
Java Dynamic Management Kit 4.2
Tutorial

Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303-4900
U.S.A.

Part Number 806-6633–10
December 2000

Copyright 2000 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303-4900 U.S.A. All rights reserved.
Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document.
In particular, and without limitation, these intellectual property rights may include one or more additional patents or pending patent
applications in the U.S. or other countries.
This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and
decompilation. No part of this product or of this documentation may be reproduced in any form by any means without prior written
authorization of Sun and its licensors, if any.
Third party software, including font technology, is copyrighted and licensed from Sun suppliers.
Sun, Sun Microsystems, the Sun Logo, Java, Java Dynamic Management, JMX, JavaBeans, JavaScript, Javadoc, JDK, PersonalJava, the Java
Coffee Cup logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks or registered trademarks of Sun Microsystems, Inc
in the U.S. and other countries.
All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and
other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.
Federal Acquisitions: Commercial Software – Government Users Subject to Standard License Terms and Conditions.
DOCUMENTATION IS PROVIDED “AS IS,” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY
INVALID.

Copyright 2000 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, Californie 94303-4900 Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuelle relatants à la technologie incorporée dans le produit décrit par ce document.
En particulier, et sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs brevets, ou des applications de
brevet en attente, aux Etats-Unis et dans d’autres pays.
Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la
distribution, et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque
moyen que ce soit, sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a.
Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié
par des fournisseurs de Sun.
Sun, Sun Microsystems, le logo Sun, Java, Java Dynamic Management, JMX, JavaBeans, JavaScript, Javadoc, JDK, PersonalJava, le logo Java
Coffee Cup, docs.sun.com, AnswerBook, AnswerBook2 et Solaris sont des marques de fabrique ou des marques déposées de Sun
Microsystems, Inc. aux Etats-Unis et dans d’autres pays.
Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International,
Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun
Microsystems, Inc.
LA DOCUMENTATION EST FOURNIE EN “L’ETAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES
EXPRESSES OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS
NOTAMMENT TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION
PARTICULIERE OU A L’ABSENCE DE CONTREFAÇON.

Please
Recycle

Contents

Preface 13

Part I Instrumentation through MBeans

1. Standard MBeans 23

Exposing the MBean Interface 23

Attributes 24

Operations 25

Implementing the MBean 26

Running the Standard MBean Example 28

2. Dynamic MBeans 29

Exposing the Management Interface 30

The DynamicMBean Interface 30

The MBean Metadata Classes 31

Implementing a Dynamic MBean 32

Dynamic Programming Issues 32

The getMBeanInfo Method 33

Generic Attribute Getters and Setters 34

Bulk Getters and Setters 37

Generic Operation Invoker 39

Running the Dynamic MBean Example 41

3

Comparison with the SimpleStandard Example 41

Dynamic MBean Execution Time 43

3. Model MBeans 45

The RequiredModelMBean Class 46

Model MBean Metadata 46

The Target Object(s) 48

Creating the Model MBean 51

Running the Model MBean Example 52

Part II Agent Applications

4. The MBean Server in a Minimal Agent 57

MBean Server Classes 58

The MBeanServer Interface 58

The MBean Server Implementation and Factory 59

The Minimal Agent 59

Referencing MBeans 61

Object Names 61

The ObjectInstance of an MBean 63

A Minimalist Agent 63

Running the Minimal Agent Example 65

5. The HTML Protocol Adaptor 67

The Agent View 68

The MBean List 68

The MBean Server Delegate 69

H Viewing the MBean Server Delegate Information 69

The MBean View 70

H Preparation 70

The Header and Description 70

H Setting the Reload Period 71

4 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

The Table of Attributes 71

H Viewing Attribute Descriptions 73

The Operations 73

Agent Administration 74

H Preparation 75

Instantiating and Managing MBeans 75

H Creating a New HTML Adaptor MBean 76

H Instantiating MBeans with Constructors 77

H Unregistering MBeans 78

Filtering MBeans 78

H Instructions 79

6. The Base Agent 81

The Agent Application 82

Creating an MBean (Method 1) 83

Creating an MBean (Method 2) 84

Creating an MBean (Method 3) 86

Managing MBeans 88

Filtering MBeans 89

Running the Base Agent Example 91

Setting Trace Messages 91

Agent Output 91

7. The Notification Mechanism 93

Overview 94

MBean Server Delegate Notifications 95

The NotificationBroadcaster Interface 95

The NotificationListener Interface 96

Adding a Listener Through the MBean Server 98

Attribute Change Notifications 99

Contents 5

The NotificationBroadcasterSupport Class 99

The Attribute Change Listener 101

Adding a Listener Directly to an MBean 103

Running the Agent Notification Example 104

H Triggering Notifications in the Agent Example 104

Part III Remote Management Applications

8. Protocol Connectors 109

Connector Servers 110

Instantiating an RMI Connector Server 110

Connector States 111

Connector Clients 113

The RemoteMBeanServer Interface 113

Establishing a Connection 115

Managing MBeans Remotely 116

Running the Simple Client Example 119

H Instructions 120

The Heartbeat Mechanism 121

Configuring the Heartbeat 121

Receiving Heartbeat Notifications 123

Running the Heartbeat Example 125

H Normal Termination 126

H Connector Client Reaction 126

H Connector Server Reaction 127

9. MBean Proxies 129

The Proxy Mechanism 130

Local and Remote Proxies 131

The Proxy Interface 132

Standard MBean Proxies 133

6 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

Generating Proxies for Standard MBeans 134

Using Standard MBean Proxies 135

Running the Standard Proxy Example 137

H Instructions 138

Generic Proxies 138

Running the Generic Proxy Example 141

H Instructions 142

Proxies for Java DMK Components 142

Proxy Packages 143

Compiling the Proxy Classes 143

10. Notification Forwarding 145

Registering Manager-Side Listeners 146

The Agent-Side Broadcaster 146

The Manager-Side Listener 148

Adding a Listener Through the Connector 148

Push Mode 150

Pull Mode 152

Periodic Forwarding 153

On-Demand Forwarding 154

Agent-Side Buffering 155

Running the Notification Forwarding Example 157

H Instructions 158

H Interacting with the Notification Forwarding Mechanism 158

11. Access Control and Security 161

Password-Based Authentication 162

Running the Example with Authentication 164

H Instructions 164

Context Checking 165

Contents 7

The Filter Mechanism 165

The Context Implementation 167

Running the Example with Context Checking 170

H Instructions 170

The HTTPS Connector 171

1. Install All Software 172

2. Extend Your Java Runtime Libraries 172

3. Designate your Security Provider 173

4. Generate Public and Private Keys 173

5. Export a Local Certificate 174

6. Import all Remote Certificates 174

7. Run Your Java Dynamic Management Agent 175

8. Run Your Management Application 175

Part IV Agent Services

12. The M-Let Class Loader 179

The M-Let Loader (JDK 1.1) 180

Loading MBeans from a URL 180

Shortcut for Loading MBeans 182

Running the M-Let Agent Example 183

M-Let Loading from a Manager (JDK1.1) 185

Asking the Agent to Load Classes 186

Running the M-Let Manager Example 188

The M-Let Loader (Java 2) 189

Loading MBeans from a URL 190

Shortcut for Loading MBeans 191

Loading MBeans Directly 191

Running the M-Let Agent Example 192

M-Let Loading from a Manager (Java 2) 194

8 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

Asking the Agent to Load Classes 195

Running the M-Let Manager Example 197

Secure Class Loading 198

Security Manager (JDK 1.1) 198

Code Signing (JDK 1.1) 199

Code Signing (Java 2) 199

13. The Relation Service 201

Defining Relations 202

Defining Role Information 203

Defining Relation Types 204

Creating Relations 206

Operations of the Relation Service 207

Query Operations 207

Accessing Roles 208

Maintaining Consistency 208

Relation Service Notifications 210

Objects Representing Relations 210

The RelationTypeSupport Class 211

The RelationSupport Class 212

Running the Relation Service Example 215

14. Cascading Agents 217

The CascadingAgent MBean 218

The Mirror MBeans in the Master Agent 220

The Class of a Mirror MBean 221

Cascading Issues 222

Running the Cascading Example 223

H Interacting with a Cascade Hierarchy 224

15. The Discovery Service 227

Contents 9

Active Discovery 228

The Discovery Client 228

Performing a Discovery Operation 229

Passive Discovery 233

The Discovery Responder 234

Discovery Monitor 236

Discovery Responder Notifications 237

Running the Discovery Example 238

H Interacting with the Discovery Example 238

Part V SNMP Interoperability

16. Creating an SNMP Agent 243

MIB Development Process 244

Generating MIB MBeans 244

Implementing the MIB 245

Compiling the MBeans and Agents 246

The SNMP Protocol Adaptor 246

Launching the SNMP Adaptor 248

Creating MIB MBeans 248

Binding the MIB MBeans 249

Accessing a MIB MBean 249

Managing the SNMP Adaptor 250

Running the SNMP Agent Example 251

Sending Traps 251

Specifying the Trap Destination 254

Traps in the Agent Example 256

H Interacting with the Trap Generator 257

Stand-Alone SNMP Agents 257

Running the Stand-Alone Agent Example 261

10 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

17. Developing an SNMP Manager 263

The Synchronous Manager Example 264

SNMP Trap Handler 266

Running the SyncManager Example 267

The Asynchronous Manager Example 268

The Response Handler 270

Running the AsyncManager Example 271

The Inform Request Example 272

Sending an Inform Request 273

Receiving Inform Requests 275

Running the Inform Request Example 277

18. Security Mechanisms in the SNMP Toolkit 279

Access Control Lists (ACL) 280

ACL File Format 280

Enabling Access Control 282

Custom Access Control 284

Message-Level Security 284

Implementing the SnmpPduFactory Interface 286

Using a Custom PDU Factory 287

Running the Secure Agent Example 288

SNMP Manager Security 288

19. Implementing an SNMP Proxy 291

The Proxy Roles 292

The Master Agent 292

The Sub-Agent 294

The Manager Application 294

The SNMP Proxy Implementation 295

Running the SNMP Proxy Example 299

Contents 11

H Running the SNMP Proxy Example 299

12 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

Preface

The Java Dynamic ManagementTM Kit provides a set of JavaTM classes and tools for
developing management solutions. This product conforms to the Java Management
extensions (JMXTM) v1.0 Final Release, which define resource instrumentation,
dynamic agents and remote management applications. The JMX architecture is
applicable to network management, remote system maintenance, application
provisioning, and the new management needs of the service-based network.

Once you are familiar with management concepts, the Java Dynamic Management Kit
4.2 Tutorial is intended to demonstrate each of the management levels and how they
interact. The lessons of this tutorial will show you:

� The different ways of making your resources manageable

� How to write an agent and add management services dynamically

� How to access your resources from a remote management application

� The mechanism used to forward events and exceptions from agent to manager

Taken as a whole, these topics will demonstrate the complete development process
for implementing a management solution in the Java programming language.

This book ends with a lesson devoted to the details of programming SNMP
managers and agents (peers) using the Java Dynamic Management Kit.

Who Should Use This Book
This tutorial is aimed at developers who would like to learn how to instrument new
or existing resources for management, write dynamic agents, or write management
applications. Familiarity with Java programming is assumed. Some tutorials also rely

13

on system and network management concepts: knowledge of these is helpful though
not required.

This book is not intended to be an exhaustive reference. Management concepts and
product features are covered in Getting Started with the Java Dynamic Management
Kit 4.2, and the complete JavadocTM API definitions are provided in the product’s
online documentation package.

Before You Read This Book
In order to build and run the sample programs in this tutorial or use the tool
commands provided in the Java Dynamic Management Kit, you must have a
complete installation of the product on your machine. Please refer to the Java
Dynamic Management Kit 4.2 Installation Guide and Release Notes document for
instructions on how to install the product components and configure your
environment.

Before programming with the Java Dynamic Management Kit, you should be
familiar with the concepts and tools used throughout these tutorials. The following
books are part of the product documentation set:

� Getting Started with the Java Dynamic Management Kit 4.2

� Java Dynamic Management Kit 4.2 Tools Reference

These books are available online after you have installed the documentation package
of the Java Dynamic Management Kit. The online documentation also includes the
Javadoc API for the Java packages and classes, including those of the Java
Management extensions. Using any web browser, open the homepage corresponding
to your platform:

Operating
Environment Homepage Location

Solaris installDir/SUNWjdmk/jdmk4.2/ JDKversion/index.html

Windows NT installDir\SUNWjdmk\jdmk4.2\ JDKversion\index.html

In these file names, installDir refers to the base directory of your Java Dynamic
Management Kit installation. In a default installation procedure, installDir is:

� /opt on the Solaris platform

� C:\Program Files on the Windows NT platform

14 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

The JDKversion is that of the Java Development Kit (JDKTM) which you use and
which you selected during installation. Its value can be either 1.1 or 1.2 when used
in a directory, filename, or path.

These conventions are used throughout this book whenever referring to files or
directories which are part of the installation.

Directories and Classpath
These tutorials are based on the example programs shipped with the Java Dynamic
Management Kit. Each example is a set of Java source code files in a separate
subdirectory. The following table gives the location of the main examples directory:

Operating
Environment Examples Directory

Solaris installDir/SUNWjdmk/jdmk4.2/ JDKversion/examples

Windows NT installDir\SUNWjdmk\jdmk4.2\ JDKversion\examples

Except where noted, the source code in this book is taken from these example
programs. However, code fragments may be rearranged and comments may be
changed. Program listings in the tutorials usually simplify comments and remove
output statements for space considerations.

On the Solaris platform, you must have root access in order to write in the installed
examples directory. For this reason, it may be necessary to copy all examples to a
different location before compiling them. Throughout the rest of this book, we will
use the term examplesDir to refer to the main examples directory in a location where
you can compile and run them.

When either compiling or running the example programs, the jar file for the Java
Dynamic Management Kit runtime libraries must be in your classpath:

JDK Version Classpath for Compiling or Running the Examples on Solaris

1.1 .: installDir/SUNWjdmk/jdmk4.2/1.1/lib/jdmkrt.jar:
installDir/SUNWjdmk/jdmk4.2/1.1/lib/collections.jar

1.2 .: installDir/SUNWjdmk/jdmk4.2/1.2/lib/jdmkrt.jar

Preface 15

The classpathes on the Windows NT platform are identical to these, with the forward
slashes (/) replaced with back-slashes (\), and the colons (:) replaced with
semi-colons (;).

These classpathes assumes that you are in the subdirectory of a particular example
when compiling or running it. You specify the classpath on the command line of the
javac and java tools with the -classpath option. The JDK version must match
the version of the javac or java command that you are using.

Throughout the rest of this book, we will use the term classpath in command line
examples to indicate that you must use the classpath indicated above. You may also
define this classpath in an environment variable according to your platform and omit
its definition on the command line.

In order to use the proxygen and mibgen tools provided with the Java Dynamic
Management Kit, you should add the installation’s binaries directory your
environment’s path. The following table give the location of this directory:

Operating
Environment Binaries Directory

Solaris installDir/SUNWjdmk/jdmk4.2/ JDKversion/bin

Windows NT installDir\SUNWjdmk\jdmk4.2\ JDKversion\bin

How This Book Is Organized
This book is organized like a trail of the The Java Tutorial. Each major part is a lesson
covering a subject and each chapter covers a topic within that subject.

Part I, “Instrumentation through MBeans” shows various ways of making a resource
manageable. Topics:

� “Standard MBeans”

� “Dynamic MBeans”

� “Model MBeans”

Part II, “Agent Applications” demonstrates the functionality of the MBean server at
the heart of an agent. Topics:

� “The MBean Server in a Minimal Agent”

� “The HTML Protocol Adaptor”

16 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

� “The Base Agent”

� “The Notification Mechanism”

Part III, “Remote Management Applications” covers how the Java Dynamic
Management Kit simplifies how a distant manager may access the resources in an
agent. Topics:

� “Protocol Connectors”

� “MBean Proxies”

� “Notification Forwarding”

� “Access Control and Security”

Part IV, “Agent Services” demonstrates the various kinds of management intelligence
which can be dynamically added to an agent. Topics:

� “The M-Let Class Loader”

� “The Relation Service”

� “Cascading Agents”

� “The Discovery Service”

Part VI, “SNMP Interoperability” shows how Java agents can also implement an
SNMP agent and how to write a manager with the SNMP manager API. Topics:

� “Creating an SNMP Agent”

� “Developing an SNMP Manager”

� “Security Mechanisms in the SNMP Toolkit”

� “Implementing an SNMP Proxy”

Related Books
The Java Dynamic Management Kit relies on the management architecture of the Java
Management extensions. The specification document, Java Management Extensions
Instrumentation and Agent Specification, v1.0 (Final Release, July 2000) is provided in
the product documentation package under the filename jmx_instr_agent.pdf .

The structure of this book was inspired by that of the The Java Tutorial:

Preface 17

� Online version:
http://java.sun.com/docs/books/tutorial/index.html

� Paperback reference:
The Java Tutorial Second Edition: Object-Oriented Programming for the Internet
(Java Series) by Mary Campione and Kathy Walrath; 2nd book and CD-ROM
edition (March 1998) Addison-Wesley Pub. Co.; ISBN: 0201310074

Some topics in the lesson on SNMP refer to RFC “standards” for further information.
The complete text of RFC papers can be found on the following site:

http://sunsite.auc.dk/RFC/

Disclaimer – This site is in no way affiliated with Sun Microsystems, Inc. and Sun
makes no claim as to the accuracy or relevance of the data it contains.

Ordering Sun Documents
Fatbrain.com, an Internet professional bookstore, stocks selected product
documentation from Sun Microsystems, Inc.

For a list of documents and how to order them, visit the Sun Documentation Center
on Fatbrain.com at http://www1.fatbrain.com/documentation/sun .

Accessing Sun Documentation Online
The docs.sun.comSM Web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title or
subject. The URL is http://docs.sun.com .

Typographic Conventions
The following table describes the typographic changes used in this book.

18 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

TABLE P–1 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 Book titles, new words or terms, or
words to be emphasized

Read Chapter 6 in User’s Guide.

These are called class options.

You must be root to do this.

AaBbCc123 Class or object names, methods,
parameters or any other element of
the Java programming language

Instantiate the MyBean class.

AaBbCc123 The names of commands, files, and
directories; on-screen computer
output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail

AaBbCc123 What you type, contrasted with
on-screen computer output

machine_name% su

Password:

AaBbCc123 A placeholder: replace with the
appropriate name or intended value

To delete a file, type rm filename.

Shell Prompts
The following table shows the default system prompts for the different platforms
and shells.

TABLE P–2 Shell Prompts

Shell Prompt

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser
prompt

#

Windows NT system prompt C:\>

Unless otherwise noted, the command examples in this book use the Korn shell.

Preface 19

20 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

PART I Instrumentation through MBeans

Given a resource in the Java programming language, either an application, a service
or an object representing a device, its instrumentation is the way that you expose its
management interface. The management interface is the set of attributes and
operations that are visible to managers wishing to interact with that resource.
Therefore, instrumenting a resource makes it manageable.

This lesson covers the three ways to instrument a resource: by writing a standard
MBean, by implementing a dynamic MBean, or by dynamically instantiating a
configurable model MBean.

When you write a standard MBean, you follow certain design patterns so that the
method names in your object exposes the attributes and operations to static
introspection. Dynamic MBeans all implement a generic interface and may expose a
rich description of their management interface. Model MBeans are MBean templates
whose management interface and resource target are defined at runtime.

This lesson contains the following topics:

� “Standard MBeans” shows how to write a standard MBean by following the
design patterns defined by the Java Management extensions. The example shows
how an agent then accesses the attributes and operations.

� “Dynamic MBeans” shows how to implement the DynamicMBean interface in
order to expose a coherent management interface. Running the example highlights
the similarities and differences between dynamic and standard MBeans, with an
analysis of performance issues.

� “Model MBeans” gives an example of how to create a model MBean, configure its
behavior, set its target object, and then manage it in the same way as any other
MBean.

CHAPTER 1

Standard MBeans

A standard MBean is the simplest and fastest way to instrument a resource from
scratch: attributes and operations are simply methods which follow certain design
patterns. A standard MBean is composed of the MBean interface which lists the
methods for all exposed attributes and operations, and of the class which
implements this interface and provides the functionality of the resource.

The code samples in this topic are taken from the files in the StandardMBean
example directory located in the main examplesDir (see “Directories and Classpath”
in the preface).

Contents:

� “Exposing the MBean Interface” on page 23 demonstrates the design patterns for
attributes and operations and gives some general rules for writing the MBean
interface.

� “Implementing the MBean” on page 26 shows how the MBean interface is related
to the code for the manageable resource.

� “Running the Standard MBean Example” on page 28 demonstrates the runtime
behavior of a standard MBean.

Exposing the MBean Interface
Typically, you would first determine the management interface of your resource, that
is the information needed to manage it. This information is expressed as attributes
and operations. An attribute is a value of any type that a manager can get or set
remotely. An operation is a method with any signature and any return type that the
manager can invoke remotely.

23

Note - Attributes and operations are conceptually equivalent to properties and
actions on JavaBeans objects. However, their translation into Java code is entirely
different to accommodate the management functionality.

As specified by the Java Management extensions for instrumentation, all attributes
and operations are explicitly listed in an MBean interface. This is a Java interface that
defines the full management interface of an MBean. This interface must have the
same name as the class that implements it, followed by the MBean suffix. Since the
interface and its implementation are usually in different files, there are two files
which make up a standard MBean.

For example, the class SimpleStandard (in the file SimpleStandard.java) will
have its management interface defined in the interface SimpleStandardMBean (in
the file SimpleStandardMBean.java).

CODE EXAMPLE 1–1 The SimpleStandardMBean Interface

public interface SimpleStandardMBean {

public String getState () ;

public void setState (String s) ;

public Integer getNbChanges () ;

public void reset () ;
}

Only public methods in the MBean interface are taken into consideration for the
management interface. When present, non-public methods should be grouped
separately, to make the code clearer for human readers.

Attributes
Attributes are conceptual variables that are exposed for management through getter
and setter methods in the MBean interface:

� A getter is any public method whose name begins with get and which doesn’t
return void; it lets a manager read the value of the attribute, whose type is that of
the returned object

� A public method whose name begins with is and which returns a boolean or
Boolean object is also a getter, though a boolean attribute may have only one
getter (it must be one form or the other)

24 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

� A setter is any public method whose name begins with set and which takes a
single parameter; it lets a manager write a new value in the attribute, whose type
is that of the parameter

Attribute types can be arrays of objects, but individual array elements cannot be
accessed individually through the getters and setters. Use operations to access the
array elements, as described below. The following code example demonstrates an
attribute with an array type:

public String[] getMessages();
public void setMessages(String[] msgArray);

The name of the attribute is the literal part of the method name following get , is ,
or set . This name is case sensitive in all Java Dynamic Management Kit objects that
manipulate attribute names. Using these patterns, we can determine the attributes
exposed in the code sample above:

� State is a readable and writeable attribute of type String

� NbChanges is a read-only attribute of type Integer

The specification of the design patterns for attributes implies the following rules:

� Attributes may be read-only, write-only, or readable and writeable

� Attribute names cannot be overloaded: for any given attribute name there can be
at most one setter and one getter, and if both are defined, they must use the same
type

Operations
Operations are methods that management applications can call remotely on a
resource. They can be defined with any number of parameters of any type and can
return any type.

The design patterns for operations are simple: any public method defined in the
MBean interface that is not an attribute getter or setter is an operation. For this
reason, getters and setters are usually declared first in the Java code, so that all
operations are grouped afterwards. The name of an operation is the name of the
corresponding method.

The SimpleStandardMBean in the example defines one operation, reset , which
takes no parameters and returns nothing.

While the following methods define valid operations (and not attributes), these types
of names should not be used to avoid confusion:

public void getFoo();
public Integer getBar(Float p);
public void setFoo(Integer one, Integer two);
public String isReady();

Standard MBeans 25

For performance reasons, you may want to define operations for accessing individual
elements of an array type attribute. In this case, use non-ambiguous operation names:

public String singleGetMessage(int index);
public void singleSetMessage(int index, String msg);

Note - The Java Dynamic Management Kit imposes no restrictions on attribute
types, operation attribute types, and operation return types. However, the developer
must insure that the corresponding classes are available to all applications
manipulating these objects, and that they are compatible with the type of
communication used. For example, attribute and operation types must be serializable
in order to be manipulated remotely using the RMI or HTTP protocol.

Implementing the MBean
The second part of an MBean is the class that implements the MBean interface. This
class encodes the expected behavior of the manageable resource in its implementation
of the attribute and operation methods. Of course, the resource does not need to
reside entirely in this class, the MBean implementation can rely on other objects.

Beyond the implementation of the corresponding MBean interface, there are two
requirements on the MBean class:

� It must be a concrete class so that it can be instantiated

� It must expose at least one public constructor so that any other class can create an
instance

Otherwise, the developer is free to implement the management interface in any way,
provided of course that the object has the expected behavior. Here is the sample code
that implements our MBean interface:

CODE EXAMPLE 1–2 The SimpleStandard Class

public class SimpleStandard implements SimpleStandardMBean {

public String getState () {
return state;

}

public void setState (String s) {
state = s;
nbChanges++;

}

(continued)

26 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

(Continuation)

public Integer getNbChanges () {
return new Integer(nbChanges);

}

public void reset () {
state = "initial state";
nbChanges = 0;
nbResets++;

}

// This method is not a getter in the management sense because
// it is not exposed in the "SimpleStandardMBean" interface.
public Integer getNbResets () {

return new Integer(nbResets);
}

// internal variables for exposed attributes
private String state = "initial state";
private int nbChanges = 0;

// other private variables
private int nbResets = 0;

}

In this example there is no constructor. Since the Java compiler provides a public,
no-argument constructor by default in such cases, this is a valid MBean.

As in this example, attributes are usually implemented as internal variables whose
value is returned or modified by the getter and setter methods. However, an MBean
may implement any access and storage scheme to fit particular management needs,
provided getters and setters retain their read and write semantics. Methods in the
MBean implementation may have side-effects, but it is up to the programmer to
insure that these are safe and coherent within the full management solution.

As we shall see later, management applications never have a direct handle on an
MBean. They only have an identification of an instance and the knowledge of the
management interface. In this case, the mechanism for exposing attributes through
methods in the MBean interface makes it impossible for an application to access the
MBean directly. Internal variables and methods, and even public ones, are totally
encapsulated and their access is controlled by the programmer through the
implementation of the MBean interface.

Standard MBeans 27

Running the Standard MBean Example
The examplesDir/StandardMBean directory contains the SimpleStandard.java
and SimpleStandardMBean.java files which make up the MBean. This directory
also contains a simple agent application which instantiates this MBean, introspects its
management interface and manipulates its attributes and operations.

Compile all files in this directory with the javac command. For example, on the
Solaris platform with the Korn shell, you would type:

$ cd examplesDir/StandardMBean/
$ javac -classpath classpath *.java

To run the example, launch the agent class which will interact with the
SimpleStandard MBean:

$ java -classpath classpath StandardAgent

Press <Enter> when the application pauses to step through the example. The agent
application handles all input and output in this example and gives us a view of the
MBean at runtime.

We will look at how agents work in “Dynamic Agents”, but this example
demonstrates how the MBean interface limits the view of what the MBean exposes
for management. Roughly, the agent introspects the MBean interface at runtime to
determine what attributes and operations are available. You then see the result of
calling the getters, setters and operations.

The lesson on agents will also cover the topics of object names and exceptions which
you see when running this example.

28 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

CHAPTER 2

Dynamic MBeans

A dynamic MBean implements its management interface programmatically, instead
of through static method names. To do this, it relies on metadata classes which
represent the attributes and operations exposed for management. Management
applications then call generic getters and setters whose implementation must resolve
the attribute or operation name to its intended behavior.

One advantage of this instrumentation is that you can use it to quickly make an
existing resource manageable. The implementation of the DynamicMBean interface
can provide an instrumentation wrapper for an existing resource.

Another advantage is that the metadata classes for the management interface can
provide human-readable descriptions of the attributes, operations and MBean itself.
This information could be displayed to a user on a management console to describe
how to interact with this particular resource.

The code samples in this topic are taken from the files in the DynamicMBean
example directory located in the main examplesDir (see “Directories and Classpath”
in the preface).

Contents:

� “Exposing the Management Interface” on page 30 explains the DynamicMBean
interface and its generic methods common to all dynamic MBeans.

� “Implementing a Dynamic MBean” on page 32 shows how to implement this
interface to expose specific attributes and operations.

� “Running the Dynamic MBean Example” on page 41 demonstrates the runtime
behavior of a dynamic MBean.

29

Exposing the Management Interface
In the standard MBean, attributes and operations are exposed statically in the names
of methods in the MBean interface. Dynamic MBeans all share the same interface
which defines generic methods to access attributes and operations. Since the
management interface is no longer visible through introspection, dynamic MBeans
must also provide a description of their attributes and operations explicitly.

The DynamicMBean Interface
The DynamicMBean class is a Java interface defined by the Java Management
extensions. It specifies the methods that a resource implemented as a dynamic
MBean must provide to expose its management interface. Here is an uncommented
version of the code:

CODE EXAMPLE 2–1 The DynamicMBean Interface

public interface DynamicMBean {

public Object getAttribute (String attribute) throws
AttributeNotFoundException, MBeanException, ReflectionException;

public void setAttribute (Attribute attribute) throws
AttributeNotFoundException, InvalidAttributeValueException,
MBeanException, ReflectionException ;

public AttributeList getAttributes (String[] attributes);

public AttributeList setAttributes (AttributeList attributes);

public Object invoke (
String actionName, Object params[], String signature[])
throws MBeanException, ReflectionException ;

public MBeanInfo getMBeanInfo ();
}

The getMBeanInfo method is the one which provides a description of the MBean’s
management interface. This method returns an MBeanInfo object which contains the
metadata information about attributes and operations.

The attribute getters and setters are generic, since they take the name of the attribute
which needs to be read or written. For convenience, dynamic MBeans must also

30 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

define bulk getters and setters to operate on any number of attributes at once. These
methods use the Attribute and AttributeList classes to represent attribute
name-value pairs and lists of name-value pairs, respectively.

Since the names of the attributes are not revealed until runtime, the getters and setters
are necessarily generic. In the same way, the invoke method takes the name of an
operation and its signature, in order to invoke any method which might be exposed.

As a consequence of implementing generic getters, setters, and invokers, the code for
a dynamic MBean is more complex than for a standard MBean. For example, instead
of having a specific getter called by name, the generic getter must verify the attribute
name and then encode the functionality to read each of the possible attributes.

The MBean Metadata Classes
A dynamic MBean has the burden of building the description of its own management
interface. The JMX specification defines the Java objects used to completely describe
the management interface of an MBean. Dynamic MBeans use these objects to provide
a complete self description as returned by the getMBeanInfo method. Agents also
use these classes to describe a standard MBean after it has been introspected.

As a group, they are referred to as the MBean metadata classes because they provide
information about the MBean. This information includes the attributes and
operations of the management interface but also the list of constructors for the
MBean class and the notifications that the MBean may send. Notifications are event
messages that are defined by the JMX architecture; they are fully covered in “The
Notification Mechanism”.

Each element is described by its metadata object containing its name, a description
string, and its characteristics. For example, an attribute has a type and is readable
and/or writeable. The following table lists all MBean metadata classes:

Class Name Purpose

MBeanInfo Top-level object containing arrays of metadata objects for all
MBean elements; also includes the name of the MBean’s Java
class and a description string

MBeanFeatureInfo Parent class from which all other metadata objects inherit a
name and a description string

MBeanOperationInfo Describes an operation: the return type, the signature as an
array of parameters, and the impact (whether the operation
just returns information or modifies the resource)

MBeanConstructorInfo Describes a constructor by its signature

MBeanParameterInfo Gives the type of a parameter in an operation or constructor
signature

Dynamic MBeans 31

Class Name Purpose

MBeanAttributeInfo Describes an attribute: its type, whether it is readable, and
whether it is writeable

MBeanNotificationInfo Contains an array of notification type strings

Implementing a Dynamic MBean
A dynamic MBean consists of a class that implements the DynamicMBean interface
coherently. By this, we mean a class which exposes a management interface whose
description matches the attributes and operations which are accessible through the
generic getters, setters and invokers.

Note - MBeans are not allowed to be both standard and dynamic. When a class is
instantiated as an MBean, the agent checks the interfaces that it implements. If the
class implements or inherits an implementation of both the corresponding MBean
interface and the DynamicMBean interface, then an exception is raised and the
MBean cannot be created.

Beyond this restriction, a dynamic MBean must also follow the same two rules as a
standard MBean, namely:

� It must be a concrete class so that it can be instantiated

� It must expose at least one public constructor so that any other class can create an
instance

Thereafter, a dynamic MBean class is free to declare any number of public or private
methods and variables. None of these are visible to management applications, only
the methods implementing the DynamicMBean interface are exposed for
management. A dynamic MBean is also free to rely on other classes which may be a
part of the manageable resource.

Dynamic Programming Issues
An MBean is a manageable resource that exposes a specific management interface.
The name dynamic MBean refers to the fact that the interface is revealed at runtime,
as opposed to through the introspection of static class names. The term dynamic is
not meant to imply that the MBean can dynamically change its management
interface. The management architecture defined by JMX and implemented in the Java
Dynamic Management Kit does not support MBeans whose management interface is
modified during runtime.

32 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

This is not an issue with standard MBeans which would need to be recompiled in
order to change their interface. However, dynamic MBeans could be programmed so
that their interface description and their generic getters, setters and the invoker have
a different behavior at different times. In practice, this type of MBean could be
created but it couldn’t be managed after any change of interface.

As a rule, the value returned by the MBeanInfo method of a dynamic MBean, and
the corresponding behavior of getters, setters and the invoker, must never change
over the lifetime of a given instance of the MBean. However, it is permissible to have
the same dynamic MBean class expose different management interfaces depending
upon the instantiation conditions. This would be a valid MBean, since the agent
architecture manages object instances, not class types. It would also be a very
advanced MBean for a complex management solution, beyond the scope of this
tutorial.

The getMBeanInfo Method
Since the MBean description should never change, it is usually created once at
instantiation, and the getMBeanInfo method just returns its reference at every call.
The MBean constructor should therefore build the MBeanInfo object from the
MBean metadata classes such that it accurately describes the management interface.
And since most dynamic MBeans will always be instantiated with the same
management interface, building the MBeanInfo object is fairly straightforward.

The following code shows how the SimpleDynamic MBean defines its management
interface, as built at instantiation and returned by its getMBeanInfo method:

CODE EXAMPLE 2–2 Implemention of the getMBeanInfo Method

// class constructor
public SimpleDynamic () {

buildDynamicMBeanInfo();
}

// internal variables describing the MBean
private String dClassName = this.getClass().getName();
private String dDescription = "Simple implementation of a dynamic MBean.";

// internal variables for describing MBean elements
private MBeanAttributeInfo[] dAttributes = new MBeanAttributeInfo[2];
private MBeanConstructorInfo[] dConstructors = new MBeanConstructorInfo[1];
private MBeanOperationInfo[] dOperations = new MBeanOperationInfo[1];
private MBeanInfo dMBeanInfo = null;

// internal method
private void buildDynamicMBeanInfo () {

(continued)

Dynamic MBeans 33

(Continuation)

dAttributes[0] = new MBeanAttributeInfo(
"State", // name
"java.lang.String", // type
"State: state string.", // description
true, // readable
true); // writable

dAttributes[1] = new MBeanAttributeInfo(
"NbChanges",
"java.lang.Integer",
"NbChanges: number of times the State string has been changed.",
true,
false);

// use reflection to get constructor signatures
Constructor[] constructors = this.getClass().getConstructors();
dConstructors[0] = new MBeanConstructorInfo(

"SimpleDynamic(): No-parameter constructor", //description
constructors[0]); // the contructor object

MBeanParameterInfo[] params = null;
dOperations[0] = new MBeanOperationInfo(

"reset", // name
"Resets State and NbChanges attributes to their initial values",

// description
params, // parameter types
"void", // return type
MBeanOperationInfo.ACTION); // impact

dMBeanInfo = new MBeanInfo(dClassName,
dDescription,
dAttributes,
dConstructors,
dOperations,
new MBeanNotificationInfo[0]);

}

// exposed method implementing the DynamicMBean.getMBeanInfo interface
public MBeanInfo getMBeanInfo () {

// return the information we want to expose for management:
// the dMBeanInfo private field has been built at instantiation time,
return(dMBeanInfo);

}

Generic Attribute Getters and Setters
Generic getters and setters take a parameter that indicates the name of the attribute
to read or write. There are two issues to keep in mind when implementing these
methods:

34 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

� Attribute names must be correctly mapped to their corresponding internal
representation

� Invalid attribute names and types should raise an exception, including when
writing to a read-only attribute (and vice-versa)

The getAttribute method is the simplest, since only the attribute name must be
verified:

CODE EXAMPLE 2–3 Implementation of the getAttribute Method

public Object getAttribute (String attribute_name)
throws AttributeNotFoundException,

MBeanException,
ReflectionException {

// Check attribute_name to avoid NullPointerException later on
if (attribute_name == null) {

throw new RuntimeOperationsException(
new IllegalArgumentException("Attribute name cannot be null"),
"Cannot invoke a getter of " + dClassName +

" with null attribute name");
}

// Call the corresponding getter for a recognized attribute_name
if (attribute_name.equals("State")) {

return getState();
}
if (attribute_name.equals("NbChanges")) {

return getNbChanges();
}

// If attribute_name has not been recognized
throw(new AttributeNotFoundException(

"Cannot find " + attribute_name + " attribute in " + dClassName));
}

// internal methods for getting attributes
public String getState () {

return state;
}

public Integer getNbChanges () {
return new Integer(nbChanges);

}

// internal variables representing attributes
private String state = "initial state";
private int nbChanges = 0;

The setAttribute method is more complicated, since you must also insure that
the given type can be assigned to the attribute and handle the special case for a null
value:

Dynamic MBeans 35

CODE EXAMPLE 2–4 Implementation of the setAttribute Method

public void setAttribute (Attribute attribute)
throws AttributeNotFoundException,

InvalidAttributeValueException,
MBeanException,
ReflectionException {

// Check attribute to avoid NullPointerException later on
if (attribute == null) {

throw new RuntimeOperationsException(
new IllegalArgumentException("Attribute cannot be null"),
"Cannot invoke a setter of " + dClassName +

" with null attribute");
}
// Note: Attribute class constructor ensures the name not null
String name = attribute.getName();
Object value = attribute.getValue();

// Call the corresponding setter for a recognized attribute name
if (name.equals("State")) {

// if null value, try and see if the setter returns any exception
if (value == null) {

try {
setState(null);

} catch (Exception e) {
throw(new InvalidAttributeValueException(

"Cannot set attribute "+ name +" to null"));
}

}
// if non null value, make sure it is assignable to the attribute
else {

try {
if ((Class.forName("java.lang.String")).isAssignableFrom(

value.getClass())) {
setState((String) value);

}
else {

throw(new InvalidAttributeValueException(
"Cannot set attribute "+ name +

" to a " + value.getClass().getName() +
" object, String expected"));

}
} catch (ClassNotFoundException e) {

e.printStackTrace();
}

}
}

// optional: recognize an attempt to set a read-only attribute
else if (name.equals("NbChanges")) {

throw(new AttributeNotFoundException(
"Cannot set attribute "+ name +

" because it is read-only"));
}

// unrecognized attribute name

(continued)

36 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

(Continuation)

else {
throw(new AttributeNotFoundException(

"Attribute " + name + " not found in " +
this.getClass().getName()));

}
}

// internal method for setting attribute
public void setState (String s) {

state = s;
nbChanges++;

}

Notice that the generic getter and setter methods usually hard-code information
about the attributes. If a change in your management solution requires you to change
your management interface, it will be harder to do with a dynamic MBean. In a
standard MBean, each attribute and operation is a separate method, so unchanged
attributes are unaffected. In a dynamic MBean, you must modify these generic
methods that encode all attributes.

Bulk Getters and Setters
The DynamicMBean interface includes bulk getter and setter methods for reading or
writing more than one attribute at once. These methods rely on the following classes:

Class Name Purpose

Attribute A simple object which contains the name string and value
object of any attribute.

AttributeList A dynamically extendable list of Attribute objects (extends
java.util.ArrayList)

The AttributeList class extends the java.util.ArrayList class which is
specific to Java 2. For this class and others that rely on similar sets and collection, the
Java Dynamic Management Kit provides the collections.jar file for complete
compatibility using any JDK version 1.1.x. See Directories and Classpath in the
preface for more information.

The bulk getter and setter methods usually rely on the generic getter and setter,
respectively. This makes them independent of the management interface, which can

Dynamic MBeans 37

simplify certain modifications. In this case, their implementation consists mostly of
error checking on the list of attributes. However, all bulk getters and setters must
implement the following behavior: an error on any one attribute does not interrupt
or invalidate the bulk operation on the other attributes.

If an attribute cannot be read, then its name-value pair does not figure in the list of
results. If an attribute cannot be written, it will not be copied to the returned list of
successful set operations. As a result, if there are any errors, the lists returned by
bulk operators will not have the same length as the array or list passed to them. In
any case, the bulk operators do not guarantee that their returned lists have the same
ordering of attributes as the input array or list.

The SimpleDynamic MBean shows one way of implementing the bulk getter and
setter methods:

CODE EXAMPLE 2–5 Implementation of the Bulk Getter and Setter

public AttributeList getAttributes (String[] attributeNames) {

// Check attributeNames to avoid NullPointerException later on
if (attributeNames == null) {

throw new RuntimeOperationsException(
new IllegalArgumentException(

"attributeNames[] cannot be null"),
"Cannot invoke a getter of " + dClassName);

}
AttributeList resultList = new AttributeList();

// if attributeNames is empty, return an empty result list
if (attributeNames.length == 0)

return resultList;

// build the result attribute list
for (int i=0 ; i<attributeNames.length ; i++){

try {
Object value = getAttribute((String) attributeNames[i]);
resultList.add(new Attribute(attributeNames[i],value));

} catch (Exception e) {
// print debug info but continue processing list
e.printStackTrace();

}
}
return(resultList);

}

public AttributeList setAttributes (AttributeList attributes) {

// Check attributesto avoid NullPointerException later on
if (attributes == null) {

throw new RuntimeOperationsException(
new IllegalArgumentException(

"AttributeList attributes cannot be null"),
"Cannot invoke a setter of " + dClassName);

}

(continued)

38 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

(Continuation)

AttributeList resultList = new AttributeList();

// if attributeNames is empty, nothing more to do
if (attributes.isEmpty())

return resultList;

// try to set each attribute and add to result list if successful
for (Iterator i = attributes.iterator(); i.hasNext();) {

Attribute attr = (Attribute) i.next();
try {

setAttribute(attr);
String name = attr.getName();
Object value = getAttribute(name);
resultList.add(new Attribute(name,value));

} catch(Exception e) {
// print debug info but keep processing list
e.printStackTrace();

}
}
return(resultList);

}

Generic Operation Invoker
Finally, a dynamic MBean must implement the invoke method so that operations in
the management interface can be called. This method requires the same
considerations as the generic getter and setter:

� Operations and their parameters should be mapped to their internal
representation and the result must be returned

� Operation names and parameter types need to be verified

� These verifications are usually hard-coded, again making modifications to the
management interface more delicate than in a standard MBean

The implementation in the SimpleDynamic MBean is relatively simple due to the
one operation with no parameters:

CODE EXAMPLE 2–6 Implementation of the invoke Method

public Object invoke (
String operationName, Object params[], String signature[])

throws MBeanException, ReflectionException {

// Check operationName to avoid NullPointerException later on
if (operationName == null) {

throw new RuntimeOperationsException(

Dynamic MBeans 39

(Continuation)

new IllegalArgumentException(
"Operation name cannot be null"),

"Cannot invoke a null operation in " + dClassName);
}

// Call the corresponding operation for a recognized name
if (operationName.equals("reset")){

// this code is specific to the internal "reset" method:
reset(); // no parameters to check
return null; // and no return value

} else {
// unrecognized operation name:
throw new ReflectionException(

new NoSuchMethodException(operationName),
"Cannot find the operation " + operationName +

" in " + dClassName);
}

}

// internal variable
private int nbResets = 0;

// internal method for implementing the reset operation
public void reset () {

state = "initial state";
nbChanges = 0;
nbResets++;

}

// Method not revealed in the MBean description and not accessible
// through "invoke" therefore it is only available for internal mgmt
public Integer getNbResets () {

return new Integer(nbResets);
}

As it is written, the SimpleDynamic MBean correctly provides a description of its
management interface and implements its attributes and operations. However, this
example demonstrates the need for a strict coherence between what is exposed by
the getMBeanInfo method and what can be accessed through the generic getters,
setters, and invoker.

A dynamic MBean whose getMBeanInfo method describes an attribute or operation
which cannot be accessed is not compliant with the Java Management extensions and
is technically not a manageable resource. Similarly, a class could make attributes or
operations accessible without describing them in the returned MBeanInfo object.
Since MBeans should raise an exception when an undefined attribute or operation is
accessed, this would, again, technically not be a compliant resource.

40 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

Running the Dynamic MBean Example
The examplesDir/DynamicMBean directory contains the SimpleDynamic.java file
which makes up the MBean. The DynamicMBean interface is defined in the
javax.management package provided in the runtime jar file (jdmkrt.jar) of the
Java Dynamic Management Kit. This directory also contains a simple agent
application which instantiates this MBean, calls its getMBeanInfo method to get its
management interface and manipulates its attributes and operations.

Compile all files in this directory with the javac command. For example, on the
Solaris platform, you would type:

$ cd examplesDir/DynamicMBean/
$ javac -classpath classpath *.java

To run the example, launch the agent class which will interact with the
SimpleDynamic MBean:

$ java -classpath classpath DynamicAgent

Press <Enter> when the application pauses to step through the example. The agent
application handles all input and output in this example and gives us a view of the
MBean at runtime.

This example demonstrates how the management interface encoded in the
getMBeanInfo method is made visible in the agent application. We can then see the
result of calling the generic getters and setters and the invoke method. Finally, the
code for filtering attribute and operation errors is exercised, and we see the
exceptions from the code samples as they are raised at runtime.

Comparison with the SimpleStandard Example
Now that we have implemented both types of MBeans we can compare how they are
managed. We purposely created a dynamic MBean and a standard MBean with the
same management interface so that we can do exactly the same operations on them.
On the Solaris platform, we can compare the relevant code of the two agent
applications with the diff utility (your output may vary):

Dynamic MBeans 41

$ cd examplesDir
$ diff ./StandardMBean/StandardAgent.java ./DynamicMBean/DynamicAgent.java

[...]
41c40
< public class StandardAgent {

> public class DynamicAgent {
49c48
< public StandardAgent() {

> public DynamicAgent() {
77c76
< StandardAgent agent = new StandardAgent();

> DynamicAgent agent = new DynamicAgent();
88c87
< echo("\n>>> END of the SimpleStandard example:\n");

> echo("\n>>> END of the SimpleDynamic example:\n");
113c112
< String mbeanName = "SimpleStandard";

> String mbeanName = "SimpleDynamic";

If the two agent classes had the same name, we see that the only programmatic
difference would be the following:

113c112
< String mbeanName = "SimpleStandard";

> String mbeanName = "SimpleDynamic";

We can see that there is only one difference between the two example agents
handling different types of MBeans: the name of the MBean class that is instantiated!
In other words, standard and dynamic MBeans are indistinguishable from the agent’s
point of view. This is the power of the JMX architecture: managers interact with the
attributes and operations of a manageable resource, and the specification of the agent
hides any implementation differences between MBeans.

Since we know that the two MBeans are being managed identically, we can also
compare their runtime behavior. In doing so, we can draw two conclusions:

� The dynamic MBean was programmed to have the same behavior as the standard
MBean; the example output shows that this is indeed the case: despite the
different implementations, the functionality of the resource is strictly the same

� The only functional difference between the two is that the agent can obtain the
self-description strings encoded in the dynamic MBean: attributes and operations
are associated with the explanation that the programmer provides for them

42 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

Note - There is no mechanism which allows a standard MBean to provide a
self-description. The MBean server provides a default description string for each
feature in a standard MBean, and these descriptions are identical for all standard
MBeans.

Dynamic MBean Execution Time
In the introduction to this topic we presented two structural advantages of dynamic
MBeans, namely the ability to wrap existing code to make it manageable and the
ability to provide a self-description of the MBean and its features. Another advantage
is that using dynamic MBeans can lead to faster overall execution time.

The performance gain depends on the nature of the MBean and how it is managed in
the agent. For example, the SimpleDynamic MBean, as it is used, is probably not
measurably faster than the SimpleStandard example in the Chapter 1 topic. When
seeking improved performance, there are two situations which must be considered:
MBean introspection, and management operations.

Since the dynamic MBean provides its own description, the agent doesn’t need to
introspect it as it would a standard MBean. Since introspection is done only once by
the agent, this is a one-time performance gain during the lifetime of the MBean. In
an environment where there are many MBean creations and where MBeans have a
short lifetime, a slight performance increase can be measured.

However, the largest performance gain is in the management operations: calling the
getters, setters and invoker. As we shall see in the next lesson (“Dynamic Agents”),
the agent makes MBeans manageable through generic getters, setters, and invokers.
In the case of standard MBeans, the agent must do the computations for resolving
attribute and operation names according to the design patterns. Since dynamic
MBeans necessarily expose the same generic methods, these are called directly by the
agent. When a dynamic MBean has a simple management interface requiring simple
programming logic in its generic methods, its implementation can show a better
performance than the same functionality in a standard MBean.

Dynamic MBeans 43

44 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

CHAPTER 3

Model MBeans

A model MBean is a generic, configurable MBean which applications can use to
instrument any resource dynamically. It is a dynamic MBean that has been
implemented so that its management interface and its actual resource can be set
programmatically. This allows any manager connected to a Java Dynamic
Management agent to instantiate and configure a model MBean on the fly.

Model MBeans allow management applications to make resources manageable at
runtime. The managing application must provide a compliant management interface
for the model MBean to expose. It must also specify the target objects that actually
implement the resource. Once it is configured, the model MBean will pass any
management requests to the target objects and handle the result.

In addition, the model MBean provides a set of mechanisms for how management
requests and their results are handled. For example, caching can be performed on
attribute values. The management interface of a model MBean is augmented by
descriptors which contain attributes for controlling these mechanisms.

The code samples in this topic are taken from the files in the ModelMBean example
directory in the main examplesDir (see “Directories and Classpath” in the preface).

Contents:

� “The RequiredModelMBean Class” on page 46 gives an overview of model
MBeans.

� “Model MBean Metadata” on page 46 explains how we can describe a model
MBean’ management interface.

� “The Target Object(s)” on page 48 describes how a model MBean is associated
with its resource.

� “Creating the Model MBean” on page 51 shows how to instantiate and register a
model MBean.

� “Running the Model MBean Example” on page 52 shows how an agent interacts
with a model MBean.

45

The RequiredModelMBean Class
The required Model MBean is mandated by the JMX specification for all compliant
implementations. It is a dynamic MBean which lacks any predefined management
interface. It contains a generic implementation which will transmit management
request on it management interface to the target objects that define its managed
resource.

The name of the required model MBean class is the same for all JMX-compliant
implementation. Its full package and class name is
javax.management.modelmbean.RequiredModelMBean . By instantiating this
class, any application may use model MBeans.

In order to be useful, the instance of the required model MBean must be given a
management interface and the target object of the management resource. In addition,
the model MBean metadata must contain descriptors for configuring how the model
MBean will respond to management requests. We will cover these steps in
subsequent sections.

The MBean server does not make any special distinction for model MBeans.
Internally they are treated as the dynamic MBeans that they are, and all of the model
MBean’s internal mechanisms and configurations are completely transparent to a
management application. Like all other managed resources in the MBean server, the
resources available through the model MBean can only be accessed through the
attributes and operations defined in the management interface.

Model MBean Metadata
The metadata of a any MBean is the description of its management interface. The
metadata of the model MBean is described by an instance of the ModelMBeanInfo
class, which extends the MBeanInfo class.

Like all other MBeans, the metadata of a model MBean contains the list of attributes,
operations, constructors, and notifications of the management interface. Model
MBeans also describe their target object and their policies for accessing the target
object. This information is contained in an object called a descriptor, defined by the
Descriptor interface and implemented in the DescriptorSupport class.

There is one overall descriptor for a model MBean instance and one descriptor for
each element of the management interface, that is for each attribute, operation,
constructor, and notification. Descriptors are stored in the metadata object. As
defined by the JMX specification all, of the classes for describing elements are
extended so that they contain a descriptor. For example, the

46 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

ModelMBeanAttributeInfo extends the MBeanAttributeInfo and defines the
methods getDescriptor and getDescriptor .

A descriptor is a set of named field and value pairs. Each type of metadata element
has a defined set of fields that are mandatory, and users are free to add others. The
field names reflect the policies for accessing target objects, and their values determine
the behavior. For example the descriptor of an attribute contains the fields
currencyTimeLimit and lastUpdatedTimeStamp which are used by the
internal caching mechanism when performing a get or set operation.

In this way, model MBeans are manageable as any other MBean, but applications
which are aware of model MBeans may interact with the additional features which
they provide. The JMX specification defines the names of all required descriptor
fields for each of the metadata element, and for the overall descriptor. The field
names are also documented in the Javadoc API for the ModelMBean*Info classes.

In our example, our application defines a subroutine to build all descriptors and
metadata objects which are needed to define the management interface of the model
MBean.

CODE EXAMPLE 3–1 Defining Descriptors and MBeanInfo Objects

private void buildModelMBeanInfo(
ObjectName inMbeanObjectName, String inMbeanName) {

try {

// Create the descriptor and ModelMBeanAttributeInfo
// for the 1st attribute
//
Descriptor stateDesc = new DescriptorSupport();
stateDesc.setField("name","State");
stateDesc.setField("descriptorType","attribute");
stateDesc.setField("displayName","MyState");
stateDesc.setField("getMethod","getState");
stateDesc.setField("setMethod","setState");
stateDesc.setField("currencyTimeLimit","20");

dAttributes[0] = new ModelMBeanAttributeInfo(
"State",
"java.lang.String",
"State: state string.",
true,
true,
false,
stateDesc);

[...] // create descriptors and ModelMBean*Info for
// all attributes, operations, constructors
// and notifications

// Create the descriptor for the whole MBean
//

(continued)

Model MBeans 47

(Continuation)

mmbDesc = new DescriptorSupport(new String[]
{ ("name="+inMbeanObjectName),

"descriptorType=mbean",
("displayName="+inMbeanName),
"log=T",
"logfile=jmxmain.log",
"currencyTimeLimit=5"});

// Create the ModelMBeanInfo for the whole MBean
//
private String dClassName = "TestBean";
private String dDescription =

"Simple implementation of a test app Bean.";

dMBeanInfo = new ModelMBeanInfoSupport(
dClassName,
dDescription,
dAttributes,
dConstructors,
dOperations,
dNotifications);

dMBeanInfo.setMBeanDescriptor(mmbDesc);

} catch (Exception e) {
echo("\nException in buildModelMBeanInfo : " +

e.getMessage());
e.printStackTrace();

}
}

The Target Object(s)
The object instance which actually embodies the behavior of the managed resource is
called the target object. The last step of creating a model MBean is to give the MBean
skeleton and its defined management interface a reference to the target object.
Thereafter, management requests can be handled by model MBean, which will
forward them to the target object and handle the response.

The following code example implements the TestBean class which is the simple
managed resource in our example. Its methods provide the implementation for two
attributes and one operation.

48 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

CODE EXAMPLE 3–2 Implementing the Managed Resource

public class TestBean
implements java.io.Serializable

{

// Constructor
//
public TestBean () {

echo("\n\tTestBean Constructor Invoked: State " +
state + " nbChanges: " + nbChanges +
" nbResets: " + nbResets);

}

// Getter and setter for the "State" attribute
//
public String getState () {

echo("\n\tTestBean: getState invoked: " + state);
return state;

}

public void setState (String s) {
state = s;
nbChanges++;
echo("\n\tTestBean: setState to " + state +

" nbChanges: " + nbChanges);
}

// Getter for the read-only "NbChanges" attribute
//
public Integer getNbChanges () {

echo("\n\tTestBean: getNbChanges invoked: " + nbChanges);
return new Integer(nbChanges);

}

// Method of the "Reset" operation
//
public void reset () {

echo("\n\tTestBean: reset invoked ");
state = "reset initial state";
nbChanges = 0;
nbResets++;

}

// Other public method; looks like a getter,
// but no NbResets attribute is defined in
// the management interface of the model MBean
//
public Integer getNbResets() {

echo("\n\tTestBean: getNbResets invoked: " + nbResets);
return new Integer(nbResets);

}

// Internals
//

(continued)

Model MBeans 49

(Continuation)

private void echo(String outstr) {
System.out.println(outstr);

}

private String state = "initial state";
private int nbChanges = 0;
private int nbResets = 0;

}

By default, the model MBean handles a managed resource that is contained in one
object instance. This target is specified through the setManagedResource method
defined by the ModelMBean interface. The resource can encompass several
programmatic objects because individual attributes or operations can be handled by
different target objects. This behavior is configured through the optional
targetObject and targetType descriptor fields of each attribute or operation.

In our example, one of the operations is handled by an instance of the
TestBeanFriend class. In the definition of this operation’s descriptor, we set this
instance as the target object. We then create the operation’s
ModelMBeanOperationInfo with this descriptor and add it to the list of
operations in the metadata for our model MBean.

CODE EXAMPLE 3–3 Setting Other Target Objects

MBeanParameterInfo[] params = null;

Descriptor getNbResetsDesc = new DescriptorSupport(new String[]
{ "name=getNbResets",

"class=TestBeanFriend",
"descriptorType=operation",
"role=operation"});

TestBeanFriend tbf = new TestBeanFriend();
getNbResetsDesc. setField("targetObject" ,tbf);
getNbResetsDesc. setField("targetType" ,"objectReference");

dOperations[1] = new ModelMBeanOperationInfo(
"getNbResets",

"getNbResets(): get number of resets performed",
params ,
"java.lang.Integer",
MBeanOperationInfo.INFO,
getNbResetsDesc);

(continued)

50 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

(Continuation)

Creating the Model MBean
In order to insure coherence in an agent application, you should define the target
object of an MBean before you expose it for management. This implies that you
should call the setManagedResource method before registering the model MBean
in the MBean server.

The following code example show how our application creates the model MBean.
First it calls the subroutine give in Code Example 3–1 to build the descriptors and
management interface of our model MBean. Then it instantiates the required model
MBean class with this metadata. Finally it creates and sets the managed resource
object before registering the model MBean.

CODE EXAMPLE 3–4 Setting the Default Target Object

ObjectName mbeanObjectName = null;
String domain = server.getDefaultDomain();
String mbeanName = "ModelSample";

try
{

mbeanObjectName = new ObjectName(
domain + ":type=" + mbeanName);

} catch (MalformedObjectNameException e) {
e.printStackTrace();
System.exit(1);

}

// Create the descriptors and ModelMBean*Info objects
// of the management interface
//
ModelMBeanInfo dMBeanInfo = null;
buildModelMBeanInfo (mbeanObjectName, mbeanName);

try {
// Instantiate javax.management.modelmbean.RequiredModelMBean
RequiredModelMBean modelmbean =

new RequiredModelMBean (dMBeanInfo);

// Associate it with the resource (a TestBean instance)

(continued)

Model MBeans 51

(Continuation)

modelmbean. setManagedResource (new TestBean(), "objectReference");

// register the model MBean in the MBean server
server. registerMBean (modelmbean, mbeanObjectName);

} catch (Exception e) {
echo("\t!!! ModelAgent: Could not create the model MBean !!!");
e.printStackTrace();
System.exit(1);

}

Our model MBean is then available for management operations and remote requests,
just like any other registered MBean.

Running the Model MBean Example
The examplesDir/ModelMBean directory contains the TestBean.java file which is
the target object of the sample model MBean. This directory also contains a simple
notification listener class and the agent application, ModelAgent , which instantiates,
configures and manages a model MBean.

The model MBean itself is given by the RequiredModelMBean class defined in the
javax.management.modelmbean package provided in the runtime jar file
(jdmkrt.jar) of the Java Dynamic Management Kit.

Compile all files in this directory with the javac command. For example, on the
Solaris platform, you would type:

$ cd examplesDir/ModelMBean/
$ javac -classpath classpath *.java

To run the example, launch the agent class with the following command:

$ java -classpath classpath ModelAgent

Type return when the application pauses to step through the example. The agent
application handles all input and output in this example and gives us a view of the
MBean at runtime.

52 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

We can then see the result of managing the resource through its exposed attributes
and operations. The agent also instantiates and registers a listener object for attribute
change notifications sent by the model MBean. You can see the output of this listener
whenever it receives a notification, after the application has called one of the
attribute setters.

Model MBeans 53

54 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

PART II Agent Applications

The agent is the central component of the JMX management architecture. An agent
contains MBeans and hides their implementation behind a standardized management
interface, it lets management applications connect and interact with all MBeans, and
it provides filtering for handling large numbers of MBeans. JMX agents are dynamic
because resources can be added and removed, connections can be closed and
reopened with a different protocol, and services can be added and removed as
management needs evolve.

In the previous lesson, “Instrumentation through MBeans”, we saw how to represent
resources as MBeans. However, MBeans can represent any object whose functionality
you need to manage. In particular, management services and remote connectivity are
handled by objects which are also MBeans. This creates a very homogeneous model
where an agent is a framework containing MBeans of different sorts and allowing
them to interact.

The main component of an agent is the MBean server: it registers all MBeans in the
agent and exposes them for management. The role of the MBean server is to be the
liaison between any object available to be managed and any object with a
management request. Usually resource MBeans are managed either by remote
applications through connectivity MBeans or by local management service MBeans.
This model allows a management service itself to be managed: connectors and
services can also be created, modified or removed dynamically.

This lesson focuses on the functionality of the MBean server and the Java objects
which are needed to create a simple agent. Details about programming managers
and about using connectors and services will be covered later.

This lesson contains the following topics:

� “The MBean Server in a Minimal Agent” covers the interface of the MBean server
which is used by all agents. We introduce the object name of an MBean which is its
only reference in the MBean server. The only MBeans in the minimal agent are the
communications MBeans, but this is enough to connect to the agent and manage it.

� “The HTML Protocol Adaptor” gives us a management view of the MBeans in an
agent through a web browser. It lets us create MBeans, update their attributes,
invoke their operations, and remove them dynamically in a running agent.

� “The Base Agent” is similar to the minimal agent but it shows how to manipulate
MBeans programmatically through the instance of the MBean server. It covers the
different ways of creating and interacting with MBeans in the MBean server. This
topic also covers how to process the metadata objects that represent MBean
information.

� “The Notification Mechanism” demonstrates the fundamentals of notification
broadcasters and listeners where both are within the same agent. Since the MBean
server delegate is a broadcaster, the example shows how to register a listener to
process its events. The example also shows how to listen for attribute change
notifications, a subclass of regular notifications that is defined by the JMX
specification.

CHAPTER 4

The MBean Server in a Minimal Agent

An agent application is a program written in the Java language which contains an
MBean server and some way of accessing its functionality. This would be a minimal
agent, anything less couldn’t be managed. In our example of a minimal agent, we will
access the MBean server through the HTML protocol adaptor from a web browser.

In a real management solution, the agent could be instantiated and loaded with
MBeans for all services and resources that it might need when launched. However, a
minimal agent might also be used when resources and services are unknown at
launch time. They would be instantiated dynamically at a later date by some
management application connected to the agent. This flexibility shows how the Java
Dynamic Management Kit lets you develop many different management solutions,
depending on your intended deployment strategy.

For now we will focus on the functionality of the MBean server and how to interact
with it through the HTML protocol adaptor. The code samples in this chapter are
taken from the files in the MinimalAgent example directory located in the main
examplesDir (see “Directories and Classpath” in the preface).

Contents:

� “MBean Server Classes” on page 58 explains the interfaces of the MBean server
classes.

� “The Minimal Agent” on page 59 shows the code needed to write an agent
application.

� “Referencing MBeans” on page 61 covers the objects used to reference an MBean
in an agent.

� “A Minimalist Agent” on page 63 shows the code for a very small but complete
agent.

� “Running the Minimal Agent Example” on page 65 demonstrates its runtime
behavior.

57

MBean Server Classes
Before writing an agent application, it is important to understand the functionality of
the MBean server. It is actually an interface and a factory object defined by the agent
specification level of the Java Management extensions. The Java Dynamic
Management Kit provides an implementation of this interface and factory. The
factory object finds or creates the MBean server instance, making it possible to
substitute different implementations of the MBean server.

The MBeanServer Interface
The specification of the interface defines all operations that can be applied to
resources and other agent objects through the MBean server. Its methods can be
divided into three main groups:

� Methods for controlling MBean instances:

� createMBean , or instantiate and registerMBean add a new MBean to
the agent

� unregisterMBean removes an MBean from the agent

� isRegistered and getObjectInstance associate the class name with the
MBean’s management name

� addNotificationListener and removeNotificationListener control
event listeners for a particular MBean

� deserialize is used to download new MBean classes

� Methods for accessing MBean attributes and operations; these methods are
identical to those presented in “The DynamicMBean Interface” on page 30, except
they all have an extra parameter for specifying the target MBean:

� getMBeanInfo

� getAttribute and getAttributes

� setAttribute and setAttributes

� invoke

� Methods for managing the agent as a whole:

� getDefaultDomain (domains are a way of grouping MBeans in the agent)

� getMBeanCount of all MBeans in an agent

� queryMBeans and queryNames are used to find MBeans by name or by value

58 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

The MBean Server Implementation and Factory
The MBeanServerImpl class in the Java Dynamic Management Kit implements the
MBeanServer interface. It is the class that will be instantiated in an agent. However,
it is never instantiated directly by the agent application. Instead, you rely on the
MBean server factory to return a new instance of the implementing class.

The MBeanServerFactory is a static class defined by the Java Management
extensions that makes the agent application independent of the MBean server
implementation. It resides in the Java virtual machine and centralizes all MBean
server instantiation. It provides two static methods:

� createMBeanServer which returns a new MBean server instance

� findMBeanServer which returns a list of MBean servers in the Java virtual
machine

You must use this class to create an MBean server so that other objects can obtain its
reference by calling the findMBeanServer method. This method allows
dynamically loaded objects to find the MBean server in an agent which has already
been launched.

The Minimal Agent
The minimal agent contains only the essential components of a complete agent
application. These are:

� An instance of the MBean server

� Some means of communication

The following code is the complete application from the MinimalAgent.java file:

CODE EXAMPLE 4–1 The Minimal Agent

import javax.management.ObjectInstance;
import javax.management.MBeanServer;
import javax.management.MBeanServerFactory;

public class MinimalAgent {

public static void main(String[] args) {

// Instantiate the MBean server
System.out.println("\nCreate the MBean server");
MBeanServer server = MBeanServerFactory.createMBeanServer();

// Create and start some way of communicating:
// - an HTML protocol adaptor

(continued)

The MBean Server in a Minimal Agent 59

(Continuation)

// - an HTTP connector server
// - an RMI connector server
// Any single one of these would be sufficient
try {

System.out.println(
"\nCreate and start an HTML protocol adaptor");

ObjectInstance html = server.createMBean(
"com.sun.jdmk.comm.HtmlAdaptorServer", null);

server.invoke(html.getObjectName(), "start",
new Object[0], new String[0]);

System.out.println(
"\nCreate and start an HTTP connector server");

ObjectInstance http = server.createMBean(
"com.sun.jdmk.comm.HttpConnectorServer", null);

server.invoke(http.getObjectName(), "start",
new Object[0], new String[0]);

System.out.println(
"\nCreate and start an RMI connector server");

ObjectInstance rmi = server.createMBean(
"com.sun.jdmk.comm.RmiConnectorServer", null);

server.invoke(rmi.getObjectName(), "start",
new Object[0], new String[0]);

} catch(Exception e) {
e.printStackTrace();
return;

}

System.out.println(
"\nNow, you can point your browser to http://localhost:8082/");

System.out.println(
"or start your management application to connect to this agent.\n");

}
}

Here we analyze the most important lines of code in this example. We start with the
instantiation of the MBean server:

MBeanServer server = MBeanServerFactory.createMBeanServer();

The MBean server is created through the static MBeanServerFactory object, and
we store its object reference. Its true type is hidden by the factory object, which casts
the returned object as an MBeanServer interface. The MBean server is the only
functional class referenced directly in this application.

60 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

Then we just need some means of communicating (only the HTML adaptor is shown
here):

ObjectInstance html = server.createMBean("com.sun.jdmk.comm.HtmlAdaptorServer", null);
server.invoke(html.getObjectName(), "start", new Object[0], new String[0]);

For each of the communications protocols we ask the MBean server to create the
corresponding MBean. We must provide the class name of the MBean which we
want the MBean server to instantiate. The MBean server instantiates the object,
registers it for management, and returns its ObjectInstance reference (see “The
ObjectInstance of an MBean” on page 63).

When an MBean is created through the MBean server, you can never obtain a direct
programmatic reference on an MBean. The object instance is the only handle the
caller has on the MBean. The MBean server hides the MBean object instance and only
exposes its management interface.

We then ask the server to invoke the start operation of the HTML adaptor’s
MBean. The object instance gives us the MBean’s object name which is what we use
to identify the MBean (see “Object Names” on page 61). The other parameters
correspond to the signature of the start operation which takes no parameters. This
operation activates the adaptor or connector so that it will respond to remote
management operations on its default port. We can now connect to the HTML
protocol adaptor from a web browser.

Referencing MBeans
As demonstrated by the minimal agent, most agent applications interact with
MBeans through the MBean server. It is possible for an object to instantiate an MBean
class itself which it can then register in the MBean server. In this case, it may keep a
programmatic reference to the MBean instance. All other objects can only interact
with the MBean through its management interface exposed by the MBean server.

In particular, service MBeans and connectivity MBeans rely solely on the MBean
server to access resources. The MBean server centralizes the access to all MBeans: it
unburdens all other objects from having to keep numerous object references. To
insure this function, the MBean server relies on object names to uniquely identify
MBean instances.

Object Names
Each MBean object registered in the MBean server is identified by an object name.
The same MBean class can have multiple instances, but each must have a unique
name. The ObjectName class encapsulates an object name which is composed of a

The MBean Server in a Minimal Agent 61

domain name and a set of key properties. The object name can be represented as a
string in the following format:

DomainName: property=value[, property2=value2]*

The DomainName, the properties and their values can be any alpha-numeric string, so
long as they don’t contain any of the following characters: : , = * ? . All elements
of the object name are treated as literal strings, meaning that they are case sensitive.

Domains
A domain is an abstract category that can be used to group MBeans arbitrarily. The
MBean server lets you easily search for all MBeans with the same domain. For
example, all connectivity MBeans in the minimal server could have been registered
into a domain called Communications .

Since all object names must have a domain, the MBeans in an MBean server
necessarily define at least one domain. When the domain name is not important, the
MBean server provides a default domain name which you can use. By default, it is
called the DefaultDomain , but you may specify a different default domain name
when creating the MBean server from its factory.

Key Properties
A key is a property-value pair that can also have any meaning that you assign to it.
An object name must have at least one key. Keys and their values are independent of
the MBean’s attributes: the object name is a static identifier which should identify the
MBean, whereas attributes are the exposed, runtime values of the corresponding
resource. Keys are not positional and can be given in any order to identify an MBean.

Keys usually provide the specificity for identifying a unique MBean instance. For
example, a better object name for the HTML protocol adaptor MBean might be:
Communications:protocol=html,port=8082 , assuming the port will not
change.

Usage
All MBeans must be given an object name that is unique. It can be assigned by the
MBean’s preregistration method, if the MBean supports preregistration (see the
Javadoc API of the MBeanRegistration interface). Or it can be assigned by the
object which creates or registers the MBean, which overrides the one given during
pre-registration. However, if neither of these assign an object name, the MBean
server will not create the MBean and raise an exception. Once an MBean is
instantiated and registered, its assigned object name cannot be modified.

62 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

You are free to encode any meaning into the domain and key strings, the MBean
server just handles them as literal strings. The contents of the object name should be
determined by your management needs. Keys could be meaningless serial numbers
if MBeans are always handled programmatically. On the other hand, the keys could
be human-readable to simplify their translation to the graphical user interface of a
management application. With the HTML protocol adaptor, object names are
displayed directly to the user.

The ObjectInstance of an MBean
An object instance represents the complete reference of an MBean in the MBean
server. It contains the MBean’s object name and its Java class name. Object instances
are returned by the MBean server when an MBean is created or in response to
queries about MBeans. Since the object name and class name cannot change over the
life of a given MBean, its returned object instance will always have the same value.

You cannot modify the class or object name in an object instance, this information
can only be read. The object name is used to refer to the MBean instance in any
management operation through the MBean server. The class name may be used to
instantiate similar MBeans or introspect characteristics of the class.

A Minimalist Agent
The following code is one of the smaller agents you can write. It retains all of the
functionality that we will need to connect to it with a web browser in the next topic
(“The HTML Protocol Adaptor”).

CODE EXAMPLE 4–2 A Minimalist Agent

import javax.management.ObjectInstance;
import javax.management.MBeanServer;
import javax.management.MBeanServerFactory;

public class MinimalistAgent {

public static void main(String[] args) {

MBeanServer server = MBeanServerFactory.createMBeanServer();

try {

ObjectInstance html = server.createMBean(
"com.sun.jdmk.comm.HtmlAdaptorServer", null);

(continued)

The MBean Server in a Minimal Agent 63

(Continuation)

server.invoke(html.getObjectName(), "start", null, null);

} catch(Exception e) {
e.printStackTrace();
return;

}
}

}

Note - Only three classes are “imported” by this program and needed to compile it.
However, the MBean server dynamically instantiates other classes such as the
HtmlAdaptorServer which are needed at runtime. As a result, the Java Dynamic
Management Kit runtime jar file (jdmkrt.jar) must be in the classpath of the Java
virtual machine running the minimal agent.

The MinimalistAgent relies on the HTML adaptor, but we could have used any
MBean that provides some way of accessing the MBean server. You could even use
your own MBean that encodes some proprietary protocol, provided it makes all
functionality of the MBean server available remotely.

It is important to realize that this minimalist agent is a fully functional agent that is
every bit as powerful as any agent that may be deployed. Since we can connect to
this agent, we can dynamically create new MBeans for it to manage, and classes that
aren’t available locally can be downloaded from the network (this is covered in “The
M-Let Class Loader”). Because resources, services and other connections may be
added on-the-fly, this agent can participate in any management scheme.

Of course, it is more efficient for the agent application to perform the initialization,
including the creation of all MBeans that are known to be necessary. Typically, an
agent application also needs to set up data structures or launch specific applications
that its resources require. For example, it may establish a database session that an
MBean will use to expose stored information. The agent application usually includes
everything necessary for making the intended resources ready to be managed within
the intended management solution.

However, there is no single management solution. Many different agent applications
could perform the same management function, requiring more or less intervention
after they are launched. And the flexibility of the Java Dynamic Management Kit
means that there are many different management solutions to achieve the same goal.
For example, an MBean could also establish the database session itself during its
preregistration phase.

64 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

Running the Minimal Agent Example
The example code for the MinimalAgent application is located in the examplesDir/
MinimalAgent directory. As we saw, this agent application only has minimal
output and is intended to be accessed for management through one of its
communications MBeans. However, you will need to compile and launch the
minimal agent if you continue on to the next topic.

Compile the MinimalAgent.java file in this directory with the javac command.
For example, on the Solaris platform, you would type:

$ cd examplesDir/MinimalAgent/
$ javac -classpath classpath *.java

When we access the minimal agent through the HTML adaptor, we will instantiate
the SimpleStandard and SimpleDynamic classes. Since we don’t use a dynamic
class loader, the agent will need these classes at runtime. You will need to have
compiled the standard and dynamic MBean classes as described in “Running the
Standard MBean Example” on page 28 and “Running the Dynamic MBean Example”
on page 41. To run the example, update your classpath to find the MBeans and
launch the agent class:

$ java -classpath classpath:../StandardMBean:../DynamicMBean MinimalAgent

This being a minimal agent, the example doesn’t have much output. The MBean
server is launched, and the three communication MBeans are created: it is now
possible to connect to this agent. Management applications may connect through the
HTTP and RMI connector servers, as described in “Connector Servers” on page 110.

The simplest way to communicate with the agent is through the HTML protocol
adaptor. This adaptor provides a view of the agent and its MBeans through standard
HTML pages which can be viewed on almost any web browser. To connect to the
agent, load the following URL in your browser:

http://localhost:8082/

If you get an error, you may have to switch off proxies in your preference settings or
substitute your machine name for localhost . Any browser on your local network
can also connect to this agent by using your machine name in this URL. In the next
topic, “The HTML Protocol Adaptor”, we will go into the details of managing this
agent from its web view.

The MBean Server in a Minimal Agent 65

66 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

CHAPTER 5

The HTML Protocol Adaptor

The HTML protocol adaptor provides a view of the agent and its registered MBeans
through a basic interface on any web browser. It is the easiest way to access an agent
since no further coding is necessary. For this reason, it can be useful for testing and
debugging your MBeans in the minimal agent.

In fact, we will use your browser to “manage” the minimal agent and its MBeans.
The HTML protocol adaptor outputs HTML pages which represent the agent and its
MBeans. The adaptor also interprets the commands sent back by the buttons and
fields appearing in your browser. It then interacts with the agent’s MBean server in
order to get information about the MBeans that it has registered and operate on them.

The HTML adaptor relies mostly on plain HTML. The only JavaScriptTM that the
generated pages contain are pop-up windows for displaying information. Browsers
that are not JavaScript enabled might give an incompatibility message and won’t be
able to display the information. Otherwise, the generated pages contain no further
scripting (JavaScript, Visual Basic or other), no frames and no images that might
slow down loading.

This topic relies on the minimal agent which you will need to launch first, as
explained in “Running the Minimal Agent Example” on page 65. Once you can
connect to the HTML protocol adaptor in the minimal agent, you are ready to go
through these topics:

� “The Agent View” on page 68 is the main page for managing an agent through the
HTML protocol adaptor.

� “The MBean View” on page 70 exposes an MBean’s management interface.

� The “Agent Administration” on page 74 lets you instantiate new MBeans.

� “Instantiating and Managing MBeans” on page 75 shows how to modify attributes
and invoke operations.

� “Filtering MBeans” on page 78 is used to select the MBeans displayed in the agent
view.

67

The Agent View
The first page displayed by the HTML adaptor is always the agent view. It originally
contains a list of all registered MBeans. The following figure shows the agent view
for the minimal agent. It contains four MBeans: the three communication MBeans,
one of which is the HTML adaptor, and the MBean server delegate. The delegate is a
special MBean covered in “The MBean Server Delegate” on page 69.

Figure 5–1 Initial Agent View of the Minimal Agent

The text field for filtering by object name lets you modify the list of displayed
MBeans. The filter string is initially *:* , which gives all registered MBeans. Further
use of the filter is covered in “Filtering MBeans” on page 78. The agent’s registered
domain tells you the name of the default domain in this agent. The number of
MBeans on this page is the count of those listed beneath the separator line.

The “Admin” button is a link to the agent administration page which we will cover
in “Agent Administration” on page 74.

The MBean List
The MBean list contains all MBeans whose object name matches the filter string.
Object names can be filtered by their domain name and list of key-value pairs. In this

68 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

list, MBeans are sorted and grouped by their domain name. Each MBean name listed
is an active link to the page of the corresponding MBean view.

After its initialization, the contents of an agent are dynamic: new MBeans may be
created and registered into new or existing domains and old MBeans may be
removed. These changes can also affect the functionality of the agent: new agent
services may be registered (or removed) as well. We will demonstrate examples of
dynamic management in “Instantiating and Managing MBeans” on page 75.

The MBean Server Delegate
The MBean server delegate is an MBean that is automatically instantiated and
registered by the MBean server when it is created. It provides information about the
version of the Java Dynamic Management Kit which is running, and it represents the
MBean server when sending notifications.

Notifications are events sent by MBeans, they are covered in detail in the lesson on
“The Notification Mechanism.” Since the MBean server instance is not an MBean
object, it relies on its delegate MBean to send notifications. The MBean server
delegate sends notifications to inform interested listeners about such events as
MBean registrations and de-registrations.

The exposed attributes of the delegate MBean provide vendor and version
information about the MBean server. This can let a remote management application
know which agent version is running and which version of the Java Runtime
Environment it is using. The delegate MBean also provides a unique identification
string for its MBean server.

Viewing the MBean Server Delegate Information

1. Click on the name of the delegate MBean to see its attributes. Version, vendor
and identification information is listed in the table of attributes.

2. Click on the Back to Agent View link or use your browser’s Previous page
function to return to the MBean list in the agent view.

The HTML Protocol Adaptor 69

The MBean View
The MBean view has two functions: it presents the management interface of the
MBean and it lets you interact with its instance. The management interface of an
MBean is given through the name of the attributes, the operation signatures, and a
self-description. You may interact with the MBean by reloading its attribute values,
setting new values or invoking an operation.

Preparation

1. In the agent view, click on the object name of the HTML adaptor MBean:
name=HTMLAdaptorServer in the default domain. This will bring up its
MBean view.

The Header and Description
As shown in the following figure, the top part of the page contains the description of
the MBean and some controls for managing it:

Figure 5–2 Description in the MBean View

The first two lines give the object instance (object name and class name) for this
MBean. The MBean name is the full object name of this MBean instance, including
the domain. The key-property pairs may or may not identify the MBean to a human
reader, depending on the agent developer’s intention. The MBean Java class is the
full class name for the Java object of which this MBean is an instance.

70 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

The reload controls include a text field for entering a reload period and a manual
"Reload" button. Originally, the reload period is set to zero indicating that the
contents of the MBean view are not automatically refreshed. Clicking the reload
button will force the page to reload, thereby updating all of the attribute values
displayed. If you have entered a reload period, clicking the button will begin
automatic reloading with the given period. The reload period must be at least five
seconds.

Note - You should use the reload button of the MBean view instead of the browser’s
reload-page button. After some operations, such as applying changes to attribute
values, the browser’s button will repost the form data, inadvertently performing the
same operation again. To avoid undesirable side effects, always use the reload button
provided in the MBean view.

Setting the Reload Period

1. Enter a reload period of five and click the "Reload" button. Every five seconds
the page will blink as it reloads.

2. In another browser window, open another connection to the HTML adaptor at
http://localhost:8082/ . Observe the new values for the
ActiveClientCount and LastConnectedClient attributes in the original
window. Due to the way the adaptor works, you may have to try several
connections before you see the attribute values change.

The reload period is reset to zero every time you open an MBean view.

The "Unregister" button is a shortcut for removing this MBean from the agent.
Unregistering is covered in “Instantiating and Managing MBeans” on page 75.

The MBean description text provides some information about the MBean. Because
standard MBeans are statically defined, they cannot describe themselves, and the
MBean server provides a generic text. Dynamic MBeans are required to provide their
own description string at runtime according to the JMX specification. Except for the
class name, this is the only way to tell standard and dynamic MBeans apart in the
MBean view.

The Table of Attributes
The second part of the MBean view is a table containing all attributes exposed by the
MBean. For each attribute, this table lists its name, its Java type, its read-write access
and a string representation of its current value.

The HTML Protocol Adaptor 71

While MBean attributes may be of any type, not all types can be displayed in the
MBean view. The HTML adaptor is limited to basic data types that can be displayed
and entered as strings. Read-only attributes whose type support the toString
method are also displayed. Enumerated types that are concrete subclasses of
com.sun.jdmk.Enumerated are displayed as a menu with a pop-up selection list.
Boolean attributes are represented as true-false radio buttons. Finally, attributes with
array types are represented by a link to a page which displays the array values in a
table. If the attribute is writeable, you may enter values for the array elements to set
them.

For the complete list of supported types, see the Javadoc API of the
HtmlAdaptorServer class. If an attribute type is not supported, this is mentioned
in place of its value. If there was an error when reading an attribute’s value, the table
contains the name of the exception that was raised and the message it contains.

The name of each attribute is a link that pops up a dialog box containing the
description for this attribute. Like the MBean description, attribute descriptions can
only be provided by dynamic MBeans. The MBean server inserts a generic message
for standard MBean attributes. The following figure shows the attributes of the
HTML adaptor with a description of the Active attribute:

Figure 5–3 MBean Attributes with a Description Dialog

72 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

Viewing Attribute Descriptions

1. Click on the attribute names of the HTML adaptor to read their description.
Since the HTML adaptor is implemented as a dynamic MBean, its attribute
descriptions are meaningful.

Note - Due to the use of JavaScript commands in the generated HTML, these
pop-up windows might not be available on browsers that are not
JavaScript-enabled.

Writable attributes have a text field for entering new values. To set the value of a
writable attribute, you would enter or replace its current value in the text field and
click the “Apply” button at the bottom of the attributes table.

You should not try to modify the attributes of the HTML protocol adaptor here, we
will see why in “Instantiating and Managing MBeans” on page 75.

Because there is only one “Apply” button for all attributes, this button has a
particular behavior: it systematically invokes the setter for all writeable attributes,
whether or not their field has actually been modified. This may impact the MBean if
setters have side effects, such as counting the number of modifications as in the
SimpleStandard and SimpleDynamic examples given in “Instrumentation
through MBeans.”

The HTML adaptor detects attributes which are ObjectName types and provides a
link to the MBean view of the corresponding MBean. This link is labeled view , and
it is located just under the displayed value of the object name. Since MBeans often
need to reference other MBeans, this provides a quick way of navigating through
MBean hierarchies.

The Operations
The last part of the MBean view contains all of the operations exposed by the
MBean. Each operation in the list is presented like a method signature: there is a
return type, then a button with the operation name, and if applicable, a list of
parameters, each with their type as well.

As with the table of attributes, the list of operations contains only those involving
types that can be represented as strings. The return type must support the toString
method and the type of each parameter must be one of basic data types supported
by the HTML adaptor. For the complete list, see the Javadoc API of the
HtmlAdaptorServer class.

The HTML Protocol Adaptor 73

Above each operation is a link to its description. Parameter names are also active
links which pop up a window with a description text. Again, descriptions are only
meaningful when provided by dynamic MBeans. The following figure shows some of
the operations exposed by the HTML adaptor MBean and a description of the Start
operation.

Figure 5–4 MBean Operations with a Description Dialog (Partial View)

We will not invoke any operations on this MBean until a brief explanation in
“Instantiating and Managing MBeans” on page 75.

To invoke an operation, you would fill in any and all parameter values in the
corresponding text fields and then click the operation’s button. The HTML adaptor
would then display a page with the result of the operation: the return value if
successful or the reason the operation was unsuccessful.

Agent Administration
The agent administration page contains a form for entering MBean information when
creating or unregistering MBeans. You may also instantiate an MBean through one of
its public constructors. In order to instantiate an MBean, its class must be available in
the agent application’s classpath. Optionally, you may specify a different class loader
if the agent contains other class loader MBeans.

74 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

Preparation

1. Go back to the agent view by clicking the link near the top of the MBean view
page. Then click on the “Admin” button in the agent view to bring up the
agent administration page in your browser window.

The first two fields, “Domain” and “Keys” are mandatory for all administrative
actions. The “Domain” field initially contains the string representing the agent’s
default domain. Together, these fields define the object name, whether for a new
MBean to be created or the name of an existing MBean to unregister. The “Java
Class” is the full class name of the object to be instantiated as a new MBean. This
field is ignored when unregistering an MBean.

Using the drop-down menu, you may select one of three actions on this page:

� Create - Instantiates the given Java class of an MBean and registers the new
instance in the MBean server. If successful, the MBean will then appear in the
agent view. The class must have a public constructor without parameters in order
to be created in this way.

� Unregister - Unregisters an MBean from the MBean server so that it is no longer
available in the agent. The class instance is not explicitly deleted, though if no
other references to it exist, it will be garbage collected.

� Constructors - Displays the list of public constructors at the bottom of the
administration page for the given Java class. This lets you provide parameters to a
specific constructor and create the MBean in this manner. This is the only way to
create MBeans which do not have a no-parameter constructor.

When you click the “Send Request” button, the HTML adaptor processes the action
and updates the bottom of the page with the action results. You may have to scroll
down to see the result. The text fields are not cleared after a request so that you can
do multiple operations. The “Reset” button will return the fields to their last posted
value after you have modified them.

Instantiating and Managing MBeans
Sometimes, launching an MBean requires several steps: this is particularly the case
for agent services which require some sort of configuration. For example, you can
instantiate another HTML adaptor for connecting to a different port. Usually, this
would be done programmatically in the agent application, but we need to do it
through the browser for the minimal agent.

The HTML Protocol Adaptor 75

Creating a New HTML Adaptor MBean

1. On the agent administration page, fill in the fields as follows:

Domain: Communications

Keys: protocol=html,port=8088

Java Class: com.sun.jdmk.comm.HtmlAdaptorServer

Class Loader: leave blank

Note: In previous versions of product, specifying the port number in the object
name would initialize communication MBeans. Starting with the Java Dynamic
Management Kit 4.0, the names and contents of key properties no longer have
any significance for any components of the product. We must set the port in other
ways.

2. Make sure the selected action is “Create” and send the request. If you scroll
down the page, you should see if your request was successful.

We can’t connect to this HTML adaptor quite yet, we need to configure it first.

3. Go to the new HTML adaptor’s MBean view with the provided link.

We couldn’t modify any of the adaptor’s attributes before because the
implementation is designed so that they can’t be modified while it is online. Our
new HTML adaptor is instantiated in the stopped state (the StateString
attribute indicates “OFFLINE”), so we can change its attributes.

4. Set the Port attribute to “8088” and MaxActiveClientCount to “2”, then
click the “Apply” button. If the page is reloaded and the new values are
displayed, the attribute write operation was successful. You may also click the
attribute names to get an explanation for them.

5. Scroll down the MBean view to the Start operation and click its button. This
brings up a new page to tell us the operation was successful. If you go back to
the MBean view with the provided link, you can see that the StateString is
now indicating ONLINE.

6. Now you should be able to access your minimal agent through a browser on
port 8088. Try going to a different machine on the same network and
connecting to the URL:

http:// agentHostName:8088/

76 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

where agentHostName is the name or IP address of the machine where you
launched the MinimalAgent . If you reload the MBean view of the new HTML
adaptor on either browser, the name of this other machine should be the new
value of the LastConnectedClient attribute.

Through this other connection, you could stop, modify or remove the HTML adaptor
MBean using port 8082. In that case, your original browser will have to use http://
localhost:8088/ as well to connect. Instead, we will manage the minimal agent
from this other machine.

Instantiating MBeans with Constructors

1. From the browser on the other machine, go to the administration page. Fill in
the fields as follows and request the constructors:

Domain: Standard_MBeans

Keys: name=SimpleStandard,number=1

Java Class: SimpleStandard

Class Loader: leave blank

The list of constructors for the SimpleStandard class is given at the bottom of
the page. The MBean name is also given: this is the object name that will be
assigned to the MBean when using one of the listed constructors. As you can see,
the SimpleStandard class only has one constructor that takes no parameters.

2. Click on the “Create” button: the result will be appended to the bottom of the
page. Scroll down and go to the MBean view with the provided link.

Since it is a standard MBean, all of its description strings are generic: this shows
the necessity of programming meaningful attribute names.

3. In the agent view on the original browser window, click in the filter field and
hit “Return” to refresh the agent view. Click on the new MBean’s name and set
its reload period to 15. Back on the other machine, type in a different string for
the State attribute and click “Apply”.

On the original machine, you should see the MBean’s attributes get updated
when the MBean view is periodically reloaded.

4. On the other machine, click the reset operation button at the bottom of the
MBean view page. This brings up the operation result page which indicates the
success of the operation.

The HTML Protocol Adaptor 77

This page also gives the return value of the operation when it is not void. If you
go back to the MBean view, you will see the result of the operation on the
attributes. You should also see it on the original machine after it reloads.

The browser on the other machine is no longer needed, and we can remove the
HTML adaptor on port 8088.

Unregistering MBeans

1. Go to the administration page and fill in the object name of the HTML adaptor
we want to remove (you don’t need its Java class to unregister it):

Domain: Communications

Keys: protocol=html,port=8088

Java Class: leave blank

Class Loader: leave blank

2. Select “Unregister” from the drop down menu and click the “Send Request”
button. The result then appears at the bottom of the page.

You can also unregister an MBean directly from its MBean view: just click the
“Unregister” button on the upper right hand-side of the page.

Filtering MBeans
Since an agent can manage hundreds of MBeans, the agent view provides a filtering
mechanism for the list that is displayed. An object name with wildcard characters is
used as the filter, and only those MBeans which match are counted and displayed.

Filters restrict the set of MBeans listed in the agent view. This may not be
particularly useful for our small agent, but it can help you find MBeans among
hundreds in a complex agent. In addition, management applications use the same
filter syntax when requesting an agent’s MBeans through the programmatic interface
of a connector. The filtering lets managers get either lists of MBean names or find a
particular MBean instance.

Filters are entered as partial object names with wildcard characters or as a full object
name for which to search. Here are the basic substitution rules for filtering:

1. You may search for partial domain names:
the asterisk (*) stands for any number (including zero) of any characters;
the question mark (?) stands for any one character

78 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

2. An empty domain name stands for the default domain string;
an empty key list is illegal

3. Keys are atomic: you must search for the full property=value key, you may not
search for a partial property name or an incomplete value

4. The asterisk (*) may be used to terminate the key list, where it stands for any
number of any keys (complete property-value pairs)

5. You must match all keys exactly: use the form property=value,* to search for
one key in names with multiple keys

6. Keys are unordered when filtering: giving one or more keys (and an asterisk) in
any order finds all object names which contain that subset of keys

Instructions

1. Go to the administration page, and create three more of the standard MBeans.
Modify only the number value in their object name so that they are numbered
sequentially. In the same way, create four dynamic MBeans starting with:

Domain: Dynamic_MBeans

Keys: name=SimpleDynamic,number=1

Java Class: SimpleDynamic

Class Loader: leave blank

2. Go back to the agent view which should display all of the new MBeans.

3. Enter the following filter strings to see the resulting MBean list:

Standard_MBeans:* Gives all of the standard MBeans we
created

_MBeans: Gives all of the standard and dynamic
MBeans we created

DefaultDomain: Not allowed by rule 2

:* Lists all MBeans in the default domain

:name=Simple,* Not allowed by rule 3

*:name=SimpleStandard Allowed, but list is empty (rule 5)

:name= Not allowed by rule 3

_??????:number=2, Gives the second standard and
dynamic MBean we created

The HTML Protocol Adaptor 79

Communications:port=8088,protocol=html Gives the one MBean matching the
domain and both (unordered) keys

empty string allowed: special case equivalent to
:

Notice how the MBean count is updated with each filter: this count gives the
number of MBeans that were found with the current filter, which is the number
of MBeans appearing on the page. It is not the total number of MBeans in the
agent, unless the filter is *:* .

4. When you are ready to stop the minimal agent example, go to the window
where you launched its class and type <Control-C> .

80 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

CHAPTER 6

The Base Agent

The base agent demonstrates the programming details of writing an agent
application. We will cover how to access the MBean server, ask it to create MBeans,
and then interact with those MBeans. Everything that we could do through the
HTML adaptor can be done through the code of your agent application.

Interacting programmatically with the MBean server gives you more flexibility in
your agent application. This topic covers the three main ways to create MBeans
through the MBean server, how to interact with MBeans, and how to unregister
them.

The base agent is functionally equivalent to the minimal agent, but instead of writing
the smallest agent, we will demonstrate good defensive programming with error
checking. We will create the same three connectivity MBeans and do some of the
same management operations that we did through the browser interface.

The program listings in this tutorial show only functional code: comments and
output statements have been modified or removed for space considerations.
However, all management functionality has been retained for the various
demonstrations. The complete source code is available in the BaseAgent and
StandardMBean example directories located in the main examplesDir (see
“Directories and Classpath” in the preface).

Contents:

� “The Agent Application” on page 82 shows how to launch the base agent
programmatically.

� “Creating an MBean (Method 1)” on page 83 relies on the MBean server’s
register method after instantiating the MBean class ourselves.

� “Creating an MBean (Method 2)” on page 84 relies on the MBean server’s create
method to instantiate and register an MBean in one step.

� “Creating an MBean (Method 3)” on page 86 relies on the MBean server’s
instantiate and register methods.

81

� “Managing MBeans” on page 88 demonstrates the same management operations
that we did through the HTML protocol adaptor.

� “Filtering MBeans” on page 89 shows how to get various lists of MBeans from the
MBean server.

� “Running the Base Agent Example” on page 91 demonstrates its runtime behavior.

The Agent Application
The base agent is a stand-alone application with a main method, but it also has a
constructor so that it may be instantiated dynamically by another class.

CODE EXAMPLE 6–1 Constructor for the Base Agent

public BaseAgent() {
//

Enable the TRACE level according to the level set in system properties
try {

Trace.parseTraceProperties();
}
catch (IOException e) {

e.printStackTrace();
System.exit(1);

}

echo("\n\tInstantiating the MBean server of this agent...");
myMBeanServer = MBeanServerFactory.createMBeanServer();

// Retrieves ID of the MBean server from the delegate
try {

System.out.println("ID = "+ myMBeanServer.getAttribute(
new ObjectName(ServiceName.DELEGATE), "MBeanServerId"));

} catch (Exception e) {
e.printStackTrace();
System.exit(1);

}
}

In the first statement of the constructor, we enable tracing messages for the agent.
The tracing lets us see internal information at runtime, which is useful for
debugging. See “Setting Trace Messages” on page 91 for specifying tracing
parameters on the command line. Then we create the MBean server through its static
factory class (see “The MBean Server Implementation and Factory” on page 59). Its
reference is stored in a variable with class-wide scope so that all internal methods

82 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

have access to the MBean server. Finally, we retrieve the MBean server identification
string, for informational purposes only.

After the MBean server is initialized, we are going to create the same three
communications MBeans that we saw in the minimal agent.

Creating an MBean (Method 1)
The methods of the MBean server let you create an MBean in three different ways.
The base agent demonstrates all three ways, and we will discuss the advantages of
each.

One way of creating an MBean consists of first instantiating its class and then
registering this instance in the MBean server. Registration is the internal process of
the MBean server which takes a manageable resource’s MBean instance and exposes
it for management.

Bold text in this and the following code samples highlights the important statements
that vary between the three methods.

CODE EXAMPLE 6–2 Creating an MBean (Method 1)

// instantiate the HTML protocol adaptor object to use the default port
HtmlAdaptorServer htmlAdaptor = new HtmlAdaptorServer() ;

try {
// We know that the HTML adaptor provides a default object name
ObjectInstance htmlAdaptorInstance =

myMBeanServer.registerMBean(htmlAdaptor, null) ;
echo("CLASS NAME = " + htmlAdaptorInstance.getClassName());
echo("OBJECT NAME = " + htmlAdaptorInstance.getObjectName().toString());

} catch(Exception e) {
e.printStackTrace();
System.exit(0);

}

// Now we need to explicitly start the html protocol adaptor
htmlAdaptor.start() ;

while (htmlAdaptor.getState() == CommunicatorServer.STARTING) {
sleep(1000);

}
echo("STATE = " + htmlAdaptor.getStateString());
[...]

The Base Agent 83

In this first case, we instantiate the HtmlAdaptorServer class and keep a reference
to this object. We then pass it to the registerMBean method of the MBean server to
make our instance manageable in the agent. During the registration, the instance can
also obtain a reference to the MBean server, something it requires to function as a
protocol adaptor.

In the minimal agent, we saw that the HTML adaptor gives itself a default name in
the default domain. Its Javadoc API confirms this, so we can safely let it provide a
default name. We print the object name in the object instance returned by the
registration to confirm that the default was used.

Once the MBean is registered, we can perform management operations on it. Because
we kept a reference to the instance, we don’t need to go through the MBean server to
manage this MBean. This lets us call the start and getStateString methods
directly. The fact that these methods are publicly exposed is particular to the
implementation: the HTML adaptor is a dynamic MBean, so without any prior
knowledge of the class, we would have to go through its DynamicMBean interface.

In a standard MBean you would directly call the implementation of its management
interface. Since the HTML adaptor is a dynamic MBean, the start method is just a
shortcut for the start operation. For example, we could start the adaptor and get its
StateString attribute with the following calls:

htmlAdaptor.invoke("start", new Object[0], new String[0]);
echo("STATE = " + (String)htmlAdaptor.getAttribute("StateString"));

This type of shortcut is not specified by the Java Management extensions, nor is its
functionality necessarily identical to that of the start operation exposed for
management. In the case of the HTML adaptor, its Javadoc API confirms that it is
identical, and in other cases, it is up to the MBean programmer to guarantee this
functionality if it is offered.

Creating an MBean (Method 2)
The second way to create an MBean is the single createMBean method of the
MBean server. In this case, the MBean server instantiates the class and registers it all
at once. As a result, the caller never has a direct reference to the new object.

CODE EXAMPLE 6–3 Creating an MBean (Method 2)

ObjectInstance httpConnectorInstance = null;
try {

String httpConnectorClassName = "com.sun.jdmk.comm.HttpConnectorServer";
// Let the HTTP connector server provides its default name
httpConnectorInstance =

(continued)

84 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

(Continuation)

myMBeanServer.createMBean(httpConnectorClassName, null) ;
} catch(Exception e) {

e.printStackTrace();
System.exit(0);

}
// We need the object name to refer to our MBean
ObjectName httpConnectorName = httpConnectorInstance.getObjectName();
echo("CLASS NAME = " + httpConnectorInstance.getClassName());
echo("OBJECT NAME = " + httpConnectorName.toString());

// Now we demonstrate the bulk getter of the MBean server
try {

String att1 = "Protocol";
String att2 = "Port";
String attNames[]= {att1, att2};
AttributeList attList =

myMBeanServer.getAttributes(httpConnectorName, attNames);
Iterator attValues = attList.iterator();
echo("\t" + att1 + "\t=" + ((Attribute) attValues.next()).getValue());
echo("\t" + att2 + "\t=" + ((Attribute) attValues.next()).getValue());

} catch (Exception e) {
e.printStackTrace();
System.exit(0);

}

// Now we explicitly start the HTTP connector server
try {

myMBeanServer.invoke(httpConnectorName, "start",
new Object[0], new String[0]) ;

// waiting to leave starting state...
while (new Integer(CommunicatorServer.STARTING).equals

(myMBeanServer.getAttribute(httpConnectorName,"State"))) {
sleep(1000);

}
echo("STATE = " +

myMBeanServer.getAttribute(httpConnectorName, "StateString"));
} catch (Exception e) {

e.printStackTrace();
System.exit(0);

}
[...]

The advantage of this method for creating MBeans is that the instantiation and
registration are done in one call. In addition, if we have registered any class loaders
in the MBean server, they will automatically be used if the class is not available
locally. See “The M-Let Class Loader” for more information on class loading.

The Base Agent 85

The major difference is that we no longer have a reference to our MBean instance.
The object instance that was only used for display purposes in the previous example
now gives us the only reference we have on the MBean: its object name.

What can be seen as a drawback of this method is that all management of the new
MBean must now be done through the MBean server. For the attributes of the
MBean, we need to call the generic getter and setter of the MBean server, and for the
operations we need to call the invoke method. When the agent needs to access the
MBean, having to go through the MBean server adds some complexity to the code. It
does have the advantage of not relying on any shortcuts provided by the MBean,
making the code more portable and reusable.

However, the createMBean method is ideal for quickly launching new MBeans that
the agent application doesn’t need to manipulate. In just one call, the new objects are
instantiated and exposed for management.

Creating an MBean (Method 3)
The last way of creating an MBean relies on the instantiate method of the MBean
server. In addition, we use a non-default constructor to instantiate the class with a
different behavior.

CODE EXAMPLE 6–4 Creating an MBean (Method 3)

CommunicatorServer rmiConnector = null;
Object[] params = {new Integer(8086)};
String[] signature = {new String("int")};
try {

String RmiConnectorClassName = "com.sun.jdmk.comm.RmiConnectorServer";
// specify the RMI port number to use as a parameter to the constructor
rmiConnector = (CommunicatorServer)myMBeanServer.instantiate(

RmiConnectorClassName, params, signature) ;
} catch(Exception e) {

e.printStackTrace();
System.exit(0);

}

try {
// Let the RMI connector server provides its default name
ObjectInstance rmiConnectorInstance =

myMBeanServer.registerMBean(rmiConnector, null) ;

// Confirm the class and default object name
echo("CLASS NAME = " + rmiConnectorInstance.getClassName());
echo("OBJECT NAME = " + rmiConnectorInstance.getObjectName().toString());

} catch(Exception e) {
e.printStackTrace();

(continued)

86 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

(Continuation)

System.exit(0);
}

// Now we explicitly start the RMI connector server
rmiConnector.start() ;

// waiting to leave starting state...
while (rmiConnector.getState() == CommunicatorServer.STARTING) {

sleep(1000);
}
echo("STATE = " + rmiConnector.getStateString());

// Check that the RMI connector server is started
if (rmiConnector.getState() != CommunicatorServer.ONLINE) {

echo("Cannot start the RMI connector server");
System.exit(0);

}
[...]

As in the first example of MBean creation, we instantiate and register the MBean in
separate steps. First, we instantiate the class using the instantiate method of the
MBean server. This method lets you specify the constructor you wish to use when
instantiating. Note that we could also have specified a constructor to the
createMBean method in the previous example.

To specify a constructor, you give an array of objects for the parameters and an array
of strings which defines the signature. If these arrays are empty or null, the MBean
server will try to use the default no-parameter constructor. If the class does not have
a public no-parameter constructor, you must specify the parameters and signature of
a valid, public constructor.

In our case, we specify an integer parameter to set the port through one of the
constructors of the RmiConnectorServer class. Then, we register the MBean with
the registerMBean method of the MBean server, as in the first example.

The advantage of this creation method is that the instantiate method of the MBean
server also supports class loaders. If any are registered in the MBean server, they will
automatically be used if the class is not available locally. See “The M-Let Class
Loader” for more information on class loading.

Since we don’t take advantage of the class loaders here, we could have just called the
class’ constructor directly. The main advantage is that, like the first method of MBean
creation, we retain a direct reference to the new object. The direct reference lets us
again use the MBean’s shortcut methods explicitly.

There are other combinations of instantiating and registering MBeans for achieving
the same result. For example, we could use the default constructor and then set the

The Base Agent 87

port attribute of the MBean before starting it. Other combinations are left as an
exercise to the reader.

Managing MBeans
In “Creating an MBean (Method 2)” on page 84, we rely totally on the MBean server
to create and access an MBean. The code example in that section demonstrates how
to get attributes and invoke operations through the MBean server. Here we will
concentrate on the usage of MBean metadata classes when accessing MBeans
representing resources.

We will rely on the StandardAgent and DynamicAgent classes presented in
Instrumentation through MBeans. As mentioned in “Comparison with the
SimpleStandard Example” on page 41, the two are nearly identical. We examine
the method for displaying MBean metadata that is common to both: the same code
works for any registered MBean, whether standard or dynamic.

CODE EXAMPLE 6–5 Processing MBean Information

private MBeanServer server = null; // assigned by MBeanServerFactory

private void printMBeanInfo(ObjectName name) {

echo("Getting the management information for " + name.toString());
MBeanInfo info = null;

try {
info = server.getMBeanInfo(name);

} catch (Exception e) {
e.printStackTrace();
return;

}
echo("\nCLASSNAME: \t"+ info.getClassName());
echo("\nDESCRIPTION: \t"+ info.getDescription());

echo("\nATTRIBUTES");
MBeanAttributeInfo[] attrInfo = info.getAttributes();
if (attrInfo.length>0) {

for(int i=0; i<attrInfo.length; i++) {
echo(" ** NAME: \t"+ attrInfo[i].getName());
echo(" DESCR: \t"+ attrInfo[i].getDescription());
echo(" TYPE: \t"+ attrInfo[i].getType() +

"\tREAD: "+ attrInfo[i].isReadable() +
"\tWRITE: "+ attrInfo[i].isWritable());

}
} else echo(" ** No attributes **");

echo("\nCONSTRUCTORS");

(continued)

88 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

(Continuation)

MBeanConstructorInfo[] constrInfo = info.getConstructors();
// Note: the class necessarily has at least one constructor
for(int i=0; i<constrInfo.length; i++) {

echo(" ** NAME: \t"+ constrInfo[i].getName());
echo(" DESCR: \t"+ constrInfo[i].getDescription());
echo(" PARAM: \t"+ constrInfo[i].getSignature().length +

" parameter(s)");
}

echo("\nOPERATIONS");
MBeanOperationInfo[] opInfo = info.getOperations();
if (opInfo.length>0) {

for(int i=0; i<constrInfo.length; i++) {
echo(" ** NAME: \t"+ opInfo[i].getName());
echo(" DESCR: \t"+ opInfo[i].getDescription());
echo(" PARAM: \t"+ opInfo[i].getSignature().length +

" parameter(s)");
}

} else echo(" ** No operations ** ");

echo("\nNOTIFICATIONS");
MBeanNotificationInfo[] notifInfo = info.getNotifications();
if (notifInfo.length>0) {

for(int i=0; i<constrInfo.length; i++) {
echo(" ** NAME: \t"+ notifInfo[i].getName());
echo(" DESCR: \t"+ notifInfo[i].getDescription());

}
} else echo(" ** No notifications **");

}

The getMBeanInfo method of the MBean server gets the metadata of an MBean’s
management interface and hides the MBean’s implementation. This method returns
an MBeanInfo object which contains the MBean’s description. We can then get the
lists of attributes, operations, constructors, and notifications to display their
descriptions. Recall that the dynamic MBean provides its own meaningful
descriptions and that those of the standard MBean are default strings provided by
the introspection mechanism of the MBean server.

Filtering MBeans
The base agent does very little filtering because it does very little management.
Usually, filters are applied programmatically in order to get a list of MBeans to
which some operations will apply. There are no management operations in the

The Base Agent 89

MBean server which apply to a list of MBeans: you must loop through your list and
apply the desired operation to each MBean.

Before exiting the agent application, we do a query of all MBeans so that we can
unregister them properly. MBeans should be unregistered before being destroyed
since they may need to perform some actions before or after being unregistered. See
the Javadoc API of the MBeanRegistration interface for more information.

CODE EXAMPLE 6–6 Unregistering MBeans

public void removeAllMBeans() {

try {
Set allMBeans = myMBeanServer.queryNames(null, null);
for (Iterator i = allMBeans.iterator(); i.hasNext();) {

ObjectName name = (ObjectName) i.next();

// Don’t unregister the MBean server delegate
if (! name.toString().equals(ServiceName.DELEGATE)) {

echo("Unregistering " + name.toString());
myMBeanServer.unregisterMBean(name);

}
}

} catch (Exception e) {
e.printStackTrace();
System.exit(0);

}
}

We use the queryNames method because we only need the object names to operate
on MBeans. The null object name as a filter gives us all MBeans in the MBean server.
We then iterate through the resulting set and unregister each one, except for the
MBean server delegate. As described in “The MBean Server Delegate” on page 69,
the delegate is also an MBean and so it will be returned by the query. However, if we
unregister it, the MBean server can no longer function and remove the rest of our
MBeans.

We recognized the delegate by its standard name which is given by the static field
ServiceName.DELEGATE . The ServiceName class provides standard names and
other default properties for communications and service MBeans. It also provides the
version strings that are exposed by the delegate MBean. Note that, since the delegate
is the only MBean created directly by the MBean server, it is the only one whose
name cannot be overridden during its registration. This is why the delegate always
has the same object name, and we are always sure to detect it.

90 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

Running the Base Agent Example
The examplesDir/BaseAgent/ directory contains the source file of the BaseAgent
application. Compile the BaseAgent.java file in this directory with the javac
command. For example, on the Solaris platform, you would type:

$ cd examplesDir/BaseAgent/
$ javac -classpath classpath *.java

Again, we don’t need the MBean classes at compile time, but they will be needed at
runtime, since we don’t use a dynamic class loader. You will need to have compiled
the standard and dynamic MBean classes as described in “Running the Standard
MBean Example” on page 28 and “Running the Dynamic MBean Example” on page
41. If you wish to load any other class in the base agent, you must include its
directory or jar file in the classpath. To run the example, update your classpath to
find the MBeans and launch the agent class:

$ java -classpath classpath:../StandardMBean:../DynamicMBean BaseAgent

Setting Trace Messages
Since the base agent enables internal tracing (see Code Example 6–1), you can also
set the trace level and trace output on the command line. The tracing mechanism is
covered in the Java Dynamic Management Kit 4.2 Tools Reference guide and in the
Javadoc API of the Trace class. The simplest way to get the default tracing is to
specify the filename for a trace log on the java command line:

$ java -classpath classpath -DTRACE_OUTPUT=filename BaseAgent

Agent Output
Besides any trace information, this agent displays output for the three types of
MBean creation.

When the connection MBeans have been created, it is possible to connect to the agent
through one of the protocols. Management applications may connect through the
HTTP and RMI connector servers, as described in “Connector Servers” on page 110.
If you connect to the base agent through the HTML adaptor, you could go through
the same procedures as with the minimal agent.

When you are done, type “Enter” to remove all MBeans from the agent and exit the
agent application.

The Base Agent 91

92 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

CHAPTER 7

The Notification Mechanism

This topic presents the mechanisms for sending and receiving notifications by
demonstrating them locally on the agent-side. MBeans for either resources or services
are the source of notifications, called broadcasters. Other MBeans or other objects that
want to receive the notifications register with one or more broadcasters, they are
called the listeners.

Notification mechanisms are demonstrated through two sample broadcasters: the
MBean server delegate which notifies listeners of MBean creation and de-registration,
and an MBean which sends attribute change notifications.

The code samples are taken from the files in the Notification2 example directory
located in the main examplesDir (see “Directories and Classpath” in the preface).

Contents:

� “Overview” on page 94 presents the Notification object used to send generic
events, identified by their notification type string.

� “MBean Server Delegate Notifications” on page 95 explains the concepts of
notification broadcasters and listeners through the simple mechanism of an MBean
sending notifications and a listener object receiving them.

� “Attribute Change Notifications” on page 99 provide an example of sub-classing
the Notification object to provide additional information to the listener.

� “Running the Agent Notification Example” on page 104 will let you trigger
attribute change notifications through the HTML adaptor.

93

Overview
The ability for resources and other entities to signal an event to their managing
applications is a key functionality of management architectures. As specified in the
Java Management extensions, notifications in the Java Dynamic Management Kit
provide a generic event mechanism whereby one listener can receive all events sent
by a broadcaster.

All notifications in the Java Dynamic Management Kit rely on the Notification
class which itself inherits from Java event classes. A string called the notification type
inside a Notification object gives the nature of the event, and other fields provide
additional information to the recipient. This ensures that all MBeans, the MBean
server, and remote applications may send and receive Notification objects and its
subclasses, regardless of their inner type.

You may define new notification objects only by subclassing the Notification
class. This ensures that the custom notifications will be compatible with the
notification mechanism. New notification classes may be used to convey additional
information to custom listeners, and generic listenters will still be able to access the
standard Notification fields. However, since there are already fields provided for
user data, subclassing is discouraged in the JMX architecture so that notification
objects remain as universal as possible.

Listeners usually interact with notification broadcasters indirectly through the MBean
server. The interface of the MBean server lets you associate a listener with any
broadcaster MBean, thereby giving you dynamic access to any of the broadcasters
that are registered. In addition, the MBean metadata provided through the MBean
server contains the list of notification types that the MBean broadcasts.

The following diagram of an agent application summarizes how listeners register
with broadcasters and then receive notifications.

94 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

MBean
Server

Agent Application

Broadcaster
MBean

Listener Registration
Notification Propagation

N
ot

ifi
ca

tio
nB

ro
ad

ca
st

er
in

te
rf

ac
e

L1

L2

Notification
Listener
interface

NotificationRegistration
interface

Java Virtual Machine

Listener
Objects

Figure 7–1 Listener Registration and Notification Propagation

MBean Server Delegate Notifications
The MBean server delegate object is an MBean that is automatically created and
registered when an MBean server is started. It preserves the management model by
serving as the management interface for the MBean server. The delegate exposes
read-only information such as the vendor and version number of the MBean server.
More importantly for this topic, it sends the notifications that relate to events in the
MBean server: all MBean registrations and deregistrations generate a notification.

The NotificationBroadcaster Interface
A class must implement the NotificationBroadcaster interface to be
recognized as a source of notifications in the JMX architecture. This interface
provides the methods for adding or removing a notification listener to or from the
broadcaster. When the broadcaster sends a notification, it must send it to all listeners
that are currently registered through this interface.

This interface also specifies a method which returns information about all
notifications which may be sent by the broadcaster. This method returns an array of
MBeanNotificationInfo objects, each of which provides a name, a description
string, and the type string of the notification.

The Notification Mechanism 95

As detailed in the Javadoc API, the MBeanServerDelegate class implements the
NotificationBroadcaster interface. We know from the JMX specification that it
sends notifications of the following types:

� JMX.mbean.registered

� JMX.mbean.unregistered

Note - Although broadcaster objects are almost always MBeans, they should not
expose the methods of the NotificationBroadcaster interface. That is, the
MBean interface of a standard MBean should never extend the
NotificationBroadcaster interface. As we shall see in the next topic,
“Notification Forwarding”, the remoteMBeanServer interface of connector clients
provides the methods needed to register for and receive notifications remotely.

The NotificationListener Interface
Listeners are the other players in the notification game. They must implement the
NotificationListener interface, and they are registered in the notification
broadcasters to receive the notifications. The listener interface defines a handler
method that will receive all notifications of the broadcaster where the listener is
registered. We say that a listener is registered when it has been added to the
broadcaster’s list of notification recipients; this is completely independent of any
registration of either object in the MBean server.

Like the broadcaster, the listener is generic, meaning that it can handle any number
of different notifications. Its algorithm usually involves determining the type of the
notification and taking the appropriate action. A listener can even be registered with
several broadcasters and handle all of the notifications that may be sent.

Note - The handler is a callback method that the broadcaster will invoke with the
notification object it wishes to send. As such, it will execute in the broadcaster’s
thread and should therefore execute rapidly and return promptly. The code of the
handler should rely on other threads to execute long computations or blocking
operations.

In our example, the listener is a trivial class that has a constructor and the handler
method. Our handler simply prints out the nature of the notification and the name of
the MBean to which it applied. Other listeners on the agent side might themselves be
MBeans that process the event and update the state of their resource or the quality of
their service in response. For example, the relation service must know when any
MBeans participating in relations are unregistered; it does this by listening to MBean
server delegate notifications.

96 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

CODE EXAMPLE 7–1 The Listener for MBean Server Delegate Notifications

import javax.management.Notification;
import javax.management.NotificationListener;
import javax.management.MBeanServerNotification;

public class AgentListener implements NotificationListener {
[...]

// Implementation of the NotificationListener interface
//
public void handleNotification (Notification notification,

Object handback) {

// Process the different types of notifications fired by the
// MBean server delegate.
String type = notification.getType ();

System.out.println(
"\n\t>> AgentListener handles received notification:" +
"\n\t>> --");

try {
if (type.equals(

MBeanServerNotification.REGISTRATION_NOTIFICATION)) {
System.out.println("\t>> \"" +

((MBeanServerNotification)notification).getMBeanName() +
"\" has been registered in the server");

}
else if (type.equals(

MBeanServerNotification.UNREGISTRATION_NOTIFICATION)) {
System.out.println("\t>> \"" +

((MBeanServerNotification)notification).getMBeanName() +
"\" has been unregistered from the server\n");

}
else {

System.out.println("\t>> Unknown event type (?)\n");
}

} catch (Exception e) {
e.printStackTrace();
System.exit(1);

}
}

}

In most cases, the notification object passed to the handler method is an instance of
the Notification class. This class provides the notification type as well as a
time-stamp, a sequence number, a message string and user data of any type. All of
these are provided by the broadcaster to pass any needed information to its listeners.
Because listeners are usually registered through the MBean server, they only know
the broadcaster by its object name: this is given by the getSource method of the
notification object.

The Notification Mechanism 97

Note - The notification model does not assume that notifications will be received in
the same order that they are sent. If notification order is critical to your application,
your broadcaster should set the sequence numbers appropriately, and your listeners
should sort the received notifications.

The MBean server delegate sends MBeanServerNotification objects which are
subclasses of the Notification class. This subclass provides two constants to
identify the notification types sent by the delegate and a method which gives the
object name of the MBean which was registered or de-registered. Our notification
handler uses these to print out the type of operation and the object name to which
the operation applies.

Adding a Listener Through the MBean Server
Now that we have identified the objects involved, we need to add the listener to the
notification broadcaster. Our example does this in the main method of the agent
application:

CODE EXAMPLE 7–2 Registering for MBean Server Delegate Notifications

AgentListener agentListener = null;
[...]

echo("\nAdding the MBean server delegate listener...");
try {

agentListener = new AgentListener ();
myAgent. myMBeanServer.addNotificationListener (

new ObjectName(ServiceName.DELEGATE),
agentListener, null, null);

} catch(Exception e) {
e.printStackTrace();
System.exit(0);

}
echo("done");

In our example, the agent application adds the AgentListener instance to the
delegate MBean, which is known to be a broadcaster. The object name of the MBean
server delegate is given by the DELEGATEconstant in the ServiceName class. The
listener is added through the addNotificationListener method of the MBean
server: this method preserves the management architecture by adding listeners to
MBeans while referring only the MBean object names.

If an MBean implements the listener interface and needs to receive certain
notifications, it can add itself to a broadcaster. For example, an MBean could use its

98 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

pre-registration method in order to add itself as a notification listener or it could
expose a method that takes the object name of the notification broadcaster MBean. In
both cases, its notification handler method would have to be designed to process all
expected notification types.

The last two parameters of the addNotificationListener methods of both the
MBeanServer and the NotificationBroadcaster interfaces define a filter and a
handback object, respectively. Filter objects are defined by the
NotificationFilter interface and provide a callback method that the broadcaster
will invoke before calling the notification handler. If the filter is defined by the entity
which adds the listener, it prevents the handler from receiving unwanted
notifications.

Handback objects are added to a broadcaster along with a listener and are returned
to the designated handler with every notification. The handback object is completely
untouched by the broadcaster and can be used to transmit context information from
the entity which adds the listener to the handler method. The functionality of filters
and handback objects is not covered in this tutorial; please refer to the JMX
specification for their full description.

Attribute Change Notifications
In this second part of the notification example, we demonstrate attribute change
notifications that may be sent by MBeans. An MBean designer may choose to send
notifications whenever the value of an attribute changes or is changed. The designer
is free to implement this mechanism in any manner, according to the level of
consistency required by the management solution.

The JMX specification only provides a subclass of notifications that should be used to
represent the attribute change events: the AttributeChangeNotification class.

The NotificationBroadcasterSupport Class
The broadcaster in our example is a very simple MBean with only one attribute. The
setter method for this attribute triggers a notification whenever the value actually
changes. This policy is specific to our example, you might want to design an MBean
that sends an attribute change every time the setter is called, regardless of whether
or not the value is modified. In the same spirit, the fact that the reset operation
changes the value of the attribute but doesn’t send a notification is specific to our
example; your management needs may vary.

Here is the code for our SimpleStandard MBean class (the code for its MBean
interface has been omitted):

The Notification Mechanism 99

CODE EXAMPLE 7–3 The Broadcaster for Attribute Change Notifications

import javax.management.NotificationBroadcasterSupport;
import javax.management.MBeanNotificationInfo;
import javax.management.AttributeChangeNotification;

public class SimpleStandard
extends NotificationBroadcasterSupport
implements SimpleStandardMBean {

/* "SimpleStandard" does not provide any specific constructors.
* However, "SimpleStandard" is JMX compliant with regards to
* constructors because the default constructor SimpleStandard()
* provided by the Java compiler is public.
*/

public String getState() {
return state;

}

// The attribute setter chooses to send a notification only if
// the value is modified
public void setState (String s) {

if (state.equals(s))
return;

AttributeChangeNotification acn = new AttributeChangeNotification (
this, 0, 0, null, "state", "String", state, s);

sendNotification(acn) ;
state = s;
nbChanges++;

}

[...]
// The reset operation chooses not to send a notification even though
// it changes the value of the state attribute
public void reset() {

state = "initial state";
nbChanges = 0;
nbResets++;

}

// Provide details about the notification type and class that is sent
public MBeanNotificationInfo[] getNotificationInfo () {

MBeanNotificationInfo[] ntfInfoArray = new MBeanNotificationInfo[1];

String[] ntfTypes = new String[1];
ntfTypes[0] = AttributeChangeNotification.ATTRIBUTE_CHANGE;

ntfInfoArray[0] = new MBeanNotificationInfo(ntfTypes,
"javax.management.AttributeChangeNotification",
"Attribute change notification for the ’State’ attribute.");

return ntfInfoArray;
}

private String state = "initial state";

(continued)

100 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

(Continuation)

private int nbChanges = 0;
private int nbResets = 0;

}

You might be wondering how this MBean actually sends its notifications, or even
how it implements the NotificationBroadcaster interface, for that matter. The
answer to both is: by extension of the NotificationBroadcasterSupport class.

This class implements the NotificationBroadcaster interface in order to
provide all the mechanisms for adding and removing listeners and sending
notifications. It manages an internal list of listeners and their handback objects and
updates this list whenever listeners are added or removed. In addition, the
NotificationBroadcasterSupport class provides the sendNotification
method to send a notification to all listeners currently on its list.

By extending this object, our MBean inherits all of this behavior. Subclassing
NotificationBroadcasterSupport is a quick and convenient way to implement
notification broadcasters. We don’t even have to call a superclass constructor because
it has a default constructor. We only need to override the getNotificationInfo
method to provide details about all of the notifications that may be sent.

The Attribute Change Listener
Like our listener for MBean server notifications, our listener for attribute change
notifications is a trivial class consisting of just the handler method.

CODE EXAMPLE 7–4 The Listener for Attribute Change Notifications

import javax.management.Notification;
import javax.management.NotificationListener;
import javax.management.AttributeChangeNotification;

public class SimpleStandardListener implements NotificationListener {
[...]

// Implementation of the NotificationListener interface
//
public void handleNotification (Notification notification,

Object handback) {

// Process the different types of notifications fired by the

(continued)

The Notification Mechanism 101

(Continuation)

// simple standard MBean.
String type = notification.getType ();

System.out.println(
"\n\t>> SimpleStandardListener received notification:" +
"\n\t>> ---");

try {
if (type.equals(AttributeChangeNotification.ATTRIBUTE_CHANGE)) {

System.out.println("\t>> Attribute \"" +
((AttributeChangeNotification)notification).getAttributeName()
+ "\" has changed");

System.out.println("\t>> Old value = " +
((AttributeChangeNotification)notification).getOldValue());

System.out.println("\t>> New value = " +
((AttributeChangeNotification)notification).getNewValue());

}
else {

System.out.println("\t>> Unknown event type (?)\n");
}

} catch (Exception e) {
e.printStackTrace();
System.exit(1);

}
}

}

Again, we are handling a subclass of the Notification class, this one specific to
attribute change notifications. The AttributeChangeNotification class provides
methods for extracting the information about the attribute, notably its name, its type
and its values before and after the modification. Our handler does nothing more than
display these to the user. If this handler were part of an MBean in a larger
management solution, it would undoubtedly want to take some action, depending
upon the change in value of the attribute.

As demonstrated by the broadcaster’s code (see Code Example 7–3), the subclass can
easily be instantiated and sent instead of a Notification object. Its constructor
provides parameters for initializing all of the attribute-related values. In our
example, we do not use significant values for the sequenceNumber and
timeStamp parameters because our listener has no need for them. This is one great
advantage of the Java Dynamic Management Kit: you only need to implement the
level of functionality that you require for your management solution.

102 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

Adding a Listener Directly to an MBean
There is nothing that statically indicates that our MBean sends attribute change
notifications. In our case it is a design decision, meaning that we know that the
listener will receive attribute change notifications because we wrote the MBean that
way. At runtime, the MBean server exposes the list of notifications in this MBean’s
metadata object, allowing a manager that is interested in attribute changes to register
the appropriate listener.

Being confined to the agent, our example is much simpler. First we instantiate and
register our simple MBean with the agent’s MBean server. Then, because we have
designed them to work together, we can add our listener for attribute changes to our
MBean. Since we have kept a direct reference to the MBean instance, we can call its
addNotificationListener method directly, without going through the MBean
server.

CODE EXAMPLE 7–5 Registering for Attribute Change Notifications

SimpleStandard simpleStd = null;
ObjectName simpleStdObjectName = null;
SimpleStandardListener simpleStdListener = null;
[...]

try {
simpleStdObjectName =

new ObjectName("simple_mbean:class=SimpleStandard");
simpleStd = new SimpleStandard();
myAgent. myMBeanServer.registerMBean(simpleStd , simpleStdObjectName);

} catch(Exception e) {
e.printStackTrace();
System.exit(0);

}

echo("\nAdding the simple standard MBean listener...");
try {

simpleStdListener = new SimpleStandardListener ();
simpleStd.addNotificationListener (simpleStdListener, null, null);

} catch(Exception e) {
e.printStackTrace();
System.exit(0);

}
echo("done");

There are several major implications to adding our listener directly to the MBean
instance:

� Notification objects, or in this case subclasses, will contain a direct reference to the
broadcaster object. This means that their getSource method will return a

The Notification Mechanism 103

reference to the broadcaster instead of its object name. Our listener is unaffected
by this issue since it never calls this method.

� This listener will need to be removed directly from the MBean instance. A listener
added directly to the broadcaster object cannot be removed through the MBean
server’s methods, and vice versa.

The rest of the Agent object’s code performs the setup of the agent’s MBean server
and various input and output for running the example. Similar agents were already
presented in detail in the lesson on “Agent Applications”.

Running the Agent Notification Example
Now that we have seen all of our notification broadcaster objects and all of our
listener handlers, we are ready to run the example.

The examplesDir/Notification2 directory contains all of the files for the simple
MBean, the listener objects, and the agent. When launched, the agent application
adds the MBean server delegate listener first, so that a notification can be seen for
the creation of the MBean. Attribute change notifications are triggered by modifying
attributes through the HTML adaptor.

Compile all files in this directory with the javac command. For example, on the
Solaris platform with the Korn shell, you would type:

$ cd examplesDir/Notification2/
$ javac -classpath classpath *.java

To run the example, launch the agent application:

$ java -classpath classpath Agent

Triggering Notifications in the Agent Example

1. After the agent application has started and added the MBean server delegate
listener, press <Enter> to create the simple MBean.

Before the next printout of the agent application, you should see the text
generated by the AgentListener class. Its handler method has been called with
an MBean creation notification, and it prints out the object name of our new
MBean.

104 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

2. Now that the simple MBean is registered and the SimpleStandardListener
has been added as a listener, you can trigger attribute change notifications by
modifying the State attribute through the HTML adaptor.

Load the following URL in your browser:

http://localhost:8082/

If you get an error, you may have to switch off proxies in your preference settings
or substitute your machine name for localhost . Any browser on your local
network can also connect to this agent by using your machine name in this URL.

In the attribute table of our MBean view, enter a new value for the State
attribute and click the “Apply” button. Every time you do this, you should see
the output of the attribute change listener in the terminal window where you
launched the agent.

3. When you are finished with the attribute change notifications, press <Enter>
in the agent’s terminal window to remove our simple MBean.

Again, you should see the output of the MBean server delegate listener. This time
it has detected that our MBean has been de-registered from the MBean server.

4. Press <Enter> again to stop the agent application.

The Notification Mechanism 105

106 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

PART III Remote Management Applications

In the lesson on “Agent Applications”, we saw how to access and manage a Java
Dynamic Management agent through the HTML protocol adaptor. Protocol adaptors
provide a view of an agent through some communication protocol. In this lesson, we
present protocol connectors and proxy MBeans for managing agents
programmatically.

The Java Dynamic Management Kit goes beyond the scope of the JMX specification
to define the APIs needed to develop distributed management applications in the
Java programming language. These remote applications establish connections with
agents through protocol connectors over RMI, HTTP or HTTPS. The connector client
object exposes a remote version of the MBean server interface. The connector server
object in the agent transmits management requests to the MBean server and forwards
any replies.

Connectors allow you to develop a management application which is both protocol
independent and location independent. Once the connection is established, the
communication layer is transparent, and the manager can issue requests, as if it were
directly invoking the MBean server. Using proxy objects which represent MBeans, the
design of the management application is even simpler and development time is
reduced.

This homogeneity of the API makes it possible to develop portable management
applications which can run either in an agent or in a remote management
application. This simplifies the development and testing of applications, and it also
allows functionality to evolve along with the management solution. As your agent
and manager platforms evolve, management policies can be implemented at higher
levels of management, and intelligent monitoring and processing logic can be moved
down into agents.

Connectors and proxies provide an abstraction of the communication layer between
agent and manger, but they also provide mechanisms for simplifying the
management task. Notification forwarding with configurable caching and pull
policies lets you dynamically optimize bandwidth usage. The connector heartbeat
monitors a connection, applies a retry policy, and automatically frees the resources

when there is a communication failure. Finally, the connector server in an agent can
act as a watchdog and refuse unauthorized requests based on the type of operation.

This lesson contains the following topics:

� “Protocol Connectors” establish a connection between a management application
written in the Java programming language and a Java Dynamic Management
agent. Agents are identified by an address and port number, all other details of the
communication are hidden. Once the connection is established, the remote
management application may access the MBeans in the agent. All connectors also
implement the heartbeat mechanism to monitor the connection.

� “MBean Proxies” represent MBeans so that they are easier to access. A proxy
object exposes the interface of its MBean for direct invocation. It then encodes the
management request which it forwards to the MBean server and returns any
response to its caller. Specific proxies can be generated for standard MBeans, but
dynamic MBeans can only be accessed through generic proxies, similar to their
DynamicMBean interface.

� “Notification Forwarding” extends the concept of notification listeners to the
manager side. This topic covers how manager-side listeners can register with
agent-side broadcasters. The example then shows how the connector client and
server interact to provide both pull and push modes for forwarding notifications
from the agent to the manager.

� “Access Control and Security” presents the security features that can be enabled
for a given connection. The HTTP-based connectors include a password
mechanism that will refuse unauthorized connections. Context checking and the
general filtering mechanism can implement a complex algorithm for allowing or
disallowing management requests to an agent. Finally, the HTTPS connector
encrypts and protects data as it transits over the network between connector client
and server components.

CHAPTER 8

Protocol Connectors

Protocol connectors provide a point-to-point connection between a Java Dynamic
Management agent and a management application. Each connector relies on a
specific communication protocol, but the API that is available to the management
application is identical for all connectors and is entirely protocol-independent.

A connector consists of a connector server component registered in the agent and a
connector client object instance in the management application. The connector client
exposes a remote version of the MBean server interface. Each connector client
represents one agent to which the manager wishes to connect. The connector server
replies to requests from any number of connections and fulfills them through its
MBean server. Once the connection is established, the remoteness of the agent is
transparent to the management application, except for any communication delays.

Connectors rely on the Java serialization package to transmit data as Java objects
between client and server components. Therefore, all objects needed in the exchange
of management requests and responses must be instances of a serializable class.
However, the data encoding and sequencing are proprietary, and the raw data of the
message contents in the underlying protocol are not exposed by the connectors.

All connectors provided with the Java Dynamic Management Kit implement a
heartbeat mechanism to automatically detect when a connection is lost. This allows
the manager to be notified when the communication is interrupted and when it is
restored. If the connection is not reestablished, the connector automatically frees the
resources that were associated with the lost connection.

The code samples in this topic are taken from the files in the SimpleClients and
HeartBeat example directories located in the main examplesDir (see “Directories
and Classpath” in the preface).

Contents:

� “Connector Servers” on page 110 presents the agent-side component of a protocol
connector.

109

� “Connector Clients” on page 113 presents the manager-side component and how it
establishes a connection.

� “The Heartbeat Mechanism” on page 121 explains how a connector monitors a
connection and demonstrates how to run the heartbeat example.

Connector Servers
The connector server on the agent side listens for management requests issued
through a corresponding connector client. It transmits these requests to its MBean
server and forwards any response back to the management application. The
connector server also forwards notifications, when the management application has
registered to receive them through its connector client (see “Notification Forwarding”
for more details).

There is a connector server for each of the protocols supported in the Java Dynamic
Management Kit: RMI, HTTP and HTTPS. They all inherit from the
CommunicatorServer class which is the superclass for all protocol adaptors and
connector servers. This class defines the methods needed to control the port and
communication settings that are common to all. Each connector server class then
provides specific controls, such as the service name for RMI and authentication
information for HTTP. This example covers the RMI connector server, and the HTTP
authentication mechanism is covered in “Password-Based Authentication” on page
162.

A connector server listens for incoming requests from its corresponding connector
client, decodes that request and encodes the reply. Several connector clients may
establish connections with the same connector server, and the connector server can
handle multiple requests simultaneously. There only needs to be one connector
server MBean per protocol to which the agent needs to respond. However, several
connector servers for the same protocol can coexist in an agent for processing
requests on different ports.

Instantiating an RMI Connector Server
The RMI connector server is an MBean, so we instantiate its class and register it in
the MBean server. This operation could also be performed remotely, for example if a
management application wishes to access an agent through an alternate protocol.

CODE EXAMPLE 8–1 Instantiating the RMI Connector Server

// Instantiate an RMI connector server with default port
//
CommunicatorServer rmiConnector = new RmiConnectorServer() ;

110 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

(Continuation)

try {
// We let the RMI connector server provides its default name
ObjectName rmiConnectorName = null;
ObjectInstance rmiConnectorInstance =

myMBeanServer.registerMBean(rmiConnector, rmiConnectorName) ;

} catch(Exception e) {
e.printStackTrace();

}

Other constructors for the RmiConnectorServer class have parameters for
specifing the port and the RMI service name that the connector server will use. The
default constructor assigns port 1099 and “name=RmiConnectorServer ”, as given
by the static variables RMI_CONNECTOR_PORTand RMI_CONNECTOR_SERVER,
respectively, of the ServiceName class. Both attributes can also be accessed through
the getter and setter methods of the RmiConnectorServer class.

Each connector uses different parameters that are specific to its protocol. For
example, the HTTP connector does not need a service name. The default values for
all parameters are given by the static variables of the ServiceName class.

Registering a connector server as an MBean implies that its MBean server will handle
the remote requests that it receives. However, you may specify a different object for
fulfilling management requests through the setMBeanServer method that the
RmiConnectorServer class inherits from the CommunicatorServer class. For
security reasons, this method is not exposed in the RMI connector server MBean, so
it must be called from the agent application.

Registering the connector server as an MBean is optional: for example, you may not
want it exposed for management. In this case, you must use the setMBeanServer
method to specify an object which implements the MBeanServer interface so that it
can fulfill management requests.

Connector States
Like all communicator servers, the RMI connector server has a connection state
which is identified by the static variables of the CommunicatorServer class:

� OFFLINE – Stopped and not responding.

� STARTING– In a transitional state and not yet responding.

� ONLINE – Able to respond to management requests.

Protocol Connectors 111

� STOPPING– In a transitional state and no longer responding.

All connector servers are OFFLINE after their instantiation, so they must be started
explicitly. Then, you must wait for a connector server to come ONLINE before it can
respond to connections on its designated port.

CODE EXAMPLE 8–2 Starting the RMI Connector Server

// Explicitly start the RMI connector server
//
rmiConnector.start ();

// waiting for it to leave starting state...
while (rmiConnector.getState () == CommunicatorServer.STARTING) {

try {
Thread.sleep(1000);

} catch (InterruptedException e) {
continue;

}
}

Instead of blocking the application thread, you may register a listener for attribute
change notifications concerning the State attribute of the connector server MBean.
All connector servers implement this notification which contains both old and new
values of the attribute (see “Attribute Change Notifications” on page 99). Listeners in
the agent can then asynchronously detect when the state changes from STARTINGto
ONLINE.

Note - During the STARTINGstate, the RMI connector server registers its RMI
service name with the RMI registry on the local host for its designated port. If no
registry exists, one is instantiated for the given port. Due to a limitation of the JDK
software, creating a second registry in the same Java VM will fail. As a workaround,
before starting an RMI connector server on a new, distinct port number in an agent,
you must run the rmiregistry command from a terminal on the same host. This
limitation is specific to the RMI connector: the HTTP protocols do not require a
registry.

The stop method is used to take a connector server offline. The stop method is also
called by the preDeregister method that all connector servers inherit. Stopping a
connector server will interrupt all requests that are pending and close all connections
that are active. When a connection is closed, all of its resources are cleaned up,
including all notification listeners, and the connector client may be notified by a
heartbeat notification (see “The Heartbeat Mechanism” on page 121). A connection
that is closed can no longer be reopened, the connector client must establish a new
connection when the connector server is restarted.

112 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

The setPort method that all connector servers inherit from the
CommunicatorServer class allows you to change the port on which management
requests will be expected. You can only change the port when the connector server is
offline, so it must be explicitly stopped and then restarted. The same rule applies to
the setServiceName method which is specific to the RMI connector server. These
methods are also exposed in the MBean interface, along with start and stop ,
allowing a remote management application to configure the connector server through
a different connection.

Connector Clients
The manager application interacts with a connector client in order to access an agent
through an established connection. Through its implementation of the
RemoteMBeanServer interface, a connector client provides methods for handling
the connection and for accessing the agent. This interface specifies nearly all of the
same methods as the MBeanServer interface, meaning that an agent is fully
manageable from a remote application.

Through the connector, the management application sends management requests to
the MBeans located in a remote agent. Components of the management application
access remote MBeans by calling the methods of the connector client for getting and
setting attributes and invoking operations on the MBeans. The connector client then
returns the result, providing a complete abstraction of the communication layer.

The RemoteMBeanServer Interface
All connector clients implement the RemoteMBeanServer interface in order to
expose the methods needed to access and manage the MBeans in a remote agent.
This interface allows all management operations that would be possible directly in
the agent application. In fact, the methods of the connector client for accessing
MBeans remotely have exactly the same name and signature as their equivalent
methods in the MBeanServer interface.

The following methods are defined identically in both the MBeanServer and the
RemoteMBeanServer interfaces:

Protocol Connectors 113

TABLE 8–1 The Set of Shared Methods

♦ void addNotificationListener (ObjectName name,

NotificationListener listener, NotificationFilter

filter, java.lang.Object handback)

ObjectInstance createMBean (*) – All four overloaded forms of this method

♦ java.lang.Object getAttribute (ObjectName name, java.lang.String

attribute)

♦ AttributeList getAttributes (ObjectName name, java.lang.String[]

attributes)

java.lang.String getDefaultDomain ()

java.lang.Integer getMBeanCount ()

♦ MBeanInfo getMBeanInfo (ObjectName name)

ObjectInstance getObjectInstance (ObjectName name)

♦ java.lang.Object invoke (ObjectName name, java.lang.String

operationName, java.lang.Object[] params,

java.lang.String[] signature)

boolean isInstanceOf (ObjectName name, java.lang.String

className)

boolean isRegistered (ObjectName name)

java.util.Set queryMBeans (ObjectName name, QueryExp query)

java.util.Set queryNames (ObjectName name, QueryExp query)

♦ void removeNotificationListener (ObjectName name,

NotificationListener listener)

♦ void setAttribute (ObjectName name, Attribute attribute)

♦ AttributeList setAttributes (ObjectName name, AttributeList

attributes)

♦ void unregisterMBean (ObjectName name)

♦ These methods are defined in the ProxyHandler interface; see the next topic:
“Local and Remote Proxies” on page 131.

Components of a management application which rely solely on this common subset
of methods may be instantiated in either the agent or the manager application. Such
components are location independent and may be reused either locally or remotely
as managemement solutions evolve. This symmetry also allows the design of
advanced management architectures where functionality may be deployed either in
the agent or in the manager, depending on runtime conditions.

114 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

The other, unshared methods of the RemoteMBeanServer interface are used to
establish and monitor the connection. In the following section, we will establish a
connection and access MBeans directly through the connector client. In “The
Heartbeat Mechanism” on page 121, we will see how to monitor a connection and
detect when it is lost.

Establishing a Connection
The target of a connection is identified by a protocol-specific implementation of the
ConnectorAddress interface. This object contains all the information that a
connector client needs to establish a connection with the target agent. All address
objects specify a host name and port number. An RMI address adds the required
service name, and HTTP-based addresses have an optional authenication field (see
“Password-Based Authentication” on page 162). In addition, the ConnectorType
string identifies the protocol without needing to introspect the address object

In our example, the target of the connection is an active RMI connector server
identified by an RmiConnectorAddress object. We use the default constructor to
instantiate a default address object, but otherwise, these parameters can be specified
in a constructor or through setter methods. The default values of the information
contained in the RmiConnectorAddress object are the following:

� The ConnectorType identifies the protocol that is used; its value is “SUN RMI”
for the RmiConnectorAddress class.

� The default RMI port is 1099 , as given by the static variable
RMI_CONNECTOR_PORTin the ServiceName class.

� The Host is the name of the machine where the target agent is running; by
default, its value is the localhost.

� The Nameattribute specifies the RMI registry service name of the adaptor server.
Its default value is “name=RmiConnectorServer ”, which is the value of the
RMI_CONNECTOR_SERVERstatic variable in the ServiceName class.

The RmiConnectorAddress object is used as the parameter to the connect
method of the RmiConnectorClient instance. This method will try to establish the
connection and will throw an exception if there is a communication or addressing
error. Otherwise, when the connect method returns, the connector client will be
ready to perform management operations on the designated agent.

CODE EXAMPLE 8–3 Establishing a Connection

echo("\t>> Instantiate the RMI connector client...");
connectorClient = new RmiConnectorClient();

echo("\t>> Instantiate a default RmiConnectorAddress object...");
RmiConnectorAddress address = new RmiConnectorAddress() ;

(continued)

Protocol Connectors 115

(Continuation)

// display the default values
echo("\t\tTYPE\t= " + address.getConnectorType());
echo("\t\tPORT\t= " + address.getPort());
echo("\t\tHOST\t= " + address.getHost());
echo("\t\tSERVER\t= " + address.getName());
echo("\t<< done <<");

echo("\t>> Connect the RMI connector client to the agent...");
try {

connectorClient.connect (address);

} catch(Exception e) {
echo("\t!!! RMI connector client could not connect to the agent !!!");
e.printStackTrace();
System.exit(1);

}

Managing MBeans Remotely
Once the connection to an agent is established, the management application can
access that agent’s MBeans through the RemoteMBeanServer interface of the
connector client. Invoking these methods has exactly the same effect as invoking the
equivalent methods directly on the MBean server instance.

It is possible to restrict access to certain methods of the MBean server when they are
called through the connector client, but this is performed by a security mechanism in
the connector server: see “Context Checking” on page 165 for more details.

Creating and Unregistering MBeans in the Agent
We use the createMBean method to instantiate and register an object from its class
name. This class must already be available in the agent application’s classpath, or
you can use the createMBean method which takes the name of a class loader (see
“M-Let Loading from a Manager (Java 2)” on page 194 for more details).

CODE EXAMPLE 8–4 Creating and Unregistering an MBean Remotely

private void doWithoutProxyExample(String mbeanName) {

try {

// build the MBean ObjectName instance

116 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

(Continuation)

//
ObjectName mbeanObjectName = null;
String domain = connectorClient.getDefaultDomain ();
mbeanObjectName = new ObjectName(domain + ":type=" + mbeanName);

// create and register an MBean in the MBeanServer of the agent
//
echo("\nCurrent MBean count in the agent = "+

connectorClient.getMBeanCount ());
echo("\n>>> CREATE the " + mbeanName +

" MBean in the MBeanServer of the agent:");
String mbeanClassName = mbeanName;

ObjectInstance mbeanObjectInstance =
connectorClient.createMBean (mbeanClassName, mbeanObjectName);

echo("\tMBEAN CLASS NAME = " +
mbeanObjectInstance.getClassName());

echo("\tMBEAN OBJECT NAME = " +
mbeanObjectInstance.getObjectName());

echo("\nCurrent MBean count in the agent = "+
connectorClient.getMBeanCount());

[...] // Retrieve MBeanInfo and access the MBean (see below)

// unregister the MBean from the agent
//
echo("\n>>> UNREGISTERING the "+ mbeanName +" MBean");
connectorClient.unregisterMBean (

mbeanObjectInstance.getObjectName());

[...]

} catch (Exception e) {
e.printStackTrace();

}
}

The above sample shows the use of other calls to the remote agent, such as
getDefaultDomain and getMBeanCount which have the same purpose as in an
agent application.

Accessing MBean Attributes and Operations

Once you can access the object names for MBeans in the agent, you can know their
management interface from their MBeanInfo object. The following code is actually

Protocol Connectors 117

called in between the MBean creation and deregistration shown in the previous code
sample.

CODE EXAMPLE 8–5 Retrieving the MBeanInfo Object

ObjectName mbeanObjectName = mbeanObjectInstance.getObjectName();

echo("\n>>> Getting the management information of the MBean");
MBeanInfo info = null;
try {

info = connectorClient.getMBeanInfo (mbeanObjectName);

} catch (Exception e) {
echo("\t!!! Could not get MBeanInfo object for "+ mbeanObjectName);
e.printStackTrace();
return;

}

// display content of MBeanInfo object
//
echo("\nCLASSNAME: \t"+ info.getClassName());
echo("\nDESCRIPTION: \t"+ info.getDescription());
echo("\nATTRIBUTES");
MBeanAttributeInfo[] attrInfo = info.getAttributes();
if (attrInfo.length>0) {

for(int i=0; i<attrInfo.length; i++) {
echo(" ** NAME: \t"+ attrInfo[i].getName());
echo(" DESCR: \t"+ attrInfo[i].getDescription());
echo(" TYPE: \t"+ attrInfo[i].getType() +

"\tREAD: "+ attrInfo[i].isReadable() +
"\tWRITE: "+ attrInfo[i].isWritable());

}
} else echo(" ** No attributes **");

[...]

It is then straightforward to perform management operations on MBeans through the
connector client. As in an agent, we call the generic getters, setters and invoke
methods with the object name of the MBean, the name of the attribute or operation,
and any parameters. As in the methods of the MBean server, we need to use the
Attribute and AttributeList classes to pass attributes as name-value pairs.

CODE EXAMPLE 8–6 Accessing an MBean Through the Connector Client

try {
// Getting attribute values
String State = (String)

connectorClient.getAttribute (mbeanObjectName, "State");
Integer NbChanges = (Integer)

connectorClient.getAttribute (mbeanObjectName, "NbChanges");

118 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

(Continuation)

echo("\tState = \"" + State + "\"");
echo("\tNbChanges = " + NbChanges);

// Setting the "State" attribute
Attribute stateAttr = new Attribute("State", "new state from client");
connectorClient.setAttribute (mbeanObjectName, stateAttr);

// Invoking the "reset" operation
Object[] params = new Object[0];
String[] signature = new String[0];
connectorClient.invoke (mbeanObjectName, "reset", params, signature);

} catch (Exception e) {
e.printStackTrace();
return;

}

All other MBean access methods are available in the same manner, such as bulk
getters and setters, and the query methods.

Creating and Accessing Dynamic MBeans
In the first run of the example, the management application creates, manages and
deregisters a standard MBean in the remote agent. However, standard and dynamic
MBeans are designed to be managed through the same methods, both in the
MBeanServer and in the RemoteMBeanServer interfaces.

As shown in Code Example 8–4, the subroutine of the example application takes
only a single class name parameter. The first time this subroutine is called, the
example passes the class name of a standard MBean, and the second time, that of a
dynamic MBean. For the example to run, the two MBeans must have an identical
management interface. By extension of this special case, we see that the connector
client can manage dynamic MBeans through the same methods as it manages
standard MBeans, without making any distinction between the two.

Running the Simple Client Example
The examplesDir/SimpleClients directory contains all of the files for three sample
managers, a base agent, and some MBeans to manage. In this topic, we run the
ClientWithoutProxy application which demonstrates simple operations on
MBeans through an RMI connector.

Protocol Connectors 119

Compile all files in this directory with the javac command. For example, on the
Solaris platform with the Korn shell, you would type:

$ cd examplesDir/SimpleClients/
$ javac -classpath classpath *.java

We will not need all the files for this topic, but they will be used in the next topic,
“MBean Proxy Objects”. In this demonstration, we only need the BaseAgent and
ClientWithoutProxy applications, as well as the standard and dynamic MBeans.

Instructions

1. Launch the agent in another terminal window on the same host with the
following command:

$ java -classpath classpath BaseAgent

The agent creates an HTML protocol adaptor and an RMI connector server to
which the client application will establish a connection, and then it waits for
management operations.

2. Wait for the agent to be completely initialized, then launch the manager with
the following command:

$ java -classpath classpath ClientWithoutProxy

The client application creates the RMI connector client and establishes the
connection to base agent.

3. Press <Enter> in the manager window to step through the example.

The management application instantiates both types of MBeans, looks at their
metadata, and performs management operations on them. The results of each
step are displayed in the terminal window.

4. At any time, you can view the agent through its HTML adaptor and interact
with the MBeans created by the management application.

For example, immediately after the manager creates an MBean, you could modify
its attributes and see this change reflected when the connector client access the
new values.

5. Press <Enter> in both windows to stop the agent and manager applications.

120 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

The Heartbeat Mechanism
The heartbeat mechanism monitors the connection between a manager and an agent
and automates the cleanup procedure when the connection is lost. This allows both
the manager and the agent to release resources that were allocated for maintaining
the connection.

The mechanism is entirely contained in the connector client and connector server
components, no additional objects are involved. In addition, connector clients send
notifications that the manager application can receive to be aware of changes in the
status of a connection.

All connector clients of the Java Dynamic Management Kit implement the
HeartBeatClientHandler interface to provide a heartbeat mechanism. This
means that agent-manager connections over RMI, HTTP, and HTTPS can be
monitored and controlled in the same way. A manager application could even use
the same notification handler for all connector clients where the heartbeat mechanism
is activated.

Configuring the Heartbeat
To monitor the connection, the connector client sends periodic heartbeats (ping
requests) to the connector server which acknowledges them by sending a reply (ping
responses). If either heartbeat goes missing, the components of the connector will
retry until either the connection is reestablished or the number of retries has been
exhausted.

In a connector client, the methods specified by the HeartBeatClientHandler
interface set the heartbeat period and the number of retries that will be attempted.
You should determine these parameters empirically to implement the desired
connection monitoring behavior, taking into account the network conditions and
topology between the hosts of your manager and agent applications.

In the following code example, the management application configures the heartbeat
mechanism before the connection to an agent is established.

CODE EXAMPLE 8–7 Configuring the Heartbeat in the Connector Client

// CREATE a new RMI connector client
//
echo("\tInstantiate the RMI connector client...");
connectorClient = new RmiConnectorClient ();

// SET heartbeat period to 1 sec. Default value is 10 secs

(continued)

Protocol Connectors 121

(Continuation)

//
echo("\tSet heartbeat period to 1 second...");
connectorClient. setHeartBeatPeriod (1000);

// SET heartbeat number of retries to 2. Default value is 6 times
//
echo("\tSet heartbeat number of retries to 2 times...");
connectorClient. setHeartBeatRetries (2);

Using the same methods, the heartbeat configuration may also be modified at any
time, even after the connection has been established. By default, the heartbeat
mechanism is activated in a connector with a 10 second heartbeat and 6 retries,
meaning that a connection which cannot be reestablished within a minute will be
assumed to be lost.

Setting the number of heartbeat retries to zero will cause a lost connection to be
signalled immediately after the heartbeat fails. Setting the heartbeat period to zero
will deactivate the mechanism and prevent any further connection failures from
being detected.

No specific configuration is necessary on the agent-side connector server: it
automatically responds to the heartbeat messages. These heartbeat messages contain
the current heartbeat settings from the connector client which also configure the
connector server. In this way, both client and server will apply the same retry policy,
and when the configuration is updated in the connector client, it is immediately
reflected in the connector server. The connector server may handle multiple
connections from different management application, each with its specific heartbeat
configuration.

The connector server will apply its retry policy when the next expected heartbeat
message is not received within the heartbeat period. From that moment, the
connector server will begin a timeout period which lasts 20% longer than the number
of retries times the heartbeat period. This corresponds to the time during which the
connector client will attempt to resend the heartbeat, with a safety margin to allow
for communication delays. If no further heartbeat is received in that timeout, the
connection is determined to be lost.

The heartbeat ping messages also contain a connection identifier so that connections
are not erroneously reestablished. If a connector server is stopped, thereby closing all
connections, and then restarted between two heartbeats or before the client’s timeout
period has elapsed the server will respond to heartbeats from a previous connection.
However, the connector client will detect that the identifier has changed and will
immediately declare that the connection is lost, regardless of the number of
remaining retries.

122 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

During the timeout period, the notification push mechanism in the connector server
will be suspended to avoid losing notifications (see “Notification Forwarding”).
Similarly, while the connector client is retrying the heartbeat, it must suspend the
notification pull mechanism if it is in effect.

When a connection is determined to be lost, both the connector client and server free
any resources that were allocated for maintaining the connection. For example, the
connector server will unregister all local listeners and delete the notification cache
needed to forward notifications. Both components also return to a coherent,
functional state, ready to establish or accept another connection.

The state of both components after a connection is lost is identical to the state which
is reached after the disconnect method of the connector client is invoked. In fact,
the disconnect method is invoked internally by the connector client when a
connection is determined to be lost, and the equivalent, internal method is called in
the connector server when its timeout elapses without recovering a heartbeat.

Receiving Heartbeat Notifications
The connector client also sends notifications which signal any changes in the state of
the connection. These notifications are instances of the HeartBeatNotification
class. The HeartBeatClientHandler interface includes methods specifically for
registering for heartbeat notifications. These methods are distinct from those of the
NotificationRegistration interface that a connector client implements for
transmitting agent-side notifications (see “Registering Manager-Side Listeners” on
page 146).

CODE EXAMPLE 8–8 Registering for Heartbeat Notifications

// Register this manager as a listener for heartbeat notifications
// (the filter and handback objects are not used in this example)
//
echo("\tAdd this manager as a listener for heartbeat notifications...");
connectorClient. addHeartBeatNotificationListener (this, null, null);

Instances of heartbeat notifications contain the connector address object from the
connection that generated the event. This allows the notification handler to listen to
any number of connectors and retrieve all relevant information about a specific
connection when it triggers a notification. The HeartBeatNotification class
defines constants to identify the possible notification type strings for heartbeat events:

� CONNECTION_ESTABLISHED– Emitted when the connect method succeeds.

� CONNECTION_RETRYING– After the heartbeat fails and if the number of retries is
not zero, this notification type is emitted once when the first retry is sent.

Protocol Connectors 123

� CONNECTION_REESTABLISHED– Emitted if the heartbeat recovers during one of
the retries.

� CONNECTION_LOST– Emitted after the heartbeat and all retries, if any, have failed
or when a heartbeat contains the wrong connection identifier, indicating that the
connector server has been stopped and restarted.

� CONNECTION_TERMINATED– Emitted when the disconnect method
successfully terminates a connection and frees all the resources it used; therefore,
this notification type is received after both a user–terminated connection and after
a connection is lost.

Once they are established, connections can go through any number of
retrying-reestablished cycles, and then be terminated by the user or determined to be
lost and terminated automatically. When the heartbeat mechanism is deactivated by
setting the heartbeat period to zero, only heartbeat notifications for normally
established and normally terminated connections will continue to be sent. In that
case, connections may be lost but they will not be detected nor signaled by a
notification.

The following diagram shows the possible sequence of heartbeat notifications during
a connection. Retries are enabled when the getHeartBeatRetries method returns
an integer greater than zero.

CONNECTION_
ESTABLISHED

retries
disabled

retries
enabled

heartbeat
lost

disconnect()

CONNECTION_
REESTABLISHED

CONNECTION_
RETRYING

CONNECTION_
LOST

CONNECTION_
TERMINATED

Figure 8–1 Sequencing of Heartbeat Notifications

124 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

The following example shows the source code for the notification handler method in
our manager class. The handler prints out the notification type and the RMI address
associated with the connector that generated the notification:

CODE EXAMPLE 8–9 Heartbeat Notification Handler

public void handleNotification(Notification notification, Object handback){

echo("\n>>> Notification has been received...");
echo("\tNotification type = " + notification.getType());

if (notification instanceof HeartBeatNotification) {
ConnectorAddress notif_address =

((HeartBeatNotification)notification).getConnectorAddress();

if (notif_address instanceof RmiConnectorAddress) {
RmiConnectorAddress rmi_address =

(RmiConnectorAddress) notif_address;

echo("\tNotification connector address:");
echo("\t\tTYPE = " + rmi_address.getConnectorType());
echo("\t\tHOST = " + rmi_address.getHost());
echo("\t\tPORT = " + rmi_address.getPort());
echo("\t\tSERVER = " + rmi_address.getName());

}
}

}

In the agent application, the connector server does not emit any notifications about
the state of its connections. The HTTP protocol-based connectors do provide a count
of active clients, but there is no direct access to heartbeat information in an agent’s
connector servers.

Running the Heartbeat Example
The examplesDir/HeartBeat directory contains all of the files for the Agent and
Client applications which demonstrate the heartbeat mechanism through an RMI
connector.

Compile all files in this directory with the javac command. For example, on the
Solaris platform with the Korn shell, you would type:

Protocol Connectors 125

$ cd examplesDir/HeartBeat/
$ javac -classpath classpath *.java

To demonstrate the various communication scenarios, we run the example three
times: once to see a normal termination, once to see how the manager reacts to a lost
connection, and once to see how the agent reacts to a lost connection.

Normal Termination

1. Launch the agent on another host or in another terminal window with the
following command:

$ java -classpath classpath Agent

The agent only creates the RMI connector server to which the client application
will establish a connection, and then it waits for management operations.

2. Wait for the agent to be completely initialized, then launch the manager with
the following command, where hostname is the name of the machine running
the agent. The RMI connector in this example uses port 1099 by default. If you
launched the agent on the same machine, you can omit the hostname and the
port number:

$ java -classpath classpath Client hostname 1099

The client application creates the RMI connector client, configures its heartbeat,
and registers a notification listener, as seen in the code examples. When the
connection is established, the listener outputs the notification information in the
terminal window.

3. Press <Enter> in the manager window to call the disconnect method on the
connector client and stop the Client application.

In the terminal window, the heartbeat notification listener outputs the information
for the normal connection termination before the application ends.

4. Leave the agent application running for the next scenario.

Connector Client Reaction

1. Launch the Client application again with the same command as before:

126 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

$ java -classpath classpath Client hostname 1099

2. When the connection is established, type <Control-C> in the agent’s window
to stop the connector server and the agent application. This simulates a broken
communication channel as seen by the connector client.

Less than a second later, when the next heartbeat fails, the heartbeat retrying
notification is displayed in the manager’s terminal window. Two seconds later,
after both retries have failed, the lost connection and terminated connection
notifications are displayed.

3. Press <Enter> in the manager window to exit the Client application.

Connector Server Reaction

1. Launch the agent in debug mode on another host or in another terminal
window with the following command:

$ java -classpath classpath -DLEVEL_DEBUG Agent

2. Wait for the agent to be completely initialized, then launch the Client
application again with the same command as before:

$ java -classpath classpath Client hostname 1099

When the connection is established, you should see the periodic heartbeat
messages in the debug output of the agent.

3. This time, type <Control-C> in the client’s window to stop the connector
client and the manager application. This simulates a broken communication
channel as seen by the connector server in the agent.

After the heartbeat retry timeout elapses in the agent, you should see the lost
connection message in the heartbeat debugging output of the agent.

4. Type <Control-C> in the agent window to stop the agent application and end
the example.

Protocol Connectors 127

128 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

CHAPTER 9

MBean Proxies

In the previous topic, we saw how to access a remote agent and interact with its
MBeans through connectors. The Java Dynamic Management Kit provides additional
functionality which makes the remoteness of an agent and the communication layer
even more transparent: proxy objects for registered MBeans.

A proxy is an object instance which represents an MBean, which mirrors the methods
of the MBean, and whose methods are invoked directly by the caller. The proxy
transmits requests to the MBean, through the MBean server, possibly through a
connector, and returns any responses to the caller. Proxy objects can also register
listeners for notifications that the MBean may emit.

The advantage of a proxy object is that it allows applications to have an instance of
an object which represents an MBean, instead of accessing the MBean’s management
interface through methods of the MBean server or through a connector client. This
can simplify both the conceptual design of a management system and the source
code needed to implement that system.

Note - While the concept of proxy objects remains unchanged from previous
versions of the Java Dynamic Management Kit, the binding mechanisms have been
modified in version 4.2.

The old proxy creation and binding methods were not thread-safe and are now
deprecated. Callers are now responsible for instantiating and binding the proxy
objects that they wish to use; see “The Proxy Interface” on page 132 for details.

In addition, the new design allows proxies to be bound on both the agent and
manager sides for a more symmetric usage.

The code samples in this topic are taken from the files in the SimpleClients
example directory located in the main examplesDir (see “Directories and Classpath”
in the preface).

Contents:

129

� “The Proxy Mechanism” on page 130 describes how proxy objects are
implemented and the interfaces on which they rely.

� “Standard MBean Proxies” on page 133 shows how to generate proxy objects for
standard MBeans and run the corresponding example.

� “Generic Proxies” on page 138 describes the proxy objects for dynamic MBeans
and shows how to run the corresponding example.

� Finally, “Proxies for Java DMK Components” on page 142 explains how to use the
pre-generated proxy objects provided with the product.

The Proxy Mechanism
Proxy objects simplify the interactions between an application and the MBeans it
wants to manage. The purpose of a proxy is to invoke the methods that access the
attributes and operations of an MBean, through its MBean server. These method calls
can be rather tedious to construct at every invocation, so the proxy performs this
task for the caller.

For example to invoke an operation on an MBean, an application must call the
invoke method of the MBean server and provide the MBean’s object name, the
operation name string, an array of parameter objects, and a signature array. The proxy
is a class which codes this whole sequence, meaning that the application can call the
reset method directly on the proxy instance. And because the code of a proxy class
is deterministic, it can be generated automatically using the proxygen tool.

Conceptually, a proxy instance makes the MBean server and a protocol connector
completely transparent. Except for MBean registration and connector connection
phases, all management requests on MBeans can be fully served through proxies,
with identical results. However, all functionality of the Java Dynamic Management
Kit is available without using proxies, so their usage is never mandatory.

By definition, a proxy object has the same interface as its MBean: the proxy can be
manipulated as if it were the MBean instance, except that all requests are transmitted
through the MBean server to the actual MBean instance for processing. A standard
MBean proxy exposes getters, setters, and operation methods. It may also register
listeners for all notifications broadcast by their corresponding MBean. A dynamic
MBean proxy, also known as a generic proxy, exposes generic methods which are
identical to those of the DynamicMBean interface.

In addition, standard proxies are commonly called proxy MBeans, because they are
themselves MBeans. They are generated with an MBean interface, and can therefore
be registered as standard MBeans in an MBean server. This feature allows one agent
to expose resources whose MBeans are actually located in another agent. An
equivalent functionality is covered in the topic of “Cascading Agents” in the lesson
on “Agent Services”.

130 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

Local and Remote Proxies
Proxies may also be bound to objects called handlers which necessarily implement the
ProxyHandler interface. The methods of this interface are a subset of MBean server
methods, as listed in Table 8–1 (see “The RemoteMBeanServer Interface” on page
113). These are the only methods that a proxy needs to in order to access its
corresponding MBean and fulfill all management requests.

In the Java Dynamic Management Kit, the RemoteMBeanServer interface extends
the ProxyHandler interface, meaning that proxy objects may be bound to any of
the connector clients. These are called remote proxies, because they are instantiated in
an application which is distant from the agent and its MBean instances.

As a new feature in version 4.2 of the product, the implementation of the
MBeanServer interface also implements the ProxyHandler interface, so that proxy
objects may be bound to the MBean server itself. These are called local proxies
because they are located in the same application as their corresponding MBeans.
Local proxies help preserve the management architecture by providing the simplicity
of performing direct method calls on MBeans, while still routing all operations
through the MBean server.

The symmetry of remote and local proxies complements the symmetry that allows
management components to execute either in an agent or in a management
application. Provided that all proxy classes are available, management components
which use MBean proxies may be instantiated in an agent and rely on the MBean
server or may be instantiated in a remote manager where they interact with a
connector client. Except for communication delays, the results of all operations will
be identical, and the same notifications will be received, whether obtained through a
local proxy or a remote proxy (see “Adding a Listener Through the Connector” on
page 148).

The following diagram shows local proxies which are instantiated in an agent and
bound to the MBean server, and the same classes instantiated as remote proxies in a
management application and bound to the connector client. Management components
located in either the agent or management application can interact with the local or
remote proxies, respectively. Management components may also access the MBean
server or the connector client directly, regardless of whether proxies are being used.

MBean Proxies 131

Management Components

MBean Server

Connector
Server

Connector Client
(Remote MBean Server)

1S

2S

3D

1S 1S

2G
2G

3G

3G

Agent-Side Java VM Manager-Side Java VM

S Standard
MBean

D Dynamic
MBean

S Standard
Proxy

G Generic
Proxy

M
an

ag
em

en
t C

om
po

ne
nt

s

[P
ro

xy
H

an
dl

er
]

[P
ro

xy
H

an
dl

er
]

Figure 9–1 Interacting with Local and Remote Proxies

This diagram shows all possible relations between management components, proxies
and their MBeans. Standard proxies can only represent a specific standard MBean,
and generic proxies may represent any standard or dynamic MBean. In a typical
management scenario, the management components will be located in only one
application, and for simplicity, they will rarely instantiate more than one type of
proxy.

Throughout the rest of this topic, we do not distinguish between local and remote
proxies. A proxy object, either standard or generic, is used in exactly the same way
regardless of whether it is instantiated locally or remotely.

The Proxy Interface
In addition to the methods for accessing the attributes and operations of its MBean,
all proxies implement the methods of the Proxy interface. This interface contains the
methods for binding the proxy instance to the proxy handler which can fulfill its
requests. The setServer method binds the proxy to the handler object. Setting the
server to null effectively unbinds the proxy object. The result of the getServer
method can indicate whether or not a proxy is bound and if so, it will return a
reference to the handler object.

Because of the new design of the proxy mechanism, many methods in the Proxy
interface are deprecated as of version 4.2 of the product. The functionality of the

132 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

deprecated methods is preserved in the three non-deprecated methods, listed in the
following table. See the Javadoc API of the Proxy interface for details.

TABLE 9–1 Non-Deprecated Methods of the Proxy Interface

ObjectInstance getMBeanObjectInstance ()

ProxyHandler getServer ()

void setServer (ProxyHandler server)

Standard proxies may also implement the NotificationBroadcasterProxy
interface if their corresponding MBean is a notification proxy. This interface contains
the same addNotificationListener and removeNotificationListener
methods that the MBean implements from the NotificationBroadcaster
interface.

Applications that use proxies therefore have two ways to detect notification
broadcasters. The first way relies on the implementation of the
NotificationBroadcasterProxy interface which can be detected in the proxy’s
class inheritance. The second and more standard way is to look at the notifications
listed in the MBean’s metadata obtained by the getMBeanInfo method either from
the server or through the proxy.

Generic proxies do not implement the NotificationBroadcasterProxy
interface, so callers must use the MBean metadata for detecting broadcasters. In
addition, generic proxies cannot register notification listeners, callers must do this
directly through the server.

Standard MBean Proxies
A standard MBean proxy class is specific to its corresponding MBean class.
Furthermore, a proxy instance is always bound to the same MBean instance, as
determined by the object name passed to the proxy’s constructor. Binding the proxy
to its ProxyHandler object can be done through a constructor or set dynamically
through the methods of the Proxy interface.

The methods of a standard proxy have exactly the same signature as those of the
corresponding standard MBean. Their only task is to construct the complete
management request, which necessarily includes the object name, and to transmit it
to the MBean server or connector client. They also return any result directly to the
caller.

Because the contents of all proxy methods are determined by the management
interface of the MBean, the proxy classes can be generated automatically.

MBean Proxies 133

Generating Proxies for Standard MBeans
The proxygen tool provided with the Java Dynamic Management Kit takes the class
files of an MBean and its MBean interface, and generates the Java source code files of
its corresponding proxy object and proxy MBean interface. You then need to compile
the two proxy files with the javac command and include the resulting class files in
your application’s classpath.

The proxygen command is fully documented in the Java Dynamic Management Kit
4.2 Tools Reference guide, and in the Javadoc API for the ProxyGen class. Its
command line options allow you to generate read-only proxies where all setter
methods are suppressed and to define a package name for your proxies. For the
purpose of the examples, we generate the default proxies without any of these
options: see the section on “Running the Standard Proxy Example” on page 137.

The following code sample shows part of the code generated for the
SimpleStandard MBean used in the SimpleClients examples.

CODE EXAMPLE 9–1 Code Generated for the SimpleStandardProxy Class

public java.lang.String getState ()
throws InstanceNotFoundException, AttributeNotFoundException,
ReflectionException, MBeanException {

return ((java.lang.String) server.getAttribute (
objectInstance.getObjectName(), "State"));

}

public void setState (java.lang.String value)
throws InstanceNotFoundException, ReflectionException,
AttributeNotFoundException,InvalidAttributeValueException,
MBeanException {

server.setAttribute (objectInstance.getObjectName(),
new Attribute("State",value));

}

public void reset ()
throws InstanceNotFoundException, ReflectionException,
MBeanException {

Object result;
result= server.invoke (objectInstance.getObjectName(), "reset" ,

null, null);
}

You are free to modify the generated code if you wish to customize the behavior of
your proxies. However, customization is not recommended if your MBean interfaces

134 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

are still evolving, because all modifications will need to be redone every time the
proxies are generated.

Using Standard MBean Proxies
Once the proxies are generated and available in your application’s classpath, their
usage is straightforward. For each of the proxy objects it wishes to use, the
application needs to instantiate its proxy class and then bind it to a ProxyHandler
object. The application is responsible for creating and binding all of the proxies that
it wishes to use, and it must unbind and free them when they are no longer needed.

Note - In previous versions of the Java Dynamic Management Kit, the connector
client handled the creation of proxy instances and insured that only one proxy object
could exist for each MBean. As of this version (4.2) of the product, connector clients
no longer instantiate nor control proxy objects. The corresponding methods of the
RemoteMBeanServer interface are now deprecated.

Similarly, the previous binding methods in the Proxy interface are deprecated in
favor of the new setServer and getServer methods. This change is necessary so
that proxies may be bound to any ProxyHandler object, to allow for both local and
remote proxies.

All parameters for binding the proxy can be given in its constructor, which makes it
very simple to instantiate and bind a proxy in one step.

CODE EXAMPLE 9–2 Instantiating and Binding a Proxy In One Step

String mbeanName = "SimpleStandard";

// build the MBean ObjectName instance
ObjectName mbeanObjectName = null;
String domain = connectorClient.getDefaultDomain();
mbeanObjectName = new ObjectName(domain + ":type=" + mbeanName);

// create the MBean in the MBeanServer of the agent
String mbeanClassName = mbeanName;
ObjectInstance mbeanObjectInstance =

connectorClient.createMBean(mbeanClassName, mbeanObjectName);

// create and bind a proxy MBean on the client side
// that corresponds to the MBean just created in the agent
Proxy mbeanProxy = new SimpleStandardProxy(

mbeanObjectInstance, connectorClient) ;

echo("\tPROXY CLASS NAME = " +
mbeanProxy.getClass().getName());

echo("\tMBEAN OBJECT NAME = " +
mbeanProxy.getMBeanObjectInstance ().getObjectName());

(continued)

MBean Proxies 135

(Continuation)

echo("\tCONNECTOR CLIENT = " +
mbeanProxy.getServer ().getClass().getName());

If the class name of your proxy is not known at compile time, you will have to
instantiate its class dynamically. In the following code, we obtain the proxy class
name which corresponds to an MBean, and we call its first constructor. This must be
the constructor which takes an ObjectInstance identifying the MBean, and we
must dynamically build the call to this constructor. We then call the setServer
method to bind the new proxy instance.

CODE EXAMPLE 9–3 Instantiating and Binding a Proxy Class Dynamically

// Get the class name of the MBean’s proxy
Class proxyClass = Class.forName(

connectorClient.getClassForProxyMBean (mbeanObjectInstance));

// Find the constructor with takes an ObjectInstance parameter
Class[] signature = new Class[1];
signature[0] = Class.forName("javax.management.ObjectInstance");
Constructor proxyConstr = proxyClass.getConstructor (signature);

// Call the constructor to instantiate the proxy object
Object[] initargs = new Object[1];
initargs[0] = mbeanObjectInstance;
Proxy proxy2 = (Proxy) proxyConstr.newInstance(initargs) ;

// Bind the proxy
proxy2.setServer(connectorClient) ;

echo("\tPROXY CLASS NAME = " +
proxy2.getClass().getName());

echo("\tMBEAN OBJECT NAME = " +
proxy2.getMBeanObjectInstance ().getObjectName());

echo("\tCONNECTOR CLIENT = " +
proxy2.getServer ().getClass().getName());

// We no longer need proxy2, so we unbind it
proxy2.setServer(null) ;

Once a proxy is bound, you can access the attributes and operations of its MBean
through direct calls to the proxy object, as shown in the following example.

136 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

CODE EXAMPLE 9–4 Accessing a Standard MBean Through Its Proxy

try {
// cast mbeanProxy to SimpleStandardProxy, so we can
// call its MBean specific methods
SimpleStandardProxy simpleStandardProxy =

(SimpleStandardProxy) mbeanProxy;

[...]

// Change the "State" attribute
simpleStandardProxy.setState ("new state from client");

// Get and display the new attribute values
echo("\tState = \"" + simpleStandardProxy.getState () + "\"");
echo("\tNbChanges = " + simpleStandardProxy.getNbChanges ());

// Invoke the "reset" operation
simpleStandardProxy.reset() ;
[...]

// We are done with the MBean, so we
// unbind the proxy and unregister the MBean
simpleStandardProxy.setServer(null) ;
connectorClient.unregisterMBean(mbeanObjectName);

} catch (Exception e) {
echo("\t!!! Error accessing proxy for " +

mbeanProxy.getMBeanObjectInstance().getObjectName());
e.printStackTrace();

}

Running the Standard Proxy Example
The examplesDir/SimpleClients directory contains all of the files for the
ClientMBeanProxy application which demonstrates the use of standard MBean
proxies.

If you haven’t done so already, compile all files in this directory with the javac
command. For example, on the Solaris platform with the Korn shell, you would type:

$ cd examplesDir/SimpleClients/
$ javac -classpath classpath *.java

Before running the example, you must also generate the proxy MBeans classes and
compile them as well. From the same directory as above, type the following
commands:

MBean Proxies 137

$ installDir/SUNWjdmk/jdmk4.2/ JDKversion/proxygen SimpleStandard
$ javac -classpath classpath SimpleStandardProxy.java

Instructions

1. Launch the base agent in a terminal window with the following command:

$ java -classpath classpath BaseAgent

The agent creates the RMI connector server to which the client application will
establish a connection, and then it waits for management operations.

2. Wait for the agent to be completely initialized, then, in another window on the
same host, launch the management application with the following command:

$ java -classpath classpath ClientMBeanProxy

3. Press <Enter> in the manager window to step through the example.

As seen in the code examples, the client application instantiates the proxy objects
to access the MBean it has created in the base agent.

4. Press <Enter> one last time to exit the manager application, but leave the base
agent running for the next example.

Generic Proxies
Because dynamic MBeans only expose their management at runtime, it is impossible
to generate a specific proxy object for them. Instead, we use the GenericProxy
object which can be bound to any dynamic MBean, and whose generic methods take
the name of the attribute or operation being accessed. Therefore, to access a dynamic
MBean through generic proxy you invoke exactly the same methods as those of the
DynamicMBean interface.

Just as the MBean server’s generic methods can access both standard and dynamic
MBeans, generic proxies can also be bound to standard MBeans. You lose the
specificity and simplicity of a standard proxy, but a generic proxy is always available
in any Java Dynamic Management application, and it never needs regenerating.

138 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

The management application in this example shows how generic proxies can be used
to access both standard and dynamic MBeans. The application contains the following
subroutine which takes the class name of an MBean, creates that MBean in the agent,
and instantiates a generic proxy to access the MBean.

In fact, the subroutine instantiates two generic proxies for the MBean, one using the
GenericProxy class constructor which also binds the proxy, the other bound in a
second, separate call to its setServer method. This demonstrates that it is possible
to have two distinct proxy instances coexisting simultaneously for the same MBean.

CODE EXAMPLE 9–5

private void doGenericProxyExample(String mbeanName) {

try {
// build the MBean ObjectName instance
ObjectName mbeanObjectName = null;
String domain = connectorClient.getDefaultDomain();
mbeanObjectName = new ObjectName(domain +

":type=" + mbeanName);

// create the MBean in the MBeanServer of the agent
String mbeanClassName = mbeanName;
ObjectInstance mbeanObjectInstance =

connectorClient.createMBean(mbeanClassName, mbeanObjectName);

// create and bind a generic proxy instance for the MBean
Proxy proxy = new GenericProxy(

mbeanObjectInstance, connectorClient) ;

echo("\tPROXY CLASS NAME = " +
proxy.getClass().getName());

echo("\tMBEAN OBJECT NAME = " +
proxy.getMBeanObjectInstance() .getObjectName());

echo("\tCONNECTOR CLIENT = " +
proxy.getServer().getClass().getName());

// An alternate way is to first instantiate the generic proxy,
// and then to bind it to the connector client:
Proxy proxy2 = new GenericProxy(mbeanObjectInstance) ;
proxy2.setServer(connectorClient) ;

echo("\tPROXY CLASS NAME = " +
proxy2.getClass().getName());

echo("\tMBEAN OBJECT NAME = " +
proxy2.getMBeanObjectInstance().getObjectName());

echo("\tCONNECTOR CLIENT = " +
proxy2.getServer().getClass().getName());

// we no longer need proxy2, so we unbind it
proxy2.setServer(null) ;

[...] // Accessing the MBean through its generic proxy (see below)

(continued)

MBean Proxies 139

(Continuation)

// When done with the MBean, we unbind the proxy
// and unregister the MBean
//
proxy.setServer(null);
connectorClient.unregisterMBean(mbeanObjectName);

} catch (Exception e) {
echo("\t!!! Error instantiating or binding proxy for " +

mbeanName);
e.printStackTrace();

}
}

The standard and dynamic MBean classes used in this example have exactly the same
management interface, and therefore, we can use the same code to access both of
them. The manager application does this by calling the above subroutine twice, once
with the class name of the standard MBean, once with that of the dynamic MBean:

manager.doGenericProxyExample("SimpleStandard");
manager.doGenericProxyExample("SimpleDynamic");

Because the two MBeans have the same behavior, they will produce the same results
when accessed through their proxy. The only difference is that the dynamic MBean
can expose a description of its management interface in its MBeanInfo object. As
expected, accessing a standard MBean through a generic proxy also produces the
same result as when it is accessed through a standard proxy (compare the following
with Code Example 9–4).

CODE EXAMPLE 9–6 Accessing an MBean Through its Generic Proxy

try {

// cast Proxy to GenericProxy
GenericProxy genericProxy = (GenericProxy) proxy;

// Get the MBean’s metadata through the proxy
MBeanInfo info = genericProxy.getMBeanInfo() ;

// display content of the MBeanInfo object
echo("\nCLASSNAME: \t"+ info.getClassName());
echo("\nDESCRIPTION: \t"+ info.getDescription());
[...] // extract all attribute and operation info

(continued)

140 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

(Continuation)

// Change the "State" attribute
Attribute stateAttr = new Attribute("State", "new state from client") ;
genericProxy.setAttribute(stateAttr) ;

// Get and display the new attribute values
String state =

(String) genericProxy.getAttribute("State") ;
Integer nbChanges =

(Integer) genericProxy.getAttribute("NbChanges") ;
echo("\tState = \"" + state + "\"");
echo("\tNbChanges = " + nbChanges);

// Invoke the "reset" operation
Object[] params = new Object[0] ;
String[] signature = new String[0] ;
genericProxy.invoke("reset", params, signature) ;

} catch (Exception e) {
echo("\t!!! Error accessing proxy for " +

proxy.getMBeanObjectInstance().getObjectName());
e.printStackTrace();

}

The above code listing shows how the generic methods are called with the names of
attributes and operations, and how required parameters can be constructed.

Running the Generic Proxy Example
The ClientGenericProxy application, also in the examplesDir/SimpleClients
directory, demonstrates the use of generic proxies.

If you haven’t done so already, compile all files in this directory with the javac
command. For example, on the Solaris platform with the Korn shell, you would type:

$ cd examplesDir/SimpleClients/
$ javac -classpath classpath *.java

Because generic proxies do not need to be generated, this example does not need the
proxygen tool. The GenericProxy class is available in the usual classpath for the
product’s runtime libraries.

MBean Proxies 141

Instructions

1. If it is not already running on your host, launch the base agent in a terminal
window with the following command:

$ java -classpath classpath BaseAgent

The agent creates the RMI connector server to which the client application will
establish a connection, and then it waits for management operations.

2. Wait for the agent to be completely initialized, then launch the management
application in another window on the same host:

$ java -classpath classpath ClientGenericProxy

3. Press <Enter> in the manager window to step through the example.

As seen in the code examples, the client application instantiates generic proxy
objects to access both a standard and dynamic MBean that it creates in the base
agent. The only difference between the two is the user-provided information
available in the dynamic MBean’s metadata.

4. Press <Enter> in both windows to exit the base agent and manager
applications.

Proxies for Java DMK Components
Most components of the Java Dynamic Management Kit product are MBeans and can
therefore also be managed through local or remote proxies. Nearly all are standard
MBeans, so their corresponding standard proxies are provided with the product. The
Java source code for all component proxy classes can be found in the
JdmkProxyMBeans directory located in the main examplesDir (see “Directories and
Classpath” in the preface).

Note - The HTML protocol adaptor is implemented as a dynamic MBean and
therefore cannot have a standard proxy. You must use a generic proxy if you wish to
access the HTML adaptor through a proxy object.

142 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

Of course, all other Java DMK MBean components may also be accessed through
generic proxies, although their standard proxies provide more abstraction of the
MBean server and a greater simplification of your application’s code.

The proxy classes have been generated by the proxygen tool with full read-write
access of all attributes. See the chapter on the proxygen tool in the Java Dynamic
Management Kit 4.2 Tools Reference guide.

Proxy Packages
Like all other classes, proxies may contain a package statement. The package for a
component proxy class depends upon the package of the component:

� The proxy classes for Java DMK components in the javax.management package
and its javax.management.* subpackages do not have a package statement.

Their class files may be located in any directory which can then be added to your
application’s classpath.

� The proxy classes for all other components belong to the same class as the
component itself. For example, the proxy classes for the RmiConnectorServer
component are declared in the com.sun.jdmk.comm package.

Their class files should be contained in the corresponding file hierarchy, whose
root can be added to your application’s classpath. Therefore, the class files of the
RmiConnectorServerProxy should be located in a directory called packageRoot/
com/sun/jdmk/comm/ .

Compiling the Proxy Classes
To use the standard proxies for the product components, you must first compile them
with the javac command and then place the classes you need in the classpath of
your agent or management application. If you compile the proxy classes individually,
be sure to compile the proxy’s MBean interface before its corresponding proxy class.

Because of the package statement in proxy classes, we recommend using the
following commands:

$ cd examplesDir/JdmkProxyMBeans/
$ javac -d packageRoot -classpath classpath *ProxyMBean.java *Proxy.java

In this command, the classpath must contain the current directory and the classpath
of the Java DMK runtime libraries (usually in installDir/SUNWjdmk/jdmk4.2/
JDKversion/lib/jdmkrt.jar). The -d option of the javac compiler creates the
necessary directories in the given packageRoot for each class’s package. The

MBean Proxies 143

packageRoot is usually the current directory (.), or you may directly specify a target
directory in your application’s classpath.

144 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

CHAPTER 10

Notification Forwarding

In this topic, we expand the notification mechanism to the manager side, looking at
how remote applications receive notifications. Notifications are forwarded to a
manager through existing structures of the Java Dynamic Management architecture:
MBeans, the MBean server, and the connectors. Notably, this implies that the
notification mechanism is designed to forward only notifications from registered
MBeans on the agent side to proper listeners on the manager side.

As with the other management operations, listening for notifications is nearly as
simple to do in a management application as it is to do locally in an agent. The
interface of the connector client hides all communication issues, so that listeners may
be registered through the connector or directly with existing proxy MBeans.

The code samples in this topic are taken from the files in the Notification
example directory located in the main examplesDir (see “Directories and Classpath”
in the preface).

Contents:

� “Registering Manager-Side Listeners” on page 146 shows how similar the agent
side and manager side notification mechanisms are.

� “Push Mode” on page 150 presents the simplest forwarding policy whereby the
agent sends notifications to the manager as they occur.

� “Pull Mode” on page 152 presents an advanced forwarding policy which buffers
notifications in the agent until the manager requests them.

� “Running the Notification Forwarding Example” on page 157 demonstrates the
two forwarding mechanisms and how to set the parameters for the two strategies.

145

Registering Manager-Side Listeners
Like the other structures of the Java Dynamic Management Kit, the notification
mechanism is designed to be homogeneous from the agent to the manager side. For
this reason, notification objects and listener interfaces in manager applications are
identical to those on the agent side.

The symmetry of the interfaces also means that code for listeners can easily be reused
without modification in either agent or manager applications. Listeners in managers
are similar to those in agents, and they could even be identical objects in some
management solutions. However, chances are that manager-side listeners will want
to receive different notifications and take different actions than their agent-side peers.

The Agent-Side Broadcaster
The notification broadcasters are MBeans registered in an agent’s MBean server to
which our management application will need to connect. Only notifications sent by
registered MBeans can be forwarded to manager applications, and a manager-side
listener can receive them only by registering through a connector client or a proxy
object.

Other notification broadcasters may exist independently in the manager application,
but listeners will need to register directly with these local broadcasters. Nothing
prevents a listener object from registering with both a connector client or proxy for
remote notifications and with a local broadcaster.

The code example below shows how the sample NotificationEmitter MBean
will send notifications (the code for its MBean interface has been omitted). It extends
the NotificationBroadcasterSupport class to reuse all of its listener
registration facilities. It only contains one operation which can be called by our
manager to trigger any number of notifications.

CODE EXAMPLE 10–1 The Agent-Side Broadcaster MBean

import javax.management.MBeanNotificationInfo;
import javax.management.NotificationBroadcasterSupport;
import javax.management.Notification;

public class NotificationEmitter
extends NotificationBroadcasterSupport
implements NotificationEmitterMBean {

// Just to make the inheritance explicit
public NotificationEmitter() {

super();

(continued)

146 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

(Continuation)

}

// Provide details about the notification type and class that is sent
public MBeanNotificationInfo[] getNotificationInfo () {

MBeanNotificationInfo[] ntfInfoArray = new MBeanNotificationInfo[1];

String[] ntfTypes = new String[1];
ntfTypes[0] = myType;

ntfInfoArray[0] = new MBeanNotificationInfo(ntfTypes,
"javax.management.Notification",
"Notifications sent by the NotificationEmitter");

return ntfInfoArray;
}

// The only operation: sends any number of notifications
// whose sequence numbers go from 1 to "nb"
public void sendNotifications (Integer nb) {

for (int i=1; i<=nb.intValue(); i++) {
sendNotification(new Notification(myType , this, i));

}
}
private String myType = "notification.my_notification" ;

}

Our MBean invents a notification type string and exposes this information through
the getNotificationInfo method. To demonstrate the forwarding mechanism,
we are more interested in the sequence number: this will allow us to identify the
notifications as they are received in the manager.

This MBean demonstrates that the broadcaster has total control over the contents of
its notifications. Constructors for the Notification object allow you to specify all
of the fields, even ones such as the time stamp. In this example, we control the
sequence number, and our chosen policy is to reset the sequence number to 1 with
every call to the operation. Of course, you are free to choose the notification contents,
including the time-stamping and sequence-numbering policies that fit your
management solution.

Note - Due to possible loss in the communication layer and the inherent
indeterminism of thread execution, the notification model does not guarantee that
remote notifications will be received nor that their sequence will be preserved. If
notification order is critical to your application, your broadcaster should set the
sequence numbers appropriately, and your listeners should sort the received
notifications.

Notification Forwarding 147

The Manager-Side Listener
In our simple example, the Client class itself is the listener object. Usually, a
listener would be a separate instance of a special listener class and depending on the
complexity of the manager, there might be several classes of listeners, each for a
specialized category of notifications.

CODE EXAMPLE 10–2 The Manger-Side Listener

public class Client implements NotificationListener {

[...] // Constructor omitted

// Implementation of the NotificationListener interface
//
public void handleNotification (Notification notif, Object handback) {

System.out.println("Client: received a notification of type "
+ notif.getType () + "\nwith the sequence number "
+ notif.getSequenceNumber ());

}
[...] // main omitted

}

As explained in the notification mechanism “Overview” on page 94, a listener on the
agent side is typically an MBean which receives notifications about the status of
other MBeans and then processes or exposes this information in some manner. Only
if a key value or some management event is observed will this information be passed
to a listening manager, probably by sending a different notification.

In this manner, the notification model reduces the communication that is necessary
between agents and managers. Your management solution determines how much
decisional power resides in the agent and when situations are escalated. These
parameters will affect your design of the notification flow between broadcasters,
listeners, agents, and managers.

The usual role of a manager-side listener is to process the important information in a
notification and take the appropriate action. As we shall see, our notification example
is much simpler. Our goal is not to construct a real-world example, but to
demonstrate the mechanisms that are built into the Java Dynamic Management Kit.

Adding a Listener Through the Connector
By extension of the ClientNotificationHandler interface, the
RemoteMBeanServer interface exposes methods for adding and removing listeners.
The signatures of these methods are identical to those of the agent-side

148 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

MBeanServer interface. The only difference is that they are implemented in the
connector client classes which make the communication protocol transparent.

Our manager application uses the RMI protocol connector. After creating the
connector client object, we use the methods of its RemoteMBeanServer interface to
create our broadcaster MBean and then register as a listener to this MBean’s
notifications.

CODE EXAMPLE 10–3 Adding a Listener through the Connector

// Use RMI connector on port 8086 to communicate with the agent
System.out.println(">>> Create an RMI connector client");
RmiConnectorClient connectorClient = new RmiConnectorClient();

// agentHost was read from the command line or defaulted to localhost
RmiConnectorAddress rmiAddress = new RmiConnectorAddress(

agentHost, 8086, com.sun.jdmk.ServiceName.RMI_CONNECTOR_SERVER);
connectorClient.connect(rmiAddress) ;

// Wait 1 second for connecting
Thread.sleep(1000);

// Create the MBean in the agent
ObjectName mbean = new ObjectName ("Default:name=NotificationEmitter");
connectorClient.createMBean("NotificationEmitter" , mbean);

// Now add ourselves as the listener (no filter, no handback)
connectorClient.addNotificationListener (mbean, this, null, null);

You can see how similar this code is to the agent application by comparing it with
the code example for “Adding a Listener Through the MBean Server” on page 98.

If you have generated and instantiated proxy MBeans for your broadcaster MBeans,
you can also register through the addNotificationListener method that they
expose. When generating proxy classes with the proxygen tool, MBeans which
implement the NotificationBroadcaster interface will have proxy classes which
implement the NotificationBroadcasterProxy interface.

Again, the method signatures defined in a proxy MBean are identical to those of the
MBeanServer or NotificationBroadcasterClient interfaces for adding or
removing listeners: see the code example for “Adding a Listener Directly to an
MBean” on page 103. Listeners added through a proxy MBean will received the same
notifications as listeners added to the same MBean through the interface of the
connector client.

Notification Forwarding 149

Note - Following the Java programming model, the connector client limits its
resource usage by only running one thread to notify all of its listeners. This thread
calls all of the handler callback methods that have been added through this
connector. Therefore, the callbacks should return quickly and use safe programming
to avoid crashing the connector client.

Push Mode
Because the broadcaster and the listener are running on separate machines or in
separate virtual machines on the same host, their notifications must be forwarded
from one to the other. The mechanism for doing this is completely transparent to the
users of the Java Dynamic Management Kit components.

Briefly, the connector client instructs the connector server to add its own agent-side
listener to the designated broadcaster using the methods of the MBeans server. Then,
the connector server implements a buffering cache mechanism to centralize
notifications before serializing them to be forwarded to the connector client. By
design, it is the connector client in the manager application that controls the
buffering and forwarding mechanism for a connection.

The following diagram summarizes the notification forwarding mechanism and its
actors. In particular, it shows how the connector server uses internal listener
instances to register locally for MBean notifications, even if this mechanism is
completely hidden from the user. The path of listener registration through calls to the
addNotificationListener method of the various interfaces is paralleled by the
propagation of notifications through calls to the listeners’ handleNotification
method.

150 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

L

L1

L2

MBean Server Connector
Server

Connector
Client

Agent-Side Java VM Manager-Side Java VM

M
an

ag
em

en
t C

om
po

ne
nt

s

iL2

L1i
Standard
MBean

Standard
Proxy

iL

N
ot

ifi
ca

tio
n

C
ac

he

User’s
Listener

Java DMK
Internal Listener

Listener Registration
Notification Propagation

N
ot

ifi
ca

tio
nB

ro
ad

ca
st

er

C
lie

nt
N

ot
ifi

ca
tio

n-
H

an
dl

er

N
ot

ifi
ca

tio
nB

ro
ad

ca
st

er
P

ro
xy

in
te

rf
ac

e

in
te

rf
ac

e

in
te

rf
ac

e

Figure 10–1 Notification Forwarding Internals

Neither the broadcaster nor the listener need to implement any extra methods, or
even be aware that the other party is remote. Only the designer needs to be aware of
communication issues such as delays: you can’t expect the listener to be invoked
instantaneously after a remote broadcaster sends a notification.

The forwarding mechanism allows you to configure how and when notifications are
forwarded. This allows you to optimize the communication strategy between your
agents and managers. There are two basic modes for notification forwarding: push
mode and pull mode. A notification in the connector server’s cache is either pushed
to the manager at the agent’s initiative, or pulled by the manager at its own initiative.

The push mode for notification forwarding is the simplest because it implements the
expected behavior of a notification. When a notification is sent from an MBean to its
listener, it is immediately pushed to the manager-side where the listener’s handler
method is called. There is no delay in the caching, and if the communication layer is
quick enough, the listener is invoked almost immediately after the notification is sent.

Push mode is the default forwarding policy of a newly instantiated connector client.

In our manager example, we explicitly set the connector client in push mode and
then trigger the agent-side notifications.

CODE EXAMPLE 10–4 Switching to the Notification Push Mode

System.out.println("\n>>> Set notification forward mode to PUSH.");
connectorClient. setMode (ClientNotificationHandler. PUSH_MODE);

System.out.println(">>> Have our MBean broadcast 10 notifications...");

(continued)

Notification Forwarding 151

(Continuation)

params[0] = new Integer(10);
signatures[0] = "java.lang.Integer";
connectorClient. invoke(mbean, "sendNotifications" , params, signatures);

System.out.println(">>> Done.");
System.out.println(">>> Receiving notifications...\n");

// Nothing to do but wait while our handler receives the notifications
Thread.sleep(2000);

The connector client exposes the methods for controlling the agent’s notification
buffer. This caching buffer is not used in push mode, so these methods do not affect
pushed notifications. The methods do however set internal variables that will be
taken into account if and when pull mode is enabled. Future versions of the product
may implement push-mode buffering to provide added functionality.

The advantage of push mode is that it works without any further intervention:
notifications eventually reach their remote listeners. Push mode works when the
communication layer and the listener’s processing capacity are adapted to the
notification emission rate, or more specifically to the potential emission rate. Since all
notifications are immediately sent to the manager hosts, a burst of notifications will
cause a burst of traffic that may or may not be adapted to the communication layer.

If your communication layer is likely to be saturated, either your design should
control broadcasters to prevent bursts of notifications, or you should use the pull
mode which has this control functionality built-in. The push mode is ideal if you
have reliable and fast communication between your agents and your managers. You
may also dynamically switch between modes, allowing a management application to
fine-tune its communication policy depending on the number of notifications that
must be handled.

Pull Mode
In pull mode, notifications are not immediately sent to their remote listeners. Rather,
they are stored in the connector server’s internal buffer until the connector client
requests that they be forwarded. Instead of being sent individually, the notifications
are grouped to reduce the load on the communication layer. Pull mode has the
following settings that let the manager define the notification forwarding policy:

� A period for automatic pulling

152 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

� The size of the agent-side notification buffer (also called the cache)

� The policy for discarding notifications when this buffer is full

For a given connection, there is one cache for all listeners, not one cache per listener.
This cache therefore has one buffering policy whose settings are controlled through
the methods exposed by the connector client. The cache buffer contains an
unpredictable mix of notifications in transit to all manager-side listeners added
through a given connector client or through one of its bound proxy MBeans. The
buffer operations such as pulling or overflowing apply to this mix of notifications,
not to any single listener’s notifications.

Periodic Forwarding
Pull mode forwarding is necessarily a compromise between receiving notifications in
a timely manner, not saturating the communication layer, and not overflowing the
buffer. Notifications are stored temporarily in the agent-side buffer, but the
manager-side listeners still need to receive them. Pull mode includes automatic
pulling that retrieves all buffered notifications regularly.

The frequency of the pull forwarding is controlled by the pull period expressed in
milliseconds. By default, when pull mode is enabled, the manager will automatically
begin pulling notifications once per second. Whether or not there are any
notifications to receive depends upon events in the agent.

Our manager application sets a half-second pull period and then triggers the
notification broadcaster.

CODE EXAMPLE 10–5 Pulling Notifications Automatically

System.out.println(">>> Set notification forward mode to PULL.");
connectorClient. setMode (ClientNotificationHandler. PULL_MODE);

// Retrieve buffered notifications from the agent twice per second
System.out.println(">>> Set the forward period to 500 milliseconds.");
connectorClient. setPeriod(500) ;

System.out.println(">>> Have our MBean broadcast 20 notifications...");
params[0] = new Integer(20);
signatures[0] = "java.lang.Integer";
connectorClient. invoke(mbean, "sendNotifications" , params, signatures);
System.out.println(">>> Done.");

// Wait for the handler to process all notifications
System.out.println(">>> Receiving notifications...\n");
Thread.sleep(2000);

Notification Forwarding 153

When notifications are pulled, all notifications in the agent-side buffer are forwarded
to the manager and the registered listeners. It is not possible to set a limit on the
number of notifications which are forwarded, except by limiting the size of the buffer
(see “Agent-Side Buffering” on page 155). Even in a controlled example such as ours,
the number of notifications in the agent-side buffer at each pull period is completely
dependent upon the agent’s execution paths, and therefore unpredictable from the
manager-side.

On-Demand Forwarding
You can disable automatic pulling by setting the pull period to zero. In this case, the
connector client will not pull any notifications from the agent until instructed to do
so. Use the getNotifications method of the connector client to pull all
notifications when desired. This method will immediately forward all notifications in
the agent-side buffer. Again, it is not possible to limit the number of notifications that
are forwarded, except by limiting the buffer size.

In this example, we disable the automatic pulling and then trigger the notification
broadcaster. The notifications will not be received until we request that the connector
server pull them. Then, all of the notifications will be received at once.

CODE EXAMPLE 10–6 Pulling Notifications by Request

System.out.println(">>> Use pull mode with period set to zero.");
connectorClient. setMode (ClientNotificationHandler. PULL_MODE);
connectorClient. setPeriod(0) ;

System.out.println(">>> Have our MBean broadcast 30 notifications...");
params[0] = new Integer(30);
signatures[0] = "java.lang.Integer";
connectorClient. invoke(mbean, "sendNotifications" , params, signatures);
System.out.println(">>> Done.");

// Call getNotifications to pull all buffered notifications from the agent
System.out.println("\n>>> Press <Enter> to pull the notifications.");
System.in.read();
connectorClient.getNotifications() ;

// Wait for the handler to process all notifications
Thread.sleep(100);

In the rest of our example, we use the on–demand forwarding mechanism to control
how many notifications are buffered on the agent-side and thereby test the different
caching policies.

154 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

Agent-Side Buffering
In pull mode, notifications are stored by the connector server in a buffer until they are
pulled by the connector client. Any one of the pull operations, whether on-demand
or periodic, empties this buffer, and it fills up again as new notifications are triggered.

By default, this buffer will grow to contain all notifications. The
ClientNotificationHandler interface defines the static NO_CACHE_LIMITfield
to represent an unlimited buffer size. If the notifications are allowed to accumulate
indefinitely in the cache, this can lead either to an “out of memory” error in the
agent application, a saturation of the communication layer, or an overload of the
manager’s listeners when the notifications are finally pulled.

To change the size of the agent’s cache, call the connector client’s setCacheSize
method. The size of the cache is expressed as the number of notifications which can
be stored in its buffer. When a cache buffer of limited size is full, new notifications
will overflow and be lost. Therefore, you should also choose an overflow mode when
using a limited cache size. The two overflow modes are defined by static fields of the
ClientNotificationHandler interface:

� DISCARD_OLD- The oldest notifications will be lost and the buffer will always be
renewed with the latest notifications which have been triggered. This is the default
value when a limit is first set for the cache size.

� DISCARD_NEW- Once the notification buffer is full, any new notifications will be
lost until the buffer is emptied by forwarding the messages. The buffer will always
contain the first notifications triggered after the previous pull operation.

We demonstrate each of these modes in our sample manager, by first setting the
cache size and the overflow mode, then by triggering more notifications than the
cache buffer can hold.

CODE EXAMPLE 10–7 Controlling the Agent-Side Buffer

System.out.println(">>> Use pull mode with period set to zero, " +
"buffer size set to 10, and overflow mode set to DISCARD_OLD.");

connectorClient. setMode (ClientNotificationHandler. PULL_MODE);
connectorClient. setPeriod(0) ;
connectorClient. setCacheSize(10 , true); // see "Buffering Specifics"
connectorClient. setOverflowMode(ClientNotificationHandler.DISCARD_OLD) ;

System.out.println(">>> Have our MBean broadcast 30 notifications...");
params[0] = new Integer(30);
signatures[0] = "java.lang.Integer";
connectorClient. invoke(mbean, "sendNotifications" , params, signatures);
System.out.println(">>> Done.");

// Call getNotifications to pull all buffered notifications from the agent
System.out.println("\n>>> Press <Enter> to get notifications.");
System.in.read();
connectorClient.getNotifications() ;

(continued)

Notification Forwarding 155

(Continuation)

// Wait for the handler to process the 10 notifications
// These should be the 10 most recent notifications
// (the greatest sequence numbers)
Thread.sleep(100);
System.out.println("\n>>> Press <Enter> to continue.");
System.in.read();

//
We should see that the 20 other notifications overflowed the agent buffer

System.out.println(">>> Get overflow count = " +
connectorClient.getOverflowCount());

The overflow count gives the total number of notifications that have been discarded
because the buffer has overflowed. The number is cumulative from the first
manger-side listener registration until all of the manager’s listeners have been
unregistered. The manager application can modify or reset this value by calling the
setOverflowCount method.

In our example application, we repeat the actions above, in order to cause the buffer
to overflow again, but this time using the DISCARD_NEWpolicy. Again, the buffer
size is ten, and there are 30 notifications. In this mode, the first 10 sequence numbers
will remain in the cache to be forwarded when the manager pulls them from the
agent, and 20 more will have overflowed.

Buffering Specifics
When the buffer is full and notifications need to be discarded, the time reference for
applying the overflow mode is the order in which notifications have arrived in the
buffer. Neither the time stamps nor the sequence numbers of the notifications are
considered, since neither of these are necessarily absolute; even the sequence of
notifications from the same broadcaster can be non-deterministic. And in any case,
broadcasters are free to set both time stamps and sequence numbers as they see fit,
or even to make them null .

The second parameter of the setCacheSize method is a boolean which determines
whether or not the potential overflow of the cache is discarded when reducing the
cache size. If the currently buffered notifications do not fit into the new cache size
and this parameter is true , excess notifications are discarded according to the
current overflow mode. The overflow count is also updated accordingly.

In the same situation with the parameter set to false , the cache will not be resized.
You need to check the return value of the method when you set this parameter to

156 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

false . If the cache cannot be resized because it would lead to discarded notifications,
you need to empty the cache and try resizing the cache size again. To empty the
cache, you can either pull the buffered notifications with the getNotifications
method or discard them all by calling the connector client’s clearCache method.

When the existing notifications fit within the new cache size or when increasing the
cache size, the second parameter of setCacheSize has no effect.

Because several managers may connect through the same connector server object, it
must handle the notifications for each separately. This implies that each connected
manager has its own notification buffer and its own settings for controlling this
cache. The overflow count is specific to each manager as well.

Buffering Generalities
Here we have demonstrated each setting of the forwarding mechanism
independently by controlling the notification broadcaster. In practice, periodic
pulling, agent-side buffering and buffer overflow may all be happening at once. And
you can call getNotifications at any time to do an on-demand pull of the
notifications in the agent-side buffer. You should adjust the settings to fit the known
or predicted behavior of your management architecture, depending upon
communication constraints and your acceptable notification loss rate.

The caching policy is completely determined by the manager application. If
notification loss is unacceptable, it is the manager’s responsibility to configure the
mechanism so that they are pulled as often as necessary. Also, the notification
mechanism can be updated dynamically. For example, the manager can compute the
notification emission rate and update any of the settings (buffer size, pull period, and
overflow mode) to minimize the risk of a lost notification.

Running the Notification Forwarding
Example
The examplesDir/Notification directory contains all of the files for the broadcaster
MBean, the BaseAgent application, and our Client application which is itself the
listener object.

Compile all files in this directory with the javac command. For example, on the
Solaris platform with the Korn shell, you would type:

Notification Forwarding 157

$ cd examplesDir/Notification/
$ javac -classpath classpath *.java

To run the notification forwarding example, we use the BaseAgent application
which contains an RMI connector server.

Instructions

1. Launch the agent on another host or in another terminal window with the
following command. Be sure that the classes for the NotificationEmitter
MBean can be found in its classpath:

$ java -classpath classpath BaseAgent

2. Wait for the agent to be completely initialized, then launch the manager in
another window with the following command, where hostname is the name of
the machine running the agent. If you launched the agent on the same
machine, you can omit the hostname:

$ java -classpath classpath Client hostname

When launched, the manager application first creates the
NotificationEmitter MBean and then registers itself as a listener.

3. Press <Enter> when the application pauses to step through the various
notification forwarding situations that we have seen in this topic.

4. Press <Enter> one last time in the manager window to exit the application.

Leave the agent application running if you wish interact with the example
through the HTML adaptor of the BaseAgent .

Interacting with the Notification Forwarding
Mechanism

1. Launch the manager in another window with the following command, where
hostname is the name of the machine running the agent. If you launched the
agent on the same machine, you can omit the hostname:

158 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

$ java -classpath classpath Client hostname

2. Load the following URL in your browser and go to the MBean view of the
NotificationEmitter MBean:

http:// hostname:8082/

If you get an error, you may have to switch off proxies in your browser
preference settings. Any browser on your local network can also connect to this
agent using this URL.

3. When the manager application pauses for the first time, invoke the
sendNotifications method from your browser with a small integer as the
parameter.

You should see the listener handle your notifications in the manager’s terminal
window. Since the manager is still in push mode, they were forwarded
immediately.

4. Press <Enter> in the manger window: the manager is now in pull mode with
a pull period of 500 milliseconds. Through the MBean view, send 1000
notifications.

If your agent’s host is slow enough, or your manager’s host fast enough, you may
be able to see the manager pause briefly after it has processed all notifications
from one period and before the next ones are forwarded.

5. Press <Enter> in the manager window: the agent will now forward
notifications by request. Before pressing <Enter> again, have the MBean send
15 notifications.

You should see the manager pull all of the notifications: the 30 triggered by the
manager and the 15 we just triggered. They were all kept in the buffer, waiting for
the manager’s request to forward them. Remember that the sendNotifications
operation resets the sequence numbering every time it is invoked.

6. Press <Enter> in the manager’s window: the cache size will now be set to 10
notifications and the overflow mode to DISCARD_OLD. Before pressing
<Enter> again, have the MBean send 15 more notifications.

Only the last ten of our notifications could fit into the cache buffer, all the rest,
including those already triggered by the manager, overflowed and were
discarded. Press <Enter> to see that they are tallied in the overflow count.

Notification Forwarding 159

7. Press <Enter> in the manager’s window: the cache size is still 10 notifications
and the overflow mode will be set to DISCARD_NEW. Before pressing <Enter>
again, have the MBean send only 5 more notifications.

The first ten of the manager-triggered notifications are received: all of the more
recent notifications, including ours, overflowed the cache buffer and were lost.
Press <Enter> to see that they are tallied in the overflow count: the 35 from the
last step plus 25 more from this step, for a total of 60.

8. Press <Enter> in the manager’s window one last time to stop the Client
application. Press <Enter> in the other window to stop the agent application
when you are finished running the example.

160 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

CHAPTER 11

Access Control and Security

Whenever considering a distributed architecture, security issues are often an added
factor in the complexity of the design. Not so with the Java Dynamic Management
Kit, whose security features are built into the modularity of the components.

Management solutions can evolve from basic password-based protection all the way
to secure connections using cryptography simply by switching protocol connectors or
by adding filter components. The rest of the architecture is unchanged because it
relies on the interface which is common to all connectors.

There are two categories of access-control: connection-level control through a
password and request-level control through a context object. Context checkers work
as filters between the connector server and the MBean server. The filter logic can be
determined dynamically, based on the nature of the request and on a context object
provided by the client.

Security in the communication layer is achieved through the cryptography of a Secure
Socket Layer (SSL) and the HTTPS connector. Using other components of the Java
platform, connectors can effectively make all open communication undecipherable.

The code samples in this topic are taken from the files in the Context example
directory located in the main examplesDir (see “Directories and Classpath” in the
preface).

Contents:

� “Password-Based Authentication” on page 162 shows how to provide
connection-level access–control through the HTTP–based connectors.

� “Context Checking” on page 165 demonstrates the filter mechanism for
fine-grained access control of incoming requests to an agent.

� “The HTTPS Connector” on page 171 explains how to use the security tools of the
Java platform to implement cryptography on the data between agents and
managers.

161

Password-Based Authentication
The simplest form of agent security is to accept management requests only if they
contain a valid login identity and password. Agents recognize a given a list of
login-password pairs, and managers must provide a matching login and password
when they try to establish a connection.

In the Java Dynamic Management Kit, only the HTTP–based connectors support
password–based authentication. The SNMP protocol adaptor also supports access
control, but it is based on a different mechanism (see “Access Control Lists (ACL)”
on page 280).

By default, no authentication is enabled in the HTTP-based connectors, and any
manager may establish a connection. The password checking behavior is enabled by
defining the list of authorized login-password pairs.

You may define this authentication information either:

� Through the constructor which takes an AuthInfo array parameter:
HttpConnectorServer(int port, AuthInfo[] authInfoList)

� Through the methods inherited from the GenericHttpConnectorServer class:
addUserAuthenticationInfo(AuthInfo authinfo)
removeUserAuthenticationInfo(AuthInfo authinfo)

In both cases, only the agent application has access to these methods, meaning that
the agent controls the authentication mechanism. As soon as an AuthInfo object is
added to the connector server through either method, all incoming requests must
provide a recognized name and password. In our example, we read the authentication
information from the command line and call the addUserAuthenticationInfo .

CODE EXAMPLE 11–1 Implementing Password Authentication in the HTTP Connector
Server

// Here we show the code for reading the
// id-password pairs from the command line
//
int firstarg = 0;
boolean doAuthentication = (args.length > firstarg);

AuthInfo[] authInfoList;

if (doAuthentication) {
authInfoList = new AuthInfo[(args.length - firstarg) / 2];
for (int i = firstarg, j = 0; i < args.length; i += 2, j++)

authInfoList[j] = new AuthInfo (args[i], args[i + 1]);

} else

(continued)

162 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

(Continuation)

authInfoList = null;

[...] // instantiate and register an HTTP connector server

// Define the authentication list
//
if (doAuthentication) {

for (int i = 0; i < authInfoList.length; i++)
http.addUserAuthenticationInfo(authInfoList[i]) ;

}

On the manager-side, identifiers and passwords are given in the address object, since
authentication applies when the connection is established.

CODE EXAMPLE 11–2 Specifying the Login and Password in the HTTP Connector Server

// login and password were read from the command line
//
AuthInfo authInfo = null;

if (login != null) {
authInfo = new AuthInfo(login, password) ;

}

// agentHost and agentPort are read from the command
// line or take on default values
//
HttpConnectorAddress addr =

new HttpConnectorAddress(
agentHost, agentPort, authInfo) ;

final RemoteMBeanServer connector =
(RemoteMBeanServer) new HttpConnectorClient();

connector.connect(addr) ;

The connector is identified by the one AuthInfo object it uses to instantiate the
connector address. If the agent has authentication enabled, both the login and the
password much match one of the AuthInfo objects in the agent. If the agent does
not perform authentication, providing a login and password has no effect because all
connections are accepted.

Access Control and Security 163

If the authentication fails, the call to the connect method will return an exception.
Normally, the client’s code should catch this exception to handle this error case.

As demonstrated by the code examples, the authentication mechanism is very simple
to configure. It prevents unauthorized access with very little overhead.

Note - The HTML adaptor provides a similar authentication mechanism, where the
list of accepted identities is given to the server object. In the case of the HTML
protocol, the web browser is the management application which must provide a
login and password. The behavior is browser-dependent, but the browser will
usually ask to user to type this login and password in a dialog box.

Running the Example with Authentication
The examplesDir/Context directory contains the applications which demonstrate the
use of password authentication through the HTTP connector.

Compile all files in this directory with the javac command. For example, on the
Solaris platform with the Korn shell, you would type:

$ cd examplesDir/Context/
$ javac -classpath classpath *.java

Instructions

1. Launch the agent in a terminal window, and specify a list of login-password
pairs, as in the following command:

$ java -classpath classpath ContextAgent jack jill billy bob

2. Wait for the agent to be completely initialized, then launch the manager in
another window with the following command:

$ java -classpath classpath ContextClient -ident andy bob

The client application will try to establish a connection with the login andy and
the password bob . The authentication mechanism will refuse the connection, an
you will see the com.sun.jdmk.comm.UnauthorizedSecurityException
raised by the connector server.

3. Launch the manager again, this time with a valid identity:

164 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

$ java -classpath classpath ContextClient -ident jack jill

The connection is established and you see the output from management operation
in both windows.

4. Leave both applications running for the next example.

Context Checking
Context checking is a more advanced security mechanism that can perform selective
filtering of incoming requests. The context is an arbitrary object provided by the
client and used by the server to decide whether or not to allow the request.

Filtering and context checking are performed in between the communicator server
and the MBean server. The mechanism relies on two objects called the
MBeanServerForwarder and the MBeanServerChecker .

The Filter Mechanism
The MBeanServerForwarder allows the principle of stackable MBean servers. An
MBeanServerForwarder implements the MBeanServer interface and one extra
method called setMBeanServer . Its function is to receive requests and forward
them to the designated MBean server.

The setMBeanServer method of a communicator server object allows you to
specify the MBean server which fulfills its requests. By chaining one or more
MBeanServerForwarder objects between a communicator server and the actual
MBean server, the agent application creates a stack of objects which may process the
requests before they reach the MBean server.

The MBeanServerChecker is an extension of the forwarder which forces each
request to call a –checker method. By extending the MBeanServerChecker class and
providing an implementation of the checker methods, you can define a policy for
filtering requests before they reach the MBean server. As shown in the following
table, checker methods apply to groups of MBeanServer methods.

Access Control and Security 165

TABLE 11–1 Filter Method Granularity for Context Checking

Filter Method MBean Server Operations Filtered

checkAny Every method of the MBeanServer interface

checkCreate All forms of the create and registerMBean methods

checkDelete The unregisterMBean method

checkInstantiate All forms of the instantiate method

checkInvoke The invoke method which handles all operation invocations

checkNotification Both addNotificationListener and
removeNotificationListener

checkQuery Both queryMBeans and queryNames

checkRead All methods which access but do not change the state of the agent:
getAttribute , getAttributes , getObjectInstance ,
isRegistered , getMBeanCount , getDefaultDomain ,
getMBeanInfo , and isInstanceOf

checkWrite The setAttribute and setAttributes methods

As a request passes through a stack of MBean servers, the checker methods are
called to determine if the request is allowed. In order to identify the manager that
issued a request, the checker may access the operation context of the request.

The operation context, or just context, is an object defined by the manager who seeks
access through a context checker. It usually contains some description of the
manager’s identity. The only restriction on the context object is that it must
implement the OperationContext interface. The context object is passed from the
connector client to the connector server and is then associated with the execution of a
request. Conceptually, this object is stored in the user accessible context of the thread
which executes the request.

All methods in the MBeanServerChecker class may access the context object by
calling the protected getOperationContext method. The methods of the context
checker then implement some policy to filter requests based on the context object, the
nature of the request, and the data provided in the request, such as the attribute or
operation name.

The following diagram shows the paths of two requests through a stack of MBean
server implementations, one of which is stopped by the context checker because it
doesn’t provide the correct context.

166 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

Remote Management
Application

Connector/
Protocol Adaptor

MBean Server Interface

Context Checker

MBean Server Implementation

Resource MBeans

Context

GOSTOP

Figure 11–1 Context Checking in Stackable MBean Servers

Only connectors fully support the context mechanism. Their connector clients expose
the methods that allow the manager to specify the context object. Existing protocol
adaptors have no way to specify a context. Their requests may be filtered and
checked, but their context object will always be null .

This functionality may still be used to implement a filtering policy, but without a
context object, straightforward manager identification is not possible. However, a
proprietary protocol adaptor could define some mapping to determine a context
object that could be accepted by the filters.

The Context Implementation
An agent wanting to implement context checking first needs to extend the
MBeanServerChecker class. This class retrieves the context object and decides
whether any given operation is allowed.

CODE EXAMPLE 11–3 The Implementation of the Context Checker

import javax.management.MBeanServer;
import javax.management.ObjectName;
import javax.management.QueryExp;

import com.sun.jdmk.MBeanServerChecker;
import com.sun.jdmk.OperationContext;

public class ContextChecker extends MBeanServerChecker {

(continued)

Access Control and Security 167

(Continuation)

// Constructor
public ContextChecker(MBeanServer mbs) {

super(mbs);
}

// Implementation of the abstract methods of the
// MBeanServerChecker class: for each of the specific
// checks, we just print out a trace of being called.
[...]

protected void checkWrite (String methodName,
ObjectName objectName) {

System.out. println("checkWrite (\"" + methodName +
"\", " + objectName + ")");

}

protected void checkQuery (String methodName,
ObjectName name,
QueryExp query) {

System.out. println("checkQuery (\"" + methodName +
"\", " + name + ", " + query + ")");

}

[...]

/**
* This is where we implement the check that requires every
* operation to be called with an OperationContext whose
* toString() method returns the string "nice".
*/

protected void checkAny (String methodName,
ObjectName objectName) {

System.out. println("checkAny (\"" + methodName + "\", " +
objectName);

OperationContext context = getOperationContext() ;
System.out.println(" OperationContext: " + context);

if (context == null || !context.toString().equals("nice")) {
RuntimeException ex =

new SecurityException(" Bad context : " + context);
ex.printStackTrace();
throw ex;

}
}

}

Then the agent application then needs to instantiate its context checker and stack
them in between the communicator servers and the MBean server. Each

168 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

communicator server would have its own stack, although filters and context checkers
may be shared. The agent performs the stacking inside a synchronized block because
other threads may try to do stacking simultaneously.

CODE EXAMPLE 11–4 Stacking MBean Server and Context Checkers

// Create MBeanServer
//
MBeanServer server = MBeanServerFactory.createMBeanServer();

/* Create context checker. The argument to the constructor is
* our MBean server to which all requests will be forwarded
*/

ContextChecker contextChecker = new ContextChecker(server);

[...] // Create HTTP connector server

/* Add the context checker to this HTTP connector server.
* We point it at the context checker which already points
* to the actual MBean server.
* It is good policy to check that we are not sidetracking
* an existing stack of MBean servers before setting ours.
*/

synchronized (http) {
if (http.getMBeanServer() != server) {

System.err.println("After registering connector MBean, " +
"http.getMBeanServer() != " + "our MBeanServer");

System.exit(1);
}
http.setMBeanServer(contextChecker);

}

Finally, the manager operation defines a context object class and then provides a
context object instance through its connector client.

CODE EXAMPLE 11–5 Setting the Context in the Connector Client

/* In this example, the agent checks the OperationContext of
each operation by examining its toString() method, so we
define a simple implementation of OperationContext whose
toString() is a constant string supplied in the constructor

*/
class StringOperationContext

implements OperationContext, Cloneable {

private String s;

(continued)

Access Control and Security 169

(Continuation)

StringOperationContext(String s) {
this.s = s;

}

public String toString() {
return s;

}

public Object clone() throws CloneNotSupportedException {
return super.clone();

}

}

// the contextName must be provided on the command line
OperationContext context =

new StringOperationContext(contextName);

[...]

// The context is set for all requests issued through
// the connector client; it may be changed at any time
connector.setOperationContext(context);

Running the Example with Context Checking
The ContextClient and ContextAgent applications in he examplesDir/Context
directory also demonstrate the use of stackable MBean servers and context checking
through the HTTP connector.

If you have not done so already, compile all files in this directory with the javac
command. For example, on the Solaris platform with the Korn shell, you would type:

$ cd examplesDir/Context/
$ javac -classpath classpath *.java

Instructions

1. If the agent and client applications are not already running from the previous
example, type the following commands in separate windows:

$ java -classpath classpath ContextAgent

170 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

$ java -classpath classpath ContextClient

The classpath should include the current directory (.) for both applications
because they rely on classes that were compiled in this directory.

2. Press <Enter> in the client application to trigger another set of requests.

The agent window displays the output of the ContextChecker class. We can see
that the checkAny method verifies the “nice ” context of every request and that
the other checkers just print out their name, providing a trace of the request.

3. Stop both applications by typing <Control-C> in each of the windows.
Restart both applications, but specify a different context string for the client:

$ java -classpath classpath ContextAgent

$ java -classpath classpath ContextClient -context BadToTheBone

This time we see the result of a context that is not recognized. The agent raises a
java.lang.SecurityException which is propagated to the client who then
exits.

4. Press <Control-C> in the agent window to stop the ContextAgent application.

The HTTPS Connector
The HTTPS connector provides data encryption and certificate-based security
through a Secure Socket Layer (SSL). An implementation of secure sockets is only
available for the Java 2 platform. However, secure sockets are not part of the Java 2
SDK (Software Development Kit), and their libraries must be installed separately.

The Java Secure Socket Extension (JSSE) 1.0 provides a compatible implementation of
secure sockets for the Java 2 platform. For optimal performance of the HTTPS
connector, it is recommended that you use the Java 2 SDK, Standard Edition, v1.2.2,
and the JSSE 1.01.

The web site for the JSSE is http://java.sun.com/products/jsse . This site
provides links for downloading the software and the documentation. For further
information and details regarding the use of the secure sockets, please refer to the
JSSE documentation.

Access Control and Security 171

The HTTPS connector exposes the same interfaces as all other connectors and has
exactly the same behavior. The development of management application which relies
on the HTTPS connector is no different from that of any other Java Dynamic
Management manager. See “Connector Clients” on page 113 for details about
programming with the RemoteMBeanServer API.

Where the HTTPS connector differs is that it relies on the security mechanisms built
into the Java language and extended by JSSE. In order to use these libraries and
communicate securely, you must configure your application environment to meet all
security requirement. The cost of security is establishing all of the structures that
guarantee the trust between two communicating parties.

This section covers the steps that are required to establish a secure connection
between your agent and manager applications. These instructions do not guarantee
total security, they just explain the programmatic steps needed to ensure data
security between two distant Java applications.

These steps assume that each of your manager and agent applications runs on a
separate machine, and that each machine has its own installation of the Java SDK
(not a shared network installation).

1. Install All Software
You should install both the Java 2 SDK, Standard Edition, v1.2.2, and the JSSE 1.01
products on all hosts that will use the HTTPS connector client or connector server
components.

In this procedure, the directories where you have installed these products are named
JAVAhome and JSSEhome, respectively. These names are used on all hosts where the
products are installed, even though their value is specific to each host.

2. Extend Your Java Runtime Libraries
For each of your SDK/JSSE installations, copy the three jar files (jsse.jar ,
jcert.jar , and jnet.jar) of the JSSE reference implementation into the
extensions directory of your Java runtime environment.

For example, on the Solaris platform you would type:

$ cp JSSEhome/lib/jsse.jar JAVAhome/jre/lib/ext/
$ cp JSSEhome/lib/jcert.jar JAVAhome/jre/lib/ext/
$ cp JSSEhome/lib/jnet.jar JAVAhome/jre/lib/ext/

172 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

Or you could add these jar files to your environment’s classpath, as follows (for the
Korn shell):

$ export CLASSPATH=${CLASSPATH}: JSSEhome/lib/jsse.jar:\
JSSEhome/lib/jcert.jar: JSSEhome/lib/jnet.jar

3. Designate your Security Provider
The JSSE follows the same "provider" architecture found in the Java Cryptography
Architecture (JCA) which is provided in the Java 2 platform as the Java Cryptography
Extension (JCE). In order to use JSSE you must install this provider either statically
or dynamically. Again, you must do this for all of your SDK/JSSE installations.

To install the provider statically you must edit the security properties file (JAVAhome/
lib/security/java.security) . Edit this file as follows, the boldface text is the
part you must add:

security.provider.1=sun.security.provider.Sun

security.provider.2= com.sun.net.ssl.internal.ssl.Provider

The first line of this file depends upon your SDK platform and should not be
changed.

To install the provider dynamically in your Java application, you should call the
addProvider method of the java.security.Security class. The line in your
source code would look like this:

Security.addProvider(new com.sun.net.ssl.internal.ssl.Provider());

4. Generate Public and Private Keys
This step must be repeated on all agent and manager host machines.

Generate a key pair (a public key and associated private key). Wrap the public key
into an X.509 v1 self-signed certificate, which is stored as a single-element certificate
chain. This certificate chain and the private key are stored in a new keystore entry
identified by alias.

In the following command, the –dname parameters designates the X.500
Distinguished Name for the host where you are generating the certificates. The
commonName field must be the machine’s hostname.

$ keytool -genkey -alias alias -keyalg RSA -keysize 1024 -sigalg MD5withRSA
-dname "CN= commonName, OU=orgUnit, O= org, L= location, S= state, C= country"
-keypass passPhrase -storetype jks -keystore yourHome/.keystore

Access Control and Security 173

(Continuation)

-storepass passPhrase

5. Export a Local Certificate
This step must be repeated on all agent and manager host machines.

Read the certificate that is associated with your alias from the keystore, and store it in
a hostCertFile:

$ keytool -export -alias alias -file hostCertFile -storetype jks
-keystore yourHome/.keystore -storepass passPhrase -rfc

When you are done with this step you will have a certificate for each of your host
machines.

6. Import all Remote Certificates
This step must be repeated on both the agent and manager host machines, for all
pairs of agent-managers in your management architecture.

In this step, agent and manager pairs must exchange their certificates. The manager
should import the agent’s hostCertFile and the agent should import the manager’s
hostCertFile. If a manager has two agents, it will import two certificates, and each
agent will import a copy of the manager’s certificate.

Import the certificate into the file containing the trusted Certificate Authorities (CA)
certificates. This will add our self-signed certificate as a trusted CA certificate to the
cacerts file so that the server and the client will be able to authenticate each other.

$ keytool -import -alias alias -file hostCertFile -noprompt -trustcacerts
-storetype jks -keystore JAVAhome/jre/lib/security/cacerts
-storepass changeit

This command modifies the JAVAhome/jre/lib/security/cacerts which will
affect all applications running on that installation. If you do not want to modify this
file, you could create a file named jssecacerts and use it instead. The default

174 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

location of this file is either JAVAhome/lib/security/jssecacerts or if that
does not exist, then JAVAhome/lib/security/cacerts .

7. Run Your Java Dynamic Management Agent
Launch your agent applications with the following properties:

$ java -Djavax.net.ssl.keyStore= yourHome/.keystore
-Djavax.net.ssl.keyStoreType=jks
-Djavax.net.ssl.keyStorePassword= passPhrase
AgentClass

If you are using the notification push mechanism, add the following property
definition to the above command line:

-Djava.protocol.handler.pkgs=com.sun.net.ssl.internal.www.protocol

8. Run Your Management Application
Launch your management applications with the following properties:

$ java -Djavax.net.ssl.keyStore= yourHome/.keystore
-Djavax.net.ssl.keyStoreType=jks
-Djavax.net.ssl.keyStorePassword= passPhrase
-Djava.protocol.handler.pkgs=com.sun.net.ssl.internal.www.protocol
ManagerClass

Access Control and Security 175

176 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

PART IV Agent Services

The minimal and base agents presented earlier in this tutorial are manageable but are
created empty. In this lesson we will examine agent services, MBeans that interact
with your resources to provide management intelligence at the agent level. These
services allow your agents to perform local operations on their resources that used to
be performed by the remote manager. This frees you from having to implement them
in the management application, and it reduces the amount of communication
throughout your management solution.

In the Java Dynamic Management architecture, agents perform their own monitoring,
avoiding constant manager polling. Agents also handle their own logical relations
between objects, providing advanced operations that no longer require a relational
database in the manager.

Java Dynamic Management agents are also much smarter, using discovery to be
aware of their peers. They also connect to other agents to mirror remote resources,
thus providing a single point of entry into a whole hierarchy of agents. Finally,
agents are freed from their initial environment settings through dynamic
downloading, allowing managers to effectively push new classes to an agent. As new
resources and new services are developed, they can be loaded into deployed agents,
boosting their capabilities without impacting their availability.

The benefits of agent services is multiplied by their dynamic nature. Agent services
can come and go as they are required, either as determined by the needs of agent’s
smart resources or on demand from the management application. The agent
capability of self-management through the services is completely scalable: small
devices might only allow monitors with some logic, whereas a server might embed
the algorithms and networking capabilities to oversee its terminals autonomously.

This lesson contains the following topics:

� “The M-Let Class Loader” downloads new classes to the agent from a given URL
(Universal Resource Locator). An m-let is a management applet: the HTML-style
tag at the target URL that contains information about the classes to download. A
manager can store new MBean classes anywhere, update its m-let file to reference

them, and instruct an agent to load the classes. The new classes are created as
MBeans, registered in the MBean server and ready to be managed.

� “The Relation Service” creates associations between MBeans, allowing for
consistency checking against defined roles and relation types. New types can be
defined dynamically to create new relations between existing objects. All relations
are managed through the service so that it can expose query operations for finding
related MBeans. Relations themselves may also be implemented as MBeans,
allowing them to expose attributes and operations that act upon the MBeans in the
relation.

� “Cascading Agents” allow a manager to access a hierarchy of agents through a
single point-of-access. The subagents can be spread across the network, but their
resources can be controlled by the manager through a connection to a single
master agent. MBeans of a subagent are mirrored in the master agent and respond
as expected to all management operations, including their removal. No special
proxy classes are needed for the mirror MBean, meaning that every MBean object
can be mirrored anywhere without requiring any class loading.

� “The Discovery Service” lets applications discover Java Dynamic Management
agents that want to be found. Using active discovery, the client broadcasts a
discovery request over the network. Agents which have a discovery responder
registered in their MBean server will automatically send a response. The client can
then keep a list of reachable agents by using passive discovery to detect when
responders are activated and deactivated. Along with the agent’s address, the
discovery response contains version information from the agent’s delegate MBean
and the list of available protocol adaptors and connectors.

CHAPTER 12

The M-Let Class Loader

The “Dynamic” in Java Dynamic Management Kit not only stands for dynamic
loading, it also stands for dynamic downloading. The agent service that provides this
functionality is the m-let class loader. M-let stands for management applet, an
HTML-style tag that tells the class loader how to retrieve the desired class. Using
this information, the m-let loader can retrieve an MBean class from a remote location
given as a URL (uniform resource locator) and create it in the agent.

The m-let resides in a separate text file which acts as a loading manifest. The
contents of the m-let file let you specify any number of classes to load, possibly a
different source for each, arguments for the class constructor, and the object name for
the instantiated MBean. Since this mechanism is sometimes too heavy, the m-let
loader can also be used to load classes directly and create MBeans in the agent.

The m-let loader is a service implemented as an MBean, so it can be called either
directly by the agent or remotely by a management application. It can also be
managed remotely, which allows a manager to effectively “push” MBeans to an
agent: the manager instantiates the m-let loader in an agent and instructs it to load
classes from a predetermined location.

Class loading is significantly different between Java 2 and JDK 1.1.x, and this leads to
different implementations of the m-let loader. We cover these in separate sections.
The example code in the MLetAgent and MLetClient directories of the main
examplesDir corresponds to the Java version which you specified during installation
(see “Directories and Classpath” in the preface).

Contents:

� “The M-Let Loader (JDK 1.1)” on page 180

� “M-Let Loading from a Manager (JDK1.1)” on page 185

� “The M-Let Loader (Java 2)” on page 189

� “M-Let Loading from a Manager (Java 2)” on page 194

179

The M-Let Loader (JDK 1.1)
In an agent application, we might need to load MBeans from remote hosts during the
initialization. Or we might have local threads which need to load MBeans in the
agent. In this example we demonstrate how to create the m-let loader service and use
it to dynamically load new MBean classes.

In an installation of the Java Dynamic Management Kit for the JDK 1.1.x, the m-let
loader is the MLetSrv class in the javax.management.loading package. It is an
MBean which needs to be registered in the MBean server before we can use it to load
classes.

CODE EXAMPLE 12–1 Instantiating the MLetSrv Class

MBeanServer server = MBeanServerFactory.createMBeanServer();

// Get the domain name from the MBeanServer.
String domain = server.getDefaultDomain();

// Create a new MLetSrv MBean and add it to the MBeanServer.
String mletClass = "javax.management.loading.MLetSrv";
ObjectName mletName = new ObjectName(domain + ":name=" + mletClass);
server.createMBean(mletClass, mletName);

If your agent needs to download classes that include native libraries, you will need
to handle security issues: see “Security Manager (JDK 1.1)” on page 198. Otherwise,
there is no special initialization that needs to be done before loading Java classes.

Loading MBeans from a URL
In order to download an MBean, we must first have its corresponding m-let definition
in an HTML file. In our example, we define the following file with three MLETtags:

CODE EXAMPLE 12–2 The M-Let File

<HTML>
<MLET

CODE=Square.class
ARCHIVE=Square.jar
NAME=MLetExample:name=Square,id=1

>
<ARG TYPE=java.lang.Integer VALUE=10>

180 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

(Continuation)

</MLET>
<MLET

CODE=EquilateralTriangle.class
ARCHIVE=EquilateralTriangle.jar
NAME=MLetExample:name=EquilateralTriangle,id=1

>
<ARG TYPE=java.lang.Integer VALUE=8>
</MLET>
<MLET

CODE=EquilateralTriangle.class
ARCHIVE=EquilateralTriangle.jar
NAME=MLetExample:name=EquilateralTriangle,id=2

>
<ARG TYPE=java.lang.Integer VALUE=15>
</MLET>
</HTML>

This file tells the m-let loader to create three MBeans with the given object names,
using the given classes in the jar files. The jar files must be located in the same
directory as this file, regardless of whether the directory is on a local or remote host.
The MLETtag may also specify a CODEBASE, which is an alternate location for the jar
file. The MLETtag is fully defined in the JMX specification.

Now we are ready to call the performLoadURL method of our m-let loader. In
parsing the result vector, we use our knowledge of the class names that we wrote in
the m-let file.

CODE EXAMPLE 12–3 Calling the performLoadURL Method

ObjectName squareMLetClassLoader = null;
ObjectName triangleMLetClassLoader = null;

// The url string is read from the command line
Object mletParams[] = {url};
String mletSignature[] = {"java.lang.String"};
Vector mbeanList = (Vector) server. invoke(

mletName, "performLoadURL", mletParams, mletSignature) ;

for (Enumeration enum = mbeanList.elements();
enum.hasMoreElements();) {

Object element = enum.nextElement();
if (element instanceof Vector) {

// Success, we retrieve the new object name
Vector v = (Vector) element;
ObjectInstance objectInstance = (ObjectInstance) v.elementAt(0);
ObjectName classLoaderObjectName = (ObjectName) v.elementAt(1);
if (objectInstance.getClassName().equals("Square")) {

// Retrieve MBean that loaded the class Square

The M-Let Class Loader 181

squareMLetClassLoader = classLoaderObjectName;

} else if (objectInstance.getClassName().equals(
"EquilateralTriangle")) {

// Retrieve MBean that loaded the class EquilateralTriangle
triangleMLetClassLoader = classLoaderObjectName;

}
echo("\tOBJECT NAME = " + objectInstance.getObjectName());

} else {
// Failure, find out why
echo("\tEXCEPTION = " + ((Throwable)element).getMessage());

}
}

The result of the call to performLoadURL is a Vector object containing as many
elements as there are MLETtags in the file designated by the URL. Each element is
either a vector containing the object instance of the new MBean and the object name
of its class loader, or a Throwable object containing the exception or error that
prevented the MBean from being loaded.

In the result, we obtain the object name of the MBeans that were created from the
downloaded classes. The management architecture specified by JMX is designed so
that objects are manipulated through the MBean server, not by direct reference.
Therefore, downloaded classes are directly registered in the MBean server by the
m-let loader, and the caller never receives a direct reference to the new object.

The object names of the class loaders are references to the internal class loader
objects used by the m-let service to actually fetch the classes. We save them because
they can be used if we ever need to instantiate these classes again. We will see how
in the next section.

Shortcut for Loading MBeans
Loading MBeans from a URL requires some preparation and additional files. In some
cases, we don’t have the ability to create files ahead of time or modify them when
we need different classes. In these cases, we would just like to load a class from a jar
file and create its MBean.

The MLetSrv is not a class loader, we only ask it to load a class from a URL and it
instantiates its private class loader for doing this. Even though the internal class
loader object used by the m-let loader is a public type, it should not be instantiated
to act as a class loader. The m-let loader stores internal information about its private
class loaders, and it won’t be able to handle one outside of its control.

Instead, use the class loader name that is returned when an MBean is successfully
loaded. You can specify this class loader name when creating a class through the
MBean server. You will be able to create new MBeans from the same class or from
other classes in the associated archive (jar file).

182 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

This implies that you must first call the performLoadURL with a known URL and a
known m-let file. The m-let loader will create one class loader for each code-base
specified in the file, and one for the code-base of the file itself. For example, the class
loader name returned with the “Square” MBean name is the one used to load its
class from the Square.jar file in the same directory as the HTML file. We can
create other instances of that MBean now just through the MBean server, without
needing to call the m-let loader.

The following code sample uses the object name references that were declared and
assigned in Code Example 12–3.

CODE EXAMPLE 12–4 Loading Classes Directly

// Create a new Square MBean from its class in the Square.jar file
String squareClass = "Square";
ObjectName squareName = new ObjectName(

"MLetExample:name=" + squareClass + ",id=2");
Object squareParams[] = {new Integer(12)};
String squareSignature[] = {"java.lang.Integer"};
server.createMBean (squareClass, squareName, squareMLetClassLoader ,

squareParams, squareSignature);

// Create a new EquilateralTriangle MBean from its class in the
// EquilateralTriangle.jar file
String triangleClass = "EquilateralTriangle";
ObjectName triangleName = new ObjectName(

"MLetExample:name=" + triangleClass + ",id=3");
Object triangleParams[] = {new Integer(20)};
String triangleSignature[] = {"java.lang.Integer"};
server.createMBean (triangleClass, triangleName, triangleMLetClassLoader ,

triangleParams, triangleSignature);

Loading classes directly in this manner implies that the code of the agent or of the
MBean must be programmed with the knowledge of the class named in the m-let
file, and if needed, the knowledge of other classes in the jar file from which the class
was finally loaded.

Running the M-Let Agent Example
To run the m-let agent example for the JDK 1.1.x, you must have installed the Java
Dynamic Management Kit for 1.1, and set your classpath accordingly. This example
is located in the examplesDir/MLetAgent/ directory, see “Directories and Classpath”
in the preface for details.

The M-Let Class Loader 183

In our example, we have two MBeans representing geometrical shapes. Before
running the example, we compile them and create a jar file for each. We also compile
the agent application at the same time.

$ cd examplesDir/MLetAgent/
$ javac -classpath classpath *.java

$ jar cf Square.jar Square.class SquareMBean.class
$ rm Square.class SquareMBean.class

$ jar cf EquilateralTriangle.jar EquilateralTriangle.class \
EquilateralTriangleMBean.class
$ rm EquilateralTriangle.class EquilateralTriangleMBean.class

Since the MBean classes are only found in the jar files now, they cannot be found in
our usual classpath, even if it includes the current directory (.). However, these jar
files are given as the archive in the MLETtags of the HTML file, so the m-let loader
should find them.

The agent requires you to specify the URL of the m-let file on command line. We
have left this file in the examples directory, but you could place it and the jar files on
a remote machine. With the Korn shell on the Solaris platform, you would type the
following command:

$ java -classpath classpath Agent file:${PWD}/GeometricShapes.html

In the output of the agent, you can see it create the m-let service MBean, and then
load the HTML file which specifies the three MBeans to be loaded. Once these have
been loaded, we can see the two MBeans that were loaded directly through the class
loader shortcut.

This agent uses the tracing mechanism, and you can select to receive the messages
from the m-let loader by specifying the -DINFO_MLET property on the command
line. The tracing mechanism is covered in the Java Dynamic Management Kit 4.2
Tools Reference guide and in the Javadoc API of the Trace class.

The agent then launches an HTML adaptor so that we can easily view the new
MBeans. In them we can see that the values contained in the ARGtags of the m-let
file were used to initialize the MBeans. Point your web browser to the following URL
and click on the MBeans in the MLetExample domain:http://localhost:8082/ .
When you are done, type <Control-C> in the window where you launched the
agent.

184 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

M-Let Loading from a Manager (JDK1.1)
Like the other agent services of the Java Dynamic Management Kit, the m-let loader
is an MBean and fully manageable from a remote manager. A manager application
might want an agent to load a new MBean to represent a new resource or provide a
new management service. In this example, we show a manager which interacts with
the m-let loader of an agent to load exactly the same MBeans as in the previous
example.

The agent that we will manage only contains an RMI connector and an HTML
adaptor when it is launched. We will use the RMI connector to access the agent and
perform all of our management operations. You can then view the new MBeans
through the HTML adaptor.

The manager is just a simple application which creates its connector client, does its
management operations and exits. Here is the code of its main method and the
constructor that it calls.

CODE EXAMPLE 12–5 The main Method of the M-Let Manager

public Client() {

// Enable the trace mechanism
[...]

// Connect a new RMI connector client to the agent
connectorClient = new RmiConnectorClient();

// Use the default address (localhost)
RmiConnectorAddress address = new RmiConnectorAddress();
try {

connectorClient.connect(address) ;
} catch (Exception e) {

echo("Could not connect to the agent!");
e.printStackTrace();
System.exit(1);

}
}

public static void main(String[] args) {

// Parse command line arguments.
[...]

// Call the constructor to establish the connection
Client client = new Client();

// Run the MLet example (see below)
client.runMLetExample();

(continued)

The M-Let Class Loader 185

(Continuation)

// Disconnect connector client from the connector server.
client.connectorClient.disconnect();

System.exit(0);
}

Asking the Agent to Load Classes
Now that the manager is connected to the client, we can “push” classes to it. We do
this by first creating an m-let loader service, then having that loader create MBeans
from the classes designated by our HTML file. The following code is taken from
manager’s runMLetExample method. The code is identical to the code of the agent
example, except that we now go through the RemoteMBeanServer interface of the
connector client instead of directly through the MBean server.

CODE EXAMPLE 12–6 Calling the performLoadURL Method Remotely

// Get the domain name from the Agent
String domain = connectorClient.getDefaultDomain();

// Create a new MLetSrv MBean and add it to the Agent
String mletClass = "javax.management.loading.MLetSrv";
ObjectName mletName = new ObjectName(domain + ":name=" + mletClass);
connectorClient.createMBean(mletClass, mletName) ;
[...]

// Create and register new Square and EquilateralTriangle MBeans
// by means of an HTML document containing MLET tags
// The url string is read from the command line
ObjectName squareMLetClassLoader = null;
ObjectName triangleMLetClassLoader = null;

Object mletParams[] = {url};
String mletSignature[] = {"java.lang.String"};
Vector mbeanList = (Vector) connectorClient.invoke(

mletName, "performLoadURL", mletParams, mletSignature) ;

for (Enumeration enum = mbeanList.elements(); enum.hasMoreElements();) {
Object element = enum.nextElement();
if (element instanceof Vector) {

// Success, we retrieve the new object name
Vector v = (Vector) element;
ObjectInstance objectInstance = (ObjectInstance) v.elementAt(0);
ObjectName classLoaderObjectName = (ObjectName) v.elementAt(1);

(continued)

186 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

(Continuation)

if (objectInstance.getClassName().equals("Square")) {
// Retrieve the MBean that loaded the Square

squareMLetClassLoader = classLoaderObjectName;
} else if (objectInstance.getClassName().equals(

"EquilateralTriangle")) {
// Retrieve the MBean that loaded the EquilateralTriangle
triangleMLetClassLoader = classLoaderObjectName;

}
echo("\tOBJECT NAME = " + objectInstance.getObjectName());

} else {
// Failure, find out why
echo("\tEXCEPTION = " + ((Throwable)element).getMessage());

}
}

As in the agent application, we may need a shortcut for instantiating other MBeans
without specifying an m-let file. Again, we can use an existing class loader from a
previously loaded class to download the same classes again. We use the
createMBean method of the connector client which lets us specify a class loader
name. The following code is the rest of the manager’s runMLetExample method,
and it is also nearly identical to the agent’s code.

CODE EXAMPLE 12–7 Asking the Agent to Load Classes Directly

// Create a new Square MBean from its class in the Square.jar file.
String squareClass = "Square";
ObjectName squareName = new ObjectName(

"MLetExample:name=" + squareClass + ",id=2");
Object squareParams[] = {new Integer(12)};
String squareSignature[] = {"java.lang.Integer"};
connectorClient.createMBean (squareClass, squareName,

squareMLetClassLoader , squareParams, squareSignature);

// Create a new EquilateralTriangle MBean from its class in the
// EquilateralTriangle.jar file.
String triangleClass = "EquilateralTriangle";
ObjectName triangleName = new ObjectName(

"MLetExample:name=" + triangleClass + ",id=3");
Object triangleParams[] = {new Integer(20)};
String triangleSignature[] = {"java.lang.Integer"};
connectorClient.createMBean (triangleClass, triangleName,

triangleMLetClassLoader , triangleParams, triangleSignature);

(continued)

The M-Let Class Loader 187

(Continuation)

Simulating a “push” of the MBeans in this way is plausible, since the management
application can specify a URL where it controls the contents of the HTML file and
knows which classes are available.

Running the M-Let Manager Example
The MBeans in the agent and manager (client) examples are identical, and we will
set up the example in exactly the same manner.

$ cd examplesDir/MLetClient/
$ javac -classpath classpath *.java

$ jar cf Square.jar Square.class SquareMBean.class
$ rm Square.class SquareMBean.class

$ jar cf EquilateralTriangle.jar EquilateralTriangle.class \
EquilateralTriangleMBean.class
$ rm EquilateralTriangle.class EquilateralTriangleMBean.class

The manager is written to be run on the same host as the agent application. If you
wish to run it on a different host, you will need to modify the code for the Client
class constructor where the agent address is specified (see Code Example 12–5). You
could place the jar files and the m-let file on a remote machine and specify its new
URL as the parameter to the manager application; we run the example with this file
in the current directory.

Before launching the manager, you must launch the agent. Here we give commands
for launching the applications from the same terminal window running the Korn
shell. On the Windows NT platform, you will have to launch each application in a
separate window.

188 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

$ java -classpath classpath Agent &
$ java -classpath classpath Client file:${PWD}/GeometricShapes.html

In the output of the manager, you can see it create the m-let service MBean, and then
ask it to load the HTML file. Finally, we can see the two MBeans that were loaded
directly through the class loader shortcut. If you connect to the agent in a web
browser at the following URL: http://localhost:8082/ and reload its agent
view every time the manager pauses, you can see the MBeans as they are created.
The agent terminates after it disconnects its connector client. When you are done
viewing the agent, type the following commands to stop the agent application:

$ fg
java [...] Agent <Control-C>
^C$

The M-Let Loader (Java 2)
In the version of the Java Dynamic Management Kit for Java 2, the m-let loader is
itself a class loader object. It extends the URLClassLoader class of the java.net
package to simplify the downloading service it provides.

The m-let loader service is an instance of the MLet class in the
javax.management.loading package. It is also an MBean that can be accessed
remotely. It provides m-let file loading and the shortcut method seen in the version
for the JDK 1.1. In addition, it inherits the behavior which lets it be used directly as a
class loader, without requiring an m-let file.

We will start by demonstrating the usage of the m-let service as it would be used in
an agent or in an MBean. In our example, the agent application creates an MBean
server and then the m-let loader.

CODE EXAMPLE 12–8 Instantiating the MLet Class

// Parse debug properties and command line arguments.
[...]

// Instantiate the MBean server
MBeanServer server = MBeanServerFactory.createMBeanServer();
String domain = server.getDefaultDomain();

// Create a new MLet MBean and add it to the MBeanServer.
String mletClass = "javax.management.loading.MLet";
ObjectName mletName = new ObjectName(domain + ":name=" + mletClass);

The M-Let Class Loader 189

(Continuation)

server.createMBean(mletClass, mletName);

There is no special initialization that needs to be done before loading classes through
an m-let file.

Loading MBeans from a URL
In this example we will only load EquilateralTriangle MBeans through the
m-let file. We use the same m-let file which is shown in Code Example 12–2, but
without the tags for the Square MBeans.

The code for downloading the MBeans specified in the m-let file is also similar. In
the Java 2 version of the m-let loader, only the name of the method to call and the
format of its return value is different. In this code we call the getMBeansFromURL
method and analyze the result:

CODE EXAMPLE 12–9 Calling the getMBeansFromURL Method

// the url_2 string is read from the command line
echo("\tURL = " + url_2);
Object mletParams_2[] = {url_2};
String mletSignature_2[] = {"java.lang.String"};
Set mbeanSet = (Set) server.invoke(mletName, "getMBeansFromURL",

mletParams_2, mletSignature_2) ;

for (Iterator i = mbeanSet.iterator(); i.hasNext();) {
Object element = i.next();
if (element instanceof ObjectInstance) {

// Success, we display the new MBean’s name
echo("\tOBJECT NAME = " + ((ObjectInstance)element).getObjectName());

} else {
// Failure, we display why
echo("\tEXCEPTION = " + ((Throwable)element).getMessage());

}
}

The structure of the returned set is much simpler than in the case of the JDK 1.1
loader. In the JDK 1.1 version, the m-let loader handles separate class loader objects,
one for each code-base it has accessed. In the Java 2 version, the m-let loader is the

190 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

class loader, and it handles just a list of code-bases that it has accessed directly. You
can view this list by calling the getURLs method of the m-let loader MBean.

This behavior means that the getMBeansFromURL method does not need to return
the object names of class loaders it has used. Instead it just returns either the object
instance of the downloaded and registered MBean or a Throwable object in case or
an error or an exception. These are returned in a Set object containing as many
elements as there are MLETtags in the target m-let file.

Shortcut for Loading MBeans
This behavior also simplifies any repeated loading of the classes after they have been
loaded from an m-let file. Because the m-let loader has already used the code-base of
the MBean, it is available to be used again. All you need to do is specify the object
name of the m-let loader as the class loader when creating the MBean.

You can also load other MBeans in the same code-base, once the code-base has been
accessed by a call to the getMBeansFromURL method. In our example we will just
download another MBean of the EquilateralTriangle class.

CODE EXAMPLE 12–10 Reloading Classes in the M-Let Class Loader

// Create another EquilateralTriangle MBean from its class
// in the EquilateralTriangle.jar file.
String triangleClass = "EquilateralTriangle";
ObjectName triangleName = new ObjectName(

"MLetExample:name=" + triangleClass + ",id=3");
Object triangleParams[] = {new Integer(20)};
String triangleSignature[] = {"java.lang.Integer"};

server.createMBean (triangleClass, triangleName, mletName ,
triangleParams, triangleSignature);

Again, loading classes from known code-bases or reloading a class directly from its
jar file implies that the agent or MBean programmer has some knowledge of the
code-bases and jar file contents at runtime.

Loading MBeans Directly
Since the m-let loader object is a class loader, you can use it to load classes directly,
without needing to define an m-let file. This is the main advantage of the Java 2
version of the m-let loader service.

The M-Let Class Loader 191

Before you can load an MBean directly, you need to add the URL of its code-base to
the m-let loader’s internal list. Then we just use the m-let loader’s object name as the
class loader name when creating the MBean. Here is the code to do this in the agent
example:

CODE EXAMPLE 12–11 Using the M-Let MBean as a Class Loader

// Add a new URL to the MLet class loader
// The url_1 string is read from the command line
Object mletParams_1[] = {url_1};
String mletSignature_1[] = {"java.lang.String"};
server.invoke(mletName, "addURL", mletParams_1, mletSignature_1) ;

// Create a Square MBean from its class in the Square.jar file.
String squareClass = "Square";
ObjectName squareName = new ObjectName(

"MLetExample:name=" + squareClass);
Object squareParams[] = {new Integer(10)};
String squareSignature[] = {"java.lang.Integer"};
server.createMBean (squareClass, squareName, mletName ,

squareParams, squareSignature);

You only need to add the URL to the m-let loader the first time you want to
download a class. Once it is added, we can load it as many times as necessary by
calling createMBean directly.

Since this loading mechanism doesn’t use the MLETtag, the programmer must insure
that either the downloaded class provides its own object name or, as in the example
above, the agent provides one.

The fact that the m-let loader is also a class loader into which you can load multiple
URLs brings up the issue of name spaces. If there exists two classes with the same
name within the code-bases defined by the set of all URLs, the m-let loader will load
one of them non-deterministically. In order to specify one of them precisely, you
shouldn’t add the URL of the second code-base to the m-let loader. Instead, you will
have to create a second m-let loader MBean to which you can add the URL for the
second version of the class. In this case, you will have one m-let MBean that can load
one version of the class and another m-let MBean that can load the other.

Running the M-Let Agent Example
To run the m-let agent example for Java 2, you must have installed the Java Dynamic
Management Kit for 1.2, and set your classpath accordingly. This example is located
in the examplesDir/MLetAgent/ directory, see “Directories and Classpath” in the
preface for details.

192 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

In our example, we have two MBeans representing geometrical shapes. Before
running the example, we compile them and create a jar file for each. We also compile
the agent application at the same time.

$ cd examplesDir/MLetAgent/
$ javac -classpath classpath *.java

$ jar cf Square.jar Square.class SquareMBean.class
$ rm Square.class SquareMBean.class

$ jar cf EquilateralTriangle.jar EquilateralTriangle.class \
EquilateralTriangleMBean.class
$ rm EquilateralTriangle.class EquilateralTriangleMBean.class

The agent command line requires you to specify first the URL of a jar file for directly
loading the Square class, then the URL of the m-let file. We have left these files in
the examples directory, but you could place them on a remote machine. With the
Korn shell on the Solaris platform, you would type the following command:

$ java -classpath classpath Agent \
file:${PWD}/Square.jar file:${PWD}/GeometricShapes.html

In the output of the agent, you can see it create the m-let loader MBean, and then
download classes to create MBeans. It starts with the direct loading of the Square
class, and then loads from the HTML file which specifies two
EquilateralTriangle MBeans to be loaded. Once these have been loaded, we
can see the third one that is loaded through the class loader shortcut.

This agent uses the tracing mechanism, and you can select to receive the messages
from the m-let loader by specifying the -DINFO_MLET property on the command
line. The tracing mechanism is covered in the Java Dynamic Management Kit 4.2
Tools Reference guide and in the Javadoc API of the Trace class.

The agent then launches an HTML adaptor so that we can easily view the new
MBeans. In them we can see that the values contained in the ARGtags of the m-let
file were used to initialize the MBeans. Point your web browser to the following URL
and click on the MBeans in the MLetExample domain: http://localhost:8082/
. When you are done, type <Control-C> in the window where you launched the
agent.

The M-Let Class Loader 193

M-Let Loading from a Manager (Java 2)
Since the MLet class is an MBean, the m-let loader service is fully manageable from a
remote manager. This lets a manager create an m-let loader in an agent, add URLs to
its list of code-bases, and create MBeans whose classes must be downloaded first.

Using the Java 2 m-let class loader, we can again implement a “push” mechanism
originating from a management application. In fact, it is even easier due to the direct
class loading that the MLet MBean allows.

In the example, our manager will create an m-let loader in an agent and have it load
new MBean classes. Launched with only the an RMI connector and an HTML
adaptor, we can see at the end that the agent contains all of the new MBeans loaded
from jar files, along with the m-let loader MBean. The initialization of manager is
very simple:

CODE EXAMPLE 12–12 The main Method of the Manager Application

public Client() {

// Enable the trace mechanism
[...]

// Connect a new RMI connector client to the agent
connectorClient = new RmiConnectorClient();

// Use the default address (localhost)
RmiConnectorAddress address = new RmiConnectorAddress();
try {

connectorClient.connect(address) ;
} catch (Exception e) {

echo("Could not connect to the agent!");
e.printStackTrace();
System.exit(1);

}
}

public static void main(String[] args) {

// Parse command line arguments.
[...]

// Call the constructor to establish the connection
Client client = new Client();

// Run the MLet example (see below)
client.runMLetExample();

// Disconnect connector client from the connector server.

(continued)

194 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

(Continuation)

client.connectorClient.disconnect();

System.exit(0);
}

Asking the Agent to Load Classes
Now that the manager is connected to the client, we can ask it to load classes. First
we have it create an m-let loader MBean that we can use to download classes. Then
we demonstrate the various ways of loading classes:

� Through an m-let file, which has the advantage of loading many MBeans at once

� Directly, from a code-base that was used in an m-let file

� Directly, after specifying a URL for the code-base

The following code is taken from manager’s runMLetExample method. The code is
identical to the code of the agent example, except that we now go through the
RemoteMBeanServer interface of the connector client instead of directly through
the MBean server.

CODE EXAMPLE 12–13 Calling the getMBeansFromURL Method Remotely

// Get the domain name from the MBeanServer.
String domain = connectorClient.getDefaultDomain();

// Create a new MLet MBean and add it to the MBeanServer
String mletClass = "javax.management.loading.MLet";
ObjectName mletName = new ObjectName(domain + ":name=" + mletClass);
connectorClient.createMBean(mletClass, mletName) ;

[...]

// Create new EquilateralTriangle MBeans through MLET tags
// The url_2 string is read from the command line
Object mletParams_2[] = {url_2};
String mletSignature_2[] = {"java.lang.String"};
Set mbeanSet = (Set) connectorClient.invoke(

mletName, "getMBeansFromURL", mletParams_2, mletSignature_2) ;

for (Iterator i = mbeanSet.iterator(); i.hasNext();) {
Object element = i.next();
if (element instanceof ObjectInstance) {

(continued)

The M-Let Class Loader 195

(Continuation)

// Success
echo("OBJECT NAME = " + ((ObjectInstance)element).getObjectName());

} else {
// Failure
echo("EXCEPTION = " + ((Throwable)element).getMessage());

}
}

Now that the class loader has used the code-base of the jar file, we can create more
of the MBeans from the same jar file. We invoke the createMBean method of the
server with the object name of the class loader.

CODE EXAMPLE 12–14 Reloading MBeans from an Existing Code-Base

// Create another EquilateralTriangle MBean from the same jar file
// used in the MLET file
String triangleClass = "EquilateralTriangle";
ObjectName triangleName = new ObjectName(

"MLetExample:name=" + triangleClass + ",id=3");
Object triangleParams[] = {new Integer(20)};
String triangleSignature[] = {"java.lang.Integer"};
connectorClient.createMBean (triangleClass, triangleName, mletName ,

triangleParams, triangleSignature);

Finally, if we have a different code-base not associated with an m-let file, we can give
its URL directly to the loader. This allows us to ask the agent to create almost any
MBean, imitating a class “push” mechanism.

CODE EXAMPLE 12–15 Implementing a “Push” Operation

// Add a new URL to the MLet MBean to look for classes
// The url_1 string is read from the command line
Object mletParams_1[] = {url_1};
String mletSignature_1[] = {"java.lang.String"};
connectorClient.invoke(mletName, "addURL",

mletParams_1, mletSignature_1) ;

// Create a new Square MBean from its class in the Square.jar file
String squareClass = "Square";

(continued)

196 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

(Continuation)

ObjectName squareName = new ObjectName(
"MLetExample:name=" + squareClass);

Object squareParams[] = {new Integer(10)};
String squareSignature[] = {"java.lang.Integer"};
connectorClient.createMBean (squareClass, squareName, mletName ,

squareParams, squareSignature);

In this way, the manager can make code available on the network, and it can direct
its agents to load the classes to create new MBeans ready for management. This
mechanism can be used to distribute new resources, provide new services,or update
applications, all under the control of the manager.

Running the M-Let Manager Example
The MBeans in the agent and manager (client) examples are identical, and we will
set up the example in exactly the same manner.

$ cd examplesDir/MLetClient/
$ javac -classpath classpath *.java

$ jar cf Square.jar Square.class SquareMBean.class
$ rm Square.class SquareMBean.class

$ jar cf EquilateralTriangle.jar EquilateralTriangle.class \
EquilateralTriangleMBean.class
$ rm EquilateralTriangle.class EquilateralTriangleMBean.class

The manager is written to be run on the same host as the agent application. If you
wish to run it on a different host, you will need to modify the code for the Client
class constructor where the agent address is specified (see Code Example 12–12). You
could place the jar files and the m-let file on a remote machine and specify its new
URL as the parameter to the manager application; we run the example with this file
in the current directory.

Before launching the manager, you must launch the agent. Here we give commands
for launching the applications from the same terminal window running the Korn
shell. On the Windows NT platform, you will have to launch each application in a
separate window.

The M-Let Class Loader 197

$ java -classpath classpath Agent &
$ java -classpath classpath Client \
file:${PWD}/Square.jar file:${PWD}/GeometricShapes.html

In the output of the manager, you can see it create the m-let service MBean, and then
load all of the MBeans from different sources. If you connect to the agent in a web
browser at the following URL: http://localhost:8082/ and reload its agent
view every time the manager pauses, you can see the MBeans as they are created.

The agent terminates after it disconnects it connector client. When you are done
viewing the agent, type the following commands to stop the agent application:

$ fg
java [...] Agent <Control-C>
^C$

Secure Class Loading
Because class loading exposes an agent to external classes, the Java Dynamic
Management Kit offers security within the m-let service. Security mechanisms differs
between the JDK 1.1 and Java 2 Java runtime environments.

Security Manager (JDK 1.1)
The default behavior of the Java virtual machine forbids you from downloading
native libraries across the network, since the code they contain cannot be controlled
by the usual Java security mechanism. If the classes you wish to download are
bundled with native libraries, you will need to instantiate a custom security manager.

The Java Dynamic Management Kit provides a simple implementation of a security
manager, called com.sun.jdmk.AgentSecurityManager , which accepts all
incoming libraries. This security manager extends the
java.lang.SecurityManager interface, and you must install it as the default
security manager for your agent application.

Before your agent instantiates the MLetSrv class it must set the security manager in
the Java virtual machine. This is done with the following call:

import com.sun.jdmk.AgentSecurityManager;

198 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

System.setSecurityManager(new AgentSecurityManager());

Code Signing (JDK 1.1)
Code signing is a security measure which you can use to identify the originator of a
downloaded class. The m-let service will enforce code signatures if it is instantiated
in secure mode. One of the constructors of the MLetSrv class takes a boolean
parameter which specifies the security mode. For obvious security reasons, the
security mode cannot be modified once the m-let service is instantiated.

When the m-let service is running in secure mode, it will only load classes and
native libraries which are signed by a trusted party. A trusted party is identified by a
key: this key was used to sign the code and a copy of the key is given to all parties
that wish to download the signed class. Therefore, you must identify trusted keys in
your agent before attempting to download their signed classes.

Note - Downloading native libraries always requires a custom security manager,
regardless of whether they are trusted or not. See the description of the “Security
Manager (JDK 1.1)” on page 198.

In the JDK 1.1 environment, .jar files are signed using the javakey utility. You
also use the javakey utility on your agent’s host to identify trusted keys. The
command line parameters of this tool allow you to define your security policy based
on trusted identities and keys. Please refer to the JDK documentation of the
javakey utility for details.

When the secure mode of the m-let service is enabled, unsigned classes and libraries
will never be loaded.

When the secure mode is not enabled, all classes and native libraries may be
downloaded, regardless of whether they are signed and not trusted, or not signed.

Code Signing (Java 2)
The code signing mechanism and trust policies were modified for the Java 2 platform.

In the MLet class for the Java 2 platform, security is no longer determined when you
instantiate the m-let service. Rather, security is enabled or disabled for your entire
agent application, including any class loaders used by the m-let service. Class loaders
on the Java 2 platform also rely on code signing, but the mechanism is different.

To enable security on the Java 2 platform, launch your agent applications with the
java.lang.SecurityManager property on the command line. Then, when the
m-let service loads a class through one of its class loaders, the class loader will check
the origin and signature of the class against the list of trusted origins and signatures.

The tools involved in signing a class file are the jar , keytool , and jarsigner
utilities. On the host where the agent application would like to download a class,

The M-Let Class Loader 199

you define a set of permissions for signatures and URL origins. Then, you need to
use the policytool utility to generate a java.policy file containing the trusted
signatures. Please refer to the JDK documentation for the description of these utilities.

When the agent application is launched with a security manager, it will check this
policy file to insure that the origin and signature of a downloaded class match a
trusted origin and a trusted signature. If they do not match, the code is not trusted
and cannot be loaded.

When the agent application is launched without the security manager, all classes and
native libraries may be downloaded and instantiated, regardless of their origin and
signature, or lack thereof.

200 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

CHAPTER 13

The Relation Service

The relation service defines and maintain logical relations between MBeans in an
agent. It acts as central repository of relation types and relation instances, and it
ensures the consistency of all relations it contains. Local and remote applications that
access the agent can define new types of relations and then declare a new instance of
a relation between MBeans.

You may only create relations that respect a known relation type, and the service
allows you to create new relation types dynamically. Then you can access the
relations and retrieve the MBeans in specific roles. The relation service listens for
MBeans being deregistered and removes relation instances that no longer fulfill their
relation type. It sends notifications of its own to signal when relation events occur.

The Java Dynamic Management Kit also exposes the interfaces classes for defining
your own relation objects. By creating relation instances as objects, you can
implement them as MBeans which can expose operations on the relation they
represent.

Like the other services, the relation service is instrumented as an MBean, allowing
remote access and management.

The code samples in this topic are taken from the files in the Relation directory
located in the main examplesDir (see “Directories and Classpath” in the preface).

Contents:

� “Defining Relations” on page 202 demonstrates how to create relations through
the relation service.

� “Operations of the Relation Service” on page 207 covers the operations for
manipulating relations and their consequences.

� “Objects Representing Relations” on page 210 shows how to define relations
outside of the relation service, yet under its control.

� “Running the Relation Service Example” on page 215 demonstrates the
functionality of this service.

201

Defining Relations
A relation is composed of named roles, each of which defines the cardinality and
class of MBeans that will be put into association with the other roles. A set of one or
more roles defines a relation type. The relation type is a template for all relation
instances that wish to associate MBeans representing its roles. We use the term
relation to mean a specific instance of a relation that associates existing MBeans
according to the roles in its defining relation type.

For example, we can say that Books and Owner are roles. Books represents any
number of owned books of a given MBean class, and Owner is a single book owner
of another MBean class. We might define a relation type containing these two roles
and call it Personal Library : it represents the concept of book ownership.

The following diagram represents this sample relation, as compared to the UML
modeling of its corresponding association.

Relation Type

Role

Owner

Personal Library

1..1

JMX Model UML Model

Role

Books

0..n

Owner
1..1

Books
0..n

Figure 13–1 Comparison of the Relation Models

There is a slight difference between the two models. The UML association implies
that each one of the Books can only have one owner. Our relation type only models
a set of roles, guaranteeing that a relation instance has one Owner MBean and any
number of MBeans in the role of Books .

Note - The relation service does not do inter-relation consistency checks, they are the
responsibility of the designer if they are needed. In our example, the designer would
need to ensure that the same book MBean does not participate in two different
Personal Library relations, while allowing it for an owner MBean.

In the rest of this topic, we will see how to handle the roles, relation type and
relation instances through the relation service. We will use the names and relations

202 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

presented in the programming example. First of all, we instantiate the relation
service as we would any other MBean and register it in our agent’s MBean server.

CODE EXAMPLE 13–1

// Create the RelationService MBean
String relServClassName =

" javax.management.relation.RelationService ";
ObjectName relServObjName = new ObjectName(

"DefaultDomain:type=javax.management.relation.RelationService1");

// We use a constructor which takes a boolean parameter
// to set the ImmediatePurge mode for relation consistency
Object[] params = new Object[1];
params[0] = new Boolean(true);
String[] signature = new String[1];
signature[0] = "boolean";

server.createMBean (theRelServClassName, theRelServObjName,
params, signature);

The relation service exposes an attribute called Active that is false until its
MBean is registered with the MBean server. All of the operations that handle relation
or role MBeans, either directly or indirectly, will throw an exception when the service
is not active.

Defining Role Information
Before we can create relation instances, we need a relation type, and before we can
define a relation type, we need to represent the information about its roles. This
information includes:

� A name string (required)

� The name of the MBean class that fulfills this role (required)

� Read-write permissions (the default is both readable and writeable)

� The multiplicity, expressed as a single range (the default is 1..1)

� A description string (the default is a null string)

The name can be any string that is manipulated by the Java String class. It will be
used to retrieve the corresponding MBeans when accessing a relation instance. The
multiplicity is limited to the range between the minimum and maximum number of
MBeans required for this role to fulfilled. The read-write permissions apply to all of
the MBeans in the role, since the value of a role is read or written as a complete list.

The role information is represented by the RoleInfo class. In our example, we
define two different roles:

The Relation Service 203

CODE EXAMPLE 13–2 Instantiating RoleInfo Objects

// Define two roles in an array
// - container: SimpleStandard class/read-write access/multiplicity: 1..1
// - contained: SimpleStandard class/read-write access/multiplicity: 0..n

RoleInfo[] roleInfoArray = new RoleInfo[2];
String role1Name = "container" ;
roleInfoArray[0] =

new RoleInfo(role1Name, "SimpleStandard" ,
true, true,
1, 1,
null);

String role2Name = "contained" ;
roleInfoArray[1] =

new RoleInfo(role2Name, "SimpleStandard" ,
true, true,
0, -1,
null);

We build an array of RoleInfo objects that is intended to define a relation type, so
it needs to define a valid set of roles. All role names must be unique within the array,
and none of the array’s elements may be null. Also, the minimum and maximum
cardinalities must define a range of at least one integer.

Defining Relation Types
We define a relation type in the relation service by associating a name for the relation
type with a non-empty array of RoleInfo objects. These are the parameters to the
service’s createRelationType method that we call through the MBean server.

CODE EXAMPLE 13–3 Defining a Relation Type

try {
String relTypeName = "myRelationType" ;

Object[] params = new Object[2];
params[0] = relTypeName ;
params[1] = roleInfoArray ;
String[] signature = new String[2];
signature[0] = "java.lang.String";
// get the string representing the "RoleInfo[]" object
signature[1] = (roleInfoArray.getClass()).getName();

server.invoke(relServObjName, "createRelationType" ,

(continued)

204 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

(Continuation)

params, signature);

} catch (Exception e) {
echo("\tCould not create the relation type " + relTypeName);
printException(e);

}

The relation type name given by the caller must be unique among all relation type
names already created in the relation service. Relations will refer to this name to
define their type, and the service will verify that the roles of the relation match the
role information in this type.

The relation service provides methods for managing the list of relation types it
stores. The removeRelationType removes the type’s definition from the relation
service and also removes all relation instances of this type. This mechanism is further
covered in “Maintaining Consistency” on page 208.

Other methods give the list of all currently defined relation types or the role
information associated with a given type. Role information is always obtained
through the name of the relation type where it is defined. Here we show the
subroutine that our example uses to print out all role and type information.

CODE EXAMPLE 13–4 Retrieving Relation Types and Role Information

try {
echo("\n-> Retrieve all relation types");
Object[] params1 = new Object[0];
String[] signature1 = new String[0];
ArrayList relTypeNameList = (ArrayList)
(server.invoke(relServObjName, "getAllRelationTypeNames" ,

params1, signature1));

for (Iterator relTypeNameIter = relTypeNameList.iterator();
relTypeNameIter.hasNext();) {

String currRelTypeName = (String)(relTypeNameIter.next());
echo("\n-> Print role info for relation type " +

currRelTypeName);
Object[] params2 = new Object[1];
params2[0] = currRelTypeName ;
String[] signature2 = new String[1];
signature2[0] = "java.lang.String";
ArrayList roleInfoList = (ArrayList)

(server.invoke(relServObjName,"getRoleInfos" ,
params2, signature2));

printList(roleInfoList);

(continued)

The Relation Service 205

(Continuation)

}
} catch (Exception e) {

echo("\tCould not browse the relation types");
printException(e);

}

Creating Relations
Now that we have defined a relation type, we can use it as a template for creating a
relation. A relation is a set of roles which fulfills all of the role information of the
relation type. The Role object contains a role name and value which is the list of
MBeans that fulfills the role. The RoleList object contains the set of roles used
when setting a relation or getting its role values.

In order to create a relation we must provide a set of roles whose values will
initialize the relation correctly. In our example we use an existing SimpleStandard
MBean in each role that we have defined. Their object names are added to the value
list for each role. Then the each Role object is added to the role list.

CODE EXAMPLE 13–5 Initializing Role Objects and Creating a Relation

[...] // define object names and create SimpleStandard MBeans

// Instantiate the roles using the object names of the MBeans
ArrayList role1Value = new ArrayList();
role1Value.add(mbeanObjectName1);
Role role1 = new Role(role1Name, role1Value) ;

ArrayList role2Value = new ArrayList();
role2Value.add(mbeanObjectName2);
Role role2 = new Role(role2Name, role2Value) ;

RoleList roleList1 = new RoleList();
roleList1.add(role1);
roleList1.add(role2);

String relId1 = relTypeName + "_instance";

try {
Object[] params = new Object[3];
params[0] = relId1 ;
params[1] = relTypeName ;
params[2] = roleList1 ;
String[] signature = new String[3];
signature[0] = "java.lang.String";

(continued)

206 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

(Continuation)

signature[1] = "java.lang.String";
signature[2] = "javax.management.relation.RoleList";
server.invoke(theRelServObjName, "createRelation" ,

params, signature);
} catch(Exception e) {

echo("\tCould not create the relation " + RelId1);
printException(e);

}

The createRelation method will raise an exception if the provided roles do not
fulfill the specified relation type. You may omit Role objects for roles that allow a
cardinality of 0; their values will be initialized with an empty list of object names.
The relation service will check all provided object names to ensure they are
registered with the MBean server. Also, the relation identifier name is a string which
must be unique among all relations in the service.

The corresponding removeRelation method is also exposed for management
operations. It is also called internally to keep all relations coherent, as described in
“Maintaining Consistency” on page 208. In both cases, removing a relation means
that you can no longer access it through the relation service, and the isRelation
operation will return false when given its relation identifier. Also, its participating
MBeans will no longer be associated through the roles in which they belonged. The
MBeans continue to exist unaltered otherwise and may continue to participate in
other relations.

Operations of the Relation Service
In addition to the creation and removal methods for relation types and instances, the
relation service provides operations for finding related MBeans, determining the role
of a given MBean, and accessing the MBeans of a given role or relation.

Query Operations
Once relations have been defined, the relation service allows you to do searches
based on the association of objects that the relations represent. The following
operation perform queries on the relations:

The Relation Service 207

� findAssociatedMBeans - Returns a list of all object names referenced in any
relation where a given object name appears; each of these object names is mapped
to the list of relation identifiers where the two MBeans are related, since the pair
can be related through different relation instances

Two optional parameters let you specify a relation type and role name. When
either or both of these are specified, the only relations to be considered are those
of the given type and/or where the given object name appears in the named role.

� findReferencingRelations - Takes an object name and returns the list of
relation identifiers where it is referenced; each identifier is mapped to the list of
roles in which the corresponding MBean appears in that relation; again, you may
specify the relation type and/or role name in which the given MBean must appear

� getReferencedMBeans - Returns a list of all MBeans currently in a given
relation; their object names are mapped to the role names where they are
referenced, since the same MBean may appear in more than one role of the same
relation

� findRelationsOfType - Returns the list of identifiers of all relations that were
created or added with a given relation type

� getRelationTypeName - This method is the inverse of the previous, returning
the relation type name of the relation with a given identifier

Accessing Roles
Once you have a relation identifier, you will probably want to access its role values.
The relation service provides getters and setters for roles, as well as bulk operations
to get or set several or all roles in a relation. Remember that the value of a role is a
list of MBeans, and a role is identified by a name string.

Input parameters to setter operations are the same Role and RoleList classes that
are used to create relations. Bulk getters and setters return a RoleResult object
which contains separate lists for successful and failed individual role operations.

Inside a role result, the list of roles and values that were successfully accessed are
given in a RoleList instance. The information about roles that couldn’t be read or
written is returned in a RoleUnresolvedList . This list contains RoleUnresolved
objects that name the role which couldn’t be accessed and an error code explaining
the reason, such as an invalid role name or the wrong cardinality for a role. The error
codes are defined as static final fields in the RoleStatus class.

Maintaining Consistency
All relation service operations that set the role of a relation always verify that the
role value fulfills its definition in the relation type. An incorrect MBean type, the

208 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

wrong cardinality of the role, or an unknown role name will prevent that role from
being modified, guaranteeing that the relation always fulfills it relation type.

As we shall see in “Objects Representing Relations” on page 210, relations and
relation types can also be objects that are external to the relation service. In this case,
they are responsible for maintaining their own role-consistency. The relation service
MBean exposes methods to assist these object is verifying that their roles conform to
their defined relation type. In all cases of an external implementation of a relation,
the object designer is responsible for ensuring its coherence.

Removing a relation type can cause existing relations to no longer have a defining
type. The policy of the removeRelationType operation is to assume that the caller
is aware of existing relations of the given type. Instead of forbidding the operation,
this method removes the relations that were defined by the given type. It is the
designer’s responsibility to first call the findRelationsOfType operation to
determine if any existing relations will be affected.

MBeans participating in a relation may be removed from the MBean server by some
other management operation, thereby modifying the cardinality of a role where they
were referenced. In order to maintain the consistency in this case, the relation service
must remove all relations in which a role no longer has the cardinality defined in it
relation type. The process of determining invalid relations and removing them is
called a purge.

The relation service listens for deregistration notifications of the MBean server
delegate, and will need to purge its MBeans whenever one is received. It must
determine if the removed MBean was involved in any relations, and if so, whether
its removal violates the cardinality of each role where it appears. The relation service
exposes the boolean PurgeFlag attribute which the programmer must set to
determines whether purges are done automatically or not.

When the purge flag is true , the relation service will purge its data immediately
after every deregistration notification. However, the purge operation can be resource
intensive for large sets of relation data. In that case the managing application may set
the purge flag to false and only call the purgeRelations operation to purge the
data when needed.

For example, if there are many MBean deregistrations and few relation operations, it
may make sense to only purge the relation service manually before each operation. Or
the automatic purge flag may be temporarily set to false while executing time-critical
operations that need to remove MBeans, but that won’t access the relation service.

There are two possible consequences of an unpurged relation service. Roles in a
relation may reference object names which no longer have an associated MBean. Or
worse, the object name may have been reassigned to another MBean, leading to a
totally incoherent state. The designer of the management solution is responsible for
setting the purge policy so that operations will always access consistent relation
values.

The Relation Service 209

Relation Service Notifications
The relation service is a notification broadcaster that notifies listeners of events
affecting relations. It sends RelationNotification objects in the following cases:

� A new relation is created: the notification contains its identifier and its relation
type

� An existing relation is updated: in addition to the relation identifier and type, the
notification contains the list of names, the list of new values, and the list of old
values for all roles that have been modified

� A relation is removed: the notification contains its identifier and its relation type

There are three equivalent notification types for events affecting relations defined as
external MBeans (see “Objects Representing Relations” on page 210). In addition to
the role and relation information, these notifications contain the object name of this
MBean.

Objects Representing Relations
When creating relation types and instances, their representations are handled
internally and only accessed through the interface of the relation service. However,
the service also allows you to create external objects which represent relations, and
then add them under the service’s control to access them through its operations.

One advantage of representing relation types and instances as classes that they can
perform their initialization in the class constructor. Applications can then instantiate
the classes and add them to the relation service directly, without needing to code for
their creation. The relation type classes can be downloaded to agent applications for
use throughout the management architecture.

Another advantage is that relations are represented as MBeans and must be
registered in the MBean server. This means that management applications can get
role information directly from the relation MBean instead of going through the
relation service.

The main advantage of an external relation class is that it can be extended to add
properties and methods to a relation. They can be accessible through attributes and
operations in the relation MBean so that they are also exposed for management.
These extensions can represent more complex relations and allow more flexible
management architectures.

With the power of manipulating relations comes the responsibility of maintaining the
relation model. A relation MBean can expose an operation for adding an object name
to a role, but its implementation must first ensure that the new role value will
conform to the relation’s type. Then, it must also instruct the relation service to send
a role update notification. The relation service MBean exposes methods for

210 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

maintaining consistency and performing required operations. It is the programmer’s
responsibility to call the relation service when necessary in order to maintain the
consistency of its relation data.

The RelationTypeSupport Class
A class must implement the RelationType interface in order to be considered a
representation of a relation type. The methods of this interface are used to access the
the role information that makes up a relation type. Since relation types are immutable
within the relation service, there are no methods for modifying the role information.

The RelationTypeSupport class is the implementation of this interface that is
used internally by the relation service to represent a relation type. By extending this
class, you can quickly write new relation type classes with all the required
functionality. The class has a method for adding roles to the information that is
exposed; this method can be called by the class constructor to initialize all roles. Our
simple example does just this, and there is little other functionality that can be added
to a relation type object.

CODE EXAMPLE 13–6 Extending the RelationTypeSupport Class

import javax.management.relation.*;

public class SimpleRelationType extends RelationTypeSupport {

// Constructor
public SimpleRelationType(String theRelTypeName) {

super(theRelTypeName);

// Defines the information for two roles
// - primary: SimpleStandard class/read-write/cardinality=2
// - secondary: SimpleStandard class/read-only/cardinality=2
try {

RoleInfo primaryRoleInfo =
new RoleInfo("primary", "SimpleStandard" ,

true, true,
2, 2,
"Primary description");

addRoleInfo(primaryRoleInfo) ;

RoleInfo secondaryRoleInfo =
new RoleInfo("secondary", "SimpleStandard" ,

true, false,
2, 2,
"Secondary description");

addRoleInfo(secondaryRoleInfo) ;
} catch (Exception exc) {

throw new RuntimeException(exc.getMessage());

(continued)

The Relation Service 211

(Continuation)

}
}

}

We now use our class to instantiate an object representing a relation type. We then
call the relation service’s addRelationType operation to make this type available in
the relation service. Thereafter, it is manipulated through the service’s operations and
there is no way to distinguish it from other relation types that have been defined.

CODE EXAMPLE 13–7 Adding an Externally Defined Relation Type

String usrRelTypeName = "SimpleRelationType";
SimpleRelationType usrRelType =

new SimpleRelationType("SimpleRelationType") ;
try {

Object[] params = new Object[1];
params[0] = usrRelType ;
String[] signature = new String[1];
signature[0] = "javax.management.relation.RelationType";
server.invoke(relServObjName, "addRelationType" ,

params, signature);
} catch(Exception e) {

echo("\tCannot add user relation type");
printException(e);

}

The role information defined by a relation type should never change once the type
has been added to the relation service. This is why the RelationTypeSupport
class is not an MBean: it would make no sense to manage it remotely. All of the
information about its roles is available remotely through the relation service MBean.

The RelationSupport Class
The external class representation of a relation instance must implement the Relation
interface so that it can be handled by the relation service. The RelationSupport
class is the implementation provided which is also used internally by the service.

The methods of the relation interface expose all of the information needed to operate
on a relation instance: the getters and setters for roles and the defining relation type.

212 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

Because the relation support class must represent any possible relation type, it has a
constructor which takes a relation type and a role list, and it uses a generic
mechanism internally to represent any roles.

You could implement a simpler relation class that implements a specific relation
type, in which case it would know and initialize its own roles. The class could also
interact with the relation service to create its specific relation type before adding
itself as a relation.

However, the simplest way to define a relation object is to extend the
RelationSupport class and provide any additional functionality you require. In
doing so, you can rely on the relation support class’ own methods for getting and
setting roles, thereby taking advantage of their built-in consistency mechanisms.

CODE EXAMPLE 13–8 Extending the RelationSupport Class

import javax.management.ObjectName;
import javax.management.relation.*;

public class SimpleRelation extends RelationSupport
implements SimpleRelationMBean {

// Constructor
public SimpleRelation(String theRelId,

ObjectName theRelServiceName,
String theRelTypeName,
RoleList theRoleList)

throws InvalidRoleValueException,
IllegalArgumentException {

super(theRelId, theRelServiceName, theRelTypeName, theRoleList);
}

[...] // Implementation of the SimpleRelationMBean interface
}

Our MBean’s SimpleRelationMBean interface itself extends the
RelationSupportMBean in order to expose its operations for management. In
order to represent a relation, the class must be an MBean registered in the MBean
server. This allows the relation service to rely on deregistration notifications in order
to know if the object name is no longer valid.

When instantiating our SimpleRelation MBean, we use the relation type defined
in Code Example 13–3. We also reuse the role list from Code Example 13–5 which
contains a single MBean in each of two roles. Before adding the relation to the
relation service, we must create it as an MBean in the MBean server. We then call the
addRelation operation of the relation service with our relation’s object name.

The Relation Service 213

CODE EXAMPLE 13–9 Creating an External Relation MBean

// Using relTypeName="myRelationType"
// and roleList1={container,contained}

String relMBeanClassName = "SimpleRelation";
String relId2 = relTypeName + "_instance";
ObjectName relMBeanObjName = new ObjectName(

"DefaultDomain:type=SimpleRelation2";

try {
Object[] params1 = new Object[4];
params1[0] = relId2;
params1[1] = relServObjName;
params1[2] = relTypeName;
params1[3] = roleList1;
String[] signature1 = new String[4];
signature1[0] = "java.lang.String";
signature1[1] = "javax.management.ObjectName";
signature1[2] = "java.lang.String";
signature1[3] = "javax.management.relation.RoleList";
server.createMBean(relMBeanClassName, relMBeanObjName ,

params1, signature1);
} catch(Exception e) {

echo("\t Could not create relation MBean for relation " + relId2);
printException(e);

}

// Add our new MBean as a relation to the relation service
try {

Object[] params2 = new Object[1];
params2[0] = relMBeanObjName ;
String[] signature2 = new String[1];
signature2[0] = "javax.management.ObjectName";
server.invoke(relServObjName, "addRelation" ,

params2, signature2);
} catch(Exception e) {

echo("\t Could not add relation MBean " + relMBeanObjName);
printException(e);

}

After a relation instance is added to the relation service, it can be accessed normally
like other relations. Management operations can either operate on the MBean directly
or access it through its identifier in the relation service. Two methods of the service
are specific to external relation MBeans:

� isRelationMBean - Takes a relation identifier and returns the object name of the
relation MBean, if it is defined

� isRelation - Takes an object name and returns its relation identifier, if it is a
relation MBean that has been added to the relation service

214 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

In our example, our MBean does not expose any functionality that interacts with the
relation service. It relies fully on the support class and only adds the implementation
of its own simple MBean interface. In a more realistic example, the MBean would
expose attributes or operations related to its role values.

For example, Personal Library could be a unary relation type containing the
Books role. We could then design an Owner MBean to be a relation of this type. In
addition to exposing attributes about the owner, the MBean would give the number
of books in the library, return an alphabetized list of book titles, and provide an
operation for selling a book. All of these would need to access the role list, and the
sale operation would need to modify the role to remove a book MBean.

All of these operations would need to keep the consistency of the relation. To do this,
the relation service exposes several methods that relation MBeans must call:

� checkRoleReading - Verifies the read access for the role of a given relation type,
before it is read

� checkRoleWriting - Verifies the write access, multiplicity and MBean class of a
role value before it can be written

� updateRoleMap - Provides the old and new vales of a role so that the relation
service can update its internal lists of referenced MBeans

� SendRoleUpdateNotification - Instructs the relation service to send a
notification containing the given old and new values of a role; since the relation
service must be the broadcaster for all relation notifications, relation MBeans must
call this method after modifying a role value

Running the Relation Service Example
The examplesDir/Relation directory contains all of the files for the agent
application and the associated MBeans.

Compile all files in this directory with the javac command. For example, on the
Solaris platform with the Korn shell, you would type:

$ cd examplesDir/Relation/
$ javac -classpath classpath *.java

To run the relation service example, launch its application with the following
command. Be sure that the classes for the SimpleRelationType and
SimpleRelation MBean can be found in its classpath.

The Relation Service 215

$ java -classpath classpath RelationAgent

When launched, the application first creates the RelationService MBean and then
begins its long demonstration of operations on roles, types and relations. The output
of each step is separated by a horizontal line to detect its starting point in the
scrolling display.

Press <Enter> to step through the example when the application pauses, or
<Control-C> at any time to exit.

216 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

CHAPTER 14

Cascading Agents

The cascading service allows you to access the MBeans of a subagent directly
through the MBean server of the master agent. The service is implemented in the
CascadingAgent MBean which connects to a remote subagent and makes all of the
subagent’s MBeans visible in the master agent. An agent can have several subagents,
and subagents may themselves cascade other agents, forming a hierarchy of
cascading agents.

By connecting to the root of an agent hierarchy, managers can have a single access
point to many resources and services. All MBeans in the hierarchy are manageable
through the top-most master agent, and a manager doesn’t need to worry about their
physical location. Like the other services, the cascading agent is implemented as an
MBean that can be managed dynamically. This allows the manager to control the
structure of the agent hierarchy, adding and removing subagents as necessary.

In particular, the cascading service MBean can work with any protocol connector,
including any custom implementation. Those supplied by the Java Dynamic
Management Kit give you the choice of using RMI, HTTP, or HTTPS. The cascading
service also lets you specify a filter for selecting precisely the MBeans of the subagent
that will be mirrored in the master agent. This mechanism lets you limit the number
of MBeans which are mirrored in the top-most agent of a large cascading hierarchy.

The code samples in this topic are taken from the files in the Cascading directory
located in the main examplesDir (see “Directories and Classpath” in the preface).

Contents:

� “The CascadingAgent MBean” on page 218 describes the main component of
the cascading service which creates the connections between two agents.

� “The Mirror MBeans in the Master Agent” on page 220 gives more details about
what you can and can’t do through the cascading service.

� “Running the Cascading Example” on page 223 lets you interact with the two
cascading agents through their HTML protocol adaptors.

217

The CascadingAgent MBean
You should create one CascadingAgent MBean for every subagent you wish to
manage through the master agent. Each connects to an agent and mirrors all of that
agent’s registered MBeans in the master agent’s MBean server. No other classes are
required or need to be generated in order to represent the MBeans.

The agent whose MBean server contains an active cascading service is called a master
agent in relation to the other agent which is mirrored. The agent to which the
cascading service is connected is called the subagent in relation to its master agent.
We say that it creates mirror MBeans to represent the subagent’s MBeans. See “The
Mirror MBeans in the Master Agent” on page 220 for a description of these objects.

A master agent can have any number of subagents, each controlled individually by a
different CascadingAgent MBean. A subagent may itself contain cascading agents
and mirror MBeans, all of which are mirrored again in the master agent. This
effectively allows cascading hierarchies of arbitrary depth and width.

Two master agents may also connect to the same subagent. This is similar to the
situation where two managers connect to the same agent and may access the same
MBean. If the implementation of a management solution permits such a condition, it
is the designer’s responsibility to handle any synchronization issues in the MBean.

The connection between two agents resembles the connection between a manager
and an agent. The cascading service MBean relies on a connector client, and the
subagent must have the corresponding connector server. The subagent’s connector
server must already be instantiated, registered with its MBean server, and ready to
receive connections.

In our example application, we use the RMI connector client which we will connect
to the RMI connector server of the subagent on port 1099 of the localhost. In fact, this
is the same as the default values when instantiating a cascading agent MBean, but
we also wish to specify a pattern for selecting the MBeans to mirror. By default, all
MBeans of the subagent are mirrored in the master agent; we provide an object name
pattern to only select those in the subagent’s CascadedDomain .

CODE EXAMPLE 14–1 Connecting to a Subagent

ObjectName mbeanObjectName = null;
String domain = server.getDefaultDomain();
mbeanObjectName = new ObjectName(domain + ":type=CascadingAgent");
[...]

RmiConnectorAddress address = new RmiConnectorAddress (
java.net.InetAddress.getLocalHost().getHostName(),
1099,
"name=RmiConnectorServer");

(continued)

218 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

(Continuation)

CascadingAgent remAgent = new CascadingAgent (
address,
"com.sun.jdmk.comm.RmiConnectorClient" ,
new ObjectName("CascadedDomain:*"),
null);

ObjectInstance remAgentInstance =
server.registerMBean(remAgent , mbeanObjectName);

[...] // Output omitted
// Now we explicitly start the cascading agent
// as it is not started automatically
//
echo("\nStarting the cascading agent...");
[...]
server.invoke(mbeanObjectName, "start" , null, null);
sleep(1000);
echo("\tIs ACTIVE = " + server.getAttribute(mbeanObjectName, "Active"));
echo("done");

Before the subagent’s MBeans are mirrored, the CascadingAgent MBean must be
registered in the master agent’s MBean server, and its “mirroring” must be started.
When you invoke the start operation of the cascading service MBean, it will
connect it to its designated subagent and create one mirror MBean to represent each
MBean in the subagent. When its Active attribute becomes true, the cascading
mechanism is ready to use.

The CascadingAgent MBean exposes two writeable attributes:

� Address is a ConnectorAddress object whose subclass defines the protocol
used for the connection and whose contents gives the address or machine name of
the subagent, along with a port number

� ClientConnectorClassName is a string which gives the class name of the
connector client to be used in the connection; it must be compatible with the
protocol defined by the class of the Address attribute

Neither of these attributes may be modified when the cascading service is active. You
must first call the MBean’s stop operation: this will remove all of the mirror MBeans
for the given subagent and disconnect from the subagent’s connector server. You
may then modify the address or the class of the connector client. The new values will
be used when you start the mirroring again: this lets you change subagents or even
change protocols.

When the cascading service is stopped or its MBean is removed from the master
agent, all of its mirror MBeans are deregistered. The MBean server delegate in the

Cascading Agents 219

master agent will send a deregistration notification for each mirror MBean as it is
removed.

The Mirror MBeans in the Master Agent
Once the cascading service is active, you interact directly with the mirror MBeans
representing the subagent’s MBeans. You may access and manage a mirror MBean as
if you are connected to the subagent and accessing or managing the original MBean.
The mirror MBeans are actual MBean objects registered in the master agent’s MBean
server with the same object name.

All management operations that could be performed on the original MBean can be
performed identically on its mirror MBean. You may modify attributes, invoke
operations and add or remove listeners, all with exactly the same result as if the
manager were connected to the subagent when performing the action.

The behavior of a mirror MBean is to transmit the action to the subagent’s MBean
and return with an answer or result. The actual computation is performed by the
original MBean running in its own agent.

In our example, we know that there is a timer MBean that was created in the
subagent. Once the cascading service is active for our subagent, we operate the timer
through it local mirror MBean. We can never have the direct reference to a mirror
MBean, so we always invoke operations through the master agent’s MBean server.

CODE EXAMPLE 14–2 Managing Mirrored MBeans

// Here we know the object name of the MBean we want to access, the
// object name of its mirrored MBean in the master agent will be identical.
ObjectName timerName = new ObjectName("CascadedDomain:type=timer");

echo("\n>>> Ask the Timer MBean to send a notification every 5 seconds ");
java.util.Date currentDate = new java.util.Date();
Object params[] = {

"Timer",
"Message",
new Integer(5),
new java.util.Date (currentDate.getTime() + new Long (2).longValue()),
new Long(1000) };

String signatures[]={ "java.lang.String",
"java.lang.String",
"java.lang.Object",
"java.util.Date",
"long"};

server.invoke(timerName, "addNotification" , params, signatures);

(continued)

220 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

(Continuation)

server.invoke(timerName, "start" , null, null);

echo("\n>>> Add ourselves as a listener to the Timer MBean");
server.addNotificationListener(timerName, this , null, null);

echo("\nPress <Enter> to remove the listener from the Timer MBean ");
waitForEnterPressed();
server.removeNotificationListener(timerName, this) ;

For the managing application, the mirror MBean in the master agent is the MBean.
Unregistering a mirror MBean in the master agent will unregister the mirrored
MBean in the subagent. If you want to control the number of mirror objects without
removing the originals, you must use filters and/or queries of the subagent’s
MBeans in the constructor of the cascading service MBean.

The mirror and its mechanism make the cascading totally transparent: a manager has
no direct way of knowing whether an object is a mirror or not. Neither does it have
any direct information about the topology of the cascading hierarchy rooted at the
agent which it accesses. If this information is necessary, the MBeans should expose
some kind of identification through their attributes, operations, or object names.

The Class of a Mirror MBean
Mirror MBeans are implemented as dynamic MBeans; they are instances of the
CascadeGenericProxy class. The cascading service gives them the MBeanInfo
object that they will expose and establishes their connection with the original MBean.
The MBean information contains the class name of the original MBean, not their own
class name. Exposing this borrowed class name guarantees that the cascading service
is completely transparent.

The symmetry of the Java Dynamic Management architecture means that this
cascading mechanism is scalable to any number of levels. The mirror object of a
mirror object is again an instance of the CascadeGenericProxy class, and it
borrows the same object name and class name. Any operation on the top-most mirror
will be propagated to its subagent, where the intermediate mirror will send it its own
subagent, and so forth. The cost of cascading is the cost of accessing the subagent: the
depth of your cascading hierarchy should be adapted to your management solution.

Because the cascading service MBean instantiates and controls all mirror MBeans, the
CascadeGenericProxy class should never be instantiated through a management

Cascading Agents 221

operation, nor by the code of the agent application. We have described it here only to
provide an example application of dynamic MBeans.

Cascading Issues
In this section, we explain some of the design issues that are determined by the
implementation of the cascading service.

Dynamic Mirroring
Any changes in the subagent’s MBeans are automatically applied to the set of mirror
MBeans, to ensure that both master agent and subagent remain consistent.

When an MBean is unregistered from the subagent, the cascading service MBean
removes its mirror MBean from the master agent. When a new MBean is registered
in the subagent, the cascading service instantiates its mirror MBean, sets up its
connection to the new MBean, and registers the mirror with the master agent’s
MBean server.

Both of these mechanisms scale to cascading hierarchies: adding or removing an
MBean in the master agent will trigger a notification that any cascading service
connected to the master agent will receive. This will start a chain reaction up to the
top of the hierarchy. Removing an MBean from the middle of a hierarchy also
triggers a similar reaction down to the original MBean which is finally removed.

Dynamic unregistration only applies to subagent MBeans that are actually mirrored.
Dynamic registration is also subject to filtering, as described in the next section.

MBean Filtering
When the cascading service MBean is instantiated, you may pass it an object name
pattern and a query expression. These will be applied to the list of MBeans in the
subagent to determine those that will be mirrored in the master agent. The filtering
will be in effect for the life of the cascading service connected to this MBean.

Filtering the mirrored MBeans reduces the number of MBeans in the master agent. It
also provides a way of identifying mirror MBeans in the master agent, as in our
example where cascading is limited to MBeans in the CascadedDomain .

Both the object name pattern and query expression will be used to filter any new
MBean which is registered in the subagent. If the new MBean meets the filter criteria,
it will become visible and mirrored in the master agent. Since the query expression
applies to attribute values of the MBean, you must be careful to initialize the new
MBean before registering it so that its values are significant when the filter is applied
by the cascading service.

222 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

Naming in Cascading Agents

Mirror MBeans are registered in the master agent with the same object name as the
mirrored MBean in the sub-agent. If the registration fails in the master agent’s
MBean server, no error is raised and no action is taken: the corresponding MBean
will simply not be mirrored in the master agent.

The most likely cause for registration to fail is that the object name already exists in
the master agent. An MBean cannot be registered if its chosen object name already
exists in the MBean server.

If your management solution has potential naming conflicts, you will need a design
that is guaranteed to assign unique object names throughout the cascade hierarchy.
You can set the default domain name in your subagents or use the MBeanServerId
attribute of the delegate MBean to give MBeans a unique object name.

Running the Cascading Example
The examplesDir/Cascading directory contains all of the files for the two agent
applications, along with a simple MBean.

Compile all files in this directory with the javac command. For example, on the
Solaris platform with the Korn shell, you would type:

$ cd examplesDir/Cascading/
$ javac -classpath classpath *.java

To run the cascading example, launch the subagent in another terminal window with
the following command. Be sure that the classes for the SimpleStandard MBean
can be found in its classpath.

$ java -classpath classpath SubAgent

Wait for the agent to be completely initialized, then launch the master agent with the
following command:

$ java -classpath classpath MasterAgent

When launched, the master agent application first creates the CascadingAgent
MBean and then sets up its connection to the subagent. The master agent then
performs operations on the mirrored MBeans of the subagent. Press <Enter> to step
through the example when the application pauses.

Cascading Agents 223

You may also interact with the example through the HTML adaptor of the master
agent and subagent. If you are still receiving timer notification on the master agent,
press <Enter> once more to remove the listener, but leave both agent applications
running.

Interacting with a Cascade Hierarchy

1. Open two browser windows side by side and load the following URLs:

The Subagent The Master Agent

http://localhost:8082/ http://localhost:8084/

In the subagent, you should see the timer MBean in the CascadedDomain and a
SimpleStandard MBean in the DefaultDomain .

The master agent is recognizable by the cascading service MBean in the
DefaultDomain . Otherwise it has an identical timer MBean registered in the
CascadedDomain : this is the mirror for the timer in the subagent. The
SimpleStandard MBean is not mirrored because our cascading service instance
filters with the following object name pattern:

CascadedDomain:*

2. Create four MBeans of the SimpleStandard class in following order:

On the Master Agent: CascadedDomain:name=SimpleStandard,number=1

On the Subagent: CascadedDomain:name=SimpleStandard,number=1

CascadedDomain:name=SimpleStandard,number=2

CascadedDomain:name=SimpleStandard,number=3

When you are finished, reload the agent view on the master agent: you should
see that the mirror MBeans for the last two have been created automatically. Look
at the MBean view of either of these mirror MBeans on the master agent: their
class name appears as SimpleStandard .

224 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

3. In the master agent, set a new value for the State string attribute of all 3 of its
SimpleStandard MBeans.

When you look at the corresponding MBeans in the subagent, you see that
number=2 and number=3 were updated by their mirror MBean. However,
number=1 has not changed on the subagent: because it was created first in the
master agent, it is not mirrored and exists separately on each agent.

4. In the subagent, invoke the reset operation of all 3 of its SimpleStandard
MBeans.

When you inspect the MBeans in the master agent, the values for number=2 and
number=3 were reset. Remember that the HTML adaptor must get the values of
attributes for displaying them, so they were correctly retrieved from the mirrored
MBeans that we reset.

5. In the master agent, unregister MBeans number=1 and number=2 , then update
the agent view of the subagent.

In the subagent, you should still see the local version of number=1 , but
number=2 has been removed at the same time as its mirror MBean.

We are in a state where number=1 is a valid MBean for mirroring but it isn’t
currently mirrored. This incoherence results from the fact that we did not have
unique object names throughout the cascading hierarchy. Only new MBeans are
mirrored dynamically, following the notification that signals their creation. We
would have to stop and restart the master agent’s cascading service MBean to
mirror number=1 .

6. In the subagent, unregister MBeans number=1 and number=3 , then update the
agent view on the master agent.

The mirror MBean for number=3 was automatically removed by the cascading
service, so none of the MBeans we added now remain.

7. Invoke the stop operation of the CascadingAgent MBean in the master agent.

The last mirror MBean for the timer is removed from the master agent. The two
agents are no longer connected.

8. If you are finished with the agents, press <Enter> in both of their terminal
windows to exit the applications.

Cascading Agents 225

226 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

CHAPTER 15

The Discovery Service

The discovery service enables you to discover Java Dynamic Management agents in a
network. This service relies on a discovery client object which sends out multicast
requests to find agents. In order to be discovered, an agent must have a registered
discovery responder in its MBean server. Applications may also use a discovery
monitor which detects when discovery responders are launched or stopped.

The combination of this functionality allows interested applications to establish a list
of active agents and keep it current. In addition to knowing about the existence of an
agent, the discovery service provides the version information from an MBean
server’s delegate and the list of communication MBeans that are currently registered.
The discovery service uses the term communicators to designate a set of MBeans
consisting of protocol adaptors and connector server objects.

Often, the discovery client and the discovery monitor are located in a manager
application that wishes to know about the available agents. However, agent
applications are free to use the discovery service since they may require such
information for cascading (see “Cascading Agents”) or for any other reason. To
simplify using the discovery service in an agent, all of its components are
implemented as MBeans.

The code samples in this topic are taken from the file in the Discovery directory
located in the main examplesDir (see “Directories and Classpath” in the preface).

Contents:

� “Active Discovery” on page 228 covers how the discovery client initiates a search
for discovery responders.

� “Passive Discovery” on page 233 explains the roles of the discovery responder and
discovery monitor.

� “Running the Discovery Example” on page 238 demonstrates both active and
passive discovery.

227

Active Discovery
In active discovery, the discovery client initiates searches for agents on the network.
It involves a discovery client that sends the discovery request and a discovery
responder in each agent that responds. Each instance of the responder supplies the
return information about the agent in which it is registered. The return information is
represented in the discovery client by a vector of discovery response objects.

The application containing the discovery client can initiate a search at any time. For
example, it might do a search when it is first launched and periodically search again
for information about the communicators which may have changed. For each search,
the discovery client broadcasts a request and waits for the return information from
any responders.

In the following sections, we describe each of these objects in further detail.

The Discovery Client
The DiscoveryClient class provides methods to discover agents. The active
discovery operation sends a discovery request to a multicast group and waits for
responses. These messages are proprietary and are not exposed to the user.
Discovery clients can only discover agents listening on the same multicast group and
port, so your design must coordinate this information between the discovery client
and responders.

You can instantiate and perform searches from multiple discovery clients in a single
application. Each discovery client can be configured to use different multicast groups
or ports, allowing you to discover different groups of agents.

In our example, the discovery client is in an agent application: we register it as an
MBean and interact with it through the MBean server.

CODE EXAMPLE 15–1 Instantiating and Initializing a Discovery Client

// build the DiscoveryClient MBean ObjectName
//
ObjectName discoveryClientMBeanObjectName =

new ObjectName(domain + "name=myDiscoveryClient") ;

// Create, register and start the DiscoveryClient MBean
//
try {

ObjectInstance discoveryClientObjectInstance =
myMBeanServer. createMBean (

"com.sun.jdmk.discovery.DiscoveryClient" ,

(continued)

228 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

(Continuation)

discoveryClientMBeanObjectName) ;
myMBeanServer. invoke (discoveryClientMBeanObjectName,

"start" , null, null) ;

} catch(Exception e) {
e.printStackTrace();
System.exit(1);

}

The default multicast group is 224.224.224.224 and the default port is 9000 .
These may be set to other values through the multicastGroup and
multicastPort attributes, but only when the state of the discovery client is
OFFLINE. Before initiating searches, you must call the discovery client’s start
method. This will create its multicast socket and join the multicast group used for
broadcasting its discovery request.

The scope of the discovery request depends on the time-to-live used by the multicast
socket. Time-to-live is defined by the Java class java.net.MulticastSocket to be
a number between 1 and 255. By default, the time-to-live is 1, which corresponds to
the machine’s local area network. You can modify this value at any time by setting
the discovery client’s TimeToLive attribute.

By default, a discovery client waits for responses for one second after it has sent a
discovery request. This period can be customized by setting a value in milliseconds
for its TimeOut attribute. When setting this attribute, you should take into account
estimated time for a round-trip of a network packet using the given time-to-live.

Performing a Discovery Operation
An application triggers a search operation by invoking the findMBeanServers or
findCommunicators methods on an active DiscoveryClient object. Using the
current settings, it will send the multicast request and block for the timeout period. At
the end of the timeout period, these methods return the responses that were received.

Both methods return a vector of DiscoveryResponse objects. This class exposes
methods for retrieving information about the MBean server and the registered
communicator MBeans in the agent. The MBean server informations is the same as
that exposed by that agent’s MBean server delegate. The communicators are
identified by ConnectorAddress objects and indexed by object name in a hash
table.

The Discovery Service 229

Both search methods return the information about the agent’s MBean server. The
hash table of communicator MBeans is always empty for discovery responses
returned by the findMBeanServers method. Otherwise, you can extract object
names and protocol information from the hash table. One way of distinguishing the
communicator MBeans is to rely on the default names provided by the
ServiceName class.

Note - All discovery messages sent between components of the discovery service are
compatible between applications running different versions of the Java SDK or
different versions of the Java Dynamic Management Kit (4.x only). However, these
different configurations are not compatible for subsequent management operations
through connectors. You may use the getImplementationVersion method of the
DiscoveryResponse object to determine both the Java SDK and product version
numbers.

In our example, we request all information about the agents and use a simple
subroutine to print out all information in the discovery responses.

CODE EXAMPLE 15–2 Performing a Discovery Operation

// Discover all JDMK agents with a registered discovery responder
//
Vector discoveryResponses = (Vector) myMBeanServer.invoke (

discoveryClientMBeanObjectName, "findCommunicators" , null, null) ;

echo("We have found " + discoveryResponses.size() + " JDMK agent(s): ");
for (Enumeration e = discoveryResponses.elements();

e.hasMoreElements();) {
DiscoveryResponse discoveryResponse =

(DiscoveryResponse)e.nextElement() ;
printDiscoveryResponse(discoveryResponse) ;

}

[...]

private void printDiscoveryResponse (DiscoveryResponse discoveryResponse) {

// display information about the agent’s MBean server
//
echo("\t MBeanServerId = " + discoveryResponse.getMBeanServerId()) ;
echo("\t\t host name = " + discoveryResponse.getHost()) ;
[...]

// display information about communicator objects, if any
//
if (discoveryResponse.getObjectList() != null) {

for(Enumeration e= discoveryResponse.getObjectList().keys();
e.hasMoreElements();) {

ObjectName o = (ObjectName) e.nextElement();
echo("\t\t Communicator name = " + o) ;

}

(continued)

230 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

(Continuation)

}
}

On the agent side, the discovery responder automatically replies to discovery
requests. Any active, registered responder in the same multicast group that is
reached within the given time-to-live of the request will respond. It will
automatically gather the requested information about its MBean server and send the
response. The settings of the responder do not affect its automatic reply to discovery
requests. In “The Discovery Responder” on page 234 we will cover how its settings
control passive discovery.

In active discovery, the discovery client controls all parameters of a search it initiates,
including the response mode of the discovery responder. The discovery client
determines whether responses are sent back on a different socket (unicast) or sent to
the same multicast group. The default is unicast: if you want to use the multicast
response mode, set the PointToPointResponse attribute to false before
initiating the discovery.

Unicast Response Mode
When the PointToPointResponse boolean attribute is true , the discovery client
specifies unicast mode in its discovery requests. The responder will create a
datagram socket for sending the response only to the discovery client. As shown in
the following diagram, each responder will send its response directly back to the
discovery client. The datagram socket used by each responder is bound to its local
host address; this cannot be customized.

The Discovery Service 231

Manager

Discovery Responder

Agent 1

Agent 3

Agent 2

Discovery
Client

Unicast discovery
response message

Multicast discovery
request message

Discovery
response
object

Figure 15–1 Unicast Response Mode

Multicast Response Mode
When the PointToPointResponse boolean attribute is false , the discovery client
specifies multicast mode in its requests. The discovery responder will use the
existing multicast socket to send response, broadcasting it to the same multicast
group as the request. As shown in the following diagram, every member of the
multicast group will receive the message, but only the discovery client can make use
of its contents. Multicast mode avoids having to open another socket for the
response, but all of the responses will create traffic in each application’s socket.

232 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

Manager

Discovery Responder

Agent 1

Agent 3

Agent 2

Discovery
Client

Multicast discovery
response message

Multicast discovery
request message

Discovery
response
object

Figure 15–2 Multicast Response Mode

Passive Discovery

In passive discovery, the entity seeking knowledge about agents listens for their
discovery responders being activated or deactivated. When discovery responders are
started or stopped, they send out a proprietary message that contains all discovery
response information. The DiscoveryMonitor object waits to receive any of these
messages from the multicast group.

A discovery monitor is often associated with a discovery client. By relying on the
information from both, you can keep an up-to-date list of all agents in a given
multicast group.

The Discovery Service 233

Manager

Discovery Responder

Agent 1

Agent 3

Agent 2

Discovery
Client

Multicast registration
message (proprietary)

Discovery
monitor

Agent 4

New Discovery
Responder

Figure 15–3 Passive Discovery of Discovery Responders

Therefore, configuring and starting the discovery responder is an important step to
the overall discovery strategy of your applications.

The Discovery Responder
The agents that wish to be discovered must have an active DiscoveryResponder
registered in their MBean server. The responder plays a role in both active and
passive discovery:

� When the start operation of a discovery responder is invoked, it sends out a
multicast message indicating that it has been activated.

� When the discovery responder is active, it automatically responds to discovery
requests.

� When the responder’s MBean is unregistered or its stop operation is invoked, it
sends out a multicast message to indicate that it will be deactivated.

Both types of messages are proprietary and their contents are not exposed to the
user. These messages contain information about the MBean server, its delegate’s
information and a list of communicator MBeans, unless not requested by the
discovery client.

In our example we create the discovery responder in the MBean server and then
activate it.

CODE EXAMPLE 15–3 Initializing a Discovery Responder

// Set the domain name for the demo
//

(continued)

234 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

(Continuation)

String domain = "DiscoveryDemo:" ;

// build the DiscoveryResponder MBean ObjectName
//
ObjectName discoveryResponderMBeanObjectName =

new ObjectName(domain + "name=myDiscoveryResponder");

// Create and register the DiscoveryResponder MBean
//
try {

ObjectInstance discoveryResponderObjectInstance =
myMBeanServer.createMBean (

"com.sun.jdmk.discovery.DiscoveryResponder" ,
discoveryResponderMBeanObjectName) ;

// we don’t start the responder until our monitor is listening

} catch(Exception e) {
e.printStackTrace();
System.exit(1);

}

[...]

try {
myMBeanServer.invoke (discoveryResponderMBeanObjectName,

"start" , null, null) ;
} catch(Exception e) {

echo("\tDiscoveryResponder MBean was already started.") ;
}

The discovery responder has attributes for exposing a multicast group and a
multicast port. These attributes define a multicast socket that the responder will use
to receive discovery requests. It will also send activation and deactivation messages
to this multicast group. When sending automatic responses to discovery requests, the
time-to-live is provided by the discovery client. The responder’s time-to-live attribute
is only used when sending activation and deactivation messages.

We use the default settings of the discovery responder which are the multicast group
224.224.224.224 on port 9000 with time-to-live of 1. In order to modify these values,
you need to set the corresponding attributes before starting the discovery responder
MBean. You may also specify them in the class constructor. If the responder is active,
you will need to stop it before trying to set any of these attributes. In that way, it will
send a deactivation message using the old values and then an activation message
with the new values.

The Discovery Service 235

Discovery Monitor
The discovery monitor is a notification broadcaster: when it receives an activation or
deactivation message from a discovery responder, it sends a discovery responder
notification to its listeners. Once its parameters are configured and the monitor is
activated, the discovery is completely passive. You can add or remove listeners at
any time.

The DiscoveryMonitor MBean has multicast group and multicast port attributes
that determine the multicast socket where it will receive responder messages. Like
the other components of the discovery service, the default multicast group is
224.224.224.224 and the default port is 9000. You may specify other values for the
group and port either in the constructor or through attribute setters when the
monitor is off-line.

The discovery monitor in our example is registered as an MBean. We then add a
listener through the MBean server as we would for any other notification broadcaster.

CODE EXAMPLE 15–4 Instantiating and Starting a Discovery Monitor

// build the DiscoveryMonitor MBean ObjectName
//
ObjectName discoveryMonitorMBeanObjectName =

new ObjectName(domain + "name=myDiscoveryMonitor");

// Create, register and start the DiscoveryMonitor MBean
//
try {

ObjectInstance discoveryMonitorObjectInstance =
myMBeanServer.createMBean(

"com.sun.jdmk.discovery.DiscoveryMonitor",
discoveryMonitorMBeanObjectName) ;

myMBeanServer.invoke (discoveryMonitorMBeanObjectName,
"start", null, null);

} catch(Exception e) {
e.printStackTrace();
System.exit(1);

}

// Add ourselves as a listener to the DiscoveryMonitor MBean
//
try {

myMBeanServer.addNotificationListener(
discoveryMonitorMBeanObjectName, this, null, null) ;

} catch(Exception e) {
e.printStackTrace();
System.exit(1);

}

236 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

The discovery monitor must be activated with the start operation before it will
receive responder messages and send notifications. It will be stopped automatically if
it is unregistered from its MBean server. If it is not used as an MBean, you should
invoke its stop method before your application exits.

Discovery Responder Notifications
When it receives a responder’s activation or deactivation message, the discovery
monitor sends notification objects of the DiscoveryResponderNotification
class. This notification contains the new state of the discovery responder (ONLINE or
OFFLINE) and a DiscoveryResponse object with information from the agent
where the responder is located.

The listener could use this information to update a list of agents in the network. In
our example, the listener is the agent application itself, and the handler method only
prints out the information in the notification.

CODE EXAMPLE 15–5 The Discovery Responder Notification Handler

public void handleNotification(
javax.management.Notification notification, java.lang.Object handback) {

// We know we will only receive this subclass, so we can do the cast
DiscoveryResponderNotification discoveryNotif =

(DiscoveryResponderNotification) notification;
echo("\n>>> RECEIVED Discovery Notification FROM JDMK agent on host \"" +

discoveryNotif.getEventInfo().getHost() + "\"");

if (discoveryNotif.getState().intValue() == DiscoveryMonitor.ONLINE) {
echo("\t DiscoveryResponder state = ONLINE");

} else {
echo("\t DiscoveryResponder state = OFFLINE");

}
DiscoveryResponse info =

(DiscoveryResponse) discoveryNotif.getEventInfo();

// internal method for displaying the discovery response information
printDiscoveryResponse(info);

}

The Discovery Service 237

Running the Discovery Example
The examplesDir/Discovery directory contains the source file for the agent
application that demonstrates the discovery service. This agent creates the discovery
client, monitor and responder in the same MBean server, so it notifies itself when the
responder is online and discovers its own presence. By launching several of these
applications, you can see other agents being discovered.

Compile the file in this directory with the javac command. For example, on the
Solaris platform with the Korn shell, you would type:

$ cd examplesDir/Discovery/
$ javac -classpath classpath *.java

Interacting with the Discovery Example

1. To run the discovery example, launch the agent application with the following
command:

$ java -classpath classpath DiscoveryAgent

The agent application registers an HTML adaptor on the default port (8082). Then
press <Enter> to initialize the discovery components. The discovery service is
now ready, except for the discovery responder which hasn’t been started yet.

2. Press <Enter> a second time to activate the discovery responder.

The discovery monitor which has already been started receives the responder’s
activation message and triggers the notification listener. Our handler method
prints out the information from the discovery response notification, indicating
that the responder is ONLINE.

Press <Enter> again to invoke the findCommunicators method of the
discovery client and display its results. The content of the discovery response is
identical to the previous information, in particular, it contains the object name of
the HTML adaptor in our application.

Leave the application running in this state.

3. Now launch another DiscoveryAgent application in another terminal
window or on another host. You must specify a non-default port number for
the HTML adaptor if running on the same host, for example:

238 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

$ java -classpath classpath DiscoveryAgent 8084

Both applications will be using the multicast group 224.224.224.224 and
multicast port 9000 , so they will detect each other’s presence. Go through the
steps of this second application: you should see the first application receive the
activation message of the second responder. Then, the active discovery should
detect both agents. If your agents are running on the same host, you can tell them
apart by their unique MBeanServerId values in the response information.

4. Before stopping either of the discovery responders, you can interact with them
through their HTML adaptors. Connect to the first agent by loading the
following URL in a browser:

http://localhost:8082/

You can see the MBeans for all of the discovery components. From the MBean
view of the discovery responder, call its stop operation, modify its TimeToLive
attribute, and restart it. The discovery monitor in the other agent should detect
the two events and signal them to our listener.

You can also initiate an active search through the discovery client’s MBean:
invoke either of its find methods. However, the HTML adaptor cannot display the
contents of the resulting DiscoveryResponse object.

5. When you are finished, stop the discovery responders on both agents and then
the applications themselves by pressing <Enter> twice in each terminal
window. The second agent to be stopped should see the discovery responder of
the first being deactivated.

The Discovery Service 239

240 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

PART V SNMP Interoperability

From the start, the Java Dynamic Management Kit was designed to be compatible
with existing management standards. The Simple Network Management Protocol
(SNMP) is the most widely used of these, and the Java Dynamic Management Kit
provides the tools to integrate Java technology-based solutions into the SNMP world.

Using the SNMP interoperability with Java Dynamic Management solutions, you can
develop agents that can be accessed through SNMP and through other protocols. You
can also develop managers in the Java programming language which access both
SNMP agents and Java Dynamic Management agents.

The agent and manager tools of the Java Dynamic Management Kit are completely
independent. SNMP agents developed with this toolkit can be accessed by any
SNMP manager, and the SNMP manager API lets you connect to any SNMP agent.
The sample applications in this lesson use the toolkit on both agent and manager
sides, but this is only one possible configuration.

This lesson contains the following topics:

� “Creating an SNMP Agent” demonstrates how the SNMP protocol adaptor makes
a Java Dynamic Management agent also act as an SNMP agent. The MBeans
generated by the mibgen tool represent SNMP MIBs which can be accessed by
any SNMP manager connecting to the SNMP adaptor. This lets you implement
your MIB through Java code and take advantage of the agent services. The
example applications also demonstrate how traps are sent through the SNMP
protocol adaptor.

� “Developing an SNMP Manager” shows you how to use the SNMP manager API
to develop an SNMP manager in the Java programming language. An SNMP
manager handles Java objects representing peers, parameters, sessions, and
requests to access SNMP agents and perform management operations. Two
examples demonstrate synchronous and asynchronous manager applications, and
a third example shows how managers can communicate through inform requests.

� “Security Mechanisms in the SNMP Toolkit” groups all of the information about
creating secure SNMP agents and managers. Access control lists (ACL) provide
security on the agent side by restricting access to specific hosts based on their

community identification. Custom packet encoding between managers and agents
is also possible, letting you develop any level of communication security you need.

� “Implementing an SNMP Proxy” gives an example of an SNMP proxy that you
can use in an agent that uses the SNMP adaptor. An SNMP proxy is an object that
handles remote MIBs in a sub-agent. The proxy acts as a single point-of-entry to
let a manager access a whole hierarchy of sub-agents.

CHAPTER 16

Creating an SNMP Agent

Using the Java Dynamic Management Kit, you can create an agent application that is
both an SNMP agent and a normal JMX agent. SNMP MIBs can be represented as
MBeans and the SNMP protocol adaptor exposes them to SNMP managers. Only
MBeans derived from MIBs may be managed through the SNMP protocol adaptor,
but other managers may view and access them through other protocols.

The mibgen tool provided generates the code for MBeans that represent a MIB.
Groups and table entries are represented as MBean instances which expose the
SNMP variables through their attributes. The mibgen tool creates skeleton getters
and setters which only read or write internal variables. In order to expose the
behavior of your host machine or device, you need to implement the code that will
access the host- or device-specific functionality.

The SNMP protocol adaptor interacts with your customized MIB MBeans to
implement a compatible SNMPv1 and SNMPv2c agent. It also provides the
mechanisms for sending traps and implementing both community-based access
control and message-level data security (see “Security Mechanisms in the SNMP
Toolkit”).

The program listings in this tutorial show only functional code: comments and output
statements have been modified or removed for space considerations. However, all
management functionality has been retained for the various demonstrations. The
complete source code is available in the Snmp/Agent example directory located in
the main examplesDir (see “Directories and Classpath” in the preface).

Contents:

� “MIB Development Process” on page 244 explains how MIBs are implemented as
MBeans.

� “The SNMP Protocol Adaptor” on page 246 shows how to build an SNMP agent
with the components of the Java Dynamic Management Kit.

� “Sending Traps” on page 251 demonstrates the SNMP trap mechanism in the
SNMP adaptor.

243

� “Stand-Alone SNMP Agents” on page 257 demonstrates an alternative way of
implementing an SNMP agent.

MIB Development Process
Here we describe the process for making MIBs manageable through the SNMP
protocol adaptor of the Java Dynamic Management Kit. In our example, we
demonstrate this process on a subset of the MIB-II defined by RFC 1213.

Once you have defined the MIB you want to manage in your SNMP agent you need
to generate its MBean representation using the mibgen tool. This tool generates
MBeans that represent the whole MIB, each of its groups and nested groups, and
each of its table entries. This command-line tool and its output are fully described in
the Java Dynamic Management Kit 4.2 Tools Reference guide.

The mibgen tool only generates the MBean structure to represent the MIB, it is up to
the developer to implement the MIB functionality inside the generated classes. Our
example will only give a simple implementation of the MIB-II for demonstration
purposes. However, this will show you the way to extend the generated classes in
order to provide your own implementation.

Generating MIB MBeans
To run the mibgen tool for our example, go to the examplesDir/Snmp/Agent
directory and enter the following command:

$ mibgen -d . mib_II_subset.txt

This will generate the following files in the current directory:

� The MBean (by inheritance) for the whole MIB: RFC1213_MIB.java

� The MBean and its helper class for the Snmpgroup: Snmp.java ,
SnmpMBean.java , SnmpMeta.java

� The MBean and its helper class for the System group: System.java ,
SystemMBean.java , SystemMeta.java

� The MBean and its helper class for the Interfaces group: Interfaces.java ,
InterfacesMBean.java , InterfacesMeta.java

� The class representing the Interfaces table, and the MBean representing entries in
the table: TableIfTable.java , IfEntry.java , IfEntryMBean.java ,
IfEntryMeta.java

244 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

� Classes representing enumerated types used in these groups:
EnumSnmpEnableAuthenTraps.java , EnumIfOperStatus.java ,
EnumIfAdminStatus.java , EnumIfType.java

� The OID table for SNMP managers wanting to access this MIB:
RFC1213_MIBOidTable.java

The MBean with the name of the MIB is a central administrative class for managing
the other MBeans that represent the MIB groups and table entries. All of the other
MBeans contain the SNMP variables as attributes of their management interface. The
mibgen tool generates standard MBeans for the MIB, so attributes are implemented
with individual getter and setter methods.

These MBeans are just skeletons, meaning that the attribute implementations only
return a default value. You must implement the getters and setters of the attributes
to read and write data with the correct semantic meaning of the SNMP variable.

Since SNMP does not support actions in MIBs, the only operations in these MBeans
are checkers associated with the SNMP “Set” request in writeable variables. Again,
these are skeleton methods which you must implement to do the checks that you
require before the corresponding “Set” operation. You may add operations and
expose them in the MBean interface, but the SNMP manager will not be able to
access them. However, other managers will be able to call these operations if they are
connected through another protocol.

Implementing the MIB
Our example only implements a fraction of the attributes, those that are used in this
tutorial. The others are simply initialized with a plausible value. Using DEFVAL
statements in our MIB, we could force mibgen to generate MBeans with
user-defined default values for attributes. As this is not done in our example,
mibgen provides a plausible default value according to the variable type.

Our implementations of MIB behavior are contained in the classes with the Impl
suffix. These implementation classes extend those that are generated by mibgen so
that we can regenerate them without overwriting our customizations.

Here is a summary of the implementation shown in the agent example:

� InterfacesImpl.java - adds a notification listener to the IfTable object, then
creates two table entries with plausible values and adds them to the table; this
class is associated with:

� TableEntryListenerImpl.java - the listener for table notifications when
entries are added or removed: it prints out the values of a new table entry and
prints a message when an entry is removed

� IfEntryImpl.java - implements a table entry and provides an internal
method for switching the OperStatus variable that triggers a trap (see Code

Creating an SNMP Agent 245

Example 16–2); this method is not exposed in the MBean interface, so it is only
available to the code of this agent application

� SnmpImpl.java - initializes and implements variables of the Snmp group; many
of these are state variables of the SNMP agent, so we call the getter methods of the
SNMP adaptor object to return the information

� SystemImpl.java - initializes the System group variables with realistic values

The SnmpImpl.java and SystemImpl.java files provide code that you may reuse
when you need to implement these common SNMP groups.

The only class that we need to replace is RFC1213_MIB. Our implementation is
located in patchfiles/RFC1213_MIB.java so that we can overwrite the one
generated by mibgen . The main function of this MBean is to register the other
MBeans of the MIB during its pre-registration phase. Our customization consists of
specifying our *Impl classes when instantiating the group and table entry MBeans.

Compiling the MBeans and Agents
We replace the generated file with our implementation before compiling all of the
classes in the examplesDir/Snmp/Agent directory. The classpath must contain the
current directory (.):

$ cp -i patchfiles/RFC1213_MIB.java .
cp: overwrite ./RFC1213_MIB.java (yes/no)? y
$ javac -classpath classpath -d . *.java

We are now ready to look at the implementation of an SNMP agent and run the
example applications.

The SNMP Protocol Adaptor
Once your MIBs are implemented as MBeans, your agent application needs an
SNMP protocol adaptor in order to function as an SNMP agent. Since the SNMP
adaptor is also an MBean, it can be created and started dynamically in your agent by
a connected manager, or through the HTML adaptor. In our simple Agent example,
we will launch it through the code of the agent application.

246 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

CODE EXAMPLE 16–1 The SNMP Agent Application

public class Agent {

static SnmpAdaptorServer snmpAdaptor = null;

public static void main(String args[]) {

MBeanServer server;
ObjectName htmlObjName;
ObjectName snmpObjName;
ObjectName mibObjName;
ObjectName trapGeneratorObjName;
int htmlPort = 8082;
int snmpPort = 8085; // non-standard

[...]
try {

server = MBeanServerFactory.createMBeanServer ();
String domain = server.getDefaultDomain();

// Create and start the HTML adaptor.
//
htmlObjName = new ObjectName(domain +

":class=HtmlAdaptorServer,protocol=html,port=" + htmlPort);
HtmlAdaptorServer htmlAdaptor = new HtmlAdaptorServer (htmlPort);
server. registerMBean (htmlAdaptor, htmlObjName);
htmlAdaptor.start ();

// Create and start the SNMP adaptor.
//
snmpObjName = new ObjectName(domain +

":class=SnmpAdaptorServer,protocol=snmp,port=" + snmpPort);
snmpAdaptor = new SnmpAdaptorServer (snmpPort);
server. registerMBean (snmpAdaptor, snmpObjName);
snmpAdaptor.start ();

// The rest of the code is specific to our SNMP agent

// Send a coldStart SNMP Trap (use port = snmpPort+1)
// Trap communities are defined in the ACL file
//
snmpAdaptor.setTrapPort(new Integer(snmpPort+1));
snmpAdaptor.sendV1Trap(0, 0, null);

// Create the MIB-II (RFC 1213) and add it to the MBean server.
//
mibObjName = new ObjectName("snmp:class=RFC1213_MIB");
RFC1213_MIB mib2 = new RFC1213_MIB();
// The MBean will register all group and table entry MBeans
// during its pre-registration
server. registerMBean (mib2, mibObjName);

// Bind the SNMP adaptor to the MIB
mib2.setSnmpAdaptorName (snmpObjName);

[...]

(continued)

Creating an SNMP Agent 247

(Continuation)

} catch (Exception e) {
e.printStackTrace();

}
}

// Needed to get a reference on the SNMP adaptor object
static public SnmpAdaptorServer getSnmpAdaptor () {

return snmpAdaptor;
}

}

Launching the SNMP Adaptor
We launch the SNMP adaptor in the same way that we launch the HTML adaptor.
First we create a meaningful object name for its MBean, then we instantiate the class
with a constructor allowing us to specify a non-default port, we register the MBean
with the MBean server, and we start the adaptor to make it active.

By default, the SNMP protocol adaptor uses the standard SNMP port 161. Since
other applications may be using this port on a machine, our simple agent uses port
8085. When we connect to this agent, our SNMP manager will need to specify this
non-standard port number.

Note - On certain platforms, applications also require super-user privileges to
assign the default SNMP port 161. If your SNMP adaptor uses this port, its agent
application will have to be launched with super-user privileges.

Creating MIB MBeans
Our agent application creates and manages one MIB, our subset of MIB-II. To do so,
it instantiates the corresponding RFC1213_MIB MBean that has been generated by
the mibgen tool (see “MIB Development Process” on page 244). We give it a
meaningful object name and then we register it in the MBean server.

The registration process lets the MBean instantiate and register other MBeans that
represent the groups of the MIB and the entries of its tables. The set of all these
MBeans at the end of registration makes up the MBean representation of the MIB. If
an SNMP manager later adds entries to a table, the MIB implementation will register
the new entry MBean into the MBean server as well.

248 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

If you do not wish to expose a MIB through the MBean server, you do not have to
register it. However, you still need to create all of its other MBean objects so that the
SNMP adaptor can access all of its groups and table entries. The generated code
provides the init method in the main MBean of the MIB. Calling this method will
create all necessary MBean objects without registering them in the MBean server.

Binding the MIB MBeans
The SNMP adaptor does not interact with MBeans in the same way as the other
connectors and adaptors. Because the SNMP data model relies on MIBs, only
MBeans representing MIBs can be managed through SNMP. The SNMP adaptor does
not interact with MBeans of a MIB through the MBean server, they must be explicitly
bound to the instance of the SNMP adaptor.

After a MIB is instantiated, you must set the SnmpAdaptorName attribute of its
main MBean to bind it to the SNMP adaptor. You can either call its
setSnmpAdaptorName method directly or, if the MIB’s MBean was registered in the
MBean server, another management application may set the attribute through the
MBean’s exposed interface.

In the binding process, the SNMP adaptor obtains the root OID of the MIB. The
adaptor uses this OID to determine which variables are implemented in the MIB’s
corresponding MBeans. In order for the SNMP adaptor to resolve a request on a
given OID, the root OID of all bound MIBs must not overlap. This implies that no
root OID may be equal to another or be a substring of another.

Even though the SNMP adaptor may be registered in the MBean server, the adaptor
only makes MIBs visible to SNMP managers. Other MBeans in the agent cannot be
accessed or even represented in the SNMP protocol. The SNMP manager is limited
by its protocol: it cannot take full advantage of a Java Dynamic Management agent
through the basic MIBs, and it does not have access to any other MBeans. In an
advanced management solution, you could write a special MIB and implement it so
that operations on its variables actually interact with the MBean server. This is left as
an exercise for the reader.

Accessing a MIB MBean
Once the MBean representing a MIB has been instantiated and bound to the SNMP
adaptor, it is accessible through the SNMP adaptor. SNMP managers can send
requests to operate on the contents of the MIB. The SNMP adaptor interprets the
SNMP management requests, performs the operation on the corresponding MBean
and returns the SNMP response to the manager. The SNMP protocol adaptor is
compatible with SNMPv1 and SNMPv2c.

The advantage of having an SNMP agent “inside” a Java Dynamic Management
agent is that you can use the other communications protocols to interact with MIBs

Creating an SNMP Agent 249

and manage the SNMP adaptor. Since both the registered MIBs and the adaptor are
MBeans, they are exposed for management. In our simple agent, the MIB was
registered, and you can view its MBeans in a web browser through the HTML
protocol adaptor.

If our agent included other connectors, management applications could connect to
the agent and also manage the MIB and the SNMP adaptor. A non-SNMP manager
could instantiate new MIB objects, bind them to the SNMP adaptor and operate on
the exposed attributes and operations of the MIB.

Non-SNMP managers may operate on the variables of a MIB, getting and setting
values, regardless of any SNMP manager that might also be accessing them through
the SNMP adaptor. When dealing with a table, however, they may not create new
table entry MBeans without adding them to the table. For example, in the
InterfacesImpl.java class, we called the addEntry method of the IfTable
object before registering the entry MBeans with the MBean server. This ensures that
the new entries will be visible when an SNMP manager accesses the table.

In order for a non-SNMP manager to create a table entry, you must customize the
table’s group MBean to expose this functionality. Briefly, you would need to write a
new method that instantiates and initializes the entry’s MBean, adds the MBean to
the table object, and registers the entry MBean in the MBean server. Advanced
customization such as this is not covered in our example. In general, the designer of
the agent and management applications is responsible for all coherency issues when
accessing MIBs concurrently through different protocols and when adding table
entries.

Managing the SNMP Adaptor
Non-SNMP managers can also control the SNMP agent through the MBean of the
SNMP adaptor. Like the other communications MBeans, the port and other attributes
can be modified when the SNMP adaptor is stopped. You can also get information
about its state, and stop or restart it to control when it is online. These administrative
attributes and operations are defined in the CommunicatorServerMBean interface.

The SNMP adaptor server also implements the SnmpAdaptorServerMBean interface
to define its operating information. The SNMP protocol defines certain variables that
SNMP agents must expose about their current state. For example, the SNMP adaptor
provides methods for getSnmpInPkts and getSnmpOutBadValues . Non-SNMP
managers can read these variables as attributes of the SNMP adaptor MBean.

The SNMP adaptor also exposes other operating information that is unavailable to
SNMP managers. For example, the ActiveClientCount and
ServedClientCount read-only attributes report on SNMP manager connections to
this agent. The read-write BufferSize attribute lets you change the size of the
message buffer, but only when the adaptor is not online. The adaptor MBean also
exposes operations for sending traps or implementing your own security (see
“Message-Level Security” on page 284).

250 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

Running the SNMP Agent Example
After building the example as described in “MIB Development Process” on page 244,
launch the simple agent with the following command:

$ java -classpath classpath Agent nbTraps

For this run, set nbTraps to zero. You should see some initialization messages,
including our notification listener giving information about the two table entries
which are created. Access this agent’s HTML adaptor by pointing a web browser to
the following URL: http://localhost:8082/ . Through the HTML adaptor, you
can see the MBeans representing the MIB:

� The class=RFC1213_MIB MBean in the snmp domain is the MBean representing
the MIB; it contains a name and information about the SNMP adaptor to which
the MIB is bound

� The RFC1213_MIB domain contains the MBeans for each group; both name=Snmp
and name=System contain variables with values provided by our customizations

� The ifTable domain contains the entries of the Interfaces table

� The trapGenerator domain contains the class that sends traps periodically, as
part of our sample MIB implementation

In any of these MBeans, you could write new values into the text fields of exposed
attributes and click the “Apply” button. This will set the corresponding SNMP
variable, and thereafter, SNMP managers will see the new value. This is an example
of managing a MIB through a protocol other than SNMP.

For any SNMP agent application, you can turn on trace messages for the SNMP
adaptor by specifying the -DINFO_ADAPTOR_SNMPproperty on the command line.
The tracing mechanism is covered in the Java Dynamic Management Kit 4.2 Tools
Reference guide and in the Javadoc API of the Trace class.

Type “Control-C” when you are finished viewing the agent.

Sending Traps
Agents can send unsolicited event reports to management application by using traps.
The SNMP protocol adaptor can send both v1 and v2 traps, the difference being in
the format of the corresponding PDU. Traps in the SNMP specification are not
acknowledged by the management application, so agents do not know if traps are
received.

Inform requests are acknowledged event reports, they are sent by entities acting in a
manager role, according to RFC 1905. In the Java Dynamic Management Kit, both the
SNMP adaptor and the classes of the SNMP manager API may send inform requests.

Creating an SNMP Agent 251

Manager-to-manager inform requests are described in“The Inform Request Example”
on page 272. Agent-to-manger inform requests are demonstrated by the applications
in the Snmp/Inform/ example directory located in the main examplesDir

In this example, we demonstrate how our simple SNMP agent application can send
traps. The customized class IfEntryImpl in the example directory extends the
IfEntry class generated by mibgen in order to provide a method that switches the
IfOperStatus variable and sends a trap. This is an example of customization of
the generated code: an agent-side entity will switch the operation status, the MIB
variable will be updated and a trap will be sent to SNMP managers.

CODE EXAMPLE 16–2 Sending a Trap in the IfEntryImpl Class

public void switchifOperStatus() {
// implements the switch and then calls sendTrap indirectly
[...]

}

// Method called after the variable has been switched
// Should be called with generic==2 (up) or 3 (down or testing)
public void sendTrap(int generic) {

SnmpAdaptorServer snmpAdaptor = null;

// Retrieve the reference of the SNMP protocol adaptor through
// the static method of the Agent or StandAloneSnmpAgent class
snmpAdaptor = Agent.getSnmpAdaptor();
if (snmpAdaptor == null) {

snmpAdaptor = StandAloneSnmpAgent. getSnmpAdaptor ();
}
if (snmpAdaptor == null) {

return;
}

// Create the variable bindings to send in the trap
Vector varBindList = new Vector();

SnmpOid oid1 = new SnmpOid("1.3.6.1.2.1.2.2.1.1." + IfIndex);
SnmpInt value1 = new SnmpInt(IfIndex);
SnmpVarBind varBind1 = new SnmpVarBind(oid1, (SnmpValue) value1);

varBindList.addElement(varBind1);

try {
snmpAdaptor.sendV1Trap (generic, 0, varBindList);

} catch (Exception e) {
e.printStackTrace();

}
}

As the sendTrap method runs in a different thread, it needs to get a reference to the
SNMP adaptor instance. Here we call the static methods of our two possible agent

252 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

implementations. This code is specific to these agents and is only an example of how
to retrieve this information.

In order to simulate a live operation status, we invent the LinkTrapGenerator
class which will switch the status periodically. It is an MBean which contains a
thread which loops endlessly. The interval period between traps and the number of
the table entry can be modified through the MBean’s attributes.

CODE EXAMPLE 16–3 The Thread of the Link Trap Generator

public void run () {
int remainingTraps = nbTraps;
while ((nbTraps == -1) || (remainingTraps > 0)) {

try {
sleep(interval);

} catch (Exception e) {
e.printStackTrace();

}
triggerTrap ();
remainingTraps--;

}
}

public void triggerTrap () {
// get the entry whose status we will switch
IfEntryImpl ifEntryImpl = InterfacesImpl.find(ifIndex);
if (ifEntryImpl == null) {

errors++;
return;

}
ifEntryImpl.switchifOperStatus ();
successes++;

}

To run the trap generator, the example application instantiates and registers a
LinkTrapGenerator MBean. During its registration, this MBean starts the thread,
sending a trap every two seconds by default.

CODE EXAMPLE 16–4 Starting the Trap Generator Example

// Create a LinkTrapGenerator (specify the ifIndex in the object name)
//
String trapGeneratorClass = "LinkTrapGenerator" ;
int ifIndex = 1;
trapGeneratorObjName = new ObjectName("trapGenerator" +

":class=LinkTrapGenerator,ifIndex=" + ifIndex);
LinkTrapGenerator trapGenerator = new LinkTrapGenerator(nbTraps) ;

(continued)

Creating an SNMP Agent 253

(Continuation)

server. registerMBean(trapGenerator , trapGeneratorObjName);

[...] // Press <Enter> to start sending traps

trapGenerator.start ();

Specifying the Trap Destination
There are several methods in the SNMP protocol adaptor for sending traps to remote
managers. They differ in their method signatures, depending upon whether or not
you need to specify the destination host. When no host is specified, the SNMP
protocol adaptor relies on the trap group definition in access control lists (ACL), as
described below.

In all cases, traps are sent to the port specified by the current value of the TrapPort
attribute on the SnmpAdaptorServer MBean. In our simple agent, we set the trap
port to 8086, but this can be changed at any time by a custom MIB implementation
or a management application.

Using an ACL Trap Group
This is the method that was used in Code Example 16–2 to send traps, along with its
v2 equivalent (see the Javadoc API for a description of the parameters):

� sendV1Trap(int generic, int specific, java.util.Vector
varBindList)

� sendV2Trap(SnmpOid trapOid, java.util.Vector varBindList)

Using these methods, you must first define the trap group in an access control list.
See “Access Control Lists (ACL)” on page 280 for a formal definition of the trap
group and instructions for defining the ACL file when starting the agent. By default,
these lists are file-based, but you may implement other mechanisms, as described in
“Custom Access Control” on page 284.

In this example we provide the following template file:

254 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

CODE EXAMPLE 16–5 Trap Group of the jdmk.acl File

acl = {
…

}

trap = {

{
trap-community = public
hosts = yourmanager
}

}

The trap group lists all of the hosts to which the SNMP protocol adaptor will send
every trap. A community definition associates a community name with a list of hosts
specified either by their hostname or by their IP address. All hosts in a community
definition will receive the trap in a PDU identified by the community name.

Note - Since access control and trap recipients share the same file, you must fully
define the access control when you want to send traps using the ACL mechanism.

Given this definition, traps will be sent to a host called yourmanager, and the
community string of the trap PDU would contain the value public . By adding
community definitions to this file, you can specify all hosts which will receive traps
along with the community string for each host or group of hosts.

If the ACL file is not defined, or if the trap group is empty, the default behavior of
these methods is to send a trap only to the localhost.

Specifying the Hostname Directly
The other two methods of the SNMP protocol adaptor, one for each trap version, let
you send a trap to a specified recipient:

� sendV1Trap(java.net.InetAddress address, java.lang.String cs, …
)

� sendV2Trap(java.net.InetAddress address, java.lang.String cs, …
)

In both cases, these methods take an address and a community string, in addition to
the version-specific trap information. The address is an InetAddress object which
is usually instantiated by its static methods getLocalHost or getByName . The
latter method returns a valid InetAddress object when given a string representing
a hostname or IP address.

Creating an SNMP Agent 255

The cs parameter is the community string, a name that the agent and manager
exchange to help identify one another. The string given will be used as the
community when sending the trap PDU.

Either one of these methods sends a trap to a single manager using a single
community string. The ACL trap group mechanism is better suited to sending traps
to multiple managers, though it requires the setup of a trap group. Note that even if
a trap group is in use, the two methods above only send one trap to the specified
host address.

Traps in the Agent Example
Before launching the SNMP agent again, edit the jdmk.acl file to replace the
occurrences of yourmanager with the name of a host running an SNMP manager. You
then have two options for launching the simple agent:

� By first copying the ACL file to the configuration directory where it is
automatically detected:

$ cp jdmk.acl installDir/SUNWjdmk/jdmk4.2/ JDKversion/etc/conf
$ java -classpath classpath Agent nbTraps

� Or by specifying the ACL file as a property when launching the agent

$ java -Djdmk.acl.file= examplesDir/Snmp/Agent/jdmk.acl \
-classpath classpath Agent nbTraps

In these commands, nbTraps is the number of traps that the agent will send. Set it to
a small integer to avoid too much output. If you omit this parameter, traps will be
sent continuously.

If you don’t have an SNMP manager or a second host, don’t copy the ACL file or
specify it as a property. In the absence of the trap-community definitions, the traps
will be addressed to the trap port on the local host. And even if no manager is
running, we can still see the agent sending the traps. See “SNMP Trap Handler” on
page 266 in the SNMP manager topic for details about receiving traps.

256 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

Interacting with the Trap Generator

1. Access this agent’s HTML adaptor by pointing a web browser to the following
URL: http://localhost:8082/ . Click on the
class=LinkTrapGenerator,ifIndex=1 MBean in the trapGenerator
domain.

Through the HTML adaptor, you can see the MBean representing the trap
generator object. You can modify its attributes to change the table entry that it
operates on and to change the interval between traps.

2. Change the trap interval to 10000 so that traps are sent every 10 seconds.

3. Go back to the agent view and click on the ifEntry.ifIndex=1 MBean in the
ifTable domain. Set the reload period to 10, and click the “Reload” button.

You should see the effect of the trap generator which is to switch the value of the
IfOperStatus variable. It is our implementation of the table entry which sends
a trap when this status is changed.

4. Go back to the agent view and click on the name=SnmpMBean in the
RFC1213_MIB domain. Scroll down to see the SnmpOutPkts and
SnmpOutTraps variables.

These variables should be the only non zero values, if no manager has connected
to the SNMP agent. The Snmpgroup shows information about the SNMP adaptor,
and we can see how many traps have been sent since the agent was launched.

5. Type <Control-C> when you are finished interacting with the agent.

The LinkTrapGenerator MBean is not manageable through the SNMP adaptor
because it is not part of any MIB. It is an example of another MBean providing some
control of the SNMP agent, and this control can be exercised by other managers
connecting through other protocols. This shows that designing an SNMP agent
application involves both the implementation of the MIB functionality and, if
desired, the implementation of other dynamic controls afforded by the JMX
architecture and the services of the Java Dynamic Management Kit.

Stand-Alone SNMP Agents
The design of the SNMP protocol adaptor and of the MBeans generated by mibgen
give you the option of creating an SNMP agent that is not a Java Dynamic
Management agent.

Creating an SNMP Agent 257

This stand-alone agent has no MBean server and thus no possibility of being
managed other than through the SNMP protocol. The application must instantiate all
MIBs that the SNMP agent will need, as it will be impossible to create them through
another manager. The advantage of a stand-alone agent is the reduced size of the
application, in terms of memory usage.

CODE EXAMPLE 16–6 The StandAloneSnmpAgent Example

import com.sun.jdmk.Trace;
import com.sun.jdmk.comm.SnmpAdaptorServer;

public class StandAloneSnmpAgent {

static SnmpAdaptorServer snmpAdaptor = null;

public static void main(String args[]) {

// Parse command line and enable tracing
[...]

try {
// The agent is started on a non standard SNMP port: 8085
int port = 8085;
snmpAdaptor = new SnmpAdaptorServer (port);

// Start the adaptor
snmpAdaptor. start ();

// Send a coldStart SNMP Trap
snmpAdaptor.sendV1Trap(0, 0, null);

// Create the MIB you want in the agent (ours is MIB-II subset)
RFC1213_MIB mib2 = new RFC1213_MIB();

// Initialize the MIB so it creates the associated MBeans
mib2.init ();

// Bind the MIB to the SNMP adaptor
mib2.setSnmpAdaptor (snmpAdaptor);

// Optional : create a LinkTrapGenerator
int ifIndex = 1;
LinkTrapGenerator trapGen = new LinkTrapGenerator (ifIndex);
trapGen. start ();

} catch (Exception e) {
e.printStackTrace();

}
}

// Needed to get a reference on the SNMP adaptor object
static public SnmpAdaptorServer getSnmpAdaptor () {

return snmpAdaptor;
}

(continued)

258 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

(Continuation)

}

As this example demonstrates, the stand-alone agent uses exactly the same MIB
MBeans, with the same customization, as our other agents. However, instead of
registering them in the MBean server, they are only instantiated. And whereas the
registration process creates all subordinate MBeans of the MIB, now we must call its
init method explicitly.

The init method performs the same function as the preRegister method, only it
does not register the MBean with the MBean server. Each of the group MBeans then
has two constructors, one with and one without a reference to the MBean server.
When table entries are added dynamically, the corresponding object only registers
the new entry’s MBean if the MBean server reference is non-null; that is, only if the
MBean is not instantiated in a stand-alone agent.

The mibgen tool automatically generates both the pre-registration methods and the
init methods in the MIB MBeans. Therefore, no special action is necessary to use
them in either a regular agent or a stand-alone agent. If you use a stand-alone agent
for memory considerations, you can remove the registration process from the
generated MBean and only customize the “init” process.

In our example, we have applied the customizations to both processes so that the
MIB can be used by either agent. In the following code, customizations are noted
with MODIF_ comments:

CODE EXAMPLE 16–7 Customizations in the Generated RFC1213_MIB.java File

public class RFC1213_MIB extends SnmpMib implements Serializable {

// Default constructor. Initialize the Mib tree
public RFC1213_MIB() {

mibName = "RFC1213_MIB";
}

// Initialization of the MIB with no registration in the MBean server
public void init() throws IllegalAccessException {

// Allow only one initialization of the MIB
if (isInitialized == true) {

return ;
}

// Initialization of the "Snmp" group

(continued)

Creating an SNMP Agent 259

(Continuation)

{
SnmpMeta meta = new SnmpMeta((SnmpMib)this);

// MODIF_BEGIN
//meta.setInstance(new Snmp((SnmpMib)this));
meta.setInstance(new SnmpImpl ((SnmpMib)this));

// MODIF_END
root.registerNode("1.3.6.1.2.1.11", (SnmpMibNode)meta);

}

// Initialization of the other groups
[...]

isInitialized = true;
}

// Initialization of the MIB with AUTOMATIC REGISTRATION
// in the MBean server
public ObjectName preRegister(MBeanServer server, ObjectName name)

throws Exception {

// Allow only one initialization of the MIB
if (isInitialized == true) {

throw new InstanceAlreadyExistsException();
}

// Initialize MBeanServer information
this.server = server;

// Initialization of the "Snmp" group
{

SnmpMeta meta = new SnmpMeta((SnmpMib)this);
// MODIF_BEGIN

//Snmp instance = new Snmp((SnmpMib)this, server);
Snmp instance = new SnmpImpl ((SnmpMib)this, server);

// MODIF_END
meta.setInstance(instance);
root.registerNode("1.3.6.1.2.1.11", (SnmpMibNode)meta);
server.registerMBean(

instance, new ObjectName(mibName + ":name=Snmp"));
}

// Initialization of the other groups
[...]

isInitialized = true;
return name;

}

private boolean isInitialized = false;

}

(continued)

260 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

(Continuation)

After the MIB is initialized, it only needs to be bound to the SNMP adaptor, as in the
other agents; except that in the stand-alone case, we use the setSnmpAdaptor
method which takes a direct reference to the SNMP adaptor instead of an object
name. That is all you need to do when programing a stand-alone SNMP agent.

Running the Stand-Alone Agent Example
Launch the stand-alone agent with the following command:

$ java -classpath classpath StandAloneSnmpAgent nbTraps

If you haven’t copied the jdmk.acl file to the configuration directory, add the
following property to your command line:
-Djdmk.acl.file= examplesDir/Snmp/Agent/jdmk.acl

You should see the same initialization messages as with the simple agent. Then, you
should see the agent sending out a trap every two seconds. If you have an SNMP
manager application, you can send requests to the agent and receive the traps. See
“Developing an SNMP Manager” for example applications you can use.

The only limitation of a stand-alone agent is that you cannot access or manage the
SNMP adaptor and MIB MBeans in the dynamic management sense. However, the
SNMP adaptor still relies on the ACL file for access control and traps, unless you
have customized the ACL mechanism, and you can implement other security
schemes as described in “Message-Level Security” on page 284.

Type <Control-C> when you are finished running the stand-alone agent.

Creating an SNMP Agent 261

262 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

CHAPTER 17

Developing an SNMP Manager

The Java Management extensions specify the SNMP manager API for implementing
an SNMP manager application in the Java programming language. This API is
covered in the JMX specification and in the Javadoc API provided with the Java
Dynamic Management Kit (see “Related Books” in the preface for more information).
Here we explain the example applications that use this API.

The SNMP manager API can be used to access any SNMP agent, not just those
developed with the Java Dynamic Management Kit. It is compatible with both SNMP
v1 and v2, and it includes mechanisms for handling traps. It lets you program both
synchronous managers which block while waiting for responses and multi-threaded
asynchronous managers that don’t. Managers may also communicate with other
managers using inform requests and responses.

The complete source code for these applications is available in the Snmp/Manager
and Snmp/Inform example directories located in the main examplesDir (see
“Directories and Classpath” in the preface).

Contents:

� “The Synchronous Manager Example” on page 264 shows the simplest way to
program an SNMP manager in the Java programming language.

� “The Asynchronous Manager Example” on page 268 demonstrates the advantages
of a manager that doesn’t block when sending request.

� “The Inform Request Example” on page 272 shows how two managers can
exchange management information.

263

The Synchronous Manager Example
The synchronous SNMP manager is the simplest to program: the manager sends a
request to an agent (peer) and waits for the answer. During the wait, the manager is
blocked until either a response is received or the timeout period expires.

The SNMP manager API allows two ways of referring to variables when issuing
requests:

� By OID (for example, “1.3.6.1.2.1.11.29”)

� Or by name (“SnmpOutTraps” in this case)

Referring directly to OIDs requires no setup but makes code less flexible. The
advantages of using variable names are simplified coding and the independence of
manager code when custom MIBs are modified. The SNMP manager API supports
variable names by storing a description of the MIB it will access in the static
SnmpOid object.

In order to refer to variable names, the manager needs to initialize this description
with an OID table object. The OID table is instantiated from the
SnmpOidTableSupport class generated by the mibgen tool when “compiling” the
MIB. Since this support class is regenerated whenever the MIB is recompiled, the
new MIB definition will be automatically loaded into the manager when it is
launched (see the code example below).

The SNMP manager API specifies the SnmpPeer object for describing an agent, and
the SnmpParameters object for describing its read-write communities and its
protocol version (SNMPv1 or SNMPv2). The SnmpSession is an object for sending
requests and we can associate a default peer to it. The session instance has an
SnmpOptions field which we can use to set multiplexing and error fixing behavior.

Note - The objects specified by the SNMP manager API are not MBeans and cannot
be registered in an MBean server to create a manager that could be controlled
remotely. However, you could write an MBean that uses these classes to retrieve and
expose information from SNMP agents.

A manager can contain any number of peers, one for each agent it wishes to access,
and any number of sessions, one for each type of behavior it wishes to implement.
Once the peers and the sessions are initialized, the manager can build lists of
variables and send session requests to operate on them. The session returns a request
object, and the manager calls its waitForCompletion method with the desired
timeout delay.

Finally, the manager analyzes the result of the request, first to see if there were any
errors, then to extract the data returned by the request.

Here is the code of the main method of the SyncManager application. It applies all
of the above steps to execute a very simple management operation.

264 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

CODE EXAMPLE 17–1 The SyncManager Example

// read the command line parameters
String host = argv[0];
String port = argv[1];

// Specify the OidTable containing all the MIB II knowledge
// Use the OidTable generated by mibgen when compiling MIB II
//
SnmpOidTableSupport oidTable = new RFC1213_MIBOidTable();
SnmpOid. setSnmpOidTable (oidTable);

SnmpPeer agent = new SnmpPeer(host, Integer.parseInt(port));

// When creating the parameter object, you can specify the
// read and write community to be used when querying the agent.
SnmpParameters params = new SnmpParameters("public", "private");
agent.setSnmpParam(params);

SnmpSession session = new SnmpSession ("SyncManager session");

// When invoking a service provided by the SnmpSession, it
// will use the default peer if none is specified explicitly
session. setDefaultPeer (agent);

// Create a listener and dispatcher for SNMP traps:
// SnmpEventReportDispatcher will run as a thread and
// listens for traps in UDP port = agent port + 1
SnmpEventReportDispatcher trapAgent =

new SnmpEventReportDispatcher (Integer.parseInt(port)+1);
// TrapListenerImpl will receive a callback
// when a valid trap PDU is received.
trapAgent. addTrapListener (new TrapListenerImpl());
new Thread(trapAgent). start ();

// Build the list of variables you want to query.
// For debugging, you can associate a name to your list.
SnmpVarbindList list= new SnmpVarbindList (

"SyncManager varbind list");

// We want to read the "sysDescr" variable.
list.addVariable("sysDescr.0");

// Make the SNMP get request and wait for the result.
SnmpRequest request = session.snmpGet (null, list);
boolean completed = request.waitForCompletion (10000);

// Check for a timeout of the request.
if (completed == false) {

java.lang.System.out.println(
"Request timed out. Check reachability of agent");

java.lang.System.exit(0);
}

// Check if the response contains an error.
int errorStatus = request.getErrorStatus ();
if (errorStatus != SnmpDefinitions.snmpRspNoError) {

(continued)

Developing an SNMP Manager 265

(Continuation)

java.lang.System.out.println("Error status = " +
SnmpRequest.snmpErrorToString(errorStatus));

java.lang.System.out.println("Error index = " +
request.getErrorIndex());

java.lang.System.exit(0);
}

// Now we can extract the content of the result.
SnmpVarbindList result = request.getResponseVbList ();
java.lang.System.out.println("Result: \n" + result);

[...] // Wait for user to type enter. Traps will be handled.

// End the session properly and we’re done
session.destroySession ();
java.lang.System.exit(0);

In this SNMP manager application, we demonstrate how to implement and enable a
trap listener for the traps sent by the agent. First we need to instantiate an
SnmpEventReportDispatcher object. Then we add our listener implementation
through its addTrapListener method, and finally we start its thread. Trap listeners
can be implemented in any manager using the SNMP manager API, not only
synchronous managers.

SNMP Trap Handler
A trap handler for the SNMP manager is an object that implements the
SnmpTrapListener interface in the javax.management.snmp.manager package.
When this object is bound as a listener of an SnmpEventReportDispatcher object,
its methods will be called to handle trap PDUs.

A trap listener is not a notification listener because the dispatcher is not a notification
broadcaster. The listener has callback methods that the work in the same manner, but
they are given objects that represent traps, not instances of the Notification class.

The interface defines two methods, one for processing SNMPv1 traps and the other
for SNMPv2 traps. Trap PDU packets have already been decoded by the dispatcher,
and these methods handle an object representation of the trap: SnmpPduTrap objects
for v1 and SnmpPduRequest objects for v2. In our implementation, we are only
interested in v1 traps, and we just print out the trap information fields.

266 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

CODE EXAMPLE 17–2 The SnmpTrapListener Implementation

public class TrapListenerImpl implements SnmpTrapListener {

public void processSnmpTrapV1(SnmpPduTrap trap) {
java.lang.System.out.println(

"NOTE: TrapListenerImpl received trap :");
java.lang.System.out.println(

"\tGeneric " + trap.genericTrap);
java.lang.System.out.println(

"\tSpecific " + trap.specificTrap);
java.lang.System.out.println(

"\tTimeStamp " + trap.timeStamp);
java.lang.System.out.println(

"\tAgent address " + trap.agentAddr.stringValue());
}

public void processSnmpTrapV2(SnmpPduRequest trap) {
java.lang.System.out.println("NOTE: Trap V2 ignored");

}
}

Running the SyncManager Example
In the examplesDir/Snmp/Manager directory, we first need to generate the OID table
description of MIB-II that our manager will access. Then we compile the example
classes. To set up your environment, see “Directories and Classpath” in the preface.

$ mibgen -mo mib_II.txt
[output omitted]
$ javac -classpath classpath -d . *.java

Make sure that no other agent is running on port 8085, and launch the simple SNMP
agent in examplesDir/Snmp/Agent . See “MIB Development Process” on page 244 if
you have not already built and run this example.

Here we give commands for launching the applications from different Unix terminal
windows running the Korn shell. In the first window, enter the following commands:

Developing an SNMP Manager 267

$ cd examplesDir/Snmp/Agent
$ java -classpath classpath Agent nbTraps

If you will also be running the asynchronous manager example with this agent, omit
the nbTraps parameter. The agent will then send traps continuously and they can be
seen in both managers. Otherwise, specify the number of traps to be sent to the
manager. Wait until the manager is started to send the traps.

Now we can launch the manager application in another window to connect to this
agent. If you wish to run the manager on a different host, replace localhost with
the name of the machine where you launched the agent.

$ cd examplesDir/Snmp/Manager
$ java -classpath classpath SyncManager localhost 8085
SyncManager::main: Send get request to SNMP agent on localhost at port 8085
Result:
[Object ID : 1.3.6.1.2.1.1.1.0 (Syntax : String)
Value : SunOS sparc 5.7]

Here we see the output of the SNMP request, it is the value of the sysDescr
variable on the agent.

Now press <Enter> in the agent’s window: you should see the manager receiving
the traps it sends. Leave the agent running if you are going on to the next example,
otherwise remember to stop it by typing <Control-C> .

The Asynchronous Manager Example
The asynchronous SNMP manager lets you handle more requests in the same
amount of time because the manager is not blocked waiting for responses. Instead, it
creates a request handler object which runs as a separate thread and processes
several responses concurrently. Otherwise, the initialization of peers, parameters,
sessions, options, and dispatcher is identical to that of a synchronous manager.

268 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

CODE EXAMPLE 17–3 The AsyncManager Example

// read the command line parameters
String host = argv[0];
String port = argv[1];

// Use the OidTable generated by mibgen when compiling MIB-II.
SnmpOidTableSupport oidTable = new RFC1213_MIBOidTable();

// Sample use of the OidTable.
SnmpOidRecord record = oidTable.resolveVarName("udpLocalPort");
java.lang.System.out.println(

"AsyncManager::main: variable = " + record.getName() +
" oid = " + record.getOid() + " type = " + record.getType());

// Initialize the SNMP Manager API.
SnmpOid. setSnmpOidTable (oidTable);

// Create an SnmpPeer object for representing the agent
SnmpPeer agent = new SnmpPeer(host, Integer.parseInt(port));

// Create parameters for communicating with the agent
SnmpParameters params = new SnmpParameters("public", "private");
agent.setSnmpParam(params);

// Build the session and assign its default peer
SnmpSession session = new SnmpSession ("AsyncManager session");
session. setDefaultPeer (agent);

// Same dispatcher and trap listener as in SyncManager example
SnmpEventReportDispatcher trapAgent =

new SnmpEventReportDispatcher (Integer.parseInt(port)+1);
trapAgent. addTrapListener (new TrapListenerImpl());
new Thread(trapAgent). start ();

// Build the list of variables to query
SnmpVarbindList list = new SnmpVarbindList ("AsyncManager varbind list");
list.addVariable("sysDescr.0");

// Create a simple implementation of an SnmpHandler.
AsyncRspHandler handler = new AsyncRspHandler ();

// Make the SNMP walk request with our handler
SnmpRequest request = session.snmpWalkUntil (

handler, list, new SnmpOid("sysServices"));

// Here you could do whatever processing you need.
// In the context of the example, we are just going to wait
// 4 seconds while the response handler displays the result.
Thread.sleep(4000);

[...] // Wait for user to type enter. Traps will be handled.

// End the session properly and we’re done.
//

(continued)

Developing an SNMP Manager 269

(Continuation)

session.destroySession ();
java.lang.System.exit(0);

The trap mechanism in this application is identical to the one presented in the
SyncManager example. The event report dispatcher will receive traps and call the
corresponding method of our SnmpTrapListener class.

In this example, the manager performs an snmpWalkUntil request which will give
a response for each variable that it gets. The response handler will be called to
process each of these responses.

The Response Handler
A response handler for an asynchronous manager is an implementation of the
SnmpHandler interface. When a handler object is associated with a request, its
methods are called when the agent returns an answer or fails to return an answer. In
these methods, you implement whatever actions you wish for processing the
responses to a request. Typically, these methods will extract the result of each request
or the reason for its failure.

The timeout used by the request handler is the one specified by the SnmpPeer object
representing the agent. The handler is also called to process any errors caused by the
request in the session. This ensures that the manager application is never interrupted
after issuing a request.

CODE EXAMPLE 17–4 The SnmpHandler Implementation

public class AsyncRspHandler implements SnmpHandler {

// Empty constructor
public AsyncRspHandler() {
}

// Called when the agent responds to a request
public void processSnmpPollData(SnmpRequest request,

int errStatus, int errIndex, SnmpVarbindList vblist) {

java.lang.System.out.println(
"Processing response: " + request.toString());

java.lang.System.out.println(

(continued)

270 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

(Continuation)

"errStatus = " + SnmpRequest.snmpErrorToString(errStatus) +
" errIndex = " + errIndex);

// Check if a result is available.
if (request.getRequestStatus () ==

SnmpRequest.stResultsAvailable) {

// Extract the result for display
SnmpVarbindList result = request.getResponseVbList ();
java.lang.System.out.println(

"Result = " + result.vbListToString());
}

}

// Called when the agent fails to respond to a request
public void processSnmpPollTimeout(SnmpRequest request) {

java.lang.System.out.println(
"Request timed out: " + request.toString());

if (request. getRequestStatus () ==
SnmpRequest.stResultsAvailable) {

// The result is empty and will display an error message
SnmpVarbindList result = request.getResponseVbList ();
java.lang.System.out.println(

"Result = " + result.vbListToString());
}

}

// Called when there is an error in the session
public void processSnmpInternalError(SnmpRequest request,

String errmsg) {

java.lang.System.out.println(
"Session error: " + request.toString());

java.lang.System.out.println("Error is: " + errmsg);
}

}

Running the AsyncManager Example

If you have not done so already, launch the simple SNMP agent in examplesDir/
Snmp/Agent , after making sure that no other agent is running on port 8085. This
manager also uses the OID table description (the SnmpOidTableSupport class) that
we generated from the MIB for the synchronous manager. If you have not already
done so, see “Running the SyncManager Example” on page 267 for instructions on
how to do this.

Developing an SNMP Manager 271

If you do not have an SNMP agent still running, make sure that no other agent is
running on port 8085 and launch one with the following command:

$ cd examplesDir/Snmp/Agent
$ java -classpath classpath Agent nbTraps

Specify the number of traps to be sent to the manager in the nbTraps parameter. Wait
until the manager is started to send the traps.

In another terminal window, launch the manager application to connect to this agent.
If you wish to run the manager on a different host, replace localhost with the
name of the machine where you launched the agent.

$ cd examplesDir/Snmp/Manager
$ java -classpath classpath AsyncManager localhost 8085

You should then see the output of the SnmpWalkUntil request: the response
handler method is called for each variable that is returned.

Press <Enter> in the agent’s window to send traps and see the trap reports as they
are received in the manager. When you are finished with the agent, don’t forget to
stop it by typing <Control-C> in its terminal window.

The Inform Request Example
The inform request is specified in SNMP v2 as a mechanism for sending a report and
receiving a response. This functionality is implemented in the JMX SNMP manager
API for transmitting management information from one SNMP manager to another.

Since SNMP managers both send and receive inform requests, the SNMP manager
API includes the mechanisms for doing both. Roughly, inform requests are sent in
the same way as other requests, and they are received in the same way as traps. Both
of these mechanisms are explained in the following sections.

This simple example has two manager applications, one of which sends an inform
request, and the other which listens for and replies to this request. No SNMP agents
are involved in this exchange.

272 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

Sending an Inform Request
Like the other types of requests, the manager sends an inform request through a
session. The only difference is that the peer object associated with the request should
be an SNMP manager able to receive and reply to InformRequest PDUs.

You may associate a peer with a session by making it the default peer object. This is
how we do it in this example. This means that if we don’t specify a peer when
sending requests, they are automatically addressed to our manager peer. Since
sessions often have agent peers as a default, you can specify the manager peer as a
parameter to the snmpInform method of the session object.

CODE EXAMPLE 17–5 Sending an Inform Request in SimpleManager1

// When calling the program, you must specify the hostname
// of the SNMP manager you want to send the inform to.
//
String host = argv[0];

// Initialize the port number to send inform PDUs on port 8085.
//
int port = 8085;

try {
// Create an SnmpPeer object that represents the entity to
// communicate with.
//
SnmpPeer peer = new SnmpPeer(host, port);

// Create parameters to associate to the peer.
// When creating the parameter object, you can specify the
// read and write community to be used when sending an
// inform request.
//
SnmpParameters params = new SnmpParameters(

"public", "private", "public");

// The newly created parameter must be associated to the peer.
//
peer.setSnmpParam(params);

// Build the session. A session creates, controls and manages
// one or more requests.
//
SnmpSession session = new SnmpSession ("SimpleManager1 session");
session.setDefaultPeer (peer);

// Make the SNMP inform request and wait for the result.
//
SnmpRequest request = session.snmpInform (

null, new SnmpOid("1.2.3.4"), null);
java.lang.System.out.println(

"NOTE: Inform request sent to SNMP manager on " +
host + " at port " + port);

(continued)

Developing an SNMP Manager 273

(Continuation)

boolean completed = request.waitForCompletion (10000);

// Check for a timeout of the request.
//
if (completed == false) {

java.lang.System.out.println(
"\nSimpleManager1::main: Request timed out. " +
"Check reachability of agent");

// Print request.
//
java.lang.System.out.println("Request: " + request.toString());
java.lang.System.exit(0);

}

// Now we have a response. Check if the response contains an error.
//
int errorStatus = request.getErrorStatus ();
if (errorStatus != SnmpDefinitions.snmpRspNoError) {

java.lang.System.out.println("Error status = " +
SnmpRequest.snmpErrorToString(errorStatus));

java.lang.System.out.println("Error index = " +
request.getErrorIndex());

java.lang.System.exit(0);
}

// Now we shall display the content of the result.
//
SnmpVarbindList result = request.getResponseVbList ();
java.lang.System.out.println("\nNOTE: Response received:\n" + result);

// Stop the session properly before exiting
session.destroySession ();
java.lang.System.exit(0);

} catch(Exception e) {
java.lang.System.err.println(

"SimpleManager1::main: Exception occurred:" + e);
e.printStackTrace();

}

Before sending the request, the snmpInform method automatically adds two
variables to the head of the varbind list which is passed in as the last parameter.
These are sysUpTime.0 and snmpTrapOid.0 , in the order they appear in the list.
These variables are mandated by RFC 1905 and added systematically so that the
caller doesn’t need to add them.

Like all other requests in a session, inform requests can be handled either
synchronously or asynchronously in the sender. In our example, we process the

274 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

inform request synchronously: the manager blocks the session while waiting for the
completion of the request. In an asynchronous manager, you would need to
implement a response handler as explained in “The Response Handler” on page 270,
and then use it to process responses, as shown in Code Example 17–3.

Receiving Inform Requests
Managers receive inform requests as they do traps: they are unsolicited events that
must be received by a dispatcher object. Unlike traps, an inform request requires a
response PDU which, according to the SNMP specification, must contain the same
variable bindings. Therefore, immediately after an inform request is successfully
received and decoded, the SnmpEventReportDispatcher class automatically
constructs and sends the inform response back to the originating host.

The manager application then retrieves the data in the inform request through a
listener on the dispatcher. Inform request listeners are registered with the dispatcher
object in the same way as trap listeners. The receiving manager in our example is
very simple, since its only function is to create the dispatcher and the listener for
inform requests.

CODE EXAMPLE 17–6 Receiving Inform Requests in SimpleManager2

//
Initialize the port number to listen for incoming inform PDUs on port 8085.

//
int port = 8085;

try {

//
Create a dispatcher for SNMP event reports (SnmpEventReportDispatcher).

// SnmpEventReportDispatcher is run as a thread and listens for informs
// on the specified port.
// Add our InformListenerImpl class as an SnmpInformListener.
// InformListenerImpl will receive a callback when a valid trap
// PDU is received.
//
SnmpEventReportDispatcher informDispatcher =

new SnmpEventReportDispatcher (port);
informDispatcher. addInformListener (new InformListenerImpl());
new Thread(informDispatcher). start ();

// Note that you can use the same SnmpEventReportDispatcher object
// for both incoming traps and informs.
// Just add your trap listener to the same dispatcher, for example:
// informDispatcher.addTrapListener(new TrapListenerImpl());

// Here we are just going to wait for inform PDUs.
//

(continued)

Developing an SNMP Manager 275

(Continuation)

java.lang.System.out.println("\nNOTE: Event report listener initialized");
java.lang.System.out.println(

" and listening for incoming inform PDUs on port " + port + "...");

} catch(Exception e) {
java.lang.System.err.println(

"SimpleManager2::main: Exception occurred:" + e);
e.printStackTrace();

}

The remaining step is to program the behavior we want upon receiving an inform
request. To do this, we must write the InformListenerImpl class that we
registered as an inform request listener in the previous code sample. This class
implements the SnmpInformListener interface and its processSnmpInform
method handles the incoming inform request.

Because the dispatcher automatically sends the inform response back to the
originating host, the SnmpInformListener implementation does not need to do
this. Usually this method will extract the variable bindings and take whatever action
is necessary upon receiving an inform request. In our example, we simply print out
the source and the contents of the inform request.

CODE EXAMPLE 17–7 The InformListenerImpl Class

import java.io.IOException;
import javax.management.snmp.SnmpPduRequest;
import javax.management.snmp.manager.SnmpInformListener;

/**
* This class implements the SnmpInformListener interface.
* The callback method processSnmpInform is called when a
* valid inform PDU is received.
*/

public class InformListenerImpl implements SnmpInformListener {

public void processSnmpInform(SnmpPduRequest inform) {

// Display the received PDU.
//
java.lang.System.out.println("\nNOTE: Inform request received:\n");
java.lang.System.out.println("\tType = " +

inform.pduTypeToString(inform.type));
java.lang.System.out.println("\tVersion = " + inform.version);

(continued)

276 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

(Continuation)

java.lang.System.out.println("\tRequestId = " + inform.requestId);
java.lang.System.out.println("\tAddress = " + inform.address);
java.lang.System.out.println("\tPort = " + inform.port);
java.lang.System.out.println("\tCommunity = " +

new String(inform.community));
java.lang.System.out.println("\tVB list = ");

for (int i = 0; i < inform.varBindList.length; i++) {
java.lang.System.out.println("\t\t" + inform.varBindList[i]);

}

// Our listener stop the manager after receiving its first
// inform request
java.lang.System.out.println(

"\nNOTE: SNMP simple manager 2 stopped...");
java.lang.System.exit(0);

}
}

Running the Inform Request Example
The examplesDir/Snmp/Inform directory contains all of the files for the two
manager applications, along with the InformListenerImpl class.

Compile all files in this directory with the javac command. For example, on the
Solaris platform with the Korn shell, you would type:

$ cd examplesDir/Snmp/Inform/
$ javac -classpath classpath *.java

To run the example, launch the inform request receiver with the following command.
You may launch the application in another terminal window or on another machine.

$ java -classpath classpath SimpleManager2

Wait for this manager to be initialized, then launch the other manager with the
following command. The hostname is the name of the machine where you launched
the receiving manager, or localhost .

$ java -classpath classpath SimpleManager1 hostname

Developing an SNMP Manager 277

When the sender is ready, press <Enter> to send the inform request. You should see
the contents of the request displayed by the receiving manager. Immediately
afterwords, the sender receives the inform response containing the same variable
bindings and displays them. Both manager applications then exit automatically.

278 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

CHAPTER 18

Security Mechanisms in the SNMP
Toolkit

Both the SNMP protocol adaptor and the SNMP manager API provide mechanisms
for ensuring the security of management operations. Agents act as information
servers, and access control is used to protect this information from unauthorized
access. This topic covers the different ways that the SNMP protocol adaptor can limit
access to the data in the agent.

Security in a manager involves positively identifying the source of management
responses, to ensure that the expected agent answered the request. This amounts to
securing the communication against falsification of data and usurpation of identity,
which must both be performed at the communication level. Both the agent and the
manager handle the communication packets and both provide hooks for
implementing your own security scheme.

The complete source code for these examples is available in the Snmp/Agent
directory located in the main examplesDir (see “Directories and Classpath” in the
preface).

Contents:

� “Access Control Lists (ACL)” on page 280 shows how to specify host communities
to control manager access and send traps.

� “Message-Level Security” on page 284 demonstrates a more advanced way of
limiting access to the SNMP agent.

� “SNMP Manager Security” on page 288 gives the API hook for implementing
message-level security in a manager application.

279

Access Control Lists (ACL)
For the SNMP adaptor, the Java Dynamic Management Kit provides access control
based on the IP address and community of the manager’s host machine. Information
on the access rights for communities and host machines is stored in access control
lists (ACL). The default implementation provided with the product uses an ACL file,
but you may provide your own implementation as described in “Custom Access
Control” on page 284.

The ACL mechanism can also be used to define the communities and managers to
which the agent will send traps. When you rely on the ACL trap group, the agent will
send traps to all hosts listed in the ACL file. See “Specifying the Trap Destination”
on page 254 for the different ways that an agent application may sends traps.

The following code example gives the contents of the examplesDir/Snmp/Agent/
jdmk.acl file used when running the SNMP example applications. When using it in
the security examples, you should replace yourmanager with the complete IP address
or hostname of the machine running your SNMP manager application.

CODE EXAMPLE 18–1 A Sample ACL File

acl = {
{
communities = public
access = read-only
managers = yourmanager
}
{
communities = private
access = read-write
managers = yourmanager
}

}

trap = {
{
trap-community = public
hosts = yourmanager
}

}

ACL File Format
An ACL file contains an acl group defining community and manager access rights
and a trap group defining the community and hosts for sending traps.

280 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

Format of the acl Group
The acl group contains one or more access configurations.

acl = {
access1
access2

...
accessN

}

Each access configuration has the following format:

{
communities = communityList
access = accessRights
managers = hostList

}

The communityList is a list of SNMP community names to which this access control
applies. The community names in this list are separated by commas.

The accessRights specifies the rights to be granted to all managers connecting from
the machines specified in the hostList. There are two possible values: either
read-write or read-only .

The hostList item gives the host machines of the managers to be granted the access
rights. The hostList is a comma-separated list of hosts, each of which can be
expressed as any one of the following:

� A host name

� An IP address

� A subnet mask

Note - To distinguish between IP addresses and subnet masks in an ACL file, each
integer in a subnet mask is separated by an exclamation mark (!) instead of a dot (.).

The set of all access configurations defines the access policy of the SNMP agent. A
manager whose host is specified in a hostList and which identifies itself in one of the
communities of the same configuration will be granted the permissions defined by
the corresponding accessRights. A manager’s host may appear in several access
configurations provided it is associated with a different community list. This will
define different access communities with different rights from the same manager.

A manager whose host-community identification pair does not appear in any of the
access configurations will be denied all access. This means that PDUs from this
manager will be dropped without being processed.

Security Mechanisms in the SNMP Toolkit 281

Format of the trap Group
The trap group specifies the hosts to which the agent will send traps if the ACL
mechanism is used. This group contains one or more trap community definitions.

trap = {
community1
community2
...
communityN

}

Each defines the association between a set of hosts and the SNMP community string
in the traps to be sent to them. Each trap definition has the following format:

{
trap-community = trapCommunityName
hosts = trapHostList

}

The trapCommunityName item specifies a single SNMP community string. It will be
included in the traps sent to the hosts specified in the hosts item.

The trapHostList item specifies a comma-separated list of hosts. Each host must be
identified by its name or complete IP address.

When the SNMP protocol adaptor is instructed to send a trap using the ACL
mechanism, it will send a trap to every host listed in the trap community definitions.
If a host is present in more than one list, it will receive more than one trap, each one
identified by its corresponding trap community.

Enabling Access Control
The default ACL mechanism provided with the Java Dynamic Management Kit relies
on an ACL file to define the access rights and trap recipients. To enable access control
with this mechanism, you must first write an ACL file to reflect the access and trap
policy of your SNMP agent. Then, there are two ways to enable file-based access
control, one way to modify the file in use and one way to disable access control.

The simplest way of enabling access control and traps is to ensure that an ACL file
exists when the SNMP protocol adaptor MBean is instantiated. In order to be
automatically detected, the ACL file must be named jdmk.acl and must be located
in the configuration directory of the Java Dynamic Management Kit installation. On
Unix systems with a standard installation of the product, the configuration directory
is owned by root and requires super-user privileges in order to write or modify the
ACL file.

282 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

Operating
Environment Configuration Directory

Solaris installDir/SUNWjdmk/jdmk4.2/ JDKversion/etc/conf/

Windows NT installDir\SUNWjdmk\jdmk4.2\ JDKversion\etc\conf\

In order for the application to locate the configuration directory, the classpath of the
Java virtual machine running the agent must include the full path of the
jdmkrt.jar file.

The other way of enabling file-based access control is to specify a different file
through the jdmk.acl.file system property. The filename associated with the
property will override any ACL file in the configuration directory. This property may
be set programmatically, but it is usually done on the command line when launching
your agent. For example, if the full pathname of your ACL file is MyAclFile, use this
command to launch the agent with SNMP access control enabled:

$ java -classpath classpath -Djdmk.acl.file= MyAclFile MyAgent

If an ACL file exists, the access rights it defines apply to all management applications
that access the agent through its SNMP adaptor. This includes managers on the
agent’s local machine: the ACL groups must explicitly give permissions to
localhost or the host’s machine name or IP address for such managers. If the ACL
file does not exist when the SNMP adaptor is instantiated, either in the configuration
directory or defined as a property, all SNMP requests will be processed, and traps
will be sent only to the localhost.

The ACL file-based mechanism relies on the JdmkAcl class to provide the access
control functionality. This is the class that is initialized with the contents of the ACL
file. This class provides the rereadTheFile method to reset the access control and
trap lists with the contents of the ACL file. This method will reload the same file that
was used originally, regardless of any new property definitions. After you have
updated the ACL file, call the following methods to update the access control lists:

// assuming mySnmpAdaptor is declared as an SnmpAdaptorServer object
JdmkAcl theAcl = (JdmkAcl)(mySnmpAdaptor.getIPAcl());
theAcl.rereadTheFile();

The JdmkAcl class that is used by default might not be suitable for all environments.
For example, it relies on the java.security.acl package which is not available in
the PersonalJavaTM runtime environment. Therefore, one constructor of the
SnmpAdaptorServer class lets you override this default, forcing the adaptor not to
use access control, regardless of any existing ACL file. If you specify false for the
useAcl parameter of this constructor, the SNMP adaptor won’t even search for an
ACL file. In this case, no access control is performed, as if there were no ACL file: all
SNMP requests will be processed, and traps will be sent only to the localhost. For

Security Mechanisms in the SNMP Toolkit 283

security considerations, the use of access control cannot be toggled once the SNMP
adaptor has been instantiated.

Custom Access Control
The JdmkAcl class which relies on an ACL file is the default access control
mechanism in the SNMP adaptor. For greater adaptability, the SnmpAdaptorServer
class has constructors that let you specify your own access control mechanism. For
example, if your agent runs on a device with no file system, you could implement a
mechanism which doesn’t rely on the jdmk.acl file.

In order to instantiate an SNMP adaptor with your own access control, use one of
the constructors which takes an acl parameter of the type IPAcl . Note that if this
parameter’s value is null , or if you use a constructor that doesn’t specify an acl
parameter, the SNMP adaptor will use the JdmkAcl class by default. If you want to
instantiate an SNMP adaptor without access control, call the constructor with the
useAcl parameter set to false .

Your access control mechanism must be a class that implements the IPAcl interface.
This interface specifies the methods that the SNMP adaptor uses to check
permissions when processing a request. If you instantiate the SNMP adaptor with
your access control class, the adaptor will call your implementation of the access
control methods. Again, for security reasons, the IPAcl implementation in use
cannot be changed once the SNMP adaptor has been instantiated.

The JdmkAcl class implements the default access mechanism that uses the
jdmk.acl file. It is also an implementation of the IPAcl interface, and it provides a
few other methods, such as rereadTheFile , to control the ACL mechanism.

Message-Level Security
The SecureAgent example shows another level of security at the SNMP message
level. Whereas the access control mechanism handles access rights to all MIBs for
communities of manager hosts, message-level security lets you control how PDUs
(Protocol Data Units) representing requests are encoded and decoded by the SNMP
protocol adaptor.

The data in an SNMP message is stored in its raw form as a byte array. When
receiving a message, the SNMP protocol adaptor must decode the data to obtain the
corresponding request, and before sending a request, the adaptor must encode it as a
message. By default, the basic encoding rules (BER) are used to translate back and
forth between message and decoded PDU. The SNMP protocol adaptor provides a
hook to let you implement your own encoding and decoding mechanism.

284 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

Message-level security relies on the following classes in the
javax.management.snmp package:

� SnmpPduPacket class

� SnmpMessage class

� SnmpPduFactory interface

An SnmpPduPacket object represents the fully decoded description of an SNMP
request. In particular, it includes the operation type (get, set, …), the list of variables
to which the operation applies, the request identifier, and the protocol version.

The SnmpMessage object is a partially decoded representation of the SNMP request.
The type of the request, the variables and their values all remain encoded as a byte
array. This object also contains the default BER encoding and decoding methods. The
SnmpMessage class is derived from the Message syntax in RFC 1157 and RFC 1902.

The SnmpPduFactory interface defines the method signatures for encoding PDUs
into messages and decoding messages into PDUs. By providing an implementation
of this class, you can fully control the contents of messages and see the contents of
packets before they are processed.

Both the packet and message classes also contain port and address information of the
SNMP manager. When implementing your own security mechanism, you also have
access to the contents of the PDU or message you are handling. This lets you
implement security based on several factors:

� The host or community of the SNMP manager in a message before it is decoded

� The type or contents of a request after it is decoded

� Some encryption of the raw data

Because message-based security gives you access to all these different factors, you
can perform elaborate filtering of incoming requests. For example, you could limit
the access of certain SNMP managers to certain variables, or you could filter variable
bindings, such as untrusted IP addresses, before they are assigned.

If your security is based on encryption of the message data, your manager must of
course be using the same encryption. Because the SNMP classes are also part of the
SNMP manager API, you can reuse the same encryption code in your manager if it is
developed in the Java programming language. Security in the SNMP manager API is
implemented in the SnmpPeer and SnmpEventReportDispatcher objects, see
“SNMP Manager Security” on page 288 for more information.

If your security scheme is based only on the sender of the message or contents of the
PDU, it can be applied unilaterally by the agent, without requiring any coordination
with the manager application. This is what is demonstrated in the SecureAgent
example.

Security Mechanisms in the SNMP Toolkit 285

Implementing the SnmpPduFactory Interface
In the SNMP protocol adaptor, the task of translating an SnmpMessage object into
an SnmpPduPacket object is delegated to an object which implements the
SnmpPduFactory interface. This interface defines two methods, one for decoding
messages into PDUs and one for encoding PDUs into messages:

� decodePdu takes an SnmpMessage and should return a decoded
SnmpPduPacket object; if it returns null or raises an exception, the incoming
message is assumed to have failed the security check

� encodePdu takes an SnmpPduPacket and should return an encoded
SnmpMessage to send

In our example, the SnmpPduFactoryImpl class implements the decodePdu
method to reject messages if they originate from certain hosts. The list of hosts to
refuse is passed to the class constructor at instantiation. The encodePdu method
only does the standard BER encoding of outgoing messages.

CODE EXAMPLE 18–2 Implementing the SnmpPduFactory Interface

public class SnmpPduFactoryImpl implements SnmpPduFactory {

private String[] hostNames ;

// HostNames is the array of the host names whose requests will be
// refused by the agent
public SnmpPduFactoryImpl (String[] hostNames) {

this.hostNames = hostNames;
}

public SnmpPduPacket decodePdu (SnmpMessage msg)
throws SnmpStatusException {

// Get the sender’s hostname
String from = msg.address.getHostName();
for (int i = 0; i < hostNames.length; i++) {

if (from.equals(hostNames[i])) {
java.lang.System.out.println("Pdu rejected from " + from);
return null;

}
}
// If the host is accepted, we return the standard BER decoding
return msg.decodePdu();

}

// No security when sending, just do the standard BER encoding
public SnmpMessage encodePdu (SnmpPduPacket pdu, int maxPktSize)

throws SnmpStatusException, SnmpTooBigException {

SnmpMessage result = new SnmpMessage();
result.encodePdu(pdu, maxPktSize);
return result;

(continued)

286 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

(Continuation)

}
}

Beyond our simple check of the sender’s hostname, our example relies on the
standard BER encoding and decoding of the SnmpMessage class. Even if you choose
to implement encryption, it can still be implemented on top of the standard BER for
simplicity. In this case, you only need to encrypt the message’s byte array after the
standard encoding and decrypt it before the standard decoding.

When you implement the encodePdu , you must ensure that it also handles trap
PDUs, by encoding them as they will be expected by the manager application (see
“SNMP Manager Security” on page 288). For example, trap messages are decoded
separately from response messages in applications based on the SNMP manager API.

Using a Custom PDU Factory
To use your custom PDU factory in your SNMP agent, you need to call the
usePduFactory method of your SnmpAdaptorServer instance. First instantiate
your PDU factory implementation and then pass it to this method. Your encoding
and decoding scheme will then replace the standard one used by the SNMP protocol
adaptor.

The SecureAgent.java file contains a simple agent like the one presented in “The
SNMP Protocol Adaptor” on page 246. It only adds the call to force the SNMP
adaptor to use the new PDU factory that we specify.

// Use SnmpPduFactoryImpl class for SnmpPduFactory to filter requests.
// Enter your list of refused hosts as arguments when launching this agent.
// The agent will reject requests coming from the specified hosts.
//
String[] refusedHosts = new String[args.length];
refusedHosts = args;
snmpAdaptor. usePduFactory (new SnmpPduFactoryImpl(refusedHosts));

The SNMP adaptor will then use this PDU factory to filter incoming requests based
on their originating host. It will also encode all outgoing messages, including any
traps that are sent, though it does nothing more than standard BER encoding. The

Security Mechanisms in the SNMP Toolkit 287

secure agent example does not demonstrate traps, and the LinkTrapGenerator
class is not written to function with the SecureAgent class. However, the
SnmpPduFactoryImpl could be used as it is shown above in the SNMP Agent
example.

Running the Secure Agent Example
You can only demonstrate the output of our custom PDU factory if you have an
SNMP manager application which can connect to the secure agent. See “Developing
an SNMP Manager” for example applications you can use.

The SecureAgent class takes command line arguments to create the list of hosts
from which it will refuse SNMP requests. Use the following command to launch the
secure agent example:

$ java -classpath classpath SecureAgent [host1..hostN]

Whenever one of the refused hosts sends a request, you should see the message
displayed by our custom PDU factory implementation. Type “Control-C” when you
are finished running the secure agent.

You can combine message-level security and access control defined by the presence
of an ACL file. The ACL file indicates trusted hosts and communities from which
messages are accepted. After they are accepted, they are decoded with the
message-level security you provide. This lets you provide more precise security
based on types of requests or the target variable, as well as any encryption.

SNMP Manager Security
Since the role of SNMP managers is that of a client, their security needs revolve
around sending and receiving data safely. To do this, the SNMP manager API also
relies on implementations of the SnmpPduFactory interface in order to control
message-level encoding and decoding.

By default, the SNMP manager API relies on the standard BER encoding
implemented by the SnmpPduFactoryBER class, which is the encoding used by
default by all SNMP agents, not just those developed with the Java Dynamic
Management Kit. You may change the encoding to use your own implementation of
the SnmpPduFactory interface through the following two hooks:

� The setPduFactory method of an SnmpPeer instance lets you control how all
requests are encoded and their responses decoded; because the custom PDU
encoding is associated with a peer, you may have different encodings for the
different peers that are accessed

288 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

� The setPduFactory method of an SnmpEventReportDispatcher instance lets
you control how unsolicited inform requests and trap messages are decoded and
the inform response encoded

Using these hooks, message-level security can be implemented regardless of whether
the managers are synchronous or asynchronous. If you are using a symmetrical
encryption of messages between your agent and manager, you may also reuse the
same classes for your PDU factory implementation on both agent and manager sides,
assuming they are both using the Java Dynamic Management Kit SNMP toolkit.

Otherwise, if your encryption is not symmetrical or if your agents do not use the
SNMP protocol adaptor, your PDU factory implementation will necessarily be
specific to the security scheme you choose to implement in your manager application.

The example applications do not cover the security features in the SNMP manager
API. Please refer to the Java Management Extensions SNMP Manager API document
and the Javadoc API for more details about using these hooks to implement manager
security.

Security Mechanisms in the SNMP Toolkit 289

290 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

CHAPTER 19

Implementing an SNMP Proxy

It is easier to manage a large number of SNMP agents when they have a hierarchical
structure of master agents and sub-agents. Master agents concentrate and relay the
information in their sub-agents and can provide their own specific information as
well. Managers only communicate with the master agents and access the sub-agents
transparently, as if the information actually resided in the master agent.

In order to do this, agents must contain an SNMP proxy for each sub-agent that they
manage. The proxy is a Java class that looks like a MIB MBean to the agent, but
which actually accesses the sub-agent to provide the information that is requested of
it. In order to access sub-agents, the proxy object relies on the SNMP manager API.

The SNMP proxy is used in this simple example to allow a manager to access two
MIBs through one agent. You can reuse the proxy class in your management solutions
in order to implement any hierarchy of managers, master agents and sub-agents.

The source code for the proxy object and the sample application is available in the
Snmp/Proxy example directory located in the main examplesDir (see “Directories and
Classpath” in the preface).

Contents:

� “The Proxy Roles” on page 292 explains how the example SNMP proxy works and
how it interacts with the manager and its sub-agent.

� “The SNMP Proxy Implementation” on page 295 gives details about how the
proxy is programmed.

� “Running the SNMP Proxy Example” on page 299 shows how to build and launch
the sub-agent, the master agent and the manager application.

291

The Proxy Roles
As we saw in “MIB Development Process” on page 244, the MBeans that represent a
MIB are generated from the MIB definition by the mibgen tool. This tool generates
one main MBean representing the MIB and then one MBean for each group and each
table entry. The main MBean extends the SnmpMib class whose implementation of
the abstract SnmpMibAgent class processes a request on a MIB.

For example, if an agent receives a get request for a variable, it will call the get
method that the main MBean inherits from SnmpMibAgent . The implementation of
this method relies on the MIB structure to first find the MBean containing the
corresponding attribute and to then call its getter to read the value of the variable.

A proxy is another implementation of the SnmpMibAgent class which, instead of
resolving variables in local MBeans, reformulates an SNMP request, sends it to a
designated sub-agent and forwards the answer that it receives. Since only the main
MBean of a MIB is bound to the SNMP adaptor, we bind the proxy instead, and the
master agent transparently exposes the MIB which actually resides in the sub-agent.

The Master Agent
The master agent needs to instantiate one SNMP proxy object for each sub-agent
containing MIBs that it wishes to serve. The remote MIBs can be on any number of
sub-agents, and the master agent can have several proxy objects. Sub-agents
themselves may contain proxies: it is up to the designer to define the complexity of
the agent hierarchy.

The master agent may also contain a mix of proxies and MBeans for other MIBs. In
the proxy example, the master agent exposes the DEMOMIB through local MBeans
and a subset of the RFC1213 MIB through a proxy.

CODE EXAMPLE 19–1 The Master Agent of the Example

MBeanServerImpl server;
ObjectName snmpObjName;
ObjectName localMibObjName;
ObjectName remoteMibObjName;
int htmlPort = 8082;
int snmpPort = 8085;

// read sub-agent connection info from the command line
String host = argv[0];
String port = argv[1];

try {

(continued)

292 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

(Continuation)

server = MBeanServerFactory.createMBeanServer();
String domain = server.getDefaultDomain();

// Create and start the HTML adaptor.
[...]

// Create and start the SNMP adaptor.
[...]

// Create, initialize, and bind the local MIB Demo.
//
localMibObjName = new ObjectName("snmp:class=DEMO_MIB");
server.registerMBean(localMib, localMibObjName);
localMib.setSnmpAdaptorName(snmpObjName);

// Create and initialize the SNMP proxy.
//
remoteMibObjName = new ObjectName("snmp:class=proxy");
SnmpMibAgentImpl remoteMib = new SnmpMibAgentImpl() ;
server.registerMBean(remoteMib, remoteMibObjName) ;
remoteMib.initializeProxy(host, Integer.parseInt(port), "1.3.6.1.2.1") ;

// Bind the MIB proxy to the SNMP adaptor
//
((SnmpMibAgent)remoteMib).setSnmpAdaptorName(snmpObjName) ;

}
catch (Exception e) {

e.printStackTrace();
java.lang.System.exit(1);

}

We register the proxy object as for any other MBean and then initialize it. We call the
initialize method of the proxy, giving the host and port of the sub-agent it must
communicate with, and the root OID of the MIB or subset that it represents.

A single proxy object can serve several MIBs on a sub-agent, and in this case, the
OID is the common prefix of all objects. However, the OIDs of all proxies and MIBs
in an agent must be distinct, none may be a substring of another (see “Binding the
MIB MBeans” on page 249). Finally, we bind the proxy to the SNMP adaptor just as
we would a MIB MBean.

Implementing an SNMP Proxy 293

The Sub-Agent
The sub-agent in our example is a stand-alone agent which serves a subset of the
RFC1213 MIB. Since it implements no proxies of its own, it is just a plain agent
which responds to SNMP management requests that happen to originate from a
proxy object. Any SNMP manager could also send requests to this agent.

Stand-alone agents are covered in “Stand-Alone SNMP Agents” on page 257. As this
stand-alone agent contains no code that is specific to its role as a sub-agent, we will
not repeat its program listing here. The StandAloneAgent.java file only contains
some extra code for reading its assigned port from the command line. We will use
this to launch the agent on a known port to which the proxy can connect.

The Manager Application
The manager application is not affected by proxies in the agents to which it sends
requests. It sends the requests to the session of the master agent, in the same way that
it would a request for a MIB that is not served by a proxy. In fact, the SNMP manager
cannot even distinguish between a MIB served by an agent and another MIB served
through a proxy in the agent, except perhaps by analyzing the values returned.

There is one consideration for proxies, and that is the timeout interval. Since the
proxy issues another request and potentially answers only at the end of its timeout,
the manager must have a longer timeout. The manager should be designed with
some knowledge of all sub-agents in a hierarchy, so that the timeout interval can take
into account all proxy delays and the multiple communication times.

As with any manager application written with the SNMP manager API, the manager
in the proxy example may use the OID table object to refer to the MIB variables by
name. Here is the code to initialize the manager:

CODE EXAMPLE 19–2 Initialization of the SNMP Proxy Manager

String host = argv[0];
String port = argv[1];

// Initialize the SNMP Manager API.
// Specify the OidTables containing all the MIB Demo and MIB II knowledge.
//

Use the OidTables generated by mibgen when compiling MIB Demo and MIB II.
//
SnmpOidDatabaseSupport oidDB = new SnmpOidDatabaseSupport();
SnmpOid.setSnmpOidTable(oidDB);
oidDB.add(new RFC1213_MIBOidTable());
oidDB.add(new DEMO_MIBOidTable());

SnmpPeer agent = new SnmpPeer(host, Integer.parseInt(port));
SnmpParameters params = new SnmpParameters("public", "private");
SnmpSession session = new SnmpSession("Manager session");

(continued)

294 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

(Continuation)

// We update the time out to let the agent enough time
// to do his job before retry.
//
agent.setTimeout(100000);
agent.setSnmpParam(params);
session.setDefaultPeer(agent);

The rest of the manager application is the code for synchronous get and set
requests, similar to the one shown in “The Synchronous Manager Example” on page
264.

The SNMP Proxy Implementation
The SNMP proxy is an extension of the abstract SnmpMibAgent which implements
all of its abstract methods and can be instantiated. The proxy implements a
synchronous SNMP manager that forwards the requests to the sub-agent. It does
some error fixing for SNMPv2 requests but doesn’t claim to be extensive. The SNMP
proxy implementation is only provided as an example and Sun Microsystems makes
no claim as to its suitability for any particular usage.

Note - The implementation of the example proxy does not support the getBulk
request nor the check method.

Before it is used, the proxy must be initialized with the hostname and port of the
sub-agent. It uses this information to create the corresponding SNMP parameter
object and SNMP peer object. It then creates three SNMP sessions:

� One for SNMPv1 requests

� One for SNMPv2 requests

� One for failed SNMPv2 requests that are retried as v1 requests

Implementing an SNMP Proxy 295

CODE EXAMPLE 19–3 Internal Initialization of the SNMP Proxy

public void initializeProxy(String h, int p,
String strOid, String name)

throws UnknownHostException, SnmpStatusException {

host = h;
port = p;
oid = strOid;
mibName = name;

// Initialization for SNMP v1 protocol.
//
SnmpParameters paramsV1 = new SnmpParameters("public", "private");
paramsV1.setProtocolVersion(SnmpDefinitions.snmpVersionOne);
SnmpPeer peerV1 = new SnmpPeer(host, port);
peerV1.setSnmpParam(paramsV1);
sessionV1 = new SnmpSession("SnmpMibAgentImpl session V1");
sessionV1.setDefaultPeer(peerV1);

// Using SNMP v1 protocol, errors are not fixed and
// forwarded to the manager
sessionV1.snmpOptions.setPduFixedOnError(false);

// Initialization for SNMP v2 protocol.
//
SnmpParameters paramsV2 = new SnmpParameters("public", "private");
paramsV2.setProtocolVersion(SnmpDefinitions.snmpVersionTwo);
SnmpPeer peerV2 = new SnmpPeer(host, port);
peerV2.setSnmpParam(paramsV2);
// If we get an error, we don’t retry the request using SNMP v2,
// but we try the request using SNMP v1
peerV2.setMaxRetries(0);
sessionV2 = new SnmpSession("SnmpMibAgentImpl session V2");
sessionV2.setDefaultPeer(peerV2);
// Using SNMP v2 protocol, the error is fixed
//
sessionV2.snmpOptions.setPduFixedOnError(true);

// Initialization for SNMP v2 protocol simulated
// using SNMP v1 protocol
//
sessionV2WithV1 = new SnmpSession("SnmpMibAgentImpl session V2 with V1");
sessionV2WithV1.setDefaultPeer(peerV1);
// Simulating SNMP v2 with SNMP v1 protocol, the error is fixed.
//
sessionV2WithV1.snmpOptions.setPduFixedOnError(true);

}

The proxy exposes the public methods for handling requests, and then implements
this algorithm for reducing errors by internal methods. Roughly, the proxy must
determine the version of the incoming request and handle it as promised. Version 1

296 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

requests that timeout or fail are dropped, and v2 requests that timeout or fail are
retried as v1 requests. Here we only show the code for implementing the get
method.

CODE EXAMPLE 19–4 Implementing a get Request in the Proxy

// the exposed method
public void get(SnmpMibRequest inRequest) throws SnmpStatusException {

java.lang.System.out.println(
"Proxy: Sending get request to SNMP sub-agent on " +

host + " using port " + port);

// Get the protocol version
final int version = inRequest.getVersion();

// Request using SNMP v1 protocol
if (version == SnmpDefinitions.snmpVersionOne) {

get(inRequest, version, sessionV1);
}

// Request using SNMP v2 protocol.
if (version == SnmpDefinitions.snmpVersionTwo) {

get(inRequest, version, sessionV2);
}

}

// the internal implementation
private void get(SnmpMibRequest inRequest, int version, SnmpSession session)

throws SnmpStatusException {

// Construction of the SnmpVarBindList for the request.
final SnmpVarbindList varbindlist =

new SnmpVarbindList("SnmpMibAgentImpl varbind list",
inRequest.getSubList());

SnmpRequest request = null;
try {

request = session.snmpGet(null, varbindlist);
}
catch (SnmpStatusException e) {

throw new SnmpStatusException(SnmpDefinitions.snmpRspGenErr, 0);
}
java.lang.System.out.println("\nRequest:\n" + request.toString());

boolean completed = request.waitForCompletion(10000);
if (completed == false) {

// If the completion failed using SNMP v1, we give up
if (version == SnmpDefinitions.snmpVersionOne) {

java.lang.System.out.println(
"\nRequest timed out: check reachability of sub-agent.");

return;
}

// If the completion failed using SNMP v2, we try again using v1

(continued)

Implementing an SNMP Proxy 297

(Continuation)

if (version == SnmpDefinitions.snmpVersionTwo) {
get(inRequest, SnmpDefinitions.snmpVersionOne, sessionV2WithV1);
return;

}
}

// Check the request result
int errorStatus = request.getErrorStatus();
int errorIndex = request.getErrorIndex() + 1;
if (errorStatus != SnmpDefinitions.snmpRspNoError) {

// If there is an error status using v1, we throw an exception
if (version == SnmpDefinitions.snmpVersionOne) {

throw new SnmpStatusException(errorStatus, errorIndex);
}
// If there is an error status using v2, we try again using v1
if (version == SnmpDefinitions.snmpVersionTwo) {

get(inRequest, SnmpDefinitions.snmpVersionOne, sessionV2WithV1);
return;

}
}
// Get and display the returned values
final SnmpVarbindList result = request.getResponseVarBindList();
java.lang.System.out.println("\nResult: \n" +

result.varBindListToString());

// Update the list parameter with the result
// The varbinds in the result list are expected to be in the same
// order as in the request, so we can safely loop sequentially
// over both lists.
Enumeration l = list.elements();
for (Enumeration e = result.elements(); e.hasMoreElements();) {

SnmpVarBind varres = (SnmpVarBind) e.nextElement();
SnmpVarBind varbind = (SnmpVarBind) l.nextElement();
varbind.value = varres.value;

}
}

The complete list of methods that a proxy must implement are the same as for MIB
MBeans represented by instances of the SnmpMib class:

� long[] getRootOid() - Gets the root object identifier of the MIB.

� void get(SnmpMibRequest req) - Processes a get operation.

� void getNext(SnmpMibRequest req) - Processes a getNext operation.

� void getBulk(SnmpMibRequest req, int nonRepeat, int maxRepeat) -
Processes a getBulk operation.

298 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

� void check(SnmpMibRequest req) - Prepares a set operation.

� void set(SnmpMibRequest req) - Processes a set operation.

Running the SNMP Proxy Example
First, we generate the MBeans for our MIBs using the mibgen tool:

$ cd examplesDir/Snmp/Proxy/
$ mibgen -a -d . mib_II_subset.txt mib_demo.txt

Since the proxy uses the SNMP manager API, the master agent application needs the
SNMP manager classes in its classpath, for both compilation and execution. In
addition, if the proxy object uses the SNMP OID tables that are generated for its
MIBs by the mibgen tool, these classes must also be found in the classpath.

These issues are resolved in our case by having all classes in the example directory
and using dot (.) in our usual classpath. Replace the two MIB files with those from
the patchfiles directory and then compile all of the classes in the example
directory:

$ cp -i patchfiles/*_MIB.java .
cp: overwrite ./DEMO_MIB.java (yes/no)? y
cp: overwrite ./RFC1213_MIB.java (yes/no)? y
$ javac -classpath classpath -d . *.java

We can run all three applications on the same machine as long as we choose different
port numbers. Here we give commands for launching the applications from the same
terminal window running the Korn shell. On the Windows NT platform, you will
have to launch each application in a separate window, in which case you will not see
the sequence of the merged output.

Running the SNMP Proxy Example

1. First we launch the sub-agent; by default it will reply to port 8086, or we can
specify a different one on the command line:

Implementing an SNMP Proxy 299

$ java -classpath classpath StandAloneAgent 8090 &
Adding SNMP adaptor using port 8090

Initializing the MIB RFC1213_MIB

2. Then we launch the master agent, giving it the sub-agent’s hostname and port
number:

$ java -classpath classpath Agent localhost 8090 &
NOTE: HTML adaptor is bound on TCP port 8082
NOTE: SNMP Adaptor is bound on UDP port 8085

Initializing the MIB snmp:class=DEMO_MIB

Initializing the SNMP proxy snmp:class=proxy to query host localhost using
port 8090

3. Now you can view the master agent through its HTML adaptor. In your web
browser, go to the following URL: http://localhost:8082/ .

The class=proxy MBean in the snmp domain is the proxy object, but we cannot
see the MBean that it represents. In order to manage the actual MIB, we would
have to connect to the sub-agent, but in our example it is a stand-alone and
therefore unreachable.

The name=DemoMBean in the DEMO_MIBdomain is the MIB that is served
locally. If we click on its name, we can see its initial values.

4. Finally, we launch the manager application, giving it the master agent’s
hostname and port:

$ java -classpath classpath Manager localhost 8085

The manager will run through its requests to the master agent. If the output is in
the correct order, there are messages from the manager issuing a request, and
then the proxy which relays a request for two of the variable to the sub-agent.
The proxy then prints the result it received for the two variables, then the
manager receives the final response with all of the variables, including the same
two that the proxy just forwarded.

300 Java Dynamic Management Kit 4.2 Tutorial ♦ December 2000

5. In the name=DemoMBean on the web browser, you should see the new values
that were set in the DEMO_MIB as part of the manager’s set operation.

6. Don’t forget to stop the agent applications with the following commands (just
use “Control-C” if they are in separate terminal windows):

$ fg
java [...] Agent localhost 8090 <Control-C>
^C$ fg
java [...] StandAloneAgent 8090 <Control-C>
^C$

Implementing an SNMP Proxy 301

