»
< Sun

microsystems

Getting Started with the Java
Dynamic Management Kit 4.2

Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303-4900
U.S.A.

Part Number 806-6630-10
December 2000

Copyright 2000 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303-4900 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document.
In particular, and without limitation, these intellectual property rights may include one or more additional patents or pending patent
applications in the U.S. or other countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and
decompilation. No part of this product or of this documentation may be reproduced in any form by any means without prior written
authorization of Sun and its licensors, if any.

Third party software, including font technology, is copyrighted and licensed from Sun suppliers.

Sun, Sun Microsystems, the Sun Logo, Java, Java Dynamic Management, JMX, JavaBeans, JavaScript, Javadoc, JDK, Personallava, Java
Community Process, the Java Coffee Cup logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks or registered
trademarks of Sun Microsystems, Inc in the U.S. and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and
other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

Federal Acquisitions: Commercial Software — Government Users Subject to Standard License Terms and Conditions.
DOCUMENTATION IS PROVIDED “AS IS,” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR

NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY
INVALID.

Copyright 2000 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, Californie 94303-4900 Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuelle relatants a la technologie incorporée dans le produit décrit par ce document.
En particulier, et sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs brevets, ou des applications de
brevet en attente, aux Etats-Unis et dans d’autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent I'utilisation, la copie, la
distribution, et la décompilation. Aucune partie de ce produit ou document ne peut étre reproduite sous aucune forme, par quelque
moyen gue ce soit, sans I'autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractéres, est protégé par un copyright et licencié
par des fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun, Java, Java Dynamic Management, JMX, JavaBeans, JavaScript, Javadoc, JDK, Personallava, Java
Community Process, le logo Java Coffee Cup, docs.sun.com, AnswerBook, AnswerBook2 et Solaris sont des marques de fabrique ou des
marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International,
Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun
Microsystems, Inc.

LA DOCUMENTATION EST FOURNIE EN “L’ETAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES
EXPRESSES OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS
NOTAMMENT TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION
PARTICULIERE OU A L’ABSENCE DE CONTREFACON.

. 4.4
ca &S
Adobe PostScript Please

Recycle

Contents

Preface 5

The Java Dynamic Management™ Kit 11
Introduction 12
Why Use Java Dynamic Management Technology? 12
What Is the Java Dynamic Management Kit? 13
How Do | Develop a Java Dynamic Management Solution? 14
Key Concepts 17
Advantages of a Java Dynamic Management Solution 18
Simplified Design and Development 18
Protocol Independence 19
Dynamic Extensibility And Scalability 20
Architectural Components 21
MBeans 21
Standard MBeans 22
Dynamic MBeans 23
Model MBeans 23
The MBean Server 24
Communication Components 25

Connectors 25

Protocol Adaptors 27
The Notification Model 28
Local Notification Listeners 29
Remote Notification Listeners 29
Agent Services 30
Query and Filtering 31
Dynamic Loading 31
Monitoring 32
Scheduling 33
Cascading 33
Discovering Agents 34
Defining Relations 35
Security 37
Password Protection 37
Context Checking 38
Data Encryption 40
Secure Dynamic Loading 41
The SNMP Toolkit 41
Developing An SNMP Agent 41
SNMP MIB Compiler — mibgen 42
SNMP Manager APl 43
3. The Development Process 45
Instrumenting Resources 46
Designing an Agent Application 46
Generating Proxy MBeans 47
Designing a Management Application 48
Defining Input and Output 49

Specific Versus Generic 49

Getting Started with the Java Dynamic Management Kit 4.2 ¢ December 2000

Preface

The Java Dynamic Management™ Kit provides a set of Java™ classes and tools for
developing management solutions. This product conforms to the Java Management
extensions (JMX™), v1.0 Final Release, which defines a three-level architecture:
resource instrumentation, dynamic agents and remote management applications. The
JMX architecture is applicable to network management, remote system maintenance,
application provisioning, and the new management needs of the service-based
network.

This Getting Started with the Java Dynamic Management Kit 4.2 Guide presents the
architecture of the Java Dynamic Management Kit, introducing the key components
of the product and the development process for management applications.

Who Should Use This Book

This book is aimed at anyone seeking an introduction to the concepts and
components of the Java Dynamic Management Kit.

Familiarity with Java programming and the JavaBeans™ component model is
assumed. Familiarity with the JMX specification is also recommended.

This book is not intended to be an exhaustive reference: management tutorials
intended to demonstrate each of the management levels and how they interact are
covered in Java Dynamic Management Kit 4.2 Tutorial, and the complete Javadoc™
API definitions are provided in the product’s online documentation package.

How This Book Is Organized

This book explains the key concepts of the Java Dynamic Management Kit,
introduces the main components of the product, provides an overview of the
development process and outlines the tools you need to use the Java Dynamic
Management Kit. It is divided into the following sections:

m “What is the Java Dynamic Management Kit?”
m “Architectural Components ”

m “The Development Process”

After You Read This Book

In order to build and run the sample programs or use the tool commands provided
in the Java Dynamic Management Kit 4.2, you must have a complete installation of
the product on your machine. Please refer to the Java Dynamic Management Kit 4.2
Installation Guide and Release Notes document for instructions on how to install the
product components and configure your environment.

After familiarizing yourself with the concepts of the Java Dynamic Management Kit,
you should familiarize yourself with the tools for developing management
applications. Then, through the lessons of the tutorial, you will learn how to
instrument new or existing resources, write intelligent agent applications and access
them from remote managers written in the Java programming language. You are
then ready to design and develop your own Java Dynamic Management solution.

The following books are part of the product documentation set:
m Java Dynamic Management Kit 4.2 Tools Reference
m Java Dynamic Management Kit 4.2 Tutorial

These books are available online after you have installed the documentation package
of the Java Dynamic Management Kit 4.2. The online documentation also includes
the Javadoc API for the Java packages and classes, including those of the Java
Management extensions. Using any web browser, open the homepage corresponding
to your platform:

Getting Started with the Java Dynamic Management Kit 4.2 ¢ December 2000

Operating

Environment Homepage Location
Solaris installIDir/SUNWjdmk/jdmk4.2/ JDKversion/index.html
Windows NT instalIDiINSUNWjdmk\jdmk4.2\ JDKversion\index.html

In these file names, installDir refers to the base directory of your Java Dynamic
Management Kit installation. In a default installation procedure, installDir is:

m /opt on the Solaris platform
m C:\Program Files on the Windows NT platform

The JDKversion is that of the Java Development Kit (JDK™) which you use and
which you selected during installation. Its value can be either 1.1 or 1.2 , when
used in a directory, filename, or path.

These conventions are used throughout this book whenever referring to files or
directories which are part of the installation.

Related Books

The Java Dynamic Management Kit relies on the management architecture of the Java
Management extensions. The specification document, Java Management Extensions
Instrumentation and Agent Specification, v1.0 (Final Release, July 2000), is provided in
the product documentation package, under the filename jmx_instr_agent.pdf

Ordering Sun Documents

Fatbrain.com, an Internet professional bookstore, stocks select product
documentation from Sun Microsystems, Inc.

For a list of documents and how to order them, visit the Sun Documentation Center
on Fatbrain.com at http://www1.fatbrain.com/documentation/sun

Preface 7

Accessing Sun Documentation Online

The docs.sun.com®” Web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title or
subject. The URL is http://docs.sun.com

Typographic Conventions

The following table describes the typographic changes used in this book.

TABLE P-1 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123 Book titles, new words or terms, or | Read Chapter 6 in User’s Guide.

words to be emphasized These are called class options.

You must be root to do this.

AaBbCc123 Class or object names, methods, Instantiate the MyBean class.
parameters or any other element of
the Java programming language

AaBbCc123 The names of commands, files, and | Edit your .login file.
directories; on-screen computer Use Is -a to list all files.
output

machine_name% you have mail

AaBbCc123 What you type, contrasted with machine_name% su
on-screen computer output Password:

AaBbCcl123 Command-line placeholder: replace | To delete a file, type rm filename.

with a real name or value

8 Getting Started with the Java Dynamic Management Kit 4.2 ¢ December 2000

Shell Prompts

The following table shows the default system prompts for the different platforms
and shells.

TABLE P-2 Shell Prompts

Shell Prompt

C shell prompt machine_name%
C shell superuser prompt machine_name#
Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser #

prompt

Windows NT system prompt C:\

Unless otherwise noted, the command examples in this book use the Korn shell
prompt.

Preface 9

10 Getting Started with the Java Dynamic Management Kit 4.2 ¢ December 2000

CHAPTER 1

The Java Dynamic Management- Kit

The Java Dynamic Management™ Kit is a Java™ application programming interface
(API) and a set of development tools for designing and implementing a new
generation of management applications. As an implementation of the Java
Management extensions (the IMX™ specification), the product provides a framework
for the management of Java objects through Java technology-based applications.

The Java Dynamic Management Kit provides a complete architecture for designing
distributed management systems. A Java technology-based solution can embed
management intelligence into your agents, provide an abstraction of your
communication layer, and be upgraded and extended dynamically. Your
management applications can also take advantage of other Java APIs such as Swing
components for user interfaces and the JDBC™ API for database access.

In addition, the Java Dynamic Management Kit provides a complete toolkit for the
simple network management protocol (SNMP), the most widespread legacy
architecture for network and device management. This gives you the advantages of
developing both Java Dynamic Management agents and managers that can
interoperate with existing management systems.

Contents:

m The “Introduction” on page 12 gives an overview of the product architecture and
functionality.

m “Key Concepts” on page 17 describes the main components of the Java Dynamic
Management Kit.

m “Advantages of a Java Dynamic Management Solution” on page 18 highlights the
benefits of the product for designers and developers.

11

Introduction

In this section, we answer these fundamental questions about the Java Dynamic
Management Kit:

m Why use Java Dynamic Management technology?
m What is the Java Dynamic Management Kit?
m How do | develop a Java Dynamic Management solution?

If this is your first contact with the product, the answers to these questions should
help you understand how your management needs can be solved using Java
Dynamic Management technology.

Why Use Java Dynamic Management Technology?

Old Way — Network management is usually performed by large, centralized
management applications. These management applications monitor and modify their
network by tightly controlling their agents. The agents act as relays for the network
resources they represent, translating commands and collecting raw data and status
information. Agents are usually situated in or near the network elements they
control, which means that these agents are limited in nature. They usually contain
little management intelligence and can only perform basic network management
operations.

New Way — A Java Dynamic Management agent exposes its resources in a standard
way and provides management services directly at the resource level. These services
provide the intelligence that allows agent applications to perform management tasks
autonomously. This frees the management application from routine tasks such as
polling and thus reduces the network load as well.

Old Way - From a wider perspective, existing management systems for networks
and applications are implemented with diverse protocols and technologies.
Developers must choose a single management technology for a portion of the target
market. In some cases, developers may need to implement multiple management
technologies, in order to provide more complete coverage of their potential markets.
Due to the limitations of both approaches, vendors frequently choose not to
implement any management technology.

New Way — The interface to resources is standardized, meaning that device vendors
and application developers can finally agree: they can use any technology they want!
As long as they communicate through a Java Dynamic Management agent,
management applications can access any resource.

The same flexibility applies to the management services that are deployed in the
agents. Because they can control resources through standard interfaces, they are

12 Getting Started with the Java Dynamic Management Kit 4.2 ¢ December 2000

dynamically interchangeable. In order to upgrade the capabilities of a smart agent,
new services can be downloaded and plugged in dynamically when they become
available. Finally, the Java Dynamic Management Kit provides a distributed model
that is protocol independent: management applications rely on the API, not on any
one protocol.

The Java Dynamic Management Kit brings new solutions to the management domain
through:

m Compliance to the Java Management extensions, the specification for managing
Java objects through Java applications, as developed through the Java Community
Process.

m A single suite of components that provides uniform instrumentation for managing
systems, applications, and networks, and that allows universal access to these
resources.

m A flexible architecture that distributes the management load and which can be
upgraded in real time for the service-driven network.

The service-driven network is a new approach to network computing that
concentrates on the services you want to provide. These range from the low-level
services that manage relationships between network devices to the value-added
services you provide to end-users. These services drive your network and
management needs. In addition, autonomous agent functionality makes it possible
for you to manage a very large installed base.

With the Java Dynamic Management architecture, services can be incorporated
directly into agents. Agents are given the intelligence to perform management tasks
themselves, enabling management logic to be distributed throughout the whole
network. New services can be downloaded from a Web server at runtime using a
dynamic pull mechanism. Services are not only implemented inside devices, but can
also be network-based, downloaded through simple Web pages in the same way as
Java technology-based applets.

This dynamic, on-demand paradigm means that it is no longer necessary to know

what will need to be configured, managed, and monitored in the future or in advance
of network deployment. Services will be created, enhanced and deployed as needed.
This unique combination of features gives the Java Dynamic Management Kit a wide
domain of application as it integrates the current and future management standards.

What Is the Java Dynamic Management Kit?

The Java Dynamic Management Kit is a Java API with all its class and interface
objects, development tools that speed up the development process, and a complete
set of documentation.

The programmatic components of the Java Dynamic Management Kit include:

m A management architecture — The architecture is a conforming implementation of
the JMX specification API, both the instrumentation and the agent levels.

The Java Dynamic Management™ Kit 13

Communication modules — The Java Dynamic Management Kit defines APIs for
accessing JMX agent remotely. The product includes communication modules
based on the RMI, HTTP, and HTTPS protocols. It also includes an HTML adaptor
which supports access to an agent from a web browser.

Agent services — The library of supplied services includes monitoring, scheduling,
dynamic loading, defining relations, cascading agent hierarchies, dynamic agent
discovery, and components for implementing security mechanisms.

SNMP APIs — Applications which rely on the SNMP APIs can integrate into
existing network management systems and help these systems migrate towards a
more dynamic, service-based approach to network management.

The development tools are implemented as two standalone applications:

proxygen - This tool is a proxy object generator which simplifies the
development of Java technology-based management applications. Proxy objects
make the communication layer transparent to the manager application.

mibgen - This tool is used when developing SNMP agents. A MIB (management
information base) represents the management interface of resources in an SNMP
agent, and mibgen generates the corresponding Java objects.

Finally, the Java Dynamic Management Kit contains complete documentation for
developers:

The full description of all classes, interfaces and methods in the APIs, generated
by the Javadoc™ utility.

The source code for programming examples which demonstrate all functionality of
the product.

A tutorial which explains the programming examples and a reference guide for
the standalone tools.

Both online HTML and printable file formats for all documents.

The complete JMX specifications document; the Java Dynamic Management Kit 4.2
implements the JMX Specification v1.0, Final Release.

How Do | Develop a Java Dynamic Management
Solution?

The intstrumentation level of the IMX specification describes how to represent a
resource as a Java object. The JMX agent level describes how resources interact with
an agent. The Java Dynamic Management Kit extends the agent services and defines
the distributed management features for accessing agents remotely. A distributed
management solution relies on all three levels.

14 Getting Started with the Java Dynamic Management Kit 4.2 ¢ December 2000

Instrument Your Resources as MBeans

A resource can be any entity, physical or virtual, that you wish to make available and
control through your network. Physical resources can be devices such as network
elements or printers. Virtual resources include applications and computational power
that are available on some host. A resource is seen through its management interface;
this is the set of attributes, operations, and notifications that a management
application may access.

To instrument a resource is to develop the Java object that represents the resource’s
management interface. The JMX specification defines how to instrument a resource
according to certain design pattern. These patterns resemble those of the JavaBeans™
component model: an attribute has getters and setters, operations are represented by
their Java methods, and notifications rely on the Java event model.

Therefore, a Managed Bean, or MBean, is the instrumentation of a resource in
compliance with the JMX design patterns. If the resource itself is a Java application,
it can be its own MBean, otherwise, an MBean is a Java wrapper for native resources
or a Java representation of a device. MBeans can be distant from the managed
resource, as long as they accurately represent its attributes and operations. The
MBean developer determines what attributes and operations are available through
the MBean.

Device manufacturers and application vendors may provide the MBeans that plug
into their customer’s existing agents. Management solution integrators may develop
the MBeans for resources which have not been previously instrumented. Because
MBeans follow the JMX specification, they can be instantiated in any JIMX-compliant
agent. This makes them portable and independent of any proprietary management
architecture.

Expose Your MBeans in a Smart Agent

A Java Dynamic Management agent follows the client-server model: the agent
responds to the management requests from any number of client applications that
wish to access the resources it contains. The agent centralizes all requests, dispatches
them to the target MBeans and returns any responses. The agent handles the
communication issues involved with receiving and sending data, so that the MBeans
don’t have to.

The central component of an agent is the MBean server. It is a registry for MBean
instances and it exposes a generic interface through which clients can issue requests
on specific MBeans. Clients may ask for the description of an MBean’s management
interface, in order to know what resource is exposed through that MBean. Using this
information, the manager can then formulate a request to the MBean server to get or
set attributes, invoke operations or register for notifications.

MBeans are only accessible through requests to the MBean server. Manager
applications never have the direct reference of an MBean, only a symbolic object

The Java Dynamic Management™ Kit 15

name which identifies the MBean in the agent. This preserves the client-server model
and is essential to the implementation of query and security features.

The MBean server also provides the framework that allows agent services to interact
with MBeans. Services are themselves implemented as MBeans, which interact with
resource MBeans to perform some task. For example, a manager could decide to
monitor some MBean attribute: it instantiates the monitoring service MBean,
configures the threshold, and registers to receive the alarms that may occur. The
manager no longer needs to poll the agent, it will automatically be notified whenever
the attribute exceeds the threshold.

The library of services contains the logic that is necessary for implementing
advanced management policies: scheduling events, monitoring attributes,
establishing and enforcing relations, discovering other agents, creating subagent
hierarchies, and downloading of new MBean objects. You may also develop your
own service MBeans to meet your management needs, such as logging and
persistence services which are typically platform dependent.

Access Your Agents Remotely

Finally, the Java Dynamic Management Kit allows you to access agents and their
resources very easily from a remote application. All components for handling the
communication are provided, both in the agent and for the client application. The
same API that is exposed by the MBean server in the agent is also available remotely
to the manager. This symmetry effectively makes the communication layer
transparent.

Management applications perform requests simply by getting or setting attributes or
invoking operations on an MBean identified by its symbolic name. Proxy objects
provide a further level of abstraction by representing an MBean remotely and
handling all communication: the manager can be designed and developed as if all
resources were local. The communication components also handle notification
forwarding, so that remote managers may register to receive notifications from
broadcasting MBeans.

Management applications developed in the Java programming language use
connectors to make the communication layer transparent. Connectors for the RMI,
HTTP/TCP and HTTP/SSL protocols are provided, all with the same API for
interchangeability.

Adaptors provide a view of an agent through other protocols for management
applications which are not Java-based. For example, the HTML adaptor represents
MBeans as web pages that can be viewed in any Web browser. The SNMP adaptor
exposes special MBeans that represent an SNMP MIB and responds to requests in
both SNMP v1 and v2 protocols.

All connectors and adaptors are themselves implemented as MBeans. Management
applications may therefore create, configure and remove communication resources
dynamically, according to network conditions or available protocols. Of course, the

16 Getting Started with the Java Dynamic Management Kit 4.2 ¢ December 2000

agent application may also implement security features that prevent unwanted
operations on the communicator MBeans.

The flexibility of communicator MBeans and the availability of connectors for
multiple protocols makes it possible to deploy management solutions in
heterogeneous network environments. The adaptors create a bridge between agents
based on the JMX architecture and existing management systems. You may also
create your own connectors and adaptors to accommodate proprietary protocols and
future management needs.

Key Concepts

The diagram in Figure 1-1 gives a visual representation the key concepts of the Java
Dynamic Management Kit and shows how the components relate to each other.

In this example, the MBeans for two resources are registered with the agent’s MBean
server. An agent service such as monitoring is registered as another MBean. The
agent contains a connector server for one of the following protocols;: RMI, HTTP, or
HTTPS. It also contains a protocol adaptor, either for SNMP or HTML. An agent can
have any number of communicator components, one for each of the protocols and
for each of the ports through which it wishes to communicate.

2

- Lo T>.

|
|
|
|
|
|
- J\
/l: F 1
M Protocol | “
|
|
|
|
|

Agent Application Remote Manager Application
'________________—I Qi - 1
| Connector |
Resource Connector | | Client I
Server | | ooers, |
1 \\ — | MDeve oper’s |
N anagement| |
Components | |
Resource - |
|
|
|
J4

|
HTTPS :
|

Java Virtual Machine

e o o o —— — ——— ——

2

View of the Agent:
py— MBean 027" % « As HTML Pages in
Sgrvice Server S= a Web Browser

HTML/)
SNMP « As a MIB in an SNMP

Java Virtual Machine

Manager Console

Registered MBean
MBean Proxy

Figure 1-1 Key Concepts of the Java Dynamic Management Kit

The Java Dynamic Management™ Kit 17

The remote manager is a Java application running on a distant host. It contains the
connector client for the chosen protocol and proxy MBeans representing the two
resources. When the connector client establishes the connection with the agent’s
connector server, the other components of the application can issue management
requests to the agent. For example, it may call the proxy objects to invoke an
operation on the first resource and configure the monitoring service to poll the
second resource.

The HTML adaptor lets us view the agent through a web browser, which provides a
simple user interface. Each MBean is represented as a separate HTML page, from
which the user can interact with text fields to set attributes and click on buttons to
invoke operations. There is also an administration page for creating or removing
MBeans from the MBean server.

We will further define and describe each of these concepts in Chapter 2:
“Architectural Components”.

Advantages of a Java Dynamic
Management Solution

To summarize, the benefits of the Java Dynamic Management Kit include:

m Simplified design and development of instrumentation, smart agents and remote
managers.

m Deployment flexibility through protocol independence and SNMP compatibility.

m Dynamic extensibility and scalability.

Simplified Design and Development

The JMX architecture standardizes the elements of a management system. All three
levels, instrumentation, agent, and manager, are isolated and their interaction is
defined through the API. This makes it possible to have modular development, each
level being designed and implemented independently. Also, component reuse is
possible; services developed for one JMX agent will work in all JIMX agents.

At the instrumentation level:

m MBeans only need to define their management interface and map the variables
and methods of their resource to the attributes and operations of the interface.

m MBeans can be instantiated into any JMX-compliant agent.

m MBeans do not need to know anything about communication with the outside
world.

18 Getting Started with the Java Dynamic Management Kit 4.2 ¢ December 2000

At the agent level:

m The MBean server handles the task of registering MBeans and transmitting
management requests to the designated MBean.

m Any JMX-compliant MBean may be registered and exposed for management.

m Any of the provided communication components can be used to respond to
remote requests, and you can develop new adaptors and connectors to respond to
proprietary requests.

m The library of agent services provides management intelligence in the agent, such
as autonomous operation in the case of a network failure.

At the manager level:

m All management requests on an MBean server are available remotely through a
connector.

m Notification forwarding is already implemented for you.

m Proxies provide an abstraction of the communication layer and simplify the design
of the management application.

m No need to implement basic management tasks, these are done in the agent by the
agent services.

At all three levels, the modularity also means the simple designs may be
implemented rapidly, and then additional functionality may be added as it is needed.
You can have a prototype running after your first day of development, thanks to the
programming examples provided in the product.

Protocol Independence

The design of MBeans, agents, and managers does not depend in any way on the
protocol an agent uses for communicating with external applications. All interactions
with MBeans are necessarily handled by the MBean server and thus defined by the
APIs of the Java Management extensions.

The provided connectors rely on this APl and do not expose any communication
details. A connector server-conector client pair may be replaced by another without
loss of functionality, assuming both protocols are in the network environment.
Applications may thus switch protocols according to real-time conditions. For
example, if a manager must access an agent behind a firewall, it may instantiate and
use an HTTP connector.

Because MBeans and agents are protocol-independent, they may be accessed
simultaneously through any number of protocols. Connector servers and protocol
adapters can handle multiple connections, so your agent only needs one of them for
each protocol to which it would like to respond. The MBean server also supports
simultaneous requests, although MBeans are responsible for their own sychronization
issues.

The Java Dynamic Management™ Kit 19

20

New connectors for new protocols can be developed and used without rewriting
existing MBeans or external applications. All that is required is that the new
connector client expose the remote API.

Dynamic Extensibility And Scalability

By definition, all agents and manager applications developed with the Java Dynamic
Management Kit are extensible and scalable. The library of agent services is always
available: managers may instantiate new services when they are needed and later
remove them to minimize memory usage. This is especially useful for running agents
on small footprint devices.

In the same way, MBeans may be registered and unregistered with the MBean server
in an agent while it is running. This is useful to represent application resources
which may come and go on a given host. The scalability allows an agent to adapt to
the size and complexity of its managed resources, without having to be restarted or
reinstalled.

The dynamic loading service can download and instantiate MBeans from an arbitrary
location. Therefore, it is possible to extend the functionality of a running agent by
making new classes available at an arbitrary location and requesting that the agent
load and instantiate them. This is effectively a push mechanism that can be used to
deploy services and applications to customers.

Finally, IMX conformance insures that all JMX-compatible components can be
incorporated into Java Dynamic Management agents, whether they are manageable
resources, New services, or new communication components.

Getting Started with the Java Dynamic Management Kit 4.2 ¢ December 2000

CHAPTER 2

Architectural Components

This chapter presents the components of the Java Dynamic Management Kit and
how you can use them in a complete management solution.

Contents:

“MBeans” on page 21 describes the three ways to instrument a resource so that it
is manageable.

“The MBean Server” on page 24 describes how a JMX agent exposes the MBeans it
contains.

“Communication Components” on page 25 presents the components which
establish connections between agents and managers.

“The Notification Model” on page 28 explains how resources and agents can
signal events and how events are forwarded to remote listeners.

“Agent Services” on page 30 briefly explains each of the agent services.

“Security” on page 37 describes the security features built into the communication
components of the Java Dynamic Management Kit.

“The SNMP Toolkit” on page 41 describes how to develop Java applications for
SNMP agents and managers.

MBeans

The instrumentation level of the JIMX specification defines standards for making
resources manageable in the Java programming language. The instrumentation of a
manageable resource is provided by one or more Managed Beans, or MBeans. An
MBean is a Java object that exposes attributes and operations for management. These

21

attributes and operations enable any Java Dynamic Management agent to recognize
and manage the MBean.

The design patterns for MBeans give the developer explicit control over how a
resource, device or application will be managed. For example, attribute patterns
enable you to make the distinction between a read-only and a read-write property in
an MBean. The set of all attributes and operations exposed to management through
the design patterns is called the management interface of an MBean.

Any resource that you want to make accessible through an agent must be represented
as an MBean. Both the agent application and remote managers may access MBeans
in an agent. MBeans can generate notification events which are sent to all local or
remote listeners. For more information regarding managing MBeans remotely, please
refer to “Communication Components” on page 25.

MBeans can also be downloaded from a Web server and plugged into an agent at
any time, in response to a demand from the management application. This is called
dynamic class loading and means that future services and applications can be loaded
on-the-fly and without any downtime. For example, dynamic class loading can be
used to provide rapid, low-cost delivery of end-user applications across very large
bases of Java technology-enabled devices, such as desktop PC’s or Web phones.

There are three types of MBeans:
m Standard MBeans
m Dynamic MBeans

m Model MBeans, which are an extension of dynamic MBeans

Standard MBeans

Standard MBeans are Java objects that conform to certain design patterns derived
from the JavaBeans component model. Standard MBeans allow you to define your
management interface straightforwardly in a Java interface. The method names of this
interface determine getters and setters for attributes and the names of operations. The
class implementation of this interface contains the equivalent methods for reading
and writing the MBean’s attributes and for invoking its operations, respectively.

The management interface of a standard MBean is static, and this interface is
exposed statically. Standard MBeans are static because the management interface is
defined by the source code of the Java interface. Attribute and operation names are
determined at compilation time and cannot be altered at runtime. Changes to the
interface will need to be recompiled.

Standard MBeans are the quickest and easiest type of MBeans to implement. They
are suited to creating MBeans for new manageable resources and for data structures
which are defined in advance and unlikely to change often.

22 Getting Started with the Java Dynamic Management Kit 4.2 ¢ December 2000

Dynamic MBeans

Dynamic MBeans do not have getter and setter methods for each attribute and
operation. Instead, they have generic methods for getting or setting an attribute by
name, and for invoking operations by name. These methods are common to all
dynamic MBeans and defined by the DynamicMBean interface.

The management interface is determined by the set of attribute and operation names
to which these methods will respond. The getMBeanIinfo method of the
DynamicMBean interface must also return a data structure which describes the
management interface. This metadata contains the attribute and operation names,
their types, and the notifications that may be sent if the MBean is a broadcaster.

Dynamic MBeans provide a simple way to wrap existing Java object which do not
follow the design patterns for standard MBeans. They can also be implemented to
access non-Java technology based resources by using the Java Native Interface (JNI).

The management interface of a dynamic MBean is static, but this interface is exposed
dynamically when the MBean server calls its getMBeanInfo method. The
implementation of a dynamic MBean may be quite complex, for example if it
determines its own management interface based on existing conditions when it is
instantiated.

Model MBeans

A model MBean is a generic, configurable, dynamic MBean which you can use to
instrument a resource at runtime. A model MBean is an MBean template: the caller
tells the model MBean what management interface to expose. The caller also
determines how attributes and operations are implemented by designating a target
object on which attribute access and operation invocation are actually performed.

The model MBean implementation class is mandated by the IMX specification, and
therefore it is always available for instantiation in an agent. Management
applications can use model MBeans to instrument resources on-the-fly.

To instrument a resource and expose it dynamically, you need to:

m Instantiate the javax.management.modelmbean.RequiredModelMBean class
in a JMX agent

m Set the model MBean’s management interface
m Designate the target object which implements the management interface
m Register the model MBean in the MBean server

The management interface of a model MBean is dynamic, and it is also exposed
dynamically. The application which configures a model MBean may modify its
management interface at any time. It may also change its implementation by
designating a new target object.

Architectural Components 23

Management applications access all types of MBeans in the same manner, and most
applications are not aware of the different MBean types. However, if a manager
understands model MBeans, it will be able to obtain additional management
information about the managed resource. This informations includes behavioral and
runtime metadata that is specific to model MBeans.

The MBean Server

The MBean server is a registry for IMX manageable resources which it exposes to
management requests. It provides a protocol-independent and information
model-independent framework with services for manipulating JMX manageable
resources.

Registering a resource’s MBean makes it visible to management applications and
exposes it to management requests. The MBean server makes no distinction between
the types of MBeans: standard, dynamic and model MBeans are all managed in
exactly the same manner.

You can register objects in the MBean server through:
m The other objects in the agent application itself
m A remote management application (through a connector or a protocol adaptor)

The MBean server responds to the following management requests on registered
MBeans:

m Listing and filtering MBeans by their symbolic name

m Discovering and publicizing the management interface of MBeans

m Accessing MBean attributes for reading and writing

m Invoking operations defined in the management interface of MBeans
m Registering and deregistering listeners for MBean notifications

The MBean server never provides the programmatic reference of its MBeans. It treats
an MBean as an abstraction of a management entity, not as a programmatic object.
All management requests are handled by the MBean server which dispatches them to
the appropriate MBean, thus ensuring the coherence in an agent.

An MBean is identified by a unique symbolic name, called its object name. The object
name can either be assigned by the entity registering the MBean, or by the MBean
itself, if its implementation has been designed to provide one. Managers give this
object name to designate the target of their management requests.

It is possible to have multiple MBean servers within the same Java virtual machine
(JVM), each managing a set of resources.

24 Getting Started with the Java Dynamic Management Kit 4.2 ¢ December 2000

Communication Components

Connectors and protocol adaptors interact with the Java communication objects such
as sockets to establish connections and respond to requests from other host
machines. Connectors and protocol adaptors allow agents to be accessed and
managed by remote management applications.

An agent may contain any number of connectors or protocol adaptors, enabling it to
be managed simultaneously by several managers, through different protocols. It is
up to the agent application to coordinate all of the port numbers on which it intends
to receive requests.

Connectors

Connectors establish a point-to-point connection between an agent and a
management application, each running in a separate Java VM. The Java Dynamic
Management Kit provides connectors for the HTTP/TCP, HTTP/SSL and RMI
protocols. Every connector provides the same remote API, which frees management
applications from any protocol dependency.

A connector is composed of two parts:
m A connector server which interacts with the MBean server in an agent

m A connector client which exposes a manager-side interface that is identical to the
MBean server interface.

Therefore, a Java application which instantiates a connector client may perform all
management operations which are available through the agent’s MBean server.

In the client-server model, it is the connector client which initiates all connections
and all management request. An agent is identified by an address which contains the
agent’s hostname and port number. The target agent must contain an active
connector server for the desired protocol. The address object is protocol-specific, and
may contain additional information needed for a given protocol.

The connector client uses this address to establish a connection with its
corresponding connector server. A connector client can only establish one connection
at a time. This implies that a manager instantiates one connector client for each agent
it wishes to contact. The management application must wait for the connector to be
online, meaning that a connection is established and ready to send requests.

Management applications can then invoke one of the methods of the connector client
to issue a request. These methods have parameters which define the object name of
the MBean and the attribute or operation name to which the request applies. If the
request has a response it will be returned to the caller.

Architectural Components 25

A connector hides all the details of the protocol encoding from the Java applications.
Agent and manger exchange management requests and responses based on the IMX
architecture. The underlying encoding is hidden and not accessible to the
applications.

Connector Heartbeat

All connectors provided in the Java Dynamic Management Kit implement a heartbeat
mechanism. The heartbeat allows both the agent and manager applications to detect
when a connection is lost, either because the communication channel is interrupted
or because one of the applications has been stopped.

The connector client and connector server components exchange heartbeat messages
periodically. When a heartbeat is not returned, or an expected heartbeat is not
received, both components begin a retry and timeout period. If the connection is not
reestablished, both the connector client and the connector server will free the
resources allocated for that connection.

The heartbeat mechanism is only configurable on the manager side, the connector
server simply replies to heartbeats. The manager application can set the retry policy
as determined by the heartbeat period and the number of retries. The manager
application may also register for heartbeat notifications which are sent whenever a
connection is established, retrying, reestablished, lost, or terminated.

Proxy MBeans

A proxy MBean is an object which represents a specific MBean instance and makes it
easier to access that MBean. A management application instantiates a proxy so that it
has a simple handle on a registered MBean, instead of needing to access the MBean
server.

The manager may access MBeans by invoking the methods of their proxy object. The
proxy formulates the corresponding management request to the MBean server. The
operations are those which are possible on an MBean:

m Getting or setting attributes
m Invoking operations
m Registering or deregistering for notifications

Because dynamic MBeans only expose their management interface at runtime, they
cannot have a specific proxy MBean. Instead they have a generic proxy whose
methods have an extra parameter to specify the attribute or operation name. The
following diagram shows management components interacting with both standard
and dynamic MBeans through both standard and generic proxies. Notice that a
generic proxy may also represent a standard MBean.

26 Getting Started with the Java Dynamic Management Kit 4.2 ¢ December 2000

Agent-Side Java VM Manager-Side Java VM

| | 1)
| MBean Server | | Connector Client — :
| Connector | | (Remote MBean Server) \
| S 7] server | | - :
| 1 — | =
I \ I I % " |
[|| | 5 | § '
| s = I g |
c T

G 5 |
e 2 26 (!
| 2 |
| < |
| = !
| t '
| |
I I

_________________ |
S| Standard D| Dynamic S| Standard G| Generic
MBean MBean Proxy Proxy

Figure 2-1 Binding Proxy MBeans to Local and Remote Servers

This diagram also shows that proxies may be instantiated either locally in the agent
or remotely in the manager. Since the MBean server and the connector client have
the same API, management request to either of them are identical. This creates a
symmetry that allows the same management components to be instantiated either in
the agent or in the manager application. This feature contributes to the scalability of
Java Dynamic Management applications.

A standard proxy is generated from a standard MBean by using the proxygen
compiler, supplied with the Java Dynamic Management Kit. The resulting class then
needs to be loaded wherever the proxy will be instantiated. Generic proxies provide
less of an abstraction but do not need to be generated. They are part of the Java
Dynamic Management Kit libraries and are thus always available.

Protocol Adaptors

Protocol adaptors only have a server component and provide a view of an agent and
its MBeans through a different protocol. They may also translate requests formulated
in this protocol into management request on the JMX agent. The view of the agent
and the range of possible requests depends upon the given protocol.

For example, the Java Dynamic Management Kit provides an HTML adaptor which
presents the agent and its MBeans as HTML pages viewable in any web browser.
Because the HTML protocol is text based, only data types which have a string

Architectural Components 27

representation may be viewed through the HTML adaptor. However, this is sufficient
to access most MBeans, view their attributes and invoke their operations.

Due to limitations of the chosen protocol, adaptors have the following limitations:
m Not all data types are necessarily supported.

m Not all management requests are necessarily supported, as some requests may rely
on unsupported data types.

m Notifications from a broadcaster MBean may not be supported.

m A given protocol adaptor may require private data structures or helper MBeans in
order to respond to requests.

The SNMP adaptor provided in the Java Dynamic Management Kit is limited by the
constraints of SNMP. The richness of the JMX architecture cannot be translated into
SNMP, but all of the operations of SNMP can be imitated by methods of the MBean
server. This translation requires a structure of MBeans that imitates the MIB. While
an SNMP manager cannot access the full potential of the IMX agent, the MBeans
representing the MIB are available for other managers to access and incorporate into
their management systems.

In general, a protocol adaptor tries to map the elements of the JIMX architecture into
the structures provided by the given protocol. There is no guarantee that this
mapping is complete or fully accurate. However, specification efforts are currently
underway to fully define and standardize the mappings between the JMX
architecture and the most widespread management protocols such as SNMP,
CORBA, and TMN. Please see the Java Community Process®™ web site (http://
java.sun.com/aboutJava/communityprocess/) for more details.

The Notification Model

The JMX architecture defines a notification model that allows MBeans to broadcast
notifications. Management applications and other objects register as listeners with the
broadcaster MBean. In this way, MBeans may signal asynchronous events to any
interested parties.

The JMX notification model enables a listener to register only once and still receive
all different notifications that an MBean may broadcast. A listener object may also
register with any number of broadcasters, but it must then sort all notifications it
receives according to their source.

28 Getting Started with the Java Dynamic Management Kit 4.2 ¢ December 2000

Local Notification Listeners

In the simplest case, listeners are objects in the same application as the broadcaster
MBean. The listener is registered by calling the addNotificationListener

method on the MBean. The MBean server exposes the same method so that listeners
may also be added to an MBean identified by its symbolic name.

Agent Application

Broadcaster
MBean P
NotificationRegistratio

S0 interface
NS ‘\

| |
| |
| |
| |
| |
' T] [
| oo |
\

| B |
' N = [
| | Notification 1

(= .
] S T~ Listener 1
| T o «, interface

g [
' - '
| ZE |
| MBean 1
| Listener Server |
| |

Objects

< Listener Registration
***** - Notification Propagation

Figure 2-2 Adding Local Listeners on the Agent Side

In the figure above, one listener has registered directly with the MBean and another
has registered through the MBean server. The end result is the same, and both
listeners will receive the same notifications directly from the broadcaster MBean.

Remote Notification Listeners

The connector client interface also exposes the addNotificationListener

method so that notifications may be received in a remote management applications.
Standard proxies also expose this method and transmit any listener registrations
through the connector client.

Listeners do not need to be aware of the fact that they are remote. The connector
transmits registration requests and forwards notifications back to the listeners. The
whole process is transparent to the listener and to the management components.

Architectural Components 29

Agent-Side Java VM Manager-Side Java VM

e — e e A -
| MBean Server | |
Connector | | Connector Standard |
: Server | | Client Proxy |
1 I | %) |
i | s |
| Standard = \ £ 9]
1) 1 5 |
| MBean S
[} | f - - < o
] < \ === — [A 3 |
S F s 1= l s \ I
ISl S I 2 AT
' 5 § 1 g 5 /)
T S
I @ s | : @ =
| o L < <) o |
=] E | | S e [} I]
[+ =
| S S 0 g & 5 :
| o = 9 = = |
| S \ | | 5 E S8 |
= S
= \ | | Z 0 £ £
Z = |
© o / Q
]] \ c T oL
gy oo g2 g2 |
| Ec < _ = &
| s2 Tt -7 | 1 oT |
=

User’s Java DMK <—— Listener Registration
Listener Internal Listener ~ ----- - Notification Propagation
Figure 2-3 Adding Remote Listeners on the Manager Side

As shown in the figure above, the connector components implement a complex
mechanism for registering remote listeners and forwarding notifications. Since
notifications are based on the Java event model, broadcasters cannot send
notifications outside their Java VM. So the connector server instantiates local listeners
who receive all notifications an place them in an cache buffer, waiting to be sent to
the manager application. The buffer allows the connector to avoid saturating the
communication layer in case of a burst of notifications.

Notifications can either be pushed from the agent to the connector client as they are
received, or they can be pulled periodically at the client’s request. The pushing
mechanism is the simplest, but the pull mechanism can be used to group
notifications and reduce bandwidth usage. In either case, the connector client then
acts as a broadcaster and sends the notifications to their intended listeners.

The management application configures the forwarding mechanism through the
connector client. The manager can choose either push or pull mode, and in pull
mode, it can set the pull interval and the caching policy. The manager should set
these parameters according to the notification emission rate, in order to avoid
saturating the communication layer and yet receive notifications in a timely manner.

Agent Services

To simplify the development of agents for network, system, application, and service
management, the Java Dynamic Management Kit supplies a set of agent services.

30 Getting Started with the Java Dynamic Management Kit 4.2 ¢ December 2000

These services are simply implemented as MBeans which perform some operations
on the other MBeans in an agent. Here we list all of the provided agent services and
explain each one briefly.

Query and Filtering

Querying and filtering are actually performed by the MBean server itself, not by a
separate MBean. This insures that such critical services are always available. Queries
and filters are performed in a single operation, whose goal is to select the MBeans
upon which management operations are performed.

Usually, a management application will perform a query in order to find the MBeans
which will be the target of its management requests. To select MBeans, applications
may specify:

m An object name filter — This is an incomplete object name which the MBean server
will try to match with the object names of all registered MBeans. All MBeans
whose name matches the filter pattern will be selected. Filters may contain
wildcards to select sets of MBeans, or a filter may be a complete object name
which must be matched exactly. Filter rules are explained in detail in the IMX
specification.

m A query expression — A query is an object that represents a set of constraints
applied to the attribute of an MBean. For each of the MBeans that passes the filter,
the MBean server determines if the current state of the MBean satisfies the query
expression. Queries usually test for attribute values or MBean class names.

For example, a filter could select all the MBeans whose object name contains
“MyMBeans’ and for which the attribute named color is currently equal to “red ”.

The result of a query operation is a list of MBean object names, which can then be
used in other management requests.

Dynamic Loading

Dynamic class loading is performed by loading management applets or m-lets
containing MBeans. This service will load classes from an arbitrary network location
and create the MBeans that they represent. The m-let service is defined by the IMX
specification and makes it possible to create dynamically extensible agents.

A management applet is an HTML-like tag called <MLET>which specifies
information about the MBeans to be loaded. It resembles the <APPLET>tag except
that it will only load MBean classes. The tag contains information for downloading
the class, such as the classname and the location of its class file. You may also specify
any arguments to the constructor used to instantiate the MBean.

The m-let service loads a URL which identifies the file containing <MLET>tags, one
for each MBean to be instantiated. The service uses a class loader to load the class

Architectural Components 31

files into the application’s Java virtual machine. It then instantiates these classes and
registers them as MBeans in the MBean server.

The m-let service is implemented as an MBean and instantiated and registered in the
MBean server. Thus, it can be used either by other MBeans or by management
applications. For example, a application could make new MBean classes available at
some location, generate the m-let file and instruct the m-let service in an agent to
load the new MBeans.

Dynamic loading effectively pushes new functionality into agents, allowing
management applications to deploy upgrades and implement new resources in their
agents.

Monitoring

The monitoring service complies with the JMX specification and provides a polling
mechanism based on the value of MBean attributes. There are three monitor MBeans,
one for counter attributes, another for gauge-like attributes, and a third for strings.
These monitors send notifications when the observed attribute meets certain
conditions, mainly equalling or exceeding a threshold.

Monitor MBeans observe the variation of an MBean attribute’s value over time. All
monitors have a configurable granularity period that determines how often the
attribute is polled. Each of the monitors has specific settings for the type of the
observed attribute:

m Counter monitor — Observes an attribute of integer type that is monotonically
increasing. The counter monitor has a threshold value and an offset value to detect
counting intervals. The counter monitor will reset the threshold if the counter rolls
over.

m Gauge monitor — Observes an attribute of integer or floating point types that
fluctuates within a given range. The gauge monitor has both a high and low
threshold, each of which can trigger a distinct notification. The two thresholds can
also be used to avoid repeated triggering when an attribute oscillates around a
threshold.

m String monitor — Observes an attribute of type String . The string monitor
performs a full string comparison between the observed attribute and its match
string. A string monitor sends notifications both when the string matches and
when it differs at the observation time. Repeated notifications are not sent,
meaning that only one notification is sent the first time the string matches or
differs.

Monitor notifications contain the name of the observed MBean, the name of the
observed attribute, the value which triggered the event, as well as the previous value
for comparison. Using this information, listeners know which MBean triggered an
event, and they don’t need to access the MBean before taking the appropriate action.

32 Getting Started with the Java Dynamic Management Kit 4.2 ¢ December 2000

Monitor MBeans may also send notifications when certain error cases are
encountered during an observation.

Scheduling

The timer service is a notification broadcaster that send notifications at specific dates
and times. This provides a scheduling mechanism that may be used to trigger actions
in the listeners. Timer notifications may be single events, repeated events or
indefinitely repeating events. The timer notifications are sent to all of the service’s
listeners when a timer event occurs.

The timer service manages a list of dated notifications, each with its own schedule.
Users may add or remove scheduled notifications from this list at any time. When
adding a notification, users provide its schedule, defined by the trigger date and
repetition policy, and information which identifies the notification to its listeners. The
timer service uses a single Java thread to trigger all notifications at their designated
time.

The timer service may be stopped to prevent it from sending notifications. When it is
started again, notifications which could not be sent while the timer was stopped are
either sent immediately or discarded, as determined by the configuration of the
service.

Like all other agent services, the timer is implemented as an MBean so that it may be
registered in an agent and configured by remote applications. However, the timer
MBean may also be used as a stand-alone object in any application that needs a
simple scheduling service.

For more information regarding the timer service, please refer to the IMX
specification document.

Cascading

Cascading is the term used to describe a hierarchy of agents, where management
requests may be passed from a master agent to one of its subagents. A master agent
connects to other agents, possibly remote, through their connector server
components, much like a manager connects to an agent. In a set of cascading agents,
all MBeans in a subagent are visible as if registered in their master agent. The master
agent hides the physical location of subagents and provides client applications with a
centralized access point.

The cascading service is an MBean which establishes a connection to one subagent.
For each of the subagent’s MBeans, the cascading service instantiates a mirror MBean
that is registered in the master agent. The cascading service also defines a filter and
query expression which together determine the set of MBeans in the subagent which
are mirrored.

Architectural Components 33

The mirror MBean is a sort of proxy that is specific to the cascading service. A mirror
MBean exposes the same management interface as its corresponding MBean: all
attributes, operations and notifications may be accessed through the mirror MBean.
The mirror MBean forwards all management requests through the cascading service
to the corresponding MBean in the subagent.

You may define hierarchies of agents of arbitrary complexity and depth. Because
mirrored MBeans are registered MBeans, they can be mirrored again in a higher
master agent. The cascading service is dynamic, meaning that mirrored MBeans are
added or removed as MBeans in a subagent are added or removed.

The cascading mechanism only works in one direction: while master agents can
manipulate objects in their subagents, subagents have no visibility of their master
agent and are not even aware of their master agent.

The cascading service relies on connectors components internally and may therefore
be used with any of the following protocols: RMI, HTTP, or HTTPS. The user specifies
the protocol and the subagent’s address when configuring the cascading service.

Discovering Agents

The discovery service enables you to discover Java Dynamic Management agents in a
network. Only agents that have a discovery responder registered in their MBean
server can be discovered using this service.

The discovery service can be functionally divided into two parts:
m The discovery search service which actively finds other agents.

m The discovery support service which listens for other agents to be activated.

Discovery search service

In a discovery search operation, the discovery client sends a discovery request to a
multicast group and waits for responses. The agents must have a
DiscoveryResponder registered in their MBean server in order to be found by the
discovery service. All discovery responder which receive the discovery request send
a response containing information about the connectors and protocol adaptor which
are available in their agent.

34 Getting Started with the Java Dynamic Management Kit 4.2 ¢ December 2000

Manager Discovery

_- Client
Agent 1 A
--7 |j\

Discovery
response
object

Multicast discovery
request message

Agent 3 Unicast discovery
response message

[Discovery Responder
Figure 2-4 The Discovery Search Service

A manager application might use the discovery search service during its initialization
phase, to determine all agents that are accessible in its network environment.

Discovery Support Service

The discovery support service passively monitor discovery responders in a multicast
group. When discovery responders are activated or deactivated, indicating that their
agent is starting or stopping, they send a multicast message about their new state. A
discovery monitor object listens for discovery responder objects starting or stopping in
the multicast group.

By registering listeners with the discovery monitor, a management application may
know when agents become available or unavailable. The discovery support message
for an agent that is being started also contains the list of its connector and protocol
adaptor.

A management application can use the discovery monitor to maintain a list of active
agents and the protocols they support.

Defining Relations

The relation service defines and maintains logical relations between registered
MBeans. Users define the relation type and establish the relation instance which
associates any number of MBeans. The relation service provides query mechanisms
to retrieve MBeans that are related to one another.

In the JMX architecture, a relation type is defined by the class and cardinality of
MBeans that it associates in named roles. For example, we can say that Books and

Architectural Components 35

Owner are roles. Books represents any number of owned books of a given MBean
class, and Owner is a single book owner of another MBean class. We might define a
relation type containing these two roles and call it Personal Library . it represents
the concept of book ownership.

The following diagram represents this sample relation type, as compared to the UML
modeling of its corresponding association.

JMX Model UML Model

Relation Type

Personal Library

1.1 0.n
Owner Books

Role |1..1 Role [0..n

Owner Books

Figure 2-5 The Relation Model Defined by the IMX Specification

Through the relation service, users may create relation types and then create, access,
and delete instances of a relation. In our example, a management application may
add Book MBeans to a Personal Library relation, or it may replace the MBean in
the Owner role with another MBean of the same class. All MBeans are referenced by
their object name, so that a relation may be accessed from a remote application.

The relation service is notified when MBeans in a relation are deregistered, and it
verifies that any relation involving that MBean still has the required cardinality. For
example, if an Owner MBean were deregistered, the relation service would remove
any Personal Library relations where that MBean was the designated owner.

The relation service can represent a relation instance either internally or externally. If
the user defines a relation instance through the API of the relation service, the
relation is represented by internal structures that are not accessible to the user. This
is the simplest way to define relations because the relation service handles all
coherence issues through its internal structures.

A relation instance may also be a separate MBean object that fulfills certain
requirements. The user instantiates and registers these MBeans, insures that they
represent a coherent relationship, and places these MBeans under the control of the
relation service. This process places the responsibility of maintaining coherency on
the user, but external relations have certain advantages: they may implement
operations on a relation instance.

36 Getting Started with the Java Dynamic Management Kit 4.2 ¢ December 2000

For example a Personal Library relation could be implemented by an MBean
with an operation called Loan. This operation would search the list of book MBeans
for a title and implement some mechanism to mark that book as being on loan. And
because external relations are MBeans, these extended operations are available to
remote management applications.

Security

The Java Dynamic Management Kit provides several security mechanisms to protect
your agent applications. As is always the case, simple security that enforces
management privileges is relatively easy to implement; full security against
mischievous attacks requires a more sophisticated implementation and deployment
scheme. However, in all cases, the security mechanisms preserve the Java Dynamic
Management architecture and management model.

The following sections give an overview of the security features provided through
components of the Java Dynamic Management Kit.

Password Protection

Password-based protection restricts client access to agent applications. All
HTTP-based communication provide login and password based authentication, as
does the SNMP protocol adaptor.

Password protection can be used to associate managers with a set of privileges which
determine access right to agents. The user is free to implement whatever access
policy is needed on top of the password authentication mechanism.

HTTP Connectors

Both HTTP and HTTPS connectors provide login and password-based authentication.
The server component contains the list of allowed login identifiers and their
password. Management applications must specify the login and password
information in the address object when establishing a connection.

If the list of recognized clients is empty, no authentication is performed and access is
granted to all clients; this is the default behavior.

HTML Protocol Adaptor

Since the HTML protocol adaptor relies on HTTP messaging, it also implements
password protection. The agent application specifies the list of allowed login

Architectural Components 37

identifiers and their password when creating the HTML adaptor. When password
protection in enabled in HTML, the web browser usually displays a dialog box for
users to enter their login and password.

In general, the security mechanisms of a protocol adapter depend upon the security
features of the underlying protocol. The ability to use security mechanism also
depends upon the functionality of the management console. If your web browser
does not support the password dialog, you will not be able to access a
password-protected HTML adaptor.

SNMP Access Control

SNMP defines an access control mechanism similar to password authentication. Lists
of authorized manager hostnames are defined in an access control list (ACL) stored in
an ACL file on the agent side. There are no passwords, but logical community names
may be associated with authorized managers to define sets of allowed operations.

The SNMP adaptor will perform access control if an ACL file is defined. Because
SNMP is a connectionless protocol, the manager host and community are verified
with every incoming request. By default, the file is not loaded and any SNMP
manager may send requests.

The ACL file is the default access control mechanism in the SNMP protocol adaptor.
However, you may replace this default implementation with your own mechanism.
For example, if your agent runs on a device with no file system, you could
implement access control lists through a simple Java class.

Context Checking

Whereas password-protection grants all-or-nothing access, context checking allows
the agent application to filter each management request individually.
Context-checking may be associated with password protection to provide multiple
levels of security

All management requests that arrive through a connector or protocol adaptor may be
inspected by the agent application to determine if they are allowed. The management
application may filter requests based on the type of request, the MBean for which
they are intended, or the values that are provided in the operation.

For example, context checking could allow an agent to implement a read-only policy
which refuses attribute set operations, all operation invocation, and doesn’t allow
MBean registration or deregistration. A more selective filter could just insure that the
agent cannot be disconnected: it would disallow MBean deregistrations, stop
operations, and invocations that contain null parameters, but only when applied to
connector servers or protocol adaptor MBeans.

In addition, requests through connector clients may be filtered by an operation context
field, which could be a password or any other identifying data. The context object is

38 Getting Started with the Java Dynamic Management Kit 4.2 ¢ December 2000

provided by the management application, and it will be sent to the connector server
along with each request. The agent can verify this context and potentially reject the
request if the context is considered invalid or inappropriate for the operation.

To make this context checking possible, the agent provides:

m Stackable MBean server objects — You can insert your own code to perform context
checking and filtering between the communication component and the MBean
server.

m Thread contexts — Your code can retrieve the remote application’s context object
which is stored in the thread object which handles the request. The context is an
arbitrary object that your code can use to determine whether or not to allow the
request.

Remote Management
Application

v v

Connector/
Protocol Adaptor

vy v

MBean Server Interface
| Context Checker |

L ye
MBean Server Implementation
Resource MBeans
Figure 2-6 Context Checking Using Stackable MBean Server Objects

In the figure above, a context checker object has been inserted between the connector
and the MBean server. Because a context checker object implements the
MBeanServer interface, the connector interacts with it in exactly the same way as it
did with the MBean server. This stacked object will retain a reference to the real
MBean server, to which it will forward all requests that are allowed. The context
checker may also perform any other action, such as log all filtered requests and
trigger a notification when an invalid request is received.

For security reasons, only the agent application may insert or remove stackable
MBean server objects. This operation is not exposed to management applications,
who cannot even know if requests are being filtered. However, the context checker
may choose to respond with an exception whose message explains why a request
was denied.

Architectural Components 39

Data Encryption

The last link in the security chain is the integrity of data which is exchanged between
agent and managers. There are two issues which need to be considered
simultaneously:

m ldentification — Both agent and manager must be certain of the other’s identity.

m Privacy — The data of a management request should be tamper-proof and
undecipherable to untrusted parties.

These issues are usually resolved by a combination of electronic signatures and data
encryption. Again, the implementation is protocol-dependent.

SNMP Encoding

SNMP requests follow standardized encoding rules for translating management
operations into data packets. At the communication level, an SNMP request is
represented by an array of bytes in a UDP protocol packet. The SNMP components
in the Java Dynamic Management Kit provide access to the byte encoding of these
packets.

Your applications may customize the encoding and decoding of SNMP requests:

m On the manager side, after the request is translated into bytes, your encoding may
add signature strings and then perform encryption.

m On the agent side, the bytes may be decoded and the signature can be verified
before the bytes are translated into the SNMP request.

A decoded SNMP request contains the manager’s hostname and community
string, the operation, the target object, and any values to be written. Like the
context checking mechanism, you may insert code to filter requests based on any
of these criteria.

In order to implement a secure SNMP management solution, you need to coordinate
the security policy between the manager encoding and the agent decoding. However,
SNMP request filtering may be performed unilaterally by the agent, to allow requests
from unknown managers yet still be able to reject unauthorized operations.

HTTP/SSL

The HTTPS connector enables Java managers to access a Java Dynamic Management
agent using HTTP over SSL (Secure Socket Layer). SSL security is implemented in
the Java 2 platform. The HTTP/SSL connector provides identity authentication based
on 'CRAM-MDY5’ (Challenge-Response Authentication Mechanism using MD5). The
HTTPS connector server requires client identification by default.

The behavior of the HTTP/SSL connector is governed by the particular SSL
implementation used in your applications. For data encryption, the default cipher

40 Getting Started with the Java Dynamic Management Kit 4.2 ¢ December 2000

suites of the SSL implementation are used. The SSL implementation must be
compliant with the SSL Standard Extension API.

The Java Dynamic Management Kit is compliant with the Java Secure Socket
Extension 1.0 (JSSE) API. JSSE provides an API framework and reference
implementation for security protocols.

Secure Dynamic Loading

The m-let service downloads Java classes from arbitrary locations over the network.
If you wish to do so, you may enable code signing to insure that only trusted classes
may be downloaded. Secure loading relies on code signing which differs between the
JDK 1.1 and Java 2 platforms.

On a JDK 1.1 platform, the m-let service may be instantiated in secure mode to
enforce code signing. The m-let service will then only load .jar files that have been
signed by a trusted party using the javakey utility. The machine where the agent is
running must have the signer’s certificate in its keystore.

On the Java 2 platform, the java.lang.SecurityManager property determines if
code signing is enforced. When this security is enabled, again only class files signed

by a trusted party will be loaded. On the Java 2 platform, users invoke the keytool
jarsigner and policytool utilities to define their security policies.

The SNMP Toolkit

The Java Dynamic Management Kit provides a toolkit for integrating SNMP
management into a JIMX-based architecture. This includes:

m Developing an SNMP agent with the SNMP protocol adaptor

m Representing your SNMP MIB (Management Information Base) as MBeans
generated by the mibgen compiler

m If needed, developing an SNMP manager using the SNMP Manager API

For more information regarding the SNMP toolkit, refer to the Java Dynamic
Management Kit 4.2 Tools Reference guide and the Java Dynamic Management Kit
4.2 Tutorial.

Developing An SNMP Agent

An SNIMP agent is an application which responds to SNMP requests formulated as
get and set operations on variables defined in a MIB. This behavior can be fully

Architectural Components 41

mapped onto the MBean server and MBean resources of a Java Dynamic
Management agent, provided those MBeans specifically implement the MIB.

The SNIMP protocol adaptor implements the both the SNMP v1 and v2 protocols. It
responds to request in SNMP and translates that request into management
operations on the specific MIB MBeans. The SNMP adaptor may also send traps, the
equivalent of a JMX notification, in response to SNMP events or errors.

The SNIMP protocol adaptor is able to manage an unlimited number of different
MIBs. These MIBs may be loaded or unloaded dynamically, by registering and
unregistering the corresponding MBeans. The adaptor will attempt to respond to an
SNMP request by accessing all loaded MIBs. However, MIBs are only dynamic
through the agent application, the SNMP protocol does not support requests for
loading or unloading MIBs.

One advantage of the dual IMX-SNMP agent is that MIBs may be loaded
dynamically in response to network conditions, or even in response to SNMP
requests. Other Java Dynamic Management applications may also access the MIB
through its MBean interface. For example, the value of a MIB variable might be
computed in another application and written by a call to the MBean setter.

The SNIMP protocol adaptor also sends inform requests from an SNMP agent to an
SNMP manager. The SNMP manager will then send an inform response back to the
SNMP agent.

SNMP MIB Compiler — mibgen

The mibgen tool takes as input a set of SNMP MIBs and generates standard MBeans
that you can customize. MIBs can be expressed using either SNMP v1 or SNMP v2
syntax.

A MIB is like a management interface: it defines what is exposed, but it doesn’t
define how to compute the exposed value. Therefore, MBeans generated by mibgen
need to be customized to provide the definitive implementation. The MIB is
implemented through Java objects, meaning it has access to all Java runtime libraries
and all features of the dynamic agent where it will be instantiated.

The mibgen compiler parses an SNMP MIB and generates the following:
m An MBean representing the whole MIB

m MBeans representing SNMP groups and table entries

m Classes representing SNMP tables

m Classes representing SNMP enumerated types

m A class mapping symbolic names with object identifiers

The resulting classes should be made accessible in the agent application. When the
single MBean representing the whole MIB is registered in the MBean server, all the
associated groups are automatically instantiated and registered as well.

42 Getting Started with the Java Dynamic Management Kit 4.2 ¢ December 2000

The mibgen compiler supports all data structure of the v1 and v2 protocols,
including:

m Tables with cross references indexed across several MIBs
m MIBs that contain both v1 and v2 definitions

m Nested groups

m Default value variables

m Row status variables

The Java Dynamic Management Kit also provides an example program, showing
how an agent may act as an SNMP proxy to access MIBs in subagents. This allows
SNMP managers to access hierarchies of agents through a single proxy agent. In this
way, some MIBs may be implemented by native devices and others may be
implemented in JMX agents, yet this heterogeneous architecture is completely
transparent to the manager issuing a request.

SNMP Manager API

The SNMP manager API simplifies the development of Java applications for
managing SNMP agents. Its classes represent SNMP manager concepts such as
sessions, parameters, and peers through Java objects. Using this API, you can
develop an application which can issue requests to SNMP agents.

For example, you could instrument and SNMP resource using the SNMP manager
API. You would define a management interface that corresponds to your resource’s
MIB: variables are easily mapped as MBean attributes. In response to calls on the
attribute getters and setters, your MBean would construct and issue SNMP request to
the SNMP agent which represents the resource.

The SNMP manager API supports requests in either the SNMP v1 or v2 protocol,
including inform requests for communicating between SNMP managers. The
manager API is used to access any compliant SNMP agent including those
developed using the Java Dynamic Management Kit.

Architectural Components 43

44 Getting Started with the Java Dynamic Management Kit 4.2 ¢ December 2000

CHAPTER 3

The Development Process

This chapter outlines the main steps involved in developing management solutions

using the Java Dynamic Management Kit.

The steps in the development process are:

m “Instrumenting Resources” on page 46.

m “Designing an Agent Application” on page 46.

m “Generating Proxy MBeans” on page 47, an optional step.

m “Designing a Management Application” on page 48.

The following diagram summarizes these steps, from crafting MBeans in your

factory to deploying them through the web.

Proxy
« MBeans i?/
| —
— 0 el
——p
. . MBeans I
New and Existing Tools of the MBeans and Their

Resources to be Java Dynamic
Instrumented Management Kit

Corresponding
Proxy MBeans

Management
Application

Java Dynamic
Management Agent

45

This chapter is mostly concerned with design issues in the development process. For
a description of how to write the code of management applications, see the
programming examples in the Java Dynamic Management Kit 4.2 Tutorial.

Instrumenting Resources

MBeans conform to the JMX specification, which standardizes the representation of
the MBean’s management interface. Therefore, the first step of the development
process is to define the management interface of your resources.

If you are creating new resources, you must determine the granularity of the
information about that resource. “How many attributes need to be exposed for
management? What operations will be useful when the resource is deployed? When
should the resource send notifications?”” These are all questions whose answers
determine the granularity of your MBean’s management interface.

Consider an MBean representing a printer. If your MBean will be exposed to end
users, it may only need to expose a state attribute, “ready” or “offline”, and perhaps
an operation such as “switch paper trays.” However, if your MBean is intended to
allow remote servicing, it will need to contain much more information. Operators
will probably need to know the total print count, the toner level, the location of a
paper jam, and they may want to run self-diagnostics.

Sometimes, resources are already manageable through some other system. In this
case, you only need to translate their existing management interfaces into an MBean.
Because the JMX architecture is so rich, you can usually improve upon the existing
management interface in the translation. Some operations may not be needed
because they can be replaced by an agent service. New attributes might be added
now that they can be computed dynamically.

As more vendors adopt the JMX specification, resources will be supplied with their
instrumentation. Your task will then be to understand the management interface that
is provided and to integrate the MBean classes into your application. In this case you
will be integrating MBeans from various sources and insuring that they interact as
expected.

Designing an Agent Application
Given the set of resources you wish to manage, you only need to register their

corresponding MBeans in an agent, and they become manageable. However,
designing an effective agent is more complicated.

46 Getting Started with the Java Dynamic Management Kit 4.2 ¢ December 2000

When designing your agents, you must keep in mind the nature of the management
application which will access them. You must strike a balance between providing
services that will unburden your clients and the complexity of your agent application.

The most simple agent is one that contains an MBean server and a connector or
protocol adaptor. The class for this agent can be written in 10 lines of code! And yet
this agent is fully manageable: through the one communication component, a
manager can instantiate agent services and dynamically load new resources. The
minimalist agent can grow to contain as many MBeans as its memory will hold.

At the other extreme, your entire management solution could be located in the agent.
All the policies and all of resources you need could be managed locally. This
application will be overburdened with its management tasks and does not take
advantage of distributed management logic. You need to strike a balance between
how much management logic can be performed locally and how much is distributed
across your whole management solution.

The functionality of your agents is most often determined by their environment.
Some agents might be limited by their host machine. When memory or processing
power is limited, an agent can only be expected to expose its MBeans and perhaps
run a monitoring service.

An agent in a more powerful machine has the liberty to run more services and
handle more MBeans. For example, the agent at the top of a cascading hierarchy may
establish relations between MBeans in all of the subagents. Desktop machines and
workstations can easily handle agents with thousands of MBeans.

The hierarchical model is very appropriate, since management logic and power are
concentrated towards the top of the hierarchy. The information from many small
devices gets concentrated on a few large servers where the management consoles are
located. In between are medium sized agents which perform some management
tasks, such as filtering errors and computing averages across their subagents.

Generating Proxy MBeans

Generating proxy objects for your MBeans is an optional step which depends upon
the design of your management application. As discussed earlier in this guide, a
proxy object that represents an MBean in a remote agent. The manager accesses an
MBean by performing operations on the proxy MBean.

Proxy objects simplify the design of your management application because the
provide an abstraction of remote resources. Your architecture can assume that
resources are local because they appear to be, even if they are not. Of course, proxies
have greater response times than local resources, but the difference is usually
negligible.

The Development Process 47

Using proxies also simplifies the code of your application. Through the connector
client, the proxy object handles all communication details. Your code invokes a
method which returns a value; the complete mechanism of performing the remote
management request is hidden. This object oriented design of having a local object
represent a remote resource is fully in the spirit of the Java programming language.

Assuming a management application has already established the connection to an
agent, the overhead of a proxy object is minimal, both in terms of resource usage and
required setup. However, it is common sense to instantiate proxies only for resources
that will be accessed often or which are long-lived.

The development cost of a proxy MBean is also minimal. Standard proxies are fully
generated from their corresponding MBean by using the proxygen compiler
supplied with the Java Dynamic Management Kit. Generic proxies are part of the
Java Dynamic Management runtime libraries and just need to be instantiated.

Options of the proxygen tool allow you to modify the characteristics of the proxies
you generate from an MBean. For example, the read-only option will generate
proxies whose setter methods return exceptions. By generating sets of proxies with
different characteristics from the same MBean, you can develop a Java manager
whose behavior is modified at runtime, depending on which set is available.

In an advanced management solution where resources are discovered only at
runtime, the proxy class could be loaded dynamically in the manager. For example,
the resource might expose an attribute called ProxyURL from which a class loader
can retrieve the proxy object.

Designing a Management Application

In this section, we will focus on developing a management application in the Java
programming language. Java applications access agents through connectors which
preserve the JMX architecture. All management requests are available through the
connectors, making the communication layer transparent.

Beyond the specifics of establishing connections, accessing MBeans, and using
proxies, there are more general programming issues to consider when implementing
a management application.

Without going into the details, we give a list of features that managers may need to
implement. A full treatment of these topics would fill several books and several of
these issues will probably remain research topics for years to come:

m Optimizing communications by dynamically configuring the connectors
m Deploying new services and upgrading agents dynamically
m Establishing and managing a hierarchy of agents

m Handling errors and exceptions

48 Getting Started with the Java Dynamic Management Kit 4.2 ¢ December 2000

m Recovery from crashes
m Total security

Don’t let this list of complex issues scare you away. Not all of these features are
needed by all managers. Only the largest management applications would
implement full solutions to any one of these issues.

The modularity of the JMX architecture lets you start with a basic manager which is
only concerned with accessing resources in an agent. As your needs evolve you can
explore solutions to the issues listed above.

In parallel to the programming issues, there two major design issues to consider
when developing a management application: the flow of information, and the
specificity of the solution.

Defining Input and Output

A management application serves three purposes: to access resources in order to give
or receive information, to perform some operation on this information, and to expose
the result to others. The operation that a manager performs on its information may
be some form of computation, a concentration of the data, or simply a translation
from one representation to another.

For example, a manager for a network might collect bandwidth data from routers
and calculate averages which are available through some API. The manager also
monitors all data for abnormal values and triggers a notification when they occur.
These could arguably be the tasks of a smart agent, but let us suppose it is an
intermediate manger for very simple agents in the routers.

Now consider a second example: a graphical user interface for managing a pool of
printers. Agents in the printers signal whenever there is an error, the manager reads
other parameters to determine whether the problem is serious and displays a
color-coded icon of the printer: red if the printer needs servicing, orange if it only a
paper problem, and green if the printer is now back online.

In both cases, the applications may have much more functionality, but each function
can be broken down into its three facets. By identifying what data needs to be
collected, how it needs to be processed and how it needs to be exposed, you can
determine the agents which need to be accessed, the algorithms that need to be
implemented, and the format of the output.

Specific Versus Generic

Another design choice is whether you need a specific manager or a generic
management solution. The two examples above are applications designed for a
specific task. Their inputs are known, their agents are listed in address tables, and
they are programmed to provide a specific output for given inputs.

The Development Process 49

50

A generic management solution is much more complex. It takes advantage of all
dynamic features in the JMX architecture. Agents and their resources are not known
ahead of time, data formats are unknowable and the output is at best a set of
guidelines. Generic managers do not implement a task, they implement a system for
integrating new tasks.

Let us extend our printer management system to perform some generic management.
First, we set a guideline of only managing printers whose agents contain discovery
responders. That way, we can detect when printers are plugged in, we can connect to
their agents, and we can add them to the management console automatically. Then
we make a space in our user interface for a custom printer interface. If the printer’s
agent has a resource called HTMLserver , we will load the data from this server into
the screen frame reserved for this printer.

Users of this management system may now install a server-enabled printer, and it
will be managed automatically when it is plugged into the network. Of course, this
system is only viable if we advertise the ways in which it is generic, so that printer
manufacturers are encouraged to add Java Dynamic Management agents to their
products.

Generic management systems are complex and perhaps difficult to design, but they
are definitely in the range of possibilities offered through the JMX architecture and
the Java Dynamic Management Kit.

Getting Started with the Java Dynamic Management Kit 4.2 ¢ December 2000

