLogic Server with remote
JMS providers. The Java EE standards for JMS (messaging), JTA (transaction), and
JNDI (naming) work together to provide reliable java-to-java messaging between
different host machines and even different vendors. Oracle WebLogic Server provides
a variety of tools that leverage these APIs to aid integrating remote JMS providers into
a local application.

■ Section B.1, "Understanding JMS and JNDI Terminology"

■ Section B.2, "Understanding Transactions"

■ Section B.3, "How to Integrate with a Remote Provider"

■ Section B.4, "Best Practices when Integrating with Remote Providers"

■ Section B.5, "Using Foreign JMS Server Definitions"

■ Section B.6, "Using EJB/Servlet JMS Resource References"

■ Section B.7, "Using WebLogic Store-and-Forward"

■ Section B.8, "Using WebLogic JMS SAF Client"

■ Section B.9, "Using a Messaging Bridge"

■ Section B.10, "Using Messaging Beans"

■ Section B.11, "Using AQ JMS"

■ Section B.12, "JMS Interoperability Resources"

B.1 Understanding JMS and JNDI Terminology
Q. What is a remote JMS provider?

A. A remote JMS provider is a JMS server that is hosted outside a local stand-alone
WebLogic server or outside WebLogic server cluster. The remote JMS server may be a
WebLogic or a non-WebLogic (foreign) JMS server.

Q. What is JNDI?

A. JNDI (Java Naming and Directory Interface) is a Java EE lookup service that maps
names to services and resources. JNDI provides a directory of advertised resources
that exist on a particular stand-alone (non-clustered) WebLogic server, or within a
WebLogic server cluster. Examples of such resources include JMS connection factories,
JMS destinations, JDBC (database) data sources, and application EJBs.

A client connecting to any WebLogic server in a WebLogic cluster can transparently
reference any JNDI advertised service or resource hosted on any WebLogic server

Understanding Transactions

B-2 Programming JMS for Oracle WebLogic Server

within the cluster. The client doesn't require explicit knowledge of which particular
WebLogic server in the cluster hosts a desired resource.

Q. What is a JMS connection factory?

A. A JMS connection factory is a named entity resource stored in JNDI. Applications,
message driven beans (MDBs), and messaging bridges lookup a JMS connection
factory in JNDI and use it to create JMS connections. JMS connections are used in turn
to create JMS sessions, producers, and consumers that can send or receive messages.

Q. What is a JMS connection-id?

A. JMS connection-ids are used to name JMS client connections. Durable subscribers
require named connections, otherwise connections are typically unnamed. Note that
within a clustered set of servers or stand-alone server, only one JMS client connection
may use a particular named connection at a time. An attempt to create new connection
with the same name as an existing connection will fail.

Q. What is the difference between a JMS topic and a JMS queue?

A. JMS queues deliver a message to one consumer, while JMS topics deliver a copy of
each message to each consumer.

Q. What is a topic subscription?

A. A topic subscription can be thought of as an internal queue of messages waiting to
be delivered to a particular subscriber. This internal queue accumulates copies of each
message published to the topic after the subscription was created. Conversely, it does
not accumulate messages that were sent before the subscription was created.
Subscriptions are not sharable, only one subscriber may subscribe to a particular
subscription at a time.

Q. What is a non-durable topic subscriber?

A. A non-durable subscriber creates unnamed subscriptions that exist only for the life
of the JMS client. Messages in a non-durable subscription are never persisted—even
when the message's publisher specifies a persistent quality of service (QOS). Shutting
down a JMS server terminates all non-durable subscriptions.

Q. What is a durable subscriber?

A. A durable subscriber creates named subscriptions that continue to exist even after
the durable subscriber exits or the server reboots. A durable subscriber connects to its
subscription by specifying topic-name, connection-id, and subscriber-id. Together, the
connection-id and subscriber-id uniquely name the subscriber's subscription within a
cluster. A copy of each persistent message published to a topic is persisted to each of
the topic's durable subscriptions. In the event of a server crash and restart, durable
subscriptions and their unconsumed persistent messages are recovered.

B.2 Understanding Transactions
Q. What is a transaction?

A. A transaction is a set of distinct application operations that must be treated as an
atomic unit. To maintain consistency, all operations in a transaction must either all
succeed or all fail. See "Introducing Transactions" in Programming JTA for Oracle
WebLogic Server.

Q. Why are transactions important for integration?

A. Integration applications often use transactions to assure data consistency. For
example, to assure that a message is forwarded exactly-once, a single transaction is

Understanding Transactions

FAQs: Integrating Remote JMS Providers B-3

often used to encompass the two operations of receiving the message from its source
destination and sending to the target destination. Transactions are also often used to
ensure atomicity of updating a database and performing a messaging operation.

Q. What is a JTA/XA/global transaction?

A. In Java EE, the terms JTA transaction, XA transaction, user transaction, and global
transaction are often used interchangeably to refer to a single global transaction. Such
a transaction may include operations on multiple different XA capable resources and
even different resource types. A JTA transaction is always associated with the current
thread, and may be passed from server to server as one application calls another. A
common example of an XA transaction is one that includes both a WebLogic JMS
operation and a JDBC (database) operation.

Q. What is a local transaction?

A. A JMS local transaction is a transaction in which only a single resource or service
may participate. A JMS local transaction is associated with a particular JMS session
where the destinations of a single vendor participate. Unlike XA transactions, a
database operation can not participate in a JMS local transaction.

Q. How does JMS provide local transactions?

A. Local transactions are enabled by a JMS specific API called transacted
sessions. For vendors other than WebLogic JMS, the scope of a transacted session is
typically limited to a single JMS server. In WebLogic JMS, multiple JMS operations on
multiple destinations within an entire cluster can participate in a single transacted
session's transaction. In other words, it is scoped to a WebLogic cluster and no remote
JMS provider to the JMS session's cluster can participate in a transaction.

Q. Are JMS local transactions useful for integration purposes?

A. Local transactions are generally not useful for integration purposes as they are
limited in scope to a single resource, typically a messaging or database server.

Q. What is Automatic Transaction Enlistment?

A. Operations on resources such as database servers or messaging servers participate
in a Java EE JTA transaction provided that:

■ the resource is XA transaction capable

■ the resource has been enlisted with the current transaction

■ the client library used to access the resource is transaction aware (XA enabled).

Automatic participation of operations on an XA capable resource in a transaction is
technically referred to as automatic enlistment.

■ WebLogic clients using XA enabled WebLogic APIs automatically enlist operation
in the current thread's JTA transaction. Examples of XA enabled WebLogic clients
include WebLogic JMS XA enabled (or user transaction enabled) connection
factories, and JDBC connection pool data sources that are global transaction
enabled.

■ Foreign (non-WebLogic) JMS clients do not automatically enlist in the current JTA
transaction. Such clients must either go through an extra step of programmatically
enlisting in the current transaction, or use WebLogic provided features that wrap
the foreign JMS client and automatically enlist when the foreign JMS client is
accessed via wrapper APIs.

JMS features that provide automatic enlistment for foreign vendors are:

■ Message-Driven EJBs

How to Integrate with a Remote Provider

B-4 Programming JMS for Oracle WebLogic Server

■ JMS resource-reference pools

■ Messaging Bridges

To determine if a non-WebLogic vendor's JMS connection factory is XA capable, check
the vendor documentation. Remember, support for transacted sessions (local
transactions) does not imply support for global/XA transactions.

B.3 How to Integrate with a Remote Provider
Q. What does a JMS client do to communicate with a remote JMS provider?

A. To communicate with any JMS provider, a JMS client must perform the following
steps:

1. Look up a JMS connection factory object and a JMS destination object using JNDI

2. Create a JMS connection using the connection factory object

3. Create message consumers or producers using the JMS connection and JMS
destination objects.

Q. What information do I need to set up communications with a remote JMS provider?

A. You will need the following information to set up communications with a remote
JMS provider:

■ The destination type—whether the remote JMS destination is a queue or a topic.

■ The JNDI name of the remote JMS destination.

■ For durable topic subscribers—the connection-id and subscriber-id names that
uniquely identify them. Message Driven EJBs provide default values for these
values based on the EJB name.

■ For non-WebLogic remote JMS providers

– Initial Context Factory Class Name— the java class name of the remote JMS
Provider's JNDI lookup service.

– The file location of the java jars containing the remote JMS provider's JMS
client and JNDI client libraries. Ensure that these jars are specified in the local
JVM's classpath.

■ The URL of the remote provider's JNDI service. For WebLogic servers, the URL is
normally in the form t3://hostaddress:port. If you are tunneling over HTTP,
begin the URL with http rather than t3. No URL is required for server
application code that accesses a WebLogic JMS server that resides on the same
WebLogic server or WebLogic cluster as the application.

■ The JNDI name of the remote provider's JMS connection factory. This connection
factory must exist on the remote provider, not the local provider.

If the JMS application requires transactions, the connection factory must be XA
capable. WebLogic documentation refers to XA capable factories as user
transactions enabled.

By default, WebLogic servers automatically provide three non-configurable
connection factories:

– weblogic.jms.ConnectionFactory—a non-XA capable factory.

– weblogic.jms.XAConnectionFactory—an XA-capable factory

Best Practices when Integrating with Remote Providers

FAQs: Integrating Remote JMS Providers B-5

– weblogic.jms.MessageDrivenBeanConnectionFactory—an
XA-capable factory for message driven EJBs.

Additional WebLogic JMS connection factories must be explicitly configured.

Q. What if a foreign JMS provider JNDI service has limited functionality?

A. The preferred method for locating JMS provider connection factories and
destinations is to use a standard Java EE JNDI lookup. Occasionally a non-WebLogic
JMS provider's JNDI service is hard to use or unreliable. The solution is to create a
startup class or load-on-start servlet that runs on a WebLogic server that does the
following:

■ Uses the foreign provider's proprietary (non-JNDI) APIs to locate connection
factories and JMS destinations.

■ Registers the JMS destinations and JMS connection factories in WebLogic JNDI.

Q. How can I pool JMS resources?

A. Remote and local JMS resources, such as client connections and sessions, are often
pooled to improve performance. Message driven EJBs automatically pool their internal
JMS consumers. JMS consumers and producers accessed through resource-references
are also automatically pooled.

Q. What version interoperability does WebLogic provide?

A. All WebLogic server releases interoperate as described in "WebLogic Server
Compatibility" in Information Roadmap for Oracle WebLogic Server .

Q. What tools are available for integrating with remote JMS providers?

A. The following table summarizes the tools available for integrating with remote JMS
providers:

B.4 Best Practices when Integrating with Remote Providers
Q. How do I receive messages from a remote a JMS provider from within an EJB or
Servlet?

A. Use a message driven EJB. Synchronous receives are not recommended because
they idle a server side thread while the receiver blocks waiting for a message. See
Section B.10, "Using Messaging Beans."

Method Automatic Enlistment JMS Resource Pooling

Direct use of the remote
provider's JMS client

Yes for a WebLogic server
provider. Other providers
must perform enlistment
programmatically.

No. Can be done
programmatically.

Messaging Bridge Yes N/A

Foreign JMS Server
Definition

No. To get automatic
enlistment, use in conjunction
with a JMS resource reference
or MDB.

No. To get resource pooling, use
in conjunction with a JMS
resource reference or MDB.

JMS Resource Reference Yes Yes

Message Driven EJBs Yes Yes

SAF Client N/A N/A

SAF Yes N/A

Using Foreign JMS Server Definitions

B-6 Programming JMS for Oracle WebLogic Server

Q. How do I send messages to a remote JMS provider from within an EJB or Servlet?

A. Use a resource reference. It provides pooling and automatic enlistment. See
Section B.6, "Using EJB/Servlet JMS Resource References." In limited cases where
wrappers are not sufficient, you can write your own pooling code.

If the target destination is remote, consider adding a local destination and messaging
bridge to implement a store-and-forward high availability design. See Section B.9,
"Using a Messaging Bridge."

Another best practice is to use foreign JMS server definitions. Foreign JMS server
definitions allow an application's JMS resources to be administratively changed and
avoid the problem of hard-coding URLs into application code. In addition, foreign JMS
server definitions are required to enable resource references to reference remote JMS
providers. See Section B.5, "Using Foreign JMS Server Definitions."

Q. How do I communicate with remote JMS providers from a client?

A. If the destination is not provided by WebLogic Server, and there is a need to include
operations on the destination in a global transaction, use a server proxy to encapsulate
JMS operations on the foreign vendor in an EJB. Applications running on WebLogic
server have facilities to enlist non-WebLogic JMS providers that are transaction (XA)
capable with the current transaction.

If you need store-and-forward capability, consider sending to local destinations and
using messaging bridges to forward the message to the foreign destination. See:

■ Section B.9, "Using a Messaging Bridge"

■ Section B.7, "Using WebLogic Store-and-Forward"

■ Section B.8, "Using WebLogic JMS SAF Client"

Another option is to simply use the remote vendor's JNDI and JMS API directly or
configuring foreign JMS providers to avoid hard-coding references to them. You will
need to add the foreign provider's class libraries to the client's class-path.

Q. How can I tune WebLogic JMS interoperability features?

A. See Tuning WebLogic Server EJBs, Tuning WebLogic Message Bridge, and Tuning
WebLogic JMS Store-and-Forward in Performance and Tuning for Oracle WebLogic Server.

B.5 Using Foreign JMS Server Definitions
Q. What are Foreign JMS Server Definitions?

A. Foreign JMS server definitions are an administratively configured symbolic link
between a JNDI object in a remote JNDI directory, such as a JMS connection factory or
destination object, and a JNDI name in the JNDI name space for a stand-alone
WebLogic Server or a WebLogic cluster. They can be configured using the
Administration console, standard JMX MBean APIs, or programmatically using
scripting. See Section 4.5, "Simplified Access to Foreign JMS Providers."

Q. When is it best to use a Foreign JMS Server Definition?

A. For this release, a Foreign JMS Server definition conveniently moves JMS JNDI
parameters into one central place. You can share one definition between EJBs, servlets,
and messaging bridges. You can change a definition without recompiling or changing
deployment descriptors. They are especially useful for:

■ Any message driven EJB (MDB) where it is desirable to administer standard JMS
communication properties via configuration rather than hard code them into the

Using EJB/Servlet JMS Resource References

FAQs: Integrating Remote JMS Providers B-7

application's EJB deployment descriptors. This applies even if the MDB's source
destination isn't remote.

■ Any MDB that has a destination remote to the cluster. This simplifies deployment
descriptor configuration and enhances administrative control.

■ Any EJB or servlet that sends or receives from a remote destination.

■ Enabling resource references to refer to remote JMS providers. See Section B.6,
"Using EJB/Servlet JMS Resource References."

B.6 Using EJB/Servlet JMS Resource References
Q. What are JMS resource references?

A. Resource references are specified by servlet and EJB application developers and
packaged with an application. They are easy-to-use and provide a level of indirection
that lets applications reference JNDI names defined in an EJB descriptor rather than
hard-coding JNDI names directly into application source code.

JMS resource-references provide two additional features:

■ Automatic pooling of JMS resources when those resources are closed by the
application.

■ Automatic enlistment of JMS resources with the current transaction, even for
non-WebLogic JMS providers.

Inside an EJB or a servlet application code, use JMS resource references by including
resource-ref elements in the deployment descriptors and then use JNDI a context to
look them up using the syntax java:comp/env/jms/<reference name>.

Resource references provide no functionality outside of application code, and therefore
are not useful for configuring a message driven EJB's source destination or a
messaging bridge's source or target destinations.

For WebLogic documentation on JMS resource-reference pooling, see Chapter 4,
"Enhanced Support for Using WebLogic JMS with EJBs and Servlets."

Q. What advantages do JMS resource references provide?

A. JMS resource references provide the following advantages:

■ They ensure portability of servlet and EJB applications: they can be used to change
an application's JMS resource without recompiling the application's source code.

■ They provide automatic pooling of JMS Connection, Session, and
MessageProducer objects.

■ They provide automatic transaction enlistment for non-WebLogic JMS providers.
This requires XA support in the JMS provider. If resource references aren't used,
then enlisting a non-WebLogic JMS provider with the current transaction requires
extra programmatic steps.

Q. How do I use resource references with foreign JMS providers?

A. To enable resource references to reference remote JMS providers, they must be used
in conjunction with a foreign JMS definition. This is because resources references do
not provide a place to specify a URL or initial context factory. See Section B.5, "Using
Foreign JMS Server Definitions."

Q. How do I use resource references with non-transactional messaging?

Using WebLogic Store-and-Forward

B-8 Programming JMS for Oracle WebLogic Server

A. For non-transactional cases, do not use a global transaction (XA) capable connection
factory. This will impact messaging performance. If you do, the resource reference will
automatically begin and commit an internal transaction for each messaging operation.
See Section B.2, "Understanding Transactions."

B.7 Using WebLogic Store-and-Forward
Q. What is the WebLogic Store-and-Forward Service?

A. The WebLogic Store-and-Forward (SAF) Service enables WebLogic Server to deliver
messages reliably between applications that are distributed across WebLogic Server
instances. For example, with the SAF service, an application that runs on or connects
to a local WebLogic Server instance can reliably send messages to a destination that
resides on a remote server. If the destination is not available at the moment the
messages are sent, either because of network problems or system failures, then the
messages are saved on a local server instance, and are forwarded to the remote
destination once it becomes available. See Understanding the Store-and-Forward
Service in Configuring and Managing Store-and-Forward for Oracle WebLogic Server.

Q. When should I use the WebLogic Store-and-Forward Service?

A. The WebLogic Store-and-Forward (SAF) Service should be used when forwarding
JMS messages between WebLogic Server 9.0 or later domains. The SAF service can
deliver messages:

■ Between two stand-alone server instances.

■ Between server instances in a cluster.

■ Across two clusters in a domain.

■ Across separate domains.

Q. When can't I use WebLogic Store-and-Forward?

A. You can't use the WebLogic Store-and-Forward service in the following situations:

■ Receiving from a remote destination—use a message driven EJB or implement a
client consumer directly.

■ Sending messages to a local destination—send directly to the local destination.

■ Forwarding messages to prior releases of WebLogic Server. See Section B.9, "Using
a Messaging Bridge."

■ Interoperating with third-party JMS products (for example, MQSeries). See
Section B.9, "Using a Messaging Bridge."

■ When using temporary destinations with the JMSReplyTo field to return a
response to a request.

■ Environment with low tolerance for message latency. SAF increases latency and
may lower throughput.

B.8 Using WebLogic JMS SAF Client
Q. What is the WebLogic JMS SAF Client?

A. The JMS SAF Client feature extends the JMS store-and-forward service introduced
in WebLogic Server 9.0 to standalone JMS clients. Now JMS clients can reliably send
messages to server-side JMS destinations, even when the client cannot reach a
destination (for example, due to a temporary network connection failure). While
disconnected from the server, messages sent by a JMS SAF client are stored locally on

Using a Messaging Bridge

FAQs: Integrating Remote JMS Providers B-9

the client file system and are forwarded to server-side JMS destinations when the
client reconnects. See Reliably Sending Messages Using the JMS SAF Client.

Q. When should I use the WebLogic JMS SAF Client?

A. Use when forwarding JMS messages to WebLogic Server 9.0 or later domains.

Q. What are the limitations of using the JMS SAF Client?

A. See Limitations of Using the JMS SAF Client.

B.9 Using a Messaging Bridge
Q. What is a messaging bridge?

A. Messaging bridges are administratively configured services that run on a WebLogic
server. They automatically forward messages from a configured source JMS
destination to a configured target JMS destination. These destinations can be on
different servers than the bridge and can even be foreign (non-WebLogic) destinations.
Each bridge destination is configured using the four common properties of a remote
provider:

■ The initial context factory.

■ The connection URL.

■ The connection factory JNDI name.

■ The destination JNDI name.

Messaging bridges can be configured to use transactions to ensure exactly-once
message forwarding from any XA capable (global transaction capable) JMS provider to
another.

Q. When should I use a messaging bridge?

A. Typically, messaging bridges are used to provide store-and-forward high
availability design requirements. A messaging bridge is configured to consume from a
sender's local destination and forward it to the sender's actual target remote
destination. This provides high availability because the sender is still able to send
messages to its local destination even when the target remote destination is
unreachable. When a remote destination is not reachable, the local destination
automatically begins to store messages until the bridge is able to forward them to the
target destination when the target becomes available again.

Q. When should I avoid using a messaging bridge?

A. Other methods are preferred in the following situations:

■ Receiving from a remote destination—use a message driven EJB or implement a
client consumer directly.

■ Sending messages to a local destination—send directly to the local destination.

■ Environment with low tolerance for message latency. Messaging Bridges increase
latency and may lower throughput. Messaging bridges increase latency for
messages as they introduce an extra destination in the message path and may
lower throughput because they forward messages using a single thread.

■ Forward messages between WebLogic 9.0 domains—Use WebLogic
Store-and-Forward. See Section B.7, "Using WebLogic Store-and-Forward."

Q. Why are some of my messages not being forwarded?

Using Messaging Beans

B-10 Programming JMS for Oracle WebLogic Server

A. Normally, a messaging bridge should forward all messages. If some messages are
not being forwarded, here are some possible reasons:

■ Some messages may have an expiration time, in which case either the JMS
provider for the source or target destination expires the message.

■ If you configured the bridge source destination to specify a selector filter, only the
filtered messages are forwarded.

■ A bridge does not directly provide an option to automatically move messages to
an error destination, or to automatically delete messages, after a limited number of
forward attempts. That said, it is possible that a JMS provider may provide such
an option, which could, in turn, effect any messages on the bridge source
destination. If a redelivery limit option is enabled on the JMS provider that hosts
the bridge source destination, you may need to reconfigure the provider to prevent
the bridge automatic retry mechanism from causing messages to exceed the
redelivery limit.

B.10 Using Messaging Beans
Q. What is a Message Driven EJB (MDB)?

A. Message Driven EJBs are EJB containers that internally use standard JMS APIs to
asynchronously receive messages from local, remote, or even foreign JMS destinations
and then call application code to process the messages. MDBs have the following
characteristics:

■ Automatically connects to a source destination and automatically retries
connecting if the remote destination is inaccessible.

■ Support automatic enlistment of the received messages in container managed
transactions, even when the JMS provider is not WebLogic.

■ Automatically pool their internal JMS connections, sessions, and consumers.

■ A MDB's source destination, URL, and connection factory are configured in the
EJB and WebLogic descriptors which are packaged as part of an application.

■ The messaging processing application logic is contained in a single method
callback onMessage().

■ AMDB is a full-fledged EJB that supports transactions, security, JDBC, and other
typical EJB actions.

For more information, see Message-Driven EJBs in Programming WebLogic Enterprise
JavaBeans for Oracle WebLogic Server.

Q. When should I use a MDB?

A. MDBs are the preferred mechanism for WebLogic server applications that receive
and process JMS messages.

Q. Do I need to use a Messaging Bridge with a MDB?

A. Configure MDBs to directly consume from their source destination rather than
insert a messaging bridge between them. MDBs automatically retry connecting to their
source destination if the source destination is inaccessible, so there is no need to insert
a messaging bridge in the message path to provide higher availability. Introducing a
messaging bridge may have a performance impact. See Section B.9, "Using a
Messaging Bridge."

Q. What is the best way to configure a MDB?

JMS Interoperability Resources

FAQs: Integrating Remote JMS Providers B-11

A. The following section provides tips for configuring a MDB:

■ To configure MDB concurrency and thread pools, use the
max-beans-in-free-pool and dispatch-policy descriptor fields.
WebLogic may create fewer concurrent instances than
max-beans-in-free-pool depending on the number of available server
threads in the MDB's thread pool.

■ Use foreign JMS server definitions when configuring a MDB to consume from a
remote JMS provider. Although WebLogic MDB descriptors can be configured to
directly refer to remote destinations, this information is packaged with the
application and is not dynamically editable. You should configure a foreign JMS
server definition and then configure the MDB to reference the foreign definition
instead. Please note that some documentation refers to foreign JMS server
definitions as wrappers. See Section B.5, "Using Foreign JMS Server Definitions."

■ Use care when configuring a MDB for container managed transactions. A MDB
supports container managed XA transactions when a MDB's descriptor files have
transaction-type of Container and a trans-attribute of Required and
the JMS connection factory is XA enabled. Failure to follow these steps will result
in the MDB being non-transactional. The default WebLogic setting for a MDB
connection factory is XA enabled. The MDB automatically begins a transaction
and automatically enlists the received message in the transaction.

B.11 Using AQ JMS
Q. Can I interoperate with AQ JMS?

A. Oracle WebLogic Server applications interoperate with Oracle Streams Advanced
Queuing (AQ) through the JMS API using either WebLogic Server resources (Web
Apps, EJBs, MDBs) or stand-alone clients. AQ JMS uses a database connection and
stored JMS messages in a database accessible to an entire WebLogic Server cluster,
enabling the use of database features and tooling for data manipulating and backup.

Use the JMS Foreign Server configuration to interoperate with Oracle Streams
Advanced Queuing (AQ) through the JMS API using either WebLogic Server resources
(Web Apps, EJBs, MDBs) or stand-alone clients. See Interoperating with Oracle AQ
JMS in Configuring and Managing JMS for Oracle WebLogic Server.

Q. How do I migrate my OC4J applications to WebLogic Server?

A. For information on how to migrate your applications from Oracle OC4J to Oracle
WebLogic Server, see Oracle Fusion Middleware Upgrade Guide for Java EE.

B.12 JMS Interoperability Resources
Q. What additional resources document JMS interoperability?

A. For general information on WebLogic JMS see Messaging.

JMS Interoperability Resources

B-12 Programming JMS for Oracle WebLogic Server

C

How to Lookup a Destination C-1

CHow to Lookup a Destination

This chapter describes how to use JNDI and a Create Destination Identifier to look up
a message destination.

■ Section C.1, "Use a JNDI Name"

■ Section C.2, "Use a Create Destination Identifier"

■ Section C.3, "Examples of Syntax Used to Lookup Destinations"

C.1 Use a JNDI Name
The recommended way to lookup any type of destination is to use JNDI. You can look
up a destination by establishing a JNDI context (context) and executing one of the
following commands, for PTP or Pub/Sub messaging, respectively:

Queue queue = (Queue) context.lookup(Dest_name);

Topic topic = (Topic) context.lookup(Dest_name);

The Dest_name argument specifies the destination's JNDI name defined during
configuration. See Section 5.2.4.1, "Using a JNDI Name" and Section C.3, "Examples of
Syntax Used to Lookup Destinations."

C.2 Use a Create Destination Identifier
Create Destination Identifier (CDI) is a less common method to lookup a destination or
member of a distributed destination that does not use JNDI. CDI uses one of the
following QueueSession or TopicSession methods to reference a queue or topic,
respectively:

public Queue createQueue(
 String queueName
) throws JMSException

public Topic createTopic(
 String topicName
) throws JMSException

The syntax of the queueName and topicName strings is not defined by the JMS
specification. For WebLogic JMS, the syntax is described here:

Note: For information on how to configure JMS resources, see
"Understanding JMS Resource Configuration" in Configuring and
Managing JMS for Oracle WebLogic Server

Examples of Syntax Used to Lookup Destinations

C-2 Programming JMS for Oracle WebLogic Server

■ Section C.2.1, "Default WebLogic CDI Syntax"

■ Section C.2.2, "Custom WebLogic CDI Syntax"

C.2.1 Default WebLogic CDI Syntax
A string which contains a JMS server name, module, and the destination configuration
name. See Section C.3, "Examples of Syntax Used to Lookup Destinations".

C.2.2 Custom WebLogic CDI Syntax
In addition to the default CDI syntax, WebLogic JMS provides
JMSCreateDestinationIdentifier as an additional configuration parameter of a
Destination or Uniform Distributed Destination. This allows you to configure a unique
reference name when there are more than one queue or topic defined (in one or more
modules) with the same value for the default CDI syntax. In other words, it is useful
for disambiguating two different destinations in two different modules that have the
same default CDI name. See Section C.3, "Examples of Syntax Used to Lookup
Destinations"

This name must be unique within the scope of the JMS server to which this destination
is targeted. However, it does not need to be unique within the scope of the entire JMS
module. For example, two queues can have the same CDI name as long as those
queues are targeted to different JMS servers.

C.2.3 Server Affinity When Looking Up Destinations
The createTopic() and createQueue() methods also allow a "./Destination_
Name" syntax to indicate server affinity when looking up destinations. This will locate
destinations that are locally deployed in the same JVM as the JMS connection's
connection factory host. If the name is not on the local JVM an exception is thrown,
even though the same name might be deployed on a different JVM.

An application might use this convention to avoid hard-coding the server name when
using the createTopic() and createQueue() methods so that the code can be
reused on different JMS servers without requiring any changes.

C.3 Examples of Syntax Used to Lookup Destinations
The following sections provide examples of the syntax used to reference a destination
or a member of a distributed destination:

■ Section C.3.1, "Non-Distributed Destinations"

■ Section C.3.2, "Uniform Distributed Destinations"

Note: The createQueue() and createTopic() methods do not
create destinations dynamically; they create only references to
destinations that already exist. For information about creating
destinations dynamically, see Chapter 7, "Using JMS Module Helper
to Manage Applications."

Note: Since this name must be unique within the scope of a JMS
server, verify whether other JMS modules may contain destination
names that conflict with this name. It is the responsibility of the
deployer to resolve the destination names targeted to JMS servers.

Examples of Syntax Used to Lookup Destinations

How to Lookup a Destination C-3

■ Section C.3.3, "Weighted Distributed Destinations"

C.3.1 Non-Distributed Destinations
The following section provides examples of syntax used to reference regular
destinations (destinations that aren't distributed):

■ Section C.3.1.1, "JNDI Syntax for Non-distributed Destinations"

■ Section C.3.1.2, "CDI Syntax for Non-Distributed destinations"

C.3.1.1 JNDI Syntax for Non-distributed Destinations
Most applications use JNDI instead of CDI to lookup destinations. The following
section provides examples of the syntax used to reference non-distributed destinations
using JNDI:

■ When a JNDI name is configured, a string defined by:

Dest_JNDI_Name

■ When a local JNDI name is configured:

Dest_Local_JNDI_Name

C.3.1.2 CDI Syntax for Non-Distributed destinations
This section provides examples of the syntax used to reference a non-distributed
destination using createQueue or createTopic using CDI:

■ When using the default CDI, a string defined by:

JMS_Server_Name/JMS_Module_Name!Destination_Name

■ When using the default CDI in an interop module, a string defined by:

JMS_Server_Name/interop-jms!Destination_Name

■ When a custom CDI is configured, a string defined by:

JMS_Server_Name/CDI_Name

C.3.2 Uniform Distributed Destinations
The following section provides examples of the syntax used to reference Uniform
Distributed Destinations (UDDs):

■ Section C.3.2.1, "JNDI Syntax for UDDs"

■ Section C.3.2.2, "CDI Syntax for UDDs"

Note: The local JNDI name only works when the JNDI context host
is on the same server as the non-distributed destinations. The JNDI
context host is not necessarily the same as the JMS connection host.

Notes: When using server affinity, (replacing JMS_Server_Name
with "."), the search is restricted to the JMS connection host rather
than the entire cluster.

To reference destination in releases prior to WebLogic 9.0, use a string
defined by JMS_Server_Name!Destination_Name (for example,
myjmsserver!mydestination).

Examples of Syntax Used to Lookup Destinations

C-4 Programming JMS for Oracle WebLogic Server

C.3.2.1 JNDI Syntax for UDDs
Most applications use JNDI instead of CDI to lookup destinations. The following
section provides examples how to reference an individual member or logical UDD
using JNDI

■ For a logical UDD, a string defined by:

udd-jndi-name

■ For an individual member logical UDD, a string defined by:

jms-server-name@udd-jndi-name

C.3.2.2 CDI Syntax for UDDs

This section provides an example of how to reference a UDD member using
createQueue or createTopic using CDI:

■ For an individual member when CDI is not configured, a string defined by:

jms-server-name/module-name!jms-server-name@udd-name

■ For an individual member when CDI is configured, a string defined by:

jms-server-name/cdi-name

■ A logical UDD is referenced using a string defined by: module-name!udd-name.

C.3.3 Weighted Distributed Destinations

A weighted distributed destination is simply a set of individually configured regular
destinations that each have their own JNDI and CDI name. The logical name of the
WDD represents the entire set, and is configured as a JNDI name. There is no option
for accessing the logical for a WDD using CDI.

■ Section C.3.3.1, "JNDI Syntax for WDDs"

■ Section C.3.3.2, "CDI Syntax for WDDs"

C.3.3.1 JNDI Syntax for WDDs
The following section provides examples how to reference an individual member or
logical WDD using JNDI:

Note: You can use the helper methods
weblogic.jms.extensions.JMSModuleHelper class
uddMemberName and uddMemberJNDIName APIs to help create
UDD CDI names in the correct syntax.

Note: When jms-server-name is replaced with ".", the API returns
the first locally available/started member of the UDQ. A member is
considered to be locally available if the JMS client connection is hosted
by the same WebLogic server that currently hosts the member.

Note: Weighted distributed destinations are deprecated in Weblogic
Server 10.3.4.0. Oracle recommends using Uniform Distributed
Destinations.

Examples of Syntax Used to Lookup Destinations

How to Lookup a Destination C-5

■ For a logical WDD, a string defined by:

wdd-jndi-name

■ For an individual member logical WDD, see Section C.3.1.1, "JNDI Syntax for
Non-distributed Destinations."

C.3.3.2 CDI Syntax for WDDs
This section provides an example of how to reference a WDD member using
createQueue or createTopic with and without using CDI:

■ There is no option for accessing a WDD logical name using createQueue() or
createTopic(). A logical WDD must always be referenced using a string
defined by the JNDI name of the member. Sometimes it is useful instead to lookup
the local individual member using the "." server affinity syntax for non-distributed
destinations.

■ For an individual member when CDI is configured on the member, see
Section C.3.1.2, "CDI Syntax for Non-Distributed destinations."

Examples of Syntax Used to Lookup Destinations

C-6 Programming JMS for Oracle WebLogic Server

D

Advanced Programming with Distributed Destinations Using the JMS Destination Availability Helper API D-1

DAdvanced Programming with Distributed
Destinations Using the JMS Destination

Availability Helper API

This chapter provides information on how to design a distributed application or a
container that offers high availability (HA), scalability, and flexibility when using JMS
distributed destinations in a clustered environment.

■ Section D.1, "Introduction"

■ Section D.2, "Controlling DD Producer Load Balancing"

■ Section D.3, "Using the JMS Destination Availability Helper API"

■ Section D.4, "Strategies for Uniform Distributed Queue Consumers"

■ Section D.5, "Strategies for Subscribers on Uniform Distributed Topics"

D.1 Introduction
A distributed destination (DD) is a group of JMS physical destinations (a group of
queues or a group of topics) that is accessed as a single logical destination. Messages
are load balanced across members, and clients can failover between member
destinations.

Distributed destination users that don't leverage MDBs may encounter problems with
consumer applications. These include:

■ Failing to ensure that all DD members are serviced by consumers.

■ Unprocessed messages accumulating on DD members that have no consumers.

Important: This guide includes advanced information for
experienced JMS developers. Oracle recommends that you use
Message Driven Beans when interacting with Distributed
Destinations. The MDB container automatically creates and closes
internal consumers across all members of a Distributed Destination as
needed. It also handles security, threading, pooling, application life
cycle, automatic reconnect, and transaction enlistment. If you cannot
use MDBs, you can also consider simpler workarounds, such as
periodically restarting consumers to rebalance consumers across a
distributed destination, or, if messaging ordering and performance are
not a concern, enabling the distributed queue forwarding option.

Controlling DD Producer Load Balancing

D-2 Programming JMS for Oracle WebLogic Server

■ DD Consumers not automatically rebalancing in the event of a JMS server
migration, WebLogic Server restart, or any other event that results in DD member
changes.

To address these use cases, WebLogic Server provides the JMS Destination Availability
Helper APIs and advanced topic features in Section 13, "Developing Advanced
Pub/Sub Applications."

D.2 Controlling DD Producer Load Balancing
Before discussing consumer load balancing, it is helpful to first explore producer load
balancing basics and best practices.

■ Section D.2.1, "Basic JMS"

■ Section D.2.2, "Senders to Distributed Queues (DQs) and Partitioned Distributed
Topics (PDTs)"

■ Section D.2.3, "Senders to Replicated Distributed Topics (RDTs)"

D.2.1 Basic JMS
A JMS program sets up message sends in three stages:

1. Clients create a JMS connection into WebLogic using a JMS connection factory.

2. Clients use the connection to create JMS sessions and senders.

3. Clients use the senders to send messages.

In WebLogic JMS, the WebLogic server that the client is connected to is called the
client's connection host, and messages always route from the sender, through its
connection host, and then on to a destination that's in the same cluster as the
connection host. Connections stay pinned to their connection host for the life of the
connection.

A WebLogic connection factory can be targeted at one or more WebLogic servers. If a
client is running on the same WebLogic server where a connection factory is targeted,
then the factory always returns a connection with a connection host that is the same
server as the client (the connection is local). On the other hand, if a client is not
running on a WebLogic server that is included in its connection factory targets, the
factory automatically load balances among the targets and returns a connection to one
of them.

When working with a distributed destination, senders should always send to the JNDI
name of the DQ or PDT (its "logical name") instead of sending to the JNDI names of
the individual members, as this enables automatic load balancing behavior.

D.2.2 Senders to Distributed Queues (DQs) and Partitioned Distributed Topics (PDTs)
The default behavior for a sender to a DQ or PDT is: If there are members that run on
the sender's connection host, all sent messages go to one of these local members,
otherwise messages round-robin among all members.

To force messages from the same DQ or PDT sender to round-robin among all active
members even when local members reside on the sender's connection host, use a
custom connection factory with Server Affinity set to false and Load
Balance set to true.

Using the JMS Destination Availability Helper API

Advanced Programming with Distributed Destinations Using the JMS Destination Availability Helper API D-3

D.2.3 Senders to Replicated Distributed Topics (RDTs)
Senders to RDTs always load balance once and then pin to a particular member for all
messages - this member becomes the "sender host". Once a message arrives on the
sender host, the message is automatically replicated to every subscription on every
RDT member.

If you want to control the initial load balance decision for the sender host so that it is
not biased towards being the same as its connection host, then use a connection factory
with Server Affinity configured to false (default is true), and Load Balance
configured to true (the default).

D.3 Using the JMS Destination Availability Helper API
The following sections provide information on how to use the
JMSDestinationAvailabilityHelper APIs:

■ Section D.3.1, "Overview"

■ Section D.3.2, "General Flow"

■ Section D.3.3, "Handling weblogic.jms.extension.DestinationDetail"

■ Section D.3.4, "Best Practices for Consumer Containers"

■ Section D.3.5, "Interoperability Guide-Lines"

■ Section D.3.6, "Security Considerations"

■ Section D.3.7, "Transaction Considerations"

D.3.1 Overview
When a consumer is created using the client javax.jms API and a DD logical JNDI
name is specified, the consumer is load balanced to an active DD member and remains
pinned to that member over its lifetime. If new members become active after all
consumers have been created, the new members have no consumers.

The JMSDestinationAvailabilityHelper APIs provide a means for getting
notifications when destinations become available or unavailable. These notifications
can help ensure that an application creates consumers on all DD members even when
there are unavailable members at the time the application is initialized. The same
mechanism can also be used to detect availability of other types of destinations (not
just WebLogic distributed destinations, but also regular destinations and foreign
vendor destinations).

Applications register a notification listener with the helper by specifying JNDI context
parameters and the JNDI name of a destination. For DDs, the helper notifies listeners
when members become available and unavailable, as they are undeployed, added as a
new member, migrated, shutdown, or restarted.

Note that MDBs in WebLogic Server internally use this same mechanism for both local
MDBs (deployed in the same cluster as a DD) and remote MDBs (deployed in a cluster
that is separate from the cluster that hosts the DD). MDBs provide an out-of-the-box
solution that achieves the same dynamic adaptability to DD topology changes that the
JMSDestinationAvailabilityHelper APIs provide.

D.3.2 General Flow
Applications that use the JMSDestinationAvailabilityHelper APIs should
follow these general steps:

Using the JMS Destination Availability Helper API

D-4 Programming JMS for Oracle WebLogic Server

1. Implement the
weblogic.jms.extensions.DestinationAvailableListener interface to
provide behavior as per step 3 below.

2. Register interest with the helper by specifying JNDI context properties (typically
just a URL and context factory), the JNDI name of the destination, and a listener
instance. Do not specify a URL if the client is running in the same cluster as the
DD.

import java.util.Hashtable;
import javax.naming.Context;
import weblogic.jms.extensions.JMSDestinationAvailabilityHelper;

Hashtable contextProps = new Hashtable();
contextProps.put(javax.naming.Context.PROVIDER_URL, myURL);
contextProps.put(Context.INITIAL_CONTEXT_
FACTORY, "weblogic.jndi.WLInitialContextFactory");
JMSDestinationAvailabilityHelper dah = JMSDestinationAvailabilityHelper.getInst
ance();

RegistrationHandler rh = dah.register(
 contextProperties,
 destinationJNDIName,
 myDestinationAvailableListener
)

3. Handle listener callbacks. Callbacks are single-threaded for each listener instance,
so no two callbacks occur concurrently.

1. onDestinationsAvailable()—Typically the first notification.
Implementations of this callback usually react by creating zero or more
consumers on each given destination, and if this fails, periodically retrying.

2. onDestinationsUnavailable()—This callback is usually used to destroy
existing consumers on the destination.

3. onFailure()—This callback is normally used simply to log the given failure.
The helper continues to retry internally and make subsequent callbacks, but
administrators may need to see the failure. The helper makes a best effort to
just call onFailure() once for the same repeated failures.

4. When done, unregister interest in a destination by calling rh.unregister().

D.3.3 Handling weblogic.jms.extension.DestinationDetail
As described previously, an onDestinationsAvailable() notification indicates
that a stand-alone destination, foreign destination, or distributed destination member
has become available. The notification consists of a list of DestinationDetail
instances, where key information is obtained by calling getDestinationType(),
getJNDIName(), isLocalWLSServer(), and isLocalCluster() on each Detail.

The destination detail helps determine the actions that the caller should take. If the
destination is of type DD_QUEUE, REPLICATED_DT, or PARTITIONED_DT then the
detail's getJNDIName() method returns the JNDI name of a specific DD member and
the caller may or may not want to deploy instances of the application consumer on the
member. If the destination is of type PHYSICAL or FOREIGN, the application treats
the destination as a regular destination.

Especially when working with DDs, it is highly recommended to take advantage of the
co-location flags in DestinationDetail. You can determine the co-location nature

Using the JMS Destination Availability Helper API

Advanced Programming with Distributed Destinations Using the JMS Destination Availability Helper API D-5

of a destination by calling isLocalWLSServer(), and isLocalCluster(). See
Section D.4.2, "Best Practice for Local Server Consumers."

For more details on APIs and their methods, see "DestinationDetail" in Oracle WebLogic
Server API Reference.

D.3.4 Best Practices for Consumer Containers
The following sections provide best practice guidelines for consumer containers:

■ Section D.3.4.1, "When to Register and Unregister"

■ Section D.3.4.2, "URL Handling"

■ Section D.3.4.3, "Failure Handling"

■ Section D.3.4.4, "JNDI Context Handling"

■ Section D.3.4.5, "JMS Connection Handling"

D.3.4.1 When to Register and Unregister
1. Register with JMSDestinationAvailabilityHelper at application

deployment time. Do not fail the deployment if the helper calls the onFailure()
callback on your listener (assume it could be an intermittent failure).

2. Unregister with JMSDestinationAvailabilityHelper at application
undeployment time.

D.3.4.2 URL Handling
1. If the client is running on the same server or same cluster as the destination, don't

specify a URL when registering with the helper or creating a JNDI context. This
ensures that the helper creates a local context.

2. Consider logging a single warning if isLocalCluster() or isLocalServer()
returns true, but a URL was specified (as no URL is needed in this case).

D.3.4.3 Failure Handling
1. Log the errors reported by onFailure() notifications, so that the application

developer can have a chance to correct possible configuration/application errors.
Avoid repeatedly logging the same exception. The helper continues to retry
internally and make subsequent callbacks on success or different types of failures,
but administrators may need to see the failures. The error may be caused by an
application or administrative error such as an incorrect URL, invalid security
information, or non-existent destination. It might also be caused by temporary
unavailability of the JNDI context host or the destination.

2. When a JMS call throws an exception, or when a JMS connection exception listener
reports a connection failure, close the connection. Once all resources have been
cleaned up, then periodically attempt to re-initialize all resources. Re-initialization
generally involves creating a context, performing JNDI lookups, and then creating
a connection, session, and a consumer.

3. Avoid immediately retrying after a failure. Instead periodically retry every few
seconds to avoid overloading the server.

D.3.4.4 JNDI Context Handling
1. In general, avoid creating multiple JNDI initial context instances to the same

server or cluster.

Using the JMS Destination Availability Helper API

D-6 Programming JMS for Oracle WebLogic Server

2. Call close() on a context on undeploy to prevent a memory leak.

3. Call close() on a context and recreate on any failure (including a lookup failure).

D.3.4.5 JMS Connection Handling
1. For JMS connections, always register a standard JMS connection "exception

listener".

2. On an onException(), close the connection and periodically retry JNDI lookups,
recreating a JMS connection, and setting up consumers in another thread.

3. Close connections on undeploy to prevent memory leaks.

4. Instead of sharing a WebLogic Server connection among multiple sessions,
consider creating one connection per session. With WebLogic Server, multiple
connections allow for better load balancing. There's no performance penalty when
working with WebLogic Server, but this might have unexpected overhead with
foreign vendors, as some foreign vendors create a TCP/IP socket or a similarly
expensive resource for each connection.

D.3.5 Interoperability Guide-Lines
The "JMSDestinationAvailabilityHelper" in Oracle WebLogic Server API Reference
includes details about usage and behavior of the various methods available, including
details about interoperability guidelines discussed in the following sections:

■ Section D.3.5.1, "API Availability"

■ Section D.3.5.2, "Foreign Contexts"

■ Section D.3.5.3, "Destination Type Support"

■ Section D.3.5.4, "Unavailable Notifications"

■ Section D.3.5.5, "Interoperating with Pre WebLogic Server 9.0 Distributed Queues"

■ Section D.3.5.6, "Interoperating with Pre WebLogic Server 10.3.4.0 Distributed
Topics"

■ Section D.3.5.7, "DestinationDetail Fields"

D.3.5.1 API Availability
The public JMS Destination Availability Helper API is available on AS11gR1PS2
(WebLogic Server version 10.3.3) and later clients and servers.

D.3.5.2 Foreign Contexts
The context properties that are specified when registering a notification listener with
the DA Helper can resolve to any valid JNDI context, including contexts from foreign
vendors and older versions of WebLogic Server.

For foreign (non-WebLogic) contexts, the foreign JNDI vendor's classes must be in the
current classpath and the Context.INITIAL_CONTEXT_FACTORY property must
reference the foreign vendor JNDI context factory class name.

Note: It may be necessary to use additional context instances to work
around some security issues, especially in inter-domain scenarios.

Using the JMS Destination Availability Helper API

Advanced Programming with Distributed Destinations Using the JMS Destination Availability Helper API D-7

D.3.5.3 Destination Type Support
The JMSDestinationAvailabilityHelper API works with any type of
destination that can be registered in a JNDI context, including non-distributed
destinations and foreign vendor destinations. However, unavailable notifications are
only generated for DD members and certain DestinationDetail fields apply only
to DD members. Unavailable notifications do not apply to foreign destinations.

D.3.5.4 Unavailable Notifications
Unavailable notifications only apply to DD type destinations (DQ_QUEUE,
PARTITIONED_DT, REPLICATED_DT).

D.3.5.5 Interoperating with Pre WebLogic Server 9.0 Distributed Queues
When interoperating with a WebLogic Server 9.0 or later DDs, the DA Helper
generates notifications for each individual member of the DD, but when working with
versions prior to 9.0, the helper only generates a single DestinationDetail
notification which contains the logical JNDI name for the DD destination and
getDestinationType() returns PHYSICAL.

Pre WebLogic Server 9.0 DDs are usually treated as a regular destination, and
consequently have the same limitations as outlined in Section 13.1.2, "Application
Design Limitations When using Replicated Distributed Topics."

D.3.5.6 Interoperating with Pre WebLogic Server 10.3.4.0 Distributed Topics
In releases prior to WebLogic Server 10.3.4, there are no features that enable
unrestricted (non-exclusive) client-ids or shared subscriptions.

To determine if a destination is a WebLogic 10.3.4.0 topic or later, ensure that the
destination type is PHYSICAL_TOPIC, REPLICATED_DT or PARTITIONED_DT and
not FOREIGN_TOPIC and that isAdvancedTopicSupported() returns true. A
topic prior to WebLogic Server 10.3.4.0:

■ Will never be a PARTITIONED_DT.

■ PHYSICAL_TOPICs are usually treated as regular topics and are limited to one
consumer per subscription.

Automatic attempts to durably subscribe to individual members of pre-WebLogic
10.3.4.0 DT when a logical DT name is specified are not recommended. Oracle
recommends that your applications do not support this option and log an error
informing users that need durable subscriptions on a of pre-WebLogic 10.3.4.0 DT to
directly specify the JNDI name of a member instead of specifying the logical DT name.

When subscribing non-durably to a distributed topic prior to WebLogic Server 10.3.4.0,
Oracle recommends creating a consumer on any single member JNDI name, or on the
logical DR name, and ignoring all other notifications (one subscriber gets all messages
sent to the DT and there can be only one consumer thread on the subscription).

Note: For information on how to configure unrestricted client-ids
and shared subscriptions, see Configure an Unrestricted ClientID and
Configure Shared Subscriptions in Configuring and Managing JMS for
Oracle WebLogic Server.

Using the JMS Destination Availability Helper API

D-8 Programming JMS for Oracle WebLogic Server

D.3.5.7 DestinationDetail Fields
The behavior of some destination detail fields changes based on the type of
destination, the JMS vendor, and, when working WebLogic JMS, the WebLogic Server
version. See "JMSDestinationAvailabilityHelper" in Oracle WebLogic Server API
Reference.

D.3.6 Security Considerations
The following sections provide information on implementing security using the Java
EE and WebLogic Server security models:

■ Section D.3.6.1, "WebLogic Server Security Model"

■ Section D.3.6.2, "Passing Credentials Between Threads"

■ Section D.3.6.3, "When to use Cross Domain Security"

■ Section D.3.6.4, "Authentication of Users"

■ Section D.3.6.5, "Securing Destinations"

■ Section D.3.6.6, "Securing Wire Data"

D.3.6.1 WebLogic Server Security Model
WebLogic credential propagation is thread based in most cases. The current thread
credentials are established by specifying them when creating a JNDI context or
application descriptor. These credentials are automatically propagated along with any
RMI-based calls between JVMs -- including WebLogic JMS calls.

D.3.6.2 Passing Credentials Between Threads
The subject associated with a JNDI context is lost if the context instance is passed to
and used in a different thread, which can cause security issues in some multi-domain
application scenarios. The following sections provide methods on passing credentials:

■ Section D.3.6.2.1, "Using the Same Thread"

■ Section D.3.6.2.2, "Pass as Anonymous User"

■ Section D.3.6.2.4, "Cache and Reuse Subject from the Initial Context"

D.3.6.2.1 Using the Same Thread If possible, you can avoid the issue by using the same
thread to create the context, perform all JMS and JNDI operations, and close the
context.

D.3.6.2.2 Pass as Anonymous User Use anonymous subject if the JMS destination and
JNDI resources are not secured. In particular, when interoperating between multiple
WebLogic domains, it is usually simplest to force all calls to use an anonymous subject
if the JMS destination and JNDI resources are not secured. Non-anonymous
credentials are typically only valid for a particular domain, leading to security
exceptions if an attempt is made to use them for a different domain.

D.3.6.2.3 Pass as Anonymous User Use anonymous subject if the JMS destination and
JNDI resources are not secured. In particular, when interoperating between multiple
WebLogic domains, it is usually simplest to force all calls to use an anonymous subject
if the JMS destination and JNDI resources are not secured. Non-anonymous
credentials are typically only valid for a particular domain, leading to security
exceptions if an attempt is made to use them for a different domain.

Using the JMS Destination Availability Helper API

Advanced Programming with Distributed Destinations Using the JMS Destination Availability Helper API D-9

The following code provides an example of how to cache a subject and associate it
with another thread using an anonymous user.

import java.security.PrivilegedExceptionAction;
import java.security.PrivilegedActionException;

import weblogic.security.subject.AbstractSubject;
import weblogic.security.SubjectUtils;
import weblogic.security.Security;

class MyClass {

 void doSomethingAsAnonymous() {

 // get the anonymous user
 AbstractSubject anon = SubjectUtils.getAnonymousSubject();

 // run some operation as the anonymous user
 try {
 Security.runAs(anon.getSubject(),
 new java.security.PrivilegedExceptionAction() {
 public Object run() throws Exception {
 // do something;
 return null; // or return some Object
 }});
 } catch (PrivilegedActionException e) {
 // handle exception
 }
 }
}

D.3.6.2.4 Cache and Reuse Subject from the Initial Context The following code provides an
example of how to cache a subject and associate it with another thread using an
anonymous user.

import java.security.PrivilegedExceptionAction;
import java.security.PrivilegedActionException;

import javax.security.auth.Subject;
import weblogic.security.Security;

 class MyClass {

 // don't make the cached subject public
 private Subject subject;

 MyClass() {
 subject = Security.getCurrentSubject();
 }

 void doSomething() {

 // run some operation as the subject on the original thread
 try {
 Security.runAs(subject,new PrivilegedExceptionAction() {
 public Object run() throws Exception {
 // do something;
 return null; // or return some Object

Using the JMS Destination Availability Helper API

D-10 Programming JMS for Oracle WebLogic Server

 }});
 } catch (PrivilegedActionException e) {
 // handle exception
 }
 }
}

D.3.6.3 When to use Cross Domain Security
Cross domain security is a feature introduced in WebLogic Server 10.0 for establishing
security across two or more WebLogic Server domains. WebLogic Server establishes a
security role for cross-domain users and uses the WebLogic Credential Mapping
security provider in each domain to store the credentials to be used by the
cross-domain users. The cross-main security feature can be enabled on a per domain
basis. A cross-domain credential mapping needs to be configured for each remote
domain that internal communications needs to be secure. JTA, MDBs, and JMS are the
three subsystems that depend on this feature. For more information on how to
configure cross-domain security, see:

■ Enabling Trust Between WebLogic Server Domains in Securing Oracle WebLogic
Server

■ Using Cross Domain Security in Programming JMS for Oracle WebLogic Server

■ SAF and Cross Domain Security in Configuring and Managing Store-and-Forward for
Oracle WebLogic Server

■ Configuring Cross Domain Security in Programming JTA for Oracle WebLogic Server

■ Using MDBs With Cross Domain Security in Programming Message-Driven Beans for
Oracle WebLogic Server

D.3.6.4 Authentication of Users
The following sections provide methods to provide the username and password when
accessing JMS, which authenticates an application user, and also authorizes an
application for JNDI and JMS operations.

■ Section D.3.6.4.1, "Specify Credentials for a JNDI Context"

■ Section D.3.6.4.2, "Specifying Credentials for a JMS Connection"

■ Section D.3.6.4.3, "Using Credentials of a Foreign JMS Server JNDI Context"

■ Section D.3.6.4.4, "Using Credentials of a Foreign JMS Server Connection"

D.3.6.4.1 Specify Credentials for a JNDI Context In order to access JMS resources, an
application has to have access to the JNDI provider. The credentials can be supplied
when an application code creates an initial context to the JNDI provider. The thread
that establishes the initial context carries the subject, and is therefore used for all
sub-sequential operations. When an application is running on a WebLogic Server and
no server URL and security credentials are provided while creating an initial context,
the thread continues to have the same credentials that were on the thread before the
initial context create. When the thread that creates an initial context closes the context,
the thread will resume the original security credentials that are on the thread prior to
creating the context at the first place.

D.3.6.4.2 Specifying Credentials for a JMS Connection The
ConnectionFactory.createConnection() call optionally supports a username
and password. The credentials that are provided at the connection creation time do not

Strategies for Uniform Distributed Queue Consumers

Advanced Programming with Distributed Destinations Using the JMS Destination Availability Helper API D-11

have any affect with respect to security in any JMS operations on the connection that is
created (this is a WebLogic JMS specific behavior for WebLogic JMS Java clients, with
the exception of the .NET client). The credentials are only be used to check if the user
is a valid user in the domain where the connection is created.

D.3.6.4.3 Using Credentials of a Foreign JMS Server JNDI Context Configure the Foreign
JMS Server instance with JNDI Properties to gain access to the JNDI provider. The
JNDI properties contain the options for setting the security principal and credentials.

D.3.6.4.4 Using Credentials of a Foreign JMS Server Connection The username and
password that can be specified when configuring a Foreign Connection Factory
mapping are ignored unless you use an EJB or Servlet resource reference to lookup the
JMS connection factory. See Section 4.4, "Improving Performance Through Pooling."

D.3.6.5 Securing Destinations
WebLogic JMS provides the ability to specify ACLs for destinations. This allows the
destination to be secured and only authorized users are allowed to perform operations
on that destination. See Java Messaging Service (JMS) Resources in Securing Resources
Using Roles and Policies for Oracle WebLogic Server.

D.3.6.6 Securing Wire Data
When an application needs to protect JMS data passed on the wire, configure the
network to use SSL. See Configuring SSL in Securing Oracle WebLogic Server.

D.3.7 Transaction Considerations
WebLogic Server JTA transaction propagation is thread-based. The thread that starts a
transaction should be the one that commits or rollbacks the transaction. If there is a
WebLogic JTA transaction on the current thread when you perform send or receive
operations on a WebLogic JMS destination, the JMS resources are automatically
enlisted with the WebLogic transaction manager, and there is no need to perform your
own enlistment.

You only need to do explicit “manual” enlistment when there is a need for WebLogic
JMS resources to participate in a foreign or third-party transaction, or there’s a need
for a non-WebLogic destination to participate in a transaction. Enlisting with a foreign
transaction manager (TM) is not directly supported on WebLogic JMS stand-alone
clients. EJB and Servlet resource references enable automatic enlistment of
non-WebLogic JMS vendors with the WebLogic TM.

Applications should not use transacted sessions if JMS operations are required to
participate in a global XA transaction. Global transactions require use of XA based
connection factories, while local transactions use non-XA based JMS connection
factories.

D.4 Strategies for Uniform Distributed Queue Consumers
A consumer application can be either running in the same JVM of a WebLogic Server
or not, which are called a "server side consumer" and "stand-alone consumer"
respectively.

While a JMS UDQ consumer is deployed on a WebLogic Server or cluster, the
application can either run on the same cluster/server as the UDQ, or on a different
cluster. We call these two different application configurations the local case and the
remote case respectively.

Strategies for Uniform Distributed Queue Consumers

D-12 Programming JMS for Oracle WebLogic Server

For application that cannot use MDBs in their application architecture for some reason,
the following guidelines should be followed:

■ Section D.4.1, "General Strategies"

■ Section D.4.2, "Best Practice for Local Server Consumers"

D.4.1 General Strategies
In order to for an application to receive all messages that are sent to a UDQ, the
application needs to make sure that it creates one consumer on each member of the
UDQ using the member JNDI name. This requires that applications know the topology
of the domains and UDQ configuration, and this is where
JMSDestinationAvailabilityHelper can help.

The general strategy is that each deployment instance of a particular application
should register with JMSDestinationAvailabilityHelper. The listener will
receive notifications about member availability.

■ Upon receipt of an onDestinationsAvailable() notification, the application
gets a list of DestinationDetail instances for all available members, and then
it needs to create one or more consumer instances using the member JNDI name
for each member in the list. For remote consumers, each instance of the application
should create a consumer on each member of the UDQ. For local consumers, the
application should create a consumer on the local UDQ member only. See
Section D.4.2, "Best Practice for Local Server Consumers" for more details.

■ Upon receipt of an onDestinationsUnavailable() notification, the
application gets a list of DestinationDetail instances for all destinations that
becomes unavailable since the last notification. Then for each member destination
in the list, the application needs to find the consumer previously created for the
member destination and close it.

D.4.2 Best Practice for Local Server Consumers
When an application is deployed on the same cluster as the JMS distributed
destination, the application should be deployed on the same set of the servers that
hosts the UDQ whenever possible. Under this configuration, for best performance, the
application should receive messages only from the local members; local members can
be determined using the DestinationDetail isLocalWLSCluster() and
isLocalWLSServer() calls. This approach yields high performance because all
messaging is local (it avoids transferring messages over network calls), and still
ensures that all members are serviced by consumers.

In some use cases, the local server optimization network savings does not outweigh
the benefit of distributing message processing for unbalanced queue loads across all
JVMs in a cluster. This is especially a concern when message backlogs develop
unevenly throughout the cluster, and message processing is expensive. In these use

Note: Oracle recommends using MDBs to implement advanced
message distribution modes using replicated and partitioned
distributed topics. For detailed information on advanced pub/sub
application design using MDBs, see Section 13, "Developing
Advanced Pub/Sub Applications" and Configuring and Deploying
MDBs Using Distributed Topics in Programming Message-Driven Beans
for Oracle WebLogic Server.

Strategies for Subscribers on Uniform Distributed Topics

Advanced Programming with Distributed Destinations Using the JMS Destination Availability Helper API D-13

cases, the optimization should be avoided in favor of the general strategy model for
remote consumers.

D.5 Strategies for Subscribers on Uniform Distributed Topics

For all clustered and distributed applications that process messages from a UDT,
Oracle recommends using 10.3.4 or later topics in combination with the following
settings:

■ Set Client ID Policy to Unrestricted. See Configure an Unrestricted ClientID in
Configuring and Managing JMS for Oracle WebLogic Server.

■ Set Subscription Sharing Policy to SHARABLE. See Configure Shared Subscriptions
in Configuring and Managing JMS for Oracle WebLogic Server.

■ Use the JMSDestinationAvailabilityHelper API to get the notification of
member availability

■ Always create subscribers on the member destinations.

WebLogic JMS has two types of Uniform distributed topics:

■ A replicated distributed topic (RDT) has forwarding capability between its
members. As a result, each member of a RDT has a copy of all messages that are
sent to the RDT.

■ A partitioned distributed topic (PDT) is the one that does not have forwarding
capability between its members. As a result, each member of a PDT has its own
copy of all messages that were sent to this particular member. This is a new type of
DT introduced in WebLogic Server 10.3.4.0. See Configuring Partitioned
Distributed Topics in Configuring and Managing JMS for Oracle WebLogic Server.

The following subsections discuss configuration requirements and programming
patterns when using RDTs and PDTs:

■ Section D.5.1, "One Copy per Instance"

■ Section D.5.2, "One Copy per Application"

D.5.1 One Copy per Instance
The one copy per instance pattern ensures that each instance gets a copy of each
message published to a topic. For example, if each instance is a JVM, this pattern
ensures that each JVM gets a copy of each message sent to the source topic. The
following sections provide information on developing design patterns based on one
copy per instance:

■ Section D.5.1.1, "General Pattern Design Strategy for One Copy per Instance"

■ Section D.5.1.2, "Best Practice for Local Server Consumers using One Copy per
Instance"

Note: Oracle recommends using MDBs to implement advanced
message distribution modes using replicated and partitioned
distributed topics. For detailed information on advanced pub/sub
application design using MDBs, see Section 13, "Developing
Advanced Pub/Sub Applications" and Configuring and Deploying
MDBs Using Distributed Topics in Programming Message-Driven Beans
for Oracle WebLogic Server.

Strategies for Subscribers on Uniform Distributed Topics

D-14 Programming JMS for Oracle WebLogic Server

D.5.1.1 General Pattern Design Strategy for One Copy per Instance
In order for the instances of a distributed application/container to receive messages
that are sent to a DT in a one-copy-per-instance manner, each instance needs to do the
following:

1. Choose a base ClientID that will be shared by all connections and a durable
subscription name that will be shared by all durable subscribers. The subscription
name should uniquely identify your application instance. For example, if each
instance runs on a differently named WebLogic Server JVM, the subscription name
for each instance could be based on the WebLogic Server name.

2. Create JMS connections and sessions according to standard JMS specifications. The
connection's ClientID should be set to the base ClientID appended by an
identifier that is unique for this instance, For example, use the WebLogic Server
name or the third-party application server that the application or container is
running on. The ClientIDPolicy should be set to Unrestricted.

3. Set the SubscriptionSharingPolicy to Sharable.

4. Register with the JMSDestinationAvailabilityHelper for membership
availability notifications, specifying the JNDI name of the DT.

5. Set an Exception listener.

6. Upon receipt of an onDestinationsAvailable() notification, create a
subscriber on each newly available destination in the list. If the DT is a replicated
DT, the subscriber needs to use a "NOT JMS_WL_DDForwarded" selector or prefix
"(NOT JMS_WL_DDForwarded) AND" to the existing application provided
selector.

7. Upon receipt of an onDestinationsUnavailable() notification, close the
corresponding consumer().

D.5.1.2 Best Practice for Local Server Consumers using One Copy per Instance
When an application is deployed on the same cluster as the UDT, the application
should be deployed on the same set of the servers that hosts the UDT whenever
possible. Under this configuration, the application needs follow the same steps as
outlined in Section D.5.1.1, "General Pattern Design Strategy for One Copy per
Instance" except that it creates consumers only on all local members. You can use the
JMSDestinationAvailabilityHelper.DestinationDetail.isLocalWLSSer
ver() call to determine if a member is local.

D.5.2 One Copy per Application
The one copy per application pattern ensures that an application receives one copy of
each message sent to a topic, even when the application is clustered across multiple
JVMs. For example: If messages "A", "B", and "C" are sent to a topic, the messages are
processed once by the application, instead of getting one copy per application
instance.

The following sections provide information on developing design patterns based on
one copy per application:

■ Section D.5.2.1, "General Pattern Design Strategy for One Copy per Application"

■ Section D.5.2.2, "Best Practice for Local Server Consumers using One Copy per
Application"

Strategies for Subscribers on Uniform Distributed Topics

Advanced Programming with Distributed Destinations Using the JMS Destination Availability Helper API D-15

D.5.2.1 General Pattern Design Strategy for One Copy per Application
In order for the instances of a distributed application/container to receive messages
that are sent to a DT in a one-copy-per-application manner, each instance needs to do
the following:

1. Choose a base ClientID for all connections and the durable subscription name
for all durable subscribers. The subscription name should uniquely identify your
application instance. For example, if each instance runs on a differently named
WebLogic Server JVM, the subscription name for each instance could be based on
the WebLogic Server name.

1. .

2. Create JMS connections and sessions according to standard JMS specifications. The
connection's ClientID should be set to the base ClientID. The
ClientIDPolicy should set to Unrestricted.

3. Set the SubscriptionSharingPolicy to Sharable.

4. Register with the JMSDestinationAvailabilityHelper for membership
availability notifications, specifying the JNDI name of the DT.

5. Set an Exception listener.

6. Upon receipt of an onDestinationsAvailable() notification, create a
subscriber on each newly available destination in the list. If the DT is a replicated
DT, the subscriber needs to use a "NOT JMS_WL_DDForwarded" selector or prefix
"(NOT JMS_WL_DDForwarded) AND" to the existing application provided
selector.

D.5.2.2 Best Practice for Local Server Consumers using One Copy per Application
When an application is deployed on the same cluster as the UDT, the application
should be deployed on the same set of the servers that hosts the UDT whenever
possible. Under this configuration, the application needs follow the same step outlined
in Section D.5.2.1, "General Pattern Design Strategy for One Copy per Application"
except that it creates consumers only on all local members. You can use the
JMSDestinationAvailabilityHelper.DestinationDetail.isLocalWLSSer
ver() call to determine if a member is local.

Strategies for Subscribers on Uniform Distributed Topics

D-16 Programming JMS for Oracle WebLogic Server

	Contents
	Preface
	Documentation Accessibility
	Conventions

	1 Introduction and Roadmap
	1.1 Document Scope and Audience
	1.2 Guide to this Document
	1.3 Related Documentation
	1.4 Samples and Tutorials for the JMS Developer
	1.4.1 Avitek Medical Records Application (MedRec) and Tutorials

	1.5 New and Changed JMS Features In This Release

	2 Understanding WebLogic JMS
	2.1 Overview of the Java Message Service and WebLogic JMS
	2.1.1 What Is the Java Message Service?
	2.1.2 Implementation of Java Specifications
	2.1.2.1 Java EE Specification
	2.1.2.2 JMS Specification

	2.1.3 WebLogic JMS Architecture
	2.1.3.1 Major Components

	2.2 Understanding the Messaging Models
	2.2.1 Point-to-Point Messaging
	2.2.2 Publish/Subscribe Messaging
	2.2.3 Message Persistence

	2.3 Value-Added Public JMS API Extensions
	2.3.1 WebLogic Server Value-Added JMS Features

	2.4 Understanding the JMS API
	2.4.1 ConnectionFactory
	2.4.1.1 Using the Default Connection Factories
	2.4.1.2 Configuring and Deploying Connection Factories
	2.4.1.3 The ConnectionFactory Class

	2.4.2 Connection
	2.4.3 Session
	2.4.3.1 WebLogic JMS Session Guidelines
	2.4.3.2 Session Subclasses
	2.4.3.3 Non-Transacted Session
	2.4.3.4 Transacted Session

	2.4.4 Destination
	2.4.4.1 Distributed Destinations

	2.4.5 MessageProducer and MessageConsumer
	2.4.6 Message
	2.4.6.1 Message Header Fields
	2.4.6.2 Message Property Fields
	2.4.6.3 Message Body

	2.4.7 ServerSessionPoolFactory
	2.4.8 ServerSessionPool
	2.4.9 ServerSession
	2.4.10 ConnectionConsumer

	3 Best Practices for Application Design
	3.1 Message Design
	3.1.1 Serializing Application Objects
	3.1.2 Serializing strings
	3.1.3 Server-side serialization
	3.1.4 Selection

	3.2 Message Compression
	3.3 Message Properties and Message Header Fields
	3.4 Message Ordering
	3.5 Topics vs. Queues
	3.6 Asynchronous vs. Synchronous Consumers
	3.7 Persistent vs. Non-Persistent Messages
	3.8 Deferring Acknowledges and Commits
	3.9 Using AUTO_ACK for Non-Durable Subscribers
	3.10 Alternative Qualities of Service, Multicast and No-Acknowledge
	3.10.1 Using MULTICAST_NO_ACKNOWLEDGE
	3.10.2 Using NO_ACKNOWLEDGE

	3.11 Avoid Multi-threading
	3.12 Using the JMSXUserID Property
	3.13 Performance and Tuning

	4 Enhanced Support for Using WebLogic JMS with EJBs and Servlets
	4.1 Enabling WebLogic JMS Wrappers
	4.1.1 Declaring JMS Objects as Resources In the EJB or Servlet Deployment Descriptors
	4.1.1.1 Declaring a Wrapped JMS Factory using Deployment Descriptors
	4.1.1.2 Declaring JMS Destinations using Deployment Descriptors

	4.1.2 Referencing a Packaged JMS Application Module In Deployment Descriptor Files
	4.1.2.1 Referencing Application Modules In a weblogic-application.xml Descriptor
	4.1.2.2 Referencing JMS Resources In a WebLogic Application
	4.1.2.3 Referencing JMS Resources In a Java EE Application

	4.1.3 Declaring JMS Destinations and Connection Factories using Annotations
	4.1.3.1 Injecting Resource Dependency into a Class
	4.1.3.2 Non-Injected EJB 3.0 Resource Reference Annotations

	4.1.4 Avoid Transactional XA Interfaces

	4.2 Disabling Wrapping and Pooling
	4.3 What's Happening Under the JMS Wrapper Covers
	4.3.1 Automatically Enlisting Transactions
	4.3.2 Container-Managed Security
	4.3.3 Connection Testing
	4.3.4 Java EE Compliance
	4.3.5 Pooled JMS Connection Objects
	4.3.6 Monitoring Pooled Connections

	4.4 Improving Performance Through Pooling
	4.4.1 Speeding Up JNDI Lookups by Pooling Session Objects
	4.4.2 Speeding Up Object Creation Through Caching
	4.4.3 Enlisting the Proper Transaction Mode

	4.5 Simplified Access to Foreign JMS Providers
	4.6 Examples of JMS Wrapper Functions
	4.6.1 Example of JMS Wrapper Functions
	4.6.1.1 ejb-jar.xml
	4.6.1.2 weblogic-ejb-jar.xml
	4.6.1.3 PoolTest.java
	4.6.1.4 PoolTestHome.java
	4.6.1.5 PoolTestBean.java

	4.6.2 Sending a JMS Message In a Java EE Container
	4.6.2.1 Using comp/env

	4.6.3 Dependency Injection
	4.6.4 EJB 3.0 Wrapper Without Injection

	5 Developing a Basic JMS Application
	5.1 Importing Required Packages
	5.2 Setting Up a JMS Application
	5.2.1 Step 1: Look Up a Connection Factory in JNDI
	5.2.2 Step 2: Create a Connection Using the Connection Factory
	5.2.2.1 Create a Queue Connection
	5.2.2.2 Create a Topic Connection

	5.2.3 Step 3: Create a Session Using the Connection
	5.2.3.1 Create a Queue Session
	5.2.3.2 Create a Topic Session

	5.2.4 Step 4: Look Up a Destination (Queue or Topic)
	5.2.4.1 Using a JNDI Name
	5.2.4.2 Use a Reference

	5.2.5 Step 5: Create Message Producers and Message Consumers
	5.2.5.1 Create QueueSenders and QueueReceivers
	5.2.5.2 Create TopicPublishers and TopicSubscribers

	5.2.6 Step 6a: Create the Message Object (Message Producers)
	5.2.7 Step 6b: Optionally Register an Asynchronous Message Listener
	5.2.8 Step 7: Start the Connection
	5.2.9 Example: Setting Up a PTP Application
	5.2.9.1 Step 1
	5.2.9.2 Step 2
	5.2.9.3 Step 3
	5.2.9.4 Step 4
	5.2.9.5 Step 5
	5.2.9.6 Step 6
	5.2.9.7 Step 7

	5.2.10 Example: Setting Up a Pub/Sub Application
	5.2.10.1 Step 1
	5.2.10.2 Step 2
	5.2.10.3 Step 3
	5.2.10.4 Step 4
	5.2.10.5 Step 5
	5.2.10.6 Step 6
	5.2.10.7 Step 7

	5.3 Sending Messages
	5.3.1 Create a Message Object
	5.3.2 Define a Message
	5.3.3 Send the Message to a Destination
	5.3.3.1 Send a Message Using Queue Sender
	5.3.3.2 Send a Message Using TopicPublisher

	5.3.4 Setting Message Producer Attributes
	5.3.5 Example: Sending Messages Within a PTP Application
	5.3.6 Example: Sending Messages Within a Pub/Sub Application

	5.4 Receiving Messages
	5.4.1 Receiving Messages Asynchronously
	5.4.1.1 Asynchronous Message Pipeline
	5.4.1.1.1 Configuring a Message Pipeline
	5.4.1.1.2 Behavior of Pipelined Messages

	5.4.2 Receiving Messages Synchronously
	5.4.2.1 Use Prefetch Mode to Create a Synchronous Message Pipeline
	5.4.2.2 Receiving Messages Synchronously Within a PTP Application
	5.4.2.3 Receiving Messages Synchronously Within a Pub/Sub Application

	5.4.3 Recovering Received Messages

	5.5 Acknowledging Received Messages
	5.6 Releasing Object Resources

	6 Managing Your Applications
	6.1 Managing Rolled Back, Recovered, Redelivered, or Expired Messages
	6.1.1 Setting a Redelivery Delay for Messages
	6.1.1.1 Setting a Redelivery Delay
	6.1.1.2 Overriding the Redelivery Delay on a Destination

	6.1.2 Setting a Redelivery Limit for Messages
	6.1.2.1 Configuring a Message Redelivery Limit On a Destination
	6.1.2.2 Configuring an Error Destination for Undelivered Messages

	6.1.3 Ordered Redelivery of Messages
	6.1.3.1 Required Message Pipeline Setting for the Messaging Bridge and MDBs
	6.1.3.2 Performance Limitations

	6.1.4 Handling Expired Messages

	6.2 Setting Message Delivery Times
	6.2.1 Setting a Delivery Time on Producers
	6.2.2 Setting a Delivery Time on Messages
	6.2.3 Overriding a Delivery Time
	6.2.3.1 Interaction With the Time-to-Live Value
	6.2.3.2 Setting a Relative Time-to-Deliver Override
	6.2.3.3 Setting a Scheduled Time-to-Deliver Override
	6.2.3.4 JMS Schedule Interface

	6.3 Managing Connections
	6.3.1 Defining a Connection Exception Listener
	6.3.2 Accessing Connection Metadata
	6.3.3 Starting, Stopping, and Closing a Connection

	6.4 Managing Sessions
	6.4.1 Defining a Session Exception Listener
	6.4.2 Closing a Session

	6.5 Managing Destinations
	6.5.1 Dynamically Creating Destinations
	6.5.2 Dynamically Deleting Destinations
	6.5.2.1 Preconditions for Deleting Destinations
	6.5.2.2 What Happens when a Destination is Deleted
	6.5.2.3 Message Timestamps for Troubleshooting Deleted Destinations
	6.5.2.4 Deleted Destination Statistics

	6.6 Using Temporary Destinations
	6.6.1 Creating a Temporary Queue
	6.6.2 Creating a Temporary Topic
	6.6.3 Deleting a Temporary Destination

	6.7 Setting Up Durable Subscriptions
	6.7.1 Defining the Persistent Store
	6.7.2 Setting the Client ID Policy
	6.7.3 Defining the Client ID
	6.7.4 Creating a Sharable Subscription Policy
	6.7.5 Creating Subscribers for a Durable Subscription
	6.7.6 Best Practice: Always Close Failed JMS ClientIDs
	6.7.7 Deleting Durable Subscriptions
	6.7.8 Modifying Durable Subscriptions
	6.7.9 Managing Durable Subscriptions

	6.8 Setting and Browsing Message Header and Property Fields
	6.8.1 Setting Message Header Fields
	6.8.2 Setting Message Property Fields
	6.8.3 Browsing Header and Property Fields

	6.9 Filtering Messages
	6.9.1 Defining Message Selectors Using SQL Statements
	6.9.2 Defining XML Message Selectors Using XML Selector Method
	6.9.3 Displaying Message Selectors
	6.9.4 Indexing Topic Subscriber Message Selectors To Optimize Performance

	6.10 Sending XML Messages
	6.10.1 WebLogic XML APIs
	6.10.2 Using a String Representation
	6.10.3 Using a DOM Representation

	7 Using JMS Module Helper to Manage Applications
	7.1 Configuring JMS System Resources Using JMSModuleHelper
	7.2 Configuring JMS Servers and Store-and-Forward Agents
	7.3 JMSModuleHelper Sample Code
	7.3.1 Creating a JMS System Resource
	7.3.2 Deleting a JMS System Resource

	7.4 Best Practices when Using JMSModuleHelper

	8 Using Multicasting with WebLogic JMS
	8.1 Benefits of Using Multicasting
	8.2 Limitations of Using Multicasting
	8.3 Using WebLogic Server Unicast
	8.4 Configuring Multicasting for WebLogic Server
	8.4.1 Prerequisites for Multicasting
	8.4.2 Step 1: Set Up the JMS Application, Multicast Session and Topic Subscriber
	8.4.3 Step 2: Set Up the Message Listener
	8.4.4 Dynamically Configuring Multicasting Configuration Attributes
	8.4.5 Example: Multicast TTL

	9 Using Distributed Destinations
	9.1 What is a Distributed Destination?
	9.2 Why Use a Distributed Destination
	9.3 Creating a Distributed Destination
	9.4 Types of Distributed Destinations
	9.4.1 Uniform Distributed Destinations
	9.4.2 Weighted Distributed Destinations

	9.5 Using Distributed Destinations
	9.5.1 Using Distributed Queues
	9.5.1.1 Queue Forwarding
	9.5.1.2 QueueSenders
	9.5.1.3 QueueReceivers
	9.5.1.4 QueueBrowsers

	9.5.2 Using Replicated Distributed Topics
	9.5.2.1 TopicPublishers
	9.5.2.2 TopicSubscribers
	9.5.2.3 Deploying Message-Driven Beans on a Distributed Topic

	9.5.3 Using Partitioned Distributed Topics
	9.5.4 Accessing Distributed Destination Members
	9.5.5 Distributed Destination Failover

	9.6 Using Message-Driven Beans with Distributed Destinations
	9.7 Common Use Cases for Distributed Destinations
	9.7.1 Maximizing Production
	9.7.2 Maximizing Availability
	9.7.2.1 Using Queues
	9.7.2.2 Using Topics

	9.7.3 Stuck Messages

	10 Using Message Unit-of-Order
	10.1 What Is Message Unit-Of-Order?
	10.2 Understanding Message Processing with Unit-of-Order
	10.2.1 Message Processing According to the JMS Specification
	10.2.2 Message Processing with Unit-of-Order
	10.2.3 Message Delivery with Unit-of-Order

	10.3 Message Unit-of-Order Case Study
	10.3.1 Joe Orders a Book
	10.3.2 What Happened to Joe's Order
	10.3.3 How Message Unit-of-Order Solves the Problem

	10.4 How to Create a Unit-of-Order
	10.4.1 Creating a Unit-of-Order Programmatically
	10.4.2 Creating a Unit-of-Order Administratively
	10.4.2.1 Configuring Unit-of-Order for a Connection Factory and Destinations

	10.4.3 Unit-of-Order Naming Rules

	10.5 Getting the Current Unit-of-Order
	10.6 Message Unit-of-Order Advanced Topics
	10.6.1 What Happens When a Message Is Delayed During Processing?
	10.6.2 What Happens When a Filter Makes a Message Undeliverable
	10.6.3 What Happens When Destination Sort Keys are Used
	10.6.4 Using Unit-of-Order with Distributed Destinations
	10.6.4.1 Using the Path Service
	10.6.4.2 Using Hash-based Routing
	10.6.4.3 Configuring Routing on Uniform Distributed Destinations

	10.6.5 Using Unit-of-Order with Topics
	10.6.5.1 Unit-of-Order and Distributed Topics
	10.6.5.2 Unit-of-Order, Topics, and Message Driven Beans
	10.6.5.2.1 Use JTA Transactions
	10.6.5.2.2 Set Pools Size to One

	10.6.6 Using Unit-of-Order with JMS Message Management
	10.6.7 Using Unit-of-Order with WebLogic Store-and-Forward
	10.6.8 Using Unit-of-Order with WebLogic Messaging Bridge

	10.7 Limitations of Message Unit-of-Order

	11 Using Unit-of-Work Message Groups
	11.1 What Are Unit-of-Work Message Groups?
	11.2 Understanding Message Processing With Unit-of-Work
	11.2.1 Basic UOW Terminology
	11.2.2 Rules For Processing UOW Messages
	11.2.3 Message Unit-of-Work Case Study
	11.2.3.1 Jill Orders Miscellaneous Items From an Online Retailer
	11.2.3.2 How Message Unit-of-Work Completes the Order

	11.3 How to Create a Unit-of-Work Message Group
	11.3.1 How To Write a Producer to Set UOW Message Properties
	11.3.1.1 Example UOW Producer Code
	11.3.1.2 UOW Exceptions

	11.3.2 How to Write a UOW Consumer/Producer For an Intermediate Destination
	11.3.3 Configuring Terminal Destinations
	11.3.3.1 UOW Message Routing for Terminal Distributed Destinations

	11.3.4 How to Write a UOW Consumer For a Terminal Destination

	11.4 Message Unit-of-Work Advanced Topics
	11.4.1 Message Property Handling
	11.4.1.1 System-Generated Properties
	11.4.1.2 Final Component Message Properties
	11.4.1.3 Component Message Heterogeneity
	11.4.1.4 ReplyTo Message Property

	11.4.2 UOW and Uniform Distributed Destinations
	11.4.3 UOW and Store-and-Forward Destinations

	11.5 Limitations of UOW Message Groups

	12 Using Transactions with WebLogic JMS
	12.1 Overview of Transactions
	12.2 Using JMS Transacted Sessions
	12.2.1 Step 1: Set Up JMS Application, Creating Transacted Session
	12.2.2 Step 2: Perform Desired Operations
	12.2.3 Step 3: Commit or Roll Back the JMS Transacted Session

	12.3 Using JTA User Transactions
	12.3.1 Step 1: Set Up JMS Application, Creating Non-Transacted Session
	12.3.2 Step 2: Look Up User Transaction in JNDI
	12.3.3 Step 3: Start the JTA User Transaction
	12.3.4 Step 4: Perform Desired Operations
	12.3.5 Step 5: Commit or Roll Back the JTA User Transaction

	12.4 JTA User Transactions Using Message Driven Beans
	12.5 Example: JMS and EJB in a JTA User Transaction
	12.5.1 Step 1
	12.5.2 Step 2
	12.5.3 Step 3
	12.5.4 Step 4
	12.5.5 Step 5

	12.6 Using Cross Domain Security

	13 Developing Advanced Pub/Sub Applications
	13.1 Overview of Advanced High Availability Concepts
	13.1.1 WebLogic Messaging High Availability Features
	13.1.2 Application Design Limitations When using Replicated Distributed Topics
	13.1.3 Advanced Topic Features

	13.2 Advanced Messaging Features for High Availability
	13.2.1 Shared Subscriptions and Client ID Policy
	13.2.1.1 What is the Subscription Key
	13.2.1.2 Configuring a Shared Subscription

	13.2.2 How Sharing a Non-Durable Subscription Works
	13.2.2.1 How a Shared Subscription Policy for a Non-durable Subscription is Determined
	13.2.2.2 How a Non-durable Subscription is Closed

	13.2.3 How Sharing a Durable Subscription Works
	13.2.3.1 How a Shared Subscription Policy for a Durable Subscription is Determined
	13.2.3.2 How to Unsubscribe a Durable Subscription
	13.2.3.3 Considerations when Unsubscribing a Durable Subscriber
	13.2.3.4 Managing Durable Subscriptions
	13.2.3.4.1 Naming Conventions for the JMSDurableSubscriberRuntimeMbean

	13.3 Design Strategies when using Topics
	13.3.1 One-copy-per-instance Design Strategy
	13.3.2 One-copy-per-application Design Strategy

	13.4 Best Practices for Distributed Topics

	14 Recovering from a Server Failure
	14.1 Automatic JMS Client Failover
	14.1.1 Automatic Reconnect Limitations
	14.1.2 Automatic Failover for JMS Producers
	14.1.2.1 Sample Producer Code
	14.1.2.2 Re-usable ConnectionFactory Objects
	14.1.2.3 Re-usable Destination Objects
	14.1.2.4 Reconnected Connection Objects
	14.1.2.4.1 Special Cases for Reconnected Connections

	14.1.2.5 Reconnected Session Objects
	14.1.2.5.1 Special Cases for Reconnected Sessions

	14.1.2.6 Reconnected MessageProducer Objects
	14.1.2.6.1 Special Case for Distributed Destinations

	14.1.3 Configuring Automatic Failover for JMS Consumers
	14.1.3.1 Sample Consumer Client Code
	14.1.3.2 Configuring Automatic Client Refresh Options
	14.1.3.3 Common Cases for Reconnected Consumers
	14.1.3.3.1 Synchronous Consumers
	14.1.3.3.2 Asynchronous Consumers

	14.1.3.4 Special Cases for Reconnected Consumers
	14.1.3.4.1 Consumers of Distributed Destinations
	14.1.3.4.2 Message-Driven EJBs
	14.1.3.4.3 Consumer Connections with a ClientID for Durable Subscriptions
	14.1.3.4.4 Non-Durable Subscriptions and Possible Missed Messages
	14.1.3.4.5 Duplicate Messages
	14.1.3.4.6 Variations Due to Acknowledge Modes
	14.1.3.4.7 Reconnecting with Migrated JMS Destinations In a Cluster

	14.1.4 Explicitly Disabling Automatic Failover on JMS Clients
	14.1.4.1 Programmatically
	14.1.4.2 Administratively

	14.1.5 Best Practices for JMS Clients Using Automatic Failover
	14.1.5.1 Always Catch exceptions
	14.1.5.2 Use Transactions to Group Message Work
	14.1.5.3 JMS Clients Should Always Call the close() Method

	14.2 Programming Considerations for WebLogic Server 9.0 or Earlier Failures
	14.3 Manually Migrating JMS Data to a New Server

	15 WebLogic JMS C API
	15.1 What Is the WebLogic JMS C API?
	15.2 System Requirements
	15.3 Design Principles
	15.3.1 Java Objects Map to Handles
	15.3.2 Thread Utilization
	15.3.3 Exception Handling
	15.3.4 Type Conversions
	15.3.4.1 Integer (int)
	15.3.4.2 Long (long)
	15.3.4.3 Character (char)
	15.3.4.4 String

	15.3.5 Memory Allocation and Garbage Collection
	15.3.6 Closing Connections
	15.3.7 Helper Functions

	15.4 Security Considerations
	15.5 Implementation Guidelines
	15.6 Workarounds for Client Crash Thread Detach Issue

	A Deprecated WebLogic JMS Features
	A.1 Defining Server Session Pools
	A.1.1 Step 1: Look Up Server Session Pool Factory in JNDI
	A.1.2 Step 2: Create a Server Session Pool Using the Server Session Pool Factory
	A.1.2.1 Create a Server Session Pool for Queue Connection Consumers
	A.1.2.2 Create a Server Session Pool for Topic Connection Consumers

	A.1.3 Step 3: Create a Connection Consumer
	A.1.3.1 Create a Connection Consumer for Queues
	A.1.3.2 Create a Connection Consumer for Topics

	A.1.4 Example: Setting Up a PTP Client Server Session Pool
	A.1.4.1 Step 1
	A.1.4.2 Step 2
	A.1.4.3 Step 3

	A.1.5 Example: Setting Up a Pub/Sub Client Server Session Pool
	A.1.5.1 Step 1
	A.1.5.2 Step 2
	A.1.5.3 Step 3

	B FAQs: Integrating Remote JMS Providers
	B.1 Understanding JMS and JNDI Terminology
	B.2 Understanding Transactions
	B.3 How to Integrate with a Remote Provider
	B.4 Best Practices when Integrating with Remote Providers
	B.5 Using Foreign JMS Server Definitions
	B.6 Using EJB/Servlet JMS Resource References
	B.7 Using WebLogic Store-and-Forward
	B.8 Using WebLogic JMS SAF Client
	B.9 Using a Messaging Bridge
	B.10 Using Messaging Beans
	B.11 Using AQ JMS
	B.12 JMS Interoperability Resources

	C How to Lookup a Destination
	C.1 Use a JNDI Name
	C.2 Use a Create Destination Identifier
	C.2.1 Default WebLogic CDI Syntax
	C.2.2 Custom WebLogic CDI Syntax
	C.2.3 Server Affinity When Looking Up Destinations

	C.3 Examples of Syntax Used to Lookup Destinations
	C.3.1 Non-Distributed Destinations
	C.3.1.1 JNDI Syntax for Non-distributed Destinations
	C.3.1.2 CDI Syntax for Non-Distributed destinations

	C.3.2 Uniform Distributed Destinations
	C.3.2.1 JNDI Syntax for UDDs
	C.3.2.2 CDI Syntax for UDDs

	C.3.3 Weighted Distributed Destinations
	C.3.3.1 JNDI Syntax for WDDs
	C.3.3.2 CDI Syntax for WDDs

	D Advanced Programming with Distributed Destinations Using the JMS Destination Availability Helper API
	D.1 Introduction
	D.2 Controlling DD Producer Load Balancing
	D.2.1 Basic JMS
	D.2.2 Senders to Distributed Queues (DQs) and Partitioned Distributed Topics (PDTs)
	D.2.3 Senders to Replicated Distributed Topics (RDTs)

	D.3 Using the JMS Destination Availability Helper API
	D.3.1 Overview
	D.3.2 General Flow
	D.3.3 Handling weblogic.jms.extension.DestinationDetail
	D.3.4 Best Practices for Consumer Containers
	D.3.4.1 When to Register and Unregister
	D.3.4.2 URL Handling
	D.3.4.3 Failure Handling
	D.3.4.4 JNDI Context Handling
	D.3.4.5 JMS Connection Handling

	D.3.5 Interoperability Guide-Lines
	D.3.5.1 API Availability
	D.3.5.2 Foreign Contexts
	D.3.5.3 Destination Type Support
	D.3.5.4 Unavailable Notifications
	D.3.5.5 Interoperating with Pre WebLogic Server 9.0 Distributed Queues
	D.3.5.6 Interoperating with Pre WebLogic Server 10.3.4.0 Distributed Topics
	D.3.5.7 DestinationDetail Fields

	D.3.6 Security Considerations
	D.3.6.1 WebLogic Server Security Model
	D.3.6.2 Passing Credentials Between Threads
	D.3.6.2.1 Using the Same Thread
	D.3.6.2.2 Pass as Anonymous User
	D.3.6.2.3 Pass as Anonymous User
	D.3.6.2.4 Cache and Reuse Subject from the Initial Context

	D.3.6.3 When to use Cross Domain Security
	D.3.6.4 Authentication of Users
	D.3.6.4.1 Specify Credentials for a JNDI Context
	D.3.6.4.2 Specifying Credentials for a JMS Connection
	D.3.6.4.3 Using Credentials of a Foreign JMS Server JNDI Context
	D.3.6.4.4 Using Credentials of a Foreign JMS Server Connection

	D.3.6.5 Securing Destinations
	D.3.6.6 Securing Wire Data

	D.3.7 Transaction Considerations

	D.4 Strategies for Uniform Distributed Queue Consumers
	D.4.1 General Strategies
	D.4.2 Best Practice for Local Server Consumers

	D.5 Strategies for Subscribers on Uniform Distributed Topics
	D.5.1 One Copy per Instance
	D.5.1.1 General Pattern Design Strategy for One Copy per Instance
	D.5.1.2 Best Practice for Local Server Consumers using One Copy per Instance

	D.5.2 One Copy per Application
	D.5.2.1 General Pattern Design Strategy for One Copy per Application
	D.5.2.2 Best Practice for Local Server Consumers using One Copy per Application

