
Oracle® Solaris ZFS Administration Guide

Part No: 819–5461–20
April 2012



Copyright © 2006, 2012, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual
property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software,
unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is
applicable:

U.S. GOVERNMENT RIGHTS. Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are
"commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable
Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently
dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall
be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any
liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered
trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and
its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation
and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Ce logiciel et la documentation qui l’accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont concédés sous licence et soumis à des restrictions
d’utilisation et de divulgation. Sauf disposition de votre contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire, diffuser, modifier, breveter,
transmettre, distribuer, exposer, exécuter, publier ou afficher le logiciel, même partiellement, sous quelque forme et par quelque procédé que ce soit. Par ailleurs, il est
interdit de procéder à toute ingénierie inverse du logiciel, de le désassembler ou de le décompiler, excepté à des fins d’interopérabilité avec des logiciels tiers ou tel que
prescrit par la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle Corporation ne garantit pas qu’elles soient exemptes
d’erreurs et vous invite, le cas échéant, à lui en faire part par écrit.

Si ce logiciel, ou la documentation qui l’accompagne, est concédé sous licence au Gouvernement des Etats-Unis, ou à toute entité qui délivre la licence de ce logiciel
ou l’utilise pour le compte du Gouvernement des Etats-Unis, la notice suivante s’applique:

U.S. GOVERNMENT RIGHTS. Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are
"commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable
Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

Ce logiciel ou matériel a été développé pour un usage général dans le cadre d’applications de gestion des informations. Ce logiciel ou matériel n’est pas conçu ni n’est
destiné à être utilisé dans des applications à risque, notamment dans des applications pouvant causer des dommages corporels. Si vous utilisez ce logiciel ou matériel
dans le cadre d’applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de secours, de sauvegarde, de redondance et autres mesures
nécessaires à son utilisation dans des conditions optimales de sécurité. Oracle Corporation et ses affiliés déclinent toute responsabilité quant aux dommages causés
par l’utilisation de ce logiciel ou matériel pour ce type d’applications.

Oracle et Java sont des marques déposées d’Oracle Corporation et/ou de ses affiliés. Tout autre nom mentionné peut correspondre à des marques appartenant à
d’autres propriétaires qu’Oracle.

Intel et Intel Xeon sont des marques ou des marques déposées d’Intel Corporation. Toutes les marques SPARC sont utilisées sous licence et sont des marques ou des
marques déposées de SPARC International, Inc. AMD, Opteron, le logo AMD et le logo AMD Opteron sont des marques ou des marques déposées d’Advanced Micro
Devices. UNIX est une marque déposée d’The Open Group.

Ce logiciel ou matériel et la documentation qui l’accompagne peuvent fournir des informations ou des liens donnant accès à des contenus, des produits et des services
émanant de tiers. Oracle Corporation et ses affiliés déclinent toute responsabilité ou garantie expresse quant aux contenus, produits ou services émanant de tiers. En
aucun cas, Oracle Corporation et ses affiliés ne sauraient être tenus pour responsables des pertes subies, des coûts occasionnés ou des dommages causés par l’accès à
des contenus, produits ou services tiers, ou à leur utilisation.

120405@25097



Contents

Preface ...................................................................................................................................................13

1 Oracle Solaris ZFS File System (Introduction) ................................................................................. 17
What's New in ZFS? ............................................................................................................................. 17

New Oracle Solaris ZFS Installation Features ........................................................................... 18
ZFS Send Stream Enhancements ............................................................................................... 19
ZFS Snapshot Differences (zfs diff) ........................................................................................19
ZFS Storage Pool Recovery and Performance Enhancements ................................................ 20
Tuning ZFS Synchronous Behavior .......................................................................................... 20
Improved ZFS Pool Messages ..................................................................................................... 21
ZFS ACL Interoperability Enhancements ................................................................................. 22
Splitting a Mirrored ZFS Storage Pool (zpool split) .............................................................23
New ZFS System Process ............................................................................................................. 23
Enhancements to the zpool list Command ...........................................................................23
ZFS Storage Pool Recovery ......................................................................................................... 23
ZFS Log Device Enhancements .................................................................................................. 24
Triple-Parity RAID-Z (raidz3) ................................................................................................. 24
Holding ZFS Snapshots ............................................................................................................... 24
ZFS Device Replacement Enhancements .................................................................................. 25
ZFS and Flash Installation Support ............................................................................................ 26
ZFS User and Group Quotas ...................................................................................................... 26
ZFS ACL Pass Through Inheritance for Execute Permission ................................................. 27
ZFS Property Enhancements ...................................................................................................... 28
ZFS Log Device Recovery ............................................................................................................ 30
Using Cache Devices in Your ZFS Storage Pool ....................................................................... 31
Zone Migration in a ZFS Environment ..................................................................................... 32
ZFS Installation and Boot Support ............................................................................................ 32
Rolling Back a Dataset Without Unmounting ......................................................................... 33

3



Enhancements to the zfs send Command ...............................................................................33
ZFS Quotas and Reservations for File System Data Only ....................................................... 34
ZFS Storage Pool Properties ....................................................................................................... 34
ZFS Command History Enhancements (zpool history) ......................................................35
Upgrading ZFS File Systems (zfs upgrade) .............................................................................35
ZFS Delegated Administration ................................................................................................... 36
Setting Up Separate ZFS Log Devices ........................................................................................ 36
Creating Intermediate ZFS Datasets .......................................................................................... 37
ZFS Hot-Plugging Enhancements ............................................................................................. 38
Recursively Renaming ZFS Snapshots (zfs rename -r) ..........................................................38
gzip Compression Is Available for ZFS ..................................................................................... 39
Storing Multiple Copies of ZFS User Data ................................................................................ 39
Improved zpool status Output ................................................................................................40
ZFS and Solaris iSCSI Improvements ........................................................................................ 40
ZFS Command History (zpool history) .................................................................................41
ZFS Property Improvements ...................................................................................................... 41
Displaying All ZFS File System Information ............................................................................ 42
New zfs receive -F Option .......................................................................................................43
Recursive ZFS Snapshots ............................................................................................................ 43
Double-Parity RAID-Z (raidz2) ............................................................................................... 43
Hot Spares for ZFS Storage Pool Devices .................................................................................. 43
Replacing a ZFS File System With a ZFS Clone (zfs promote) ..............................................44
Upgrading ZFS Storage Pools (zpool upgrade) .......................................................................44
ZFS Backup and Restore Commands Are Renamed ............................................................... 44
Recovering Destroyed Storage Pools ......................................................................................... 44
ZFS Is Integrated With Fault Manager ...................................................................................... 45
The zpool clear Command .......................................................................................................45
Compact NFSv4 ACL Format .................................................................................................... 45
File System Monitoring Tool (fsstat) ..................................................................................... 46
ZFS Web-Based Management .................................................................................................... 46

What Is ZFS? ........................................................................................................................................ 47
ZFS Pooled Storage ...................................................................................................................... 47
Transactional Semantics ............................................................................................................. 47
Checksums and Self-Healing Data ............................................................................................. 48
Unparalleled Scalability .............................................................................................................. 48
ZFS Snapshots .............................................................................................................................. 48

Contents

Oracle Solaris ZFS Administration Guide • April 20124



Simplified Administration .......................................................................................................... 49
ZFS Terminology ................................................................................................................................. 49
ZFS Component Naming Requirements .......................................................................................... 51

2 Getting Started With Oracle Solaris ZFS .......................................................................................... 53
ZFS Hardware and Software Requirements and Recommendations ............................................ 53
Creating a Basic ZFS File System ....................................................................................................... 54
Creating a ZFS Storage Pool ............................................................................................................... 55

▼ How to Identify Storage Requirements for Your ZFS Storage Pool ....................................... 55
▼ How to Create a ZFS Storage Pool .............................................................................................. 55

Creating a ZFS File System Hierarchy ............................................................................................... 56
▼ How to Determine Your ZFS File System Hierarchy ............................................................... 56
▼ How to Create ZFS File Systems ................................................................................................. 57

3 Oracle Solaris ZFS and Traditional File System Differences ......................................................... 59
ZFS File System Granularity ............................................................................................................... 59
ZFS Disk Space Accounting ............................................................................................................... 60

Out of Space Behavior ................................................................................................................. 60
Mounting ZFS File Systems ................................................................................................................ 61
Traditional Volume Management ..................................................................................................... 61
New Solaris ACL Model ...................................................................................................................... 61

4 Managing Oracle Solaris ZFS Storage Pools ................................................................................... 63
Components of a ZFS Storage Pool ................................................................................................... 63

Using Disks in a ZFS Storage Pool ............................................................................................. 63
Using Slices in a ZFS Storage Pool ............................................................................................. 65
Using Files in a ZFS Storage Pool ............................................................................................... 66

Replication Features of a ZFS Storage Pool ...................................................................................... 66
Mirrored Storage Pool Configuration ....................................................................................... 67
RAID-Z Storage Pool Configuration ......................................................................................... 67
ZFS Hybrid Storage Pool ............................................................................................................. 68
Self-Healing Data in a Redundant Configuration .................................................................... 68
Dynamic Striping in a Storage Pool ........................................................................................... 68

Creating and Destroying ZFS Storage Pools .................................................................................... 69

Contents

5



Creating a ZFS Storage Pool ....................................................................................................... 69
Displaying Storage Pool Virtual Device Information .............................................................. 74
Handling ZFS Storage Pool Creation Errors ............................................................................. 75
Destroying ZFS Storage Pools .................................................................................................... 77

Managing Devices in ZFS Storage Pools ........................................................................................... 78
Adding Devices to a Storage Pool ............................................................................................... 79
Attaching and Detaching Devices in a Storage Pool ................................................................ 83
Creating a New Pool By Splitting a Mirrored ZFS Storage Pool ............................................. 85
Onlining and Offlining Devices in a Storage Pool .................................................................... 88
Clearing Storage Pool Device Errors ......................................................................................... 90
Replacing Devices in a Storage Pool .......................................................................................... 90
Designating Hot Spares in Your Storage Pool .......................................................................... 92

Managing ZFS Storage Pool Properties ............................................................................................ 98
Querying ZFS Storage Pool Status ................................................................................................... 101

Displaying Information About ZFS Storage Pools ................................................................. 101
Viewing I/O Statistics for ZFS Storage Pools .......................................................................... 104
Determining the Health Status of ZFS Storage Pools ............................................................ 107

Migrating ZFS Storage Pools ............................................................................................................ 110
Preparing for ZFS Storage Pool Migration .............................................................................. 111
Exporting a ZFS Storage Pool ................................................................................................... 111
Determining Available Storage Pools to Import .................................................................... 112
Importing ZFS Storage Pools From Alternate Directories .................................................... 113
Importing ZFS Storage Pools .................................................................................................... 114
Recovering Destroyed ZFS Storage Pools ............................................................................... 117

Upgrading ZFS Storage Pools .......................................................................................................... 118

5 Installing and Booting an Oracle Solaris ZFS Root File System ..................................................121
Installing and Booting an Oracle Solaris ZFS Root File System (Overview) .............................. 121

ZFS Installation Features ........................................................................................................... 122
Oracle Solaris Installation and Live Upgrade Requirements for ZFS Support ................... 123

Installing a ZFS Root File System (Oracle Solaris Initial Installation) ........................................ 125
▼ How to Create a Mirrored ZFS Root Pool (Postinstallation) ................................................ 131

Installing a ZFS Root File System (Oracle Solaris Flash Archive Installation) ........................... 132
Installing a ZFS Root File System ( JumpStart Installation) ......................................................... 136

JumpStart Keywords for ZFS .................................................................................................... 136

Contents

Oracle Solaris ZFS Administration Guide • April 20126



JumpStart Profile Examples for ZFS ........................................................................................ 138
JumpStart Issues for ZFS ........................................................................................................... 139

Migrating to a ZFS Root File System or Updating a ZFS Root File System (Live Upgrade) ..... 139
ZFS Migration Issues With Live Upgrade ............................................................................... 141
Using Live Upgrade to Migrate or Update a ZFS Root File System (Without Zones) ....... 142
Using Live Upgrade to Migrate or Upgrade a System With Zones (Solaris 10 10/08) ....... 149
Using Oracle Solaris Live Upgrade to Migrate or Upgrade a System With Zones (at Least
Solaris 10 5/09) ........................................................................................................................... 154

ZFS Support for Swap and Dump Devices ..................................................................................... 164
Adjusting the Sizes of Your ZFS Swap Device and Dump Device ........................................ 165
Troubleshooting ZFS Dump Device Issues ............................................................................ 166

Booting From a ZFS Root File System ............................................................................................ 167
Booting From an Alternate Disk in a Mirrored ZFS Root Pool ............................................ 168
SPARC: Booting From a ZFS Root File System ...................................................................... 169
x86: Booting From a ZFS Root File System ............................................................................. 170
Resolving ZFS Mount-Point Problems That Prevent Successful Booting (Solaris 10
10/08) ........................................................................................................................................... 171
Booting for Recovery Purposes in a ZFS Root Environment ............................................... 172

Recovering the ZFS Root Pool or Root Pool Snapshots ................................................................ 174
▼ How to Replace a Disk in the ZFS Root Pool .......................................................................... 174
▼ How to Create Root Pool Snapshots ........................................................................................ 176
▼ How to Re-create a ZFS Root Pool and Restore Root Pool Snapshots ................................. 178
▼ How to Roll Back Root Pool Snapshots From a Failsafe Boot ............................................... 179

6 Managing Oracle Solaris ZFS File Systems .................................................................................... 181
Managing ZFS File Systems (Overview) ......................................................................................... 181
Creating, Destroying, and Renaming ZFS File Systems ............................................................... 182

Creating a ZFS File System ........................................................................................................ 182
Destroying a ZFS File System ................................................................................................... 183
Renaming a ZFS File System ..................................................................................................... 184

Introducing ZFS Properties .............................................................................................................. 185
ZFS Read-Only Native Properties ............................................................................................ 192
Settable ZFS Native Properties ................................................................................................. 193
ZFS User Properties ................................................................................................................... 196

Querying ZFS File System Information .......................................................................................... 197
Listing Basic ZFS Information .................................................................................................. 197

Contents

7



Creating Complex ZFS Queries ............................................................................................... 198
Managing ZFS Properties ................................................................................................................. 199

Setting ZFS Properties ............................................................................................................... 199
Inheriting ZFS Properties ......................................................................................................... 200
Querying ZFS Properties ........................................................................................................... 201

Mounting and Sharing ZFS File Systems ........................................................................................ 204
Managing ZFS Mount Points .................................................................................................... 204
Mounting ZFS File Systems ...................................................................................................... 206
Using Temporary Mount Properties ....................................................................................... 207
Unmounting ZFS File Systems ................................................................................................. 208
Sharing and Unsharing ZFS File Systems ............................................................................... 208

Setting ZFS Quotas and Reservations ............................................................................................. 210
Setting Quotas on ZFS File Systems ......................................................................................... 211
Setting Reservations on ZFS File Systems ............................................................................... 214

Upgrading ZFS File Systems ............................................................................................................ 215

7 Working With Oracle Solaris ZFS Snapshots and Clones ............................................................ 217
Overview of ZFS Snapshots .............................................................................................................. 217

Creating and Destroying ZFS Snapshots ................................................................................ 218
Displaying and Accessing ZFS Snapshots ............................................................................... 221
Rolling Back a ZFS Snapshot .................................................................................................... 222
Identifying ZFS Snapshot Differences (zfs diff) ................................................................. 223

Overview of ZFS Clones ................................................................................................................... 224
Creating a ZFS Clone ................................................................................................................. 225
Destroying a ZFS Clone ............................................................................................................. 225
Replacing a ZFS File System With a ZFS Clone ...................................................................... 225

Sending and Receiving ZFS Data ..................................................................................................... 226
Saving ZFS Data With Other Backup Products ...................................................................... 227
Sending a ZFS Snapshot ............................................................................................................ 227
Receiving a ZFS Snapshot ......................................................................................................... 228
Applying Different Property Values to a ZFS Snapshot Stream ........................................... 229
Sending and Receiving Complex ZFS Snapshot Streams ...................................................... 231
Remote Replication of ZFS Data .............................................................................................. 233

Contents

Oracle Solaris ZFS Administration Guide • April 20128



8 Using ACLs and Attributes to Protect Oracle Solaris ZFS Files ....................................................235
Solaris ACL Model ............................................................................................................................. 235

Syntax Descriptions for Setting ACLs ..................................................................................... 236
ACL Inheritance ......................................................................................................................... 239
ACL Property (aclinherit) ..................................................................................................... 240

Setting ACLs on ZFS Files ................................................................................................................. 241
Setting and Displaying ACLs on ZFS Files in Verbose Format .................................................... 243

Setting ACL Inheritance on ZFS Files in Verbose Format .................................................... 247
Setting and Displaying ACLs on ZFS Files in Compact Format .................................................. 252

9 Oracle Solaris ZFS Delegated Administration .............................................................................. 257
Overview of ZFS Delegated Administration .................................................................................. 257

Disabling ZFS Delegated Permissions ..................................................................................... 258
Delegating ZFS Permissions ............................................................................................................. 258

Delegating ZFS Permissions (zfs allow) ............................................................................... 261
Removing ZFS Delegated Permissions (zfs unallow) ......................................................... 261

Delegating ZFS Permissions (Examples) ........................................................................................ 262
Displaying ZFS Delegated Permissions (Examples) ..................................................................... 265
Removing ZFS Delegated Permissions (Examples) ...................................................................... 267

10 Oracle Solaris ZFS Advanced Topics ............................................................................................... 269
ZFS Volumes ...................................................................................................................................... 269

Using a ZFS Volume as a Swap or Dump Device ................................................................... 270
Using a ZFS Volume as a Solaris iSCSI Target ....................................................................... 270

Using ZFS on a Solaris System With Zones Installed .................................................................... 271
Adding ZFS File Systems to a Non-Global Zone .................................................................... 272
Delegating Datasets to a Non-Global Zone ............................................................................ 273
Adding ZFS Volumes to a Non-Global Zone ......................................................................... 273
Using ZFS Storage Pools Within a Zone ................................................................................. 274
Managing ZFS Properties Within a Zone ............................................................................... 274
Understanding the zoned Property ......................................................................................... 275

Using ZFS Alternate Root Pools ...................................................................................................... 276
Creating ZFS Alternate Root Pools .......................................................................................... 276
Importing Alternate Root Pools ............................................................................................... 277

ZFS Rights Profiles ............................................................................................................................ 277

Contents

9



11 Oracle Solaris ZFS Troubleshooting and Pool Recovery ............................................................. 279
Identifying ZFS Failures .................................................................................................................... 279

Missing Devices in a ZFS Storage Pool .................................................................................... 280
Damaged Devices in a ZFS Storage Pool ................................................................................. 280
Corrupted ZFS Data .................................................................................................................. 280

Checking ZFS File System Integrity ................................................................................................ 281
File System Repair ...................................................................................................................... 281
File System Validation ............................................................................................................... 281
Controlling ZFS Data Scrubbing ............................................................................................. 281

Resolving Problems With ZFS ......................................................................................................... 283
Determining If Problems Exist in a ZFS Storage Pool ........................................................... 284
Reviewing zpool status Output ............................................................................................ 284
System Reporting of ZFS Error Messages ............................................................................... 287

Repairing a Damaged ZFS Configuration ...................................................................................... 288
Resolving a Missing Device .............................................................................................................. 288

Physically Reattaching a Device ............................................................................................... 289
Notifying ZFS of Device Availability ....................................................................................... 289

Replacing or Repairing a Damaged Device .................................................................................... 290
Determining the Type of Device Failure ................................................................................. 290
Clearing Transient Errors ......................................................................................................... 291
Replacing a Device in a ZFS Storage Pool ............................................................................... 292

Repairing Damaged Data ................................................................................................................. 298
Identifying the Type of Data Corruption ................................................................................ 299
Repairing a Corrupted File or Directory ................................................................................. 300
Repairing ZFS Storage Pool-Wide Damage ............................................................................ 301

Repairing an Unbootable System .................................................................................................... 303

12 Recommended Oracle Solaris ZFS Practices ................................................................................. 305
Recommended Storage Pool Practices ............................................................................................ 305

General System Practices .......................................................................................................... 305
ZFS Storage Pool Creation Practices ........................................................................................ 306
Storage Pool Practices for Performance .................................................................................. 308
ZFS Storage Pool Maintenance and Monitoring Practices ................................................... 309

Recommended File System Practices .............................................................................................. 310
File System Creation Practices .................................................................................................. 310

Contents

Oracle Solaris ZFS Administration Guide • April 201210



Monitoring ZFS File System Practices ..................................................................................... 310

A Oracle Solaris ZFS Version Descriptions ........................................................................................ 313
Overview of ZFS Versions ................................................................................................................ 313
ZFS Pool Versions ............................................................................................................................. 313
ZFS File System Versions .................................................................................................................. 315

Index ................................................................................................................................................... 317

Contents

11



12



Preface

The Oracle Solaris ZFS Administration Guide provides information about setting up and
managing Oracle Solaris ZFS file systems.

This guide contains information for both SPARC based and x86 based systems.

Note – This Oracle Solaris release supports systems that use the SPARC and x86 families of
processor architectures. The supported systems appear in the Oracle Solaris Hardware
Compatibility List at http://www.oracle.com/webfolder/technetwork/hcl/index.html. This
document cites any implementation differences between the platform types.

Who Should Use This Book
This guide is intended for anyone who is interested in setting up and managing Oracle Solaris
ZFS file systems. Experience using the Oracle Solaris operating system (OS) or another UNIX
version is recommended.

How This Book Is Organized
The following table describes the chapters in this book.

Chapter Description

Chapter 1, “Oracle Solaris ZFS
File System (Introduction)”

Provides an overview of ZFS and its features and benefits. It also covers some
basic concepts and terminology.

Chapter 2, “Getting Started
With Oracle Solaris ZFS”

Provides step-by-step instructions on setting up basic ZFS configurations
with basic pools and file systems. This chapter also provides the hardware
and software required to create ZFS file systems.

Chapter 3, “Oracle Solaris ZFS
and Traditional File System
Differences”

Identifies important features that make ZFS significantly different from
traditional file systems. Understanding these key differences will help reduce
confusion when you use traditional tools to interact with ZFS.

Chapter 4, “Managing Oracle
Solaris ZFS Storage Pools”

Provides a detailed description of how to create and administer ZFS storage
pools.

13

http://www.oracle.com/webfolder/technetwork/hcl/index.html


Chapter Description

Chapter 5, “Installing and
Booting an Oracle Solaris ZFS
Root File System”

Describes how to install and boot a ZFS file system. Migrating a UFS root file
system to a ZFS root file system by using Oracle Solaris Live Upgrade is also
covered.

Chapter 6, “Managing Oracle
Solaris ZFS File Systems”

Provides detailed information about managing ZFS file systems. Included are
such concepts as the hierarchical file system layout, property inheritance,
and automatic mount point management and share interactions.

Chapter 7, “Working With
Oracle Solaris ZFS Snapshots
and Clones”

Describes how to create and administer ZFS snapshots and clones.

Chapter 8, “Using ACLs and
Attributes to Protect Oracle
Solaris ZFS Files”

Describes how to use access control lists (ACLs) to protect your ZFS files by
providing more granular permissions than the standard UNIX permissions.

Chapter 9, “Oracle Solaris ZFS
Delegated Administration”

Describes how to use ZFS delegated administration to allow nonprivileged
users to perform ZFS administration tasks.

Chapter 10, “Oracle Solaris ZFS
Advanced Topics”

Provides information about using ZFS volumes, using ZFS on an Oracle
Solaris system with zones installed, and using alternate root pools.

Chapter 11, “Oracle Solaris ZFS
Troubleshooting and Pool
Recovery”

Describes how to identify ZFS failures and how to recover from them. Steps
for preventing failures are covered as well.

Appendix A, “Oracle Solaris
ZFS Version Descriptions”

Describes available ZFS versions, features of each version, and the Solaris OS
that provides the ZFS version and feature.

Related Books
Related information about general Oracle Solaris system administration topics can be found in
the following books:

■ System Administration Guide: Basic Administration
■ System Administration Guide: Advanced Administration
■ System Administration Guide: Devices and File Systems
■ System Administration Guide: Security Services

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Preface

Oracle Solaris ZFS Administration Guide • April 201214

http://www.oracle.com/pls/topic/lookup?ctx=E23823&id=SYSADV1
http://www.oracle.com/pls/topic/lookup?ctx=E23823&id=SYSADV2
http://www.oracle.com/pls/topic/lookup?ctx=E23823&id=SAGDFS
http://www.oracle.com/pls/topic/lookup?ctx=E23823&id=SYSADV6
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs


Typographic Conventions
The following table describes the typographic conventions that are used in this book.

TABLE P–1 Typographic Conventions

Typeface Description Example

AaBbCc123 The names of commands, files, and directories,
and onscreen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

aabbcc123 Placeholder: replace with a real name or value The command to remove a file is rm
filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized

Read Chapter 6 in the User's Guide.

A cache is a copy that is stored
locally.

Do not save the file.

Note: Some emphasized items
appear bold online.

Shell Prompts in Command Examples
The following table shows the default UNIX system prompt and superuser prompt for shells
that are included in the Oracle Solaris OS. Note that the default system prompt that is displayed
in command examples varies, depending on the Oracle Solaris release.

TABLE P–2 Shell Prompts

Shell Prompt

Bash shell, Korn shell, and Bourne shell $

Bash shell, Korn shell, and Bourne shell for superuser #

C shell machine_name%

C shell for superuser machine_name#

Preface

15



16



Oracle Solaris ZFS File System (Introduction)

This chapter provides an overview of the Oracle Solaris ZFS file system and its features and
benefits. This chapter also covers some basic terminology used throughout the rest of this book.

The following sections are provided in this chapter:

■ “What's New in ZFS?” on page 17
■ “What Is ZFS?” on page 47
■ “ZFS Terminology” on page 49
■ “ZFS Component Naming Requirements” on page 51

What's New in ZFS?
This section summarizes new features in the ZFS file system.

■ “New Oracle Solaris ZFS Installation Features” on page 18
■ “ZFS Send Stream Enhancements” on page 19
■ “ZFS Snapshot Differences (zfs diff)” on page 19
■ “ZFS Storage Pool Recovery and Performance Enhancements” on page 20
■ “Tuning ZFS Synchronous Behavior” on page 20
■ “Improved ZFS Pool Messages” on page 21
■ “ZFS ACL Interoperability Enhancements” on page 22
■ “Splitting a Mirrored ZFS Storage Pool (zpool split)” on page 23
■ “New ZFS System Process” on page 23
■ “Enhancements to the zpool list Command” on page 23
■ “ZFS Storage Pool Recovery” on page 23
■ “ZFS Log Device Enhancements” on page 24
■ “Triple-Parity RAID-Z (raidz3)” on page 24
■ “Holding ZFS Snapshots” on page 24
■ “ZFS Device Replacement Enhancements” on page 25
■ “ZFS and Flash Installation Support” on page 26
■ “ZFS User and Group Quotas” on page 26

1C H A P T E R 1

17



■ “ZFS ACL Pass Through Inheritance for Execute Permission” on page 27
■ “ZFS Property Enhancements” on page 28
■ “ZFS Log Device Recovery” on page 30
■ “Using Cache Devices in Your ZFS Storage Pool” on page 31
■ “Zone Migration in a ZFS Environment” on page 32
■ “ZFS Installation and Boot Support” on page 32
■ “Rolling Back a Dataset Without Unmounting” on page 33
■ “Enhancements to the zfs send Command” on page 33
■ “ZFS Quotas and Reservations for File System Data Only” on page 34
■ “ZFS Storage Pool Properties” on page 34
■ “ZFS Command History Enhancements (zpool history)” on page 35
■ “Upgrading ZFS File Systems (zfs upgrade)” on page 35
■ “ZFS Delegated Administration” on page 36
■ “Setting Up Separate ZFS Log Devices” on page 36
■ “Creating Intermediate ZFS Datasets” on page 37
■ “ZFS Hot-Plugging Enhancements” on page 38
■ “Recursively Renaming ZFS Snapshots (zfs rename -r)” on page 38
■ “gzip Compression Is Available for ZFS” on page 39
■ “Storing Multiple Copies of ZFS User Data” on page 39
■ “Improved zpool status Output” on page 40
■ “ZFS and Solaris iSCSI Improvements” on page 40
■ “ZFS Command History (zpool history)” on page 41
■ “ZFS Property Improvements” on page 41
■ “Displaying All ZFS File System Information” on page 42
■ “New zfs receive -F Option” on page 43
■ “Recursive ZFS Snapshots” on page 43
■ “Double-Parity RAID-Z (raidz2)” on page 43
■ “Hot Spares for ZFS Storage Pool Devices” on page 43
■ “Replacing a ZFS File System With a ZFS Clone (zfs promote)” on page 44
■ “Upgrading ZFS Storage Pools (zpool upgrade)” on page 44
■ “ZFS Backup and Restore Commands Are Renamed” on page 44
■ “Recovering Destroyed Storage Pools” on page 44
■ “ZFS Is Integrated With Fault Manager” on page 45
■ “The zpool clear Command” on page 45
■ “Compact NFSv4 ACL Format” on page 45
■ “File System Monitoring Tool (fsstat)” on page 46
■ “ZFS Web-Based Management” on page 46

New Oracle Solaris ZFS Installation Features
Oracle Solaris 10 8/11 Release: In this release, the following new installation features are
available:

What's New in ZFS?

Oracle Solaris ZFS Administration Guide • April 201218



■ You can use the text mode installation method to install a system with a ZFS flash archive.
For more information, see Example 5–3.

■ You can use the Oracle Solaris Live Upgrade luupgrade command to install a ZFS root flash
archive. For more information, see Example 5–8.

■ You can use the Oracle Solaris Live Upgrade lucreate command to specify a separate /var
file system. For more information, see Example 5–5.

ZFS Send Stream Enhancements
Oracle Solaris 10 8/11 Release: In this release, you can set file system properties that are sent
and received in a snapshot stream. These enhancements provide flexibility in applying file
system properties in a send stream to the receiving file system or in determining whether the
local file system properties, such as the mountpoint property value, should be ignored when
received.

For more information, see “Applying Different Property Values to a ZFS Snapshot Stream” on
page 229.

ZFS Snapshot Differences (zfs diff)
Oracle Solaris 10 8/11 Release: In this release, you can determine ZFS snapshot differences by
using the zfs diff command.

For example, assume that the following two snapshots are created:

$ ls /tank/cindy

fileA

$ zfs snapshot tank/cindy@0913

$ ls /tank/cindy

fileA fileB

$ zfs snapshot tank/cindy@0914

For example, to identify the differences between two snapshots, use syntax similar to the
following:

$ zfs diff tank/cindy@0913 tank/cindy@0914

M /tank/cindy/

+ /tank/cindy/fileB

In the output, the M indicates that the directory has been modified. The + indicates that fileB
exists in the later snapshot.

For more information, see “Identifying ZFS Snapshot Differences (zfs diff)” on page 223.

What's New in ZFS?

Chapter 1 • Oracle Solaris ZFS File System (Introduction) 19



ZFS Storage Pool Recovery and Performance
Enhancements
Oracle Solaris 10 8/11 Release: In this release, the following new ZFS storage pool features are
provided:

■ You can import a pool with a missing log by using the zpool import -m command. For
more information, see “Importing a Pool With a Missing Log Device” on page 115.

■ You can import a pool in read-only mode. This feature is primarily for pool recovery. If a
damaged pool cannot be accessed because the underlying devices are damaged, you can
import the pool read-only to recover the data. For more information, see “Importing a Pool
in Read-Only Mode” on page 116.

■ A RAID-Z (raidz1, raidz2, or raidz3) storage pool that is created in this release and
upgraded to at least pool version 29 will have some latency-sensitive metadata automatically
mirrored to improve read I/O throughput performance. For existing RAID-Z pools that are
upgraded to at least pool version 29, some metadata will be mirrored for all newly written
data.

Mirrored metadata in a RAID-Z pool does not provide additional protection against
hardware failures, similar to what a mirrored storage pool provides. Additional space is
consumed by mirrored metadata, but the RAID-Z protection remains the same as in
previous releases. This enhancement is for performance purposes only.

Tuning ZFS Synchronous Behavior
Solaris 10 8/11 Release: In this release, you can determine a ZFS file system's synchronous
behavior by using the sync property.

The default synchronous behavior is to write all synchronous file system transactions to the
intent log and to flush all devices to ensure that the data is stable. Disabling the default
synchronous behavior is not recommended. Applications that depend on synchronous support
might be affected, and data loss could occur.

The sync property can be set before or after the file system is created. In either case, the property
value takes effect immediately. For example:

# zfs set sync=always tank/neil

The zil_disable parameter is no longer available in Oracle Solaris releases that include the
sync property.

For more information, see Table 6–1.

What's New in ZFS?

Oracle Solaris ZFS Administration Guide • April 201220



Improved ZFS Pool Messages
Oracle Solaris 10 8/11 Release: In this release, you can use the -T option to provide an interval
and count value for the zpool list and zpool status commands to display additional
information.

In addition, more pool scrub and resilver information is provided by the zpool status
command as follows:
■ Resilver in-progress report. For example:

scan: resilver in progress since Thu May 26 11:26:32 2011

1.26G scanned out of 2.40G at 6.15M/s, 0h3m to go

1.26G resilvered, 56.3% done

■ Scrub in-progress report. For example:

scan: scrub in progress since Fri May 27 08:24:17 2011

18.0M scanned out of 2.35G at 8.99M/s, 0h4m to go

0 repaired, 0.75% done

■ Resilver completion message. For example:

scan: resilvered 2.34G in 1h2m with 0 errors on Thu May 26 11:56:40 2011

■ Scrub completion message. For example:

scan: scrub repaired 512B in 1h2m with 0 errors on Fri May 27 08:54:50 2011

■ Ongoing scrub cancellation message. For example:

scan: scrub canceled on Wed Fri Jun 10 09:06:24 2011

■ Scrub and resilver completion messages persist across system reboots

The following syntax uses the interval and count option to display ongoing pool resilvering
information. You can use the -T d value to display the information in standard date format or
-T u to display the information in an internal format.

# zpool status -T d tank 3 2

Wed Jun 22 14:35:40 GMT 2011

pool: tank

state: ONLINE

status: One or more devices is currently being resilvered. The pool will

continue to function, possibly in a degraded state.

action: Wait for the resilver to complete.

scan: resilver in progress since Wed Jun 22 14:33:29 2011

3.42G scanned out of 7.75G at 28.2M/s, 0h2m to go

3.39G resilvered, 44.13% done

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c2t3d0 ONLINE 0 0 0

c2t4d0 ONLINE 0 0 0

mirror-1 ONLINE 0 0 0

c2t7d0 ONLINE 0 0 0

c2t8d0 ONLINE 0 0 0 (resilvering)

What's New in ZFS?

Chapter 1 • Oracle Solaris ZFS File System (Introduction) 21



errors: No known data errors

ZFS ACL Interoperability Enhancements
Oracle Solaris 10 8/11 Release: In this release, the following ACL enhancements are provided:

■ Trivial ACLs do not require deny ACEs except for unusual permissions. For example, a
mode of 0644, 0755, or 0664 does not require deny ACEs, but a mode, such as 0705, 0060,
and so on, does require deny ACEs.
The old behavior includes deny ACEs in a trivial ACL like 644. For example:

# ls -v file.1

-rw-r--r-- 1 root root 206663 Jun 14 11:52 file.1

0:owner@:execute:deny

1:owner@:read_data/write_data/append_data/write_xattr/write_attributes

/write_acl/write_owner:allow

2:group@:write_data/append_data/execute:deny

3:group@:read_data:allow

4:everyone@:write_data/append_data/write_xattr/execute/write_attributes

/write_acl/write_owner:deny

5:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

The new behavior for a trivial ACL like 644 does not include the deny ACEs. For example:

# ls -v file.1

-rw-r--r-- 1 root root 206663 Jun 22 14:30 file.1

0:owner@:read_data/write_data/append_data/read_xattr/write_xattr

/read_attributes/write_attributes/read_acl/write_acl/write_owner

/synchronize:allow

1:group@:read_data/read_xattr/read_attributes/read_acl/synchronize:allow

2:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

■ ACLs are no longer split into multiple ACEs during inheritance to try to preserve the
original unmodified permission. Instead, the permissions are modified as necessary to
enforce the file creation mode.

■ The aclinherit property behavior includes a reduction in permissions when the property
is set to restricted, which means that ACLs are no longer split into multiple ACEs during
inheritance.

■ An existing ACL is discarded during chmod(2) operations by default. This change means
that the ZFS aclmode property is no longer available.

■ A new permission mode calculation rule specifies that if an ACL has a user ACE that is also
the file owner, then those permissions are included in the permission mode computation.
The same rule applies if a group ACE is the group owner of the file.

For more information, see Chapter 8, “Using ACLs and Attributes to Protect Oracle Solaris ZFS
Files.”

What's New in ZFS?

Oracle Solaris ZFS Administration Guide • April 201222



Splitting a Mirrored ZFS Storage Pool (zpool split)
Oracle Solaris 10 9/10 Release: In this release, you can use the zpool split command to split a
mirrored storage pool, which detaches a disk or disks in the original mirrored pool to create
another identical pool.

For more information, see “Creating a New Pool By Splitting a Mirrored ZFS Storage Pool” on
page 85.

New ZFS System Process
Oracle Solaris 10 9/10 Release: In this release, each ZFS storage pool has an associated process,
zpool-poolname. The threads in this process are the pool's I/O processing threads to handle I/O
tasks, such as compression and checksum validation, that are associated with the pool. The
purpose of this process is to provide visibility into each storage pool's CPU utilization.

Information about these running processes can be reviewed by using the ps and prstat

commands. These processes are only available in the global zone. For more information, see
SDC(7).

Enhancements to the zpool list Command
Oracle Solaris 10 9/10 Release: In this release, the zpool list output has changed to provide
better space allocation information. For example:

# zpool list tank

NAME SIZE ALLOC FREE CAP HEALTH ALTROOT

tank 136G 55.2G 80.8G 40% ONLINE -

The previous USED and AVAIL fields have been replaced with ALLOC and FREE.

The ALLOC field identifies the amount of physical space allocated to all datasets and internal
metadata. The FREE field identifies the amount of unallocated space in the pool.

For more information, see “Displaying Information About ZFS Storage Pools” on page 101.

ZFS Storage Pool Recovery
Oracle Solaris 10 9/10 Release: A storage pool can become damaged if underlying devices
become unavailable, if a power failure occurs, or if more than the supported number of devices
fail in a redundant ZFS configuration. This release provides new command features for
recovering your damaged storage pool. However, using this recovery feature means that the last
few transactions that occurred prior to the pool outage might be lost.

What's New in ZFS?

Chapter 1 • Oracle Solaris ZFS File System (Introduction) 23

http://www.oracle.com/pls/topic/lookup?ctx=E23823&id=REFMAN7sdc-7


Both the zpool clear and zpool import commands support the -F option to possibly recover
a damaged pool. In addition, running the zpool status, zpool clear, or zpool import
command automatically reports a damaged pool, and these commands describe how to recover
the pool.

For more information, see “Repairing ZFS Storage Pool-Wide Damage” on page 301.

ZFS Log Device Enhancements
Oracle Solaris 10 9/10 Release: The following log device enhancements are available:
■ The logbias property – You can use this property to instruct ZFS about how to handle

synchronous requests for a specific dataset. If logbias is set to latency, ZFS uses the pool's
separate log devices, if any, to handle the requests at low latency. If logbias is set to
throughput, ZFS does not use the pool's separate log devices. Instead, ZFS optimizes
synchronous operations for global pool throughput and efficient use of resources. The
default value is latency. For most configurations, the default value is recommended. Using
the logbias=throughput value might improve performance for writing database files.

■ Log device removal – You can now remove a log device from a ZFS storage pool by using the
zpool remove command. You can remove a single log device by specifying the device name.
You can remove a mirrored log device by specifying the top-level mirror for the log. When
you remove a separate log device from the system, ZIL transaction records are written to the
main pool.
Redundant top-level virtual devices are now identified with a numeric identifier. For
example, in a mirrored storage pool of two disks, the top-level virtual device is mirror-0.
This enhancement means that a mirrored log device can be removed by specifying its
numeric identifier.
For more information, see Example 4–3.

Triple-Parity RAID-Z (raidz3)
Oracle Solaris 10 9/10 Release: In this release, a redundant RAID-Z configuration can now
have either single-parity, double-parity, or triple-parity protection, which means that one, two,
or three device failures can be sustained respectively, without any data loss. You can specify the
raidz3 keyword for a triple-parity RAID-Z configuration. For more information, see “Creating
a RAID-Z Storage Pool” on page 71.

Holding ZFS Snapshots
Oracle Solaris 10 9/10 Release: If you implement different automatic snapshot policies such
that older snapshots are being inadvertently destroyed by zfs receive because they no longer
exist on the sending side, you might consider using the snapshots hold feature in this release.

What's New in ZFS?

Oracle Solaris ZFS Administration Guide • April 201224



Holding a snapshot prevents it from being destroyed. In addition, this feature allows a snapshot
with clones to be deleted, pending the removal of the last clone, by using the zfs destroy -d
command.

You can hold a snapshot or set of snapshots. For example, the following syntax puts a hold tag,
keep, on tank/home/cindy/snap@1:

# zfs hold keep tank/home/cindy@snap1

For more information, see “Holding ZFS Snapshots” on page 219.

ZFS Device Replacement Enhancements
Oracle Solaris 10 9/10 Release: In this release, a system event or sysevent is provided when the
disks in a pool are replaced with larger disks. ZFS has been enhanced to recognize these events
and adjusts the pool based on the new size of the disk, depending on the setting of the
autoexpand property. You can use the autoexpand pool property to enable or disable automatic
pool expansion when a larger disk replaces a smaller disk.

These enhancements enable you to increase the pool size without having to export and import
pool or reboot the system.

For example, automatic LUN expansion is enabled on the tank pool.

# zpool set autoexpand=on tank

Or, you can create the pool with the autoexpand property enabled.

# zpool create -o autoexpand=on tank c1t13d0

The autoexpand property is disabled by default so you can decide whether you want the pool
size expanded when a larger disk replaces a smaller disk.

The pool size can also be expanded by using the zpool online -e command. For example:

# zpool online -e tank c1t6d0

Or, you can reset the autoexpand property after a larger disk is attached or made available by
using the zpool replace command. For example, the following pool is created with one 8-GB
disk (c0t0d0). The 8-GB disk is replaced with a 16-GB disk (c1t13d0), but the pool size is not
expanded until the autoexpand property is enabled.

# zpool create pool c0t0d0

# zpool list

NAME SIZE ALLOC FREE CAP HEALTH ALTROOT

pool 8.44G 76.5K 8.44G 0% ONLINE -

# zpool replace pool c0t0d0 c1t13d0

What's New in ZFS?

Chapter 1 • Oracle Solaris ZFS File System (Introduction) 25



# zpool list

NAME SIZE ALLOC FREE CAP HEALTH ALTROOT

pool 8.44G 91.5K 8.44G 0% ONLINE -

# zpool set autoexpand=on pool

# zpool list

NAME SIZE ALLOC FREE CAP HEALTH ALTROOT

pool 16.8G 91.5K 16.8G 0% ONLINE -

Another way to expand the disk without enabling the autoexpand property, is to use the zpool
online -e command even though the device is already online. For example:

# zpool create tank c0t0d0

# zpool list tank

NAME SIZE ALLOC FREE CAP HEALTH ALTROOT

tank 8.44G 76.5K 8.44G 0% ONLINE -

# zpool replace tank c0t0d0 c1t13d0

# zpool list tank

NAME SIZE ALLOC FREE CAP HEALTH ALTROOT

tank 8.44G 91.5K 8.44G 0% ONLINE -

# zpool online -e tank c1t13d0

# zpool list tank

NAME SIZE ALLOC FREE CAP HEALTH ALTROOT

tank 16.8G 90K 16.8G 0% ONLINE -

Additional device replacement enhancements in this release include the following:

■ In previous releases, ZFS was unable to replace an existing disk with another disk or attach a
disk if the replacement disk was a slightly different size. In this release, you can replace an
existing disk with another disk or attach a new disk that is almost the same size provided
that the pool is not already full.

■ In this release, you do not need to reboot the system or export and import a pool to expand
the pool size. As described previously, you can enable the autoexpand property or use the
zpool online -e command to expand the pool size.

For more information about replacing devices, see “Replacing Devices in a Storage Pool” on
page 90.

ZFS and Flash Installation Support
Solaris 10 10/09 Release: In this release, you can set up a JumpStart profile to identify a flash
archive of a ZFS root pool. For more information, see “Installing a ZFS Root File System (Oracle
Solaris Flash Archive Installation)” on page 132.

ZFS User and Group Quotas
Solaris 10 10/09 Release: In previous releases, you could apply quotas and reservations to ZFS
file systems to manage and reserve disk space.

What's New in ZFS?

Oracle Solaris ZFS Administration Guide • April 201226



In this release, you can set a quota on the amount of disk space consumed by files that are owned
by a particular user or group. You might consider setting user and group quotas in an
environment with a large number of users or groups.

You can set a user quota by using the zfs userquota property. To set a group quota, use the zfs
groupquota property. For example:

# zfs set userquota@user1=5G tank/data

# zfs set groupquota@staff=10G tank/staff/admins

You can display a user's or a group's current quota value as follows:

# zfs get userquota@user1 tank/data

NAME PROPERTY VALUE SOURCE

tank/data userquota@user1 5G local

# zfs get groupquota@staff tank/staff/admins

NAME PROPERTY VALUE SOURCE

tank/staff/admins groupquota@staff 10G local

You can display general quota information as follows:

# zfs userspace tank/data

TYPE NAME USED QUOTA

POSIX User root 3K none

POSIX User user1 0 5G

# zfs groupspace tank/staff/admins

TYPE NAME USED QUOTA

POSIX Group root 3K none

POSIX Group staff 0 10G

You can display an individual user's disk space usage by viewing the userused@user property
value. You can display a group's disk space usage by viewing the groupused@group property
value. For example:

# zfs get userused@user1 tank/staff

NAME PROPERTY VALUE SOURCE

tank/staff userused@user1 213M local

# zfs get groupused@staff tank/staff

NAME PROPERTY VALUE SOURCE

tank/staff groupused@staff 213M local

For more information about setting user quotas, see “Setting ZFS Quotas and Reservations” on
page 210.

ZFS ACL Pass Through Inheritance for Execute
Permission
Solaris 10 10/09 Release: In previous releases, you could apply ACL inheritance so that all files
were created with 0664 or 0666 permissions. In this release, if you want to optionally include the

What's New in ZFS?

Chapter 1 • Oracle Solaris ZFS File System (Introduction) 27



execute bit from the file creation mode into the inherited ACL, you can set the aclinherit
mode to pass the execute permission to the inherited ACL.

If aclinherit=passthrough-x is enabled on a ZFS dataset, you can include the execute
permission for an output file that is generated from cc or gcc compiler tools. If the inherited
ACL does not include the execute permission, then the executable output from the compiler
won't be executable until you use the chmod command to change the file's permissions.

For more information, see Example 8–12.

ZFS Property Enhancements
Solaris 10 10/09 and Oracle Solaris 10 9/10 Releases: The following ZFS file system
enhancements are included in these releases.
■ ZFS Snapshot Stream Property Enhancements – You can set a received property that is

different from its local property setting. For example, you might receive a stream with the
compression property disabled, but you want compression enabled in the receiving file
system. This means that the received stream has a received compression value of off and a
local compression value of on. Since the local value overrides the received value, you don't
have to worry about the setting on the sending side replacing the received side value. The
zfs get command shows the effective value of the compression property under the VALUE
column.
New ZFS command options and properties to support send and local property values are as
follows:
■ Use the zfs inherit -S to revert a local property value to the received value, if any. If a

property does not have a received value, the behavior of the zfs inherit -S command is
the same as the zfs inherit command without the -S option. If the property does have
a received value, the zfs inherit command masks the received value with the inherited
value until issuing a zfs inherit -S command reverts it to the received value.

■ You can use the zfs get -o to include the new non-default RECEIVED column. Or, use
the zfs get -o all command to include all columns, including RECEIVED.

■ You can use the zfs send -p option to include properties in the send stream without the
-R option.

In addition, you can use the zfs send -e option to use the last element of the sent snapshot
name to determine the new snapshot name. The following example sends the
poola/bee/cee@1 snapshot to the poold/eee file system and only uses the last element
(cee@1) of the snapshot name to create the received file system and snapshot.

# zfs list -rt all poola

NAME USED AVAIL REFER MOUNTPOINT

poola 134K 134G 23K /poola

poola/bee 44K 134G 23K /poola/bee

poola/bee/cee 21K 134G 21K /poola/bee/cee

What's New in ZFS?

Oracle Solaris ZFS Administration Guide • April 201228



poola/bee/cee@1 0 - 21K -

# zfs send -R poola/bee/cee@1 | zfs receive -e poold/eee

# zfs list -rt all poold

NAME USED AVAIL REFER MOUNTPOINT

poold 134K 134G 23K /poold

poold/eee 44K 134G 23K /poold/eee

poold/eee/cee 21K 134G 21K /poold/eee/cee

poold/eee/cee@1 0 - 21K -

■ Setting ZFS file system properties at pool creation time – You can set ZFS file system
properties when a storage pool is created. In the following example, compression is enabled
on the ZFS file system that is created when the pool is created:

# zpool create -O compression=on pool mirror c0t1d0 c0t2d0

■ Setting cache properties on a ZFS file system – Two new ZFS file system properties enable
you to control what is cached in the primary cache (ARC) and the secondary cache
(L2ARC). The cache properties are set as follows:
■ primarycache – Controls what is cached in the ARC.
■ secondarycache – Controls what is cached in the L2ARC.
■ Possible values for both properties – all, none, and metadata. If set to all, both user

data and metadata are cached. If set to none, neither user data nor metadata is cached. If
set to metadata, only metadata is cached. The default is all.

You can set these properties on an existing file system or when a file system is created. For
example:

# zfs set primarycache=metadata tank/datab

# zfs create -o primarycache=metadata tank/newdatab

When these properties are set on existing file systems, only new I/O is cache based on the
values of these properties.

Some database environments might benefit from not caching user data. You must
determine if setting cache properties is appropriate for your environment.

■ Viewing disk space accounting properties – New read-only file system properties help you
identify disk space usage for clones, file systems, and volumes, and snapshots. The
properties are as follows:
■ usedbychildren – Identifies the amount of disk space that is used by children of this

dataset, which would be freed if all the dataset's children were destroyed. The property
abbreviation is usedchild.

■ usedbydataset – Identifies the amount of disk space that is used by this dataset itself,
which would be freed if the dataset was destroyed, after first destroying any snapshots
and removing any refreservation. The property abbreviation is usedds.

■ usedbyrefreservation – Identifies the amount of disk space that is used by a
refreservation set on this dataset, which would be freed if the refreservation was
removed. The property abbreviation is usedrefreserv.

What's New in ZFS?

Chapter 1 • Oracle Solaris ZFS File System (Introduction) 29



■ usedbysnapshots – Identifies the amount of disk space that is consumed by snapshots of
this dataset, which would be freed if all of this dataset's snapshots were destroyed. Note
that this is not the sum of the snapshots' used properties, because disk space can be
shared by multiple snapshots. The property abbreviation is usedsnap.

These new properties break down the value of the used property into the various elements
that consume disk space. In particular, the value of the used property breaks down as
follows:

used property = usedbychildren + usedbydataset + usedbyrefreservation + usedbysnapshots

You can view these properties by using the zfs list -o space command. For example:

$ zfs list -o space

NAME AVAIL USED USEDSNAP USEDDS USEDREFRESERV USEDCHILD

rpool 25.4G 7.79G 0 64K 0 7.79G

rpool/ROOT 25.4G 6.29G 0 18K 0 6.29G

rpool/ROOT/snv_98 25.4G 6.29G 0 6.29G 0 0

rpool/dump 25.4G 1.00G 0 1.00G 0 0

rpool/export 25.4G 38K 0 20K 0 18K

rpool/export/home 25.4G 18K 0 18K 0 0

rpool/swap 25.8G 512M 0 111M 401M 0

The preceding command is equivalent to the zfs list
-o name,avail,used,usedsnap,usedds,usedrefreserv,usedchild -t filesystem,volume

command.
■ Listing snapshots – The listsnapshots pool property controls whether snapshot

information is displayed by the zfs list command. The default value is on, which means
snapshot information is displayed by default.
If your system has many ZFS snapshots and you wish to disable the display of snapshot
information in the zfs list command, disable the listsnapshots property as follows:

# zpool get listsnapshots pool

NAME PROPERTY VALUE SOURCE

pool listsnapshots on default

# zpool set listsnaps=off pool

If you disable the listsnapshots property, you can use the zfs list -t snapshots
command to list snapshot information. For example:

# zfs list -t snapshot

NAME USED AVAIL REFER MOUNTPOINT

pool/home@today 16K - 22K -

pool/home/user1@today 0 - 18K -

pool/home/user2@today 0 - 18K -

pool/home/user3@today 0 - 18K -

ZFS Log Device Recovery
Solaris 10 10/09 Release: In this release, ZFS identifies intent log failures in the zpool status
command output. Fault Management Architecture (FMA) reports these errors as well. Both
ZFS and FMA describe how to recover from an intent log failure.

What's New in ZFS?

Oracle Solaris ZFS Administration Guide • April 201230



For example, if the system shuts down abruptly before synchronous write operations are
committed to a pool with a separate log device, you see messages similar to the following:

# zpool status -x

pool: pool

state: FAULTED

status: One or more of the intent logs could not be read.

Waiting for adminstrator intervention to fix the faulted pool.

action: Either restore the affected device(s) and run ’zpool online’,

or ignore the intent log records by running ’zpool clear’.

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

pool FAULTED 0 0 0 bad intent log

mirror ONLINE 0 0 0

c0t1d0 ONLINE 0 0 0

c0t4d0 ONLINE 0 0 0

logs FAULTED 0 0 0 bad intent log

c0t5d0 UNAVAIL 0 0 0 cannot open

You can resolve the log device failure in the following ways:
■ Replace or recover the log device. In this example, the log device is c0t5d0.
■ Bring the log device back online.

# zpool online pool c0t5d0

■ Reset the failed log device error condition.

# zpool clear pool

To recover from this error without replacing the failed log device, you can clear the error with
the zpool clear command. In this scenario, the pool will operate in a degraded mode and the
log records will be written to the main pool until the separate log device is replaced.

Consider using mirrored log devices to avoid the log device failure scenario.

Using Cache Devices in Your ZFS Storage Pool
Solaris 10 10/09 Release: In this release, when you create a pool, you can specify cache devices,
which are used to cache storage pool data.

Cache devices provide an additional layer of caching between main memory and disk. Using
cache devices provides the greatest performance improvement for random-read workloads of
mostly static content.

One or more cache devices can be specified when the pool is created. For example:

# zpool create pool mirror c0t2d0 c0t4d0 cache c0t0d0

# zpool status pool

pool: pool

What's New in ZFS?

Chapter 1 • Oracle Solaris ZFS File System (Introduction) 31



state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

pool ONLINE 0 0 0

mirror ONLINE 0 0 0

c0t2d0 ONLINE 0 0 0

c0t4d0 ONLINE 0 0 0

cache

c0t0d0 ONLINE 0 0 0

errors: No known data errors

After cache devices are added, they gradually fill with content from main memory. Depending
on the size of your cache device, it could take over an hour for the device to fill. Capacity and
reads can be monitored by using the zpool iostat command as follows:

# zpool iostat -v pool 5

Cache devices can be added or removed from a pool after the pool is created.

For more information, see “Creating a ZFS Storage Pool With Cache Devices” on page 73 and
Example 4–4.

Zone Migration in a ZFS Environment
Solaris 10 5/09 Release: This release extends support for migrating zones in a ZFS environment
with Oracle Solaris Live Upgrade. For more information, see “Using Oracle Solaris Live
Upgrade to Migrate or Upgrade a System With Zones (at Least Solaris 10 5/09)” on page 154.

For a list of known issues with this release, see the Solaris 10 5/09 release notes.

ZFS Installation and Boot Support
Solaris 10 10/08 Release: This release enables you to install and boot a ZFS root file system. You
can use the initial installation option or the JumpStart feature to install a ZFS root file system.
Or, you can use Oracle Solaris Live Upgrade to migrate a UFS root file system to a ZFS root file
system. ZFS support for swap and dump devices is also provided. For more information, see
Chapter 5, “Installing and Booting an Oracle Solaris ZFS Root File System.”

For a list of known issues with this release, go to the following site:

http://hub.opensolaris.org/bin/view/Community+Group+zfs/boot

Also, see the Solaris 10 10/08 release notes.

What's New in ZFS?

Oracle Solaris ZFS Administration Guide • April 201232

http://hub.opensolaris.org/bin/view/Community+Group+zfs/boot


Rolling Back a Dataset Without Unmounting
Solaris 10 10/08 Release: This release enables you to roll back a dataset without unmounting it
first. Thus, the zfs rollback -f option is no longer needed to force an unmount operation.
The -f option is no longer supported and is ignored, if specified.

Enhancements to the zfs send Command
Solaris 10 10/08 Release: This release includes the following enhancements to the zfs send
command. Using this command, you can now perform the following tasks:

■ Send all incremental streams from one snapshot to a cumulative snapshot. For example:

# zfs list

NAME USED AVAIL REFER MOUNTPOINT

pool 428K 16.5G 20K /pool

pool/fs 71K 16.5G 21K /pool/fs

pool/fs@snapA 16K - 18.5K -

pool/fs@snapB 17K - 20K -

pool/fs@snapC 17K - 20.5K -

pool/fs@snapD 0 - 21K -

# zfs send -I pool/fs@snapA pool/fs@snapD > /snaps/fs@combo

This syntax sends all incremental snapshots between fs@snapA to fs@snapD to fs@combo.
■ Send an incremental stream from the original snapshot to create a clone. T he original

snapshot must already exist on the receiving side to accept the incremental stream. For
example:

# zfs send -I pool/fs@snap1 pool/clone@snapA > /snaps/fsclonesnap-I

.

.

# zfs receive -F pool/clone < /snaps/fsclonesnap-I

■ Send a replication stream of all descendent file systems, up to the named snapshots. When
received, all properties, snapshots, descendent file systems, and clones are preserved. For
example:

# zfs send -R pool/fs@snap > snaps/fs-R

For an extended example, see Example 7–1.
■ Send an incremental replication stream. For example:

# zfs send -R -[iI] @snapA pool/fs@snapD

For an extended example, see Example 7–1.

For more information, see “Sending and Receiving Complex ZFS Snapshot Streams” on
page 231.

What's New in ZFS?

Chapter 1 • Oracle Solaris ZFS File System (Introduction) 33



ZFS Quotas and Reservations for File System Data
Only
Solaris 10 10/08 Release : In addition to the existing ZFS quota and reservation features, this
release includes dataset quotas and reservations that do not include descendents, such as
snapshots and clones, in the disk space accounting.
■ The refquota property enforces a hard limit on the amount of disk space that a dataset can

consume. This hard limit does not include disk space used by descendents, such as
snapshots and clones.

■ The refreservation property sets the minimum amount of disk space that is guaranteed
for a dataset, not including its descendents.

For example, you can set a 10-GB refquota limit for studentA that sets a 10-GB hard limit of
referenced disk space. For additional flexibility, you can set a 20-GB quota that enables you to
manage studentA's snapshots.

# zfs set refquota=10g tank/studentA

# zfs set quota=20g tank/studentA

For more information, see “Setting ZFS Quotas and Reservations” on page 210.

ZFS Storage Pool Properties
Solaris 10 10/08 Release: ZFS storage pool properties were introduced in an earlier release.
This release provides two properties, cachefile and failmode.

The following describes the new storage pool properties in this release:
■ The cachefile property – This property controls where pool configuration information is

cached. All pools in the cache are automatically imported when the system boots. However,
installation and clustering environments might require this information to be cached in a
different location so that pools are not automatically imported.
You can set this property to cache pool configuration in a different location that can be
imported later by using the zpool import -c command. For most ZFS configurations, this
property would not be used.
The cachefile property is not persistent and is not stored on disk. This property replaces
the temporary property that was used to indicate that pool information should not be
cached in previous Solaris releases.

■ The failmode property – This property determines the behavior of a catastrophic pool
failure due to a loss of device connectivity or the failure of all devices in the pool. The
failmode property can be set to these values: wait, continue, or panic. The default value is
wait, which means you must reconnect the device or replace a failed device, and then clear
the error with the zpool clear command.

What's New in ZFS?

Oracle Solaris ZFS Administration Guide • April 201234



The failmode property is set like other settable ZFS properties, which can be set either
before or after the pool is created. For example:

# zpool set failmode=continue tank

# zpool get failmode tank

NAME PROPERTY VALUE SOURCE

tank failmode continue local

# zpool create -o failmode=continue users mirror c0t1d0 c1t1d0

For a description of pool properties, see Table 4–1.

ZFS Command History Enhancements (zpool history)
Solaris 10 10/08 Release: The zpool history command has been enhanced to provide the
following new features:

■ ZFS file system event information is now displayed.
■ The -l option can be used to display a long format that includes the user name, the host

name, and the zone in which the operation was performed.
■ The -i option can be used to display internal event information for diagnostic purposes.

For more information about using the zpool history command, see “Resolving Problems
With ZFS” on page 283.

Upgrading ZFS File Systems (zfs upgrade)
Solaris 10 10/08 Release: The zfs upgrade command is included in this release to provide
future ZFS file system enhancements to existing file systems. ZFS storage pools have a similar
upgrade feature to provide pool enhancements to existing storage pools.

For example:

# zfs upgrade

This system is currently running ZFS filesystem version 3.

All filesystems are formatted with the current version.

Note – File systems that are upgraded and any streams created from those upgraded file systems
by the zfs send command are not accessible on systems that are running older software
releases.

What's New in ZFS?

Chapter 1 • Oracle Solaris ZFS File System (Introduction) 35



ZFS Delegated Administration
Solaris 10 10/08 Release: In this release, you can grant fine-grained permissions to allow
nonprivileged users to perform ZFS administration tasks.

You can use the zfs allow and zfs unallow commands to delegate and remove permissions.

You can modify delegated administration with the pool's delegation property. For example:

# zpool get delegation users

NAME PROPERTY VALUE SOURCE

users delegation on default

# zpool set delegation=off users

# zpool get delegation users

NAME PROPERTY VALUE SOURCE

users delegation off local

By default, the delegation property is enabled.

For more information, see Chapter 9, “Oracle Solaris ZFS Delegated Administration,” and
zfs(1M).

Setting Up Separate ZFS Log Devices
Solaris 10 10/08 Release: The ZFS intent log (ZIL) is provided to satisfy POSIX requirements
for synchronous transactions. For example, databases often require their transactions to be on
stable storage devices when returning from a system call. NFS and other applications can also
use fsync() to ensure data stability. By default, the ZIL is allocated from blocks within the main
storage pool. In this release, you can decide if you want the ZIL blocks to continue to be
allocated from the main storage pool or from a separate log device. Better performance might
be possible by using separate intent log devices in your ZFS storage pool, such as with NVRAM
or a dedicated disk.

Log devices for the ZFS intent log are not related to database log files.

You can set up a ZFS log device when the storage pool is created or after the pool is created. For
examples of setting up log devices, see “Creating a ZFS Storage Pool With Log Devices” on
page 72 and “Adding Devices to a Storage Pool” on page 79.

You can attach a log device to an existing log device to create a mirrored log device. This
operation is identical to attaching a device in a unmirrored storage pool.

Consider the following points when determining whether setting up a ZFS log device is
appropriate for your environment:
■ Any performance improvement seen by implementing a separate log device depends on the

device type, the hardware configuration of the pool, and the application workload. For
preliminary performance information, see this blog:

What's New in ZFS?

Oracle Solaris ZFS Administration Guide • April 201236

http://www.oracle.com/pls/topic/lookup?ctx=E23823&id=REFMAN1Mzfs-1m


http://blogs.oracle.com/perrin/entry/slog_blog_or_blogging_on

■ Log devices can be unreplicated or mirrored, but RAID-Z is not supported for log devices.
■ If a separate log device is not mirrored and the device that contains the log fails, storing log

blocks reverts to the storage pool.
■ Log devices can be added, replaced, attached, detached, imported, and exported as part of

the larger storage pool. Log devices can be removed starting in the Solaris 10 9/10 release.
■ The minimum size of a log device is the same as the minimum size of each device in a pool,

which is 64 MB. The amount of in-play data that might be stored on a log device is relatively
small. Log blocks are freed when the log transaction (system call) is committed.

■ The maximum size of a log device should be approximately 1/2 the size of physical memory
because that is the maximum amount of potential in-play data that can be stored. For
example, if a system has 16 GB of physical memory, consider a maximum log device size of 8
GB.

Creating Intermediate ZFS Datasets
Solaris 10 10/08 Release: You can use the -p option with the zfs create, zfs clone, and zfs

rename commands to quickly create a non-existent intermediate dataset, if it doesn't already
exist.

In the following example, ZFS datasets (users/area51) are created in the datab storage pool.

# zfs list

NAME USED AVAIL REFER MOUNTPOINT

datab 106K 16.5G 18K /datab

# zfs create -p -o compression=on datab/users/area51

If the intermediate dataset already exists during the create operation, the operation completes
successfully.

Properties specified apply to the target dataset, not to the intermediate dataset. For example:

# zfs get mountpoint,compression datab/users/area51

NAME PROPERTY VALUE SOURCE

datab/users/area51 mountpoint /datab/users/area51 default

datab/users/area51 compression on local

The intermediate dataset is created with the default mount point. Any additional properties are
disabled for the intermediate dataset. For example:

# zfs get mountpoint,compression datab/users

NAME PROPERTY VALUE SOURCE

datab/users mountpoint /datab/users default

datab/users compression off default

For more information, see zfs(1M).

What's New in ZFS?

Chapter 1 • Oracle Solaris ZFS File System (Introduction) 37

http://blogs.oracle.com/perrin/entry/slog_blog_or_blogging_on
http://www.oracle.com/pls/topic/lookup?ctx=E23823&id=REFMAN1Mzfs-1m


ZFS Hot-Plugging Enhancements
Solaris 10 10/08 Release: In this release, ZFS more effectively responds to devices that are
removed and can now automatically identify devices that are inserted.

■ You can replace an existing device with an equivalent device without having to use the
zpool replace command.
The autoreplace property controls automatic device replacement. If set to off, device
replacement must be initiated by the administrator by using the zpool replace command.
If set to on, any new device that is found in the same physical location as a device that
previously belonged to the pool is automatically formatted and replaced. The default
behavior is off.

■ The storage pool state REMOVED is provided when a device or hot spare has been physically
removed while the system was running. A hot spare device is substituted for the removed
device, if available.

■ If a device is removed and then reinserted, the device is placed online. If a hot spare was
activated when the device was reinserted, the hot spare is removed when the online
operation completes.

■ Automatic detection when devices are removed or inserted is hardware-dependent and
might not be supported on all platforms. For example, USB devices are automatically
configured upon insertion. However, you might have to use the cfgadm -c configure
command to configure a SATA drive.

■ Hot spares are checked periodically to ensure that they are online and available.

For more information, see zpool(1M).

Recursively Renaming ZFS Snapshots (zfs rename -r)
Solaris 10 10/08 Release: You can recursively rename all descendent ZFS snapshots by using
the zfs rename -r command. For example:

First, a snapshot of a set of ZFS file systems is created.

# zfs snapshot -r users/home@today

# zfs list -t all -r users/home

NAME USED AVAIL REFER MOUNTPOINT

users/home 2.00G 64.9G 33K /users/home

users/home@today 0 - 33K -

users/home/mark 1.00G 64.9G 1.00G /users/home/mark

users/home/mark@today 0 - 1.00G -

users/home/neil 1.00G 64.9G 1.00G /users/home/neil

users/home/neil@today 0 - 1.00G -

Then, the snapshots are renamed the following day.

What's New in ZFS?

Oracle Solaris ZFS Administration Guide • April 201238

http://www.oracle.com/pls/topic/lookup?ctx=E23823&id=REFMAN1Mzpool-1m


# zfs rename -r users/home@today @yesterday

# zfs list -t all -r users/home

users/home 2.00G 64.9G 33K /users/home

users/home@yesterday 0 - 33K -

users/home/mark 1.00G 64.9G 1.00G /users/home/mark

users/home/mark@yesterday 0 - 1.00G -

users/home/neil 1.00G 64.9G 1.00G /users/home/neil

users/home/neil@yesterday 0 - 1.00G -

A snapshot is the only type of dataset that can be renamed recursively.

For more information about snapshots, see “Overview of ZFS Snapshots” on page 217 and this
blog entry that describes how to create rolling snapshots:

http://blogs.oracle.com/mmusante/entry/rolling_snapshots_made_easy

gzip Compression Is Available for ZFS
Solaris 10 10/08 Release: In this release, you can set gzip compression on ZFS file systems, in
addition to lzjb compression. You can specify compression as gzip, or gzip-N, where N
equals 1 through 9. For example:

# zfs create -o compression=gzip users/home/snapshots

# zfs get compression users/home/snapshots

NAME PROPERTY VALUE SOURCE

users/home/snapshots compression gzip local

# zfs create -o compression=gzip-9 users/home/oldfiles

# zfs get compression users/home/oldfiles

NAME PROPERTY VALUE SOURCE

users/home/oldfiles compression gzip-9 local

For more information about setting ZFS properties, see “Setting ZFS Properties” on page 199.

Storing Multiple Copies of ZFS User Data
Solaris 10 10/08 Release: As a reliability feature, ZFS file system metadata is automatically
stored multiple times across different disks, if possible. This feature is known as ditto blocks.

In this release, you can also store multiple copies of user data, which is also stored per file system
by using the zfs set copies command. For example:

# zfs set copies=2 users/home

# zfs get copies users/home

NAME PROPERTY VALUE SOURCE

users/home copies 2 local

Available values are 1, 2, or 3. The default value is 1. These copies are in addition to any
pool-level redundancy, such as in a mirrored or RAID-Z configuration.

The benefits of storing multiple copies of ZFS user data are as follows:

What's New in ZFS?

Chapter 1 • Oracle Solaris ZFS File System (Introduction) 39

http://blogs.oracle.com/mmusante/entry/rolling_snapshots_made_easy


■ Improves data retention by enabling recovery from unrecoverable block read faults, such as
media faults (commonly known as bit rot) for all ZFS configurations.

■ Provides data protection, even when only a single disk is available.
■ Enables you to select data protection policies on a per-file system basis, beyond the

capabilities of the storage pool.

Note – Depending on the allocation of the ditto blocks in the storage pool, multiple copies might
be placed on a single disk. A subsequent full disk failure might cause all ditto blocks to be
unavailable.

You might consider using ditto blocks when you accidentally create a non-redundant pool and
when you need to set data retention policies.

For a detailed description of how storing multiple copies on a system with a single-disk pool or
a multiple-disk pool might impact overall data protection, see this blog:

http://blogs.oracle.com/relling/entry/zfs_copies_and_data_protection

For more information about setting ZFS properties, see “Setting ZFS Properties” on page 199.

Improved zpool status Output
Solaris 10 8/07 Release: You can use the zpool status -v command to display a list of files
with persistent errors. Previously, you had to use the find -inum command to identify the file
names from the list of displayed inodes.

For more information about displaying a list of files with persistent errors, see “Repairing a
Corrupted File or Directory” on page 300.

ZFS and Solaris iSCSI Improvements
Solaris 10 8/07 Release: In this release, you can create a ZFS volume as a Solaris iSCSI target
device by setting the shareiscsi property on the ZFS volume. This method is a convenient way
to quickly set up a Solaris iSCSI target. For example:

# zfs create -V 2g tank/volumes/v2

# zfs set shareiscsi=on tank/volumes/v2

# iscsitadm list target

Target: tank/volumes/v2

iSCSI Name: iqn.1986-03.com.sun:02:984fe301-c412-ccc1-cc80-cf9a72aa062a

Connections: 0

After the iSCSI target is created, you can set up the iSCSI initiator. For information about
setting up a Solaris iSCSI initiator, see Chapter 14, “Configuring Oracle Solaris iSCSI Targets
and Initiators (Tasks),” in System Administration Guide: Devices and File Systems.

What's New in ZFS?

Oracle Solaris ZFS Administration Guide • April 201240

http://blogs.oracle.com/relling/entry/zfs_copies_and_data_protection
http://www.oracle.com/pls/topic/lookup?ctx=E23823&id=SAGDFSfmvcd
http://www.oracle.com/pls/topic/lookup?ctx=E23823&id=SAGDFSfmvcd


For more information about managing a ZFS volume as an iSCSI target, see “Using a ZFS
Volume as a Solaris iSCSI Target” on page 270.

ZFS Command History (zpool history)
Solaris 10 8/07 Release: In this release, ZFS automatically logs successful zfs and zpool

commands that modify pool state information. For example:

# zpool history

History for ’newpool’:

2007-04-25.11:37:31 zpool create newpool mirror c0t8d0 c0t10d0

2007-04-25.11:37:46 zpool replace newpool c0t10d0 c0t9d0

2007-04-25.11:38:04 zpool attach newpool c0t9d0 c0t11d0

2007-04-25.11:38:09 zfs create newpool/user1

2007-04-25.11:38:15 zfs destroy newpool/user1

History for ’tank’:

2007-04-25.11:46:28 zpool create tank mirror c1t0d0 c2t0d0 mirror c3t0d0 c4t0d0

This features enables you or Oracle support personnel to identify the actual ZFS commands
that were executed to troubleshoot an error scenario.

You can identify a specific storage pool with the zpool history command. For example:

# zpool history newpool

History for ’newpool’:

2007-04-25.11:37:31 zpool create newpool mirror c0t8d0 c0t10d0

2007-04-25.11:37:46 zpool replace newpool c0t10d0 c0t9d0

2007-04-25.11:38:04 zpool attach newpool c0t9d0 c0t11d0

2007-04-25.11:38:09 zfs create newpool/user1

2007-04-25.11:38:15 zfs destroy newpool/user1

In this release, the zpool history command does not record user-ID, hostname, or zone-name.
However, this information is recorded starting in the Solaris 10 10/08 release. For more
information, see “ZFS Command History Enhancements (zpool history)” on page 35.

For more information about troubleshooting ZFS problems, see “Resolving Problems With
ZFS” on page 283.

ZFS Property Improvements

ZFS xattr Property
Solaris 10 8/07 Release: You can use the xattr property to disable or enable extended
attributes for a specific ZFS file system. The default value is on. For a description of ZFS
properties, see “Introducing ZFS Properties” on page 185.

What's New in ZFS?

Chapter 1 • Oracle Solaris ZFS File System (Introduction) 41



ZFS canmount Property
Solaris 10 8/07 Release: The new canmount property enables you to specify whether a dataset
can be mounted by using the zfs mount command. For more information, see “The canmount
Property” on page 195.

ZFS User Properties
Solaris 10 8/07 Release: In addition to the standard native properties that can be used to either
export internal statistics or control ZFS file system behavior, ZFS provides user properties. User
properties have no effect on ZFS behavior, but you can use them to annotate datasets with
information that is meaningful in your environment.

For more information, see “ZFS User Properties” on page 196.

Setting Properties When Creating ZFS File Systems
Solaris 10 8/07 Release: In this release, you can set properties when you create a file system, not
just after the file system is created.

The following examples illustrate equivalent syntax:

# zfs create tank/home

# zfs set mountpoint=/export/zfs tank/home

# zfs set quota=50g tank/home

# zfs set compression=on tank/home

# zfs create -o mountpoint=/export/zfs -o quota=50g -o compression=on tank/home

Displaying All ZFS File System Information
Solaris 10 8/07 Release: In this release, you can use various forms of the zfs get command to
display information about all datasets if you do not specify a dataset or if you specify all. In
previous releases, all dataset information was not retreivable with the zfs get command.

For example:

# zfs get -r -s local all tank/home

NAME PROPERTY VALUE SOURCE

tank/home atime off local

tank/home/jeff atime off local

tank/home/mark quota 50G local

What's New in ZFS?

Oracle Solaris ZFS Administration Guide • April 201242



New zfs receive -F Option
Solaris 10 8/07 Release: In this release, you can use the new -F option to the zfs receive
command to force a rollback of the file system to the most recent snapshot before the receive is
initiated. Using this option might be necessary when the file system is modified after a rollback
occurs but before the receive is initiated.

For more information, see “Receiving a ZFS Snapshot” on page 228.

Recursive ZFS Snapshots
Solaris 10 11/06 Release: When you use the zfs snapshot command to create a file system
snapshot, you can use the -r option to recursively create snapshots for all descendent file
systems. In addition, you can use the -r option to recursively destroy all descendent snapshots
when a snapshot is destroyed.

Recursive ZFS snapshots are created quickly as one atomic operation. The snapshots are created
together (all at once) or not created at all. The benefit of such an operation is that the snapshot
data is always taken at one consistent time, even across descendent file systems.

For more information, see “Creating and Destroying ZFS Snapshots” on page 218.

Double-Parity RAID-Z (raidz2)
Solaris 10 11/06 Release: A redundant RAID-Z configuration can now have either a single- or
double-parity configuration, which means that one or two device failures, respectively, can be
sustained, without any data loss. You can specify the raidz2 keyword for a double-parity
RAID-Z configuration. Or, you can specify the raidz or raidz1 keyword for a single-parity
RAID-Z configuration.

For more information, see “Creating a RAID-Z Storage Pool” on page 71 or zpool(1M).

Hot Spares for ZFS Storage Pool Devices
Solaris 10 11/06 Release: The ZFS hot spares feature enables you to identify disks that could be
used to replace a failed or faulted device in one or more storage pools. Designating a device as a
hot spare means that if an active device in the pool fails, the hot spare automatically replaces the
failed device. Or, you can manually replace a device in a storage pool with a hot spare.

For more information, see “Designating Hot Spares in Your Storage Pool” on page 92 and
zpool(1M).

What's New in ZFS?

Chapter 1 • Oracle Solaris ZFS File System (Introduction) 43

http://www.oracle.com/pls/topic/lookup?ctx=E23823&id=REFMAN1Mzpool-1m
http://www.oracle.com/pls/topic/lookup?ctx=E23823&id=REFMAN1Mzpool-1m


Replacing a ZFS File System With a ZFS Clone (zfs
promote)
Solaris 10 11/06 Release: The zfs promote command enables you to replace an existing ZFS
file system with a clone of that file system. This feature is helpful when you want to run tests on
an alternative version of a file system and then make that alternative version the active file
system.

For more information, see “Replacing a ZFS File System With a ZFS Clone” on page 225 and
zfs(1M).

Upgrading ZFS Storage Pools (zpool upgrade)
Solaris 10 6/06 Release: You can upgrade your storage pools to a newer version of ZFS to take
advantage of the latest features by using the zpool upgrade command. In addition, the zpool
status command has been modified to notify you when your pools are running older versions
of ZFS.

For more information, see “Upgrading ZFS Storage Pools” on page 118 and zpool(1M).

If you want to use the ZFS Administration console on a system with a pool from a previous
Solaris release, ensure that you upgrade your pools before using the console. To determine if
your pools need to be upgraded, use the zpool status command. For information about the
ZFS Administration console, see “ZFS Web-Based Management” on page 46.

ZFS Backup and Restore Commands Are Renamed
Solaris 10 6/06 Release: In this release, the zfs backup and zfs restore commands are
renamed to zfs send and zfs receive to more accurately describe their functions. These
commands send and receive ZFS data stream representations.

For more information about these commands, see “Sending and Receiving ZFS Data” on
page 226.

Recovering Destroyed Storage Pools
Solaris 10 6/06 Release: This release includes the zpool import -D command, which enables
you to recover pools that were previously destroyed with the zpool destroy command.

For more information, see “Recovering Destroyed ZFS Storage Pools” on page 117.

What's New in ZFS?

Oracle Solaris ZFS Administration Guide • April 201244

http://www.oracle.com/pls/topic/lookup?ctx=E23823&id=REFMAN1Mzfs-1m
http://www.oracle.com/pls/topic/lookup?ctx=E23823&id=REFMAN1Mzpool-1m


ZFS Is Integrated With Fault Manager
Solaris 10 6/06 Release: This release includes a ZFS diagnostic engine that is capable of
diagnosing and reporting pool failures and device failures. Checksum, I/O, device, and pool
errors associated with pool or device failures are also reported.

The diagnostic engine does not include predictive analysis of checksum and I/O errors, nor
does it include proactive actions based on fault analysis.

If a ZFS failure occurs, you might see a message similar to the following:

SUNW-MSG-ID: ZFS-8000-D3, TYPE: Fault, VER: 1, SEVERITY: Major

EVENT-TIME: Wed Jun 30 14:53:39 MDT 2010

PLATFORM: SUNW,Sun-Fire-880, CSN: -, HOSTNAME: neo

SOURCE: zfs-diagnosis, REV: 1.0

EVENT-ID: 504a1188-b270-4ab0-af4e-8a77680576b8

DESC: A ZFS device failed. Refer to http://sun.com/msg/ZFS-8000-D3 for more information.

AUTO-RESPONSE: No automated response will occur.

IMPACT: Fault tolerance of the pool may be compromised.

REC-ACTION: Run ’zpool status -x’ and replace the bad device.

By reviewing the recommended action, which is to follow the more specific directions in the
zpool status command, you can quickly identify and resolve the failure.

For an example of recovering from a reported ZFS problem, see “Resolving a Missing Device”
on page 288.

The zpool clear Command
Solaris 10 6/06 Release: This release includes the zpool clear command for clearing error
counts associated with a device or a pool. Previously, error counts were cleared when a device in
a pool was brought online with the zpool online command. For more information, see
“Clearing Storage Pool Device Errors” on page 90 and zpool(1M).

Compact NFSv4 ACL Format
Solaris 10 6/06 Release: In this release, you can set and display NFSv4 ACLs in two formats:
verbose and compact. You can use the chmod command to set either ACL formats. You can use
the ls -V command to display the compact ACL format. You can use the ls -v command to
display the verbose ACL format.

For more information, see “Setting and Displaying ACLs on ZFS Files in Compact Format” on
page 252, chmod(1), and ls(1).

What's New in ZFS?

Chapter 1 • Oracle Solaris ZFS File System (Introduction) 45

http://www.oracle.com/pls/topic/lookup?ctx=E23823&id=REFMAN1Mzpool-1m
http://www.oracle.com/pls/topic/lookup?ctx=E23823&id=REFMAN1chmod-1
http://www.oracle.com/pls/topic/lookup?ctx=E23823&id=REFMAN1ls-1


File System Monitoring Tool (fsstat)
Solaris 10 6/06 Release: A new file system monitoring tool, fsstat, reports file system
operations. Activity can be reported by mount point or by file system type. The following
example shows general ZFS file system activity:

$ fsstat zfs

new name name attr attr lookup rddir read read write write

file remov chng get set ops ops ops bytes ops bytes

7.82M 5.92M 2.76M 1.02G 3.32M 5.60G 87.0M 363M 1.86T 20.9M 251G zfs

For more information, see fsstat(1M).

ZFS Web-Based Management
Solaris 10 6/06 Release: A web-based ZFS management tool, the ZFS Administration console,
enables you to perform the following administrative tasks:

■ Create a new storage pool.
■ Add capacity to an existing pool.
■ Move (export) a storage pool to another system.
■ Import a previously exported storage pool to make it available on another system.
■ View information about storage pools.
■ Create a file system.
■ Create a volume.
■ Create a snapshot of a file system or a volume.
■ Roll back a file system to a previous snapshot.

You can access the ZFS Administration console through a secure web browser at:

https://system-name:6789/zfs

If you type the appropriate URL and are unable to reach the ZFS Administration console, the
server might not be started. To start the server, run the following command:

# /usr/sbin/smcwebserver start

If you want the server to run automatically when the system boots, run the following command:

# /usr/sbin/smcwebserver enable

What's New in ZFS?

Oracle Solaris ZFS Administration Guide • April 201246

http://www.oracle.com/pls/topic/lookup?ctx=E23823&id=REFMAN1Mfsstat-1m


Note – You cannot use the Solaris Management Console (smc) to manage ZFS storage pools or
file systems.

What Is ZFS?
The ZFS file system is a revolutionary new file system that fundamentally changes the way file
systems are administered, with features and benefits not found in any other file system available
today. ZFS is robust, scalable, and easy to administer.

ZFS Pooled Storage
ZFS uses the concept of storage pools to manage physical storage. Historically, file systems were
constructed on top of a single physical device. To address multiple devices and provide for data
redundancy, the concept of a volume manager was introduced to provide a representation of a
single device so that file systems would not need to be modified to take advantage of multiple
devices. This design added another layer of complexity and ultimately prevented certain file
system advances because the file system had no control over the physical placement of data on
the virtualized volumes.

ZFS eliminates volume management altogether. Instead of forcing you to create virtualized
volumes, ZFS aggregates devices into a storage pool. The storage pool describes the physical
characteristics of the storage (device layout, data redundancy, and so on) and acts as an
arbitrary data store from which file systems can be created. File systems are no longer
constrained to individual devices, allowing them to share disk space with all file systems in the
pool. You no longer need to predetermine the size of a file system, as file systems grow
automatically within the disk space allocated to the storage pool. When new storage is added, all
file systems within the pool can immediately use the additional disk space without additional
work. In many ways, the storage pool works similarly to a virtual memory system: When a
memory DIMM is added to a system, the operating system doesn't force you to run commands
to configure the memory and assign it to individual processes. All processes on the system
automatically use the additional memory.

Transactional Semantics
ZFS is a transactional file system, which means that the file system state is always consistent on
disk. Traditional file systems overwrite data in place, which means that if the system loses
power, for example, between the time a data block is allocated and when it is linked into a
directory, the file system will be left in an inconsistent state. Historically, this problem was
solved through the use of the fsck command. This command was responsible for reviewing and
verifying the file system state, and attempting to repair any inconsistencies during the process.

What Is ZFS?

Chapter 1 • Oracle Solaris ZFS File System (Introduction) 47



This problem of inconsistent file systems caused great pain to administrators, and the fsck
command was never guaranteed to fix all possible problems. More recently, file systems have
introduced the concept of journaling. The journaling process records actions in a separate
journal, which can then be replayed safely if a system crash occurs. This process introduces
unnecessary overhead because the data needs to be written twice, often resulting in a new set of
problems, such as when the journal cannot be replayed properly.

With a transactional file system, data is managed using copy on write semantics. Data is never
overwritten, and any sequence of operations is either entirely committed or entirely ignored.
Thus, the file system can never be corrupted through accidental loss of power or a system crash.
Although the most recently written pieces of data might be lost, the file system itself will always
be consistent. In addition, synchronous data (written using the O_DSYNC flag) is always
guaranteed to be written before returning, so it is never lost.

Checksums and Self-Healing Data
With ZFS, all data and metadata is verified using a user-selectable checksum algorithm.
Traditional file systems that do provide checksum verification have performed it on a per-block
basis, out of necessity due to the volume management layer and traditional file system design.
The traditional design means that certain failures, such as writing a complete block to an
incorrect location, can result in data that is incorrect but has no checksum errors. ZFS
checksums are stored in a way such that these failures are detected and can be recovered from
gracefully. All checksum verification and data recovery are performed at the file system layer,
and are transparent to applications.

In addition, ZFS provides for self-healing data. ZFS supports storage pools with varying levels of
data redundancy. When a bad data block is detected, ZFS fetches the correct data from another
redundant copy and repairs the bad data, replacing it with the correct data.

Unparalleled Scalability
A key design element of the ZFS file system is scalability. The file system itself is 128 bit,
allowing for 256 quadrillion zettabytes of storage. All metadata is allocated dynamically, so no
need exists to preallocate inodes or otherwise limit the scalability of the file system when it is
first created. All the algorithms have been written with scalability in mind. Directories can have
up to 248 (256 trillion) entries, and no limit exists on the number of file systems or the number
of files that can be contained within a file system.

ZFS Snapshots
A snapshot is a read-only copy of a file system or volume. Snapshots can be created quickly and
easily. Initially, snapshots consume no additional disk space within the pool.

What Is ZFS?

Oracle Solaris ZFS Administration Guide • April 201248



As data within the active dataset changes, the snapshot consumes disk space by continuing to
reference the old data. As a result, the snapshot prevents the data from being freed back to the
pool.

Simplified Administration
Most importantly, ZFS provides a greatly simplified administration model. Through the use of a
hierarchical file system layout, property inheritance, and automatic management of mount
points and NFS share semantics, ZFS makes it easy to create and manage file systems without
requiring multiple commands or the editing configuration files. You can easily set quotas or
reservations, turn compression on or off, or manage mount points for numerous file systems
with a single command. You can examine or replace devices without learning a separate set of
volume manager commands. You can send and receive file system snapshot streams.

ZFS manages file systems through a hierarchy that allows for this simplified management of
properties such as quotas, reservations, compression, and mount points. In this model, file
systems are the central point of control. File systems themselves are very cheap (equivalent to
creating a new directory), so you are encouraged to create a file system for each user, project,
workspace, and so on. This design enables you to define fine-grained management points.

ZFS Terminology
This section describes the basic terminology used throughout this book:

alternate boot environment A boot environment that is created by the lucreate command
and possibly updated by the luupgrade command, but it is not
the active or primary boot environment. The alternate boot
environment can become the primary boot environment by
running the luactivate command.

checksum A 256-bit hash of the data in a file system block. The checksum
capability can range from the simple and fast fletcher4 (the
default) to cryptographically strong hashes such as SHA256.

clone A file system whose initial contents are identical to the contents
of a snapshot.

For information about clones, see “Overview of ZFS Clones” on
page 224.

dataset A generic name for the following ZFS components: clones, file
systems, snapshots, and volumes.

Each dataset is identified by a unique name in the ZFS
namespace. Datasets are identified using the following format:

ZFS Terminology

Chapter 1 • Oracle Solaris ZFS File System (Introduction) 49



pool/path[@snapshot]

pool Identifies the name of the storage pool that
contains the dataset

path Is a slash-delimited path name for the dataset
component

snapshot Is an optional component that identifies a
snapshot of a dataset

For more information about datasets, see Chapter 6,
“Managing Oracle Solaris ZFS File Systems.”

file system A ZFS dataset of type filesystem that is mounted within the
standard system namespace and behaves like other file systems.

For more information about file systems, see Chapter 6,
“Managing Oracle Solaris ZFS File Systems.”

mirror A virtual device that stores identical copies of data on two or
more disks. If any disk in a mirror fails, any other disk in that
mirror can provide the same data.

pool A logical group of devices describing the layout and physical
characteristics of the available storage. Disk space for datasets is
allocated from a pool.

For more information about storage pools, see Chapter 4,
“Managing Oracle Solaris ZFS Storage Pools.”

primary boot environment A boot environment that is used by the lucreate command to
build the alternate boot environment. By default, the primary
boot environment is the current boot environment. This
default can be overridden by using the lucreate -s option.

RAID-Z A virtual device that stores data and parity on multiple disks.
For more information about RAID-Z, see “RAID-Z Storage
Pool Configuration” on page 67.

resilvering The process of copying data from one device to another device
is known as resilvering. For example, if a mirror device is
replaced or taken offline, the data from an up-to-date mirror
device is copied to the newly restored mirror device. This
process is referred to as mirror resynchronization in traditional
volume management products.

For more information about ZFS resilvering, see “Viewing
Resilvering Status” on page 297.

ZFS Terminology

Oracle Solaris ZFS Administration Guide • April 201250



snapshot A read-only copy of a file system or volume at a given point in
time.

For more information about snapshots, see “Overview of ZFS
Snapshots” on page 217.

virtual device A logical device in a pool, which can be a physical device, a file,
or a collection of devices.

For more information about virtual devices, see “Displaying
Storage Pool Virtual Device Information” on page 74.

volume A dataset that represents a block device. For example, you can
create a ZFS volume as a swap device.

For more information about ZFS volumes, see “ZFS Volumes”
on page 269.

ZFS Component Naming Requirements
Each ZFS component, such as datasets and pools, must be named according to the following
rules:

■ Each component can only contain alphanumeric characters in addition to the following
four special characters:
■ Underscore (_)
■ Hyphen (-)
■ Colon (:)
■ Period (.)

■ Pool names must begin with a letter, except for the following restrictions:
■ The beginning sequence c[0-9] is not allowed.
■ The name log is reserved.
■ A name that begins with mirror, raidz, raidz1, raidz2, raidz3, or spare is not allowed

because these names are reserved.
■ Pool names must not contain a percent sign (%).

■ Dataset names must begin with an alphanumeric character.
■ Dataset names must not contain a percent sign (%).

In addition, empty components are not allowed.

ZFS Component Naming Requirements

Chapter 1 • Oracle Solaris ZFS File System (Introduction) 51



52



Getting Started With Oracle Solaris ZFS

This chapter provides step-by-step instructions on setting up a basic Oracle Solaris ZFS
configuration. By the end of this chapter, you will have a basic understanding of how the ZFS
commands work, and should be able to create a basic pool and file systems. This chapter does
not provide a comprehensive overview and refers to later chapters for more detailed
information.

The following sections are provided in this chapter:

■ “ZFS Hardware and Software Requirements and Recommendations” on page 53
■ “Creating a Basic ZFS File System” on page 54
■ “Creating a ZFS Storage Pool” on page 55
■ “Creating a ZFS File System Hierarchy” on page 56

ZFS Hardware and Software Requirements and
Recommendations

Ensure that you review the following hardware and software requirements and
recommendations before attempting to use the ZFS software:

■ Use a SPARC or x86 based system that is running at least the Solaris 10 6/06 release or later
release.

■ The minimum amount of disk space required for a storage pool is 64 MB. The minimum
disk size is 128 MB.

■ The minimum amount of memory needed to install a Solaris system is 1568 MB. However,
for good ZFS performance, use at least 1568 or more of memory.

■ If you create a mirrored disk configuration, use multiple controllers.

2C H A P T E R 2

53



Creating a Basic ZFS File System
ZFS administration has been designed with simplicity in mind. Among the design goals is to
reduce the number of commands needed to create a usable file system. For example, when you
create a new pool, a new ZFS file system is created and mounted automatically.

The following example shows how to create a basic mirrored storage pool named tank and a
ZFS file system named tank in one command. Assume that the whole disks /dev/dsk/c1t0d0
and /dev/dsk/c2t0d0 are available for use.

# zpool create tank mirror c1t0d0 c2t0d0

For more information about redundant ZFS pool configurations, see “Replication Features of a
ZFS Storage Pool” on page 66.

The new ZFS file system, tank, can use available disk space as needed, and is automatically
mounted at /tank.

# mkfile 100m /tank/foo

# df -h /tank

Filesystem size used avail capacity Mounted on

tank 80G 100M 80G 1% /tank

Within a pool, you probably want to create additional file systems. File systems provide points
of administration that enable you to manage different sets of data within the same pool.

The following example shows how to create a file system named fs in the storage pool tank.

# zfs create tank/fs

The new ZFS file system, tank/fs, can use available disk space as needed, and is automatically
mounted at /tank/fs.

# mkfile 100m /tank/fs/foo

# df -h /tank/fs

Filesystem size used avail capacity Mounted on

tank/fs 80G 100M 80G 1% /tank/fs

Typically, you want to create and organize a hierarchy of file systems that matches your
organizational needs. For information about creating a hierarchy of ZFS file systems, see
“Creating a ZFS File System Hierarchy” on page 56.

Creating a Basic ZFS File System

Oracle Solaris ZFS Administration Guide • April 201254



Creating a ZFS Storage Pool
The previous example illustrates the simplicity of ZFS. The remainder of this chapter provides a
more complete example, similar to what you would encounter in your environment. The first
tasks are to identify your storage requirements and create a storage pool. The pool describes the
physical characteristics of the storage and must be created before any file systems are created.

▼ How to Identify Storage Requirements for Your ZFS
Storage Pool

Determine available devices for your storage pool.

Before creating a storage pool, you must determine which devices will store your data. These
devices must be disks of at least 128 MB in size, and they must not be in use by other parts of the
operating system. The devices can be individual slices on a preformatted disk, or they can be
entire disks that ZFS formats as a single large slice.

In the storage example in “How to Create a ZFS Storage Pool” on page 55, assume that the
whole disks /dev/dsk/c1t0d0 and /dev/dsk/c2t0d0 are available for use.

For more information about disks and how they are used and labeled, see “Using Disks in a ZFS
Storage Pool” on page 63.

Choose data replication.

ZFS supports multiple types of data replication, which determines the types of hardware
failures the pool can withstand. ZFS supports nonredundant (striped) configurations, as well as
mirroring and RAID-Z (a variation on RAID-5).

In the storage example in “How to Create a ZFS Storage Pool” on page 55, basic mirroring of
two available disks is used.

For more information about ZFS replication features, see “Replication Features of a ZFS Storage
Pool” on page 66.

▼ How to Create a ZFS Storage Pool
Become root or assume an equivalent role with the appropriate ZFS rights profile.

For more information about the ZFS rights profiles, see “ZFS Rights Profiles” on page 277.

1

2

1

Creating a ZFS Storage Pool

Chapter 2 • Getting Started With Oracle Solaris ZFS 55



Pick a name for your storage pool.
This name is used to identify the storage pool when you are using the zpool and zfs

commands. Most systems require only a single pool, so you can pick any name that you prefer,
but it must satisfy the naming requirements in “ZFS Component Naming Requirements” on
page 51.

Create the pool.
For example, the following command creates a mirrored pool that is named tank:
# zpool create tank mirror c1t0d0 c2t0d0

If one or more devices contains another file system or is otherwise in use, the command cannot
create the pool.

For more information about creating storage pools, see “Creating a ZFS Storage Pool” on
page 69. For more information about how device usage is determined, see “Detecting In-Use
Devices” on page 75.

View the results.
You can determine if your pool was successfully created by using the zpool list command.
# zpool list

NAME SIZE ALLOC FREE CAP HEALTH ALTROOT

tank 80G 137K 80G 0% ONLINE -

For more information about viewing pool status, see “Querying ZFS Storage Pool Status” on
page 101.

Creating a ZFS File System Hierarchy
After creating a storage pool to store your data, you can create your file system hierarchy.
Hierarchies are simple yet powerful mechanisms for organizing information. They are also very
familiar to anyone who has used a file system.

ZFS allows file systems to be organized into hierarchies, where each file system has only a single
parent. The root of the hierarchy is always the pool name. ZFS leverages this hierarchy by
supporting property inheritance so that common properties can be set quickly and easily on
entire trees of file systems.

▼ How to Determine Your ZFS File System Hierarchy
Pick the file system granularity.
ZFS file systems are the central point of administration. They are lightweight and can be created
easily. A good model to use is to establish one file system per user or project, as this model
allows properties, snapshots, and backups to be controlled on a per-user or per-project basis.

2

3

4

1

Creating a ZFS File System Hierarchy

Oracle Solaris ZFS Administration Guide • April 201256



Two ZFS file systems, jeff and bill, are created in “How to Create ZFS File Systems” on
page 57.

For more information about managing file systems, see Chapter 6, “Managing Oracle Solaris
ZFS File Systems.”

Group similar file systems.
ZFS allows file systems to be organized into hierarchies so that similar file systems can be
grouped. This model provides a central point of administration for controlling properties and
administering file systems. Similar file systems should be created under a common name.

In the example in “How to Create ZFS File Systems” on page 57, the two file systems are placed
under a file system named home.

Choose the file system properties.
Most file system characteristics are controlled by properties. These properties control a variety
of behaviors, including where the file systems are mounted, how they are shared, if they use
compression, and if any quotas are in effect.

In the example in “How to Create ZFS File Systems” on page 57, all home directories are
mounted at /export/zfs/user, are shared by using NFS, and have compression enabled. In
addition, a quota of 10 GB on user jeff is enforced.

For more information about properties, see “Introducing ZFS Properties” on page 185.

▼ How to Create ZFS File Systems
Become root or assume an equivalent role with the appropriate ZFS rights profile.
For more information about the ZFS rights profiles, see “ZFS Rights Profiles” on page 277.

Create the desired hierarchy.
In this example, a file system that acts as a container for individual file systems is created.
# zfs create tank/home

Set the inherited properties.
After the file system hierarchy is established, set up any properties to be shared among all users:
# zfs set mountpoint=/export/zfs tank/home

# zfs set sharenfs=on tank/home

# zfs set compression=on tank/home

# zfs get compression tank/home

NAME PROPERTY VALUE SOURCE

tank/home compression on local

You can set file system properties when the file system is created. For example:

# zfs create -o mountpoint=/export/zfs -o sharenfs=on -o compression=on tank/home

2

3

1

2

3

Creating a ZFS File System Hierarchy

Chapter 2 • Getting Started With Oracle Solaris ZFS 57



For more information about properties and property inheritance, see “Introducing ZFS
Properties” on page 185.

Next, individual file systems are grouped under the home file system in the pool tank.

Create the individual file systems.
File systems could have been created and then the properties could have been changed at the
home level. All properties can be changed dynamically while file systems are in use.
# zfs create tank/home/jeff

# zfs create tank/home/bill

These file systems inherit their property values from their parent, so they are automatically
mounted at /export/zfs/user and are NFS shared. You do not need to edit the /etc/vfstab or
/etc/dfs/dfstab file.

For more information about creating file systems, see “Creating a ZFS File System” on page 182.

For more information about mounting and sharing file systems, see “Mounting and Sharing
ZFS File Systems” on page 204.

Set the file system-specific properties.
In this example, user jeff is assigned a quota of 10 GBs. This property places a limit on the
amount of space he can consume, regardless of how much space is available in the pool.
# zfs set quota=10G tank/home/jeff

View the results.
View available file system information by using the zfs list command:
# zfs list

NAME USED AVAIL REFER MOUNTPOINT

tank 92.0K 67.0G 9.5K /tank

tank/home 24.0K 67.0G 8K /export/zfs

tank/home/bill 8K 67.0G 8K /export/zfs/bill

tank/home/jeff 8K 10.0G 8K /export/zfs/jeff

Note that user jeff only has 10 GB of space available, while user bill can use the full pool (67
GB).

For more information about viewing file system status, see “Querying ZFS File System
Information” on page 197.

For more information about how disk space is used and calculated, see “ZFS Disk Space
Accounting” on page 60.

4

5

6

Creating a ZFS File System Hierarchy

Oracle Solaris ZFS Administration Guide • April 201258



Oracle Solaris ZFS and Traditional File System
Differences

This chapter discusses some significant differences between Oracle Solaris ZFS and traditional
file systems. Understanding these key differences can help reduce confusion when you use
traditional tools to interact with ZFS.

The following sections are provided in this chapter:

■ “ZFS File System Granularity” on page 59
■ “ZFS Disk Space Accounting” on page 60
■ “Out of Space Behavior” on page 60
■ “Mounting ZFS File Systems” on page 61
■ “Traditional Volume Management” on page 61
■ “New Solaris ACL Model” on page 61

ZFS File System Granularity
Historically, file systems have been constrained to one device and thus to the size of that device.
Creating and re-creating traditional file systems because of size constraints are time-consuming
and sometimes difficult. Traditional volume management products help manage this process.

Because ZFS file systems are not constrained to specific devices, they can be created easily and
quickly, similar to the way directories are created. ZFS file systems grow automatically within
the disk space allocated to the storage pool in which they reside.

Instead of creating one file system, such as /export/home, to manage many user subdirectories,
you can create one file system per user. You can easily set up and manage many file systems by
applying properties that can be inherited by the descendent file systems contained within the
hierarchy.

For an example that shows how to create a file system hierarchy, see “Creating a ZFS File System
Hierarchy” on page 56.

3C H A P T E R 3

59



ZFS Disk Space Accounting
ZFS is based on the concept of pooled storage. Unlike typical file systems, which are mapped to
physical storage, all ZFS file systems in a pool share the available storage in the pool. So, the
available disk space reported by utilities such as df might change even when the file system is
inactive, as other file systems in the pool consume or release disk space.

Note that the maximum file system size can be limited by using quotas. For information about
quotas, see “Setting Quotas on ZFS File Systems” on page 211. A specified amount of disk space
can be guaranteed to a file system by using reservations. For information about reservations, see
“Setting Reservations on ZFS File Systems” on page 214. This model is very similar to the NFS
model, where multiple directories are mounted from the same file system (consider /home).

All metadata in ZFS is allocated dynamically. Most other file systems preallocate much of their
metadata. As a result, at file system creation time, an immediate space cost for this metadata is
required. This behavior also means that the total number of files supported by the file systems is
predetermined. Because ZFS allocates its metadata as it needs it, no initial space cost is required,
and the number of files is limited only by the available disk space. The output from the df -g
command must be interpreted differently for ZFS than other file systems. The total files
reported is only an estimate based on the amount of storage that is available in the pool.

ZFS is a transactional file system. Most file system modifications are bundled into transaction
groups and committed to disk asynchronously. Until these modifications are committed to
disk, they are called pending changes. The amount of disk space used, available, and referenced
by a file or file system does not consider pending changes. Pending changes are generally
accounted for within a few seconds. Even committing a change to disk by using fsync(3c) or
O_SYNC does not necessarily guarantee that the disk space usage information is updated
immediately.

For additional details about ZFS disk space consumption as reported by the du and df

commands, see:

http://hub.opensolaris.org/bin/view/Community+Group+zfs/faq/#whydusize

Out of Space Behavior
File system snapshots are inexpensive and easy to create in ZFS. Snapshots are common in most
ZFS environments. For information about ZFS snapshots, see Chapter 7, “Working With
Oracle Solaris ZFS Snapshots and Clones.”

The presence of snapshots can cause some unexpected behavior when you attempt to free disk
space. Typically, given appropriate permissions, you can remove a file from a full file system,
and this action results in more disk space becoming available in the file system. However, if the
file to be removed exists in a snapshot of the file system, then no disk space is gained from the
file deletion. The blocks used by the file continue to be referenced from the snapshot.

ZFS Disk Space Accounting

Oracle Solaris ZFS Administration Guide • April 201260

http://hub.opensolaris.org/bin/view/Community+Group+zfs/faq/#whydusize


As a result, the file deletion can consume more disk space because a new version of the directory
needs to be created to reflect the new state of the namespace. This behavior means that you can
receive an unexpected ENOSPC or EDQUOT error when attempting to remove a file.

Mounting ZFS File Systems
ZFS reduces complexity and eases administration. For example, with traditional file systems,
you must edit the /etc/vfstab file every time you add a new file system. ZFS has eliminated
this requirement by automatically mounting and unmounting file systems according to the
properties of the dataset. You do not need to manage ZFS entries in the /etc/vfstab file.

For more information about mounting and sharing ZFS file systems, see “Mounting and
Sharing ZFS File Systems” on page 204.

Traditional Volume Management
As described in “ZFS Pooled Storage” on page 47, ZFS eliminates the need for a separate volume
manager. ZFS operates on raw devices, so it is possible to create a storage pool comprised of
logical volumes, either software or hardware. This configuration is not recommended, as ZFS
works best when it uses raw physical devices. Using logical volumes might sacrifice
performance, reliability, or both, and should be avoided.

New Solaris ACL Model
Previous versions of the Solaris OS supported an ACL implementation that was primarily based
on the POSIX ACL draft specification. The POSIX-draft based ACLs are used to protect UFS
files. A new Solaris ACL model that is based on the NFSv4 specification is used to protect ZFS
files.

The main differences of the new Solaris ACL model are as follows:

■ The model is based on the NFSv4 specification and is similar to NT-style ACLs.
■ This model provides a much more granular set of access privileges.
■ ACLs are set and displayed with the chmod and ls commands rather than the setfacl and

getfacl commands.
■ Richer inheritance semantics designate how access privileges are applied from directory to

subdirectories, and so on.

For more information about using ACLs with ZFS files, see Chapter 8, “Using ACLs and
Attributes to Protect Oracle Solaris ZFS Files.”

New Solaris ACL Model

Chapter 3 • Oracle Solaris ZFS and Traditional File System Differences 61



62



Managing Oracle Solaris ZFS Storage Pools

This chapter describes how to create and administer storage pools in Oracle Solaris ZFS.

The following sections are provided in this chapter:

■ “Components of a ZFS Storage Pool” on page 63
■ “Replication Features of a ZFS Storage Pool” on page 66
■ “Creating and Destroying ZFS Storage Pools” on page 69
■ “Managing Devices in ZFS Storage Pools” on page 78
■ “Managing ZFS Storage Pool Properties” on page 98
■ “Querying ZFS Storage Pool Status” on page 101
■ “Migrating ZFS Storage Pools” on page 110
■ “Upgrading ZFS Storage Pools” on page 118

Components of a ZFS Storage Pool
The following sections provide detailed information about the following storage pool
components:

■ “Using Disks in a ZFS Storage Pool” on page 63
■ “Using Slices in a ZFS Storage Pool” on page 65
■ “Using Files in a ZFS Storage Pool” on page 66

Using Disks in a ZFS Storage Pool
The most basic element of a storage pool is physical storage. Physical storage can be any block
device of at least 128 MB in size. Typically, this device is a hard drive that is visible to the system
in the /dev/dsk directory.

A storage device can be a whole disk (c1t0d0) or an individual slice (c0t0d0s7). The
recommended mode of operation is to use an entire disk, in which case the disk does not

4C H A P T E R 4

63



require special formatting. ZFS formats the disk using an EFI label to contain a single, large
slice. When used in this way, the partition table that is displayed by the format command
appears similar to the following:

Current partition table (original):

Total disk sectors available: 286722878 + 16384 (reserved sectors)

Part Tag Flag First Sector Size Last Sector

0 usr wm 34 136.72GB 286722911

1 unassigned wm 0 0 0

2 unassigned wm 0 0 0

3 unassigned wm 0 0 0

4 unassigned wm 0 0 0

5 unassigned wm 0 0 0

6 unassigned wm 0 0 0

8 reserved wm 286722912 8.00MB 286739295

To use a whole disk, the disk must be named by using the /dev/dsk/cNtNdN naming
convention. Some third-party drivers use a different naming convention or place disks in a
location other than the /dev/dsk directory. To use these disks, you must manually label the disk
and provide a slice to ZFS.

ZFS applies an EFI label when you create a storage pool with whole disks. For more information
about EFI labels, see “EFI Disk Label” in System Administration Guide: Devices and File Systems.

A disk that is intended for a ZFS root pool must be created with an SMI label, not an EFI label.
You can relabel a disk with an SMI label by using the format -e command.

Disks can be specified by using either the full path, such as /dev/dsk/c1t0d0, or a shorthand
name that consists of the device name within the /dev/dsk directory, such as c1t0d0. For
example, the following are valid disk names:

■ c1t0d0

■ /dev/dsk/c1t0d0

■ /dev/foo/disk

Using whole physical disks is the easiest way to create ZFS storage pools. ZFS configurations
become progressively more complex, from management, reliability, and performance
perspectives, when you build pools from disk slices, LUNs in hardware RAID arrays, or
volumes presented by software-based volume managers. The following considerations might
help you determine how to configure ZFS with other hardware or software storage solutions:

■ If you construct a ZFS configuration on top of LUNs from hardware RAID arrays, you need
to understand the relationship between ZFS redundancy features and the redundancy
features offered by the array. Certain configurations might provide adequate redundancy
and performance, but other configurations might not.

■ You can construct logical devices for ZFS using volumes presented by software-based
volume managers, such as Solaris Volume Manager (SVM) or Veritas Volume Manager
(VxVM). However, these configurations are not recommended. Although ZFS functions
properly on such devices, less-than-optimal performance might be the result.

Components of a ZFS Storage Pool

Oracle Solaris ZFS Administration Guide • April 201264

http://www.oracle.com/pls/topic/lookup?ctx=E23823&id=SAGDFSdisksconcepts-14


For additional information about storage pool recommendations, see “Recommended Storage
Pool Practices” on page 305.

Disks are identified both by their path and by their device ID, if available. On systems where
device ID information is available, this identification method allows devices to be reconfigured
without updating ZFS. Because device ID generation and management can vary by system,
export the pool first before moving devices, such as moving a disk from one controller to
another controller. A system event, such as a firmware update or other hardware change, might
change the device IDs in your ZFS storage pool, which can cause the devices to become
unavailable.

Using Slices in a ZFS Storage Pool
Disks can be labeled with a traditional Solaris VTOC (SMI) label when you create a storage pool
with a disk slice.

For a bootable ZFS root pool, the disks in the pool must contain slices and the disks must be
labeled with an SMI label. The simplest configuration would be to put the entire disk capacity in
slice 0 and use that slice for the root pool.

On a SPARC based system, a 72-GB disk has 68 GB of usable space located in slice 0 as shown in
the following format output:

# format

.

.

.

Specify disk (enter its number): 4

selecting c1t1d0

partition> p

Current partition table (original):

Total disk cylinders available: 14087 + 2 (reserved cylinders)

Part Tag Flag Cylinders Size Blocks

0 root wm 0 - 14086 68.35GB (14087/0/0) 143349312

1 unassigned wm 0 0 (0/0/0) 0

2 backup wm 0 - 14086 68.35GB (14087/0/0) 143349312

3 unassigned wm 0 0 (0/0/0) 0

4 unassigned wm 0 0 (0/0/0) 0

5 unassigned wm 0 0 (0/0/0) 0

6 unassigned wm 0 0 (0/0/0) 0

7 unassigned wm 0 0 (0/0/0) 0

On an x86 based system, a 72-GB disk has 68 GB of usable disk space located in slice 0, as shown
in the following format output. A small amount of boot information is contained in slice 8.
Slice 8 requires no administration and cannot be changed.

# format

.

.

Components of a ZFS Storage Pool

Chapter 4 • Managing Oracle Solaris ZFS Storage Pools 65



.

selecting c1t0d0

partition> p

Current partition table (original):

Total disk cylinders available: 49779 + 2 (reserved cylinders)

Part Tag Flag Cylinders Size Blocks

0 root wm 1 - 49778 68.36GB (49778/0/0) 143360640

1 unassigned wu 0 0 (0/0/0) 0

2 backup wm 0 - 49778 68.36GB (49779/0/0) 143363520

3 unassigned wu 0 0 (0/0/0) 0

4 unassigned wu 0 0 (0/0/0) 0

5 unassigned wu 0 0 (0/0/0) 0

6 unassigned wu 0 0 (0/0/0) 0

7 unassigned wu 0 0 (0/0/0) 0

8 boot wu 0 - 0 1.41MB (1/0/0) 2880

9 unassigned wu 0 0 (0/0/0) 0

An fdisk partition also exists on Solaris x86 systems. An fdisk partition is represented by a
/dev/dsk/cN[tN]dNpN device name and acts as a container for the disk's available slices. Do not
use a cN[tN]dNpN device for a ZFS storage pool component because this configuration is neither
tested nor supported.

Using Files in a ZFS Storage Pool
ZFS also allows you to use UFS files as virtual devices in your storage pool. This feature is aimed
primarily at testing and enabling simple experimentation, not for production use. The reason is
that any use of files relies on the underlying file system for consistency. If you create a ZFS
pool backed by files on a UFS file system, then you are implicitly relying on UFS to guarantee
correctness and synchronous semantics.

However, files can be quite useful when you are first trying out ZFS or experimenting with more
complicated configurations when insufficient physical devices are present. All files must be
specified as complete paths and must be at least 64 MB in size.

Replication Features of a ZFS Storage Pool
ZFS provides data redundancy, as well as self-healing properties, in mirrored and RAID-Z
configurations.

■ “Mirrored Storage Pool Configuration” on page 67
■ “RAID-Z Storage Pool Configuration” on page 67
■ “Self-Healing Data in a Redundant Configuration” on page 68
■ “Dynamic Striping in a Storage Pool” on page 68
■ “ZFS Hybrid Storage Pool” on page 68

Replication Features of a ZFS Storage Pool

Oracle Solaris ZFS Administration Guide • April 201266



Mirrored Storage Pool Configuration
A mirrored storage pool configuration requires at least two disks, preferably on separate
controllers. Many disks can be used in a mirrored configuration. In addition, you can create
more than one mirror in each pool. Conceptually, a basic mirrored configuration would look
similar to the following:

mirror c1t0d0 c2t0d0

Conceptually, a more complex mirrored configuration would look similar to the following:

mirror c1t0d0 c2t0d0 c3t0d0 mirror c4t0d0 c5t0d0 c6t0d0

For information about creating a mirrored storage pool, see “Creating a Mirrored Storage Pool”
on page 70.

RAID-Z Storage Pool Configuration
In addition to a mirrored storage pool configuration, ZFS provides a RAID-Z configuration
with either single-, double-, or triple-parity fault tolerance. Single-parity RAID-Z (raidz or
raidz1) is similar to RAID-5. Double-parity RAID-Z (raidz2) is similar to RAID-6.

For more information about RAIDZ-3 (raidz3), see the following blog:

http://blogs.oracle.com/ahl/entry/triple_parity_raid_z

All traditional RAID-5-like algorithms (RAID-4, RAID-6, RDP, and EVEN-ODD, for example)
might experience a problem known as the “RAID-5 write hole.” If only part of a RAID-5 stripe is
written, and power is lost before all blocks have been written to disk, the parity will remain
unsynchronized with the data, and therefore forever useless, (unless a subsequent full-stripe
write overwrites it). In RAID-Z, ZFS uses variable-width RAID stripes so that all writes are
full-stripe writes. This design is only possible because ZFS integrates file system and device
management in such a way that the file system's metadata has enough information about the
underlying data redundancy model to handle variable-width RAID stripes. RAID-Z is the
world's first software-only solution to the RAID-5 write hole.

A RAID-Z configuration with N disks of size X with P parity disks can hold approximately
(N-P)*X bytes and can withstand P device(s) failing before data integrity is compromised. You
need at least two disks for a single-parity RAID-Z configuration and at least three disks for a
double-parity RAID-Z configuration. For example, if you have three disks in a single-parity
RAID-Z configuration, parity data occupies disk space equal to one of the three disks.
Otherwise, no special hardware is required to create a RAID-Z configuration.

Conceptually, a RAID-Z configuration with three disks would look similar to the following:

raidz c1t0d0 c2t0d0 c3t0d0

Replication Features of a ZFS Storage Pool

Chapter 4 • Managing Oracle Solaris ZFS Storage Pools 67

http://blogs.oracle.com/ahl/entry/triple_parity_raid_z


Conceptually, a more complex RAID-Z configuration would look similar to the following:

raidz c1t0d0 c2t0d0 c3t0d0 c4t0d0 c5t0d0 c6t0d0 c7t0d0 raidz c8t0d0 c9t0d0 c10t0d0 c11t0d0

c12t0d0 c13t0d0 c14t0d0

If you are creating a RAID-Z configuration with many disks, consider splitting the disks into
multiple groupings. For example, a RAID-Z configuration with 14 disks is better split into two
7-disk groupings. RAID-Z configurations with single-digit groupings of disks should perform
better.

For information about creating a RAID-Z storage pool, see “Creating a RAID-Z Storage Pool”
on page 71.

For more information about choosing between a mirrored configuration or a RAID-Z
configuration based on performance and disk space considerations, see the following blog
entry:

http://blogs.oracle.com/roch/entry/when_to_and_not_to

For additional information about RAID-Z storage pool recommendations, see Chapter 12,
“Recommended Oracle Solaris ZFS Practices.”

ZFS Hybrid Storage Pool
The ZFS hybrid storage pool, available in Oracle's Sun ZFS Storage 7000 product series, is a
special storage pool that combines DRAM, SSDs, and HDDs, to improve performance and
increase capacity, while reducing power consumption. With this product's management
interface, you can select the ZFS redundancy configuration of the storage pool and easily
manage other configuration options.

For more information about this product, go to http://docs.oracle.com/cd/E26765_01/

index.html.

Self-Healing Data in a Redundant Configuration
ZFS provides self-healing data in a mirrored or RAID-Z configuration.

When a bad data block is detected, not only does ZFS fetch the correct data from another
redundant copy, but it also repairs the bad data by replacing it with the good copy.

Dynamic Striping in a Storage Pool
ZFS dynamically stripes data across all top-level virtual devices. The decision about where to
place data is done at write time, so no fixed-width stripes are created at allocation time.

Replication Features of a ZFS Storage Pool

Oracle Solaris ZFS Administration Guide • April 201268

http://blogs.oracle.com/roch/entry/when_to_and_not_to
http://docs.oracle.com/cd/E26765_01/index.html
http://docs.oracle.com/cd/E26765_01/index.html


When new virtual devices are added to a pool, ZFS gradually allocates data to the new device in
order to maintain performance and disk space allocation policies. Each virtual device can also
be a mirror or a RAID-Z device that contains other disk devices or files. This configuration gives
you flexibility in controlling the fault characteristics of your pool. For example, you could create
the following configurations out of four disks:
■ Four disks using dynamic striping
■ One four-way RAID-Z configuration
■ Two two-way mirrors using dynamic striping

Although ZFS supports combining different types of virtual devices within the same pool, avoid
this practice. For example, you can create a pool with a two-way mirror and a three-way
RAID-Z configuration. However, your fault tolerance is as good as your worst virtual device,
RAID-Z in this case. A best practice is to use top-level virtual devices of the same type with the
same redundancy level in each device.

Creating and Destroying ZFS Storage Pools
The following sections describe different scenarios for creating and destroying ZFS storage
pools:

■ “Creating a ZFS Storage Pool” on page 69
■ “Displaying Storage Pool Virtual Device Information” on page 74
■ “Handling ZFS Storage Pool Creation Errors” on page 75
■ “Destroying ZFS Storage Pools” on page 77

Creating and destroying pools is fast and easy. However, be cautious when performing these
operations. Although checks are performed to prevent using devices known to be in use in a
new pool, ZFS cannot always know when a device is already in use. Destroying a pool is easier
than creating one. Use zpool destroy with caution. This simple command has significant
consequences.

Creating a ZFS Storage Pool
To create a storage pool, use the zpool create command. This command takes a pool name
and any number of virtual devices as arguments. The pool name must satisfy the naming
requirements in “ZFS Component Naming Requirements” on page 51.

Creating a Basic Storage Pool
The following command creates a new pool named tank that consists of the disks c1t0d0 and
c1t1d0:

# zpool create tank c1t0d0 c1t1d0

Creating and Destroying ZFS Storage Pools

Chapter 4 • Managing Oracle Solaris ZFS Storage Pools 69



Device names representing the whole disks are found in the /dev/dsk directory and are labeled
appropriately by ZFS to contain a single, large slice. Data is dynamically striped across both
disks.

Creating a Mirrored Storage Pool
To create a mirrored pool, use the mirror keyword, followed by any number of storage devices
that will comprise the mirror. Multiple mirrors can be specified by repeating the mirror
keyword on the command line. The following command creates a pool with two, two-way
mirrors:

# zpool create tank mirror c1d0 c2d0 mirror c3d0 c4d0

The second mirror keyword indicates that a new top-level virtual device is being specified. Data
is dynamically striped across both mirrors, with data being redundant between each disk
appropriately.

For more information about recommended mirrored configurations, see the following site:

http://www.solarisinternals.com/wiki/index.php/ZFS_Best_Practices_Guide

Currently, the following operations are supported in a ZFS mirrored configuration:
■ Adding another set of disks for an additional top-level virtual device (vdev) to an existing

mirrored configuration. For more information, see “Adding Devices to a Storage Pool” on
page 79.

■ Attaching additional disks to an existing mirrored configuration. Or, attaching additional
disks to a non-replicated configuration to create a mirrored configuration. For more
information, see “Attaching and Detaching Devices in a Storage Pool” on page 83.

■ Replacing a disk or disks in an existing mirrored configuration as long as the replacement
disks are greater than or equal to the size of the device to be replaced. For more information,
see “Replacing Devices in a Storage Pool” on page 90.

■ Detaching a disk in a mirrored configuration as long as the remaining devices provide
adequate redundancy for the configuration. For more information, see “Attaching and
Detaching Devices in a Storage Pool” on page 83.

■ Splitting a mirrored configuration by detaching one of the disks to create a new, identical
pool. For more information, see “Creating a New Pool By Splitting a Mirrored ZFS Storage
Pool” on page 85.

You cannot outright remove a device that is not a log or a cache device from a mirrored storage
pool. An RFE is filed for this feature.

Creating a ZFS Root Pool
You can install and boot from a ZFS root file system. Review the following root pool
configuration information:

Creating and Destroying ZFS Storage Pools

Oracle Solaris ZFS Administration Guide • April 201270

http://www.solarisinternals.com/wiki/index.php/ZFS_Best_Practices_Guide


■ Disks used for the root pool must have a VTOC (SMI) label, and the pool must be created
with disk slices.

■ The root pool must be created as a mirrored configuration or as a single-disk configuration.
You cannot add additional disks to create multiple mirrored top-level virtual devices by
using the zpool add command, but you can expand a mirrored virtual device by using the
zpool attach command.

■ A RAID-Z or a striped configuration is not supported.
■ The root pool cannot have a separate log device.
■ If you attempt to use an unsupported configuration for a root pool, you see messages similar

to the following:

ERROR: ZFS pool <pool-name> does not support boot environments

# zpool add -f rpool log c0t6d0s0

cannot add to ’rpool’: root pool can not have multiple vdevs or separate logs

For more information about installing and booting a ZFS root file system, see Chapter 5,
“Installing and Booting an Oracle Solaris ZFS Root File System.”

Creating a RAID-Z Storage Pool
Creating a single-parity RAID-Z pool is identical to creating a mirrored pool, except that the
raidz or raidz1 keyword is used instead of mirror. The following example shows how to create
a pool with a single RAID-Z device that consists of five disks:

# zpool create tank raidz c1t0d0 c2t0d0 c3t0d0 c4t0d0 /dev/dsk/c5t0d0

This example illustrates that disks can be specified by using their shorthand device names or
their full device names. Both /dev/dsk/c5t0d0 and c5t0d0 refer to the same disk.

You can create a double-parity or triple-parity RAID-Z configuration by using the raidz2 or
raidz3 keyword when creating the pool. For example:

# zpool create tank raidz2 c1t0d0 c2t0d0 c3t0d0 c4t0d0 c5t0d0

# zpool status -v tank

pool: tank

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 0

raidz2-0 ONLINE 0 0 0

c1t0d0 ONLINE 0 0 0

c2t0d0 ONLINE 0 0 0

c3t0d0 ONLINE 0 0 0

c4t0d0 ONLINE 0 0 0

c5t0d0 ONLINE 0 0 0

errors: No known data errors

Creating and Destroying ZFS Storage Pools

Chapter 4 • Managing Oracle Solaris ZFS Storage Pools 71



# zpool create tank raidz3 c0t0d0 c1t0d0 c2t0d0 c3t0d0 c4t0d0 c5t0d0 c6t0d0 c7t0d0

# zpool status -v tank

pool: tank

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 0

raidz3-0 ONLINE 0 0 0

c0t0d0 ONLINE 0 0 0

c1t0d0 ONLINE 0 0 0

c2t0d0 ONLINE 0 0 0

c3t0d0 ONLINE 0 0 0

c4t0d0 ONLINE 0 0 0

c5t0d0 ONLINE 0 0 0

c6t0d0 ONLINE 0 0 0

c7t0d0 ONLINE 0 0 0

errors: No known data errors

Currently, the following operations are supported in a ZFS RAID-Z configuration:

■ Adding another set of disks for an additional top-level virtual device to an existing RAID-Z
configuration. For more information, see “Adding Devices to a Storage Pool” on page 79.

■ Replacing a disk or disks in an existing RAID-Z configuration as long as the replacement
disks are greater than or equal to the size of the device to be replaced. For more information,
see “Replacing Devices in a Storage Pool” on page 90.

Currently, the following operations are not supported in a RAID-Z configuration:

■ Attaching an additional disk to an existing RAID-Z configuration.
■ Detaching a disk from a RAID-Z configuration, except when you are detaching a disk that is

replaced by a spare disk or when you need to detach a spare disk.
■ You cannot outright remove a device that is not a log device or a cache device from a

RAID-Z configuration. An RFE is filed for this feature.

For more information about a RAID-Z configuration, see “RAID-Z Storage Pool
Configuration” on page 67.

Creating a ZFS Storage Pool With Log Devices
By default, the ZIL is allocated from blocks within the main pool. However, better performance
might be possible by using separate intent log devices, such as NVRAM or a dedicated disk. For
more information about ZFS log devices, see “Setting Up Separate ZFS Log Devices” on page 36.

You can set up a ZFS log device when the storage pool is created or after the pool is created.

The following example shows how to create a mirrored storage pool with mirrored log devices:

Creating and Destroying ZFS Storage Pools

Oracle Solaris ZFS Administration Guide • April 201272



# zpool create datap mirror c1t1d0 c1t2d0 mirror c1t3d0 c1t4d0 log mirror c1t5d0 c1t8d0

# zpool status datap

pool: datap

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

datap ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c1t1d0 ONLINE 0 0 0

c1t2d0 ONLINE 0 0 0

mirror-1 ONLINE 0 0 0

c1t3d0 ONLINE 0 0 0

c1t4d0 ONLINE 0 0 0

logs

mirror-2 ONLINE 0 0 0

c1t5d0 ONLINE 0 0 0

c1t8d0 ONLINE 0 0 0

errors: No known data errors

For information about recovering from a log device failure, see Example 11–2.

Creating a ZFS Storage Pool With Cache Devices
You can create a storage pool with cache devices to cache storage pool data. For example:

# zpool create tank mirror c2t0d0 c2t1d0 c2t3d0 cache c2t5d0 c2t8d0

# zpool status tank

pool: tank

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c2t0d0 ONLINE 0 0 0

c2t1d0 ONLINE 0 0 0

c2t3d0 ONLINE 0 0 0

cache

c2t5d0 ONLINE 0 0 0

c2t8d0 ONLINE 0 0 0

errors: No known data errors

Consider the following points when determining whether to create a ZFS storage pool with
cache devices:
■ Using cache devices provides the greatest performance improvement for random-read

workloads of mostly static content.
■ Capacity and reads can be monitored by using the zpool iostat command.
■ Single or multiple cache devices can be added when the pool is created. They can also be

added and removed after the pool is created. For more information, see Example 4–4.

Creating and Destroying ZFS Storage Pools

Chapter 4 • Managing Oracle Solaris ZFS Storage Pools 73



■ Cache devices cannot be mirrored or be part of a RAID-Z configuration.
■ If a read error is encountered on a cache device, that read I/O is reissued to the original

storage pool device, which might be part of a mirrored or a RAID-Z configuration. The
content of the cache devices is considered volatile, similar to other system caches.

Displaying Storage Pool Virtual Device Information
Each storage pool contains one or more virtual devices. A virtual device is an internal
representation of the storage pool that describes the layout of physical storage and the storage
pool's fault characteristics. As such, a virtual device represents the disk devices or files that are
used to create the storage pool. A pool can have any number of virtual devices at the top of the
configuration, known as a top-level vdev.

If the top-level virtual device contains two or more physical devices, the configuration provide
data redundancy as mirror or RAID-Z virtual devices. These virtual devices consist of disks,
disk slices, or files. A spare is a special virtual dev that tracks available hot spares for a pool.

The following example shows how to create a pool that consists of two top-level virtual devices,
each a mirror of two disks:

# zpool create tank mirror c1d0 c2d0 mirror c3d0 c4d0

The following example shows how to create pool that consists of one top-level virtual device of
four disks:

# zpool create mypool raidz2 c1d0 c2d0 c3d0 c4d0

You can add another top-level virtual device to this pool by using the zpool add command. For
example:

# zpool add mypool raidz2 c2d1 c3d1 c4d1 c5d1

Disks, disk slices, or files that are used in nonredundant pools function as top-level virtual
devices. Storage pools typically contain multiple top-level virtual devices. ZFS dynamically
stripes data among all of the top-level virtual devices in a pool.

Virtual devices and the physical devices that are contained in a ZFS storage pool are displayed
with the zpool status command. For example:

# zpool status tank

pool: tank

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 0

Creating and Destroying ZFS Storage Pools

Oracle Solaris ZFS Administration Guide • April 201274



mirror-0 ONLINE 0 0 0

c0t1d0 ONLINE 0 0 0

c1t1d0 ONLINE 0 0 0

mirror-1 ONLINE 0 0 0

c0t2d0 ONLINE 0 0 0

c1t2d0 ONLINE 0 0 0

mirror-2 ONLINE 0 0 0

c0t3d0 ONLINE 0 0 0

c1t3d0 ONLINE 0 0 0

errors: No known data errors

Handling ZFS Storage Pool Creation Errors
Pool creation errors can occur for many reasons. Some reasons are obvious, such as when a
specified device doesn't exist, while other reasons are more subtle.

Detecting In-Use Devices
Before formatting a device, ZFS first determines if the disk is in-use by ZFS or some other part
of the operating system. If the disk is in use, you might see errors such as the following:

# zpool create tank c1t0d0 c1t1d0

invalid vdev specification

use ’-f’ to override the following errors:

/dev/dsk/c1t0d0s0 is currently mounted on /. Please see umount(1M).

/dev/dsk/c1t0d0s1 is currently mounted on swap. Please see swap(1M).

/dev/dsk/c1t1d0s0 is part of active ZFS pool zeepool. Please see zpool(1M).

Some errors can be overridden by using the -f option, but most errors cannot. The following
conditions cannot be overridden by using the -f option, and you must manually correct them:

Mounted file system The disk or one of its slices contains a file system that is currently
mounted. To correct this error, use the umount command.

File system in /etc/vfstab The disk contains a file system that is listed in the /etc/vfstab
file, but the file system is not currently mounted. To correct this
error, remove or comment out the line in the /etc/vfstab file.

Dedicated dump device The disk is in use as the dedicated dump device for the system. To
correct this error, use the dumpadm command.

Part of a ZFS pool The disk or file is part of an active ZFS storage pool. To correct
this error, use the zpool destroy command to destroy the other
pool, if it is no longer needed. Or, use the zpool detach
command to detach the disk from the other pool. You can only
detach a disk from a mirrored storage pool.

The following in-use checks serve as helpful warnings and can be overridden by using the -f
option to create the pool:

Creating and Destroying ZFS Storage Pools

Chapter 4 • Managing Oracle Solaris ZFS Storage Pools 75



Contains a file system The disk contains a known file system, though it is not mounted
and doesn't appear to be in use.

Part of volume The disk is part of a Solaris Volume Manager volume.

Live upgrade The disk is in use as an alternate boot environment for Oracle
Solaris Live Upgrade.

Part of exported ZFS pool The disk is part of a storage pool that has been exported or
manually removed from a system. In the latter case, the pool is
reported as potentially active, as the disk might or might
not be a network-attached drive in use by another system. Be
cautious when overriding a potentially active pool.

The following example demonstrates how the -f option is used:

# zpool create tank c1t0d0

invalid vdev specification

use ’-f’ to override the following errors:

/dev/dsk/c1t0d0s0 contains a ufs filesystem.

# zpool create -f tank c1t0d0

Ideally, correct the errors rather than use the -f option to override them.

Mismatched Replication Levels
Creating pools with virtual devices of different replication levels is not recommended. The
zpool command tries to prevent you from accidentally creating a pool with mismatched levels
of redundancy. If you try to create a pool with such a configuration, you see errors similar to the
following:

# zpool create tank c1t0d0 mirror c2t0d0 c3t0d0

invalid vdev specification

use ’-f’ to override the following errors:

mismatched replication level: both disk and mirror vdevs are present

# zpool create tank mirror c1t0d0 c2t0d0 mirror c3t0d0 c4t0d0 c5t0d0

invalid vdev specification

use ’-f’ to override the following errors:

mismatched replication level: 2-way mirror and 3-way mirror vdevs are present

You can override these errors with the -f option, but you should avoid this practice. The
command also warns you about creating a mirrored or RAID-Z pool using devices of different
sizes. Although this configuration is allowed, mismatched levels of redundancy result in unused
disk space on the larger device. The -f option is required to override the warning.

Doing a Dry Run of Storage Pool Creation
Attempts to create a pool can fail unexpectedly in different ways, and formatting disks is a
potentially harmful action. For these reasons, the zpool create command has an additional

Creating and Destroying ZFS Storage Pools

Oracle Solaris ZFS Administration Guide • April 201276



option, -n, which simulates creating the pool without actually writing to the device. This dry
run option performs the device in-use checking and replication-level validation, and reports
any errors in the process. If no errors are found, you see output similar to the following:

# zpool create -n tank mirror c1t0d0 c1t1d0

would create ’tank’ with the following layout:

tank

mirror

c1t0d0

c1t1d0

Some errors cannot be detected without actually creating the pool. The most common example
is specifying the same device twice in the same configuration. This error cannot be reliably
detected without actually writing the data, so the zpool create -n command can report success
and yet fail to create the pool when the command is run without this option.

Default Mount Point for Storage Pools
When a pool is created, the default mount point for the top-level dataset is /pool-name. This
directory must either not exist or be empty. If the directory does not exist, it is automatically
created. If the directory is empty, the root dataset is mounted on top of the existing directory.
To create a pool with a different default mount point, use the -m option of the zpool create
command. For example:

# zpool create home c1t0d0

default mountpoint ’/home’ exists and is not empty

use ’-m’ option to provide a different default

# zpool create -m /export/zfs home c1t0d0

This command creates the new pool home and the home dataset with a mount point of
/export/zfs.

For more information about mount points, see “Managing ZFS Mount Points” on page 204.

Destroying ZFS Storage Pools
Pools are destroyed by using the zpool destroy command. This command destroys the pool
even if it contains mounted datasets.

# zpool destroy tank

Creating and Destroying ZFS Storage Pools

Chapter 4 • Managing Oracle Solaris ZFS Storage Pools 77



Caution – Be very careful when you destroy a pool. Ensure that you are destroying the right pool
and you always have copies of your data. If you accidentally destroy the wrong pool, you can
attempt to recover the pool. For more information, see “Recovering Destroyed ZFS Storage
Pools” on page 117.

Destroying a Pool With Faulted Devices
The act of destroying a pool requires data to be written to disk to indicate that the pool is no
longer valid. This state information prevents the devices from showing up as a potential pool
when you perform an import. If one or more devices are unavailable, the pool can still be
destroyed. However, the necessary state information won't be written to these unavailable
devices.

These devices, when suitably repaired, are reported as potentially active when you create a new
pool. They appear as valid devices when you search for pools to import. If a pool has enough
faulted devices such that the pool itself is faulted (meaning that a top-level virtual device is
faulted), then the command prints a warning and cannot complete without the -f option. This
option is necessary because the pool cannot be opened, so whether data is stored there is
unknown. For example:

# zpool destroy tank

cannot destroy ’tank’: pool is faulted

use ’-f’ to force destruction anyway

# zpool destroy -f tank

For more information about pool and device health, see “Determining the Health Status of ZFS
Storage Pools” on page 107.

For more information about importing pools, see “Importing ZFS Storage Pools” on page 114.

Managing Devices in ZFS Storage Pools
Most of the basic information regarding devices is covered in “Components of a ZFS Storage
Pool” on page 63. After a pool has been created, you can perform several tasks to manage the
physical devices within the pool.

■ “Adding Devices to a Storage Pool” on page 79
■ “Attaching and Detaching Devices in a Storage Pool” on page 83
■ “Creating a New Pool By Splitting a Mirrored ZFS Storage Pool” on page 85
■ “Onlining and Offlining Devices in a Storage Pool” on page 88
■ “Clearing Storage Pool Device Errors” on page 90
■ “Replacing Devices in a Storage Pool” on page 90
■ “Designating Hot Spares in Your Storage Pool” on page 92

Managing Devices in ZFS Storage Pools

Oracle Solaris ZFS Administration Guide • April 201278



Adding Devices to a Storage Pool
You can dynamically add disk space to a pool by adding a new top-level virtual device. This disk
space is immediately available to all datasets in the pool. To add a new virtual device to a pool,
use the zpool add command. For example:

# zpool add zeepool mirror c2t1d0 c2t2d0

The format for specifying the virtual devices is the same as for the zpool create command.
Devices are checked to determine if they are in use, and the command cannot change the level
of redundancy without the -f option. The command also supports the -n option so that you can
perform a dry run. For example:

# zpool add -n zeepool mirror c3t1d0 c3t2d0

would update ’zeepool’ to the following configuration:

zeepool

mirror

c1t0d0

c1t1d0

mirror

c2t1d0

c2t2d0

mirror

c3t1d0

c3t2d0

This command syntax would add mirrored devices c3t1d0 and c3t2d0 to the zeepool pool's
existing configuration.

For more information about how virtual device validation is done, see “Detecting In-Use
Devices” on page 75.

EXAMPLE 4–1 Adding Disks to a Mirrored ZFS Configuration

In the following example, another mirror is added to an existing mirrored ZFS configuration on
Oracle's Sun Fire x4500 system.

# zpool status tank

pool: tank

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c0t1d0 ONLINE 0 0 0

c1t1d0 ONLINE 0 0 0

mirror-1 ONLINE 0 0 0

c0t2d0 ONLINE 0 0 0

c1t2d0 ONLINE 0 0 0

Managing Devices in ZFS Storage Pools

Chapter 4 • Managing Oracle Solaris ZFS Storage Pools 79



EXAMPLE 4–1 Adding Disks to a Mirrored ZFS Configuration (Continued)

errors: No known data errors

# zpool add tank mirror c0t3d0 c1t3d0

# zpool status tank

pool: tank

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c0t1d0 ONLINE 0 0 0

c1t1d0 ONLINE 0 0 0

mirror-1 ONLINE 0 0 0

c0t2d0 ONLINE 0 0 0

c1t2d0 ONLINE 0 0 0

mirror-2 ONLINE 0 0 0

c0t3d0 ONLINE 0 0 0

c1t3d0 ONLINE 0 0 0

errors: No known data errors

EXAMPLE 4–2 Adding Disks to a RAID-Z Configuration

Additional disks can be added similarly to a RAID-Z configuration. The following example
shows how to convert a storage pool with one RAID-Z device that contains three disks to a
storage pool with two RAID-Z devices that contains three disks each.

# zpool status rzpool

pool: rzpool

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

rzpool ONLINE 0 0 0

raidz1-0 ONLINE 0 0 0

c1t2d0 ONLINE 0 0 0

c1t3d0 ONLINE 0 0 0

c1t4d0 ONLINE 0 0 0

errors: No known data errors

# zpool add rzpool raidz c2t2d0 c2t3d0 c2t4d0

# zpool status rzpool

pool: rzpool

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

rzpool ONLINE 0 0 0

raidz1-0 ONLINE 0 0 0

c1t0d0 ONLINE 0 0 0

c1t2d0 ONLINE 0 0 0

Managing Devices in ZFS Storage Pools

Oracle Solaris ZFS Administration Guide • April 201280



EXAMPLE 4–2 Adding Disks to a RAID-Z Configuration (Continued)

c1t3d0 ONLINE 0 0 0

raidz1-1 ONLINE 0 0 0

c2t2d0 ONLINE 0 0 0

c2t3d0 ONLINE 0 0 0

c2t4d0 ONLINE 0 0 0

errors: No known data errors

EXAMPLE 4–3 Adding and Removing a Mirrored Log Device

The following example shows how to add a mirrored log device to a mirrored storage pool. For
more information about using log devices in your storage pool, see “Setting Up Separate ZFS
Log Devices” on page 36.

# zpool status newpool

pool: newpool

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

newpool ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c0t4d0 ONLINE 0 0 0

c0t5d0 ONLINE 0 0 0

errors: No known data errors

# zpool add newpool log mirror c0t6d0 c0t7d0

# zpool status newpool

pool: newpool

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

newpool ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c0t4d0 ONLINE 0 0 0

c0t5d0 ONLINE 0 0 0

logs

mirror-1 ONLINE 0 0 0

c0t6d0 ONLINE 0 0 0

c0t7d0 ONLINE 0 0 0

errors: No known data errors

You can attach a log device to an existing log device to create a mirrored log device. This
operation is identical to attaching a device in an unmirrored storage pool.

You can remove log devices by using the zpool remove command. The mirrored log device in
the previous example can be removed by specifying the mirror-1 argument. For example:

Managing Devices in ZFS Storage Pools

Chapter 4 • Managing Oracle Solaris ZFS Storage Pools 81



EXAMPLE 4–3 Adding and Removing a Mirrored Log Device (Continued)

# zpool remove newpool mirror-1

# zpool status newpool

pool: newpool

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

newpool ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c0t4d0 ONLINE 0 0 0

c0t5d0 ONLINE 0 0 0

errors: No known data errors

If your pool configuration contains only one log device, you remove the log device by specifying
the device name. For example:

# zpool status pool

pool: pool

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

pool ONLINE 0 0 0

raidz1-0 ONLINE 0 0 0

c0t8d0 ONLINE 0 0 0

c0t9d0 ONLINE 0 0 0

logs

c0t10d0 ONLINE 0 0 0

errors: No known data errors

# zpool remove pool c0t10d0

EXAMPLE 4–4 Adding and Removing Cache Devices

You can add to your ZFS storage pool and remove them if they are no longer required.

Use the zpool add command to add cache devices. For example:

# zpool add tank cache c2t5d0 c2t8d0

# zpool status tank

pool: tank

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c2t0d0 ONLINE 0 0 0

c2t1d0 ONLINE 0 0 0

Managing Devices in ZFS Storage Pools

Oracle Solaris ZFS Administration Guide • April 201282



EXAMPLE 4–4 Adding and Removing Cache Devices (Continued)

c2t3d0 ONLINE 0 0 0

cache

c2t5d0 ONLINE 0 0 0

c2t8d0 ONLINE 0 0 0

errors: No known data errors

Cache devices cannot be mirrored or be part of a RAID-Z configuration.

Use the zpool remove command to remove cache devices. For example:

# zpool remove tank c2t5d0 c2t8d0

# zpool status tank

pool: tank

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c2t0d0 ONLINE 0 0 0

c2t1d0 ONLINE 0 0 0

c2t3d0 ONLINE 0 0 0

errors: No known data errors

Currently, the zpool remove command only supports removing hot spares, log devices, and
cache devices. Devices that are part of the main mirrored pool configuration can be removed by
using the zpool detach command. Nonredundant and RAID-Z devices cannot be removed
from a pool.

For more information about using cache devices in a ZFS storage pool, see “Creating a ZFS
Storage Pool With Cache Devices” on page 73.

Attaching and Detaching Devices in a Storage Pool
In addition to the zpool add command, you can use the zpool attach command to add a new
device to an existing mirrored or nonmirrored device.

If you are attaching a disk to create a mirrored root pool, see “How to Create a Mirrored ZFS
Root Pool (Postinstallation)” on page 131.

If you are replacing a disk in a ZFS root pool, see “How to Replace a Disk in the ZFS Root Pool”
on page 174.

Managing Devices in ZFS Storage Pools

Chapter 4 • Managing Oracle Solaris ZFS Storage Pools 83



EXAMPLE 4–5 Converting a Two-Way Mirrored Storage Pool to a Three-way Mirrored Storage Pool

In this example, zeepool is an existing two-way mirror that is converted to a three-way mirror
by attaching c2t1d0, the new device, to the existing device, c1t1d0.

# zpool status zeepool

pool: zeepool

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

zeepool ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c0t1d0 ONLINE 0 0 0

c1t1d0 ONLINE 0 0 0

errors: No known data errors

# zpool attach zeepool c1t1d0 c2t1d0

# zpool status zeepool

pool: zeepool

state: ONLINE

scrub: resilver completed after 0h0m with 0 errors on Fri Jan 8 12:59:20 2010

config:

NAME STATE READ WRITE CKSUM

zeepool ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c0t1d0 ONLINE 0 0 0

c1t1d0 ONLINE 0 0 0

c2t1d0 ONLINE 0 0 0 592K resilvered

errors: No known data errors

If the existing device is part of a three-way mirror, attaching the new device creates a four-way
mirror, and so on. Whatever the case, the new device begins to resilver immediately.

EXAMPLE 4–6 Converting a Nonredundant ZFS Storage Pool to a Mirrored ZFS Storage Pool

In addition, you can convert a nonredundant storage pool to a redundant storage pool by using
the zpool attach command. For example:

# zpool create tank c0t1d0

# zpool status tank

pool: tank

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 0

c0t1d0 ONLINE 0 0 0

errors: No known data errors

# zpool attach tank c0t1d0 c1t1d0

# zpool status tank

Managing Devices in ZFS Storage Pools

Oracle Solaris ZFS Administration Guide • April 201284



EXAMPLE 4–6 Converting a Nonredundant ZFS Storage Pool to a Mirrored ZFS Storage Pool
(Continued)

pool: tank

state: ONLINE

scrub: resilver completed after 0h0m with 0 errors on Fri Jan 8 14:28:23 2010

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c0t1d0 ONLINE 0 0 0

c1t1d0 ONLINE 0 0 0 73.5K resilvered

errors: No known data errors

You can use the zpool detach command to detach a device from a mirrored storage pool. For
example:

# zpool detach zeepool c2t1d0

However, this operation fails if no other valid replicas of the data exist. For example:

# zpool detach newpool c1t2d0

cannot detach c1t2d0: only applicable to mirror and replacing vdevs

Creating a New Pool By Splitting a Mirrored ZFS
Storage Pool
A mirrored ZFS storage pool can be quickly cloned as a backup pool by using the zpool split
command.

Currently, this feature cannot be used to split a mirrored root pool.

You can use the zpool split command to detach one or more disks from a mirrored ZFS
storage pool to create a new pool with the detached disk or disks. The new pool will have
identical contents to the original mirrored ZFS storage pool.

By default, a zpool split operation on a mirrored pool detaches the last disk for the newly
created pool. After the split operation, you then import the new pool. For example:

# zpool status tank

pool: tank

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

Managing Devices in ZFS Storage Pools

Chapter 4 • Managing Oracle Solaris ZFS Storage Pools 85



tank ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c1t0d0 ONLINE 0 0 0

c1t2d0 ONLINE 0 0 0

errors: No known data errors

# zpool split tank tank2

# zpool import tank2

# zpool status tank tank2

pool: tank

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 0

c1t0d0 ONLINE 0 0 0

errors: No known data errors

pool: tank2

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

tank2 ONLINE 0 0 0

c1t2d0 ONLINE 0 0 0

errors: No known data errors

You can identify which disk should be used for the newly created pool by specifying it with the
zpool split command. For example:

# zpool split tank tank2 c1t0d0

Before the actual split operation occurs, data in memory is flushed to the mirrored disks. After
the data is flushed, the disk is detached from the pool and given a new pool GUID. A new pool
GUID is generated so that the pool can be imported on the same system on which it was split.

If the pool to be split has non-default dataset mount points, and the new pool is created on the
same system, then you must use the zpool split -R option to identify an alternate root
directory for the new pool so that any existing mount points do not conflict. For example:

# zpool split -R /tank2 tank tank2

If you don't use the zpool split -R option, and you can see that mount points conflict when
you attempt to import the new pool, import the new pool with the -R option. If the new pool is
created on a different system, then specifying an alternate root directory is not necessary unless
mount point conflicts occur.

Managing Devices in ZFS Storage Pools

Oracle Solaris ZFS Administration Guide • April 201286



Review the following considerations before using the zpool split feature:

■ This feature is not available for a RAIDZ configuration or a non-redundant pool of multiple
disks.

■ Data and application operations should be quiesced before attempting a zpool split
operation.

■ Having disks that honor, rather than ignore, the disk's flush write cache command is
important.

■ A pool cannot be split if resilvering is in process.
■ Splitting a mirrored pool is optimal when the pool contains two to three disks, where the last

disk in the original pool is used for the newly created pool. Then, you can use the zpool
attach command to re-create your original mirrored storage pool or convert your newly
created pool into a mirrored storage pool. No method currently exists to create a new
mirrored pool from an existing mirrored pool by using this feature.

■ If the existing pool is a three-way mirror, then the new pool will contain one disk after the
split operation. If the existing pool is a two-way mirror of two disks, then the outcome is two
non-redundant pools of two disks. You must attach two additional disks to convert the
non-redundant pools to mirrored pools.

■ A good way to keep your data redundant during a split operation is to split a mirrored
storage pool that contains three disks so that the original pool contains two mirrored disks
after the split operation.

EXAMPLE 4–7 Splitting a Mirrored ZFS Pool

In the following example, a mirrored storage pool called trinity, with three disks, c1t0d0,
c1t2d0 and c1t3d0, is split. The two resulting pools are the mirrored pool trinity, with disks
c1t0d0 and c1t2d0, and the new pool, neo, with disk c1t3d0. Each pool has identical content.

# zpool status trinity

pool: trinity

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

trinity ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c1t0d0 ONLINE 0 0 0

c1t2d0 ONLINE 0 0 0

c1t3d0 ONLINE 0 0 0

errors: No known data errors

# zpool split trinity neo

# zpool import neo

# zpool status trinity neo

pool: neo

state: ONLINE

Managing Devices in ZFS Storage Pools

Chapter 4 • Managing Oracle Solaris ZFS Storage Pools 87



EXAMPLE 4–7 Splitting a Mirrored ZFS Pool (Continued)

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

neo ONLINE 0 0 0

c1t3d0 ONLINE 0 0 0

errors: No known data errors

pool: trinity

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

trinity ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c1t0d0 ONLINE 0 0 0

c1t2d0 ONLINE 0 0 0

errors: No known data errors

Onlining and Offlining Devices in a Storage Pool
ZFS allows individual devices to be taken offline or brought online. When hardware is
unreliable or not functioning properly, ZFS continues to read data from or write data to the
device, assuming the condition is only temporary. If the condition is not temporary, you can
instruct ZFS to ignore the device by taking it offline. ZFS does not send any requests to an offline
device.

Note – Devices do not need to be taken offline in order to replace them.

Taking a Device Offline
You can take a device offline by using the zpool offline command. The device can be
specified by path or by short name, if the device is a disk. For example:

# zpool offline tank c1t0d0

bringing device c1t0d0 offline

Consider the following points when taking a device offline:

■ You cannot take a pool offline to the point where it becomes faulted. For example, you
cannot take offline two devices in a raidz1 configuration, nor can you take offline a
top-level virtual device.

Managing Devices in ZFS Storage Pools

Oracle Solaris ZFS Administration Guide • April 201288



# zpool offline tank c1t0d0

cannot offline c1t0d0: no valid replicas

■ By default, the OFFLINE state is persistent. The device remains offline when the system is
rebooted.
To temporarily take a device offline, use the zpool offline -t option. For example:

# zpool offline -t tank c1t0d0

bringing device ’c1t0d0’ offline

When the system is rebooted, this device is automatically returned to the ONLINE state.
■ When a device is taken offline, it is not detached from the storage pool. If you attempt to use

the offline device in another pool, even after the original pool is destroyed, you see a message
similar to the following:

device is part of exported or potentially active ZFS pool. Please see zpool(1M)

If you want to use the offline device in another storage pool after destroying the original
storage pool, first bring the device online, then destroy the original storage pool.

Another way to use a device from another storage pool, while keeping the original storage
pool, is to replace the existing device in the original storage pool with another comparable
device. For information about replacing devices, see “Replacing Devices in a Storage Pool”
on page 90.

Offline devices are in the OFFLINE state when you query pool status. For information about
querying pool status, see “Querying ZFS Storage Pool Status” on page 101.

For more information on device health, see “Determining the Health Status of ZFS Storage
Pools” on page 107.

Bringing a Device Online
After a device is taken offline, it can be brought online again by using the zpool online
command. For example:

# zpool online tank c1t0d0

bringing device c1t0d0 online

When a device is brought online, any data that has been written to the pool is resynchronized
with the newly available device. Note that you cannot use bring a device online to replace a disk.
If you take a device offline, replace the device, and try to bring it online, it remains in the faulted
state.

If you attempt to bring online a faulted device, a message similar to the following is displayed:

# zpool online tank c1t0d0

warning: device ’c1t0d0’ onlined, but remains in faulted state

use ’zpool replace’ to replace devices that are no longer present

Managing Devices in ZFS Storage Pools

Chapter 4 • Managing Oracle Solaris ZFS Storage Pools 89



You might also see the faulted disk message displayed on the console or written to the
/var/adm/messages file. For example:

SUNW-MSG-ID: ZFS-8000-D3, TYPE: Fault, VER: 1, SEVERITY: Major

EVENT-TIME: Wed Jun 30 14:53:39 MDT 2010

PLATFORM: SUNW,Sun-Fire-880, CSN: -, HOSTNAME: neo

SOURCE: zfs-diagnosis, REV: 1.0

EVENT-ID: 504a1188-b270-4ab0-af4e-8a77680576b8

DESC: A ZFS device failed. Refer to http://sun.com/msg/ZFS-8000-D3 for more information.

AUTO-RESPONSE: No automated response will occur.

IMPACT: Fault tolerance of the pool may be compromised.

REC-ACTION: Run ’zpool status -x’ and replace the bad device.

For more information about replacing a faulted device, see “Resolving a Missing Device” on
page 288.

You can use the zpool online -e command to expand the pool size if a larger disk was attached
to the pool or a smaller disk was replaced by a larger disk. By default, a disk that is added to a
pool is not expanded to its full size unless the autoexpand pool property is enabled. You can
expand the pool automatically by using the zpool online -ecommand even if the replacement
disk is already online or if the disk is currently offline. For example:

# zpool online -e tank c1t13d0

Clearing Storage Pool Device Errors
If a device is taken offline due to a failure that causes errors to be listed in the zpool status
output, you can clear the error counts with the zpool clear command.

If specified with no arguments, this command clears all device errors within the pool. For
example:

# zpool clear tank

If one or more devices are specified, this command only clear errors associated with the
specified devices. For example:

# zpool clear tank c1t0d0

For more information about clearing zpool errors, see “Clearing Transient Errors” on page 291.

Replacing Devices in a Storage Pool
You can replace a device in a storage pool by using the zpool replace command.

Managing Devices in ZFS Storage Pools

Oracle Solaris ZFS Administration Guide • April 201290



If you are physically replacing a device with another device in the same location in a redundant
pool, then you might only need to identify the replaced device. On some hardware, ZFS
recognizes that the device is a different disk in the same location. For example, to replace a failed
disk (c1t1d0) by removing the disk and replacing it in the same location, use the following
syntax:

# zpool replace tank c1t1d0

If you are replacing a device in a storage pool with a disk in a different physical location, you
must specify both devices. For example:

# zpool replace tank c1t1d0 c1t2d0

If you are replacing a disk in the ZFS root pool, see “How to Replace a Disk in the ZFS Root
Pool” on page 174.

The following are the basic steps for replacing a disk:

1. Offline the disk, if necessary, with the zpool offline command.
2. Remove the disk to be replaced.
3. Insert the replacement disk.
4. Run the zpool replace command. For example:

# zpool replace tank c1t1d0

5. Bring the disk online with the zpool online command.

On some systems, such as Oracle's Sun Fire systems, you must unconfigure a disk before you
can take it offline. If you are replacing a disk in the same slot position on this system, then you
can just run the zpool replace command as described in the first example in this section.

For an example of replacing a disk on a Sun Fire X4500 system, see Example 11–1.

Consider the following when replacing devices in a ZFS storage pool:

■ If you set the autoreplace pool property to on, then any new device found in the same
physical location as a device that previously belonged to the pool is automatically formatted
and replaced. You are not required to use the zpool replace command when this property
is enabled. This feature might not be available on all hardware types.

■ The size of the replacement device must be equal to or larger than the smallest disk in a
mirrored or RAID-Z configuration.

■ When a replacement device that is larger in size than the device it is replacing is added to a
pool, it is not automatically expanded to its full size. The autoexpand pool property value
determines whether the pool is expanded when a larger disk is added to the pool. By default,
the autoexpand property is disabled. You can enable this property to expand pool size
before or after the larger disk is added to the pool.

Managing Devices in ZFS Storage Pools

Chapter 4 • Managing Oracle Solaris ZFS Storage Pools 91



In the following example, two 16-GB disks in a mirrored pool are replaced with two 72-GB
disks. The autoexpand property is enabled after the disk replacements to expand the full
disk sizes.

# zpool create pool mirror c1t16d0 c1t17d0

# zpool status

pool: pool

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

pool ONLINE 0 0 0

mirror ONLINE 0 0 0

c1t16d0 ONLINE 0 0 0

c1t17d0 ONLINE 0 0 0

zpool list pool

NAME SIZE ALLOC FREE CAP HEALTH ALTROOT

pool 16.8G 76.5K 16.7G 0% ONLINE -

# zpool replace pool c1t16d0 c1t1d0

# zpool replace pool c1t17d0 c1t2d0

# zpool list pool

NAME SIZE ALLOC FREE CAP HEALTH ALTROOT

pool 16.8G 88.5K 16.7G 0% ONLINE -

# zpool set autoexpand=on pool

# zpool list pool

NAME SIZE ALLOC FREE CAP HEALTH ALTROOT

pool 68.2G 117K 68.2G 0% ONLINE -

■ Replacing many disks in a large pool is time-consuming due to resilvering the data onto the
new disks. In addition, you might consider running the zpool scrub command between
disk replacements to ensure that the replacement devices are operational and that the data is
written correctly.

■ If a failed disk has been replaced automatically with a hot spare, then you might need to
detach the spare after the failed disk is replaced. You can use the zpool detach command to
detach a spare in a mirrored or RAID-Z pool. For information about detaching a hot spare,
see “Activating and Deactivating Hot Spares in Your Storage Pool” on page 94.

For more information about replacing devices, see “Resolving a Missing Device” on page 288
and “Replacing or Repairing a Damaged Device” on page 290.

Designating Hot Spares in Your Storage Pool
The hot spares feature enables you to identify disks that could be used to replace a failed or
faulted device in one or more storage pools. Designating a device as a hot spare means that the
device is not an active device in the pool, but if an active device in the pool fails, the hot spare
automatically replaces the failed device.

Devices can be designated as hot spares in the following ways:

Managing Devices in ZFS Storage Pools

Oracle Solaris ZFS Administration Guide • April 201292



■ When the pool is created with the zpool create command.
■ After the pool is created with the zpool add command.

The following example shows how to designate devices as hot spares when the pool is created:

# zpool create trinity mirror c1t1d0 c2t1d0 spare c1t2d0 c2t2d0

# zpool status trinity

pool: trinity

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

trinity ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c1t1d0 ONLINE 0 0 0

c2t1d0 ONLINE 0 0 0

spares

c1t2d0 AVAIL

c2t2d0 AVAIL

errors: No known data errors

The following example shows how to designate hot spares by adding them to a pool after the
pool is created:

# zpool add neo spare c5t3d0 c6t3d0

# zpool status neo

pool: neo

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

neo ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c3t3d0 ONLINE 0 0 0

c4t3d0 ONLINE 0 0 0

spares

c5t3d0 AVAIL

c6t3d0 AVAIL

errors: No known data errors

Hot spares can be removed from a storage pool by using the zpool remove command. For
example:

# zpool remove zeepool c2t3d0

# zpool status zeepool

pool: zeepool

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

Managing Devices in ZFS Storage Pools

Chapter 4 • Managing Oracle Solaris ZFS Storage Pools 93



zeepool ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c1t1d0 ONLINE 0 0 0

c2t1d0 ONLINE 0 0 0

spares

c1t3d0 AVAIL

errors: No known data errors

A hot spare cannot be removed if it is currently used by a storage pool.

Consider the following when using ZFS hot spares:

■ Currently, the zpool remove command can only be used to remove hot spares, cache
devices, and log devices.

■ To add a disk as a hot spare, the hot spare must be equal to or larger than the size of the
largest disk in the pool. Adding a smaller disk as a spare to a pool is allowed. However, when
the smaller spare disk is activated, either automatically or with the zpool replace
command, the operation fails with an error similar to the following:

cannot replace disk3 with disk4: device is too small

Activating and Deactivating Hot Spares in Your Storage Pool
Hot spares are activated in the following ways:

■ Manual replacement – You replace a failed device in a storage pool with a hot spare by using
the zpool replace command.

■ Automatic replacement – When a fault is detected, an FMA agent examines the pool to
determine if it has any available hot spares. If so, it replaces the faulted device with an
available spare.
If a hot spare that is currently in use fails, the FMA agent detaches the spare and thereby
cancels the replacement. The agent then attempts to replace the device with another hot
spare, if one is available. This feature is currently limited by the fact that the ZFS diagnostic
engine only generates faults when a device disappears from the system.
If you physically replace a failed device with an active spare, you can reactivate the original
device by using the zpool detach command to detach the spare. If you set the autoreplace
pool property to on, the spare is automatically detached and returned to the spare pool when
the new device is inserted and the online operation completes.

You can manually replace a device with a hot spare by using the zpool replace command. See
Example 4–8.

A faulted device is automatically replaced if a hot spare is available. For example:

# zpool status -x

pool: zeepool

state: DEGRADED

Managing Devices in ZFS Storage Pools

Oracle Solaris ZFS Administration Guide • April 201294



status: One or more devices could not be opened. Sufficient replicas exist for

the pool to continue functioning in a degraded state.

action: Attach the missing device and online it using ’zpool online’.

see: http://www.sun.com/msg/ZFS-8000-2Q

scrub: resilver completed after 0h0m with 0 errors on Mon Jan 11 10:20:35 2010

config:

NAME STATE READ WRITE CKSUM

zeepool DEGRADED 0 0 0

mirror-0 DEGRADED 0 0 0

c1t2d0 ONLINE 0 0 0

spare-1 DEGRADED 0 0 0

c2t1d0 UNAVAIL 0 0 0 cannot open

c2t3d0 ONLINE 0 0 0 88.5K resilvered

spares

c2t3d0 INUSE currently in use

errors: No known data errors

Currently, you can deactivate a hot spare in the following ways:

■ By removing the hot spare from the storage pool.
■ By detaching a hot spare after a failed disk is physically replaced. See Example 4–9.
■ By temporarily or permanently swapping in the hot spare. See Example 4–10.

EXAMPLE 4–8 Manually Replacing a Disk With a Hot Spare

In this example, the zpool replace command is used to replace disk c2t1d0 with the hot spare
c2t3d0.

# zpool replace zeepool c2t1d0 c2t3d0

# zpool status zeepool

pool: zeepool

state: ONLINE

scrub: resilver completed after 0h0m with 0 errors on Wed Jan 20 10:00:50 2010

config:

NAME STATE READ WRITE CKSUM

zeepool ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c1t2d0 ONLINE 0 0 0

spare-1 ONLINE 0 0 0

c2t1d0 ONLINE 0 0 0

c2t3d0 ONLINE 0 0 0 90K resilvered

spares

c2t3d0 INUSE currently in use

errors: No known data errors

Then, detach the disk c2t1d0.

# zpool detach zeepool c2t1d0

# zpool status zeepool

pool: zeepool

state: ONLINE

Managing Devices in ZFS Storage Pools

Chapter 4 • Managing Oracle Solaris ZFS Storage Pools 95



EXAMPLE 4–8 Manually Replacing a Disk With a Hot Spare (Continued)

scrub: resilver completed after 0h0m with 0 errors on Wed Jan 20 10:00:50 2010

config:

NAME STATE READ WRITE CKSUM

zeepool ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c1t2d0 ONLINE 0 0 0

c2t3d0 ONLINE 0 0 0 90K resilvered

errors: No known data errors

EXAMPLE 4–9 Detaching a Hot Spare After the Failed Disk Is Replaced

In this example, the failed disk (c2t1d0) is physical replaced and ZFS is notified by using the
zpool replace command.

# zpool replace zeepool c2t1d0

# zpool status zeepool

pool: zeepool

state: ONLINE

scrub: resilver completed after 0h0m with 0 errors on Wed Jan 20 10:08:44 2010

config:

NAME STATE READ WRITE CKSUM

zeepool ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c1t2d0 ONLINE 0 0 0

spare-1 ONLINE 0 0 0

c2t3d0 ONLINE 0 0 0 90K resilvered

c2t1d0 ONLINE 0 0 0

spares

c2t3d0 INUSE currently in use

errors: No known data errors

Then, you can use the zpool detach command to return the hot spare back to the spare pool.
For example:

# zpool detach zeepool c2t3d0

# zpool status zeepool

pool: zeepool

state: ONLINE

scrub: resilver completed with 0 errors on Wed Jan 20 10:08:44 2010

config:

NAME STATE READ WRITE CKSUM

zeepool ONLINE 0 0 0

mirror ONLINE 0 0 0

c1t2d0 ONLINE 0 0 0

c2t1d0 ONLINE 0 0 0

spares

c2t3d0 AVAIL

Managing Devices in ZFS Storage Pools

Oracle Solaris ZFS Administration Guide • April 201296



EXAMPLE 4–9 Detaching a Hot Spare After the Failed Disk Is Replaced (Continued)

errors: No known data errors

EXAMPLE 4–10 Detaching a Failed Disk and Using the Hot Spare

If you want to replace a failed disk by temporarily or permanently swap in the hot spare that is
currently replacing it, then detach the original (failed) disk. If the failed disk is eventually
replaced, then you can add it back to the storage pool as a spare. For example:

# zpool status zeepool

pool: zeepool

state: DEGRADED

status: One or more devices could not be opened. Sufficient replicas exist for

the pool to continue functioning in a degraded state.

action: Attach the missing device and online it using ’zpool online’.

see: http://www.sun.com/msg/ZFS-8000-2Q

scrub: resilver in progress for 0h0m, 70.47% done, 0h0m to go

config:

NAME STATE READ WRITE CKSUM

zeepool DEGRADED 0 0 0

mirror-0 DEGRADED 0 0 0

c1t2d0 ONLINE 0 0 0

spare-1 DEGRADED 0 0 0

c2t1d0 UNAVAIL 0 0 0 cannot open

c2t3d0 ONLINE 0 0 0 70.5M resilvered

spares

c2t3d0 INUSE currently in use

errors: No known data errors

# zpool detach zeepool c2t1d0

# zpool status zeepool

pool: zeepool

state: ONLINE

scrub: resilver completed after 0h0m with 0 errors on Wed Jan 20 13:46:46 2010

config:

NAME STATE READ WRITE CKSUM

zeepool ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c1t2d0 ONLINE 0 0 0

c2t3d0 ONLINE 0 0 0 70.5M resilvered

errors: No known data errors

(Original failed disk c2t1d0 is physically replaced)

# zpool add zeepool spare c2t1d0

# zpool status zeepool

pool: zeepool

state: ONLINE

scrub: resilver completed after 0h0m with 0 errors on Wed Jan 20 13:48:46 2010

config:

NAME STATE READ WRITE CKSUM

zeepool ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

Managing Devices in ZFS Storage Pools

Chapter 4 • Managing Oracle Solaris ZFS Storage Pools 97



EXAMPLE 4–10 Detaching a Failed Disk and Using the Hot Spare (Continued)

c1t2d0 ONLINE 0 0 0

c2t3d0 ONLINE 0 0 0 70.5M resilvered

spares

c2t1d0 AVAIL

errors: No known data errors

Managing ZFS Storage Pool Properties
You can use the zpool get command to display pool property information. For example:

# zpool get all mpool

NAME PROPERTY VALUE SOURCE

pool size 68G -

pool capacity 0% -

pool altroot - default

pool health ONLINE -

pool guid 601891032394735745 default

pool version 22 default

pool bootfs - default

pool delegation on default

pool autoreplace off default

pool cachefile - default

pool failmode wait default

pool listsnapshots on default

pool autoexpand off default

pool free 68.0G -

pool allocated 76.5K -

Storage pool properties can be set with the zpool set command. For example:

# zpool set autoreplace=on zeepool

# zpool get autoreplace zeepool

NAME PROPERTY VALUE SOURCE

zeepool autoreplace on local

TABLE 4–1 ZFS Pool Property Descriptions

Property Name Type Default Value Description

allocated String N/A Read-only value that identifies the amount of storage space
within the pool that has been physically allocated.

altroot String off Identifies an alternate root directory. If set, this directory is
prepended to any mount points within the pool. This property
can be used when you are examining an unknown pool, if the
mount points cannot be trusted, or in an alternate boot
environment, where the typical paths are not valid.

Managing ZFS Storage Pool Properties

Oracle Solaris ZFS Administration Guide • April 201298



TABLE 4–1 ZFS Pool Property Descriptions (Continued)
Property Name Type Default Value Description

autoreplace Boolean off Controls automatic device replacement. If set to off, device
replacement must be initiated by using the zpool replace
command. If set to on, any new device found in the same
physical location as a device that previously belonged to the
pool is automatically formatted and replaced. The property
abbreviation is replace.

bootfs Boolean N/A Identifies the default bootable dataset for the root pool. This
property is typically set by the installation and upgrade
programs.

cachefile String N/A Controls where pool configuration information is cached. All
pools in the cache are automatically imported when the system
boots. However, installation and clustering environments
might require this information to be cached in a different
location so that pools are not automatically imported. You can
set this property to cache pool configuration information in a
different location. This information can be imported later by
using the zpool import -c command. For most ZFS
configurations, this property is not used.

capacity Number N/A Read-only value that identifies the percentage of pool space
used.

The property abbreviation is cap.

delegation Boolean on Controls whether a nonprivileged user can be granted access
permissions that are defined for a dataset. For more
information, see Chapter 9, “Oracle Solaris ZFS Delegated
Administration.”

Managing ZFS Storage Pool Properties

Chapter 4 • Managing Oracle Solaris ZFS Storage Pools 99



TABLE 4–1 ZFS Pool Property Descriptions (Continued)
Property Name Type Default Value Description

failmode String wait Controls the system behavior if a catastrophic pool failure
occurs. This condition is typically a result of a loss of
connectivity to the underlying storage device or devices or a
failure of all devices within the pool. The behavior of such an
event is determined by one of the following values:
■ wait – Blocks all I/O requests to the pool until device

connectivity is restored, and the errors are cleared by using
the zpool clear command. In this state, I/O operations to
the pool are blocked, but read operations might succeed. A
pool remains in the wait state until the device issue is
resolved.

■ continue – Returns an EIO error to any new write I/O
requests, but allows reads to any of the remaining healthy
devices. Any write requests that have yet to be committed
to disk are blocked. After the device is reconnected or
replaced, the errors must be cleared with the zpool clear
command.

■ panic – Prints a message to the console and generates a
system crash dump.

free String N/A Read-only value that identifies the number of blocks within
the pool that are not allocated.

guid String N/A Read-only property that identifies the unique identifier for the
pool.

health String N/A Read-only property that identifies the current health of the
pool, as either ONLINE, DEGRADED, FAULTED, OFFLINE,
REMOVED, or UNAVAIL.

listsnapshots String on Controls whether snapshot information that is associated with
this pool is displayed with the zfs list command. If this
property is disabled, snapshot information can be displayed
with the zfs list -t snapshot command.

size Number N/A Read-only property that identifies the total size of the storage
pool.

version Number N/A Identifies the current on-disk version of the pool. The
preferred method of updating pools is with the zpool upgrade
command, although this property can be used when a specific
version is needed for backwards compatibility. This property
can be set to any number between 1 and the current version
reported by the zpool upgrade -v command.

Managing ZFS Storage Pool Properties

Oracle Solaris ZFS Administration Guide • April 2012100



Querying ZFS Storage Pool Status
The zpool list command provides several ways to request information regarding pool status.
The information available generally falls into three categories: basic usage information, I/O
statistics, and health status. All three types of storage pool information are covered in this
section.
■ “Displaying Information About ZFS Storage Pools” on page 101
■ “Viewing I/O Statistics for ZFS Storage Pools ” on page 104
■ “Determining the Health Status of ZFS Storage Pools” on page 107

Displaying Information About ZFS Storage Pools
You can use the zpool list command to display basic information about pools.

Listing Information About All Storage Pools or a Specific Pool
With no arguments, the zpool list command displays the following information for all pools
on the system:

# zpool list

NAME SIZE ALLOC FREE CAP HEALTH ALTROOT

tank 80.0G 22.3G 47.7G 28% ONLINE -

dozer 1.2T 384G 816G 32% ONLINE -

This command output displays the following information:

NAME The name of the pool.

SIZE The total size of the pool, equal to the sum of the sizes of all top-level virtual
devices.

ALLOC The amount of physical space allocated to all datasets and internal
metadata. Note that this amount differs from the amount of disk space as
reported at the file system level.

For more information about determining available file system space, see
“ZFS Disk Space Accounting” on page 60.

FREE The amount of unallocated space in the pool.

CAP (CAPACITY) The amount of disk space used, expressed as a percentage of the total disk
space.

HEALTH The current health status of the pool.

For more information about pool health, see “Determining the Health
Status of ZFS Storage Pools” on page 107.

ALTROOT The alternate root of the pool, if one exists.

Querying ZFS Storage Pool Status

Chapter 4 • Managing Oracle Solaris ZFS Storage Pools 101



For more information about alternate root pools, see “Using ZFS Alternate
Root Pools” on page 276.

You can also gather statistics for a specific pool by specifying the pool name. For example:

# zpool list tank

NAME SIZE ALLOC FREE CAP HEALTH ALTROOT

tank 80.0G 22.3G 47.7G 28% ONLINE -

You can use the zpool list interval and count options to gather statistics over a period of time.
In addition, you can display a time stamp by using the -T option. For example:

# zpool list -T d 3 2

Tue Nov 2 10:36:11 MDT 2010

NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT

pool 33.8G 83.5K 33.7G 0% 1.00x ONLINE -

rpool 33.8G 12.2G 21.5G 36% 1.00x ONLINE -

Tue Nov 2 10:36:14 MDT 2010

pool 33.8G 83.5K 33.7G 0% 1.00x ONLINE -

rpool 33.8G 12.2G 21.5G 36% 1.00x ONLINE -

Listing Specific Storage Pool Statistics
Specific statistics can be requested by using the -o option. This option provides custom reports
or a quick way to list pertinent information. For example, to list only the name and size of each
pool, you use the following syntax:

# zpool list -o name,size

NAME SIZE

tank 80.0G

dozer 1.2T

The column names correspond to the properties that are listed in “Listing Information About
All Storage Pools or a Specific Pool” on page 101.

Scripting ZFS Storage Pool Output
The default output for the zpool list command is designed for readability and is not easy to
use as part of a shell script. To aid programmatic uses of the command, the -H option can be
used to suppress the column headings and separate fields by tabs, rather than by spaces. For
example, to request a list of all pool names on the system, you would use the following syntax:

# zpool list -Ho name

tank

dozer

Here is another example:

Querying ZFS Storage Pool Status

Oracle Solaris ZFS Administration Guide • April 2012102



# zpool list -H -o name,size

tank 80.0G

dozer 1.2T

Displaying ZFS Storage Pool Command History
ZFS automatically logs successful zfs and zpool commands that modify pool state
information. This information can be displayed by using the zpool history command.

For example, the following syntax displays the command output for the root pool:

# zpool history

History for ’rpool’:

2010-05-11.10:18:54 zpool create -f -o failmode=continue -R /a -m legacy -o

cachefile=/tmp/root/etc/zfs/zpool.cache rpool mirror c1t0d0s0 c1t1d0s0

2010-05-11.10:18:55 zfs set canmount=noauto rpool

2010-05-11.10:18:55 zfs set mountpoint=/rpool rpool

2010-05-11.10:18:56 zfs create -o mountpoint=legacy rpool/ROOT

2010-05-11.10:18:57 zfs create -b 8192 -V 2048m rpool/swap

2010-05-11.10:18:58 zfs create -b 131072 -V 1536m rpool/dump

2010-05-11.10:19:01 zfs create -o canmount=noauto rpool/ROOT/zfsBE

2010-05-11.10:19:02 zpool set bootfs=rpool/ROOT/zfsBE rpool

2010-05-11.10:19:02 zfs set mountpoint=/ rpool/ROOT/zfsBE

2010-05-11.10:19:03 zfs set canmount=on rpool

2010-05-11.10:19:04 zfs create -o mountpoint=/export rpool/export

2010-05-11.10:19:05 zfs create rpool/export/home

2010-05-11.11:11:10 zpool set bootfs=rpool rpool

2010-05-11.11:11:10 zpool set bootfs=rpool/ROOT/zfsBE rpool

You can use similar output on your system to identify the actual ZFS commands that were
executed to troubleshoot an error condition.

The features of the history log are as follows:

■ The log cannot be disabled.
■ The log is saved persistently on disk, which means that the log is saved across system

reboots.
■ The log is implemented as a ring buffer. The minimum size is 128 KB. The maximum size is

32 MB.
■ For smaller pools, the maximum size is capped at 1 percent of the pool size, where the size is

determined at pool creation time.
■ The log requires no administration, which means that tuning the size of the log or changing

the location of the log is unnecessary.

To identify the command history of a specific storage pool, use syntax similar to the following:

# zpool history tank

History for ’tank’:

2011-05-27.13:10:43 zpool create tank mirror c8t1d0 c8t2d0

2011-06-01.12:05:23 zpool scrub tank

Querying ZFS Storage Pool Status

Chapter 4 • Managing Oracle Solaris ZFS Storage Pools 103



2011-06-13.16:26:07 zfs create tank/users

2011-06-13.16:26:27 zfs create tank/users/finance

2011-06-13.16:27:15 zfs set users:dept=finance tank/users/finance

Use the -l option to display a long format that includes the user name, the host name, and the
zone in which the operation was performed. For example:

# zpool history -l tank

2011-05-27.13:10:43 zpool create tank mirror c8t1d0 c8t2d0 [user root on neo:global]

2011-06-01.12:05:23 zpool scrub tank [user root on neo:global]

2011-06-13.16:26:07 zfs create tank/users [user root on neo:global]

2011-06-13.16:26:27 zfs create tank/users/finance [user root on neo:global]

2011-06-13.16:27:15 zfs set users:dept=finance tank/users/finance [user root ...]

Use the -i option to display internal event information that can be used for diagnostic
purposes. For example:

# zpool history -i tank

History for ’tank’:

2011-05-27.13:10:43 zpool create tank mirror c8t1d0 c8t2d0

2011-05-27.13:10:43 [internal pool create txg:5] pool spa 33; zfs spa 33; zpl 5;...

2011-05-31.15:02:39 [internal pool scrub done txg:11828] complete=1

2011-06-01.12:04:50 [internal pool scrub txg:14353] func=1 mintxg=0 maxtxg=14353

2011-06-01.12:05:23 zpool scrub tank

2011-06-13.16:26:06 [internal create txg:29879] dataset = 52

2011-06-13.16:26:07 zfs create tank/users

2011-06-13.16:26:07 [internal property set txg:29880] $share2=2 dataset = 52

2011-06-13.16:26:26 [internal create txg:29881] dataset = 59

2011-06-13.16:26:27 zfs create tank/users/finance

2011-06-13.16:26:27 [internal property set txg:29882] $share2=2 dataset = 59

2011-06-13.16:26:45 [internal property set txg:29883] users:dept=finance dataset = 59

2011-06-13.16:27:15 zfs set users:dept=finance tank/users/finance

Viewing I/O Statistics for ZFS Storage Pools
To request I/O statistics for a pool or specific virtual devices, use the zpool iostat command.
Similar to the iostat command, this command can display a static snapshot of all I/O activity,
as well as updated statistics for every specified interval. The following statistics are reported:

alloc capacity The amount of data currently stored in the pool or device. This amount
differs from the amount of disk space available to actual file systems by a
small margin due to internal implementation details.

For more information about the differences between pool space and
dataset space, see “ZFS Disk Space Accounting” on page 60.

free capacity The amount of disk space available in the pool or device. As with the
used statistic, this amount differs from the amount of disk space
available to datasets by a small margin.

Querying ZFS Storage Pool Status

Oracle Solaris ZFS Administration Guide • April 2012104



read operations The number of read I/O operations sent to the pool or device, including
metadata requests.

write operations The number of write I/O operations sent to the pool or device.

read bandwidth The bandwidth of all read operations (including metadata), expressed
as units per second.

write bandwidth The bandwidth of all write operations, expressed as units per second.

Listing Pool-Wide I/O Statistics
With no options, the zpool iostat command displays the accumulated statistics since boot for
all pools on the system. For example:

# zpool iostat

capacity operations bandwidth

pool alloc free read write read write

---------- ----- ----- ----- ----- ----- -----

rpool 6.05G 61.9G 0 0 786 107

tank 31.3G 36.7G 4 1 296K 86.1K

---------- ----- ----- ----- ----- ----- -----

Because these statistics are cumulative since boot, bandwidth might appear low if the pool is
relatively idle. You can request a more accurate view of current bandwidth usage by specifying
an interval. For example:

# zpool iostat tank 2

capacity operations bandwidth

pool alloc free read write read write

---------- ----- ----- ----- ----- ----- -----

tank 18.5G 49.5G 0 187 0 23.3M

tank 18.5G 49.5G 0 464 0 57.7M

tank 18.5G 49.5G 0 457 0 56.6M

tank 18.8G 49.2G 0 435 0 51.3M

In this example, the command displays usage statistics for the pool tank every two seconds until
you type Control-C. Alternately, you can specify an additional count argument, which causes
the command to terminate after the specified number of iterations. For example, zpool iostat
2 3 would print a summary every two seconds for three iterations, for a total of six seconds. If
there is only a single pool, then the statistics are displayed on consecutive lines. If more than one
pool exists, then an additional dashed line delineates each iteration to provide visual separation.

Listing Virtual Device I/O Statistics
In addition to pool-wide I/O statistics, the zpool iostat command can display I/O statistics
for virtual devices. This command can be used to identify abnormally slow devices or to observe
the distribution of I/O generated by ZFS. To request the complete virtual device layout as well as
all I/O statistics, use the zpool iostat -v command. For example:

Querying ZFS Storage Pool Status

Chapter 4 • Managing Oracle Solaris ZFS Storage Pools 105



# zpool iostat -v

capacity operations bandwidth

pool alloc free read write read write

---------- ----- ----- ----- ----- ----- -----

rpool 6.05G 61.9G 0 0 785 107

mirror 6.05G 61.9G 0 0 785 107

c1t0d0s0 - - 0 0 578 109

c1t1d0s0 - - 0 0 595 109

---------- ----- ----- ----- ----- ----- -----

tank 36.5G 31.5G 4 1 295K 146K

mirror 36.5G 31.5G 126 45 8.13M 4.01M

c1t2d0 - - 0 3 100K 386K

c1t3d0 - - 0 3 104K 386K

---------- ----- ----- ----- ----- ----- -----

Note two important points when viewing I/O statistics for virtual devices:

■ First, disk space usage statistics are only available for top-level virtual devices. The way in
which disk space is allocated among mirror and RAID-Z virtual devices is particular to the
implementation and not easily expressed as a single number.

■ Second, the numbers might not add up exactly as you would expect them to. In particular,
operations across RAID-Z and mirrored devices will not be exactly equal. This difference is
particularly noticeable immediately after a pool is created, as a significant amount of I/O is
done directly to the disks as part of pool creation, which is not accounted for at the mirror
level. Over time, these numbers gradually equalize. However, broken, unresponsive, or
offline devices can affect this symmetry as well.

You can use the same set of options (interval and count) when examining virtual device
statistics.

■ Resilver in-progress report. For example:

scan: resilver in progress since Thu May 26 11:26:32 2011

1.26G scanned out of 2.40G at 6.15M/s, 0h3m to go

1.26G resilvered, 56.3% done

■ Scrub in-progress report. For example:

scan: scrub in progress since Fri May 27 08:24:17 2011

18.0M scanned out of 2.35G at 8.99M/s, 0h4m to go

0 repaired, 0.75% done

■ Resilver completion message. For example:

scan: resilvered 2.34G in 1h2m with 0 errors on Thu May 26 11:56:40 2011

■ Scrub completion message. For example:

scan: scrub repaired 512B in 1h2m with 0 errors on Fri May 27 08:54:50 2011

■ Ongoing scrub cancellation message. For example:

scan: scrub canceled on Wed Fri Jun 10 09:06:24 2011

■ Scrub and resilver completion messages persist across system reboots

Querying ZFS Storage Pool Status

Oracle Solaris ZFS Administration Guide • April 2012106



Determining the Health Status of ZFS Storage Pools
ZFS provides an integrated method of examining pool and device health. The health of a pool is
determined from the state of all its devices. This state information is displayed by using the
zpool status command. In addition, potential pool and device failures are reported by fmd,
displayed on the system console, and logged in the /var/adm/messages file.

This section describes how to determine pool and device health. This chapter does not
document how to repair or recover from unhealthy pools. For more information about
troubleshooting and data recovery, see Chapter 11, “Oracle Solaris ZFS Troubleshooting and
Pool Recovery.”

Each device can fall into one of the following states:

ONLINE The device or virtual device is in normal working order. Although some transient
errors might still occur, the device is otherwise in working order.

DEGRADED The virtual device has experienced a failure but can still function. This state is
most common when a mirror or RAID-Z device has lost one or more constituent
devices. The fault tolerance of the pool might be compromised, as a subsequent
fault in another device might be unrecoverable.

FAULTED The device or virtual device is completely inaccessible. This status typically
indicates total failure of the device, such that ZFS is incapable of sending data to it
or receiving data from it. If a top-level virtual device is in this state, then the pool
is completely inaccessible.

OFFLINE The device has been explicitly taken offline by the administrator.

UNAVAIL The device or virtual device cannot be opened. In some cases, pools with UNAVAIL

devices appear in DEGRADED mode. If a top-level virtual device is UNAVAIL, then
nothing in the pool can be accessed.

REMOVED The device was physically removed while the system was running. Device
removal detection is hardware-dependent and might not be supported on all
platforms.

The health of a pool is determined from the health of all its top-level virtual devices. If all virtual
devices are ONLINE, then the pool is also ONLINE. If any one of the virtual devices is DEGRADED or
UNAVAIL, then the pool is also DEGRADED. If a top-level virtual device is FAULTED or OFFLINE, then
the pool is also FAULTED. A pool in the FAULTED state is completely inaccessible. No data can be
recovered until the necessary devices are attached or repaired. A pool in the DEGRADED state
continues to run, but you might not achieve the same level of data redundancy or data
throughput than if the pool were online.

Querying ZFS Storage Pool Status

Chapter 4 • Managing Oracle Solaris ZFS Storage Pools 107



Basic Storage Pool Health Status
You can quickly review pool health status by using the zpool status command as follows:

# zpool status -x

all pools are healthy

Specific pools can be examined by specifying a pool name in the command syntax. Any pool
that is not in the ONLINE state should be investigated for potential problems, as described in the
next section.

Detailed Health Status
You can request a more detailed health summary status by using the -v option. For example:

# zpool status -v tank

pool: tank

state: DEGRADED

status: One or more devices could not be opened. Sufficient replicas exist for

the pool to continue functioning in a degraded state.

action: Attach the missing device and online it using ’zpool online’.

see: http://www.sun.com/msg/ZFS-8000-2Q

scrub: scrub completed after 0h0m with 0 errors on Wed Jan 20 15:13:59 2010

config:

NAME STATE READ WRITE CKSUM

tank DEGRADED 0 0 0

mirror-0 DEGRADED 0 0 0

c1t0d0 ONLINE 0 0 0

c1t1d0 UNAVAIL 0 0 0 cannot open

errors: No known data errors

This output displays a complete description of why the pool is in its current state, including a
readable description of the problem and a link to a knowledge article for more information.
Each knowledge article provides up-to-date information about the best way to recover from
your current problem. Using the detailed configuration information, you can determine which
device is damaged and how to repair the pool.

In the preceding example, the faulted device should be replaced. After the device is replaced, use
the zpool online command to bring the device online. For example:

# zpool online tank c1t0d0

Bringing device c1t0d0 online

# zpool status -x

all pools are healthy

If the autoreplace property is on, you might not have to online the replaced device.

If a pool has an offline device, the command output identifies the problem pool. For example:

Querying ZFS Storage Pool Status

Oracle Solaris ZFS Administration Guide • April 2012108



# zpool status -x

pool: tank

state: DEGRADED

status: One or more devices has been taken offline by the administrator.

Sufficient replicas exist for the pool to continue functioning in a

degraded state.

action: Online the device using ’zpool online’ or replace the device with

’zpool replace’.

scrub: resilver completed after 0h0m with 0 errors on Wed Jan 20 15:15:09 2010

config:

NAME STATE READ WRITE CKSUM

tank DEGRADED 0 0 0

mirror-0 DEGRADED 0 0 0

c1t0d0 ONLINE 0 0 0

c1t1d0 OFFLINE 0 0 0 48K resilvered

errors: No known data errors

The READ and WRITE columns provide a count of I/O errors that occurred on the device, while
the CKSUM column provides a count of uncorrectable checksum errors that occurred on the
device. Both error counts indicate a potential device failure, and some corrective action is
needed. If non-zero errors are reported for a top-level virtual device, portions of your data
might have become inaccessible.

The errors: field identifies any known data errors.

In the preceding example output, the offline device is not causing data errors.

The zpool status command displays the following scrub and resilver information:

For more information about diagnosing and repairing faulted pools and data, see Chapter 11,
“Oracle Solaris ZFS Troubleshooting and Pool Recovery.”

Gathering ZFS Storage Pool Status Information
You can use the zpool status interval and count options to gather statistics over a period of
time. In addition, you can display a time stamp by using the -T option. For example:

# zpool status -T d 3 2

zpool status -T d 3 2

Tue Nov 2 10:38:18 MDT 2010

pool: pool

state: ONLINE

scan: none requested

config:

NAME STATE READ WRITE CKSUM

pool ONLINE 0 0 0

c3t3d0 ONLINE 0 0 0

errors: No known data errors

Querying ZFS Storage Pool Status

Chapter 4 • Managing Oracle Solaris ZFS Storage Pools 109



pool: rpool

state: ONLINE

scan: resilvered 12.2G in 0h14m with 0 errors on Thu Oct 28 14:55:57 2010

config:

NAME STATE READ WRITE CKSUM

rpool ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c3t0d0s0 ONLINE 0 0 0

c3t2d0s0 ONLINE 0 0 0

errors: No known data errors

Tue Nov 2 10:38:21 MDT 2010

pool: pool

state: ONLINE

scan: none requested

config:

NAME STATE READ WRITE CKSUM

pool ONLINE 0 0 0

c3t3d0 ONLINE 0 0 0

errors: No known data errors

pool: rpool

state: ONLINE

scan: resilvered 12.2G in 0h14m with 0 errors on Thu Oct 28 14:55:57 2010

config:

NAME STATE READ WRITE CKSUM

rpool ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c3t0d0s0 ONLINE 0 0 0

c3t2d0s0 ONLINE 0 0 0

errors: No known data errors

Migrating ZFS Storage Pools
Occasionally, you might need to move a storage pool between systems. To do so, the storage
devices must be disconnected from the original system and reconnected to the destination
system. This task can be accomplished by physically recabling the devices, or by using
multiported devices such as the devices on a SAN. ZFS enables you to export the pool from one
machine and import it on the destination system, even if the system are of different
architectural endianness. For information about replicating or migrating file systems between
different storage pools, which might reside on different machines, see “Sending and Receiving
ZFS Data” on page 226.

■ “Preparing for ZFS Storage Pool Migration” on page 111
■ “Exporting a ZFS Storage Pool” on page 111
■ “Determining Available Storage Pools to Import” on page 112

Migrating ZFS Storage Pools

Oracle Solaris ZFS Administration Guide • April 2012110



■ “Importing ZFS Storage Pools From Alternate Directories” on page 113
■ “Importing ZFS Storage Pools” on page 114
■ “Recovering Destroyed ZFS Storage Pools” on page 117

Preparing for ZFS Storage Pool Migration
Storage pools should be explicitly exported to indicate that they are ready to be migrated. This
operation flushes any unwritten data to disk, writes data to the disk indicating that the export
was done, and removes all information about the pool from the system.

If you do not explicitly export the pool, but instead remove the disks manually, you can still
import the resulting pool on another system. However, you might lose the last few seconds of
data transactions, and the pool will appear faulted on the original system because the devices are
no longer present. By default, the destination system cannot import a pool that has not been
explicitly exported. This condition is necessary to prevent you from accidentally importing an
active pool that consists of network-attached storage that is still in use on another system.

Exporting a ZFS Storage Pool
To export a pool, use the zpool export command. For example:

# zpool export tank

The command attempts to unmount any mounted file systems within the pool before
continuing. If any of the file systems fail to unmount, you can forcefully unmount them by
using the -f option. For example:

# zpool export tank

cannot unmount ’/export/home/eschrock’: Device busy

# zpool export -f tank

After this command is executed, the pool tank is no longer visible on the system.

If devices are unavailable at the time of export, the devices cannot be identified as cleanly
exported. If one of these devices is later attached to a system without any of the working devices,
it appears as “potentially active.”

If ZFS volumes are in use in the pool, the pool cannot be exported, even with the -f option. To
export a pool with a ZFS volume, first ensure that all consumers of the volume are no longer
active.

For more information about ZFS volumes, see “ZFS Volumes” on page 269.

Migrating ZFS Storage Pools

Chapter 4 • Managing Oracle Solaris ZFS Storage Pools 111



Determining Available Storage Pools to Import
After the pool has been removed from the system (either through an explicit export or by
forcefully removing the devices), you can attach the devices to the target system. ZFS can handle
some situations in which only some of the devices are available, but a successful pool migration
depends on the overall health of the devices. In addition, the devices do not necessarily have to
be attached under the same device name. ZFS detects any moved or renamed devices, and
adjusts the configuration appropriately. To discover available pools, run the zpool import
command with no options. For example:

# zpool import

pool: tank

id: 11809215114195894163

state: ONLINE

action: The pool can be imported using its name or numeric identifier.

config:

tank ONLINE

mirror-0 ONLINE

c1t0d0 ONLINE

c1t1d0 ONLINE

In this example, the pool tank is available to be imported on the target system. Each pool is
identified by a name as well as a unique numeric identifier. If multiple pools with the same
name are available to import, you can use the numeric identifier to distinguish between them.

Similar to the zpool status command output, the zpool import output includes a link to a
knowledge article with the most up-to-date information regarding repair procedures for the
problem that is preventing a pool from being imported. In this case, the user can force the pool
to be imported. However, importing a pool that is currently in use by another system over a
storage network can result in data corruption and panics as both systems attempt to write to the
same storage. If some devices in the pool are not available but sufficient redundant data exists to
provide a usable pool, the pool appears in the DEGRADED state. For example:

# zpool import

pool: tank

id: 11809215114195894163

state: DEGRADED

status: One or more devices are missing from the system.

action: The pool can be imported despite missing or damaged devices. The

fault tolerance of the pool may be compromised if imported.

see: http://www.sun.com/msg/ZFS-8000-2Q

config:

NAME STATE READ WRITE CKSUM

tank DEGRADED 0 0 0

mirror-0 DEGRADED 0 0 0

c1t0d0 UNAVAIL 0 0 0 cannot open

c1t3d0 ONLINE 0 0 0

Migrating ZFS Storage Pools

Oracle Solaris ZFS Administration Guide • April 2012112



In this example, the first disk is damaged or missing, though you can still import the pool
because the mirrored data is still accessible. If too many faulted or missing devices are present,
the pool cannot be imported. For example:

# zpool import

pool: dozer

id: 9784486589352144634

state: FAULTED

action: The pool cannot be imported. Attach the missing

devices and try again.

see: http://www.sun.com/msg/ZFS-8000-6X

config:

raidz1-0 FAULTED

c1t0d0 ONLINE

c1t1d0 FAULTED

c1t2d0 ONLINE

c1t3d0 FAULTED

In this example, two disks are missing from a RAID-Z virtual device, which means that
sufficient redundant data is not available to reconstruct the pool. In some cases, not enough
devices are present to determine the complete configuration. In this case, ZFS cannot determine
what other devices were part of the pool, though ZFS does report as much information as
possible about the situation. For example:

# zpool import

pool: dozer

id: 9784486589352144634

state: FAULTED

status: One or more devices are missing from the system.

action: The pool cannot be imported. Attach the missing

devices and try again.

see: http://www.sun.com/msg/ZFS-8000-6X

config:

dozer FAULTED missing device

raidz1-0 ONLINE

c1t0d0 ONLINE

c1t1d0 ONLINE

c1t2d0 ONLINE

c1t3d0 ONLINE

Additional devices are known to be part of this pool, though their

exact configuration cannot be determined.

Importing ZFS Storage Pools From Alternate
Directories
By default, the zpool import command only searches devices within the /dev/dsk directory. If
devices exist in another directory, or you are using pools backed by files, you must use the -d
option to search alternate directories. For example:

Migrating ZFS Storage Pools

Chapter 4 • Managing Oracle Solaris ZFS Storage Pools 113



# zpool create dozer mirror /file/a /file/b

# zpool export dozer

# zpool import -d /file

pool: dozer

id: 7318163511366751416

state: ONLINE

action: The pool can be imported using its name or numeric identifier.

config:

dozer ONLINE

mirror-0 ONLINE

/file/a ONLINE

/file/b ONLINE

# zpool import -d /file dozer

If devices exist in multiple directories, you can specify multiple -d options.

Importing ZFS Storage Pools
After a pool has been identified for import, you can import it by specifying the name of the pool
or its numeric identifier as an argument to the zpool import command. For example:

# zpool import tank

If multiple available pools have the same name, you must specify which pool to import by using
the numeric identifier. For example:

# zpool import

pool: dozer

id: 2704475622193776801

state: ONLINE

action: The pool can be imported using its name or numeric identifier.

config:

dozer ONLINE

c1t9d0 ONLINE

pool: dozer

id: 6223921996155991199

state: ONLINE

action: The pool can be imported using its name or numeric identifier.

config:

dozer ONLINE

c1t8d0 ONLINE

# zpool import dozer

cannot import ’dozer’: more than one matching pool

import by numeric ID instead

# zpool import 6223921996155991199

If the pool name conflicts with an existing pool name, you can import the pool under a different
name. For example:

Migrating ZFS Storage Pools

Oracle Solaris ZFS Administration Guide • April 2012114



# zpool import dozer zeepool

This command imports the exported pool dozer using the new name zeepool. The new pool
name is persistent.

If the pool was not cleanly exported, ZFS requires the -f flag to prevent users from accidentally
importing a pool that is still in use on another system. For example:

# zpool import dozer

cannot import ’dozer’: pool may be in use on another system

use ’-f’ to import anyway

# zpool import -f dozer

Note – Do not attempt to import a pool that is active on one system to another system. ZFS is not
a native cluster, distributed, or parallel file system and cannot provide concurrent access from
multiple, different hosts.

Pools can also be imported under an alternate root by using the -R option. For more
information on alternate root pools, see “Using ZFS Alternate Root Pools” on page 276.

Importing a Pool With a Missing Log Device
By default, a pool with a missing log device cannot be imported. You can use zpool import -m
command to force a pool to be imported with a missing log device. For example:

# zpool import dozer

The devices below are missing, use ’-m’ to import the pool anyway:

c3t3d0 [log]

cannot import ’dozer’: one or more devices is currently unavailable

Import the pool with the missing log device. For example:

# zpool import -m dozer

# zpool status dozer

pool: dozer

state: DEGRADED

status: One or more devices could not be opened. Sufficient replicas exist for

the pool to continue functioning in a degraded state.

action: Attach the missing device and online it using ’zpool online’.

see: http://www.sun.com/msg/ZFS-8000-2Q

scan: scrub repaired 0 in 0h0m with 0 errors on Fri Oct 15 16:43:03 2010

config:

NAME STATE READ WRITE CKSUM

dozer DEGRADED 0 0 0

mirror-0 ONLINE 0 0 0

c3t1d0 ONLINE 0 0 0

c3t2d0 ONLINE 0 0 0

logs

Migrating ZFS Storage Pools

Chapter 4 • Managing Oracle Solaris ZFS Storage Pools 115



14685044587769991702 UNAVAIL 0 0 0 was c3t3d0

After attaching the missing log device, run the zpool clear command to clear the pool errors.

A similar recovery can be attempted with missing mirrored log devices. For example:

# zpool import dozer

The devices below are missing, use ’-m’ to import the pool anyway:

mirror-1 [log]

c3t3d0

c3t4d0

cannot import ’dozer’: one or more devices is currently unavailable

# zpool import -m dozer

# zpool status dozer

pool: dozer

state: DEGRADED

status: One or more devices could not be opened. Sufficient replicas exist for

the pool to continue functioning in a degraded state.

action: Attach the missing device and online it using ’zpool online’.

see: http://www.sun.com/msg/ZFS-8000-2Q

scan: scrub repaired 0 in 0h0m with 0 errors on Fri Oct 15 16:51:39 2010

config:

NAME STATE READ WRITE CKSUM

dozer DEGRADED 0 0 0

mirror-0 ONLINE 0 0 0

c3t1d0 ONLINE 0 0 0

c3t2d0 ONLINE 0 0 0

logs

mirror-1 UNAVAIL 0 0 0 insufficient replicas

13514061426445294202 UNAVAIL 0 0 0 was c3t3d0

16839344638582008929 UNAVAIL 0 0 0 was c3t4d0

After attaching the missing log devices, run the zpool clear command to clear the pool errors.

Importing a Pool in Read-Only Mode
You can import a pool in read-only mode. If a pool is so damaged that it cannot be accessed, this
feature might enable you to recover the pool's data. For example:

# zpool import -o readonly=on tank

# zpool scrub tank

cannot scrub tank: pool is read-only

When a pool is imported in read-only mode, the following conditions apply:

■ All file systems and volumes are mounted in read-only mode.
■ Pool transaction processing is disabled. This also means that any pending synchronous

writes in the intent log are not played until the pool is imported read-write.
■ Attempts to set a pool property during the read-only import are ignored.

Migrating ZFS Storage Pools

Oracle Solaris ZFS Administration Guide • April 2012116



A read-only pool can be set back to read-write mode by exporting and importing the pool. For
example:

# zpool export tank

# zpool import tank

# zpool scrub tank

Recovering Destroyed ZFS Storage Pools
You can use the zpool import -D command to recover a storage pool that has been destroyed.
For example:

# zpool destroy tank

# zpool import -D

pool: tank

id: 5154272182900538157

state: ONLINE (DESTROYED)

action: The pool can be imported using its name or numeric identifier.

config:

tank ONLINE

mirror-0 ONLINE

c1t0d0 ONLINE

c1t1d0 ONLINE

In this zpool import output, you can identify the tank pool as the destroyed pool because of
the following state information:

state: ONLINE (DESTROYED)

To recover the destroyed pool, run the zpool import -D command again with the pool to be
recovered. For example:

# zpool import -D tank

# zpool status tank

pool: tank

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

tank ONLINE

mirror-0 ONLINE

c1t0d0 ONLINE

c1t1d0 ONLINE

errors: No known data errors

If one of the devices in the destroyed pool is faulted or unavailable, you might be able to recover
the destroyed pool anyway by including the -f option. In this scenario, you would import the
degraded pool and then attempt to fix the device failure. For example:

Migrating ZFS Storage Pools

Chapter 4 • Managing Oracle Solaris ZFS Storage Pools 117



# zpool destroy dozer

# zpool import -D

pool: dozer

id: 13643595538644303788

state: DEGRADED (DESTROYED)

status: One or more devices could not be opened. Sufficient replicas exist for

the pool to continue functioning in a degraded state.

action: Attach the missing device and online it using ’zpool online’.

see: http://www.sun.com/msg/ZFS-8000-2Q

config:

NAME STATE READ WRITE CKSUM

dozer DEGRADED 0 0 0

raidz2-0 DEGRADED 0 0 0

c2t8d0 ONLINE 0 0 0

c2t9d0 ONLINE 0 0 0

c2t10d0 ONLINE 0 0 0

c2t11d0 UNAVAIL 0 35 1 cannot open

c2t12d0 ONLINE 0 0 0

errors: No known data errors

# zpool import -Df dozer

# zpool status -x

pool: dozer

state: DEGRADED

status: One or more devices could not be opened. Sufficient replicas exist for

the pool to continue functioning in a degraded state.

action: Attach the missing device and online it using ’zpool online’.

see: http://www.sun.com/msg/ZFS-8000-2Q

scrub: scrub completed after 0h0m with 0 errors on Thu Jan 21 15:38:48 2010

config:

NAME STATE READ WRITE CKSUM

dozer DEGRADED 0 0 0

raidz2-0 DEGRADED 0 0 0

c2t8d0 ONLINE 0 0 0

c2t9d0 ONLINE 0 0 0

c2t10d0 ONLINE 0 0 0

c2t11d0 UNAVAIL 0 37 0 cannot open

c2t12d0 ONLINE 0 0 0

errors: No known data errors

# zpool online dozer c2t11d0

Bringing device c2t11d0 online

# zpool status -x

all pools are healthy

Upgrading ZFS Storage Pools
If you have ZFS storage pools from a previous Solaris release, such as the Solaris 10 10/09
release, you can upgrade your pools with the zpool upgrade command to take advantage of the
pool features in the current release. In addition, the zpool status command has been modified
to notify you when your pools are running older versions. For example:

Upgrading ZFS Storage Pools

Oracle Solaris ZFS Administration Guide • April 2012118



# zpool status

pool: tank

state: ONLINE

status: The pool is formatted using an older on-disk format. The pool can

still be used, but some features are unavailable.

action: Upgrade the pool using ’zpool upgrade’. Once this is done, the

pool will no longer be accessible on older software versions.

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c1t0d0 ONLINE 0 0 0

c1t1d0 ONLINE 0 0 0

errors: No known data errors

You can use the following syntax to identify additional information about a particular version
and supported releases:

# zpool upgrade -v

This system is currently running ZFS pool version 22.

The following versions are supported:

VER DESCRIPTION

--- --------------------------------------------------------

1 Initial ZFS version

2 Ditto blocks (replicated metadata)

3 Hot spares and double parity RAID-Z

4 zpool history

5 Compression using the gzip algorithm

6 bootfs pool property

7 Separate intent log devices

8 Delegated administration

9 refquota and refreservation properties

10 Cache devices

11 Improved scrub performance

12 Snapshot properties

13 snapused property

14 passthrough-x aclinherit

15 user/group space accounting

16 stmf property support

17 Triple-parity RAID-Z

18 Snapshot user holds

19 Log device removal

20 Compression using zle (zero-length encoding)

21 Reserved

22 Received properties

For more information on a particular version, including supported releases,

see the ZFS Administration Guide.

Then, you can run the zpool upgrade command to upgrade all of your pools. For example:

# zpool upgrade -a

Upgrading ZFS Storage Pools

Chapter 4 • Managing Oracle Solaris ZFS Storage Pools 119



Note – If you upgrade your pool to a later ZFS version, the pool will not be accessible on a system
that runs an older ZFS version.

Upgrading ZFS Storage Pools

Oracle Solaris ZFS Administration Guide • April 2012120



Installing and Booting an Oracle Solaris ZFS
Root File System

This chapter describes how to install and boot an Oracle Solaris ZFS root file system. Migrating
a UFS root file system to a ZFS file system by using the Oracle Solaris Live Upgrade feature is
also covered.

The following sections are provided in this chapter:
■ “Installing and Booting an Oracle Solaris ZFS Root File System (Overview)” on page 121
■ “Oracle Solaris Installation and Live Upgrade Requirements for ZFS Support” on page 123
■ “Installing a ZFS Root File System (Oracle Solaris Initial Installation)” on page 125
■ “How to Create a Mirrored ZFS Root Pool (Postinstallation)” on page 131
■ “Installing a ZFS Root File System (Oracle Solaris Flash Archive Installation)” on page 132
■ “Installing a ZFS Root File System ( JumpStart Installation)” on page 136
■ “Migrating to a ZFS Root File System or Updating a ZFS Root File System (Live Upgrade)” on

page 139
■ “ZFS Support for Swap and Dump Devices” on page 164
■ “Booting From a ZFS Root File System” on page 167
■ “Recovering the ZFS Root Pool or Root Pool Snapshots” on page 174

For a list of known issues in this release, see Oracle Solaris 10 8/11 Release Notes.

For up-to-date troubleshooting information, go to the following site:

http://www.solarisinternals.com/wiki/index.php/ZFS_Troubleshooting_Guide

Installing and Booting an Oracle Solaris ZFS Root File System
(Overview)

You can install and boot from a ZFS root file system in the following ways:
■ Oracle Solaris initial installation (interactive text mode installation method)

■ Select and install ZFS as the root file system.

5C H A P T E R 5

121

http://www.oracle.com/pls/topic/lookup?ctx=E23823&id=SRELNTS
http://www.solarisinternals.com/wiki/index.php/ZFS_Troubleshooting_Guide


■ Install a ZFS flash archive.
■ Oracle Solaris Live Upgrade feature

■ Migrate a UFS root file system to a ZFS root file system.
■ Create a new boot environment in a new ZFS root pool.
■ Create or update a boot environment in an existing ZFS root pool.
■ Upgrade an alternate boot environment (BE) with a ZFS flash archive.

■ Oracle Solaris JumpStart feature.
■ Create a profile to automatically install a system with a ZFS root file system.
■ Create a profile to automatically install a system with a ZFS flash archive.

After a SPARC based or an x86 based system is installed with or migrated to a ZFS root file
system, the system boots automatically from the ZFS root file system. For more information
about boot changes, see “Booting From a ZFS Root File System” on page 167.

ZFS Installation Features
The following ZFS installation features are provided in this Oracle Solaris release:

■ Using the interactive text installer feature, you can install a UFS or a ZFS root file system.
The default file system is still UFS for this release. You can access the interactive text installer
in the following ways:
■ SPARC: Use the following syntax for the Oracle Solaris Installation DVD:

ok boot cdrom - text

■ SPARC: Use the following syntax when booting from the network:

ok boot net - text

■ x86: Select the text-mode installation method.
■ A custom JumpStart profile provides the following features:

■ You can set up a profile to create a ZFS storage pool and designate a bootable ZFS file
system.

■ You can set up a profile to install a flash archive of a ZFS root pool.
■ Using Live Upgrade, you can migrate a UFS root file system to a ZFS root file system. The

lucreate and luactivate commands have been enhanced to support ZFS pools and file
systems.

■ You can set up a mirrored ZFS root pool by selecting two disks during installation. Or, you
can attach additional disks after installation to create a mirrored ZFS root pool.

■ Swap and dump devices are automatically created on ZFS volumes in the ZFS root pool.

Installing and Booting an Oracle Solaris ZFS Root File System (Overview)

Oracle Solaris ZFS Administration Guide • April 2012122



The following installation features are not provided in this release:

■ The GUI installation feature for installing a ZFS root file system is not currently available.
You must select the text mode installation method to install a ZFS root file system.

■ You cannot use the standard upgrade program to upgrade your UFS root file system to a
ZFS root file system.

Oracle Solaris Installation and Live Upgrade
Requirements for ZFS Support
Ensure that the following requirements are met before attempting to install a system with a ZFS
root file system or attempting to migrate a UFS root file system to a ZFS root file system.

Oracle Solaris Release Requirements
You can install and boot a ZFS root file system or migrate to a ZFS root file system in the
following ways:

■ Install a ZFS root file system – Available starting in the Solaris 10 10/08 release.
■ Migrate from a UFS root file system to a ZFS root file system with Live Upgrade – You must

have installed at least the Solaris 10 10/08 release, or you must have upgraded to at least the
Solaris 10 10/08 release.

General ZFS Storage Pool Requirements
The following sections describe ZFS root pool space and configuration requirements.

Disk Space Requirements for ZFS Storage Pools

The required minimum amount of available pool space for a ZFS root file system is larger than
for a UFS root file system because swap and dump devices must be separate devices in a ZFS
root environment. By default, swap and dump devices are the same device in a UFS root file
system.

When a system is installed or upgraded with a ZFS root file system, the size of the swap area and
the dump device depends upon the amount of physical memory. The minimum amount of
available pool space for a bootable ZFS root file system depends on the amount of physical
memory, the disk space available, and the number of boot environments (BEs) to be created.

Review the following disk space requirements for ZFS storage pools:

■ 1536 MB is the minimum amount of memory required to install a ZFS root file system.
■ 1536 MB of memory or greater is recommended for better overall ZFS performance.
■ At least 16 GB of disk space is recommended. The disk space is consumed as follows:

Installing and Booting an Oracle Solaris ZFS Root File System (Overview)

Chapter 5 • Installing and Booting an Oracle Solaris ZFS Root File System 123



■ Swap area and dump device – The default sizes of the swap and dump volumes that are
created by the Oracle Solaris installation programs are as follows:
■ Initial installation – In the new ZFS boot environment, the default swap size is

generally calculated as half the size of physical memory. You can adjust the swap size
during an initial installation.

■ The default dump size is calculated by the kernel based on dumpadm information and
the size of physical memory. You can adjust the dump size during an initial
installation.

■ Live Upgrade – When a UFS root file system is migrated to a ZFS root file system, the
default swap size for the ZFS BE is calculated as the size of the swap device of the UFS
BE. The default swap size calculation adds the sizes of all the swap devices in the UFS
BE and creates a ZFS volume of that size in the ZFS BE. If no swap devices are defined
in the UFS BE, then the default swap size is set to 512 MB.

■ In the ZFS BE, the default dump size is set to half the size of physical memory,
between 512 MB and 2 GB.

You can adjust the sizes of your swap and dump volumes to sizes of your choosing as
long as the new sizes support system operations. For more information, see “Adjusting
the Sizes of Your ZFS Swap Device and Dump Device” on page 165.

■ Boot environment (BE) – In addition to either new swap and dump space requirements
or adjusted swap and dump device sizes, a ZFS BE that is migrated from a UFS BE
requires approximately 6 GB. Each ZFS BE that is cloned from another ZFS BE doesn't
require additional disk space, but consider that the BE size will increase when patches
are applied. All ZFS BEs in the same root pool use the same swap and dump devices.

■ Oracle Solaris OS Components – All subdirectories of the root file system that are part
of the OS image, with the exception of /var, must be in the same dataset as the root file
system. In addition, all OS components must reside in the root pool, with the exception
of the swap and dump devices.

For example, a system with 12 GB of disk space might be too small for a bootable ZFS
environment because 2 GB of disk space is required for each swap and dump device, and
approximately 6 GB of disk space is required for the ZFS BE that is migrated from the UFS
BE.

ZFS Storage Pool Configuration Requirements

Review the following ZFS storage pool configuration requirements:

■ The pool that is intended to be the root pool must have an SMI label. This requirement is
usually met if the pool is created with disk slices.

■ The pool must exist either on a disk slice or on disk slices that are mirrored. If you attempt to
use an unsupported pool configuration during a Live Upgrade migration, you see a message
similar to the following:

Installing and Booting an Oracle Solaris ZFS Root File System (Overview)

Oracle Solaris ZFS Administration Guide • April 2012124



ERROR: ZFS pool name does not support boot environments

For a detailed description of supported ZFS root pool configurations, see “Creating a ZFS
Root Pool” on page 70.

■ x86: The disk must contain an Oracle Solaris fdisk partition. This fdisk partition is created
automatically when the x86 based system is installed. For more information about Solaris
fdisk partitions, see “Guidelines for Creating an fdisk Partition” in System Administration
Guide: Devices and File Systems.

■ Disks that are designated for booting in a ZFS root pool must be less than 2 TBs in size on
both SPARC based and x86 based systems.

■ Compression can be enabled on the root pool but only after the root pool is installed. No
way exists to enable compression on a root pool during installation. The gzip compression
algorithm is not supported on root pools.

■ Do not rename the root pool after it is created by an initial installation or after Solaris Live
Upgrade migration to a ZFS root file system. Renaming the root pool might cause an
unbootable system.

Installing a ZFS Root File System (Oracle Solaris Initial
Installation)

In this Oracle Solaris release, you can perform an initial installation by using the following
methods:
■ Use the interactive text installer to initially install a ZFS storage pool that contains a bootable

ZFS root file system. If you have an existing ZFS storage pool that you want to use for your
ZFS root file system, then you must use Live Upgrade to migrate your existing UFS root file
system to a ZFS root file system in an existing ZFS storage pool. For more information, see
“Migrating to a ZFS Root File System or Updating a ZFS Root File System (Live Upgrade)”
on page 139.

■ Use the interactive text installer to initially install a ZFS storage pool that contains a bootable
ZFS root file system from a ZFS flash archive.

Before you begin the initial installation to create a ZFS storage pool, see “Oracle Solaris
Installation and Live Upgrade Requirements for ZFS Support” on page 123.

If you will be configuring zones after the initial installation of a ZFS root file system and you
plan on patching or upgrading the system, see “Using Live Upgrade to Migrate or Upgrade a
System With Zones (Solaris 10 10/08)” on page 149 or “Using Oracle Solaris Live Upgrade to
Migrate or Upgrade a System With Zones (at Least Solaris 10 5/09)” on page 154.

If you already have ZFS storage pools on the system, they are acknowledged by the following
message. However, these pools remain untouched, unless you select the disks in the existing
pools to create the new storage pool.

Installing a ZFS Root File System (Oracle Solaris Initial Installation)

Chapter 5 • Installing and Booting an Oracle Solaris ZFS Root File System 125

http://www.oracle.com/pls/topic/lookup?ctx=E23823&id=SAGDFSdisksxadd-54639
http://www.oracle.com/pls/topic/lookup?ctx=E23823&id=SAGDFSdisksxadd-54639


There are existing ZFS pools available on this system. However, they can only be upgraded

using the Live Upgrade tools. The following screens will only allow you to install a ZFS root system,

not upgrade one.

Caution – Existing pools will be destroyed if any of their disks are selected for the new pool.

EXAMPLE 5–1 Initial Installation of a Bootable ZFS Root File System

The interactive text installation process is basically the same as in previous Oracle Solaris
releases, except that you are prompted to create a UFS or a ZFS root file system. UFS is still the
default file system in this release. If you select a ZFS root file system, you are prompted to create
a ZFS storage pool. The steps for installing a ZFS root file system follow:

1. Insert the Oracle Solaris installation media or boot the system from an installation server.
Then, select the interactive text installation method to create a bootable ZFS root file system.
■ SPARC: Use the following syntax for the Oracle Solaris Installation DVD:

ok boot cdrom - text

■ SPARC: Use the following syntax when booting from the network:

ok boot net - text

■ x86: Select the text-mode installation method.

You can also create a ZFS flash archive to be installed by using the following methods:
■ JumpStart installation. For more information, see Example 5–2.
■ Initial installation. For more information, see Example 5–3.

You can perform a standard upgrade to upgrade an existing bootable ZFS file system, but
you cannot use this option to create a new bootable ZFS file system. Starting in the Solaris 10
10/08 release, you can migrate a UFS root file system to a ZFS root file system, as long as at
least the Solaris 10 10/08 release is already installed. For more information about migrating
to a ZFS root file system, see “Migrating to a ZFS Root File System or Updating a ZFS Root
File System (Live Upgrade)” on page 139.

2. To create a ZFS root file system, select the ZFS option. For example:

Choose Filesystem Type

Select the filesystem to use for your Solaris installation

[ ] UFS

[X] ZFS

3. After you select the software to be installed, you are prompted to select the disks to create
your ZFS storage pool. This screen is similar as in previous releases.

Select Disks

On this screen you must select the disks for installing Solaris software.

Installing a ZFS Root File System (Oracle Solaris Initial Installation)

Oracle Solaris ZFS Administration Guide • April 2012126



EXAMPLE 5–1 Initial Installation of a Bootable ZFS Root File System (Continued)

Start by looking at the Suggested Minimum field; this value is the

approximate space needed to install the software you’ve selected. For ZFS,

multiple disks will be configured as mirrors, so the disk you choose, or the

slice within the disk must exceed the Suggested Minimum value.

NOTE: ** denotes current boot disk

Disk Device Available Space

=============================================================================

[X] c1t0d0 69994 MB (F4 to edit)

[ ] c1t1d0 69994 MB

[-] c1t2d0 0 MB

[-] c1t3d0 0 MB

Maximum Root Size: 69994 MB

Suggested Minimum: 8279 MB

You can select one or more disks to be used for your ZFS root pool. If you select two disks, a
mirrored two-disk configuration is set up for your root pool. Either a two-disk or a
three-disk mirrored pool is optimal. If you have eight disks and you select all of them, those
eight disks are used for the root pool as one large mirror. This configuration is not optimal.
Another option is to create a mirrored root pool after the initial installation is complete. A
RAID-Z pool configuration for the root pool is not supported.

For more information about configuring ZFS storage pools, see “Replication Features of a
ZFS Storage Pool” on page 66.

4. To select two disks to create a mirrored root pool, use the cursor control keys to select the
second disk.
In the following example, both c1t0d0 and c1t1d0 are selected for the root pool disks. Both
disks must have an SMI label and a slice 0. If the disks are not labeled with an SMI label or
they don't contain slices, then you must exit the installation program, use the format utility
to relabel and repartition the disks, and then restart the installation program.

Select Disks

On this screen you must select the disks for installing Solaris software.

Start by looking at the Suggested Minimum field; this value is the

approximate space needed to install the software you’ve selected. For ZFS,

multiple disks will be configured as mirrors, so the disk you choose, or the

slice within the disk must exceed the Suggested Minimum value.

NOTE: ** denotes current boot disk

Disk Device Available Space

=============================================================================

[X] c1t0d0 69994 MB

[X] c1t1d0 69994 MB (F4 to edit)

[-] c1t2d0 0 MB

[-] c1t3d0 0 MB

Maximum Root Size: 69994 MB

Suggested Minimum: 8279 MB

Installing a ZFS Root File System (Oracle Solaris Initial Installation)

Chapter 5 • Installing and Booting an Oracle Solaris ZFS Root File System 127



EXAMPLE 5–1 Initial Installation of a Bootable ZFS Root File System (Continued)

If the Available Space column identifies 0 MB, the disk most likely has an EFI label. If you
want to use a disk with an EFI label, you must exit the installation program, relabel the disk
with an SMI label by using the format -e command, and then restart the installation
program.

If you do not create a mirrored root pool during installation, you can easily create one after
the installation. For information, see “How to Create a Mirrored ZFS Root Pool
(Postinstallation)” on page 131.

After you have selected one or more disks for your ZFS storage pool, a screen similar to the
following is displayed:

Configure ZFS Settings

Specify the name of the pool to be created from the disk(s) you have chosen.

Also specify the name of the dataset to be created within the pool that is

to be used as the root directory for the filesystem.

ZFS Pool Name: rpool

ZFS Root Dataset Name: s10s_u9wos_08

ZFS Pool Size (in MB): 69995

Size of Swap Area (in MB): 2048

Size of Dump Area (in MB): 1536

(Pool size must be between 6231 MB and 69995 MB)

[X] Keep / and /var combined

[ ] Put /var on a separate dataset

5. From this screen, you can optionally change the name of the ZFS pool, the dataset name, the
pool size, and the swap and dump device sizes by moving the cursor control keys through
the entries and replacing the default value with new values. Or, you can accept the default
values. In addition, you can modify how the /var file system is created and mounted.
In this example, the root dataset name is changed to zfsBE.

ZFS Pool Name: rpool

ZFS Root Dataset Name: zfsBE

ZFS Pool Size (in MB): 69995

Size of Swap Area (in MB): 2048

Size of Dump Area (in MB): 1536

(Pool size must be between 6231 MB and 69995 MB)

[X] Keep / and /var combined

[ ] Put /var on a separate dataset

6. At this final installation, screen, you can optionally change the installation profile. For
example:

Profile

The information shown below is your profile for installing Solaris software.

It reflects the choices you’ve made on previous screens.

Installing a ZFS Root File System (Oracle Solaris Initial Installation)

Oracle Solaris ZFS Administration Guide • April 2012128



EXAMPLE 5–1 Initial Installation of a Bootable ZFS Root File System (Continued)

============================================================================

Installation Option: Initial

Boot Device: c1t0d0

Root File System Type: ZFS

Client Services: None

Regions: North America

System Locale: C ( C )

Software: Solaris 10, Entire Distribution

Pool Name: rpool

Boot Environment Name: zfsBE

Pool Size: 69995 MB

Devices in Pool: c1t0d0

c1t1d0

7. After the installation is completed, review the resulting ZFS storage pool and file system
information. For example:

# zpool status

pool: rpool

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

rpool ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c1t0d0s0 ONLINE 0 0 0

c1t1d0s0 ONLINE 0 0 0

errors: No known data errors

# zfs list

NAME USED AVAIL REFER MOUNTPOINT

rpool 8.03G 58.9G 96K /rpool

rpool/ROOT 4.47G 58.9G 21K legacy

rpool/ROOT/zfsBE 4.47G 58.9G 4.47G /

rpool/dump 1.50G 58.9G 1.50G -

rpool/export 44K 58.9G 23K /export

rpool/export/home 21K 58.9G 21K /export/home

rpool/swap 2.06G 61.0G 16K -

The sample zfs list output identifies the root pool components, such as the rpool/ROOT
directory, which is not accessible by default.

8. To create another ZFS boot environment (BE) in the same storage pool, use the lucreate
command.
In the following example, a new BE named zfs2BE is created. The current BE is named
zfsBE, as shown in the zfs list output. However, the current BE is not acknowledged in
the lustatus output until the new BE is created.

# lustatus

ERROR: No boot environments are configured on this system

ERROR: cannot determine list of all boot environment names

Installing a ZFS Root File System (Oracle Solaris Initial Installation)

Chapter 5 • Installing and Booting an Oracle Solaris ZFS Root File System 129



EXAMPLE 5–1 Initial Installation of a Bootable ZFS Root File System (Continued)

If you create a new ZFS BE in the same pool, use syntax similar to the following:

# lucreate -n zfs2BE

INFORMATION: The current boot environment is not named - assigning name <zfsBE>.

Current boot environment is named <zfsBE>.

Creating initial configuration for primary boot environment <zfsBE>.

The device </dev/dsk/c1t0d0s0> is not a root device for any boot environment; cannot get BE ID.

PBE configuration successful: PBE name <zfsBE> PBE Boot Device </dev/dsk/c1t0d0s0>.

Comparing source boot environment <zfsBE> file systems with the file

system(s) you specified for the new boot environment. Determining which

file systems should be in the new boot environment.

Updating boot environment description database on all BEs.

Updating system configuration files.

Creating configuration for boot environment <zfs2BE>.

Source boot environment is <zfsBE>.

Creating boot environment <zfs2BE>.

Cloning file systems from boot environment <zfsBE> to create boot environment <zfs2BE>.

Creating snapshot for <rpool/ROOT/zfsBE> on <rpool/ROOT/zfsBE@zfs2BE>.

Creating clone for <rpool/ROOT/zfsBE@zfs2BE> on <rpool/ROOT/zfs2BE>.

Setting canmount=noauto for </> in zone <global> on <rpool/ROOT/zfs2BE>.

Population of boot environment <zfs2BE> successful.

Creation of boot environment <zfs2BE> successful.

Creating a ZFS BE within the same pool uses ZFS clone and snapshot features to instantly
create the BE. For more details about using Live Upgrade for a ZFS root migration, see
“Migrating to a ZFS Root File System or Updating a ZFS Root File System (Live Upgrade)”
on page 139.

9. Next, verify the new boot environments. For example:

# lustatus

Boot Environment Is Active Active Can Copy

Name Complete Now On Reboot Delete Status

-------------------------- -------- ------ --------- ------ ----------

zfsBE yes yes yes no -

zfs2BE yes no no yes -

# zfs list

NAME USED AVAIL REFER MOUNTPOINT

rpool 8.03G 58.9G 97K /rpool

rpool/ROOT 4.47G 58.9G 21K legacy

rpool/ROOT/zfs2BE 116K 58.9G 4.47G /

rpool/ROOT/zfsBE 4.47G 58.9G 4.47G /

rpool/ROOT/zfsBE@zfs2BE 75.5K - 4.47G -

rpool/dump 1.50G 58.9G 1.50G -

rpool/export 44K 58.9G 23K /export

rpool/export/home 21K 58.9G 21K /export/home

rpool/swap 2.06G 61.0G 16K -

10. To boot from an alternate BE, use the luactivate command.
■ SPARC - Use the boot -L command to identify the available BEs when the boot device

contains a ZFS storage pool.
For example, on a SPARC based system, use the boot -L command to display a list of
available BEs. To boot from the new BE, zfs2BE, select option 2. Then, type the
displayed boot -Z command.

Installing a ZFS Root File System (Oracle Solaris Initial Installation)

Oracle Solaris ZFS Administration Guide • April 2012130



EXAMPLE 5–1 Initial Installation of a Bootable ZFS Root File System (Continued)

ok boot -L

Executing last command: boot -L

Boot device: /pci@7c0/pci@0/pci@1/pci@0,2/LSILogic,sas@2/disk@0 File and args: -L

1 zfsBE

2 zfs2BE

Select environment to boot: [ 1 - 2 ]: 2

To boot the selected entry, invoke:

boot [<root-device>] -Z rpool/ROOT/zfs2BE

ok boot -Z rpool/ROOT/zfs2BE

■ x86 – Identify the BE to be booted from the GRUB menu.

For more information about booting a ZFS file system, see “Booting From a ZFS Root File
System” on page 167.

▼ How to Create a Mirrored ZFS Root Pool
(Postinstallation)
If you did not create a mirrored ZFS root pool during installation, you can easily create one after
installation.

For information about replacing a disk in a root pool, see “How to Replace a Disk in the ZFS
Root Pool” on page 174.

Display the current root pool status.
# zpool status rpool

pool: rpool

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

rpool ONLINE 0 0 0

c1t0d0s0 ONLINE 0 0 0

errors: No known data errors

Prepare a second disk for attachment to the root pool, if necessary.

■ SPARC: Confirm that the disk has an SMI (VTOC) disk label and a slice 0. If you need to
relabel the disk and create a slice 0, see “Creating a Disk Slice for a ZFS Root File System” in
System Administration Guide: Devices and File Systems.

■ x86: Confirm that the disk has an fdisk partition, an SMI disk label, and a slice 0. If you
need to repartition the disk and create a slice 0, see “Creating a Disk Slice for a ZFS Root File
System” in System Administration Guide: Devices and File Systems.

1

2

Installing a ZFS Root File System (Oracle Solaris Initial Installation)

Chapter 5 • Installing and Booting an Oracle Solaris ZFS Root File System 131

http://www.oracle.com/pls/topic/lookup?ctx=E23823&id=SAGDFSdiskssadd-4
http://www.oracle.com/pls/topic/lookup?ctx=E23823&id=SAGDFSdiskssadd-4
http://www.oracle.com/pls/topic/lookup?ctx=E23823&id=SAGDFSdisksxadd-30
http://www.oracle.com/pls/topic/lookup?ctx=E23823&id=SAGDFSdisksxadd-30


Attach a second disk to configure a mirrored root pool.
# zpool attach rpool c1t0d0s0 c1t1d0s0

Make sure to wait until resilver is done before rebooting.

View the root pool status to confirm that resilvering is complete.
# zpool status rpool

pool: rpool

state: ONLINE

status: One or more devices is currently being resilvered. The pool will

continue to function, possibly in a degraded state.

action: Wait for the resilver to complete.

scrub: resilver in progress for 0h1m, 24.26% done, 0h3m to go

config:

NAME STATE READ WRITE CKSUM

rpool ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c1t0d0s0 ONLINE 0 0 0

c1t1d0s0 ONLINE 0 0 0 3.18G resilvered

errors: No known data errors

In the preceding output, the resilvering process is not complete. Resilvering is complete when
you see messages similar to the following:

resilvered 7.61G in 0h3m with 0 errors on Fri Jun 10 11:57:06 2011

Verify that you can boot successfully from the second disk.

If necessary, set up the system to boot automatically from the new disk.

■ SPARC - Use the eeprom command or the setenv command from the SPARC boot PROM
to reset the default boot device.

■ x86 - reconfigure the system BIOS.

Installing a ZFS Root File System (Oracle Solaris Flash Archive
Installation)

Starting in the Solaris 10 10/09 release, you can create a flash archive on a system with a UFS
root file system or a ZFS root file system. A flash archive of a ZFS root pool contains the entire
pool hierarchy, except for the swap and dump volumes, and any excluded datasets. The swap
and dump volumes are created when the flash archive is installed. You can use the flash archive
installation method as follows:

■ Create a flash archive that can be used to install and boot a system with a ZFS root file
system.

3

4

5

6

Installing a ZFS Root File System (Oracle Solaris Flash Archive Installation)

Oracle Solaris ZFS Administration Guide • April 2012132



■ Perform a JumpStart installation or initial installation of a clone system by using a ZFS flash
archive. Creating a ZFS flash archive clones an entire root pool, not individual boot
environments. Individual datasets within the pool can be excluded by using the -D option to
the flarcreate and flar commands.

Review the following limitations before you consider installing a system with a ZFS flash
archive:

■ Starting in the Oracle Solaris 10 8/11 release, you can use the interactive installation's flash
archive option to install a system with a ZFS root file system. In addition, you use a flash
archive to update an alternate ZFS BE by using the luupgrade command.

■ You can only install a flash archive on a system that has the same architecture as the system
on which you created the ZFS flash archive. For example, an archive that is created on a
sun4v system cannot be installed on a sun4u system.

■ Only a full initial installation of a ZFS flash archive is supported. You cannot install a
differential flash archive of a ZFS root file system or install a hybrid UFS/ZFS archive.

■ Starting in the Solaris 10 8/11 release, you can use a UFS flash archive to install a ZFS root
file system. For example:
■ If you use the pool keyword in JumpStart profile, the UFS flash archive installs into a

ZFS root pool.

pool rpool auto auto auto mirror c0t0d0s0 c0t1d0s0

■ During interactive installation of a UFS flash archive, select ZFS as the file system type.
■ Although the entire root pool, except for any explicitly excluded datasets, is archived and

installed, only the ZFS BE that is booted when the archive is created is usable after the flash
archive is installed. However, pools that are archived with the -R rootdir option of the
flarcreate or flar command can be used to archive a root pool other than the root pool
that is currently booted.

■ The flarcreate and flar command options that are used to include and exclude
individual files are not supported in a ZFS flash archive. You can only exclude entire datasets
from a ZFS flash archive.

■ The flar info command is not supported for a ZFS flash archive. For example:

# flar info -l zfs10upflar

ERROR: archive content listing not supported for zfs archives.

After a master system is installed with or upgraded to at least the Solaris 10 10/09 release, you
can create a ZFS flash archive to be used to install a target system. The basic process follows:

■ Create the ZFS flash archive with the flarcreate command on the master system. All
datasets in the root pool, except for the swap and dump volumes, are included in the ZFS
flash archive.

■ Create a JumpStart profile to include the flash archive information on the installation server.
■ Install the ZFS flash archive on the target system.

Installing a ZFS Root File System (Oracle Solaris Flash Archive Installation)

Chapter 5 • Installing and Booting an Oracle Solaris ZFS Root File System 133



The following archive options are supported for installing a ZFS root pool with a flash archive:
■ Use the flarcreate or flar command to create a flash archive from the specified ZFS root

pool. If not specified, a flash archive of the default root pool is created.
■ Use flarcreate -D dataset to exclude the specified dataset from the flash archive. This

option can be used multiple times to exclude multiple datasets.

After a ZFS flash archive is installed, the system is configured as follows:
■ The entire dataset hierarchy that existed on the system where the flash archive was created is

re-created on the target system, except for any datasets that were specifically excluded at the
time of archive creation. The swap and dump volumes are not included in the flash archive.

■ The root pool has the same name as the pool that was used to create the archive.
■ The BE that was active when the flash archive was created is the active and default BE on the

deployed systems.

EXAMPLE 5–2 Installing a System With a ZFS Flash Archive (JumpStart Installation)
After the master system is installed or upgraded to at least the Solaris 10 10/09 release, you then
create a flash archive of the ZFS root pool. For example:

# flarcreate -n zfsBE zfs10upflar

Full Flash

Checking integrity...

Integrity OK.

Running precreation scripts...

Precreation scripts done.

Determining the size of the archive...

The archive will be approximately 6.77GB.

Creating the archive...

Archive creation complete.

Running postcreation scripts...

Postcreation scripts done.

Running pre-exit scripts...

Pre-exit scripts done.

On the system that will be used as the installation server, you then create a JumpStart profile as
you would to install any system. For example, the following profile is used to install the
zfs10upflar archive:

install_type flash_install

archive_location nfs system:/export/jump/zfs10upflar

partitioning explicit

pool rpool auto auto auto mirror c0t1d0s0 c0t0d0s0

EXAMPLE 5–3 Initial Installation of a Bootable ZFS Root File System (Flash Archive Installation)
You can install a ZFS root file system by selecting the Flash installation option. This option
assumes that a ZFS flash archive has already been created and is available.

1. From the Solaris Interactive Installation screen, select the F4_Flash option.

Installing a ZFS Root File System (Oracle Solaris Flash Archive Installation)

Oracle Solaris ZFS Administration Guide • April 2012134



EXAMPLE 5–3 Initial Installation of a Bootable ZFS Root File System (Flash Archive Installation)
(Continued)

2. From the Reboot After Installation screen, select the Auto Reboot or Manual Reboot option.
3. From the Choose Filesystem Type screen, select ZFS.
4. From the Flash Archive Retrieval Method screen, select the retrieval method, such as HTTP,

FTP, NFS, Local File, Local Tape, or Local Device.
For example, select NFS if the ZFS flash archive is shared from an NFS server.

5. From the Flash Archive Addition screen, specify the location of the ZFS flash archive.
For example, if the location is an NFS server, identify the server by its IP address and then
specify the path to the ZFS flash archive.

NFS Location: 12.34.567.890:/export/zfs10upflar

6. From the Flash Archive Selection screen, confirm the retrieval method and the ZFS BE
name.

Flash Archive Selection

You selected the following Flash archives to use to install this system. If

you want to add another archive to install select "New".

Retrieval Method Name

====================================================================

NFS zfsBE

7. Review the next set of screens, similar to an initial installation, and select the options that
match your configuration:
■ Select Disks
■ Preserve Data?
■ Configure ZFS Settings

Review the summary information and then select the Continue option.
For example:

Configure ZFS Settings

Specify the name of the pool to be created from the disk(s) you have chosen.

Also specify the name of the dataset to be created within the pool that is

to be used as the root directory for the filesystem.

ZFS Pool Name: rpool

ZFS Root Dataset Name: s10zfsBE

ZFS Pool Size (in MB): 69995

Size of Swap Area (in MB): 2048

Size of Dump Area (in MB): 1024

(Pool size must be between 7591 MB and 69995 MB)

If the flash archive is a ZFS send stream, the combined or separate /var file system
options are not presented. In this case, whether /var is combined or not depends on how
it is configured on the master system.

Installing a ZFS Root File System (Oracle Solaris Flash Archive Installation)

Chapter 5 • Installing and Booting an Oracle Solaris ZFS Root File System 135



EXAMPLE 5–3 Initial Installation of a Bootable ZFS Root File System (Flash Archive Installation)
(Continued)

■ Press Continue at the Mount Remote File Systems? screen.
■ Review the Profile screen, and press F4 to make any changes. Otherwise, press

Begin_Installation (F2).
For example:

Profile

The information shown below is your profile for installing Solaris software.

It reflects the choices you’ve made on previous screens.

============================================================================

Installation Option: Flash

Boot Device: c1t0d0

Root File System Type: ZFS

Client Services: None

Software: 1 Flash Archive

NFS: zfsBE

Pool Name: rpool

Boot Environment Name: s10zfsBE

Pool Size: 69995 MB

Devices in Pool: c1t0d0

Installing a ZFS Root File System ( JumpStart Installation)
You can create a JumpStart profile to install a ZFS root file system or a UFS root file system.

A ZFS specific JumpStart profile must contain the new pool keyword. The pool keyword
installs a new root pool, and a new boot environment (BE) is created by default. You can
provide the name of the BE as well as create a separate /var dataset with the bootenv installbe
keywords and the bename and dataset options.

For general information about using JumpStart features, see Oracle Solaris 10 8/11 Installation
Guide: Custom JumpStart and Advanced Installations.

If you will be configuring zones after the JumpStart installation of a ZFS root file system and you
plan on patching or upgrading the system, see “Using Live Upgrade to Migrate or Upgrade a
System With Zones (Solaris 10 10/08)” on page 149 or “Using Oracle Solaris Live Upgrade to
Migrate or Upgrade a System With Zones (at Least Solaris 10 5/09)” on page 154.

JumpStart Keywords for ZFS
The following keywords are permitted in a ZFS specific JumpStart profile:

Installing a ZFS Root File System ( JumpStart Installation)

Oracle Solaris ZFS Administration Guide • April 2012136

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=SOLINSTALLADV
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=SOLINSTALLADV


auto Automatically specifies the size of the slices for the pool, swap volume, or dump
volume. The size of the disk is checked to verify that the minimum size can be
accommodated. If the minimum size can be accommodated, the largest possible
pool size is allocated, given the constraints, such as the size of the disks, preserved
slices, and so on.

For example, if you specify c0t0d0s0, the root pool slice is created with a size as
large as possible if you specify either the all or auto keyword. Or, you can specify
a particular size for the slice, swap volume, or dump volume.

The auto keyword works similarly to the all keyword when it is used with a ZFS
root pool because pools don't have unused disk space.

bootenv Identifies the boot environment characteristics.

Use the following bootenv keyword syntax to create a bootable ZFS root
environment:

bootenv installbe bename BE-name [dataset mount-point]

installbe Creates and installs a new BE that is identified by the
bename option and BE-name entry.

bename BE-name Identifies the BE-name to install.

If bename is not used with the pool keyword, then a
default BE is created.

dataset mount-point Use the optional dataset keyword to identify a /var
dataset that is separate from the root dataset. The
mount-point value is currently limited to /var. For
example, a bootenv syntax line for a separate /var
dataset would be similar to the following:

bootenv installbe bename zfsroot dataset /var

pool Defines the new root pool to be created. The following keyword syntax must be
provided:

pool poolname poolsize swapsize dumpsize vdevlist

poolname Identifies the name of the pool to be created. The pool is created
with the specified pool poolsize and with the physical devices
specified with one or more devices vdevlist). The poolname value
should not identify the name of an existing pool because the existing
pool will be overwritten.

poolsize Specifies the size of the pool to be created. The value can be auto or
existing. The auto value allocates the largest possible pool size,

Installing a ZFS Root File System ( JumpStart Installation)

Chapter 5 • Installing and Booting an Oracle Solaris ZFS Root File System 137



given the constraints, such as size of the disks, and so on. The size is
assumed to be in MB, unless specified by g (GB).

swapsize Specifies the size of the swap volume to be created. The auto value
means that the default swap size is used. You can specify a size with
a size value. The size is in MB, unless specified by g (GB).

dumpsize Specifies the size of the dump volume to be created. The auto value
means that the default dump size is used. You can specify a size with
a size value. The size is assumed to be in MB, unless specified by g
(GB).

vdevlist Specifies one or more devices that are used to create the pool. The
format of vdevlist is the same as the format of the zpool create
command. At this time, only mirrored configurations are supported
when multiple devices are specified. Devices in vdevlist must be
slices for the root pool. The any value means that the installation
software selects a suitable device.

You can mirror as many disks as you like, but the size of the pool
that is created is determined by the smallest of the specified disks.
For more information about creating mirrored storage pools, see
“Mirrored Storage Pool Configuration” on page 67.

JumpStart Profile Examples for ZFS
This section provides examples of ZFS specific JumpStart profiles.

The following profile performs an initial installation specified with install_type

initial_install in a new pool, identified with pool newpool, whose size is automatically set
by the auto keyword to the size of the specified disks. The swap area and dump device are
automatically sized with the auto keyword in a mirrored configuration of disks (with the
mirror keyword and disks specified as c0t0d0s0 and c0t1d0s0). Boot environment
characteristics are set with the bootenv keyword to install a new BE with the keyword
installbe, and a BE named s10-xx is created.

install_type initial_install

pool newpool auto auto auto mirror c0t0d0s0 c0t1d0s0

bootenv installbe bename s10-xx

The following profile performs an initial installation with the keyword install_type

initial_install of the SUNWCall metacluster in a new pool called newpool, which is 80 GBs in
size. This pool is created with a 2-GB swap volume and a 2-GB dump volume, in a mirrored
configuration of any two available devices that are large enough to create an 80-GB pool. If two

Installing a ZFS Root File System ( JumpStart Installation)

Oracle Solaris ZFS Administration Guide • April 2012138



such devices aren't available, the installation fails. Boot environment characteristics are set with
the bootenv keyword to install a new BE with the keyword installbe and a bename named
s10–xx is created.

install_type initial_install

cluster SUNWCall

pool newpool 80g 2g 2g mirror any any

bootenv installbe bename s10-xx

JumpStart installation syntax enables you to preserve or create a UFS file system on a disk that
also includes a ZFS root pool. This configuration is not recommended for production systems.
However, it could be used for transition or migration needs on a small system, such as a laptop.

JumpStart Issues for ZFS
Consider the following issues before starting a JumpStart installation of a bootable ZFS root file
system:

■ You cannot use an existing ZFS storage pool for a JumpStart installation to create a bootable
ZFS root file system. You must create a new ZFS storage pool with syntax similar to the
following:

pool rpool 20G 4G 4G c0t0d0s0

■ You must create your pool with disk slices rather than with whole disks as described in
“Oracle Solaris Installation and Live Upgrade Requirements for ZFS Support” on page 123.
For example, the bold syntax in the following example is not acceptable:

install_type initial_install

cluster SUNWCall

pool rpool all auto auto mirror c0t0d0 c0t1d0

bootenv installbe bename newBE

The bold syntax in the following example is acceptable:

install_type initial_install

cluster SUNWCall

pool rpool all auto auto mirror c0t0d0s0 c0t1d0s0

bootenv installbe bename newBE

Migrating to a ZFS Root File System or Updating a ZFS Root
File System (Live Upgrade)

Live Upgrade features related to UFS components are still available, and they work as in
previous releases.

Migrating to a ZFS Root File System or Updating a ZFS Root File System (Live Upgrade)

Chapter 5 • Installing and Booting an Oracle Solaris ZFS Root File System 139



The following features are available:

■ UFS BE to ZFS BE migration
■ When you migrate your UFS root file system to a ZFS root file system, you must

designate an existing ZFS storage pool with the -p option.
■ If the UFS root file system has components on different slices, they are migrated to the

ZFS root pool.
■ In the Oracle Solaris 10 8/11 release, you can specify a separate /var file system when

you migrate your UFS root file system to a ZFS root file system
■ The basic process for migrating a UFS root file system to a ZFS root file system follows:

1. Install the required Live Upgrade patches, if needed.
2. Install a current Oracle Solaris 10 release (Solaris 10 10/08 to Oracle Solaris 10 8/11),

or use the standard upgrade program to upgrade from a previous Oracle Solaris 10
release on any supported SPARC based or x86 based system.

3. When you are running at least the Solaris 10 10/08 release, create a ZFS storage pool
for your ZFS root file system.

4. Use Live Upgrade to migrate your UFS root file system to a ZFS root file system.
5. Activate your ZFS BE with the luactivate command.

■ Patch or upgrade a ZFS BE
■ You can use the luupgrade command to patch or upgrade an existing ZFS BE. You can

also use luupgrade to upgrade an alternate ZFS BE with a ZFS flash archive. For
information, see Example 5–8.

■ Live Upgrade can use the ZFS snapshot and clone features when you create a new ZFS
BE in the same pool. So, BE creation is much faster than in previous releases.

■ Zone migration support– You can migrate a system with zones but the supported
configurations are limited in the Solaris 10 10/08 release. More zone configurations are
supported starting in the Solaris 10 5/09 release. For more information, see the following
sections:
■ “Using Live Upgrade to Migrate or Upgrade a System With Zones (Solaris 10 10/08)” on

page 149
■ “Using Oracle Solaris Live Upgrade to Migrate or Upgrade a System With Zones (at Least

Solaris 10 5/09)” on page 154

If you are migrating a system without zones, see “Using Live Upgrade to Migrate or Update
a ZFS Root File System (Without Zones)” on page 142.

For detailed information about Oracle Solaris installation and Live Upgrade features, see the
Oracle Solaris 10 8/11 Installation Guide: Solaris Live Upgrade and Upgrade Planning.

Migrating to a ZFS Root File System or Updating a ZFS Root File System (Live Upgrade)

Oracle Solaris ZFS Administration Guide • April 2012140

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=SOLINSTALLUPG


For information about ZFS and Live Upgrade requirements, see “Oracle Solaris Installation and
Live Upgrade Requirements for ZFS Support” on page 123.

ZFS Migration Issues With Live Upgrade
Review the following issues before you use Live Upgrade to migrate your UFS root file system to
a ZFS root file system:

■ The Oracle Solaris installation GUI's standard upgrade option is not available for migrating
from a UFS root file system to a ZFS root file system. To migrate from a UFS file system, you
must use Live Upgrade.

■ You must create the ZFS storage pool that will be used for booting before the Live Upgrade
operation. In addition, due to current boot limitations, the ZFS root pool must be created
with slices instead of whole disks. For example:

# zpool create rpool mirror c1t0d0s0 c1t1d0s0

Before you create the new pool, ensure that the disks to be used in the pool have an SMI
(VTOC) label instead of an EFI label. If the disk is relabeled with an SMI label, ensure that
the labeling process did not change the partitioning scheme. In most cases, all of the disk's
capacity should be in the slices that are intended for the root pool.

■ You cannot use Oracle Solaris Live Upgrade to create a UFS BE from a ZFS BE. If you
migrate your UFS BE to a ZFS BE and you retain your UFS BE, you can boot from either
your UFS BE or your ZFS BE.

■ Do not rename your ZFS BEs with the zfs rename command because Live Upgrade cannot
detect the name change. Subsequent commands, such as ludelete, will fail. In fact, do not
rename your ZFS pools or file systems if you have existing BEs that you want to continue to
use.

■ When creating an alternate BE that is a clone of the primary BE, you cannot use the -f, -x,
-y, -Y, and -z options to include or exclude files from the primary BE. You can still use the
inclusion and exclusion option set in the following cases:

UFS -> UFS

UFS -> ZFS

ZFS -> ZFS (different pool)

■ Although you can use Live Upgrade to upgrade your UFS root file system to a ZFS root file
system, you cannot use Live Upgrade to upgrade non-root or shared file systems.

■ You cannot use the lu command to create or migrate a ZFS root file system.

Migrating to a ZFS Root File System or Updating a ZFS Root File System (Live Upgrade)

Chapter 5 • Installing and Booting an Oracle Solaris ZFS Root File System 141



Using Live Upgrade to Migrate or Update a ZFS Root
File System (Without Zones)
The following examples show how to migrate a UFS root file system to a ZFS root file system
and how to update a ZFS root file system.

If you are migrating or updating a system with zones, see the following sections:

■ “Using Live Upgrade to Migrate or Upgrade a System With Zones (Solaris 10 10/08)” on
page 149

■ “Using Oracle Solaris Live Upgrade to Migrate or Upgrade a System With Zones (at Least
Solaris 10 5/09)” on page 154

EXAMPLE 5–4 Using Live Upgrade to Migrate a UFS Root File System to a ZFS Root File System

The following example shows how to migrate a ZFS root file system from a UFS root file system.
The current BE, ufsBE, which contains a UFS root file system, is identified by the -c option. If
you do not include the optional -c option, the current BE name defaults to the device name.
The new BE, zfsBE, is identified by the -n option. A ZFS storage pool must exist before the
lucreate operation is performed.

The ZFS storage pool must be created with slices rather than with whole disks to be upgradeable
and bootable. Before you create the new pool, ensure that the disks to be used in the pool have
an SMI (VTOC) label instead of an EFI label. If the disk is relabeled with an SMI label, ensure
that the labeling process did not change the partitioning scheme. In most cases, all of the disk's
capacity should be in the slice that is intended for the root pool.

# zpool create rpool mirror c1t2d0s0 c2t1d0s0

# lucreate -c ufsBE -n zfsBE -p rpool

Analyzing system configuration.

No name for current boot environment.

Current boot environment is named <ufsBE>.

Creating initial configuration for primary boot environment <ufsBE>.

The device </dev/dsk/c1t0d0s0> is not a root device for any boot environment; cannot get BE ID.

PBE configuration successful: PBE name <ufsBE> PBE Boot Device </dev/dsk/c1t0d0s0>.

Comparing source boot environment <ufsBE> file systems with the file

system(s) you specified for the new boot environment. Determining which

file systems should be in the new boot environment.

Updating boot environment description database on all BEs.

Updating system configuration files.

The device </dev/dsk/c1t2d0s0> is not a root device for any boot environment; cannot get BE ID.

Creating configuration for boot environment <zfsBE>.

Source boot environment is <ufsBE>.

Creating boot environment <zfsBE>.

Creating file systems on boot environment <zfsBE>.

Creating <zfs> file system for </> in zone <global> on <rpool/ROOT/zfsBE>.

Populating file systems on boot environment <zfsBE>.

Checking selection integrity.

Integrity check OK.

Populating contents of mount point </>.

Migrating to a ZFS Root File System or Updating a ZFS Root File System (Live Upgrade)

Oracle Solaris ZFS Administration Guide • April 2012142



EXAMPLE 5–4 Using Live Upgrade to Migrate a UFS Root File System to a ZFS Root File System
(Continued)

Copying.

Creating shared file system mount points.

Creating compare databases for boot environment <zfsBE>.

Creating compare database for file system </rpool/ROOT>.

Creating compare database for file system </>.

Updating compare databases on boot environment <zfsBE>.

Making boot environment <zfsBE> bootable.

Creating boot_archive for /.alt.tmp.b-qD.mnt

updating /.alt.tmp.b-qD.mnt/platform/sun4u/boot_archive

Population of boot environment <zfsBE> successful.

Creation of boot environment <zfsBE> successful.

After the lucreate operation completes, use the lustatus command to view the BE status. For
example:

# lustatus

Boot Environment Is Active Active Can Copy

Name Complete Now On Reboot Delete Status

-------------------------- -------- ------ --------- ------ ----------

ufsBE yes yes yes no -

zfsBE yes no no yes -

Then, review the list of ZFS components. For example:

# zfs list

NAME USED AVAIL REFER MOUNTPOINT

rpool 7.17G 59.8G 95.5K /rpool

rpool/ROOT 4.66G 59.8G 21K /rpool/ROOT

rpool/ROOT/zfsBE 4.66G 59.8G 4.66G /

rpool/dump 2G 61.8G 16K -

rpool/swap 517M 60.3G 16K -

Next, use the luactivate command to activate the new ZFS BE. For example:

# luactivate zfsBE

A Live Upgrade Sync operation will be performed on startup of boot environment <zfsBE>.

**********************************************************************

The target boot environment has been activated. It will be used when you

reboot. NOTE: You MUST NOT USE the reboot, halt, or uadmin commands. You

MUST USE either the init or the shutdown command when you reboot. If you

do not use either init or shutdown, the system will not boot using the

target BE.

**********************************************************************

.

.

.

Modifying boot archive service

Activation of boot environment <zfsBE> successful.

Migrating to a ZFS Root File System or Updating a ZFS Root File System (Live Upgrade)

Chapter 5 • Installing and Booting an Oracle Solaris ZFS Root File System 143



EXAMPLE 5–4 Using Live Upgrade to Migrate a UFS Root File System to a ZFS Root File System
(Continued)

Next, reboot the system to the ZFS BE.

# init 6

Confirm that the ZFS BE is active.

# lustatus

Boot Environment Is Active Active Can Copy

Name Complete Now On Reboot Delete Status

-------------------------- -------- ------ --------- ------ ----------

ufsBE yes no no yes -

zfsBE yes yes yes no -

If you switch back to the UFS BE, you must re-import any ZFS storage pools that were created
while the ZFS BE was booted because they are not automatically available in the UFS BE.

If the UFS BE is no longer required, you can remove it with the ludelete command.

EXAMPLE 5–5 Using Live Upgrade to Create a ZFS BE From a UFS BE (With a Separate /var)

In the Oracle Solaris 10 8/11 release, you can use the lucreate -D option to identify that you
want a separate /var file system created when you migrate a UFS root file system to a ZFS root
file system. In the following example, the existing UFS BE is migrated to a ZFS BE with a
separate /var file system.

# lucreate -n zfsBE -p rpool -D /var

Determining types of file systems supported

Validating file system requests

Preparing logical storage devices

Preparing physical storage devices

Configuring physical storage devices

Configuring logical storage devices

Analyzing system configuration.

No name for current boot environment.

INFORMATION: The current boot environment is not named - assigning name <c0t0d0s0>.

Current boot environment is named <c0t0d0s0>.

Creating initial configuration for primary boot environment <c0t0d0s0>.

INFORMATION: No BEs are configured on this system.

The device </dev/dsk/c0t0d0s0> is not a root device for any boot environment; cannot get BE ID.

PBE configuration successful: PBE name <c0t0d0s0> PBE Boot Device </dev/dsk/c0t0d0s0>.

Updating boot environment description database on all BEs.

Updating system configuration files.

The device </dev/dsk/c0t1d0s0> is not a root device for any boot environment; cannot get BE ID.

Creating configuration for boot environment <zfsBE>.

Source boot environment is <c0t0d0s0>.

Creating file systems on boot environment <zfsBE>.

Creating <zfs> file system for </> in zone <global> on <rpool/ROOT/zfsBE>.

Creating <zfs> file system for </var> in zone <global> on <rpool/ROOT/zfsBE/var>.

Populating file systems on boot environment <zfsBE>.

Analyzing zones.

Migrating to a ZFS Root File System or Updating a ZFS Root File System (Live Upgrade)

Oracle Solaris ZFS Administration Guide • April 2012144



EXAMPLE 5–5 Using Live Upgrade to Create a ZFS BE From a UFS BE (With a Separate /var)
(Continued)

Mounting ABE <zfsBE>.

Generating file list.

Copying data from PBE <c0t0d0s0> to ABE <zfsBE>

100% of filenames transferred

Finalizing ABE.

Fixing zonepaths in ABE.

Unmounting ABE <zfsBE>.

Fixing properties on ZFS datasets in ABE.

Reverting state of zones in PBE <c0t0d0s0>.

Making boot environment <zfsBE> bootable.

Creating boot_archive for /.alt.tmp.b-iaf.mnt

updating /.alt.tmp.b-iaf.mnt/platform/sun4u/boot_archive

Population of boot environment <zfsBE> successful.

Creation of boot environment <zfsBE> successful.

# luactivate zfsBE

A Live Upgrade Sync operation will be performed on startup of boot environment <zfsBE>.

.

.

.

Modifying boot archive service

Activation of boot environment <zfsBE> successful.

# init 6

Review the newly created ZFS file systems. For example:

# zfs list

NAME USED AVAIL REFER MOUNTPOINT

rpool 6.29G 26.9G 32.5K /rpool

rpool/ROOT 4.76G 26.9G 31K legacy

rpool/ROOT/zfsBE 4.76G 26.9G 4.67G /

rpool/ROOT/zfsBE/var 89.5M 26.9G 89.5M /var

rpool/dump 512M 26.9G 512M -

rpool/swap 1.03G 28.0G 16K -

EXAMPLE 5–6 Using Live Upgrade to Create a ZFS BE From a ZFS BE

Creating a ZFS BE from a ZFS BE in the same pool is very quick because this operation uses ZFS
snapshot and clone features. If the current BE resides in the same ZFS pool, the -p option is
omitted.

If you have multiple ZFS BEs, do the following to select which BE to boot from:

■ SPARC: You can use the boot -L command to identify the available BEs. Then, select a BE
from which to boot by using the boot -Z command.

■ x86: You can select a BE from the GRUB menu.

For more information, see Example 5–12.

# lucreate -n zfs2BE

Analyzing system configuration.

Migrating to a ZFS Root File System or Updating a ZFS Root File System (Live Upgrade)

Chapter 5 • Installing and Booting an Oracle Solaris ZFS Root File System 145



EXAMPLE 5–6 Using Live Upgrade to Create a ZFS BE From a ZFS BE (Continued)

No name for current boot environment.

INFORMATION: The current boot environment is not named - assigning name <zfsBE>.

Current boot environment is named <zfsBE>.

Creating initial configuration for primary boot environment <zfsBE>.

The device </dev/dsk/c1t0d0s0> is not a root device for any boot environment; cannot get BE ID.

PBE configuration successful: PBE name <zfsBE> PBE Boot Device </dev/dsk/c1t0d0s0>.

Comparing source boot environment <zfsBE> file systems with the file

system(s) you specified for the new boot environment. Determining which

file systems should be in the new boot environment.

Updating boot environment description database on all BEs.

Updating system configuration files.

Creating configuration for boot environment <zfs2BE>.

Source boot environment is <zfsBE>.

Creating boot environment <zfs2BE>.

Cloning file systems from boot environment <zfsBE> to create boot environment <zfs2BE>.

Creating snapshot for <rpool/ROOT/zfsBE> on <rpool/ROOT/zfsBE@zfs2BE>.

Creating clone for <rpool/ROOT/zfsBE@zfs2BE> on <rpool/ROOT/zfs2BE>.

Setting canmount=noauto for </> in zone <global> on <rpool/ROOT/zfs2BE>.

Population of boot environment <zfs2BE> successful.

Creation of boot environment <zfs2BE> successful.

EXAMPLE 5–7 Update Your ZFS BE (luupgrade)

You can update your ZFS BE with additional packages or patches.

The basic process follows:

■ Create an alternate BE with the lucreate command.
■ Activate and boot from the alternate BE.
■ Update your primary ZFS BE with the luupgrade command to add packages or patches.

# lustatus

Boot Environment Is Active Active Can Copy

Name Complete Now On Reboot Delete Status

-------------------------- -------- ------ --------- ------ ----------

zfsBE yes no no yes -

zfs2BE yes yes yes no -

# luupgrade -p -n zfsBE -s /net/system/export/s10up/Solaris_10/Product SUNWchxge

Validating the contents of the media </net/install/export/s10up/Solaris_10/Product>.

Mounting the BE <zfsBE>.

Adding packages to the BE <zfsBE>.

Processing package instance <SUNWchxge> from </net/install/export/s10up/Solaris_10/Product>

Chelsio N110 10GE NIC Driver(sparc) 11.10.0,REV=2006.02.15.20.41

Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.

This appears to be an attempt to install the same architecture and

version of a package which is already installed. This installation

will attempt to overwrite this package.

Using </a> as the package base directory.

Migrating to a ZFS Root File System or Updating a ZFS Root File System (Live Upgrade)

Oracle Solaris ZFS Administration Guide • April 2012146



EXAMPLE 5–7 Update Your ZFS BE (luupgrade) (Continued)

## Processing package information.

## Processing system information.

4 package pathnames are already properly installed.

## Verifying package dependencies.

## Verifying disk space requirements.

## Checking for conflicts with packages already installed.

## Checking for setuid/setgid programs.

This package contains scripts which will be executed with super-user

permission during the process of installing this package.

Do you want to continue with the installation of <SUNWchxge> [y,n,?] y

Installing Chelsio N110 10GE NIC Driver as <SUNWchxge>

## Installing part 1 of 1.

## Executing postinstall script.

Installation of <SUNWchxge> was successful.

Unmounting the BE <zfsBE>.

The package add to the BE <zfsBE> completed.

Or, you can create a new BE to update to a later Oracle Solaris release. For example:

# luupgrade -u -n newBE -s /net/install/export/s10up/latest

where the -s option specifies the location of the Solaris installation medium.

EXAMPLE 5–8 Creating a ZFS BE With a ZFS Flash Archive (luupgrade)

In the Oracle Solaris 10 8/11 release, you can use the luupgrade command to create a ZFS BE
from an existing ZFS flash archive. The basic process is as follows:

1. Create a flash archive of a master system with a ZFS BE.
For example:

master-system# flarcreate -n s10zfsBE /tank/data/s10zfsflar

Full Flash

Checking integrity...

Integrity OK.

Running precreation scripts...

Precreation scripts done.

Determining the size of the archive...

The archive will be approximately 4.67GB.

Creating the archive...

Archive creation complete.

Running postcreation scripts...

Postcreation scripts done.

Running pre-exit scripts...

Pre-exit scripts done.

2. Make the ZFS flash archive that was created on the master system available to the clone
system.

Migrating to a ZFS Root File System or Updating a ZFS Root File System (Live Upgrade)

Chapter 5 • Installing and Booting an Oracle Solaris ZFS Root File System 147



EXAMPLE 5–8 Creating a ZFS BE With a ZFS Flash Archive (luupgrade) (Continued)

Possible flash archive locations are a local file system, HTTP, FTP, NFS, and so on.
3. Create an empty alternate ZFS BE on the clone system.

Use the -s - option to specify that this is an empty BE to be populated with the ZFS flash
archive contents.
For example:

clone-system# lucreate -n zfsflashBE -s - -p rpool

Determining types of file systems supported

Validating file system requests

Preparing logical storage devices

Preparing physical storage devices

Configuring physical storage devices

Configuring logical storage devices

Analyzing system configuration.

No name for current boot environment.

INFORMATION: The current boot environment is not named - assigning name <s10zfsBE>.

Current boot environment is named <s10zfsBE>.

Creating initial configuration for primary boot environment <s10zfsBE>.

INFORMATION: No BEs are configured on this system.

The device </dev/dsk/c0t0d0s0> is not a root device for any boot environment; cannot get BE ID.

PBE configuration successful: PBE name <s10zfsBE> PBE Boot Device </dev/dsk/c0t0d0s0>.

Updating boot environment description database on all BEs.

Updating system configuration files.

The device </dev/dsk/c0t1d0s0> is not a root device for any boot environment; cannot get BE ID.

Creating <zfs> file system for </> in zone <global> on <rpool/ROOT/zfsflashBE>.

Creation of boot environment <zfsflashBE> successful.

4. Install the ZFS flash archive into the alternate BE.
For example:

clone-system# luupgrade -f -s /net/server/export/s10/latest -n zfsflashBE -a /tank/data/zfs10up2flar

miniroot filesystem is <lofs>

Mounting miniroot at </net/server/s10up/latest/Solaris_10/Tools/Boot>

Validating the contents of the media </net/server/export/s10up/latest>.

The media is a standard Solaris media.

Validating the contents of the miniroot </net/server/export/s10up/latest/Solaris_10/Tools/Boot>.

Locating the flash install program.

Checking for existence of previously scheduled Live Upgrade requests.

Constructing flash profile to use.

Creating flash profile for BE <zfsflashBE>.

Performing the operating system flash install of the BE <zfsflashBE>.

CAUTION: Interrupting this process may leave the boot environment unstable or unbootable.

Extracting Flash Archive: 100% completed (of 5020.86 megabytes)

The operating system flash install completed.

updating /.alt.tmp.b-rgb.mnt/platform/sun4u/boot_archive

The Live Flash Install of the boot environment <zfsflashBE> is complete.

5. Activate the alternate BE.

clone-system# luactivate zfsflashBE

A Live Upgrade Sync operation will be performed on startup of boot environment <zfsflashBE>.

.

Migrating to a ZFS Root File System or Updating a ZFS Root File System (Live Upgrade)

Oracle Solaris ZFS Administration Guide • April 2012148



EXAMPLE 5–8 Creating a ZFS BE With a ZFS Flash Archive (luupgrade) (Continued)

.

.

Modifying boot archive service

Activation of boot environment <zfsflashBE> successful.

6. Reboot the system.

clone-system# init 6

Using Live Upgrade to Migrate or Upgrade a System
With Zones (Solaris 10 10/08)
You can use Live Upgrade to migrate a system with zones, but the supported configurations are
limited in the Solaris 10 10/08 release. If you are installing or upgrading to at least the Solaris 10
5/09 release, more zone configurations are supported. For more information, see “Using Oracle
Solaris Live Upgrade to Migrate or Upgrade a System With Zones (at Least Solaris 10 5/09)” on
page 154.

This section describes how to install and configure a system with zones so that it can be
upgraded and patched with Live Upgrade. If you are migrating to a ZFS root file system without
zones, see “Using Live Upgrade to Migrate or Update a ZFS Root File System (Without Zones)”
on page 142.

If you are migrating a system with zones or if you are configuring a system with zones in the
Solaris 10 10/08 release, review the following procedures:

■ “How to Migrate a UFS Root File System With Zone Roots on UFS to a ZFS Root File System
(Solaris 10 10/08)” on page 149

■ “How to Configure a ZFS Root File System With Zone Roots on ZFS (Solaris 10 10/08)” on
page 151

■ “How to Upgrade or Patch a ZFS Root File System With Zone Roots on ZFS (Solaris 10
10/08)” on page 152

■ “Resolving ZFS Mount-Point Problems That Prevent Successful Booting (Solaris 10 10/08)”
on page 171

Follow these recommended procedures to set up zones on a system with a ZFS root file system
to ensure that you can use Live Upgrade on that system.

▼ How to Migrate a UFS Root File System With Zone Roots on UFS to a ZFS
Root File System (Solaris 10 10/08)
This procedure explains how to migrate a UFS root file system with zones installed to a ZFS root
file system and ZFS zone root configuration that can be upgraded or patched.

Migrating to a ZFS Root File System or Updating a ZFS Root File System (Live Upgrade)

Chapter 5 • Installing and Booting an Oracle Solaris ZFS Root File System 149



In the steps that follow the example pool name is rpool, and the example names of the active
boot environment (BEs) begin with s10BE*.

Upgrade the system to the Solaris 10 10/08 release if it is running a previous Solaris 10 release.
For more information about upgrading a system that is running the Solaris 10 release, see
Oracle Solaris 10 8/11 Installation Guide: Solaris Live Upgrade and Upgrade Planning.

Create the root pool.
# zpool create rpool mirror c0t1d0 c1t1d0

For information about the root pool requirements, see “Oracle Solaris Installation and Live
Upgrade Requirements for ZFS Support” on page 123.

Confirm that the zones from the UFS environment are booted.

Create the new ZFS boot environment.
# lucreate -n s10BE2 -p rpool

This command establishes datasets in the root pool for the new BE and copies the current BE
(including the zones) to those datasets.

Activate the new ZFS boot environment.
# luactivate s10BE2

Now, the system is running a ZFS root file system, but the zone roots on UFS are still in the UFS
root file system. The next steps are required to fully migrate the UFS zones to a supported ZFS
configuration.

Reboot the system.
# init 6

Migrate the zones to a ZFS BE.

a. Boot the zones.

b. Create another ZFS BE within the pool.
# lucreate s10BE3

c. Activate the new boot environment.
# luactivate s10BE3

d. Reboot the system.
# init 6

This step verifies that the ZFS BE and the zones are booted.

1

2

3

4

5

6

7

Migrating to a ZFS Root File System or Updating a ZFS Root File System (Live Upgrade)

Oracle Solaris ZFS Administration Guide • April 2012150

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=SOLINSTALLUPG


Resolve any potential mount-point problems.
Due to a bug in Live Upgrade, the inactive BE might fail to boot because a ZFS dataset or a
zone's ZFS dataset in the BE has an invalid mount point.

a. Review the zfs list output.
Look for incorrect temporary mount points. For example:
# zfs list -r -o name,mountpoint rpool/ROOT/s10up

NAME MOUNTPOINT

rpool/ROOT/s10up /.alt.tmp.b-VP.mnt/

rpool/ROOT/s10up/zones /.alt.tmp.b-VP.mnt//zones

rpool/ROOT/s10up/zones/zonerootA /.alt.tmp.b-VP.mnt/zones/zonerootA

The mount point for the root ZFS BE (rpool/ROOT/s10up) should be /.

b. Reset the mount points for the ZFS BE and its datasets.
For example:
# zfs inherit -r mountpoint rpool/ROOT/s10up

# zfs set mountpoint=/ rpool/ROOT/s10up

c. Reboot the system.
When the option to boot a specific BE is presented, either in the OpenBoot PROM prompt
or the GRUB menu, select the BE whose mount points were just corrected.

▼ How to Configure a ZFS Root File System With Zone Roots on ZFS
(Solaris 10 10/08)
This procedure explains how to set up a ZFS root file system and ZFS zone root configuration
that can be upgraded or patched. In this configuration, the ZFS zone roots are created as ZFS
datasets.

In the steps that follow, the example pool name is rpool and the example name of the active
boot environment is s10BE. The name for the zones dataset can be any valid dataset name. In
the following example, the zones dataset name is zones.

Install the system with a ZFS root, either by using the interactive text installer or the JumpStart
installation method.
Depending on which installation method you choose, see either “Installing a ZFS Root File
System (Oracle Solaris Initial Installation)” on page 125 or “Installing a ZFS Root File System (
JumpStart Installation)” on page 136.

Boot the system from the newly created root pool.

8

1

2

Migrating to a ZFS Root File System or Updating a ZFS Root File System (Live Upgrade)

Chapter 5 • Installing and Booting an Oracle Solaris ZFS Root File System 151



Create a dataset for grouping the zone roots.
For example:
# zfs create -o canmount=noauto rpool/ROOT/s10BE/zones

Setting the noauto value for the canmount property prevents the dataset from being mounted
other than by the explicit action of Live Upgrade and the system startup code.

Mount the newly created zones dataset.
# zfs mount rpool/ROOT/s10BE/zones

The dataset is mounted at /zones.

Create and mount a dataset for each zone root.
# zfs create -o canmount=noauto rpool/ROOT/s10BE/zones/zonerootA

# zfs mount rpool/ROOT/s10BE/zones/zonerootA

Set the appropriate permissions on the zone root directory.
# chmod 700 /zones/zonerootA

Configure the zone, setting the zone path as follows:
# zonecfg -z zoneA

zoneA: No such zone configured

Use ’create’ to begin configuring a new zone.

zonecfg:zoneA> create

zonecfg:zoneA> set zonepath=/zones/zonerootA

You can enable the zones to boot automatically when the system is booted by using the
following syntax:

zonecfg:zoneA> set autoboot=true

Install the zone.
# zoneadm -z zoneA install

Boot the zone.
# zoneadm -z zoneA boot

▼ How to Upgrade or Patch a ZFS Root File System With Zone Roots on
ZFS (Solaris 10 10/08)
Use this procedure when you need to upgrade or patch a ZFS root file system with zone roots on
ZFS. These updates can consist either of a system upgrade or the application of patches.

In the steps that follow, newBE is the example name of the BE that is upgraded or patched.

3

4

5

6

7

8

9

Migrating to a ZFS Root File System or Updating a ZFS Root File System (Live Upgrade)

Oracle Solaris ZFS Administration Guide • April 2012152



Create the BE to upgrade or patch.
# lucreate -n newBE

The existing BE, including all the zones, is cloned. A dataset is created for each dataset in the
original BE. The new datasets are created in the same pool as the current root pool.

Select one of the following to upgrade the system or apply patches to the new BE:

■ Upgrade the system.

# luupgrade -u -n newBE -s /net/install/export/s10up/latest

where the -s option specifies the location of the Oracle Solaris installation medium.
■ Apply patches to the new BE.

# luupgrade -t -n newBE -t -s /patchdir 139147-02 157347-14

Activate the new BE.
# luactivate newBE

Boot from the newly activated BE.
# init 6

Resolve any potential mount-point problems.
Due to a bug in Live Upgrade, the inactive BE might fail to boot because a ZFS dataset or a
zone's ZFS dataset in the BE has an invalid mount point.

a. Review the zfs list output.
Look for incorrect temporary mount points. For example:
# zfs list -r -o name,mountpoint rpool/ROOT/newBE

NAME MOUNTPOINT

rpool/ROOT/newBE /.alt.tmp.b-VP.mnt/

rpool/ROOT/newBE/zones /.alt.tmp.b-VP.mnt/zones

rpool/ROOT/newBE/zones/zonerootA /.alt.tmp.b-VP.mnt/zones/zonerootA

The mount point for the root ZFS BE (rpool/ROOT/newBE) should be /.

b. Reset the mount points for the ZFS BE and its datasets.
For example:
# zfs inherit -r mountpoint rpool/ROOT/newBE

# zfs set mountpoint=/ rpool/ROOT/newBE

c. Reboot the system.
When the option to boot a specific boot environment is presented either at the OpenBoot
PROM prompt or the GRUB menu, select the boot environment whose mount points were
just corrected.

1

2

3

4

5

Migrating to a ZFS Root File System or Updating a ZFS Root File System (Live Upgrade)

Chapter 5 • Installing and Booting an Oracle Solaris ZFS Root File System 153



Using Oracle Solaris Live Upgrade to Migrate or
Upgrade a System With Zones (at Least Solaris 10 5/09)
You can use the Oracle Solaris Live Upgrade feature to migrate or upgrade a system with zones
starting in the Solaris 10 10/08 release. Additional sparse (root and whole) zone configurations
are supported by Live Upgrade starting in the Solaris 10 5/09 release.

This section describes how to configure a system with zones so that it can be upgraded and
patched with Live Upgrade starting in the Solaris 10 5/09 release. If you are migrating to a ZFS
root file system without zones, see “Using Live Upgrade to Migrate or Update a ZFS Root File
System (Without Zones)” on page 142.

Consider the following points when using Oracle Solaris Live Upgrade with ZFS and zones
starting in at least the Solaris 10 5/09 release:

■ To use Live Upgrade with zone configurations that are supported starting in the Solaris 10
5/09 release, you must first upgrade your system to at least the Solaris 10 5/09 release by
using the standard upgrade program.

■ Then, with Live Upgrade, you can migrate your UFS root file system with zone roots to a
ZFS root file system, or you can upgrade or patch your ZFS root file system and zone roots.

■ You cannot directly migrate unsupported zone configurations from a previous Solaris 10
release to at least the Solaris 10 5/09 release.

If you are migrating or configuring a system with zones starting in the Solaris 10 5/09 release,
review the following information:

■ “Supported ZFS with Zone Root Configuration Information (at Least Solaris 10 5/09)” on
page 154

■ “How to Create a ZFS BE With a ZFS Root File System and a Zone Root (at Least Solaris 10
5/09)” on page 156

■ “How to Upgrade or Patch a ZFS Root File System With Zone Roots (at Least Solaris 10
5/09)” on page 158

■ “How to Migrate a UFS Root File System With a Zone Root to a ZFS Root File System (at
Least Solaris 10 5/09)” on page 161

Supported ZFS with Zone Root Configuration Information (at Least
Solaris 10 5/09)
Review the supported zone configurations before using Oracle Solaris Live Upgrade to migrate
or upgrade a system with zones.

■ Migrate a UFS root file system to a ZFS root file system – The following configurations of
zone roots are supported:
■ In a directory in the UFS root file system

Migrating to a ZFS Root File System or Updating a ZFS Root File System (Live Upgrade)

Oracle Solaris ZFS Administration Guide • April 2012154



■ In a subdirectory of a mount point in the UFS root file system
■ A UFS root file system with a zone root in a UFS root file system directory or in a

subdirectory of a UFS root file system mount point and a ZFS non-root pool with a zone
root

A UFS root file system that has a zone root as a mount point is not supported.
■ Migrate or upgrade a ZFS root file system – The following configurations of zone roots are

supported:
■ In a file system in a ZFS root or a non-root pool. For example, /zonepool/zones is

acceptable. In some cases, if a file system for the zone root is not provided before the Live
Upgrade operation is performed, a file system for the zone root (zoneds) is created by
Live Upgrade.

■ In a descendent file system or subdirectory of a ZFS file system as long as different zone
paths are not nested. For example, /zonepool/zones/zone1 and
/zonepool/zones/zone1_dir are acceptable.
In the following example, zonepool/zones is a file system that contains the zone roots,
and rpool contains the ZFS BE:

zonepool

zonepool/zones

zonepool/zones/myzone

rpool

rpool/ROOT

rpool/ROOT/myBE

Live Upgrade takes snapshots of and clones the zones in zonepool and the rpool BE if
you use this syntax:

# lucreate -n newBE

The newBE BE in rpool/ROOT/newBE is created. When activated, newBE provides access
to the zonepool components.

In the preceding example, if /zonepool/zones were a subdirectory and not a separate
file system, then Live Upgrade would migrate it as a component of the root pool, rpool.

■ The following ZFS and zone path configuration is not supported:
Live upgrade cannot be used to create an alternate BE when the source BE has a
non-global zone with a zone path set to the mount point of a top-level pool file system.
For example, if zonepool pool has a file system mounted as /zonepool, you cannot have
a non-global zone with a zone path set to /zonepool.

■ Zones migration or upgrade information with zones for both UFS and ZFS – Review the
following considerations that might affect a migration or an upgrade of either a UFS and
ZFS environment:

Migrating to a ZFS Root File System or Updating a ZFS Root File System (Live Upgrade)

Chapter 5 • Installing and Booting an Oracle Solaris ZFS Root File System 155



■ If you configured your zones as described in “Using Live Upgrade to Migrate or Upgrade
a System With Zones (Solaris 10 10/08)” on page 149 in the Solaris 10 10/08 release and
have upgraded to at least the Solaris 10 5/09, you can migrate to a ZFS root file system or
use Live Upgrade to upgrade to at least the Solaris 10 5/09 release.

■ Do not create zone roots in nested directories, for example, zones/zone1 and
zones/zone1/zone2. Otherwise, mounting might fail at boot time.

▼ How to Create a ZFS BE With a ZFS Root File System and a Zone Root (at
Least Solaris 10 5/09)
Use this procedure after you have performed an initial installation of at least the Solaris 10 5/09
release to create a ZFS root file system. Also use this procedure after you have used the
luupgrade command to upgrade a ZFS root file system to at least the Solaris 10 5/09 release. A
ZFS BE that is created using this procedure can then be upgraded or patched.

In the steps that follow, the example Oracle Solaris 10 9/10 system has a ZFS root file system and
a zone root dataset in /rpool/zones. A ZFS BE named zfs2BE is created and can then be
upgraded or patched.

Review the existing ZFS file systems.
# zfs list

NAME USED AVAIL REFER MOUNTPOINT

rpool 7.26G 59.7G 98K /rpool

rpool/ROOT 4.64G 59.7G 21K legacy

rpool/ROOT/zfsBE 4.64G 59.7G 4.64G /

rpool/dump 1.00G 59.7G 1.00G -

rpool/export 44K 59.7G 23K /export

rpool/export/home 21K 59.7G 21K /export/home

rpool/swap 1G 60.7G 16K -

rpool/zones 633M 59.7G 633M /rpool/zones

Ensure that the zones are installed and booted.
# zoneadm list -cv

ID NAME STATUS PATH BRAND IP

0 global running / native shared

2 zfszone running /rpool/zones native shared

Create the ZFS BE.
# lucreate -n zfs2BE

Analyzing system configuration.

No name for current boot environment.

INFORMATION: The current boot environment is not named - assigning name <zfsBE>.

Current boot environment is named <zfsBE>.

Creating initial configuration for primary boot environment <zfsBE>.

The device </dev/dsk/c1t0d0s0> is not a root device for any boot environment; cannot get BE ID.

PBE configuration successful: PBE name <zfsBE> PBE Boot Device </dev/dsk/c1t0d0s0>.

Comparing source boot environment <zfsBE> file systems with the file

system(s) you specified for the new boot environment. Determining which

file systems should be in the new boot environment.

1

2

3

Migrating to a ZFS Root File System or Updating a ZFS Root File System (Live Upgrade)

Oracle Solaris ZFS Administration Guide • April 2012156



Updating boot environment description database on all BEs.

Updating system configuration files.

Creating configuration for boot environment <zfs2BE>.

Source boot environment is <zfsBE>.

Creating boot environment <zfs2BE>.

Cloning file systems from boot environment <zfsBE> to create boot environment <zfs2BE>.

Creating snapshot for <rpool/ROOT/zfsBE> on <rpool/ROOT/zfsBE@zfs2BE>.

Creating clone for <rpool/ROOT/zfsBE@zfs2BE> on <rpool/ROOT/zfs2BE>.

Setting canmount=noauto for </> in zone <global> on <rpool/ROOT/zfs2BE>.

Population of boot environment <zfs2BE> successful.

Creation of boot environment <zfs2BE> successful.

Activate the ZFS BE.
# lustatus

Boot Environment Is Active Active Can Copy

Name Complete Now On Reboot Delete Status

-------------------------- -------- ------ --------- ------ ----------

zfsBE yes yes yes no -

zfs2BE yes no no yes -

# luactivate zfs2BE

A Live Upgrade Sync operation will be performed on startup of boot environment <zfs2BE>.

.

.

.

Boot the ZFS BE.
# init 6

Confirm that the ZFS file systems and zones are created in the new BE.
# zfs list

NAME USED AVAIL REFER MOUNTPOINT

rpool 7.38G 59.6G 98K /rpool

rpool/ROOT 4.72G 59.6G 21K legacy

rpool/ROOT/zfs2BE 4.72G 59.6G 4.64G /

rpool/ROOT/zfs2BE@zfs2BE 74.0M - 4.64G -

rpool/ROOT/zfsBE 5.45M 59.6G 4.64G /.alt.zfsBE

rpool/dump 1.00G 59.6G 1.00G -

rpool/export 44K 59.6G 23K /export

rpool/export/home 21K 59.6G 21K /export/home

rpool/swap 1G 60.6G 16K -

rpool/zones 17.2M 59.6G 633M /rpool/zones

rpool/zones-zfsBE 653M 59.6G 633M /rpool/zones-zfsBE

rpool/zones-zfsBE@zfs2BE 19.9M - 633M -

# zoneadm list -cv

ID NAME STATUS PATH BRAND IP

0 global running / native shared

- zfszone installed /rpool/zones native shared

4

5

6

Migrating to a ZFS Root File System or Updating a ZFS Root File System (Live Upgrade)

Chapter 5 • Installing and Booting an Oracle Solaris ZFS Root File System 157



▼ How to Upgrade or Patch a ZFS Root File System With Zone Roots (at
Least Solaris 10 5/09)
Use this procedure when you need to upgrade or patch a ZFS root file system with zone roots in
at least the Solaris 10 5/09 release. These updates can consist of either a system upgrade or the
application of patches.

In the steps that follow, zfs2BEis the example name of the BE that is upgraded or patched.

Review the existing ZFS file systems.
# zfs list

NAME USED AVAIL REFER MOUNTPOINT

rpool 7.38G 59.6G 100K /rpool

rpool/ROOT 4.72G 59.6G 21K legacy

rpool/ROOT/zfs2BE 4.72G 59.6G 4.64G /

rpool/ROOT/zfs2BE@zfs2BE 75.0M - 4.64G -

rpool/ROOT/zfsBE 5.46M 59.6G 4.64G /

rpool/dump 1.00G 59.6G 1.00G -

rpool/export 44K 59.6G 23K /export

rpool/export/home 21K 59.6G 21K /export/home

rpool/swap 1G 60.6G 16K -

rpool/zones 22.9M 59.6G 637M /rpool/zones

rpool/zones-zfsBE 653M 59.6G 633M /rpool/zones-zfsBE

rpool/zones-zfsBE@zfs2BE 20.0M - 633M -

Ensure that the zones are installed and booted.
# zoneadm list -cv

ID NAME STATUS PATH BRAND IP

0 global running / native shared

5 zfszone running /rpool/zones native shared

Create the ZFS BE to upgrade or patch.
# lucreate -n zfs2BE

Analyzing system configuration.

Comparing source boot environment <zfsBE> file systems with the file

system(s) you specified for the new boot environment. Determining which

file systems should be in the new boot environment.

Updating boot environment description database on all BEs.

Updating system configuration files.

Creating configuration for boot environment <zfs2BE>.

Source boot environment is <zfsBE>.

Creating boot environment <zfs2BE>.

Cloning file systems from boot environment <zfsBE> to create boot environment <zfs2BE>.

Creating snapshot for <rpool/ROOT/zfsBE> on <rpool/ROOT/zfsBE@zfs2BE>.

Creating clone for <rpool/ROOT/zfsBE@zfs2BE> on <rpool/ROOT/zfs2BE>.

Setting canmount=noauto for </> in zone <global> on <rpool/ROOT/zfs2BE>.

Creating snapshot for <rpool/zones> on <rpool/zones@zfs10092BE>.

Creating clone for <rpool/zones@zfs2BE> on <rpool/zones-zfs2BE>.

Population of boot environment <zfs2BE> successful.

Creation of boot environment <zfs2BE> successful.

Select one of the following to upgrade the system or apply patches to the new BE:

1

2

3

4

Migrating to a ZFS Root File System or Updating a ZFS Root File System (Live Upgrade)

Oracle Solaris ZFS Administration Guide • April 2012158



■ Upgrade the system.

# luupgrade -u -n zfs2BE -s /net/install/export/s10up/latest

where the -s option specifies the location of the Oracle Solaris installation medium.

This process can take a very long time.

For a complete example of the luupgrade process, see Example 5–9.
■ Apply patches to the new BE.

# luupgrade -t -n zfs2BE -t -s /patchdir patch-id-02 patch-id-04

Activate the new boot environment.
# lustatus

Boot Environment Is Active Active Can Copy

Name Complete Now On Reboot Delete Status

-------------------------- -------- ------ --------- ------ ----------

zfsBE yes yes yes no -

zfs2BE yes no no yes -

# luactivate zfs2BE

A Live Upgrade Sync operation will be performed on startup of boot environment <zfs2BE>.

.

.

.

Boot from the newly activated boot environment.
# init 6

Upgrading a ZFS Root File System With a Zone Root to an Oracle Solaris 10 9/10 ZFS
Root File System

In this example, a ZFS BE (zfsBE), which was created on a Solaris 10 10/09 system with a ZFS
root file system and zone root in a non-root pool, is upgraded to the Oracle Solaris 10 9/10
release. This process can take a long time. Then, the upgraded BE (zfs2BE) is activated. Ensure
that the zones are installed and booted before attempting the upgrade.

In this example, the zonepool pool, the /zonepool/zones dataset, and the zfszone zone are
created as follows:

# zpool create zonepool mirror c2t1d0 c2t5d0

# zfs create zonepool/zones

# chmod 700 zonepool/zones

# zonecfg -z zfszone

zfszone: No such zone configured

Use ’create’ to begin configuring a new zone.

zonecfg:zfszone> create

zonecfg:zfszone> set zonepath=/zonepool/zones

zonecfg:zfszone> verify

zonecfg:zfszone> exit

5

6

Example 5–9

Migrating to a ZFS Root File System or Updating a ZFS Root File System (Live Upgrade)

Chapter 5 • Installing and Booting an Oracle Solaris ZFS Root File System 159



# zoneadm -z zfszone install

cannot create ZFS dataset zonepool/zones: dataset already exists

Preparing to install zone <zfszone>.

Creating list of files to copy from the global zone.

Copying <8960> files to the zone.

.

.

.

# zoneadm list -cv

ID NAME STATUS PATH BRAND IP

0 global running / native shared

2 zfszone running /zonepool/zones native shared

# lucreate -n zfsBE

.

.

.

# luupgrade -u -n zfsBE -s /net/install/export/s10up/latest

40410 blocks

miniroot filesystem is <lofs>

Mounting miniroot at </net/system/export/s10up/latest/Solaris_10/Tools/Boot>

Validating the contents of the media </net/system/export/s10up/latest>.

The media is a standard Solaris media.

The media contains an operating system upgrade image.

The media contains <Solaris> version <10>.

Constructing upgrade profile to use.

Locating the operating system upgrade program.

Checking for existence of previously scheduled Live Upgrade requests.

Creating upgrade profile for BE <zfsBE>.

Determining packages to install or upgrade for BE <zfsBE>.

Performing the operating system upgrade of the BE <zfsBE>.

CAUTION: Interrupting this process may leave the boot environment unstable

or unbootable.

Upgrading Solaris: 100% completed

Installation of the packages from this media is complete.

Updating package information on boot environment <zfsBE>.

Package information successfully updated on boot environment <zfsBE>.

Adding operating system patches to the BE <zfsBE>.

The operating system patch installation is complete.

INFORMATION: The file </var/sadm/system/logs/upgrade_log> on boot

environment <zfsBE> contains a log of the upgrade operation.

INFORMATION: The file </var/sadm/system/data/upgrade_cleanup> on boot

environment <zfsBE> contains a log of cleanup operations required.

INFORMATION: Review the files listed above. Remember that all of the files

are located on boot environment <zfsBE>. Before you activate boot

environment <zfsBE>, determine if any additional system maintenance is

required or if additional media of the software distribution must be

installed.

The Solaris upgrade of the boot environment <zfsBE> is complete.

Installing failsafe

Failsafe install is complete.

# luactivate zfs2BE

# init 6

# lustatus

Boot Environment Is Active Active Can Copy

Name Complete Now On Reboot Delete Status

-------------------------- -------- ------ --------- ------ ----------

Migrating to a ZFS Root File System or Updating a ZFS Root File System (Live Upgrade)

Oracle Solaris ZFS Administration Guide • April 2012160



zfsBE yes no no yes -

zfs2BE yes yes yes no -

# zoneadm list -cv

ID NAME STATUS PATH BRAND IP

0 global running / native shared

- zfszone installed /zonepool/zones native shared

▼ How to Migrate a UFS Root File System With a Zone Root to a ZFS Root
File System (at Least Solaris 10 5/09)
Use this procedure to migrate a system with a UFS root file system and a zone root to at least the
Solaris 10 5/09 release. Then, use Live Upgrade to create a ZFS BE.

In the steps that follow, the example UFS BE name is c1t1d0s0, the UFS zone root is
zonepool/zfszone, and the ZFS root BE is zfsBE.

Upgrade the system to at least the Solaris 10 5/09 release if it is running a previous Solaris 10
release.
For information about upgrading a system that is running the Solaris 10 release, see Oracle
Solaris 10 8/11 Installation Guide: Solaris Live Upgrade and Upgrade Planning.

Create the root pool.
For information about the root pool requirements, see “Oracle Solaris Installation and Live
Upgrade Requirements for ZFS Support” on page 123.

Confirm that the zones from the UFS environment are booted.
# zoneadm list -cv

ID NAME STATUS PATH BRAND IP

0 global running / native shared

2 zfszone running /zonepool/zones native shared

Create the new ZFS BE.
# lucreate -c c1t1d0s0 -n zfsBE -p rpool

This command establishes datasets in the root pool for the new BE and copies the current BE
(including the zones) to those datasets.

Activate the new ZFS BE.
# lustatus

Boot Environment Is Active Active Can Copy

Name Complete Now On Reboot Delete Status

-------------------------- -------- ------ --------- ------ ----------

c1t1d0s0 yes no no yes -

zfsBE yes yes yes no - #

luactivate zfsBE

A Live Upgrade Sync operation will be performed on startup of boot environment <zfsBE>.

.

1

2

3

4

5

Migrating to a ZFS Root File System or Updating a ZFS Root File System (Live Upgrade)

Chapter 5 • Installing and Booting an Oracle Solaris ZFS Root File System 161

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=SOLINSTALLUPG
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=SOLINSTALLUPG


.

.

Reboot the system.
# init 6

Confirm that the ZFS file systems and zones are created in the new BE.
# zfs list

NAME USED AVAIL REFER MOUNTPOINT

rpool 6.17G 60.8G 98K /rpool

rpool/ROOT 4.67G 60.8G 21K /rpool/ROOT

rpool/ROOT/zfsBE 4.67G 60.8G 4.67G /

rpool/dump 1.00G 60.8G 1.00G -

rpool/swap 517M 61.3G 16K -

zonepool 634M 7.62G 24K /zonepool

zonepool/zones 270K 7.62G 633M /zonepool/zones

zonepool/zones-c1t1d0s0 634M 7.62G 633M /zonepool/zones-c1t1d0s0

zonepool/zones-c1t1d0s0@zfsBE 262K - 633M -

# zoneadm list -cv

ID NAME STATUS PATH BRAND IP

0 global running / native shared

- zfszone installed /zonepool/zones native shared

Migrating a UFS Root File System With a Zone Root to a ZFS Root File System

In this example, an Oracle Solaris 10 9/10 system with a UFS root file system and a zone root
(/uzone/ufszone), as well as a ZFS non-root pool (pool) and a zone root (/pool/zfszone), is
migrated to a ZFS root file system. Ensure that the ZFS root pool is created and that the zones
are installed and booted before attempting the migration.

# zoneadm list -cv

ID NAME STATUS PATH BRAND IP

0 global running / native shared

2 ufszone running /uzone/ufszone native shared

3 zfszone running /pool/zones/zfszone native shared

# lucreate -c ufsBE -n zfsBE -p rpool

Analyzing system configuration.

No name for current boot environment.

Current boot environment is named <zfsBE>.

Creating initial configuration for primary boot environment <zfsBE>.

The device </dev/dsk/c1t0d0s0> is not a root device for any boot environment; cannot get BE ID.

PBE configuration successful: PBE name <ufsBE> PBE Boot Device </dev/dsk/c1t0d0s0>.

Comparing source boot environment <ufsBE> file systems with the file

system(s) you specified for the new boot environment. Determining which

file systems should be in the new boot environment.

Updating boot environment description database on all BEs.

Updating system configuration files.

The device </dev/dsk/c1t1d0s0> is not a root device for any boot environment; cannot get BE ID.

Creating configuration for boot environment <zfsBE>.

Source boot environment is <ufsBE>.

Creating boot environment <zfsBE>.

Creating file systems on boot environment <zfsBE>.

6

7

Example 5–10

Migrating to a ZFS Root File System or Updating a ZFS Root File System (Live Upgrade)

Oracle Solaris ZFS Administration Guide • April 2012162



Creating <zfs> file system for </> in zone <global> on <rpool/ROOT/zfsBE>.

Populating file systems on boot environment <zfsBE>.

Checking selection integrity.

Integrity check OK.

Populating contents of mount point </>.

Copying.

Creating shared file system mount points.

Copying root of zone <ufszone> to </.alt.tmp.b-EYd.mnt/uzone/ufszone>.

Creating snapshot for <pool/zones/zfszone> on <pool/zones/zfszone@zfsBE>.

Creating clone for <pool/zones/zfszone@zfsBE> on <pool/zones/zfszone-zfsBE>.

Creating compare databases for boot environment <zfsBE>.

Creating compare database for file system </rpool/ROOT>.

Creating compare database for file system </>.

Updating compare databases on boot environment <zfsBE>.

Making boot environment <zfsBE> bootable.

Creating boot_archive for /.alt.tmp.b-DLd.mnt

updating /.alt.tmp.b-DLd.mnt/platform/sun4u/boot_archive

Population of boot environment <zfsBE> successful.

Creation of boot environment <zfsBE> successful.

# lustatus

Boot Environment Is Active Active Can Copy

Name Complete Now On Reboot Delete Status

-------------------------- -------- ------ --------- ------ ----------

ufsBE yes yes yes no -

zfsBE yes no no yes -

# luactivate zfsBE

.

.

.

# init 6

.

.

.

# zfs list

NAME USED AVAIL REFER MOUNTPOINT

pool 628M 66.3G 19K /pool

pool/zones 628M 66.3G 20K /pool/zones

pool/zones/zfszone 75.5K 66.3G 627M /pool/zones/zfszone

pool/zones/zfszone-ufsBE 628M 66.3G 627M /pool/zones/zfszone-ufsBE

pool/zones/zfszone-ufsBE@zfsBE 98K - 627M -

rpool 7.76G 59.2G 95K /rpool

rpool/ROOT 5.25G 59.2G 18K /rpool/ROOT

rpool/ROOT/zfsBE 5.25G 59.2G 5.25G /

rpool/dump 2.00G 59.2G 2.00G -

rpool/swap 517M 59.7G 16K -

# zoneadm list -cv

ID NAME STATUS PATH BRAND IP

0 global running / native shared

- ufszone installed /uzone/ufszone native shared

- zfszone installed /pool/zones/zfszone native shared

Migrating to a ZFS Root File System or Updating a ZFS Root File System (Live Upgrade)

Chapter 5 • Installing and Booting an Oracle Solaris ZFS Root File System 163



ZFS Support for Swap and Dump Devices
During an initial Oracle Solaris OS installation or after performing a Live Upgrade migration
from a UFS file system, a swap area is created on a ZFS volume in the ZFS root pool. For
example:

# swap -l

swapfile dev swaplo blocks free

/dev/zvol/dsk/rpool/swap 256,1 16 4194288 4194288

During an initial Oracle Solaris OS installation or a Live Upgrade from a UFS file system, a
dump device is created on a ZFS volume in the ZFS root pool. In general, a dump device
requires no administration because it is set up automatically at installation time. For example:

# dumpadm

Dump content: kernel pages

Dump device: /dev/zvol/dsk/rpool/dump (dedicated)

Savecore directory: /var/crash/t2000

Savecore enabled: yes

Save compressed: on

If you disable and remove the dump device, then you must enable it with the dumpadm command
after it is re-created. In most cases, you will only have to adjust the size of the dump device by
using the zfs command.

For information about the swap and dump volume sizes that are created by the installation
programs, see “Oracle Solaris Installation and Live Upgrade Requirements for ZFS Support” on
page 123.

Both the swap volume size and the dump volume size can be adjusted during and after
installation. For more information, see “Adjusting the Sizes of Your ZFS Swap Device and
Dump Device” on page 165.

Consider the following issues when working with your ZFS swap and dump devices:

■ Separate ZFS volumes must be used for the swap area and the dump device.
■ Currently, using a swap file on a ZFS file system is not supported.
■ If you need to change your swap area or dump device after the system is installed or

upgraded, use the swap and dumpadm commands as in previous releases. For more
information, see Chapter 19, “Configuring Additional Swap Space (Tasks),” in System
Administration Guide: Devices and File Systems and Chapter 17, “Managing System Crash
Information (Tasks),” in System Administration Guide: Advanced Administration.

See the following sections for more information:

■ “Adjusting the Sizes of Your ZFS Swap Device and Dump Device” on page 165
■ “Troubleshooting ZFS Dump Device Issues” on page 166

ZFS Support for Swap and Dump Devices

Oracle Solaris ZFS Administration Guide • April 2012164

http://www.oracle.com/pls/topic/lookup?ctx=E23823&id=SAGDFSfsswap-14677
http://www.oracle.com/pls/topic/lookup?ctx=E23823&id=SAGDFSfsswap-14677
http://www.oracle.com/pls/topic/lookup?ctx=E23823&id=SYSADV2tscrashdumps-40145
http://www.oracle.com/pls/topic/lookup?ctx=E23823&id=SYSADV2tscrashdumps-40145


Adjusting the Sizes of Your ZFS Swap Device and
Dump Device
Because of the differences in the way a ZFS root installation determines the size of swap and
dump devices, you might need to adjust their size before, during, or after installation.

■ You can adjust the size of your swap and dump volumes during an initial installation. For
more information, see Example 5–1.

■ You can create and size your swap and dump volumes before you perform a Live Upgrade
operation. For example:
1. Create your storage pool.

# zpool create rpool mirror c0t0d0s0 c0t1d0s0

2. Create your dump device.

# zfs create -V 2G rpool/dump

3. Enable the dump device.

# dumpadm -d /dev/zvol/dsk/rpool/dump

Dump content: kernel pages

Dump device: /dev/zvol/dsk/rpool/dump (dedicated)

Savecore directory: /var/crash/t2000

Savecore enabled: yes

Save compressed: on

4. Select one of the following to create your swap volume:
■ SPARC: Create your swap volume. Set the block size to 8 KB.

# zfs create -V 2G -b 8k rpool/swap

■ x86: Create your swap volume. Set the block size to 4 KB.

# zfs create -V 2G -b 4k rpool/swap

5. You must enable the swap area when a new swap device is added or changed.
6. Add an entry for the swap volume to the /etc/vfstab file.

Live Upgrade does not resize existing swap and dump volumes.
■ You can reset the volsize property of the dump device after a system is installed. For

example:

# zfs set volsize=2G rpool/dump

# zfs get volsize rpool/dump

NAME PROPERTY VALUE SOURCE

rpool/dump volsize 2G -

■ You can resize the swap volume but until CR 6765386 is integrated, it is best to remove the
swap device first. Then, re-create it. For example:

ZFS Support for Swap and Dump Devices

Chapter 5 • Installing and Booting an Oracle Solaris ZFS Root File System 165



# swap -d /dev/zvol/dsk/rpool/swap

# zfs volsize=2G rpool/swap

# swap -a /dev/zvol/dsk/rpool/swap

For information about removing a swap device on an active system, see this site:

http://www.solarisinternals.com/wiki/index.php/ZFS_Troubleshooting_Guide

■ You can adjust the size of the swap and dump volumes in a JumpStart profile by using
profile syntax similar to the following:

install_type initial_install

cluster SUNWCXall

pool rpool 16g 2g 2g c0t0d0s0

In this profile, two 2g entries set the size of the swap volume and dump volume to 2 GB each.
■ If you need more swap space on a system that is already installed, just add another swap

volume. For example:

# zfs create -V 2G rpool/swap2

Then, activate the new swap volume. For example:

# swap -a /dev/zvol/dsk/rpool/swap2

# swap -l

swapfile dev swaplo blocks free

/dev/zvol/dsk/rpool/swap 256,1 16 1058800 1058800

/dev/zvol/dsk/rpool/swap2 256,3 16 4194288 4194288

Finally, add an entry for the second swap volume to the /etc/vfstab file.

Troubleshooting ZFS Dump Device Issues
Review the following if you have problems either capturing a system crash dump or resizing the
dump device.

■ If a crash dump was not created automatically, you can use the savecore command to save
the crash dump.

■ A dump volume is created automatically when you initially install a ZFS root file system or
migrate to a ZFS root file system. In most cases, you only need to adjust the size of the dump
volume if the default dump volume size is too small. For example, on a large-memory
system, the dump volume size is increased to 40 GB as follows:

# zfs set volsize=40G rpool/dump

Resizing a large dump volume can be a time-consuming process.

If, for any reason, you need to enable a dump device after you manually create a dump
device, use syntax similar to the following:

ZFS Support for Swap and Dump Devices

Oracle Solaris ZFS Administration Guide • April 2012166

http://www.solarisinternals.com/wiki/index.php/ZFS_Troubleshooting_Guide


# dumpadm -d /dev/zvol/dsk/rpool/dump

Dump content: kernel pages

Dump device: /dev/zvol/dsk/rpool/dump (dedicated)

Savecore directory: /var/crash/t2000

Savecore enabled: yes

■ A system with 128 GB or greater memory night need a larger dump device than the dump
device that is created by default. If the dump device is too small to capture an existing crash
dump, a message similar to the following is displayed:

# dumpadm -d /dev/zvol/dsk/rpool/dump

dumpadm: dump device /dev/zvol/dsk/rpool/dump is too small to hold a system dump

dump size 36255432704 bytes, device size 34359738368 bytes

For information about sizing the swap and dump devices, see “Planning for Swap Space” in
System Administration Guide: Devices and File Systems.

■ You cannot currently add a dump device to a pool with multiple top-level devices. You will
see a message similar to the following:

# dumpadm -d /dev/zvol/dsk/datapool/dump

dump is not supported on device ’/dev/zvol/dsk/datapool/dump’: ’datapool’ has multiple top level vdevs

Add the dump device to the root pool, which cannot have multiple top-level devices.

Booting From a ZFS Root File System
Both SPARC based and x86 based systems use the new style of booting with a boot archive,
which is a file system image that contains the files required for booting. When a system is
booted from a ZFS root file system, the path names of both the boot archive and the kernel file
are resolved in the root file system that is selected for booting.

When a system is booted for installation, a RAM disk is used for the root file system during the
entire installation process.

Booting from a ZFS file system differs from booting from a UFS file system because with ZFS,
the boot device specifier identifies a storage pool, not a single root file system. A storage pool
can contain multiple bootable datasets or ZFS root file systems. When booting from ZFS, you
must specify a boot device and a root file system within the pool that was identified by the boot
device.

By default, the dataset selected for booting is identified by the pool's bootfs property. This
default selection can be overridden by specifying an alternate bootable dataset with the boot -Z
command.

Booting From a ZFS Root File System

Chapter 5 • Installing and Booting an Oracle Solaris ZFS Root File System 167

http://www.oracle.com/pls/topic/lookup?ctx=E23823&id=SAGDFSfsswap-31050
http://www.oracle.com/pls/topic/lookup?ctx=E23823&id=SAGDFSfsswap-31050


Booting From an Alternate Disk in a Mirrored ZFS Root
Pool
You can create a mirrored ZFS root pool when the system is installed, or you can attach a disk to
create a mirrored ZFS root pool after installation. For more information see:

■ “Installing a ZFS Root File System (Oracle Solaris Initial Installation)” on page 125
■ “How to Create a Mirrored ZFS Root Pool (Postinstallation)” on page 131

Review the following known issues regarding mirrored ZFS root pools:

■ If you replace a root pool disk by using the zpool replace command, you must install the
boot information on the newly replaced disk by using the installboot or installgrub
command. If you create a mirrored ZFS root pool with the initial installation method or if
you use the zpool attach command to attach a disk to the root pool, then this step is
unnecessary. The installboot and installgrub command syntax follows:
■ SPARC:

sparc# installboot -F zfs /usr/platform/‘uname -i‘/lib/fs/zfs/bootblk

■ x86:

x86# installgrub /boot/grub/stage1 /boot/grub/stage2 /dev/rdsk/c0t1d0s0
■ You can boot from different devices in a mirrored ZFS root pool. Depending on the

hardware configuration, you might need to update the PROM or the BIOS to specify a
different boot device.
For example, you can boot from either disk (c1t0d0s0 or c1t1d0s0) in the following pool:

# zpool status rpool

pool: rpool

state: ONLINE

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

rpool ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c1t0d0s0 ONLINE 0 0 0

c1t1d0s0 ONLINE 0 0 0

■ SPARC: Specify the alternate disk at the ok prompt. For example:

ok boot /pci@7c0/pci@0/pci@1/pci@0,2/LSILogic,sas@2/disk@0

After the system is rebooted, confirm the active boot device. For example:

SPARC# prtconf -vp | grep bootpath

bootpath: ’/pci@7c0/pci@0/pci@1/pci@0,2/LSILogic,sas@2/disk@0,0:a’

■ x86: Select an alternate disk in the mirrored ZFS root pool from the appropriate BIOS menu.

Booting From a ZFS Root File System

Oracle Solaris ZFS Administration Guide • April 2012168



Then, use syntax similar to the following to confirm that you are booted from the alternate
disk:

x86# prtconf -v|sed -n ’/bootpath/,/value/p’

name=’bootpath’ type=string items=1

value=’/pci@0,0/pci8086,25f8@4/pci108e,286@0/disk@0,0:a’

SPARC: Booting From a ZFS Root File System
On a SPARC based system with multiple ZFS BEs, you can boot from any BE by using the
luactivate command.

During the Oracle Solaris OS installation and Live Upgrade process, the default ZFS root file
system is automatically designated with the bootfs property.

Multiple bootable datasets can exist within a pool. By default, the bootable dataset entry in the
/pool-name/boot/menu.lst file is identified by the pool's bootfs property. However, a
menu.lst entry can contain a bootfs command, which specifies an alternate dataset in the pool.
In this way, the menu.lst file can contain entries for multiple root file systems within the pool.

When a system is installed with a ZFS root file system or migrated to a ZFS root file system, an
entry similar to the following is added to the menu.lst file:

title zfsBE

bootfs rpool/ROOT/zfsBE

title zfs2BE

bootfs rpool/ROOT/zfs2BE

When a new BE is created, the menu.lst file is updated automatically.

On a SPARC based system, two ZFS boot options are available:

■ After the BE is activated, you can use the boot -L command to display a list of bootable
datasets within a ZFS pool. Then, you can select one of the bootable datasets in the list.
Detailed instructions for booting that dataset are displayed. You can boot the selected
dataset by following the instructions.

■ You can use the boot -Z dataset command to boot a specific ZFS dataset.

EXAMPLE 5–11 SPARC: Booting From a Specific ZFS Boot Environment

If you have multiple ZFS BEs in a ZFS storage pool on your system's boot device, you can use the
luactivate command to specify a default BE.

For example, the following lustatus output shows that two ZFS BEs are available:

# lustatus

Boot Environment Is Active Active Can Copy

Name Complete Now On Reboot Delete Status

Booting From a ZFS Root File System

Chapter 5 • Installing and Booting an Oracle Solaris ZFS Root File System 169



EXAMPLE 5–11 SPARC: Booting From a Specific ZFS Boot Environment (Continued)

-------------------------- -------- ------ --------- ------ ----------

zfsBE yes no no yes -

zfs2BE yes yes yes no -

If you have multiple ZFS BEs on your SPARC based system, you can use the boot -L command
to boot from a BE that is different from the default BE. However, a BE that is booted from a boot
-L session is not reset as the default BE nor is the bootfs property updated. If you want to make
the BE booted from a boot -L session the default BE, then you must activate it with the
luactivate command.

For example:

ok boot -L

Rebooting with command: boot -L

Boot device: /pci@7c0/pci@0/pci@1/pci@0,2/LSILogic,sas@2/disk@0 File and args: -L

1 zfsBE

2 zfs2BE

Select environment to boot: [ 1 - 2 ]: 1

To boot the selected entry, invoke:

boot [<root-device>] -Z rpool/ROOT/zfsBE

Program terminated

ok boot -Z rpool/ROOT/zfsBE

EXAMPLE 5–12 SPARC: Booting a ZFS File System in Failsafe Mode

On a SPARC based system, you can boot from the failsafe archive located in /platform/‘uname
-i‘/failsafe as follows:

ok boot -F failsafe

To boot a failsafe archive from a particular ZFS bootable dataset, use syntax similar to the
following:

ok boot -Z rpool/ROOT/zfsBE -F failsafe

x86: Booting From a ZFS Root File System
The following entries are added to the /pool-name/boot/grub/menu.lst file during the Oracle
Solaris OS installation or Live Upgrade process to boot ZFS automatically:

title Solaris 10 8/11 X86

findroot (rootfs0,0,a)

kernel$ /platform/i86pc/multiboot -B $ZFS-BOOTFS

module /platform/i86pc/boot_archive

title Solaris failsafe

Booting From a ZFS Root File System

Oracle Solaris ZFS Administration Guide • April 2012170



findroot (rootfs0,0,a)

kernel /boot/multiboot kernel/unix -s -B console=ttya

module /boot/x86.miniroot-safe

If the device identified by GRUB as the boot device contains a ZFS storage pool, the menu.lst
file is used to create the GRUB menu.

On an x86 based system with multiple ZFS BEs, you can select a BE from the GRUB menu. If the
root file system corresponding to this menu entry is a ZFS dataset, the following option is
added:

-B $ZFS-BOOTFS

EXAMPLE 5–13 x86: Booting a ZFS File System

When a system boots from a ZFS file system, the root device is specified by the -B $ZFS-BOOTFS
boot parameter. For example:

title Solaris 10 8/11 X86

findroot (pool_rpool,0,a)

kernel /platform/i86pc/multiboot -B $ZFS-BOOTFS

module /platform/i86pc/boot_archive

title Solaris failsafe

findroot (pool_rpool,0,a)

kernel /boot/multiboot kernel/unix -s -B console=ttya

module /boot/x86.miniroot-safe

EXAMPLE 5–14 x86: Booting a ZFS File System in Failsafe Mode

The x86 failsafe archive is /boot/x86.miniroot-safe and can be booted by selecting the Solaris
failsafe entry from the GRUB menu. For example:

title Solaris failsafe

findroot (pool_rpool,0,a)

kernel /boot/multiboot kernel/unix -s -B console=ttya

module /boot/x86.miniroot-safe

Resolving ZFS Mount-Point Problems That Prevent
Successful Booting (Solaris 10 10/08)
The best way to change the active boot environment (BE) is to use the luactivate command. If
booting the active BE fails due to a bad patch or a configuration error, the only way to boot from
a different BE is to select it at boot time. You can select an alternate BE by booting it explicitly
from the PROM on a SPARC based system or from the GRUB menu on an x86 based system.

Booting From a ZFS Root File System

Chapter 5 • Installing and Booting an Oracle Solaris ZFS Root File System 171



Due to a bug in Live Upgrade in the Solaris 10 10/08 release, the inactive BE might fail to boot
because a ZFS dataset or a zone's ZFS dataset in the BE has an invalid mount point. The same
bug also prevents the BE from mounting if it has a separate /var dataset.

If a zone's ZFS dataset has an invalid mount point, the mount point can be corrected by
performing the following steps.

▼ How to Resolve ZFS Mount-Point Problems

Boot the system from a failsafe archive.

Import the pool.
For example:
# zpool import rpool

Look for incorrect temporary mount points.
For example:
# zfs list -r -o name,mountpoint rpool/ROOT/s10up

NAME MOUNTPOINT

rpool/ROOT/s10up /.alt.tmp.b-VP.mnt/

rpool/ROOT/s10up/zones /.alt.tmp.b-VP.mnt//zones

rpool/ROOT/s10up/zones/zonerootA /.alt.tmp.b-VP.mnt/zones/zonerootA

The mount point for the root BE (rpool/ROOT/s10up) should be /.

If the boot is failing because of /var mounting problems, look for a similar incorrect temporary
mount point for the /var dataset.

Reset the mount points for the ZFS BE and its datasets.
For example:
# zfs inherit -r mountpoint rpool/ROOT/s10up

# zfs set mountpoint=/ rpool/ROOT/s10up

Reboot the system.
When the option to boot a specific BE is presented, either at the OpenBoot PROM prompt or in
the GRUB menu, select the boot environment whose mount points were just corrected.

Booting for Recovery Purposes in a ZFS Root
Environment
Use the following procedure if you need to boot the system so that you can recover from a lost
root password or similar problem.

1

2

3

4

5

Booting From a ZFS Root File System

Oracle Solaris ZFS Administration Guide • April 2012172



You must boot failsafe mode or boot from alternate media, depending on the severity of the
error. In general, you can boot failsafe mode to recover a lost or unknown root password.

■ “How to Boot ZFS Failsafe Mode” on page 173
■ “How to Boot ZFS From Alternate Media” on page 173

If you need to recover a root pool or root pool snapshot, see “Recovering the ZFS Root Pool or
Root Pool Snapshots” on page 174.

▼ How to Boot ZFS Failsafe Mode

Boot failsafe mode.

■ On a SPARC based system, type the following at the ok prompt:

ok boot -F failsafe

■ On an x86 system, select failsafe mode from the GRUB menu.

Mount the ZFS BE on /awhen prompted.
.

.

.

ROOT/zfsBE was found on rpool.

Do you wish to have it mounted read-write on /a? [y,n,?] y

mounting rpool on /a

Starting shell.

Change to the /a/etcdirectory.
# cd /a/etc

If necessary, set the TERM type.
# TERM=vt100

# export TERM

Correct the passwd or shadowfile.
# vi shadow

Reboot the system.
# init 6

▼ How to Boot ZFS From Alternate Media
If a problem prevents the system from booting successfully or some other severe problem
occurs, you must boot from a network install server or from an Oracle Solaris installation DVD,
import the root pool, mount the ZFS BE, and attempt to resolve the issue.

1

2

3

4

5

6

Booting From a ZFS Root File System

Chapter 5 • Installing and Booting an Oracle Solaris ZFS Root File System 173



Boot from an installation DVD or from the network.

■ SPARC - Select one of the following boot methods:

ok boot cdrom -s

ok boot net -s

If you don't use the -s option, you must exit the installation program.
■ x86 – Select the network boot option or boot from local DVD.

Import the root pool, and specify an alternate mount point. For example:
# zpool import -R /a rpool

Mount the ZFS BE. For example:
# zfs mount rpool/ROOT/zfsBE

Access the ZFS BE contents from the /adirectory.
# cd /a

Reboot the system.
# init 6

Recovering the ZFS Root Pool or Root Pool Snapshots
The following sections describe how to perform the following tasks:

■ “How to Replace a Disk in the ZFS Root Pool” on page 174
■ “How to Create Root Pool Snapshots” on page 176
■ “How to Re-create a ZFS Root Pool and Restore Root Pool Snapshots” on page 178
■ “How to Roll Back Root Pool Snapshots From a Failsafe Boot” on page 179

▼ How to Replace a Disk in the ZFS Root Pool
You might need to replace a disk in the root pool for the following reasons:

■ The root pool is too small and you want to replace a smaller disk with a larger disk.
■ A root pool disk is failing. In a non-redundant pool, if the disk is failing such that the system

won't boot, you must boot from alternate media, such as a DVD or the network, before you
replace the root pool disk.

In a mirrored root pool configuration, you can attempt a disk replacement without booting
from alternate media. You can replace a failed disk by using the zpool replace command. Or,

1

2

3

4

5

Recovering the ZFS Root Pool or Root Pool Snapshots

Oracle Solaris ZFS Administration Guide • April 2012174



if you have an additional disk, you can use the zpool attach command. See the procedure in
this section for an example of attaching an additional disk and detaching a root pool disk.

Some hardware requires that you take a disk offline and unconfigure it before attempting the
zpool replace operation to replace a failed disk. For example:

# zpool offline rpool c1t0d0s0

# cfgadm -c unconfigure c1::dsk/c1t0d0

<Physically remove failed disk c1t0d0>

<Physically insert replacement disk c1t0d0>

# cfgadm -c configure c1::dsk/c1t0d0

# zpool replace rpool c1t0d0s0

# zpool online rpool c1t0d0s0

# zpool status rpool

<Let disk resilver before installing the boot blocks>

SPARC# installboot -F zfs /usr/platform/‘uname -i‘/lib/fs/zfs/bootblk /dev/rdsk/c1t0d0s0

x86# installgrub /boot/grub/stage1 /boot/grub/stage2 /dev/rdsk/c1t9d0s0

With some hardware, you do not have to online or reconfigure the replacement disk after it is
inserted.

You must identify the boot device path names of the current disk and the new disk so that you
can test booting from the replacement disk and also manually boot from the existing disk, if the
replacement disk fails. In the example in the following procedure, the path name for the current
root pool disk (c1t10d0s0) is:

/pci@8,700000/pci@3/scsi@5/sd@a,0

The path name for the replacement boot disk (c1t9d0s0) is:

/pci@8,700000/pci@3/scsi@5/sd@9,0

Physically connect the replacement (or new) disk.

Prepare the replacement disk for the root pool, if necessary.

■ SPARC: Confirm that the disk has an SMI (VTOC) disk label and a slice 0. If you need to
relabel the disk and create a slice 0, see “Creating a Disk Slice for a ZFS Root File System” in
System Administration Guide: Devices and File Systems.

■ x86: Confirm that the disk has an fdisk partition, an SMI disk label, and a slice 0. If you
need to repartition the disk and create a slice 0, see “Creating a Disk Slice for a ZFS Root File
System” in System Administration Guide: Devices and File Systems.

Attach the new disk to the root pool.
For example:
# zpool attach rpool c1t10d0s0 c1t9d0s0

1

2

3

Recovering the ZFS Root Pool or Root Pool Snapshots

Chapter 5 • Installing and Booting an Oracle Solaris ZFS Root File System 175

http://www.oracle.com/pls/topic/lookup?ctx=E23823&id=SAGDFSdiskssadd-4
http://www.oracle.com/pls/topic/lookup?ctx=E23823&id=SAGDFSdiskssadd-4
http://www.oracle.com/pls/topic/lookup?ctx=E23823&id=SAGDFSdisksxadd-30
http://www.oracle.com/pls/topic/lookup?ctx=E23823&id=SAGDFSdisksxadd-30


Confirm the root pool status.
For example:
# zpool status rpool

pool: rpool

state: ONLINE

status: One or more devices is currently being resilvered. The pool will

continue to function, possibly in a degraded state.

action: Wait for the resilver to complete.

scrub: resilver in progress, 25.47% done, 0h4m to go

config:

NAME STATE READ WRITE CKSUM

rpool ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c1t10d0s0 ONLINE 0 0 0

c1t9d0s0 ONLINE 0 0 0

errors: No known data errors

Verify that you can boot from the new disk.
For example, on a SPARC based system, you would use syntax similar to the following:
ok boot /pci@8,700000/pci@3/scsi@5/sd@9,0

If the system boots from the new disk, detach the old disk.
For example:
# zpool detach rpool c1t10d0s0

Set up the system to boot automatically from the new disk by resetting the default boot device.

■ SPARC - Use the eeprom command or the setenv command from the SPARC boot PROM.
■ x86 - Reconfigure the system BIOS.

▼ How to Create Root Pool Snapshots
You can create root pool snapshots for recovery purposes. The best way to create root pool
snapshots is to perform a recursive snapshot of the root pool.

The following procedure creates a recursive root pool snapshot and stores the snapshot as a file
and as snapshots in a pool on a remote system. If a root pool fails, the remote dataset can be
mounted by using NFS, and the snapshot file can be received into the re-created pool. You can
also store root pool snapshots as the actual snapshots in a pool on a remote system. Sending and
receiving the snapshots from a remote system is a bit more complicated because you must
configure ssh or use rsh while the system to be repaired is booted from the Oracle Solaris OS
miniroot.

4

5

6

7

Recovering the ZFS Root Pool or Root Pool Snapshots

Oracle Solaris ZFS Administration Guide • April 2012176



Validating remotely stored snapshots as files or snapshots is an important step in root pool
recovery. With either method, snapshots should be recreated on a routine basis, such as when
the pool configuration changes or when the Solaris OS is upgraded.

In the following procedure, the system is booted from the zfsBE boot environment.

Create a pool and file system on a remote system to store the snapshots.
For example:
remote# zfs create rpool/snaps

Share the file system with the local system.
For example:
remote# zfs set sharenfs=’rw=local-system,root=local-system’ rpool/snaps

# share

-@rpool/snaps /rpool/snaps sec=sys,rw=local-system,root=local-system ""

Create a recursive snapshot of the root pool.
local# zfs snapshot -r rpool@snap1

local# zfs list -r rpool

NAME USED AVAIL REFER MOUNTPOINT

rpool 7.84G 59.1G 109K /rpool

rpool@snap1 21K - 106K -

rpool/ROOT 4.78G 59.1G 31K legacy

rpool/ROOT@snap1 0 - 31K -

rpool/ROOT/s10zfsBE 4.78G 59.1G 4.76G /

rpool/ROOT/s10zfsBE@snap1 15.6M - 4.75G -

rpool/dump 1.00G 59.1G 1.00G -

rpool/dump@snap1 16K - 1.00G -

rpool/export 99K 59.1G 32K /export

rpool/export@snap1 18K - 32K -

rpool/export/home 49K 59.1G 31K /export/home

rpool/export/home@snap1 18K - 31K -

rpool/swap 2.06G 61.2G 16K -

rpool/swap@snap1 0 - 16K -

Send the root pool snapshots to the remote system.
For example, to send the root pool snapshots to a remote pool as a file, use syntax similar to the
following:
local# zfs send -Rv rpool@snap1 > /net/remote-system/rpool/snaps/rpool.snap1

sending from @ to rpool@snap1

sending from @ to rpool/ROOT@snap1

sending from @ to rpool/ROOT/s10zfsBE@snap1

sending from @ to rpool/dump@snap1

sending from @ to rpool/export@snap1

sending from @ to rpool/export/home@snap1

sending from @ to rpool/swap@snap1

1

2

3

4

Recovering the ZFS Root Pool or Root Pool Snapshots

Chapter 5 • Installing and Booting an Oracle Solaris ZFS Root File System 177



To send the root pool snapshots to a remote pool as snapshots, use syntax similar to the
following:

local# zfs send -Rv rpool@snap1 | ssh remote-system zfs receive -Fd -o canmount=off tank/snaps

sending from @ to rpool@snap1

sending from @ to rpool/ROOT@snap1

sending from @ to rpool/ROOT/s10zfsBE@snap1

sending from @ to rpool/dump@snap1

sending from @ to rpool/export@snap1

sending from @ to rpool/export/home@snap1

sending from @ to rpool/swap@snap1

▼ How to Re-create a ZFS Root Pool and Restore Root
Pool Snapshots
In this procedure, assume the following conditions:

■ The ZFS root pool cannot be recovered.
■ The ZFS root pool snapshots are stored on a remote system and are shared over NFS.

All the steps are performed on the local system.

Boot from an installation DVD or the network.

■ SPARC - Select one of the following boot methods:

ok boot net -s

ok boot cdrom -s

If you don't use -s option, you'll need to exit the installation program.
■ x86 – Select the option for booting from the DVD or the network. Then, exit the installation

program.

Mount the remote snapshot file system if you have sent the root pool snapshots as a file to the
remote system.
For example:
# mount -F nfs remote-system:/rpool/snaps /mnt

If your network services are not configured, you might need to specify the remote-system's IP
address.

If the root pool disk is replaced and does not contain a disk label that is usable by ZFS, you must
relabel the disk.
For more information about relabeling the disk, go to the following site:

http://www.solarisinternals.com/wiki/index.php/ZFS_Troubleshooting_Guide

1

2

3

Recovering the ZFS Root Pool or Root Pool Snapshots

Oracle Solaris ZFS Administration Guide • April 2012178

http://www.solarisinternals.com/wiki/index.php/ZFS_Troubleshooting_Guide


Re-create the root pool.
For example:
# zpool create -f -o failmode=continue -R /a -m legacy -o cachefile=

/etc/zfs/zpool.cache rpool c1t1d0s0

Restore the root pool snapshots.
This step might take some time. For example:
# cat /mnt/rpool.0804 | zfs receive -Fdu rpool

Using the -u option means that the restored archive is not mounted when the zfs receive
operation completes.

To restore the actual root pool snapshots that are stored in a pool on a remote system, use
syntax similar to the following:

# rsh remote-system zfs send -Rb tank/snaps/rpool@snap1 | zfs receive -F rpool

Verify that the root pool datasets are restored.
For example:
# zfs list

Set the bootfsproperty on the root pool BE.
For example:
# zpool set bootfs=rpool/ROOT/zfsBE rpool

Install the boot blocks on the new disk.

■ SPARC:

# installboot -F zfs /usr/platform/‘uname -i‘/lib/fs/zfs/bootblk /dev/rdsk/c1t1d0s0

■ x86:

# installgrub /boot/grub/stage1 /boot/grub/stage2 /dev/rdsk/c1t1d0s0

Reboot the system.
# init 6

▼ How to Roll Back Root Pool Snapshots From a Failsafe
Boot
This procedure assumes that existing root pool snapshots are available. In the example, they are
available on the local system.

4

5

6

7

8

9

Recovering the ZFS Root Pool or Root Pool Snapshots

Chapter 5 • Installing and Booting an Oracle Solaris ZFS Root File System 179



# zfs snapshot -r rpool@snap1

# zfs list -r rpool

NAME USED AVAIL REFER MOUNTPOINT

rpool 7.84G 59.1G 109K /rpool

rpool@snap1 21K - 106K -

rpool/ROOT 4.78G 59.1G 31K legacy

rpool/ROOT@snap1 0 - 31K -

rpool/ROOT/s10zfsBE 4.78G 59.1G 4.76G /

rpool/ROOT/s10zfsBE@snap1 15.6M - 4.75G -

rpool/dump 1.00G 59.1G 1.00G -

rpool/dump@snap1 16K - 1.00G -

rpool/export 99K 59.1G 32K /export

rpool/export@snap1 18K - 32K -

rpool/export/home 49K 59.1G 31K /export/home

rpool/export/home@snap1 18K - 31K -

rpool/swap 2.06G 61.2G 16K -

rpool/swap@snap1 0 - 16K -

Shut down the system and boot failsafe mode.
ok boot -F failsafe

ROOT/zfsBE was found on rpool.

Do you wish to have it mounted read-write on /a? [y,n,?] y

mounting rpool on /a

Starting shell.

Roll back each root pool snapshot.
# zfs rollback rpool@snap1

# zfs rollback rpool/ROOT@snap1

# zfs rollback rpool/ROOT/s10zfsBE@snap1

Reboot to multiuser mode.
# init 6

1

2

3

Recovering the ZFS Root Pool or Root Pool Snapshots

Oracle Solaris ZFS Administration Guide • April 2012180



Managing Oracle Solaris ZFS File Systems

This chapter provides detailed information about managing Oracle Solaris ZFS file systems.
Concepts such as the hierarchical file system layout, property inheritance, and automatic
mount point management and share interactions are included.

The following sections are provided in this chapter:

■ “Managing ZFS File Systems (Overview)” on page 181
■ “Creating, Destroying, and Renaming ZFS File Systems” on page 182
■ “Introducing ZFS Properties” on page 185
■ “Querying ZFS File System Information” on page 197
■ “Managing ZFS Properties” on page 199
■ “Mounting and Sharing ZFS File Systems” on page 204
■ “Sharing and Unsharing ZFS File Systems” on page 208
■ “Setting ZFS Quotas and Reservations” on page 210
■ “Upgrading ZFS File Systems” on page 215

Managing ZFS File Systems (Overview)
A ZFS file system is built on top of a storage pool. File systems can be dynamically created and
destroyed without requiring you to allocate or format any underlying disk space. Because file
systems are so lightweight and because they are the central point of administration in ZFS, you
are likely to create many of them.

ZFS file systems are administered by using the zfs command. The zfs command provides a set
of subcommands that perform specific operations on file systems. This chapter describes these
subcommands in detail. Snapshots, volumes, and clones are also managed by using this
command, but these features are only covered briefly in this chapter. For detailed information
about snapshots and clones, see Chapter 7, “Working With Oracle Solaris ZFS Snapshots and
Clones.” For detailed information about ZFS volumes, see “ZFS Volumes” on page 269.

6C H A P T E R 6

181



Note – The term dataset is used in this chapter as a generic term to refer to a file system,
snapshot, clone, or volume.

Creating, Destroying, and Renaming ZFS File Systems
ZFS file systems can be created and destroyed by using the zfs create and zfs destroy

commands. ZFS file systems can be renamed by using the zfs rename command.

■ “Creating a ZFS File System” on page 182
■ “Destroying a ZFS File System” on page 183
■ “Renaming a ZFS File System” on page 184

Creating a ZFS File System
ZFS file systems are created by using the zfs create command. The create subcommand
takes a single argument: the name of the file system to be created. The file system name is
specified as a path name starting from the name of the pool as follows:

pool-name/[filesystem-name/]filesystem-name

The pool name and initial file system names in the path identify the location in the hierarchy
where the new file system will be created. The last name in the path identifies the name of the file
system to be created. The file system name must satisfy the naming requirements in “ZFS
Component Naming Requirements” on page 51.

In the following example, a file system named jeff is created in the tank/home file system.

# zfs create tank/home/jeff

ZFS automatically mounts the newly created file system if it is created successfully. By default,
file systems are mounted as /dataset, using the path provided for the file system name in the
create subcommand. In this example, the newly created jeff file system is mounted at
/tank/home/jeff. For more information about automatically managed mount points, see
“Managing ZFS Mount Points” on page 204.

For more information about the zfs create command, see zfs(1M).

You can set file system properties when the file system is created.

In the following example, a mount point of /export/zfs is created for the tank/home file
system:

# zfs create -o mountpoint=/export/zfs tank/home

Creating, Destroying, and Renaming ZFS File Systems

Oracle Solaris ZFS Administration Guide • April 2012182

http://www.oracle.com/pls/topic/lookup?ctx=E23823&id=REFMAN1Mzfs-1m


For more information about file system properties, see “Introducing ZFS Properties” on
page 185.

Destroying a ZFS File System
To destroy a ZFS file system, use the zfs destroy command. The destroyed file system is
automatically unmounted and unshared. For more information about automatically managed
mounts or automatically managed shares, see “Automatic Mount Points” on page 205.

In the following example, the tank/home/mark file system is destroyed:

# zfs destroy tank/home/mark

Caution – No confirmation prompt appears with the destroy subcommand. Use it with extreme
caution.

If the file system to be destroyed is busy and cannot be unmounted, the zfs destroy command
fails. To destroy an active file system, use the -f option. Use this option with caution as it can
unmount, unshare, and destroy active file systems, causing unexpected application behavior.

# zfs destroy tank/home/matt

cannot unmount ’tank/home/matt’: Device busy

# zfs destroy -f tank/home/matt

The zfs destroy command also fails if a file system has descendents. To recursively destroy a
file system and all its descendents, use the -r option. Note that a recursive destroy also destroys
snapshots, so use this option with caution.

# zfs destroy tank/ws

cannot destroy ’tank/ws’: filesystem has children

use ’-r’ to destroy the following datasets:

tank/ws/jeff

tank/ws/bill

tank/ws/mark

# zfs destroy -r tank/ws

If the file system to be destroyed has indirect dependents, even the recursive destroy command
fails. To force the destruction of all dependents, including cloned file systems outside the target
hierarchy, the -R option must be used. Use extreme caution with this option.

# zfs destroy -r tank/home/eric

cannot destroy ’tank/home/eric’: filesystem has dependent clones

use ’-R’ to destroy the following datasets:

tank/clones/eric-clone

# zfs destroy -R tank/home/eric

Creating, Destroying, and Renaming ZFS File Systems

Chapter 6 • Managing Oracle Solaris ZFS File Systems 183



Caution – No confirmation prompt appears with the -f, -r, or -R options to the zfs destroy
command, so use these options carefully.

For more information about snapshots and clones, see Chapter 7, “Working With Oracle
Solaris ZFS Snapshots and Clones.”

Renaming a ZFS File System
File systems can be renamed by using the zfs rename command. With the rename
subcommand, you can perform the following operations:

■ Change the name of a file system.
■ Relocate the file system within the ZFS hierarchy.
■ Change the name of a file system and relocate it within the ZFS hierarchy.

The following example uses the rename subcommand to rename of a file system from eric to
eric_old:

# zfs rename tank/home/eric tank/home/eric_old

The following example shows how to use zfs rename to relocate a file system:

# zfs rename tank/home/mark tank/ws/mark

In this example, the mark file system is relocated from tank/home to tank/ws. When you
relocate a file system through rename, the new location must be within the same pool and it
must have enough disk space to hold this new file system. If the new location does not have
enough disk space, possibly because it has reached its quota, rename operation fails.

For more information about quotas, see “Setting ZFS Quotas and Reservations” on page 210.

The rename operation attempts an unmount/remount sequence for the file system and any
descendent file systems. The rename command fails if the operation is unable to unmount an
active file system. If this problem occurs, you must forcibly unmount the file system.

For information about renaming snapshots, see “Renaming ZFS Snapshots” on page 220.

Creating, Destroying, and Renaming ZFS File Systems

Oracle Solaris ZFS Administration Guide • April 2012184



Introducing ZFS Properties
Properties are the main mechanism that you use to control the behavior of file systems,
volumes, snapshots, and clones. Unless stated otherwise, the properties defined in this section
apply to all the dataset types.

■ “ZFS Read-Only Native Properties” on page 192
■ “Settable ZFS Native Properties” on page 193
■ “ZFS User Properties” on page 196

Properties are divided into two types, native properties and user-defined properties. Native
properties either export internal statistics or control ZFS file system behavior. In addition,
native properties are either settable or read-only. User properties have no effect on ZFS file
system behavior, but you can use them to annotate datasets in a way that is meaningful in your
environment. For more information about user properties, see “ZFS User Properties” on
page 196.

Most settable properties are also inheritable. An inheritable property is a property that, when
set on a parent dataset, is propagated down to all of its descendents.

All inheritable properties have an associated source that indicates how a property was obtained.
The source of a property can have the following values:

local Indicates that the property was explicitly set on the dataset
by using the zfs set command as described in “Setting ZFS
Properties” on page 199.

inherited from dataset-name Indicates that the property was inherited from the named
ancestor.

default Indicates that the property value was not inherited or set
locally. This source is a result of no ancestor having the
property set as source local.

The following table identifies both read-only and settable native ZFS file system properties.
Read-only native properties are identified as such. All other native properties listed in this table
are settable. For information about user properties, see “ZFS User Properties” on page 196.

TABLE 6–1 ZFS Native Property Descriptions

Property Name Type Default Value Description

aclinherit String secure Controls how ACL entries are inherited when files and
directories are created. The values are discard,
noallow, secure, and passthrough. For a description
of these values, see “ACL Property (aclinherit)” on
page 240.

Introducing ZFS Properties

Chapter 6 • Managing Oracle Solaris ZFS File Systems 185



TABLE 6–1 ZFS Native Property Descriptions (Continued)
Property Name Type Default Value Description

atime Boolean on Controls whether the access time for files is updated
when they are read. Turning this property off avoids
producing write traffic when reading files and can
result in significant performance gains, though it might
confuse mailers and similar utilities.

available Number N/A Read-only property that identifies the amount of disk
space available to a dataset and all its children,
assuming no other activity in the pool. Because disk
space is shared within a pool, available space can be
limited by various factors including physical pool size,
quotas, reservations, and other datasets within the
pool.

The property abbreviation is avail.

For more information about disk space accounting, see
“ZFS Disk Space Accounting” on page 60.

canmount Boolean on Controls whether a file system can be mounted with
the zfs mount command. This property can be set on
any file system, and the property itself is not
inheritable. However, when this property is set to off, a
mount point can be inherited to descendent file
systems, but the file system itself is never mounted.

When the noauto option is set, a dataset can only be
mounted and unmounted explicitly. The dataset is not
mounted automatically when the dataset is created or
imported, nor is it mounted by the zfs mount-a
command or unmounted by the zfs unmount-a
command.

For more information, see “The canmount Property”
on page 195.

checksum String on Controls the checksum used to verify data integrity.
The default value is on, which automatically selects an
appropriate algorithm, currently fletcher4. The
values are on, off, fletcher2, fletcher4, and
sha256. A value of off disables integrity checking on
user data. A value of off is not recommended.

Introducing ZFS Properties

Oracle Solaris ZFS Administration Guide • April 2012186



TABLE 6–1 ZFS Native Property Descriptions (Continued)
Property Name Type Default Value Description

compression String off Enables or disables compression for a dataset. The
values are on, off, lzjb, gzip, and gzip-N. Currently,
setting this property to lzjb, gzip, or gzip-N has the
same effect as setting this property to on. Enabling
compression on a file system with existing data only
compresses new data. Existing data remains
uncompressed.

The property abbreviation is compress.

compressratio Number N/A Read-only property that identifies the compression
ratio achieved for a dataset, expressed as a multiplier.
Compression can be enabled by the zfs set
compression=on dataset command.

The value is calculated from the logical size of all files
and the amount of referenced physical data. It includes
explicit savings through the use of the compression
property.

copies Number 1 Sets the number of copies of user data per file system.
Available values are 1, 2, or 3. These copies are in
addition to any pool-level redundancy. Disk space used
by multiple copies of user data is charged to the
corresponding file and dataset, and counts against
quotas and reservations. In addition, the used property
is updated when multiple copies are enabled. Consider
setting this property when the file system is created
because changing this property on an existing file
system only affects newly written data.

creation String N/A Read-only property that identifies the date and time
that a dataset was created.

devices Boolean on Controls whether device files in a file system can be
opened.

exec Boolean on Controls whether programs in a file system are allowed
to be executed. Also, when set to off, mmap(2) calls
with PROT_EXEC are disallowed.

mounted Boolean N/A Read-only property that indicates whether a file
system, clone, or snapshot is currently mounted. This
property does not apply to volumes. The value can be
either yes or no.

Introducing ZFS Properties

Chapter 6 • Managing Oracle Solaris ZFS File Systems 187



TABLE 6–1 ZFS Native Property Descriptions (Continued)
Property Name Type Default Value Description

mountpoint String N/A Controls the mount point used for this file system.
When the mountpoint property is changed for a file
system, the file system and any descendents that inherit
the mount point are unmounted. If the new value is
legacy, then they remain unmounted. Otherwise, they
are automatically remounted in the new location if the
property was previously legacy or none, or if they were
mounted before the property was changed. In addition,
any shared file systems are unshared and shared in the
new location.

For more information about using this property, see
“Managing ZFS Mount Points” on page 204.

primarycache String all Controls what is cached in the primary cache (ARC).
Possible values are all, none, and metadata. If set to
all, both user data and metadata are cached. If set to
none, neither user data nor metadata is cached. If set to
metadata, only metadata is cached.

origin String N/A Read-only property for cloned file systems or volumes
that identifies the snapshot from which the clone was
created. The origin cannot be destroyed (even with the
-r or -f option) as long as a clone exists.

Non-cloned file systems have an origin of none.

quota Number (or
none)

none Limits the amount of disk space a dataset and its
descendents can consume. This property enforces a
hard limit on the amount of disk space used, including
all space consumed by descendents, such as file systems
and snapshots. Setting a quota on a descendent of a
dataset that already has a quota does not override the
ancestor's quota, but rather imposes an additional
limit. Quotas cannot be set on volumes, as the volsize
property acts as an implicit quota.

For information about setting quotas, see “Setting
Quotas on ZFS File Systems” on page 211.

readonly Boolean off Controls whether a dataset can be modified. When set
to on, no modifications can be made.

The property abbreviation is rdonly.

recordsize Number 128K Specifies a suggested block size for files in a file system.

The property abbreviation is recsize. For a detailed
description, see “The recordsize Property” on
page 195.

Introducing ZFS Properties

Oracle Solaris ZFS Administration Guide • April 2012188



TABLE 6–1 ZFS Native Property Descriptions (Continued)
Property Name Type Default Value Description

referenced Number N/A Read-only property that identifies the amount of data
accessible by a dataset, which might or might not be
shared with other datasets in the pool.

When a snapshot or clone is created, it initially
references the same amount of disk space as the file
system or snapshot it was created from, because its
contents are identical.

The property abbreviation is refer.

refquota Number (or
none)

none Sets the amount of disk space that a dataset can
consume. This property enforces a hard limit on the
amount of space used. This hard limit does not include
disk space used by descendents, such as snapshots and
clones.

refreservation Number (or
none)

none Sets the minimum amount of disk space that is
guaranteed to a dataset, not including descendents,
such as snapshots and clones. When the amount of disk
space used is below this value, the dataset is treated as if
it were taking up the amount of space specified by
refreservation. The refreservation reservation is
accounted for in the parent dataset's disk space used,
and counts against the parent dataset's quotas and
reservations.

If refreservation is set, a snapshot is only allowed if
enough free pool space is available outside of this
reservation to accommodate the current number of
referenced bytes in the dataset.

The property abbreviation is refreserv.

reservation Number (or
none)

none Sets the minimum amount of disk space guaranteed to
a dataset and its descendents. When the amount of disk
space used is below this value, the dataset is treated as if
it were using the amount of space specified by its
reservation. Reservations are accounted for in the
parent dataset's disk space used, and count against the
parent dataset's quotas and reservations.

The property abbreviation is reserv.

For more information, see “Setting Reservations on
ZFS File Systems” on page 214.

Introducing ZFS Properties

Chapter 6 • Managing Oracle Solaris ZFS File Systems 189



TABLE 6–1 ZFS Native Property Descriptions (Continued)
Property Name Type Default Value Description

secondarycache String all Controls what is cached in the secondary cache
(L2ARC). Possible values are all, none, and metadata.
If set to all, both user data and metadata are cached. If
set to none, neither user data nor metadata is cached. If
set to metadata, only metadata is cached.

setuid Boolean on Controls whether the setuid bit is honored in a file
system.

shareiscsi String off Controls whether a ZFS volume is shared as an iSCSI
target. The property values are on, off, and type=disk.
You might want to set shareiscsi=on for a file system
so that all ZFS volumes within the file system are
shared by default. However, setting this property on a
file system has no direct effect.

sharenfs String off Controls whether a file system is available over NFS
and what options are used. If set to on, the zfs share
command is invoked with no options. Otherwise, the
zfs share command is invoked with options
equivalent to the contents of this property. If set to off,
the file system is managed by using the legacy share
and unshare commands and the dfstab file.

Controls whether a ZFS dataset is published as an NFS
share. You can also publish and unpublish an NFS
share of a ZFS dataset by using the zfs share and zfs

unshare commands. Both methods of publishing an
NFS share require that the NFS share properties are
already set. For information about setting NFS share
properties, see the zfs set share command

When the sharenfs property is changed, the file
system share and any children inheriting the property
are re-published with any new options that have been
set with the zfs set share command only if the
property was previously off, or if the shares were
published before the property was changed. If the new
property value is off, the file system shares are
unpublished.

For more information about sharing ZFS file systems,
see “Sharing and Unsharing ZFS File Systems” on
page 208.

snapdir String hidden Controls whether the .zfs directory is hidden or
visible in the root of the file system. For more
information about using snapshots, see “Overview of
ZFS Snapshots” on page 217.

Introducing ZFS Properties

Oracle Solaris ZFS Administration Guide • April 2012190



TABLE 6–1 ZFS Native Property Descriptions (Continued)
Property Name Type Default Value Description

type String N/A Read-only property that identifies the dataset type as
filesystem (file system or clone), volume, or
snapshot.

used Number N/A Read-only property that identifies the amount of disk
space consumed by a dataset and all its descendents.

For a detailed description, see “The used Property” on
page 193.

usedbychildren Number off Read-only property that identifies the amount of disk
space that is used by children of this dataset, which
would be freed if all the dataset's children were
destroyed. The property abbreviation is usedchild.

usedbydataset Number off Read-only property that identifies the amount of disk
space that is used by a dataset itself, which would be
freed if the dataset was destroyed, after first destroying
any snapshots and removing any refreservation
reservations. The property abbreviation is usedds.

usedbyrefreservationNumber off Read-only property that identifies the amount of disk
space that is used by a refreservation set on a dataset,
which would be freed if the refreservation was
removed. The property abbreviation is
usedrefreserv.

usedbysnapshots Number off Read-only property that identifies the amount of disk
space that is consumed by snapshots of a dataset. In
particular, it is the amount of disk space that would be
freed if all of this dataset's snapshots were destroyed.
Note that this value is not simply the sum of the
snapshots' used properties, because space can be
shared by multiple snapshots. The property
abbreviation is usedsnap.

version Number N/A Identifies the on-disk version of a file system, which is
independent of the pool version. This property can
only be set to a later version that is available from the
supported software release. For more information, see
the zfs upgrade command.

volsize Number N/A For volumes, specifies the logical size of the volume.

For a detailed description, see “The volsize Property”
on page 195.

Introducing ZFS Properties

Chapter 6 • Managing Oracle Solaris ZFS File Systems 191



TABLE 6–1 ZFS Native Property Descriptions (Continued)
Property Name Type Default Value Description

volblocksize Number 8 KB For volumes, specifies the block size of the volume. The
block size cannot be changed after the volume has been
written, so set the block size at volume creation time.
The default block size for volumes is 8 KB. Any power
of 2 from 512 bytes to 128 KB is valid.

The property abbreviation is volblock.

zoned Boolean N/A Indicates whether a dataset has been added to a
non-global zone. If this property is set, then the mount
point is not honored in the global zone, and ZFS
cannot mount such a file system when requested.
When a zone is first installed, this property is set for
any added file systems.

For more information about using ZFS with zones
installed, see “Using ZFS on a Solaris System With
Zones Installed” on page 271.

xattr Boolean on Indicates whether extended attributes are enabled (on)
or disabled (off) for this file system.

ZFS Read-Only Native Properties
Read-only native properties can be retrieved but not set. Read-only native properties are not
inherited. Some native properties are specific to a particular type of dataset. In such cases, the
dataset type is mentioned in the description in Table 6–1.

The read-only native properties are listed here and described in Table 6–1.
■ available

■ compressratio

■ creation

■ mounted

■ origin

■ referenced

■ type

■ used

For detailed information, see “The used Property” on page 193.
■ usedbychildren

■ usedbydataset

■ usedbyrefreservation

Introducing ZFS Properties

Oracle Solaris ZFS Administration Guide • April 2012192



■ usedbysnapshots

For more information about disk space accounting, including the used, referenced, and
available properties, see “ZFS Disk Space Accounting” on page 60.

The used Property
The used property is a read-only property that identifies the amount of disk space consumed by
this dataset and all its descendents. This value is checked against the dataset's quota and
reservation. The disk space used does not include the dataset's reservation, but does consider
the reservation of any descendent datasets. The amount of disk space that a dataset consumes
from its parent, as well as the amount of disk space that is freed if the dataset is recursively
destroyed, is the greater of its space used and its reservation.

When snapshots are created, their disk space is initially shared between the snapshot and the file
system, and possibly with previous snapshots. As the file system changes, disk space that was
previously shared becomes unique to the snapshot and is counted in the snapshot's space used.
The disk space that is used by a snapshot accounts for its unique data. Additionally, deleting
snapshots can increase the amount of disk space unique to (and used by) other snapshots. For
more information about snapshots and space issues, see “Out of Space Behavior” on page 60.

The amount of disk space used, available, and referenced does not include pending changes.
Pending changes are generally accounted for within a few seconds. Committing a change to a
disk using the fsync(3c) or O_SYNC function does not necessarily guarantee that the disk space
usage information will be updated immediately.

The usedbychildren, usedbydataset, usedbyrefreservation, and usedbysnapshots

property information can be displayed with the zfs list -o space command. These
properties identify the used property into disk space that is consumed by descendents. For
more information, see Table 6–1.

Settable ZFS Native Properties
Settable native properties are properties whose values can be both retrieved and set. Settable
native properties are set by using the zfs set command, as described in “Setting ZFS
Properties” on page 199 or by using the zfs create command as described in “Creating a ZFS
File System” on page 182. With the exceptions of quotas and reservations, settable native
properties are inherited. For more information about quotas and reservations, see “Setting ZFS
Quotas and Reservations” on page 210.

Some settable native properties are specific to a particular type of dataset. In such cases, the
dataset type is mentioned in the description in Table 6–1. If not specifically mentioned, a
property applies to all dataset types: file systems, volumes, clones, and snapshots.

The settable properties are listed here and described in Table 6–1.

Introducing ZFS Properties

Chapter 6 • Managing Oracle Solaris ZFS File Systems 193



■ aclinherit

For a detailed description, see “ACL Property (aclinherit)” on page 240.
■ aclmode

For a detailed description, see “ACL Property (aclinherit)” on page 240.
■ atime

■ canmount

■ checksum

■ compression

■ copies

■ devices

■ exec

■ mountpoint

■ primarycache

■ quota

■ readonly

■ recordsize

For a detailed description, see “The recordsize Property” on page 195.
■ refquota

■ refreservation

■ reservation

■ secondarycache

■ shareiscsi

■ sharenfs

■ setuid

■ snapdir

■ version

■ volsize

For a detailed description, see “The volsize Property” on page 195.
■ volblocksize

■ zoned

■ xattr

Introducing ZFS Properties

Oracle Solaris ZFS Administration Guide • April 2012194



The canmount Property
If the canmount property is set to off, the file system cannot be mounted by using the zfs mount
or zfs mount -a commands. Setting this property to off is similar to setting the mountpoint
property to none, except that the dataset still has a normal mountpoint property that can be
inherited. For example, you can set this property to off, establish inheritable properties for
descendent file systems, but the parent file system itself is never mounted nor is it accessible to
users. In this case, the parent file system is serving as a container so that you can set properties
on the container, but the container itself is never accessible.

In the following example, userpool is created, and its canmount property is set to off. Mount
points for descendent user file systems are set to one common mount point, /export/home.
Properties that are set on the parent file system are inherited by descendent file systems, but the
parent file system itself is never mounted.

# zpool create userpool mirror c0t5d0 c1t6d0

# zfs set canmount=off userpool

# zfs set mountpoint=/export/home userpool

# zfs set compression=on userpool

# zfs create userpool/user1

# zfs create userpool/user2

# zfs mount

userpool/user1 /export/home/user1

userpool/user2 /export/home/user2

Setting the canmount property to noauto means that the dataset can only be mounted explicitly,
not automatically. This value setting is used by the Oracle Solaris upgrade software so that only
those datasets belonging to the active boot environment are mounted at boot time.

The recordsize Property
The recordsize property specifies a suggested block size for files in the file system.

This property is designed solely for use with database workloads that access files in fixed-size
records. ZFS automatically adjust block sizes according to internal algorithms optimized for
typical access patterns. For databases that create very large files but access the files in small
random chunks, these algorithms might be suboptimal. Specifying a recordsize value greater
than or equal to the record size of the database can result in significant performance gains. Use
of this property for general purpose file systems is strongly discouraged and might adversely
affect performance. The size specified must be a power of 2 greater than or equal to 512 bytes
and less than or equal to 128 KB. Changing the file system's recordsize value only affects files
created afterward. Existing files are unaffected.

The property abbreviation is recsize.

The volsize Property
The volsize property specifies the logical size of the volume. By default, creating a volume
establishes a reservation for the same amount. Any changes to volsize are reflected in an
equivalent change to the reservation. These checks are used to prevent unexpected behavior for

Introducing ZFS Properties

Chapter 6 • Managing Oracle Solaris ZFS File Systems 195



users. A volume that contains less space than it claims is available can result in undefined
behavior or data corruption, depending on how the volume is used. These effects can also occur
when the volume size is changed while the volume is in use, particularly when you shrink the
size. Use extreme care when adjusting the volume size.

Though not recommended, you can create a sparse volume by specifying the -s flag to zfs

create -V or by changing the reservation after the volume has been created. A sparse volume is
a volume whose reservation is not equal to the volume size. For a sparse volume, changes to
volsize are not reflected in the reservation.

For more information about using volumes, see “ZFS Volumes” on page 269.

ZFS User Properties
In addition to the native properties, ZFS supports arbitrary user properties. User properties
have no effect on ZFS behavior, but you can use them to annotate datasets with information that
is meaningful in your environment.

User property names must conform to the following conventions:
■ They must contain a colon (':') character to distinguish them from native properties.
■ They must contain lowercase letters, numbers, or the following punctuation characters: ':',

'+','.', '_'.
■ The maximum length of a user property name is 256 characters.

The expected convention is that the property name is divided into the following two
components but this namespace is not enforced by ZFS:

module:property

When making programmatic use of user properties, use a reversed DNS domain name for the
module component of property names to reduce the chance that two independently developed
packages will use the same property name for different purposes. Property names that begin
with com.sun. are reserved for use by Oracle Corporation.

The values of user properties must conform to the following conventions:
■ They must consist of arbitrary strings that are always inherited and are never validated.
■ The maximum length of the user property value is 1024 characters.

For example:

# zfs set dept:users=finance userpool/user1

# zfs set dept:users=general userpool/user2

# zfs set dept:users=itops userpool/user3

All of the commands that operate on properties, such as zfs list, zfs get, zfs set, and so on,
can be used to manipulate both native properties and user properties.

Introducing ZFS Properties

Oracle Solaris ZFS Administration Guide • April 2012196



For example:

zfs get -r dept:users userpool

NAME PROPERTY VALUE SOURCE

userpool dept:users all local

userpool/user1 dept:users finance local

userpool/user2 dept:users general local

userpool/user3 dept:users itops local

To clear a user property, use the zfs inherit command. For example:

# zfs inherit -r dept:users userpool

If the property is not defined in any parent dataset, it is removed entirely.

Querying ZFS File System Information
The zfs list command provides an extensible mechanism for viewing and querying dataset
information. Both basic and complex queries are explained in this section.

Listing Basic ZFS Information
You can list basic dataset information by using the zfs list command with no options. This
command displays the names of all datasets on the system and the values of their used,
available, referenced, and mountpoint properties. For more information about these
properties, see “Introducing ZFS Properties” on page 185.

For example:

# zfs list

users 2.00G 64.9G 32K /users

users/home 2.00G 64.9G 35K /users/home

users/home/cindy 548K 64.9G 548K /users/home/cindy

users/home/mark 1.00G 64.9G 1.00G /users/home/mark

users/home/neil 1.00G 64.9G 1.00G /users/home/neil

You can also use this command to display specific datasets by providing the dataset name on the
command line. Additionally, use the -r option to recursively display all descendents of that
dataset. For example:

# zfs list -t all -r users/home/mark

NAME USED AVAIL REFER MOUNTPOINT

users/home/mark 1.00G 64.9G 1.00G /users/home/mark

users/home/mark@yesterday 0 - 1.00G -

users/home/mark@today 0 - 1.00G -

You can use the zfs list command with the mount point of a file system. For example:

Querying ZFS File System Information

Chapter 6 • Managing Oracle Solaris ZFS File Systems 197



# zfs list /user/home/mark

NAME USED AVAIL REFER MOUNTPOINT

users/home/mark 1.00G 64.9G 1.00G /users/home/mark

The following example shows how to display basic information about tank/home/gina and all
of its descendent datasets:

# zfs list -r users/home/gina

NAME USED AVAIL REFER MOUNTPOINT

users/home/gina 2.00G 62.9G 32K /users/home/gina

users/home/gina/projects 2.00G 62.9G 33K /users/home/gina/projects

users/home/gina/projects/fs1 1.00G 62.9G 1.00G /users/home/gina/projects/fs1

users/home/gina/projects/fs2 1.00G 62.9G 1.00G /users/home/gina/projects/fs2

For additional information about the zfs list command, see zfs(1M).

Creating Complex ZFS Queries
The zfs list output can be customized by using the -o, -t, and -H options.

You can customize property value output by using the -o option and a comma-separated list of
desired properties. You can supply any dataset property as a valid argument. For a list of all
supported dataset properties, see “Introducing ZFS Properties” on page 185. In addition to the
properties defined, the -o option list can also contain the literal name to indicate that the output
should include the name of the dataset.

The following example uses zfs list to display the dataset name, along with the sharenfs and
mountpoint property values.

# zfs list -r -o name,sharenfs,mountpoint users/home

NAME SHARENFS MOUNTPOINT

users/home on /users/home

users/home/cindy on /users/home/cindy

users/home/gina on /users/home/gina

users/home/gina/projects on /users/home/gina/projects

users/home/gina/projects/fs1 on /users/home/gina/projects/fs1

users/home/gina/projects/fs2 on /users/home/gina/projects/fs2

users/home/mark on /users/home/mark

users/home/neil on /users/home/neil

You can use the -t option to specify the types of datasets to display. The valid types are
described in the following table.

TABLE 6–2 Types of ZFS Datasets

Type Description

filesystem File systems and clones

volume Volumes

Querying ZFS File System Information

Oracle Solaris ZFS Administration Guide • April 2012198

http://www.oracle.com/pls/topic/lookup?ctx=E23823&id=REFMAN1Mzfs-1m


TABLE 6–2 Types of ZFS Datasets (Continued)
Type Description

snapshot Snapshots

The -t options takes a comma-separated list of the types of datasets to be displayed. The
following example uses the -t and -o options simultaneously to show the name and used

property for all file systems:

# zfs list -r -t filesystem -o name,used users/home

NAME USED

users/home 4.00G

users/home/cindy 548K

users/home/gina 2.00G

users/home/gina/projects 2.00G

users/home/gina/projects/fs1 1.00G

users/home/gina/projects/fs2 1.00G

users/home/mark 1.00G

users/home/neil 1.00G

You can use the -H option to omit the zfs list header from the generated output. With the -H
option, all white space is replaced by the Tab character. This option can be useful when you
need parseable output, for example, when scripting. The following example shows the output
generated from using the zfs list command with the -H option:

# zfs list -r -H -o name users/home

users/home

users/home/cindy

users/home/gina

users/home/gina/projects

users/home/gina/projects/fs1

users/home/gina/projects/fs2

users/home/mark

users/home/neil

Managing ZFS Properties
Dataset properties are managed through the zfs command's set, inherit, and get

subcommands.
■ “Setting ZFS Properties” on page 199
■ “Inheriting ZFS Properties” on page 200
■ “Querying ZFS Properties” on page 201

Setting ZFS Properties
You can use the zfs set command to modify any settable dataset property. Or, you can use the
zfs create command to set properties when a dataset is created. For a list of settable dataset
properties, see “Settable ZFS Native Properties” on page 193.

Managing ZFS Properties

Chapter 6 • Managing Oracle Solaris ZFS File Systems 199



The zfs set command takes a property/value sequence in the format of property=value
followed by a dataset name. Only one property can be set or modified during each zfs set

invocation.

The following example sets the atime property to off for tank/home.

# zfs set atime=off tank/home

In addition, any file system property can be set when a file system is created. For example:

# zfs create -o atime=off tank/home

You can specify numeric property values by using the following easy-to-understand suffixes (in
increasing sizes): BKMGTPEZ. Any of these suffixes can be followed by an optional b, indicating
bytes, with the exception of the B suffix, which already indicates bytes. The following four
invocations of zfs set are equivalent numeric expressions that set the quota property be set to
the value of 20 GB on the users/home/mark file system:

# zfs set quota=20G users/home/mark

# zfs set quota=20g users/home/mark

# zfs set quota=20GB users/home/mark

# zfs set quota=20gb users/home/mark

The values of non-numeric properties are case-sensitive and must be in lowercase letters, with
the exception of mountpoint and sharenfs. The values of these properties can have mixed
upper and lower case letters.

For more information about the zfs set command, see zfs(1M).

Inheriting ZFS Properties
All settable properties, with the exception of quotas and reservations, inherit their value from
the parent dataset, unless a quota or reservation is explicitly set on the descendent dataset. If no
ancestor has an explicit value set for an inherited property, the default value for the property is
used. You can use the zfs inherit command to clear a property value, thus causing the value
to be inherited from the parent dataset.

The following example uses the zfs set command to turn on compression for the
tank/home/jeff file system. Then, zfs inherit is used to clear the compression property,
thus causing the property to inherit the default value of off. Because neither home nor tank has
the compression property set locally, the default value is used. If both had compression
enabled, the value set in the most immediate ancestor would be used (home in this example).

# zfs set compression=on tank/home/jeff

# zfs get -r compression tank/home

NAME PROPERTY VALUE SOURCE

tank/home compression off default

Managing ZFS Properties

Oracle Solaris ZFS Administration Guide • April 2012200

http://www.oracle.com/pls/topic/lookup?ctx=E23823&id=REFMAN1Mzfs-1m


tank/home/eric compression off default

tank/home/eric@today compression - -

tank/home/jeff compression on local

# zfs inherit compression tank/home/jeff

# zfs get -r compression tank/home

NAME PROPERTY VALUE SOURCE

tank/home compression off default

tank/home/eric compression off default

tank/home/eric@today compression - -

tank/home/jeff compression off default

The inherit subcommand is applied recursively when the -r option is specified. In the
following example, the command causes the value for the compression property to be inherited
by tank/home and any descendents it might have:

# zfs inherit -r compression tank/home

Note – Be aware that the use of the -r option clears the current property setting for all
descendent datasets.

For more information about the zfs inherit command, see zfs(1M).

Querying ZFS Properties
The simplest way to query property values is by using the zfs list command. For more
information, see “Listing Basic ZFS Information” on page 197. However, for complicated
queries and for scripting, use the zfs get command to provide more detailed information in a
customized format.

You can use the zfs get command to retrieve any dataset property. The following example
shows how to retrieve a single property value on a dataset:

# zfs get checksum tank/ws

NAME PROPERTY VALUE SOURCE

tank/ws checksum on default

The fourth column, SOURCE, indicates the origin of this property value. The following table
defines the possible source values.

TABLE 6–3 Possible SOURCE Values (zfs get Command)

Source Value Description

default This property value was never explicitly set for this dataset or any of its
ancestors. The default value for this property is being used.

inherited from dataset-name This property value is inherited from the parent dataset specified in
dataset-name.

Managing ZFS Properties

Chapter 6 • Managing Oracle Solaris ZFS File Systems 201

http://www.oracle.com/pls/topic/lookup?ctx=E23823&id=REFMAN1Mzfs-1m


TABLE 6–3 Possible SOURCE Values (zfs get Command) (Continued)
Source Value Description

local This property value was explicitly set for this dataset by using zfs set.

temporary This property value was set by using the zfs mount -o option and is
only valid for the duration of the mount. For more information about
temporary mount point properties, see “Using Temporary Mount
Properties” on page 207.

- (none) This property is read-only. Its value is generated by ZFS.

You can use the special keyword all to retrieve all dataset property values. The following
examples use the all keyword:

# zfs get all tank/home

NAME PROPERTY VALUE SOURCE

tank/home type filesystem -

tank/home creation Wed Jun 22 15:47 2011 -

tank/home used 31K -

tank/home available 33.2G -

tank/home referenced 31K -

tank/home compressratio 1.00x -

tank/home mounted yes -

tank/home quota none default

tank/home reservation none default

tank/home recordsize 128K default

tank/home mountpoint /tank/home default

tank/home sharenfs off default

tank/home checksum on default

tank/home compression off default

tank/home atime on default

tank/home devices on default

tank/home exec on default

tank/home setuid on default

tank/home readonly off default

tank/home zoned off default

tank/home snapdir hidden default

tank/home aclinherit restricted default

tank/home canmount on default

tank/home shareiscsi off default

tank/home xattr on default

tank/home copies 1 default

tank/home version 5 -

tank/home utf8only off -

tank/home normalization none -

tank/home casesensitivity sensitive -

tank/home vscan off default

tank/home nbmand off default

tank/home sharesmb off default

tank/home refquota none default

tank/home refreservation none default

tank/home primarycache all default

tank/home secondarycache all default

tank/home usedbysnapshots 0 -

tank/home usedbydataset 31K -

Managing ZFS Properties

Oracle Solaris ZFS Administration Guide • April 2012202



tank/home usedbychildren 0 -

tank/home usedbyrefreservation 0 -

tank/home logbias latency default

tank/home sync standard default

tank/home rstchown on default

Note – The casesensitivity, nbmand, normalization, sharesmb, utf8only, and vscan

properties are not fully operational in the Oracle Solaris 10 release because the Oracle Solaris
SMB service is not supported in the Oracle Solaris 10 release.

The -s option to zfs get enables you to specify, by source type, the properties to display. This
option takes a comma-separated list indicating the desired source types. Only properties with
the specified source type are displayed. The valid source types are local, default, inherited,
temporary, and none. The following example shows all properties that have been locally set on
tank/ws.

# zfs get -s local all tank/ws

NAME PROPERTY VALUE SOURCE

tank/ws compression on local

Any of the above options can be combined with the -r option to recursively display the
specified properties on all children of the specified dataset. In the following example, all
temporary properties on all datasets within tank/home are recursively displayed:

# zfs get -r -s temporary all tank/home

NAME PROPERTY VALUE SOURCE

tank/home atime off temporary

tank/home/jeff atime off temporary

tank/home/mark quota 20G temporary

You can query property values by using the zfs get command without specifying a target file
system, which means the command operates on all pools or file systems. For example:

# zfs get -s local all

tank/home atime off local

tank/home/jeff atime off local

tank/home/mark quota 20G local

For more information about the zfs get command, see zfs(1M).

Querying ZFS Properties for Scripting
The zfs get command supports the -H and -o options, which are designed for scripting. You
can use the -H option to omit header information and to replace white space with the Tab
character. Uniform white space allows for easily parseable data. You can use the -o option to
customize the output in the following ways:
■ The literal name can be used with a comma-separated list of properties as defined in the

“Introducing ZFS Properties” on page 185 section.

Managing ZFS Properties

Chapter 6 • Managing Oracle Solaris ZFS File Systems 203

http://www.oracle.com/pls/topic/lookup?ctx=E23823&id=REFMAN1Mzfs-1m


■ A comma-separated list of literal fields, name, value, property, and source, to be output
followed by a space and an argument, which is a comma-separated list of properties.

The following example shows how to retrieve a single value by using the -H and -o options of
zfs get:

# zfs get -H -o value compression tank/home

on

The -p option reports numeric values as their exact values. For example, 1 MB would be
reported as 1000000. This option can be used as follows:

# zfs get -H -o value -p used tank/home

182983742

You can use the -r option, along with any of the preceding options, to recursively retrieve the
requested values for all descendents. The following example uses the -H, -o, and -r options to
retrieve the dataset name and the value of the used property for export/home and its
descendents, while omitting the header output:

# zfs get -H -o name,value -r used export/home

Mounting and Sharing ZFS File Systems
This section describes how ZFS mounts and shares file systems.

■ “Managing ZFS Mount Points” on page 204
■ “Mounting ZFS File Systems” on page 206
■ “Using Temporary Mount Properties” on page 207
■ “Unmounting ZFS File Systems” on page 208
■ “Sharing and Unsharing ZFS File Systems” on page 208

Managing ZFS Mount Points
By default, a ZFS file system is automatically mounted when it is created. You can determine
specific mount-point behavior for a file system as described in this section.

You can also set the default mount point for a pool's dataset at creation time by using zpool
create's -m option. For more information about creating pools, see “Creating a ZFS Storage
Pool” on page 69.

All ZFS file systems are mounted by ZFS at boot time by using the Service Management
Facility's (SMF) svc://system/filesystem/local service. File systems are mounted under
/path, where path is the name of the file system.

Mounting and Sharing ZFS File Systems

Oracle Solaris ZFS Administration Guide • April 2012204



You can override the default mount point by using the zfs set command to set the
mountpoint property to a specific path. ZFS automatically creates the specified mount point, if
needed, and automatically mounts the associated file system.

ZFS file systems are automatically mounted at boot time without requiring you to edit the
/etc/vfstab file.

The mountpoint property is inherited. For example, if pool/home has the mountpoint property
set to /export/stuff, then pool/home/user inherits /export/stuff/user for its mountpoint
property value.

To prevent a file system from being mounted, set the mountpoint property to none. In addition,
the canmount property can be used to control whether a file system can be mounted. For more
information about the canmount property, see “The canmount Property” on page 195.

File systems can also be explicitly managed through legacy mount interfaces by using zfs set

to set the mountpoint property to legacy. Doing so prevents ZFS from automatically mounting
and managing a file system. Legacy tools including the mount and umount commands, and the
/etc/vfstab file must be used instead. For more information about legacy mounts, see “Legacy
Mount Points” on page 206.

Automatic Mount Points
■ When you change the mountpoint property from legacy or none to a specific path, ZFS

automatically mounts the file system.
■ If ZFS is managing a file system but it is currently unmounted, and the mountpoint property

is changed, the file system remains unmounted.

Any dataset whose mountpoint property is not legacy is managed by ZFS. In the following
example, a dataset is created whose mount point is automatically managed by ZFS:

# zfs create pool/filesystem

# zfs get mountpoint pool/filesystem

NAME PROPERTY VALUE SOURCE

pool/filesystem mountpoint /pool/filesystem default

# zfs get mounted pool/filesystem

NAME PROPERTY VALUE SOURCE

pool/filesystem mounted yes -

You can also explicitly set the mountpoint property as shown in the following example:

# zfs set mountpoint=/mnt pool/filesystem

# zfs get mountpoint pool/filesystem

NAME PROPERTY VALUE SOURCE

pool/filesystem mountpoint /mnt local

# zfs get mounted pool/filesystem

NAME PROPERTY VALUE SOURCE

pool/filesystem mounted yes -

Mounting and Sharing ZFS File Systems

Chapter 6 • Managing Oracle Solaris ZFS File Systems 205



When the mountpoint property is changed, the file system is automatically unmounted from
the old mount point and remounted to the new mount point. Mount-point directories are
created as needed. If ZFS is unable to unmount a file system due to it being active, an error is
reported, and a forced manual unmount is necessary.

Legacy Mount Points
You can manage ZFS file systems with legacy tools by setting the mountpoint property to
legacy. Legacy file systems must be managed through the mount and umount commands and
the /etc/vfstab file. ZFS does not automatically mount legacy file systems at boot time, and
the ZFS mount and umount commands do not operate on datasets of this type. The following
examples show how to set up and manage a ZFS dataset in legacy mode:

# zfs set mountpoint=legacy tank/home/eric

# mount -F zfs tank/home/eschrock /mnt

To automatically mount a legacy file system at boot time, you must add an entry to the
/etc/vfstab file. The following example shows what the entry in the /etc/vfstab file might
look like:

#device device mount FS fsck mount mount

#to mount to fsck point type pass at boot options

#

tank/home/eric - /mnt zfs - yes -

The device to fsck and fsck pass entries are set to - because the fsck command is not
applicable to ZFS file systems. For more information about ZFS data integrity, see
“Transactional Semantics” on page 47.

Mounting ZFS File Systems
ZFS automatically mounts file systems when file systems are created or when the system boots.
Use of the zfs mount command is necessary only when you need to change mount options, or
explicitly mount or unmount file systems.

The zfs mount command with no arguments shows all currently mounted file systems that are
managed by ZFS. Legacy managed mount points are not displayed. For example:

# zfs mount | grep tank/home

zfs mount | grep tank/home

tank/home /tank/home

tank/home/jeff /tank/home/jeff

You can use the -a option to mount all ZFS managed file systems. Legacy managed file systems
are not mounted. For example:

# zfs mount -a

Mounting and Sharing ZFS File Systems

Oracle Solaris ZFS Administration Guide • April 2012206



By default, ZFS does not allow mounting on top of a nonempty directory. For example:

# zfs mount tank/home/lori

cannot mount ’tank/home/lori’: filesystem already mounted

Legacy mount points must be managed through legacy tools. An attempt to use ZFS tools
results in an error. For example:

# zfs mount tank/home/bill

cannot mount ’tank/home/bill’: legacy mountpoint

use mount(1M) to mount this filesystem

# mount -F zfs tank/home/billm

When a file system is mounted, it uses a set of mount options based on the property values
associated with the dataset. The correlation between properties and mount options is as follows:

TABLE 6–4 ZFS Mount-Related Properties and Mount Options

Property Mount Option

atime atime/noatime

devices devices/nodevices

exec exec/noexec

nbmand nbmand/nonbmand

readonly ro/rw

setuid setuid/nosetuid

xattr xattr/noaxttr

The mount option nosuid is an alias for nodevices,nosetuid.

Using Temporary Mount Properties
If any of the mount options described in the preceding section are set explicitly by using the-o
option with the zfs mount command, the associated property value is temporarily overridden.
These property values are reported as temporary by the zfs get command and revert back to
their original values when the file system is unmounted. If a property value is changed while the
dataset is mounted, the change takes effect immediately, overriding any temporary setting.

In the following example, the read-only mount option is temporarily set on the
tank/home/perrin file system. The file system is assumed to be unmounted.

# zfs mount -o ro users/home/neil

Mounting and Sharing ZFS File Systems

Chapter 6 • Managing Oracle Solaris ZFS File Systems 207



To temporarily change a property value on a file system that is currently mounted, you must use
the special remount option. In the following example, the atime property is temporarily
changed to off for a file system that is currently mounted:

# zfs mount -o remount,noatime users/home/neil

NAME PROPERTY VALUE SOURCE

users/home/neil atime off temporary

# zfs get atime users/home/perrin

For more information about the zfs mount command, see zfs(1M).

Unmounting ZFS File Systems
You can unmount ZFS file systems by using the zfs unmount subcommand. The unmount
command can take either the mount point or the file system name as an argument.

In the following example, a file system is unmounted by its file system name:

# zfs unmount users/home/mark

In the following example, the file system is unmounted by its mount point:

# zfs unmount /users/home/mark

The unmount command fails if the file system is busy. To forcibly unmount a file system, you can
use the -f option. Be cautious when forcibly unmounting a file system if its contents are actively
being used. Unpredictable application behavior can result.

# zfs unmount tank/home/eric

cannot unmount ’/tank/home/eric’: Device busy

# zfs unmount -f tank/home/eric

To provide for backward compatibility, the legacy umount command can be used to unmount
ZFS file systems. For example:

# umount /tank/home/bob

For more information about the zfs umount command, see zfs(1M).

Sharing and Unsharing ZFS File Systems
ZFS can automatically share file systems by setting the sharenfs property. Using this property,
you do not have to modify the /etc/dfs/dfstab file when a new file system is shared. The
sharenfs property is a comma-separated list of options to pass to the share command. The
value on is an alias for the default share options, which provides read/write permissions to
anyone. The value off indicates that the file system is not managed by ZFS and can be shared
through traditional means, such as the /etc/dfs/dfstab file. All file systems whose sharenfs
property is not off are shared during boot.

Mounting and Sharing ZFS File Systems

Oracle Solaris ZFS Administration Guide • April 2012208

http://www.oracle.com/pls/topic/lookup?ctx=E23823&id=REFMAN1Mzfs-1m
http://www.oracle.com/pls/topic/lookup?ctx=E23823&id=REFMAN1Mzfs-1m


Controlling Share Semantics
By default, all file systems are unshared. To share a new file system, use zfs set syntax similar
to the following:

# zfs set sharenfs=on tank/home/eric

The sharenfs property is inherited, and file systems are automatically shared on creation if
their inherited property is not off. For example:

# zfs set sharenfs=on tank/home

# zfs create tank/home/bill

# zfs create tank/home/mark

# zfs set sharenfs=ro tank/home/bob

Both tank/home/bill and tank/home/mark are initially shared as writable because they inherit
the sharenfs property from tank/home. After the property is set to ro (read only),
tank/home/mark is shared as read-only regardless of the sharenfs property that is set for
tank/home.

Unsharing ZFS File Systems
Although most file systems are automatically shared or unshared during boot, creation, and
destruction, file systems sometimes need to be explicitly unshared. To do so, use the zfs
unshare command. For example:

# zfs unshare tank/home/mark

This command unshares the tank/home/mark file system. To unshare all ZFS file systems on the
system, you need to use the -a option.

# zfs unshare -a

Sharing ZFS File Systems
Most of the time, the automatic behavior of ZFS with respect to sharing file system on boot and
creation is sufficient for normal operations. If, for some reason, you unshare a file system, you
can share it again by using the zfs share command. For example:

# zfs share tank/home/mark

You can also share all ZFS file systems on the system by using the -a option.

# zfs share -a

Legacy Share Behavior
If the sharenfs property is set to off, then ZFS does not attempt to share or unshare the file
system at any time. This value enables you to administer file system sharing through traditional
means, such as the /etc/dfs/dfstab file.

Mounting and Sharing ZFS File Systems

Chapter 6 • Managing Oracle Solaris ZFS File Systems 209



Unlike the legacy mount command, the legacy share and unshare commands can still function
on ZFS file systems. As a result, you can manually share a file system with options that differ
from the options of the sharenfs property. This administrative model is discouraged. Choose
to manage NFS shares either completely through ZFS or completely through the
/etc/dfs/dfstab file. The ZFS administrative model is designed to be simpler and less work
than the traditional model.

Setting ZFS Quotas and Reservations
You can use the quota property to set a limit on the amount of disk space a file system can use.
In addition, you can use the reservation property to guarantee that a specified amount of disk
space is available to a file system. Both properties apply to the dataset on which they are set and
all descendents of that dataset.

That is, if a quota is set on the tank/home dataset, the total amount of disk space used by
tank/home and all of its descendents cannot exceed the quota. Similarly, if tank/home is given a
reservation, tank/home and all of its descendents draw from that reservation. The amount of
disk space used by a dataset and all of its descendents is reported by the used property.

The refquota and refreservation properties are used to manage file system space without
accounting for disk space consumed by descendents, such as snapshots and clones.

In this Solaris release, you can set a user or a group quota on the amount of disk space consumed
by files that are owned by a particular user or group. The user and group quota properties
cannot be set on a volume, on a file system before file system version 4, or on a pool before pool
version 15.

Consider the following points to determine which quota and reservation features might best
help you manage your file systems:

■ The quota and reservation properties are convenient for managing disk space consumed
by datasets and their descendents.

■ The refquota and refreservation properties are appropriate for managing disk space
consumed by datasets.

■ Setting the refquota or refreservation property higher than the quota or reservation
property has no effect. If you set the quota or refquota property, operations that try to
exceed either value fail. It is possible to a exceed a quota that is greater than the refquota.
For example, if some snapshot blocks are modified, you might actually exceed the quota
before you exceed the refquota.

■ User and group quotas provide a way to more easily manage disk space with many user
accounts, such as in a university environment.

For more information about setting quotas and reservations, see “Setting Quotas on ZFS File
Systems” on page 211 and “Setting Reservations on ZFS File Systems” on page 214.

Setting ZFS Quotas and Reservations

Oracle Solaris ZFS Administration Guide • April 2012210



Setting Quotas on ZFS File Systems
Quotas on ZFS file systems can be set and displayed by using the zfs set and zfs get

commands. In the following example, a quota of 10 GB is set on tank/home/jeff:

# zfs set quota=10G tank/home/jeff

# zfs get quota tank/home/jeff

NAME PROPERTY VALUE SOURCE

tank/home/jeff quota 10G local

Quotas also affect the output of the zfs list and df commands. For example:

# zfs list -r tank/home

NAME USED AVAIL REFER MOUNTPOINT

tank/home 1.45M 66.9G 36K /tank/home

tank/home/eric 547K 66.9G 547K /tank/home/eric

tank/home/jeff 322K 10.0G 291K /tank/home/jeff

tank/home/jeff/ws 31K 10.0G 31K /tank/home/jeff/ws

tank/home/lori 547K 66.9G 547K /tank/home/lori

tank/home/mark 31K 66.9G 31K /tank/home/mark

# df -h /tank/home/jeff

Filesystem Size Used Avail Use% Mounted on

tank/home/jeff 10G 306K 10G 1% /tank/home/jeff

Note that although tank/home has 66.9 GB of disk space available, tank/home/jeff and
tank/home/jeff/ws each have only 10 GB of disk space available, due to the quota on
tank/home/jeff.

You cannot set a quota to an amount less than is currently being used by a dataset. For example:

# zfs set quota=10K tank/home/jeff

cannot set property for ’tank/home/jeff’: size is less than current used or reserved space

You can set a refquota on a dataset that limits the amount of disk space that the dataset can
consume. This hard limit does not include disk space that is consumed by descendents. For
example, studentA's 10 GB quota is not impacted by space that is consumed by snapshots.

# zfs set refquota=10g students/studentA

# zfs list -t all -r students

NAME USED AVAIL REFER MOUNTPOINT

students 150M 66.8G 32K /students

students/studentA 150M 9.85G 150M /students/studentA

students/studentA@yesterday 0 - 150M -

# zfs snapshot students/studentA@today

# zfs list -t all -r students

students 150M 66.8G 32K /students

students/studentA 150M 9.90G 100M /students/studentA

students/studentA@yesterday 50.0M - 150M -

students/studentA@today 0 - 100M -

For additional convenience, you can set another quota on a dataset to help manage the disk
space that is consumed by snapshots. For example:

Setting ZFS Quotas and Reservations

Chapter 6 • Managing Oracle Solaris ZFS File Systems 211



# zfs set quota=20g students/studentA

# zfs list -t all -r students

NAME USED AVAIL REFER MOUNTPOINT

students 150M 66.8G 32K /students

students/studentA 150M 9.90G 100M /students/studentA

students/studentA@yesterday 50.0M - 150M -

students/studentA@today 0 - 100M -

In this scenario, studentA might reach the refquota (10 GB) hard limit, but studentA can
remove files to recover, even if snapshots exist.

In the preceding example, the smaller of the two quotas (10 GB as compared to 20 GB) is
displayed in the zfs list output. To view the value of both quotas, use the zfs get command.
For example:

# zfs get refquota,quota students/studentA

NAME PROPERTY VALUE SOURCE

students/studentA refquota 10G local

students/studentA quota 20G local

Setting User and Group Quotas on a ZFS File System
You can set a user quota or a group quota by using the zfs userquota or zfs groupquota
commands, respectively. For example:

# zfs create students/compsci

# zfs set userquota@student1=10G students/compsci

# zfs create students/labstaff

# zfs set groupquota@labstaff=20GB students/labstaff

Display the current user quota or group quota as follows:

# zfs get userquota@student1 students/compsci

NAME PROPERTY VALUE SOURCE

students/compsci userquota@student1 10G local

# zfs get groupquota@labstaff students/labstaff

NAME PROPERTY VALUE SOURCE

students/labstaff groupquota@labstaff 20G local

You can display general user or group disk space usage by querying the following properties:

# zfs userspace students/compsci

TYPE NAME USED QUOTA

POSIX User root 350M none

POSIX User student1 426M 10G

# zfs groupspace students/labstaff

TYPE NAME USED QUOTA

POSIX Group labstaff 250M 20G

POSIX Group root 350M none

To identify individual user or group disk space usage, query the following properties:

# zfs get userused@student1 students/compsci

NAME PROPERTY VALUE SOURCE

students/compsci userused@student1 550M local

Setting ZFS Quotas and Reservations

Oracle Solaris ZFS Administration Guide • April 2012212



# zfs get groupused@labstaff students/labstaff

NAME PROPERTY VALUE SOURCE

students/labstaff groupused@labstaff 250 local

The user and group quota properties are not displayed by using the zfs get all dataset
command, which displays a list of all of the other file system properties.

You can remove a user quota or group quota as follows:

# zfs set userquota@student1=none students/compsci

# zfs set groupquota@labstaff=none students/labstaff

User and group quotas on ZFS file systems provide the following features:

■ A user quota or group quota that is set on a parent file system is not automatically inherited
by a descendent file system.

■ However, the user or group quota is applied when a clone or a snapshot is created from a file
system that has a user or group quota. Likewise, a user or group quota is included with the
file system when a stream is created by using the zfs send command, even without the -R
option.

■ Unprivileged users can only access their own disk space usage. The root user or a user who
has been granted the userused or groupused privilege, can access everyone's user or group
disk space accounting information.

■ The userquota and groupquota properties cannot be set on ZFS volumes, on a file system
prior to file system version 4, or on a pool prior to pool version 15.

Enforcement of user and group quotas might be delayed by several seconds. This delay means
that users might exceed their quota before the system notices that they are over quota and
refuses additional writes with the EDQUOT error message.

You can use the legacy quota command to review user quotas in an NFS environment, for
example, where a ZFS file system is mounted. Without any options, the quota command only
displays output if the user's quota is exceeded. For example:

# zfs set userquota@student1=10m students/compsci

# zfs userspace students/compsci

TYPE NAME USED QUOTA

POSIX User root 350M none

POSIX User student1 550M 10M

# quota student1

Block limit reached on /students/compsci

If you reset the user quota and the quota limit is no longer exceeded, you can use the quota -v
command to review the user's quota. For example:

# zfs set userquota@student1=10GB students/compsci

# zfs userspace students/compsci

TYPE NAME USED QUOTA

POSIX User root 350M none

Setting ZFS Quotas and Reservations

Chapter 6 • Managing Oracle Solaris ZFS File Systems 213



POSIX User student1 550M 10G

# quota student1

# quota -v student1

Disk quotas for student1 (uid 102):

Filesystem usage quota limit timeleft files quota limit timeleft

/students/compsci

563287 10485760 10485760 - - - - -

Setting Reservations on ZFS File Systems
A ZFS reservation is an allocation of disk space from the pool that is guaranteed to be available
to a dataset. As such, you cannot reserve disk space for a dataset if that space is not currently
available in the pool. The total amount of all outstanding, unconsumed reservations cannot
exceed the amount of unused disk space in the pool. ZFS reservations can be set and displayed
by using the zfs set and zfs get commands. For example:

# zfs set reservation=5G tank/home/bill

# zfs get reservation tank/home/bill

NAME PROPERTY VALUE SOURCE

tank/home/bill reservation 5G local

Reservations can affect the output of the zfs list command. For example:

# zfs list -r tank/home

NAME USED AVAIL REFER MOUNTPOINT

tank/home 5.00G 61.9G 37K /tank/home

tank/home/bill 31K 66.9G 31K /tank/home/bill

tank/home/jeff 337K 10.0G 306K /tank/home/jeff

tank/home/lori 547K 61.9G 547K /tank/home/lori

tank/home/mark 31K 61.9G 31K /tank/home/mark

Note that tank/home is using 5 GB of disk space, although the total amount of space referred to
by tank/home and its descendents is much less than 5 GB. The used space reflects the space
reserved for tank/home/bill. Reservations are considered in the used disk space calculation of
the parent dataset and do count against its quota, reservation, or both.

# zfs set quota=5G pool/filesystem

# zfs set reservation=10G pool/filesystem/user1

cannot set reservation for ’pool/filesystem/user1’: size is greater than

available space

A dataset can use more disk space than its reservation, as long as unreserved space is available in
the pool, and the dataset's current usage is below its quota. A dataset cannot consume disk space
that has been reserved for another dataset.

Reservations are not cumulative. That is, a second invocation of zfs set to set a reservation
does not add its reservation to the existing reservation. Rather, the second reservation replaces
the first reservation. For example:

Setting ZFS Quotas and Reservations

Oracle Solaris ZFS Administration Guide • April 2012214



# zfs set reservation=10G tank/home/bill

# zfs set reservation=5G tank/home/bill

# zfs get reservation tank/home/bill

NAME PROPERTY VALUE SOURCE

tank/home/bill reservation 5G local

You can set a refreservation reservation to guarantee disk space for a dataset that does not
include disk space consumed by snapshots and clones. This reservation is accounted for in the
parent dataset's space used calculation, and counts against the parent dataset's quotas and
reservations. For example:

# zfs set refreservation=10g profs/prof1

# zfs list

NAME USED AVAIL REFER MOUNTPOINT

profs 10.0G 23.2G 19K /profs

profs/prof1 10G 33.2G 18K /profs/prof1

You can also set a reservation on the same dataset to guarantee dataset space and snapshot
space. For example:

# zfs set reservation=20g profs/prof1

# zfs list

NAME USED AVAIL REFER MOUNTPOINT

profs 20.0G 13.2G 19K /profs

profs/prof1 10G 33.2G 18K /profs/prof1

Regular reservations are accounted for in the parent's used space calculation.

In the preceding example, the smaller of the two quotas (10 GB as compared to 20 GB) is
displayed in the zfs list output. To view the value of both quotas, use the zfs get command.
For example:

# zfs get reservation,refreserv profs/prof1

NAME PROPERTY VALUE SOURCE

profs/prof1 reservation 20G local

profs/prof1 refreservation 10G local

If refreservation is set, a snapshot is only allowed if sufficient unreserved pool space exists
outside of this reservation to accommodate the current number of referenced bytes in the
dataset.

Upgrading ZFS File Systems
If you have ZFS file systems from a previous Solaris release, you can upgrade your file systems
with the zfs upgrade command to take advantage of the file system features in the current
release. In addition, this command notifies you when your file systems are running older
versions.

For example, this file system is at the current version 5.

Upgrading ZFS File Systems

Chapter 6 • Managing Oracle Solaris ZFS File Systems 215



# zfs upgrade

This system is currently running ZFS filesystem version 5.

All filesystems are formatted with the current version.

Use this command to identify the features that are available with each file system version.

# zfs upgrade -v

The following filesystem versions are supported:

VER DESCRIPTION

--- --------------------------------------------------------

1 Initial ZFS filesystem version

2 Enhanced directory entries

3 Case insensitive and File system unique identifier (FUID)

4 userquota, groupquota properties

5 System attributes

For more information on a particular version, including supported releases,

see the ZFS Administration Guide.

Upgrading ZFS File Systems

Oracle Solaris ZFS Administration Guide • April 2012216



Working With Oracle Solaris ZFS Snapshots and
Clones

This chapter describes how to create and manage Oracle Solaris ZFS snapshots and clones.
Information about saving snapshots is also provided.

The following sections are provided in this chapter:
■ “Overview of ZFS Snapshots” on page 217
■ “Creating and Destroying ZFS Snapshots” on page 218
■ “Displaying and Accessing ZFS Snapshots” on page 221
■ “Rolling Back a ZFS Snapshot” on page 222
■ “Overview of ZFS Clones” on page 224
■ “Creating a ZFS Clone” on page 225
■ “Destroying a ZFS Clone” on page 225
■ “Replacing a ZFS File System With a ZFS Clone” on page 225
■ “Sending and Receiving ZFS Data” on page 226

Overview of ZFS Snapshots
A snapshot is a read-only copy of a file system or volume. Snapshots can be created almost
instantly, and they initially consume no additional disk space within the pool. However, as data
within the active dataset changes, the snapshot consumes disk space by continuing to reference
the old data, thus preventing the disk space from being freed.

ZFS snapshots include the following features:
■ The persist across system reboots.
■ The theoretical maximum number of snapshots is 264.
■ Snapshots use no separate backing store. Snapshots consume disk space directly from the

same storage pool as the file system or volume from which they were created.
■ Recursive snapshots are created quickly as one atomic operation. The snapshots are created

together (all at once) or not created at all. The benefit of atomic snapshot operations is that
the snapshot data is always taken at one consistent time, even across descendent file systems.

7C H A P T E R 7

217



Snapshots of volumes cannot be accessed directly, but they can be cloned, backed up, rolled
back to, and so on. For information about backing up a ZFS snapshot, see “Sending and
Receiving ZFS Data” on page 226.

■ “Creating and Destroying ZFS Snapshots” on page 218
■ “Displaying and Accessing ZFS Snapshots” on page 221
■ “Rolling Back a ZFS Snapshot” on page 222

Creating and Destroying ZFS Snapshots
Snapshots are created by using the zfs snapshot command, which takes as its only argument
the name of the snapshot to create. The snapshot name is specified as follows:

filesystem@snapname
volume@snapname

The snapshot name must satisfy the naming requirements in “ZFS Component Naming
Requirements” on page 51.

In the following example, a snapshot of tank/home/matt that is named friday is created.

# zfs snapshot tank/home/matt@friday

You can create snapshots for all descendent file systems by using the -r option. For example:

# zfs snapshot -r tank/home@snap1

# zfs list -t snapshot -r tank/home

zfs list -t snapshot -r tank/home

NAME USED AVAIL REFER MOUNTPOINT

tank/home@snap1 0 - 34K -

tank/home/mark@snap1 0 - 2.00G -

tank/home/matt@snap1 0 - 1.00G -

tank/home/tom@snap1 0 - 2.00G -

Snapshots have no modifiable properties. Nor can dataset properties be applied to a snapshot.
For example:

# zfs set compression=on tank/home/matt@friday

cannot set property for ’tank/home/matt@friday’: this property can not be modified for snapshots

Snapshots are destroyed by using the zfs destroy command. For example:

# zfs destroy tank/home/matt@friday

A dataset cannot be destroyed if snapshots of the dataset exist. For example:

# zfs destroy tank/home/matt

cannot destroy ’tank/home/matt’: filesystem has children

use ’-r’ to destroy the following datasets:

Overview of ZFS Snapshots

Oracle Solaris ZFS Administration Guide • April 2012218



tank/home/matt@tuesday

tank/home/matt@wednesday

tank/home/matt@thursday

In addition, if clones have been created from a snapshot, then they must be destroyed before the
snapshot can be destroyed.

For more information about the destroy subcommand, see “Destroying a ZFS File System” on
page 183.

Holding ZFS Snapshots
If you have different automatic snapshot policies such that older snapshots are being
inadvertently destroyed by zfs receive because they no longer exist on the sending side, you
might consider using the snapshots hold feature.

Holding a snapshot prevents it from being destroyed. In addition, this feature allows a snapshot
with clones to be deleted pending the removal of the last clone by using the zfs destroy -d
command. Each snapshot has an associated user-reference count, which is initialized to zero.
This count increases by 1 whenever a hold is put on a snapshot and decreases by 1 whenever a
hold is released.

In the previous Oracle Solaris release, a snapshot could only be destroyed by using the zfs
destroy command if it had no clones. In this Oracle Solaris release, the snapshot must also have
a zero user-reference count.

You can hold a snapshot or set of snapshots. For example, the following syntax puts a hold tag,
keep, on tank/home/cindy/snap@1:

# zfs hold keep tank/home/cindy@snap1

You can use the -r option to recursively hold the snapshots of all descendent file systems. For
example:

# zfs snapshot -r tank/home@now

# zfs hold -r keep tank/home@now

This syntax adds a single reference, keep, to the given snapshot or set of snapshots. Each
snapshot has its own tag namespace and hold tags must be unique within that space. If a hold
exists on a snapshot, attempts to destroy that held snapshot by using the zfs destroy
command will fail. For example:

# zfs destroy tank/home/cindy@snap1

cannot destroy ’tank/home/cindy@snap1’: dataset is busy

To destroy a held snapshot, use the -d option. For example:

# zfs destroy -d tank/home/cindy@snap1

Use the zfs holds command to display a list of held snapshots. For example:

Overview of ZFS Snapshots

Chapter 7 • Working With Oracle Solaris ZFS Snapshots and Clones 219



# zfs holds tank/home@now

NAME TAG TIMESTAMP

tank/home@now keep Fri May 6 06:34:03 2011

# zfs holds -r tank/home@now

NAME TAG TIMESTAMP

tank/home/cindy@now keep Fri May 6 06:34:03 2011

tank/home/mark@now keep Fri May 6 06:34:03 2011

tank/home/matt@now keep Fri May 6 06:34:03 2011

tank/home/tom@now keep Fri May 6 06:34:03 2011

tank/home@now keep Fri May 6 06:34:03 2011

You can use the zfs release command to release a hold on a snapshot or set of snapshots. For
example:

# zfs release -r keep tank/home@now

If the snapshot is released, the snapshot can be destroyed by using the zfs destroy command.
For example:

# zfs destroy -r tank/home@now

Two new properties identify snapshot hold information.

■ The defer_destroy property is on if the snapshot has been marked for deferred destruction
by using the zfs destroy -d command. Otherwise, the property is off.

■ The userrefs property is set to the number of holds on this snapshot, also referred to as the
user-reference count.

Renaming ZFS Snapshots
You can rename snapshots, but they must be renamed within the same pool and dataset from
which they were created. For example:

# zfs rename tank/home/cindy@snap1 tank/home/cindy@today

In addition, the following shortcut syntax is equivalent to the preceding syntax:

# zfs rename tank/home/cindy@snap1 today

The following snapshot rename operation is not supported because the target pool and file
system name are different from the pool and file system where the snapshot was created:

# zfs rename tank/home/cindy@today pool/home/cindy@saturday

cannot rename to ’pool/home/cindy@today’: snapshots must be part of same

dataset

You can recursively rename snapshots by using the zfs rename -r command. For example:

# zfs list -t snapshot -r users/home

NAME USED AVAIL REFER MOUNTPOINT

users/home@now 23.5K - 35.5K -

Overview of ZFS Snapshots

Oracle Solaris ZFS Administration Guide • April 2012220



users/home@yesterday 0 - 38K -

users/home/lori@yesterday 0 - 2.00G -

users/home/mark@yesterday 0 - 1.00G -

users/home/neil@yesterday 0 - 2.00G -

# zfs rename -r users/home@yesterday @2daysago

# zfs list -t snapshot -r users/home

NAME USED AVAIL REFER MOUNTPOINT

users/home@now 23.5K - 35.5K -

users/home@2daysago 0 - 38K -

users/home/lori@2daysago 0 - 2.00G -

users/home/mark@2daysago 0 - 1.00G -

users/home/neil@2daysago 0 - 2.00G -

Displaying and Accessing ZFS Snapshots
You can enable or disable the display of snapshot listings in the zfs list output by using the
listsnapshots pool property. This property is enabled by default.

If you disable this property, you can use the zfs list -t snapshot command to display
snapshot information. Or, enable the listsnapshots pool property. For example:

# zpool get listsnapshots tank

NAME PROPERTY VALUE SOURCE

tank listsnapshots on default

# zpool set listsnapshots=off tank

# zpool get listsnapshots tank

NAME PROPERTY VALUE SOURCE

tank listsnapshots off local

Snapshots of file systems are accessible in the .zfs/snapshot directory within the root of the
file system. For example, if tank/home/ahrens is mounted on /home/ahrens, then the
tank/home/ahrens@thursday snapshot data is accessible in the
/home/ahrens/.zfs/snapshot/thursday directory.

# ls /tank/home/matt/.zfs/snapshot

tuesday wednesday thursday

You can list snapshots as follows:

# zfs list -t snapshot -r tank/home

NAME USED AVAIL REFER MOUNTPOINT

tank/home/cindy@today 0 - 2.00G -

tank/home/mark@today 0 - 2.00G -

tank/home/matt@tuesday 20K - 1.00G -

tank/home/matt@wednesday 20K - 1.00G -

tank/home/matt@thursday 0 - 1.00G -

You can list snapshots that were created for a particular file system as follows:

# zfs list -r -t snapshot -o name,creation tank/home

NAME CREATION

tank/home/cindy@today Fri May 6 6:32 2011

Overview of ZFS Snapshots

Chapter 7 • Working With Oracle Solaris ZFS Snapshots and Clones 221



tank/home/mark@today Fri May 6 6:22 2011

tank/home/matt@tuesday Tue May 3 6:27 2011

tank/home/matt@wednesday Wed May 4 6:28 2011

tank/home/matt@thursday Thu May 5 6:28 2011

Disk Space Accounting for ZFS Snapshots
When a snapshot is created, its disk space is initially shared between the snapshot and the file
system, and possibly with previous snapshots. As the file system changes, disk space that was
previously shared becomes unique to the snapshot, and thus is counted in the snapshot's used
property. Additionally, deleting snapshots can increase the amount of disk space unique to (and
thus used by) other snapshots.

A snapshot's space referenced property value is the same as the file system's was when the
snapshot was created.

You can identify additional information about how the values of the used property are
consumed. New read-only file system properties describe disk space usage for clones, file
systems, and volumes. For example:

$ zfs list -o space -r rpool

NAME AVAIL USED USEDSNAP USEDDS USEDREFRESERV USEDCHILD

rpool 59.1G 7.84G 21K 109K 0 7.84G

rpool@snap1 - 21K - - - -

rpool/ROOT 59.1G 4.78G 0 31K 0 4.78G

rpool/ROOT@snap1 - 0 - - - -

rpool/ROOT/zfsBE 59.1G 4.78G 15.6M 4.76G 0 0

rpool/ROOT/zfsBE@snap1 - 15.6M - - - -

rpool/dump 59.1G 1.00G 16K 1.00G 0 0

rpool/dump@snap1 - 16K - - - -

rpool/export 59.1G 99K 18K 32K 0 49K

rpool/export@snap1 - 18K - - - -

rpool/export/home 59.1G 49K 18K 31K 0 0

rpool/export/home@snap1 - 18K - - - -

rpool/swap 61.2G 2.06G 0 16K 2.06G 0

rpool/swap@snap1 - 0 - - - -

For a description of these properties, see Table 6–1.

Rolling Back a ZFS Snapshot
You can use the zfs rollback command to discard all changes made to a file system since a
specific snapshot was created. The file system reverts to its state at the time the snapshot was
taken. By default, the command cannot roll back to a snapshot other than the most recent
snapshot.

To roll back to an earlier snapshot, all intermediate snapshots must be destroyed. You can
destroy earlier snapshots by specifying the -r option.

If clones of any intermediate snapshots exist, the -R option must be specified to destroy the
clones as well.

Overview of ZFS Snapshots

Oracle Solaris ZFS Administration Guide • April 2012222



Note – The file system that you want to roll back is unmounted and remounted, if it is currently
mounted. If the file system cannot be unmounted, the rollback fails. The -f option forces the file
system to be unmounted, if necessary.

In the following example, the tank/home/ahrens file system is rolled back to the tuesday
snapshot:

# zfs rollback tank/home/matt@tuesday

cannot rollback to ’tank/home/matt@tuesday’: more recent snapshots exist

use ’-r’ to force deletion of the following snapshots:

tank/home/matt@wednesday

tank/home/matt@thursday

# zfs rollback -r tank/home/matt@tuesday

In this example, the wednesday and thursday snapshots are destroyed because you rolled back
to the earlier tuesday snapshot.

# zfs list -r -t snapshot -o name,creation tank/home/matt

NAME CREATION

tank/home/matt@tuesday Tue May 3 6:27 2011

Identifying ZFS Snapshot Differences (zfs diff)
You can determine ZFS snapshot differences by using the zfs diff command.

For example, assume that the following two snapshots are created:

$ ls /tank/home/tim

fileA

$ zfs snapshot tank/home/tim@snap1

$ ls /tank/home/tim

fileA fileB

$ zfs snapshot tank/home/tim@snap2

For example, to identify the differences between two snapshots, use syntax similar to the
following:

$ zfs diff tank/home/tim@snap1 tank/home/timh@snap2

M /tank/home/tim/

+ /tank/home/tim/fileB

In the output, the M indicates that the directory has been modified. The + indicates that fileB
exists in the later snapshot.

The R in the following output indicates that a file in a snapshot has been renamed.

$ mv /tank/cindy/fileB /tank/cindy/fileC

$ zfs snapshot tank/cindy@snap2

$ zfs diff tank/cindy@snap1 tank/cindy@snap2

Overview of ZFS Snapshots

Chapter 7 • Working With Oracle Solaris ZFS Snapshots and Clones 223



M /tank/cindy/

R /tank/cindy/fileB -> /tank/cindy/fileC

The following table summarizes the file or directory changes that are identified by the zfs diff
command.

File or Directory Change Identifier

File or directory has been modified or file or directory link has
changed

M

File or directory is present in the older snapshot but not in the
more recent snapshot

—

File or directory is present in the more recent snapshot but not
in the older snapshot

+

File or directory has been renamed R

For more information, see zfs(1M).

Overview of ZFS Clones
A clone is a writable volume or file system whose initial contents are the same as the dataset
from which it was created. As with snapshots, creating a clone is nearly instantaneous and
initially consumes no additional disk space. In addition, you can snapshot a clone.

Clones can only be created from a snapshot. When a snapshot is cloned, an implicit dependency
is created between the clone and snapshot. Even though the clone is created somewhere else in
the dataset hierarchy, the original snapshot cannot be destroyed as long as the clone exists. The
origin property exposes this dependency, and the zfs destroy command lists any such
dependencies, if they exist.

Clones do not inherit the properties of the dataset from which it was created. Use the zfs get
and zfs set commands to view and change the properties of a cloned dataset. For more
information about setting ZFS dataset properties, see “Setting ZFS Properties” on page 199.

Because a clone initially shares all its disk space with the original snapshot, its used property
value is initially zero. As changes are made to the clone, it uses more disk space. The used
property of the original snapshot does not include the disk space consumed by the clone.

■ “Creating a ZFS Clone” on page 225
■ “Destroying a ZFS Clone” on page 225
■ “Replacing a ZFS File System With a ZFS Clone” on page 225

Overview of ZFS Clones

Oracle Solaris ZFS Administration Guide • April 2012224

http://www.oracle.com/pls/topic/lookup?ctx=E23823&id=REFMAN1Mzfs-1m


Creating a ZFS Clone
To create a clone, use the zfs clone command, specifying the snapshot from which to create
the clone, and the name of the new file system or volume. The new file system or volume can be
located anywhere in the ZFS hierarchy. The new dataset is the same type (for example, file
system or volume) as the snapshot from which the clone was created. You cannot create a clone
of a file system in a pool that is different from where the original file system snapshot resides.

In the following example, a new clone named tank/home/ahrens/bug123 with the same initial
contents as the snapshot tank/ws/gate@yesterday is created:

# zfs snapshot tank/ws/gate@yesterday

# zfs clone tank/ws/gate@yesterday tank/home/matt/bug123

In the following example, a cloned workspace is created from the projects/newproject@today
snapshot for a temporary user as projects/teamA/tempuser. Then, properties are set on the
cloned workspace.

# zfs snapshot projects/newproject@today

# zfs clone projects/newproject@today projects/teamA/tempuser

# zfs set sharenfs=on projects/teamA/tempuser

# zfs set quota=5G projects/teamA/tempuser

Destroying a ZFS Clone
ZFS clones are destroyed by using the zfs destroy command. For example:

# zfs destroy tank/home/matt/bug123

Clones must be destroyed before the parent snapshot can be destroyed.

Replacing a ZFS File System With a ZFS Clone
You can use the zfs promote command to replace an active ZFS file system with a clone of that
file system. This feature enables you to clone and replace file systems so that the original file
system becomes the clone of the specified file system. In addition, this feature makes it possible
to destroy the file system from which the clone was originally created. Without clone
promotion, you cannot destroy an original file system of active clones. For more information
about destroying clones, see “Destroying a ZFS Clone” on page 225.

In the following example, the tank/test/productA file system is cloned and then the clone file
system, tank/test/productAbeta, becomes the original tank/test/productA file system.

# zfs create tank/test

# zfs create tank/test/productA

# zfs snapshot tank/test/productA@today

Overview of ZFS Clones

Chapter 7 • Working With Oracle Solaris ZFS Snapshots and Clones 225



# zfs clone tank/test/productA@today tank/test/productAbeta

# zfs list -r tank/test

NAME USED AVAIL REFER MOUNTPOINT

tank/test 104M 66.2G 23K /tank/test

tank/test/productA 104M 66.2G 104M /tank/test/productA

tank/test/productA@today 0 - 104M -

tank/test/productAbeta 0 66.2G 104M /tank/test/productAbeta

# zfs promote tank/test/productAbeta

# zfs list -r tank/test

NAME USED AVAIL REFER MOUNTPOINT

tank/test 104M 66.2G 24K /tank/test

tank/test/productA 0 66.2G 104M /tank/test/productA

tank/test/productAbeta 104M 66.2G 104M /tank/test/productAbeta

tank/test/productAbeta@today 0 - 104M -

In this zfs list output, note that the disk space accounting information for the original
productA file system has been replaced with the productAbeta file system.

You can complete the clone replacement process by renaming the file systems. For example:

# zfs rename tank/test/productA tank/test/productAlegacy

# zfs rename tank/test/productAbeta tank/test/productA

# zfs list -r tank/test

Optionally, you can remove the legacy file system. For example:

# zfs destroy tank/test/productAlegacy

Sending and Receiving ZFS Data
The zfs send command creates a stream representation of a snapshot that is written to
standard output. By default, a full stream is generated. You can redirect the output to a file or to
a different system. The zfs receive command creates a snapshot whose contents are specified
in the stream that is provided on standard input. If a full stream is received, a new file system is
created as well. You can send ZFS snapshot data and receive ZFS snapshot data and file systems
with these commands. See the examples in the next section.

■ “Saving ZFS Data With Other Backup Products” on page 227
■ “Sending a ZFS Snapshot” on page 227
■ “Receiving a ZFS Snapshot” on page 228
■ “Applying Different Property Values to a ZFS Snapshot Stream” on page 229
■ “Sending and Receiving Complex ZFS Snapshot Streams” on page 231
■ “Remote Replication of ZFS Data” on page 233

The following backup solutions for saving ZFS data are available:

■ Enterprise backup products – If you need the following features, then consider an
enterprise backup solution:
■ Per-file restoration

Sending and Receiving ZFS Data

Oracle Solaris ZFS Administration Guide • April 2012226



■ Backup media verification
■ Media management

■ File system snapshots and rolling back snapshots – Use the zfs snapshot and zfs

rollback commands if you want to easily create a copy of a file system and revert to a
previous file system version, if necessary. For example, to restore a file or files from a
previous version of a file system, you could use this solution.
For more information about creating and rolling back to a snapshot, see “Overview of ZFS
Snapshots” on page 217.

■ Saving snapshots – Use the zfs send and zfs receive commands to send and receive a
ZFS snapshot. You can save incremental changes between snapshots, but you cannot restore
files individually. You must restore the entire file system snapshot. These commands do not
provide a complete backup solution for saving your ZFS data.

■ Remote replication – Use the zfs send and zfs receive commands to copy a file system
from one system to another system. This process is different from a traditional volume
management product that might mirror devices across a WAN. No special configuration or
hardware is required. The advantage of replicating a ZFS file system is that you can re-create
a file system on a storage pool on another system, and specify different levels of
configuration for the newly created pool, such as RAID-Z, but with identical file system
data.

■ Archive utilities – Save ZFS data with archive utilities such as tar, cpio, and pax or
third-party backup products. Currently, both tar and cpio translate NFSv4-style ACLs
correctly, but pax does not.

Saving ZFS Data With Other Backup Products
In addition to the zfs send and zfs receive commands, you can also use archive utilities,
such as the tar and cpio commands, to save ZFS files. These utilities save and restore ZFS file
attributes and ACLs. Check the appropriate options for both the tar and cpio commands.

For up-to-date information about issues with ZFS and third-party backup products, see the
Solaris 10 Release Notes or the ZFS FAQ, available here:

http://hub.opensolaris.org/bin/view/Community+Group+zfs/faq/#backupsoftware

Sending a ZFS Snapshot
You can use the zfs send command to send a copy of a snapshot stream and receive the
snapshot stream in another pool on the same system or in another pool on a different system
that is used to store backup data. For example, to send the snapshot stream on a different pool to
the same system, use syntax similar to the following:

# zfs send tank/dana@snap1 | zfs recv spool/ds01

Sending and Receiving ZFS Data

Chapter 7 • Working With Oracle Solaris ZFS Snapshots and Clones 227

http://hub.opensolaris.org/bin/view/Community+Group+zfs/faq/#backupsoftware


You can use zfs recv as an alias for the zfs receive command.

If you are sending the snapshot stream to a different system, pipe the zfs send output through
the ssh command. For example:

host1# zfs send tank/dana@snap1 | ssh host2 zfs recv newtank/dana

When you send a full stream, the destination file system must not exist.

You can send incremental data by using the zfs send -i option. For example:

host1# zfs send -i tank/dana@snap1 tank/dana@snap2 | ssh host2 zfs recv newtank/dana

Note that the first argument (snap1) is the earlier snapshot and the second argument (snap2) is
the later snapshot. In this case, the newtank/dana file system must already exist for the
incremental receive to be successful.

The incremental snap1 source can be specified as the last component of the snapshot name.
This shortcut means you only have to specify the name after the @ sign for snap1, which is
assumed to be from the same file system as snap2. For example:

host1# zfs send -i snap1 tank/dana@snap2 > ssh host2 zfs recv newtank/dana

This shortcut syntax is equivalent to the incremental syntax in the preceding example.

The following message is displayed if you attempt to generate an incremental stream from a
different file system snapshot1:

cannot send ’pool/fs@name’: not an earlier snapshot from the same fs

If you need to store many copies, consider compressing a ZFS snapshot stream representation
with the gzip command. For example:

# zfs send pool/fs@snap | gzip > backupfile.gz

Receiving a ZFS Snapshot
Keep the following key points in mind when you receive a file system snapshot:

■ Both the snapshot and the file system are received.
■ The file system and all descendent file systems are unmounted.
■ The file systems are inaccessible while they are being received.
■ The original file system to be received must not exist while it is being transferred.
■ If the file system name already exists, you can use zfs rename command to rename the file

system.

For example:

Sending and Receiving ZFS Data

Oracle Solaris ZFS Administration Guide • April 2012228



# zfs send tank/gozer@0830 > /bkups/gozer.083006

# zfs receive tank/gozer2@today < /bkups/gozer.083006

# zfs rename tank/gozer tank/gozer.old

# zfs rename tank/gozer2 tank/gozer

If you make a change to the destination file system and you want to perform another
incremental send of a snapshot, you must first roll back the receiving file system.

Consider the following example. First, make a change to the file system as follows:

host2# rm newtank/dana/file.1

Then, perform an incremental send of tank/dana@snap3. However, you must first roll back the
receiving file system to receive the new incremental snapshot. Or, you can eliminate the
rollback step by using the -F option. For example:

host1# zfs send -i tank/dana@snap2 tank/dana@snap3 | ssh host2 zfs recv -F newtank/dana

When you receive an incremental snapshot, the destination file system must already exist.

If you make changes to the file system and you do not roll back the receiving file system to
receive the new incremental snapshot or you do not use the -F option, you see a message similar
to the following:

host1# zfs send -i tank/dana@snap4 tank/dana@snap5 | ssh host2 zfs recv newtank/dana

cannot receive: destination has been modified since most recent snapshot

The following checks are performed before the -F option is successful:
■ If the most recent snapshot doesn't match the incremental source, neither the roll back nor

the receive is completed, and an error message is returned.
■ If you accidentally provide the name of different file system that doesn't match the

incremental source specified in the zfs receive command, neither the rollback nor the
receive is completed, and the following error message is returned:

cannot send ’pool/fs@name’: not an earlier snapshot from the same fs

Applying Different Property Values to a ZFS Snapshot
Stream
You can send a ZFS snapshot stream with a certain file system property value, but you can
specify a different local property value when the snapshot stream is received. Or, you can
specify that the original property value be used when the snapshot stream is received to
re-create the original file system. In addition, you can disable a file system property when the
snapshot stream is received.

In some cases, file system properties in a send stream might not apply to the receiving file
system or local file system properties, such as the mountpoint property value, might interfere
with a restore.

Sending and Receiving ZFS Data

Chapter 7 • Working With Oracle Solaris ZFS Snapshots and Clones 229



For example, the tank/data file system has the compression property disabled. A snapshot of
the tank/data file system is sent with properties (-p option) to a backup pool and is received
with the compression property enabled.

# zfs get compression tank/data

NAME PROPERTY VALUE SOURCE

tank/data compression off default

# zfs snapshot tank/data@snap1

# zfs send -p tank/data@snap1 | zfs recv -o compression=on -d bpool

# zfs get -o all compression bpool/data

NAME PROPERTY VALUE RECEIVED SOURCE

bpool/data compression on off local

In the example, the compression property is enabled when the snapshot is received into bpool.
So, for bpool/data, the compression value is on.

If this snapshot stream is sent to a new pool, restorepool, for recovery purposes, you might
want to keep all the original snapshot properties. In this case, you would use the zfs send -b
command to restore the original snapshot properties. For example:

# zfs send -b bpool/data@snap1 | zfs recv -d restorepool

# zfs get -o all compression restorepool/data

NAME PROPERTY VALUE RECEIVED SOURCE

restorepool/data compression off off received

In the example, the compression value is off, which represents the snapshot compression value
from the original tank/data file system.

If you have a local file system property value in a snapshot stream and you want to disable the
property when it is received, use the zfs receive -x command. For example, the following
command sends a recursive snapshot stream of home directory file systems with all file system
properties reserved to a backup pool, but without the quota property values:

# zfs send -R tank/home@snap1 | zfs recv -x quota bpool/home

# zfs get -r quota bpool/home

NAME PROPERTY VALUE SOURCE

bpool/home quota none local

bpool/home@snap1 quota - -

bpool/home/lori quota none default

bpool/home/lori@snap1 quota - -

bpool/home/mark quota none default

bpool/home/mark@snap1 quota - -

If the recursive snapshot was not received with the -x option, the quota property would be set in
the received file systems.

# zfs send -R tank/home@snap1 | zfs recv bpool/home

# zfs get -r quota bpool/home

NAME PROPERTY VALUE SOURCE

bpool/home quota none received

bpool/home@snap1 quota - -

bpool/home/lori quota 10G received

Sending and Receiving ZFS Data

Oracle Solaris ZFS Administration Guide • April 2012230



bpool/home/lori@snap1 quota - -

bpool/home/mark quota 10G received

bpool/home/mark@snap1 quota - -

Sending and Receiving Complex ZFS Snapshot
Streams
This section describes how to use the zfs send -I and -R options to send and receive more
complex snapshot streams.

Keep the following points in mind when sending and receiving complex ZFS snapshot streams:

■ Use the zfs send -I option to send all incremental streams from one snapshot to a
cumulative snapshot. Or, use this option to send an incremental stream from the original
snapshot to create a clone. The original snapshot must already exist on the receiving side to
accept the incremental stream.

■ Use the zfs send -R option to send a replication stream of all descendent file systems. When
the replication stream is received, all properties, snapshots, descendent file systems, and
clones are preserved.

■ Use both options to send an incremental replication stream.
■ Changes to properties are preserved, as are snapshot and file system rename and destroy

operations are preserved.
■ If zfs recv -F is not specified when receiving the replication stream, dataset destroy

operations are ignored. The zfs recv -F syntax in this case also retains its rollback if
necessary meaning.

■ As with other (non zfs send -R) -i or -I cases, if -I is used, all snapshots between snapA

and snapD are sent. If -i is used, only snapD (for all descendents) are sent.
■ To receive any of these new types of zfs send streams, the receiving system must be

running a software version capable of sending them. The stream version is incremented.
However, you can access streams from older pool versions by using a newer software
version. For example, you can send and receive streams created with the newer options to
and from a version 3 pool. But, you must be running recent software to receive a stream sent
with the newer options.

EXAMPLE 7–1 Sending and Receiving Complex ZFS Snapshot Streams

A group of incremental snapshots can be combined into one snapshot by using the zfs send -I
option. For example:

# zfs send -I pool/fs@snapA pool/fs@snapD > /snaps/fs@all-I

Then, you would remove snapB, snapC, and snapD.

Sending and Receiving ZFS Data

Chapter 7 • Working With Oracle Solaris ZFS Snapshots and Clones 231



EXAMPLE 7–1 Sending and Receiving Complex ZFS Snapshot Streams (Continued)

# zfs destroy pool/fs@snapB

# zfs destroy pool/fs@snapC

# zfs destroy pool/fs@snapD

To receive the combined snapshot, you would use the following command.

# zfs receive -d -F pool/fs < /snaps/fs@all-I

# zfs list

NAME USED AVAIL REFER MOUNTPOINT

pool 428K 16.5G 20K /pool

pool/fs 71K 16.5G 21K /pool/fs

pool/fs@snapA 16K - 18.5K -

pool/fs@snapB 17K - 20K -

pool/fs@snapC 17K - 20.5K -

pool/fs@snapD 0 - 21K -

You can also use the zfs send -I command to combine a snapshot and a clone snapshot to
create a combined dataset. For example:

# zfs create pool/fs

# zfs snapshot pool/fs@snap1

# zfs clone pool/fs@snap1 pool/clone

# zfs snapshot pool/clone@snapA

# zfs send -I pool/fs@snap1 pool/clone@snapA > /snaps/fsclonesnap-I

# zfs destroy pool/clone@snapA

# zfs destroy pool/clone

# zfs receive -F pool/clone < /snaps/fsclonesnap-I

You can use the zfs send -R command to replicate a ZFS file system and all descendent file
systems, up to the named snapshot. When this stream is received, all properties, snapshots,
descendent file systems, and clones are preserved.

In the following example, snapshots are created for user file systems. One replication stream is
created for all user snapshots. Next, the original file systems and snapshots are destroyed and
then recovered.

# zfs snapshot -r users@today

# zfs list

NAME USED AVAIL REFER MOUNTPOINT

users 187K 33.2G 22K /users

users@today 0 - 22K -

users/user1 18K 33.2G 18K /users/user1

users/user1@today 0 - 18K -

users/user2 18K 33.2G 18K /users/user2

users/user2@today 0 - 18K -

users/user3 18K 33.2G 18K /users/user3

users/user3@today 0 - 18K -

# zfs send -R users@today > /snaps/users-R

# zfs destroy -r users

# zfs receive -F -d users < /snaps/users-R

# zfs list

NAME USED AVAIL REFER MOUNTPOINT

Sending and Receiving ZFS Data

Oracle Solaris ZFS Administration Guide • April 2012232



EXAMPLE 7–1 Sending and Receiving Complex ZFS Snapshot Streams (Continued)

users 196K 33.2G 22K /users

users@today 0 - 22K -

users/user1 18K 33.2G 18K /users/user1

users/user1@today 0 - 18K -

users/user2 18K 33.2G 18K /users/user2

users/user2@today 0 - 18K -

users/user3 18K 33.2G 18K /users/user3

users/user3@today 0 - 18K -

In the following example, the zfs send -R command was used to replicate the users dataset
and its descendents, and to send the replicated stream to another pool, users2.

# zfs create users2 mirror c0t1d0 c1t1d0

# zfs receive -F -d users2 < /snaps/users-R

# zfs list

NAME USED AVAIL REFER MOUNTPOINT

users 224K 33.2G 22K /users

users@today 0 - 22K -

users/user1 33K 33.2G 18K /users/user1

users/user1@today 15K - 18K -

users/user2 18K 33.2G 18K /users/user2

users/user2@today 0 - 18K -

users/user3 18K 33.2G 18K /users/user3

users/user3@today 0 - 18K -

users2 188K 16.5G 22K /users2

users2@today 0 - 22K -

users2/user1 18K 16.5G 18K /users2/user1

users2/user1@today 0 - 18K -

users2/user2 18K 16.5G 18K /users2/user2

users2/user2@today 0 - 18K -

users2/user3 18K 16.5G 18K /users2/user3

users2/user3@today 0 - 18K -

Remote Replication of ZFS Data
You can use the zfs send and zfs recv commands to remotely copy a snapshot stream
representation from one system to another system. For example:

# zfs send tank/cindy@today | ssh newsys zfs recv sandbox/restfs@today

This command sends the tank/cindy@today snapshot data and receives it into the
sandbox/restfs file system. The command also creates a restfs@today snapshot on the
newsys system. In this example, the user has been configured to use ssh on the remote system.

Sending and Receiving ZFS Data

Chapter 7 • Working With Oracle Solaris ZFS Snapshots and Clones 233



234



Using ACLs and Attributes to Protect Oracle
Solaris ZFS Files

This chapter provides information about using access control lists (ACLs) to protect your ZFS
files by providing more granular permissions than the standard UNIX permissions.

The following sections are provided in this chapter:

■ “Solaris ACL Model” on page 235
■ “Setting ACLs on ZFS Files” on page 241
■ “Setting and Displaying ACLs on ZFS Files in Verbose Format” on page 243
■ “Setting and Displaying ACLs on ZFS Files in Compact Format” on page 252

Solaris ACL Model
Previous versions of Solaris supported an ACL implementation that was primarily based on the
POSIX-draft ACL specification. The POSIX-draft based ACLs are used to protect UFS files and
are translated by versions of NFS prior to NFSv4.

With the introduction of NFSv4, a new ACL model fully supports the interoperability that
NFSv4 offers between UNIX and non-UNIX clients. The new ACL implementation, as defined
in the NFSv4 specification, provides much richer semantics that are based on NT-style ACLs.

The main differences of the new ACL model are as follows:

■ Based on the NFSv4 specification and similar to NT-style ACLs.
■ Provide much more granular set of access privileges. For more information, see Table 8–2.
■ Set and displayed with the chmod and ls commands rather than the setfacl and getfacl

commands.
■ Provide richer inheritance semantics for designating how access privileges are applied from

directory to subdirectories, and so on. For more information, see “ACL Inheritance” on
page 239.

8C H A P T E R 8

235



Both ACL models provide more fine-grained access control than is available with the standard
file permissions. Much like POSIX-draft ACLs, the new ACLs are composed of multiple Access
Control Entries (ACEs).

POSIX-draft style ACLs use a single entry to define what permissions are allowed and what
permissions are denied. The new ACL model has two types of ACEs that affect access checking:
ALLOW and DENY. As such, you cannot infer from any single ACE that defines a set of permissions
whether or not the permissions that weren't defined in that ACE are allowed or denied.

Translation between NFSv4-style ACLs and POSIX-draft ACLs is as follows:
■ If you use any ACL-aware utility, such as the cp, mv, tar, cpio, or rcp commands, to transfer

UFS files with ACLs to a ZFS file system, the POSIX-draft ACLs are translated into the
equivalent NFSv4-style ACLs.

■ Some NFSv4-style ACLs are translated to POSIX-draft ACLs. You see a message similar to
the following if an NFSv4–style ACL isn't translated to a POSIX-draft ACL:

# cp -p filea /var/tmp

cp: failed to set acl entries on /var/tmp/filea

■ If you create a UFS tar or cpio archive with the preserve ACL option (tar -p or cpio -P) on
a system that runs a current Solaris release, you will lose the ACLs when the archive is
extracted on a system that runs a previous Solaris release.
All of the files are extracted with the correct file modes, but the ACL entries are ignored.

■ You can use the ufsrestore command to restore data into a ZFS file system. If the original
data includes POSIX-style ACLs, they are converted to NFSv4-style ACLs.

■ If you attempt to set an NFSv4-style ACL on a UFS file, you see a message similar to the
following:

chmod: ERROR: ACL type’s are different

■ If you attempt to set a POSIX-style ACL on a ZFS file, you will see messages similar to the
following:

# getfacl filea

File system doesn’t support aclent_t style ACL’s.

See acl(5) for more information on Solaris ACL support.

For information about other limitations with ACLs and backup products, see “Saving ZFS Data
With Other Backup Products” on page 227.

Syntax Descriptions for Setting ACLs
Two basic ACL formats are provided as follows:
■ Trivial ACL – Contains only traditional UNIX user, group, and owner entries.
■ Non-Trivial ACL – Contains more entries than just owner, group, and everyone, or incudes

inheritance flags set, or the entries are ordered in a non-traditional way.

Solaris ACL Model

Oracle Solaris ZFS Administration Guide • April 2012236



Syntax for Setting Trivial ACLs

chmod [options] A[index]{+|=}owner@ |group@

|everyone@:access-permissions/...[:inheritance-flags]:deny | allow file

chmod [options] A-owner@, group@,

everyone@:access-permissions/...[:inheritance-flags]:deny | allow file ...

chmod [options] A[index]- file

Syntax for Setting Non-Trivial ACLs

chmod [options]

A[index]{+|=}user|group:name:access-permissions/...[:inheritance-flags]:deny | allow file

chmod [options] A-user|group:name:access-permissions/...[:inheritance-flags]:deny |

allow file ...

chmod [options] A[index]- file

owner@, group@, everyone@
Identifies the ACL-entry-type for trivial ACL syntax. For a description of ACL-entry-types,
see Table 8–1.

user or group:ACL-entry-ID=username or groupname
Identifies the ACL-entry-type for explicit ACL syntax. The user and group ACL-entry-type
must also contain the ACL-entry-ID, username or groupname. For a description of
ACL-entry-types, see Table 8–1.

access-permissions/.../
Identifies the access permissions that are granted or denied. For a description of ACL access
privileges, see Table 8–2.

inheritance-flags
Identifies an optional list of ACL inheritance flags. For a description of the ACL inheritance
flags, see Table 8–3.

deny | allow
Identifies whether the access permissions are granted or denied.

In the following example, no ACL-entry-ID value exists for owner@, group@, or everyone@..

group@:write_data/append_data/execute:deny

The following example includes an ACL-entry-ID because a specific user (ACL-entry-type) is
included in the ACL.

0:user:gozer:list_directory/read_data/execute:allow

When an ACL entry is displayed, it looks similar to the following:

Solaris ACL Model

Chapter 8 • Using ACLs and Attributes to Protect Oracle Solaris ZFS Files 237



2:group@:write_data/append_data/execute:deny

The 2 or the index-ID designation in this example identifies the ACL entry in the larger ACL,
which might have multiple entries for owner, specific UIDs, group, and everyone. You can
specify the index-ID with the chmod command to identify which part of the ACL you want to
modify. For example, you can identify index ID 3 as A3 to the chmod command, similar to the
following:

chmod A3=user:venkman:read_acl:allow filename

ACL entry types, which are the ACL representations of owner, group, and other, are described
in the following table.

TABLE 8–1 ACL Entry Types

ACL Entry Type Description

owner@ Specifies the access granted to the owner of the object.

group@ Specifies the access granted to the owning group of the object.

everyone@ Specifies the access granted to any user or group that does not match any other ACL
entry.

user With a user name, specifies the access granted to an additional user of the object.
Must include the ACL-entry-ID, which contains a username or userID. If the value is
not a valid numeric UID or username, the ACL entry type is invalid.

group With a group name, specifies the access granted to an additional group of the object.
Must include the ACL-entry-ID, which contains a groupname or groupID. If the
value is not a valid numeric GID or groupname, the ACL entry type is invalid.

ACL access privileges are described in the following table.

TABLE 8–2 ACL Access Privileges

Access Privilege
Compact Access
Privilege Description

add_file w Permission to add a new file to a directory.

add_subdirectory p On a directory, permission to create a subdirectory.

append_data p Placeholder. Not currently implemented.

delete d Permission to delete a file.

delete_child D Permission to delete a file or directory within a directory.

execute x Permission to execute a file or search the contents of a directory.

list_directory r Permission to list the contents of a directory.

Solaris ACL Model

Oracle Solaris ZFS Administration Guide • April 2012238



TABLE 8–2 ACL Access Privileges (Continued)

Access Privilege
Compact Access
Privilege Description

read_acl c Permission to read the ACL (ls).

read_attributes a Permission to read basic attributes (non-ACLs) of a file. Think of
basic attributes as the stat level attributes. Allowing this access mask
bit means the entity can execute ls(1) and stat(2).

read_data r Permission to read the contents of the file.

read_xattr R Permission to read the extended attributes of a file or perform a
lookup in the file's extended attributes directory.

synchronize s Placeholder. Not currently implemented.

write_xattr W Permission to create extended attributes or write to the extended
attributes directory.

Granting this permission to a user means that the user can create an
extended attribute directory for a file. The attribute file's
permissions control the user's access to the attribute.

write_data w Permission to modify or replace the contents of a file.

write_attributes A Permission to change the times associated with a file or directory to
an arbitrary value.

write_acl C Permission to write the ACL or the ability to modify the ACL by
using the chmod command.

write_owner o Permission to change the file's owner or group. Or, the ability to
execute the chown or chgrp commands on the file.

Permission to take ownership of a file or permission to change the
group ownership of the file to a group of which the user is a
member. If you want to change the file or group ownership to an
arbitrary user or group, then the PRIV_FILE_CHOWN privilege is
required.

ACL Inheritance
The purpose of using ACL inheritance is so that a newly created file or directory can inherit the
ACLs they are intended to inherit, but without disregarding the existing permission bits on the
parent directory.

By default, ACLs are not propagated. If you set a non-trivial ACL on a directory, it is not
inherited to any subsequent directory. You must specify the inheritance of an ACL on a file or
directory.

The optional inheritance flags are described in the following table.

Solaris ACL Model

Chapter 8 • Using ACLs and Attributes to Protect Oracle Solaris ZFS Files 239



TABLE 8–3 ACL Inheritance Flags

Inheritance Flag
Compact Inheritance
Flag Description

file_inherit f Only inherit the ACL from the parent directory to the
directory's files.

dir_inherit d Only inherit the ACL from the parent directory to the
directory's subdirectories.

inherit_only i Inherit the ACL from the parent directory but applies only to
newly created files or subdirectories and not the directory itself.
This flag requires the file_inherit flag, the dir_inherit flag,
or both, to indicate what to inherit.

no_propagate n Only inherit the ACL from the parent directory to the first-level
contents of the directory, not the second-level or subsequent
contents. This flag requires the file_inherit flag, the
dir_inherit flag, or both, to indicate what to inherit.

- N/A No permission granted.

In addition, you can set a default ACL inheritance policy on the file system that is more strict or
less strict by using the aclinherit file system property. For more information, see the next
section.

ACL Property (aclinherit)
The ZFS file system includes the aclinherit property to determine the behavior of ACL
inheritance. Values include the following:

■ discard – For new objects, no ACL entries are inherited when a file or directory is created.
The ACL on the file or directory is equal to the permission mode of the file or directory.

■ noallow – For new objects, only inheritable ACL entries that have an access type of deny are
inherited.

■ restricted – For new objects, the write_owner and write_acl permissions are removed
when an ACL entry is inherited.

■ passthrough – When property value is set to passthrough, files are created with a mode
determined by the inheritable ACEs. If no inheritable ACEs exist that affect the mode, then
the mode is set in accordance to the requested mode from the application.

■ passthrough-x – Has the same semantics as passthrough, except that when
passthrough-x is enabled, files are created with the execute (x) permission, but only if
execute permission is set in the file creation mode and in an inheritable ACE that affects the
mode.

The default mode for the aclinherit is restricted.

Solaris ACL Model

Oracle Solaris ZFS Administration Guide • April 2012240



Setting ACLs on ZFS Files
As implemented with ZFS, ACLs are composed of an array of ACL entries. ZFS provides a pure
ACL model, where all files have an ACL. Typically, the ACL is trivial in that it only represents
the traditional UNIX owner/group/other entries.

ZFS files still have permission bits and a mode, but these values are more of a cache of what the
ACL represents. As such, if you change the permissions of the file, the file's ACL is updated
accordingly. In addition, if you remove a non-trivial ACL that granted a user access to a file or
directory, that user could still have access to the file or directory because of the file or directory's
permission bits that grant access to group or everyone. All access control decisions are governed
by the permissions represented in a file or directory's ACL.

The primary rules of ACL access on a ZFS file are as follows:

■ ZFS processes ACL entries in the order they are listed in the ACL, from the top down.
■ Only ACL entries that have a “who” that matches the requester of the access are processed.
■ Once an allow permission has been granted, it cannot be denied by a subsequent ACL deny

entry in the same ACL permission set.
■ The owner of the file is granted the write_acl permission unconditionally, even if the

permission is explicitly denied. Otherwise, any permission left unspecified is denied.
In the cases of deny permissions or when an access permission is missing, the privilege
subsystem determines what access request is granted for the owner of the file or for
superuser. This mechanism prevents owners of files from getting locked out of their files and
enables superuser to modify files for recovery purposes.

If you set a non-trivial ACL on a directory, the ACL is not automatically inherited by the
directory's children. If you set an non-trivial ACL and you want it inherited to the directory's
children, you have to use the ACL inheritance flags. For more information, see Table 8–3 and
“Setting ACL Inheritance on ZFS Files in Verbose Format” on page 247.

When you create a new file and depending on the umask value, a default trivial ACL, similar to
the following, is applied:

$ ls -v file.1

-rw-r--r-- 1 root root 206663 Jun 23 15:06 file.1

0:owner@:read_data/write_data/append_data/read_xattr/write_xattr

/read_attributes/write_attributes/read_acl/write_acl/write_owner

/synchronize:allow

1:group@:read_data/read_xattr/read_attributes/read_acl/synchronize:allow

2:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

Each user category (owner@, group@, everyone@) has an ACL entry in this example.

A description of this file ACL is as follows:

Setting ACLs on ZFS Files

Chapter 8 • Using ACLs and Attributes to Protect Oracle Solaris ZFS Files 241



0:owner@ The owner can read and modify the contents of the file
(read_data/write_data/append_data/read_xattr). The owner can also
modify the file's attributes such as timestamps, extended attributes, and ACLs
(write_xattr/read_attributes/write_attributes/
read_acl/write_acl). In addition, the owner can modify the ownership of
the file (write_owner:allow).

The synchronize access permission is not currently implemented.

1:group@ The group is granted read permissions to the file and the file's attributes
(read_data/read_xattr/read_attributes/read_acl:allow).

2:everyone@ Everyone who is not user or group is granted read permissions to the file and
the file's attributes (read_data/read_xattr/read_attributes/read_acl/
synchronize:allow). The synchronize access permission is not currently
implemented.

When a new directory is created and depending on the umask value, a default directory ACL is
similar to the following:

$ ls -dv dir.1

drwxr-xr-x 2 root root 2 Jun 23 15:06 dir.1

0:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/read_xattr/write_xattr/execute/read_attributes

/write_attributes/read_acl/write_acl/write_owner/synchronize:allow

1:group@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

2:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

A description of this directory ACL is as follows:

0:owner@ The owner can read and modify the directory contents
(list_directory/read_data/add_file/write_data/add_subdirectory
/append_data), search the contents (execute), and read and modify the file's
attributes such as timestamps, extended attributes, and ACLs
(/read_xattr/write_xattr/read_attributes/write_attributes/read_acl/
write_acl). In addition, the owner can modify the ownership of the directory
(write_owner:allow).

The synchronize access permission is not currently implemented.

1:group@ The group can list and read the directory contents and the directory's
attributes. In addition, the group has execute permission to search the
directory contents
(list_directory/read_data/read_xattr/execute/read_attributes
/read_acl/synchronize:allow).

Setting ACLs on ZFS Files

Oracle Solaris ZFS Administration Guide • April 2012242



2:everyone@ Everyone who is not user or group is granted read and execute permissions to
the directory contents and the directory's attributes
(list_directory/read_data/read_xattr/execute/read_
attributes/read_acl/synchronize:allow). The synchronize access
permission is not currently implemented.

Setting and Displaying ACLs on ZFS Files in Verbose Format
You can use the chmod command to modify ACLs on ZFS files. The following chmod syntax for
modifying ACLs uses acl-specification to identify the format of the ACL. For a description of
acl-specification, see “Syntax Descriptions for Setting ACLs” on page 236.

■ Adding ACL entries
■ Adding an ACL entry for a user

% chmod A+acl-specification filename

■ Adding an ACL entry by index-ID

% chmod Aindex-ID+acl-specification filename

This syntax inserts the new ACL entry at the specified index-ID location.
■ Replacing an ACL entry

% chmod A=acl-specification filename

% chmod Aindex-ID=acl-specification filename

■ Removing ACL entries
■ Removing an ACL entry by index-ID

% chmod Aindex-ID- filename

■ Removing an ACL entry by user

% chmod A-acl-specification filename

■ Removing all non-trivial ACEs from a file

% chmod A- filename

Verbose ACL information is displayed by using the ls -v command. For example:

# ls -v file.1

-rw-r--r-- 1 root root 206663 Jun 23 15:06 file.1

0:owner@:read_data/write_data/append_data/read_xattr/write_xattr

/read_attributes/write_attributes/read_acl/write_acl/write_owner

/synchronize:allow

1:group@:read_data/read_xattr/read_attributes/read_acl/synchronize:allow

2:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

Setting and Displaying ACLs on ZFS Files in Verbose Format

Chapter 8 • Using ACLs and Attributes to Protect Oracle Solaris ZFS Files 243



For information about using the compact ACL format, see “Setting and Displaying ACLs on
ZFS Files in Compact Format” on page 252.

EXAMPLE 8–1 Modifying Trivial ACLs on ZFS Files

This section provides examples of setting and displaying trivial ACLs.

In the following example, a trivial ACL exists on file.1:

# ls -v file.1

-rw-r--r-- 1 root root 206663 Jun 23 15:06 file.1

0:owner@:read_data/write_data/append_data/read_xattr/write_xattr

/read_attributes/write_attributes/read_acl/write_acl/write_owner

/synchronize:allow

1:group@:read_data/read_xattr/read_attributes/read_acl/synchronize:allow

2:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

In the following example, write_data permissions are granted for group@.

# chmod A1=group@:read_data/write_data:allow file.1

# ls -v file.1

-rw-rw-r-- 1 root root 206663 Jun 23 15:06 file.1

0:owner@:read_data/write_data/append_data/read_xattr/write_xattr

/read_attributes/write_attributes/read_acl/write_acl/write_owner

/synchronize:allow

1:group@:read_data/write_data:allow

2:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

In the following example, permissions on file.1 are set back to 644.

# chmod 644 file.1

# ls -v file.1

-rw-r--r-- 1 root root 206663 Jun 23 15:06 file.1

0:owner@:read_data/write_data/append_data/read_xattr/write_xattr

/read_attributes/write_attributes/read_acl/write_acl/write_owner

/synchronize:allow

1:group@:read_data/read_xattr/read_attributes/read_acl/synchronize:allow

2:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

EXAMPLE 8–2 Setting Non-Trivial ACLs on ZFS Files

This section provides examples of setting and displaying non-trivial ACLs.

In the following example, read_data/execute permissions are added for the user gozer on the
test.dir directory.

# chmod A+user:gozer:read_data/execute:allow test.dir

# ls -dv test.dir

drwxr-xr-x+ 2 root root 2 Jun 23 15:11 test.dir

0:user:gozer:list_directory/read_data/execute:allow

Setting and Displaying ACLs on ZFS Files in Verbose Format

Oracle Solaris ZFS Administration Guide • April 2012244



EXAMPLE 8–2 Setting Non-Trivial ACLs on ZFS Files (Continued)

1:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/read_xattr/write_xattr/execute/read_attributes

/write_attributes/read_acl/write_acl/write_owner/synchronize:allow

2:group@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

3:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

In the following example, read_data/execute permissions are removed for user gozer.

# chmod A0- test.dir

# ls -dv test.dir

drwxr-xr-x 2 root root 2 Jun 23 15:11 test.dir

0:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/read_xattr/write_xattr/execute/read_attributes

/write_attributes/read_acl/write_acl/write_owner/synchronize:allow

1:group@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

2:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

EXAMPLE 8–3 ACL Interaction With Permissions on ZFS Files

These ACL examples illustrate the interaction between setting ACLs and then changing the file
or directory's permission bits.

In the following example, a trivial ACL exists on file.2:

# ls -v file.2

-rw-r--r-- 1 root root 49090 Jun 23 15:13 file.2

0:owner@:read_data/write_data/append_data/read_xattr/write_xattr

/read_attributes/write_attributes/read_acl/write_acl/write_owner

/synchronize:allow

1:group@:read_data/read_xattr/read_attributes/read_acl/synchronize:allow

2:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

In the following example, ACL allow permissions are removed from everyone@.

# chmod A2- file.2

# ls -v file.2

-rw-r----- 1 root root 49090 Jun 23 15:13 file.2

0:owner@:read_data/write_data/append_data/read_xattr/write_xattr

/read_attributes/write_attributes/read_acl/write_acl/write_owner

/synchronize:allow

1:group@:read_data/read_xattr/read_attributes/read_acl/synchronize:allow

In this output, the file's permission bits are reset from 644 to 640. Read permissions for
everyone@ have been effectively removed from the file's permissions bits when the ACL allow
permissions are removed for everyone@.

Setting and Displaying ACLs on ZFS Files in Verbose Format

Chapter 8 • Using ACLs and Attributes to Protect Oracle Solaris ZFS Files 245



EXAMPLE 8–3 ACL Interaction With Permissions on ZFS Files (Continued)

In the following example, the existing ACL is replaced with read_data/write_data

permissions for everyone@.

# chmod A=everyone@:read_data/write_data:allow file.3

# ls -v file.3

-rw-rw-rw- 1 root root 27482 Jun 23 15:14 file.3

0:everyone@:read_data/write_data:allow

In this output, the chmod syntax effectively replaces the existing ACL with
read_data/write_data:allow permissions to read/write permissions for owner, group, and
everyone@. In this model, everyone@ specifies access to any user or group. Since no owner@ or
group@ ACL entry exists to override the permissions for owner and group, the permission bits
are set to 666.

In the following example, the existing ACL is replaced with read permissions for user gozer.

# chmod A=user:gozer:read_data:allow file.3

# ls -v file.3

# ls -v file.3

----------+ 1 root root 27482 Jun 23 15:14 file.3

0:user:gozer:read_data:allow

In this output, the file permissions are computed to be 000 because no ACL entries exist for
owner@, group@, or everyone@, which represent the traditional permission components of a file.
The owner of the file can resolve this problem by resetting the permissions (and the ACL) as
follows:

# chmod 655 file.3

# ls -v file.3

-rw-r-xr-x 1 root root 27482 Jun 23 15:14 file.3

0:owner@:execute:deny

1:owner@:read_data/write_data/append_data/read_xattr/write_xattr

/read_attributes/write_attributes/read_acl/write_acl/write_owner

/synchronize:allow

2:group@:read_data/read_xattr/execute/read_attributes/read_acl

/synchronize:allow

3:everyone@:read_data/read_xattr/execute/read_attributes/read_acl

/synchronize:allow

EXAMPLE 8–4 Restoring Trivial ACLs on ZFS Files

You can use the chmod command to remove all non-trivial ACLs on a file or directory.

In the following example, two non-trivial ACEs exist on test5.dir.

# ls -dv test5.dir

drwxr-xr-x 2 root root 2 Jun 23 15:17 test5.dir

0:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/read_xattr/write_xattr/execute/read_attributes

Setting and Displaying ACLs on ZFS Files in Verbose Format

Oracle Solaris ZFS Administration Guide • April 2012246



EXAMPLE 8–4 Restoring Trivial ACLs on ZFS Files (Continued)

/write_attributes/read_acl/write_acl/write_owner/synchronize:allow

1:group@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

2:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

In the following example, the non-trivial ACLs for users gozer and lp are removed. The
remaining ACL contains the default values for owner@, group@, and everyone@.

# chmod A- test5.dir

# ls -dv test5.dir

drwxr-xr-x 2 root root 2 Jun 23 15:17 test5.dir

0:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/read_xattr/write_xattr/execute/read_attributes

/write_attributes/read_acl/write_acl/write_owner/synchronize:allow

1:group@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

2:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

Setting ACL Inheritance on ZFS Files in Verbose Format
You can determine how ACLs are inherited or not inherited on files and directories. By default,
ACLs are not propagated. If you set a non-trivial ACL on a directory, the ACL is not inherited
by any subsequent directory. You must specify the inheritance of an ACL on a file or directory.

The aclinherit property can be set globally on a file system.. By default, aclinherit is set to
restricted.

For more information, see “ACL Inheritance” on page 239.

EXAMPLE 8–5 Granting Default ACL Inheritance

By default, ACLs are not propagated through a directory structure.

In the following example, a non-trivial ACE of read_data/write_data/execute is applied for
user gozer on test.dir.

# chmod A+user:gozer:read_data/write_data/execute:allow test.dir

# ls -dv test.dir

drwxr-xr-x+ 2 root root 2 Jun 23 15:18 test.dir

0:user:gozer:list_directory/read_data/add_file/write_data/execute:allow

1:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/read_xattr/write_xattr/execute/read_attributes

/write_attributes/read_acl/write_acl/write_owner/synchronize:allow

2:group@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

Setting and Displaying ACLs on ZFS Files in Verbose Format

Chapter 8 • Using ACLs and Attributes to Protect Oracle Solaris ZFS Files 247



EXAMPLE 8–5 Granting Default ACL Inheritance (Continued)

3:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

If a test.dir subdirectory is created, the ACE for user gozer is not propagated. User gozer
would only have access to sub.dir if the permissions on sub.dir granted him access as the file
owner, group member, or everyone@.

# mkdir test.dir/sub.dir

# ls -dv test.dir/sub.dir

drwxr-xr-x 2 root root 2 Jun 23 15:19 test.dir/sub.dir

0:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/read_xattr/write_xattr/execute/read_attributes

/write_attributes/read_acl/write_acl/write_owner/synchronize:allow

1:group@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

2:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

EXAMPLE 8–6 Granting ACL Inheritance on Files and Directories

This series of examples identify the file and directory ACEs that are applied when the
file_inherit flag is set.

In the following example, read_data/write_data permissions are added for files in the
test2.dir directory for user gozer so that he has read access on any newly created files.

# chmod A+user:gozer:read_data/write_data:file_inherit:allow test2.dir

# ls -dv test2.dir

drwxr-xr-x+ 2 root root 2 Jun 23 15:20 test2.dir

0:user:gozer:read_data/write_data:file_inherit:allow

1:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/read_xattr/write_xattr/execute/read_attributes

/write_attributes/read_acl/write_acl/write_owner/synchronize:allow

2:group@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

3:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

In the following example, user gozer's permissions are applied on the newly created
test2.dir/file.2 file. The ACL inheritance granted, read_data:file_inherit:allow,
means user gozer can read the contents of any newly created file.

# touch test2.dir/file.2

# ls -v test2.dir/file.2

-rw-r--r--+ 1 root root 0 Jun 23 15:21 test2.dir/file.2

0:user:gozer:read_data:allow

1:owner@:read_data/write_data/append_data/read_xattr/write_xattr

/read_attributes/write_attributes/read_acl/write_acl/write_owner

/synchronize:allow

2:group@:read_data/read_xattr/read_attributes/read_acl/synchronize:allow

Setting and Displaying ACLs on ZFS Files in Verbose Format

Oracle Solaris ZFS Administration Guide • April 2012248



EXAMPLE 8–6 Granting ACL Inheritance on Files and Directories (Continued)

3:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

Because the aclinherit property for this file system is set to the default mode, restricted,
user gozer does not have write_data permission on file.2 because the group permission of
the file does not allow it.

Note the inherit_only permission, which is applied when the file_inherit or dir_inherit
flags are set, is used to propagate the ACL through the directory structure. As such, user gozer is
only granted or denied permission from everyone@ permissions unless he is the file owner or is
a member of the file's group owner. For example:

# mkdir test2.dir/subdir.2

# ls -dv test2.dir/subdir.2

drwxr-xr-x+ 2 root root 2 Jun 23 15:21 test2.dir/subdir.2

0:user:gozer:list_directory/read_data/add_file/write_data:file_inherit

/inherit_only:allow

1:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/read_xattr/write_xattr/execute/read_attributes

/write_attributes/read_acl/write_acl/write_owner/synchronize:allow

2:group@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

3:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

The following series of examples identify the file and directory ACLs that are applied when both
the file_inherit and dir_inherit flags are set.

In the following example, user gozer is granted read, write, and execute permissions that are
inherited for newly created files and directories.

# chmod A+user:gozer:read_data/write_data/execute:file_inherit/dir_inherit:allow

test3.dir

# ls -dv test3.dir

drwxr-xr-x+ 2 root root 2 Jun 23 15:22 test3.dir

0:user:gozer:list_directory/read_data/add_file/write_data/execute

:file_inherit/dir_inherit:allow

1:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/read_xattr/write_xattr/execute/read_attributes

/write_attributes/read_acl/write_acl/write_owner/synchronize:allow

2:group@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

3:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

# touch test3.dir/file.3

# ls -v test3.dir/file.3

-rw-r--r--+ 1 root root 0 Jun 23 15:25 test3.dir/file.3

0:user:gozer:read_data:allow

1:owner@:read_data/write_data/append_data/read_xattr/write_xattr

/read_attributes/write_attributes/read_acl/write_acl/write_owner

Setting and Displaying ACLs on ZFS Files in Verbose Format

Chapter 8 • Using ACLs and Attributes to Protect Oracle Solaris ZFS Files 249



EXAMPLE 8–6 Granting ACL Inheritance on Files and Directories (Continued)

/synchronize:allow

2:group@:read_data/read_xattr/read_attributes/read_acl/synchronize:allow

3:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

# mkdir test3.dir/subdir.1

# ls -dv test3.dir/subdir.1

drwxr-xr-x+ 2 root root 2 Jun 23 15:26 test3.dir/subdir.1

0:user:gozer:list_directory/read_data/execute:file_inherit/dir_inherit

:allow

1:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/read_xattr/write_xattr/execute/read_attributes

/write_attributes/read_acl/write_acl/write_owner/synchronize:allow

2:group@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

3:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

In the above examples, because the permission bits of the parent directory for group@ and
everyone@ deny write and execute permissions, user gozer is denied write and execute
permissions. The default aclinherit property is restricted, which means that write_data
and execute permissions are not inherited.

In the following example, user gozer is granted read, write, and execute permissions that are
inherited for newly created files, but are not propagated to subsequent contents of the directory.

# chmod A+user:gozer:read_data/write_data/execute:file_inherit/no_propagate:allow

test4.dir

# ls -dv test4.dir

drwxr-xr-x+ 2 root root 2 Jun 23 15:27 test4.dir

0:user:gozer:list_directory/read_data/add_file/write_data/execute

:file_inherit/no_propagate:allow

1:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/read_xattr/write_xattr/execute/read_attributes

/write_attributes/read_acl/write_acl/write_owner/synchronize:allow

2:group@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

3:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

As the following example illustrates, gozer's read_data/write_data/execute permissions are
reduced based on the owning group's permissions.

# touch test4.dir/file.4

# ls -v test4.dir/file.4

-rw-r--r--+ 1 root root 0 Jun 23 15:28 test4.dir/file.4

0:user:gozer:read_data:allow

1:owner@:read_data/write_data/append_data/read_xattr/write_xattr

/read_attributes/write_attributes/read_acl/write_acl/write_owner

/synchronize:allow

2:group@:read_data/read_xattr/read_attributes/read_acl/synchronize:allow

3:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

Setting and Displaying ACLs on ZFS Files in Verbose Format

Oracle Solaris ZFS Administration Guide • April 2012250



EXAMPLE 8–6 Granting ACL Inheritance on Files and Directories (Continued)

:allow

EXAMPLE 8–7 ACL Inheritance With ACL Mode Set to Pass Through

If the aclinherit property on the tank/cindy file system is set to passthrough, then user
gozer would inherit the ACL applied on test4.dir for the newly created file.4 as follows:

# zfs set aclinherit=passthrough tank/cindy

# touch test4.dir/file.4

# ls -v test4.dir/file.4

-rw-r--r--+ 1 root root 0 Jun 23 15:35 test4.dir/file.4

0:user:gozer:read_data:allow

1:owner@:read_data/write_data/append_data/read_xattr/write_xattr

/read_attributes/write_attributes/read_acl/write_acl/write_owner

/synchronize:allow

2:group@:read_data/read_xattr/read_attributes/read_acl/synchronize:allow

3:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

EXAMPLE 8–8 ACL Inheritance With ACL Mode Set to Discard

If the aclinherit property on a file system is set to discard, then ACLs can potentially be
discarded when the permission bits on a directory change. For example:

# zfs set aclinherit=discard tank/cindy

# chmod A+user:gozer:read_data/write_data/execute:dir_inherit:allow test5.dir

# ls -dv test5.dir

drwxr-xr-x+ 2 root root 2 Jun 23 15:58 test5.dir

0:user:gozer:list_directory/read_data/add_file/write_data/execute

:dir_inherit:allow

1:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/read_xattr/write_xattr/execute/read_attributes

/write_attributes/read_acl/write_acl/write_owner/synchronize:allow

2:group@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

3:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

If, at a later time, you decide to tighten the permission bits on a directory, the non-trivial ACL is
discarded. For example:

# chmod 744 test5.dir

# ls -dv test5.dir

drwxr--r-- 2 root root 2 Jun 23 15:58 test5.dir

0:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/read_xattr/write_xattr/execute/read_attributes

/write_attributes/read_acl/write_acl/write_owner/synchronize:allow

1:group@:list_directory/read_data/read_xattr/read_attributes/read_acl

/synchronize:allow

2:everyone@:list_directory/read_data/read_xattr/read_attributes/read_acl

/synchronize:allow

Setting and Displaying ACLs on ZFS Files in Verbose Format

Chapter 8 • Using ACLs and Attributes to Protect Oracle Solaris ZFS Files 251



EXAMPLE 8–9 ACL Inheritance With ACL Inherit Mode Set to Noallow

In the following example, two non-trivial ACLs with file inheritance are set. One ACL allows
read_data permission, and one ACL denies read_data permission. This example also
illustrates how you can specify two ACEs in the same chmod command.

# zfs set aclinherit=noallow tank/cindy

# chmod A+user:gozer:read_data:file_inherit:deny,user:lp:read_data:file_inherit:allow

test6.dir

# ls -dv test6.dir

drwxr-xr-x+ 2 root root 2 Jun 23 16:00 test6.dir

0:user:gozer:read_data:file_inherit:deny

1:user:lp:read_data:file_inherit:allow

2:owner@:list_directory/read_data/add_file/write_data/add_subdirectory

/append_data/read_xattr/write_xattr/execute/read_attributes

/write_attributes/read_acl/write_acl/write_owner/synchronize:allow

3:group@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

4:everyone@:list_directory/read_data/read_xattr/execute/read_attributes

/read_acl/synchronize:allow

As the following example shows, when a new file is created, the ACL that allows read_data
permission is discarded.

# touch test6.dir/file.6

# ls -v test6.dir/file.6

-rw-r--r--+ 1 root root 0 Jun 15 12:19 test6.dir/file.6

0:user:gozer:read_data:inherited:deny

1:owner@:read_data/write_data/append_data/read_xattr/write_xattr

/read_attributes/write_attributes/read_acl/write_acl/write_owner

/synchronize:allow

2:group@:read_data/read_xattr/read_attributes/read_acl/synchronize:allow

3:everyone@:read_data/read_xattr/read_attributes/read_acl/synchronize

:allow

Setting and Displaying ACLs on ZFS Files in Compact Format
You can set and display permissions on ZFS files in a compact format that uses 14 unique letters
to represent the permissions. The letters that represent the compact permissions are listed in
Table 8–2 and Table 8–3.

You can display compact ACL listings for files and directories by using the ls -V command. For
example:

# ls -V file.1

-rw-r--r-- 1 root root 206663 Jun 23 15:06 file.1

owner@:rw-p--aARWcCos:------:allow

group@:r-----a-R-c--s:------:allow

everyone@:r-----a-R-c--s:------:allow

The compact ACL output is described as follows:

Setting and Displaying ACLs on ZFS Files in Compact Format

Oracle Solaris ZFS Administration Guide • April 2012252



owner@ The owner can read and modify the contents of the file
(rw=read_data/write_data), (p=append_data). The owner can also modify
the file's attributes such as timestamps, extended attributes, and ACLs
(a=read_attributes, W=write_xattr, R=read_xattr, A=write_attributes,
c=read_acl, C=write_acl). In addition, the owner can modify the ownership
of the file (o=write_owner).

The synchronize access permission is not currently implemented.

group@ The group is granted read permissions to the file (r=read_data) and the file's
attributes (a=read_attributes, R=read_xattr, c=read_acl).

The synchronize access permission is not currently implemented.

everyone@ Everyone who is not user or group is granted read permissions to the file and the
file's attributes (r=read_data, a=append_data, R=read_xattr, c=read_acl,
and s=synchronize).

The synchronize access permission is not currently implemented.

Compact ACL format provides the following advantages over verbose ACL format:

■ Permissions can be specified as positional arguments to the chmod command.
■ The hyphen (-) characters, which identify no permissions, can be removed and only the

required letters need to be specified.
■ Both permissions and inheritance flags are set in the same fashion.

For information about using the verbose ACL format, see “Setting and Displaying ACLs on ZFS
Files in Verbose Format” on page 243.

EXAMPLE 8–10 Setting and Displaying ACLs in Compact Format

In the following example, a trivial ACL exists on file.1:

# ls -V file.1

-rw-r--r-- 1 root root 206663 Jun 23 15:06 file.1

owner@:rw-p--aARWcCos:------:allow

group@:r-----a-R-c--s:------:allow

everyone@:r-----a-R-c--s:------:allow

In this example, read_data/execute permissions are added for the user gozer on file.1.

# chmod A+user:gozer:rx:allow file.1

# ls -V file.1

-rw-r--r--+ 1 root root 206663 Jun 23 15:06 file.1

user:gozer:r-x-----------:------:allow

owner@:rw-p--aARWcCos:------:allow

group@:r-----a-R-c--s:------:allow

everyone@:r-----a-R-c--s:------:allow

Setting and Displaying ACLs on ZFS Files in Compact Format

Chapter 8 • Using ACLs and Attributes to Protect Oracle Solaris ZFS Files 253



EXAMPLE 8–10 Setting and Displaying ACLs in Compact Format (Continued)

In the following example, user gozer is granted read, write, and execute permissions that are
inherited for newly created files and directories by using the compact ACL format.

# chmod A+user:gozer:rwx:fd:allow dir.2

# ls -dV dir.2

drwxr-xr-x+ 2 root root 2 Jun 23 16:04 dir.2

user:gozer:rwx-----------:fd----:allow

owner@:rwxp--aARWcCos:------:allow

group@:r-x---a-R-c--s:------:allow

everyone@:r-x---a-R-c--s:------:allow

You can also cut and paste permissions and inheritance flags from the ls -V output into the
compact chmod format. For example, to duplicate the permissions and inheritance flags on
dir.2 for user gozer to user cindy on dir.2, copy and paste the permission and inheritance
flags (rwx-----------:fd----:allow) into your chmod command. For example:

# chmod A+user:cindy:rwx-----------:fd----:allow dir.2

# ls -dV dir.2

drwxr-xr-x+ 2 root root 2 Jun 23 16:04 dir.2

user:cindy:rwx-----------:fd----:allow

user:gozer:rwx-----------:fd----:allow

owner@:rwxp--aARWcCos:------:allow

group@:r-x---a-R-c--s:------:allow

everyone@:r-x---a-R-c--s:------:allow

EXAMPLE 8–11 ACL Inheritance With ACL Inherit Mode Set to Pass Through

A file system that has the aclinherit property set to passthrough inherits all inheritable ACL
entries without any modifications made to the ACL entries when they are inherited. When this
property is set to passthrough, files are created with a permission mode that is determined by
the inheritable ACEs. If no inheritable ACEs exist that affect the permission mode, then the
permission mode is set in accordance to the requested mode from the application.

The following examples use compact ACL syntax to show how to inherit permission bits by
setting aclinherit mode to passthrough.

In this example, an ACL is set on test1.dir to force inheritance. The syntax creates an owner@,
group@, and everyone@ ACL entry for newly created files. Newly created directories inherit an
@owner, group@, and everyone@ ACL entry.

# zfs set aclinherit=passthrough tank/cindy

# pwd

/tank/cindy

# mkdir test1.dir

# chmod A=owner@:rwxpcCosRrWaAdD:fd:allow,group@:rwxp:fd:allow,everyone@::fd:allow

test1.dir

# ls -Vd test1.dir

Setting and Displaying ACLs on ZFS Files in Compact Format

Oracle Solaris ZFS Administration Guide • April 2012254



EXAMPLE 8–11 ACL Inheritance With ACL Inherit Mode Set to Pass Through (Continued)

drwxrwx---+ 2 root root 2 Jun 23 16:10 test1.dir

owner@:rwxpdDaARWcCos:fd----:allow

group@:rwxp----------:fd----:allow

everyone@:--------------:fd----:allow

In this example, a newly created file inherits the ACL that was specified to be inherited to newly
created files.

# cd test1.dir

# touch file.1

# ls -V file.1

-rwxrwx---+ 1 root root 0 Jun 23 16:11 file.1

owner@:rwxpdDaARWcCos:------:allow

group@:rwxp----------:------:allow

everyone@:--------------:------:allow

In this example, a newly created directory inherits both ACEs that control access to this
directory as well as ACEs for future propagation to children of the newly created directory.

# mkdir subdir.1

# ls -dV subdir.1

drwxrwx---+ 2 root root 2 Jun 23 16:13 subdir.1

owner@:rwxpdDaARWcCos:fd----:allow

group@:rwxp----------:fd----:allow

everyone@:--------------:fd----:allow

The fd---- entries are for propagating inheritance and are not considered during access
control. In this example, a file is created with a trivial ACL in another directory where inherited
ACEs are not present.

# cd /tank/cindy

# mkdir test2.dir

# cd test2.dir

# touch file.2

# ls -V file.2

-rw-r--r-- 1 root root 0 Jun 23 16:15 file.2

owner@:rw-p--aARWcCos:------:allow

group@:r-----a-R-c--s:------:allow

everyone@:r-----a-R-c--s:------:allow

EXAMPLE 8–12 ACL Inheritance With ACL Inherit Mode Set to Pass Through-X

When aclinherit=passthrough-x is enabled, files are created with the execute (x) permission
for owner@, group@, or everyone@, but only if execute permission is set in the file creation mode
and in an inheritable ACE that affects the mode.

The following example shows how to inherit the execute permission by setting aclinherit
mode to passthrough-x.

# zfs set aclinherit=passthrough-x tank/cindy

Setting and Displaying ACLs on ZFS Files in Compact Format

Chapter 8 • Using ACLs and Attributes to Protect Oracle Solaris ZFS Files 255



EXAMPLE 8–12 ACL Inheritance With ACL Inherit Mode Set to Pass Through-X (Continued)

The following ACL is set on /tank/cindy/test1.dir to provide executable ACL inheritance
for files for owner@.

# chmod A=owner@:rwxpcCosRrWaAdD:fd:allow,group@:rwxp:fd:allow,everyone@::fd:allow test1.dir

# ls -Vd test1.dir

drwxrwx---+ 2 root root 2 Jun 23 16:17 test1.dir

owner@:rwxpdDaARWcCos:fd----:allow

group@:rwxp----------:fd----:allow

everyone@:--------------:fd----:allow

A file (file1) is created with requested permissions 0666. The resulting permissions are 0660.
The execution permission was not inherited because the creation mode did not request it.

# touch test1.dir/file1

# ls -V test1.dir/file1

-rw-rw----+ 1 root root 0 Jun 23 16:18 test1.dir/file1

owner@:rw-pdDaARWcCos:------:allow

group@:rw-p----------:------:allow

everyone@:--------------:------:allow

Next, an executable called t is generated by using the cc compiler in the testdir directory.

# cc -o t t.c

# ls -V t

-rwxrwx---+ 1 root root 7396 Dec 3 15:19 t

owner@:rwxpdDaARWcCos:------:allow

group@:rwxp----------:------:allow

everyone@:--------------:------:allow

The resulting permissions are 0770 because cc requested permissions 0777, which caused the
execute permission to be inherited from the owner@, group@, and everyone@ entries.

Setting and Displaying ACLs on ZFS Files in Compact Format

Oracle Solaris ZFS Administration Guide • April 2012256



Oracle Solaris ZFS Delegated Administration

This chapter describes how to use delegated administration to allow nonprivileged users to
perform ZFS administration tasks.

The following sections are provided in this chapter:

■ “Overview of ZFS Delegated Administration” on page 257
■ “Delegating ZFS Permissions” on page 258
■ “Delegating ZFS Permissions (Examples)” on page 262
■ “Displaying ZFS Delegated Permissions (Examples)” on page 265
■ “Removing ZFS Delegated Permissions (Examples)” on page 267

Overview of ZFS Delegated Administration
ZFS delegated administration enables you to distribute refined permissions to specific users,
groups, or everyone. Two types of delegated permissions are supported:

■ Individual permissions can be explicitly delegated such as create, destroy, mount,
snapshot, and so on.

■ Groups of permissions called permission sets can be defined. A permission set can later be
updated, and all of the consumers of the set automatically get the change. Permission sets
begin with the @ symbol and are limited to 64 characters in length. After the @ symbol, the
remaining characters in the set name have the same restrictions as normal ZFS file system
names.

ZFS delegated administration provides features similar to the RBAC security model. ZFS
delegation provides the following advantages for administering ZFS storage pools and file
systems:

■ Permissions follow the ZFS storage pool whenever a pool is migrated.
■ Provides dynamic inheritance where you can control how the permissions propagate

through the file systems.

9C H A P T E R 9

257



■ Can be configured so that only the creator of a file system can destroy the file system.
■ You can delegate permissions to specific file systems. Newly created file systems can

automatically pick up permissions.
■ Provides simple NFS administration. For example, a user with explicit permissions can

create a snapshot over NFS in the appropriate .zfs/snapshot directory.

Consider using delegated administration for distributing ZFS tasks. For information about
using RBAC to manage general Oracle Solaris administration tasks, see Part III, “Roles, Rights
Profiles, and Privileges,” in System Administration Guide: Security Services.

Disabling ZFS Delegated Permissions
You control the delegated administration features by using a pool's delegation property. For
example:

# zpool get delegation users

NAME PROPERTY VALUE SOURCE

users delegation on default

# zpool set delegation=off users

# zpool get delegation users

NAME PROPERTY VALUE SOURCE

users delegation off local

By default, the delegation property is enabled.

Delegating ZFS Permissions
You can use the zfs allow command to delegate permissions on ZFS datasets to non-root
users in the following ways:

■ Individual permissions can be delegated to a user, group, or everyone.
■ Groups of individual permissions can be delegated as a permission set to a user, group, or

everyone.
■ Permissions can be delegated either locally to the current dataset only or to all descendents

of the current dataset.

The following table describes the operations that can be delegated and any dependent
permissions that are required to perform the delegated operations.

Permission (Subcommand) Description Dependencies

allow The permission to grant permissions
that you have to another user.

Must also have the permission that is being
allowed.

Delegating ZFS Permissions

Oracle Solaris ZFS Administration Guide • April 2012258

http://www.oracle.com/pls/topic/lookup?ctx=E23823&id=SYSADV6prbactm-1
http://www.oracle.com/pls/topic/lookup?ctx=E23823&id=SYSADV6prbactm-1


Permission (Subcommand) Description Dependencies

clone The permission to clone any of the
dataset's snapshots.

Must also have the create permission and
the mount permission in the original file
system.

create The permission to create descendent
datasets.

Must also have the mount permission.

destroy The permission to destroy a dataset. Must also have the mount permission.

diff The permission to identify paths within a
dataset.

Non-root users need this permission to use
the zfs diff command.

hold The permission to hold a snapshot.

mount The permission to mount and unmount
a dataset, and create and destroy volume
device links.

promote The permission to promote a clone to a
dataset.

Must also have the mount permission and
the promote permission in the original file
system.

receive The permission to create descendent file
systems with the zfs receive
command.

Must also have the mount permission and
the create permission.

release The permission to release a snapshot
hold, which might destroy the snapshot.

rename The permission to rename a dataset. Must also have the create permission and
the mount permission in the new parent.

rollback The permission to roll back a snapshot.

send The permission to send a snapshot
stream.

share The permission to share and unshare a
dataset.

snapshot The permission to create a snapshot of a
dataset.

You can delegate the following set of permissions but a permission might be limited to access,
read, or change permission:
■ groupquota

■ groupused

■ userprop

■ userquota

■ userused

Delegating ZFS Permissions

Chapter 9 • Oracle Solaris ZFS Delegated Administration 259



In addition, you can delegate administration of the following ZFS properties to non-root users:

■ aclinherit

■ atime

■ canmount

■ casesensitivity

■ checksum

■ compression

■ copies

■ devices

■ exec

■ logbias

■ mountpoint

■ nbmand

■ normalization

■ primarycache

■ quota

■ readonly

■ recordsize

■ refquota

■ refreservation

■ reservation

■ rstchown

■ secondarycache

■ setuid

■ shareiscsi

■ sharenfs

■ sharesmb

■ snapdir

■ sync

■ utf8only

■ version

■ volblocksize

■ volsize

■ vscan

■ xattr

■ zoned

Some of these properties can be set only at dataset creation time. For a description of these
properties, see “Introducing ZFS Properties” on page 185.

Delegating ZFS Permissions

Oracle Solaris ZFS Administration Guide • April 2012260



Delegating ZFS Permissions (zfs allow)
The zfs allow syntax follows:

zfs allow -[ldugecs] everyone|user|group[,...] perm|@setname,...] filesystem| volume

The following zfs allow syntax (in bold) identifies to whom the permissions are delegated:

zfs allow [-uge]|user|group|everyone [,...] filesystem | volume

Multiple entities can be specified as a comma-separated list. If no -uge options are specified,
then the argument is interpreted preferentially as the keyword everyone, then as a user name,
and lastly, as a group name. To specify a user or group named “everyone,” use the -u or -g
option. To specify a group with the same name as a user, use the -g option. The -c option
delegates create-time permissions.

The following zfs allow syntax (in bold) identifies how permissions and permission sets are
specified:

zfs allow [-s] ... perm|@setname [,...] filesystem | volume

Multiple permissions can be specified as a comma-separated list. Permission names are the
same as ZFS subcommands and properties. For more information, see the preceding section.

Permissions can be aggregated into permission sets and are identified by the -s option.
Permission sets can be used by other zfs allow commands for the specified file system and its
descendents. Permission sets are evaluated dynamically, so changes to a set are immediately
updated. Permission sets follow the same naming requirements as ZFS file systems, but the
name must begin with an at sign (@) and can be no more than 64 characters in length.

The following zfs allow syntax (in bold) identifies how the permissions are delegated:

zfs allow [-ld] ... ... filesystem | volume

The -l option indicates that the permissions are allowed for the specified dataset and not its
descendents, unless the -d option is also specified. The -d option indicates that the permissions
are allowed for the descendent datasets and not for this dataset, unless the -l option is also
specified. If neither option is specified, then the permissions are allowed for the file system or
volume and all of its descendents.

Removing ZFS Delegated Permissions (zfs unallow)
You can remove previously delegated permissions with the zfs unallow command.

For example, assume that you delegated create, destroy, mount, and snapshot permissions as
follows:

Delegating ZFS Permissions

Chapter 9 • Oracle Solaris ZFS Delegated Administration 261



# zfs allow cindy create,destroy,mount,snapshot tank/home/cindy

# zfs allow tank/home/cindy

---- Permissions on tank/home/cindy ----------------------------------

Local+Descendent permissions:

user cindy create,destroy,mount,snapshot

To remove these permissions, you would use the following syntax:

# zfs unallow cindy tank/home/cindy

# zfs allow tank/home/cindy

Delegating ZFS Permissions (Examples)
EXAMPLE 9–1 Delegating Permissions to an Individual User

When you delegate create and mount permissions to an individual user, you must ensure that
the user has permissions on the underlying mount point.

For example, to delegate user mark create and mount permissions on the tank file system, set
the permissions first:

# chmod A+user:mark:add_subdirectory:fd:allow /tank/home

Then, use the zfs allow command to delegate create, destroy, and mount permissions. For
example:

# zfs allow mark create,destroy,mount tank/home

Now, user mark can create his own file systems in the tank file system. For example:

# su mark

mark$ zfs create tank/home/mark

mark$ ^D

# su lp

$ zfs create tank/lp

cannot create ’tank/lp’: permission denied

EXAMPLE 9–2 Delegating create and destroy Permissions to a Group

The following example shows how to set up a file system so that anyone in the staff group can
create and mount file systems in the tank file system, as well as destroy their own file systems.
However, staff group members cannot destroy anyone else's file systems.

# zfs allow staff create,mount tank/home

# zfs allow -c create,destroy tank/home

# zfs allow tank/home

---- Permissions on tank/home ----------------------------------------

Create time permissions:

create,destroy

Local+Descendent permissions:

Delegating ZFS Permissions (Examples)

Oracle Solaris ZFS Administration Guide • April 2012262



EXAMPLE 9–2 Delegating create and destroy Permissions to a Group (Continued)

group staff create,mount

# su cindy

cindy% zfs create tank/home/cindy

cindy% exit

# su mark

mark% zfs create tank/home/mark/data

mark% exit

cindy% zfs destroy tank/home/mark/data

cannot destroy ’tank/home/mark/data’: permission denied

EXAMPLE 9–3 Delegating Permissions at the Correct File System Level

Ensure that you delegate users permission at the correct file system level. For example, user
mark is delegated create, destroy, and mount permissions for the local and descendent file
systems. User mark is delegated local permission to snapshot the tank/home file system, but he is
not allowed to snapshot his own file system. So, he has not been delegated the snapshot
permission at the correct file system level.

# zfs allow -l mark snapshot tank/home

# zfs allow tank/home

---- Permissions on tank/home ----------------------------------------

Create time permissions:

create,destroy

Local permissions:

user mark snapshot

Local+Descendent permissions:

group staff create,mount

# su mark

mark$ zfs snapshot tank/home@snap1

mark$ zfs snapshot tank/home/mark@snap1

cannot create snapshot ’tank/home/mark@snap1’: permission denied

To delegate user mark permission at the descendent file system level, use the zfs allow -d
option. For example:

# zfs unallow -l mark snapshot tank/home

# zfs allow -d mark snapshot tank/home

# zfs allow tank/home

---- Permissions on tank/home ----------------------------------------

Create time permissions:

create,destroy

Descendent permissions:

user mark snapshot

Local+Descendent permissions:

group staff create,mount

# su mark

$ zfs snapshot tank/home@snap2

cannot create snapshot ’tank/home@snap2’: permission denied

$ zfs snapshot tank/home/mark@snappy

Now, user mark can only create a snapshot below the tank/home file system level.

Delegating ZFS Permissions (Examples)

Chapter 9 • Oracle Solaris ZFS Delegated Administration 263



EXAMPLE 9–4 Defining and Using Complex Delegated Permissions

You can delegate specific permissions to users or groups. For example, the following zfs allow

command delegates specific permissions to the staff group. In addition, destroy and
snapshot permissions are delegated after tank/home file systems are created.

# zfs allow staff create,mount tank/home

# zfs allow -c destroy,snapshot tank/home

# zfs allow tank/home

---- Permissions on tank/home ----------------------------------------

Create time permissions:

create,destroy,snapshot

Local+Descendent permissions:

group staff create,mount

Because user mark is a member of the staff group, he can create file systems in tank/home. In
addition, user mark can create a snapshot of tank/home/mark2 because he has specific
permissions to do so. For example:

# su mark

$ zfs create tank/home/mark2

$ zfs allow tank/home/mark2

---- Permissions on tank/home/mark2 ----------------------------------

Local permissions:

user mark create,destroy,snapshot

---- Permissions on tank/home ----------------------------------------

Create time permissions:

create,destroy,snapshot

Local+Descendent permissions:

group staff create,mount

But, user mark cannot create a snapshot in tank/home/mark because he doesn't have specific
permissions to do so. For example:

$ zfs snapshot tank/home/mark2@snap1

$ zfs snapshot tank/home/mark@snap1

cannot create snapshot ’tank/home/mark@snap1’: permission denied

In this example, user mark has create permission in his home directory, which means he can
create snapshots. This scenario is helpful when your file system is NFS mounted.

EXAMPLE 9–5 Defining and Using a ZFS Delegated Permission Set

The following example shows how to create the permission set @myset and delegates the
permission set and the rename permission to the group staff for the tank file system. User
cindy, a staff group member, has the permission to create a file system in tank. However, user
lp does not have permission to create a file system in tank.

# zfs allow -s @myset create,destroy,mount,snapshot,promote,clone,readonly tank

# zfs allow tank

---- Permissions on tank ---------------------------------------------

Permission sets:

@myset clone,create,destroy,mount,promote,readonly,snapshot

Delegating ZFS Permissions (Examples)

Oracle Solaris ZFS Administration Guide • April 2012264



EXAMPLE 9–5 Defining and Using a ZFS Delegated Permission Set (Continued)

# zfs allow staff @myset,rename tank

# zfs allow tank

---- Permissions on tank ---------------------------------------------

Permission sets:

@myset clone,create,destroy,mount,promote,readonly,snapshot

Local+Descendent permissions:

group staff @myset,rename

# chmod A+group:staff:add_subdirectory:fd:allow tank

# su cindy

cindy% zfs create tank/data

cindy% zfs allow tank

---- Permissions on tank ---------------------------------------------

Permission sets:

@myset clone,create,destroy,mount,promote,readonly,snapshot

Local+Descendent permissions:

group staff @myset,rename

cindy% ls -l /tank

total 15

drwxr-xr-x 2 cindy staff 2 Jun 24 10:55 data

cindy% exit

# su lp

$ zfs create tank/lp

cannot create ’tank/lp’: permission denied

Displaying ZFS Delegated Permissions (Examples)
You can use the following command to display permissions:

# zfs allow dataset

This command displays permissions that are set or allowed on the specified dataset. The output
contains the following components:

■ Permission sets
■ Individual permissions or create-time permissions
■ Local dataset
■ Local and descendent datasets
■ Descendent datasets only

EXAMPLE 9–6 Displaying Basic Delegated Administration Permissions

The following output indicates that user cindy has create, destroy, mount, snapshot
permissions on the tank/cindy file system.

# zfs allow tank/cindy

-------------------------------------------------------------

Local+Descendent permissions on (tank/cindy)

user cindy create,destroy,mount,snapshot

Displaying ZFS Delegated Permissions (Examples)

Chapter 9 • Oracle Solaris ZFS Delegated Administration 265



EXAMPLE 9–7 Displaying Complex Delegated Administration Permissions

The output in this example indicates the following permissions on the pool/fred and pool file
systems.

For the pool/fred file system:

■ Two permission sets are defined:
■ @eng (create, destroy, snapshot, mount, clone, promote, rename)
■ @simple (create, mount)

■ Create-time permissions are set for the @eng permission set and the mountpoint property.
Create-time means that after a dataset set is created, the @eng permission set and the
permission to set the mountpoint property are delegated.

■ User tom is delegated the @eng permission set, and user joe is granted create, destroy, and
mount permissions for local file systems.

■ User fred is delegated the @basic permission set, and share and rename permissions for the
local and descendent file systems.

■ User barney and the staff group are delegated the @basic permission set for descendent
file systems only.

For the pool file system:

■ The permission set @simple (create, destroy, mount) is defined.
■ The group staff is granted the @simple permission set on the local file system.

Here is the output for this example:

$ zfs allow pool/fred

---- Permissions on pool/fred ----------------------------------------

Permission sets:

@eng create,destroy,snapshot,mount,clone,promote,rename

@simple create,mount

Create time permissions:

@eng,mountpoint

Local permissions:

user tom @eng

user joe create,destroy,mount

Local+Descendent permissions:

user fred @basic,share,rename

user barney @basic

group staff @basic

---- Permissions on pool ---------------------------------------------

Permission sets:

@simple create,destroy,mount

Local permissions:

group staff @simple

Displaying ZFS Delegated Permissions (Examples)

Oracle Solaris ZFS Administration Guide • April 2012266



Removing ZFS Delegated Permissions (Examples)
You can use the zfs unallow command to remove delegated permissions. For example, user
cindy has create, destroy, mount, and snapshot permissions on the tank/cindy file system.

# zfs allow cindy create,destroy,mount,snapshot tank/home/cindy

# zfs allow tank/home/cindy

---- Permissions on tank/home/cindy ----------------------------------

Local+Descendent permissions:

user cindy create,destroy,mount,snapshot

The following zfs unallow syntax removes user cindy's snapshot permission from the
tank/home/cindy file system:

As another example, user mark has the following permissions on the tank/home/mark file
system:

# zfs allow tank/home/mark

---- Permissions on tank/home/mark ----------------------------------

Local+Descendent permissions:

user mark create,destroy,mount

-------------------------------------------------------------

The following zfs unallow syntax removes all permissions for user mark from the
tank/home/mark file system:

# zfs unallow mark tank/home/mark

The following zfs unallow syntax removes a permission set on the tank file system.

# zfs allow tank

---- Permissions on tank ---------------------------------------------

Permission sets:

@myset clone,create,destroy,mount,promote,readonly,snapshot

Create time permissions:

create,destroy,mount

Local+Descendent permissions:

group staff create,mount

# zfs unallow -s @myset tank

# zfs allow tank

---- Permissions on tank ---------------------------------------------

Create time permissions:

create,destroy,mount

Local+Descendent permissions:

group staff create,mount

Removing ZFS Delegated Permissions (Examples)

Chapter 9 • Oracle Solaris ZFS Delegated Administration 267



268



Oracle Solaris ZFS Advanced Topics

This chapter describes ZFS volumes, using ZFS on a Solaris system with zones installed, ZFS
alternate root pools, and ZFS rights profiles.

The following sections are provided in this chapter:

■ “ZFS Volumes” on page 269
■ “Using ZFS on a Solaris System With Zones Installed” on page 271
■ “Using ZFS Alternate Root Pools” on page 276
■ “ZFS Rights Profiles” on page 277

ZFS Volumes
A ZFS volume is a dataset that represents a block device. ZFS volumes are identified as devices
in the /dev/zvol/{dsk,rdsk}/pool directory.

In the following example, a 5-GB ZFS volume, tank/vol, is created:

# zfs create -V 5gb tank/vol

When you create a volume, a reservation is automatically set to the initial size of the volume so
that unexpected behavior doesn't occur. For example, if the size of the volume shrinks, data
corruption might occur. You must be careful when changing the size of the volume.

In addition, if you create a snapshot of a volume that changes in size, you might introduce
inconsistencies if you attempt to roll back the snapshot or create a clone from the snapshot.

For information about file system properties that can be applied to volumes, see Table 6–1.

If you are using a Solaris system with zones installed, you cannot create or clone a ZFS volume
in a non-global zone. Any attempt to do so will fail. For information about using ZFS volumes
in a global zone, see “Adding ZFS Volumes to a Non-Global Zone” on page 273.

10C H A P T E R 1 0

269



Using a ZFS Volume as a Swap or Dump Device
During installation of a ZFS root file system or a migration from a UFS root file system, a swap
device is created on a ZFS volume in the ZFS root pool. For example:

# swap -l

swapfile dev swaplo blocks free

/dev/zvol/dsk/rpool/swap 253,3 16 8257520 8257520

During installation of a ZFS root file system or a migration from a UFS root file system, a dump
device is created on a ZFS volume in the ZFS root pool. The dump device requires no
administration after it is set up. For example:

# dumpadm

Dump content: kernel pages

Dump device: /dev/zvol/dsk/rpool/dump (dedicated)

Savecore directory: /var/crash/t2000

Savecore enabled: yes

If you need to change your swap area or dump device after the system is installed or upgraded,
use the swap and dumpadm commands as in previous Solaris releases. If you need to create an
additional swap volume, create a ZFS volume of a specific size and then enable swap on that
device. For example:

# zfs create -V 2G rpool/swap2

# swap -a /dev/zvol/dsk/rpool/swap2

# swap -l

swapfile dev swaplo blocks free

/dev/zvol/dsk/rpool/swap 256,1 16 2097136 2097136

/dev/zvol/dsk/rpool/swap2 256,5 16 4194288 4194288

Do not swap to a file on a ZFS file system. A ZFS swap file configuration is not supported.

For information about adjusting the size of the swap and dump volumes, see “Adjusting the
Sizes of Your ZFS Swap Device and Dump Device” on page 165.

Using a ZFS Volume as a Solaris iSCSI Target
You can easily create a ZFS volume as an iSCSI target by setting the shareiscsi property on the
volume. For example:

# zfs create -V 2g tank/volumes/v2

# zfs set shareiscsi=on tank/volumes/v2

# iscsitadm list target

Target: tank/volumes/v2

iSCSI Name: iqn.1986-03.com.sun:02:984fe301-c412-ccc1-cc80-cf9a72aa062a

Connections: 0

After the iSCSI target is created, set up the iSCSI initiator. For more information about Solaris
iSCSI targets and initiators, see Chapter 14, “Configuring Oracle Solaris iSCSI Targets and
Initiators (Tasks),” in System Administration Guide: Devices and File Systems.

ZFS Volumes

Oracle Solaris ZFS Administration Guide • April 2012270

http://www.oracle.com/pls/topic/lookup?ctx=E23823&id=SAGDFSfmvcd
http://www.oracle.com/pls/topic/lookup?ctx=E23823&id=SAGDFSfmvcd


Note – Solaris iSCSI targets can also be created and managed with the iscsitadm command. If
you set the shareiscsi property on a ZFS volume, do not use the iscsitadm command to also
create the same target device. Otherwise, you create duplicate target information for the same
device.

A ZFS volume as an iSCSI target is managed just like any other ZFS dataset. However, the
rename, export, and import operations work a little differently for iSCSI targets.
■ When you rename a ZFS volume, the iSCSI target name remains the same. For example:

# zfs rename tank/volumes/v2 tank/volumes/v1

# iscsitadm list target

Target: tank/volumes/v1

iSCSI Name: iqn.1986-03.com.sun:02:984fe301-c412-ccc1-cc80-cf9a72aa062a

Connections: 0

■ Exporting a pool that contains a shared ZFS volume causes the target to be removed.
Importing a pool that contains a shared ZFS volume causes the target to be shared. For
example:

# zpool export tank

# iscsitadm list target

# zpool import tank

# iscsitadm list target

Target: tank/volumes/v1

iSCSI Name: iqn.1986-03.com.sun:02:984fe301-c412-ccc1-cc80-cf9a72aa062a

Connections: 0

All iSCSI target configuration information is stored within the dataset. Like an NFS shared file
system, an iSCSI target that is imported on a different system is shared appropriately.

Using ZFS on a Solaris System With Zones Installed
The following sections describe how to use ZFS on a system with Oracle Solaris zones:

■ “Adding ZFS File Systems to a Non-Global Zone” on page 272
■ “Delegating Datasets to a Non-Global Zone” on page 273
■ “Adding ZFS Volumes to a Non-Global Zone” on page 273
■ “Using ZFS Storage Pools Within a Zone” on page 274
■ “Managing ZFS Properties Within a Zone” on page 274
■ “Understanding the zoned Property” on page 275

For information about configuring zones on a system with a ZFS root file system that will be
migrated or patched with Oracle Solaris Live Upgrade, see “Using Live Upgrade to Migrate or
Upgrade a System With Zones (Solaris 10 10/08)” on page 149 or “Using Oracle Solaris Live
Upgrade to Migrate or Upgrade a System With Zones (at Least Solaris 10 5/09)” on page 154.

Keep the following points in mind when associating ZFS datasets with zones:

Using ZFS on a Solaris System With Zones Installed

Chapter 10 • Oracle Solaris ZFS Advanced Topics 271



■ You can add a ZFS file system or a clone to a non-global zone with or without delegating
administrative control.

■ You can add a ZFS volume as a device to non-global zones.
■ You cannot associate ZFS snapshots with zones at this time.

In the following sections, a ZFS dataset refers to a file system or a clone.

Adding a dataset allows the non-global zone to share disk space with the global zone, though the
zone administrator cannot control properties or create new file systems in the underlying file
system hierarchy. This operation is identical to adding any other type of file system to a zone
and should be used when the primary purpose is solely to share common disk space.

ZFS also allows datasets to be delegated to a non-global zone, giving complete control over the
dataset and all its children to the zone administrator. The zone administrator can create and
destroy file systems or clones within that dataset, as well as modify properties of the datasets.
The zone administrator cannot affect datasets that have not been added to the zone, including
exceeding any top-level quotas set on the delegated dataset.

Consider the following when working with ZFS on a system with Oracle Solaris zones installed:
■ A ZFS file system that is added to a non-global zone must have its mountpoint property set

to legacy.
■ Due to CR 6449301, do not add a ZFS dataset to a non-global zone when the non-global

zone is configured. Instead, add a ZFS dataset after the zone is installed.
■ When both a source zonepath and a target zonepath reside on a ZFS file system and are in

the same pool, zoneadm clone will now automatically use the ZFS clone to clone a zone. The
zoneadm clone command will create a ZFS snapshot of the source zonepath and set up the
target zonepath. You cannot use the zfs clone command to clone a zone. For more
information, see Part II, “Zones,” in System Administration Guide: Oracle Solaris
Containers-Resource Management and Oracle Solaris Zones.

■ If you delegate a ZFS file system to a non-global zone, you must remove that file system from
the non-global zone before using Oracle Solaris Live Upgrade. Otherwise, Oracle Live
Upgrade will fail due to a read-only file system error.

Adding ZFS File Systems to a Non-Global Zone
You can add a ZFS file system as a generic file system when the goal is solely to share space with
the global zone. A ZFS file system that is added to a non-global zone must have its mountpoint
property set to legacy. For example, if the tank/zone/zion file system will be added to a
non-global zone, set the mountpoint property in the global zone as follows:

# zfs set mountpoint=legacy tank/zone/zion

You can add a ZFS file system to a non-global zone by using the zonecfg command's add fs
subcommand.

Using ZFS on a Solaris System With Zones Installed

Oracle Solaris ZFS Administration Guide • April 2012272

http://www.oracle.com/pls/topic/lookup?ctx=E22645&id=SYSADRMzone
http://www.oracle.com/pls/topic/lookup?ctx=E22645&id=SYSADRMzone


In the following example, a ZFS file system is added to a non-global zone by a global zone
administrator from the global zone:

# zonecfg -z zion

zonecfg:zion> add fs

zonecfg:zion:fs> set type=zfs

zonecfg:zion:fs> set special=tank/zone/zion

zonecfg:zion:fs> set dir=/export/shared

zonecfg:zion:fs> end

This syntax adds the ZFS file system, tank/zone/zion, to the already configured zion zone,
which is mounted at /export/shared. The mountpoint property of the file system must be set
to legacy, and the file system cannot already be mounted in another location. The zone
administrator can create and destroy files within the file system. The file system cannot be
remounted in a different location, nor can the zone administrator change properties on the file
system such as atime, readonly, compression, and so on. The global zone administrator is
responsible for setting and controlling properties of the file system.

For more information about the zonecfg command and about configuring resource types with
zonecfg, see Part II, “Zones,” in System Administration Guide: Oracle Solaris
Containers-Resource Management and Oracle Solaris Zones.

Delegating Datasets to a Non-Global Zone
To meet the primary goal of delegating the administration of storage to a zone, ZFS supports
adding datasets to a non-global zone through the use of the zonecfg command's add dataset
subcommand.

In the following example, a ZFS file system is delegated to a non-global zone by a global zone
administrator from the global zone.

# zonecfg -z zion

zonecfg:zion> add dataset

zonecfg:zion:dataset> set name=tank/zone/zion

zonecfg:zion:dataset> end

Unlike adding a file system, this syntax causes the ZFS file system tank/zone/zion to be visible
within the already configured zion zone. The zone administrator can set file system properties,
as well as create descendent file systems. In addition, the zone administrator can create
snapshots and clones, and otherwise control the entire file system hierarchy.

Adding ZFS Volumes to a Non-Global Zone
ZFS volumes cannot be added to a non-global zone by using the zonecfg command's add
dataset subcommand. However, volumes can be added to a zone by using the zonecfg
command's add device subcommand.

Using ZFS on a Solaris System With Zones Installed

Chapter 10 • Oracle Solaris ZFS Advanced Topics 273

http://www.oracle.com/pls/topic/lookup?ctx=E22645&id=SYSADRMzone
http://www.oracle.com/pls/topic/lookup?ctx=E22645&id=SYSADRMzone


In the following example, a ZFS volume is added to a non-global zone by a global zone
administrator from the global zone:

# zonecfg -z zion

zion: No such zone configured

Use ’create’ to begin configuring a new zone.

zonecfg:zion> create

zonecfg:zion> add device

zonecfg:zion:device> set match=/dev/zvol/dsk/tank/vol

zonecfg:zion:device> end

This syntax adds the tank/vol volume to the zion zone.

Note that adding a raw volume to a zone has implicit security risks, even if the volume doesn't
correspond to a physical device. In particular, the zone administrator could create malformed
file systems that would panic the system when a mount is attempted. For more information
about adding devices to zones and the related security risks, see “Understanding the zoned
Property” on page 275.

For more information about adding devices to zones, see Part II, “Zones,” in System
Administration Guide: Oracle Solaris Containers-Resource Management and Oracle Solaris
Zones.

Using ZFS Storage Pools Within a Zone
ZFS storage pools cannot be created or modified within a zone. The delegated administration
model centralizes control of physical storage devices within the global zone and control of
virtual storage to non-global zones. Although a pool-level dataset can be added to a zone, any
command that modifies the physical characteristics of the pool, such as creating, adding, or
removing devices, is not allowed from within a zone. Even if physical devices are added to a
zone by using the zonecfg command's add device subcommand, or if files are used, the zpool
command does not allow the creation of any new pools within the zone.

Managing ZFS Properties Within a Zone
After a dataset is delegated to a zone, the zone administrator can control specific dataset
properties. After a dataset is delegated to a zone, all its ancestors are visible as read-only
datasets, while the dataset itself is writable, as are all of its descendents. For example, consider
the following configuration:

global# zfs list -Ho name

tank

tank/home

tank/data

tank/data/matrix

tank/data/zion

tank/data/zion/home

Using ZFS on a Solaris System With Zones Installed

Oracle Solaris ZFS Administration Guide • April 2012274

http://www.oracle.com/pls/topic/lookup?ctx=E22645&id=SYSADRMzone
http://www.oracle.com/pls/topic/lookup?ctx=E22645&id=SYSADRMzone
http://www.oracle.com/pls/topic/lookup?ctx=E22645&id=SYSADRMzone


If tank/data/zion were added to a zone, each dataset would have the following properties.

Dataset Visible Writable Immutable Properties

tank Yes No -

tank/home No - -

tank/data Yes No -

tank/data/matrix No - -

tank/data/zion Yes Yes sharenfs, zoned, quota,
reservation

tank/data/zion/home Yes Yes sharenfs, zoned

Note that every parent of tank/zone/zion is visible as read-only, all descendents are writable,
and datasets that are not part of the parent hierarchy are not visible at all. The zone
administrator cannot change the sharenfs property because non-global zones cannot act as
NFS servers. The zone administrator cannot change the zoned property because doing so would
expose a security risk as described in the next section.

Privileged users in the zone can change any other settable property, except for quota and
reservation properties. This behavior allows the global zone administrator to control the disk
space consumption of all datasets used by the non-global zone.

In addition, the sharenfs and mountpoint properties cannot be changed by the global zone
administrator after a dataset has been delegated to a non-global zone.

Understanding the zoned Property
When a dataset is delegated to a non-global zone, the dataset must be specially marked so that
certain properties are not interpreted within the context of the global zone. After a dataset has
been delegated to a non-global zone and is under the control of a zone administrator, its
contents can no longer be trusted. As with any file system, there might be setuid binaries,
symbolic links, or otherwise questionable contents that might adversely affect the security of the
global zone. In addition, the mountpoint property cannot be interpreted in the context of the
global zone. Otherwise, the zone administrator could affect the global zone's namespace. To
address the latter, ZFS uses the zoned property to indicate that a dataset has been delegated to a
non-global zone at one point in time.

The zoned property is a boolean value that is automatically turned on when a zone containing a
ZFS dataset is first booted. A zone administrator does not need to manually turn on this
property. If the zoned property is set, the dataset cannot be mounted or shared in the global
zone. In the following example, tank/zone/zion has been delegated to a zone, while
tank/zone/global has not:

Using ZFS on a Solaris System With Zones Installed

Chapter 10 • Oracle Solaris ZFS Advanced Topics 275



# zfs list -o name,zoned,mountpoint -r tank/zone

NAME ZONED MOUNTPOINT

tank/zone/global off /tank/zone/global

tank/zone/zion on /tank/zone/zion

# zfs mount

tank/zone/global /tank/zone/global

tank/zone/zion /export/zone/zion/root/tank/zone/zion

Note the difference between the mountpoint property and the directory where the
tank/zone/zion dataset is currently mounted. The mountpoint property reflects the property
as it is stored on disk, not where the dataset is currently mounted on the system.

When a dataset is removed from a zone or a zone is destroyed, the zoned property is not
automatically cleared. This behavior is due to the inherent security risks associated with these
tasks. Because an untrusted user has had complete access to the dataset and its descendents, the
mountpoint property might be set to bad values, or setuid binaries might exist on the file
systems.

To prevent accidental security risks, the zoned property must be manually cleared by the global
zone administrator if you want to reuse the dataset in any way. Before setting the zoned
property to off, ensure that the mountpoint property for the dataset and all its descendents are
set to reasonable values and that no setuid binaries exist, or turn off the setuid property.

After you have verified that no security vulnerabilities are left, the zoned property can be turned
off by using the zfs set or zfs inherit command. If the zoned property is turned off while a
dataset is in use within a zone, the system might behave in unpredictable ways. Only change the
property if you are sure the dataset is no longer in use by a non-global zone.

Using ZFS Alternate Root Pools
When a pool is created, it is intrinsically tied to the host system. The host system maintains
information about the pool so that it can detect when the pool is unavailable. Although useful
for normal operations, this information can prove a hindrance when you are booting from
alternate media or creating a pool on removable media. To solve this problem, ZFS provides an
alternate root pool feature. An alternate root pool does not persist across system reboots, and all
mount points are modified to be relative to the root of the pool.

Creating ZFS Alternate Root Pools
The most common reason for creating an alternate root pool is for use with removable media.
In these circumstances, users typically want a single file system, and they want it to be mounted
wherever they choose on the target system. When an alternate root pool is created by using the
zpool create -R option, the mount point of the root file system is automatically set to /, which
is the equivalent of the alternate root value.

In the following example, a pool called morpheus is created with /mnt as the alternate root path:

Using ZFS Alternate Root Pools

Oracle Solaris ZFS Administration Guide • April 2012276



# zpool create -R /mnt morpheus c0t0d0

# zfs list morpheus

NAME USED AVAIL REFER MOUNTPOINT

morpheus 32.5K 33.5G 8K /mnt

Note the single file system, morpheus, whose mount point is the alternate root of the pool, /mnt.
The mount point that is stored on disk is / and the full path to /mnt is interpreted only in this
initial context of the pool creation. This file system can then be exported and imported under an
arbitrary alternate root pool on a different system by using -R alternate root value syntax.

# zpool export morpheus

# zpool import morpheus

cannot mount ’/’: directory is not empty

# zpool export morpheus

# zpool import -R /mnt morpheus

# zfs list morpheus

NAME USED AVAIL REFER MOUNTPOINT

morpheus 32.5K 33.5G 8K /mnt

Importing Alternate Root Pools
Pools can also be imported using an alternate root. This feature allows for recovery situations,
where the mount points should not be interpreted in context of the current root, but under
some temporary directory where repairs can be performed. This feature also can be used when
you are mounting removable media as described in the preceding section.

In the following example, a pool called morpheus is imported with /mnt as the alternate root
path. This example assumes that morpheus was previously exported.

# zpool import -R /a pool

# zpool list morpheus

NAME SIZE ALLOC FREE CAP HEALTH ALTROOT

pool 44.8G 78K 44.7G 0% ONLINE /a

# zfs list pool

NAME USED AVAIL REFER MOUNTPOINT

pool 73.5K 44.1G 21K /a/pool

ZFS Rights Profiles
If you want to perform ZFS management tasks without using the superuser (root) account, you
can assume a role with either of the following profiles to perform ZFS administration tasks:

■ ZFS Storage Management – Provides the privilege to create, destroy, and manipulate devices
within a ZFS storage pool

■ ZFS File system Management – Provides the privilege to create, destroy, and modify ZFS file
systems

For more information about creating or assigning roles, see System Administration Guide:
Security Services.

ZFS Rights Profiles

Chapter 10 • Oracle Solaris ZFS Advanced Topics 277

http://www.oracle.com/pls/topic/lookup?ctx=E23823&id=SYSADV6
http://www.oracle.com/pls/topic/lookup?ctx=E23823&id=SYSADV6


In addition to using RBAC roles for administering ZFS file systems, you might also consider
using ZFS delegated administration for distributed ZFS administration tasks. For more
information, see Chapter 9, “Oracle Solaris ZFS Delegated Administration.”

ZFS Rights Profiles

Oracle Solaris ZFS Administration Guide • April 2012278



Oracle Solaris ZFS Troubleshooting and Pool
Recovery

This chapter describes how to identify and recover from ZFS failures. Information for
preventing failures is provided as well.

The following sections are provided in this chapter:

■ “Identifying ZFS Failures” on page 279
■ “Checking ZFS File System Integrity” on page 281
■ “Resolving Problems With ZFS” on page 283
■ “Repairing a Damaged ZFS Configuration” on page 288
■ “Resolving a Missing Device” on page 288
■ “Replacing or Repairing a Damaged Device” on page 290
■ “Repairing Damaged Data” on page 298
■ “Repairing an Unbootable System” on page 303

Identifying ZFS Failures
As a combined file system and volume manager, ZFS can exhibit many different failures. This
chapter begins by outlining the various failures, then discusses how to identify them on a
running system. This chapter concludes by discussing how to repair the problems. ZFS can
encounter three basic types of errors:

■ “Missing Devices in a ZFS Storage Pool” on page 280
■ “Damaged Devices in a ZFS Storage Pool” on page 280
■ “Corrupted ZFS Data” on page 280

Note that a single pool can experience all three errors, so a complete repair procedure involves
finding and correcting one error, proceeding to the next error, and so on.

11C H A P T E R 1 1

279



Missing Devices in a ZFS Storage Pool
If a device is completely removed from the system, ZFS detects that the device cannot be opened
and places it in the REMOVED state. Depending on the data replication level of the pool, this
removal might or might not result in the entire pool becoming unavailable. If one disk in a
mirrored or RAID-Z device is removed, the pool continues to be accessible. A pool might
become FAULTED, which means no data is accessible until the device is reattached, under the
following conditions:

■ If all components of a mirror are removed
■ If more than one device in a RAID-Z (raidz1) device is removed
■ If top-level device is removed in a single-disk configuration

Damaged Devices in a ZFS Storage Pool
The term “damaged” covers a wide variety of possible errors. Examples include the following:

■ Transient I/O errors due to a bad disk or controller
■ On-disk data corruption due to cosmic rays
■ Driver bugs resulting in data being transferred to or from the wrong location
■ A user overwriting portions of the physical device by accident

In some cases, these errors are transient, such as a random I/O error while the controller is
having problems. In other cases, the damage is permanent, such as on-disk corruption. Even
still, whether the damage is permanent does not necessarily indicate that the error is likely to
occur again. For example, if an administrator accidentally overwrites part of a disk, no type of
hardware failure has occurred, and the device does not need to be replaced. Identifying the exact
problem with a device is not an easy task and is covered in more detail in a later section.

Corrupted ZFS Data
Data corruption occurs when one or more device errors (indicating one or more missing or
damaged devices) affects a top-level virtual device. For example, one half of a mirror can
experience thousands of device errors without ever causing data corruption. If an error is
encountered on the other side of the mirror in the exact same location, corrupted data is the
result.

Data corruption is always permanent and requires special consideration during repair. Even if
the underlying devices are repaired or replaced, the original data is lost forever. Most often, this
scenario requires restoring data from backups. Data errors are recorded as they are
encountered, and they can be controlled through routine pool scrubbing as explained in the
following section. When a corrupted block is removed, the next scrubbing pass recognizes that
the corruption is no longer present and removes any trace of the error from the system.

Identifying ZFS Failures

Oracle Solaris ZFS Administration Guide • April 2012280



Checking ZFS File System Integrity
No fsck utility equivalent exists for ZFS. This utility has traditionally served two purposes,
those of file system repair and file system validation.

File System Repair
With traditional file systems, the way in which data is written is inherently vulnerable to
unexpected failure causing file system inconsistencies. Because a traditional file system is not
transactional, unreferenced blocks, bad link counts, or other inconsistent file system structures
are possible. The addition of journaling does solve some of these problems, but can introduce
additional problems when the log cannot be rolled back. The only way for inconsistent data to
exist on disk in a ZFS configuration is through hardware failure (in which case the pool should
have been redundant) or when a bug exists in the ZFS software.

The fsck utility repairs known problems specific to UFS file systems. Most ZFS storage pool
problems are generally related to failing hardware or power failures. Many problems can be
avoided by using redundant pools. If your pool is damaged due to failing hardware or a power
outage, see “Repairing ZFS Storage Pool-Wide Damage” on page 301.

If your pool is not redundant, the risk that file system corruption can render some or all of your
data inaccessible is always present.

File System Validation
In addition to performing file system repair, the fsck utility validates that the data on disk has
no problems. Traditionally, this task requires unmounting the file system and running the fsck
utility, possibly taking the system to single-user mode in the process. This scenario results in
downtime that is proportional to the size of the file system being checked. Instead of requiring
an explicit utility to perform the necessary checking, ZFS provides a mechanism to perform
routine checking of all inconsistencies. This feature, known as scrubbing, is commonly used in
memory and other systems as a method of detecting and preventing errors before they result in
a hardware or software failure.

Controlling ZFS Data Scrubbing
Whenever ZFS encounters an error, either through scrubbing or when accessing a file on
demand, the error is logged internally so that you can obtain quick overview of all known errors
within the pool.

Checking ZFS File System Integrity

Chapter 11 • Oracle Solaris ZFS Troubleshooting and Pool Recovery 281



Explicit ZFS Data Scrubbing
The simplest way to check data integrity is to initiate an explicit scrubbing of all data within the
pool. This operation traverses all the data in the pool once and verifies that all blocks can be
read. Scrubbing proceeds as fast as the devices allow, though the priority of any I/O remains
below that of normal operations. This operation might negatively impact performance, though
the pool's data should remain usable and nearly as responsive while the scrubbing occurs. To
initiate an explicit scrub, use the zpool scrub command. For example:

# zpool scrub tank

The status of the current scrubbing operation can be displayed by using the zpool status
command. For example:

# zpool status -v tank

pool: tank

state: ONLINE

scrub: scrub completed after 0h7m with 0 errors on Tue Tue Feb 2 12:54:00 2010

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c1t0d0 ONLINE 0 0 0

c1t1d0 ONLINE 0 0 0

errors: No known data errors

Only one active scrubbing operation per pool can occur at one time.

You can stop a scrubbing operation that is in progress by using the -s option. For example:

# zpool scrub -s tank

In most cases, a scrubing operation to ensure data integrity should continue to completion.
Stop a scrubbing operation at your own discretion if system performance is impacted by the
operation.

Performing routine scrubbing guarantees continuous I/O to all disks on the system. Routine
scrubbing has the side effect of preventing power management from placing idle disks in
low-power mode. If the system is generally performing I/O all the time, or if power
consumption is not a concern, then this issue can safely be ignored.

For more information about interpreting zpool status output, see “Querying ZFS Storage
Pool Status” on page 101.

ZFS Data Scrubbing and Resilvering
When a device is replaced, a resilvering operation is initiated to move data from the good copies
to the new device. This action is a form of disk scrubbing. Therefore, only one such action can
occur at a given time in the pool. If a scrubbing operation is in progress, a resilvering operation
suspends the current scrubbing and restarts it after the resilvering is completed.

Checking ZFS File System Integrity

Oracle Solaris ZFS Administration Guide • April 2012282



For more information about resilvering, see “Viewing Resilvering Status” on page 297.

Resolving Problems With ZFS
The following sections describe how to identify and resolve problems with your ZFS file systems
or storage pools:
■ “Determining If Problems Exist in a ZFS Storage Pool” on page 284
■ “Reviewing zpool status Output” on page 284
■ “System Reporting of ZFS Error Messages” on page 287

You can use the following features to identify problems with your ZFS configuration:
■ Detailed ZFS storage pool information can be displayed by using the zpool status

command.
■ Pool and device failures are reported through ZFS/FMA diagnostic messages.
■ Previous ZFS commands that modified pool state information can be displayed by using the

zpool history command.

Most ZFS troubleshooting involves the zpool status command. This command analyzes the
various failures in a system and identifies the most severe problem, presenting you with a
suggested action and a link to a knowledge article for more information. Note that the
command only identifies a single problem with a pool, though multiple problems can exist. For
example, data corruption errors generally imply that one of the devices has failed, but replacing
the failed device might not resolve all of the data corruption problems.

In addition, a ZFS diagnostic engine diagnoses and reports pool failures and device failures.
Checksum, I/O, device, and pool errors associated with these failures are also reported. ZFS
failures as reported by fmd are displayed on the console as well as the system messages file. In
most cases, the fmd message directs you to the zpool status command for further recovery
instructions.

The basic recovery process is as follows:
■ If appropriate, use the zpool history command to identify the ZFS commands that

preceded the error scenario. For example:

# zpool history tank

History for ’tank’:

2010-07-15.12:06:50 zpool create tank mirror c0t1d0 c0t2d0 c0t3d0

2010-07-15.12:06:58 zfs create tank/erick

2010-07-15.12:07:01 zfs set checksum=off tank/erick

In this output, note that checksums are disabled for the tank/erick file system. This
configuration is not recommended.

■ Identify the errors through the fmd messages that are displayed on the system console or in
the /var/adm/messages file.

Resolving Problems With ZFS

Chapter 11 • Oracle Solaris ZFS Troubleshooting and Pool Recovery 283



■ Find further repair instructions by using the zpool status -x command.
■ Repair the failures, which involves the following steps:

■ Replacing the faulted or missing device and bring it online.
■ Restoring the faulted configuration or corrupted data from a backup.
■ Verifying the recovery by using the zpool status -x command.
■ Backing up your restored configuration, if applicable.

This section describes how to interpret zpool status output in order to diagnose the type of
failures that can occur. Although most of the work is performed automatically by the
command, it is important to understand exactly what problems are being identified in order to
diagnose the failure. Subsequent sections describe how to repair the various problems that you
might encounter.

Determining If Problems Exist in a ZFS Storage Pool
The easiest way to determine if any known problems exist on a system is to use the zpool
status -x command. This command describes only pools that are exhibiting problems. If no
unhealthy pools exist on the system, then the command displays the following:

# zpool status -x

all pools are healthy

Without the -x flag, the command displays the complete status for all pools (or the requested
pool, if specified on the command line), even if the pools are otherwise healthy.

For more information about command-line options to the zpool status command, see
“Querying ZFS Storage Pool Status” on page 101.

Reviewing zpool status Output
The complete zpool status output looks similar to the following:

# zpool status tank

# zpool status tank

pool: tank

state: DEGRADED

status: One or more devices could not be opened. Sufficient replicas exist for

the pool to continue functioning in a degraded state.

action: Attach the missing device and online it using ’zpool online’.

see: http://www.sun.com/msg/ZFS-8000-2Q

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

tank DEGRADED 0 0 0

mirror-0 DEGRADED 0 0 0

Resolving Problems With ZFS

Oracle Solaris ZFS Administration Guide • April 2012284



c1t0d0 ONLINE 0 0 0

c1t1d0 UNAVAIL 0 0 0 cannot open

errors: No known data errors

This output is described next:

Overall Pool Status Information
This section in the zpool status output contains the following fields, some of which are only
displayed for pools exhibiting problems:

pool Identifies the name of the pool.

state Indicates the current health of the pool. This information refers only to the ability of
the pool to provide the necessary replication level.

status Describes what is wrong with the pool. This field is omitted if no errors are found.

action A recommended action for repairing the errors. This field is omitted if no errors are
found.

see Refers to a knowledge article containing detailed repair information. Online articles
are updated more often than this guide can be updated. So, always reference them
for the most up-to-date repair procedures. This field is omitted if no errors are
found.

scrub Identifies the current status of a scrub operation, which might include the date and
time that the last scrub was completed, a scrub is in progress, or if no scrub was
requested.

errors Identifies known data errors or the absence of known data errors.

Pool Configuration Information
The config field in the zpool status output describes the configuration of the devices in the
pool, as well as their state and any errors generated from the devices. The state can be one of the
following: ONLINE, FAULTED, DEGRADED, UNAVAIL, or OFFLINE. If the state is anything but ONLINE,
the fault tolerance of the pool has been compromised.

The second section of the configuration output displays error statistics. These errors are divided
into three categories:

■ READ – I/O errors that occurred while issuing a read request
■ WRITE – I/O errors that occurred while issuing a write request
■ CKSUM – Checksum errors, meaning that the device returned corrupted data as the result of a

read request

Resolving Problems With ZFS

Chapter 11 • Oracle Solaris ZFS Troubleshooting and Pool Recovery 285



These errors can be used to determine if the damage is permanent. A small number of I/O
errors might indicate a temporary outage, while a large number might indicate a permanent
problem with the device. These errors do not necessarily correspond to data corruption as
interpreted by applications. If the device is in a redundant configuration, the devices might
show uncorrectable errors, while no errors appear at the mirror or RAID-Z device level. In such
cases, ZFS successfully retrieved the good data and attempted to heal the damaged data from
existing replicas.

For more information about interpreting these errors, see “Determining the Type of Device
Failure” on page 290.

Finally, additional auxiliary information is displayed in the last column of the zpool status
output. This information expands on the state field, aiding in the diagnosis of failures. If a
device is FAULTED, this field indicates whether the device is inaccessible or whether the data on
the device is corrupted. If the device is undergoing resilvering, this field displays the current
progress.

For information about monitoring resilvering progress, see “Viewing Resilvering Status” on
page 297.

Scrubbing Status
The scrub section of the zpool status output describes the current status of any explicit
scrubbing operations. This information is distinct from whether any errors are detected on the
system, though this information can be used to determine the accuracy of the data corruption
error reporting. If the last scrub ended recently, most likely, any known data corruption has
been discovered.

Scrub completion messages persist across system reboots.

For more information about the data scrubbing and how to interpret this information, see
“Checking ZFS File System Integrity” on page 281.

Data Corruption Errors
The zpool status command also shows whether any known errors are associated with the
pool. These errors might have been found during data scrubbing or during normal operation.
ZFS maintains a persistent log of all data errors associated with a pool. This log is rotated
whenever a complete scrub of the system finishes.

Data corruption errors are always fatal. Their presence indicates that at least one application
experienced an I/O error due to corrupt data within the pool. Device errors within a redundant
pool do not result in data corruption and are not recorded as part of this log. By default, only the
number of errors found is displayed. A complete list of errors and their specifics can be found
by using the zpool status -v option. For example:

Resolving Problems With ZFS

Oracle Solaris ZFS Administration Guide • April 2012286



# zpool status -v

pool: tank

state: UNAVAIL

status: One or more devices are faulted in response to IO failures.

action: Make sure the affected devices are connected, then run ’zpool clear’.

see: http://www.sun.com/msg/ZFS-8000-HC

scrub: scrub completed after 0h0m with 0 errors on Tue Feb 2 13:08:42 2010

config:

NAME STATE READ WRITE CKSUM

tank UNAVAIL 0 0 0 insufficient replicas

c1t0d0 ONLINE 0 0 0

c1t1d0 UNAVAIL 4 1 0 cannot open

errors: Permanent errors have been detected in the following files:

/tank/data/aaa

/tank/data/bbb

/tank/data/ccc

A similar message is also displayed by fmd on the system console and the /var/adm/messages
file. These messages can also be tracked by using the fmdump command.

For more information about interpreting data corruption errors, see “Identifying the Type of
Data Corruption” on page 299.

System Reporting of ZFS Error Messages
In addition to persistently tracking errors within the pool, ZFS also displays syslog messages
when events of interest occur. The following scenarios generate events to notify the
administrator:

■ Device state transition – If a device becomes FAULTED, ZFS logs a message indicating that
the fault tolerance of the pool might be compromised. A similar message is sent if the device
is later brought online, restoring the pool to health.

■ Data corruption – If any data corruption is detected, ZFS logs a message describing when
and where the corruption was detected. This message is only logged the first time it is
detected. Subsequent accesses do not generate a message.

■ Pool failures and device failures – If a pool failure or a device failure occurs, the fault
manager daemon reports these errors through syslog messages as well as the fmdump
command.

If ZFS detects a device error and automatically recovers from it, no notification occurs. Such
errors do not constitute a failure in the pool redundancy or in data integrity. Moreover, such
errors are typically the result of a driver problem accompanied by its own set of error messages.

Resolving Problems With ZFS

Chapter 11 • Oracle Solaris ZFS Troubleshooting and Pool Recovery 287



Repairing a Damaged ZFS Configuration
ZFS maintains a cache of active pools and their configuration in the root file system. If this
cache file is corrupted or somehow becomes out of sync with configuration information that is
stored on disk, the pool can no longer be opened. ZFS tries to avoid this situation, though
arbitrary corruption is always possible given the qualities of the underlying storage. This
situation typically results in a pool disappearing from the system when it should otherwise be
available. This situation can also manifest as a partial configuration that is missing an unknown
number of top-level virtual devices. In either case, the configuration can be recovered by
exporting the pool (if it is visible at all) and re-importing it.

For information about importing and exporting pools, see “Migrating ZFS Storage Pools” on
page 110.

Resolving a Missing Device
If a device cannot be opened, it displays the UNAVAIL state in the zpool status output. This
state means that ZFS was unable to open the device when the pool was first accessed, or the
device has since become unavailable. If the device causes a top-level virtual device to be
unavailable, then nothing in the pool can be accessed. Otherwise, the fault tolerance of the pool
might be compromised. In either case, the device just needs to be reattached to the system to
restore normal operations.

For example, you might see a message similar to the following from fmd after a device failure:

SUNW-MSG-ID: ZFS-8000-FD, TYPE: Fault, VER: 1, SEVERITY: Major

EVENT-TIME: Thu Jun 24 10:42:36 PDT 2010

PLATFORM: SUNW,Sun-Fire-T200, CSN: -, HOSTNAME: neo2

SOURCE: zfs-diagnosis, REV: 1.0

EVENT-ID: a1fb66d0-cc51-cd14-a835-961c15696fcb

DESC: The number of I/O errors associated with a ZFS device exceeded

acceptable levels. Refer to http://sun.com/msg/ZFS-8000-FD for more information.

AUTO-RESPONSE: The device has been offlined and marked as faulted. An attempt

will be made to activate a hot spare if available.

IMPACT: Fault tolerance of the pool may be compromised.

REC-ACTION: Run ’zpool status -x’ and replace the bad device.

To view more detailed information about the device problem and the resolution, use the zpool
status -x command. For example:

# zpool status -x

pool: tank

state: DEGRADED

status: One or more devices could not be opened. Sufficient replicas exist for

the pool to continue functioning in a degraded state.

action: Attach the missing device and online it using ’zpool online’.

see: http://www.sun.com/msg/ZFS-8000-2Q

Repairing a Damaged ZFS Configuration

Oracle Solaris ZFS Administration Guide • April 2012288



scrub: scrub completed after 0h0m with 0 errors on Tue Feb 2 13:15:20 2010

config:

NAME STATE READ WRITE CKSUM

tank DEGRADED 0 0 0

mirror-0 DEGRADED 0 0 0

c1t0d0 ONLINE 0 0 0

c1t1d0 UNAVAIL 0 0 0 cannot open

errors: No known data errors

You can see from this output that the missing c1t1d0 device is not functioning. If you
determine that the device is faulty, replace it.

Then, use the zpool online command to bring online the replaced device. For example:

# zpool online tank c1t1d0

As a last step, confirm that the pool with the replaced device is healthy. For example:

# zpool status -x tank

pool ’tank’ is healthy

Physically Reattaching a Device
Exactly how a missing device is reattached depends on the device in question. If the device is a
network-attached drive, connectivity to the network should be restored. If the device is a USB
device or other removable media, it should be reattached to the system. If the device is a local
disk, a controller might have failed such that the device is no longer visible to the system. In this
case, the controller should be replaced, at which point the disks will again be available. Other
problems can exist and depend on the type of hardware and its configuration. If a drive fails and
it is no longer visible to the system, the device should be treated as a damaged device. Follow the
procedures in “Replacing or Repairing a Damaged Device” on page 290.

Notifying ZFS of Device Availability
After a device is reattached to the system, ZFS might or might not automatically detect its
availability. If the pool was previously faulted, or the system was rebooted as part of the attach
procedure, then ZFS automatically rescans all devices when it tries to open the pool. If the pool
was degraded and the device was replaced while the system was running, you must notify ZFS
that the device is now available and ready to be reopened by using the zpool online command.
For example:

# zpool online tank c0t1d0

Resolving a Missing Device

Chapter 11 • Oracle Solaris ZFS Troubleshooting and Pool Recovery 289



For more information about bringing devices online, see “Bringing a Device Online” on
page 89.

Replacing or Repairing a Damaged Device
This section describes how to determine device failure types, clear transient errors, and
replacing a device.

Determining the Type of Device Failure
The term damaged device is rather vague and can describe a number of possible situations:

■ Bit rot – Over time, random events such as magnetic influences and cosmic rays can cause
bits stored on disk to flip. These events are relatively rare but common enough to cause
potential data corruption in large or long-running systems.

■ Misdirected reads or writes – Firmware bugs or hardware faults can cause reads or writes of
entire blocks to reference the incorrect location on disk. These errors are typically transient,
though a large number of them might indicate a faulty drive.

■ Administrator error – Administrators can unknowingly overwrite portions of a disk with
bad data (such as copying /dev/zero over portions of the disk) that cause permanent
corruption on disk. These errors are always transient.

■ Temporary outage– A disk might become unavailable for a period of time, causing I/Os to
fail. This situation is typically associated with network-attached devices, though local disks
can experience temporary outages as well. These errors might or might not be transient.

■ Bad or flaky hardware – This situation is a catch-all for the various problems that faulty
hardware exhibits, including consistent I/O errors, faulty transports causing random
corruption, or any number of failures. These errors are typically permanent.

■ Offline device – If a device is offline, it is assumed that the administrator placed the device
in this state because it is faulty. The administrator who placed the device in this state can
determine if this assumption is accurate.

Determining exactly what is wrong with a device can be a difficult process. The first step is to
examine the error counts in the zpool status output. For example:

# zpool status -v tpool

pool: tpool

state: ONLINE

status: One or more devices has experienced an error resulting in data

corruption. Applications may be affected.

action: Restore the file in question if possible. Otherwise restore the

entire pool from backup.

see: http://www.sun.com/msg/ZFS-8000-8A

Replacing or Repairing a Damaged Device

Oracle Solaris ZFS Administration Guide • April 2012290



scrub: scrub completed after 0h0m with 2 errors on Tue Jul 13 11:08:37 2010

config:

NAME STATE READ WRITE CKSUM

tpool ONLINE 2 0 0

c1t1d0 ONLINE 2 0 0

c1t3d0 ONLINE 0 0 0

errors: Permanent errors have been detected in the following files:

/tpool/words

The errors are divided into I/O errors and checksum errors, both of which might indicate the
possible failure type. Typical operation predicts a very small number of errors (just a few over
long periods of time). If you are seeing a large number of errors, then this situation probably
indicates impending or complete device failure. However, an administrator error can also result
in large error counts. The other source of information is the syslog system log. If the log shows
a large number of SCSI or Fibre Channel driver messages, then this situation probably indicates
serious hardware problems. If no syslog messages are generated, then the damage is likely
transient.

The goal is to answer the following question:

Is another error likely to occur on this device?

Errors that happen only once are considered transient and do not indicate potential failure.
Errors that are persistent or severe enough to indicate potential hardware failure are considered
fatal. The act of determining the type of error is beyond the scope of any automated software
currently available with ZFS, and so much must be done manually by you, the administrator.
After determination is made, the appropriate action can be taken. Either clear the transient
errors or replace the device due to fatal errors. These repair procedures are described in the next
sections.

Even if the device errors are considered transient, they still might have caused uncorrectable
data errors within the pool. These errors require special repair procedures, even if the
underlying device is deemed healthy or otherwise repaired. For more information about
repairing data errors, see “Repairing Damaged Data” on page 298.

Clearing Transient Errors
If the device errors are deemed transient, in that they are unlikely to affect the future health of
the device, they can be safely cleared to indicate that no fatal error occurred. To clear error
counters for RAID-Z or mirrored devices, use the zpool clear command. For example:

# zpool clear tank c1t1d0

This syntax clears any device errors and clears any data error counts associated with the device.

Replacing or Repairing a Damaged Device

Chapter 11 • Oracle Solaris ZFS Troubleshooting and Pool Recovery 291



To clear all errors associated with the virtual devices in a pool, and to clear any data error counts
associated with the pool, use the following syntax:

# zpool clear tank

For more information about clearing pool errors, see “Clearing Storage Pool Device Errors” on
page 90.

Replacing a Device in a ZFS Storage Pool
If device damage is permanent or future permanent damage is likely, the device must be
replaced. Whether the device can be replaced depends on the configuration.

■ “Determining If a Device Can Be Replaced” on page 292
■ “Devices That Cannot be Replaced” on page 293
■ “Replacing a Device in a ZFS Storage Pool” on page 293
■ “Viewing Resilvering Status” on page 297

Determining If a Device Can Be Replaced
If the device to be replaced is part of a redundant configuration, sufficient replicas from which
to retrieve good data must exist. For example, if two disks in a four-way mirror are faulted, then
either disk can be replaced because healthy replicas are available. However, if two disks in a
four-way RAID-Z (raidz1) virtual device are faulted, then neither disk can be replaced because
insufficient replicas from which to retrieve data exist. If the device is damaged but otherwise
online, it can be replaced as long as the pool is not in the FAULTED state. However, any corrupted
data on the device is copied to the new device, unless sufficient replicas with good data exist.

In the following configuration, the c1t1d0 disk can be replaced, and any data in the pool is
copied from the healthy replica, c1t0d0:

mirror DEGRADED

c1t0d0 ONLINE

c1t1d0 FAULTED

The c1t0d0 disk can also be replaced, though no self-healing of data can take place because no
good replica is available.

In the following configuration, neither faulted disk can be replaced. The ONLINE disks cannot be
replaced either because the pool itself is faulted.

raidz FAULTED

c1t0d0 ONLINE

c2t0d0 FAULTED

c3t0d0 FAULTED

c4t0d0 ONLINE

Replacing or Repairing a Damaged Device

Oracle Solaris ZFS Administration Guide • April 2012292



In the following configuration, either top-level disk can be replaced, though any bad data
present on the disk is copied to the new disk.

c1t0d0 ONLINE

c1t1d0 ONLINE

If either disk is faulted, then no replacement can be performed because the pool itself is faulted.

Devices That Cannot be Replaced
If the loss of a device causes the pool to become faulted or the device contains too many data
errors in a non-redundant configuration, then the device cannot be safely replaced. Without
sufficient redundancy, no good data with which to heal the damaged device exists. In this case,
the only option is to destroy the pool and re-create the configuration, and then to restore your
data from a backup copy.

For more information about restoring an entire pool, see “Repairing ZFS Storage Pool-Wide
Damage” on page 301.

Replacing a Device in a ZFS Storage Pool
After you have determined that a device can be replaced, use the zpool replace command to
replace the device. If you are replacing the damaged device with different device, use syntax
similar to the following:

# zpool replace tank c1t1d0 c2t0d0

This command migrates data to the new device from the damaged device or from other devices
in the pool if it is in a redundant configuration. When the command is finished, it detaches the
damaged device from the configuration, at which point the device can be removed from the
system. If you have already removed the device and replaced it with a new device in the same
location, use the single device form of the command. For example:

# zpool replace tank c1t1d0

This command takes an unformatted disk, formats it appropriately, and then resilvers data
from the rest of the configuration.

For more information about the zpool replace command, see “Replacing Devices in a Storage
Pool” on page 90.

EXAMPLE 11–1 Replacing a Device in a ZFS Storage Pool

The following example shows how to replace a device (c1t3d0) in a mirrored storage pool tank
on Oracle's Sun Fire x4500 system. To replace the disk c1t3d0 with a new disk at the same
location (c1t3d0), then you must unconfigure the disk before you attempt to replace it. The
basic steps follow:

Replacing or Repairing a Damaged Device

Chapter 11 • Oracle Solaris ZFS Troubleshooting and Pool Recovery 293



EXAMPLE 11–1 Replacing a Device in a ZFS Storage Pool (Continued)

■ Take offline the disk (c1t3d0)to be replaced. You cannot unconfigure a disk that is currently
being used.

■ Use the cfgadm command to identify the disk (c1t3d0) to be unconfigured and unconfigure
it. The pool will be degraded with the offline disk in this mirrored configuration, but the
pool will continue to be available.

■ Physically replace the disk (c1t3d0). Ensure that the blue Ready to Remove LED is
illuminated before you physically remove the faulted drive.

■ Reconfigure the disk (c1t3d0).
■ Bring the new disk (c1t3d0) online.
■ Run the zpool replace command to replace the disk (c1t3d0).

Note – If you had previously set the pool property autoreplace to on, then any new device,
found in the same physical location as a device that previously belonged to the pool is
automatically formatted and replaced without using the zpool replace command. This
feature might not be supported on all hardware.

■ If a failed disk is automatically replaced with a hot spare, you might need to detach the hot
spare after the failed disk is replaced. For example, if c2t4d0 is still an active hot spare after
the failed disk is replaced, then detach it.

# zpool detach tank c2t4d0

The following example walks through the steps to replace a disk in a ZFS storage pool.

# zpool offline tank c1t3d0

# cfgadm | grep c1t3d0

sata1/3::dsk/c1t3d0 disk connected configured ok

# cfgadm -c unconfigure sata1/3

Unconfigure the device at: /devices/pci@0,0/pci1022,7458@2/pci11ab,11ab@1:3

This operation will suspend activity on the SATA device

Continue (yes/no)? yes

# cfgadm | grep sata1/3

sata1/3 disk connected unconfigured ok

<Physically replace the failed disk c1t3d0>

# cfgadm -c configure sata1/3

# cfgadm | grep sata1/3

sata1/3::dsk/c1t3d0 disk connected configured ok

# zpool online tank c1t3d0

# zpool replace tank c1t3d0

# zpool status tank

pool: tank

state: ONLINE

scrub: resilver completed after 0h0m with 0 errors on Tue Feb 2 13:17:32 2010

config:

Replacing or Repairing a Damaged Device

Oracle Solaris ZFS Administration Guide • April 2012294



EXAMPLE 11–1 Replacing a Device in a ZFS Storage Pool (Continued)

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c0t1d0 ONLINE 0 0 0

c1t1d0 ONLINE 0 0 0

mirror-1 ONLINE 0 0 0

c0t2d0 ONLINE 0 0 0

c1t2d0 ONLINE 0 0 0

mirror-2 ONLINE 0 0 0

c0t3d0 ONLINE 0 0 0

c1t3d0 ONLINE 0 0 0

errors: No known data errors

Note that the preceding zpool output might show both the new and old disks under a replacing
heading. For example:

replacing DEGRADED 0 0 0

c1t3d0s0/o FAULTED 0 0 0

c1t3d0 ONLINE 0 0 0

This text means that the replacement process is in progress and the new disk is being resilvered.

If you are going to replace a disk (c1t3d0) with another disk (c4t3d0), then you only need to
run the zpool replace command. For example:

# zpool replace tank c1t3d0 c4t3d0

# zpool status

pool: tank

state: DEGRADED

scrub: resilver completed after 0h0m with 0 errors on Tue Feb 2 13:35:41 2010

config:

NAME STATE READ WRITE CKSUM

tank DEGRADED 0 0 0

mirror-0 ONLINE 0 0 0

c0t1d0 ONLINE 0 0 0

c1t1d0 ONLINE 0 0 0

mirror-1 ONLINE 0 0 0

c0t2d0 ONLINE 0 0 0

c1t2d0 ONLINE 0 0 0

mirror-2 DEGRADED 0 0 0

c0t3d0 ONLINE 0 0 0

replacing DEGRADED 0 0 0

c1t3d0 OFFLINE 0 0 0

c4t3d0 ONLINE 0 0 0

errors: No known data errors

You might need to run the zpool status command several times until the disk replacement is
completed.

Replacing or Repairing a Damaged Device

Chapter 11 • Oracle Solaris ZFS Troubleshooting and Pool Recovery 295



EXAMPLE 11–1 Replacing a Device in a ZFS Storage Pool (Continued)

# zpool status tank

pool: tank

state: ONLINE

scrub: resilver completed after 0h0m with 0 errors on Tue Feb 2 13:35:41 2010

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c0t1d0 ONLINE 0 0 0

c1t1d0 ONLINE 0 0 0

mirror-1 ONLINE 0 0 0

c0t2d0 ONLINE 0 0 0

c1t2d0 ONLINE 0 0 0

mirror-2 ONLINE 0 0 0

c0t3d0 ONLINE 0 0 0

c4t3d0 ONLINE 0 0 0

EXAMPLE 11–2 Replacing a Failed Log Device

The following example shows how to recover from a failed log device (c0t5d0) in the storage
pool (pool). The basic steps follow:

■ Review the zpool status -x output and FMA diagnostic message, described here:
https://support.oracle.com/

CSP/main/

article?cmd=show&type=NOT&doctype=REFERENCE&alias=EVENT:ZFS-8000-K4

■ Physically replace the failed log device.
■ Bring the new log device online.
■ Clear the pool's error condition.

# zpool status -x

pool: pool

state: FAULTED

status: One or more of the intent logs could not be read.

Waiting for adminstrator intervention to fix the faulted pool.

action: Either restore the affected device(s) and run ’zpool online’,

or ignore the intent log records by running ’zpool clear’.

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

pool FAULTED 0 0 0 bad intent log

mirror ONLINE 0 0 0

c0t1d0 ONLINE 0 0 0

c0t4d0 ONLINE 0 0 0

logs FAULTED 0 0 0 bad intent log

c0t5d0 UNAVAIL 0 0 0 cannot open

<Physically replace the failed log device>

Replacing or Repairing a Damaged Device

Oracle Solaris ZFS Administration Guide • April 2012296

https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&doctype=REFERENCE&alias=EVENT:ZFS-8000-K4
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&doctype=REFERENCE&alias=EVENT:ZFS-8000-K4
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&doctype=REFERENCE&alias=EVENT:ZFS-8000-K4


EXAMPLE 11–2 Replacing a Failed Log Device (Continued)

# zpool online pool c0t5d0

# zpool clear pool

# zpool status -x

pool: pool

state: FAULTED

status: One or more of the intent logs could not be read.

Waiting for adminstrator intervention to fix the faulted pool.

action: Either restore the affected device(s) and run ’zpool online’,

or ignore the intent log records by running ’zpool clear’.

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

pool FAULTED 0 0 0 bad intent log

mirror-0 ONLINE 0 0 0

c0t1d0 ONLINE 0 0 0

c0t4d0 ONLINE 0 0 0

logs FAULTED 0 0 0 bad intent log

c0t5d0 UNAVAIL 0 0 0 cannot open

<Physically replace the failed log device>

# zpool online pool c0t5d0

# zpool clear pool

Viewing Resilvering Status
The process of replacing a device can take an extended period of time, depending on the size of
the device and the amount of data in the pool. The process of moving data from one device to
another device is known as resilvering and can be monitored by using the zpool status
command.

Traditional file systems resilver data at the block level. Because ZFS eliminates the artificial
layering of the volume manager, it can perform resilvering in a much more powerful and
controlled manner. The two main advantages of this feature are as follows:

■ ZFS only resilvers the minimum amount of necessary data. In the case of a short outage (as
opposed to a complete device replacement), the entire disk can be resilvered in a matter of
minutes or seconds. When an entire disk is replaced, the resilvering process takes time
proportional to the amount of data used on disk. Replacing a 500-GB disk can take seconds
if a pool has only a few gigabytes of used disk space.

■ Resilvering is interruptible and safe. If the system loses power or is rebooted, the resilvering
process resumes exactly where it left off, without any need for manual intervention.

To view the resilvering process, use the zpool status command. For example:

# zpool status tank

pool: tank

state: DEGRADED

Replacing or Repairing a Damaged Device

Chapter 11 • Oracle Solaris ZFS Troubleshooting and Pool Recovery 297



status: One or more devices is currently being resilvered. The pool will

continue to function, possibly in a degraded state.

action: Wait for the resilver to complete.

scrub: resilver in progress for 0h0m, 22.60% done, 0h1m to go

config:

NAME STATE READ WRITE CKSUM

tank DEGRADED 0 0 0

mirror-0 DEGRADED 0 0 0

replacing-0 DEGRADED 0 0 0

c1t0d0 UNAVAIL 0 0 0 cannot open

c2t0d0 ONLINE 0 0 0 85.0M resilvered

c1t1d0 ONLINE 0 0 0

errors: No known data errors

In this example, the disk c1t0d0 is being replaced by c2t0d0. This event is observed in the status
output by the presence of the replacing virtual device in the configuration. This device is not
real, nor is it possible for you to create a pool by using it. The purpose of this device is solely to
display the resilvering progress and to identify which device is being replaced.

Note that any pool currently undergoing resilvering is placed in the ONLINE or DEGRADED state
because the pool cannot provide the desired level of redundancy until the resilvering process is
completed. Resilvering proceeds as fast as possible, though the I/O is always scheduled with a
lower priority than user-requested I/O, to minimize impact on the system. After the resilvering
is completed, the configuration reverts to the new, complete, configuration. For example:

# zpool status tank

pool: tank

state: ONLINE

scrub: resilver completed after 0h1m with 0 errors on Tue Feb 2 13:54:30 2010

config:

NAME STATE READ WRITE CKSUM

tank ONLINE 0 0 0

mirror-0 ONLINE 0 0 0

c2t0d0 ONLINE 0 0 0 377M resilvered

c1t1d0 ONLINE 0 0 0

errors: No known data errors

The pool is once again ONLINE, and the original failed disk (c1t0d0) has been removed from the
configuration.

Repairing Damaged Data
The following sections describe how to identify the type of data corruption and how to repair
the data, if possible.

■ “Identifying the Type of Data Corruption” on page 299
■ “Repairing a Corrupted File or Directory” on page 300

Repairing Damaged Data

Oracle Solaris ZFS Administration Guide • April 2012298



■ “Repairing ZFS Storage Pool-Wide Damage” on page 301

ZFS uses checksums, redundancy, and self-healing data to minimize the risk of data corruption.
Nonetheless, data corruption can occur if a pool isn't redundant, if corruption occurred while a
pool was degraded, or an unlikely series of events conspired to corrupt multiple copies of a
piece of data. Regardless of the source, the result is the same: The data is corrupted and
therefore no longer accessible. The action taken depends on the type of data being corrupted
and its relative value. Two basic types of data can be corrupted:

■ Pool metadata – ZFS requires a certain amount of data to be parsed to open a pool and
access datasets. If this data is corrupted, the entire pool or portions of the dataset hierarchy
will become unavailable.

■ Object data – In this case, the corruption is within a specific file or directory. This problem
might result in a portion of the file or directory being inaccessible, or this problem might
cause the object to be broken altogether.

Data is verified during normal operations as well as through a scrubbing. For information about
how to verify the integrity of pool data, see “Checking ZFS File System Integrity” on page 281.

Identifying the Type of Data Corruption
By default, the zpool status command shows only that corruption has occurred, but not
where this corruption occurred. For example:

# zpool status monkey

pool: monkey

state: ONLINE

status: One or more devices has experienced an error resulting in data

corruption. Applications may be affected.

action: Restore the file in question if possible. Otherwise restore the

entire pool from backup.

see: http://www.sun.com/msg/ZFS-8000-8A

scrub: scrub completed after 0h0m with 8 errors on Tue Jul 13 13:17:32 2010

config:

NAME STATE READ WRITE CKSUM

monkey ONLINE 8 0 0

c1t1d0 ONLINE 2 0 0

c2t5d0 ONLINE 6 0 0

errors: 8 data errors, use ’-v’ for a list

Each error indicates only that an error occurred at a given point in time. Each error is not
necessarily still present on the system. Under normal circumstances, this is the case. Certain
temporary outages might result in data corruption that is automatically repaired after the
outage ends. A complete scrub of the pool is guaranteed to examine every active block in the

Repairing Damaged Data

Chapter 11 • Oracle Solaris ZFS Troubleshooting and Pool Recovery 299



pool, so the error log is reset whenever a scrub finishes. If you determine that the errors are no
longer present, and you don't want to wait for a scrub to complete, reset all errors in the pool by
using the zpool online command.

If the data corruption is in pool-wide metadata, the output is slightly different. For example:

# zpool status -v morpheus

pool: morpheus

id: 1422736890544688191

state: FAULTED

status: The pool metadata is corrupted.

action: The pool cannot be imported due to damaged devices or data.

see: http://www.sun.com/msg/ZFS-8000-72

config:

morpheus FAULTED corrupted data

c1t10d0 ONLINE

In the case of pool-wide corruption, the pool is placed into the FAULTED state because the pool
cannot provide the required redundancy level.

Repairing a Corrupted File or Directory
If a file or directory is corrupted, the system might still function, depending on the type of
corruption. Any damage is effectively unrecoverable if no good copies of the data exist on the
system. If the data is valuable, you must restore the affected data from backup. Even so, you
might be able to recover from this corruption without restoring the entire pool.

If the damage is within a file data block, then the file can be safely removed, thereby clearing the
error from the system. Use the zpool status -v command to display a list of file names with
persistent errors. For example:

# zpool status -v

pool: monkey

state: ONLINE

status: One or more devices has experienced an error resulting in data

corruption. Applications may be affected.

action: Restore the file in question if possible. Otherwise restore the

entire pool from backup.

see: http://www.sun.com/msg/ZFS-8000-8A

scrub: scrub completed after 0h0m with 8 errors on Tue Jul 13 13:17:32 2010

config:

NAME STATE READ WRITE CKSUM

monkey ONLINE 8 0 0

c1t1d0 ONLINE 2 0 0

c2t5d0 ONLINE 6 0 0

errors: Permanent errors have been detected in the following files:

Repairing Damaged Data

Oracle Solaris ZFS Administration Guide • April 2012300



/monkey/a.txt

/monkey/bananas/b.txt

/monkey/sub/dir/d.txt

monkey/ghost/e.txt

/monkey/ghost/boo/f.txt

The list of file names with persistent errors might be described as follows:

■ If the full path to the file is found and the dataset is mounted, the full path to the file is
displayed. For example:

/monkey/a.txt

■ If the full path to the file is found, but the dataset is not mounted, then the dataset name with
no preceding slash (/), followed by the path within the dataset to the file, is displayed. For
example:

monkey/ghost/e.txt

■ If the object number to a file path cannot be successfully translated, either due to an error or
because the object doesn't have a real file path associated with it, as is the case for a dnode_t,
then the dataset name followed by the object's number is displayed. For example:

monkey/dnode:<0x0>

■ If an object in the metaobject set (MOS) is corrupted, then a special tag of <metadata>,
followed by the object number, is displayed.

If the corruption is within a directory or a file's metadata, the only choice is to move the file
elsewhere. You can safely move any file or directory to a less convenient location, allowing the
original object to be restored in its place.

Repairing ZFS Storage Pool-Wide Damage
If the damage is in pool metadata and that damage prevents the pool from being opened or
imported, then the following options are available to you:

■ You can attempt to recover the pool by using the zpool clear -F command or the zpool
import -F command. These commands attempt to roll back the last few pool transactions to
an operational state. You can use the zpool status command to review a damaged pool
and the recommended recovery steps. For example:

# zpool status

pool: tpool

state: FAULTED

status: The pool metadata is corrupted and the pool cannot be opened.

action: Recovery is possible, but will result in some data loss.

Returning the pool to its state as of Wed Jul 14 11:44:10 2010

should correct the problem. Approximately 5 seconds of data

must be discarded, irreversibly. Recovery can be attempted

by executing ’zpool clear -F tpool’. A scrub of the pool

is strongly recommended after recovery.

Repairing Damaged Data

Chapter 11 • Oracle Solaris ZFS Troubleshooting and Pool Recovery 301



see: http://www.sun.com/msg/ZFS-8000-72

scrub: none requested

config:

NAME STATE READ WRITE CKSUM

tpool FAULTED 0 0 1 corrupted data

c1t1d0 ONLINE 0 0 2

c1t3d0 ONLINE 0 0 4

The recovery process as described in the preceding output is to use the following command:

# zpool clear -F tpool

If you attempt to import a damaged storage pool, you will see messages similar to the
following:

# zpool import tpool

cannot import ’tpool’: I/O error

Recovery is possible, but will result in some data loss.

Returning the pool to its state as of Wed Jul 14 11:44:10 2010

should correct the problem. Approximately 5 seconds of data

must be discarded, irreversibly. Recovery can be attempted

by executing ’zpool import -F tpool’. A scrub of the pool

is strongly recommended after recovery.

The recovery process as described in the preceding output is to use the following command:

# zpool import -F tpool

Pool tpool returned to its state as of Wed Jul 14 11:44:10 2010.

Discarded approximately 5 seconds of transactions

If the damaged pool is in the zpool.cache file, the problem is discovered when the system is
booted, and the damaged pool is reported in the zpool status command. If the pool isn't in
the zpool.cache file, it won't successfully import or open and you will see the damaged pool
messages when you attempt to import the pool.

■ You can import a damaged pool in read-only mode. This method enables you to import the
pool so that you can access the data. For example:

# zpool import -o readonly=on tpool

For more information about importing a pool read-only, see “Importing a Pool in
Read-Only Mode” on page 116.

■ You can import a pool with a missing log device by using the zpool import -m command.
For more information, see “Importing a Pool With a Missing Log Device” on page 115.

■ If the pool cannot be recovered by either pool recovery method, you must restore the pool
and all its data from a backup copy. The mechanism you use varies widely depending on the
pool configuration and backup strategy. First, save the configuration as displayed by the
zpool status command so that you can re-create it after the pool is destroyed. Then, use
the zpool destroy -f command to destroy the pool.

Repairing Damaged Data

Oracle Solaris ZFS Administration Guide • April 2012302



Also, keep a file describing the layout of the datasets and the various locally set properties
somewhere safe, as this information will become inaccessible if the pool is ever rendered
inaccessible. With the pool configuration and dataset layout, you can reconstruct your
complete configuration after destroying the pool. The data can then be populated by using
whatever backup or restoration strategy you use.

Repairing an Unbootable System
ZFS is designed to be robust and stable despite errors. Even so, software bugs or certain
unexpected problems might cause the system to panic when a pool is accessed. As part of the
boot process, each pool must be opened, which means that such failures will cause a system to
enter into a panic-reboot loop. To recover from this situation, ZFS must be informed not to
look for any pools on startup.

ZFS maintains an internal cache of available pools and their configurations in
/etc/zfs/zpool.cache. The location and contents of this file are private and are subject to
change. If the system becomes unbootable, boot to the milestone none by using the
-m milestone=none boot option. After the system is up, remount your root file system as
writable and then rename or move the /etc/zfs/zpool.cache file to another location. These
actions cause ZFS to forget that any pools exist on the system, preventing it from trying to
access the unhealthy pool causing the problem. You can then proceed to a normal system state
by issuing the svcadm milestone all command. You can use a similar process when booting
from an alternate root to perform repairs.

After the system is up, you can attempt to import the pool by using the zpool import
command. However, doing so will likely cause the same error that occurred during boot,
because the command uses the same mechanism to access pools. If multiple pools exist on the
system, do the following:

■ Rename or move the zpool.cache file to another location as discussed in the preceding text.
■ Determine which pool might have problems by using the fmdump -eV command to display

the pools with reported fatal errors.
■ Import the pools one by one, skipping the pools that are having problems, as described in

the fmdump output.

Repairing an Unbootable System

Chapter 11 • Oracle Solaris ZFS Troubleshooting and Pool Recovery 303



304



Recommended Oracle Solaris ZFS Practices

This chapter describes recommended practices for creating, monitoring, and maintaining your
ZFS storage pools and file systems.

The following sections are provided in this chapter:

■ “Recommended Storage Pool Practices” on page 305
■ “Recommended File System Practices” on page 310

Recommended Storage Pool Practices
The following sections provide recommended practices for creating and monitoring ZFS
storage pools. For information about troubleshooting storage pool problems, see Chapter 11,
“Oracle Solaris ZFS Troubleshooting and Pool Recovery.”

General System Practices
■ Keep system up-to-date with latest Solaris releases and patches
■ Size memory requirements to actual system workload

■ With a known application memory footprint, such as for a database application, you
might cap the ARC size so that the application will not need to reclaim its necessary
memory from the ZFS cache.

■ Identify ZFS memory usage with the following command:

# mdb -k

> ::memstat

Page Summary Pages MB %Tot

------------ ---------------- ---------------- ----

Kernel 388117 1516 19%

ZFS File Data 81321 317 4%

Anon 29928 116 1%

12C H A P T E R 1 2

305



Exec and libs 1359 5 0%

Page cache 4890 19 0%

Free (cachelist) 6030 23 0%

Free (freelist) 1581183 6176 76%

Total 2092828 8175

Physical 2092827 8175

> $q

■ Perform regular backups – Although a pool that is created with ZFS redundancy can help
reduce down time due to hardware failures, it is not immune to hardware failures, power
failures, or disconnected cables. Make sure you backup your data on a regular basis. If your
data is important, it should be backed up. Different ways to provide copies of your data are:
■ Regular or daily ZFS snapshots
■ Weekly backups of ZFS pool data. You can use the zpool split command to create an

exact duplicate of ZFS mirrored storage pool.
■ Monthly backups by using an enterprise-level backup product

■ Hardware RAID
■ Consider using JBOD-mode for storage arrays rather than hardware RAID so that ZFS

can manage the storage and the redundancy.
■ Use hardware RAID or ZFS redundancy or both
■ Using ZFS redundancy has many benefits – For production environments, configure

ZFS so that it can repair data inconsistencies. Use ZFS redundancy, such as RAIDZ,
RAIDZ-2, RAIDZ-3, mirror, regardless of the RAID level implemented on the
underlying storage device. With such redundancy, faults in the underlying storage
device or its connections to the host can be discovered and repaired by ZFS.

■ Crash dumps consume more disk space, generally in the 1/2-3/4 size of physical memory
range.

ZFS Storage Pool Creation Practices
The following sections provide general and more specific pool practices.

General Storage Pool Practices
■ Use whole disks to enable disk write cache and provide easier maintenance. Creating pools

on slices adds complexity to disk management and recovery.
■ Use ZFS redundancy so that ZFS can repair data inconsistencies.

■ For mirrored pools, use mirrored disk pairs
■ For RAIDZ pools, group 3-9 disks per VDEV for best performance

■ Use hot spares to reduce down time due to hardware failures
■ Use similar size disks so that I/O is balanced across devices

Recommended Storage Pool Practices

Oracle Solaris ZFS Administration Guide • April 2012306



■ Smaller LUNs can be expanded to large LUNs
■ Do not expand LUNs from extremely varied sizes, such as 128 MB to 2 TB, to keep

optimal metaslab sizes
■ Consider creating a small root pool and larger data pools to support faster system recovery

Root Pool Creation Practices
■ Create root pools with slices by using the s* identifier. Do not use the p* identifier. In

general, a system's ZFS root pool is created when the system is installed. If you are creating a
second root pool or re-creating a root pool, use syntax similar to the following:

# zpool create rpool c0t1d0s0

Or, create a mirrored root pool. For example:

# zpool create rpool mirror c0t1d0s0 c0t2d0s0

■ The root pool must be created as a mirrored configuration or as a single-disk
configuration. A RAID-Z or a striped configuration is not supported. You cannot add
additional disks to create multiple mirrored top-level virtual devices by using the zpool
add command, but you can expand a mirrored virtual device by using the zpool attach
command.

■ The root pool cannot have a separate log device.
■ Pool properties can be set during an AI installation, but the gzip compression algorithm

is not supported on root pools.
■ Do not rename the root pool after it is created by an initial installation. Renaming the

root pool might cause an unbootable system.

Non-Root Pool Creation Practices
■ Create non-root pools with whole disks by using the d* identifier. Do not use the p*

identifier.
■ ZFS works best without any additional volume management software.
■ For better performance, use individual disks or at least LUNs made up of just a few disks.

By providing ZFS with more visibility into the LUNs setup, ZFS is able to make better
I/O scheduling decisions.

■ Create redundant pool configurations across multiple controllers to reduce down time
due to a controller failure.

■ Mirrored storage pools – Consume more disk space but generally perform better with
small random reads.

# zpool create tank mirror c1d0 c2d0 mirror c3d0 c4d0

■ RAID-Z storage pools – Can be created with 3 parity strategies, where parity equals 1
(raidz), 2 (raidz2), or 3 (raidz3). A RAID-Z configuration maximizes disk space and
generally performs well when data is written and read in large chunks (128K or more).

Recommended Storage Pool Practices

Chapter 12 • Recommended Oracle Solaris ZFS Practices 307



■ Consider a single-parity RAID-Z (raidz) configuration with 2 VDEVs of 3 disks
(2+1) each.

# zpool create rzpool raidz1 c1t0d0 c2t0d0 c3t0d0 raidz1 c1t1d0 c2t1d0 c3t1d0

■ A RAIDZ-2 configuration offers better data availability, and performs similarly to
RAID-Z. RAIDZ-2 has significantly better mean time to data loss (MTTDL) than
either RAID-Z or 2-way mirrors. Create a double-parity RAID-Z (raidz2)
configuration at 6 disks (4+2).

# zpool create rzpool raidz2 c0t1d0 c1t1d0 c4t1d0 c5t1d0 c6t1d0 c7t1d0

raidz2 c0t2d0 c1t2d0 c4t2d0 c5t2d0 c6t2d0 c7t2d

■ A RAIDZ-3 configuration maximizes disk space and offers excellent availability
because it can withstand 3 disk failures. Create a triple-parity RAID-Z (raidz3)
configuration at 9 disks (6+3).

# zpool create rzpool raidz3 c0t0d0 c1t0d0 c2t0d0 c3t0d0 c4t0d0

c5t0d0 c6t0d0 c7t0d0 c8t0d0

Pool Creation Practices for an Oracle Database
Consider the following storage pool practices when creating an Oracle database.

■ Use a mirrored pool or hardware RAID for pools
■ RAID-Z pools are generally not recommended for random read workloads
■ Create a small separate pool with a separate log device for database redo logs
■ Create a small separate pool for the archive log

For more information, see the following white paper:

http://blogs.oracle.com/storage/entry/new_white_paper_configuring_oracle

Storage Pool Practices for Performance
■ Keep pool capacity below 80% for best performance
■ Mirrored pools are recommended over RAID-Z pools for random read/write workloads
■ Separate log devices

■ Recommended to improve synchronous write performance
■ With a high synchronous write load, prevents fragmentation of writing many log blocks

in the main pool
■ Separate cache devices are recommended to improve read performance
■ Scrub/resilver - A very large RAID-Z pool with lots of devices will have longer scrub and

resilver times

Recommended Storage Pool Practices

Oracle Solaris ZFS Administration Guide • April 2012308

http://blogs.oracle.com/storage/entry/new_white_paper_configuring_oracle


■ Pool performance is slow – Use the zpool status command to rule out any hardware
problems that are causing pool performance problems. If no problems show up in the zpool
status command, use the fmdump command to display hardware faults or use the fmdump
-eV command to review any hardware errors that have not yet resulted in a reported fault.

ZFS Storage Pool Maintenance and Monitoring
Practices
■ Make sure that pool capacity is below 80% for best performance.

Pool performance can degrade when a pool is very full and file systems are updated
frequently, such as on a busy mail server. Full pools might cause a performance penalty, but
no other issues. If the primary workload is immutable files, then keep pool in the 95-96%
utilization range. Even with mostly static content in the 95-96% range, write, read, and
resilvering performance might suffer.
■ Monitor pool and file system space to make sure that they are not full.
■ Consider using ZFS quotas and reservations to make sure file system space does not

exceed 80% pool capacity.
■ Monitor pool health

■ Redundant pools, monitor pool with zpool status and fmdump on a weekly basis
■ Non-redundant pools, monitor pool with zpool status and fmdump on a biweekly basis

■ Run zpool scrub on a regular basis to identify data integrity problems.
■ If you have consumer-quality drives, consider a weekly scrubbing schedule.
■ If you have datacenter-quality drives, consider a monthly scrubbing schedule.
■ You should also run a scrub prior to replacing devices or temporarily reducing a pool's

redundancy to ensure that all devices are currently operational.
■ Monitoring pool or device failures - Use zpool status as described below. Also use fmdump

or fmdump -eV to see if any device faults or errors have occurred.
■ Redundant pools, monitor pool health with zpool status and fmdump on a weekly basis
■ Non-redundant pools, monitor pool health with zpool status and fmdump on a

biweekly basis
■ Pool device is UNAVAIL or OFFLINE – If a pool device is not available, then check to see if the

device is listed in the format command output. If the device is not listed in the format
output, then it will not be visible to ZFS.
If a pool device has UNAVAIL or OFFLINE, then this generally means that the device has failed
or cable has disconnected, or some other hardware problem, such as a bad cable or bad
controller has caused the device to be inaccessible.

Recommended Storage Pool Practices

Chapter 12 • Recommended Oracle Solaris ZFS Practices 309



■ Monitor your storage pool space – Use the zpool list command and the zfs list
command to identify how much disk is consumed by file system data. ZFS snapshots can
consume disk space and if they are not listed by the zfs list command, they can silently
consume disk space. Use the zfs list -t snapshot command to identify disk space that is
consumed by snapshots.

Recommended File System Practices
The following sections describe recommended file system practices.

File System Creation Practices
The following sections describe ZFS file system creation practices.
■ Create one file system per user for home directories
■ Consider using file system quotas and reservations to manage and reserve disk space for

important file systems
■ Consider using user and group quotas to manage disk space in an environment with many

users
■ Use ZFS property inheritance to apply properties to many descendent file systems

File System Creation Practices for an Oracle Database
Consider the following file system practices when creating an Oracle database.
■ Match the ZFS recordsize property to the Oracle db_block_size.
■ Create database table and index file systems in main database pool, using an 8 KB

recordsize and the default primarycache value.
■ Create temp data and undo table space file systems in the main database pool, using default

recordsize and primarycache values.
■ Create archive log file system in the archive pool, enabling compression and default

recordsize value and primarycache set to metadata.

For more information, see the following white paper:

http://blogs.oracle.com/storage/entry/new_white_paper_configuring_oracle

Monitoring ZFS File System Practices
You should monitor your ZFS file systems to ensure they are available and to identify space
consumption issues.

Recommended File System Practices

Oracle Solaris ZFS Administration Guide • April 2012310

http://blogs.oracle.com/storage/entry/new_white_paper_configuring_oracle


■ Weekly, monitor file system space availability with the zpool list and zfs list

commands rather than the du and df commands because legacy commands do not account
for space that is consumed by descendent file systems or snapshots.

■ Display file system space consumption by using the zfs list -o space command.
■ If a separate /var file system is created when a system is installed, set a quota and reservation

on this file system to ensure that it does not unknowingly consume root pool space.
■ You can use the fsstat command to display file operation activity of ZFS file systems.

Activity can be reported by mount point or by file system type. The following example
shows general ZFS file system activity:

# fsstat /

new name name attr attr lookup rddir read read write write

file remov chng get set ops ops ops bytes ops bytes

832 589 286 837K 3.23K 2.62M 20.8K 1.15M 1.75G 62.5K 348M /

■ Backups
■ Keep file system snapshots
■ Consider enterprise-level software for weekly and monthly backups
■ Store root pool snapshots on a remote system for bare metal recovery

Recommended File System Practices

Chapter 12 • Recommended Oracle Solaris ZFS Practices 311



312



Oracle Solaris ZFS Version Descriptions

This appendix describes available ZFS versions, features of each version, and the Solaris OS that
provides the ZFS version and feature.

The following sections are provided in this appendix:

■ “Overview of ZFS Versions” on page 313
■ “ZFS Pool Versions” on page 313
■ “ZFS File System Versions” on page 315

Overview of ZFS Versions
New ZFS pool and file system features are introduced and accessible by using a specific ZFS
version that is available in Solaris releases. You can use the zpool upgrade or zfs upgrade to
identify whether a pool or file system is at lower version than the currently running Solaris
release provides. You can also use these commands to upgrade your pool and file system
versions.

For information about using the zpool upgrade and zfs upgrade commands, see “Upgrading
ZFS File Systems (zfs upgrade)” on page 35 and “Upgrading ZFS Storage Pools” on page 118.

ZFS Pool Versions
The following table provides a list of ZFS pool versions that are available in the Solaris releases.

Version Solaris 10 Description

1 Solaris 10 6/06 Initial ZFS version

2 Solaris 10 11/06 Ditto blocks (replicated metadata)

AA P P E N D I X A

313



Version Solaris 10 Description

3 Solaris 10 11/06 Hot spares and double parity RAID-Z

4 Solaris 10 8/07 zpool history

5 Solaris 10 10/08 gzip compression algorithm

6 Solaris 10 10/08 bootfs pool property

7 Solaris 10 10/08 Separate intent log devices

8 Solaris 10 10/08 Delegated administration

9 Solaris 10 10/08 refquota and refreservation properties

10 Solaris 10 5/09 Cache devices

11 Solaris 10 10/09 Improved scrub performance

12 Solaris 10 10/09 Snapshot properties

13 Solaris 10 10/09 snapused property

14 Solaris 10 10/09 aclinherit passthrough-x property

15 Solaris 10 10/09 user and group space accounting

16 Solaris 10 9/10 stmf property support

17 Solaris 10 9/10 Triple-parity RAID-Z

18 Solaris 10 9/10 Snapshot user holds

19 Solaris 10 9/10 Log device removal

20 Solaris 10 9/10 Compression using zle (zero-length encoding)

21 Solaris 10 9/10 Reserved

22 Solaris 10 9/10 Received properties

23 Solaris 10 8/11 Slim ZIL

24 Solaris 10 8/11 System attributes

25 Solaris 10 8/11 Improved scrub stats

26 Solaris 10 8/11 Improved snapshot deletion performance

27 Solaris 10 8/11 Improved snapshot creation performance

28 Solaris 10 8/11 Multiple vdev replacements

29 Solaris 10 8/11 RAID-Z/mirror hybrid allocator

ZFS Pool Versions

Oracle Solaris ZFS Administration Guide • April 2012314



ZFS File System Versions
The following table lists the ZFS file system versions that are available in the Solaris releases.

Version Solaris 10 Description

1 Solaris 10 6/06 Initial ZFS file system version

2 Solaris 10 10/08 Enhanced directory entries

3 Solaris 10 10/08 Case insensitivity and file system unique identifier (FUID)

4 Solaris 10 10/09 userquota and groupquota properties

5 Solaris 10 8/11 System attributes

ZFS File System Versions

Appendix A • Oracle Solaris ZFS Version Descriptions 315



316



Index

A
accessing

ZFS snapshot
(example of), 221

ACL model, Solaris, differences between ZFS and
traditional file systems, 61

ACL property mode, aclinherit, 185
aclinherit property, 240
ACLs

access privileges, 238
ACL inheritance, 239
ACL inheritance flags, 239
ACL on ZFS directory

detailed description, 242
ACL on ZFS file

detailed description, 241
ACL property, 240
aclinherit property, 240
description, 235
differences from POSIX-draft ACLs, 236
entry types, 238
format description, 236
modifying trivial ACL on ZFS file (verbose mode)

(example of), 244
restoring trivial ACL on ZFS file (verbose mode)

(example of), 246
setting ACL inheritance on ZFS file (verbose mode)

(example of), 247
setting ACLs on ZFS file (compact mode)

(example of), 253
description, 252

ACLs (Continued)
setting ACLs on ZFS file (verbose mode)

description, 243
setting on ZFS files

description, 241
adding

cache devices (example of), 82
devices to a ZFS storage pool (zpool add)

(example of), 79
disks to a RAID-Z configuration (example of), 80
mirrored log device (example of), 81
ZFS file system to a non-global zone

(example of), 272
ZFS volume to a non-global zone

(example of), 273
adjusting, sizes of swap and dump devices, 165
allocated property, description, 98
alternate root pools

creating
(example of), 276

description, 276
importing

(example of), 277
altroot property, description, 98
atime property, description, 186
attaching

devices to ZFS storage pool (zpool attach)
(example of), 83

autoreplace property, description, 99
available property, description, 186

317



B
boot blocks, installing with installboot and

installgrub, 168
bootfs property, description, 99
booting

root file system, 167
ZFS BE with boot -L and boot -Z on SPARC

systems, 169

C
cache devices

considerations for using, 73
creating a ZFS storage pool with (example of), 73

cache devices, adding, (example of), 82
cache devices, removing, (example of), 82
cachefile property, description, 99
canmount property

description, 186
detailed description, 195

capacity property, description, 99
checking, ZFS data integrity, 281
checksum, definition, 49
checksum property, description, 186
checksummed data, description, 48
clearing

a device in a ZFS storage pool (zpool clear)
description, 90

device errors (zpool clear)
(example of), 291

clearing a device
ZFS storage pool

(example of), 90
clone, definition, 49
clones

creating (example of), 225
destroying (example of), 225
features, 224

command history, zpool history, 41
components of, ZFS storage pool, 63
components of ZFS, naming requirements, 51
compression property, description, 187
compressratio property, description, 187
controlling, data validation (scrubbing), 281

copies property, description, 187
crash dump, saving, 166
creating

a basic ZFS file system (zpool create)
(example of), 54

a new pool by splitting a mirrored storage pool
(zpool split)
(example of), 85

a ZFS storage pool (zpool create)
(example of), 54

alternate root pools
(example of), 276

double-parity RAID-Z storage pool (zpool create)
(example of), 71

mirrored ZFS storage pool (zpool create)
(example of), 70

single-parity RAID-Z storage pool (zpool create)
(example of), 71

triple-parity RAID-Z storage pool (zpool create)
(example of), 71

ZFS clone (example of), 225
ZFS file system, 57

(example of), 182
description, 182

ZFS file system hierarchy, 56
ZFS snapshot

(example of), 218
ZFS storage pool

description, 69
ZFS storage pool (zpool create)

(example of), 69
ZFS storage pool with cache devices (example

of), 73
ZFS storage pool with log devices (example of), 72
ZFS volume

(example of), 269
creation property, description, 187

D
data

corrupted, 280
corruption identified (zpool status -v)

(example of), 286

Index

Oracle Solaris ZFS Administration Guide • April 2012318



data (Continued)
repair, 281
resilvering

description, 282
scrubbing

(example of), 282
validation (scrubbing), 281

dataset
definition, 50
description, 182

dataset types, description, 198
delegated administration, overview, 257
delegating

dataset to a non-global zone
(example of), 273

permissions (example of), 262
delegating permissions, zfs allow, 261
delegating permissions to a group, (example of), 262
delegating permissions to an individual user, (example

of), 262
delegation property, description, 99
delegation property, disabling, 258
destroying

ZFS clone (example of), 225
ZFS file system

(example of), 183
ZFS file system with dependents

(example of), 183
ZFS snapshot

(example of), 219
ZFS storage pool

description, 69
ZFS storage pool (zpool destroy)

(example of), 77
detaching

devices to ZFS storage pool (zpool detach)
(example of), 85

detecting
in-use devices

(example of), 75
mismatched replication levels

(example of), 76

determining
if a device can be replaced

description, 292
type of device failure

description, 290
devices property, description, 187
differences between ZFS and traditional file systems

file system granularity, 59
mounting ZFS file systems, 61
new Solaris ACL model, 61
out of space behavior, 60
traditional volume management, 61
ZFS space accounting, 60

disks, as components of ZFS storage pools, 64
displaying

command history, 41
delegated permissions (example of), 265
detailed ZFS storage pool health status

(example of), 108
health status of storage pools

description of, 107
syslog reporting of ZFS error messages

description, 287
ZFS storage pool health status

(example of), 108
ZFS storage pool I/O statistics

description, 104
ZFS storage pool vdev I/O statistics

(example of), 105
ZFS storage pool-wide I/O statistics

(example of), 105
dry run

ZFS storage pool creation (zpool create -n)
(example of), 77

dumpadm, enabling a dump device, 166
dynamic striping

description, 68
storage pool feature, 68

E
EFI label

description, 64
interaction with ZFS, 64

Index

319



exec property, description, 187
exporting

ZFS storage pool
(example of), 111

F
failmode property, description, 100
failure modes

corrupted data, 280
damaged devices, 280
missing (faulted) devices, 280

failures, 279
file system, definition, 50
file system granularity, differences between ZFS and

traditional file systems, 59
file system hierarchy, creating, 56
files, as components of ZFS storage pools, 66
free property, description, 100

G
guid property, description, 100

H
hardware and software requirements, 53
health property, description, 100
hot spares

creating
(example of), 92

description of
(example of), 93

I
identifying

storage requirements, 55
type of data corruption (zpool status -v)

(example of), 299

identifying (Continued)
ZFS storage pool for import (zpool import -a)

(example of), 112
importing

alternate root pools
(example of), 277

ZFS storage pool
(example of), 115

ZFS storage pool from alternate directories (zpool
import -d)
(example of), 114

in-use devices
detecting

(example of), 75
inheriting

ZFS properties (zfs inherit)
description, 200

initial installation of ZFS root file system, (example
of), 126

installing
ZFS root file system

(initial installation), 125
features, 122
JumpStart installation, 136
requirements, 123

installing boot blocks
installboot and installgrup

(example of), 168

J
JumpStart installation

root file system
issues, 139
profile examples, 138

JumpStart profile keywords, ZFS root file system, 136

L
listing

descendents of ZFS file systems
(example of), 198

Index

Oracle Solaris ZFS Administration Guide • April 2012320



listing (Continued)
types of ZFS file systems

(example of), 199
ZFS file systems

(example of), 197
ZFS file systems (zfs list)

(example of), 58
ZFS file systems without header information

(example of), 199
ZFS pool information, 56
ZFS properties (zfs list)

(example of), 201
ZFS properties by source value

(example of), 203
ZFS properties for scripting

(example of), 203
ZFS storage pools

(example of), 102
description, 101

listsnapshots property, description, 100
luactivate

root file system
(example of), 143

lucreate

root file system migration
(example of), 142

ZFS BE from a ZFS BE
(example of), 145

M
migrating

UFS root file system to ZFS root file system
(Oracle Solaris Live Upgrade), 139
issues, 141

migrating ZFS storage pools, description, 110
mirror, definition, 50
mirrored configuration

conceptual view, 67
description, 67
redundancy feature, 67

mirrored log device, adding, (example of), 81
mirrored log devices, creating a ZFS storage pool with

(example of), 72

mirrored storage pool (zpool create), (example
of), 70

mismatched replication levels
detecting

(example of), 76
modifying

trivial ACL on ZFS file (verbose mode)
(example of), 244

mount point, default for ZFS storage pools, 77
mount points

automatic, 204
legacy, 205
managing ZFS

description, 204
mounted property, description, 187
mounting

ZFS file systems
(example of), 207

mounting ZFS file systems, differences between ZFS and
traditional file systems, 61

mountpoint, default for ZFS file system, 182
mountpoint property, description, 188

N
naming requirements, ZFS components, 51
NFSv4 ACLs

ACL inheritance, 239
ACL inheritance flags, 239
ACL property, 240
differences from POSIX-draft ACLs, 236
format description, 236
model

description, 235
notifying

ZFS of reattached device (zpool online)
(example of), 289

O
offlining a device (zpool offline)

ZFS storage pool
(example of), 88

Index

321



onlining a device
ZFS storage pool (zpool online)

(example of), 89
onlining and offlining devices

ZFS storage pool
description, 88

Oracle Solaris Live Upgrade
for root file system migration, 139
root file system migration

(example of), 142
root file system migration issues, 141

origin property, description, 188
out of space behavior, differences between ZFS and

traditional file systems, 60

P
permission sets, defined, 257
pool, definition, 50
pooled storage, description, 47
POSIX-draft ACLs, description, 236
primarycache property, description, 188
properties of ZFS

description, 185
description of heritable properties, 185

Q
quota property, description, 188
quotas and reservations, description, 210

R
RAID-Z, definition, 50
RAID-Z configuration

(example of), 71
conceptual view, 67
double-parity, description, 67
redundancy feature, 67
single-parity, description, 67

RAID-Z configuration, adding disks to, (example
of), 80

read-only properties of ZFS
available, 186
compression, 187
creation, 187
description, 192
mounted, 187
origin, 188
referenced, 189
type, 191
used, 191
usedbychildren, 191
usedbydataset, 191
usedbyrefreservation, 191
usedbysnapshots, 191

read-only property, description, 188
receiving

ZFS file system data (zfs receive)
(example of), 228

recordsize property
description, 188
detailed description, 195

recovering
destroyed ZFS storage pool

(example of), 117
referenced property, description, 189
refquota property, description, 189
refreservation property, description, 189
removing, cache devices (example of), 82
removing permissions, zfs unallow, 261
renaming

ZFS file system
(example of), 184

ZFS snapshot
(example of), 220

repairing
a damaged ZFS configuration

description, 288
an unbootable system

description, 303
pool-wide damage

description, 303
repairing a corrupted file or directory

description, 300

Index

Oracle Solaris ZFS Administration Guide • April 2012322



replacing
a device (zpool replace)

(example of), 90, 293, 297
a missing device

(example of), 288
replication features of ZFS, mirrored or RAID-Z, 66
requirements, for installation and Oracle Solaris Live

Upgrade, 123
reservation property, description, 189
resilvering, definition, 50
resilvering and data scrubbing, description, 282
restoring

trivial ACL on ZFS file (verbose mode)
(example of), 246

rights profiles, for management of ZFS file systems and
storage pools, 277

rolling back
ZFS snapshot

(example of), 223

S
savecore, saving crash dumps, 166
saving

crash dumps
savecore, 166

ZFS file system data (zfs send)
(example of), 227

scripting
ZFS storage pool output

(example of), 102
scrubbing

(example of), 282
data validation, 281

secondarycache property, description, 190
self-healing data, description, 68
sending and receiving

ZFS file system data
description, 226

separate log devices, considerations for using, 36
settable properties of ZFS

aclinherit, 185
atime, 186
canmount, 186

settable properties of ZFS, canmount (Continued)
detailed description, 195

checksum, 186
compression, 187
copies, 187
description, 193
devices, 187
exec, 187
mountpoint, 188
primarycache, 188
quota, 188
read-only, 188
recordsize, 188

detailed description, 195
refquota, 189
refreservation, 189
reservation, 189
secondarycache, 190
setuid, 190
shareiscsi, 190
sharenfs, 190
snapdir, 190
used

detailed description, 193
version, 191
volblocksize, 192
volsize, 191

detailed description, 196
xattr, 192
zoned, 192

setting
ACL inheritance on ZFS file (verbose mode)

(example of), 247
ACLs on ZFS file (compact mode)

(example of), 253
description, 252

ACLs on ZFS file (verbose mode)
(description, 243

ACLs on ZFS files
description, 241

compression property
(example of), 58

legacy mount points
(example of), 206

Index

323



setting (Continued)
mountpoint property, 58
quota property (example of), 58
sharenfs property

(example of), 58
ZFS atime property

(example of), 200
ZFS file system quota (zfs set quota)

example of, 211
ZFS file system reservation

(example of), 214
ZFS mount points (zfs set mountpoint)

(example of), 206
ZFS quota

(example of), 200
setuid property, description, 190
shareiscsi property, description, 190
sharenfs property

description, 190, 208
sharing

ZFS file systems
description, 208
example of, 209

simplified administration, description, 49
size property, description, 100
snapdir property, description, 190
snapshot

accessing
(example of), 221

creating
(example of), 218

definition, 51
destroying

(example of), 219
features, 217
renaming

(example of), 220
rolling back

(example of), 223
space accounting, 222

Solaris ACLs
ACL inheritance, 239
ACL inheritance flags, 239
ACL property, 240

Solaris ACLs (Continued)
differences from POSIX-draft ACLs, 236
format description, 236
new model

description, 235
splitting a mirrored storage pool

(zpool split)
(example of), 85

storage requirements, identifying, 55
swap and dump devices

adjusting sizes of, 165
description, 164
issues, 164

T
terminology

checksum, 49
clone, 49
dataset, 50
file system, 50
mirror, 50
pool, 50
RAID-Z, 50
resilvering, 50
snapshot, 51
virtual device, 51
volume, 51

traditional volume management, differences between
ZFS and traditional file systems, 61

transactional semantics, description, 48
troubleshooting

clear device errors (zpool clear)
(example of), 291

damaged devices, 280
data corruption identified (zpool status -v)

(example of), 286
determining if a device can be replaced

description, 292
determining if problems exist (zpool status

-x), 284
determining type of data corruption (zpool status

-v)
(example of), 299

Index

Oracle Solaris ZFS Administration Guide • April 2012324



troubleshooting (Continued)
determining type of device failure

description, 290
identifying problems, 283
missing (faulted) devices, 280
notifying ZFS of reattached device (zpool online)

(example of), 289
overall pool status information

description, 285
repairing a corrupted file or directory

description, 300
repairing a damaged ZFS configuration, 288
repairing an unbootable system

description, 303
repairing pool-wide damage

description, 303
replacing a device (zpool replace)

(example of), 293, 297
replacing a missing device

(example of), 288
syslog reporting of ZFS error messages, 287
ZFS failures, 279

type property, description, 191

U
unmounting

ZFS file systems
(example of), 208

unsharing
ZFS file systems

example of, 209
upgrading

ZFS file systems
description, 215

ZFS storage pool
description, 118

used property
description, 191
detailed description, 193

usedbychildren property, description, 191
usedbydataset property, description, 191
usedbyrefreservation property, description, 191
usedbysnapshots property, description, 191

user properties of ZFS
(example of), 196
detailed description, 196

V
version property, description, 191
version property, description, 100
virtual device, definition, 51
virtual devices, as components of ZFS storage pools, 74
volblocksize property, description, 192
volsize property

description, 191
detailed description, 196

volume, definition, 51

W
whole disks, as components of ZFS storage pools, 64

X
xattr property, description, 192

Z
zfs allow

description, 261
displaying delegated permissions, 265

zfs create

(example of), 57, 182
description, 182

ZFS delegated administration, overview, 257
zfs destroy, (example of), 183
zfs destroy -r, (example of), 183
ZFS file system

description, 181
versions

description, 313

Index

325



ZFS file systems
ACL on ZFS directory

detailed description, 242
ACL on ZFS file

detailed description, 241
adding ZFS file system to a non-global zone

(example of), 272
adding ZFS volume to a non-global zone

(example of), 273
booting a root file system

description, 167
booting a ZFS BE with boot -Land boot -Z

(SPARC example of), 169
checksum

definition, 49
checksummed data

description, 48
clone

replacing a file system with (example of), 225
clones

definition, 49
description, 224

component naming requirements, 51
creating

(example of), 182
creating a clone, 225
creating a ZFS volume

(example of), 269
dataset

definition, 50
dataset types

description, 198
default mountpoint

(example of), 182
delegating dataset to a non-global zone

(example of), 273
description, 47
destroying

(example of), 183
destroying a clone, 225
destroying with dependents

(example of), 183
file system

definition, 50

ZFS file systems (Continued)
inheriting property of (zfs inherit)

(example of), 200
initial installation of ZFS root file system, 125
installation and Oracle Solaris Live Upgrade

requirements, 123
installing a root file system, 122
JumpStart installation of root file system, 136
listing

(example of), 197
listing descendents

(example of), 198
listing properties by source value

(example of), 203
listing properties for scripting

(example of), 203
listing properties of (zfs list)

(example of), 201
listing types of

(example of), 199
listing without header information

(example of), 199
managing automatic mount points, 204
managing legacy mount points

description, 205
managing mount points

description, 204
modifying trivial ACL on ZFS file (verbose mode)

(example of), 244
mounting

(example of), 207
pooled storage

description, 47
property management within a zone

description, 274
receiving data streams (zfs receive)

(example of), 228
renaming

(example of), 184
restoring trivial ACL on ZFS file (verbose mode)

(example of), 246
rights profiles, 277
root file system migration issues, 141

Index

Oracle Solaris ZFS Administration Guide • April 2012326



ZFS file systems (Continued)
root file system migration with Oracle Solaris Live

Upgrade, 139
(example of), 142

saving data streams (zfs send)
(example of), 227

sending and receiving
description, 226

setting a reservation
(example of), 214

setting ACL inheritance on ZFS file (verbose mode)
(example of), 247

setting ACLs on ZFS file (compact mode)
(example of), 253
description, 252

setting ACLs on ZFS file (verbose mode)
description, 243

setting ACLs on ZFS files
description, 241

setting atime property
(example of), 200

setting legacy mount point
(example of), 206

setting mount point (zfs set mountpoint)
(example of), 206

setting quota property
(example of), 200

sharing
description, 208
example of, 209

simplified administration
description, 49

snapshot
accessing, 221
creating, 218
definition, 51
description, 217
destroying, 219
renaming, 220
rolling back, 223

snapshot space accounting, 222
swap and dump devices

adjusting sizes of, 165
description, 164

ZFS file systems, swap and dump devices (Continued)
issues, 164

transactional semantics
description, 48

unmounting
(example of), 208

unsharing
example of, 209

upgrading
description, 215

using on a Solaris system with zones installed
description, 272

volume
definition, 51

ZFS file systems (zfs set quota)
setting a quota

example of, 211
zfs get, (example of), 201
zfs get -H -o, (example of), 203
zfs get -s, (example of), 203
zfs inherit, (example of), 200
ZFS intent log (ZIL), description, 36
zfs list

(example of), 58, 197
zfs list -H, (example of), 199
zfs list -r, (example of), 198
zfs list -t, (example of), 199
zfs mount, (example of), 207
ZFS pool properties

allocated, 98
alroot, 98
autoreplace, 99
bootfs, 99
cachefile, 99
capacity, 99
delegation, 99
failmode, 100
free, 100
guid, 100
health, 100
listsnapshots, 100
size, 100
version, 100

zfs promote, clone promotion (example of), 225

Index

327



ZFS properties
aclinherit, 185
atime, 186
available, 186
canmount, 186

detailed description, 195
checksum, 186
compression, 187
compressratio, 187
copies, 187
creation, 187
description, 185
devices, 187
exec, 187
inheritable, description of, 185
management within a zone

description, 274
mounted, 187
mountpoint, 188
origin, 188
quota, 188
read-only, 188
read-only, 192
recordsize, 188

detailed description, 195
referenced, 189
refquota, 189
refreservation, 189
reservation, 189
secondarycache, 188, 190
settable, 193
setuid, 190
shareiscsi, 190
sharenfs, 190
snapdir, 190
type, 191
used, 191

detailed description, 193
usedbychildren, 191
usedbydataset, 191
usedbyrefreservation, 191
usedbysnapshots, 191
user properties

detailed description, 196

ZFS properties (Continued)
version, 191
volblocksize, 192
volsize, 191

detailed description, 196
xattr, 192
zoned, 192
zoned property

detailed description, 275
zfs receive, (example of), 228
zfs rename, (example of), 184
zfs send, (example of), 227
zfs set atime, (example of), 200
zfs set compression, (example of), 58
zfs set mountpoint

(example of), 58, 206
zfs set mountpoint=legacy, (example of), 206
zfs set quota

(example of), 58
zfs set quota, (example of), 200
zfs set quota

example of, 211
zfs set reservation, (example of), 214
zfs set sharenfs, (example of), 58
zfs set sharenfs=on, example of, 209
ZFS space accounting, differences between ZFS and

traditional file systems, 60
ZFS storage pool

versions
description, 313

ZFS storage pools
adding devices to (zpool add)

(example of), 79
alternate root pools, 276
attaching devices to (zpool attach)

(example of), 83
clearing a device

(example of), 90
clearing device errors (zpool clear)

(example of), 291
components, 63
corrupted data

description, 280

Index

Oracle Solaris ZFS Administration Guide • April 2012328



ZFS storage pools (Continued)
creating (zpool create)

(example of), 69
creating a RAID-Z configuration (zpool create)

(example of), 71
creating mirrored configuration (zpool create)

(example of), 70
damaged devices

description, 280
data corruption identified (zpool status -v)

(example of), 286
data repair

description, 281
data scrubbing

(example of), 282
description, 281

data scrubbing and resilvering
description, 282

data validation
description, 281

default mount point, 77
destroying (zpool destroy)

(example of), 77
detaching devices from (zpool detach)

(example of), 85
determining if a device can be replaced

description, 292
determining if problems exist (zpool status -x)

description, 284
determining type of device failure

description, 290
displaying detailed health status

(example of), 108
displaying health status, 107

(example of), 108
doing a dry run (zpool create -n)

(example of), 77
dynamic striping, 68
exporting

(example of), 111
failures, 279
identifying for import (zpool import -a)

(example of), 112

ZFS storage pools (Continued)
identifying problems

description, 283
identifying type of data corruption (zpool status

-v)
(example of), 299

importing
(example of), 115

importing from alternate directories (zpool import
-d)
(example of), 114

listing
(example of), 102

migrating
description, 110

mirror
definition, 50

mirrored configuration, description, 67
missing (faulted) devices

description, 280
notifying ZFS of reattached device (zpool online)

(example of), 289
offlining a device (zpool offline)

(example of), 88
onlining and offlining devices

description, 88
overall pool status information for troubleshooting

description, 285
pool

definition, 50
pool-wide I/O statistics

(example of), 105
RAID-Z

definition, 50
RAID-Z configuration, description, 67
recovering a destroyed pool

(example of), 117
repairing a corrupted file or directory

description, 300
repairing a damaged ZFS configuration, 288
repairing an unbootable system

description, 303
repairing pool-wide damage

description, 303

Index

329



ZFS storage pools (Continued)
replacing a device (zpool replace)

(example of), 90, 293
replacing a missing device

(example of), 288
resilvering

definition, 50
rights profiles, 277
scripting storage pool output

(example of), 102
splitting a mirrored storage pool (zpool split)

(example of), 85
system error messages

description, 287
upgrading

description, 118
using files, 66
using whole disks, 64
vdev I/O statistics

(example of), 105
viewing resilvering process

(example of), 297
virtual device

definition, 51
virtual devices, 74

ZFS storage pools (zpool online)
onlining a device

(example of), 89
zfs unallow, description, 261
zfs unmount, (example of), 208
zfs upgrade, 215
ZFS version

ZFS feature and Solaris OS
description, 313

ZFS volume, description, 269
zoned property

description, 192
detailed description, 275

zones
adding ZFS file system to a non-global zone

(example of), 272
adding ZFS volume to a non-global zone

(example of), 273

zones (Continued)
delegating dataset to a non-global zone

(example of), 273
using with ZFS file systems

description, 272
ZFS property management within a zone

description, 274
zoned property

detailed description, 275
zpool add, (example of), 79
zpool attach, (example of), 83
zpool clear

(example of), 90
description, 90

zpool create

(example of), 54, 56
basic pool

(example of), 69
mirrored storage pool

(example of), 70
RAID-Z storage pool

(example of), 71
zpool create -n, dry run (example of), 77
zpool destroy, (example of), 77
zpool detach, (example of), 85
zpool export, (example of), 111
zpool history, (example of), 41
zpool import -a, (example of), 112
zpool import -D, (example of), 117
zpool import -d, (example of), 114
zpool import name, (example of), 115
zpool iostat, pool-wide (example of), 105
zpool iostat -v, vdev (example of), 105
zpool list

(example of), 56, 102
description, 101

zpool list -Ho name, (example of), 102
zpool offline, (example of), 88
zpool online, (example of), 89
zpool replace, (example of), 90
zpool split, (example of), 85
zpool status -v, (example of), 108
zpool status -x, (example of), 108

Index

Oracle Solaris ZFS Administration Guide • April 2012330



zpool upgrade, 118

Index

331



332


	Oracle® Solaris ZFS Administration Guide
	Preface
	Who Should Use This Book
	How This Book Is Organized
	Related Books
	Access to Oracle Support
	Typographic Conventions
	Shell Prompts in Command Examples

	Oracle Solaris ZFS File System (Introduction)
	What's New in ZFS?
	New Oracle Solaris ZFS Installation Features
	ZFS Send Stream Enhancements
	ZFS Snapshot Differences (zfs diff)
	ZFS Storage Pool Recovery and Performance Enhancements
	Tuning ZFS Synchronous Behavior
	Improved ZFS Pool Messages
	ZFS ACL Interoperability Enhancements
	Splitting a Mirrored ZFS Storage Pool (zpool split)
	New ZFS System Process
	Enhancements to the zpool list Command
	ZFS Storage Pool Recovery
	ZFS Log Device Enhancements
	Triple-Parity RAID-Z (raidz3)
	Holding ZFS Snapshots
	ZFS Device Replacement Enhancements
	ZFS and Flash Installation Support
	ZFS User and Group Quotas
	ZFS ACL Pass Through Inheritance for Execute Permission
	ZFS Property Enhancements
	ZFS Log Device Recovery
	Using Cache Devices in Your ZFS Storage Pool
	Zone Migration in a ZFS Environment
	ZFS Installation and Boot Support
	Rolling Back a Dataset Without Unmounting
	Enhancements to the zfs send Command
	ZFS Quotas and Reservations for File System Data Only
	ZFS Storage Pool Properties
	ZFS Command History Enhancements (zpool history)
	Upgrading ZFS File Systems (zfs upgrade)
	ZFS Delegated Administration
	Setting Up Separate ZFS Log Devices
	Creating Intermediate ZFS Datasets
	ZFS Hot-Plugging Enhancements
	Recursively Renaming ZFS Snapshots (zfs rename -r)
	gzip Compression Is Available for ZFS
	Storing Multiple Copies of ZFS User Data
	Improved zpool status Output
	ZFS and Solaris iSCSI Improvements
	ZFS Command History (zpool history)
	ZFS Property Improvements
	ZFS xattr Property
	ZFS canmount Property
	ZFS User Properties
	Setting Properties When Creating ZFS File Systems

	Displaying All ZFS File System Information
	New zfs receive -F Option
	Recursive ZFS Snapshots
	Double-Parity RAID-Z (raidz2)
	Hot Spares for ZFS Storage Pool Devices
	Replacing a ZFS File System With a ZFS Clone (zfs promote)
	Upgrading ZFS Storage Pools (zpool upgrade)
	ZFS Backup and Restore Commands Are Renamed
	Recovering Destroyed Storage Pools
	ZFS Is Integrated With Fault Manager
	The zpool clear Command
	Compact NFSv4 ACL Format
	File System Monitoring Tool (fsstat)
	ZFS Web-Based Management

	What Is ZFS?
	ZFS Pooled Storage
	Transactional Semantics
	Checksums and Self-Healing Data
	Unparalleled Scalability
	ZFS Snapshots
	Simplified Administration

	ZFS Terminology
	ZFS Component Naming Requirements

	Getting Started With Oracle Solaris ZFS
	ZFS Hardware and Software Requirements and Recommendations
	Creating a Basic ZFS File System
	Creating a ZFS Storage Pool
	How to Identify Storage Requirements for Your ZFS Storage Pool
	How to Create a ZFS Storage Pool

	Creating a ZFS File System Hierarchy
	How to Determine Your ZFS File System Hierarchy
	How to Create ZFS File Systems


	Oracle Solaris ZFS and Traditional File System Differences
	ZFS File System Granularity
	ZFS Disk Space Accounting
	Out of Space Behavior

	Mounting ZFS File Systems
	Traditional Volume Management
	New Solaris ACL Model

	Managing Oracle Solaris ZFS Storage Pools
	Components of a ZFS Storage Pool
	Using Disks in a ZFS Storage Pool
	Using Slices in a ZFS Storage Pool
	Using Files in a ZFS Storage Pool

	Replication Features of a ZFS Storage Pool
	Mirrored Storage Pool Configuration
	RAID-Z Storage Pool Configuration
	ZFS Hybrid Storage Pool
	Self-Healing Data in a Redundant Configuration
	Dynamic Striping in a Storage Pool

	Creating and Destroying ZFS Storage Pools
	Creating a ZFS Storage Pool
	Creating a Basic Storage Pool
	Creating a Mirrored Storage Pool
	Creating a ZFS Root Pool
	Creating a RAID-Z Storage Pool
	Creating a ZFS Storage Pool With Log Devices
	Creating a ZFS Storage Pool With Cache Devices

	Displaying Storage Pool Virtual Device Information
	Handling ZFS Storage Pool Creation Errors
	Detecting In-Use Devices
	Mismatched Replication Levels
	Doing a Dry Run of Storage Pool Creation
	Default Mount Point for Storage Pools

	Destroying ZFS Storage Pools
	Destroying a Pool With Faulted Devices


	Managing Devices in ZFS Storage Pools
	Adding Devices to a Storage Pool
	Attaching and Detaching Devices in a Storage Pool
	Creating a New Pool By Splitting a Mirrored ZFS Storage Pool
	Onlining and Offlining Devices in a Storage Pool
	Taking a Device Offline
	Bringing a Device Online

	Clearing Storage Pool Device Errors
	Replacing Devices in a Storage Pool
	Designating Hot Spares in Your Storage Pool
	Activating and Deactivating Hot Spares in Your Storage Pool


	Managing ZFS Storage Pool Properties
	Querying ZFS Storage Pool Status
	Displaying Information About ZFS Storage Pools
	Listing Information About All Storage Pools or a Specific Pool
	Listing Specific Storage Pool Statistics
	Scripting ZFS Storage Pool Output
	Displaying ZFS Storage Pool Command History

	Viewing I/O Statistics for ZFS Storage Pools
	Listing Pool-Wide I/O Statistics
	Listing Virtual Device I/O Statistics

	Determining the Health Status of ZFS Storage Pools
	Basic Storage Pool Health Status
	Detailed Health Status
	Gathering ZFS Storage Pool Status Information


	Migrating ZFS Storage Pools
	Preparing for ZFS Storage Pool Migration
	Exporting a ZFS Storage Pool
	Determining Available Storage Pools to Import
	Importing ZFS Storage Pools From Alternate Directories
	Importing ZFS Storage Pools
	Importing a Pool With a Missing Log Device
	Importing a Pool in Read-Only Mode

	Recovering Destroyed ZFS Storage Pools

	Upgrading ZFS Storage Pools

	Installing and Booting an Oracle Solaris ZFS Root File System
	Installing and Booting an Oracle Solaris ZFS Root File System (Overview)
	ZFS Installation Features
	Oracle Solaris Installation and Live Upgrade Requirements for ZFS Support
	Oracle Solaris Release Requirements
	General ZFS Storage Pool Requirements
	Disk Space Requirements for ZFS Storage Pools
	ZFS Storage Pool Configuration Requirements



	Installing a ZFS Root File System (Oracle Solaris Initial Installation)
	How to Create a Mirrored ZFS Root Pool (Postinstallation)

	Installing a ZFS Root File System (Oracle Solaris Flash Archive Installation)
	Installing a ZFS Root File System ( JumpStart Installation)
	JumpStart Keywords for ZFS
	JumpStart Profile Examples for ZFS
	JumpStart Issues for ZFS

	Migrating to a ZFS Root File System or Updating a ZFS Root File System (Live Upgrade)
	ZFS Migration Issues With Live Upgrade
	Using Live Upgrade to Migrate or Update a ZFS Root File System (Without Zones)
	Using Live Upgrade to Migrate or Upgrade a System With Zones (Solaris 10 10/08)
	How to Migrate a UFS Root File System With Zone Roots on UFS to a ZFS Root File System (Solaris 10 10/08)
	How to Configure a ZFS Root File System With Zone Roots on ZFS (Solaris 10 10/08)
	How to Upgrade or Patch a ZFS Root File System With Zone Roots on ZFS (Solaris 10 10/08)

	Using Oracle Solaris Live Upgrade to Migrate or Upgrade a System With Zones (at Least Solaris 10 5/09)
	Supported ZFS with Zone Root Configuration Information (at Least Solaris 10 5/09)
	How to Create a ZFS BE With a ZFS Root File System and a Zone Root (at Least Solaris 10 5/09)
	How to Upgrade or Patch a ZFS Root File System With Zone Roots (at Least Solaris 10 5/09)
	How to Migrate a UFS Root File System With a Zone Root to a ZFS Root File System (at Least Solaris 10 5/09)


	ZFS Support for Swap and Dump Devices
	Adjusting the Sizes of Your ZFS Swap Device and Dump Device
	Troubleshooting ZFS Dump Device Issues

	Booting From a ZFS Root File System
	Booting From an Alternate Disk in a Mirrored ZFS Root Pool
	SPARC: Booting From a ZFS Root File System
	x86: Booting From a ZFS Root File System
	Resolving ZFS Mount-Point Problems That Prevent Successful Booting (Solaris 10 10/08)
	How to Resolve ZFS Mount-Point Problems

	Booting for Recovery Purposes in a ZFS Root Environment
	How to Boot ZFS Failsafe Mode
	How to Boot ZFS From Alternate Media


	Recovering the ZFS Root Pool or Root Pool Snapshots
	How to Replace a Disk in the ZFS Root Pool
	How to Create Root Pool Snapshots
	How to Re-create a ZFS Root Pool and Restore Root Pool Snapshots
	How to Roll Back Root Pool Snapshots From a Failsafe Boot


	Managing Oracle Solaris ZFS File Systems
	Managing ZFS File Systems (Overview)
	Creating, Destroying, and Renaming ZFS File Systems
	Creating a ZFS File System
	Destroying a ZFS File System
	Renaming a ZFS File System

	Introducing ZFS Properties
	ZFS Read-Only Native Properties
	The used Property

	Settable ZFS Native Properties
	The canmount Property
	The recordsize Property
	The volsize Property

	ZFS User Properties

	Querying ZFS File System Information
	Listing Basic ZFS Information
	Creating Complex ZFS Queries

	Managing ZFS Properties
	Setting ZFS Properties
	Inheriting ZFS Properties
	Querying ZFS Properties
	Querying ZFS Properties for Scripting


	Mounting and Sharing ZFS File Systems
	Managing ZFS Mount Points
	Automatic Mount Points
	Legacy Mount Points

	Mounting ZFS File Systems
	Using Temporary Mount Properties
	Unmounting ZFS File Systems
	Sharing and Unsharing ZFS File Systems
	Controlling Share Semantics
	Unsharing ZFS File Systems
	Sharing ZFS File Systems
	Legacy Share Behavior


	Setting ZFS Quotas and Reservations
	Setting Quotas on ZFS File Systems
	Setting User and Group Quotas on a ZFS File System

	Setting Reservations on ZFS File Systems

	Upgrading ZFS File Systems

	Working With Oracle Solaris ZFS Snapshots and Clones
	Overview of ZFS Snapshots
	Creating and Destroying ZFS Snapshots
	Holding ZFS Snapshots
	Renaming ZFS Snapshots

	Displaying and Accessing ZFS Snapshots
	Disk Space Accounting for ZFS Snapshots

	Rolling Back a ZFS Snapshot
	Identifying ZFS Snapshot Differences (zfs diff)

	Overview of ZFS Clones
	Creating a ZFS Clone
	Destroying a ZFS Clone
	Replacing a ZFS File System With a ZFS Clone

	Sending and Receiving ZFS Data
	Saving ZFS Data With Other Backup Products
	Sending a ZFS Snapshot
	Receiving a ZFS Snapshot
	Applying Different Property Values to a ZFS Snapshot Stream
	Sending and Receiving Complex ZFS Snapshot Streams
	Remote Replication of ZFS Data


	Using ACLs and Attributes to Protect Oracle Solaris ZFS Files
	Solaris ACL Model
	Syntax Descriptions for Setting ACLs
	ACL Inheritance
	ACL Property (aclinherit)

	Setting ACLs on ZFS Files
	Setting and Displaying ACLs on ZFS Files in Verbose Format
	Setting ACL Inheritance on ZFS Files in Verbose Format

	Setting and Displaying ACLs on ZFS Files in Compact Format

	Oracle Solaris ZFS Delegated Administration
	Overview of ZFS Delegated Administration
	Disabling ZFS Delegated Permissions

	Delegating ZFS Permissions
	Delegating ZFS Permissions (zfs allow)
	Removing ZFS Delegated Permissions (zfs unallow)

	Delegating ZFS Permissions (Examples)
	Displaying ZFS Delegated Permissions (Examples)
	Removing ZFS Delegated Permissions (Examples)

	Oracle Solaris ZFS Advanced Topics
	ZFS Volumes
	Using a ZFS Volume as a Swap or Dump Device
	Using a ZFS Volume as a Solaris iSCSI Target

	Using ZFS on a Solaris System With Zones Installed
	Adding ZFS File Systems to a Non-Global Zone
	Delegating Datasets to a Non-Global Zone
	Adding ZFS Volumes to a Non-Global Zone
	Using ZFS Storage Pools Within a Zone
	Managing ZFS Properties Within a Zone
	Understanding the zoned Property

	Using ZFS Alternate Root Pools
	Creating ZFS Alternate Root Pools
	Importing Alternate Root Pools

	ZFS Rights Profiles

	Oracle Solaris ZFS Troubleshooting and Pool Recovery
	Identifying ZFS Failures
	Missing Devices in a ZFS Storage Pool
	Damaged Devices in a ZFS Storage Pool
	Corrupted ZFS Data

	Checking ZFS File System Integrity
	File System Repair
	File System Validation
	Controlling ZFS Data Scrubbing
	Explicit ZFS Data Scrubbing
	ZFS Data Scrubbing and Resilvering


	Resolving Problems With ZFS
	Determining If Problems Exist in a ZFS Storage Pool
	Reviewing zpool status Output
	Overall Pool Status Information
	Pool Configuration Information
	Scrubbing Status
	Data Corruption Errors

	System Reporting of ZFS Error Messages

	Repairing a Damaged ZFS Configuration
	Resolving a Missing Device
	Physically Reattaching a Device
	Notifying ZFS of Device Availability

	Replacing or Repairing a Damaged Device
	Determining the Type of Device Failure
	Clearing Transient Errors
	Replacing a Device in a ZFS Storage Pool
	Determining If a Device Can Be Replaced
	Devices That Cannot be Replaced
	Replacing a Device in a ZFS Storage Pool
	Viewing Resilvering Status


	Repairing Damaged Data
	Identifying the Type of Data Corruption
	Repairing a Corrupted File or Directory
	Repairing ZFS Storage Pool-Wide Damage

	Repairing an Unbootable System

	Recommended Oracle Solaris ZFS Practices
	Recommended Storage Pool Practices
	General System Practices
	ZFS Storage Pool Creation Practices
	General Storage Pool Practices
	Root Pool Creation Practices
	Non-Root Pool Creation Practices
	Pool Creation Practices for an Oracle Database

	Storage Pool Practices for Performance
	ZFS Storage Pool Maintenance and Monitoring Practices

	Recommended File System Practices
	File System Creation Practices
	File System Creation Practices for an Oracle Database

	Monitoring ZFS File System Practices


	Oracle Solaris ZFS Version Descriptions
	Overview of ZFS Versions
	ZFS Pool Versions
	ZFS File System Versions

	Index

