
man pages section 3: Realtime Library
Functions

Part No: 816–5171–17
August 2011

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

License Restrictions Warranty/Consequential Damages Disclaimer

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual
property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software,
unless required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is
applicable:

U.S. GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or
"commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication,
disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent
applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007).
Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently
dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall
be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any
liability for any damages caused by use of this software or hardware in dangerous applications.

Trademark Notice

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered
trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group in the United States and other countries.

Third Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and
its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation
and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

111219@25097

Contents

Preface ...7

Realtime Library Functions ..11
aiocancel(3AIO) .. 12
aio_cancel(3RT) .. 13
aio_error(3RT) .. 15
aio_fsync(3RT) .. 17
aioread(3AIO) .. 19
aio_read(3RT) .. 21
aio_return(3RT) .. 24
aio_suspend(3RT) .. 25
aiowait(3AIO) .. 27
aio_waitn(3RT) .. 28
aio_write(3RT) .. 30
clock_nanosleep(3RT) ... 33
clock_settime(3RT) ... 35
door_bind(3DOOR) ... 37
door_call(3DOOR) ... 40
door_create(3DOOR) .. 43
door_cred(3DOOR) ... 46
door_info(3DOOR) ... 47
door_return(3DOOR) .. 49
door_revoke(3DOOR) .. 50
door_server_create(3DOOR) .. 51
door_ucred(3DOOR) ... 53
door_xcreate(3DOOR) .. 54
fdatasync(3RT) .. 63
lio_listio(3RT) .. 64

3

mq_close(3RT) .. 68
mq_getattr(3RT) .. 69
mq_notify(3RT) .. 70
mq_open(3RT) .. 72
mq_receive(3RT) .. 75
mq_send(3RT) .. 78
mq_setattr(3RT) .. 81
mq_unlink(3RT) .. 82
nanosleep(3RT) .. 83
proc_service(3PROC) .. 85
ps_lgetregs(3PROC) .. 88
ps_pglobal_lookup(3PROC) ... 90
ps_pread(3PROC) .. 91
ps_pstop(3PROC) .. 92
sched_getparam(3RT) ... 94
sched_get_priority_max(3RT) .. 95
sched_getscheduler(3RT) ... 96
sched_rr_get_interval(3RT) ... 97
sched_setparam(3RT) ... 98
sched_setscheduler(3RT) ... 100
sched_yield(3RT) .. 102
sem_close(3RT) .. 103
sem_destroy(3RT) .. 104
sem_getvalue(3RT) .. 105
sem_init(3RT) .. 106
sem_open(3RT) .. 108
sem_post(3RT) .. 111
sem_timedwait(3RT) ... 113
sem_unlink(3RT) .. 115
sem_wait(3RT) .. 116
shm_open(3RT) .. 119
shm_unlink(3RT) .. 122
sigqueue(3RT) .. 123
sigwaitinfo(3RT) .. 125
timer_create(3RT) .. 127
timer_delete(3RT) .. 129

Contents

man pages section 3: Realtime Library Functions • August 20114

timer_settime(3RT) ... 130

Contents

5

6

Preface

Both novice users and those familar with the SunOS operating system can use online man pages
to obtain information about the system and its features. A man page is intended to answer
concisely the question “What does it do?” The man pages in general comprise a reference
manual. They are not intended to be a tutorial.

Overview
The following contains a brief description of each man page section and the information it
references:
■ Section 1 describes, in alphabetical order, commands available with the operating system.
■ Section 1M describes, in alphabetical order, commands that are used chiefly for system

maintenance and administration purposes.
■ Section 2 describes all of the system calls. Most of these calls have one or more error returns.

An error condition is indicated by an otherwise impossible returned value.
■ Section 3 describes functions found in various libraries, other than those functions that

directly invoke UNIX system primitives, which are described in Section 2.
■ Section 4 outlines the formats of various files. The C structure declarations for the file

formats are given where applicable.
■ Section 5 contains miscellaneous documentation such as character-set tables.
■ Section 6 contains available games and demos.
■ Section 7 describes various special files that refer to specific hardware peripherals and device

drivers. STREAMS software drivers, modules and the STREAMS-generic set of system calls
are also described.

■ Section 9 provides reference information needed to write device drivers in the kernel
environment. It describes two device driver interface specifications: the Device Driver
Interface (DDI) and the Driver/Kernel Interface (DKI).

■ Section 9E describes the DDI/DKI, DDI-only, and DKI-only entry-point routines a
developer can include in a device driver.

■ Section 9F describes the kernel functions available for use by device drivers.
■ Section 9S describes the data structures used by drivers to share information between the

driver and the kernel.

7

Below is a generic format for man pages. The man pages of each manual section generally
follow this order, but include only needed headings. For example, if there are no bugs to report,
there is no BUGS section. See the intro pages for more information and detail about each
section, and man(1) for more information about man pages in general.

NAME This section gives the names of the commands or functions
documented, followed by a brief description of what they
do.

SYNOPSIS This section shows the syntax of commands or functions.
When a command or file does not exist in the standard
path, its full path name is shown. Options and arguments
are alphabetized, with single letter arguments first, and
options with arguments next, unless a different argument
order is required.

The following special characters are used in this section:

[] Brackets. The option or argument enclosed in
these brackets is optional. If the brackets are
omitted, the argument must be specified.

. . . Ellipses. Several values can be provided for the
previous argument, or the previous argument
can be specified multiple times, for example,
"filename . . ." .

| Separator. Only one of the arguments
separated by this character can be specified at a
time.

{ } Braces. The options and/or arguments
enclosed within braces are interdependent,
such that everything enclosed must be treated
as a unit.

PROTOCOL This section occurs only in subsection 3R to indicate the
protocol description file.

DESCRIPTION This section defines the functionality and behavior of the
service. Thus it describes concisely what the command
does. It does not discuss OPTIONS or cite EXAMPLES.
Interactive commands, subcommands, requests, macros,
and functions are described under USAGE.

IOCTL This section appears on pages in Section 7 only. Only the
device class that supplies appropriate parameters to the
ioctl(2) system call is called ioctl and generates its own

Preface

man pages section 3: Realtime Library Functions • August 20118

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1man-1
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1ioctl-2

heading. ioctl calls for a specific device are listed
alphabetically (on the man page for that specific device).
ioctl calls are used for a particular class of devices all of
which have an io ending, such as mtio(7I).

OPTIONS This secton lists the command options with a concise
summary of what each option does. The options are listed
literally and in the order they appear in the SYNOPSIS
section. Possible arguments to options are discussed under
the option, and where appropriate, default values are
supplied.

OPERANDS This section lists the command operands and describes
how they affect the actions of the command.

OUTPUT This section describes the output – standard output,
standard error, or output files – generated by the
command.

RETURN VALUES If the man page documents functions that return values,
this section lists these values and describes the conditions
under which they are returned. If a function can return
only constant values, such as 0 or –1, these values are listed
in tagged paragraphs. Otherwise, a single paragraph
describes the return values of each function. Functions
declared void do not return values, so they are not
discussed in RETURN VALUES.

ERRORS On failure, most functions place an error code in the global
variable errno indicating why they failed. This section lists
alphabetically all error codes a function can generate and
describes the conditions that cause each error. When more
than one condition can cause the same error, each
condition is described in a separate paragraph under the
error code.

USAGE This section lists special rules, features, and commands
that require in-depth explanations. The subsections listed
here are used to explain built-in functionality:

Commands
Modifiers
Variables
Expressions
Input Grammar

Preface

9

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1mtio-7i

EXAMPLES This section provides examples of usage or of how to use a
command or function. Wherever possible a complete
example including command-line entry and machine
response is shown. Whenever an example is given, the
prompt is shown as example%, or if the user must be
superuser, example#. Examples are followed by
explanations, variable substitution rules, or returned
values. Most examples illustrate concepts from the
SYNOPSIS, DESCRIPTION, OPTIONS, and USAGE
sections.

ENVIRONMENT VARIABLES This section lists any environment variables that the
command or function affects, followed by a brief
description of the effect.

EXIT STATUS This section lists the values the command returns to the
calling program or shell and the conditions that cause these
values to be returned. Usually, zero is returned for
successful completion, and values other than zero for
various error conditions.

FILES This section lists all file names referred to by the man page,
files of interest, and files created or required by commands.
Each is followed by a descriptive summary or explanation.

ATTRIBUTES This section lists characteristics of commands, utilities,
and device drivers by defining the attribute type and its
corresponding value. See attributes(5) for more
information.

SEE ALSO This section lists references to other man pages, in-house
documentation, and outside publications.

DIAGNOSTICS This section lists diagnostic messages with a brief
explanation of the condition causing the error.

WARNINGS This section lists warnings about special conditions which
could seriously affect your working conditions. This is not
a list of diagnostics.

NOTES This section lists additional information that does not
belong anywhere else on the page. It takes the form of an
aside to the user, covering points of special interest.
Critical information is never covered here.

BUGS This section describes known bugs and, wherever possible,
suggests workarounds.

Preface

man pages section 3: Realtime Library Functions • August 201110

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5

Realtime Library Functions

R E F E R E N C E

11

aiocancel – cancel an asynchronous operation

cc [flag ...] file ... -laio [library ...]

#include <sys/asynch.h>

int aiocancel(aio_result_t *resultp);

aiocancel() cancels the asynchronous operation associated with the result buffer pointed to
by resultp. It may not be possible to immediately cancel an operation which is in progress and
in this case, aiocancel() will not wait to cancel it.

Upon successful completion, aiocancel() returns 0 and the requested operation is cancelled.
The application will not receive the SIGIO completion signal for an asynchronous operation
that is successfully cancelled.

Upon successful completion, aiocancel() returns 0. Upon failure, aiocancel() returns −1
and sets errno to indicate the error.

aiocancel() will fail if any of the following are true:

EACCES The parameter resultp does not correspond to any outstanding asynchronous
operation, although there is at least one currently outstanding.

EFAULT resultp points to an address outside the address space of the requesting process.
See NOTES.

EINVAL There are not any outstanding requests to cancel.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

aioread(3AIO), aiowait(3AIO), attributes(5)

Passing an illegal address as resultp will result in setting errno to EFAULT only if it is detected
by the application process.

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

Notes

aiocancel(3AIO)

man pages section 3: Realtime Library Functions • Last Revised 5 Mar 199712

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5

aio_cancel – cancel asynchronous I/O request

cc [flag...] file... -lrt [library...]

#include <aio.h>

int aio_cancel(int fildes, struct aiocb *aiocbp);

The aio_cancel() function attempts to cancel one or more asynchronous I/O requests
currently outstanding against file descriptor fildes. The aiocbp argument points to the
asynchronous I/O control block for a particular request to be canceled. If aiocbp is NULL, then
all outstanding cancelable asynchronous I/O requests against fildes are canceled.

Normal asynchronous notification occurs for asynchronous I/O operations that are
successfully canceled. If there are requests that cannot be canceled, then the normal
asynchronous completion process takes place for those requests when they are completed.

For requested operations that are successfully canceled, the associated error status is set to
ECANCELED and the return status is −1. For requested operations that are not successfully
canceled, the aiocbp is not modified by aio_cancel().

If aiocbp is not NULL, then if fildes does not have the same value as the file descriptor with
which the asynchronous operation was initiated, unspecified results occur.

The aio_cancel() function returns the value AIO_CANCELED to the calling process if the
requested operation(s) were canceled. The value AIO_NOTCANCELED is returned if at least one
of the requested operation(s) cannot be canceled because it is in progress. In this case, the state
of the other operations, if any, referenced in the call to aio_cancel() is not indicated by the
return value of aio_cancel(). The application may determine the state of affairs for these
operations by using aio_error(3RT). The value AIO_ALLDONE is returned if all of the
operations have already completed. Otherwise, the function returns −1 and sets errno to
indicate the error.

The aio_cancel() function will fail if:

EBADF The fildes argument is not a valid file descriptor.

ENOSYS The aio_cancel() function is not supported.

The aio_cancel() function has a transitional interface for 64-bit file offsets. See lf64(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

aio_cancel(3RT)

Realtime Library Functions 13

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5

aio.h(3HEAD), signal.h(3HEAD), aio_read(3RT), aio_return(3RT), attributes(5),
lf64(5), standards(5)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option. Prior to
this release, this function always returned −1 and set errno to ENOSYS.

See Also

Notes

aio_cancel(3RT)

man pages section 3: Realtime Library Functions • Last Revised 28 Jun 200214

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1aio.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1signal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1standards-5

aio_error – retrieve errors status for an asynchronous I/O operation

cc [flag...] file... -lrt [library...]

#include <aio.h>

int aio_error(const struct aiocb *aiocbp);

The aio_error() function returns the error status associated with the aiocb structure
referenced by the aiocbp argument. The error status for an asynchronous I/O operation is the
errno value that would be set by the corresponding read(2), write(2), or fsync(3C)
operation. If the operation has not yet completed, then the error status will be equal to
EINPROGRESS.

If the asynchronous I/O operation has completed successfully, then 0 is returned. If the
asynchronous operation has completed unsuccessfully, then the error status, as described for
read(2), write(2), and fsync(3C), is returned. If the asynchronous I/O operation has not yet
completed, then EINPROGRESS is returned.

The aio_error() function will fail if:

ENOSYS The aio_error() function is not supported by the system.

The aio_error() function may fail if:

EINVAL The aiocbp argument does not refer to an asynchronous operation whose
return status has not yet been retrieved.

The aio_error() function has a transitional interface for 64-bit file offsets. See lf64(5).

EXAMPLE 1 The following is an example of an error handling routine using the aio_error() function.

#include <aio.h>

#include <errno.h>

#include <signal.h>

struct aiocb my_aiocb;

struct sigaction my_sigaction;

void my_aio_handler(int, siginfo_t *, void *);

. . .

my_sigaction.sa_flags = SA_SIGINFO;

my_sigaction.sa_sigaction = my_aio_handler;

sigemptyset(&my_sigaction.sa_mask);

(void) sigaction(SIGRTMIN, &my_sigaction, NULL);

. . .

my_aiocb.aio_sigevent.sigev_notify = SIGEV_SIGNAL;

my_aiocb.aio_sigevent.sigev_signo = SIGRTMIN;

my_aiocb.aio_sigevent.sigev_value.sival_ptr = &myaiocb;

. . .

(void) aio_read(&my_aiocb);

. . .

Name

Synopsis

Description

Return Values

Errors

Usage

Examples

aio_error(3RT)

Realtime Library Functions 15

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1fsync-3c
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1fsync-3c
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1lf64-5

EXAMPLE 1 The following is an example of an error handling routine using the aio_error()
function. (Continued)

void

my_aio_handler(int signo, siginfo_t *siginfo, void *context) {

int my_errno;

struct aiocb *my_aiocbp;

my_aiocbp = siginfo->si_value.sival_ptr;

if ((my_errno = aio_error(my_aiocb)) != EINPROGRESS) {

int my_status = aio_return(my_aiocb);

if (my_status >= 0){ /* start another operation */

. . .

} else { /* handle I/O error */

. . .

}

}

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Async-Signal-Safe

_Exit(2), close(2), fork(2), lseek(2), read(2), write(2), aio.h(3HEAD), aio_cancel(3RT),
aio_fsync(3RT), aio_read(3RT), aio_return(3RT), aio_write(3RT), lio_listio(3RT),
signal.h(3HEAD), attributes(5), lf64(5), standards(5)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option. Prior to
this release, this function always returned −1 and set errno to ENOSYS.

Attributes

See Also

Notes

aio_error(3RT)

man pages section 3: Realtime Library Functions • Last Revised 28 Jun 200216

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1u-exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1fork-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1lseek-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1aio.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1signal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1standards-5

aio_fsync – asynchronous file synchronization

cc [flag...] file... -lrt [library...]

#include <aio.h>

int aio_fsync(int op, struct aiocb *aiocbp);

The aio_fsync() function asynchronously forces all I/O operations associated with the file
indicated by the file descriptor aio_fildes member of the aiocb structure referenced by the
aiocbp argument and queued at the time of the call to aio_fsync() to the synchronized I/O
completion state. The function call returns when the synchronization request has been
initiated or queued to the file or device (even when the data cannot be synchronized
immediately).

If op is O_DSYNC, all currently queued I/O operations are completed as if by a call to
fdatasync(3RT); that is, as defined for synchronized I/O data integrity completion. If op is
O_SYNC, all currently queued I/O operations are completed as if by a call to fsync(3C); that is,
as defined for synchronized I/O file integrity completion. If the aio_fsync() function fails, or
if the operation queued by aio_fsync() fails, then, as for fsync(3C) and fdatasync(3RT),
outstanding I/O operations are not guaranteed to have been completed.

If aio_fsync() succeeds, then it is only the I/O that was queued at the time of the call to
aio_fsync() that is guaranteed to be forced to the relevant completion state. The completion
of subsequent I/O on the file descriptor is not guaranteed to be completed in a synchronized
fashion.

The aiocbp argument refers to an asynchronous I/O control block. The aiocbp value may be
used as an argument to aio_error(3RT) and aio_return(3RT) in order to determine the
error status and return status, respectively, of the asynchronous operation while it is
proceeding. When the request is queued, the error status for the operation is EINPROGRESS.
When all data has been successfully transferred, the error status will be reset to reflect the
success or failure of the operation. If the operation does not complete successfully, the error
status for the operation will be set to indicate the error. The aio_sigevent member determines
the asynchronous notification to occur when all operations have achieved synchronized I/O
completion. All other members of the structure referenced by aiocbp are ignored. If the
control block referenced by aiocbp becomes an illegal address prior to asynchronous I/O
completion, then the behavior is undefined.

If the aio_fsync() function fails or the aiocbp indicates an error condition, data is not
guaranteed to have been successfully transferred.

If aiocbp is NULL, then no status is returned in aiocbp, and no signal is generated upon
completion of the operation.

Name

Synopsis

Description

aio_fsync(3RT)

Realtime Library Functions 17

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1fsync-3c
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1fsync-3c

The aio_fsync() function returns 0 to the calling process if the I/O operation is successfully
queued; otherwise, the function returns −1 and sets errno to indicate the error.

The aio_fsync() function will fail if:

EAGAIN The requested asynchronous operation was not queued due to
temporary resource limitations.

EBADF The aio_fildes member of the aiocb structure referenced by the aiocbp
argument is not a valid file descriptor open for writing.

EINVAL The system does not support synchronized I/O for this file.

EINVAL A value of op other than O_DSYNC or O_SYNC was specified.

ENOSYS The aio_fsync() function is not supported by the system.

In the event that any of the queued I/O operations fail, aio_fsync() returns the error
condition defined for read(2) and write(2). The error will be returned in the error status for
the asynchronous fsync(3C) operation, which can be retrieved using aio_error(3RT).

The aio_fsync() function has a transitional interface for 64-bit file offsets. See lf64(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

fcntl(2), open(2), read(2), write(2), aio_error(3RT), aio_return(3RT), fdatasync(3RT),
fsync(3C), attributes(5), fcntl.h(3HEAD), aio.h(3HEAD), signal.h(3HEAD),
attributes(5), lf64(5), standards(5)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option. Prior to
this release, this function always returned −1 and set errno to ENOSYS.

Return Values

Errors

Usage

Attributes

See Also

Notes

aio_fsync(3RT)

man pages section 3: Realtime Library Functions • Last Revised 28 Jun 200218

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1fsync-3c
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1fcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1open-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1fsync-3c
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1fcntl.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1aio.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1signal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1standards-5

aioread, aiowrite – read or write asynchronous I/O operations

cc [flag...] file... -laio [library...]

#include <sys/types.h>

#include <sys/asynch.h>

int aioread(int fildes, char *bufp, int bufs, off_t offset,
int whence, aio_result_t *resultp);

int aiowrite(int fildes, const char *bufp, int bufs, off_t offset,
int whence, aio_result_t *resultp);

The aioread() function initiates one asynchronous read(2) and returns control to the calling
program. The read continues concurrently with other activity of the process. An attempt is
made to read bufs bytes of data from the object referenced by the descriptor fildes into the
buffer pointed to by bufp.

The aiowrite() function initiates one asynchronous write(2) and returns control to the
calling program. The write continues concurrently with other activity of the process. An
attempt is made to write bufs bytes of data from the buffer pointed to by bufp to the object
referenced by the descriptor fildes.

On objects capable of seeking, the I/O operation starts at the position specified by whence and
offset. These parameters have the same meaning as the corresponding parameters to the
llseek(2) function. On objects not capable of seeking the I/O operation always start from the
current position and the parameters whence and offset are ignored. The seek pointer for
objects capable of seeking is not updated by aioread() or aiowrite(). Sequential
asynchronous operations on these devices must be managed by the application using the
whence and offset parameters.

The result of the asynchronous operation is stored in the structure pointed to by resultp:

int aio_return; /* return value of read() or write() */

int aio_errno; /* value of errno for read() or write() */

Upon completion of the operation both aio_return and aio_errno are set to reflect the result
of the operation. Since AIO_INPROGRESS is not a value used by the system, the client can detect
a change in state by initializing aio_return to this value.

The application-supplied buffer bufp should not be referenced by the application until after
the operation has completed. While the operation is in progress, this buffer is in use by the
operating system.

Notification of the completion of an asynchronous I/O operation can be obtained
synchronously through the aiowait(3AIO) function, or asynchronously by installing a signal
handler for the SIGIO signal. Asynchronous notification is accomplished by sending the
process a SIGIO signal. If a signal handler is not installed for the SIGIO signal, asynchronous
notification is disabled. The delivery of this instance of the SIGIO signal is reliable in that a
signal delivered while the handler is executing is not lost. If the client ensures that aiowait()

Name

Synopsis

Description

aioread(3AIO)

Realtime Library Functions 19

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1llseek-2

returns nothing (using a polling timeout) before returning from the signal handler, no
asynchronous I/O notifications are lost. The aiowait() function is the only way to dequeue
an asynchronous notification. The SIGIO signal can have several meanings simultaneously.
For example, it can signify that a descriptor generated SIGIO and an asynchronous operation
completed. Further, issuing an asynchronous request successfully guarantees that space exists
to queue the completion notification.

The close(2), exit(2) and execve(2)) functions block until all pending asynchronous I/O
operations can be canceled by the system.

It is an error to use the same result buffer in more than one outstanding request. These
structures can be reused only after the system has completed the operation.

Upon successful completion, aioread() and aiowrite() return 0. Upon failure, aioread()
and aiowrite() return −1 and set errno to indicate the error.

The aioread() and aiowrite() functions will fail if:

EAGAIN The number of asynchronous requests that the system can handle at any one time
has been exceeded

EBADF The fildes argument is not a valid file descriptor open for reading.

EFAULT At least one of bufp or resultp points to an address outside the address space of the
requesting process. This condition is reported only if detected by the application
process.

EINVAL The resultp argument is currently being used by an outstanding asynchronous
request.

EINVAL The offset argument is not a valid offset for this file system type.

ENOMEM Memory resources are unavailable to initiate request.

The aioread() and aiowrite() functions have transitional interfaces for 64-bit file offsets.
See lf64(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

close(2), execve(2), exit(2), llseek(2), lseek(2), open(2), read(2), write(2),
aiocancel(3AIO), aiowait(3AIO), sigvec(3UCB), attributes(5), lf64(5)

Return Values

Errors

Usage

Attributes

See Also

aioread(3AIO)

man pages section 3: Realtime Library Functions • Last Revised 22 Mar 200420

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1execve-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1execve-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1llseek-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1lseek-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1open-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1sigvec-3ucb
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1lf64-5

aio_read – asynchronous read from a file

cc [flag...] file... -lrt [library...]

#include <aio.h>

int aio_read(struct aiocb *aiocbp);

The aio_read() function allows the calling process to read aiocbp->aio_nbytes from the file
associated with aiocbp->aio_fildes into the buffer pointed to by aiocbp->aio_buf. The
function call returns when the read request has been initiated or queued to the file or device
(even when the data cannot be delivered immediately). If _POSIX_PRIORITIZED_IO is defined
and prioritized I/O is supported for this file, then the asynchronous operation is submitted at a
priority equal to the scheduling priority of the process minus aiocbp->aio_reqprio. The
aiocbp value may be used as an argument to aio_error(3RT) and aio_return(3RT) in order
to determine the error status and return status, respectively, of the asynchronous operation
while it is proceeding. If an error condition is encountered during queuing, the function call
returns without having initiated or queued the request. The requested operation takes place at
the absolute position in the file as given by aio_offset, as if lseek(2) were called immediately
prior to the operation with an offset equal to aio_offset and a whence equal to SEEK_SET. After a
successful call to enqueue an asynchronous I/O operation, the value of the file offset for the file
is unspecified.

The aiocbp->aio_lio_opcode field is ignored by aio_read().

The aiocbp argument points to an aiocb structure. If the buffer pointed to by
aiocbp->aio_buf or the control block pointed to by aiocbp becomes an illegal address prior to
asynchronous I/O completion, then the behavior is undefined.

Simultaneous asynchronous operations using the same aiocbp produce undefined results.

If _POSIX_SYNCHRONIZED_IO is defined and synchronized I/O is enabled on the file associated
with aiocbp->aio_fildes, the behavior of this function is according to the definitions of
synchronized I/O data integrity completion and synchronized I/O file integrity completion.

For any system action that changes the process memory space while an asynchronous I/O is
outstanding to the address range being changed, the result of that action is undefined.

For regular files, no data transfer will occur past the offset maximum established in the open
file description associated with aiocbp->aio_fildes.

The aio_read() function returns 0 to the calling process if the I/O operation is successfully
queued; otherwise, the function returns −1 and sets errno to indicate the error.

The aio_read() function will fail if:

EAGAIN The requested asynchronous I/O operation was not queued due to
system resource limitations.

ENOSYS The aio_read() function is not supported by the system.

Name

Synopsis

Description

Return Values

Errors

aio_read(3RT)

Realtime Library Functions 21

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1lseek-2

Each of the following conditions may be detected synchronously at the time of the call to
aio_read(), or asynchronously. If any of the conditions below are detected synchronously,
the aio_read() function returns –1 and sets errno to the corresponding value. If any of the
conditions below are detected asynchronously, the return status of the asynchronous
operation is set to −1, and the error status of the asynchronous operation will be set to the
corresponding value.

EBADF The aiocbp->aio_fildes argument is not a valid file descriptor open for
reading.

EINVAL The file offset value implied by aiocbp->aio_offset would be invalid,
aiocbp->aio_reqprio is not a valid value, or aiocbp->aio_nbytes is an
invalid value.

In the case that the aio_read() successfully queues the I/O operation but the operation is
subsequently canceled or encounters an error, the return status of the asynchronous operation
is one of the values normally returned by the read(2) function call. In addition, the error status
of the asynchronous operation will be set to one of the error statuses normally set by the
read() function call, or one of the following values:

EBADF The aiocbp->aio_fildes argument is not a valid file descriptor open for
reading.

ECANCELED The requested I/O was canceled before the I/O completed due to an
explicit aio_cancel(3RT) request.

EINVAL The file offset value implied by aiocbp->aio_offset would be invalid.

The following condition may be detected synchronously or asynchronously:

EOVERFLOW The file is a regular file, aiobcp->aio_nbytes is greater than 0 and the
starting offset in aiobcp->aio_offset is before the end-of-file and is at or
beyond the offset maximum in the open file description associated with
aiocbp->aio_fildes.

For portability, the application should set aiocb->aio_reqprio to 0.

The aio_read() function has a transitional interface for 64-bit file offsets. See lf64(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

Usage

Attributes

aio_read(3RT)

man pages section 3: Realtime Library Functions • Last Revised 28 Jun 200222

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5

close(2), exec(2), exit(2), fork(2), lseek(2), read(2), write(2), aio.h(3HEAD),
siginfo.h(3HEAD), signal.h(3HEAD), aio_cancel(3RT), aio_return(3RT),
lio_listio(3RT), attributes(5), lf64(5), standards(5)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option. Prior to
this release, this function always returned −1 and set errno to ENOSYS.

See Also

Notes

aio_read(3RT)

Realtime Library Functions 23

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1fork-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1lseek-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1aio.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1siginfo.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1signal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1standards-5

aio_return – retrieve return status of an asynchronous I/O operation

cc [flag...] file... -lrt [library...]

#include <aio.h>

ssize_t aio_return(struct aiocb *aiocbp);

The aio_return() function returns the return status associated with the aiocb structure
referenced by the aiocbp argument. The return status for an asynchronous I/O operation is the
value that would be returned by the corresponding read(2), write(2), or fsync(3C) function
call. If the error status for the operation is equal to EINPROGRESS, then the return status for the
operation is undefined. The aio_return() function may be called exactly once to retrieve the
return status of a given asynchronous operation; thereafter, if the same aiocb structure is used
in a call to aio_return() or aio_error(3RT), an error may be returned. When the aiocb
structure referred to by aiocbp is used to submit another asynchronous operation, then
aio_return() may be successfully used to retrieve the return status of that operation.

If the asynchronous I/O operation has completed, then the return status, as described for
read(2), write(2), and fsync(3C), is returned. If the asynchronous I/O operation has not yet
completed, the results of aio_return() are undefined.

The aio_return() function will fail if:

EINVAL The aiocbp argument does not refer to an asynchronous operation whose return
status has not yet been retrieved.

ENOSYS The aio_return() function is not supported by the system.

The aio_return() function has a transitional interface for 64-bit file offsets. See lf64(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Async-Signal-Safe

close(2), exec(2), exit(2), fork(2), lseek(2), read(2), write(2), fsync(3C), aio.h(3HEAD),
signal.h(3HEAD), aio_cancel(3RT), aio_fsync(3RT), aio_read(3RT), lio_listio(3RT),
attributes(5), lf64(5), standards(5)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option. Prior to
this release, this function always returned −1 and set errno to ENOSYS.

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

See Also

Notes

aio_return(3RT)

man pages section 3: Realtime Library Functions • Last Revised 28 Jun 200224

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1fsync-3c
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1fsync-3c
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1fork-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1lseek-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1fsync-3c
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1aio.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1signal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1standards-5

aio_suspend – wait for asynchronous I/O request

cc [flag...] file... -lrt [library...]

#include <aio.h>

int aio_suspend(const struct aiocb * const list[], int nent,
const struct timespec *timeout);

The aio_suspend() function suspends the calling thread until at least one of the
asynchronous I/O operations referenced by the list argument has completed, until a signal
interrupts the function, or, if timeout is not NULL, until the time interval specified by timeout
has passed. If any of the aiocb structures in the list correspond to completed asynchronous
I/O operations (that is, the error status for the operation is not equal to EINPROGRESS) at the
time of the call, the function returns without suspending the calling thread. The list argument
is an array of pointers to asynchronous I/O control blocks. The nent argument indicates the
number of elements in the array and is limited to _AIO_LISTIO_MAX = 4096. Each aiocb

structure pointed to will have been used in initiating an asynchronous I/O request via
aio_read(3RT), aio_write(3RT), or lio_listio(3RT). This array may contain null pointers,
which are ignored. If this array contains pointers that refer to aiocb structures that have not
been used in submitting asynchronous I/O, the effect is undefined.

If the time interval indicated in the timespec structure pointed to by timeout passes before
any of the I/O operations referenced by list are completed, then aio_suspend() returns with
an error.

If aio_suspend() returns after one or more asynchronous I/O operations have completed, it
returns 0. Otherwise, it returns −1, and sets errno to indicate the error.

The application may determine which asynchronous I/O completed by scanning the
associated error and return status using aio_error(3RT) and aio_return(3RT), respectively.

The aio_suspend() function will fail if:

EAGAIN No asynchronous I/O indicated in the list referenced by list completed in the time
interval indicated by timeout.

EINTR A signal interrupted the aio_suspend() function. Since each asynchronous I/O
operation might provoke a signal when it completes, this error return can be
caused by the completion of one or more of the very I/O operations being awaited.

EINVAL The nent argument is less than or equal to 0 or greater than _AIO_LISTIO_MAX, or
the timespec structure pointed to by timeout is not properly set because tv_sec is
less than 0 or tv_nsec is either less than 0 or greater than 109.

ENOMEM There is currently not enough available memory; the application can try again
later.

ENOSYS The aio_suspend() function is not supported by the system.

Name

Synopsis

Description

Return Values

Errors

aio_suspend(3RT)

Realtime Library Functions 25

The aio_suspend() function has a transitional interface for 64-bit file offsets. See lf64(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Async-Signal-Safe

aio.h(3HEAD), aio_fsync(3RT), aio_read(3RT), aio_return(3RT), aio_write(3RT),
lio_listio(3RT), signal.h(3HEAD), attributes(5), lf64(5)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option. Prior to
this release, this function always returned −1 and set errno to ENOSYS.

Usage

Attributes

See Also

Notes

aio_suspend(3RT)

man pages section 3: Realtime Library Functions • Last Revised 18 Dec 200826

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1aio.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1signal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1lf64-5

aiowait – wait for completion of asynchronous I/O operation

cc [flag...] file... -laio [library...]

#include <sys/asynch.h>

#include <sys/time.h>

aio_result_t *aiowait(const struct timeval *timeout);

The aiowait() function suspends the calling process until one of its outstanding
asynchronous I/O operations completes, providing a synchronous method of notification.

If timeout is a non-zero pointer, it specifies a maximum interval to wait for the completion of
an asynchronous I/O operation. If timeout is a zero pointer, aiowait() blocks indefinitely. To
effect a poll, the timeout parameter should be non-zero, pointing to a zero-valued timeval
structure.

The timeval structure is defined in <sys/time.h> and contains the following members:

long tv_sec; /* seconds */

long tv_usec; /* and microseconds */

Upon successful completion, aiowait() returns a pointer to the result structure used when
the completed asynchronous I/O operation was requested. Upon failure, aiowait() returns
−1 and sets errno to indicate the error. aiowait() returns 0 if the time limit expires.

The aiowait() function will fail if:

EFAULT The timeout argument points to an address outside the address space of the
requesting process. See NOTES.

EINTR The execution of aiowait() was interrupted by a signal.

EINVAL There are no outstanding asynchronous I/O requests.

EINVAL The tv_secs member of the timeval structure pointed to by timeout is less than 0
or the tv_usecs member is greater than the number of seconds in a microsecond.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

aiocancel(3AIO), aioread(3AIO), attributes(5)

The aiowait() function is the only way to dequeue an asynchronous notification. It can be
used either inside a SIGIO signal handler or in the main program. One SIGIO signal can
represent several queued events.

Passing an illegal address as timeout will result in setting errno to EFAULT only if detected by
the application process.

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

Notes

aiowait(3AIO)

Realtime Library Functions 27

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5

aio_waitn – wait for completion of asynchronous I/O operations

cc [flag...] file... -lrt [library...]

#include <aio.h>

int aio_waitn(struct aiocb *list[], uint_t nent,
uint_t *nwait, const struct timespec *timeout);

The aio_waitn() function suspends the calling thread until at least the number of requests
specified by nwait have completed, until a signal interrupts the function, or if timeout is not
NULL, until the time interval specified by timeout has passed.

To effect a poll, the timeout argument should be non-zero, pointing to a zero-valued timespec

structure.

The list argument is an array of uninitialized I/O completion block pointers to be filled in by
the system before aio_waitn() returns. The nent argument indicates the maximum number
of elements that can be placed in list[] and is limited to _AIO_LISTIO_MAX = 4096.

The nwait argument points to the minimum number of requests aio_waitn() should wait for.
Upon returning, the content of nwait is set to the actual number of requests in the aiocb list,
which can be greater than the initial value specified in nwait. The aio_waitn() function
attempts to return as many requests as possible, up to the number of outstanding
asynchronous I/Os but less than or equal to the maximum specified by the nent argument. As
soon as the number of outstanding asynchronous I/O requests becomes 0, aio_waitn()
returns with the current list of completed requests.

The aiocb structures returned will have been used in initiating an asynchronous I/O request
from any thread in the process with aio_read(3RT), aio_write(3RT), or lio_listio(3RT).

If the time interval expires before the expected number of I/O operations specified by nwait
are completed, aio_waitn() returns the number of completed requests and the content of the
nwait pointer is updated with that number.

If aio_waitn() is interrupted by a signal, nwait is set to the number of completed requests.

The application can determine the status of the completed asynchronous I/O by checking the
associated error and return status using aio_error(3RT) and aio_return(3RT), respectively.

Upon successful completion, aio_waitn() returns 0. Otherwise, it returns -1 and sets errno
to indicate the error.

The aio_waitn() function will fail if:

EAGAIN There are no outstanding asynchronous I/O requests.

EFAULT The list[], nwait, or timeout argument points to an address outside the address
space of the process. The errno variable is set to EFAULT only if this condition is
detected by the application process.

Name

Synopsis

Description

Return Values

Errors

aio_waitn(3RT)

man pages section 3: Realtime Library Functions • Last Revised 18 Dec 200828

EINTR The execution of aio_waitn() was interrupted by a signal.

EINVAL The timeout element tv_sec or tv_nsec is < 0, nent is set to 0 or > _AIO_LISTIO_MAX,
or nwait is either set to 0 or is > nent.

ENOMEM There is currently not enough available memory. The application can try again
later.

ETIME The time interval expired before nwait outstanding requests have completed.

The aio_waitn() function has a transitional interface for 64-bit file offsets. See lf64(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level Safe

aio.h(3HEAD), aio_error(3RT), aio_read(3RT), aio_write(3RT), lio_listio(3RT),
aio_return(3RT), attributes(5), lf64(5)

Usage

Attributes

See Also

aio_waitn(3RT)

Realtime Library Functions 29

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1aio.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1lf64-5

aio_write – asynchronous write to a file

cc [flag...] file... -lrt [library...]

#include <aio.h>

int aio_write(struct aiocb *aiocbp);

The aio_write() function allows the calling process to write aiocbp->aio_nbytes to the file
associated with aiocbp->aio_fildes from the buffer pointed to by aiocbp->aio_buf. The
function call returns when the write request has been initiated or, at a minimum, queued to
the file or device. If _POSIX_PRIORITIZED_IO is defined and prioritized I/O is supported for
this file, then the asynchronous operation is submitted at a priority equal to the scheduling
priority of the process minus aiocbp->aio_reqprio. The aiocbp may be used as an argument
to aio_error(3RT) and aio_return(3RT) in order to determine the error status and return
status, respectively, of the asynchronous operation while it is proceeding.

The aiocbp argument points to an aiocb structure. If the buffer pointed to by
aiocbp->aio_buf or the control block pointed to by aiocbp becomes an illegal address prior to
asynchronous I/O completion, then the behavior is undefined.

If O_APPEND is not set for the file descriptor aio_fildes, then the requested operation takes place
at the absolute position in the file as given by aio_offset, as if lseek(2) were called immediately
prior to the operation with an offset equal to aio_offset and a whence equal to SEEK_SET. If
O_APPEND is set for the file descriptor, write operations append to the file in the same order as
the calls were made. After a successful call to enqueue an asynchronous I/O operation, the
value of the file offset for the file is unspecified.

The aiocbp->aio_lio_opcode field is ignored by aio_write().

Simultaneous asynchronous operations using the same aiocbp produce undefined results.

If _POSIX_SYNCHRONIZED_IO is defined and synchronized I/O is enabled on the file associated
with aiocbp->aio_fildes, the behavior of this function shall be according to the definitions
of synchronized I/O data integrity completion and synchronized I/O file integrity completion.

For any system action that changes the process memory space while an asynchronous I/O is
outstanding to the address range being changed, the result of that action is undefined.

For regular files, no data transfer will occur past the offset maximum established in the open
file description associated with aiocbp->aio_fildes.

The aio_write() function returns 0 to the calling process if the I/O operation is successfully
queued; otherwise, the function returns −1 and sets errno to indicate the error.

The aio_write() function will fail if:

EAGAIN The requested asynchronous I/O operation was not queued due to
system resource limitations.

Name

Synopsis

Description

Return Values

Errors

aio_write(3RT)

man pages section 3: Realtime Library Functions • Last Revised 28 Jun 200230

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1lseek-2

ENOSYS The aio_write() function is not supported by the system.

Each of the following conditions may be detected synchronously at the time of the call to
aio_write(), or asynchronously. If any of the conditions below are detected synchronously,
the aio_write() function returns −1 and sets errno to the corresponding value. If any of the
conditions below are detected asynchronously, the return status of the asynchronous
operation is set to −1, and the error status of the asynchronous operation will be set to the
corresponding value.

EBADF The aiocbp->aio_fildes argument is not a valid file descriptor open for
writing.

EINVAL The file offset value implied by aiocbp->aio_offset would be invalid,
aiocbp->aio_reqprio is not a valid value, or aiocbp->aio_nbytes is an
invalid value.

In the case that the aio_write() successfully queues the I/O operation, the return status of the
asynchronous operation will be one of the values normally returned by the write(2) function
call. If the operation is successfully queued but is subsequently canceled or encounters an
error, the error status for the asynchronous operation contains one of the values normally set
by the write() function call, or one of the following:

EBADF The aiocbp->aio_fildes argument is not a valid file descriptor open for
writing.

EINVAL The file offset value implied by aiocbp->aio_offset would be invalid.

ECANCELED The requested I/O was canceled before the I/O completed due to an
explicit aio_cancel(3RT) request.

The following condition may be detected synchronously or asynchronously:

EFBIG The file is a regular file, aiobcp->aio_nbytes is greater than 0 and the
starting offset in aiobcp->aio_offset is at or beyond the offset
maximum in the open file description associated with
aiocbp->aio_fildes.

The aio_write() function has a transitional interface for 64-bit file offsets. See lf64(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

Usage

Attributes

aio_write(3RT)

Realtime Library Functions 31

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5

aio_cancel(3RT), aio_error(3RT), aio_read(3RT), aio_return(3RT), lio_listio(3RT),
close(2), _Exit(2), fork(2), lseek(2), write(2), aio.h(3HEAD), signal.h(3HEAD),
attributes(5), lf64(5), standards(5)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option. Prior to
this release, this function always returned −1 and set errno to ENOSYS.

See Also

Notes

aio_write(3RT)

man pages section 3: Realtime Library Functions • Last Revised 28 Jun 200232

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1u-exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1fork-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1lseek-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1aio.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1signal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1standards-5

clock_nanosleep – high resolution sleep with specifiable clock

cc [flag...] file... -lrt [library...]

#include <time.h>

int clock_nanosleep(clockid_t clock_id, int flags,
const struct timespec *rqtp, struct timespec *rmtp);

If the flag TIMER_ABSTIME is not set in the flags argument, the clock_nanosleep() function
causes the current thread to be suspended from execution until either the time interval
specified by the rqtp argument has elapsed, or a signal is delivered to the calling thread and its
action is to invoke a signal-catching function, or the process is terminated. The clock used to
measure the time is the clock specified by clock_id.

If the flag TIMER_ABSTIME is set in the flags argument, the clock_nanosleep() function causes
the current thread to be suspended from execution until either the time value of the clock
specified by clock_id reaches the absolute time specified by the rqtp argument, or a signal is
delivered to the calling thread and its action is to invoke a signal-catching function, or the
process is terminated. If, at the time of the call, the time value specified by rqtp is less than or
equal to the time value of the specified clock, then clock_nanosleep() returns immediately
and the calling process is not suspended.

The suspension time caused by this function can be longer than requested because the
argument value is rounded up to an integer multiple of the sleep resolution, or because of the
scheduling of other activity by the system. But, except for the case of being interrupted by a
signal, the suspension time for the relative clock_nanosleep() function (that is, with the
TIMER_ABSTIME flag not set) will not be less than the time interval specified by rqtp, as
measured by the corresponding clock. The suspension for the absolute clock_nanosleep()
function (that is, with the TIMER_ABSTIME flag set) will be in effect at least until the value of the
corresponding clock reaches the absolute time specified by rqtp, except for the case of being
interrupted by a signal.

The use of the clock_nanosleep() function has no effect on the action or blockage of any
signal.

The clock_nanosleep() function fails if the clock_id argument refers to the CPU-time clock
of the calling thread. It is unspecified if clock_id values of other CPU-time clocks are allowed.

If the clock_nanosleep() function returns because the requested time has elapsed, its return
value is 0.

If the clock_nanosleep() function returns because it has been interrupted by a signal, it
returns the corresponding error value. For the relative clock_nanosleep() function, if the
rmtp argument is non-null, the timespec structure referenced by it is updated to contain the
amount of time remaining in the interval (the requested time minus the time actually slept). If
the rmtp argument is NULL, the remaining time is not returned. The absolute
clock_nanosleep() function has no effect on the structure referenced by rmtp.

Name

Synopsis

Description

Return Values

clock_nanosleep(3RT)

Realtime Library Functions 33

If clock_nanosleep() fails, it shall return the corresponding error value.

The clock_nanosleep() function will fail if:

EINTR The clock_nanosleep() function was interrupted by a signal.

EINVAL The rqtp argument specified a nanosecond value less than zero or greater than or
equal to 1,000 million; or the TIMER_ABSTIME flag was specified in flags and
the rqtp argument is outside the range for the clock specified by clock_id; or the
clock_id argument does not specify a known clock, or specifies the CPU-time
clock of the calling thread.

ENOTSUP The clock_id argument specifies a clock for which clock_nanosleep() is not
supported, such as a CPU-time clock.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

clock_getres(3RT), nanosleep(3RT), pthread_cond_timedwait(3C), sleep(3C),
attributes(5), standards(5)

Errors

Attributes

See Also

clock_nanosleep(3RT)

man pages section 3: Realtime Library Functions • Last Revised 30 Jan 200434

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1pthread-cond-timedwait-3c
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1sleep-3c
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1standards-5

clock_settime, clock_gettime, clock_getres – high-resolution clock operations

cc [flag...] file... -lrt [library...]

#include <time.h>

int clock_settime(clockid_t clock_id, const struct timespec *tp);

int clock_gettime(clockid_t clock_id, struct timespec *tp);

int clock_getres(clockid_t clock_id, struct timespec *res);

The clock_settime() function sets the specified clock, clock_id, to the value specified by tp.
Time values that are between two consecutive non-negative integer multiples of the resolution
of the specified clock are truncated down to the smaller multiple of the resolution.

The clock_gettime() function returns the current value tp for the specified clock, clock_id.

The resolution of any clock can be obtained by calling clock_getres(). Clock resolutions are
system-dependent and cannot be set by a process. If the argument res is not NULL, the
resolution of the specified clock is stored in the location pointed to by res. If res is NULL, the
clock resolution is not returned. If the time argument of clock_settime() is not a multiple of
res, then the value is truncated to a multiple of res.

A clock may be systemwide (that is, visible to all processes) or per-process (measuring time
that is meaningful only within a process).

A clock_id of CLOCK_REALTIME is defined in <time.h>. This clock represents the realtime clock
for the system. For this clock, the values returned by clock_gettime() and specified by
clock_settime() represent the amount of time (in seconds and nanoseconds) since the
Epoch. Additional clocks may also be supported. The interpretation of time values for these
clocks is unspecified.

A clock_id of CLOCK_HIGHRES represents the non-adjustable, high-resolution clock for the
system. For this clock, the value returned by clock_gettime(3RT) represents the amount of
time (in seconds and nanoseconds) since some arbitrary time in the past; it is not correlated in
any way to the time of day, and thus is not subject to resetting or drifting by way of
adjtime(2), ntp_adjtime(2), settimeofday(3C), or clock_settime(). The time source for
this clock is the same as that for gethrtime(3C).

Additional clocks may also be supported. The interpretation of time values for these clocks is
unspecified.

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to
indicate the error.

The clock_settime(), clock_gettime() and clock_getres() functions will fail if:

EINVAL The clock_id argument does not specify a known clock.

ENOSYS The functions clock_settime(), clock_gettime(), and clock_getres() are not
supported by this implementation.

Name

Synopsis

Description

Return Values

Errors

clock_settime(3RT)

Realtime Library Functions 35

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1adjtime-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1ntp-adjtime-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1settimeofday-3c
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1gethrtime-3c

The clock_settime() function will fail if:

EINVAL The tp argument to clock_settime() is outside the range for the given clock ID;
or the tp argument specified a nanosecond value less than zero or greater than or
equal to 1000 million.

The clock_settime() function may fail if:

EPERM The requesting process does not have the appropriate privilege to set the specified
clock.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level clock_gettime() is Async-Signal-Safe

time(2), ctime(3C), gethrtime(3C), time.h(3HEAD), timer_gettime(3RT),
attributes(5), standards(5)

Attributes

See Also

clock_settime(3RT)

man pages section 3: Realtime Library Functions • Last Revised 28 Jun 200236

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1time-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1ctime-3c
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1gethrtime-3c
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1time.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1standards-5

door_bind, door_unbind – bind or unbind the current thread with the door server pool

cc -mt [flag...] file... -ldoor [library...]

#include <door.h>

int door_bind(int did);

int door_unbind(void);

The door_bind() function associates the current thread with a door server pool. A door
server pool is a private pool of server threads that is available to serve door invocations
associated with the door did.

The door_unbind() function breaks the association of door_bind() by removing any private
door pool binding that is associated with the current thread.

Normally, door server threads are placed in a global pool of available threads that invocations
on any door can use to dispatch a door invocation. A door that has been created with
DOOR_PRIVATE only uses server threads that have been associated with the door by
door_bind(). It is therefore necessary to bind at least one server thread to doors created with
DOOR_PRIVATE.

The server thread create function, door_server_create(), is initially called by the system
during a door_create() operation. See door_server_create(3DOOR) and
door_create(3DOOR).

The current thread is added to the private pool of server threads associated with a door during
the next door_return() (that has been issued by the current thread after an associated
door_bind()). See door_return(3DOOR). A server thread performing a door_bind() on a
door that is already bound to a different door performs an implicit door_unbind() of the
previous door.

If a process containing threads that have been bound to a door calls fork(2), the threads in the
child process will be bound to an invalid door, and any calls to door_return(3DOOR) will
result in an error.

Upon successful completion, a 0 is returned. Otherwise, −1 is returned and errno is set to
indicate the error.

The door_bind() and door_unbind() functions fail if:

EBADF The did argument is not a valid door.

EBADF The door_unbind() function was called by a thread that is currently not
bound.

EINVAL did was not created with the DOOR_PRIVATE attribute.

Name

Synopsis

Description

Return Values

Errors

door_bind(3DOOR)

Realtime Library Functions 37

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1fork-2

EXAMPLE 1 Use door_bind() to create private server pools for two doors.

The following example shows the use of door_bind() to create private server pools for two
doors, d1 and d2. Function my_create() is called when a new server thread is needed; it
creates a thread running function, my_server_create(), which binds itself to one of the two
doors.

#include <door.h>

#include <thread.h>

#include <pthread.h>

thread_key_t door_key;

int d1 = -1;

int d2 = -1;

cond_t cv; /* statically initialized to zero */

mutex_t lock; /* statically initialized to zero */

extern void foo(void *, char *, size_t, door_desc_t *, uint_t);

extern void bar(void *, char *, size_t, door_desc_t *, uint_t);

static void *

my_server_create(void *arg)

{

/* wait for d1 & d2 to be initialized */

mutex_lock(&lock);

while (d1 == -1 || d2 == -1)

cond_wait(&cv, &lock);

mutex_unlock(&lock);

if (arg == (void *)foo){

/* bind thread with pool associated with d1 */

thr_setspecific(door_key, (void *)foo);

if (door_bind(d1) < 0) {

perror("door_bind"); exit (-1);

}

} else if (arg == (void *)bar) {

/* bind thread with pool associated with d2 */

thr_setspecific(door_key, (void *)bar);

if (door_bind(d2) < 0) {

/* bind thread to d2 thread pool */

perror("door_bind"); exit (-1);

}

}

pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, NULL);

door_return(NULL, 0, NULL, 0); /* Wait for door invocation */

}

static void

my_create(door_info_t *dip)

Examples

door_bind(3DOOR)

man pages section 3: Realtime Library Functions • Last Revised 23 Apr 200338

EXAMPLE 1 Use door_bind() to create private server pools for two doors. (Continued)

{

/* Pass the door identity information to create function */

thr_create(NULL, 0, my_server_create, (void *)dip->di_proc,

THR_BOUND | THR_DETACHED, NULL);

}

main()

{

(void) door_server_create(my_create);

if (thr_keycreate(&door_key, NULL) != 0) {

perror("thr_keycreate");
exit(1);

}

mutex_lock(&lock);

d1 = door_create(foo, NULL, DOOR_PRIVATE); /* Private pool */

d2 = door_create(bar, NULL, DOOR_PRIVATE); /* Private pool */

cond_signal(&cv);

mutex_unlock(&lock);

while (1)

pause();

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture all

Availability SUNWcsu

Interface Stability Evolving

MT-Level Safe

fork(2),door_create(3DOOR), door_return(3DOOR), door_server_create(3DOOR),
libdoor(3LIB), attributes(5)

Attributes

See Also

door_bind(3DOOR)

Realtime Library Functions 39

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1fork-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1libdoor-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5

door_call – invoke the function associated with a door descriptor

cc [flag...] file... -ldoor [library...]

#include <door.h>

typedef struct {

char *data_ptr; /* Argument/result buf ptr*/

size_t data_size; /* Argument/result buf size */

door_desc_t *desc_ptr; /* Argument/result descriptors */

uint_t desc_num; /* Argument/result num desc */

char *rbuf; /* Result buffer */

size_t rsize; /* Result buffer size */

} door_arg_t;

int door_call(int d, door_arg_t *params);

The door_call() function invokes the function associated with the door descriptor d, and
passes the arguments (if any) specified in params. All of the params members are treated as
in/out parameters during a door invocation and may be updated upon returning from a door
call. Passing NULL for params indicates there are no arguments to be passed and no results
expected.

Arguments are specified using the data_ptr and desc_ptr members of params. The size of
the argument data in bytes is passed in data_size and the number of argument descriptors is
passed in desc_num.

Results from the door invocation are placed in the buffer, rbuf. See door_return(3DOOR).
The data_ptr and desc_ptr members of params are updated to reflect the location of the
results within the rbuf buffer. The size of the data results and number of descriptors returned
are updated in the data_size and desc_num members. It is acceptable to use the same buffer
for input argument data and results, so door_call() may be called with data_ptr and
desc_ptr pointing to the buffer rbuf.

If the results of a door invocation exceed the size of the buffer specified by rsize, the system
automatically allocates a new buffer in the caller's address space and updates the rbuf and
rsize members to reflect this location. In this case, the caller is responsible for reclaiming this
area using munmap(rbuf, rsize) when the buffer is no longer required. See munmap(2).

Descriptors passed in a door_desc_t structure are identified by the d_attributes member.
The client marks the d_attributes member with the type of object being passed by logically
OR-ing the value of object type. Currently, the only object type that can be passed or returned
is a file descriptor, denoted by the DOOR_DESCRIPTOR attribute. Additionally, the
DOOR_RELEASE attribute can be set, causing the descriptor to be closed in the caller's address
space after it is passed to the target. The descriptor will be closed even if door_call() returns
an error, unless that error is EFAULT or EBADF.

The door_desc_t structure includes the following members:

Name

Synopsis

Description

door_call(3DOOR)

man pages section 3: Realtime Library Functions • Last Revised 14 Feb 200340

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1munmap-2

typedef struct {

door_attr_t d_attributes; /* Describes the parameter */

union {

struct {

int d_descriptor; /* Descriptor */

door_id_t d_id; /* Unique door id */

} d_desc;

} d_data;

} door_desc_t;

When file descriptors are passed or returned, a new descriptor is created in the target address
space and the d_descriptor member in the target argument is updated to reflect the new
descriptor. In addition, the system passes a system-wide unique number associated with each
door in the door_id member and marks the d_attributes member with other attributes
associated with a door including the following:

DOOR_LOCAL The door received was created by this process using
door_create(). See door_create(3DOOR).

DOOR_PRIVATE The door received has a private pool of server threads
associated with the door.

DOOR_UNREF The door received is expecting an unreferenced notification.

DOOR_UNREF_MULTI Similar to DOOR_UNREF, except multiple unreferenced
notifications may be delivered for the same door.

DOOR_REFUSE_DESC This door does not accept argument descriptors.

DOOR_REVOKED The door received has been revoked by the server.

The door_call() function is not a restartable system call. It returns EINTR if a signal was
caught and handled by this thread. If the door invocation is not idempotent the caller should
mask any signals that may be generated during a door_call() operation. If the client aborts in
the middle of a door_call(), the server thread is notified using the POSIX (see standards(5))
thread cancellation mechanism. See cancellation(5).

The descriptor returned from door_create() is marked as close on exec (FD_CLOEXEC).
Information about a door is available for all clients of a door using door_info(). Applications
concerned with security should not place secure information in door data that is accessible by
door_info(). In particular, secure data should not be stored in the data item cookie. See
door_info(3DOOR).

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to
indicate the error.

The door_call() function will fail if:

E2BIG Arguments were too big for server thread stack.

Return Values

Errors

door_call(3DOOR)

Realtime Library Functions 41

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1cancellation-5

EAGAIN Server was out of available resources.

EBADF Invalid door descriptor was passed.

EFAULT Argument pointers pointed outside the allocated address space.

EINTR A signal was caught in the client, the client called fork(2), or the server
exited during invocation.

EINVAL Bad arguments were passed.

EMFILE The client or server has too many open descriptors.

ENOTSUP The desc_num argument is non-zero and the door has the
DOOR_REFUSE_DESC flag set.

EOVERFLOW System could not create overflow area in caller for results.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture all

Availability SUNWcsu

Interface Stability Evolving

MT-Level Safe

munmap(2), door_create(3DOOR), door_info(3DOOR), door_return(3DOOR),
libdoor(3LIB), attributes(5), cancellation(5), standards(5)

Attributes

See Also

door_call(3DOOR)

man pages section 3: Realtime Library Functions • Last Revised 14 Feb 200342

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1fork-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1munmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1libdoor-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1cancellation-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1standards-5

door_create – create a door descriptor

cc -mt [flag ...] file ... -ldoor [library ...]

#include <door.h>

int door_create(void (*server_procedure) (void *cookie,
char *argp, size_t arg_size, door_desc_t *dp, uint_t n_desc),
void *cookie, uint_t attributes);

The door_create() function creates a door descriptor that describes the procedure specified
by the function server_procedure. The data item, cookie, is associated with the door descriptor,
and is passed as an argument to the invoked function server_procedure during
door_call(3DOOR) invocations. Other arguments passed to server_procedure from an
associated door_call() are placed on the stack and include argp and dp. The argp argument
points to arg_size bytes of data and the dp argument points to n_desc door_desc_t structures.
The attributes argument specifies attributes associated with the newly created door. Valid
values for attributes are constructed by OR-ing one or more of the following values:

DOOR_UNREF

Delivers a special invocation on the door when the number of descriptors that refer to this
door drops to one. In order to trigger this condition, more than one descriptor must have
referred to this door at some time. DOOR_UNREF_DATA designates an unreferenced
invocation, as the argp argument passed to server_procedure. In the case of an unreferenced
invocation, the values for arg_size, dp and n_did are 0. Only one unreferenced invocation is
delivered on behalf of a door.

DOOR_UNREF_MULTI

Similar to DOOR_UNREF, except multiple unreferenced invocations can be delivered on the
same door if the number of descriptors referring to the door drops to one more than once.
Since an additional reference may have been passed by the time an unreferenced
invocation arrives, the DOOR_IS_UNREF attribute returned by the door_info(3DOOR) call
can be used to determine if the door is still unreferenced.

DOOR_PRIVATE

Maintains a separate pool of server threads on behalf of the door. Server threads are
associated with a door's private server pool using door_bind(3DOOR). See also
door_xcreate(3DOOR) for an alternative means of creating private doors.

DOOR_REFUSE_DESC

Any attempt to door_call(3DOOR) this door with argument descriptors will fail with
ENOTSUP. When this flag is set, the door's server procedure will always be invoked with an
n_desc argument of 0.

The descriptor returned from door_create() will be marked as close on exec (FD_CLOEXEC).
Information about a door is available for all clients of a door using door_info(3DOOR).
Applications concerned with security should not place secure information in door data that is
accessible by door_info(). In particular, secure data should not be stored in the data item
cookie.

Name

Synopsis

Description

door_create(3DOOR)

Realtime Library Functions 43

By default, additional threads are created as needed to handle concurrent
door_call(3DOOR) invocations. See door_server_create(3DOOR) for information on
how to change this behavior.

A process can advertise a door in the file system name space using fattach(3C).

Upon successful completion, door_create() returns a non-negative value. Otherwise,
door_create returns −1 and sets errno to indicate the error.

The door_create() function will fail if:

EINVAL Invalid attributes are passed.

EMFILE The process has too many open descriptors.

EXAMPLE 1 Create a door and use fattach() to advertise the door in the file system namespace.

The following example creates a door and uses fattach() to advertise the door in the file
system namespace.

void

server(void *cookie, char *argp, size_t arg_size, door_desc_t *dp,

uint_t n_desc)

{

door_return(NULL, 0, NULL, 0);

/* NOTREACHED */

}

int

main(int argc, char *argv[])

{

int did;

struct stat buf;

if ((did = door_create(server, 0, 0)) < 0) {

perror("door_create");
exit(1);

}

/* make sure file system location exists */

if (stat("/tmp/door", &buf) < 0) {

int newfd;

if ((newfd = creat("/tmp/door", 0444)) < 0) {

perror("creat");
exit(1);

}

(void) close(newfd);

}

Return Values

Errors

Examples

door_create(3DOOR)

man pages section 3: Realtime Library Functions • Last Revised 19 Apr 201044

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1fattach-3c

EXAMPLE 1 Create a door and use fattach() to advertise the door in the file system namespace.
(Continued)

/* make sure nothing else is attached */

(void) fdetach("/tmp/door");

/* attach to file system */

if (fattach(did, "/tmp/door") < 0) {

perror("fattach");
exit(2);

}

[...]

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture all

Availability SUNWcsu

Interface Stability Evolving

MT-Level Safe

door_bind(3DOOR), door_call(3DOOR), door_info(3DOOR), door_revoke(3DOOR),
door_server_create(3DOOR), door_xcreate(3DOOR), fattach(3C), libdoor(3LIB),
attributes(5)

Attributes

See Also

door_create(3DOOR)

Realtime Library Functions 45

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1fattach-3c
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1libdoor-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5

door_cred – return credential information associated with the client

cc -mt [flag ...] file ... -ldoor [library ...]

#include <door.h>

int door_cred(door_cred_t *info);

The door_cred() function returns credential information associated with the client (if any) of
the current door invocation.

The contents of the info argument include the following fields:

uid_t dc_euid; /* Effective uid of client */

gid_t dc_egid; /* Effective gid of client */

uid_t dc_ruid; /* Real uid of client */

gid_t dc_rgid; /* Real gid of client */

pid_t dc_pid; /* pid of client */

The credential information associated with the client refers to the information from the
immediate caller; not necessarily from the first thread in a chain of door calls.

Upon successful completion, door_cred() returns 0. Otherwise, door_cred() returns −1 and
sets errno to indicate the error.

The door_cred() function will fail if:

EFAULT The address of the info argument is invalid.

EINVAL There is no associated door client.

The door_cred() function is obsolete. Applications should use the door_ucred(3DOOR)
function in place of door_cred().

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture all

Availability SUNWcsu

Interface Stability Obsolete

MT-Level Safe

door_call(3DOOR), door_create(3DOOR), door_ucred(3DOOR), libdoor(3LIB),
attributes(5)

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

See Also

door_cred(3DOOR)

man pages section 3: Realtime Library Functions • Last Revised 25 Mar 200346

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1libdoor-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5

door_info – return information associated with a door descriptor

cc [flag ...] file ... -ldoor [library ...]

#include <door.h>

int door_info(int d, struct door_info *info);

The door_info() function returns information associated with a door descriptor. It obtains
information about the door descriptor d and places the information that is relevant to the
door in the structure pointed to by the info argument.

The door_info structure pointed to by the info argument contains the following members:

pid_t di_target; /* door server pid */

door_ptr_t di_proc; /* server function */

door_ptr_t di_data; /* data cookie for invocation */

door_attr_t di_attributes; /* door attributes */

door_id_t di_uniquifier; /* unique id among all doors */

The di_target member is the process ID of the door server, or −1 if the door server process
has exited.

The values for di_attributes may be composed of the following:

DOOR_LOCAL The door descriptor refers to a service procedure in this
process.

DOOR_UNREF The door has requested notification when all but the last
reference has gone away.

DOOR_UNREF_MULTI Similar to DOOR_UNREF, except multiple unreferenced
notifications may be delivered for this door.

DOOR_IS_UNREF There is currently only one descriptor referring to the door.

DOOR_REFUSE_DESC The door refuses any attempt to door_call(3DOOR) it with
argument descriptors.

DOOR_REVOKED The door descriptor refers to a door that has been revoked.

DOOR_PRIVATE The door has a separate pool of server threads associated
with it.

The di_proc and di_data members are returned as door_ptr_t objects rather than void *

pointers to allow clients and servers to interoperate in environments where the pointer sizes
may vary in size (for example, 32-bit clients and 64-bit servers). Each door has a system-wide
unique number associated with it that is set when the door is created by door_create(). This
number is returned in di_uniquifier.

Name

Synopsis

Description

door_info(3DOOR)

Realtime Library Functions 47

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set to
indicate the error.

The door_info() function will fail if:

EFAULT The address of argument info is an invalid address.

EBADF d is not a door descriptor.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture all

Availability SUNWcsu

Interface Stability Evolving

MT-Level Safe

door_bind(3DOOR), door_call(3DOOR), door_create(3DOOR),
door_server_create(3DOOR), libdoor(3LIB), attributes(5)

Return Values

Errors

Attributes

See Also

door_info(3DOOR)

man pages section 3: Realtime Library Functions • Last Revised 14 Feb 200348

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1libdoor-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5

door_return – return from a door invocation

cc -mt [flag ...] file ... -ldoor [library ...]

#include <door.h>

int door_return(char *data_ptr, size_t data_size, door_desc_t *desc_ptr,
uint_t num_desc);

The door_return() function returns from a door invocation. It returns control to the thread
that issued the associated door_call() and blocks waiting for the next door invocation. See
door_call(3DOOR). Results, if any, from the door invocation are passed back to the client in
the buffers pointed to by data_ptr and desc_ptr. If there is not a client associated with the
door_return(), the calling thread discards the results, releases any passed descriptors with
the DOOR_RELEASE attribute, and blocks waiting for the next door invocation.

Upon successful completion, door_return() does not return to the calling process.
Otherwise, door_return() returns −1 to the calling process and sets errno to indicate the
error.

The door_return() function fails and returns to the calling process if:

E2BIG Arguments were too big for client.

EFAULT The address of data_ptr or desc_ptr is invalid.

EINVAL Invalid door_return() arguments were passed or a thread is bound to a
door that no longer exists.

EMFILE The client has too many open descriptors.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture all

Availability SUNWcsu

Interface Stability Evolving

MT-Level Safe

door_call(3DOOR),libdoor(3LIB), attributes(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

door_return(3DOOR)

Realtime Library Functions 49

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1libdoor-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5

door_revoke – revoke access to a door descriptor

cc -mt [flag ...] file ... -ldoor [library ...]

#include <door.h>

int door_revoke(int d);

The door_revoke() function revokes access to a door descriptor. Door descriptors are created
with door_create(3DOOR). The door_revoke() function performs an implicit call to
close(2), marking the door descriptor d as invalid.

A door descriptor can only be revoked by the process that created it. Door invocations that are
in progress during a door_revoke() invocation are allowed to complete normally.

Upon successful completion, door_revoke() returns 0. Otherwise, door_revoke() returns −1
and sets errno to indicate the error.

The door_revoke() function will fail if:

EBADF An invalid door descriptor was passed.

EPERM The door descriptor was not created by this process (with
door_create(3DOOR)).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture all

Availability SUNWcsu

Interface Stability Evolving

MT-Level Safe

close(2), door_create(3DOOR), libdoor(3LIB), attributes(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

door_revoke(3DOOR)

man pages section 3: Realtime Library Functions • Last Revised 21 Aug 199750

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1libdoor-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5

door_server_create – specify an alternative door server thread creation function

cc -mt [flag ...] file ... -ldoor [library ...]

#include <door.h>

void (*) () door_server_create(void (*create_proc)(door_info_t*));

Normally, the doors library creates new door server threads in response to incoming
concurrent door invocations automatically. There is no pre-defined upper limit on the
number of server threads that the system creates in response to incoming invocations (1 server
thread for each active door invocation). These threads are created with the default thread stack
size and POSIX (see standards(5)) threads cancellation disabled. The created threads also
have the THR_BOUND | THR_DETACHED attributes for Solaris threads and the
PTHREAD_SCOPE_SYSTEM | PTHREAD_CREATE_DETACHED attributes for POSIX threads. The
signal disposition, and scheduling class of the newly created thread are inherited from the
calling thread (initially from the thread calling door_create(), and subsequently from the
current active door server thread).

The door_server_create() function allows control over the creation of server threads
needed for door invocations. The procedure create_proc is called every time the available
server thread pool is depleted. In the case of private server pools associated with a door (see the
DOOR_PRIVATE attribute in door_create()), information on which pool is depleted is passed
to the create function in the form of a door_info_t structure. The di_proc and di_data

members of the door_info_t structure can be used as a door identifier associated with the
depleted pool. The create_proc procedure may limit the number of server threads created and
may also create server threads with appropriate attributes (stack size, thread-specific data,
POSIX thread cancellation, signal mask, scheduling attributes, and so forth) for use with door
invocations.

The specified server creation function should create user level threads using thr_create()
with the THR_BOUND flag, or in the case of POSIX threads, pthread_create() with the
PTHREAD_SCOPE_SYSTEM attribute. The server threads make themselves available for incoming
door invocations on this process by issuing a door_return(NULL, 0, NULL, 0). In this case,
the door_return() arguments are ignored. See door_return(3DOOR) and thr_create(3C).

The server threads created by default are enabled for POSIX thread cancellations which may
lead to unexpected thread terminations while holding resources (such as locks) if the client
aborts the associated door_call(). See door_call(3DOOR). Unless the server code is truly
interested in notifications of client aborts during a door invocation and is prepared to handle
such notifications using cancellation handlers, POSIX thread cancellation should be disabled
for server threads using pthread_setcancelstate (PTHREAD_CANCEL_DISABLE, NULL).

The create_proc procedure need not create any additional server threads if there is at least one
server thread currently active in the process (perhaps handling another door invocation) or it
may create as many as seen fit each time it is called. If there are no available server threads
during an incoming door invocation, the associated door_call() blocks until a server thread
becomes available. The create_proc procedure must be MT-Safe.

Name

Synopsis

Description

door_server_create(3DOOR)

Realtime Library Functions 51

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1thr-create-3c

Upon successful completion, door_server_create() returns a pointer to the previous server
creation function. This function has no failure mode (it cannot fail).

EXAMPLE 1 Creating door server threads.

The following example creates door server threads with cancellation disabled and an 8k stack
instead of the default stack size:

#include <door.h>

#include <pthread.h>

#include <thread.h>

void *

my_thread(void *arg)

{

pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, NULL);

door_return(NULL, 0, NULL, 0);

}

void

my_create(door_info_t *dip)

{

thr_create(NULL, 8192, my_thread, NULL,

THR_BOUND | THR_DETACHED, NULL);

}

main()

{

(void)door_server_create(my_create);

. . .

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture all

Availability SUNWcsu

Interface Stability Evolving

MT-Level Safe

door_bind(3DOOR), door_call(3DOOR), door_create(3DOOR), door_return(3DOOR),
libdoor(3LIB), pthread_create(3C), pthread_setcancelstate(3C), thr_create(3C),
attributes(5), cancellation(5), standards(5)

Return Values

Examples

Attributes

See Also

door_server_create(3DOOR)

man pages section 3: Realtime Library Functions • Last Revised 20 Aug 199752

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1libdoor-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1pthread-create-3c
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1pthread-setcancelstate-3c
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1thr-create-3c
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1cancellation-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1standards-5

door_ucred – return credential information associated with the client

cc -mt [flag ...] file... -ldoor [library...]

#include <door.h>

int door_ucred(ucred_t **info);

The door_ucred() function returns credential information associated with the client, if any,
of the current door invocation.

When successful, door_ucred() writes a pointer to a user credential to the location pointed to
by info if that location was previously NULL. If that location was non-null, door_ucred()
assumes that info points to a previously allocated ucred_t which is then reused. The location
pointed to by info can be used multiple times before being freed. The value returned in info
must be freed using ucred_free(3C).

The resulting user credential includes information about the effective user and group ID, the
real user and group ID, all privilege sets and the calling PID.

The credential information associated with the client refers to the information from the
immediate caller, not necessarily from the first thread in a chain of door calls.

Upon successful completion, door_ucred() returns 0. Otherwise, -1 is returned and errno is
set to indicate the error, in which case the memory location pointed to by the info argument is
unchanged.

The door_ucred() function will fail if:

EAGAIN The location pointed to by info was NULL and allocating memory
sufficient to hold a ucred failed.

EFAULT The address of the info argument is invalid.

EINVAL There is no associated door client.

ENOMEM The location pointed to by info was NULL and allocating memory
sufficient to hold a ucred failed.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

door_call(3DOOR), door_create(3DOOR), ucred_get(3C), attributes(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

door_ucred(3DOOR)

Realtime Library Functions 53

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1ucred-free-3c
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1ucred-get-3c
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5

door_xcreate – create a door descriptor for a private door with per-door control over thread
creation

#include <door.h>

typedef void door_server_procedure_t(void *, char *, size_t,

door_desc_t *, uint_t);

typedef int door_xcreate_server_func_t(door_info_t *,

void *(*)(void *), void *, void *);

typedef void door_xcreate_thrsetup_func_t(void *);

int door_xcreate(door_server_procedure_t *server_proceduere,
void *cookie, uint_t attributes,
door_xcreate_server_func_t *thr_create_func,
door_xcreate_thrsetup_func_t *thr_setup_func, void *crcookie,
int nthread);

The door_xcreate() function creates a private door to the given server_procedure, with
per-door control over the creation of threads that will service invocations of that door. A
private door is a door that has a private pool of threads that service calls to that door alone;
non-private doors share a pool of service threads (see door_create(3DOOR)).

Prior to the introduction of door_xcreate(), a private door was created using door_create()
specifying attributes including DOOR_PRIVATE after installing a suitable door server thread
creation function using door_server_create(). During such a call to door_create(), the
first server thread for that door is created by calling the door server function; you must
therefore already have installed a custom door server creation function using
door_server_create(). The custom server creation function is called at initial creation of a
private door, and again whenever a new invocation uses the last available thread for that door.
The function must decide whether it wants to increase the level of concurrency by creating an
additional thread - if it decides not to then further invocations may have to wait for an existing
active invocation to complete before they can proceed. Additional threads may be created
using whatever thread attributes are desired in the application, and the application must
specify a thread start function (to thr_create(3C) or pthread_create(3C)) which will
perform a door_bind() to the newly-created door before calling door_return(NULL, 0, NULL,
0) to enter service. See door_server_create(3DOOR) and door_bind(3DOOR) for more
information and for an example.

Name

Synopsis

Description

Creating private doors
using door_create()

door_xcreate(3DOOR)

man pages section 3: Realtime Library Functions • Last Revised 19 Apr 201054

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1thr-create-3c
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1pthread-create-3c

This “legacy” private door API is adequate for many uses, but has some limitations:

■ The server thread creation function appointed via the door_server_create() is shared by
all doors in the process. Private doors are distinguished from non-private in that the
door_info_t pointer argument to the thread creation function is non-null for private
doors; from the door_info_t the associated door server procedure is available via the
di_proc member.

■ If a library wishes to create a private door of which the application is essentially unaware it
has no option but to inherit any function appointed with door_server_create() which
may render the library door inoperable.

■ Newly-created server threads must bind to the door they will service, but the door file
descriptor to quote in door_bind() is not available in the door_info_t structure we
receive a pointer to. The door file descriptor is returned as the result of door_create(),
but the initial service thread is created during the call to door_create(). This leads to
complexity in the startup of the service thread, and tends to force the use of global
variables for the door file descriptors as per the example in door_bind().

The door_xcreate() function is purpose-designed for the creation of private doors and
simplifies their use by moving responsibility for binding the new server thread and
synchronizing with it into a library-provided thread startup function:

■ The first three arguments to door_xcreate() are as you would use in door_create(): the
door server_procedure, a private cookie to pass to that procedure whenever it is invoked for
this door, and desired door attributes. The DOOR_PRIVATE attribute is implicit, and an
additional attribute of DOOR_NO_DEPLETION_CB is available.

■ Four additional arguments specify a server thread creation function to use for this door
(must not be NULL), a thread setup function for new server threads (can be NULL), a cookie
to pass to those functions, and the initial number of threads to create for this door.

■ The door_xcreate_server_func_t() for creating server threads has differing semantics
to those of a door_server_func_t() used in door_server_create(). In addition to a
door_info_t pointer it also receives as arguments a library-provided thread start function
and thread start argument that it must use, and the private cookie registered in the call to
door_xcreate(). The nominated door_xcreate_server_func_t() must:
■ Return 0 if no additional thread is to be created, for example if it decides the current

level of concurrency is sufficient. When the server thread creation function is invoked
as part of a depletion callback (as opposed to during initial door_xcreate()) the
door_info_t di_attributes member includes DOOR_DEPLETION_CB.

■ Otherwise attempt to create exactly one new thread using thr_create() or
pthread_create(), with whatever thread attributes (stack size) are desired and
quoting the implementation-provided thread start function and opaque data cookie. If
the call to thr_create() or pthread_create() is successful then return 1, otherwise
return -1.

■ Do not call door_bind() or request to enter service via door_return(NULL, 0, NULL, 0).

Creating private doors
with door_xcreate()

door_xcreate(3DOOR)

Realtime Library Functions 55

As in door_server_create() new server threads must be created PTHREAD_SCOPE_SYSTEM

and PTHREAD_CREATE_DETACHED for POSIX threads, and THR_BOUND and THR_DETACHED for
Solaris threads. The signal disposition and scheduling class of newly-created threads are
inherited from the calling thread, initially from the thread calling door_xcreate() and
subsequently from the current active door server thread.

■ The library-provided thread start function performs the following operations in the order
presented:
■ Calls the door_xcreate_thrsetup_func_t() if it is not NULL, passing the crcookie. You

can use this setup function to perform custom service thread configuration that must
be done from the context of the new thread. Typically this is to configure cancellation
preferences, and possibly to associate application thread-specific-data with the
newly-created server thread.

If thr_setup_func() was NULL then a default is applied which will configure the new
thread with pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, NULL) and
pthread_setcanceltype(PTHREAD_CANCEL_DEFERRED, NULL). If the server code is truly
interested in notifications of client aborts during a door invocation then you will need
to provide a thr_setup_func() that does not disable cancellations, and use
pthread_cleanup_push(3C)and pthread_cleanup_pop(3C)as appropriate.

■ Binds the new thread to the door file descriptor using door_bind().
■ Synchronizes with door_xcreate() so that the new server thread is known to have

successfully completed door_bind() before door_xcreate() returns.
■ The number of service threads to create at initial door creation time can be controlled

through the nthread argument to door_xcreate(). The nominated
door_xcreate_server_func_t() will be called nthread times. All nthread new server
threads must be created successfully (thr_create_func() returns 1 for each) and all must
succeed in binding to the new door; if fewer than nthread threads are created, or fewer
than nthread succeed in binding, then door_xcreate() fails and any threads that were
created are made to exit.

No artificial maximum value is imposed on the nthread argument: it may be as high as
system resources and available virtual memory permit. There is a small amount of
additional stack usage in the door_xcreate() stack frame for each thread - up to 16 bytes
in a 64-bit application. If there is unsufficient room to extend the stack for this purpose
then door_xcreate() fails with E2BIG.

The door attributes that can be selected in the call to door_xcreate() are the same as in
door_create(), with DOOR_PRIVATE implied and DOOR_NO_DEPLETION_CB added:

DOOR_PRIVATE

It is not necessary to include this attribute. The door_xcreate() interfaces only creates
private doors.

door_xcreate(3DOOR)

man pages section 3: Realtime Library Functions • Last Revised 19 Apr 201056

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1pthread-cleanup-push-3c
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1pthread-cleanup-pop-3c

DOOR_NO_DEPLETION_CB

Create the initial pool of nthread service threads, but do not perform further callbacks
to the thr_create_func() for this door when the thread pool appears to be depleted at
the start of a new door invocation. This allows you to select a fixed level of concurrency.

Another di_attribute is defined during thread depletion callbacks:

DOOR_DEPLETION_CB

This call to the server thread creation function is the result of a depletion callback. This
attribute is not set when the function is called during initial door_xcreate().

The descriptor returned from door_xcreate() will be marked as close on exec (FD_CLOEXEC).
Information about a door is available for all clients of a door using door_info(3DOOR).
Applications concerned with security should not place secure information in door data that is
accessible by door_info(). In particular, secure data should not be stored in the data item
cookie.

A process can advertise a door in the file system name space using fattach(3C).

A door created with door_xcreate() may be revoked using door_revoke(3DOOR). This
closes the associated file descriptor, and acts as a barrier to further door invocations, but
existing active invocations are not guaranteed to have completed before door_revoke()
returns. Server threads bound to a revoked door do not wakeup or exit automatically when the
door is revoked.

Upon successful completion, door_xcreate() returns a non-negative value. Otherwise,
door_xcreate() returns -1 and sets errno to indicate the error.

The door_xcreate() function will fail if:

E2BIG The requested nthread is too large. A small amount of stack space is required for
each thread we must start and synchronize with. If extending the
door_xcreate() stack by the required amount will exceed the stack bounds then
E2BIG is returned.

EBADF The attempt to door_bind() within the library-provided thread start function
failed.

EINVAL Invalid attributes are passed, nthread is less than 1, or thr_create_func() is
NULL. This is also returned if thr_create_func() returns 0 (no thread creation
attempted) during door_xcreate().

EMFILE The process has too many open descriptors.

ENOMEM Insufficient memory condition while creating the door.

ENOTSUP A door_xcreate() call was attempted from a fork handler.

EPIPE A call to the nominated thr_create_func() returned -1 indicating that
pthread_create() or thr_create() failed.

Return Values

Errors

door_xcreate(3DOOR)

Realtime Library Functions 57

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1fattach-3c

EXAMPLE 1 Create a private door with an initial pool of 10 server threads

Create a private door with an initial pool of 10 server threads. Threads are created with the
minimum required attributes and there is no thread setup function. Use fattach() to
advertise the door in the filesystem namespace.

static pthread_attr_t tattr;

/*

* Simplest possible door_xcreate_server_func_t. Always attempt to

* create a thread, using the previously initialized attributes for

* all threads. We must use the start function and argument provided,

* and make no use of our private mycookie argument.

*/

int

thrcreatefunc(door_info_t *dip, void *(*startf)(void *),

void *startfarg, void *mycookie)

{

if (pthread_create(NULL, &tattr, startf, startfarg) != 0) {

perror("thrcreatefunc: pthread_create");
return (-1);

}

return (1);

}

/*

* Dummy door server procedure - does no processing.

*/

void

door_proc(void *cookie, char *argp, size_t argsz, door_desc_t *descp,

uint_t n)

{

door_return (NULL, 0, NULL, 0);

}

int

main(int argc, char *argv[])

{

struct stat buf;

int did;

/*

* Setup thread attributes - minimum required.

*/

(void) pthread_attr_init(&tattr);

(void) pthread_attr_setdetachstate(&tattr, PTHREAD_CREATE_DETACHED);

(void) pthread_attr_setscope(&tattr, PTHREAD_SCOPE_SYSTEM);

Examples

door_xcreate(3DOOR)

man pages section 3: Realtime Library Functions • Last Revised 19 Apr 201058

EXAMPLE 1 Create a private door with an initial pool of 10 server threads (Continued)

/*

* Create a private door with an initial pool of 10 server threads.

*/

did = door_xcreate(door_proc, NULL, 0, thrcreatefunc, NULL, NULL,

10);

if (did == -1) {

perror("door_xcreate");
exit(1);

}

if (stat(DOORPATH, &buf) < 0) {

int newfd;

if ((newfd = creat(DOORPATH, 0644)) < 0) {

perror("creat");
exit(1);

}

(void) close(newfd);

}

(void) fdetach(DOORPATH);

(void) fdetach(DOORPATH);

if (fattach(did, DOORPATH) < 0) {

perror("fattach");
exit(1);

}

(void) fprintf(stderr, "Pausing in main\n");
(void) pause();

}

EXAMPLE 2 Create a private door with exactly one server thread and no callbacks for additional threads

Create a private door with exactly one server thread and no callbacks for additional threads.
Use a server thread stacksize of 32K, and specify a thread setup function.

#define DOORPATH "/tmp/grmdoor"

static pthread_attr_t tattr;

/*

* Thread setup function - configuration that must be performed from

* the conext of the new thread. The mycookie argument is the

door_xcreate(3DOOR)

Realtime Library Functions 59

EXAMPLE 2 Create a private door with exactly one server thread and no callbacks for additional
threads (Continued)

* second-to-last argument from door_xcreate.

*/

void

thrsetupfunc(void *mycookie)

{

/*

* If a thread setup function is specified it must do the

* following at minimum.

*/

(void) pthread_setcanceltype(PTHREAD_CANCEL_DEFERRED, NULL);

/*

* The default thread setup functions also performs the following

* to disable thread cancellation notifications, so that server

* threads are not cancelled when a client aborts a door call.

* This is not a requirement.

*/

(void) pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, NULL);

/*

* Now we can go on to perform other thread initialization,

* for example to allocate and initialize some thread-specific data

* for this thread; for thread-specific data you can use a

destructor function in pthread_key_create if you want to perform

any actions if/when a door server thread exits.

*/

}

/*

* The door_xcreate_server_func_t we will use for server thread

* creation. The mycookie argument is the second-to-last argument

* from door_xcreate.

*/

int

thrcreatefunc(door_info_t *dip, void *(*startf)(void *),

void *startfarg, void *mycookie)

{

if (pthread_create(NULL, &tattr, startf, startfarg) != 0) {

perror("thrcreatefunc: pthread_create");
return (-1);

}

return (1);

}

door_xcreate(3DOOR)

man pages section 3: Realtime Library Functions • Last Revised 19 Apr 201060

EXAMPLE 2 Create a private door with exactly one server thread and no callbacks for additional
threads (Continued)

/*

* Door procedure. The cookie received here is the second arg to

* door_xcreate.

*/

void

door_proc(void *cookie, char *argp, size_t argsz, door_desc_t *descp,

uint_t n)

{

(void) door_return(NULL, 0, NULL, 0);

}

int

main(int argc, char *argv[])

{

struct stat buf;

int did;

/*

* Configure thread attributes we will use in thrcreatefunc.

* The PTHREAD_CREATE_DETACHED and PTHREAD_SCOPE_SYSTEM are

* required.

*/

(void) pthread_attr_init(&tattr);

(void) pthread_attr_setdetachstate(&tattr, PTHREAD_CREATE_DETACHED);

(void) pthread_attr_setscope(&tattr, PTHREAD_SCOPE_SYSTEM);

(void) pthread_attr_setstacksize(&tattr, 16 * 1024);

/*

* Create a private door with just one server thread and asking for

* no further callbacks on thread pool depletion during an

* invocation.

*/

did = door_xcreate(door_proc, NULL, DOOR_NO_DEPLETION_CB,

thrcreatefunc, thrsetupfunc, NULL, 1);

if (did == -1) {

perror("door_xcreate");
exit(1);

}

if (stat(DOORPATH, &buf) < 0) {

int newfd;

door_xcreate(3DOOR)

Realtime Library Functions 61

EXAMPLE 2 Create a private door with exactly one server thread and no callbacks for additional
threads (Continued)

if ((newfd = creat(DOORPATH, 0644)) < 0) {

perror("creat");
exit(1);

}

(void) close(newfd);

}

(void) fdetach(DOORPATH);

if (fattach(did, DOORPATH) < 0) {

perror("fattach");
exit(1);

}

(void) fprintf(stderr, "Pausing in main\n");
(void) pause();

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture all

Availability SUNWcsu

Interface Stability Committed

MT-Level Safe

door_bind(3DOOR), door_call(3DOOR), door_create(3DOOR), door_info(3DOOR),
door_revoke(3DOOR), door_server_create(3DOOR), fattach(3C), libdoor(3LIB),
pthread_create(3C), pthread_cleanup_pop(3C), pthread_cleanup_push(3C),
thr_create(3C), attributes(5), cancellation(5)

Attributes

See Also

door_xcreate(3DOOR)

man pages section 3: Realtime Library Functions • Last Revised 19 Apr 201062

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1fattach-3c
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN3Flibdoor-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1pthread-create-3c
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1pthread-cleanup-pop-3c
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1pthread-cleanup-push-3c
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1thr-create-3c
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN3Fcancellation-5

fdatasync – synchronize a file's data

cc [flag...] file... -lrt [library...]

#include <unistd.h>

int fdatasync(int fildes);

The fdatasync() function forces all currently queued I/O operations associated with the file
indicated by file descriptor fildes to the synchronized I/O completion state.

The functionality is as described for fsync(3C) (with the symbol _XOPEN_REALTIME defined),
with the exception that all I/O operations are completed as defined for synchronised I/O data
integrity completion.

If successful, the fdatasync() function returns 0. Otherwise, the function returns −1 and sets
errno to indicate the error. If the fdatasync() function fails, outstanding I/O operations are
not guaranteed to have been completed.

The fdatasync() function will fail if:

EBADF The fildes argument is not a valid file descriptor open for writing.

EINVAL The system does not support synchronized I/O for this file.

ENOSYS The function fdatasync() is not supported by the system.

In the event that any of the queued I/O operations fail, fdatasync() returns the error
conditions defined for read(2) and write(2).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Async-Signal-Safe

fcntl(2), open(2), read(2), write(2), fsync(3C), aio_fsync(3RT), fcntl.h(3HEAD),
attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

fdatasync(3RT)

Realtime Library Functions 63

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1fsync-3c
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1fcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1open-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1fsync-3c
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1fcntl.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1standards-5

lio_listio – list directed I/O

cc [flag...] file... -lrt [library...]

#include <aio.h>

int lio_listio(int mode, struct aiocb *restrict const list[], int nent,
struct sigevent *restrict sig);

The lio_listio() function allows the calling process, LWP, or thread, to initiate a list of I/O
requests within a single function call.

The mode argument takes one of the values LIO_WAIT or LIO_NOWAIT declared in <aio.h> and
determines whether the function returns when the I/O operations have been completed, or as
soon as the operations have been queued. If the mode argument is LIO_WAIT, the function
waits until all I/O is complete and the sig argument is ignored.

If the mode argument is LIO_NOWAIT, the function returns immediately, and asynchronous
notification occurs, according to the sig argument, when all the I/O operations complete. If sig
is NULL, or the sigev_signo member of the sigevent structure referenced by sig is zero, then
no asynchronous notification occurs. If sig is not NULL, asynchronous notification occurs
when all the requests in list have completed. If sig–>sigev_notify is SIGEV_NONE, then no
signal will be posted upon I/O completion, but the error status and the return status for the
operation will be set appropriately. If sig–>sigev_notify is SIGEV_SIGNAL, then the signal
specified in sig–>sigev_signo will be sent to the process. If the SA_SIGINFO flag is set for that
signal number, then the signal will be queued to the process and the value specified in
sig–>sigev_value will be the si_value component of the generated signal (see
siginfo.h(3HEAD)). If sig–>sigev_notify is SIGEV_PORT, then upon I/O completion an
event notification will be sent to the event port determined in the port_notify_t structure
addressed by the sival_ptr (see signal.h(3HEAD)).

The I/O requests enumerated by list are submitted in an unspecified order.

The list argument is an array of pointers to aiocb structures. The array contains nent
elements. The array may contain null elements, which are ignored.

The aio_lio_opcode field of each aiocb structure specifies the operation to be performed. The
supported operations are LIO_READ, LIO_WRITE, and LIO_NOP; these symbols are defined in
<aio.h>. The LIO_NOP operation causes the list entry to be ignored. If the aio_lio_opcode
element is equal to LIO_READ, then an I/O operation is submitted as if by a call to
aio_read(3RT) with the aiocbp equal to the address of the aiocb structure. If the
aio_lio_opcode element is equal to LIO_WRITE, then an I/O operation is submitted as if by a call
to aio_write(3RT) with the aiocbp equal to the address of the aiocb structure.

The aio_fildes member specifies the file descriptor on which the operation is to be performed.

The aio_buf member specifies the address of the buffer to or from which the data is to be
transferred.

Name

Synopsis

Description

lio_listio(3RT)

man pages section 3: Realtime Library Functions • Last Revised 20 Oct 200364

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1siginfo.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1signal.h-3head

The aio_nbytes member specifies the number of bytes of data to be transferred.

The members of the aiocb structure further describe the I/O operation to be performed, in a
manner identical to that of the corresponding aiocb structure when used by the
aio_read(3RT) and aio_write(3RT) functions.

The nent argument specifies how many elements are members of the list, that is, the length of
the array.

The behavior of this function is altered according to the definitions of synchronized I/O data
integrity completion and synchronized I/O file integrity completion if synchronized I/O is
enabled on the file associated with aio_fildes. (see fcntl.h(3HEAD) definitions of O_DSYNC
and O_SYNC.)

For regular files, no data transfer will occur past the offset maximum established in the open
file description associated with aiocbp->aio_fildes.

If the mode argument has the value LIO_NOWAIT, and the I/O operations are successfully
queued, lio_listio() returns 0; otherwise, it returns −1, and sets errno to indicate the error.

If the mode argument has the value LIO_WAIT, and all the indicated I/O has completed
successfully, lio_listio() returns 0; otherwise, it returns −1, and sets errno to indicate the
error.

In either case, the return value only indicates the success or failure of the lio_listio() call
itself, not the status of the individual I/O requests. In some cases, one or more of the I/O
requests contained in the list may fail. Failure of an individual request does not prevent
completion of any other individual request. To determine the outcome of each I/O request,
the application must examine the error status associated with each aiocb control block. Each
error status so returned is identical to that returned as a result of an aio_read(3RT) or
aio_write(3RT) function.

The lio_listio() function will fail if:

EAGAIN The resources necessary to queue all the I/O requests were not available.
The error status for each request is recorded in the aio_error member of
the corresponding aiocb structure, and can be retrieved using
aio_error(3RT).

EAGAIN The number of entries indicated by nent would cause the system-wide
limit AIO_MAX to be exceeded.

EINVAL The mode argument is an improper value, or the value of nent is greater
than AIO_LISTIO_MAX.

EINTR A signal was delivered while waiting for all I/O requests to complete
during an LIO_WAIT operation. Note that, since each I/O operation
invoked by lio_listio() may possibly provoke a signal when it

Return Values

Errors

lio_listio(3RT)

Realtime Library Functions 65

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1fcntl.h-3head

completes, this error return may be caused by the completion of one (or
more) of the very I/O operations being awaited. Outstanding I/O
requests are not canceled, and the application can use aio_fsync(3RT)
to determine if any request was initiated; aio_return(3RT) to determine
if any request has completed; or aio_error(3RT) to determine if any
request was canceled.

EIO One or more of the individual I/O operations failed. The application can
use aio_error(3RT) to check the error status for each aiocb structure to
determine the individual request(s) that failed.

ENOSYS The lio_listio() function is not supported by the system.

In addition to the errors returned by the lio_listio() function, if the lio_listio()
function succeeds or fails with errors of EAGAIN, EINTR, or EIO, then some of the I/O specified
by the list may have been initiated. If the lio_listio() function fails with an error code other
than EAGAIN, EINTR, or EIO, no operations from the list have been initiated. The I/O operation
indicated by each list element can encounter errors specific to the individual read or write
function being performed. In this event, the error status for each aiocb control block contains
the associated error code. The error codes that can be set are the same as would be set by a
read(2) or write(2) function, with the following additional error codes possible:

EAGAIN The requested I/O operation was not queued due to resource limitations.

ECANCELED The requested I/O was canceled before the I/O completed due to an
explicit aio_cancel(3RT) request.

EFBIG The aiocbp->aio_lio_opcode is LIO_WRITE, the file is a regular file,
aiocbp->aio_nbytes is greater than 0, and the aiocbp->aio_offset is
greater than or equal to the offset maximum in the open file description
associated with aiocbp->aio_fildes.

EINPROGRESS The requested I/O is in progress.

EOVERFLOW The aiocbp->aio_lio_opcode is LIO_READ, the file is a regular file,
aiocbp->aio_nbytes is greater than 0, and the aiocbp->aio_offset is
before the end-of-file and is greater than or equal to the offset maximum
in the open file description associated with aiocbp->aio_fildes.

The lio_listio() function has a transitional interface for 64-bit file offsets. See lf64(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

Usage

Attributes

lio_listio(3RT)

man pages section 3: Realtime Library Functions • Last Revised 20 Oct 200366

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5

close(2), exec(2), exit(2), fork(2), lseek(2), read(2), write(2), aio_cancel(3RT),
aio_error(3RT), aio_fsync(3RT), aio_read(3RT), aio_return(3RT), aio_write(3RT),
aio.h(3HEAD), fcntl.h(3HEAD), siginfo.h(3HEAD), signal.h(3HEAD),
attributes(5), lf64(5), standards(5)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option. Prior to
this release, this function always returned −1 and set errno to ENOSYS.

See Also

Notes

lio_listio(3RT)

Realtime Library Functions 67

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1fork-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1lseek-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1read-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1write-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1aio.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1fcntl.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1siginfo.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1signal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1lf64-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1standards-5

mq_close – close a message queue

cc [flag...] file... -lrt [library...]

#include <mqueue.h>

int mq_close(mqd_t mqdes);

The mq_close() function removes the association between the message queue descriptor,
mqdes, and its message queue. The results of using this message queue descriptor after
successful return from this mq_close(), and until the return of this message queue descriptor
from a subsequent mq_open(3RT), are undefined.

If the process (or thread) has successfully attached a notification request to the message queue
via this mqdes, this attachment is removed and the message queue is available for another
process to attach for notification.

Upon successful completion, mq_close() returns 0; otherwise, the function returns −1 and
sets errno to indicate the error condition.

The mq_close() function will fail if:

EBADF The mqdes argument is an invalid message queue descriptor.

ENOSYS The mq_open() function is not supported by the system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

mqueue.h(3HEAD), mq_notify(3RT), mq_open(3RT), mq_unlink(3RT), attributes(5),
standards(5)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option. Prior to
this release, this function always returned −1 and set errno to ENOSYS.

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

Notes

mq_close(3RT)

man pages section 3: Realtime Library Functions • Last Revised 28 Jun 200268

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1mqueue.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1standards-5

mq_getattr – get message queue attributes

cc [flag...] file... -lrt [library...]

#include <mqueue.h>

int mq_getattr(mqd_t mqdes, struct mq_attr *mqstat);

The mqdes argument specifies a message queue descriptor. The mq_getattr() function is
used to get status information and attributes of the message queue and the open message
queue description associated with the message queue descriptor. The results are returned in
the mq_attr structure referenced by the mqstat argument.

Upon return, the following members will have the values associated with the open message
queue description as set when the message queue was opened and as modified by subsequent
mq_setattr(3RT) calls:

mq_flags message queue flags

The following attributes of the message queue are returned as set at message queue creation:

mq_maxmsg maximum number of messages

mq_msgsize maximum message size

mq_curmsgs number of messages currently on the queue.

Upon successful completion, the mq_getattr() function returns 0. Otherwise, the function
returns −1 and sets errno to indicate the error.

The mq_getattr() function will fail if:

EBADF The mqdes argument is not a valid message queue descriptor.

ENOSYS The mq_getattr() function is not supported by the system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

msgctl(2), msgget(2), msgrcv(2), msgsnd(2), mqueue.h(3HEAD), mq_open(3RT),
mq_send(3RT), mq_setattr(3RT), attributes(5), standards(5)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option. Prior to
this release, this function always returned −1 and set errno to ENOSYS.

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

Notes

mq_getattr(3RT)

Realtime Library Functions 69

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1msgctl-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1msgget-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1msgrcv-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1msgsnd-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1mqueue.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1standards-5

mq_notify – notify process (or thread) that a message is available on a queue

cc [flag...] file... -lrt [library...]

#include <mqueue.h>

int mq_notify(mqd_t mqdes, const struct sigevent *notification);

The mq_notify() function provides an asynchronous mechanism for processes to receive
notice that messages are available in a message queue, rather than synchronously blocking
(waiting) in mq_receive(3RT).

If notification is not NULL, this function registers the calling process to be notified of message
arrival at an empty message queue associated with the message queue descriptor, mqdes. The
notification specified by notification will be sent to the process when the message queue
transitions from empty to non-empty. At any time, only one process may be registered for
notification by a specific message queue. If the calling process or any other process has already
registered for notification of message arrival at the specified message queue, subsequent
attempts to register for that message queue will fail.

The notification argument points to a structure that defines both the signal to be generated
and how the calling process will be notified upon I/O completion. If
notification->sigev_notify is SIGEV_NONE, then no signal will be posted upon I/O
completion, but the error status and the return status for the operation will be set
appropriately. If notification->sigev_notify is SIGEV_SIGNAL, then the signal specified in
notification->sigev_signo will be sent to the process. If the SA_SIGINFO flag is set for that
signal number, then the signal will be queued to the process and the value specified in
notification->sigev_value will be the si_value component of the generated signal (see
siginfo.h(3HEAD)).

If notification is NULL and the process is currently registered for notification by the specified
message queue, the existing registration is removed. The message queue is then available for
future registration.

When the notification is sent to the registered process, its registration is removed. The
message queue is then be available for registration.

If a process has registered for notification of message arrival at a message queue and some
processes is blocked in mq_receive(3RT) waiting to receive a message when a message arrives
at the queue, the arriving message will be received by the appropriate mq_receive(3RT), and
no notification will be sent to the registered process. The resulting behavior is as if the message
queue remains empty, and this notification will not be sent until the next arrival of a message
at this queue.

Any notification registration is removed if the calling process either closes the message queue
or exits.

Name

Synopsis

Description

mq_notify(3RT)

man pages section 3: Realtime Library Functions • Last Revised 28 Jun 200270

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1siginfo.h-3head

Upon successful completion, mq_notify() returns 0; otherwise, it returns −1 and sets errno
to indicate the error.

The mq_notify() function will fail if:

EBADF The mqdes argument is not a valid message queue descriptor.

EBUSY A process is already registered for notification by the message queue.

ENOSYS The mq_notify() function is not supported by the system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

mqueue.h(3HEAD), siginfo.h(3HEAD), signal.h(3HEAD), mq_close(3RT),
mq_open(3RT), mq_receive(3RT), mq_send(3RT), attributes(5), standards(5)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option. Prior to
this release, this function always returned −1 and set errno to ENOSYS.

Return Values

Errors

Attributes

See Also

Notes

mq_notify(3RT)

Realtime Library Functions 71

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1mqueue.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1siginfo.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1signal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1standards-5

mq_open – open a message queue

cc [flag...] file... -lrt [library...]

#include <mqueue.h>

mqd_t mq_open(const char *name, int oflag,
/* unsigned long mode, mq_attr attr */ ...);

The mq_open() function establishes the connection between a process and a message queue
with a message queue descriptor. It creates a open message queue description that refers to the
message queue, and a message queue descriptor that refers to that open message queue
description. The message queue descriptor is used by other functions to refer to that message
queue.

The name argument points to a string naming a message queue. The name argument must
conform to the construction rules for a path-name. If name is not the name of an existing
message queue and its creation is not requested, mq_open() fails and returns an error. The first
character of name must be a slash (/) character and the remaining characters of name cannot
include any slash characters. For maximum portability, name should include no more than 14
characters, but this limit is not enforced.

The oflag argument requests the desired receive and/or send access to the message queue. The
requested access permission to receive messages or send messages is granted if the calling
process would be granted read or write access, respectively, to a file with the equivalent
permissions.

The value of oflag is the bitwise inclusive OR of values from the following list. Applications
must specify exactly one of the first three values (access modes) below in the value of oflag:

O_RDONLY Open the message queue for receiving messages. The process can use the
returned message queue descriptor with mq_receive(3RT), but not
mq_send(3RT). A message queue may be open multiple times in the same or
different processes for receiving messages.

O_WRONLY Open the queue for sending messages. The process can use the returned
message queue descriptor with mq_send(3RT) but not mq_receive(3RT). A
message queue may be open multiple times in the same or different processes
for sending messages.

O_RDWR Open the queue for both receiving and sending messages. The process can use
any of the functions allowed for O_RDONLY and O_WRONLY. A message queue may
be open multiple times in the same or different processes for sending messages.

Any combination of the remaining flags may additionally be specified in the value of oflag:

O_CREAT This option is used to create a message queue, and it requires two additional
arguments: mode, which is of type mode_t, and attr, which is pointer to a
mq_attr structure. If the pathname, name, has already been used to create a

Name

Synopsis

Description

mq_open(3RT)

man pages section 3: Realtime Library Functions • Last Revised 28 Jun 200272

message queue that still exists, then this flag has no effect, except as noted
under O_EXCL (see below). Otherwise, a message queue is created without
any messages in it.

The user ID of the message queue is set to the effective user ID of process,
and the group ID of the message queue is set to the effective group ID of the
process. The file permission bits are set to the value of mode, and modified by
clearing all bits set in the file mode creation mask of the process (see
umask(2)).

If attr is non-NULL and the calling process has the appropriate privilege on
name, the message queue mq_maxmsg and mq_msgsize attributes are set to
the values of the corresponding members in the mq_attr structure referred
to by attr. If attr is non-NULL, but the calling process does not have the
appropriate privilege on name, the mq_open() function fails and returns an
error without creating the message queue.

O_EXCL If both O_EXCL and O_CREAT are set, mq_open() will fail if the message queue
name exists. The check for the existence of the message queue and the
creation of the message queue if it does not exist are atomic with respect to
other processes executing mq_open() naming the same name with both
O_EXCL and O_CREAT set. If O_EXCL and O_CREAT are not set, the result is
undefined.

O_NONBLOCK The setting of this flag is associated with the open message queue description
and determines whether a mq_send(3RT) or mq_receive(3RT) waits for
resources or messages that are not currently available, or fails with errno set
to EAGAIN. See mq_send(3RT) and mq_receive(3RT) for details.

Upon successful completion, mq_open() returns a message queue descriptor; otherwise the
function returns (mqd_t)−1 and sets errno to indicate the error condition.

The mq_open() function will fail if:

EACCES The message queue exists and the permissions specified by oflag are
denied, or the message queue does not exist and permission to create the
message queue is denied.

EEXIST O_CREAT and O_EXCL are set and the named message queue already exists.

EINTR The mq_open() operation was interrupted by a signal.

EINVAL The mq_open() operation is not supported for the given name, or O_CREAT
was specified in oflag, the value of attr is not NULL, and either mq_maxmsg
or mq_msgsize was less than or equal to zero.

Return Values

Errors

mq_open(3RT)

Realtime Library Functions 73

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1umask-2

EMFILE The number of open message queue descriptors in this process exceeds
MQ_OPEN_MAX, of the number of open file descriptors in this process
exceeds OPEN_MAX.

ENAMETOOLONG The length of the name string exceeds PATH_MAX, or a pathname
component is longer than NAME_MAX while _POSIX_NO_TRUNC is in effect.

ENFILE Too many message queues are currently open in the system.

ENOENT O_CREAT is not set and the named message queue does not exist.

ENOSPC There is insufficient space for the creation of the new message queue.

ENOSYS The mq_open() function is not supported by the system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

exec(2), exit(2), umask(2), sysconf(3C), mqueue.h(3HEAD), mq_close(3RT),
mq_receive(3RT), mq_send(3RT), mq_setattr(3RT), mq_unlink(3RT), attributes(5),
standards(5)

Due to the manner in which message queues are implemented, they should not be considered
secure and should not be used in security-sensitive applications.

Solaris 2.6 was the first release to support the Asynchronous Input and Output option. Prior to
this release, this function always returned −1 and set errno to ENOSYS.

Attributes

See Also

Notes

mq_open(3RT)

man pages section 3: Realtime Library Functions • Last Revised 28 Jun 200274

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1umask-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1sysconf-3c
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1mqueue.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1standards-5

mq_receive, mq_timedreceive, mq_reltimedreceive_np – receive a message from a message
queue

cc [flag...] file... -lrt [library...]

#include <mqueue.h>

ssize_t mq_receive(mqd_t mqdes, char *msg_ptr, size_t msg_len,
unsigned *msg_prio);

#include <mqueue.h>

#include <time.h>

ssize_t mq_timedreceive(mqd_t mqdes, char *restrict msg_ptr,
size_t msg_len, unsigned *restrict msg_prio,
const struct timespec *restrict abs_timeout);

ssize_t mq_reltimedreceive_np(mqd_t mqdes,
char *restrict msg_ptr, size_t msg_len,
unsigned *restrict msg_prio,
const struct timespec *restrict rel_timeout);

The mq_receive() function receives the oldest of the highest priority message(s) from the
message queue specified by mqdes. If the size of the buffer in bytes, specified by msg_len, is less
than the mq_msgsize member of the message queue, the function fails and returns an error.
Otherwise, the selected message is removed from the queue and copied to the buffer pointed
to by msg_ptr.

If the value of msg_len is greater than {SSIZE_MAX}, the result is implementation-defined.

If msg_prio is not NULL, the priority of the selected message is stored in the location referenced
by msg_prio.

If the specified message queue is empty and O_NONBLOCK is not set in the message queue
description associated with mqdes, (see mq_open(3RT) and mq_setattr(3RT)), mq_receive()
blocks, waiting until a message is enqueued on the message queue, or until mq_receive() is
interrupted by a signal. If more than one process (or thread) is waiting to receive a message
when a message arrives at an empty queue, then the process of highest priority that has been
waiting the longest is selected to receive the message. If the specified message queue is empty
and O_NONBLOCK is set in the message queue description associated with mqdes, no message is
removed from the queue, and mq_receive() returns an error.

The mq_timedreceive() function receives the oldest of the highest priority messages from the
message queue specified by mqdes as described for the mq_receive() function. However, if
O_NONBLOCK was not specified when the message queue was opened with the mq_open(3RT)
function, and no message exists on the queue to satisfy the receive, the wait for such a message
is terminated when the specified timeout expires. If O_NONBLOCK is set, this function is
equivalent to mq_receive().

Name

Synopsis

Description

mq_receive(3RT)

Realtime Library Functions 75

The mq_reltimedreceive_np() function is identical to the mq_timedreceive() function,
except that the timeout is specified as a relative time interval.

For mq_timedreceive(), the timeout expires when the absolute time specified by abs_timeout
passes, as measured by the CLOCK_REALTIME clock (that is, when the value of that clock equals
or exceeds abs_timeout), or if the absolute time specified by abs_timeout has already been
passed at the time of the call.

For mq_reltimedreceive_np(), the timeout expires when the time interval specified by
rel_timeout passes, as measured by the CLOCK_REALTIME clock, or if the time interval specified
by rel_timeout is negative at the time of the call.

The resolution of the timeout is the resolution of the CLOCK_REALTIME clock. The timespec
argument is defined in the <time.h> header.

Under no circumstance does the operation fail with a timeout if a message can be removed
from the message queue immediately. The validity of the timeout parameter need not be
checked if a message can be removed from the message queue immediately.

Upon successful completion, mq_receive(), mq_timedreceive(), and
mq_reltimedreceive_np() return the length of the selected message in bytes and the message
is removed from the queue. Otherwise, no message is removed from the queue, the functions
return a value of −1, and sets errno to indicate the error condition.

The mq_receive(), mq_timedreceive(), and mq_reltimedreceive_np() functions will fail
if:

EAGAIN O_NONBLOCK was set in the message description associated with mqdes, and the
specified message queue is empty.

EBADF The mqdes argument is not a valid message queue descriptor open for reading.

EINTR The function was interrupted by a signal.

EINVAL The process or thread would have blocked, and the timeout parameter specified
a nanoseconds field value less than zero or greater than or equal to 1,000
million.

EMSGSIZE The specified message buffer size, msg_len, is less than the message size
member of the message queue.

ETIMEDOUT The O_NONBLOCK flag was not set when the message queue was opened, but no
message arrived on the queue before the specified timeout expired.

The mq_receive(), mq_timedreceive(), and mq_reltimedreceive_np() functions may fail
if:

EBADMSG A data corruption problem with the message has been detected.

Return Values

Errors

mq_receive(3RT)

man pages section 3: Realtime Library Functions • Last Revised 30 Jan 200476

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability See below.

MT-Level MT-Safe

The mq_receive() and mq_timedreceive() functions are Standard. The
mq_reltimedreceive_np() function is Stable.

mqueue.h(3HEAD), mq_open(3RT), mq_send(3RT), mq_setattr(3RT), attributes(5),
standards(5)

Attributes

See Also

mq_receive(3RT)

Realtime Library Functions 77

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1mqueue.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1standards-5

mq_send, mq_timedsend, mq_reltimedsend_np – send a message to a message queue

cc [flag...] file... -lrt [library...]

#include <mqueue.h>

int mq_send(mqd_t mqdes, const char *msg_ptr, size_t msg_len,
unsigned msg_prio);

#include <mqueue.h>

#include <time.h>

int mq_timedsend(mqd_t mqdes, const char *msg_ptr,
size_t msg_len, unsigned msg_prio,
const struct timespec *restrict abs_timeout);

int mq_reltimedsend_np(mqd_t mqdes, const char *msg_ptr,
size_t msg_len, unsigned msg_prio,
const struct timespec *restrict rel_timeout);

The mq_send() function adds the message pointed to by the argument msg_ptr to the message
queue specified by mqdes. The msg_len argument specifies the length of the message in bytes
pointed to by msg_ptr. The value of msg_len is less than or equal to the mq_msgsize attribute of
the message queue, or mq_send() fails.

If the specified message queue is not full, mq_send() behaves as if the message is inserted into
the message queue at the position indicated by the msg_prio argument. A message with a
larger numeric value of msg_prio is inserted before messages with lower values of msg_prio. A
message will be inserted after other messages in the queue, if any, with equal msg_prio. The
value of msg_prio must be greater than zero and less than or equal to MQ_PRIO_MAX.

If the specified message queue is full and O_NONBLOCK is not set in the message queue
description associated with mqdes (see mq_open(3RT) and mq_setattr(3RT)), mq_send()
blocks until space becomes available to enqueue the message, or until mq_send() is
interrupted by a signal. If more than one thread is waiting to send when space becomes
available in the message queue, then the thread of the highest priority which has been waiting
the longest is unblocked to send its message. Otherwise, it is unspecified which waiting thread
is unblocked. If the specified message queue is full and O_NONBLOCK is set in the message queue
description associated with mqdes, the message is not queued and mq_send() returns an error.

The mq_timedsend() function adds a message to the message queue specified by mqdes in the
manner defined for the mq_send() function. However, if the specified message queue is full
and O_NONBLOCK is not set in the message queue description associated with mqdes, the wait
for sufficient room in the queue is terminated when the specified timeout expires. If
O_NONBLOCK is set in the message queue description, this function is equivalent to mq_send().

The mq_reltimedsend_np() function is identical to the mq_timedsend() function, except that
the timeout is specified as a relative time interval.

Name

Synopsis

Description

mq_send(3RT)

man pages section 3: Realtime Library Functions • Last Revised 30 Jan 200478

For mq_timedsend(), the timeout expires when the absolute time specified by abs_timeout
passes, as measured by the CLOCK_REALTIME clock (that is, when the value of that clock equals
or exceeds abs_timeout), or if the absolute time specified by abs_timeout has already been
passed at the time of the call.

For mq_reltimedsend_np(), the timeout expires when the time interval specified by
rel_timeout passes, as measured by the CLOCK_REALTIME clock, or if the time interval specified
by rel_timeout is negative at the time of the call.

The resolution of the timeout is the resolution of the CLOCK_REALTIME clock. The timespec
argument is defined in the <time.h> header.

Under no circumstance does the operation fail with a timeout if there is sufficient room in the
queue to add the message immediately. The validity of the timeout parameter need not be
checked when there is sufficient room in the queue.

Upon successful completion, mq_send(), mq_timedsend(), and mq_reltimedsend_np()

return 0. Otherwise, no message is enqueued, the functions return −1, and errno is set to
indicate the error.

The mq_send(), mq_timedsend(), and mq_reltimedsend_np() functions will fail if:

EAGAIN The O_NONBLOCK flag is set in the message queue description associated with
mqdes, and the specified message queue is full.

EBADF The mqdes argument is not a valid message queue descriptor open for writing.

EINTR A signal interrupted the function call.

EINVAL The value of msg_prio was outside the valid range.

EINVAL The process or thread would have blocked, and the timeout parameter specified
a nanoseconds field value less than zero or greater than or equal to 1,000
million.

EMSGSIZE The specified message length, msg_len, exceeds the message size attribute of the
message queue.

ETIMEDOUT The O_NONBLOCK flag was not set when the message queue was opened, but the
timeout expired before the message could be added to the queue.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability See below.

MT-Level MT-Safe

Return Values

Errors

Attributes

mq_send(3RT)

Realtime Library Functions 79

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5

The mq_send() and mq_timedsend() functions are Standard. The mq_reltimedsend_np()
function is Stable.

sysconf(3C), mqueue.h(3HEAD), mq_open(3RT), mq_receive(3RT), mq_setattr(3RT),
attributes(5), standards(5)

See Also

mq_send(3RT)

man pages section 3: Realtime Library Functions • Last Revised 30 Jan 200480

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1sysconf-3c
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1mqueue.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1standards-5

mq_setattr – set/get message queue attributes

cc [flag...] file... -lrt [library...]

#include <mqueue.h>

int mq_setattr(mqd_t mqdes, const struct mq_attr *mqstat,
struct mq_attr *omqstat);

The mq_setattr() function is used to set attributes associated with the open message queue
description referenced by the message queue descriptor specified by mqdes.

The message queue attributes corresponding to the following members defined in the mq_attr
structure are set to the specified values upon successful completion of mq_setattr():

mq_flags The value of this member is either 0 or O_NONBLOCK.

The values of mq_maxmsg, mq_msgsize, and mq_curmsgs are ignored by mq_setattr().

If omqstat is non-NULL, mq_setattr() stores, in the location referenced by omqstat, the
previous message queue attributes and the current queue status. These values are the same as
would be returned by a call to mq_getattr() at that point.

Upon successful completion, mq_setattr() returns 0 and the attributes of the message queue
will have been changed as specified. Otherwise, the message queue attributes are unchanged,
and the function returns −1 and sets errno to indicate the error.

The mq_setattr() function will fail if:

EBADF The mqdes argument is not a valid message queue descriptor.

ENOSYS The mq_setattr() function is not supported by the system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

msgctl(2), msgget(2), msgrcv(2), msgsnd(2), mq_getattr(3RT), mq_open(3RT),
mq_receive(3RT), mq_send(3RT), mqueue.h(3HEAD), attributes(5), standards(5)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option. Prior to
this release, this function always returned −1 and set errno to ENOSYS.

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

Notes

mq_setattr(3RT)

Realtime Library Functions 81

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1msgctl-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1msgget-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1msgrcv-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1msgsnd-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1mqueue.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1standards-5

mq_unlink – remove a message queue

cc [flag...] file... -lrt [library...]

#include <mqueue.h>

int mq_unlink(const char *name);

The mq_unlink() function removes the message queue named by the pathname name. After a
successful call to mq_unlink() with name, a call to mq_open(3RT) with name fails if the flag
O_CREAT is not set in flags. If one or more processes have the message queue open when
mq_unlink() is called, destruction of the message queue is postponed until all references to
the message queue have been closed. Calls to mq_open(3RT) to re-create the message queue
may fail until the message queue is actually removed. However, the mq_unlink() call need not
block until all references have been closed; it may return immediately.

Upon successful completion, mq_unlink() returns 0; otherwise, the named message queue is
not changed by this function call, the function returns −1 and sets errno to indicate the error.

The mq_unlink() function will fail if:

EACCES Permission is denied to unlink the named message queue.

ENAMETOOLONG The length of the name string exceeds PATH_MAX, or a pathname
component is longer than NAME_MAX while _POSIX_NO_TRUNC is in effect.

ENOENT The named message queue, name, does not exist.

ENOSYS mq_unlink() is not supported by the system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

mqueue.h(3HEAD), mq_close(3RT), mq_open(3RT), attributes(5), standards(5)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option. Prior to
this release, this function always returned −1 and set errno to ENOSYS.

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

Notes

mq_unlink(3RT)

man pages section 3: Realtime Library Functions • Last Revised 28 Jun 200282

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1mqueue.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1standards-5

nanosleep – high resolution sleep

cc [flag...] file... -lrt [library...]

#include <time.h>

int nanosleep(const struct timespec *rqtp,
struct timespec *rmtp);

The nanosleep() function causes the current thread to be suspended from execution until
either the time interval specified by the rqtp argument has elapsed or a signal is delivered to the
calling thread and its action is to invoke a signal-catching function or to terminate the process.
The suspension time may be longer than requested because the argument value is rounded up
to an integer multiple of the sleep resolution or because of the scheduling of other activity by
the system. But, except for the case of being interrupted by a signal, the suspension time will
not be less than the time specified by rqtp, as measured by the system clock, CLOCK_REALTIME.

The use of the nanosleep() function has no effect on the action or blockage of any signal.

If the nanosleep() function returns because the requested time has elapsed, its return value is
0.

If the nanosleep() function returns because it has been interrupted by a signal, the function
returns a value of −1 and sets errno to indicate the interruption. If the rmtp argument is
non-NULL, the timespec structure referenced by it is updated to contain the amount of time
remaining in the interval (the requested time minus the time actually slept). If the rmtp
argument is NULL, the remaining time is not returned.

If nanosleep() fails, it returns −1 and sets errno to indicate the error.

The nanosleep() function will fail if:

EINTR The nanosleep() function was interrupted by a signal.

EINVAL The rqtp argument specified a nanosecond value less than zero or greater than or
equal to 1000 million.

ENOSYS The nanosleep() function is not supported by this implementation.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

Name

Synopsis

Description

Return Values

Errors

Attributes

nanosleep(3RT)

Realtime Library Functions 83

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5

sleep(3C), time.h(3HEAD), attributes(5), standards(5)See Also

nanosleep(3RT)

man pages section 3: Realtime Library Functions • Last Revised 28 Jun 200284

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1sleep-3c
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1time.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1standards-5

proc_service – process service interfaces

#include <proc_service.h>

ps_err_e ps_pdmodel(struct ps_prochandle *ph,
int *data_model);

ps_err_e ps_pglobal_lookup(struct ps_prochandle *ph,
const char *object_name, const char *sym_name,
psaddr_t *sym_addr);

ps_err_e ps_pglobal_sym(struct ps_prochandle *ph,
const char *object_name, const char *sym_name,
ps_sym_t *sym);

ps_err_e ps_pread(struct ps_prochandle *ph, psaddr_t addr,
void *buf, size_t size);

ps_err_e ps_pwrite(struct ps_prochandle *ph, psaddr_t addr,
const void *buf, size_t size);

ps_err_e ps_pdread(struct ps_prochandle *ph, psaddr_t addr,
void *buf, size_t size);

ps_err_e ps_pdwrite(struct ps_prochandle *ph, psaddr_t addr,
const void *buf, size_t size);

ps_err_e ps_ptread(struct ps_prochandle *ph, psaddr_t addr,
void *buf, size_t size);

ps_err_e ps_ptwrite(struct ps_prochandle *ph, psaddr_t addr,
const void *buf, size_t size);

ps_err_e ps_pstop(struct ps_prochandle *ph);

ps_err_e ps_pcontinue(struct ps_prochandle *ph);

ps_err_e ps_lstop(struct ps_prochandle *ph, lwpid_t lwpid);

ps_err_e ps_lcontinue(struct ps_prochandle *ph, lwpid_t lwpid);

ps_err_e ps_lgetregs(struct ps_prochandle *ph, lwpid_t lwpid,
prgregset_t gregset);

ps_err_e ps_lsetregs(struct ps_prochandle *ph, lwpid_t lwpid,
const prgregset_t gregset);

ps_err_e ps_lgetfpregs(struct ps_prochandle *ph, lwpid_t lwpid,
prfpregset_t *fpregset);

ps_err_e ps_lsetfpregs(struct ps_prochandle *ph, lwpid_t lwpid,
const prfpregset_t *fpregset);

ps_err_e ps_pauxv(struct ps_prochandle *ph,
const auxv_t **auxp);

ps_err_e ps_kill(struct ps_prochandle *ph, int sig);

Name

Synopsis

proc_service(3PROC)

Realtime Library Functions 85

ps_err_e ps_lrolltoaddr(struct ps_prochandle *ph,
lwpid_t lwpid, psaddr_t go_addr, psaddr_t stop_addr);

void ps_plog(const char *fmt);

ps_err_e ps_lgetxregsize(struct ps_prochandle *ph,
lwpid_t lwpid, int *xregsize);

ps_err_e ps_lgetxregs(struct ps_prochandle *ph,
lwpid_t lwpid, caddr_t xregset);

ps_err_e ps_lsetxregs(struct ps_prochandle *ph,
lwpid_t lwpid, caddr_t xregset);

ps_err_e ps_lgetLDT(struct ps_prochandle *ph, lwpid_t lwpid,
struct ssd *ldt);

Every program that links libthread_db or librtld_db must provide a set of process control
primitives that allow libthread_db and librtld_db to access memory and registers in the
target process, to start and to stop the target process, and to look up symbols in the target
process. See libc_db(3LIB). For information on librtld_db, refer to the Linker and Libraries
Guide.

Refer to the individual reference manual pages that describe these routines for a functional
specification that clients of libthread_db and librtld_db can use to implement this required
interface. The <proc_service.h> header lists the C declarations of these routines.

ps_pdmodel() Returns the data model of the target process.

ps_pglobal_lookup() Looks up the symbol in the symbol table of the load object in the
target process and returns its address.

ps_pglobal_sym() Looks up the symbol in the symbol table of the load object in the
target process and returns its symbol table entry.

ps_pread() Copies size bytes from the target process to the controlling
process.

ps_pwrite() Copies size bytes from the controlling process to the target
process.

ps_pdread() Identical to ps_pread().

ps_pdwrite() Identical to ps_pwrite().

ps_ptread() Identical to ps_pread().

ps_ptwrite() Identical to ps_pwrite().

ps_pstop() Stops the target process.

ps_pcontinue() Resumes target process.

x86

Description

Functions

proc_service(3PROC)

man pages section 3: Realtime Library Functions • Last Revised 13 Sep 201086

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1libc-db-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=LLM
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=LLM

ps_lstop() Stops a single lightweight process (LWP) within the target
process.

ps_lcontinue() Resumes a single LWP within the target process.

ps_lgetregs() Gets the general registers of the LWP.

ps_lsetregs() Sets the general registers of the LWP.

ps_lgetfpregs() Gets the LWP‘s floating point register set.

ps_lsetfpregs() Sets the LWP‘s floating point register set.

ps_pauxv() Returns a pointer to a read-only copy of the target process's
auxiliary vector.

ps_kill() Sends signal to target process.

ps_lrolltoaddr() Rolls the LWP out of a critical section when the process is stopped.

ps_plog() Logs a message.

ps_lgetxregsize() Returns the size of the architecture-dependent extra state
registers.

ps_lgetxregs() Gets the extra state registers of the LWP.

ps_lsetxregs() Sets the extra state registers of the LWP.

ps_lgetLDT() Reads the local descriptor table of the LWP.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

libc_db(3LIB), librtld_db(3LIB), ps_pread(3PROC), rtld_db(3EXT), attributes(5)

Linker and Libraries Guide

x86

Attributes

See Also

proc_service(3PROC)

Realtime Library Functions 87

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1libc-db-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1librtld-db-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1rtld-db-3ext
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=LLM

ps_lgetregs, ps_lsetregs, ps_lgetfpregs, ps_lsetfpregs, ps_lgetxregsize, ps_lgetxregs,
ps_lsetxregs – routines that access the target process register in libthread_db

#include <proc_service.h>

ps_err_e ps_lgetregs(struct ps_prochandle *ph, lwpid_t lid,
prgregset_t gregset);

ps_err_e ps_lsetregs(struct ps_prochandle *ph, lwpid_t lid,
static prgregset_t gregset);

ps_err_e ps_lgetfpregs(struct ps_prochandle *ph, lwpid_t lid,
prfpregset_t *fpregs);

ps_err_e ps_lsetfpregs(struct ps_prochandle *ph, lwpid_t lid,
static prfpregset_t *fpregs);

ps_err_e ps_lgetxregsize(struct ps_prochandle *ph, lwpid_t lid,
int *xregsize);

ps_err_e ps_lgetxregs(struct ps_prochandle *ph, lwpid_t lid,
caddr_t xregset);

ps_err_e ps_lsetxregs(struct ps_prochandle *ph, lwpid_t lid,
caddr_t xregset);

ps_lgetregs(), ps_lsetregs(), ps_lgetfpregs(), ps_lsetfpregs(), ps_lgetxregsize(),
ps_lgetxregs(), ps_lsetxregs() read and write register sets from lightweight processes
(LWPs) within the target process identified by ph. ps_lgetregs() gets the general registers of
the LWP identified by lid, and ps_lsetregs() sets them. ps_lgetfpregs() gets the LWP's
floating point register set, while ps_lsetfpregs() sets it.

ps_lgetxregsize(), ps_lgetxregs(), and ps_lsetxregs() are system dependent.
ps_lgetxregsize() returns in *xregsize the size of the architecture-dependent extra state
registers. ps_lgetxregs() gets the extra state registers, and ps_lsetxregs() sets them. On
systems that do not support extra state registers, these functions will return PS_NOXREGS.

PS_OK The call returned successfully.

PS_NOFPREGS Floating point registers are neither available for this architecture nor for this
process.

PS_NOXREGS Extra state registers are not available on this system.

PS_ERR The function did not return successfully.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

Name

Synopsis

Description

Return Values

Attributes

ps_lgetregs(3PROC)

man pages section 3: Realtime Library Functions • Last Revised 13 Sep 201088

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5

libc_db(3LIB), proc_service(3PROC), attributes(5), threads(5)See Also

ps_lgetregs(3PROC)

Realtime Library Functions 89

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1libc-db-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1threads-5

ps_pglobal_lookup, ps_pglobal_sym – look up a symbol in the symbol table of the load object
in the target process

#include <proc_service.h>

ps_err_e ps_pglobal_lookup(struct ps_prochandle *ph,
const char *object_name, const char *sym_name,
psaddr_t *sym_addr);

ps_err_e ps_pglobal_sym(struct ps_prochandle *ph,
const char *object_name, const char *sym_name,
ps_sym_t *sym);

ps_pglobal_lookup() looks up the symbol sym_name in the symbol table of the load object
object_name in the target process identified by ph. It returns the symbol's value as an address
in the target process in *sym_addr.

ps_pglobal_sym() looks up the symbol sym_name in the symbol table of the load object
object_name in the target process identified by ph. It returns the symbol table entry in *sym.
The value in the symbol table entry is the symbol's value as an address in the target process.

PS_OK The call completed successfully.

PS_NOSYM The specified symbol was not found.

PS_ERR The function did not return successfully.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

kill(2), libc_db(3LIB), proc_service(3PROC), attributes(5), threads(5)

Name

Synopsis

Description

Return Values

Attributes

See Also

ps_pglobal_lookup(3PROC)

man pages section 3: Realtime Library Functions • Last Revised 16 Jan 199890

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1kill-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1libc-db-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1threads-5

ps_pread, ps_pwrite, ps_pdread, ps_pdwrite, ps_ptread, ps_ptwrite – interfaces in
libthread_db that target process memory access

#include <proc_service.h>

ps_err_e ps_pread(struct ps_prochandle *ph, psaddr_t addr,
void *buf, size_t size);

ps_err_e ps_pwrite(struct ps_prochandle *ph, psaddr_t addr,
const void *buf, size_t size);

ps_err_e ps_pdread(struct ps_prochandle *ph, psaddr_t addr,
void *buf, size_t size);

ps_err_e ps_pdwrite(struct ps_prochandle *ph, psaddr_t addr,
const void *buf, size_t size);

ps_err_e ps_ptread(struct ps_prochandle *ph, psaddr_t addr,
void *buf, size_t size);

ps_err_e ps_ptwrite(struct ps_prochandle *ph, psaddr_t addr,
const void *buf, size_t size);

These routines copy data between the target process's address space and the controlling
process. ps_pread() copies size bytes from address addr in the target process into buf in the
controlling process. pr_pwrite() is like ps_pread() except that the direction of the copy is
reversed; data is copied from the controlling process to the target process.

ps_pdread() and ps_ptread() behave identically to ps_pread(). ps_pdwrite() and
ps_ptwrite() behave identically to ps_pwrite(). These functions can be implemented as
simple aliases for the corresponding primary functions. They are artifacts of history that must
be maintained.

PS_OK The call returned successfully. size bytes were copied.

PS_BADADDR Some part of the address range from addr through addr+size−1 is not part of
the target process's address space.

PS_ERR The function did not return successfully.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

libc_db(3LIB), librtld_db(3LIB), proc_service(3PROC), rtld_db(3EXT),
attributes(5), threads(5)

Name

Synopsis

Description

Return Values

Attributes

See Also

ps_pread(3PROC)

Realtime Library Functions 91

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1libc-db-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1librtld-db-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1rtld-db-3ext
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1threads-5

ps_pstop, ps_pcontinue, ps_lstop, ps_lcontinue, ps_lrolltoaddr, ps_kill – process and LWP
control in libthread_db

#include <proc_service.h>

ps_err_e ps_pstop(struct ps_prochandle *ph);

ps_err_e ps_pcontinue(struct ps_prochandle *ph);

ps_err_e ps_lstop(struct ps_prochandle *ph, lwpid_t lwpid);

ps_err_e ps_lcontinue(struct ps_prochandle *ph,
lwpid_t lwpid);

ps_err_e ps_lrolltoaddr(struct ps_prochandle *ph,
lwpid_t lwpid, psaddr_t go_addr, psaddr_t stop_addr);

ps_err_e ps_kill(struct ps_prochandle *ph, int signum);

The ps_pstop() function stops the target process identified by ph, while the ps_pcontinue()
function allows it to resume.

The libthread_db() function uses ps_pstop() to freeze the target process while it is under
inspection. Within the scope of any single call from outside libthread_db to a libthread_db
routine, libthread_db will call ps_pstop(), at most once. If it does, it will call
ps_pcontinue() within the scope of the same routine.

The controlling process may already have stopped the target process when it calls
libthread_db. In that case, it is not obligated to resume the target process when
libthread_db calls ps_pcontinue(). In other words, ps_pstop() is mandatory, while
ps_pcontinue() is advisory. After ps_pstop(), the target process must be stopped; after
ps_pcontinue(), the target process may be running.

The ps_lstop() and ps_lcontinue() functions stop and resume a single lightweight process
(LWP) within the target process ph.

The ps_lrolltoaddr() function is used to roll an LWP forward out of a critical section when
the process is stopped. It is also used to run the libthread_db agent thread on behalf of
libthread. The ps_lrolltoaddr() function is always called with the target process stopped,
that is, there has been a preceding call to ps_pstop(). The specified LWP must be continued at
the address go_addr, or at its current address if go_addr is NULL. It should then be stopped
when its execution reaches stop_addr. This routine does not return until the LWP has stopped
at stop_addr.

The ps_kill() function directs the signal signum to the target process for which the handle is
ph. It has the same semantics as kill(2).

Name

Synopsis

Description

ps_pstop(3PROC)

man pages section 3: Realtime Library Functions • Last Revised 22 Mar 200192

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1kill-2

PS_OK The call completed successfully. In the case of ps_pstop(), the target process
is stopped.

PS_BADLID For ps_lstop(), ps_lcontinue() and ps_lrolltoaddr(); there is no LWP
with id lwipd in the target process.

PS_ERR The function did not return successfully.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

kill(2), libc_db(3LIB), proc_service(3PROC), attributes(5), threads(5)

Return Values

Attributes

See Also

ps_pstop(3PROC)

Realtime Library Functions 93

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1kill-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1libc-db-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1threads-5

sched_getparam – get scheduling parameters

cc [flag...] file... -lrt [library...]

#include <sched.h>

int sched_getparam(pid_t pid, struct sched_param *param);

The sched_getparam() function returns the scheduling parameters of a process specified by
pid in the sched_param structure pointed to by param.

If a process specified by pid exists and if the calling process has permission, the scheduling
parameters for the process whose process ID is equal to pid will be returned.

If pid is 0, the scheduling parameters for the calling process will be returned. The behavior of
the sched_getparam() function is unspecified if the value of pid is negative.

Upon successful completion, the sched_getparam() function returns 0. If the call to
sched_getparam() is unsuccessful, the function returns −1 and sets errno to indicate the
error.

The sched_getparam() function will fail if:

ENOSYS The sched_getparam() function is not supported by the system.

EPERM The requesting process does not have permission to obtain the scheduling
parameters of the specified process.

ESRCH No process can be found corresponding to that specified by pid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

librt(3LIB), sched.h(3HEAD), sched_getscheduler(3RT), sched_setparam(3RT),
sched_setscheduler(3RT), attributes(5)

Solaris 2.6 was the first release to support libposix4/librt. Prior to this release, this function
always returned −1 and set errno to ENOSYS.

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

Notes

sched_getparam(3RT)

man pages section 3: Realtime Library Functions • Last Revised 5 Oct 200194

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1librt-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1sched.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5

sched_get_priority_max, sched_get_priority_min – get scheduling parameter limits

cc [flag...] file... -lrt [library...]

#include <sched.h>

int sched_get_priority_max(int policy);

int sched_get_priority_min(int policy);

The sched_get_priority_max() and sched_get_priority_min() functions return the
appropriate maximum or minimum, respectfully, for the scheduling policy specified by policy.

The value of policy is one of the scheduling policy values defined in <sched.h>.

If successful, the sched_get_priority_max() and sched_get_priority_min() functions
return the appropriate maximum or minimum values, respectively. If unsuccessful, they
return −1 and set errno to indicate the error.

The sched_get_priority_max() and sched_get_priority_min() functions will fail if:

EINVAL The value of the policy parameter does not represent a defined scheduling policy.

ENOSYS The sched_get_priority_max(), sched_get_priority_min() and
sched_rr_get_interval(3RT) functions are not supported by the system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

librt(3LIB), sched.h(3HEAD), sched_getparam(3RT), sched_setparam(3RT),
sched_getscheduler(3RT), sched_rr_get_interval(3RT), sched_setscheduler(3RT),
time.h(3HEAD), attributes(5)

Solaris 2.6 was the first release to support libposix4/librt. Prior to this release, this function
always returned −1 and set errno to ENOSYS.

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

Notes

sched_get_priority_max(3RT)

Realtime Library Functions 95

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1librt-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1sched.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1time.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5

sched_getscheduler – get scheduling policy

cc [flag...] file... -lrt [library...]

#include <sched.h>

int sched_getscheduler(pid_t pid);

The sched_getscheduler() function returns the scheduling policy of the process specified by
pid. If the value of pid is negative, the behavior of the sched_getscheduler() function is
unspecified.

The values that can be returned by sched_getscheduler() are defined in the header
<sched.h> and described on the sched_setscheduler(3RT) manual page.

If a process specified by pid exists and if the calling process has permission, the scheduling
policy will be returned for the process whose process ID is equal to pid.

If pid is 0, the scheduling policy will be returned for the calling process.

Upon successful completion, the sched_getscheduler() function returns the scheduling
policy of the specified process. If unsuccessful, the function returns −1 and sets errno to
indicate the error.

The sched_getscheduler() function will fail if:

ENOSYS The sched_getscheduler() function is not supported by the system.

EPERM The requesting process does not have permission to determine the scheduling
policy of the specified process.

ESRCH No process can be found corresponding to that specified by pid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

librt(3LIB), sched.h(3HEAD), sched_getparam(3RT), sched_setparam(3RT),
sched_setscheduler(3RT), attributes(5)

Solaris 2.6 was the first release to support libposix4/librt. Prior to this release, this function
always returned −1 and set errno to ENOSYS.

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

Notes

sched_getscheduler(3RT)

man pages section 3: Realtime Library Functions • Last Revised 5 Oct 200196

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1librt-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1sched.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5

sched_rr_get_interval – get execution time limits

cc [flag...] file... -lrt [library...]

#include <sched.h>

int sched_rr_get_interval(pid_t pid,
struct timespec *interval);

The sched_rr_get_interval() function updates the timespec structure referenced by the
interval argument to contain the current execution time limit (that is, time quantum) for the
process specified by pid. If pid is 0, the current execution time limit for the calling process will
be returned.

If successful, the sched_rr_get_interval() function returns 0. Otherwise, it returns −1 and
sets errno to indicate the error.

The sched_rr_get_interval() function will fail if:

ENOSYS The sched_get_priority_max(3RT), sched_get_priority_min(3RT), and
sched_rr_get_interval() functions are not supported by the system.

ESRCH No process can be found corresponding to that specified by pid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

librt(3LIB), sched.h(3HEAD), sched_getparam(3RT), sched_setparam(3RT),
sched_get_priority_max(3RT), sched_getscheduler(3RT), sched_setscheduler(3RT),
attributes(5)

Solaris 2.6 was the first release to support libposix4/librt. Prior to this release, this function
always returned −1 and set errno to ENOSYS.

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

Notes

sched_rr_get_interval(3RT)

Realtime Library Functions 97

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1librt-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1sched.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5

sched_setparam – set scheduling parameters

cc [flag...] file... -lrt [library...]

#include <sched.h>

int sched_setparam(pid_t pid, const struct sched_param *param);

The sched_setparam() function sets the scheduling parameters of the process specified by
pid to the values specified by the sched_param structure pointed to by param. The value of the
sched_priority member in the sched_param structure is any integer within the inclusive
priority range for the current scheduling policy of the process specified by pid. Higher
numerical values for the priority represent higher priorities. If the value of pid is negative, the
behavior of the sched_setparam() function is unspecified.

If a process specified by pid exists and if the calling process has permission, the scheduling
parameters will be set for the process whose process ID is equal to pid. The real or effective
user ID of the calling process must match the real or saved (from exec(2)) user ID of the target
process unless the effective user ID of the calling process is 0. See Intro(2).

If pid is zero, the scheduling parameters will be set for the calling process.

The target process, whether it is running or not running, resumes execution after all other
runnable processes of equal or greater priority have been scheduled to run.

If the priority of the process specified by the pid argument is set higher than that of the lowest
priority running process and if the specified process is ready to run, the process specified by
the pid argument preempts a lowest priority running process. Similarly, if the process calling
sched_setparam() sets its own priority lower than that of one or more other non-empty
process lists, then the process that is the head of the highest priority list also preempts the
calling process. Thus, in either case, the originating process might not receive notification of
the completion of the requested priority change until the higher priority process has executed.

If the current scheduling policy for the process specified by pid is not SCHED_FIFO or
SCHED_RR, including SCHED_OTHER, the result is equal to priocntl(P_PID, pid, PC_SETPARMS,
&pcparam), where pcparam is an image of *param.

The effect of this function on individual threads is dependent on the scheduling contention
scope of the threads:

■ For threads with system scheduling contention scope, these functions have no effect on
their scheduling.

■ For threads with process scheduling contention scope, the threads' scheduling parameters
will not be affected. However, the scheduling of these threads with respect to threads in
other processes may be dependent on the scheduling parameters of their process, which
are governed using these functions.

Name

Synopsis

Description

sched_setparam(3RT)

man pages section 3: Realtime Library Functions • Last Revised 5 Oct 200198

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1intro-2

If an implementation supports a two-level scheduling model in which library threads are
multiplexed on top of several kernel scheduled entities, then the underlying kernel scheduled
entities for the system contention scope threads will not be affected by these functions.

The underlying kernel scheduled entities for the process contention scope threads will have
their scheduling parameters changed to the value specified in param. Kernel scheduled
entities for use by process contention scope threads that are created after this call completes
inherit their scheduling policy and associated scheduling parameters from the process.

This function is not atomic with respect to other threads in the process. Threads are allowed to
continue to execute while this function call is in the process of changing the scheduling policy
for the underlying kernel scheduled entities used by the process contention scope threads.

If successful, the sched_setparam() function returns 0.

If the call to sched_setparam() is unsuccessful, the priority remains unchanged, and the
function returns −1 and sets errno to indicate the error.

The sched_setparam() function will fail if:

EINVAL One or more of the requested scheduling parameters is outside the range defined
for the scheduling policy of the specified pid.

ENOSYS The sched_setparam() function is not supported by the system.

EPERM The requesting process does not have permission to set the scheduling parameters
for the specified process, or does not have the appropriate privilege to invoke
sched_setparam().

ESRCH No process can be found corresponding to that specified by pid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

Intro(2), exec(2), librt(3LIB), sched.h(3HEAD), sched_getparam(3RT),
sched_getscheduler(3RT), sched_setscheduler(3RT), attributes(5)

Solaris 2.6 was the first release to support libposix4/librt. Prior to this release, this function
always returned −1 and set errno to ENOSYS.

Return Values

Errors

Attributes

See Also

Notes

sched_setparam(3RT)

Realtime Library Functions 99

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1intro-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1librt-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1sched.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5

sched_setscheduler – set scheduling policy and scheduling parameters

cc [flag...] file... -lrt [library...]

#include <sched.h>

int sched_setscheduler(pid_t pid, int policy,
const struct sched_param *param);

The sched_setscheduler() function sets the scheduling policy and scheduling parameters of
the process specified by pid to policy and the parameters specified in the sched_param
structure pointed to by param, respectively. The value of the sched_priority member in the
sched_param structure is any integer within the inclusive priority range for the scheduling
policy specified by policy. The sched_setscheduler() function ignores the other members of
the sched_param structure. If the value of pid is negative, the behavior of the
sched_setscheduler() function is unspecified.

The possible values for the policy parameter are defined in the header <sched.h> (see
sched.h(3HEAD)):

If a process specified by pid exists and if the calling process has permission, the scheduling
policy and scheduling parameters are set for the process whose process ID is equal to pid. The
real or effective user ID of the calling process must match the real or saved (from exec(2)) user
ID of the target process unless the effective user ID of the calling process is 0. See Intro(2).

If pid is 0, the scheduling policy and scheduling parameters are set for the calling process.

To change the policy of any process to either of the real time policies SCHED_FIFO or SCHED_RR,
the calling process must either have the SCHED_FIFO or SCHED_RR policy or have an effective
user ID of 0.

The sched_setscheduler() function is considered successful if it succeeds in setting the
scheduling policy and scheduling parameters of the process specified by pid to the values
specified by policy and the structure pointed to by param, respectively.

The effect of this function on individual threads is dependent on the scheduling contention
scope of the threads:
■ For threads with system scheduling contention scope, these functions have no effect on

their scheduling.
■ For threads with process scheduling contention scope, the threads' scheduling policy and

associated parameters will not be affected. However, the scheduling of these threads with
respect to threads in other processes may be dependent on the scheduling parameters of
their process, which are governed using these functions.

The underlying kernel scheduled entities for the process contention scope threads will have
their scheduling policy and associated scheduling parameters changed to the values specified
in policy and param, respectively. Kernel scheduled entities for use by process contention
scope threads that are created after this call completes inherit their scheduling policy and
associated scheduling parameters from the process.

Name

Synopsis

Description

sched_setscheduler(3RT)

man pages section 3: Realtime Library Functions • Last Revised 10 Aug 2006100

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1sched.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1intro-2

This function is not atomic with respect to other threads in the process. Threads are allowed to
continue to execute while this function call is in the process of changing the scheduling policy
and associated scheduling parameters for the underlying kernel scheduled entities used by the
process contention scope threads.

Upon successful completion, the function returns the former scheduling policy of the
specified process. If the sched_setscheduler() function fails to complete successfully, the
policy and scheduling paramenters remain unchanged, and the function returns −1 and sets
errno to indicate the error.

The sched_setscheduler() function will fail if:

EINVAL The value of policy is invalid, or one or more of the parameters contained in param

is outside the valid range for the specified scheduling policy.

ENOSYS The sched_setscheduler() function is not supported by the system.

EPERM The requesting process does not have permission to set either or both of the
scheduling parameters or the scheduling policy of the specified process.

ESRCH No process can be found corresponding to that specified by pid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

priocntl(1), Intro(2), exec(2), priocntl(2), librt(3LIB), sched.h(3HEAD),
sched_get_priority_max(3RT), sched_getparam(3RT), sched_getscheduler(3RT),
sched_setparam(3RT), attributes(5)

Solaris 2.6 was the first release to support libposix4/librt. Prior to this release, this function
always returned −1 and set errno to ENOSYS.

Return Values

Errors

Attributes

See Also

Notes

sched_setscheduler(3RT)

Realtime Library Functions 101

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1priocntl-1
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1intro-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1priocntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1librt-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1sched.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5

sched_yield – yield processor

cc [flag...] file... -lrt [library...]

#include <sched.h>

int sched_yield(void);

The sched_yield() function forces the running thread to relinquish the processor until the
process again becomes the head of its process list. It takes no arguments.

If successful, sched_yield() returns 0, otherwise, it returns −1, and sets errno to indicate the
error condition.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

librt(3LIB), sched.h(3HEAD), attributes(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

sched_yield(3RT)

man pages section 3: Realtime Library Functions • Last Revised 5 Oct 2001102

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1librt-3lib
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1sched.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5

sem_close – close a named semaphore

cc [flag...] file... -lrt [library...]

#include <semaphore.h>

int sem_close(sem_t *sem);

The sem_close() function is used to indicate that the calling process is finished using the
named semaphore indicated by sem. The effects of calling sem_close() for an unnamed
semaphore (one created by sem_init(3RT)) are undefined. The sem_close() function
deallocates (that is, make available for reuse by a subsequent sem_open(3RT) by this process)
any system resources allocated by the system for use by this process for this semaphore. The
effect of subsequent use of the semaphore indicated by sem by this process is undefined. If the
semaphore has not been removed with a successful call to sem_unlink(3RT), then
sem_close() has no effect on the state of the semaphore. If the sem_unlink(3RT) function has
been successfully invoked for name after the most recent call to sem_open(3RT) with O_CREAT

for this semaphore, then when all processes that have opened the semaphore close it, the
semaphore is no longer be accessible.

If successful, sem_close() returns 0, otherwise it returns −1 and sets errno to indicate the
error.

The sem_close() function will fail if:

EINVAL The sem argument is not a valid semaphore descriptor.

ENOSYS The sem_close() function is not supported by the system.

The sem_close() function should not be called for an unnamed semaphore initialized by
sem_init(3RT).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

sem_init(3RT), sem_open(3RT), sem_unlink(3RT), attributes(5), standards(5)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option. Prior to
this release, this function always returned −1 and set errno to ENOSYS.

Name

Synopsis

Description

Return Values

Errors

Usage

Attributes

See Also

Notes

sem_close(3RT)

Realtime Library Functions 103

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1standards-5

sem_destroy – destroy an unnamed semaphore

cc [flag...] file... -lrt [library...]

#include <semaphore.h>

int sem_destroy(sem_t *sem);

The sem_destroy() function is used to destroy the unnamed semaphore indicated by sem.
Only a semaphore that was created using sem_init(3RT) may be destroyed using
sem_destroy(); the effect of calling sem_destroy() with a named semaphore is undefined.
The effect of subsequent use of the semaphore sem is undefined until sem is re-initialized by
another call to sem_init(3RT).

It is safe to destroy an initialised semaphore upon which no threads are currently blocked. The
effect of destroying a semaphore upon which other threads are currently blocked is undefined.

If successful, sem_destroy() returns 0, otherwise it returns −1 and sets errno to indicate the
error.

The sem_destroy() function will fail if:

EINVAL The sem argument is not a valid semaphore.

The sem_destroy() function may fail if:

EBUSY There are currently processes (or LWPs or threads) blocked on the semaphore.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

sem_init(3RT), sem_open(3RT), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

sem_destroy(3RT)

man pages section 3: Realtime Library Functions • Last Revised 28 Jun 2002104

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1standards-5

sem_getvalue – get the value of a semaphore

cc [flag...] file... -lrt [library...]

#include <semaphore.h>

int sem_getvalue(sem_t *restrict sem, int *restrict sval);

The sem_getvalue() function updates the location referenced by the sval argument to have
the value of the semaphore referenced by sem without affecting the state of the semaphore.
The updated value represents an actual semaphore value that occurred at some unspecified
time during the call, but it need not be the actual value of the semaphore when it is returned to
the calling process.

If sem is locked, then the value returned by sem_getvalue() is either zero or a negative
number whose absolute value represents the number of processes waiting for the semaphore
at some unspecified time during the call.

The value set in sval may be 0 or positive. If sval is 0, there may be other processes (or LWPs or
threads) waiting for the semaphore; if sval is positive, no process is waiting.

Upon successful completion, sem_getvalue() returns 0. Otherwise, it returns −1 and sets
errno to indicate the error.

The sem_getvalue() function will fail if:

EINVAL The sem argument does not refer to a valid semaphore.

ENOSYS The sem_getvalue() function is not supported by the system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

semctl(2), semget(2), semop(2), sem_post(3RT), sem_wait(3RT), attributes(5),
standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

sem_getvalue(3RT)

Realtime Library Functions 105

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1semctl-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1semget-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1semop-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1standards-5

sem_init – initialize an unnamed semaphore

cc [flag...] file... -lrt [library...]

#include <semaphore.h>

int sem_init(sem_t *sem, int pshared, unsigned int value);

The sem_init() function is used to initialize the unnamed semaphore referred to by sem. The
value of the initialized semaphore is value. Following a successful call to sem_init(), the
semaphore may be used in subsequent calls to sem_wait(3RT), sem_trywait(3RT),
sem_post(3RT), and sem_destroy(3RT). This semaphore remains usable until the semaphore
is destroyed.

If the pshared argument has a non-zero value, then the semaphore is shared between
processes; in this case, any process that can access the semaphore sem can use sem for
performing sem_wait(3RT), sem_trywait(3RT), sem_post(3RT), and sem_destroy(3RT)
operations.

Only sem itself may be used for performing synchronization. The result of referring to copies
of sem in calls to sem_wait(3RT), sem_trywait(3RT), sem_post(3RT), and
sem_destroy(3RT), is undefined.

If the pshared argument is zero, then the semaphore is shared between threads of the process;
any thread in this process can use sem for performing sem_wait(3RT), sem_trywait(3RT),
sem_post(3RT), and sem_destroy(3RT) operations. The use of the semaphore by threads
other than those created in the same process is undefined.

Attempting to initialize an already initialized semaphore results in undefined behavior.

Upon successful completion, the function initializes the semaphore in sem. Otherwise, it
returns −1 and sets errno to indicate the error.

The sem_init() function will fail if:

EINVAL The value argument exceeds SEM_VALUE_MAX.

ENOSPC A resource required to initialize the semaphore has been exhausted, or the
resources have reached the limit on semaphores (SEM_NSEMS_MAX).

ENOSYS The sem_init() function is not supported by the system.

EPERM The process lacks the appropriate privileges to initialize the semaphore.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

Name

Synopsis

Description

Return Values

Errors

Attributes

sem_init(3RT)

man pages section 3: Realtime Library Functions • Last Revised 28 Jun 2002106

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5

sem_destroy(3RT), sem_post(3RT), sem_wait(3RT), attributes(5), standards(5)See Also

sem_init(3RT)

Realtime Library Functions 107

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1standards-5

sem_open – initialize/open a named semaphore

cc [flag...] file... -lrt [library...]

#include <semaphore.h>

sem_t *sem_open(const char *name, int oflag,
/* unsigned long mode, unsigned int value */ ...);

The sem_open() function establishes a connection between a named semaphore and a process
(or LWP or thread). Following a call to sem_open() with semaphore name name, the process
may reference the semaphore associated with name using the address returned from the call.
This semaphore may be used in subsequent calls to sem_wait(3RT), sem_trywait(3RT),
sem_post(3RT), and sem_close(3RT). The semaphore remains usable by this process until
the semaphore is closed by a successful call to sem_close(3RT), _Exit(2), or one of the exec
functions.

The oflag argument controls whether the semaphore is created or merely accessed by the call
to sem_open(). The following flag bits may be set in oflag:

O_CREAT This flag is used to create a semaphore if it does not already exist. If O_CREAT is
set and the semaphore already exists, then O_CREAT has no effect, except as noted
under O_EXCL. Otherwise, sem_open() creates a named semaphore. The
O_CREAT flag requires a third and a fourth argument: mode, which is of type
mode_t, and value, which is of type unsigned int. The semaphore is created
with an initial value of value. Valid initial values for semaphores are less than or
equal to SEM_VALUE_MAX.

The user ID of the semaphore is set to the effective user ID of the process; the
group ID of the semaphore is set to a system default group ID or to the effective
group ID of the process. The permission bits of the semaphore are set to the
value of the mode argument except those set in the file mode creation mask of the
process (see umask(2)). When bits in mode other than the file permission bits are
specified, the effect is unspecified.

After the semaphore named name has been created by sem_open() with the
O_CREAT flag, other processes can connect to the semaphore by calling
sem_open() with the same value of name.

O_EXCL If O_EXCL and O_CREAT are set, sem_open() fails if the semaphore name exists.
The check for the existence of the semaphore and the creation of the semaphore
if it does not exist are atomic with respect to other processes executing
sem_open() with O_EXCL and O_CREAT set. If O_EXCL is set and O_CREAT is not set,
the effect is undefined.

If flags other than O_CREAT and O_EXCL are specified in the oflag parameter, the effect is
unspecified.

Name

Synopsis

Description

sem_open(3RT)

man pages section 3: Realtime Library Functions • Last Revised 28 Jun 2002108

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1u-exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1umask-2

The name argument points to a string naming a semaphore object. It is unspecified whether
the name appears in the file system and is visible to functions that take pathnames as
arguments. The name argument conforms to the construction rules for a pathname. The first
character of name must be a slash (/) character and the remaining characters of name cannot
include any slash characters. For maximum portability, name should include no more than 14
characters, but this limit is not enforced.

If a process makes multiple successful calls to sem_open() with the same value for name, the
same semaphore address is returned for each such successful call, provided that there have
been no calls to sem_unlink(3RT) for this semaphore.

References to copies of the semaphore produce undefined results.

Upon successful completion, the function returns the address of the semaphore. Otherwise, it
will return a value of SEM_FAILED and set errno to indicate the error. The symbol SEM_FAILED
is defined in the header <semaphore.h>. No successful return from sem_open() will return the
value SEM_FAILED.

If any of the following conditions occur, the sem_open() function will return SEM_FAILED and
set errno to the corresponding value:

EACCES The named semaphore exists and the O_RDWR permissions are denied, or
the named semaphore does not exist and permission to create the named
semaphore is denied.

EEXIST O_CREAT and O_EXCL are set and the named semaphore already exists.

EINTR The sem_open() function was interrupted by a signal.

EINVAL The sem_open() operation is not supported for the given name, or
O_CREAT was set in oflag and value is greater than SEM_VALUE_MAX.

EMFILE The number of open semaphore descriptors in this process exceeds
SEM_NSEMS_MAX, or the number of open file descriptors in this process
exceeds OPEN_MAX.

ENAMETOOLONG The length of name string exceeds PATH_MAX, or a pathname component is
longer than NAME_MAX while _POSIX_NO_TRUNC is in effect.

ENFILE Too many semaphores are currently open in the system.

ENOENT O_CREAT is not set and the named semaphore does not exist.

ENOSPC There is insufficient space for the creation of the new named semaphore.

ENOSYS The sem_open() function is not supported by the system.

Return Values

Errors

sem_open(3RT)

Realtime Library Functions 109

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

exec(2), exit(2), umask(2), sem_close(3RT), sem_post(3RT), sem_unlink(3RT),
sem_wait(3RT), sysconf(3C), attributes(5), standards(5)

Attributes

See Also

sem_open(3RT)

man pages section 3: Realtime Library Functions • Last Revised 28 Jun 2002110

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1umask-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1sysconf-3c
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1standards-5

sem_post – increment the count of a semaphore

cc [flag...] file... -lrt [library...]

#include <semaphore.h>

int sem_post(sem_t *sem);

The sem_post() function unlocks the semaphore referenced by sem by performing a
semaphore unlock operation on that semaphore.

If the semaphore value resulting from this operation is positive, then no threads were blocked
waiting for the semaphore to become unlocked; the semaphore value is simply incremented.

If the value of the semaphore resulting from this operation is 0, then one of the threads
blocked waiting for the semaphore will be allowed to return successfully from its call to
sem_wait(3RT). If the symbol _POSIX_PRIORITY_SCHEDULING is defined, the thread to be
unblocked will be chosen in a manner appropriate to the scheduling policies and parameters
in effect for the blocked threads. In the case of the schedulers SCHED_FIFO and SCHED_RR, the
highest priority waiting thread will be unblocked, and if there is more than one highest
priority thread blocked waiting for the semaphore, then the highest priority thread that has
been waiting the longest will be unblocked. If the symbol _POSIX_PRIORITY_SCHEDULING is
not defined, the choice of a thread to unblock is unspecified.

If successful, sem_post() returns 0; otherwise it returns −1 and sets errno to indicate the
error.

The sem_post() function will fail if:

EINVAL The sem argument does not refer to a valid semaphore.

ENOSYS The sem_post() function is not supported by the system.

EOVERFLOW The semaphore value exceeds SEM_VALUE_MAX.

The sem_post() function is reentrant with respect to signals and may be invoked from a
signal-catching function. The semaphore functionality described on this manual page is for
the POSIX (see standards(5)) threads implementation. For the documentation of the Solaris
threads interface, see semaphore(3C)).

See sem_wait(3RT).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Async-Signal-Safe

Name

Synopsis

Description

Return Values

Errors

Usage

Examples

Attributes

sem_post(3RT)

Realtime Library Functions 111

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1semaphore-3c
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5

sched_setscheduler(3RT), sem_wait(3RT), semaphore(3C), attributes(5), standards(5)See Also

sem_post(3RT)

man pages section 3: Realtime Library Functions • Last Revised 12 Feb 2003112

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1semaphore-3c
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1standards-5

sem_timedwait, sem_reltimedwait_np – lock a semaphore

cc [flag...] file... -lrt [library...]

#include <semaphore.h>

#include <time.h>

int sem_timedwait(sem_t *restrict sem,

const struct timespec *restrict abs_timeout);

int sem_reltimedwait_np(sem_t *restrict sem,

const struct timespec *restrict rel_timeout);

The sem_timedwait() function locks the semaphore referenced by sem as in the
sem_wait(3RT) function. However, if the semaphore cannot be locked without waiting for
another process or thread to unlock the semaphore by performing a sem_post(3RT) function,
this wait is terminated when the specified timeout expires.

The sem_reltimedwait_np() function is identical to the sem_timedwait() function, except
that the timeout is specified as a relative time interval.

For sem_timedwait(), the timeout expires when the absolute time specified by abs_timeout
passes, as measured by the CLOCK_REALTIME clock (that is, when the value of that clock equals
or exceeds abs_timeout), or if the absolute time specified by abs_timeout has already been
passed at the time of the call.

For sem_reltimedwait_np(), the timeout expires when the time interval specified by
rel_timeout passes, as measured by the CLOCK_REALTIME clock, or if the time interval specified
by rel_timeout is negative at the time of the call.

The resolution of the timeout is the resolution of the CLOCK_REALTIME clock. The timespec
data type is defined as a structure in the <time.h> header.

Under no circumstance does the function fail with a timeout if the semaphore can be locked
immediately. The validity of the abs_timeout need not be checked if the semaphore can be
locked immediately.

The sem_timedwait() and sem_reltimedwait_np() functions return 0 if the calling process
successfully performed the semaphore lock operation on the semaphore designated by sem. If
the call was unsuccessful, the state of the semaphore is be unchanged and the function returns
-1 and sets errno to indicate the error.

The sem_timedwait() and sem_reltimedwait_np() functions will fail if:

EINVAL The sem argument does not refer to a valid semaphore.

EINVAL The process or thread would have blocked, and the timeout parameter
specified a nanoseconds field value less than zero or greater than or equal to
1,000 million.

ETIMEDOUT The semaphore could not be locked before the specified timeout expired.

Name

Synopsis

Description

Return Values

Errors

sem_timedwait(3RT)

Realtime Library Functions 113

The sem_timedwait() and sem_reltimedwait_np() functions may fail if:

EDEADLK A deadlock condition was detected.

EINTR A signal interrupted this function.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability See below.

MT-Level MT-Safe

The sem_timedwait() is function Standard. The sem_reltimedwait_np() function is Stable.

semctl(2), semget(2), semop(2), time(2), sem_post(3RT),
sem_trywait(3RT)sem_wait(3RT), attributes(5), standards(5)

Attributes

See Also

sem_timedwait(3RT)

man pages section 3: Realtime Library Functions • Last Revised 30 Jan 2004114

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1semctl-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1semget-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1semop-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1time-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1standards-5

sem_unlink – remove a named semaphore

cc [flag...] file... -lrt [library...]

#include <semaphore.h>

int sem_unlink(const char *name);

The sem_unlink() function removes the semaphore named by the string name. If the
semaphore named by name is currently referenced by other processes, then sem_unlink() has
no effect on the state of the semaphore. If one or more processes have the semaphore open
when sem_unlink() is called, destruction of the semaphore is postponed until all references to
the semaphore have been destroyed by calls to sem_close(3RT), _Exit(2), or one of the exec
functions (see exec(2)) . Calls to sem_open(3RT) to re-create or re-connect to the semaphore
refer to a new semaphore after sem_unlink() is called. The sem_unlink() call does not block
until all references have been destroyed; it returns immediately.

Upon successful completion, sem_unlink() returns 0. Otherwise, the semaphore is not
changed and the function returns a value of −1 and sets errno to indicate the error.

The sem_unlink() function will fail if:

EACCES Permission is denied to unlink the named semaphore.

ENAMETOOLONG The length of name string exceeds PATH_MAX, or a pathname component is
longer than NAME_MAX while _POSIX_NO_TRUNC is in effect.

ENOENT The named semaphore does not exist.

ENOSYS The sem_unlink() function is not supported by the system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

exec(2), exit(2), sem_close(3RT), sem_open(3RT), attributes(5), standards(5)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option. Prior to
this release, this function always returned −1 and set errno to ENOSYS.

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

Notes

sem_unlink(3RT)

Realtime Library Functions 115

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1u-exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1exit-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1standards-5

sem_wait, sem_trywait – acquire or wait for a semaphore

cc [flag...] file... -lrt [library...]

#include <semaphore.h>

int sem_wait(sem_t *sem);

int sem_trywait(sem_t *sem);

The sem_wait() function locks the semaphore referenced by sem by performing a semaphore
lock operation on that semaphore. If the semaphore value is currently zero, then the calling
thread will not return from the call to sem_wait() until it either locks the semaphore or the
call is interrupted by a signal. The sem_trywait() function locks the semaphore referenced by
sem only if the semaphore is currently not locked; that is, if the semaphore value is currently
positive. Otherwise, it does not lock the semaphore.

Upon successful return, the state of the semaphore is locked and remains locked until the
sem_post(3RT) function is executed and returns successfully.

The sem_wait() function is interruptible by the delivery of a signal.

The sem_wait() and sem_trywait() functions return 0 if the calling process successfully
performed the semaphore lock operation on the semaphore designated by sem. If the call was
unsuccessful, the state of the semaphore is unchanged, and the function returns −1 and sets
errno to indicate the error.

The sem_wait() and sem_trywait() functions will fail if:

EINVAL The sem function does not refer to a valid semaphore.

ENOSYS The sem_wait() and sem_trywait() functions are not supported by the system.

The sem_trywait() function will fail if:

EAGAIN The semaphore was already locked, so it cannot be immediately locked by the
sem_trywait() operation.

The sem_wait() and sem_trywait() functions may fail if:

EDEADLK A deadlock condition was detected; that is, two separate processes are waiting
for an available resource to be released via a semaphore "held" by the other
process.

EINTR A signal interrupted this function.

Realtime applications may encounter priority inversion when using semaphores. The
problem occurs when a high priority thread “locks” (that is, waits on) a semaphore that is
about to be “unlocked” (that is, posted) by a low priority thread, but the low priority thread is
preempted by a medium priority thread. This scenario leads to priority inversion; a high
priority thread is blocked by lower priority threads for an unlimited period of time. During

Name

Synopsis

Description

Return Values

Errors

Usage

sem_wait(3RT)

man pages section 3: Realtime Library Functions • Last Revised 28 Jun 2002116

system design, realtime programmers must take into account the possibility of this kind of
priority inversion. They can deal with it in a number of ways, such as by having critical
sections that are guarded by semaphores execute at a high priority, so that a thread cannot be
preempted while executing in its critical section.

EXAMPLE 1 The customer waiting-line in a bank may be analogous to the synchronization scheme of a
semaphore utilizing sem_wait() and sem_trywait():

#include <errno.h>

#define TELLERS 10

sem_t bank_line; /* semaphore */

int banking_hours(), deposit_withdrawal;

void *customer(), do_business(), skip_banking_today();

thread_t tid;

...

sem_init(&bank_line,TRUE,TELLERS); /* 10 tellers

available */

while(banking_hours())

thr_create(NULL, NULL, customer,

(void *)deposit_withdrawal, THREAD_NEW_LWP, &tid);

...

void *

customer(deposit_withdrawal)

void *deposit_withdrawal;

{

int this_customer, in_a_hurry = 50;

this_customer = rand() % 100;

if (this_customer == in_a_hurry) {

if (sem_trywait(&bank_line) != 0)

if (errno == EAGAIN) { /* no teller available */

skip_banking_today(this_customer);

return;

} /*else go immediately to available teller

& decrement bank_line*/

}

else

sem_wait(&bank_line); /* wait for next teller,

then proceed, and decrement bank_line */

do_business((int *)deposit_withdrawal);

sem_getvalue(&bank_line,&num_tellers);

sem_post(&bank_line); /* increment bank_line;

this_customer’s teller is now available */

}

Examples

sem_wait(3RT)

Realtime Library Functions 117

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

sem_post(3RT), attributes(5), standards(5)

Attributes

See Also

sem_wait(3RT)

man pages section 3: Realtime Library Functions • Last Revised 28 Jun 2002118

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1standards-5

shm_open – open a shared memory object

cc [flag...] file... -lrt [library...]

#include <sys/mman.h>

int shm_open(const char *name, int oflag, mode_t mode);

The shm_open() function establishes a connection between a shared memory object and a file
descriptor. It creates an open file description that refers to the shared memory object and a file
descriptor that refers to that open file description. The file descriptor is used by other
functions to refer to that shared memory object. The name argument points to a string
naming a shared memory object. It is unspecified whether the name appears in the file system
and is visible to other functions that take pathnames as arguments. The name argument
conforms to the construction rules for a pathname. The first character of name must be a slash
(/) character and the remaining characters of name cannot include any slash characters. For
maximum portability, name should include no more than 14 characters, but this limit is not
enforced.

If successful, shm_open() returns a file descriptor for the shared memory object that is the
lowest numbered file descriptor not currently open for that process. The open file description
is new, and therefore the file descriptor does not share it with any other processes. It is
unspecified whether the file offset is set. The FD_CLOEXEC file descriptor flag associated with
the new file descriptor is set.

The file status flags and file access modes of the open file description are according to the value
of oflag. The oflag argument is the bitwise inclusive OR of the following flags defined in the
header <fcntl.h>. Applications specify exactly one of the first two values (access modes)
below in the value of oflag:

O_RDONLY Open for read access only.

O_RDWR Open for read or write access.

Any combination of the remaining flags may be specified in the value of oflag:

O_CREAT If the shared memory object exists, this flag has no effect, except as noted under
O_EXCL below. Otherwise the shared memory object is created; the user ID of the
shared memory object will be set to the effective user ID of the process; the group
ID of the shared memory object will be set to a system default group ID or to the
effective group ID of the process. The permission bits of the shared memory
object will be set to the value of the mode argument except those set in the file
mode creation mask of the process. When bits in mode other than the file
permission bits are set, the effect is unspecified. The mode argument does not
affect whether the shared memory object is opened for reading, for writing, or
for both. The shared memory object has a size of zero.

O_EXCL If O_EXCL and O_CREAT are set, shm_open() fails if the shared memory object
exists. The check for the existence of the shared memory object and the creation

Name

Synopsis

Description

shm_open(3RT)

Realtime Library Functions 119

of the object if it does not exist is atomic with respect to other processes
executing shm_open() naming the same shared memory object with O_EXCL and
O_CREAT set. If O_EXCL is set and O_CREAT is not set, the result is undefined.

O_TRUNC If the shared memory object exists, and it is successfully opened O_RDWR, the
object will be truncated to zero length and the mode and owner will be
unchanged by this function call. The result of using O_TRUNC with O_RDONLY is
undefined.

When a shared memory object is created, the state of the shared memory object, including all
data associated with the shared memory object, persists until the shared memory object is
unlinked and all other references are gone. It is unspecified whether the name and shared
memory object state remain valid after a system reboot.

Upon successful completion, the shm_open() function returns a non-negative integer
representing the lowest numbered unused file descriptor. Otherwise, it returns −1 and sets
errno to indicate the error condition.

The shm_open() function will fail if:

EACCES The shared memory object exists and the permissions specified by oflag
are denied, or the shared memory object does not exist and permission to
create the shared memory object is denied, or O_TRUNC is specified and
write permission is denied.

EEXIST O_CREAT and O_EXCL are set and the named shared memory object already
exists.

EINTR The shm_open() operation was interrupted by a signal.

EINVAL The shm_open() operation is not supported for the given name.

EMFILE Too many file descriptors are currently in use by this process.

ENAMETOOLONG The length of the name string exceeds PATH_MAX, or a pathname
component is longer than NAME_MAX while _POSIX_NO_TRUNC is in effect.

ENFILE Too many shared memory objects are currently open in the system.

ENOENT O_CREAT is not set and the named shared memory object does not exist.

ENOSPC There is insufficient space for the creation of the new shared memory
object.

ENOSYS The shm_open() function is not supported by the system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Return Values

Errors

Attributes

shm_open(3RT)

man pages section 3: Realtime Library Functions • Last Revised 28 Jun 2002120

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5

Interface Stability Standard

MT-Level MT-Safe

close(2), dup(2), exec(2), fcntl(2), mmap(2), umask(2), shm_unlink(3RT), sysconf(3C),
fcntl.h(3HEAD), attributes(5), standards(5)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option. Prior to
this release, this function always returned −1 and set errno to ENOSYS.

See Also

Notes

shm_open(3RT)

Realtime Library Functions 121

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1dup-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1fcntl-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1umask-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1sysconf-3c
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1fcntl.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1standards-5

shm_unlink – remove a shared memory object

cc [flag...] file... -lrt [library...]

#include <sys/mman.h>

int shm_unlink(const char *name);

The shm_unlink() function removes the name of the shared memory object named by the
string pointed to by name. If one or more references to the shared memory object exists when
the object is unlinked, the name is removed before shm_unlink() returns, but the removal of
the memory object contents will be postponed until all open and mapped references to the
shared memory object have been removed.

Upon successful completion, shm_unlink() returns 0. Otherwise it returns −1 and sets errno
to indicate the error condition, and the named shared memory object is not affected by this
function call.

The shm_unlink() function will fail if:

EACCES Permission is denied to unlink the named shared memory object.

ENAMETOOLONG The length of the name string exceeds PATH_MAX, or a pathname
component is longer than NAME_MAX while _POSIX_NO_TRUNC is in effect.

ENOENT The named shared memory object does not exist.

ENOSYS The shm_unlink() function is not supported by the system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

close(2), mmap(2), mlock(3C), shm_open(3RT), attributes(5), standards(5)

Solaris 2.6 was the first release to support the Asynchronous Input and Output option. Prior to
this release, this function always returned −1 and set errno to ENOSYS.

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

Notes

shm_unlink(3RT)

man pages section 3: Realtime Library Functions • Last Revised 28 Jun 2002122

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1close-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1mmap-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1mlock-3c
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1standards-5

sigqueue – queue a signal to a process

cc [flag...] file... -lrt [library...]

#include <sys/types.h>

#include <signal.h>

int sigqueue(pid_t pid, int signo, const union sigval value);

The sigqueue() function causes the signal specified by signo to be sent with the value
specified by value to the process specified by pid. If signo is 0 (the null signal), error checking is
performed but no signal is actually sent. The null signal can be used to check the validity of
pid.

The conditions required for a process to have permission to queue a signal to another process
are the same as for the kill(2) function.

The sigqueue() function returns immediately. If SA_SIGINFO is set for signo and if the
resources were available to queue the signal, the signal is queued and sent to the receiving
process. If SA_SIGINFO is not set for signo, then signo is sent at least once to the receiving
process; it is unspecified whether value will be sent to the receiving process as a result of this
call.

If the value of pid causes signo to be generated for the sending process, and if signo is not
blocked for the calling thread and if no other thread has signo unblocked or is waiting in a
sigwait(2) function for signo, either signo or at least the pending, unblocked signal will be
delivered to the calling thread before the sigqueue() function returns. Should any of multiple
pending signals in the range SIGRTMIN to SIGRTMAX be selected for delivery, it will be the
lowest numbered one. The selection order between realtime and non-realtime signals, or
between multiple pending non-realtime signals, is unspecified.

Upon successful completion, the specified signal will have been queued, and the sigqueue()
function returns 0. Otherwise, the function returns −1 and sets errno to indicate the error.

The sigqueue() function will fail if:

EAGAIN No resources are available to queue the signal. The process has already queued
SIGQUEUE_MAX signals that are still pending at the receiver(s), or a system wide
resource limit has been exceeded.

EINVAL The value of signo is an invalid or unsupported signal number.

ENOSYS The sigqueue() function is not supported by the system.

EPERM The process does not have the appropriate privilege to send the signal to the
receiving process.

ESRCH The process pid does not exist.

Name

Synopsis

Description

Return Values

Errors

sigqueue(3RT)

Realtime Library Functions 123

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1kill-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1sigwait-2

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Async-Signal-Safe

kill(2), siginfo.h(3HEAD), signal.h(3HEAD), sigwaitinfo(3RT), attributes(5),
standards(5)

Attributes

See Also

sigqueue(3RT)

man pages section 3: Realtime Library Functions • Last Revised 28 Jun 2002124

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1kill-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1siginfo.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1signal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1standards-5

sigwaitinfo, sigtimedwait – wait for queued signals

cc [flag...] file... -lrt [library...]

#include <signal.h>

int sigwaitinfo(const sigset_t *restrict set,
siginfo_t *restrict info);

int sigtimedwait(const sigset_t *restrict set,
siginfo_t *restrict info,
const struct timespec *restrict timeout);

The sigwaitinfo() function selects the pending signal from the set specified by set. Should
any of multiple pending signals in the range SIGRTMIN to SIGRTMAX be selected, it will be the
lowest numbered one. The selection order between realtime and non-realtime signals, or
between multiple pending non-realtime signals, is unspecified. If no signal in set is pending at
the time of the call, the calling thread is suspended until one or more signals in set become
pending or until it is interrupted by an unblocked, caught signal.

The sigwaitinfo() function behaves the same as the sigwait(2) function if the info
argument is NULL. If the info argument is non-NULL, the sigwaitinfo() function behaves the
same as sigwait(2), except that the selected signal number is stored in the si_signo member,
and the cause of the signal is stored in the si_code member. If any value is queued to the
selected signal, the first such queued value is dequeued and, if the info argument is non-NULL,
the value is stored in the si_value member of info. The system resource used to queue the
signal will be released and made available to queue other signals. If no value is queued, the
content of the si_value member is undefined. If no further signals are queued for the selected
signal, the pending indication for that signal will be reset. If the value of the si_code member
is SI_NOINFO, only the si_signo member of siginfo_t is meaningful, and the value of all
other members is unspecified.

The sigtimedwait() function behaves the same as sigwaitinfo() except that if none of the
signals specified by set are pending, sigtimedwait() waits for the time interval specified in
the timespec structure referenced by timeout. If the timespec structure pointed to by timeout
is zero-valued and if none of the signals specified by set are pending, then sigtimedwait()

returns immediately with an error. If timeout is the NULL pointer, the behavior is unspecified.

If, while sigwaitinfo() or sigtimedwait() is waiting, a signal occurs which is eligible for
delivery (that is, not blocked by the process signal mask), that signal is handled
asynchronously and the wait is interrupted.

Upon successful completion (that is, one of the signals specified by set is pending or is
generated) sigwaitinfo() and sigtimedwait() will return the selected signal number.
Otherwise, the function returns −1 and sets errno to indicate the error.

Name

Synopsis

Description

Return Values

sigwaitinfo(3RT)

Realtime Library Functions 125

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1sigwait-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1sigwait-2

The sigwaitinfo() and sigtimedwait() functions will fail if:

EINTR The wait was interrupted by an unblocked, caught signal.

ENOSYS The sigwaitinfo() and sigtimedwait() functions are not supported.

The sigtimedwait() function will fail if:

EAGAIN No signal specified by set was generated within the specified timeout period.

The sigwaitinfo() and sigtimedwait() functions may fail if:

EFAULT The set, info, or timeout argument points to an invalid address.

The sigtimedwait() function may fail if:

EINVAL The timeout argument specified a tv_nsec value less than zero or greater than or
equal to 1000 million. The system only checks for this error if no signal is pending
in set and it is necessary to wait.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Committed

MT-Level Async-Safe

Standard See standards(5).

time(2), sigqueue(3RT), siginfo.h(3HEAD), signal.h(3HEAD), time.h(3HEAD),
attributes(5), standards(5)

Errors

Attributes

See Also

sigwaitinfo(3RT)

man pages section 3: Realtime Library Functions • Last Revised 13 Aug 2007126

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1standards-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1time-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1siginfo.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1signal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1time.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1standards-5

timer_create – create a timer

cc [flag...] file... -lrt [library...]

#include <signal.h>

#include <time.h>

int timer_create(clockid_t clock_id, struct sigevent *restrict evp,
timer_t *restrict timerid);

The timer_create() function creates a timer using the specified clock, clock_id, as the timing
base. The timer_create() function returns, in the location referenced by timerid, a timer ID
of type timer_t used to identify the timer in timer requests. This timer ID will be unique
within the calling process until the timer is deleted. The particular clock, clock_id, is defined in
<time.h>. The timer whose ID is returned will be in a disarmed state upon return from
timer_create().

The evp argument, if non-null, points to a sigevent structure. This structure, allocated by the
application, defines the asynchronous notification that will occur when the timer expires (see
signal.h(3HEAD) for event notification details). If the evp argument is NULL, the effect is as if
the evp argument pointed to a sigevent structure with the sigev_notify member having the
value SIGEV_SIGNAL, the sigev_signo having a default signal number, and the sigev_value
member having the value of the timer ID, timerid.

The system defines a set of clocks that can be used as timing bases for per-process timers. The
following values for clock_id are supported:

CLOCK_REALTIME wall clock

CLOCK_VIRTUAL user CPU usage clock

CLOCK_PROF user and system CPU usage clock

CLOCK_HIGHRES non-adjustable, high-resolution clock

For timers created with a clock_id of CLOCK_HIGHRES, the system will attempt to use an optimal
hardware source. This may include, but is not limited to, per-CPU timer sources. The actual
hardware source used is transparent to the user and may change over the lifetime of the timer.
For example, if the caller that created the timer were to change its processor binding or its
processor set, the system may elect to drive the timer with a hardware source that better
reflects the new binding. Timers based on a clock_id of CLOCK_HIGHRES are ideally suited for
interval timers that have minimal jitter tolerence.

Timers are not inherited by a child process across a fork(2) and are disarmed and deleted by a
call to one of the exec functions (see exec(2)).

Upon successful completion, timer_create() returns 0 and updates the location referenced
by timerid to a timer_t, which can be passed to the per-process timer calls. If an error occurs,
the function returns −1 and sets errno to indicate the error. The value of timerid is undefined
if an error occurs.

Name

Synopsis

Description

Return Values

timer_create(3RT)

Realtime Library Functions 127

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1signal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1fork-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1exec-2

The timer_create() function will fail if:

EAGAIN The system lacks sufficient signal queuing resources to honor the request,
or the calling process has already created all of the timers it is allowed by
the system.

EINVAL The specified clock ID, clock_id, is not defined.

ENOSYS The timer_create() function is not supported by the system.

EPERM The specified clock ID, clock_id, is CLOCK_HIGHRES and the
{PRIV_PROC_CLOCK_HIGHRES} is not asserted in the effective set of the
calling process.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe with exceptions

exec(2), fork(2), time(2), clock_settime(3RT), signal(3C), signal.h(3HEAD),
timer_delete(3RT), timer_settime(3RT), attributes(5), privileges(5), standards(5)

Errors

Attributes

See Also

timer_create(3RT)

man pages section 3: Realtime Library Functions • Last Revised 20 Oct 2003128

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1exec-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1fork-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1time-2
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1signal-3c
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1signal.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1privileges-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1standards-5

timer_delete – delete a timer

cc [flag...] file... -lrt [library...]

#include <time.h>

int timer_delete(timer_t timerid);

The timer_delete() function deletes the specified timer, timerid, previously created by the
timer_create(3RT) function. If the timer is armed when timer_delete() is called, the
behavior will be as if the timer is automatically disarmed before removal. The disposition of
pending signals for the deleted timer is unspecified.

If successful, the function returns 0. Otherwise, the function returns −1 and sets errno to
indicate the error.

The timer_delete() function will fail if:

EINVAL The timer ID specified by timerid is not a valid timer ID.

ENOSYS The timer_delete() function is not supported by the system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe with exceptions

timer_create(3RT), attributes(5), standards(5)

Name

Synopsis

Description

Return Values

Errors

Attributes

See Also

timer_delete(3RT)

Realtime Library Functions 129

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1standards-5

timer_settime, timer_gettime, timer_getoverrun – per-process timers

cc [flag...] file... -lrt [library...]

#include <time.h>

int timer_settime(timer_t timerid, int flags,
const struct itimerspec *restrict value,
struct itimerspec *restrict ovalue);

int timer_gettime(timer_t timerid, struct itimerspec *value);

int timer_getoverrun(timer_t timerid);

The timer_settime() function sets the time until the next expiration of the timer specified by
timerid from the it_value member of the value argument and arm the timer if the it_value
member of value is non-zero. If the specified timer was already armed when timer_settime()

is called, this call resets the time until next expiration to the value specified. If the it_value
member of value is 0, the timer is disarmed. The effect of disarming or resetting a timer on
pending expiration notifications is unspecified.

If the flag TIMER_ABSTIME is not set in the argument flags, timer_settime() behaves as if the
time until next expiration is set to be equal to the interval specified by the it_value member
of value. That is, the timer expires in it_value nanoseconds from when the call is made. If the
flag TIMER_ABSTIME is set in the argument flags, timer_settime() behaves as if the time until
next expiration is set to be equal to the difference between the absolute time specified by the
it_value member of value and the current value of the clock associated with timerid. That is,
the timer expires when the clock reaches the value specified by the it_value member of value.
If the specified time has already passed, the function succeeds and the expiration notification
is made.

The reload value of the timer is set to the value specified by the it_interval member of value.
When a timer is armed with a non-zero it_interval, a periodic (or repetitive) timer is
specified.

Time values that are between two consecutive non-negative integer multiples of the resolution
of the specified timer will be rounded up to the larger multiple of the resolution. Quantization
error will not cause the timer to expire earlier than the rounded time value.

If the argument ovalue is not NULL, the function timer_settime() stores, in the location
referenced by ovalue, a value representing the previous amount of time before the timer would
have expired or 0 if the timer was disarmed, together with the previous timer reload value. The
members of ovalue are subject to the resolution of the timer, and they are the same values that
would be returned by a timer_gettime() call at that point in time.

The timer_gettime() function stores the amount of time until the specified timer, timerid,
expires and the reload value of the timer into the space pointed to by the value argument. The
it_value member of this structure contains the amount of time before the timer expires, or 0

Name

Synopsis

Description

timer_settime(3RT)

man pages section 3: Realtime Library Functions • Last Revised 1 Nov 2003130

if the timer is disarmed. This value is returned as the interval until timer expiration, even if the
timer was armed with absolute time. The it_interval member of value contains the reload
value last set by timer_settime().

Only a single signal will be queued to the process for a given timer at any point in time. When
a timer for which a signal is still pending expires, no signal will be queued, and a timer overrun
occurs. When a timer expiration signal is delivered to or accepted by a process, the
timer_getoverrun() function returns the timer expiration overrun count for the specified
timer. The overrun count returned contains the number of extra timer expirations that
occurred between the time the signal was generated (queued) and when it was delivered or
accepted, up to but not including an implementation-dependent maximum of
DELAYTIMER_MAX. If the number of such extra expirations is greater than or equal to
DELAYTIMER_MAX, then the overrun count will be set to DELAYTIMER_MAX. The value returned
by timer_getoverrun() applies to the most recent expiration signal delivery or acceptance
for the timer. If no expiration signal has been delivered for the timer, the meaning of the
overrun count returned is undefined.

If the timer_settime() or timer_gettime() functions succeed, 0 is returned. If an error
occurs for either of these functions, −1 is returned, and errno is set to indicate the error. If the
timer_getoverrun() function succeeds, it returns the timer expiration overrun count as
explained above.

The timer_settime(), timer_gettime() and timer_getoverrun() functions will fail if:

EINVAL The timerid argument does not correspond to a timer returned by
timer_create(3RT) but not yet deleted by timer_delete(3RT).

ENOSYS The timer_settime(), timer_gettime(), and timer_getoverrun() functions
are not supported by the system. The timer_settime() function will fail if:

EINVAL A value structure specified a nanosecond value less than zero or greater than or
equal to 1000 million.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level Async-Signal-Safe

time.h(3HEAD), clock_settime(3RT), timer_create(3RT), timer_delete(3RT),
attributes(5), standards(5)

Return Values

Errors

Attributes

See Also

timer_settime(3RT)

Realtime Library Functions 131

http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1time.h-3head
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1attributes-5
http://www.oracle.com/pls/topic/lookup?ctx=E18752&id=REFMAN1standards-5

132

	man pages section 3: Realtime Library Functions
	Preface
	Overview

	Realtime Library Functions
	aiocancel(3AIO)
	aio_cancel(3RT)
	aio_error(3RT)
	aio_fsync(3RT)
	aioread(3AIO)
	aio_read(3RT)
	aio_return(3RT)
	aio_suspend(3RT)
	aiowait(3AIO)
	aio_waitn(3RT)
	aio_write(3RT)
	clock_nanosleep(3RT)
	clock_settime(3RT)
	door_bind(3DOOR)
	door_call(3DOOR)
	door_create(3DOOR)
	door_cred(3DOOR)
	door_info(3DOOR)
	door_return(3DOOR)
	door_revoke(3DOOR)
	door_server_create(3DOOR)
	door_ucred(3DOOR)
	door_xcreate(3DOOR)
	fdatasync(3RT)
	lio_listio(3RT)
	mq_close(3RT)
	mq_getattr(3RT)
	mq_notify(3RT)
	mq_open(3RT)
	mq_receive(3RT)
	mq_send(3RT)
	mq_setattr(3RT)
	mq_unlink(3RT)
	nanosleep(3RT)
	proc_service(3PROC)
	ps_lgetregs(3PROC)
	ps_pglobal_lookup(3PROC)
	ps_pread(3PROC)
	ps_pstop(3PROC)
	sched_getparam(3RT)
	sched_get_priority_max(3RT)
	sched_getscheduler(3RT)
	sched_rr_get_interval(3RT)
	sched_setparam(3RT)
	sched_setscheduler(3RT)
	sched_yield(3RT)
	sem_close(3RT)
	sem_destroy(3RT)
	sem_getvalue(3RT)
	sem_init(3RT)
	sem_open(3RT)
	sem_post(3RT)
	sem_timedwait(3RT)
	sem_unlink(3RT)
	sem_wait(3RT)
	shm_open(3RT)
	shm_unlink(3RT)
	sigqueue(3RT)
	sigwaitinfo(3RT)
	timer_create(3RT)
	timer_delete(3RT)
	timer_settime(3RT)

