
Sun Java™ System

Message Queue 3.5
Java Client Developer’s Guide

Service Pack 1

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 817-6026-10

Copyright © 2004 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved
Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.
U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements. Use is subject to license terms. This distribution may include materials developed by third
parties.
Sun, Sun Microsystems, the Sun logo, Java, Solaris, Sun[tm] ONE, JDK, Java Naming and Directory Interface, Javadoc, JavaMail, JavaHelp, the
Java Coffee Cup logo and the Sun[tm] ONE logo are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries.
All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other
countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.
UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.
This product is covered and controlled by U.S. Export Control laws and may be subject to the export or import laws in other countries. Nuclear,
missile, chemical biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export or
reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied
persons and specially designated nationals lists is strictly prohibited.

Copyright © 2004 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.
Sun Microsystems, Inc. détient les droits de propriété intellectuels relatifs à la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plus des brevets américains listés à
l'adresse http://www.sun.com/patents et un ou les brevets supplémentaires ou les applications de brevet en attente aux Etats - Unis et dans les
autres pays.
L'utilisation est soumise aux termes de la Licence.
Cette distribution peut comprendre des composants développés par des tierces parties.
Sun, Sun Microsystems, le logo Sun, Java, Solaris, Sun[tm] ONE, JDK, Java Naming and Directory Interface, Javadoc, JavaMail, JavaHelp, le logo
Java Coffee Cup et le logo Sun[tm] ONE sont des marques de fabrique ou des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et
dans d'autres pays.
Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux
Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.
UNIX est une marque déposée aux Etats-Unis et dans d'autres pays et licenciée exlusivement par X/Open Company, Ltd.
Ce produit est soumis à la législation américaine en matière de contrôle des exportations et peut être soumis à la règlementation en vigueur dans
d'autres pays dans le domaine des exportations et importations. Les utilisations, ou utilisateurs finaux, pour des armes nucléaires,des missiles,
des armes biologiques et chimiques ou du nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers les pays sous embargo américain, ou vers des entités figurant sur les listes d'exclusion d'exportation américaines, y compris,
mais de manière non exhaustive, la liste de personnes qui fo nt objet d'un ordre de ne pas participer, d'une façon directe ou indirecte, aux
exportations des produits ou des services qui sont régis par la législation américaine en matière de contrôle des exportations et la liste de
ressortissants spécifiquement désignés, sont rigoureusement interdites.

http://www.sun.com/patents
http://www.sun.com/patents

3

Contents

List of Figures . 9

List of Tables . 11

List of Procedures . 13

List of Code Examples . 15

Preface . 17
Audience for This Guide . 17
Organization of This Guide . 18
Conventions . 19

Text Conventions . 19
Directory Variable Conventions . 20

Other Documentation Resources . 21
The Message Queue Documentation Set . 22
JavaDoc . 22
Example Client Applications . 23
The Java Message Service (JMS) Specification . 23
The Java XML Messaging (JAXM) Specification . 23
Books on JMS Programming . 24

Chapter 1 Overview . 25
What Is Sun Java System Message Queue? . 25
Product Editions . 27

Platform Edition . 27
Enterprise Edition . 28

Message Queue Service Architecture . 28

4 Message Queue 3.5 SP1 • Java Client Developer’s Guide

The JMS Programming Model . 30
JMS Programming Interface . 30

Message . 30
Destination . 33
ConnectionFactory . 33
Connection . 33
Session . 33
Message Producer . 34
Message Consumer . 34
Message Listener . 34

Administered Objects . 34
JMS Client Setup Operations . 35

To Set Up a Client to Produce Messages . 35
To Set Up a Client to Consume Messages . 36

JMS Client Design Issues . 36
Programming Domains . 36
JMS Provider Independence . 38
Client Identifiers . 39
Reliable Messaging . 39

Acknowledgements/Transactions . 40
Persistent Storage . 41

Performance Trade-offs . 42
Message Consumption: Synchronous and Asynchronous . 42
Message Selection . 43
Message Order and Priority . 43

JMS/J2EE Programming: Message-Driven Beans . 43
Message-Driven Beans . 44
J2EE Application Server Support . 46

Chapter 2 Quick Start Tutorial . 47
Setting Up Your Environment . 47
Starting and Testing the Message Server . 49

To Start a Broker . 50
To Test a Broker . 50

Developing a Simple Client Application . 51
Compiling and Running a Client Application . 54

To Compile and Run the HelloWorldMessage Application . 54
Example Application Code . 55

Contents 5

Chapter 3 Using Administered Objects . 57
JNDI Lookup of Administered Objects . 58

Looking Up ConnectionFactory Objects . 59
To Perform a JNDI Lookup of a ConnectionFactory Object . 59

Looking Up Destination Objects . 60
To Perform a JNDI Lookup of a Destination Object . 60

Instantiating Administered Objects . 61
Instantiating ConnectionFactory Objects . 61

To Directly Instantiate and Configure a ConnectionFactory Object . 62
Instantiating Destination Objects . 63

To Directly Instantiate and Configure a Destination Object . 63
Starting Client Applications With Overrides . 64

Chapter 4 Configuring the Message Queue Client Runtime . 65
Message Production and Consumption . 65

Message Production . 66
Message Consumption . 67

Client Runtime Configurable Properties . 69
Connection Handling . 71

Specifying a Message Server Address . 71
Connecting to a Message Server . 73
Automatic Reconnect to a Message Server (Enterprise Edition) . 73
Auto-reconnect Behavior . 74
Message Queue 3.0 Connection Handling . 76

Client Identification . 77
Message Header Overrides . 78
Reliability And Flow Control . 79
Queue Browser Behavior and Server Session . 82
JMS-Defined Properties Support . 83

Managing Reliability and Performance . 84
Delivery Mode . 84
Client Acknowledgement Mode . 84
Message Flow Metering . 85
Message Flow Limits . 86

Chapter 5 Message Queue Client Programming Techniques . 89
Custom Client Acknowledgement . 89
Message-Based Monitoring API . 92

Format of Metrics Messages . 93
Broker Metrics . 94
JVM Metrics . 95
Destination-List Metrics . 96
Destination Metrics . 97

6 Message Queue 3.5 SP1 • Java Client Developer’s Guide

Configuring Metrics Message Production on the Broker . 99
Using the Message-Based Monitoring API . 99
Metrics Monitoring Client Code Examples . 101

A Broker Metrics Example . 101
A Destination List Metrics Example . 103
A Destination Metrics Example . 106

Client Connection Failover (Auto-reconnect) . 108
Enabling Auto-reconnect . 109
Auto-reconnect Behaviors . 110
Auto-reconnect Limitations . 110
Auto-reconnect Configuration Examples . 111

Single-Broker Auto-reconnect . 111
Parallel Broker Auto-reconnect . 112
Clustered-Broker Auto-reconnect . 112

Other Programming Topics . 113
Managing Memory and Message Size . 114
Using Secure HTTP Connections (HTTPS) . 114

In Case of Server or Broker Failure . 115
Repairing an HTTPS Tunnel Servlet Connection . 115

Managing Client Threads . 115
Synchronous Consumption in Distributed Applications . 117
Client Application Deployment Considerations . 118

Chapter 6 Working With SOAP Messages . 119
What is SOAP? . 120

SOAP and the JAVA for XML Messaging API . 120
The Transport Layer . 121
The SOAP Layer . 121
The Provider Layer . 122
The Profiles Layer . 123

The SOAP Message . 124
SOAP Packaging Models . 125

SOAP Messaging in JAVA . 127
The SOAP Message Object . 127

Inherited Methods . 129
Namespaces . 130

Destination, Message Factory, and Connection Objects . 133
Endpoint . 134
Message Factory . 135
Connection . 135

Contents 7

Using JAXM Administered Objects . 136
SOAP Messaging Models and Examples . 138

SOAP Messaging Programming Models . 138
Point-to-Point Connections . 138
Provider Connections . 140

Working with Attachments . 141
To Create and Add an Attachment . 141

Exception and Fault Handling . 142
Writing a SOAP Client . 142
Writing a SOAP Service . 145

Disassembling Messages . 147
Handling Attachments . 148
Replying to Messages . 148
Handling SOAP Faults . 148

Integrating SOAP and Message Queue . 152
Example 1: Deferring SOAP Processing . 153

To Transform the SOAP Message into a JMS Message and Send the JMS Message 154
To Receive the JMS Message, Transform it into a SOAP Message, and Process It 155

Example 2: Publishing SOAP Messages . 156
Code Samples . 157

Appendix A Administered Object Attributes . 163
ConnectionFactory Administered Object . 163
Destination Administered Objects . 165
Endpoint Administered Objects . 166

Appendix B Client Error Codes . 167

Index . 179

8 Message Queue 3.5 SP1 • Java Client Developer’s Guide

9

List of Figures

Figure 1-1 Message Queue System Architecture . 29

Figure 1-2 JMS Programming Objects . 31

Figure 1-3 Messaging with MDBs . 45

Figure 4-1 Messaging Operations . 66

Figure 4-2 Message Delivery to Message Queue Client Runtime . 67

Figure 6-1 SOAP Messaging Layers . 121

Figure 6-2 SOAP Interoperability . 123

Figure 6-3 SOAP Message Without Attachments . 125

Figure 6-4 SOAP Message with Attachments . 126

Figure 6-5 SOAP Message Object . 128

Figure 6-6 Request-Reply Messaging . 139

Figure 6-7 One-Way Messaging . 140

Figure 6-8 SOAP Message Parts . 143

Figure 6-9 SOAP Fault Element . 149

Figure 6-10 Deferring SOAP Processing . 153

Figure 6-11 Publishing a SOAP Message . 156

10 Message Queue 3.5 SP1 • Java Client Developer’s Guide

11

List of Tables

Table 1 Book Contents . 18

Table 2 Document Conventions . 19

Table 3 Message Queue Directory Variables . 20

Table 4 Message Queue Documentation Set . 22

Table 1-1 JMS-Defined Message Header . 31

Table 1-2 Message Body Types . 32

Table 1-3 JMS Programming Objects . 37

Table 2-1 jar File Locations . 48

Table 2-2 jar Files Needed in CLASSPATH . 48

Table 2-3 Location of Message Queue Executables . 50

Table 2-4 Example Programs . 55

Table 4-1 Message Server Address Schemes and Syntax . 71

Table 4-2 Message Server Address Examples . 72

Table 4-3 Connection Factory Attributes: Connection Handling . 75

Table 4-4 Supported Message Queue 3.0 Connection Handling Attributes 76

Table 4-5 Connection Factory Attributes: Client Identification . 78

Table 4-6 Connection Factory Attributes: Message Header Overrides . 79

Table 4-7 Connection Factory Attributes: Reliability and Flow Control . 80

Table 4-8 Connection Factory Attributes: Queue Browser Behavior . 82

Table 4-9 Connection Factory Attributes: JMS-defined Properties Support 83

Table 5-1 Metrics Topic Destinations . 92

Table 5-2 Broker Metrics Message Properties . 94

Table 5-3 Data in the Body of a Broker Metrics Message . 94

Table 5-4 JVM Metrics Message Properties . 95

Table 5-5 Data in the Body of a JVM Metrics Message . 95

Table 5-6 Destination-List Message Properties . 96

Table 5-7 Data in the Body of a Destination-List Metrics Message . 97

12 Message Queue 3.5 SP1 • Java Client Developer’s Guide

Table 5-8 Destination Metrics Message Properties . 97

Table 5-9 Data in the Body of a Destination Metrics Message . 98

Table 5-10 Starter Checklist for the Message Queue Administrator . 118

Table 6-1 Inherited Methods . 129

Table 6-2 SOAP Administered Object Information . 136

Table 6-3 JAXMServlet Methods . 146

Table 6-4 SOAP Faultcode Values . 150

Table A-1 Connection Factory Attributes . 163

Table A-2 Destination Attributes . 165

Table A-3 Endpoint Attributes . 166

Table B-1 Message Queue Client Error Codes . 167

13

List of Procedures

To Set Up a Client to Produce Messages . 35

To Set Up a Client to Consume Messages . 36

To Start a Broker . 50

To Test a Broker . 50

To Compile and Run the HelloWorldMessage Application . 54

To Perform a JNDI Lookup of a ConnectionFactory Object . 59

To Perform a JNDI Lookup of a Destination Object . 60

To Directly Instantiate and Configure a ConnectionFactory Object . 62

To Directly Instantiate and Configure a Destination Object . 63

To Create and Add an Attachment . 141

To Transform the SOAP Message into a JMS Message and Send the JMS Message 154

To Receive the JMS Message, Transform it into a SOAP Message, and Process It 155

14 Message Queue 3.5 SP1 • Java Client Developer’s Guide

15

List of Code Examples

Code Example 3-1 Looking Up a ConnectionFactory Object . 60

Code Example 3-2 Instantiating a ConnectionFactory Object . 62

Code Example 3-3 Instantiating a Destination Object . 63

Code Example 5-1 Syntax for acknowledgeThisMessage() Method . 90

Code Example 5-2 Example of Custom Client Acknowledgement Code 91

Code Example 5-3 Example of Subscribing to a Broker Metrics Topic . 101

Code Example 5-4 Example of Processing a Broker Metrics Message . 102

Code Example 5-5 Example of Subscribing to the Destination List Metrics Topic 103

Code Example 5-6 Example of Processing a Destination List Metrics Message 104

Code Example 5-7 Example of Extracting Destination Information From a Hashtable 105

Code Example 5-8 Example of Subscribing to a Destination Metrics Topic 106

Code Example 5-9 Example of Processing a Destination Metrics Message 107

Code Example 5-10 Example of Command to Configure a Single Broker 111

Code Example 5-11 Example of Command to Configure Parallel Brokers 112

Code Example 5-12 Example of Command to Configure a Broker Cluster 113

Code Example 6-1 Explicit Namespace Declarations . 131

Code Example 6-2 Adding an Endpoint Administered Object . 137

Code Example 6-3 Looking up an Endpoint Administered Object . 137

Code Example 6-4 Skeleton Message Consumer . 145

Code Example 6-5 A Simple Ping Message Service . 146

Code Example 6-6 Processing a SOAP Message . 147

Code Example 6-7 Sending a JMS Message with a SOAP Payload . 157

Code Example 6-8 Receiving a JMS Message with a SOAP Payload . 160

16 Message Queue 3.5 SP1 • Java Client Developer’s Guide

17

Preface

This book provides information about concepts and procedures for developing
Java™ messaging applications (Java clients) that work with Sun Java™ System
Message Queue (formerly Sun™ ONE Message Queue).

This preface contains the following sections:

• “Audience for This Guide” on page 17

• “Organization of This Guide” on page 18

• “Conventions” on page 19

• “Other Documentation Resources” on page 21

Audience for This Guide
This guide is meant principally for developers of Java applications that exchange
messages using a Message Queue messaging system.

These applications use the Java Message Service (JMS) Application Programming
Interface (API), and possibly the Java XML Messaging (JAXM) API, to create, send,
receive, and read messages. As such, these applications are JMS client and/or
JAXM client applications, respectively. The JMS and JAXM specifications are open
standards.

This Message Queue Java Client Developer’s Guide assumes that you are familiar with
the JMS APIs and with JMS programming guidelines. Its purpose is to help you
optimize your JMS client applications by making best use of the features and
flexibility of a Message Queue messaging system.

This book assumes no familiarity, however, with the JAXM APIs or with JAXM
programming guidelines. This material is described in Chapter 6, “Working With
SOAP Messages,” and only assumes basic knowledge of XML.

Organization of This Guide

18 Message Queue 3.5 SP1 • Java Client Developer’s Guide

Organization of This Guide
This guide is designed to be read from beginning to end. The following table
briefly describes the contents of each chapter:

Table 1 Book Contents

Chapter Description

Chapter 1, “Overview” A high level overview of Message Queue and of JMS concepts and
programming issues.

Chapter 2, “Quick Start
Tutorial”

A tutorial that acquaints you with the Message Queue development
environment using a simple example JMS client application.

Chapter 3, “Using
Administered Objects”

Describes how to use Message Queue administered objects in both
a provider- independent and provider-specific way.

Chapter 4, “Configuring the
Message Queue Client
Runtime”

Explains features of the Message Queue client runtime and how
they can be used to optimize client applications.

Chapter 5, “Message
Queue Client
Programming Techniques”

Covers a number of topics that illustrate how to write client
applications that use Message Queue-specific features.

Chapter 6, “Working With
SOAP Messages”

Explains how you send and receive SOAP messages with and
without Message Queue support.

Appendix A, “Administered
Object Attributes”

Summarizes and documents administered object attributes.

Appendix B, “Client Error
Codes”

Provides reference information for error codes returned by the
Message Queue client runtime when it raises a JMS exception.

Conventions

Preface 19

Conventions
This section provides information about the conventions used in this document.

Text Conventions

Table 2 Document Conventions

Format Description

italics Italicized text represents a placeholder. Substitute an appropriate
clause or value where you see italic text. Italicized text is also used
to designate a document title, for emphasis, or for a word or phrase
being introduced.

monospace Monospace text represents example code, commands that you
enter on the command line, directory, file, or path names, error
message text, class names, method names (including all elements
in the signature), package names, reserved words, and URLs.

[] Square brackets to indicate optional values in a command line
syntax statement.

ALL CAPS Text in all capitals represents file system types (GIF, TXT, HTML
and so forth), environment variables (IMQ_HOME), or
abbreviations (JSP).

Key+Key Simultaneous keystrokes are joined with a plus sign: Ctrl+A means
press both keys simultaneously.

Key-Key Consecutive keystrokes are joined with a hyphen: Esc-S means
press the Esc key, release it, then press the S key.

Conventions

20 Message Queue 3.5 SP1 • Java Client Developer’s Guide

Directory Variable Conventions
Message Queue makes use of three directory variables; how they are set varies
from platform to platform. Table 3 describes these variables and summarizes how
they are used on the Solaris™, Windows, and Linux platforms.

Table 3 Message Queue Directory Variables

Variable Description

IMQ_HOME This is generally used in Message Queue documentation to refer to
the Message Queue base directory (root installation directory):

• On Solaris, there is no root Message Queue installation
directory. Therefore, IMQ_HOME is not used in Message Queue
documentation to refer to file locations on Solaris.

• On Solaris, for Sun Java™ System Application Server
(formerly Sun™ ONE Application Server), the root Message
Queue installation directory is /imq, under the Application
Server base directory.

• On Windows, the root Message Queue installation directory is
set by the Message Queue installer (by default, as C:\Program
Files\Sun\MessageQueue3).

• On Windows, for Sun Java System Application Server, the root
Message Queue installation directory is /imq, under the
Application Server base directory.

• On Linux, there is no root Message Queue installation directory.
Therefore, IMQ_HOME is not used in Message Queue
documentation to refer to file locations on Linux.

IMQ_VARHOME This is the /var directory in which Message Queue temporary or
dynamically-created configuration and data files are stored. It can
be set as an environment variable to point to any directory.

• On Solaris, IMQ_VARHOME defaults to the /var/imq directory.

• On Solaris, for Sun Java System Application Server,
IMQ_VARHOME defaults to the IMQ_HOME/var directory.

• On Windows IMQ_VARHOME defaults to the IMQ_HOME\var
directory.

• On Windows, for Sun Java System Application Server,
IMQ_VARHOME defaults to the IMQ_HOME\var directory.

• On Linux, IMQ_VARHOME defaults to the /var/opt/imq directory.

Other Documentation Resources

Preface 21

In this guide, IMQ_HOME, IMQ_VARHOME, and IMQ_JAVAHOME are shown without
platform-specific environment variable notation or syntax (for example, $IMQ_HOME
on UNIX). Path names generally use UNIX directory separator notation (/).

Other Documentation Resources
In addition to this guide, Message Queue provides additional documentation
resources.

IMQ_JAVAHOME This is an environment variable that points to the location of the
Java runtime (JRE) required by Message Queue executables:

• On Solaris, IMQ_JAVAHOME defaults to the /usr/j2se/jre
directory, but a user can optionally set the value to wherever
the required JRE resides.

• On Windows, IMQ_JAVAHOME defaults to IMQ_HOME\jre, but a
user can optionally set the value to wherever the required JRE
resides.

• On Linux, Message Queue first looks for the Java runtime in the
/usr/java/j2sdkVersion directory, and then looks in the
/usr/java/j2reVersion directory, but a user can optionally set
the value of IMQ_JAVAHOME to wherever the required JRE
resides.

Table 3 Message Queue Directory Variables (Continued)

Variable Description

Other Documentation Resources

22 Message Queue 3.5 SP1 • Java Client Developer’s Guide

The Message Queue Documentation Set
The documents that comprise the Message Queue documentation set are listed in
Table 4 in the order in which you would normally use them.

JavaDoc
JMS and Message Queue API documentation in JavaDoc format is provided at the
following location:

Table 4 Message Queue Documentation Set

Document Audience Description

Message Queue Installation Guide Developers and
administrators

Explains how to install Message
Queue software on Solaris, Linux, and
Windows platforms.

Message Queue Release Notes Developers and
administrators

Includes descriptions of new features,
limitations, and known bugs, as well
as technical notes.

Message Queue Java Client
Developer’s Guide

Developers Provides a quick-start tutorial and
programming information for
developers of Java client programs
using the Message Queue
implementation of the JMS and
SOAP/JAXM specifications.

Message Queue C Client
Developer’s Guide

Developers Provides programming and reference
documentation for developers of C
client programs using the C interface
(C-API) to the Message Queue
service.

Message Queue Administration
Guide

Administrators, also
recommended for
developers

Provides background and information
needed to perform administration
tasks using Message Queue
administration tools.

Platform Location

Solaris /usr/share/javadoc/imq/index.html

Linux /opt/imq/javadoc/index.html/

Windows IMQ_HOME/javadoc/index.html

Other Documentation Resources

Preface 23

This documentation can be viewed in any HTML browser such as Netscape or
Internet Explorer. It includes standard JMS API documentation as well as Message
Queue-specific APIs for Message Queue administered objects (see Chapter 3,
“Using Administered Objects”).

Example Client Applications
A number of example applications that provide sample Java client application code
are included in the following directories:

See the README file located in that directory and in each of its subdirectories.

The Java Message Service (JMS) Specification
The JMS specification can be found at the following location:

http://java.sun.com/products/jms/docs.html

The specification includes sample client code.

The Java XML Messaging (JAXM) Specification
The JAXM specification can be found at the following location:

http://java.sun.com/xml/downloads/jaxm.html

The specification includes sample client code.

Platform Location

Solaris /usr/demo/imq/

Linux /opt/imq/demo/

Windows IMQ_HOME\demo\

http://java.sun.com/products/jms/docs.html
http://java.sun.com/xml/downloads/jaxm.html

Other Documentation Resources

24 Message Queue 3.5 SP1 • Java Client Developer’s Guide

Books on JMS Programming
For background on using the JMS API, you can consult the following
publicly-available books:

• Java Message Service by Richard Monson-Haefel and David A. Chappell,
O’Reilly and Associates, Inc., Sebastopol, CA

• Professional JMS by Scott Grant, Michael P. Kovacs, Meeraj Kunnumpurath,
Silvano Maffeis, K. Scott Morrison, Gopalan Suresh Raj, Paul Giotta, and James
McGovern, Wrox Press Inc., ISBN: 1861004931

• Practical Java Message Service by Tarak Modi, Manning Publications, ISBN:
1930110138

25

Chapter 1

Overview

This chapter provides an overall introduction to Sun Java™ System Message
Queue (formerly Sun™ ONE Message Queue) and to JMS concepts and
programming issues of interest to developers.

The chapter covers the following topics:

• “What Is Sun Java System Message Queue?” on page 25

• “Product Editions” on page 27

• “Message Queue Service Architecture” on page 28

• “The JMS Programming Model” on page 30

• “JMS Client Design Issues” on page 36

• “JMS/J2EE Programming: Message-Driven Beans” on page 43

What Is Sun Java System Message Queue?
The Message Queue product is a standards-based solution for reliable,
asynchronous messaging for distributed applications. Message Queue is an
enterprise messaging system that implements the Java™ Message Service (JMS)
open standard: in fact it serves as the JMS Reference Implementation. However
Message Queue is also a full-featured JMS provider with enterprise-strength
features.

The JMS specification describes a set of messaging semantics and behaviors, and an
application programming interface (API), that provide a common way for Java
language applications to create, send, receive, and read messages in a distributed
environment (see “The JMS Programming Model” on page 30). In addition to
supporting Java messaging applications, Message Queue also provides a C
language interface to the Message Queue service (the Message Queue C-API).

What Is Sun Java System Message Queue?

26 Message Queue 3.5 SP1 • Java Client Developer’s Guide

With Sun Java System Message Queue software, processes running on different
platforms and operating systems can connect to a common Message Queue service
to send and receive information. Application developers are free to focus on the
business logic of their applications, rather than on the low-level details of how their
applications reliably communicate across a network.

Message Queue has features that exceed the minimum requirements of the JMS
specification. Among these features are the following:

Centralized administration. Provides both command-line and GUI tools for
administering a Message Queue service and managing application-dependent
entities, such as destinations, transactions, durable subscriptions, and security.
Message Queue also supports remote monitoring of the Message Queue service.

Scalable message service. Allows you to service increasing numbers of Message
Queue clients (components or applications) by balancing the load among a number
of Message Queue message server components (brokers) working in tandem
(multi-broker cluster).

Client connection failover. Automatically restores a failed client connection to a
Message Queue message server.

Tunable performance. Lets you increase performance of the Message Queue
service when less reliability of delivery is acceptable.

Multiple transports. Supports the ability of Message Queue clients to
communicate with the Message Queue message server over a number of different
transports, including TCP and HTTP, and using secure (SSL) connections.

JNDI support. Supports both file-based and LDAP implementations of the Java
Naming and Directory Interface (JNDI) as object stores and user repositories.

SOAP messaging support. Supports creation and delivery of SOAP
messages—messages that conform to the Simple Object Access Protocol (SOAP)
specification— via JMS messaging. SOAP allows for the exchange of structured
XML data between peers in a distributed environment. See the Chapter 6,
“Working With SOAP Messages” for more information.

See the Message Queue Administration Guide for documentation of JMS
compliance-related issues.

Product Editions

Chapter 1 Overview 27

Product Editions
Sun Java System Message Queue is available in two editions: Platform and
Enterprise—each corresponding to a different feature set and licensed capacity, as
described below. (Instructions for upgrading Message Queue from one edition to
another are in the Message Queue Installation Guide.)

Platform Edition
This edition can be downloaded free from the Sun website and is also bundled with
the Sun Java™ System Application Server platform. The Platform Edition places no
limit on the number of client connections supported by the Message Queue
message server. It comes with two licenses, as described below:

• a basic license. This license provides basic JMS support (it’s a full JMS
provider), but does not include such enterprise features as load balancing
(multi-broker message service), HTTP/HTTPS connections, secure connection
services, scalable connection capability, client connection failover, queue
delivery to multiple consumers, remote message-based monitoring, and C-API
support. The license has an unlimited duration, and can therefore be used in
less demanding production environments.

• a 90-day trial enterprise license. This license includes all enterprise features
(such as support for multi-broker message services, HTTP/HTTPS
connections, secure connection services, scalable connection capability, client
connection failover, queue delivery to multiple consumers, remote
message-based monitoring, and C-API support) not included in the basic
license. However, the license has a limited 90-day duration enforced by the
software, making it suitable for evaluating the enterprise features available in
the Enterprise Edition of the product (see “Enterprise Edition”).

NOTE The 90-day trial license can be enabled by starting the Message
Queue service—a broker instance—with the -license command
line option (see the Message Queue Administration Guide) and
passing “try” as the license to use:

imqbrokerd -license try

You must use this option each time you start the broker instance,
otherwise it defaults back to the basic Platform Edition license.

Message Queue Service Architecture

28 Message Queue 3.5 SP1 • Java Client Developer’s Guide

Enterprise Edition
This edition is for deploying and running messaging applications in a production
environment. It includes support for multi-broker message services, HTTP/HTTPS
connections, secure connection services, scalable connection capability, client
connection failover, queue delivery to multiple consumers, remote message-based
monitoring, and C-API support. You can also use the Enterprise Edition for
developing, debugging, and load testing messaging applications and components.
The Enterprise Edition has an unlimited duration license that places no limit on the
number of brokers in a multi-broker message service, but is based on the number
of CPUs that are used.

Message Queue Service Architecture
This section briefly describes the main parts of a Message Queue service. While as a
developer, you do not need to be familiar with the details of all of these parts or
how they interact, a high-level understanding of the basic architecture will help
you understand features of the system that impact client application design and
development.

The main parts of a Message Queue service, shown in Figure 1-1, are the following:

Message Queue server The Message Queue server is the heart of a messaging
system. It consists of one or more brokers which provide delivery services for the
system. These services include connections to clients, message routing and
delivery, persistence, security, and logging. The message server maintains physical
destinations to which clients send messages, and from which the messages are
delivered to consuming clients. The Message Queue server is described in detail in
the Message Queue Administration Guide.

NOTE For all editions of Message Queue, a portion of the product—the
client runtime—can be freely redistributed for commercial use. All
other files in the product cannot be redistributed. The portion that
can be freely redistributed allows a licensee to develop a Java client
application (one which can be connected to a Message Queue
service) that can be sold to a third party without incurring any
Message Queue licensing fees. The third party will either need to
purchase Message Queue to access a Message Queue service or
make a connection to yet another party that has a Message Queue
service installed and running.

Message Queue Service Architecture

Chapter 1 Overview 29

Message Queue client runtime The Message Queue client runtime provides
clients with an interface to the Message Queue service—it supplies clients with all
the JMS programming objects introduced in “The JMS Programming Model” on
page 30. It supports all operations needed for clients to send messages to
destinations and to receive messages from such destinations. The Message Queue
client runtime is described in detail in Chapter 4, “Configuring the Message Queue
Client Runtime.”

Figure 1-1 Message Queue System Architecture

Message Queue administered objects Administered Objects encapsulate
provider-specific implementation and configuration information in objects that are
used by Message Queue clients. Administered objects are generally created and
configured by an administrator, stored in a name service, accessed by clients
through standard JNDI lookup code, and then used in a provider-independent
manner. They can also be instantiated by clients, in which case they are used in a
provider-specific manner. Configuration of the client runtime is performed
through administered object attributes, as described in Chapter 4, “Configuring the
Message Queue Client Runtime.”

Object Store

Message Queue
Message Server

Message Queue
Client

Message Queue
Client Runtime

Message Queue
Administration

Broker
Brokers

Destinations

Administered
Objects

Message Queue
Messaging System

The JMS Programming Model

30 Message Queue 3.5 SP1 • Java Client Developer’s Guide

Message Queue administration Message Queue provides a number of
administration tools for managing a Message Queue service. These tools are used
to manage the message server, create and store administered objects, manage
security, manage messaging application resources, and manage persistent data.
These tools are generally used by administrators and are described in the Message
Queue Administration Guide.

The JMS Programming Model
This section briefly describes the programming model of the JMS specification. It is
meant as a review of the most important concepts and terminology used in
programming JMS clients.

JMS Programming Interface
In the JMS programming model, JMS clients (components or applications) interact
using a JMS application programming interface (API) to send and receive
messages. This section introduces the objects that implement the JMS API and that
are used to set up a client for delivery of messages (see “JMS Client Setup
Operations” on page 35). The main interface objects are shown in Figure 1-2 and
described in the following paragraphs.

Message
In the Message Queue product, data is exchanged using JMS messages—messages
that conform to the JMS specification. According to the JMS specification, a
message is composed of three parts: a header, properties, and a body.

Properties are optional—they provide values that clients can use to filter messages.
A body is also optional—it contains the actual data to be exchanged.

The JMS Programming Model

Chapter 1 Overview 31

Figure 1-2 JMS Programming Objects

Header
A header is required of every message. Header fields contain values used for
routing and identifying messages.

Some header field values are set automatically by Message Queue during the
process of producing and delivering a message, some depend on settings of
message producers specified when the message producers are created in the client,
and others are set on a message by message basis by the client using JMS APIs. The
following table lists the header fields defined (and required) by JMS, as well as how
they are set.

Table 1-1 JMS-Defined Message Header

Header Field Set By: Default

JMSDestination Client, for each message producer or
message

JMSDeliveryMode Client, for each message producer or
message

Persistent

JMSExpiration Client, for each message producer or
message

time to live is 0
(no expiration)

JMSPriority Client, for each message producer or
message

4 (normal)

JMSMessageID Provider, automatically

Connection

Sessions

MessageProducers

MessageConsumers

MessageListener

JMS
Message Service

Message
Routing and

Delivery

Physical Destinations

Message

JMS Client

ConnectionFactory

Destinations

The JMS Programming Model

32 Message Queue 3.5 SP1 • Java Client Developer’s Guide

Properties
When data is sent between two processes, other information besides the payload
data can be sent with it. These descriptive fields, or properties, can provide
additional information about the data, including which process created it, the time
it was created, and information that uniquely identifies the structure of each piece
of data. Properties (which can be thought of as an extension of the header) consist
of property name and property value pairs, as specified by JMS client code.

Having registered an interest in a particular destination, consuming clients can
fine-tune their selection by specifying certain property values as selection criteria.
For instance, a client might indicate an interest in Payroll messages (rather than
Facilities) but only Payroll items concerning part-time employees located in New
Jersey. Messages that do not meet the specified criteria are not delivered to the
consumer.

Message Body Types
JMS specifies six classes (or types) of messages that a JMS provider must support,
as described in the following table:

JMSTimestamp Provider, automatically

JMSRedelivered Provider, automatically

JMSCorrelationID Client, for each message

JMSReplyTo Client, for each message

JMSType Client, for each message

Table 1-2 Message Body Types

Type Description

Message A message without a message body.

StreamMessage A message whose body contains a stream of Java primitive values.
It is filled and read sequentially.

MapMessage A message whose body contains a set of name-value pairs. The
order of entries is not defined.

TextMessage A message whose body contains a Java string, for example an
XML message.

Table 1-1 JMS-Defined Message Header (Continued)

Header Field Set By: Default

The JMS Programming Model

Chapter 1 Overview 33

Destination
A Destination is a JMS administered object (see “Administered Objects” on
page 34) that identifies a physical destination in a JMS message service. A physical
destination is a JMS message service entity to which producers send messages and
from which consumers receive messages. The message service provides the routing
and delivery for messages sent to a physical destination. A Destination
administered object encapsulates provider-specific naming conventions for
physical destinations. This lets clients be provider independent.

ConnectionFactory
A ConnectionFactory is a JMS administered object (see “Administered Objects” on
page 34) that encapsulates provider-specific connection configuration information.
A client uses it to create a connection over which messages are delivered. JMS
administered objects can either be acquired through a Java Naming and Directory
Service (JNDI) lookup or directly instantiated using provider-specific classes.

Connection
A Connection is a client’s active connection to a JMS message service. Both
allocation of communication resources and authentication of a client take place
when a connection is created. Hence it is a relatively heavy-weight object, and most
clients do all their messaging with a single connection. A connection is used to
create sessions.

Session
A Session is a single-threaded context for producing and consuming messages.
While there is no restriction on the number of threads that can use a session, the
session should not be used concurrently by multiple threads. It is used to create the
message producers and consumers that send and receive messages, and defines a
serial order for the messages it delivers. A session supports reliable delivery
through a number of acknowledgement options or by using transactions. A
transacted session can combine a series of sequential operations into a single
transaction that can span a number of producers and consumers.

ObjectMessage A message whose body contains a serialized Java object.

BytesMessage A message whose body contains a stream of uninterpreted bytes.

Table 1-2 Message Body Types (Continued)

Type Description

The JMS Programming Model

34 Message Queue 3.5 SP1 • Java Client Developer’s Guide

Message Producer
A client uses a MessageProducer to send messages to a physical destination. A
MessageProducer object is normally created by passing a Destination
administered object to a session’s methods for creating a message producer. (If you
create a message producer that does not reference a specific destination, then you
must specify a destination for each message you produce.) A client can specify a
default delivery mode, priority, and time-to-live for a message producer. These
values govern all messages sent by a producer, except when explicitly over-ridden.

Message Consumer
A client uses a MessageConsumer to receive messages from a physical destination. It
is created by passing a Destination administered object to a session’s methods for
creating a message consumer. A message consumer can have a message selector
that allows the message service to deliver only those messages that match the
selection criteria. A message consumer can support either synchronous or
asynchronous consumption of messages (see “Message Consumption:
Synchronous and Asynchronous” on page 42).

Message Listener
A client uses a MessageListener object to consume messages asynchronously. The
MessageListener is registered with a message consumer. A client consumes a
message when a session thread invokes the onMessage() method of the
MessageListener object.

Administered Objects
The JMS specification facilitates provider-independent clients by specifying
administered objects that encapsulate provider-specific configuration information.

Two of the objects described in the “The JMS Programming Model” on page 30
depend on how a JMS provider implements a JMS message service. The connection
factory object depends on the underlying protocols and mechanisms used by the
provider to deliver messages, and the destination object depends on the specific
naming conventions and capabilities of the physical destinations used by the
provider.

Normally these provider-specific characteristics would make client code
dependent on a specific JMS implementation. However, the JMS specification
requires that provider-specific implementation and configuration information be
encapsulated in connection factory and destination objects that can then be
accessed in a standardized, non-provider-specific way.

The JMS Programming Model

Chapter 1 Overview 35

Administered objects are created and configured by an administrator, stored in a
name service, and accessed by clients through standard Java Naming and
Directory Service (JNDI) lookup code. Using administered objects in this way
makes client code provider-independent.

The two types of administered objects, connection factories and destinations,
encapsulate provider-specific information, but they have very different uses within
a client. A connection factory is used to create connections to the message server,
while destination objects are used to identify physical destinations.

For more information on administered objects, see Chapter 3, “Using Administered
Objects.”

JMS Client Setup Operations
There is a general approach within the JMS programming model for setting up a
JMS client to produce or consume messages. It uses the JMS programming interface
objects described in the previous section.

The general procedures for producing and consuming messages are introduced
below. The procedures have a number of common steps which need not be
duplicated if a client is both producing and consuming messages.

➤ To Set Up a Client to Produce Messages

1. Use JNDI to find a ConnectionFactory object. (You can also directly instantiate
a ConnectionFactory object and set its attribute values.)

2. Use the ConnectionFactory object to create a Connection object.

3. Use the Connection object to create one or more Session objects.

4. Use JNDI to find one or more Destination objects. (You can also directly
instantiate a Destination object and set its name attribute.)

5. Use a Session object and a Destination object to create any needed
MessageProducer objects. (You can create a MessageProducer object without
specifying a Destination object, but then you have to specify a Destination
object for each message that you produce.)

At this point the client has the basic setup needed to produce messages.

JMS Client Design Issues

36 Message Queue 3.5 SP1 • Java Client Developer’s Guide

➤ To Set Up a Client to Consume Messages

1. Use JNDI to find a ConnectionFactory object. (You can also directly instantiate
a ConnectionFactory object and set its attribute values.)

2. Use the ConnectionFactory object to create a Connection object.

3. Use the Connection object to create one or more Session objects.

4. Use JNDI to find one or more Destination objects. (You can also directly
instantiate a Destination object and set its name attribute.)

5. Use a Session object and a Destination object to create any needed
MessageConsumer objects.

6. If needed, instantiate a MessageListener object and register it with a
MessageConsumer object.

7. Tell the Connection object to start delivery of messages. This allows messages
to be delivered to the client for consumption.

At this point the client has the basic setup needed to consume messages.

JMS Client Design Issues
This section is a review of a number of JMS messaging issues that impact JMS client
design.

Programming Domains
JMS supports two distinct message delivery models: point-to-point and
publish/subscribe.

Point-to-Point (Queue Destinations) A message is delivered from a producer to
one consumer. In this delivery model, the destination is a queue. Messages are first
delivered to the queue destination, then delivered from the queue, one at a time,
depending on the queue’s delivery policy (see Chapter 2 in the Message Queue
Administration Guide), to one of the consumers registered for the queue. Any
number of producers can send messages to a queue destination, but each message
is guaranteed to be delivered to—and successfully consumed by—only one
consumer. If there are no consumers registered for a queue destination, the queue
holds messages it receives, and delivers them when a consumer registers for the
queue.

JMS Client Design Issues

Chapter 1 Overview 37

Publish/Subscribe (Topic destinations) A message is delivered from a producer
to any number of consumers. In this delivery model, the destination is a topic.
Messages are first delivered to the topic destination, then delivered to all active
consumers that have subscribed to the topic. Any number of producers can send
messages to a topic destination, and each message can be delivered to any number
of subscribed consumers. Topic destinations also support the notion of durable
subscriptions. A durable subscription represents a consumer that is registered with
the topic destination but can be inactive at the time that messages are delivered.
When the consumer subsequently becomes active, it receives the messages. If there
are no consumers registered for a topic destination, the topic does not hold
messages it receives, unless it has durable subscriptions for inactive consumers.

These two message delivery models are handled using different API objects—with
slightly different semantics—representing different programming domains, as
shown in Table 1-3.

You can program both point-to-point and publish/subscribe messaging using the
unified domain objects that conform to the JMS 1.1 specification (shown in the first
column of Table 1-3). The JMS 1.1 specification, provides a simplified approach to
JMS client programming as compared to JMS 1.02. In particular, a client can
perform both point-to-point and publish/subscribe messaging over the same
connection and within the same session, and can include both queues and topics in
the same transaction.

Table 1-3 JMS Programming Objects

Base Type
(Unified Domain)

Point-to-Point Domain Publish/Subscribe
Domain

Destination (Queue or Topic)1

1. Depending on programming approach, you might specify a particular destination type.

Queue Topic

ConnectionFactory QueueConnectionFactory TopicConnectionFactory

Connection QueueConnection TopicConnection

Session QueueSession TopicSession

MessageProducer QueueSender TopicPublisher

MessageConsumer QueueReceiver TopicSubscriber

JMS Client Design Issues

38 Message Queue 3.5 SP1 • Java Client Developer’s Guide

In short, a client developer need not make a choice between the separate
point-to-point and publish/subscribe programming domains of JMS 1.0.2, opting
instead for the simpler, unified domain approach of JMS 1.1. This is the preferred
approach, however the JMS 1.1 specification continues to support the separate JMS
1.02 programming domains. (In fact, the example applications included with the
Message Queue product as well as the code examples provided in this book all use
the separate JMS 1.02 programming domains.)

JMS Provider Independence
JMS specifies the use of administered objects (see “Administered Objects” on
page 34) to support the development of clients that are portable to other JMS
providers. Administered objects allow clients to use logical names to look up and
reference provider-specific objects. In this way application does not need to know
specific naming or addressing syntax or configurable properties used by a
provider. This makes the code provider-independent.

Administered objects are Message Queue system objects created and configured by
a Message Queue administrator. These objects are placed in a JNDI directory
service, and a JMS client accesses them using a JNDI lookup.

Message Queue administered objects can also be instantiated by the client, rather
than looked up in a JNDI directory service. This has the drawback of requiring the
application developer to use provider-specific APIs. It also undermines the ability
of a Message Queue administrator to successfully control and manage a Message
Queue service.

For more information on administered objects, see Chapter 3, “Using Administered
Objects.”

NOTE Developers of applications that run in the Sun Java System
Application Server 7 environment are limited to using the JMS 1.0.2
API. This is because Sun Java System Application Server 7 complies
with the J2EE 1.3 specification, which supports only JMS 1.0.2. Any
JMS messaging performed in servlets and EJBs—including
message-driven beans (see “Message-Driven Beans” on
page 44)—must be based on the domain-specific JMS APIs.

JMS Client Design Issues

Chapter 1 Overview 39

Client Identifiers
JMS providers must support the notion of a client identifier, which associates a JMS
client’s connection to a message service with state information maintained by the
message service on behalf of the client. By definition, a client identifier is unique,
and applies to only one user at a time. Client identifiers are used in combination
with a durable subscription name (see “Publish/Subscribe (Topic destinations)” on
page 37) to make sure that each durable subscription corresponds to only one user.

The JMS specification allows client identifiers to be set by the client through an API
method call, but recommends setting it administratively using a connection factory
administered object (see “Administered Objects” on page 34). If hard wired into a
connection factory, however, each user would then need an individual connection
factory to have a unique identity.

Message Queue provides a way for the client identifier to be both
ConnectionFactory and user specific using a special variable substitution syntax
that you can configure in a ConnectionFactory object (see “Client Identification”
on page 77). When used this way, a single ConnectionFactory object can be used
by multiple users who create durable subscriptions, without fear of naming
conflicts or lack of security. A user's durable subscriptions are therefore protected
from accidental erasure or unavailability due to another user having set the wrong
client identifier.

For deployed applications, the client identifier must either be programmatically set
by the client, using the JMS API, or administratively configured in the
ConnectionFactory objects used by the client.

In any case, in order to create a durable subscription, a client identifier must be
either programmatically set by the client, using the JMS API, or administratively
configured in the ConnectionFactory objects used by the client.

Reliable Messaging
JMS defines two delivery modes:

Persistent messages These messages are guaranteed to be delivered and
successfully consumed once and only once. Reliability is at a premium for such
messages.

Non-persistent messages These messages are guaranteed to be delivered at most
once. Reliability is not a major concern for such messages.

JMS Client Design Issues

40 Message Queue 3.5 SP1 • Java Client Developer’s Guide

There are two aspects of assuring reliability in the case of persistent messages. One
is to assure that their delivery to and from a message service is successful. The
other is to assure that the message service does not lose persistent messages before
delivering them to consumers.

Acknowledgements/Transactions
Reliable messaging depends on guaranteeing the successful delivery of persistent
messages to and from a destination. This can be achieved using either of two
general mechanisms supported by a Message Queue session: acknowledgements
or transactions. In the case of transactions, these can either be local or distributed,
under the control of a distributed transaction manager.

Acknowledgements
A session can be configured to use acknowledgements to assure reliable delivery.

In the case of a producer, this means that the message service acknowledges
delivery of a persistent message to its destination before the producer’s send()
method returns. In the case of a consumer, this means that the client acknowledges
delivery and consumption of a persistent message from a destination before the
message service deletes the message from that destination.

Local Transactions
A session can also be configured as transacted, in which case the production and/or
consumption of one or more messages can be grouped into an atomic unit—a
transaction. The JMS API provides methods for initiating, committing, or rolling
back a transaction.

As messages are produced or consumed within a transaction, the broker tracks the
various sends and receives, completing these operations only when the client
issues a call to commit the transaction. If a particular send or receive operation
within the transaction fails, an exception is raised. The application can handle the
exception by ignoring it, retrying the operation, or rolling back the entire
transaction. When a transaction is committed, all the successful operations are
completed. When a transaction is rolled back, all successful operations are
cancelled.

The scope of a local transaction is always a single session. That is, one or more
producer or consumer operations performed in the context of a single session can
be grouped into a single local transaction.

Since transactions span only a single session, you cannot have an end-to-end
transaction encompassing both the production and consumption of a message. (In
other words, the delivery of a message to a destination and the subsequent delivery
of the message to a client cannot be placed in a single transaction.)

JMS Client Design Issues

Chapter 1 Overview 41

Distributed Transactions
Message Queue also supports distributed transactions. That is, the production and
consumption of messages can be part of a larger, distributed transaction that
includes operations involving other resource managers, such as database systems.
In distributed transactions, a distributed transaction manager tracks and manages
operations performed by multiple resource managers (such as a message service
and a database manager) using a two-phase commit protocol defined in the Java
Transaction API (JTA), XA Resource API specification. In the Java world, interaction
between resource managers and a distributed transaction manager are described in
the JTA specification.

Support for distributed transactions means that messaging clients can participate
in distributed transactions through the XAResource interface defined by JTA. This
interface defines a number of methods for implementing two-phase commit. While
the API calls are made on the client side, the Message Queue broker tracks the
various send and receive operations within the distributed transaction, tracks the
transactional state, and completes the messaging operations only in coordination
with a distributed transaction manager—provided by a Java Transaction Service
(JTS).

As with local transactions, the client can handle exceptions by ignoring them,
retrying operations, or rolling back an entire distributed transaction.

Message Queue implements support for distributed transactions through an XA
connection factory, which lets you create XA connections, which in turn lets you
create XA sessions (see “The JMS Programming Model” on page 30). In addition,
support for distributed transactions requires either a third party JTS or a
J2EE-compliant Application Server (that provides JTS).

Persistent Storage
The other important aspect of reliability is assuring that once persistent messages
are delivered to their destinations, the message service does not lose them before
they are delivered to consumers. This means that upon delivery of a persistent
message to its destination, the message service must place it in a persistent data
store. If the message service goes down for any reason, it can recover the message
and deliver it to the appropriate consumers. While this adds overhead to message
delivery, it also adds reliability.

A message service must also store durable subscriptions. This is because to
guarantee delivery in the case of topic destinations, it is not sufficient to recover
only persistent messages. The message service must also recover information about
durable subscriptions for a topic, otherwise it would not be able to deliver a
message to durable subscribers when they become active.

JMS Client Design Issues

42 Message Queue 3.5 SP1 • Java Client Developer’s Guide

Messaging applications that are concerned about guaranteeing delivery of
persistent messages must either employ queue destinations or employ durable
subscriptions to topic destinations.

Performance Trade-offs
The more reliable the delivery of messages, the more overhead and bandwidth are
required to achieve it. The trade-off between reliability and performance is a
significant design consideration. You can maximize performance and throughput by
choosing to produce and consume non-persistent messages. On the other hand,
you can maximize reliability by producing and consuming persistent messages in a
transaction using a transacted session. Between these extremes are a number of
options, depending on the needs of an application, including the use of Message
Queue-specific persistence and acknowledgement properties (see “Managing
Reliability and Performance” on page 84).

Message Consumption: Synchronous and
Asynchronous
There are two ways a JMS client can consume messages: either synchronously or
asynchronously.

In synchronous consumption, a client gets a message by invoking the receive()
method of a MessageConsumer object. The client thread blocks until the method
returns. This means that if no message is available, the client blocks until a message
does become available or until the receive() method times out (if it was called
with a time-out specified). In this model, a client thread can only consume
messages one at a time (synchronously).

In asynchronous consumption, a client registers a MessageListener object with a
message consumer. The message listener is like a call-back object. A client
consumes a message when the session invokes the onMessage() method of the
MessageListener object. In this model, the client thread does not block (message is
asynchronously consumed) because the thread listening for and consuming the
message belongs to the Message Queue client runtime.

JMS/J2EE Programming: Message-Driven Beans

Chapter 1 Overview 43

Message Selection
JMS provides a mechanism by which a message service can perform message
filtering and routing based on criteria placed in message selectors. A producing
client can place application-specific properties in the message, and a consuming
client can indicate its interest in messages using selection criteria based on such
properties. This simplifies the work of the client and eliminates the overhead of
delivering messages to clients that don’t need them. However, it adds some
additional overhead to the message service processing the selection criteria.
Message selector syntax and semantics are outlined in the JMS specification.

Message Order and Priority
In general, all messages sent to a destination by a single session are guaranteed to
be delivered to a consumer in the order they were sent. However, if they are
assigned different priorities, a messaging system will attempt to deliver higher
priority messages first.

Beyond this, the ordering of messages consumed by a client can have only a rough
relationship to the order in which they were produced. This is because the delivery
of messages to a number of destinations and the delivery from those destinations
can depend on a number of issues that affect timing, such as the order in which the
messages are sent, the sessions from which they are sent, whether the messages are
persistent, the lifetime of the messages, the priority of the messages, the message
delivery policy of queue destinations (see the Message Queue Administration Guide),
and message service availability.

JMS/J2EE Programming: Message-Driven Beans
In addition to the general client programming model introduced in “The JMS
Programming Model” on page 30, there is a more specialized adaptation of JMS
used in the context of Java 2 Enterprise Edition (J2EE) applications. This specialized
JMS client is called a message-driven bean and is one of a family of Enterprise
JavaBeans (EJB) components specified in the EJB 2.0 Specification
(http://java.sun.com/products/ejb/docs.html).

The need for message-driven beans arises out of the fact that other EJB components
(session beans and entity beans) can only be called synchronously. These EJB
components have no mechanism for receiving messages asynchronously, since
they are only accessed through standard EJB interfaces.

http://java.sun.com/products/ejb/docs.html

JMS/J2EE Programming: Message-Driven Beans

44 Message Queue 3.5 SP1 • Java Client Developer’s Guide

However, asynchronous messaging is a requirement of many enterprise
applications. Most such applications require that server-side components be able to
communicate and respond to each other without tying up server resources. Hence,
the need for an EJB component that can receive messages and consume them
without being tightly coupled to the producer of the message. This capability is
needed for any application in which server-side components must respond to
application events. In enterprise applications, this capability must also scale under
increasing load.

Message-Driven Beans
A message-driven bean (MDB) is a specialized EJB component supported by a
specialized EJB container (a software environment that provides distributed
services for the components it supports).

Message-driven Bean The MDB is a JMS message consumer that implements the
JMS MessageListener interface. The onMessage method (written by the MDB
developer) is invoked when a message is received by the MDB container. The
onMessage() method consumes the message, just as the onMessage() method of a
standard MessageListener object would. You do not remotely invoke methods on
MDBs—like you do on other EJB components—therefore there are no home or
remote interfaces associated with them. The MDB can consume messages from a
single destination. The messages can be produced by standalone JMS applications,
JMS components, EJB components, or Web components, as shown in Figure 1-3.

JMS/J2EE Programming: Message-Driven Beans

Chapter 1 Overview 45

Figure 1-3 Messaging with MDBs

MDB Container The MDB is supported by a specialized EJB container,
responsible for creating instances of the MDB and setting them up for
asynchronous consumption of messages. This involves setting up a connection
with the message service (including authentication), creating a pool of sessions
associated with a given destination, and managing the distribution of messages as
they are received among the pool of sessions and associated MDB instances. Since
the container controls the life-cycle of MDB instances, it manages the pool of MDB
instances so as to accommodate incoming message loads.

Associated with an MDB is a deployment descriptor that specifies the JNDI lookup
names for the administered objects used by the container in setting up message
consumption: a connection factory and a destination. The deployment descriptor
might also include other information that can be used by deployment tools to
configure the container. Each such container supports instances of only a single
MDB.

EJB Container

EJB
Instance

MDB Container

MDB
MDBMDB

Instance onMessage
method

JMS Message Service

Message
Routing and

Delivery

Destinations

JMS
Component

or
Application

JMS
Message
Producers

JMS
Message
Consumer

JMS/J2EE Programming: Message-Driven Beans

46 Message Queue 3.5 SP1 • Java Client Developer’s Guide

J2EE Application Server Support
In J2EE architecture (see the J2EE Platform Specification located at
http://java.sun.com/j2ee/download.html#platformspec), EJB containers are hosted
by J2EE application servers. An application server provides resources needed by
the various containers: transaction managers, persistence managers, name services,
and, in the case of messaging and MDBs, a JMS provider.

In Sun Java System Application Server, JMS messaging resources are provided by
Sun Java System Message Queue:

• For Sun Java System Application Server 7, a Message Queue messaging system
is integrated into the application server as its native JMS provider.

• For the Sun J2EE 1.4 Application Server, Message Queue is plugged into the
application server as an embedded JMS resource adapter (see Appendix F,
“The MQ Resource Adapter,” in the Message Queue Administration Guide for
details).

• For future releases of Application Server, Message Queue will be plugged into
the application server using standard resource adapter deployment and
configuration methods.

http://java.sun.com/j2ee/download.html#platformspec

47

Chapter 2

Quick Start Tutorial

This chapter provides a quick introduction to JMS client programming in a Sun
Java System Message Queue environment. It consists of a tutorial-style description
of procedures used to create, compile, and run a simple HelloWorldMessage
example application.

This chapter covers the following topics:

• “Setting Up Your Environment” on page 47

• “Starting and Testing the Message Server” on page 49

• “Developing a Simple Client Application” on page 51

• “Compiling and Running a Client Application” on page 54

• “Example Application Code” on page 55

For the purpose of this tutorial it is sufficient to run the Message Queue server in a
default configuration. For instructions on configuring a Message Queue server,
please refer to the Message Queue Administration Guide.

The minimum JDK level required to compile and run Message Queue clients is
1.2.2.

Setting Up Your Environment
You need to set the CLASSPATH environment variable when compiling and running
a JMS client. (The IMQ_HOME variable, where used, refers to the directory where
Message Queue is installed on Windows platforms and some Sun Java System
Application Server platforms.)

Setting Up Your Environment

48 Message Queue 3.5 SP1 • Java Client Developer’s Guide

The value of CLASSPATH depends on the following factors:

❍ the platform on which you compile or run

❍ whether you are compiling or running a JMS application

❍ whether your application is a SOAP client or a SOAP servlet

❍ whether your application uses the SOAP/JMS transformer utilities

❍ the JDK version you are using (which affects JNDI support).

Table 2-1 specifies the directories where jar files are to be found on the different
platforms:

Table 2-2 lists the jar files you need to compile and run different kinds of code.

Table 2-1 jar File Locations

Platform Directory

Solaris™ /usr/share/lib/

Solaris, using the standalone version of Sun
Java System Application Server

IMQ_HOME/lib/

Linux /opt/imq/lib/

Windows IMQ_HOME\lib\

Table 2-2 jar Files Needed in CLASSPATH

Code To Compile To Run Discussion

JMS client jms.jar
imq.jar
jndi.jar

jms.jar
imq.jar
Directory
containing
compiled Java app
or '.'

See discussion of JNDI jar files,
following this table.

SOAP Client saaj-api.jar
activation.jar

saaj-api.jar
Directory
containing
compiled Java app
or '.'

See Chapter 6, “Working With
SOAP Messages”

SOAP Servlet jaxm-api.jar
saaj-api.jar
activation.jar

SOAP servlets can run in the
App Server 7 without additional
runtime support.

Starting and Testing the Message Server

Chapter 2 Quick Start Tutorial 49

A client application must be able to access JNDI jar files (jndi.jar) even if the
application does not use JNDI directly to look up Message Queue administered
objects. This is because JNDI is referenced by methods belonging to the
Destination and ConnectionFactory classes.

JNDI jar files are bundled with JDK 1.4. Thus, if you are using this JDK, you do not
have to add jndi.jar to your CLASSPATH setting. However, if you are using an
earlier version of the JDK, you must include jndi.jar in your classpath.

If you are using JNDI to look up Message Queue administered objects, you must
also include the following files in your CLASSPATH setting:

• if you are using the file-system context (with any JDK version), you must
include the fscontext.jar file.

• if you are using the LDAP context

❍ with JDK 1.2 or 1.3, include the ldap.jar, ldabbp.jar, and fscontext.jar
files.

❍ with JDK 1.4, all files are already bundled with this JDK.

Starting and Testing the Message Server
This tutorial assumes that you do not have a Message Queue server currently
running. A message server consists of one or more brokers—the software
component that routes and delivers messages.

(If you run the broker as a UNIX startup process or Windows service, then it is
already running and you can skip to “To Test a Broker” below.)

code using
SOAP/JMS
transformer
utilities

imqxm.jar
(and jars for JMS
and SOAP clients)

Also add the appropriate jar files
mentioned in this table for the
kind of code you are writing.

Table 2-2 jar Files Needed in CLASSPATH (Continued)

Code To Compile To Run Discussion

Starting and Testing the Message Server

50 Message Queue 3.5 SP1 • Java Client Developer’s Guide

➤ To Start a Broker

1. In a terminal window, change to the directory containing Message Queue
executables:

2. Run the broker startup command (imqbrokerd) as shown below.

imqbrokerd -tty

The -tty option causes all logged messages to be displayed to the terminal
console (in addition to the log file).

The broker will start and display a few messages before displaying the
message, “imqbroker@host:7676 ready.” It is now ready and available for
clients to use.

➤ To Test a Broker

One simple way to check the broker startup is by using the Message Queue
Command (imqcmd) utility to display information about the broker.

1. In a separate terminal window, change to the directory containing Message
Queue executables (see Table 2-3).

2. Run imqcmd with the arguments shown below.

imqcmd query bkr -u admin -p admin

Table 2-3 Location of Message Queue Executables
Platform Location

Solaris /usr/bin/

Linux /opt/imq/bin/

Windows IMQ_HOME/bin/

Developing a Simple Client Application

Chapter 2 Quick Start Tutorial 51

The output displayed should be similar to what is shown below.

Developing a Simple Client Application
This section leads you through the steps used to create a simple “Hello World”
client application that sends a message to a queue destination and then retrieves
the same message from the queue. You can find this example, named
HelloWorldMessage in the IMQ_HOME/demo/helloworld/helloworldmessage
directory.

% imqcmd query bkr -u admin -p admin

Querying the broker specified by:

Host Primary Port

localhost 7676

Version 3.5 SP1
Instance Name imqbroker
Primary Port 7676

Current Number of Messages in System 0
Current Total Message Bytes in System 0

Max Number of Messages in System unlimited (-1)
Max Total Message Bytes in System unlimited (-1)
Max Message Size 70m

Auto Create Queues true
Auto Create Topics true
Auto Created Queue Max Number of Active Consumers 1
Auto Created Queue Max Number of Backup Consumers 0

Cluster Broker List (active)
Cluster Broker List (configured)
Cluster Master Broker
Cluster URL

Log Level INFO
Log Rollover Interval (seconds) 604800
Log Rollover Size (bytes) unlimited (-1)

Successfully queried the broker.

Current Number of Messages in System 0

Developing a Simple Client Application

52 Message Queue 3.5 SP1 • Java Client Developer’s Guide

The following steps describe the HelloWorldMessage example

1. Import the interfaces and Message Queue implementation classes for the JMS
API.

The javax.jms package defines all the JMS interfaces necessary to develop a
JMS client.

import javax.jms.*;

2. Instantiate a Message Queue QueueConnectionFactory administered object.

A QueueConnectionFactory object encapsulates all the Message Queue-specific
configuration properties for creating QueueConnection connections to a
Message Queue server.

QueueConnectionFactory myQConnFactory =
new com.sun.messaging.QueueConnectionFactory();

ConnectionFactory administered objects can also be accessed through a JNDI
lookup (see “Looking Up ConnectionFactory Objects” on page 59). This
approach makes the client code JMS-provider independent and also allows for
a centrally administered messaging system.

3. Create a connection to the message server.

A QueueConnection object is the active connection to the message server in the
Point-To-Point programming domain.

QueueConnection myQConn =
myQConnFactory.createQueueConnection();

4. Create a session within the connection.

A QueueSession object is a single-threaded context for producing and
consuming messages. It enables clients to create producers and consumers of
messages for a queue destination.

QueueSession myQSess = myQConn.createQueueSession(false,
Session.AUTO_ACKNOWLEDGE);

The myQSess object created above is non-transacted and automatically
acknowledges messages upon consumption by a consumer.

5. Instantiate a Message Queue queue administered object that corresponds to a
queue destination in the message server.

Destination administered objects encapsulate provider-specific destination
naming syntax and behavior. The code below instantiates a queue
administered object for a physical queue destination named “world”.

Developing a Simple Client Application

Chapter 2 Quick Start Tutorial 53

Queue myQueue = new.com.sun.messaging.Queue("world");

Destination administered objects can also be accessed through a JNDI lookup
(see “Looking Up Destination Objects” on page 60). This approach makes the
client code JMS-provider independent and also allows for a centrally
administered messaging system.

6. Create a QueueSender message producer.

This message producer, associated with myQueue, is used to send messages to
the queue destination named “world”.

QueueSender myQueueSender = myQSess.createSender(myQueue);

7. Create and send a message to the queue.

You create a TextMessage object using the QueueSession object and populate it
with a string representing the data of the message. Then you use the
QueueSender object to send the message to the “world” queue destination.

TextMessage myTextMsg = myQSess.createTextMessage();
myTextMsg.setText("Hello World");
System.out.println(“Sending Message: “ + myTextMsg.getText());
myQueueSender.send(myTextMsg);

8. Create a QueueReceiver message consumer.

This message consumer, associated with myQueue, is used to receive messages
from the queue destination named “world”.

QueueReceiver myQueueReceiver =
myQSess.createReceiver(myQueue);

9. Start the QueueConnection you created in Step 3.

Messages for consumption by a client can only be delivered over a connection
that has been started (while messages produced by a client can be delivered to
a destination without starting a connection, as in Step 7.

myQConn.start();

10. Receive a message from the queue.

You receive a message from the “world” queue destination using the
QueueReceiver object. The code, below, is an example of a synchronous
consumption of messages (see “Message Consumption: Synchronous and
Asynchronous” on page 42).

Message msg = myQueueReceiver.receive();

Compiling and Running a Client Application

54 Message Queue 3.5 SP1 • Java Client Developer’s Guide

11. Retrieve the contents of the message.

Once the message is received successfully, its contents can be retrieved.

if (msg instanceof TextMessage) {
TextMessage txtMsg = (TextMessage) msg;
System.out.println("Read Message: " + txtMsg.getText());

}

12. Close the session and connection resources.

myQSess.close();
myQConn.close();

Compiling and Running a Client Application
To compile and run Java clients in a Message Queue environment, it is
recommended that you use the Java2 SDK Standard Edition v1.4, though versions
1.3 and 1.2 are also supported. The recommended SDK can be downloaded from
the following location:

http://java.sun.com/j2se/1.4

Be sure that you have set the CLASSPATH environment variable correctly, as
described in “Setting Up Your Environment” on page 47, before attempting to
compile or run a client application.

The following instructions are based on the HelloWorldMessage application, as
created in “Developing a Simple Client Application” on page 51, and located in the
Message Queue 3.5 SP1 JMS example applications directory (see Table 2-4). Please
note that these instructions are furnished as an example. You do not actually need
to compile the example; it is shipped precompiled. Of course, if you modify the
source for the example, you will need to recompile.

➤ To Compile and Run the HelloWorldMessage Application

1. Make the directory containing the application your current directory.

The Message Queue 3.5 SP1 example applications directory on Solaris is not
writable by users, so copy the HelloWorldMessage application to a writable
directory and make that directory your current directory.

http://java.sun.com/j2se/1.4

Example Application Code

Chapter 2 Quick Start Tutorial 55

2. Compile the HelloWorldMessage application as shown below.

javac HelloWorldMessage.java

This step results in the HelloWorldMessage.class file being created in the
current directory.

3. Run the HelloWorldMessage application:

java HelloWorldMessage

The following output is displayed when you run HelloWorldMessage.

Sending Message: Hello World

Read Message: Hello World

Example Application Code
The example applications provided by Message Queue 3.5 SP1 consist of both JMS
messaging applications as well as JAXM messaging examples (see “Working With
SOAP Messages” on page 119 for more information).

Directories containing example application code are set as follows:

• Solaris: /usr/demo/imq

• Linux: /opt/imq/demo

• Windows: IMQ_HOME\demo\

Each directory (except for the JMS directory) contains a README file that
describes the source files included in that directory. Table 2-4 lists and describes
the contents of the directories of interest to Message Queue Java clients.

Table 2-4 Example Programs

Directory Contents

helloworld Simple programs that show how a JMS client is created and
deployed in Message Queue. These examples include the steps
required to create administered objects in Message Queue, and
show to use JNDI in the client to look up and use those objects.

jms Sample programs that demonstrate the use of the JMS API with
Message Queue.

jaxm Sample programs that demonstrate how to use SOAP messages in
conjunction with JMS in Message Queue.

Example Application Code

56 Message Queue 3.5 SP1 • Java Client Developer’s Guide

applications Two directories:

• One contains source for a GUI application that uses the
Message Queue JMS monitoring API to get the list of queues
from a Message Queue broker and browse their contents using
a JMS queue browser.

• One contains source for a GUI application that uses the JMS
API to implement a simple chat application.

monitoring Sample programs that demonstrate how to use the JMS API for
monitoring the broker.

jdbc Examples for plugging in a PointBase and an Oracle database.

imqobjmgr Examples of imqobjmgr command files.

Table 2-4 Example Programs (Continued)

Directory Contents

57

Chapter 3

Using Administered Objects

Administered objects encapsulate provider-specific implementation and
configuration information in objects that are used by Message Queue clients.

Message Queue provides two types of JMS administered objects—connection
factory and destination—as well as a JAXM administered object. While all
encapsulate provider-specific information, they have very different uses.

ConnectionFactory and XAConnectionFactory (distributed transaction) objects are
used to create connections to the Message Queue server. Destination objects (which
represent physical destinations) are used to create JMS message consumers and
producers (see “Developing a Simple Client Application” on page 51). The JAXM
endpoint administered object is used to send SOAP messages (see Chapter 6,
“Working With SOAP Messages”).

There are two approaches to the use of administered objects:

• They can be created and configured by an administrator, stored in an object
store, accessed by clients through standard JNDI lookup code, and then used in
a provider-independent manner.

• They can be instantiated and configured by a developer when writing
application code. In this case, they are used in a provider-specific manner.

The approach you take in using administered objects depends on the environment
in which your application will be run and how much control you want your client
to have over Message Queue-specific configuration details. This chapter describes
these two approaches and explains how to code your client for each.

NOTE In the case where Message Queue clients are J2EE components,
JNDI resources are provided by the J2EE container, and JNDI
lookup code might differ from that shown in this chapter. Please
consult your J2EE provider documentation for such details.

JNDI Lookup of Administered Objects

58 Message Queue 3.5 SP1 • Java Client Developer’s Guide

JNDI Lookup of Administered Objects
If you wish an application to be run under controlled conditions in a centrally
administered messaging environment, then Message Queue administered objects
should be created and configured by an administrator. This makes it possible for
the administrator to do the following:

• control the behavior of connections by requiring clients to access
pre-configured ConnectionFactory (and XAConnectionFactory) objects
through a JNDI lookup.

• control the proliferation of physical destinations by requiring clients to access
only Destination objects that correspond to existing physical destinations.

This approach gives the administrator control over message server and client
runtime configuration details, and at the same time allows clients to be JMS
provider-independent: they do not have to know about provider-specific syntax
and object naming conventions or provider-specific configuration properties.

An administrator creates administered objects in an object store using Message
Queue administration tools, as described in the Message Queue Administration
Guide. When creating an administered object, the administrator can specify that it
be read only—that is, clients cannot change Message Queue-specific configuration
values specified when the object was created. In other words, application code
cannot set attribute values on read-only administered objects, nor can they be
overridden using client startup options, as described in “Starting Client
Applications With Overrides” on page 64.

While it is possible for clients to instantiate ConnectionFactory (and
XAConnectionFactory) and destination administered objects on their own, this
practice undermines the basic purpose of an administered object—to allow an
administrator to control the broker resources required by an application and to
tune application performance. Instantiating administered objects also makes a
client provider specific.

JNDI Lookup of Administered Objects

Chapter 3 Using Administered Objects 59

Looking Up ConnectionFactory Objects

➤ To Perform a JNDI Lookup of a ConnectionFactory Object

1. Create an initial context for the JNDI lookup.

The details of how you create this context depend on whether you are using a
file-system object store or an LDAP server for your Message Queue
administered objects. The code below assumes a file-system store. For
information about the corresponding LDAP object store attributes, see the
Message Queue Administration Guide.

Hashtable env = new Hashtable();
env.put (Context.INITIAL_CONTEXT_FACTORY,

"com.sun.jndi.fscontext.RefFSContextFactory");
env.put (Context.PROVIDER_URL,

"file:///c:/imq_admin_objects");
Context ctx = new InitialContext(env);

You can also set an environment by specifying system properties on the
command line, rather than programmatically, as shown above. For
instructions, see the README file in the JMS example applications directory.

If you use system properties to set the environment, then you initialize the
context without providing the env parameter:

Context ctx = new InitialContext();

2. Perform a JNDI lookup on the “lookup” name under which the
ConnectionFactory or XAConnectionFactory object was stored in the JNDI
object store.

QueueConnectionFactory myQConnFactory = (QueueConnectionFactory)
ctx.lookup(“MyQueueConnectionFactory”);

It is recommended that you use this connection factory as originally
configured. For a discussion of ConnectionFactory and XAConnectionFactory
object attributes, see “Client Runtime Configurable Properties” on page 69 and
for a complete list of attributes, see “ConnectionFactory Administered Object”
on page 163.

NOTE You need to create the directory represented by
c:/imq_admin_objects before referencing it in your code. (that is,
c:/imq_admin_objects must be an existing directory).

file:///c:/imq_admin_objects

JNDI Lookup of Administered Objects

60 Message Queue 3.5 SP1 • Java Client Developer’s Guide

3. Use the ConnectionFactory to create a connection object.

QueueConnection myQConn =
myQConnFactory.createQueueConnection();

The code in the previous steps is shown in Code Example 3-1. (The directory
represented by c:/imq_admin_objects must be an existing directory.)

The code in the previous steps is shown in Code Example 3-1.

Looking Up Destination Objects

➤ To Perform a JNDI Lookup of a Destination Object

1. Using the same initial context used in performing the ConnectionFactory
lookup, Perform a JNDI lookup on the “lookup” name under which the
Destination object was stored in the JNDI object store.

Queue myQ =
(Queue) ctx.lookup(“MyQueueDestination”);

Code Example 3-1 Looking Up a ConnectionFactory Object

Hashtable env = new Hashtable();
env.put (Context.INITIAL_CONTEXT_FACTORY,

"com.sun.jndi.fscontext.RefFSContextFactory");
env.put (Context.PROVIDER_URL,

"file:///c:/imq_admin_objects");
Context ctx = new InitialContext(env);
QueueConnectionFactory myQConnFactory = (QueueConnectionFactory)

ctx.lookup("MyQueueConnectionFactory");
QueueConnection myQConn =

myQConnFactory.createQueueConnection();

file:///c:/imq_admin_objects

Instantiating Administered Objects

Chapter 3 Using Administered Objects 61

Instantiating Administered Objects
If you do not wish an application to be run under controlled conditions in a
centrally administered environment, then you can instantiate and configure
administered objects in application code.

While this approach gives you, the developer, control over message server and
client runtime configuration details, it also means that your clients are not
supported by other JMS providers. Typically, you might instantiate administered
objects in application code in the following situations:

• You are in the early stages of development in which there is no real need to
create, configure, and store administered objects. You just want to develop and
debug your application without involving JNDI lookups.

• You are not concerned about your clients being supported by other JMS
providers.

Instantiating administered objects in application code means you are hard-coding
configuration values into your application. You give up the flexibility of having an
administrator reconfigure the administered objects to achieve higher performance
or throughput after an application has been deployed.

Instantiating ConnectionFactory Objects
There are two object constructors for instantiating Message Queue
ConnectionFactory administered objects, one for each programming domain:

• Publish/subscribe (Topic) domain

new com.sun.messaging.TopicConnectionFactory();

Instantiates a TopicConnectionFactory with a default configuration (creates
Topic TCP-based connections to a broker running on “localhost” at port
number 7676).

• Point to point (Queue) domain

new com.sun.messaging.QueueConnectionFactory();

Instantiates a QueueConnectionFactory with a default configuration (creates
Queue TCP-based connections to a broker running on “localhost” at port
number 7676).

Instantiating Administered Objects

62 Message Queue 3.5 SP1 • Java Client Developer’s Guide

➤ To Directly Instantiate and Configure a ConnectionFactory Object

1. Instantiate a Topic or Queue ConnectionFactory object using the appropriate
constructor.

com.sun.messaging.QueueConnectionFactory myQConnFactory =
new com.sun.messaging.QueueConnectionFactory();

2. Configure the ConnectionFactory object.

myQConnFactory.setProperty("imqBrokerHostName", "new_hostname");
myQConnFactory.setProperty("imqBrokerHostPort", "7878");

For a discussion of ConnectionFactory configuration properties, see “Client
Runtime Configurable Properties” on page 69 and for a complete list of
properties, see “ConnectionFactory Administered Object” on page 163.

3. Use the ConnectionFactory to create a Connection object.

QueueConnection myQConn =
myQConnFactory.createQueueConnection();

The code in the previous steps is shown in Code Example 3-2.

Code Example 3-2 Instantiating a ConnectionFactory Object

com.sun.messaging.QueueConnectionFactory myQConnFactory =
new com.sun.messaging.QueueConnectionFactory();

try {
myQConnFactory.setProperty("imqBrokerHostName", "new_host");
myQConnFactory.setProperty("imqBrokerHostPort", "7878");

} catch (JMSException je) {
}
QueueConnection myQConn =

myQConnFactory.createQueueConnection();

Instantiating Administered Objects

Chapter 3 Using Administered Objects 63

Instantiating Destination Objects
There are two object constructors for instantiating Message Queue Destination
administered objects, one for each programming domain:

• Publish/subscribe (Topic) domain

new com.sun.messaging.Topic();

Instantiates a Topic with the default destination name of
“Untitled_Destination_Object”.

• Point to point (Queue) domain

new com.sun.messaging.Queue();

Instantiates a Queue with the default destination name of
“Untitled_Destination_Object”.

➤ To Directly Instantiate and Configure a Destination Object

1. Instantiate a Topic or Queue Destination object using the appropriate
constructor.

com.sun.messaging.Queue myQueue = new com.sun.messaging.Queue();

2. Configure the Destination object.

myQueue.setProperty("imqDestinationName", "new_queue_name");

3. After creating a session, you use the Destination object to create a
MessageProducer or MessageConsumer object.

QueueSender qs = qSession.createSender((Queue)myQueue);

The code is shown in Code Example 3-3.

Code Example 3-3 Instantiating a Destination Object

com.sun.messaging.Queue myQueue = new com.sun.messaging.Queue();
try {

myQueue.setProperty("imqDestinationName", "new_queue_name");
} catch (JMSException je) {
}
...
QueueSender qs = qSession.createSender((Queue)myQueue);
...

Starting Client Applications With Overrides

64 Message Queue 3.5 SP1 • Java Client Developer’s Guide

Starting Client Applications With Overrides
As with any Java application, you can start messaging applications using the
command-line to specify system properties. This mechanism can also be used to
override attribute values of Message Queue administered objects used in
application code. You can override the configuration of Message Queue
administered objects that are accessed through a JNDI lookup and Message Queue
administered objects that are instantiated and configured using setProperty()
methods in application code.

To override administered object settings, use the following command line syntax:

java [[-Dattribute=value]...] clientAppName

where attribute corresponds to any of the ConnectionFactory administered
object attributes documented in “Client Runtime Configurable Properties” on
page 69.

For example, if you want a client to connect to a different broker than that specified
in a ConnectionFactory administered object accessed in the application code, you
can start up the client using command line overrides to set the imqBrokerHostName
and imqBrokerHostPort of another broker.

It is also possible to set system properties within application code using the
System.setProperty() method. This method will override attribute values of
Message Queue administered objects in the same way that command line options
do.

If an administered object has been set as read-only, however, the values of its
attributes cannot be changed using either command-line overrides or the
System.setProperty() method. Any such overrides will simply be ignored.

65

Chapter 4

Configuring the Message Queue
Client Runtime

The performance of client applications depends both on the inherent design of
these applications and on the features and capabilities of the Message Queue client
runtime.

This chapter describes how the Message Queue client runtime supports the
messaging capabilities of client applications, with special emphasis on properties
and behaviors that you can configure to improve performance and message
throughput.

The chapter covers the following topics:

• “Message Production and Consumption” on page 65

• “Client Runtime Configurable Properties” on page 69

• “Managing Reliability and Performance” on page 84

Message Production and Consumption
The Message Queue client runtime provides client applications with an interface to
the Message Queue service—it supplies these clients with all the JMS
programming objects introduced in “The JMS Programming Model” on page 30. It
supports all operations needed for clients to send messages to destinations and to
receive messages from such destinations.

This section provides a high level description of how the Message Queue client
runtime supports message production and consumption. Figure 4-1 on page 66
illustrates how message production and consumption involve an interaction
between clients and the client runtime, while message delivery involves an
interaction between the client runtime and the message server.

Message Production and Consumption

66 Message Queue 3.5 SP1 • Java Client Developer’s Guide

Figure 4-1 Messaging Operations

Once a client has created a connection to a broker, created a session as a
single-threaded context for message delivery, and created the MessageProducer
and MessageConsumer objects needed to access particular destinations in a
message server, production (sending) and consumption (receiving) of messages
can proceed.

Message Production
In message production, a message is created by the client, and sent over a
connection to a destination on a broker. If the message delivery mode of the
MessageProducer object has been set to persistent (guaranteed delivery, once and
only once), the client thread blocks until the broker acknowledges that the message
was delivered to its destination and stored in the broker’s persistent data store. If
the message is not persistent, no broker acknowledgement message (referred to as
“Ack” in property names) is returned by the broker, and the client thread does not
block.

In the case of persistent messages, to increase throughput, you can set the
connection to not require broker acknowledgement (see imqAckOnProduce
property, Table 4-9 on page 83), but this eliminates the guarantee that persistent
messages are reliably delivered.

Message Queue
 Message Server

Message Queue
Client Runtime

Broker
Brokers

Destinations

Message
delivery

Message Queue
Client

Message
production

Message
consumption

Message Production and Consumption

Chapter 4 Configuring the Message Queue Client Runtime 67

Message Consumption
Message consumption is more complex than production. Messages arriving at a
destination on a broker are delivered over a connection to the client runtime under
the following conditions:

• the client has set up a consumer for the given destination

• the selection criteria for the consumer, if any, match that of messages arriving
at the given destination

• the connection has been told to start delivery of messages.

Messages delivered over the connection are distributed to the appropriate sessions,
where they are queued up to be consumed by the appropriate MessageConsumer
objects, as shown in Figure 4-2.

Figure 4-2 Message Delivery to Message Queue Client Runtime

NOTE The flow of messages delivered to the client runtime is metered at
both the connection and consumer levels (see “Message Flow
Metering” on page 85). By appropriately adjusting connection
configuration properties, you can balance the flow of messages so
that messages delivered to one session do not adversely affect the
delivery of messages to other sessions on the same connection.

Broker

Connection

Destinations

Client
Runtime

Session 3

Session 2

Session 1

Message
Consumers

Message Production and Consumption

68 Message Queue 3.5 SP1 • Java Client Developer’s Guide

Messages are fetched off each session queue one at a time (a session is single
threaded) and consumed either synchronously (by a client thread invoking the
receive method) or asynchronously (by the session thread invoking the onMessage
method of a MessageListener object).

When a broker delivers messages to the client runtime, it marks the messages
accordingly, but does not really know if they have been consumed. Therefore, the
broker waits for the client to acknowledge receipt of a message before deleting the
message from the broker’s destination. If a connection fails, and another connection
is subsequently established, the broker will re-deliver all previously delivered but
unconsumed messages, marking them with a Redeliver flag.

In accordance with the JMS specification, there are three acknowledgment modes
that you can specify for a client session:

• AUTO_ACKNOWLEDGE: the session automatically acknowledges each message
consumed by the client.

• CLIENT_ACKNOWLEDGE: the client explicitly acknowledges after one or more
messages have been consumed. This mode gives the client the most control.
This acknowledgement takes place by invoking the acknowledge() method of
a message object, causing the session to acknowledge all messages that have
been consumed by the session since the previous invocation of the method.
(This could include messages consumed asynchronously by many different
message listeners in the session, independent of the order in which they were
consumed.)

• DUPS_OK_ACKNOWLEDGE: the session acknowledges after ten messages have been
consumed (this value is not currently configurable) and doesn’t guarantee that
messages are delivered and consumed only once. Clients use this mode if they
don’t care if messages are processed more than once.

Each of the three acknowledgement modes requires a different level of processing
and bandwidth overhead. AUTO_ACKNOWLEDGE consumes the most overhead and
guarantees reliability on a message by message basis, while DUPS_OK_ACKNOWLEDGE
consumes the least overhead, but allows for duplicate delivery of messages.

NOTE Message Queue also provides a specific method you can use in
CLIENT_ACKNOWLEDGE mode, by which you can acknowledge
only the individual message on which you invoke the method,
rather than the standard behavior. This is achieved using
programming techniques described in“Custom Client
Acknowledgement” on page 89.

Client Runtime Configurable Properties

Chapter 4 Configuring the Message Queue Client Runtime 69

In the case of the AUTO_ACKNOWLEDGE or CLIENT_ACKNOWLEDGE modes, the threads
performing the acknowledgement, or committing a transaction, will block, waiting
for the broker to return a control message acknowledging receipt of the client
acknowledgement. This broker acknowledgement (referred to as “Ack” in
property names) guarantees that the broker has deleted the corresponding
persistent message and will not send it twice—which could happen were the client
or broker to fail, or the connection to fail, at the wrong time.

To increase throughput, you can set the connection to not require broker
acknowledgement of client acknowledgements (see imqAckOnAcknowledge
property, Table 4-7 on page 80), but this eliminates the guarantee that persistent
messages are delivered once and only once.

Client Runtime Configurable Properties
The Message Queue client runtime supports all the operations described in
“Message Production and Consumption” on page 65. It also provides a number of
configurable properties that you can use to optimize resources, performance, and
message throughput. These properties correspond to attributes of the
ConnectionFactory object used to create physical connections between a client
runtime and a message server.

NOTE In the DUPS_OK_ACKNOWLEDGE mode, the session does not wait for
broker acknowledgements. This mode is used in clients in which
duplicate messages are not a problem. Also, there is a JMS API
(recover Session) by which a client can explicitly request
redelivery of messages that have been received but not yet
acknowledged by the client. When redelivering such messages, the
broker marks them with a Redeliver flag.

NOTE If you wish to support distributed transactions (see “Distributed
Transactions” on page 41), you need to use a special
XAConnectionFactory object that supports distributed transactions.

Client Runtime Configurable Properties

70 Message Queue 3.5 SP1 • Java Client Developer’s Guide

A ConnectionFactory (or XAConnectionFactory) object has no physical
representation in a broker—it is used simply to enable the client to establish
connections with a broker and to specify behaviors of the connection and of the
client runtime using the connection. (The ConnectionFactory object can also be
used to manage Message Queue message server resources by overriding message
header values set by clients—see “Message Header Overrides” on page 78.)

ConnectionFactory (and XAConnectionFactory) administered objects are created
by adminstrators or instantiated in the application, as described in Chapter 3,
“Using Administered Objects.”

By configuring a ConnectionFactory (or XAConnectionFactory) administered
object, you specify the attribute values (the properties) common to all the
connections that it produces. ConnectionFactory and XAConnectionFactory
objects share the same set of attributes. These attributes are grouped into a number
of categories, depending on the behaviors they affect:

• Connection Handling

• Client Identification

• Message Header Overrides

• Reliability And Flow Control

• Queue Browser Behavior and Server Session

• JMS-Defined Properties Support

Each of these categories is discussed in the following sections with a description of
the ConnectionFactory (or XAConnectionFactory) attributes each includes. The
attribute values are set using Message Queue administration tools, as described in
the Message Queue Administration Guide.

Client Runtime Configurable Properties

Chapter 4 Configuring the Message Queue Client Runtime 71

Connection Handling
Connections to a message server are specified by a broker host name, the port
number at which the broker’s Port Mapper resides (or at which a specific
connection service resides), and the kind of connection service used to access the
broker (see the Message Queue Administration Guide for a discussion of the various
connection services provided by Message Queue.)

This information is provided in a message server address that is used in connecting
the client runtime to a broker. In the case of a multi-broker cluster, you might
specify multiple message server addresses: if a broker or a connection fails, the
connection can be automatically re-established with a different broker using a
different message server address.

Specifying a Message Server Address
The syntax for specifying a message server address depends upon the connection
service used to access a broker, as follows:

scheme://address_syntax

where the scheme and address_syntax are described in Table 4-1.

Table 4-1 Message Server Address Schemes and Syntax

Scheme Connection
Service

Description Address Syntax

mq jms
and
ssljms

Message Queue client runtime makes a connection
to the Message Queue Port Mapper at the specified
host and port. The Port Mapper returns a list of the
dynamically established connection service ports,
and the client runtime then makes a connection to
the port hosting the specified connection service.

[hostName][:port][/serviceName]
Defaults:1

hostName = localhost
port = 7676
serviceName = jms

mqtcp jms Message Queue client runtime makes a tcp
connection to the specified host and port (bypassing
the Message Queue Port Mapper) to establish a
connection.

hostName:port/jms

mqssl ssljms Message Queue client runtime makes a secure ssl
connection to the specified host and port (bypassing
the Message Queue Port Mapper) to establish a
connection.

hostName:port/ssljms

http httpjms Message Queue client runtime makes an HTTP
connection to a Message Queue tunnel servlet at the
specified URL. (The broker must be configured to
access the HTTP tunnel servlet, as described in the
Message Queue Administration Guide.)

http://hostName:port/
contextRoot/tunnel2

scheme://address_syntax

Client Runtime Configurable Properties

72 Message Queue 3.5 SP1 • Java Client Developer’s Guide

To see how the message server address syntax applies in some typical cases,
consult Table 4-2.

https httpsjms Message Queue client runtime makes a secure
HTTPS connection to the specified Message Queue
tunnel servlet URL. (The broker must be configured
to access the HTTPS tunnel servlet, as described in
the Message Queue Administration Guide.)

https://hostName:port/
contextRoot/tunnel3

1. Defaults only apply to the jms connection service. For the ssljms connection service, all variables need to be specified

2. If multiple broker instances are using the same tunnel servlet, then the syntax for connecting to a specific broker instance (rather than
a randomly selected one) is: http://hostName:port/contextRoot/tunnel?ServerName=hostName:instanceName

3. If multiple broker instances are using the same tunnel servlet, then the syntax for connecting to a specific broker instance (rather than
a randomly selected one) is: https://hostName:port/contextRoot/tunnel?ServerName=hostName:instanceName

Table 4-2 Message Server Address Examples

Connection
Service

Broker Host Port Example Address

Not
Specified

Local Host Not Specified Default
(mq://localHost:7676/jms)

Not
Specified

Specified Host Not Specified myBkrHost
(mq://myBkrHost:7676/jms)

Not
Specified

Not Specified Portmapper Port
Specified

1012
(mq://localHost:1012/jms)

ssljms Local Host Portmapper Port
Not Specified

mq://localHost:7676/ssljms

ssljms Specified Host Portmapper Port mq://myBkrHost:7676/ssljms

ssljms Specified Host Portmapper Port
Specified

mq://myBkrHost:1012/ssljms

jms Local Host Service Port
Specified

mqtcp://localhost:1032/jms

ssljms Specified Host Service Port
Specified

mqssl://myBkrHost:1034/ssljms

httpjms N/A N/A http://websrvr1:8085/imq/tunnel

httpsjms N/A N/A https://websrvr2:8090/imq/tunnel

Table 4-1 Message Server Address Schemes and Syntax (Continued)

Scheme Connection
Service

Description Address Syntax

https://hostName:port/

Client Runtime Configurable Properties

Chapter 4 Configuring the Message Queue Client Runtime 73

Connecting to a Message Server
Using a message server address provided by a ConnectionFactory (or
XAConnectionFactory) attribute, a client runtime attempts to connect to the
message server. If the message server address scheme involves the Message Queue
Port Mapper (scheme = mq), then the Port Mapper dynamically assigns a port
number and a connection is attempted to the specified port.

In some cases, you might wish to provide more than one message server address to
which to make a connection. For example, in multi-broker cluster environments
(Enterprise Edition only) when one broker might not be on line, you might wish to
connect to another broker in the cluster. By specifying more than one address in the
connection factory imqAddressList attribute, the system will automatically
attempt a connection to a second address if a connection to the first address fails.
The connection attempts continue until all addresses in a list are tried, after which
the system recycles through the list a specified number of times, in attempting a
connection.

Automatic Reconnect to a Message Server (Enterprise Edition)
Message Queue also provides an auto-reconnect capability, by which the client
runtime can automatically reconnect to a broker if a connection fails. To enable this
capability, you set the connection factory imqReconnectEnabled attribute.

While attempting to re-establish the connection, Message Queue maintains objects
(sessions, message consumers, message producers, and so forth) provided by the
client runtime. However, in circumstances where the client-side state cannot be
fully restored on a broker upon reconnect (for example, when using transacted
sessions or temporary destinations—which exist only for the duration of a
connection), auto-reconnect will not take place, and the connection exception
handler is called instead. (In such cases, application code has to catch the exception,
reconnect, and restore state.)

A failed connection can be restored not only on the original broker, but also on a
broker different from the original connection (that is, the reconnect is to the
message server rather than to a specific broker instance within the message server
cluster). To implement this behavior, you specify a list of message server addresses
in the imqAddressList attribute.

When the client runtime needs to re-establish a connection to a message service, it
will attempt a specified number of reconnect attempts (imqReconnectAttempts) to
the original broker, each after a specified time interval (imqReconnectInterval). If
these attempts fail, then the client runtime attempts to connect to other brokers in
the list (the same number of times at the same time interval), until it finds an
available broker or fails to find one. You can specify the number of times the client
runtime iterates through the list in this way (imqAddressListIterations).

Client Runtime Configurable Properties

74 Message Queue 3.5 SP1 • Java Client Developer’s Guide

Because broker instances do not currently use a shared, highly available persistent
store, persistent messages and other state information held by the failed (or
disconnected) broker can be lost if a reconnect is to a broker instance different from
the original. However, the ability of the client runtime to automatically reconnect
to a different broker instance allows you to create recovery scenarios by which a
backup broker or a broker cluster can be used for (less than complete) failover
protection.

(If auto-reconnect is enabled, Message Queue persists temporary destinations when
the associated connection fails, due to the possibility that clients might re-connect
and access them again. After giving the client due time to reconnect and make use
of these destinations, the broker will delete them.)

Auto-reconnect Behavior
The impact of auto-reconnect is different for message production and message
consumption.

Message Production During reconnect, producers cannot send messages. The
production of messages (or any operation that involves communication with the
message server) is blocked until the connection is re-established.

Message Consumption Auto-reconnect is supported for all client
acknowledgement modes. After a connection is re-established, the broker will
redeliver all unacknowledged messages it had previously delivered, marking them
with a Redeliver flag. JMS application code can use this flag to determine if any
message has already been consumed (but not yet acknowledged). In the case of
non-durable subscribers, some messages might be lost. This is because the message
server does not hold messages for non-durable subscribers once their connections
have been closed. Thus, any messages produced for these subscribers while the
connection is down can not be delivered when the connection is re-established.

The attributes that affect connection handling are described in Table 4-3.
(Connection handling attributes used in earlier, Message Queue 3.0 versions,
which continue to be supported by Message Queue 3.5 SP1, are described in
“Message Queue 3.0 Connection Handling” on page 76.)

Client Runtime Configurable Properties

Chapter 4 Configuring the Message Queue Client Runtime 75

Table 4-3 Connection Factory Attributes: Connection Handling

Attribute/Property Name Description

imqAddressList Specifies a list of message server addresses (one or more),
separated by commas, each corresponding to a different broker
instance to which a client runtime can connect. Each address in
the list specifies the host name, host port, and connection
service for the connection (see “Specifying a Message Server
Address” on page 71).
Default: If no address is specified, this attribute defaults to an
existing Message Queue 3.0 address (see “Message Queue 3.0
Connection Handling” on page 76), if any, or if not, to the first
entry in Table 4-2 on page 72.

imqAddressListBehavior Specifies whether connection attempts are in the order of
addresses in the imqAddressList attribute (PRIORITY) or in a
random order (RANDOM). If you have many clients attempting a
connection using the same connection factory, you would use a
random order to prevent them from all being connected to the
same address.
Default: PRIORITY

imqAddressListIterations Specifies the number of times the client runtime will iterate
through the imqAddressList in an effort to establish (or
re-establish a connection). A value of -1 indicates that the
number of attempts is unlimited.
Default: 5

imqReconnectEnabled If enabled (value = true), specifies that the client runtime will
attempt to reconnect to a message server (or the list of
addresses in imqAddressList) when a connection is lost.
Default: false

imqReconnectAttempts Specifies the number of attempts to connect (or reconnect) for
each address in the imqAddressList before the client runtime
moves on to try the next address in the list. A value of -1
indicates that the number of reconnect attempts is unlimited (the
client runtime will attempt to connect to the first address until it
succeeds).
Default: 0

imqReconnectInterval Specifies the interval between reconnect attempts. this applies
for attempts on each address in the imqAddressList and for
successive addresses in the list. If too short, this time interval
does not give a broker time to recover. If too long, the reconnect
might represent an unacceptable delay.
Default: 3000 milliseconds

Client Runtime Configurable Properties

76 Message Queue 3.5 SP1 • Java Client Developer’s Guide

Message Queue 3.0 Connection Handling
Connection handling attributes used in earlier, Message Queue 3.0 versions
continue to be supported by Message Queue 3.5 SP1, for purposes of compatibility.
These attributes are shown in Table 4-4.

The Message Queue 3.0 attributes should not be used. They correspond to a
different connection handling approach that does not support multiple message
server addresses for establishing a connection.

If an address is specified in the imqAddressList attribute (see Table 4-3), then any
existing Message Queue 3.0 connection handling attributes will be ignored.

Table 4-4 Supported Message Queue 3.0 Connection Handling Attributes

Attribute/Property Name Description

imqConnectionType Specifies transport protocol of the connection service used by
the client. Supported types are TCP, TLS, HTTP. Default: TCP

imqBrokerHostName Specifies the broker host name to which to connect (if
imqConnectionType is either TCP or TLS).
Default: localhost

imqBrokerHostPort Specifies the broker host port (if imqConnectionType is either
TCP or TLS). Default: 7676

imqBrokerServicePort Specifies a port on which a connection should be attempted
(if imqConnectionType is either TCP or TLS), bypassing a
connection through the broker host port (Port Mapper port).
This attribute is used mainly to provide for connections
through a firewall, in which case you want to minimize the
number of open ports. To use this feature, you have to start a
specific service on a specific port using the broker’s
connection service configuration properties (see the Message
Queue Administration Guide).
Default: 0 (not used)

imqSSLIsHostTrusted Specifies whether the client should trust the Message Queue
broker and accept self-signed certificates from the broker
when the imqConnectionType is TLS. If this is set to false,
then either the broker’s (self-signed) certificate must be
installed in the client’s keystore, or the broker’s certificate
must be signed by a Certificate Authority (CA) that is trusted
by the client. (That is, the CA’s root certificate is either one
that is shipped with the JRE or is installed in the client’s
keystore.)

Default: true

Client Runtime Configurable Properties

Chapter 4 Configuring the Message Queue Client Runtime 77

Client Identification
Clients need to be identified to a broker both for authentication purposes and to
keep track of durable subscriptions (see “Client Identifiers” on page 39).

For authentication purposes, Message Queue provides a default user name and
password. These are a convenience for developers who do not wish to explicitly
populate a user repository (see the Message Queue Administration Guide) to perform
application testing.

To keep track of durable subscriptions, Message Queue uses a unique client
identification (ClientID). If a durable subscriber is inactive at the time that
messages are delivered to a topic destination, the broker retains messages for that
subscriber and delivers them when the subscriber once again becomes active. The
only way for the broker to identify the subscriber is through its ClientID.

There are a number of ways that the ClientID can be set for a connection. For
example, application code can use the setClientID() method of a Connection
object. The ClientID must be set before using the connection in any way; once the
connection is used, the ClientID cannot be set or reset.

Setting the ClientID in application code, however, is not optimal. Each user needs a
unique identification: this implies some centralized coordination. Message Queue
therefore provides a imqConfiguredClientID attribute on the ConnectionFactory
object. This attribute can be used to provide a unique ClientID to each user. To use
this feature, the value of imqConfiguredClientID is set as follows:

imqConfiguredClientID=${u}string

where the special reserved characters, ${u}, provide a unique user identification
during the user authentication stage of establishing a connection, and string is a
text value unique to the ConnectionFactory object. When used properly, the
message server will substitute u:userName for the u, resulting in a user-specific
ClientID.

imqConnectionURL Specifies the URL that will be used to connect to the
message server (if imqConnectionType is HTTP). A typical
value (HTTPS connection) might be
https://hostName:port/imq/tunnel

Default: http://localhost/imq/tunnel

Table 4-4 Supported Message Queue 3.0 Connection Handling Attributes
Attribute/Property Name Description

https://hostName:port/imq/tunnel

Client Runtime Configurable Properties

78 Message Queue 3.5 SP1 • Java Client Developer’s Guide

The ${u} must be the first four characters of the attribute value. If anything other
than “u” is encountered, it will result in an JMS exception upon connection
creation. When ${} is used anywhere else in the attribute value, it is treated as
plain text and no variable substitution is performed.

An additional attribute, imqDisableSetClientID, can be set to true to disallow
clients that use the connection factory from changing the configured ClientID
through the setClientID() method of the Connection object.

It is required that you set the client identifier whenever using durable
subscriptions in deployed applications, either programmatically using the
setClientID() method or using the imqConfiguredClientID attribute of the
ConnectionFactory object.

The attributes that affect client identification are described in Table 4-5.

Message Header Overrides
A Message Queue administrator can override JMS message header fields that
specify the persistence, lifetime, and priority of messages. Specifically, values in the
following fields can be overridden (see “The Java XML Messaging (JAXM)
Specification” on page 23):

• JMSDeliveryMode (message persistence/non-persistence)

• JMSExpiration (message lifetime)

• JMSPriority (message priority—an integer from 0 to 9)

Table 4-5 Connection Factory Attributes: Client Identification

Attribute/Property Name Description

imqDefaultUsername Specifies the default user name that will be used to
authenticate with the broker. Default: guest

imqDefaultPassword Specifies the default password that will be used to
authenticate with the broker. Default: guest

imqConfiguredClientID Specifies the value of an administratively configured ClientID.
Default: null

imqDisableSetClientID Specifies if client is prevented from changing the ClientID
using the setClientID() method in the JMS API. Default:
false

Client Runtime Configurable Properties

Chapter 4 Configuring the Message Queue Client Runtime 79

The ability to override message header values gives an administrator more control
over the resources of a message server. Overriding these fields, however, has the
risk of interfering with application-specific requirements (for example, message
persistence). So this capability should only be used in consultation with the
appropriate application users or designers.

Message Queue allows message header overrides at the level of a connection:
overrides apply to all messages produced in the context of a given connection, and
are configured by setting attributes of the corresponding connection factory
administered object. These attributes are described in Table 4-6.

Reliability And Flow Control
A number of attributes determine the use and flow of Message Queue control
messages by the client runtime, especially broker acknowledgements (referred to
as “Ack” in the attribute names).

The attributes that affect reliability and flow control are described in Table 4-7. For
an extended discussion of these settings and the effect of various permutations, see
“Managing Reliability and Performance” on page 84.

Table 4-6 Connection Factory Attributes: Message Header Overrides

Attribute/Property Name Description

imqOverrideJMSDeliveryMode Specifies whether client-set JMSDeliveryMode field can
be overridden. Default: false

imqJMSDeliveryMode Specifies the override value of JMSDeliveryMode.
Values are 1 (non-persistent) and 2 (persistent).
Default: 2

imqOverrideJMSExpiration Specifies whether client-set JMSExpiration field can be
overridden. Default: false

imqJMSExpiration Specifies the override value of JMSExpiration (in
milliseconds).
Default: 0 (does not expire)

imqOverrideJMSPriority Specifies whether client-set JMSPriority field can be
overridden. Default: false

imqJMSPriority Specifies the override value of JMSPriority (an integer
from 0 to 9). Default: 4 (normal)

imqOverrideJMSHeadersTo
TemporaryDestinations

Specifies whether overrides apply to temporary
destinations. Default: false

Client Runtime Configurable Properties

80 Message Queue 3.5 SP1 • Java Client Developer’s Guide

Table 4-7 Connection Factory Attributes: Reliability and Flow Control

Attribute/Property Name Description

imqAckTimeout Specifies the maximum time in milliseconds that the client
runtime will wait for any broker acknowledgement before
throwing an exception. A value of 0 means there is no
time-out—the client runtime will wait forever. Default: 0

In some situations, for example, the first time a broker
authenticates a user against an LDAP user repository over a
secure (SSL) connection, it can take upwards of 30 seconds
to complete authentication. If imqAckTimeout is set too small,
the client runtime can time out.

imqAckOnProduce Specifies broker acknowledgement of messages from
producing client:

If set to true, the broker acknowledges receipt of all JMS
messages (persistent and non-persistent) from producing
client, and producing client thread will block waiting for those
acknowledgements (referred to as “Ack” in property name).

If set to false, broker does not acknowledge receipt of any
JMS message (persistent or non-persistent) from producing
client, and producing client thread will not block waiting for
broker acknowledgements.

If not specified, broker acknowledges receipt of persistent
messages only, and producing client thread will block waiting
for those acknowledgements.

Default: not specified

imqAckOnAcknowledge Specifies broker response to a consuming client when the
client acknowledges a consumed message:

If set to true, broker acknowledges all consuming client
acknowledgements, and consuming client thread will block
waiting for such broker acknowledgements (referred to as
“Ack” in property name).

If set to false, broker does not acknowledge any consuming
client acknowledgements, and consuming client thread will
not block waiting for such broker acknowledgements.

If not specified, broker acknowledges consuming client
acknowledgements for AUTO_ACKNOWLEDGE and
CLIENT_ACKNOWLEDGE mode (and consuming client
thread will block waiting for such broker acknowledgements),
but does not acknowledge consuming client
acknowledgements for DUPES_OK_ACKNOWLEDGE mode
(and consuming client thread will not block.)

Default: not specified

Client Runtime Configurable Properties

Chapter 4 Configuring the Message Queue Client Runtime 81

imqConnectionFlowCount Specifies the number of JMS messages in a metered batch.
When this number of JMS messages is delivered to the client
runtime, delivery is temporarily suspended, allowing any
control messages that had been held up to be delivered.
Payload message delivery is resumed upon notification by
the client runtime, and continues until the count is again
reached.

If the count is set to 0 then there is no restriction in the
number of JMS messages in a metered batch. A non-zero
setting allows the client runtime to meter message flow so
that Message Queue control messages are not blocked by
heavy JMS message delivery.
Default: 100

imqConnectionFlowLimit
Enabled

If enabled (value = true), the value of
imqConnectionFlowLimit is used to limit message flow at the
connection level.

Default: false

imqConnectionFlowLimit Specifies a limit on the number of messages that can be
delivered over a connection and buffered in the client
runtime, waiting to be consumed. Note however, that unless
imqConnectionFlowIsLimited is enabled, this limit is not
checked.

When the number of JMS messages delivered to the client
runtime (in accordance with the flow metering governed by
imqConnectionFlowCount) exceeds this limit, message
delivery stops. It is resumed only when the number of
unconsumed messages drops below the value set with this
property.

This limit prevents a consuming client that is taking a long
time to process messages from being overwhelmed with
pending messages that might cause it to run out of memory.

Default: 1000

Table 4-7 Connection Factory Attributes: Reliability and Flow Control (Continued)

Attribute/Property Name Description

Client Runtime Configurable Properties

82 Message Queue 3.5 SP1 • Java Client Developer’s Guide

Queue Browser Behavior and Server Session
The attributes that affect queue browsing for the client runtime are described in
Table 4-8.

imqConsumerFlowLimit Specifies a limit on the number of messages per consumer
that can be delivered over a connection and buffered in the
client runtime, waiting to be consumed. This limit is used to
improve load-balancing among consumers in multi-consumer
queue delivery situations (no one consumer can be sent a
disproportionate number of messages). This limit can be
overridden by a lower value set on the broker side for the
queue’s consumerFlowLimit attribute (see information on
destination attributes in the Message Queue Administration
Guide).

This limit also helps prevent any one consumer on a
connection from starving other consumers on the connection.

When the number of JMS messages delivered to the client
runtime exceeds this limit for any consumer, message
delivery for that consumer stops. It is resumed only when the
number of unconsumed messages for that consumer drops
below the value set with imqConsumerFlowThreshold.

(Note that if the total number of messages buffered for all
consumers on a connection exceeds the
imqConnectionFlowLimit, then delivery of messages
through the connection will stop until that total drops below
the connection limit.)

Default: 100

imqConsumerFlow
Threshold

Specifies, as a percentage of imqConsumerFlowLimit, the
number of messages per consumer buffered in the client
runtime, below which delivery of messages for a consumer
will resume. For more information, see “Message Flow
Limits” on page 86.

Default: 50

Table 4-8 Connection Factory Attributes: Queue Browser Behavior

Attribute/Property Name Description

imqQueueBrowserMax
MessagesPerRetrieve

Specifies the maximum number of messages that the
client runtime will retrieve at one time, when browsing
the contents of a queue destination. Default: 1000

Table 4-7 Connection Factory Attributes: Reliability and Flow Control (Continued)

Attribute/Property Name Description

Client Runtime Configurable Properties

Chapter 4 Configuring the Message Queue Client Runtime 83

JMS-Defined Properties Support
JMS-defined properties are property names reserved by JMS, and which a JMS
provider can choose to support (see “The Java XML Messaging (JAXM)
Specification” on page 23). These properties enhance client programming
capabilities.

The JMS-defined properties supported by Message Queue are described in
Table 4-9.

imqQueueBrowserRetrieve
Timeout

Specifies the maximum time that the client runtime will
wait to retrieve messages, when browsing the contents
of a queue destination, before throwing an exception.
Default: 60000 milliseconds.

imqLoadMaxToServerSession Used only for JMS application server facilities.

Specifies whether a Message Queue
ConnectionConsumer should load up to the maxMessages
number of messages into a ServerSession’s session
(value=true), or load only a single message at a time
(value=false). Default: true

Table 4-9 Connection Factory Attributes: JMS-defined Properties Support

Attribute/Property Name Description

imqSetJMSXUserID Specifies whether Message Queue should set the
JMS-defined property, JMSXUserID (identity of user sending
the message), on produced messages. Default: false

imqSetJMSXAppID Specifies whether Message Queue should set the
JMS-defined property, JMSXAppID (identity of application
sending the message), on produced messages. Default:
false

imqSetJMSXProducerTXID Specifies whether Message Queue should set the
JMS-defined property, JMSXProducerTXID (transaction
identifier of the transaction within which this message was
produced), on produced messages. Default: false

imqSetJMSXConsumerTXID Specifies whether Message Queue should set the
JMS-defined property, JMSXConsumerTXID (transaction
identifier of the transaction within which this message was
consumed), on consumed messages. Default: false

Table 4-8 Connection Factory Attributes: Queue Browser Behavior (Continued)

Attribute/Property Name Description

Managing Reliability and Performance

84 Message Queue 3.5 SP1 • Java Client Developer’s Guide

Managing Reliability and Performance
Because of the mechanisms by which messages are delivered to and from a broker,
and because of the Message Queue control messages used to assure reliable
delivery, there are a number of factors that affect reliability and performance. Some
of these factors depend on messaging application design (delivery mode and
acknowledgement mode) and some depend on client runtime behaviors (message
flow metering and message flow limits).

Although these factors are quite distinct, their interactions can complicate the task
of balancing reliability with performance. Specifically, because JMS messages and
Message Queue control messages flow across the same connection between the
client and the broker, you need to understand how to balance the requirement for
reliability with the need for throughput.

This section describes the factors that affect reliability and performance, and the
connection factory attributes that help manage message flow.

Delivery Mode
The delivery mode specifies whether a message is to be delivered at most once
(non-persistent) or once and only once (persistent). These different reliability
requirements imply different degrees of overhead. Specifically, the management of
persistent messages requires greater use of broker control messages flowing across
a connection.

Client Acknowledgement Mode
The setting of the client acknowledgement mode impacts reliability and affects the
number of client and broker acknowledgement messages passing over a
connection:

imqSetJMSXRcvTimestamp Specifies whether Message Queue should set the
JMS-defined property, JMSXRcvTimestamp (the time the
message is delivered to the consumer), on consumed
messages. Default: false

Table 4-9 Connection Factory Attributes: JMS-defined Properties Support (Continued)

Attribute/Property Name Description

Managing Reliability and Performance

Chapter 4 Configuring the Message Queue Client Runtime 85

• In the AUTO_ACKNOWLEDGE mode, a client acknowledgement and broker
acknowledgement (a confirmation of the client acknowledgement) are
required for each consumed message, and the delivery thread blocks waiting
for the broker acknowledgement.

If this mode, with a synchronous receiver, it is possible for a message to be
partially processed, but lost, if the system fails before the message is
consumed. For increased reliability, you can use the CLIENT_ACKNOWLEDGE
mode or a transacted session to guarantee no message is lost if the system fails.

• In the CLIENT_ACKNOWLEDGE mode client acknowledgements and broker
acknowledgements are batched (rather than being sent one by one). This
conserves connection bandwidth and generally reduces the overhead for
broker acknowledgements, as compared to the AUTO_ACKNOWLEDGE mode. Of
course, if in this mode, the client acknowledges each message, no batching will
occur, and the acknowledgements are sent one by one.

• In the DUPS_OK_ACKNOWLEDGE mode, throughput is improved even further,
because client acknowledgements are batched and because the client thread
does not block (broker acknowledgements are not requested). However, in this
case, the same message can be delivered and consumed more than once.

Message Flow Metering
Messages sent and received by clients (JMS messages) and Message Queue control
messages pass over the same client-broker connection. Because of this, delays may
occur in the delivery of control messages, such as broker acknowledgements, if
these are held up by the delivery of JMS messages. To prevent this type of
congestion, Message Queue meters the flow of JMS messages across a connection.

JMS messages are batched (as specified with the imqConnectionFlowCount
property) so that only a set number are delivered; when the batch has been
delivered, delivery of JMS messages is suspended, and pending control messages
are delivered. This cycle repeats, as other batches of JMS messages are delivered,
followed by queued up control messages.

The value of imqConnectionFlowCount should be kept low if the client is doing
operations that require many responses from the broker; for example, the client is
using the CLIENT_ACKNOWLEDGE or AUTO_ACKNOWLEDGE modes, persistent messages,
transactions, queue browsers, or if the client is adding or removing consumers. If,
on the other hand, the client has only simple consumers on a connection using
DUPS_OK mode, you can increase imqConnectionFlowCount without
compromising performance.

Managing Reliability and Performance

86 Message Queue 3.5 SP1 • Java Client Developer’s Guide

Message Flow Limits
There is a limit to the number of JMS messages that the Message Queue client
runtime can handle before encountering local resource limitations, such as
memory. When this limit is approached, performance suffers. Hence, Message
Queue lets you limit the number of messages per consumer that can be delivered
over a connection (imqConsumerFlowLimit) and buffered in the client runtime,
waiting to be consumed.

When the number of JMS messages delivered to the client runtime exceeds this
limit (imqConsumerFlowLimit) for any consumer, message delivery for that
consumer stops. It is resumed only when the number of unconsumed messages for
that consumer drops below the value set with imqConsumerFlowThreshold. The
following example illustrates the use of these limits: consider the default settings
for topic consumers

imqConsumerFlowLimit=1000

imqConsumerFlowThreshold=50

When the consumer is created, the broker delivers the initial batch of 1000
messages (providing they exist) to this consumer without pausing. After sending
1000 messages, the broker stops delivery until the client runtime asks for more
messages. The client runtime holds these messages until the application processes
them. The client runtime then allows the application to consume at least 50%
(imqConsumerFlowThreshold) of the message buffer capacity (i.e. 500 messages)
before asking the broker to send the next batch.

In the same situation, if the threshold were 10%, the client runtime would wait for
the application to consume at least 900 messages before asking for the next batch.
The next batch size is calculated as follows:

imqConsumerFlowLimit - (current # of pending msgs in buffer)

So, if imqConsumerFlowThreshold is 50%, the next batch size can fluctuate between
500 and 1000, depending on how fast the application can process the messages.
Thus, the protocol guarantees two things:

• that the client runtime will never hold more than 1000 undelivered messages

• that the batch size will always be greater than the threshold

If the imqConsumerFlowThreshold is too high (close to 100%), the broker will tend
to send smaller batches, which can lower message throughput. If the value is too
low (close to 0%), the broker might be able to finish the remaining buffered
messages before the broker delivers the next set. This can also cause message

Managing Reliability and Performance

Chapter 4 Configuring the Message Queue Client Runtime 87

throughput degradation. Thus, for most applications, it only makes sense to tune
the imqConsumerFlowLimit value because it controls memory requirements. Unless
you have specific performance or reliability concerns, there is no need to fine tune
the imqConsumerFlowThreshold attribute.

These consumer-based flow controls are the best way to manage memory in the
client runtime. Generally, depending on the client application, you know the
number of consumers you need to support on any connection, the size of the
messages, and the total amount of memory that is available to the client runtime.

In the case of some client applications, however, the number of consumers might
be indeterminate, depending on choices made by end users. In those cases, you can
still manage memory, using connection-level flow limits.

Connection-level flow controls limit the total number of messages buffered for all
consumers on a connection. If this number exceeds the imqConnectionFlowLimit,
then delivery of messages through the connection will stop until that total drops
below the connection limit. (The imqConnectionFlowLimit is only enabled if you
set the imqConnectionFlowLimitEnabled property to true.)

The number of messages queued up in a session is a function of the number of
message consumers using the session and the message load for each consumer. If a
client is exhibiting delays in producing or consuming messages, you can normally
improve performance by redesigning the application to distribute message
producers and consumers among a larger number of sessions or to distribute
sessions among a larger number of connections.

Managing Reliability and Performance

88 Message Queue 3.5 SP1 • Java Client Developer’s Guide

89

Chapter 5

Message Queue Client
Programming Techniques

Some features and capabilities of Message Queue go beyond the JMS specification.
If you want to write client applications that leverage the power of these features
(which are specific to Message Queue), use the techniques described here. The
chapter provides programming guidelines and examples for developing clients
that make use of the following Message Queue service features:

• “Custom Client Acknowledgement” on page 89

• “Message-Based Monitoring API” on page 92

• “Client Connection Failover (Auto-reconnect)” on page 108

• “Other Programming Topics” on page 113

❍ “Managing Memory and Message Size” on page 114

❍ “Using Secure HTTP Connections (HTTPS)” on page 114

❍ “Managing Client Threads” on page 115

❍ “Synchronous Consumption in Distributed Applications” on page 117

❍ “Client Application Deployment Considerations” on page 118

Custom Client Acknowledgement
As discussed in “Message Consumption” on page 67, Message Queue supports
several JMS acknowledgement modes. These modes let message consumers in a
session acknowledge the messages they have consumed. The different modes affect
the performance and reliability of message delivery. For more flexibility, Message
Queue lets you customize the JMS CLIENT_ACKNOWLEDGE mode.

Custom Client Acknowledgement

90 Message Queue 3.5 SP1 • Java Client Developer’s Guide

In CLIENT_ACKNOWLEDGE mode, the client explicitly acknowledges message
consumption by invoking the acknowledge() method of a message object. The
standard behavior of this method is to cause the session to acknowledge all
messages that have been consumed by any consumer in the session since the last
time the method was invoked. (That is, the session acknowledges the current
message and all previously unacknowledged messages, regardless of who
consumed them.)

In addition to the standard behavior specified by JMS, Message Queue lets you use
the CLIENT_ACKNOWLEDGE mode to acknowledge one individual message at a time.

Observe the following rules when implementing custom client acknowledgement:

• When you code an acknowledgement of an individual message, call the
acknowledgeThisMessage() method. When you code an acknowledgement of
all messages consumed so far, call the acknowledgeUpThroughThisMessage()
method. Both are shown in Code Example 5-1.

• When you compile the resulting code, include both imq.jar and jms.jar in the
classpath.

• Don’t call acknowledge(), acknowledgeThisMessage(), or
acknowledgeUpThroughThisMessage() in any session except one that uses the
CLIENT_ACKNOWLEDGE mode. Otherwise, the method call is ignored.

• Don’t try to mix custom-acknowledgement sessions and transacted sessions. A
transacted session defines a specific way to have messages acknowledged.

If a broker fails, any message that was not acknowledged successfully (that is, any
message whose acknowledgement ended in a JMSException) is held by the broker
for delivery to subsequent clients.

Code Example 5-2 demonstrates both types of custom client acknowledgement.

Code Example 5-1 Syntax for acknowledgeThisMessage() Method

public interface com.sun.messaging.jms.Message {
void acknowledgeThisMessage() throws JMSException;
void acknowledgeUpThroughThisMessage() throws JMSException;

}

Custom Client Acknowledgement

Chapter 5 Message Queue Client Programming Techniques 91

Code Example 5-2 Example of Custom Client Acknowledgement Code

...

import javax.jms.*;

... [Look up a connection factory and create a connection.]

Session session = connection.createSession(false,
Session.CLIENT_ACKNOWLEDGE);

... [Create a consumer and receive messages.]

Message message1 = consumer.receive();
Message message2 = consumer.receive();
Message message3 = consumer.receive();

... [Process messages.]

... [Acknowledge one individual message.
Notice that the following acknowledges only message 2.]

((com.sun.messaging.jms.Message)message2).acknowledgeThisMessage();

... [Continue. Receive and process more messages.]

Message message4 = consumer.receive();
Message message5 = consumer.receive();
Message message6 = consumer.receive();

... [Acknowledge all messages up through message 4. Notice that this
acknowledges messages 1, 3, and 4, because message 2 was acknowledged
earlier.]

((com.sun.messaging.jms.Message)message4).
acknowledgeUpThroughThisMessage();

... [Continue. Finally, acknowledge all messages consumed in the session.
Notice that this acknowledges all remaining consumed messages, that is,
messages 5 and 6, because this is the standard behavior of the JMS API.]

message5.acknowledge();

Message-Based Monitoring API

92 Message Queue 3.5 SP1 • Java Client Developer’s Guide

Message-Based Monitoring API
By using the Message Queue metrics monitoring capability, a broker can write
metrics data into messages which the broker then sends to one of a number of
metrics topic destinations. The destination depends on the type of metrics data in a
given message. You get access to this metrics data when you write a client
application that does three things:

• Subscribes to the metrics topic destinations

• Consumes the messages in those destinations

• Processes the metrics data that the messages contain

The message-based monitoring API and other metrics monitoring tools are
described in the Message Queue Administration Guide.

Table 5-1 shows the five metrics topic destinations and the type of metrics
messages each destination can receive.

For an example of how these metrics messages can be useful, when a particular
limit has been reached, you might want to program in an alert and a response
action (such as sending mail to the administrator).

Table 5-1 Metrics Topic Destinations

Topic Destination Name Type of Metrics Messages

mq.metrics.broker Broker metrics: information on connections,
message flow, and volume of messages in the
broker

mq.metrics.jvm Java Virtual Machine metrics: information on
memory usage in the JVM

mq.metrics.destination_list A list of all destinations on the broker, and their
types

mq.metrics.destination.queue.
monitored_destination_name

Destination metrics for a queue of the specified
name, such as number of consumers, message
flow or volume, or disk usage

mq.metrics.destination.topic.
monitored_destination_name

Similar destination metrics for a topic of the
specified name

Message-Based Monitoring API

Chapter 5 Message Queue Client Programming Techniques 93

As explained in the Message Queue Administration Guide (look up “metrics
messages” and “configuration files”), you can do the same thing manually by
using the metrics command utility. However, if that manual approach isn’t
appropriate for your purposes, you can write your JMS client so that it
automatically consumes metrics messages and displays output in a convenient
format.

Monitoring topics have destination names beginning with mq. (Always include the
period.) These names are reserved for use by Message Queue.

No hierarchical naming scheme is implied in the message-based monitoring API.
You can’t use a wildcard character (*) to identify multiple destination names.

When a metrics subscriber is detected, the broker automatically creates the metrics
topic. A metrics monitoring topic can’t be created using an administrative
command. Only the broker can publish messages to a metrics monitoring topic.

You specify how often to receive metrics information by configuring a property in
the broker’s config.properties file. All the destinations receiving metrics on that
broker receive them at that same specified interval. (For information on how to set
that interval, refer to the Message Queue Administration Guide.)

This API is designed for monitoring the broker. It’s not designed for doing
administrative tasks on the broker such as:

• Creating, managing, destroying, or purging physical destinations

• Configuring the broker or updating the broker’s properties

• Shutting down or restarting the broker

For information on how to use Message Queue administration tools to do those
tasks, refer to the Message Queue Administration Guide.

Format of Metrics Messages
Subscribers to metrics topics receive JMS messages of type MapMessage. (See
“Message Body Types” on page 32 for details.) The header of a metrics message
contains two properties: type and timestamp. The type property is useful if the
same subscriber processes more than one type of metrics message—for example,
messages from topics mq.metrics.broker and mq.metrics.jvm. The timestamp
property is useful for calculating rates or drawing graphs.

The body of the message contains name-value pairs, and the data depends on the
type of metrics message. The format of each metrics message type is explained in
the following tables.

Message-Based Monitoring API

94 Message Queue 3.5 SP1 • Java Client Developer’s Guide

Notice these points:

• The names used for extracting data are case-sensitive. For example:

❍ Incorrect: NumMsgsOut

❍ Correct: numMsgsOut

• Each metrics message type has a defined set of name-value pairs. A name that
is specific to a particular message type can be used only with that type. For
example, the name freeMemory can’t be used with a message received from the
topic mq.metrics.broker; it can be used only with a message received from the
topic mq.metrics.jvm.

Broker Metrics
The messages you receive when you subscribe to the topic mq.metrics.broker
have the following message properties (Table 5-2) and metrics data in the message
body (Table 5-3).

Table 5-2 Broker Metrics Message Properties

Property Type Value or Description

type String mq.metrics.broker

timestamp long Timestamp in milliseconds when metric sample was taken

Table 5-3 Data in the Body of a Broker Metrics Message

Metric Name Value Type Description

numConnections long Current number of connections to the broker

numMsgsIn long Number of JMS messages that have flowed into the
broker since it was last started

numMsgsOut long Number of JMS messages that have flowed out of the
broker since it was last started

numMsgs long Current number of JMS messages stored in broker
memory and persistent store

msgBytesIn long Number of JMS message bytes that have flowed into the
broker since it was last started

msgBytesOut long Number of JMS message bytes that have flowed out of
the broker since it was last started

Message-Based Monitoring API

Chapter 5 Message Queue Client Programming Techniques 95

JVM Metrics
The messages you receive when you subscribe to the topic mq.metrics.jvm have
the following message properties (Table 5-4) and metrics data in the message body
(Table 5-5):

totalMsgBytes long Current number of JMS message bytes stored in broker
memory and persistent store

numPktsIn long Number of packets that have flowed into the broker
since it was last started; this includes both JMS
messages and control messages

numPktsOut long Number of packets that have flowed out of the broker
since it was last started; this includes both JMS
messages and control messages

pktBytesIn long Number of packet bytes that have flowed into the broker
since it was last started; this includes both JMS
messages and control messages

pktBytesOut long Number of packet bytes that have flowed out of the
broker since it was last started; this includes both JMS
messages and control messages

numDestinations long Current number of destinations in the broker

Table 5-4 JVM Metrics Message Properties

Property Type Value or Description

type String mq.metrics.jvm

timestamp long Timestamp in milliseconds when the metric sample was taken

Table 5-5 Data in the Body of a JVM Metrics Message

Metric Name Value Type Description

freeMemory long Amount of free memory available for use in the JVM heap

maxMemory long Maximum size to which the JVM heap can grow

totalMemory long Total memory in the JVM heap

Table 5-3 Data in the Body of a Broker Metrics Message (Continued)

Metric Name Value Type Description

Message-Based Monitoring API

96 Message Queue 3.5 SP1 • Java Client Developer’s Guide

Destination-List Metrics
The messages you receive when you subscribe to a topic named
mq.metrics.destination_list have the following properties (Table 5-6):

Each destination in the broker has a corresponding, unique map name (a
name-value pair) in the message body. The name depends on whether the
destination is a queue or a topic. The type of the name-value pair is hashtable.

Each hashtable in the message contains information about a specific destination on
the broker. The sub-table within Table 5-7 describes the key-value pairs that can be
used to extract this information.

By enumerating through the map names and extracting the hashtable described in
Table 5-7, you can form a complete list of destination names and some of their
characteristics.

The destination list does not include the following:

• Destinations that are used by Message Queue administration tools

• Destinations that the Message Queue broker creates for internal use

The message body contains name-value pairs as follows:

Table 5-6 Destination-List Message Properties

Property Type Value or Description

type String mq.metrics.destination_list

timestamp long Timestamp in milliseconds when the metric sample was taken

Message-Based Monitoring API

Chapter 5 Message Queue Client Programming Techniques 97

Notice that the destination name and type could be extracted directly from the
metrics topic destination name, but the hashtable includes it for your convenience.

Destination Metrics
The messages you receive when you subscribe to the topic
mq.metrics.destination.queue.monitored_destination_name or the topic
mq.metrics.destination.topic.monitored_destination_name have the following
message properties (Table 5-8) and metrics data in the message body (Table 5-9):

Table 5-7 Data in the Body of a Destination-List Metrics Message

Metric Name Value Type Value or Description

One of the following:

• mq.metrics.destination.queue.
monitored_destination_name

• mq.metrics.destination.topic.
monitored_destination_name

hashtable The corresponding value for the map name is an object of
type java.util.Hashtable. This hashtable contains the
following key-value pairs.

Key (String) Value Type Value or Description

name String Destination name.

type String Destination type. The
value is either queue or
topic.

isTemporary Boolean Whether the destination is
temporary (true) or not
(false).

Table 5-8 Destination Metrics Message Properties

Property Type Value or Description

type String mq.metrics.destination.queue.monitored_destination_name
or
mq.metrics.destination.topic.monitored_destination_name

timestamp long Timestamp in milliseconds when the metric sample was taken

Message-Based Monitoring API

98 Message Queue 3.5 SP1 • Java Client Developer’s Guide

Table 5-9 Data in the Body of a Destination Metrics Message

Metric Name Value Type Description

numActiveConsumers long Current number of active consumers

avgNumActiveConsumers long Average number of active consumers since the broker was last
started

peakNumActiveConsumers long Peak number of active consumers since the broker was last
started

numBackupConsumers long Current number of backup consumers (applies only to queues)

avgNumBackupConsumers long Average number of backup consumers since the broker was last
started (applies only to queues)

peakNumBackupConsumers long Peak number of backup consumers since the broker was last
started (applies only to queues)

numMsgsIn long Number of JMS messages that have flowed into this destination
since the broker was last started

numMsgsOut long Number of JMS messages that have flowed out of this destination
since the broker was last started

numMsgs long Number of JMS messages currently stored in destination memory
and persistent store

avgNumMsgs long Average number of JMS messages stored in destination memory
and persistent store since the broker was last started

peakNumMsgs long Peak number of JMS messages stored in destination memory and
persistent store since the broker was last started

msgBytesIn long Number of JMS message bytes that have flowed into this
destination since the broker was last started

msgBytesOut long Number of JMS message bytes that have flowed out of this
destination since the broker was last started

totalMsgBytes long Current number of JMS message bytes stored in destination
memory and persistent store

avgTotalMsgBytes long Average number of JMS message bytes stored in destination
memory and persistent store since the broker was last started

peakTotalMsgBytes long Peak number of JMS message bytes stored in destination memory
and persistent store since the broker was last started

peakMsgBytes long Peak number of JMS message bytes in a single message since
the broker was last started

diskReserved long Disk space (in bytes) used by all message records (active and
free) in the destination file-based store

Message-Based Monitoring API

Chapter 5 Message Queue Client Programming Techniques 99

Configuring Metrics Message Production
on the Broker
When you use Message Queue, metrics message production is enabled by default
for your client application. However, the Message Queue administrator must use
the broker properties to set the reporting interval (to specify how often metrics
updates are reported), and to specify whether metrics messages are persistent and
how long they are to “live” in their destinations.

For details on configuring broker properties, refer to the Message Queue
Administration Guide.

Also, without certain security features that Message Queue 3.5 SP1 provides,
someone could obtain and misuse sensitive information about a broker and its
resources. An administrator should take the approach described under “metrics
monitoring tools” in the Message Queue Administration Guide to provide the proper
access control to metrics topic destinations.

Using the Message-Based Monitoring API
You use the message-based monitoring API in the same way that you would write
any JMS client, except that you subscribe to a special topic, you receive messages of
a specific type and format, and you process the messages in a particular way.

A client that uses the message-based monitoring API to monitor broker metrics
must perform the following basic tasks:

• Create or look up a TopicConnectionFactory object

• Create a TopicConnection to the Message Queue service

• Create a TopicSession

• Create a metrics Topic destination object

diskUsed long Disk space (in bytes) used by active message records in
destination file-based store

diskUtilizationRatio int Quotient of used disk space over reserved disk space. The higher
the ratio, the more the disk space is being used to hold active
messages

Table 5-9 Data in the Body of a Destination Metrics Message (Continued)

Metric Name Value Type Description

Message-Based Monitoring API

100 Message Queue 3.5 SP1 • Java Client Developer’s Guide

• Create a TopicSubscriber

• Register as an asynchronous listener to the topic, or invoke the synchronous
receive() method to wait for incoming metrics messages

• Process metrics messages that are received

In general, you would use JNDI lookups of administered objects to make your
client code provider-independent. However, the message-based monitoring API is
specific to Message Queue, so there is no compelling reason to use JNDI lookups.
You can simply instantiate these administered objects directly in your client code.
This is especially true for a metrics destination for which an administrator would
not normally create an administered object.

Notice that the code examples in this section instantiate all the relevant
administered objects directly.

You can use the following code to extract the type (String) or timestamp (long)
properties in the message header from the message:

You use the appropriate getter method in the class javax.jms.MapMessage to
extract the name-value pairs. The getter method depends on the value type. Three
examples follow:

MapMessage mapMsg;
/*
* mapMsg is the metrics message received
*/
String type = mapMsg.getStringProperty("type");
long timestamp = mapMsg.getLongProperty("timestamp");

long value1 = mapMsg.getLong("numMsgsIn");
long value2 = mapMsg.getLong("numMsgsOut");
int value3 = mapMsg.getInt("diskUtilizationRatio");

Message-Based Monitoring API

Chapter 5 Message Queue Client Programming Techniques 101

Metrics Monitoring Client Code Examples
Several complete monitoring example applications (including source code and full
documentation) are provided when you install Message Queue. You’ll find the
examples in your IMQ home directory under /demo/monitoring. Before you can
run these clients, you must set up your environment (for example, the CLASSPATH
environment variable). For details, see Chapter 2, “Quick Start Tutorial.”

Next are brief descriptions of three examples—Broker Metrics, Destination List
Metrics, and Destination Metrics—with annotated code examples from each.

These examples use the utility classes MetricsPrinter and MultiColumnPrinter to
print formatted and aligned columns of text output. However, rather than
explaining how those utility classes are used, the following code examples focus on
how to subscribe to the metrics topic and how to extract information from the
metrics messages received.

Notice that in the source files, the code for subscribing to metrics topics and
processing messages is actually spread across various methods. However, for the
sake of clarity, the examples are shown here as though they were contiguous
blocks of code.

A Broker Metrics Example
The source file for this code example is BrokerMetrics.java. This metrics
monitoring client subscribes to the topic mq.metrics.broker and prints
broker-related metrics to the standard output.

Code Example 5-3 shows how to subscribe to mq.metrics.broker.

Code Example 5-3 Example of Subscribing to a Broker Metrics Topic

com.sun.messaging.TopicConnectionFactory metricConnectionFactory;
TopicConnection metricConnection;
TopicSession metricSession;
TopicSubscriber metricSubscriber;
Topic metricTopic;

metricConnectionFactory = new
com.sun.messaging.TopicConnectionFactory();

metricConnection = metricConnectionFactory.createTopicConnection();
metricConnection.start();

metricSession = metricConnection.createTopicSession(false,
Session.AUTO_ACKNOWLEDGE);

metricTopic = metricSession.createTopic("mq.metrics.broker");

Message-Based Monitoring API

102 Message Queue 3.5 SP1 • Java Client Developer’s Guide

The incoming message is processed in the onMessage() and doTotals() methods,
as shown in Code Example 5-4.

metricSubscriber = metricSession.createSubscriber(metricTopic);
metricSubscriber.setMessageListener(this);

Code Example 5-4 Example of Processing a Broker Metrics Message

public void onMessage(Message m) {
try {

MapMessage mapMsg = (MapMessage)m;
String type = mapMsg.getStringProperty("type");

if (type.equals("mq.metrics.broker")) {
if (showTotals) {

doTotals(mapMsg);
...
}

}

private void doTotals(MapMessage mapMsg) {
try {

String oneRow[] = new String[8];
int i = 0;

/*
* Extract broker metrics
*/
oneRow[i++] = Long.toString(mapMsg.getLong("numMsgsIn"));
oneRow[i++] = Long.toString(mapMsg.getLong("numMsgsOut"));
oneRow[i++] = Long.toString(mapMsg.getLong("msgBytesIn"));
oneRow[i++] = Long.toString(mapMsg.getLong("msgBytesOut"));
oneRow[i++] = Long.toString(mapMsg.getLong("numPktsIn"));
oneRow[i++] = Long.toString(mapMsg.getLong("numPktsOut"));
oneRow[i++] = Long.toString(mapMsg.getLong("pktBytesIn"));
oneRow[i++] = Long.toString(mapMsg.getLong("pktBytesOut"));
...

} catch (Exception e) {
System.err.println("onMessage: Exception caught: " + e);

}
}

Code Example 5-3 Example of Subscribing to a Broker Metrics Topic (Continued)

Message-Based Monitoring API

Chapter 5 Message Queue Client Programming Techniques 103

Notice how the metrics type is extracted, using the getStringProperty() method,
and is checked. If you use the onMessage() method to process metrics messages of
different types, you can use the type property to distinguish between different
incoming metrics messages.

Also notice how various pieces of information on the broker are extracted, using
the getLong() method of mapMsg.

Run this example monitoring client with the following command:

java BrokerMetrics

The output looks like the following:

A Destination List Metrics Example
The source file for this code example is DestListMetrics.java. This client
application monitors the list of destinations on a broker by subscribing to the topic
mq.metrics.destination_list. The messages that arrive contain information
describing the destinations that currently exist on the broker, such as destination
name, destination type, and whether the destination is temporary.

Code Example 5-5 shows how to subscribe to mq.metrics.destination_list.

--
Msgs Msg Bytes Pkts Pkt Bytes
In Out In Out In Out In Out
--
0 0 0 0 6 5 888 802
0 1 0 633 7 8 1004 1669

Code Example 5-5 Example of Subscribing to the Destination List Metrics Topic

com.sun.messaging.TopicConnectionFactory
metricConnectionFactory;
TopicConnection metricConnection;
TopicSession metricSession;
TopicSubscriber metricSubscriber;
Topic metricTopic;
String metricTopicName = null;

metricConnectionFactory = new com.sun.messaging.TopicConnectionFactory();
metricConnection = metricConnectionFactory.createTopicConnection();
metricConnection.start();

metricSession = metricConnection.createTopicSession(false,

Message-Based Monitoring API

104 Message Queue 3.5 SP1 • Java Client Developer’s Guide

The incoming message is processed in the onMessage() method, as shown in Code
Example 5-6:

Session.AUTO_ACKNOWLEDGE);

metricTopicName = "mq.metrics.destination_list";
metricTopic = metricSession.createTopic(metricTopicName);

metricSubscriber = metricSession.createSubscriber(metricTopic);
metricSubscriber.setMessageListener(this);

Code Example 5-6 Example of Processing a Destination List Metrics Message

public void onMessage(Message m) {
try {

MapMessage mapMsg = (MapMessage)m;
String type = mapMsg.getStringProperty("type");

if (type.equals(metricTopicName)) {
String oneRow[] = new String[3];

/*
* Extract metrics
*/
for (Enumeration e = mapMsg.getMapNames();

e.hasMoreElements();) {

String metricDestName = (String)e.nextElement();
Hashtable destValues =

(Hashtable)mapMsg.getObject(metricDestName);
int i = 0;

oneRow[i++] = (destValues.get("name")).toString();
oneRow[i++] = (destValues.get("type")).toString();
oneRow[i++] = (destValues.get("isTemporary")).toString();

mp.add(oneRow);
}

mp.print();
System.out.println("");

mp.clear();
} else {

System.err.println("Msg received:
not destination list metric type");

}
} catch (Exception e) {

Code Example 5-5 Example of Subscribing to the Destination List Metrics Topic

Message-Based Monitoring API

Chapter 5 Message Queue Client Programming Techniques 105

Notice how the metrics type is extracted and checked, and how the list of
destinations is extracted. By iterating through the map names in mapMsg and
extracting the corresponding value (a hashtable), you can construct a list of all the
destinations and their related information.

As discussed in “Format of Metrics Messages” on page 93, these map names are
metrics topic names having one of two forms:

mq.metrics.destination.queue.monitored_destination_name

mq.metrics.destination.topic.monitored_destination_name

(The map names can also be used to monitor a destination, but that is not done in
this particular example.)

Notice that from each extracted hashtable, the information on each destination is
extracted using the keys name, type, and isTemporary. The extraction code from the
previous code example is reiterated here for your convenience.

Run this example monitoring client with the following command:

java DestListMetrics

System.err.println("onMessage: Exception caught: " + e);
}

}

Code Example 5-7 Example of Extracting Destination Information From a Hashtable

String metricDestName = (String)e.nextElement();
Hashtable destValues = (Hashtable)mapMsg.getObject(metricDestName);
int i = 0;

oneRow[i++] = (destValues.get("name")).toString();
oneRow[i++] = (destValues.get("type")).toString();
oneRow[i++] = (destValues.get("isTemporary")).toString();

Code Example 5-6 Example of Processing a Destination List Metrics Message

Message-Based Monitoring API

106 Message Queue 3.5 SP1 • Java Client Developer’s Guide

The output looks like the following:

A Destination Metrics Example
The source file for this code example is DestMetrics.java. This client application
monitors a specific destination on a broker. It accepts the destination type and
name as parameters, and it constructs a metrics topic name of the form
mq.metrics.destination.queue.monitored_destination_name or
mq.metrics.destination.topic.monitored_destination_name.

Code Example 5-8 shows how to subscribe to the metrics topic for monitoring a
specified destination.

Destination Name Type IsTemporary

SimpleQueue queue false
fooQueue queue false
topic1 topic false

Code Example 5-8 Example of Subscribing to a Destination Metrics Topic

com.sun.messaging.TopicConnectionFactory metricConnectionFactory;
TopicConnection metricConnection;
TopicSession metricSession;
TopicSubscriber metricSubscriber;
Topic metricTopic;
String metricTopicName = null;
String destName = null,

destType = null;

for (int i = 0; i < args.length; ++i) {
...
} else if (args[i].equals("-n")) {

destName = args[i+1];
} else if (args[i].equals("-t")) {

destType = args[i+1];
}

}

metricConnectionFactory = new com.sun.messaging.TopicConnectionFactory();

metricConnection = metricConnectionFactory.createTopicConnection();
metricConnection.start();

metricSession = metricConnection.createTopicSession(false,
Session.AUTO_ACKNOWLEDGE);

Message-Based Monitoring API

Chapter 5 Message Queue Client Programming Techniques 107

The incoming message is processed in the onMessage() method, as shown in Code
Example 5-9:

if (destType.equals("q")) {
metricTopicName = "mq.metrics.destination.queue." + destName;

} else {
metricTopicName = "mq.metrics.destination.topic." + destName;

}

metricTopic = metricSession.createTopic(metricTopicName);

metricSubscriber = metricSession.createSubscriber(metricTopic);
metricSubscriber.setMessageListener(this);

Code Example 5-9 Example of Processing a Destination Metrics Message

public void onMessage(Message m) {
try {

MapMessage mapMsg = (MapMessage)m;
String type = mapMsg.getStringProperty("type");

if (type.equals(metricTopicName)) {
String oneRow[] = new String[11];
int i = 0;

/*
* Extract destination metrics
*/
oneRow[i++] = Long.toString(mapMsg.getLong("numMsgsIn"));
oneRow[i++] = Long.toString(mapMsg.getLong("numMsgsOut"));
oneRow[i++] = Long.toString(mapMsg.getLong("msgBytesIn"));
oneRow[i++] = Long.toString(mapMsg.getLong("msgBytesOut"));

oneRow[i++] = Long.toString(mapMsg.getLong("numMsgs"));
oneRow[i++] = Long.toString(mapMsg.getLong("peakNumMsgs"));
oneRow[i++] = Long.toString(mapMsg.getLong("avgNumMsgs"));

oneRow[i++] =
Long.toString(mapMsg.getLong("totalMsgBytes")/1024);

oneRow[i++] =

Long.toString(mapMsg.getLong("peakTotalMsgBytes")/1024);
oneRow[i++] =

Long.toString(mapMsg.getLong("avgTotalMsgBytes")/1024);

Code Example 5-8 Example of Subscribing to a Destination Metrics Topic (Continued)

Client Connection Failover (Auto-reconnect)

108 Message Queue 3.5 SP1 • Java Client Developer’s Guide

Notice how the metrics type is extracted, using the getStringProperty() method
as in the previous examples, and is checked. Also notice how various destination
data are extracted, using the getLong() method of mapMsg.

Run this example monitoring client with one of the following commands:

java DestMetrics -t t -n topic_name

java DestMetrics -t q -n queue_name

Using a queue named SimpleQueue as an example, the command would be:

java DestMetrics -t q -n SimpleQueue

The output looks like the following:

Client Connection Failover (Auto-reconnect)
Message Queue supports client connection failover. A failed connection can be
restored not only on the original broker, but also on a different broker; that is, it can
reconnect to the message service rather than to a specific broker instance. This
reconnection does not apply in situations where the client-side state could not be
fully restored on the broker upon reconnect (for example, when using transacted
sessions or temporary destinations, which exist only for the duration of a
connection).

oneRow[i++] =
Long.toString(mapMsg.getLong("peakMsgBytes")/1024);

mp.add(oneRow);
...

}
} catch (Exception e) {

System.err.println("onMessage: Exception caught: " + e);
}

}

Msgs Msg Bytes Msg Count Tot Msg Bytes (k) Largest Msg
In Out In Out Curr Peak Avg Curr Peak Avg (k)

500 0 318000 0 500 500 250 310 310 155 0

Code Example 5-9 Example of Processing a Destination Metrics Message (Continued)

Client Connection Failover (Auto-reconnect)

Chapter 5 Message Queue Client Programming Techniques 109

Enabling Auto-reconnect
To enable this auto-reconnect behavior, you configure the connection factory
imqReconnectEnabled attribute to true. You also configure the connection factory
administered object to specify the following:

• A list of message-service addresses (using the imqAddressList attribute).
When the client runtime needs to establish or re-establish a connection to a
message service, it attempts to connect to the brokers in the list until it finds (or
fails to find) an available broker. If you specify only a single broker instance on
the imqAddressList attribute, the configuration won’t support recovery from
hardware failure.

When you specify more than one broker in the list, consider whether to use
parallel brokers or a broker cluster. In a parallel configuration, there is no
communication between brokers, while in a broker cluster, the brokers interact
to distribute message delivery loads. (Refer to the Message Queue
Administration Guide for more information on broker clusters.)

❍ To enable parallel-broker reconnection, set the imqReconnectListBehavior
attribute to PRIORITY. Typically, you would specify no more than a pair of
brokers for this type of reconnection. This way, the messages are published
to one broker, and all clients fail over together from the first broker to the
second.

❍ To enable clustered-broker reconnection, set the
imqReconnectListBehavior attribute to RANDOM. This way, the client
runtime randomizes connection attempts across the list, and client
connections are distributed evenly across the broker cluster.

Each broker in a cluster uses its own separate persistent store (which
means that any undelivered persistent messages are unavailable until a
failed broker is back online). If one broker crashes, its client connections
are re-established on other brokers.

• The number of iterations to be made over the list of brokers when attempting
to create a connection or to reconnect, using the imqAddressListIterations
attribute.

Notice that the value 5 means “Try five times” and the value -1 means “Don’t
stop trying.”

• The number of attempts to be made to reconnect to a broker if the first
connection fails, using the imqReconnectAttempts attribute.

• The interval, in milliseconds, between reconnect attempts, using the
imqReconnectInterval attribute.

Client Connection Failover (Auto-reconnect)

110 Message Queue 3.5 SP1 • Java Client Developer’s Guide

Auto-reconnect Behaviors
Notice that a broker treats an automatic reconnection as it would a new connection.
When an original connection is lost, all the resources associated with that
connection are released. For example, in a broker cluster, as soon as one broker
fails, the other brokers assume that the client connections associated with the failed
broker are gone. After auto-reconnect takes place, the client connections are
re-created from scratch.

Sometimes the client-side state cannot be fully restored by auto-reconnect, and the
connection exception handler is called. Perhaps a resource that the client needs
cannot be re-created. In this case, your client receives a JMSException, and must
reconnect and restore state.

If the client is being auto-reconnected explicitly to a broker instance that is different
from the original, then persistent messages and other state information held by the
failed or disconnected broker can be lost. The messages held by the original broker,
once it is restored, might be delivered out of order. The reason is that the various
broker instances in a cluster do not use a shared, highly available persistent store.

A transacted session is the most reliable method of ensuring that a message isn’t
lost, if you are careful in coding the transaction. If auto-reconnect happens in the
middle of a transaction, then the broker loses the information, the client runtime
throws an exception when the transaction is committed, and the transaction is
rolled back. Therefore, at that point, make sure that the client restarts the whole
transaction. (This is especially important when you use a broker cluster.)

When auto-reconnect happens in a CLIENT_ACKNOWLEDGE session, the client runtime
throws a JMSException and the acknowledgement of any set of messages must be
rolled back. Therefore, if you get a JMSException message in such a session, call
session.recover.

Auto-reconnect Limitations
Notice the following points when using the auto-reconnect feature:

• Messages might be redelivered to a consumer after auto-reconnect takes place.
In an AUTO_ACKNOWLEDGE session, you will get no more than one redelivered
message. In the other session types, you might get more than one.

• While the client runtime is trying to reconnect, any messages sent by the broker
to non-durable topic consumers are lost.

Client Connection Failover (Auto-reconnect)

Chapter 5 Message Queue Client Programming Techniques 111

• Any messages that are in queue destinations and that are unacknowledged
when a connection fails are redelivered after auto-reconnect. However, in the
case of queues delivering to multiple consumers, these messages cannot be
guaranteed to be redelivered to the original consumers. That is, as soon as a
connection fails, an unacknowledged queue message might be rerouted to
other connected consumers.

• In the case of a broker cluster, the failure of the master broker has more
implications than the failure of other brokers in the cluster. While the master
broker is down, the following operations on any other broker do not succeed:

❍ Creating or destroying a new durable subscription.

❍ Creating or destroying a new physical destination using the
imqcmd create dst command.

❍ Starting a new broker process. (However, the brokers that are already
running continue to function normally even if the master broker goes
down.)

You can configure the master broker to restart automatically using Message
Queue broker support for rc scripts or the Windows service manager.

• Auto-reconnect doesn’t work if the client uses a ConnectionConsumer to
consume messages. In that case, the client runtime throws an exception.

Auto-reconnect Configuration Examples
Next are examples that illustrate how to enable each type of auto-reconnect
support.

Single-Broker Auto-reconnect
Configure your connection-factory object as follows:

Code Example 5-10 Example of Command to Configure a Single Broker

imqobjmgr add -t cf -l "cn=myConnectionFactory" \
-o “imqAddressList=mq://jpgserv/jms” \
-o “imqReconnect=true” \
-o “imqReconnectAttempts=10”

mq://jpgserv/jms%E2%80%9D

Client Connection Failover (Auto-reconnect)

112 Message Queue 3.5 SP1 • Java Client Developer’s Guide

This command creates a connection-factory object with a single address in the
broker address list. If connection fails, the client runtime will try to reconnect with
the broker 10 times. If an attempt to reconnect fails, the client runtime will sleep for
three seconds (the default value for the imqReconnectInterval attribute) before
trying again. After 10 unsuccessful attempts, the application will receive a
JMSException.

Note that you can ensure that the broker starts automatically with the machine at
system start-up time. See the Message Queue Installation Guide for information on
how to configure automatic broker start-up. For example, on the Solaris platform,
you can use /etc/rc.d scripts.

Parallel Broker Auto-reconnect
Configure your connection-factory objects as follows:

This command creates an connection factory object with two addresses in the
broker list. The first address describes a broker instance running on the host
myhost1 with a standard port number (7676). The second address describes a jms
connection service running at a statically configured port number (12345).

Clustered-Broker Auto-reconnect
Configure your connection-factory objects as follows:

Code Example 5-11 Example of Command to Configure Parallel Brokers

imqobjmgr add -t cf -l "cn=myCF" \
-o "imqAddressList=myhost1, mqtcp://myhost2:12345/jms" \
-o "imqReconnect=true" \
-o "imqReconnectRetries=5"

mqtcp://myhost2:12345/jms

Other Programming Topics

Chapter 5 Message Queue Client Programming Techniques 113

This command creates a connection factory object with four addresses in the
imqAddressList. All the addresses point to jms services running on SSL transport
on different hosts. Since the imqAddressListBehavior attribute is set to RANDOM, the
client connections that are established using this connection factory object will be
distributed randomly among the four brokers in the address list.

This is a clustered broker configuration, so you must configure one of the brokers
in the cluster as the master broker. In the connection-factory address list, you can
also specify a subset of all the brokers in the cluster.

Other Programming Topics
The rest of this chapter discusses the following miscellaneous topics:

• Managing Memory and Message Size

• Using Secure HTTP Connections (HTTPS)

• Managing Client Threads

• Synchronous Consumption in Distributed Applications

• Client Application Deployment Considerations

Code Example 5-12 Example of Command to Configure a Broker Cluster

imqobjmgr add -t cf -l "cn=myConnectionFactory" \
-o "imqAddressList=mq://myhost1/ssljms, \

mq://myhost2/ssljms, \
mq://myhost3/ssljms, \
mq://myhost4/ssljms” \

-o "imqReconnect=true" \
-o "imqReconnectRetries=5" \
-o "imqAddressListBehavior=RANDOM"

mq://myhost1/ssljms
mq://myhost2/ssljms
mq://myhost3/ssljms
mq://myhost4/ssljms%E2%80%9D

Other Programming Topics

114 Message Queue 3.5 SP1 • Java Client Developer’s Guide

Managing Memory and Message Size
A client application running in a JVM needs enough memory to accommodate
messages that flow in from the network as well as messages the client creates. If
your client encounters OutOfMemoryError errors, chances are that not enough
memory was provided to handle the size or the number of messages being
consumed or produced.

The default JVM heap space is 64 meg, but your client might need more than that.

Consider the following guidelines:

• Evaluate the normal and peak system memory footprints when sizing heap
space.

• You can start by doubling the heap size, as in the following command:

java -Xmx128m MyClass

• The ideal size for the heap space depends on both the operating system and the
JDK release. Check the JDK documentation for restrictions.

• The size of the VM’s memory allocation pool must be less than or equal to the
amount of virtual memory that is available on the system.

For better manageability, break large messages into smaller parts, and use
sequencing to ensure that the partial messages are concatenated properly.

Other methods of dealing with memory issues are explained in Chapter 4,
“Configuring the Message Queue Client Runtime.” They include metering the
message flow over the client-broker connection and limiting the per-consumer
message flow.

Using Secure HTTP Connections (HTTPS)
If you run your client applications in an environment secured by a firewall, you
might need to have client applications communicate with brokers using the HTTP
or HTTPS protocol rather than direct TCP connections. Web-based connections are
usually allowed through firewalls.

The client runtime uses a transport driver and an HTTP proxy to send messages to
the firewall. A tunnel servlet on the web server reaches through the firewall, pulls
messages from the client’s HTTP requests, and sends the messages to the broker.

Refer to the Message Queue Administration Guide for details on how to implement
Message Queue support of HTTP and HTTPS in your JMS applications.

Other Programming Topics

Chapter 5 Message Queue Client Programming Techniques 115

In Case of Server or Broker Failure
If the web server fails and is restarted, all connections are restored and there is no
effect on clients. However, if the broker fails and is restarted, an exception is
thrown and clients must re-establish their connections.

If both the web server and the broker fail, and the broker is not restarted, the web
server restores client connections and continues waiting for a broker connection
without notifying clients. To avoid this situation, always make sure the broker is
restarted.

Repairing an HTTPS Tunnel Servlet Connection
If an HTTPS client can’t connect to the broker through the tunnel servlet, do the
following:

1. Start the servlet and the broker.

2. Use a browser to manually access the servlet through the HTTPS tunnel servlet
URL.

3. Use the following administrative commands to pause and resume the
connection:

imqcmd pause svc -n httpsjms -u admin -p admin -f

imqcmd resume svc -n httpsjms -u admin -p admin -f

When the service is resumed, your HTTPS client should be able to connect to the
broker through the tunnel servlet.

Managing Client Threads
Managing threads in a JMS application often involves trade-offs. Weigh the
following considerations when dealing with threading issues.

When the Message Queue client runtime creates a connection, two threads are
created: one for consuming messages, and one to distribute and control flow for the
connection. In addition, each JMS session creates a thread to deliver messages to
message consumers. Thus, for example:

• If a connection has one session, three threads are created.

• If a connection has three sessions, five threads are created.

Other Programming Topics

116 Message Queue 3.5 SP1 • Java Client Developer’s Guide

When you create several message consumers in the same session, messages are
delivered serially by the session thread to these consumers. Sharing a session
among several message consumers might starve some consumers of message flow
while inundating other consumers. So, if the message rate across these consumers
is high enough to cause an imbalance, you might want to separate the consumers
into different sessions.

Note that the JMS specification restricts a session for use by a single thread at a
time. Violating this restriction can result in a deadlocked client.

You can reduce the number of threads by using fewer connections and fewer
sessions. However, doing this might slow your application’s throughput.

Finally, you might be able to use certain JVM runtime options to improve thread
memory usage and performance. Refer to the JDK documentation for details.

For example, if you are running on the Solaris platform, you may be able to run
with the same number (or more) threads by using the following vm options with the
client:

Try to observe the following “golden rules” of thread management in your JMS
applications:

• Don’t use more than one thread at a time in a session.

• If a session has an asynchronous consumer, don’t operate on that session
outside the message listener except to close the session.

Option Result

Xss128K This decreases the memory size of the heap.

xconcurrentIO This improves thread performance in the 1.3 VM.

Other Programming Topics

Chapter 5 Message Queue Client Programming Techniques 117

Synchronous Consumption in Distributed
Applications
Because distributed applications involve greater processing time, such an
application might not behave as expected if it were run locally. For example,
calling the receiveNoWait method for a synchronous consumer might return null
even when there is a message available to be retrieved.

If a client connects to the broker and immediately calls the receiveNoWait method,
it is possible that the message queued for the consuming client is in the process of
being transmitted from the broker to the client. The client runtime has no
knowledge of what is on the broker, so when it sees that there is no message
available on the client’s internal queue, it exits with a null.

You can avoid this problem by having your client do either of the following:

• Use one of the synchronous receive methods that specify a time-out interval

• Use a queue browser to check the queue before calling the receiveNoWait
method

Other Programming Topics

118 Message Queue 3.5 SP1 • Java Client Developer’s Guide

Client Application Deployment Considerations
When you are ready to move your client application into production, you should
make sure the administrator knows what the application requires. You can start
with the following checklist if you like, but tailor it to your environment and your
administrator’s needs.

In regard to geographic distribution, notice that clients can be grouped in different areas to
minimize traffic over long links.

For details on configuration, refer to the Message Queue Administration Guide.

Table 5-10 Starter Checklist for the Message Queue Administrator

Configuring administered objects:

Connection factories to be created
Type:
JNDI lookup name:
Physical name (if your administrator wants it):
Other attributes:

Destination objects to be created
Type (queue or topic):
JNDI lookup name:
Physical name (if your administrator wants it):
Other attributes:

Configuring a broker or broker cluster:

Name:
Number of destinations:
Maximum number of messages expected:
Maximum size of messages expected:
Maximum message bytes expected:
Access control and other security requirements:
For broker cluster:

Load-balancing requirements:
Geographic distribution:

Auto-reconnect implementation model, if any:

Configuring physical destinations:

Type:
Name:
Attributes:
Maximum number of messages expected:
Maximum size of messages expected:
Maximum message bytes expected:

119

Chapter 6

Working With SOAP Messages

Using Message Queue, you can send JMS messages that contain a SOAP payload.
This allows you to transport SOAP messages reliably and to publish SOAP
messages to JMS subscribers. This chapter explains how you do the following:

• Send and receive SOAP messages without using Message Queue

• Send and receive JMS messages that contain a SOAP payload

This chapter begins with an overview of SOAP processing and describes the Java
API for SOAP with attachments (JAXM). You need to know this information to
process SOAP messages. The chapter concludes by explaining how you can create
a JMS message that contains a SOAP message payload.

If you are familiar with the SOAP specification, you can skip the introductory
section and start by reading “SOAP Messaging in JAVA” on page 127.

The remaining sections in this chapter cover the following topics:

• “Using JAXM Administered Objects” on page 136

• “SOAP Messaging Models and Examples” on page 138

• “Integrating SOAP and Message Queue” on page 152

What is SOAP?

120 Message Queue 3.5 SP1 • Java Client Developer’s Guide

What is SOAP?
SOAP, the Simple Object Access Protocol, is a protocol that allows the exchange of
structured data between peers in a decentralized, distributed environment. The
structure of the data being exchanged is specified by an XML scheme.

The fact that SOAP messages are encoded in XML makes SOAP messages portable,
because XML is a portable, system-independent way of representing data. By
representing data using XML, you can access data from legacy systems as well as
share your data with other enterprises. The data integration offered by XML also
makes this technology a natural for web-based computing such as web services.
Firewalls can recognize SOAP packets based on their content type (text/xml-SOAP)
and can filter messages based on information exposed in the SOAP message
header.

The SOAP specification describes a set of conventions for exchanging XML
messages. As such, it forms a natural foundation for web services that also need to
exchange information encoded in XML. Although any two partners could define
their own protocol for carrying on this exchange, having a standard such as SOAP
allows developers to build the generic pieces that support this exchange. These
pieces might be software that adds functionality to the basic SOAP exchange, or
might be tools that administer SOAP messaging, or might even comprise parts of
an operating system that supports SOAP processing. Once this support is put in
place, other developers can focus on creating the web services themselves.

The SOAP protocol is fully described at http://www.w3.org/TR/SOAP. This section
restricts itself to discussing the reasons why you would use SOAP and to
describing some basic concepts that will make it easier to work with the JAXM API.

SOAP and the JAVA for XML Messaging API
The JAVA API for XML messaging (JAXM) is a JAVA-based API that enforces
compliance to the SOAP standard. When you use this API to assemble and
disassemble SOAP messages, it ensures the construction of syntactically correct
SOAP messages. JAXM also makes it possible to automate message processing
when several applications need to handle different parts of a message before
forwarding it to the next recipient.

 Figure 6-1 shows the layers that can come into play in the implementation of
SOAP messaging. This chapter focuses on the SOAP and language implementation
layers.

http://www.w3.org/TR/SOAP

What is SOAP?

Chapter 6 Working With SOAP Messages 121

Figure 6-1 SOAP Messaging Layers

The sections that follow describe each layer shown in the preceding figure in
greater detail. The rest of this chapter focuses on the SOAP and language
implementation layers.

The Transport Layer
Underlying any messaging system is the transport or wire protocol that governs
the serialization of the message as it is sent across a wire and the interpretation of
the message bits when it gets to the other side. Although SOAP messages can be
sent using any number of protocols, the SOAP specification defines only the
binding with HTTP. SOAP uses the HTTP request/response message model. It
provides SOAP request parameters in an HTTP request and SOAP response
parameters in an HTTP response. The HTTP binding has the advantage of allowing
SOAP messages to go through firewalls.

The SOAP Layer
Above the transport layer is the SOAP layer. This layer, which is defined in the
SOAP Specification, specifies the XML scheme used to identify the message parts:
envelope, header, body, and attachments. All SOAP message parts and contents,
except for the attachments, are written in XML. The following sample SOAP
message shows how XML tags are used to define a SOAP message:

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle=

"http://schemas.xmlsoap.org/soap/encoding/">
 <SOAP-ENV:Body>

Wire Transport Protocol

SOAP With Attachments

Provider
(Language Implementation)

Provider
(Delivery Semantics)

Profile
(Messaging Semantics)

SOAP
Messaging

What is SOAP?

122 Message Queue 3.5 SP1 • Java Client Developer’s Guide

The wire transport and SOAP layers are actually sufficient to do SOAP messaging.
You could create an XML document that defines the message you want to send,
and you could write HTTP commands to send the message from one side and to
receive it on the other. In this case, the client is limited to sending synchronous
messages to a specified URL. Unfortunately, the scope and reliability of this kind of
messaging is severely restricted. To overcome these limitations, the provider and
profile layers are added to SOAP messaging.

The Provider Layer
In Figure 6-1, the provider is shown as two pieces of functionality: a language
implementation and delivery semantics.

A provider language implementation allows you to create XML messages that
conform to SOAP, using API calls. For example, any implementation of JAXM,
allows a Java client to define the SOAP message and all its parts as Java objects. The
client would also use JAXM to create a connection and use it to send the message.
Likewise, a web service written in Java could use the same (or another)
implementation of the JAXM API to receive the message, to disassemble it, and to
acknowledge its receipt.

Messaging Semantics
In addition to a language implementation, a SOAP provider can offer services that
relate to message delivery. These could include reliability, persistence, security,
and administrative control. These services will be provided for SOAP messaging
by Message Queue in future releases.

Interoperability
Because SOAP providers must all construct and deconstruct messages as defined
by the SOAP specification, clients and services using SOAP are interoperable. That
is, as shown in Figure 6-2, the client and the service doing SOAP messaging do not
need to be written in the same language nor do they need to use the same SOAP
provider. It is only the packaging of the message that must be standard.

<m:GetLastTradePrice xmlns:m="Some-URI">
<symbol>DIS</symbol>

</m:GetLastTradePrice>
 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

What is SOAP?

Chapter 6 Working With SOAP Messages 123

Figure 6-2 SOAP Interoperability

In order for a JAXM client or service to interoperate with a service or client using a
different provider, the parties must agree on two things:

• They must use the same transport bindings--that is, the same wire protocol.

• They must use the same profile in constructing the SOAP message being sent.

 Profiles provide additional processing information, as described next.

The Profiles Layer
The final, profile, layer of SOAP messaging governs messaging semantics between
business partners who use SOAP messaging with SOAP providers. A profile is an
industry standard, such as “ebxml”, which defines additional rules for message
processing. A provider can add profile information to the header of a message
when its message factory creates the message. (The SOAP message header is the
primary means of SOAP messaging extensibility.) Support for the ebxml profile
will be added in future releases of Message Queue.

SOAP Messaging
 Client

JAXM API
SOAP

Provider
SOAP

Provider

SOAP
Msg

HTTP

HTTP

JAXM Service

What is SOAP?

124 Message Queue 3.5 SP1 • Java Client Developer’s Guide

The SOAP Message
Having surveyed the SOAP messaging layers, let’s examine the SOAP message
itself. Although the work of rendering a SOAP message in XML is taken care of by
the JAXM libraries, you must still understand its structure in order to make the
JAXM calls in the right order.

A SOAP message is an XML document that consists of a SOAP envelope, an
optional SOAP header, and a SOAP body. The SOAP message header contains
information that allows the message to be routed through one or more
intermediate nodes before it reaches its final destination.

• The envelope is the root element of the XML document representing the
message. It defines the framework for how the message should be handled and
by whom. Once it encounters the Envelope element, the SOAP processor
knows that the XML is a SOAP message and can then look for the individual
parts of the message.

• The header is a generic mechanism for adding features to a SOAP message. It
can contain any number of child elements that define extensions to the base
protocol. For example, header child elements might define authentication
information, transaction information, locale information, and so on. The actors,
the software that handle the message may, without prior agreement, use this
mechanism to define who should deal with a feature and whether the feature is
mandatory or optional.

• The body is a container for mandatory information intended for the ultimate
recipient of the message.

A SOAP message may also contain an attachment, which does not have to be in
XML. For more information, see “SOAP Packaging Models” next.

A SOAP message is constructed like a nested matrioshka doll. When you use
JAXM to assemble or disassemble a message, you need to make the API calls in the
appropriate order to get to the message part that interests you. For example, in
order to add content to the message, you need to get to the body part of the
message. To do this you need to work through the nested layers: SOAP part, SOAP
envelope, SOAP body, until you get to the SOAP body element that you will use to
specify your data. For more information, see “The SOAP Message Object” on
page 127.

What is SOAP?

Chapter 6 Working With SOAP Messages 125

SOAP Packaging Models
The SOAP specification describes two models of SOAP messages: one that is
encoded entirely in XML and one that allows the sender to add an attachment
containing non-XML data. You should look over the following two figures and
note the parts of the SOAP message for each model. When you use JAXM to define
SOAP messages and their parts, it will be helpful for you to be familiar with this
information.

Figure 6-3 shows the SOAP model without attachments. This package includes a
SOAP envelope, a header, and a body. The header is optional.

Figure 6-3 SOAP Message Without Attachments

When you construct a SOAP message using JAXM, you do not have to specify
which model you’re following. If you add an attachment, a message like that
shown in Figure 6-4 is constructed; if you don’t, a message like that shown in
Figure 6-3 is constructed.

Figure 6-4 shows a SOAP Message with attachments. The attachment part can
contain any kind of content: image files, plain text, and so on. The sender of a
message can choose whether to create a SOAP message with attachments. The
message receiver can also choose whether to consume an attachment.

Communication Protocol Envelope

Envelope

Header

Body

SOAP1.1 Message Package

HTTP, SMTP, ...Communication Protocol Envelope

What is SOAP?

126 Message Queue 3.5 SP1 • Java Client Developer’s Guide

A message that contains one or more attachments is enclosed in a MIME envelope
that contains all the parts of the message. In JAXM, the MIME envelope is
automatically produced whenever the client creates an attachment part. If you add
an attachment to a message, you are responsible for specifying (in the MIME
header) the type of data in the attachment.

Figure 6-4 SOAP Message with Attachments

SOAP Part

Envelope

Header

Body

MIME Envelope

Communication Protocol Envelope

Attachment Part

SOAP Attachment
(XML or non-XML)

HTTP, SMTP, ...

SOAP Messaging in JAVA

Chapter 6 Working With SOAP Messages 127

SOAP Messaging in JAVA
The SOAP specification does not provide a programming model or even an API for
the construction of SOAP messages; it simply defines the XML schema to be used
in packaging a SOAP message.

 JAXM is an application programming interface that can be implemented to
support a programming model for SOAP messaging and to furnish Java objects
that application or tool writers can use to construct, send, receive, and examine
SOAP messages. JAXM defines two packages:

• javax.xml.soap: you use the objects in this package to define the parts of a
SOAP message and to assemble and disassemble SOAP messages. You can also
use this package to send a SOAP message without the support of a provider.

• javax.xml.messaging: you use the objects in this package to send a SOAP
message using a provider and to receive SOAP messages.

This chapter focuses on the javax.xml.soap package and how you use the objects
and methods it defines

• to assemble and disassemble SOAP messages

• to send and receive these messages

It also explains how you can use the JMS API and Message Queue to send and
receive JMS messages that carry SOAP message payloads.

The SOAP Message Object
A SOAP Message Object is a tree of objects as shown in Figure 6-5. The classes or
interfaces from which these objects are derived are all defined in the
javax.xml.soap package.

SOAP Messaging in JAVA

128 Message Queue 3.5 SP1 • Java Client Developer’s Guide

Figure 6-5 SOAP Message Object

As shown in the figure, the SOAPMessage object is a collection of objects divided in
two parts: a SOAP part and an attachment part. The main thing to remember is that
the attachment part can contain non-xml data.

The SOAP part of the message contains an envelope that contains a body (which
can contain data or fault information) and an optional header. When you use JAXM
to create a SOAP message, the SOAP part, envelope, and body are created for you:
you need only create the body elements. To do that you need to get to the parent of
the body element, the SOAP body.

SOAP Message

SOAP Part Attachment
Part

MIME
Headers

SOAP
 Envelope

SOAP
Header

SOAP
Body

SOAP Body
Element

SOAP
Fault

SOAP Header
Element Detail

Detail
Entry

MIME
Header

Attachment

SOAP Messaging in JAVA

Chapter 6 Working With SOAP Messages 129

In order to reach any object in the SOAPMessage tree, you must traverse the tree
starting from the root, as shown in the following lines of code. For example,
assuming the SOAPMessage is MyMsg, here are the calls you would have to make in
order to get the SOAP body:

SOAPPart MyPart = MyMsg.getSOAPPart();

SOAPEnvelope MyEnv = MyPart.getEnvelope();

SOAPBody MyBody = envelope.getBody();

At this point, you can create a name for a body element (as described in
“Namespaces” on page 130) and add the body element to the SOAPMessage.

For example, the following code line creates a name (a representation of an XML
tag) for a body element:

Name bodyName = envelope.createName("Temperature");

The next code line adds the body element to the body:

SOAPBodyElement myTemp = MyBody.addBodyElement(bodyName);

Finally, this code line defines some data for the body element bodyName:

myTemp.addTextNode("98.6");

Inherited Methods
The elements of a SOAP message form a tree. Each node in that tree implements
the Node interface and, starting at the envelope level, each node implements the
SOAPElement interface as well. The resulting shared methods are described in
Table 6-1.

Table 6-1 Inherited Methods

Inherited From Method Name Purpose

SOAPElement addAttribute(Name, String) Add an attribute with the specified Name object and
string value.

addChildElement(Name)
addChildElement(String, String)
addChildElement(String, String,
String)

Create a new SOAPElement object, initialized with the
given Name object, and add the new element.

(Use the Envelope.createName method to create a
Name object.)

addNameSpaceDeclaration
(String, String)

Add a namespace declaration with the specified prefix
and URI.

addTextnode(String) Create a new Text object initialized with the given
String and add it to this SOAPElement object.

SOAP Messaging in JAVA

130 Message Queue 3.5 SP1 • Java Client Developer’s Guide

Namespaces
An XML namespace is a means of qualifying element and attribute names to
disambiguate them from other names in the same document. This section provides
a brief description of XML namespaces and how they are used in SOAP. For
complete information, see http://www.w3.org/TR/REC-xml-names/.

getAllAttributes() Return an iterator over all the attribute names in this
object.

getAttributeValue(Name) Return the value of the specified attribute.

getChildElements() Return an iterator over all the immediate content of this
element.

getChildElements(Name) Return an iterator over all the child elements with the
specified name.

getElementName() Return the name of this object.

getEncodingStyle() Return the encoding style for this object.

getNameSpacePrefixes() Return an iterator of namespace prefixes.

getNamespaceURI(String) Return the URI of the namespace with the given prefix.

removeAttribute(Name) Remove the specified attribute.

removeNamespaceDeclaration
(String)

Remove the namespace declaration that corresponds
to the specified prefix.

setEncodingStyle(String) Set the encoding style for this object to that specified
by String.

Node detachNode() Remove this Node object from the tree.

getParentElement() Return the parent element of this Node object.

getValue Return the value of the immediate child of this Node
object if a child exists and its value is text.

recycleNode() Notify the implementation that his Node object is no
longer being used and is free for reuse.

setParentElement
(SOAPElement)

Set the parent of this object to that specified by the
SOAPElement parameter.

Table 6-1 Inherited Methods (Continued)

Inherited From Method Name Purpose

http://www.w3.org/TR/REC-xml-names/

SOAP Messaging in JAVA

Chapter 6 Working With SOAP Messages 131

An explicit XML namespace declaration takes the following form

<prefix:myElement

xmlns:prefix ="URI">

The declaration defines prefix as an alias for the specified URI. In the element
myElement, you can use prefix with any element or attribute to specify that the
element or attribute name belongs to the namespace specified by the URI.

The following is an example of a namespace declaration:

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

This declaration defines SOAP_ENV as an alias for the namespace

http://schemas.xmlsoap.org/soap/envelope/

After defining the alias, you can use it as a prefix to any attribute or element in the
Envelope element. In Code Example 6-1, the elements <Envelope> and <Body> and
the attribute encodingStyle all belong to the SOAP namespace specified by the
URI "http://schemas.xmlsoap.org/soap/envelope/".

Note that the URI that defines the namespace does not have to point to an actual
location; its purpose is to disambiguate attribute and element names.

Code Example 6-1 Explicit Namespace Declarations

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle=

 "http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Header>

<HeaderA
 xmlns="HeaderURI"
 SOAP-ENV:mustUnderstand="0">

The text of the header
</HeaderA>

 </SOAP-ENV:Header>
<SOAP-ENV:Body>

.

.

.
</SOAP-ENV:Body>

 </SOAP-ENV:Envelope>

SOAP Messaging in JAVA

132 Message Queue 3.5 SP1 • Java Client Developer’s Guide

Pre-defined SOAP Namespaces
SOAP defines two namespaces:

• The SOAP envelope, the root element of a SOAP message, has the following
namespace identifier:

"http://schemas.xmlsoap.org/soap/envelope"

• The SOAP serialization, the URI defining SOAP’s serialization rules, has the
following namespace identifier:

"http://schemas.xmlsoap.org/soap/encoding"

When you use JAXM to construct or consume messages, you are responsible for
setting or processing namespaces correctly and for discarding messages that have
incorrect namespaces.

Using Namespaces when Creating a SOAP Name
When you create the body elements or header elements of a SOAP message, you
must use the Name object to specify a well-formed name for the element. You obtain
a Name object by calling the method SOAPEnvelope.createName.

When you call this method, you can pass a local name as a parameter or you can
specify a local name, prefix, and URI. For example, the following line of code
defines a name object bodyName.

Name bodyName = MyEnvelope.createName("TradePrice",
"GetLTP",

"http://foo.eztrade.com");

This would be equivalent to the namespace declaration:

<GetLTP:TradePrice xmlns:GetLTP= "http://foo.eztrade.com">

The following code shows how you create a name and associate it with a SOAPBody
element. Note the use and placement of the createName method.

SoapBody body = envelope.getBody();//get body from envelope

Name bodyName = envelope.createName("TradePrice", "GetLTP",
"http://foo.eztrade.com");

SOAPBodyElement gltp = body.addBodyElement(bodyName);

SOAP Messaging in JAVA

Chapter 6 Working With SOAP Messages 133

Parsing Name Objects
For any given Name object, you can use the following Name methods to parse the
name:

• getQualifiedName returns "prefix:LocalName", for the given name, this would
be GetLTP:TradePrice.

• getURI would return "http://foo.eztrade.com".

• getLocalName would return "TradePrice".

• getPrefix would return "GetLTP".

Destination, Message Factory, and Connection
Objects
SOAP messaging occurs when a SOAP message, produced by a message factory, is
sent to an endpoint via a connection.

• If you are working without a provider, you must do the following:

❍ Create a SOAPConnectionFactory object.

❍ Create a SOAPConnection object.

❍ Create an Endpoint object that represents the message’s destination.

❍ Create a MessageFactory object and use it to create a message.

❍ Populate the message.

❍ Send the message.

• If you are working with a provider, you must do the following:

❍ Create a ProviderConnectionFactory object.

❍ Get a ProviderConnection object from the provider connection factory.

❍ Get a MessageFactory object from the provider connection and use it to
create a message.

❍ Populate the message.

❍ Send the message.

The following three sections describe endpoint, message factory, and connection
objects in greater detail.

SOAP Messaging in JAVA

134 Message Queue 3.5 SP1 • Java Client Developer’s Guide

Endpoint
An endpoint identifies the final destination of a message. An endpoint is defined
either by the Endpoint class (if you use a provider) or by the URLEndpoint class (if
you don’t use a provider).)

Constructing an Endpoint
You can initialize an endpoint either by calling its constructor or by looking it up in
a naming service. For information about creating administered objects for
endpoints, see “Using JAXM Administered Objects” on page 136.

The following code uses a constructor to create a URLEndpoint:

myEndpoint = new URLEndpoint("http://somehost/myServlet");

Using the Endpoint to Address a Message

If you are using a provider, the Message Factory creating the message includes the
endpoint specification in the message header.

If you do not use a provider, you can specify the endpoint as a parameter to the
SOAPConnection.call method, which you use to send a SOAP message.

Sending a Message to Multiple Endpoints
If you are using an administered object to define an endpoint, note that it is
possible to associate that administered object with multiple URLs--each URL, is
capable of processing incoming SOAP messages. The code sample below associates
the endpoint whose lookup name is myEndpoint with two URLs:
http://www.myServlet1/ and http://www.myServlet2/.

This syntax allows you to use a SOAP connection to publish a SOAP message to
multiple endpoints. For additional information about the endpoint administered
object, see “Using JAXM Administered Objects” on page 136.

imqobjmgr add
-t e
-l "cn=myEndpoint"
-o "imqSOAPEndpointList=http://www.myServlet1/

http://www.myServlet2/"

SOAP Messaging in JAVA

Chapter 6 Working With SOAP Messages 135

Message Factory
You use a Message Factory to create a SOAP message.

• If you are using a provider, you should create a message factory by using the
createMessageFactory method of your provider connection. For example, if
con is a provider connection, the following code creates a message factory, mf:

MessageFactory mf = con.createMessageFactory(xProfile);

The profile parameter you pass to the createMessageFactory method
determines what addressing and other information is placed in the message
header for messages created by the message factory.

• If you are not using a provider, you can instantiate a message factory directly;
for example:

MessageFactory mf = MessageFactory.newInstance();

Connection
To send a SOAP message using JAXM, you must obtain either a SOAPConnection or
a ProviderConnection. You can also transport a SOAP message using Message
Queue; for more information, see “Integrating SOAP and Message Queue” on
page 152.

SOAP Connection
A SOAPConnection allows you to send messages directly to a remote party. You can
obtain a SOAPConnection object simply by calling the static method
SOAPConnectionFactory.newInstance(). Neither reliability nor security are
guaranteed over this type of connection.

Provider Connection
A ProviderConnection, which you get from a ProviderConnectionFactory,
creates a connection to a particular messaging provider. When you send a SOAP
message using a provider, the message is forwarded to the provider, and then the
provider is responsible for delivery to its final destination. The provider guarantees
reliable, secure messaging. (Message Queue does not currently offer SOAP
provider support.)

Using JAXM Administered Objects

136 Message Queue 3.5 SP1 • Java Client Developer’s Guide

Using JAXM Administered Objects
Administered objects are objects that encapsulate provider-specific configuration and
naming information. For endpoint objects, you have the choice either to instantiate
such an object or to create an administered object and associate it with an endpoint
object instance.

The main benefit of creating an endpoint through a JNDI lookup is to isolate
endpoint URLs from the code, allowing the application to switch the destination
without recompiling the code. A secondary benefit is provider independence.

Creating an administered object for a SOAP element is the same as creating an
administered object in Message Queue: you use the Object Manager (imqobjmgr)
utility to specify the lookup name of the object, its attributes, and its type.

Table 6-2 lists and describes the attributes and other information that you need to
specify when you create an endpoint administered object. Remember to specify all
attributes as strings.

Table 6-2 SOAP Administered Object Information

Option Description

-o “attribute=val” Use this option to specify three possible attributes for an endpoint
administered object:

• A URL list

-o “imqSOAPEndpointList = “url1 url2urln”

The list may contain one or more space-separated URLs. If it
contains more than one, the message is broadcast to all the
URLs. Each URL should be associated with a servlet that can
receive and process a SOAP message.

• A name

-o “imqEndpointName=SomeName”

If you don’t specify a name, the name
Untitled_Endpoint_Object is used by default.

• A description

-o "imqEndpointDescription=my endpoints for broadcast"

If you don’t specify a description, the default value "A
description for the endpoint object" is supplied by default.

-l “cn=lookupName” Use this option to specify the lookup name of the endpoint.

-t type Use this option to specify the object’s type. This is always e for an
endpoint.

Using JAXM Administered Objects

Chapter 6 Working With SOAP Messages 137

Code Example 6-2 shows how you use the imqobjmgr command to create an
administered object for an endpoint and add it to an object store. The -i option
specifies the name of an input file that defines object store attributes (-j option).

Having created the administered object and added it to an object store, you can
now use it when you want to use an endpoint in your JAXM application. In Code
Example 6-3, you first create an initial context for the JNDI lookup and then you
look up the desired object.

-i filename Use this option to specify the name of an input file containing
imqobjmgr commands. Such an input file is typically used to specify
object store attributes.

-j “attribute=val” Use this option to specify object store attributes. You can also specify
these in an input file. Use the -i option to specify the input file.

Code Example 6-2 Adding an Endpoint Administered Object

imqobjmgr add
-t e
-l "cn=myEndpoint"
-o "imqSOAPEndpointList=http://www.myServlet/

http://www.myServlet2/"
-o "imqEndpointName=MyBroadcastEndpoint"
-i MyObjStoreAttrs

Code Example 6-3 Looking up an Endpoint Administered Object

Hashtable env = new Hashtable();
env.put (Context.INITIAL_CONTEXT_FACTORY,

"com.sun.jndi.fscontext.RefFSContextFactory");
env.put (Context.PROVIDER_URL,

"file:///c:/imq_admin_objects");
Context ctx = new InitialContext(env);
Endpoint mySOAPEndpoint = (Endpoint)

 ctx.lookup("cn=myEndpoint");

Table 6-2 SOAP Administered Object Information (Continued)

Option Description

file:///c:/imq_admin_objects

SOAP Messaging Models and Examples

138 Message Queue 3.5 SP1 • Java Client Developer’s Guide

You can also list, delete, and update administered objects. For additional
information, please see the Message Queue Administration Guide.

SOAP Messaging Models and Examples
This section explains how you use JAXM to send and receive a SOAP message. It is
also possible to construct a SOAP message using JAXM and to send it as the
payload of a JMS message. For information, see “Integrating SOAP and Message
Queue” on page 152.

JAXM supplies two models that you can use to do SOAP messaging: one uses the
SOAPConnection object and the other uses the ProviderConnection object. Message
Queue does not currently support the ProviderConnection object.

SOAP Messaging Programming Models
This section provides a brief summary of the programming models used in SOAP
messaging using JAXM.

A SOAP message is sent to an endpoint by way of a connection. There are two
types of connections: point-to-point connections (implemented by the
SOAPConnection class) and provider connections (implemented by the
ProviderConnection class).

Point-to-Point Connections
You use point-to-point connections to establish a request-reply messaging model.
The request-reply model is illustrated in Figure 6-6.

SOAP Messaging Models and Examples

Chapter 6 Working With SOAP Messages 139

Figure 6-6 Request-Reply Messaging

Using this model, the client does the following:

• Creates an endpoint that specifies the URL that will be passed to the
SOAPConnection.call method that sends the message.

See “Endpoint” on page 134 for a discussion of the different ways of creating
an endpoint.

• Creates a SOAPConnection factory and obtains a SOAP connection.

• Creates a message factory and uses it to create a SOAP message.

• Creates a name for the content of the message and adds the content to the
message.

• Uses the SOAPConnection.call method to send the message.

It is assumed that the client will ignore the SOAPMessage object returned by the call
method because the only reason this object is returned is to unblock the client.

The JAXM service listening for a request-reply message uses a ReqRespListener
object to receive messages.

For a detailed example of a client that does point-to-point messaging, see “Writing
a SOAP Client” on page 142.

Sender

SOAP Message

SOAPEndpoint

Receive
and

process
message

Sender
blocks

Sender Call returns

SOAP Messaging Models and Examples

140 Message Queue 3.5 SP1 • Java Client Developer’s Guide

Provider Connections
You use a provider connection to implement one-way messaging. Figure 6-7
illustrates the one-way messaging model.

Figure 6-7 One-Way Messaging

As opposed to the point-to-point model, the final destination for the message is
written into the message header by the provider. (When the administrator
configures the messaging provider, she can supply a list of Endpoint objects. When
a client uses the provider to send messages, the provider sends the messages only
to those parties represented by Endpoint objects in its messaging provider’s list.)

A message sent by means of a provider connection is always routed through an
intermediate destination in the provider before it is forwarded to its final
destination. The provider is also responsible for the reliability of the transmission
and the privacy of the message.

Using this model, the client does the following:

• Creates a provider connection factory and gets a connection.

• Creates a message factory and creates a new message.

• Creates a name for the content and adds content to the message.

• Sends the message. (The send method is asynchronous and returns
immediately.)

The JAXM service listening for a one way message uses a OnewayListener object to
receive messages asynchronously.

Sender

Messaging
Provider

SOAPEndpoint

SOAP
Message

SOAP Messaging Models and Examples

Chapter 6 Working With SOAP Messages 141

Working with Attachments
If a message contains any data that is not XML, you must add it to the message as
an attachment. A message can have any number of attachment parts. Each
attachment part can contain anything from plain text to image files.

To create an attachment, you must create a URL object that specifies the location of
the file that you want to attach to the SOAP message. You must also create a data
handler that will be used to interpret the data in the attachment. Finally, you need
to add the attachment to the SOAP message.

To create and add an attachment part to the message, you need to use the
JavaBeans Activation Framework (JAF) API. This API allows you to determine the
type of an arbitrary piece of data, encapsulate access to it, discover the operations
available on it, and activate a bean that can perform these operations. You must
include the activation.jar library in your application code in order to work with
the JavaBeans Activation Framework.

➤ To Create and Add an Attachment

1. Create a URL object and initialize it to contain the location of the file that you
want to attach to the SOAP message.

URL url = new URL("http://wombats.com/img.jpg");

2. Create a data handler and initialize it with a default handler, passing the URL
as the location of the data source for the handler.

DataHandler dh = new DataHandler(url);

3. Create an attachment part that is initialized with the data handler containing
the URL for the image.

AttachmentPart ap1 = message.createAttachmentPart(dh);

4. Add the attachment part to the SOAP message.

myMessage.addAttachmentPart(ap1);

After creating the attachment and adding it to the message, you can send the
message in the usual way.

If you are using JMS to send the message, you can use the
SOAPMessageIntoJMSMessage conversion utility to convert a SOAP message that
has an attachment into a JMS message that you can send to a JMS queue or topic
using Message Queue.

SOAP Messaging Models and Examples

142 Message Queue 3.5 SP1 • Java Client Developer’s Guide

Exception and Fault Handling
A SOAP application can use two error reporting mechanisms: SOAP exceptions
and SOAP faults:

• Use a SOAP exception to handle errors that occur on the client side during the
generation of the soap request or the unmarshalling of the response.

• Use a SOAP fault to handle errors that occur on the server side when
unmarshalling the request, processing the message, or marshalling the
response. In response to such an error, server-side code should create a SOAP
message that contains a fault element, rather than a body element, and then it
should send that SOAP message back to the originator of the message. If the
message receiver is not the ultimate destination for the message, it should
identify itself as the soapactor so that the message sender knows where the
error occurred. For additional information, see “Handling SOAP Faults” on
page 148.

Writing a SOAP Client
The following steps show the calls you have to make to write a SOAP client for
point-to-point messaging.

1. Get an instance of a SOAPConnectionFactory:

SOAPConnectionFactory myFct = SOAPConnectionFactory.newInstance();

2. Get a SOAP connection from the SOAPConnectionFactory object:

SOAPConnection myCon = myFct.createConnection();

The myCon object that is returned will be used to send the message.

3. Get a MessageFactory object to create a message:

MessageFactory myMsgFct = MessageFactory.newInstance();

4. Use the message factory to create a message:

SOAPMessage message = myMsgFct.createMessage();

The message that is created has all the parts that are shown in Figure 6-8.

SOAP Messaging Models and Examples

Chapter 6 Working With SOAP Messages 143

Figure 6-8 SOAP Message Parts

At this point, the message has no content. To add content to the message, you
need to create a SOAP body element, define a name and content for it, and then
add it to the SOAP body.

Remember that to access any part of the message, you need to traverse the tree,
calling a get method on the parent element to obtain the child. For example, to
reach the SOAP body, you start by getting the SOAP part and SOAP envelope:

SOAPPart mySPart = message.getSOAPPart();

SOAPEnvelope myEnvp = mySPart.getEnvelope();

5. Now, you can get the body element from the myEnvp object:

SOAPBody body = myEnvp.getBody();

The children that you will add to the body element define the content of the
message. (You can add content to the SOAP header in the same way.)

SOAP Message

SOAP Part

SOAP
 Envelope

SOAP
Header

SOAP
Body

SOAP Messaging Models and Examples

144 Message Queue 3.5 SP1 • Java Client Developer’s Guide

6. When you add an element to a SOAP body (or header), you must first create a
name for it by calling the envelope.createName method. This method returns a
Name object, which you must then pass as a parameter to the method that
creates the body element (or the header element).

Name bodyName = envelope.createName("GetLastTradePrice", "m",
"http://eztrade.com")

SOAPBodyElement gltp = body.addBodyElement(bodyName);

7. Now create another body element to add to the gltp element:

Name myContent = envelope.createName("symbol");

SOAPElement mySymbol = gltp.addChildElement(myContent);

8. And now you can define data for the body element mySymbol:

mySymbol.addTextNode("SUNW");

The resulting SOAP message object is equivalent to this XML scheme:

9. Every time you send a message or write to it, the message is automatically
saved. However if you change a message you have received or one that you
have already sent, this would be the point when you would need to update the
message by saving all your changes. For example:

message.saveChanges();

10. Before you send the message, you must create a URLEndpoint object with the
URL of the endpoint to which the message is to be sent. (If you use a profile
that adds addressing information to the message header, you do not need to do
this.)

URLEndpoint endPt = new
 URLEndpoint("http://eztrade.com//quotes");

<SOAP-ENV: Envelope
xmlns:SOAPENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>

<m:GetLastTradePrice xmlns:m="http://eztrade.com">
<symbol>SUNW</symbol>

</m:GetLastTradePrice>
</SOAP-ENV:Body>

</SOAP-ENV: Envelope>

SOAP Messaging Models and Examples

Chapter 6 Working With SOAP Messages 145

11. Now, you can send the message:

SOAPMessage reply = myCon.call(message, endPt);

The reply message (reply) is received on the same connection.

12. Finally, you need to close the SOAPConnection object when it is no longer
needed:

myCon.close();

Writing a SOAP Service
A SOAP service represents the final recipient of a SOAP message and should
currently be implemented as a servlet. You can write your own servlet or you can
extend the JAXMServlet class, which is furnished in the soap.messaging package
for your convenience. This section describes the task of writing a SOAP service
based on the JAXMServlet class.

Your servlet must implement either the ReqRespListener or OneWayListener
interfaces. The difference between these two is that ReqRespListener requires that
you return a reply.

Using either of these interfaces, you must implement a method called
onMessage(SOAPMsg). JAXMservlet will call onMessage after receiving a message
using the HTTP POST method, which saves you the work of implementing your own
doPost() method to convert the incoming message into a SOAP message.

Code Example 6-4 shows the basic structure of a SOAP service that uses the JAXM
servlet utility class.

Code Example 6-5 shows a simple ping message service:

Code Example 6-4 Skeleton Message Consumer

public class MyServlet extends JAXMServlet implements
ReqRespListener

{
public SOAPMessage onMessage(SOAP Message msg)
{ //Process message here
}

}

SOAP Messaging Models and Examples

146 Message Queue 3.5 SP1 • Java Client Developer’s Guide

Table 6-3 describes the methods that the JAXM servlet uses. If you were to write
your own servlet, you would need to provide methods that performed similar
work. In extending JAXMServlet, you may need to override the Init method and
the SetMessageFactory method; you must implement the onMessage method.

Code Example 6-5 A Simple Ping Message Service

public class SOAPEchoServlet extends JAXMServlet
implements ReqRespListener{

public SOAPMessage onMessage(SOAPMessage mySoapMessage) {
return mySoapMessage
}

}

Table 6-3 JAXMServlet Methods

Method Description

void init
(ServletConfig)

Passes the ServletConfig object to its parent’s constructor and
creates a default messageFactory object.

If you want incoming messages to be constructed according to a
certain profile, you must call the SetMessageFactory method
and specify the profile it should use in constructing SOAP
messages.

void doPost
(HTTPRequest,
HTTPResponse

Gets the body of the HTTP request and creates a SOAP
message according to the default or specified MessageFactory
profile.

Calls the onMessage() method of an appropriate listener, passing
the SOAP message as a parameter.

It is recommended that you do not override this method.

void setMessageFactory
(MessageFactory)

Sets the MessageFactory object. This is the object used to
create the SOAP message that is passed to the onMessage
method.

MimeHeaders getHeaders
(HTTPRequest)

Returns a MimeHeaders object that contains the headers in the
given HTTPRequest object.

void putHeaders
(mimeHeaders,
HTTPresponse)

 Sets the given HTTPResponse object with the headers in the
given MimeHeaders object

SOAP Messaging Models and Examples

Chapter 6 Working With SOAP Messages 147

Disassembling Messages
The onMessage method needs to disassemble the SOAP message that is passed to it
by the servlet and process its contents in an appropriate manner. If there are
problems in the processing of the message, the service needs to create a SOAP fault
object and send it back to the client as described in “Handling SOAP Faults” on
page 148.

Processing the SOAP message may involve working with the headers as well as
locating the body elements and dealing with their contents. The following code
sample shows how you might disassemble a SOAP message in the body of your
onMessage method. Basically, you need to use a Document Object Model (DOM)
API to parse through the SOAP message.

See http://xml.coverpages.org/dom.html for more information about the DOM API.

onMessage
(SOAPMesssage)

User-defined method that is called by the servlet when the
SOAP message is received. Normally this method needs to
disassemble the SOAP message passed to it and to send a
reply back to the client (if the servlet implements the
ReqRespListener interface.)

Code Example 6-6 Processing a SOAP Message

{http://xml.coverpages.org/dom.html
SOAPEnvelope env = reply.getSOAPPart().getEnvelope();
SOAPBody sb = env.getBody();

// create Name object for XElement that we are searching for
Name ElName = env.createName("XElement");

//Get child elements with the name XElement
Iterator it = sb.getChildElements(ElName);

//Get the first matched child element.
//We know there is only one.
SOAPBodyElement sbe = (SOAPBodyElement) it.next();

//Get the value for XElement
MyValue = sbe.getValue();

}

Table 6-3 JAXMServlet Methods (Continued)

Method Description

http://xml.coverpages.org/dom.html

SOAP Messaging Models and Examples

148 Message Queue 3.5 SP1 • Java Client Developer’s Guide

Handling Attachments
A SOAP message may have attachments. For sample code that shows you how to
create and add an attachment, see Code Example 6-7 on page 157. For sample code
that shows you how to receive and process an attachment, see Code Example 6-8
on page 160.

In handling attachments, you will need to use the Java Activation Framework API.
See http://java.sun.com/products/javabeans/glasgow/jaf.html for more
information.

Replying to Messages
In replying to messages, you are simply taking on the client role, now from the
server side.

Handling SOAP Faults
Server-side code must use a SOAP fault object to handle errors that occur on the
server side when unmarshalling the request, processing the message, or
marshalling the response. The SOAPFault interface extends the SOAPBodyElement
interface.

SOAP messages have a specific element and format for error reporting on the
server side: a SOAP message body can include a SOAP fault element to report
errors that happen during the processing of a request. Created on the server side
and sent from the server back to the client, the SOAP message containing the
SOAPFault object reports any unexpected behavior to the originator of the message.

Within a SOAP message object, the SOAP fault object is a child of the SOAP body,
as shown in Figure 6-9. Detail and detail entry objects are only needed if one needs
to report that the body of the received message was malformed or contained
inappropriate data. In such a case, the detail entry object is used to describe the
malformed data.

http://java.sun.com/products/javabeans/glasgow/jaf.html

SOAP Messaging Models and Examples

Chapter 6 Working With SOAP Messages 149

Figure 6-9 SOAP Fault Element

The SOAP Fault element defines the following four sub-elements:

• faultcode

A code (qualified name) that identifies the error. The code is intended for use
by software to provide an algorithmic mechanism for identifying the fault.
Predefined fault codes are listed in Table 6-4 on page 150. This element is
required.

• faultstring

A string that describes the fault identified by the fault code. This element is
intended to provide an explanation of the error that is understandable to a
human. This element is required.

SOAP Message

SOAP Part

SOAP
 Envelope

SOAP
Body

SOAP
Fault

Detail

Detail
Entry

SOAP Messaging Models and Examples

150 Message Queue 3.5 SP1 • Java Client Developer’s Guide

• faultactor

A URI specifying the source of the fault: the actor that caused the fault along
the message path. This element is not required if the message is sent to its final
destination without going through any intermediaries. If a fault occurs at an
intermediary, then that fault must include a faultactor element.

• detail

This element carries specific information related to the Body element. It must
be present if the contents of the Body element could not be successfully
processed. Thus, if this element is missing, the client should infer that the body
element was processed. While this element is not required for any error except
a malformed payload, you can use it in other cases to supply additional
information to the client.

Predefined Fault Codes
The SOAP specification lists four predefined faultcode values. The namespace
identifier for these is http://schemas.xmlsoap.org/soap/envelope/.

Table 6-4 SOAP Faultcode Values

Faultcode Name Meaning

VersionMismatch The processing party found an invalid namespace for the SOAP
envelope element; that is, the namespace of the SOAP envelope
element was not http://schemas.xmlsoap.org/soap/envelope/.

MustUnderstand An immediate child element of the SOAP Header element was
either not understood or not appropriately processed by the
recipient. This element’s mustUnderstand attribute was set to 1
(true).

Client The message was incorrectly formed or did not contain the
appropriate information. For example, the message did not have
the proper authentication or payment information. The client should
interpret this code to mean that the message must be changed
before it is sent again.

If this is the code returned, the SOAPFault object should probably
include a detailEntry object that provides additional information
about the malformed message.

Server The message could not be processed for reasons that are not
connected with its content. For example, one of the message
handlers could not communicate with another message handler
that was upstream and did not respond. Or, the database that the
server needed to access is down. The client should interpret this
error to mean that the transmission could succeed at a later point in
time.

http://schemas.xmlsoap.org/soap/envelope/

SOAP Messaging Models and Examples

Chapter 6 Working With SOAP Messages 151

These standard fault codes represent classes of faults. You can extend these by
appending a period to the code and adding an additional name. For example: you
could define a Server.OutOfMemory code, a Server.Down code, etc.

Defining a SOAP Fault
Using JAXM you can specify the value for faultcode, faultstring, and
faultactor using methods of the SOAPFault object. The following code creates a
SOAP fault object and sets the faultcode, faultstring, and faultactor
attributes:

The server can return this object in its reply to an incoming SOAP message in case
of a server error.

The next code sample shows how to define a detail and detail entry object. Note
that you must create a name for the detail entry object.

SOAPFault fault;
reply = factory.createMessage();
envp = reply.getSOAPPart().getEnvelope(true);
someBody = envp.getBody();
fault = someBody.addFault():
fault.setFaultCode("Server");
fault.setFaultString("Some Server Error");
fault.setFaultActor(http://xxx.me.com/list/endpoint.esp/)
reply.saveChanges();

SOAPFault fault = someBody.addFault();
fault.setFaultCode("Server");
fault.setFaultActor("http://foo.com/uri");
fault.setFaultString ("Unkown error");
Detail myDetail = fault.addDetail();
detail.addDetailEntry(envelope.createName("125detail", "m",

"Someuri")).addTextNode("the message cannot contain
the string //");

reply.saveChanges();

Integrating SOAP and Message Queue

152 Message Queue 3.5 SP1 • Java Client Developer’s Guide

Integrating SOAP and Message Queue
This section explains how you can send, receive, and process a JMS message that
contains a SOAP payload.

Message Queue provides a utility to help you send and receive SOAP messages
using the JMS API. With the support it provides, you can convert a SOAP message
into a JMS message and take advantage of the reliable messaging service offered by
Message Queue. You can then convert the message back into a SOAP message on
the receiving side and use the JAXM API to process it.

To send, receive, and process a JMS message that contains a SOAP payload, you
must do the following:

• Import the library com.sun.messaging.xml.MessageTransformer. This is the
utility whose methods you will use to convert SOAP messages to JMS
messages and vice versa.

• Before you transport a SOAP message, you must call the
MessageTransformer.SOAPMessageIntoJMSMessage method. This method
transforms the SOAP message into a JMS message. You then send the resulting
JMS message as you would a normal JMS message. For programming
simplicity, it would be best to select a destination that is dedicated to receiving
SOAP messages. That is, you should create a particular queue or topic as a
destination for your SOAP message and then send only SOAP messages to this
destination.

Transforming a SOAP message into a JMS message involves making a call like
the following:

Message myMsg= MessageTransformer.SOAPMessageIntoJMSMessage
(SOAPMessage, Session);

The Session argument specifies the session to be used in producing the
Message.

• On the receiving side, you get the JMS message containing the SOAP payload
as you would a normal JMS message. You then call the
MessageTransformer.SOAPMessageFromJMSMessage utility to extract the SOAP
message, and then use JAXM to disassemble the SOAP message and do any
further processing. For example, to obtain the SOAPMessage make a call like
the following

SOAPMessage myMsg= MessageTransformer.SOAPMessageFromJMSMessage
 (Message, MessageFactory);

The MessageFactory argument specifies a message factory that the utility
should use to construct the SOAPMessage from the given JMS Message.

Integrating SOAP and Message Queue

Chapter 6 Working With SOAP Messages 153

The following sections offer several use cases and code examples to illustrate this
process.

Example 1: Deferring SOAP Processing
In the first example, illustrated in Figure 6-10, an incoming SOAP message is
received by a servlet. After receiving the SOAP message, the servlet MyServlet
uses the MessageTransformer utility to transform the message into a JMS message,
and (reliably) forwards it to an application that receives it, turns it back into a
SOAP message, and processes the contents of the SOAP message.

For information on how the servlet receives the SOAP message, see “Writing a
SOAP Service” on page 145.

Figure 6-10 Deferring SOAP Processing

SOAPMsg

MyServlet

SOAPMessageIntoJMSMessage
(mySOAP, mySession)

JMSMsg

JMSMsg

//process SOAP message here

SOAPMessageFromJMSMessage
(myJMS, myFactory)MyListener

Message Queue
Broker

Integrating SOAP and Message Queue

154 Message Queue 3.5 SP1 • Java Client Developer’s Guide

➤ To Transform the SOAP Message into a JMS Message and Send the
JMS Message

1. Instantiate a ConnectionFactory object and set its attribute values, for
example:

QueueConnectionFactory myQConnFact =
new com.sun.messaging.QueueConnectionFactory();

2. Use the ConnectionFactory object to create a Connection object.

QueueConnection myQConn =
 myQConnFact.createQueueConnection();

3. Use the Connection object to create a Session object.

QueueSession myQSess = myQConn.createQueueSession(false,
 Session.AUTO_ACKNOWLEDGE);

4. Instantiate a Message Queue Destination administered object corresponding to
a physical destination in the Message Queue message service. In this example,
the administered object is mySOAPQueue and the physical destination to which it
refers is myPSOAPQ.

Queue mySOAPQueue = new com.sun.messaging.Queue("myPSOAPQ");

5. Use the MessageTransformer utility, as shown, to transform the SOAP message
into a JMS message. For example, given a SOAP message named MySOAPMsg,

Message MyJMS = MessageTransformer.SOAPMessageIntoJMSMessage
(MySOAPMsg, MyQSess);

6. Create a QueueSender message producer.

This message producer, associated with mySOAPQueue, is used to send messages
to the queue destination named myPSOAPQ.

QueueSender myQueueSender = myQSess.createSender(mySOAPQueue);

7. Send a message to the queue.

myQueueSender.send(myJMS);

Integrating SOAP and Message Queue

Chapter 6 Working With SOAP Messages 155

➤ To Receive the JMS Message, Transform it into a SOAP Message, and Process It

1. Instantiate a ConnectionFactory object and set its attribute values.

QueueConnectioFactory myQConnFact = new
com.sun.messaging.QueueConnectionFactory();

2. Use the ConnectionFactory object to create a Connection object.

QueueConnection myQConn = myQConnFact.createQueueConnection();

3. Use the Connection object to create one or more Session objects.

QueueSession myRQSess = myQConn.createQueueSession(false,
 session.AUTO_ACKNOWLEDGE);

4. Instantiate a Destination object and set its name attribute.

Queue myRQueue = new com.sun.messaging.Queue("mySOAPQ");

5. Use a Session object and a Destination object to create any needed
MessageConsumer objects.

QueueReceiver myQueueReceiver =
myRQSess.createReceiver(myRQueue);

6. If needed, instantiate a MessageListener object and register it with a
MessageConsumer object.

7. Start the QueueConnection you created in Step 2. Messages for consumption
by a client can only be delivered over a connection that has been started.

myQConn.start();

8. Receive a message from the queue

The code below is an example of a synchronous consumption of messages.

Message myJMS = myQueueReceiver.receive();

9. Use the Message Transformer to convert the JMS message back to a SOAP
message.

SOAPMessage MySoap =
 MessageTransformer.SOAPMessageFromJMSMessage

(myJMS, MyMsgFactory);

If you specify null for the MessageFactory argument, the default Message
Factory is used to construct the SOAP Message.

10. Disassemble the SOAP message in preparation for further processing. See “The
SOAP Message Object” on page 127 for information.

Integrating SOAP and Message Queue

156 Message Queue 3.5 SP1 • Java Client Developer’s Guide

Example 2: Publishing SOAP Messages
In the next example, illustrated in Figure 6-11, an incoming SOAP message is
received by a servlet. The servlet packages the SOAP message as a JMS message
and (reliably) forwards it to a topic. Each application that subscribes to this topic,
receives the JMS message, turns it back into a SOAP message, and processes its
contents.

Figure 6-11 Publishing a SOAP Message

The code that accomplishes this is exactly the same as in the previous example,
except that instead of sending the JMS message to a queue, you send it to a topic.
For an example of publishing a SOAP message using Message Queue, see Code
Example 6-7 on page 157.

SOAPMsg

MyServlet

SOAPMessageIntoJMSMessage
(mySOAP, mySession)

JMSMsg

JMSMsg

MyListener1

SOAPMessageFromJMSMessage
(myJMS, myFactory)

\\process message here

MyListener2

SOAPMessageFromJMSMessage
(myJMS, myFactory)

\\process message here

MyListener3

SOAPMessageFromJMSMessage
(myJMS, myFactory)

\\process message here

Message Queue
Broker

Integrating SOAP and Message Queue

Chapter 6 Working With SOAP Messages 157

Code Samples
This section includes and describes two code samples: one that sends a JMS
message with a SOAP payload, and another that receives the JMS/SOAP message
and processes the SOAP message.

Code Example 6-7 illustrates the use of the JMS API, the JAXM API, and the JAF
API to send a SOAP message with attachments as the payload to a JMS message.
The code shown for the SendSOAPMessageWithJMS includes the following methods:

• a constructor that calls the init method to initialize all the JMS objects
required to publish a message

• a send method that creates the SOAP message and an attachment, converts the
SOAP message into a JMS message, and publishes the JMS message

• a close method that closes the connection

• a main method that calls the send and close methods

Code Example 6-7 Sending a JMS Message with a SOAP Payload

//Libraries needed to build SOAP message
import javax.xml.soap.SOAPMessage;
import javax.xml.soap.SOAPPart;
import javax.xml.soap.SOAPEnvelope;
import javax.xml.soap.SOAPBody;
import javax.xml.soap.SOAPElement;
import javax.xml.soap.MessageFactory;
import javax.xml.soap.AttachmentPart;
import javax.xml.soap.Name

//Libraries needed to work with attachments (Java Activation Framework API)
import java.net.URL;
import javax.activation.DataHandler;

//Libraries needed to convert the SOAP message to a JMS message and to send it
import com.sun.messaging.xml.MessageTransformer;
import com.sun.messaging.BasicConnectionFactory;

//Libraries needed to set up a JMS connection and to send a message
import javax.jms.TopicConnectionFactory;
import javax.jms.TopicConnection;
import javax.jms.JMSException;
import javax.jms.Session;
import javax.jms.Message;
import javax.jms.TopicSession;
import javax.jms.Topic;
import javax.jms.TopicPublisher;

//Define class that sends JMS message with SOAP payload

Integrating SOAP and Message Queue

158 Message Queue 3.5 SP1 • Java Client Developer’s Guide

public class SendSOAPMessageWithJMS{

TopicConnectionFactory tcf = null;
TopicConnection tc = null;
TopicSession session = null;
Topic topic = null;
TopicPublisher publisher = null;

//default constructor method
public SendSOAPMessageWithJMS(String topicName){

init(topicName);
}

//Method to nitialize JMS Connection, Session, Topic, and Publisher
public void init(String topicName) {

try {
tcf = new com.sun.messaging.TopicConnectionFactory();
tc = tcf.createTopicConnection();
session = tc.createTopicSession(false, Session.AUTO_ACKNOWLEDGE);
topic = session.createTopic(topicName);
publisher = session.createPublisher(topic);
}

//Method to create and send the SOAP/JMS message
public void send() throws Exception{

MessageFactory mf = MessageFactory.newInstance(); //create default factory
SOAPMessage soapMessage=mfcreateMessage(); //create SOAP message object
SOAPPart soapPart = soapMessage.getSOAPPart();//start to drill down to body
SOAPEnvelope soapEnvelope = soapPart.getEnvelope(); //first the envelope
SOAPBody soapBody = soapEnvelope.getBody();
Name myName = soapEnvelope.createName("HelloWorld", "hw",

 http;//www.sun.com/imq’); //name for body element
SOAPElement element = soapBody.addChildElement(myName); //add body element
element.addTextNode("Welcome to SUnOne Web Services."); //add text value

//Create an attachment with the Java Framework Activation API
URL url = new URL("http://java.sun.com/webservices/");
DataHandler dh = new DataHnadler (url);
AttachmentPart ap = soapMessage.createAttachmentPart(dh);

//Set content type and ID
ap.setContentType("text/html");
ap.setContentID(’cid-001");

//Add attachment to the SOAP message
soapMessage.addAttachmentPart(ap);
soapMessage.saveChanges();

//Convert SOAP to JMS message.
Message m = MessageTransformer.SOAPMessageIntoJMSMessage(soapMessage,

 session);

//Publish JMS message

Code Example 6-7 Sending a JMS Message with a SOAP Payload (Continued)

Integrating SOAP and Message Queue

Chapter 6 Working With SOAP Messages 159

Code Example 6-8 illustrates the use of the JMS API, the JAXM API, and the DOM
API to receive a SOAP message with attachments as the payload to a JMS message.
The code shown for the ReceiveSOAPMessageWithJMS includes the following
methods:

• A constructor that calls the init method to initialize all the JMS objects needed
to receive a message.

• An onMessage method that delivers the message and which is called by the
listener. The onMessage method also calls the message transformer utility to
convert the JMS message into a SOAP message and then uses the JAXM API to
process the SOAP body and the JAXM and DOM API to process the message
attachments.

• A main method that initializes the ReceiveSOAPMessageWithJMS class.

publisher.publish(m);

//Close JMS connection
public void close() throws JMSException {
tc.close();
}

//Main program to send SOAP message with JMS
public static void main (String[] args) {

try {
String topicName = System.getProperty("TopicName");
if(topicName == null) {

topicName = "test";
}

SendSOAPMEssageWithJMS ssm = new SendSOAPMEssageWithJMS(topicName);
ssm.send();
ssm.close();
}
catch (Exception e) {

e.printStackTrace();
}
}

}

Code Example 6-7 Sending a JMS Message with a SOAP Payload (Continued)

Integrating SOAP and Message Queue

160 Message Queue 3.5 SP1 • Java Client Developer’s Guide

Code Example 6-8 Receiving a JMS Message with a SOAP Payload

//Libraries that support SOAP processing
import javax.xml.soap.MessageFactory;
import javax.xml.soap.SOAPMessage;
import javax.xml.soap.AttachmentPart

//Library containing the JMS to SOAP transformer
import com.sun.messaging.xml.MessageTransformer;

//Libraries for JMS messaging support
import com.sun.messaging.TopicConnectionFactory

//Interfaces for JMS messaging
import javax.jms.MessageListener;
import javax.jms.TopicConnection;
import javax.jms.TopicSession;
import javax.jms.Message;
import javax.jms.Session;
import javax.jms.Topic;
import javax.jms.JMSException;
import javax.jms.TopicSubscriber

//Library to support parsing attachment part (from DOM API)
import java.util.iterator;

public class ReceiveSOAPMessageWithJMS implements MessageListener{
TopicConnectionFactory tcf = null;
TopicConnection tc = null;
TopicSession session = null;
Topic topic = null;
TopicSubscriber subscriber = null;
MessageFactory messageFactory = null;

//Default constructor
public ReceiveSOAPMessageWithJMS(String topicName) {

init(topicName);
}
//Set up JMS connection and related objects
public void init(String topicName){

try {
//Construct default SOAP message factory
messageFactory = MessageFactory.newInstance();

//JMS set up
tcf = new. com.sun.messaging.TopicConnectionFactory();
tc = tcf.createTopicConnection();
session = tc.createTopicSesstion(false, Session.AUTO_ACKNOWLEDGE);
topic = session.createTopic(topicName);
subscriber = session.createSubscriber(topic);
subscriber.setMessageListener(this);
tc.start();

Integrating SOAP and Message Queue

Chapter 6 Working With SOAP Messages 161

System.out.println("ready to receive SOAP m essages...");
}catch (Exception jmse){
jmse.printStackTrace();
}
}

//JMS messages are delivered to the onMessage method
public void onMessage(Message message){

try {
//Convert JMS to SOAP message
SOAPMessage soapMessage = MessageTransformer.SOAPMessageFromJMSMessage

(message, messageFactory);

//Print attchment counts
System.out.println("message received! Attachment counts:

" + soapMessage.countAttachments());

//Get attachment parts of the SOAP message
Iterator iterator = soapMessage.getAttachments();
while (iterator.hasNext()) {

//Get next attachment
AttachmentPart ap = (AttachmentPart) iterator.next();

//Get content type
String contentType = ap.getContentType();
System.out.println("content type: " + conent TYpe);

//Get content id
String contentID = ap.getContentID();
System.out.println("content Id:" + contentId);

//Check to see if this is text
if(contentType.indexOf"text")>=0 {

//Get and print string content if it is a text attachment
String content = (String) ap.getContent();
System.outprintln("*** attachment content: " + content);

}
}
}catch (Exception e) {
e.printStackTrace();
}

}

//Main method to start sample receiver
public static void main (String[] args){

try {
String topicName = System.getProperty("TopicName");
if(topicName == null) {

topicName = "test";
}

Code Example 6-8 Receiving a JMS Message with a SOAP Payload (Continued)

Integrating SOAP and Message Queue

162 Message Queue 3.5 SP1 • Java Client Developer’s Guide

ReceiveSOAPMessageWithJMS rsm = new ReceiveSOAPMessageWithJMS(topicName);
}catch (Exception e) {
e.printStackTrace();
}
}

}

Code Example 6-8 Receiving a JMS Message with a SOAP Payload (Continued)

163

Appendix A

Administered Object Attributes

This appendix provides reference tables for the attributes of the
ConnectionFactory, XAConnectionFactory, destination, and endpoint
administered objects.

ConnectionFactory Administered Object
Table A-1 summarizes the configurable properties of both ConnectionFactory and
XAConnectionFactory administered objects. The attributes are presented in
alphabetical order for quick reference. For groupings of these attributes in
functional categories, and a description of each, see “Client Runtime Configurable
Properties” on page 69.

Table A-1 Connection Factory Attributes

Attribute/Property Name Type Default Value Reference

imqAckOnAcknowledge String null: no default value Table 4-7 on page 80

imqAckOnProduce String null: no default value Table 4-7 on page 80

imqAckTimeout String 0 millisecs Table 4-7 on page 80

imqAddressList String null: no default value Table 4-3 on page 75

imqAddressListIterations Integer 1 Table 4-3 on page 75

imqAddressListBehavior String PRIORITY Table 4-3 on page 75

imqBrokerHostName (Message Queue
3.0)

String localhost Table 4-4 on page 76

imqBrokerHostPort (Message Queue
3.0)

Integer 7676 Table 4-4 on page 76

ConnectionFactory Administered Object

164 Message Queue 3.5 SP1 • Java Client Developer’s Guide

imqBrokerServicePort (Message
Queue 3.0)

Integer 0 Table 4-4 on page 76

imqConfiguredClientID String null: no default value Table 4-5 on page 78

imqConnectionFlowCount Integer 100 Table 4-7 on page 80

imqConnectionFlowLimit Integer 1000 Table 4-7 on page 80

imqConnectionFlowLimitEnabled Boolean false Table 4-7 on page 80

imqConnectionType (Message Queue
3.0)

String TCP Table 4-4 on page 76

imqConnectionURL (Message Queue
3.0)

String http://localhost/imq/tunnel Table 4-4 on page 76

imqConsumerFlowLimit Integer 100 Table 4-7 on page 80

imqConsumerFlowThreshold Integer 50 Table 4-7 on page 80

imqDefaultPassword String guest Table 4-5 on page 78

imqDefaultUsername String guest Table 4-5 on page 78

imqDisableSetClientID Boolean false Table 4-5 on page 78

imqJMSDeliveryMode Integer 2 (persistent) Table 4-6 on page 79

imqJMSExpiration Long 0 (does not expire) Table 4-6 on page 79

imqJMSPriority Integer 4 (normal) Table 4-6 on page 79

imqLoadMaxToServerSession Boolean true Table 4-9 on page 83

imqOverrideJMSDeliveryMode Boolean false Table 4-6 on page 79

imqOverrideJMSExpiration Boolean false Table 4-6 on page 79

imqOverrideJMSHeadersTo
TemporaryDestinations

Boolean false Table 4-6 on page 79

imqOverrideJMSPriority Boolean false Table 4-6 on page 79

imqQueueBrowserMaxMessages
PerRetrieve

Integer 1000 Table 4-8 on page 82

imqQueueBrowserRetrieveTimeout Long 60,000 millisecs Table 4-8 on page 82

imqReconnectAttempts Integer 0 Table 4-3 on page 75

imqReconnectDelay Integer 30,000 millisecs Table 4-4 on page 76

imqReconnectEnabled Boolean false Table 4-4 on page 76

imqReconnectInterval Long 3000 Table 4-3 on page 75

Table A-1 Connection Factory Attributes (Continued)

Attribute/Property Name Type Default Value Reference

Destination Administered Objects

Appendix A Administered Object Attributes 165

For more information on using ConnectionFactory administered objects see
Chapter 3, “Using Administered Objects.”

Destination Administered Objects
A destination administered object represents a physical destination (a queue or a
topic) in a broker to which the publicly-named destination object corresponds. Its
only attribute is the physical destination’s internal, provider-specific name. By
creating a destination object, you allow a client’s MessageConsumer and/or
MessageProducer objects to access the corresponding physical destination.

For more information on Destination administered objects see Chapter 3, “Using
Administered Objects.”

imqSetJMSXAppID Boolean false Table 4-9 on page 83

imqSetJMSXConsumerTXID Boolean false Table 4-9 on page 83

imqSetJMSXProducerTXID Boolean false Table 4-9 on page 83

imqSetJMSXRcvTimestamp Boolean false Table 4-9 on page 83

imqSetJMSXUserID Boolean false Table 4-9 on page 83

imqSSLIsHostTrusted (Message
Queue 3.0)

Boolean true Table 4-4 on page 76

Table A-2 Destination Attributes

Attribute/Property Name Type Default

imqDestinationDescription String A Description for the
Destination Object

imqDestinationName String1

1. Destination names can contain only alphanumeric characters (no spaces) and must begin with an alphabetic
character or the characters “_” and/or “$”.

Untitled_Destination_Object

Table A-1 Connection Factory Attributes (Continued)

Attribute/Property Name Type Default Value Reference

Endpoint Administered Objects

166 Message Queue 3.5 SP1 • Java Client Developer’s Guide

Endpoint Administered Objects
An endpoint administered object represents an endpoint object. By creating an
administered object for an endpoint, you allow the endpoint to be accessed
through a look-up operation while isolating specific endpoint information from
application code or particular provider requirements. You can set one or more
attributes for an endpoint administered object. These are described in Table A-3.

For additional information about endpoint administered objects, see “Using JAXM
Administered Objects” on page 136.

Table A-3 Endpoint Attributes

Attribute Name Type Description

imqSOAPEndpointList String A list containing one or more URLs delimited by
spaces. This list contains the URLs of all
endpoints to which you want to broadcast a SOAP
message. Each URL should be associated with a
servlet that can receive and process a SOAP
message.

imqEndpointName String The name of the endpoint object.

Default: Untitled_Endpoint_Object

imqEndpointDescription String A description of the endpoint and its use.

Default: A description for the endpoint
object.

167

Appendix B

Client Error Codes

This appendix provides reference information for error codes returned by the
Message Queue client runtime when it raises a JMS exception.

When client runtime code raises an exception, it returns a specific client error code
and message. You can obtain the error code and message using the
JMSException.getErrorCode() method and the JMSException.getMessage()
method.

Note that error codes and error messages are not standardized in the JMS
specification, but are specific to each JMS provider. Applications that rely on these
error codes and messages in their programming logic are not portable across JMS
providers.

Table B-1 lists the error codes in numerical order. For each code listed, it supplies
the error message and a probable cause.

Each error message returned has the following format:

[Code]: “Message -cause Root-cause-exception-message.”

Message text provided for -cause is only appended to the message if there is an
exception linked to the JMS exception. For example, a JMS exception with error
code C4003 returns the following error message:

[C4003]: Error occurred on connection creation [localhost:7676] - cause:
java.net.ConnectException: Connection refused: connect

Table B-1 Message Queue Client Error Codes

Code Message and Description

C4000 Message Packet acknowledge failed.

Cause The client runtime was not able to receive or process the expected
acknowledgment sent from the broker.

168 Message Queue 3.5 SP1 • Java Client Developer’s Guide

C4001 Message Write packet failed.

Cause The client runtime was not able to send information to the broker. This
might be caused by an underlying network I/O failure or by the JMS connection
being closed.

C4002 Message Read packet failed.

Cause The client runtime was not able to process inbound message properly.
This might be caused by an underlying network I/O failure.

C4003 Message Error occurred on connection creation [host, port].

Cause The client runtime was not able to establish a connection to the broker
with the specified host name and port number.

C4004 Message An error occurred on connection close.

Cause The client runtime encountered one or more errors when closing the
connection to the broker.

 C4005 Message Get properties from packet failed.

Cause The client runtime was not able to retrieve a property object from the
Message Queue packet.

 C4006 Message Set properties to packet failed.

Cause The client runtime was not able to set a property object in the Message
Queue packet.

 C4007 Message Durable subscription {0} in use.
{0} is replaced with the subscribed destination name.

Cause The client runtime was not able to unsubscribe the durable subscriber
because it is currently in use by another consumer.

 C4008 Message Message in read-only mode.

Cause An attempt was made to write to a JMS Message that is in read-only
mode.

 C4009 Message Message in write-only mode.

Cause An attempt was made to read a JMS Message that is in write-only
mode.

 C4010 Message Read message failed.

Cause The client runtime was not able to read the stream of bytes from a
BytesMessage type message.

C4011 Message Write message failed.

Cause The client runtime was not able to write the stream of bytes to a
BytesMessage type message.

Table B-1 Message Queue Client Error Codes (Continued)

Code Message and Description

Appendix B Client Error Codes 169

C4012 Message message failed.

Cause The client runtime encountered an error when processing the reset()
method for a BytesMessage or StreamMessage type message.

C4013 Message Unexpected end of stream when reading message.

Cause The client runtime reached end-of-stream when processing the
readXXX() method for a BytesMessage or StreamMessage type message.

C4014 Message Serialize message failed.

Cause The client runtime encountered an error when processing the
serialization of an object, such as
ObjectMessage.setObject(java.io.Serializable object).

C4015 Message Deserialize message failed.

Cause The client runtime encountered an error when processing the
deserialization of an object, for example, when processing the method
ObjectMessage.getObject().

C4016 Message Error occurred during message acknowledgment.

Cause The client runtime encountered an error during the process of message
acknowledgment in a session.

C4017 Message Invalid message format.

Cause The client runtime encountered an error when processing a JMS
Message; for example, during data type conversion.

C4018 Message Error occurred on request message redeliver.

Cause The client runtime encountered an error when processing recover() or
rollback() for the JMS session.

C4019 Message Destination not found: {0}.
{0} is replaced with the destination name specified in the API parameter.

Cause The client runtime was unable to process the API request due to an
invalid destination specified in the API, for example, the call
MessageProducer.send (null, message) raises JMSException with this error
code and message.

C4020 Message Temporary destination belongs to a closed connection or another
connection - {0}.
{0} is replaced with the temporary destination name specified in the API
parameter.

Cause An attempt was made to use a temporary destination that is not valid for
the message producer.

Table B-1 Message Queue Client Error Codes (Continued)

Code Message and Description

170 Message Queue 3.5 SP1 • Java Client Developer’s Guide

C4021 Message Consumer not found.

Cause The Message Queue session could not find the message consumer for
a message sent from the broker. The message consumer may have been
closed by the application or by the client runtime before the message for the
consumer was processed.

C4022 Message Selector invalid: {0}.
{0} is replaced with the selector string specified in the API parameter.

Cause The client runtime was unable to process the JMS API call because the
specified selector is invalid.

C4023 Message Client unacknowledged messages over system defined limit.

Cause The client runtime raises a JMSException with this error code and
message if unacknowledged messages exceed the system defined limit in a
CLIENT_ACKNOWLEDGE session.

C4024 Message The session is not transacted.

Cause An attempt was made to use a transacted session API in a
non-transacted session. For example, calling the methods commit() or
rollback in a AUTO_ACKNOWLEDGE session.

C4025 Message Cannot call this method from a transacted session.

Cause An attempt was made to call the Session.recover() method from a
transacted session.

C4026 Message Client non-committed messages over system defined limit.

Cause The client runtime raises a JMSException with this error code and
message if non committed messages exceed the system -defined limit in a
transacted session.

C4027 Message Invalid transaction ID: {0}.
{0} is replaced with the Message Queue internal transaction ID.

Cause An attempt was made to commit or rollback a transacted session with a
transaction ID that is no longer valid.

C4028 Message Transaction ID {0} in use.
{0} is replaced with the Message Queue internal transaction ID.

Cause The internal transaction ID is already in use by the system. An
application should not receive a JMSException with this error code under
normal operations.

C4029 Message Invalid session for ServerSession.

Cause An attempt was made to use an invalid JMS session for the
ServerSession object, for example, no message listener was set for the
session.

Table B-1 Message Queue Client Error Codes (Continued)

Code Message and Description

Appendix B Client Error Codes 171

C4030 Message Illegal maxMessages value for ServerSession: {0}.
{0} was replaced with maxMessages value used by the application.

Cause The configured maxMessages value for ServerSession is less than 0.

C4031 Message MessageConsumer and ServerSession session conflict.

Cause An attempt was made to create a message consumer for a session
already used by a ServerSession object.

C4032 Message Can not use receive() when message listener was set.

Cause An attempt was made to do a synchronous receive with an
asynchronous message consumer.

C4033 Message Authentication type does not match: {0} and {1}.
{0} is replaced with the authentication type used by the client runtime.
{1} is replaced with the authentication type requested by the broker.

Cause The authentication type requested by the broker does not match the
authentication type in use by the client runtime.

C4034 Message Illegal authentication state.

Cause The authentication hand-shake failed between the client runtime and
the broker.

C4035 Message Received AUTHENTICATE_REQUEST status code FORBIDDEN.

Cause The client runtime authentication to the broker failed.

C4036 Message A server error occurred.

Cause A generic error code indicating that the client’s requested operation to
the broker failed.

C4037 Message Server unavailable or server timeout.

Cause The client runtime was unable to establish a connection to the broker.

C4038 Message [4038] - cause: {0}
{0} is replaced with a root cause exception message.

Cause The client runtime caught an exception thrown from the JVM. The client
runtime throws JMSException with the "root cause exception" set as the linked
exception.

C4039 Message Cannot delete destination.

Cause The client runtime was unable to delete the specified temporary
destination.
Please see TemporaryTopic.delete() and TemporaryQueue.delete() API
Javadoc for constraints on deleting a temporary destination.

Table B-1 Message Queue Client Error Codes (Continued)

Code Message and Description

172 Message Queue 3.5 SP1 • Java Client Developer’s Guide

C4040 Message Invalid ObjectProperty type.

Cause An attempt was made to set a non-primitive Java object as a JMS
message property. Please see Message.setObjectProperty() API Javadoc
for valid object property types.

C4041 Message Reserved word used as property name - {0}.

Cause An attempt was made to use a reserved word, defined in the JMS
Message API Javadoc, as the message property name, for example, NULL,
TRUE, FALSE.

C4042 Message Illegal first character of property name - {0}
{0} is replaced with the illegal character.

Cause An attempt was made to use a property name with an illegal first
character. See JMS Message API Javadoc for valid property names.

C4043 Message Illegal character used in property name - {0}
{0} is replaced with the illegal character used.

Cause An attempt was made to use a property name containing an illegal
character. See JMS Message API Javadoc for valid property names.

C4044 Message Browser timeout.

Cause The queue browser was unable to return the next available message to
the application within the system’s predefined timeout period.

C4045 Message No more elements.

Cause In QueueBrowser, the enumeration object has reached the end of
element but nextElement() is called by the application.

C4046 Message Browser closed.

Cause An attempt was made to use QueueBrowser methods on a closed
QueueBrowser object.

C4047 Message Operation interrupted.

Cause ServerSession was interrupted. The client runtime throws
RuntimeException with the above exception message when it is interrupted in
the ServerSession.

C4048 Message ServerSession is in progress.

Cause Multiple threads attempted to operate on a server session concurrently.

C4049 Message Can not call Connection.close(), stop(), etc from message listener.

Cause An attempt was made to call Connection.close(), ...stop(), etc from
a message listener.

Table B-1 Message Queue Client Error Codes (Continued)

Code Message and Description

Appendix B Client Error Codes 173

C4050 Message Invalid destination name - {0}
{0} is replaced with the invalid destination name used.

Cause An attempt was made to use an invalid destination name, for example,
NULL.

C4051 Message Invalid delivery parameter. {0} : {1}
{0} is replaced with delivery parameter name, such as "DeliveryMode".
{1} is replaced with delivery parameter value used by the application.

Cause An attempt was made to use invalid JMS delivery parameters in the
API, for example, values other than DeliveryMode.NON_PERSISTENT or
DeliveryMode.PERSISTENT were used to specify the delivery mode.

C4052 Message Client ID is already in use - {0}
{0} is replaced with the client ID that is already in use.

Cause An attempt was made to set a client ID to a value that is already in use
by the system.

C4053 Message Invalid client ID - {0}
{0} is replaced with the client ID used by the application.

Cause An attempt was made to use an invalid client ID, for example, null or
empty client ID.

C4054 Message Can not set client ID, invalid state.

Cause An attempt was made to set a connection’s client ID at the wrong time
or when it has been administratively configured.

C4055 Message Resource in conflict. Concurrent operations on a session.

Cause An attempt was made to concurrently operate on a session with
multiple threads.

C4056 Message Received goodbye message from broker.

Cause A Message Queue client received a GOOD_BYE message from broker.

C4057 Message No username or password.

Cause An attempt was made to use a null object as a user name or password
for authentication.

C4058 Message Cannot acknowledge message for closed consumer.

Cause An attempt was made to acknowledge message(s) for a closed
consumer.

C4059 Message Cannot perform operation, session is closed.

Cause An attempt was made to call a method on a closed session.

Table B-1 Message Queue Client Error Codes (Continued)

Code Message and Description

174 Message Queue 3.5 SP1 • Java Client Developer’s Guide

C4060 Message Login failed: {0}
{0} message was replaced with user name.

Cause Login with the specified user name failed.

C4061 Message Connection recovery failed, cannot recover connection.

Cause The client runtime was unable to recover the connection due to internal
error.

C4062 Message Cannot perform operation, connection is closed.

Cause An attempt was made to call a method on a closed connection.

C4063 Message Cannot perform operation, consumer is closed.

Cause An attempt was made to call a method on a closed message consumer.

C4064 Message Cannot perform operation, producer is closed.

Cause An attempt was made to call a method on a closed message producer.

C4065 Message Incompatible broker version encountered. Client version {0}.Broker
version {1}
{0} is replaced with client version number.
{1} is replaced with broker version number.

Cause An attempt was made to connect to a broker that is not compatible with
the client version.

C4066 Message Invalid or empty Durable Subscription Name was used: {0}
{0} is replaced with the durable subscription name used by the
application.

Cause An attempt was made to use a null or empty string to specify the name
of a durable subscription.

C4067 Message Invalid session acknowledgment mode: {0}
{0} is replaced with the acknowledge mode used by the application.

Cause An attempt was made to use a non-transacted session mode that is not
defined in the JMS Session API.

C4068 Message Invalid Destination Classname: {0}.

Cause An attempt was made to create a message producer or message
consumer with an invalid destination class type. The valid class type must be
either Queue or Topic.

C4069 Message Cannot commit or rollback on an XASession.

Cause The application tried to make a session.commit() or a
session.rollback() call in an application server component whose
transactions are being managed by the Transaction Manager via the
XAResource. These calls are not allowed in this context.

Table B-1 Message Queue Client Error Codes (Continued)

Code Message and Description

Appendix B Client Error Codes 175

C4070 Message Error when converting foreign message.

Cause The client runtime encountered an error when processing a
non-Message Queue JMS message.

C4071 Message Invalid method in this domain: {0}
{0} is replaced with the method name used.

Cause An attempt was made to use a method that does not belong to the
current messaging domain. For example calling TopicSession.createQueue()
will raise a JMSException with this error code and message.

C4072 Message Illegal property name - "" or null.

Cause An attempt was made to use a null or empty string to specify a property
name.

C4073 Message A JMS destination limit was reached. Too many
Subscribers/Receivers for {0} : {1}
{0} is replaced with "Queue" or "Topic"
{1} is replaced with the destination name.

Cause The client runtime was unable to create a message consumer for the
specified domain and destination due to a broker resource constraint.

C4074 Message Transaction rolled back due to provider connection failover.

Cause An attempt was made to call Session.commit() after connection
failover occurred. The transaction is rolled back automatically.

C4075 Message Cannot acknowledge messages due to provider connection failover.
Subsequent acknowledge calls will also fail until the application calls
session.recover().

Cause As stated in the message.

C4076 Message Client does not have permission to create producer on
destination: {0}
{0} is replaced with the destination name that caused the exception.

Cause The application client does not have permission to create a message
producer with the specified destination.

C4077 Message Client is not authorized to create destination : {0}
{0} is replaced with the destination name that caused the exception.

Cause The application client does not have permission to create the specified
destination.

C4078 Message Client is unauthorized to send to destination: {0}
{0} is replaced with the destination name that caused the exception.

Cause The application client does not have permission to produce messages
to the specified destination.

Table B-1 Message Queue Client Error Codes (Continued)

Code Message and Description

176 Message Queue 3.5 SP1 • Java Client Developer’s Guide

C4079 Message Client does not have permission to register a consumer on the
destination: {0}
{0} is replaced with the destination name that caused the exception.

Cause The application client does not have permission to create a message
consumer with the specified destination name.

C4080 Message Client does not have permission to delete consumer: {0}
{0} is replaced with the Message Queue consumer ID for the consumer to be
deleted.

Cause The application does not have permission to remove the specified
consumer from the broker.

C4081 Message Client does not have permission to unsubscribe: {0}
{0} was replaced with the name of the subscriber to unsubscribe.

Cause The client application does not have permission to unsubscribe the
specified durable subscriber.

C4082 Message Client is not authorized to access destination: {0}
{0} is replaced with the destination name that caused the exception.

Cause The application client is not authorized to access the specified
destination.

C4083 Message Client does not have permission to browse destination: {0}
{0} was replaced with the destination name that caused the exception.

Cause The application client does not have permission to browse the specified
destination.

C4084 Message User authentication failed: {0}
{0} is replaced with the user name.

Cause User authentication failed.

C4085 Message Delete consumer failed. Consumer was not found: {0}
{0} is replaced with name of the consumer that could not be found.

Cause The attempt to close a message consumer failed because the broker
was unable to find the specified consumer.

C4086 Message Unsubscribe failed. Subscriber was not found: {0}
{0} is replaced with name of the durable subscriber.

Cause An attempt was made to unsubscribe a durable subscriber with a name
that does not exist in the system.

C4087 Message Set Client ID operation failed. Invalid Client ID: {0}
{0} is replaced with the ClientID that caused the exception.

Cause Client is unable to set Client ID on the broker and receives a
BAD_REQUEST status from broker.

Table B-1 Message Queue Client Error Codes (Continued)

Code Message and Description

Appendix B Client Error Codes 177

C4088 Message A JMS destination limit was reached. Too many producers for {0} :
{1}
{0} is replaced with Queue or Topic
{1} is replaced with the destination name for which the limit was reached.

Cause The client runtime was not able to create a message producer for the
specified domain and destination due to limited broker resources.

C4089 Message Caught JVM Error: {0}
{0} is replaced with root cause error message.

Cause The client runtime caught an error thrown from the JVM; for example,
OutOfMemory error.

C4090 Message Invalid port number. Broker is not available or may be paused:{0}
{0} is replaced with "[host, port]" information.

Cause The client runtime received an invalid port number (0) from the broker.
Broker service for the request was not available or was paused.

Table B-1 Message Queue Client Error Codes (Continued)

Code Message and Description

178 Message Queue 3.5 SP1 • Java Client Developer’s Guide

179

Index

A
acknowledgements

about 40
broker, See broker acknowledgements
client, See client acknowledgements

administered objects
about 29, 34, 57
connection factory, See connection factory

administered objects
destination, See destination administered objects
instantiation of 61
JAXM, for 136
JNDI lookup of 58
provider independence, and 58
types 34
types of 57
XA connection factory, See connection factory

administered objects
administration tools 30
application servers 46
applications, See JMS clients
AUTO_ACKNOWLEDGE mode 68, 110
auto-reconnect

behavior 74, 110
configurable attributes 74, 111
limitations 73, 110
mechanism 73

B
broker acknowledgements

about 66
on produce 80, 163
wait period for client 80, 163

broker cluster 109, 112, 118
broker failure and secure connections 115
broker metrics 92

C
checklist for client deployment 118
CLASSPATH environment variable 47
client acknowledgement modes

AUTO_ACKNOWLEDGE 68, 110
CLIENT_ACKNOWLEDGE 68, 89
DUPS_OK_ACKNOWLEDGE 68

client acknowledgements
about 68
custom message acknowledgement 68, 89
effect on performance 85
modes, See client acknowledgement modes

client applications, See JMS clients
client identifier (ClientID)

about 77
setting in connection factory 77
setting programmatically 77

Section D

180 Message Queue 3.5 SP1 • Java Client Developer’s Guide

client runtime
about 29
configurable properties 69
message consumption, and 67
message production, and 66

client threads 115
CLIENT_ACKNOWLEDGE mode 68, 89
clustered broker configuration 109, 112, 118
compiling JMS clients 54
components

EJB 43
MDB 44

connection factory administered objects
about 33
application server support attributes 83
attributes 70
client identification attributes 77
ClientID, and 39
connection handling attributes 71
instantiation of 61
JMS properties support attributes 83
JNDI lookup 35
JNDI lookup of 59
overriding attribute values 64
overriding message header fields 79
queue browser behavior attributes 82
reliability and flow control attributes 79

ConnectionConsumer behavior with
auto-reconnect 111

connections
about 33
auto-reconnect, See auto-reconnect
failover, See auto-reconnect
message server address syntax 71
secure 114
server or broker failure 115
specifying 71

consumers 34
containers

EJB 45
MDB 45

custom client acknowledgement 68, 89

D
delivery modes

effects on performance 84
non-persistent 39
persistent 39

delivery, reliable 39
deployment checklist for client applications 118
destination administered objects

about 33
attributes 165
instantiation of 63
lookup of 60

destination metrics 92
destination-list metrics 92
directory variables

IMQ_HOME 20
IMQ_JAVAHOME 21
IMQ_VARHOME 20

distributed applications and synchronous
consumers 117

distributed transactions
about 41
XA resource manager 41
See also XA connection factories

domains 36
DUPS_OK_ACKNOWLEDGE mode 68
durable subscribers, See durable subscriptions
durable subscriptions

about 37
ClientID, and 39

E
editions, product

about 27
enterprise 28
platform 27

enterprise edition 28
environment variables, See directory variables

Section F

Index 181

F
flow control, See message flow control

H
hashtable for destination-list metrics 96, 105
heap space, JVM 114
HTTPS connections 114

I
IMQ_HOME directory variable 20
IMQ_JAVAHOME directory variable 21
IMQ_VARHOME directory variable 20
imqAckOnAcknowledge attribute 80, 163
imqAckOnProduce attribute 80, 163
imqAckTimeout attribute 80, 163
imqAddressList attribute 75, 109, 111, 163
imqAddressListBehavior attribute 75, 113, 163
imqAddressListIterations attribute 75, 109, 163
imqBrokerHostName attribute (Message Queue

3.0) 76, 163
imqBrokerHostPort attribute (Message Queue

3.0) 76, 163
imqBrokerServicetPort attribute (Message Queue

3.0) 76, 164
imqConfiguredClientID attribute 78, 164
imqConnectionFlowCount attribute 81, 164
imqConnectionFlowLimit attribute 81, 164
imqConnectionFlowLimitEnabled attribute 81, 164
imqConnectionType attribute (Message Queue

3.0) 76, 164
imqConnectionURL attribute (Message Queue

3.0) 77, 164
imqConsumerFlowLimit attribute 82, 164
imqConsumerFlowThreshold attribute 82, 164
imqDefaultPassword attribute 78, 164
imqDefaultUsername attribute 78, 164

imqDestinationDescription attribute 165
imqDestinationName attribute 165
imqDisableSetClientID attribute 78, 164
imqEndpointDescription attribute 166
imqEndpointName attribute 166
imqFlowControlLimit attribute 82, 164
imqJMSDeliveryMode attribute 79, 164
imqJMSExpiration attribute 79, 164
imqJMSPriority attribute 79, 164
imqLoadMaxToServerSession attribute 83, 164
imqOverrideJMSDeliveryMode attribute 79, 164
imqOverrideJMSExpiration attribute 79, 164
imqOverrideJMSHeadersToTemporaryDestinations

attribute 79, 164
imqOverrideJMSPriority attribute 79, 164
imqQueueBrowserMax MessagesPerRetrieve

attribute 82, 164
imqQueueBrowserRetrieveTimeout attribute 83, 164
imqReconnectAttempts attribute 75, 109, 164
imqReconnectDelay attribute 164
imqReconnectEnabled attribute 75, 109, 164
imqReconnectInterval attribute 75, 109, 112, 164
imqReconnectListBehavior attribute 109
imqSetJMSXAppID attribute 83, 165
imqSetJMSXConsumerTXID attribute 83, 165
imqSetJMSXProducerTXID attribute 83, 165
imqSetJMSXRcvTimestamp attribute 84, 165
imqSetJMSXUserID attribute 83, 165
imqSOAPEndpointList attribute 166
imqSSLIsHostTrusted attribute (Message Queue

3.0) 76, 165

J
J2EE applications

EJB specification 43
JMS, and 43
message-driven beans, See message-driven beans

JAF API 141

Section L

182 Message Queue 3.5 SP1 • Java Client Developer’s Guide

JAXM API
about 127
client code 142
exception handling 142
fault handling 142, 148
javax.xml.messaging package 127
javax.xml.soap package 127
JAXM servlet 145
programming model for SOAP 120, 127, 138
service code 145

JAXM servlet 145
JAXM specification 17, 23
JMS API 30
JMS clients

about 30
client runtime, and 29
compiling 54
deployment checklist 118
development steps 51
performance, See performance
programming model 30
provider independence 38
requirements for deployment 118
running 54
setup summary 35
system properties, and 64

JMS specification 17, 23, 25
JMSCorrelationID message header field 32
JMSDeliveryMode message header field 31, 78
JMSDestination message header field 31
JMSExpiration message header field 31, 78
JMSMessageID message header field 31
JMSPriority message header field 31, 78
JMSRedelivered message header field 32
JMSReplyTo message header field 32
JMSTimestamp message header field 32
JMSType message header field 32
JNDI

administered objects, and 35, 38, 100
connection factory lookup 59
destination lookup 60
Message Queue support of 26
message-driven beans, and 45

JVM heap space 114
JVM metrics 92

L
LDAP object store 59
licenses for Message Queue editions 27
listeners 44
listeners, message

about 34
asynchronous consumption, and 68

M
managing

client threads 115
memory 114

master broker 113
MDB See message-driven beans
message consumers 34
message consumption

about 67
asynchronous 42
synchronous 42

message delivery models 36
message flow control

attributes 79
limits 86
metering 85

message headers
fields 31
overrides 78

message listeners, See listeners
message producers 34
Message Queue server 28
message server address 71
message-based monitoring 92
message-driven beans

about 44
application server support 46
deployment descriptor 45
MDB container 45

MessageFactory object 146

Section N

Index 183

messages
about 30
acknowledgement, See client acknowledgements

or broker acknowledgements
body 32
consumption of, See message consumption
delivery models 36
delivery modes, See delivery modes
delivery of 65
duplicate sends 69
flow control, See message flow control
headers, See message headers
listeners for, See listeners, message
ordering of 43
persistent 39
persistent storage 41
point-to-point delivery 36
prioritizing 43
production of 66
properties of 32, 94
publish/subscribe delivery 37
reliable delivery of 40, 79
selection and filtering of 43
sequencing 114
size 114
SOAP 26
SOAP payloads, with 152

messaging system, architecture 28
metrics messages

type 92
metrics, See message-based monitoring
MimeHeaders object 146
mq.metrics.broker topic 92
mq.metrics.destination.queue.monitoredDestName

topic 92
mq.metrics.destination.topic.monitoredDestName

topic 92
mq.metrics.destination_list topic 92
mq.metrics.jvm topic 92

N
namespaces, in SOAP 130

O
object stores

administered objects, and 57
file system 59
LDAP server 59

OnewayListener object 140
onMessage() method 146
OutOfMemory error 114

P
passwords, default 78, 164
performance

effect of delivery mode 84
effect of sessions and connections on 87
factors affecting 84
message flow control 85
message service resources 79

persistence
about 41
delivery modes, See delivery modes
persistent messages 39

platform edition 27
point-to-point delivery 36
producers 34
programming domains 36
properties, client runtime See client runtime
provider independence

about 38
administered objects, and 58

publish/subscribe delivery 37

Q
queue destinations 36

Section R

184 Message Queue 3.5 SP1 • Java Client Developer’s Guide

R
reconnect, automatic See auto-reconnect
reliability, factors affecting 84
reliable delivery 39, 79
ReqRespListener object 139
resource adapter 46
running JMS clients 54

S
selection, of messages 43
sequencing partial messages 114
server failure and secure connections 115
ServletConfig object 146
sessions

about 33
acknowledgement options for 40
transacted 40

Simple Object Access Protocol See SOAP
SOAP 26
SOAP message

attachments to 141
disassembling 147
envelope 124
header 124
MIME envelope for 126
models of 125
Name object 133
payload to JMS message, as 152
SOAPMessage object 127
structure of 124

SOAP messaging
attachments, using 141
client code 142
connections 135
endpoints 134
exception handling 142
fault codes 149
fault handling 142, 148
layers of 120
message factories 135
namespaces 130

point-to-point connections 138
programming models 138
protocol for 120
provider connections 140
service code 145
SOAPMessageFromJMSMessage method 152
SOAPMessageIntoJMSMessage utility 152

synchronous consumers 117
system properties, setting 64

T
threads, See client threads
topic destinations 37
transactions

about 40
and custom client acknowledgement 90
distributed, See distributed transactions

tunnel servlet connection 115

U
URLEndpoint object 144
user names 78, 164

W
web services 120

X
XA connection factories

about 41
See also connection factory administered objects

XA resource manager, See distributed transactions

	Message Queue 3.5 Java Client Developer’s Guide
	Contents
	List of Figures
	List of Tables
	List of Procedures
	List of Code Examples
	Preface
	Audience for This Guide
	Organization of This Guide
	Conventions
	Text Conventions
	Directory Variable Conventions

	Other Documentation Resources
	The Message Queue Documentation Set
	JavaDoc
	Example Client Applications
	The Java Message Service (JMS) Specification
	The Java XML Messaging (JAXM) Specification
	Books on JMS Programming

	1. Overview
	What Is Sun Java System Message Queue?
	Product Editions
	Platform Edition
	Enterprise Edition

	Message Queue Service Architecture
	The JMS Programming Model
	JMS Programming Interface
	Message
	Destination
	ConnectionFactory
	Connection
	Session
	Message Producer
	Message Consumer
	Message Listener

	Administered Objects
	JMS Client Setup Operations
	To Set Up a Client to Produce Messages
	To Set Up a Client to Consume Messages

	JMS Client Design Issues
	Programming Domains
	JMS Provider Independence
	Client Identifiers
	Reliable Messaging
	Acknowledgements/Transactions
	Persistent Storage

	Performance Trade-offs
	Message Consumption: Synchronous and Asynchronous
	Message Selection
	Message Order and Priority

	JMS/J2EE Programming: Message-Driven Beans
	Message-Driven Beans
	J2EE Application Server Support

	2. Quick Start Tutorial
	Setting Up Your Environment
	Starting and Testing the Message Server
	To Start a Broker
	To Test a Broker

	Developing a Simple Client Application
	Compiling and Running a Client Application
	To Compile and Run the HelloWorldMessage Application

	Example Application Code

	3. Using Administered Objects
	JNDI Lookup of Administered Objects
	Looking Up ConnectionFactory Objects
	To Perform a JNDI Lookup of a ConnectionFactory Object

	Looking Up Destination Objects
	To Perform a JNDI Lookup of a Destination Object

	Instantiating Administered Objects
	Instantiating ConnectionFactory Objects
	To Directly Instantiate and Configure a ConnectionFactory Object

	Instantiating Destination Objects
	To Directly Instantiate and Configure a Destination Object

	Starting Client Applications With Overrides

	4. Configuring the Message Queue Client Runtime
	Message Production and Consumption
	Message Production
	Message Consumption

	Client Runtime Configurable Properties
	Connection Handling
	Specifying a Message Server Address
	Connecting to a Message Server
	Automatic Reconnect to a Message Server (Enterprise Edition)
	Auto-reconnect Behavior
	Message Queue 3.0 Connection Handling

	Client Identification
	Message Header Overrides
	Reliability And Flow Control
	Queue Browser Behavior and Server Session
	JMS-Defined Properties Support

	Managing Reliability and Performance
	Delivery Mode
	Client Acknowledgement Mode
	Message Flow Metering
	Message Flow Limits

	5. Message Queue Client Programming Techniques
	Custom Client Acknowledgement
	Message-Based Monitoring API
	Format of Metrics Messages
	Broker Metrics
	JVM Metrics
	Destination-List Metrics
	Destination Metrics

	Configuring Metrics Message Production on�the�Broker
	Using the Message-Based Monitoring API
	Metrics Monitoring Client Code Examples
	A Broker Metrics Example
	A Destination List Metrics Example
	A Destination Metrics Example

	Client Connection Failover (Auto-reconnect)
	Enabling Auto-reconnect
	Auto-reconnect Behaviors
	Auto-reconnect Limitations
	Auto-reconnect Configuration Examples
	Single-Broker Auto-reconnect
	Parallel Broker Auto-reconnect
	Clustered-Broker Auto-reconnect

	Other Programming Topics
	Managing Memory and Message Size
	Using Secure HTTP Connections (HTTPS)
	In Case of Server or Broker Failure
	Repairing an HTTPS Tunnel Servlet Connection

	Managing Client Threads
	Synchronous Consumption in Distributed Applications
	Client Application Deployment Considerations

	6. Working With SOAP Messages
	What is SOAP?
	SOAP and the JAVA for XML Messaging API
	The Transport Layer
	The SOAP Layer
	The Provider Layer
	The Profiles Layer

	The SOAP Message
	SOAP Packaging Models

	SOAP Messaging in JAVA
	The SOAP Message Object
	Inherited Methods
	Namespaces

	Destination, Message Factory, and Connection Objects
	Endpoint
	Message Factory
	Connection

	Using JAXM Administered Objects
	SOAP Messaging Models and Examples
	SOAP Messaging Programming Models
	Point-to-Point Connections
	Provider Connections

	Working with Attachments
	To Create and Add an Attachment

	Exception and Fault Handling
	Writing a SOAP Client
	Writing a SOAP Service
	Disassembling Messages
	Handling Attachments
	Replying to Messages
	Handling SOAP Faults

	Integrating SOAP and Message Queue
	Example 1: Deferring SOAP Processing
	To Transform the SOAP Message into a JMS Message and Send the JMS�Message
	To Receive the JMS Message, Transform it into a SOAP Message, and Process It

	Example 2: Publishing SOAP Messages
	Code Samples

	A. Administered Object Attributes
	ConnectionFactory Administered Object
	Destination Administered Objects
	Endpoint Administered Objects

	B. Client Error Codes
	Index

