
Sun Java™ System

Message Queue 3.5
C Client Developer’s Guide

Service Pack 1

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 817-6025-10

Copyright © 2004 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved
Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.
U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements. Use is subject to license terms. This distribution may include materials developed by third
parties.
Sun, Sun Microsystems, the Sun logo, Java, Solaris, Sun[tm] ONE, JDK, Java Naming and Directory Interface, Javadoc, JavaMail, JavaHelp, the
Java Coffee Cup logo and the Sun[tm] ONE logo are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries.
All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other
countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.
UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.
This product is covered and controlled by U.S. Export Control laws and may be subject to the export or import laws in other countries. Nuclear,
missile, chemical biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export or
reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied
persons and specially designated nationals lists is strictly prohibited.

Copyright © 2004 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.
Sun Microsystems, Inc. détient les droits de propriété intellectuels relatifs à la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plus des brevets américains listés à
l'adresse http://www.sun.com/patents et un ou les brevets supplémentaires ou les applications de brevet en attente aux Etats - Unis et dans les
autres pays.
L'utilisation est soumise aux termes de la Licence.
Cette distribution peut comprendre des composants développés par des tierces parties.
Sun, Sun Microsystems, le logo Sun, Java, Solaris, Sun[tm] ONE, JDK, Java Naming and Directory Interface, Javadoc, JavaMail, JavaHelp, le logo
Java Coffee Cup et le logo Sun[tm] ONE sont des marques de fabrique ou des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et
dans d'autres pays.
Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux
Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.
UNIX est une marque déposée aux Etats-Unis et dans d'autres pays et licenciée exlusivement par X/Open Company, Ltd.
Ce produit est soumis à la législation américaine en matière de contrôle des exportations et peut être soumis à la règlementation en vigueur dans
d'autres pays dans le domaine des exportations et importations. Les utilisations, ou utilisateurs finaux, pour des armes nucléaires,des missiles,
des armes biologiques et chimiques ou du nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers les pays sous embargo américain, ou vers des entités figurant sur les listes d'exclusion d'exportation américaines, y compris,
mais de manière non exhaustive, la liste de personnes qui fo nt objet d'un ordre de ne pas participer, d'une façon directe ou indirecte, aux
exportations des produits ou des services qui sont régis par la législation américaine en matière de contrôle des exportations et la liste de
ressortissants spécifiquement désignés, sont rigoureusement interdites.

http://www.sun.com/patents
http://www.sun.com/patents

3

Contents

List of Figures . 7

List of Tables . 9

List of Procedures . 11

Preface . 13
Audience for This Guide . 13
Organization of This Guide . 14
Conventions . 14

Text Conventions . 14
Directory Variable Conventions . 15

Other Documentation Resources . 16
The Message Queue Documentation Set . 16
Online Help . 17
Example Client Applications . 17
The Java Message Service (JMS) Specification . 17

Related Third-Party Web Site References . 18

Chapter 1 Introduction . 19
What Is Message Queue? . 19

Message Queue Features . 20
Java and C Interfaces . 21
Product Editions . 22

Message Queue Messaging System Architecture . 22

4 Message Queue 3.5 SP1 • C Client Developer’s Guide

The JMS Programming Model . 24
Message . 24

Header . 25
Properties . 26
Message Body Types . 26

Destination . 27
Connection . 27
Session . 27
Message Producer . 28
Message Consumer . 28
Message Listener . 28

Client Design Issues . 29
Programming Domains . 29
Client Identifiers . 30
Reliable Messaging . 30

Delivery Mode . 30
Acknowledgements and Transactions . 31
Persistent Storage . 32
Performance Trade-offs . 32

Message Production and Consumption . 33
Message Production . 34
Message Consumption . 34
Synchronous and Asynchronous Consumption . 36
Message Selection . 37
Message Order and Priority . 37

Configuring Connections . 38
Connection Handling . 38
Reliability . 39
Flow Control . 39
Security . 40
Version Information . 40

Managing Flow Control . 40
Delivery Mode . 40
Acknowledgement Mode . 41
Message Flow Metering . 42

Contents 5

Chapter 2 Building and Running Message Queue C Clients . 43
Getting Ready . 43

Building Programs . 43
Providing Runtime Support . 45

Working With the Sample C-Client Programs . 45
Building the Sample Programs . 45

To Compile and Link on Solaris . 45
To Compile and Link on Linux . 46
To Compile on Windows . 46
To Link on Windows . 46

Running the Sample Programs . 46

Chapter 3 Using the C API . 47
Message Queue C Client Setup Operations . 48

To Set Up a Message Queue C Client to Produce Messages . 48
To Set Up a Message Queue C Client to Consume Messages Synchronously 49
To Set Up a Message Queue C Client to Consume Messages Asynchronously 49

Working With Properties . 50
Setting Connection and Message Properties . 50

To Set Properties for a Connection . 51
To Set Message Properties . 52

Getting Message Properties . 52
To Iterate Through a Properties Handle . 53

Working With Connections . 54
Working With Secure Connections . 56
Shutting Down Connections . 57

Working With Sessions and Destinations . 57
Creating a Session . 58

Transacted Sessions . 58
Message Acknowledgement . 58
Receive Mode . 59

Managing a Session . 59
Creating Destinations . 59

6 Message Queue 3.5 SP1 • C Client Developer’s Guide

Working With Messages . 61
Composing Messages . 61
Sending a Message . 62
Receiving Messages . 64

Working With Consumers . 65
Receiving a Message Synchronously . 66
Receiving a Message Asynchronously . 66

Processing a Message . 67
Error Handling . 68

To Handle Errors in Your Code . 68
Memory Management . 69
Thread Management . 70

Message Queue C Runtime Thread Model . 70
Concurrent Use of Handles . 70
Single-Threaded Session Control . 71
Connection Exceptions . 72

Logging . 72

Chapter 4 Reference . 73
Data Types . 73

Connection Properties . 76
Acknowledge Modes . 80
Callback Type for Asynchronous Messaging . 81
Callback Type for Connection Exception Handling . 82

Function Reference . 83
Header Files . 183

Appendix A Message Queue C API Error Codes . 185
Error Codes . 186

Index . 193

7

List of Figures

Figure 1-1 Message Queue System Architecture . 23

Figure 1-2 JMS Programming Objects . 25

Figure 1-3 Messaging Operations . 33

Figure 1-4 Message Delivery to Message Queue Client Runtime . 35

8 Message Queue 3.5 SP1 • C Client Developer’s Guide

9

List of Tables

Table 1 Book Contents . 14

Table 2 Document Conventions . 14

Table 3 Message Queue Directory Variable Used by C Clients . 15

Table 4 Message Queue Documentation Set . 16

Table 1-1 JMS-defined Message Header . 25

Table 1-2 C-API Message Body Types . 27

Table 2-1 Locations of C-API Libraries and Header Files . 44

Table 2-2 Preprocessor Definitions for Supporting Fixed-Size Integer Types 44

Table 3-1 Functions Used to Set Properties . 50

Table 3-2 Functions Used to Get Message Properties . 53

Table 3-3 Functions Used to Work with Connections . 54

Table 3-4 Functions Used to Work with Sessions . 57

Table 3-5 Functions Used to Work with Destinations . 59

Table 3-6 Functions Used to Construct Messages . 61

Table 3-7 Functions for Sending Messages . 63

Table 3-8 Functions Used to Receive Messages . 64

Table 3-9 Functions Used to Process Messages . 67

Table 3-10 Functions Used in Handling Errors . 68

Table 3-11 Functions Used to Free Memory . 69

Table 3-12 Thread Model for NSPR GLOBAL Threads . 70

Table 3-13 Handles and Concurrency . 70

Table 4-1 Message Queue C-API Data Type Summary . 74

Table 4-2 Connection Properties . 77

Table 4-3 acknowledgeMode Values . 80

10 Message Queue 3.5 SP1 • C Client Developer’s Guide

Table 4-4 Message Queue C-API Function Summary . 83

Table 4-5 Message Header Properties . 134

Table 4-6 Message Header Properties . 173

Table 4-7 Message Queue C-API Header Files . 183

Table A-1 Message Queue C Client Error Codes . 186

11

List of Procedures

To Compile and Link on Solaris . 45

To Compile and Link on Linux . 46

To Compile on Windows . 46

To Link on Windows . 46

To Set Up a Message Queue C Client to Produce Messages . 48

To Set Up a Message Queue C Client to Consume Messages Synchronously . 49

To Set Up a Message Queue C Client to Consume Messages Asynchronously 49

To Set Properties for a Connection . 51

To Set Message Properties . 52

To Iterate Through a Properties Handle . 53

To Handle Errors in Your Code . 68

12 Message Queue 3.5 SP1 • C Client Developer’s Guide

13

Preface

This book provides programming and reference information for developers
working with Sun Java™ System Message Queue (formerly Sun™ ONE Message
Queue) 3.5 SP1, who want to use the C language binding to the Message Queue
Service to send, receive, and process Message Queue messages.

This preface contains the following sections:

• Audience for This Guide

• Organization of This Guide

• Conventions

• Other Documentation Resources

Audience for This Guide
This guide is meant for developers who want to use the C-API in order to write C
messaging programs that can interact with the Message Queue broker to send and
receive JMS messages.

Organization of This Guide

14 Message Queue 3.5 SP1 • C Client Developer’s Guide

Organization of This Guide
This guide is designed to be read from beginning to end. The following table
briefly describes the contents of each chapter:

Conventions
This section provides information about the conventions used in this document.

Text Conventions

Table 1 Book Contents

Chapter Description

Chapter 1, “Introduction” Introduces the basic concepts, operations, and architecture of
Message Queue messaging. Contains some material on
programming and configuration issues to improve performance and
throughput.

Chapter 2, “Building and
Running Message Queue
C Clients”

Explains how to compile and link Message Queue C clients.
Introduces the Message Queue C-Client sample applications that
are shipped with Message Queue and explains how you set up your
environment to run these examples.

Chapter 3, “Using the C
API”

Explains how you use the C-API to construct, to send, to receive,
and to process messages. This chapter also covers error and
thread handling.

Chapter 4, “Reference” Provides complete reference information for the Message Queue
C-API: data structures and functions. It also lists and describes the
contents of the C-API header files.

Appendix A, “Message
Queue C API Error Codes”

Lists the code and descriptive string returned for errors that are
returned by C library functions.

Table 2 Document Conventions

Format Description

italics Italicized text represents a placeholder. Substitute an appropriate
clause or value where you see italic text. Italicized text is also used
to designate a document title, for emphasis, or for a word or phrase
being introduced.

Conventions

Preface 15

Directory Variable Conventions
Message Queue makes use of three directory variables, one of which is relevant to
C clients. Table 3 describes this variable and explains how it is used on the Solaris,
Windows, and Linux platforms.

monospace Monospace text represents example code, commands that you
enter on the command line, directory, file, or path names, error
message text, class names, method or function names (including
all elements in the signature), package names, reserved words,
and URL’s.

[] Square brackets to indicate optional values in a command line
syntax statement.

ALL CAPS Text in all capitals represents file system types (GIF, TXT, HTML
and so forth), environment variables (IMQ_HOME), or acronyms
(Message Queue, JSP).

Key+Key Simultaneous keystrokes are joined with a plus sign: Ctrl+A means
press both keys simultaneously.

Key-Key Consecutive keystrokes are joined with a hyphen: Esc-S means
press the Esc key, release it, then press the S key.

Table 3 Message Queue Directory Variable Used by C Clients

Variable Description

IMQ_HOME This is generally used in Message Queue documentation to refer to
the Message Queue base directory (root installation directory):

• On Solaris, there is no root Message Queue installation
directory. Therefore, IMQ_HOME is not used in Message Queue
documentation to refer to file locations on Solaris.

• On Windows, the root Message Queue installation directory is
set by the Message Queue installer (by default, as C:\Program
Files\Sun\MessageQueue3).

• On Linux, there is no root Message Queue installation directory.
Therefore, IMQ_HOME is not used in Message Queue
documentation to refer to file locations on Linux.

Table 2 Document Conventions (Continued)

Format Description

Other Documentation Resources

16 Message Queue 3.5 SP1 • C Client Developer’s Guide

In this guide, IMQ_HOME is shown without platform-specific environment variable
notation or syntax (for example, $IMQ_HOME on UNIX). Path names generally use
UNIX directory separator notation (/).

Other Documentation Resources
In addition to this guide, Message Queue provides additional documentation
resources.

The Message Queue Documentation Set
The documents that comprise the Message Queue documentation set are listed in
Table 4 in the order in which you would normally use them.

Table 4 Message Queue Documentation Set

Document Audience Description

Message Queue Installation Guide Developers and
administrators

Explains how to install Message
Queue software on Solaris, Linux, and
Windows platforms.

Message Queue Release Notes Developers and
administrators

Includes descriptions of new features,
limitations, and known bugs, as well
as technical notes.

Message Queue Java Client
Developer’s Guide

Developers Provides a quick-start tutorial and
programming information for
developers of Java client programs
using the Message Queue
implementation of the JMS or
SOAP/JAXM APIs.

Message Queue Administration
Guide

Administrators, also
recommended for
developers

Provides background and information
needed to perform administration
tasks using Message Queue
administration tools.

Message Queue C Client
Developer’s Guide

Developers Provides programming and reference
documentation for developers of
Message Queue C client programs.

Other Documentation Resources

Preface 17

Online Help
Message Queue 3.5 SP1 includes command-line utilities for performing Message
Queue message service administration tasks. To access the online help for these
utilities, see the Message Queue Administration Guide.

Message Queue 3.5 SP1 also includes a graphical user interface (GUI)
administration tool, the Administration Console (imqadmin). Context sensitive
online help is included in the Administration Console.

Example Client Applications
A number of example applications that provide sample client application code are
included in a directory that depends upon the operating system (see the Message
Queue Administration Guide).

Sample applications that illustrate the C-API are listed and described in Chapter 2,
“Building and Running Message Queue C Clients” on page 43.

See the README file located in that directory for guidance on how to run the
sample programs.

The Java Message Service (JMS) Specification
The JMS specification can be found at the following location:

http://java.sun.com/products/jms/docs.html

The specification includes sample JMS Java client code.

http://java.sun.com/products/jms/docs.html

Related Third-Party Web Site References

18 Message Queue 3.5 SP1 • C Client Developer’s Guide

Related Third-Party Web Site References
Third-party URLs are referenced in this document and provide additional, related
information.

NOTE Sun is not responsible for the availability of third-party Web sites
mentioned in this document. Sun does not endorse and is not
responsible or liable for any content, advertising, products, or other
materials that are available on or through such sites or resources.
Sun will not be responsible or liable for any actual or alleged
damage or loss caused by or in connection with the use of or reliance
on any such content, goods, or services that are available on or
through such sites or resources.

19

Chapter 1

Introduction

This chapter provides an overall introduction to Sun Java™ System Message
Queue 3.5 SP1 (formerly Sun™ ONE Message Queue) and to JMS concepts and
programming issues of interest to developers. It is written specifically for the C
developer who wants to interface with a Message Queue Message Service in order
to send messages to and receive messages from another Message Queue client.
Message Queue clients can reside on the same or on different platforms. The
chapter covers the following topics:

• “What Is Message Queue?” on page 19

• “Message Queue Messaging System Architecture” on page 22

• “The JMS Programming Model” on page 24

• “Client Design Issues” on page 29

• “Configuring Connections” on page 38

• “Managing Flow Control” on page 40

What Is Message Queue?
The Message Queue product is a standards-based solution to the problem of
reliable, asynchronous messaging for distributed applications. Message Queue is
an enterprise messaging system that implements the Java™ Message Service (JMS)
open standard: it is a JMS provider.

What Is Message Queue?

20 Message Queue 3.5 SP1 • C Client Developer’s Guide

With Message Queue software, processes running on different platforms and
operating systems can connect to a common Message Queue message server
(broker) to send and receive information. Application developers are free to focus
on the business logic of their applications, rather than on the low-level details of
how their applications communicate across a network. Developers can use two
programming interfaces to establish a connection to the broker, and send or receive
messages:

• C clients use the API described in this manual to send messages to and retrieve
messages from a Message Queue broker.

• Java clients use the Java API, described in the Message Queue Java Client
Developer’s Guide, to send messages to and receive messages from a Message
Queue broker.

Message Queue administrators can use a variety of tools to set up destinations on
the broker and to configure the broker in response to performance and reliability
requirements. Administrative functions and tools are described in the Message
Queue Administration Guide.

Message Queue Features
Message Queue has features that exceed the minimum requirements of the JMS
specification. Among these features are the following:

Centralized administration Provides both command-line and GUI tools for
administering a Message Queue message service and managing
application-specific aspects of messaging, such as destinations and security.

Scalable message service Allows you to service increasing numbers of JMS
clients (components or applications) by balancing the load among a number of
Message Queue message service components (brokers) working in tandem
(multi-broker cluster).

Tunable performance Lets you increase performance of the Message Queue
message service when less reliability of delivery is acceptable.

Multiple transports Supports the ability of JMS clients to communicate with each
other over a number of different transports and using secure (SSL) connections.

C-API Allows you to integrate legacy systems into a Message Queue messaging
system and to create light-weight clients that do not require an underlying JVM.

See the Message Queue Release Notes for documentation of JMS compliance-related
issues.

What Is Message Queue?

Chapter 1 Introduction 21

Java and C Interfaces
While this manual revisits a number of topics presented in the Message Queue Java
Client Developer’s Guide, there are differences between the two interfaces and the
JMS features they support. Some of these differences are summarized below, but
this list is not exhaustive. If you plan to write a Message Queue C client, you
should read this manual in full.

The C interface, compared to the Java interface

• Does not support the use of administered objects.

• Supports only two message types (text and bytes); it does not support map,
stream, or object message types.

• Does not support consumer-based flow control

• Does not support queue browsers.

• Does not support JMS application server facilities (ConnectionConsumer,
distributed transactions).

• Does not support distributed transactions.

• Does not support receiving SOAP messages sent by a Message Queue Java
client.

Like the Java interface, the C interface does support the following:

• Publish/subscribe and point-to-point connections.

• Synchronous and asynchronous receives.

• CLIENT, AUTO, and DUPS_OK acknowledgement modes.

• Local transactions

• Session recover

• Temporary topics and queues

• Message selectors

Message Queue Messaging System Architecture

22 Message Queue 3.5 SP1 • C Client Developer’s Guide

Product Editions
The Message Queue product is available in two editions: Platform and
Enterprise—each corresponding to a different licensed capacity. The C-API is only
supported on the Enterprise Edition. For more information about these editions
and for instructions on how you upgrade Message Queue from one edition to
another, see the the Message Queue Installation Guide.

Message Queue Messaging System Architecture
This section briefly describes the main parts of a Message Queue messaging
system. While as a developer, you do not need to be familiar with the details of all
of these parts or how they interact, a high-level understanding of the basic
architecture will help you understand features of the system that impact Message
Queue C client design and development.

The main parts of a Message Queue messaging system, shown in Figure 1-1, are the
following:

Message Queue Client A Message Queue client can be written in C or Java, and
it can send and/or receive Message Queue messages.

Message Queue message server The Message Queue message server is the heart
of a messaging system. It consists of a broker that provides delivery services for the
system. These services include connections to C or Java clients, message routing
and delivery, persistence, security, and logging. The message server also maintains
physical destinations to which clients send messages, and from which the
messages are delivered to consuming clients. The Message Queue message server
is described in detail in the Message Queue Administration Guide.

Message Queue client runtime The Message Queue C and Java client runtimes
provide Message Queue C and Java clients respectively with an interface to the
Message Queue message server. They support all operations needed for clients to
send messages to destinations and to receive messages from such destinations. The
Message Queue C client runtime is described in detail in “Message Production and
Consumption” on page 33.

Message Queue Messaging System Architecture

Chapter 1 Introduction 23

Figure 1-1 Message Queue System Architecture

Message Queue message service The Message Queue message service includes
one or more Message Queue servers and Message Queue client runtime support.

Message QueueAdministration Message Queue provides a number of
administrative tools for managing a Message Queue messaging system. These tools
are used to manage the message server, security, messaging application resources,
and persistent data. These tools are generally used by Message Queue
administrators and are described in the Message Queue Administration Guide.

Message Queue Messaging System The Message Queue messaging system
includes the Message Queue message service and Message Queue administration.

Java Client

Message Queue
 Message Server

C Client

Message Queue
Java Client

Runtime

Message
Queue

Administration

Broker

Destinations

Message Queue Messaging System

Message Queue
C Client
Runtime

The JMS Programming Model

24 Message Queue 3.5 SP1 • C Client Developer’s Guide

The JMS Programming Model
This section briefly describes the programming model of the JMS specification. The
JMS programming model is the foundation for the design of a Message Queue C
client. Although the C-API does not provide an exhaustive implementation of the
JMS programming model, this section is provided as a review of the most
important concepts and terminology (defined for that model), which also apply to
Message Queue C client design.

In the JMS programming model, JMS clients (components or applications) interact
using a JMS application programming interface (API) to send and receive
messages. In this context, it is important to understand that a C client’s interface is
specific to the Message Queue provider and cannot be used with other JMS
providers. A messaging application that includes a C client cannot be handled by
another JMS provider.

This section introduces the C data types and functions used by a Message Queue C
client for delivery of messages. The main data types, which are opaque to the user
and accessible only through the C functions, are shown in Figure 1-2 and described
in the following sections.

Message
In the Message Queue product, data is exchanged using JMS messages—messages
that conform to the JMS specification. According to the JMS specification, a
message is composed of three parts: a header, properties, and a body.

Properties are optional—they provide values that clients can use to filter messages.
A body is also optional—it contains the actual data to be exchanged.

The JMS Programming Model

Chapter 1 Introduction 25

Figure 1-2 JMS Programming Objects

Header
A header is required of every message. Header fields contain values used for
routing and identifying messages.

Some header field values are set automatically by Message Queue during the
process of producing and delivering a message, some depend on settings specified
when message producers send a message, and others are set on a
message-by-message basis by the client using the MQSetMessageHeader function.
The following table lists the header fields defined (and required) by JMS and their
corresponding names, as defined by the C-API.

Table 1-1 JMS-defined Message Header

JMS Message Header
Field

C-API Message Header Property Name

JMSDestination Defined implicitly when a producer sends a message to a
destination, or when a consumer receives a message from a
destination.

JMSDeliveryMode MQ_PERSISTENT_HEADER_PROPERTY

JMSExpiration MQ_EXPIRATION_HEADER_PROPERTY

JMSPriority MQ_PRIORITY_HEADER_PROPERTY

JMSMessageID MQ_MESSAGE_ID_HEADER_PROPERTY

Connection

Sessions

MessageProducers

MessageConsumers

MessageListener

Message Queue
Message Server

Message
Routing and

Delivery

Physical Destinations

Message

Message Queue C Client

Destinations

The JMS Programming Model

26 Message Queue 3.5 SP1 • C Client Developer’s Guide

For additional information about each property type and the agent who sets it, see
Table 4-6 on page 173.

Properties
When data is sent between two processes, other information besides the payload
data can be sent with it. These descriptive fields, or properties, can provide
additional information about the data; for example, which process created it, the
time it was created, and information that uniquely identifies the structure of each
piece of data. Properties (which can be thought of as an extension of the header)
consist of property name and property value pairs, as specified by a C client. A C
client can set message properties when initializing a handle to a properties data
type and passing that handle to the MQSetMessageProperties function.

Having registered an interest in a particular destination, consuming clients can
fine-tune their selection by specifying certain property values as selection criteria.
For instance, a client might indicate an interest in Payroll messages (rather than
Facilities) but only Payroll items concerning part-time employees located in New
Jersey. Messages that do not meet the specified criteria are not delivered to the
consumer.

Message Body Types
JMS specifies six classes (or types) of messages. The C-API supports only two of
these types, as described in Table 1-2. If a Message Queue C client expects to
receive messages from a Message Queue Java client, it will be unable to process
messages whose body types are other than those described in Table 1-2.

JMSTimestamp MQ_TIMESTAMP_HEADER_PROPERTY

JMSRedelivered MQ_REDELIVERED_HEADER_PROPERTY

JMSCorrelationID MQ_CORRELATION_ID_HEADER_PROPERTY

JMSReplyTo Set by the MQSetMessageReplyTo function, and obtained by the
MQGetMessageReplyTo function.

JMSType MQ_MESSAGE_TYPE_HEADER_PROPERTY

Table 1-1 JMS-defined Message Header (Continued)

JMS Message Header
Field

C-API Message Header Property Name

The JMS Programming Model

Chapter 1 Introduction 27

Destination
A destination refers to where a message is destined to go. A physical destination is a
JMS message service entity (a location on the broker) to which producers send
messages and from which consumers receive messages. The message service
provides the routing and delivery for messages sent to a physical destination.

When a Message Queue C client creates a destination programmatically using the
MQCreateDestination function, a destination name must be specified. The function
initializes a handle to a destination data type that holds the identity (name) of the
destination. The important thing to remember is that this function does not create
the physical destination on the broker; this must be done by the administrator. The
destination that is created programmatically however must have the exact same
name and type as the physical destination created on the broker.

Destination names starting with “mq” are reserved and should not be used by
client programs.

Connection
A connection is a JMS client’s configured connection to a Message Queue message
service. Both allocation of communication resources and authentication of a client
take place when a connection is created. Hence it is a relatively heavy-weight
object, and most clients do all their messaging with a single connection. A
connection is used to create sessions.

Session
A session is a single-threaded context for producing and consuming messages.
While there is no restriction on the number of threads that can use a session, the
session should not be used concurrently by multiple threads. It is used to create the
message producers and consumers that send and receive messages, and defines a

Table 1-2 C-API Message Body Types

Type Description

TextMessage A message whose body contains a Java string, for example an
XML message.

BytesMessage A message whose body contains a stream of uninterpreted bytes.

The JMS Programming Model

28 Message Queue 3.5 SP1 • C Client Developer’s Guide

serial order for the messages it consumes and the messages it produces. A session
supports reliable delivery through a number of acknowledgement options or by
using transactions. A transacted session can combine a series of sequential
operations into a single transaction that can span a number of producers and
consumers. You need to create a session before you can create its consumers or
producers.

Message Producer
A client uses a message producer to send messages to a physical destination. You can
create a message producer with a specified destination or you can specify a
destination when you send each message. You can also specify a delivery mode,
priority, and time-to-live for a message producer that govern all messages sent by a
producer, except when explicitly over-ridden.

Message Consumer
A client uses a message consumer to receive messages from a physical destination. A
message consumer can have a message selector that allows the message service to
deliver only those messages to the consumer that match the selection criteria. A
message consumer can support either synchronous or asynchronous consumption
of messages (see “Synchronous and Asynchronous Consumption” on page 36).

Message Listener
To support asynchronous communication, a Message Queue C client must write a
callback function of type MQMessageListenerFunc. You pass a pointer to this
function when you create an asynchronous message consumer. A client is said to
consume a message when a session thread invokes this callback function.

Client Design Issues

Chapter 1 Introduction 29

Client Design Issues
This section describes a number of messaging issues that impact Message Queue C
client design.

Programming Domains
When you create a session, you can specify one of two message delivery models:
point-to-point and publish/subscribe. You specify the message delivery model for
a C-Message Queue client by specifying either MQ_QUEUE_DESTINATION or
MQ_TOPIC_DESTINATION for the destinationType parameter when you call the
MQCreateDestination function.

Point-to-Point (Queue Destinations) A message is delivered from a producer to
one consumer. In this delivery model, the destination type is a queue. Messages are
first delivered to the queue destination, then delivered from the queue, one at a
time, depending on the queue’s delivery policy, to one of the consumers registered
for the queue. Any number of producers can send messages to a queue destination,
but each message is guaranteed to be delivered to—and successfully consumed
by—only one consumer. If there are no consumers registered for a queue
destination, the queue holds messages it receives, and delivers them when a
consumer registers for the queue.

Publish/Subscribe (Topic destinations) A message is delivered from a producer
to any number of consumers. In this delivery model, the destination type is a topic.
Messages are first delivered to the topic destination, then delivered to all active
consumers that have subscribed to the topic. Any number of producers can send
messages to a topic destination, and each message can be delivered to any number
of subscribed consumers. Topic destinations also support the notion of durable
subscriptions. A durable subscription represents a durable consumer that is
registered with the topic destination but can be inactive at the time that messages
are delivered. When the consumer subsequently becomes active, it receives the
messages. If there are no consumers registered for a topic destination, the topic
does not hold messages it receives, unless it has durable subscriptions for inactive
consumers.

Client Design Issues

30 Message Queue 3.5 SP1 • C Client Developer’s Guide

Client Identifiers
Clients need to be identified to a broker both for authentication purposes and to
keep track of durable subscriptions.

For authentication purposes, you need to provide a user name and password. The
administrator is responsible for setting up a user repository against which the
broker can validate this name and password. See the Message Queue Administration
Guide for more information.

To keep track of durable subscriptions, Message Queue uses a unique client
identifier that associates a client’s connection with state information maintained by
the message service on behalf of the client. By definition, a client identifier is
unique, and applies to only one connection at a time.

Client identifiers are used in combination with a durable subscription name (see
“Publish/Subscribe (Topic destinations)” on page 29) to make sure that each
durable subscription corresponds to only one user. If a durable subscriber is
inactive at the time that messages are delivered to a topic destination, the broker
retains messages for that subscriber and delivers them when the subscriber once
again becomes active. The only way for the broker to identify the subscriber is
through its client ID. You can specify a client ID using the clientID parameter to
the MQCreateConnection function.

Reliable Messaging
Reliable messaging depends on a message’s delivery mode and the use of
transactions or acknowledgements to ensure the reliability of persistent messages.

Delivery Mode
JMS defines two delivery modes: persistent and non-persistent:

• Persistent messages are guaranteed to be delivered and successfully consumed
once and only once. Reliability is at a premium for such messages.

• Non-persistent messages are guaranteed to be delivered at most once.
Reliability is not a major concern for such messages.

A message’s delivery mode is set to be persistent by default. You can override this
setting by using the MQSendMessageExt function and setting the delivery mode to
MQ_NONPERSISTENT_DELIVERY.

Client Design Issues

Chapter 1 Introduction 31

Reliable messaging guarantees the delivery of persistent messages to and from a
destination. There are two aspects of assuring reliability in the case of persistent
messages. One is to assure that their delivery to and from a message service is
successful. The other is to assure that the message service does not lose these
messages before delivering them to consumers.

Acknowledgements and Transactions
You can ensure reliable messaging by using either of two general mechanisms
supported by a Message Queue session: acknowledgements or transactions.

Acknowledgements
Both messages that are sent and messages that are received can be acknowledged.

In the case of message producers, if you want the broker to acknowledge its having
received a non-persistent message (to its physical destination), you must set the
broker’s MQ_ACK_ON_PRODUCE_PROPERTY to MQ_TRUE. If you do so, the sending
function will return only after the broker has acknowledged receipt of the message.
By default, the broker acknowledges receipt of persistent messages.

In the case of message consumers, you can specify one of several acknowledge
modes for the consuming session when you create that session.
Acknowledgements on the consuming side means that the client runtime
acknowledges delivery and consumption of all messages from a physical
destination before the message service deletes the message from that destination.
For more information about a session’s acknowledge modes, see “Acknowledge
Modes” on page 80 and the description of the MQ_ACK_ON_ACKNOWLEDGE_PROPERTY
in Table 4-2 on page 77.

Transactions
A session can also be configured as transacted, in which case work spanning a
session’s producers or consumers is combined into an atomic unit—a transaction.
The Message Queue-C API provides functions for committing, or rolling back a
transaction. (See “Transacted Sessions” on page 58 for more information.) The C
runtime does not support distributed transactions, that is a transaction cannot
include operations involving other resource managers, such as database systems.

As messages are produced or consumed within a transaction, the broker tracks the
various sends and receives, completing these operations only when the client
issues a call to commit the transaction. If a particular send or receive operation
within the transaction fails, an exception is raised. The application can handle the

Client Design Issues

32 Message Queue 3.5 SP1 • C Client Developer’s Guide

exception by ignoring it, retrying the operation, or rolling back the entire
transaction. When a transaction is committed, all the successful operations are
completed. When a transaction is rolled back, all successful operations are
cancelled.

The scope of a transaction is always a single session. That is, one or more producer
or consumer operations performed in the context of a single session can be
grouped into a single local transaction.

Since transactions span only a single session, you cannot have an end-to-end
transaction encompassing both the production and consumption of a message. (In
other words, the delivery of a message to a destination and the subsequent delivery
of the message to a client cannot be placed in a single transaction.)

Persistent Storage
The other important aspect of reliability is assuring that once persistent messages
are delivered to their destinations, the message service does not lose them before
they are delivered to consumers. This means that upon delivery of a persistent
message to its destination, the message service must place it in a persistent data
store. If the message service goes down for any reason, it can recover the message
and deliver it to the appropriate consumers. While this adds overhead to message
delivery, it also adds reliability.

A message service must also store durable subscriptions. This is because to
guarantee delivery in the case of topic destinations, it is not sufficient to recover
only persistent messages. The message service must also recover information about
durable subscriptions for a topic, otherwise it would not be able to deliver a
message to durable consumers when they become active.

Messaging applications that are concerned about guaranteeing delivery of
persistent messages must either employ queue destinations or employ durable
subscriptions to topic destinations.

The way in which the message service handles persistent messages depends upon
a session’s delivery mode. For more information, see “Delivery Mode” on page 30.

Performance Trade-offs
The more reliable the delivery of messages, the more overhead and bandwidth are
required to achieve it. The trade-off between reliability and performance is a
significant design consideration. You can maximize performance and throughput by
choosing to produce and consume non-persistent messages. On the other hand,
you can maximize reliability by producing and consuming persistent messages

Client Design Issues

Chapter 1 Introduction 33

using a transacted session. Between these extremes are a number of options,
depending on the needs of an application, including the use of Message
Queue-specific persistence and acknowledgement properties (see “Managing Flow
Control” on page 40.).

Message Production and Consumption
The Message Queue C client runtime provides Message Queue C clients with an
interface to the Message Queue message server—it supplies these clients with all
the data types and functions introduced in “The JMS Programming Model” on
page 24. It supports all operations needed for clients to send messages to
destinations and to receive messages from such destinations.

This section provides a high level description of how the Message Queue C client
runtime supports message production and consumption. Figure 1-3 on page 33
illustrates how message production and consumption involve an interaction
between clients and the Message Queue C client runtime, while message delivery
involves an interaction between the Message Queue C client runtime and Message
Queue message servers.

Figure 1-3 Messaging Operations

Once a client has created a connection to a broker, created a session as a
single-threaded context for message delivery, and created a message producer or a
message consumer to access particular destinations in a message server,
production (sending) or consumption (receiving) of messages can proceed.

Message Queue
 Message Server

Message Queue
C Client Runtime

Broker
Brokers

Destinations

Message
delivery

Message Queue
 C Client

Message
production

Message
consumption

Client Design Issues

34 Message Queue 3.5 SP1 • C Client Developer’s Guide

Message Production
In message production, a message is created by the client, and sent over a
connection to a destination on a broker. If the message delivery mode has been set
to persistent (guaranteed delivery, once and only once), the client thread blocks
until the broker acknowledges that the message was delivered to its destination
and stored in the broker’s persistent data store. If the message is not persistent, no
broker acknowledgement is returned by the broker, and the client thread does not
block.

In the case of persistent messages, to increase throughput on sends, you can set the
connection to not require broker acknowledgement (see “Connection Properties”
on page 76), but this eliminates the guarantee that persistent messages are reliably
delivered.

Message Consumption
Message consumption is more complex than production. Messages arriving at a
destination on a broker are delivered over a connection to the Message Queue
client runtime under the following conditions:

• The client has set up a consumer for the given destination.

• The selection criteria for the consumer, if any, match that of messages arriving
at the given destination.

• The connection has been told to start delivery of messages.

Messages delivered over the connection are distributed to the appropriate Message
Queue sessions where they are queued to be consumed by the appropriate message
consumers, as shown in Figure 1-4.

Client Design Issues

Chapter 1 Introduction 35

Figure 1-4 Message Delivery to Message Queue Client Runtime

Messages are fetched off each session queue one at a time (a session is single
threaded). A message can consumed synchronously or asynchronously. A message
is said to be consumed either when one of the MQReceiveMessage... functions
returns (synchronously) or when the callback function associated with the
asynchronous consumer returns.

When a broker delivers messages to the client runtime, it marks the messages
accordingly, but does not really know if they have been consumed. Therefore, the
broker waits for the client to acknowledge receipt of a message before deleting the
message from the broker’s destination. If a connection fails, and another connection
is subsequently established, the broker will re-deliver all previously delivered but
unconsumed messages, setting their message header
MQ_REDLIEVERED_HEADER_PROPERTY field.

There are three acknowledgment options that you can set for a client session:

• AUTO_ACKNOWLEDGE: the session automatically acknowledges each message
consumed by the client.

• CLIENT_ACKNOWLEDGE: the client explicitly acknowledges after one or more
messages have been consumed. This option gives the client the most control.
This acknowledgement takes place by calling the MQAcknowledgeMessages
function, causing the session to acknowledge all messages that have been
consumed by the session up to that point. (This could include messages
consumed asynchronously by many different message listeners in the session,
independent of the order in which they were consumed.)

Broker

Connection

Destinations

Client
Runtime

Session 3

Session 2

Session 1

Message
Consumers

Client Design Issues

36 Message Queue 3.5 SP1 • C Client Developer’s Guide

• DUPS_OK_ACKNOWLEDGE: the session acknowledges after ten messages have been
consumed (this value is not currently configurable) and doesn’t guarantee that
messages are delivered and consumed only once. Clients use this mode if they
don’t care if messages are processed more than once.

Each of the three acknowledgement options requires a different level of processing
and bandwidth overhead. AUTO_ACKNOWLEDGE consumes the most overhead and
guarantees reliability on a message by message basis, while DUPS_OK_ACKNOWLEDGE
consumes the least overhead, but allows for duplicate delivery of messages.

In the case of the AUTO_ACKNOWLEDGE or CLIENT_ACKNOWLEDGE options, the threads
performing the acknowledgement, or committing a transaction, will block, waiting
for the broker to return an acknowledgement of the client acknowledgement. This
broker acknowledgement guarantees that the broker has deleted the corresponding
persistent message and will not send it twice—which could happen were the client
or broker to fail, or the connection to fail, at the wrong time.

To increase throughput, you can configure the connection to not require broker
acknowledgement of client acknowledgements, but this eliminates the guarantee
that persistent messages are delivered once and only once.

Synchronous and Asynchronous Consumption
There are two ways a Message Queue C client can consume messages: either
synchronously or asynchronously.

In synchronous consumption, a client gets a message by calling one of the
MQReceive... functions. The client thread blocks until the function returns. This
means that if no message is available, the client blocks until a message does become
available or until the receive function times out (if it was called with a time-out
specified). In this model, a client thread can only consume messages one at a time.

NOTE In the DUPS_OK_ACKNOWLEDGE mode, the session does not wait for
broker acknowledgements. This option is used in Message Queue C
clients for which duplicate messages are not a problem. Also, you
can call the MQRecoverSession function to explicitly request
redelivery of messages that have been received but not yet
acknowledged by the client. When redelivering such messages, the
broker will set the header field MQ_REDLIEVERED_HEADER_PROPERTY.

Client Design Issues

Chapter 1 Introduction 37

In asynchronous consumption, a client creates a callback function of type
MQMessageListenerFunc and passes a pointer to it as a parameter to one of the
MQCreateAsync...MessageConsumer functions. A client consumes a message when
the session invokes this function. In this model, the client thread does not block
because the thread listening for and consuming the message belongs to the
Message Queue client runtime.

Message Selection
JMS defines a mechanism by which a message service can perform message
filtering and routing based on criteria placed in message selectors. A producing
client can define application-specific properties for a message, and a consuming
client can indicate its interest in messages using selection criteria based on such
properties. This simplifies the work of the client and eliminates the overhead of
delivering messages to clients that do not need them. However, it adds some
additional overhead to the message service processing the selection criteria.
Message selector syntax and semantics are outlined in the JMS specification.

Use the MQSetMessageProperties function to set properties that can be used in
message filtering.

Message Order and Priority
In general, all messages sent to a destination by a single session are guaranteed to
be delivered to a consumer in the order they were sent. However, if they are
assigned different priorities, the messaging system will attempt to deliver higher
priority messages first.

Beyond this, the ordering of messages consumed by a client can have only a rough
relationship to the order in which they were produced. This is because the delivery
of messages to a number of destinations and the delivery from those destinations
can depend on a number of issues that affect timing, such as the order in which the
messages are sent, the sessions from which they are sent, whether the messages are
persistent, the lifetime of the messages, the priority of the messages, the message
delivery policy of queue destinations (see the Message Queue Administration Guide),
and message service availability.

Configuring Connections

38 Message Queue 3.5 SP1 • C Client Developer’s Guide

Configuring Connections
The Message Queue client runtime supports all the operations described in
“Message Production and Consumption” on page 33. It also provides connection
properties that you can set to specify a broker to connect to, configure a secure
connection, optimize resources, performance, and message throughput.

Connection properties can be grouped into the following categories:

• Connection Handling

• Reliability

• Flow Control

• Security

• Version Information

Each of these categories is discussed in the following sections with a description of
the properties that you can set to configure the behavior of the broker. All broker
properties are described in detail in Table 4-2 on page 77.

Connection Handling
Connections to a message server are specified by a broker host name and port
number.

• Set MQ_BROKER_NAME_PROPERTY to specify the broker name.

• Set MQ_BROKER_PORT_PROPERTY to specify the broker port.

• Set the connection property MQ_CONNECTION_TYPE_PROPERTY to specify the
underlying transport protocol. Possible values are TCP or SSL.

Currently, the C-API does not support auto-reconnect or failover, which allows the
client runtime to automatically reconnect to a broker if a connection fails.

Configuring Connections

Chapter 1 Introduction 39

Reliability
Two connection properties enable the acknowledgement of messages sent to the
broker and of messages received from the broker. These are described in “Message
Production and Consumption” on page 33. In addition to setting these properties,
you can also set MQ_ACK_TIMEOUT_PROPERTY, which determines the maximum time
that the client runtime will wait for any broker acknowledgement before throwing
an exception.

Flow Control
A number of connection properties determine the use and flow of Message Queue
control messages by the client runtime. Messages sent and received by Message
Queue clients and Message Queue control messages pass over the same
client-broker connection. Because of this, delays may occur in the delivery of
control messages, such as broker acknowledgements, if these are held up by the
delivery of JMS messages. To prevent this type of congestion, Message Queue
meters the flow of JMS messages across a connection.

• Set MQ_CONNECTION_FLOW_COUNT_PROPERTY to specify the number of Message
Queue messages in a metered batch. When this number of messages is
delivered to the client runtime, delivery is temporarily suspended, allowing
any control messages that had been held up to be delivered. Message delivery
is resumed upon notification by the client runtime, and continues until the
count is again reached.

• MQ_CONNECTION_FLOW_LIMIT_PROPERTY specifies the maximum number of
unconsumed messages that can be delivered to a client runtime. When the
number of messages reaches this limit, delivery stops and resumes only when
the number of unconsumed messages drops below the specified limit. This
helps a consuming client that is taking a long time to process messages from
being overwhelmed with pending messages that might cause it to run out of
memory.

• MQ_CONNECTION_FLOW_LIMIT_ENABLED_PROPERTY specifies whether the value
MQ_CONNECTION_FLOW_LIMIT_PROPERTY is used to control message flow.

The C API does not currently support consumer-level flow control.

Managing Flow Control

40 Message Queue 3.5 SP1 • C Client Developer’s Guide

Security
The C-API supports the SSL transport protocol, which supports SSL v2, SSL v3,
and TLS standards. For more information on how to set up and create a secure
connection, see “Working With Secure Connections” on page 56 for more
information.

Version Information
Properties that specify the version of the Message Queue product are set by the C
client runtime and can be read using the MQGetMetaData function.

Managing Flow Control
Because of the mechanisms by which messages are delivered to and from a broker,
and because of the Message Queue control messages used to assure reliable
delivery, there are a number of factors that affect reliability and performance.
These factors include: delivery mode, acknowledgement mode, message flow
metering, and message flow limits.

Although these factors are quite distinct, their interactions can complicate the task
of balancing reliability with performance. Specifically, because client messages and
Message Queue control messages flow across the same connection between the
client and the broker, you need to understand how to balance the requirement for
reliability with the need for throughput. This section describes how you can
balance these requirements to manage flow control.

Delivery Mode
The delivery mode specifies whether a message is to be delivered at most once
(non-persistent) or once and only once (persistent). These different reliability
requirements imply different degrees of overhead. Specifically, the management of
persistent messages requires greater use of broker control messages flowing across
a connection.

Managing Flow Control

Chapter 1 Introduction 41

Acknowledgement Mode
The setting of the acknowledgement mode impacts reliability and affects the
number of client and broker acknowledgement messages passing over a
connection:

• In the AUTO_ACKNOWLEDGE mode, a client message-consumed acknowledgement
and broker acknowledgement (a confirmation of the client message-consumed
acknowledgement) are required for each consumed message, and the delivery
thread blocks waiting for the broker acknowledgement.

In this mode, with a synchronous receiver, it is possible for a message to be
partially processed, but lost, if the system fails before the message is
consumed. For increased reliability, you can use the CLIENT_ACKNOWLEDGE
mode or a transacted session to guarantee no message is lost if the system fails.

• In the CLIENT_ACKNOWLEDGE mode client message-consumed
acknowledgements and broker acknowledgements are batched (rather than
being sent one-by-one). This conserves connection bandwidth and generally
reduces the overhead for broker acknowledgements, as compared to the
AUTO_ACKNOWLEDGE mode.

• In the DUPS_OK_ACKNOWLEDGE mode, throughput is improved even further,
because client acknowledgements are batched and because the client thread
does not block (broker acknowledgements are not requested). However, in this
case, the same message can be delivered and consumed more than once.

Managing Flow Control

42 Message Queue 3.5 SP1 • C Client Developer’s Guide

Message Flow Metering
The connection property MQ_CONNECTION_FLOW_COUNT_PROPERTY governs the
batching of messages so that only a set number are delivered; when the batch has
been delivered, delivery of JMS messages is suspended, and pending control
messages are delivered. This cycle repeats, as other batches of JMS messages are
delivered, followed by queued-up control messages.

You should keep the value of MQ_CONNECTION_FLOW_COUNT_PROPERTY low if the
client is doing operations that require many responses from the broker; for
example, the client is using the CLIENT_ACKNOWLEDGE or AUTO_ACKNOWLEDGE modes,
persistent messages, transactions, or if the client is adding or removing consumers.
If, on the other hand, the client has only simple consumers on a connection using
DUPS_OK mode, you can increase the value of
MQ_CONNECTION_FLOW_COUNT_PROPERTY without compromising performance.

43

Chapter 2

Building and Running Message
Queue C Clients

This chapter provides information about building Message Queue C client
applications and making sure these programs have adequate run-time support. It
also lists the sample Message Queue C Client programs that are included with the
Message Queue installation, and explains how you should run them

For information on how to use the API, see Chapter 3, “Using the C API” on
page 47. For complete reference information, please see Chapter 4, “Reference” on
page 73.

Getting Ready
Message Queue provides several sample Message Queue C-client applications that
illustrate how to send and receive messages. These sample applications are
installed in the ...demo\C directory. Before you run these applications, read
through the next two sections to make sure that you understand the general
procedure and requirements for building and running Message Queue C-Client
programs.

Building Programs
This section explains how you build Message Queue programs from C source
files.You should already be familiar with writing and compiling C applications.

Getting Ready

44 Message Queue 3.5 SP1 • C Client Developer’s Guide

The Message Queue C client includes the header files (mqcrt.h), the C client
runtime shared library mqcrt, and its direct dependency libraries. When writing a
Message Queue C client application, you should include the header files and link
to the runtime library mqcrt. Note that the Message Queue C-API runtime library
is a 32-bit library. For each platform, Table 2-1 lists the installed location of the
header files and the supporting runtime library.

You should use the appropriate compiler for your platform, as described in the
Message Queue Installation Guide.

When compiling a Message Queue C client application, you need to specify the
preprocessor definition for supporting Message Queue fixed-size integer types.
The preprocessor definition for each platform is shown in Table 2-2.

When building a Message Queue C client application, you should be aware that the
Message Queue C runtime library is a multi-threaded library and requires C++
runtime library support:

• On Solaris, this support is provided by the Sun WorkShop 6 libCrun C++
runtime library.

• On LINUX, this support is provided by the gcc/g++ libstdc++ runtime
library.

Table 2-1 Locations of C-API Libraries and Header Files

Platform Library Header File

Solaris /opt/SUNWimq/lib /opt/SUNWimq/include

Linux /opt/imq/lib /opt/imq/include

Windows IMQ_HOME\lib IMQ_HOME\include

Table 2-2 Preprocessor Definitions for Supporting Fixed-Size Integer Types

Platform Definition

Solaris SOLARIS

Linux LINUX

Windows WIN32

Working With the Sample C-Client Programs

Chapter 2 Building and Running Message Queue C Clients 45

• On Windows, this support is provided by Microsoft Windows Visual C++
runtime library msvcrt.

Providing Runtime Support
To run a Message Queue C-client application, you need to make sure that the
application can find the mqcrt shared library. Please consult the documentation for
your compiler to determine the best way to do this.

You also need to make sure that the appropriate C++ runtime support library, as
described in “Building Programs” on page 43 is available.

On Windows you also need to make sure that your application can find the
dependent libraries NSPR and NSS that are shipped with Message Queue. These
may be different from the NSPR and NSS libraries that are installed on your system
to support the Netscape browser and the Application Server. The mqcrt shared
library depends directly on the NSPR and NSS versions installed with Message
Queue. If a different version of the libraries are loaded at runtime, you may get a
runtime error specifying that the libraries being used are incompatible.

Working With the Sample C-Client Programs
This section describes the sample C-Client programs that are installed with
Message Queue and explains how you should build them and run them.

Building the Sample Programs
The following commands are meant to illustrate the process of building and
linking the sample application Producer.c on the Solaris, Linux, and Windows
platforms. The commands include the preprocessor definitions needed to support
fixed-size integer types. For options used to support multithreading, please consult
documentation for your compiler.

➤ To Compile and Link on Solaris
CC -compat=5 -mt -DSOLARIS -I/opt/SUNWimq/include -o Producer \

-L/opt/SUNWimq/lib -lmqcrt Producer.c

Working With the Sample C-Client Programs

46 Message Queue 3.5 SP1 • C Client Developer’s Guide

➤ To Compile and Link on Linux
g++ -DLINUX -D REENTRANT -I/opt/imq/include -o Producer \

-L/opt/imq/lib -lmqcrt Producer.c

➤ To Compile on Windows
cl /c /MD -DWIN32 -I%IMQ_HOME%\include Producer.c

➤ To Link on Windows
link Producer.obj /NODEFAULTLIB msvcrt.lib \

/LIBPATH:%IMQ_HOME%\lib mqcrt.lib

Running the Sample Programs
Sample C client program files are installed in the ...demo\C directory. These
include the following:

• Producer.c and Consumer .c, which illustrate how you send a message and
receive it synchronously.

• ProducerAsyncConsumer.c, which illustrates how you send a message and
receive it asynchronously.

• RequestReply.c, which illustrates how you send and respond to a message
that specifies a reply-to destination.

The sample programs expect you to specify a destination as a command-line
argument. You can either create one or more physical destinations on the broker by
using the administration utility imqcmd before running the sample programs, or
you can use the broker’s auto-creation feature by specifying any destination name
on the command line used to start the program.

Before you run any sample programs, you should start the broker. You can display
output describing the command-line options for each program by starting the
program with the -help option.

The …demo\C directory also includes a README file that explains how you should
run these samples. For example, the following command, runs the program
Producer. It specifies that the program should connect to the broker running on the
host MyHost and port 8585, and that it should send a message to the destination My
Topic:

C: Producer -h MyHost -p 8585 -d MyTopic

47

Chapter 3

Using the C API

This chapter describes how to use C functions to accomplish specific tasks and
provides brief code samples to illustrate some of these tasks. (For clarity, the code
examples shown in the following sections omit a function call status check.)

Following a brief discussion of overall design and a summary of client tasks, the
topics covered include the following:

• “Message Queue C Client Setup Operations” on page 48

• “Working With Properties” on page 50

• “Working With Connections” on page 54

• “Working With Sessions and Destinations” on page 57

• “Working With Messages” on page 61

• “Error Handling” on page 68

• “Memory Management” on page 69

• “Thread Management” on page 70

• “Logging” on page 72

This chapter does not provide exhaustive information about each function. For
detailed function information, please see the description of that function in
Chapter 4, “Reference” on page 73.

For information on building Message Queue C programs, see Chapter 2, “Building
and Running Message Queue C Clients” on page 43.

Message Queue C Client Setup Operations

48 Message Queue 3.5 SP1 • C Client Developer’s Guide

Message Queue C Client Setup Operations
The general procedures for producing and consuming messages are introduced
below. The procedures have a number of common steps which need not be
duplicated if a client is both producing and consuming messages.

➤ To Set Up a Message Queue C Client to Produce Messages

1. Call the MQCreateProperties function to get a handle to a properties object.

2. Use one or more of the MQSet... Property functions to set connection
properties that specify the name of the broker, its port number, and its
behavior.

3. Use the MQCreateConnection function to create a connection.

4. Use the MQCreateSession function to create a session and to specify its
acknowledge mode and its receive mode. If the session will be used only for
producing messages, use the receive mode MQ_SESSION_SYNC_RECEIVE to avoid
creating a thread for asynchronous message delivery.

5. Use the MQCreateDestination function to specify a physical destination on the
broker. The destination name you specify must be the same as the name of the
physical destination.

6. Use the MQCreateMessageProducer function or the
MQCreateMessageProducerForDestination function to create a message
producer. (If you plan to send a lot of messages to the same destination, you
should use the MQCreateMessageProducerForDestination function.)

7. Use the MQCreateBytesMessage function or the MQCreateTextMessage function
to get a newly created message handle.

8. Call the MQCreateProperties function to get a handle to a properties object
that will describe the message header properties. This is only required if you
want to set a message header property.

9. Use one or more of the MQSet... Property functions to set properties that
specify the value of the message header properties you want to set.

10. Use the MQSetMessageHeaders function, passing a handle to the properties
object you created in Step 8 and Step 9.

11. Repeat Step 8 if you want to define custom message properties, and then use
the MQSetMessageProperties function to set these properties for your message.

Message Queue C Client Setup Operations

Chapter 3 Using the C API 49

12. Use the MQSetMessageReplyTo function if you want to specify a destination
where replies to the message are to be sent.

13. Use one of the MQSendMessage... functions to send the message.

➤ To Set Up a Message Queue C Client to Consume Messages Synchronously

1. Call the MQCreateProperties function to get a handle to a properties object.

2. Use one or more of the MQSet... Property functions to set connection
properties that specify the name of the broker, its port number, and its
behavior.

3. Use the MQCreateConnection function to create a connection.

4. Use the MQCreateSession function to create a session and to specify its receive
mode. Specify MQ_SESSION_SYNC_RECEIVE for a synchronous session.

5. Use the MQCreateDestination function to specify a destination on the broker
from which the consumer is to receive messages. The destination name you
specify must be the same as the name of the physical destination.

6. Use the MQCreateMessageConsumer function or the
MQCreateDurableMessageConsumer function to create a consumer.

7. Use the MQStartConnection function to start the connection.

8. Use one of the MQReceiveMessage... functions to start message delivery.

➤ To Set Up a Message Queue C Client to Consume Messages Asynchronously

1. Call the MQCreateProperties function to get a handle to a properties object.

2. Use one or more of the MQSet... Property functions to set connection
properties that specify the name of the broker, its port number, and its
behavior.

3. Use the MQCreateConnection function to create a connection.

4. Use the MQCreateSession function to create a session and to specify its
acknowledge mode and its receive mode. Specify MQ_SESSION_ASYNC_RECEIVE
for asynchronous message delivery.

5. Use the MQCreateDestination function to specify a destination on the broker
from which the consumer is to receive messages. The logical destination name
you specify must be the same as the name of the physical destination.

Working With Properties

50 Message Queue 3.5 SP1 • C Client Developer’s Guide

6. Write a callback function of type MQMessageListenerFunc that will be called
when the broker starts message delivery. In the body of this callback function,
use the functions listed in Table 3-9 on page 67, to process the contents of the
incoming message.

7. Use the MQCreateAsyncMessageConsumer function or the
MQCreateAsyncDurableMessageConsumer function to create a consumer.

8. Use the MQStartConnection function to start the connection and message
delivery.

Working With Properties
When you create a connection, set message header properties, or set user-defined
message properties, you must pass a handle to a properties object. You use the
MQCreateProperties function to create this object and to obtain a handle to it.
When you receive a message, you can use specific MQGet...Property functions to
obtain the type and value of each message property.

This section describes the functions you use to set and get properties. A property is
defined as a key-value pair.

Setting Connection and Message Properties
You use the functions listed in Table 3-1 to create a handle to a properties object,
and to set properties. You can use these functions to create and define properties
for connections or for individual messages.

Table 3-1 Functions Used to Set Properties

Function Description

MQCreateProperties Creates a properties object and passes back
a handle to it.

MQSetBoolProperty Sets an MQBool property.

MQSetStringProperty Sets an MQString property.

MQSetInt8Property Sets an MQInt8 property.

MQSetInt16Property Sets an MQInt16 property.

MQSetInt32Property Sets an MQInt32 property.

MQSetInt64Property Sets an MQInt64 property.

Working With Properties

Chapter 3 Using the C API 51

➤ To Set Properties for a Connection

1. Call the MQCreateProperties function to get a handle to a newly created
properties object.

2. Call one of the MQSet...Property functions to set one of the connection
properties listed in Table 4-2 on page 77. At a minimum, you must specify the
name of the host of the broker to which you want to connect and its port
number.

Which function you call depends on the type of the property you want to set;
for example, to set an MQString property, you call the MQSetStringProperty
function; to set an MQBool property, you call the MQSetBoolProperty function;
and so on. Each function that sets a property requires that you pass a key name
and value; these are listed and described in Table 4-2.

3. When you have set all the properties you want to define for the connection,
you can then create the connection, by calling the MQCreateConnection
function.

Once the connection is created with the properties you specify, you cannot change
its properties. If you need to change connection properties after you have created a
connection, you will need to destroy the old connection and its associated objects
and create a new one with the desired properties. It is a good idea to think through
the desired behavior before you create a connection.

Code Example 3-1 illustrates how you create a properties handle and how you use
it for setting connection properties.

MQSetFloat32Property Sets an MQFloat32 property.

MQSetFloat64Property Sets an MQFloat64 property.

Code Example 3-1 Setting Connection Properties

MQStatus status;
MQPropertiesHandle propertiesHandle = MQ_INVALID_HANDLE;

status = (MQCreateProperties(&propertiesHandle);

status = (MQSetStringProperty(propertiesHandle,
MQ_BROKER_HOST_PROPERTY, “localhost”));

Table 3-1 Functions Used to Set Properties (Continued)

Function Description

Working With Properties

52 Message Queue 3.5 SP1 • C Client Developer’s Guide

The Message Queue C client runtime sets the connection properties that specify the
name and version of the Message Queue product; you can retrieve these using the
MQGetMetaData function. These properties are described at the end of Table 4-2,
starting with MQ_NAME_PROPERTY.

➤ To Set Message Properties

Set message properties and message header properties using the same procedure
you used to set connection properties. You can set the following message header
properties for sending a message:

• MQ_CORRELATION_ID_HEADER_PROPERTY

• MQ_MESSAGE_TYPE_HEADER_PROPERTY

For more information, see MQSetMessageProperties.

Getting Message Properties
When you receive a message, if you are interested in the message properties, you
need to obtain a handle to the properties object associated with that message:

• Use the MQGetMessageProperties function to obtain a handle to the properties
object for user-defined properties.

• If you are interested in any message header properties, use the
MQGetMessageHeaderProperties function to obtain a handle to the header
properties. See Table 4-5 on page 134.

Having obtained the handle, you can then iterate through the properties and then
use the appropriate MQGet...Property function to determine the type and value of
each property.

Table 3-2 lists the functions you use to iterate through a properties handle and to
obtain the type and value of each property.

status = (MQSetInt32Property(propertiesHandle,
MQ_BROKER_PORT_PROPERTY, 7676));

status = MQSetStringProperty(propertiesHandle,
MQ_CONNECTION_TYPE_PROPERTY, “TCP”));

Code Example 3-1 Setting Connection Properties (Continued)

Working With Properties

Chapter 3 Using the C API 53

➤ To Iterate Through a Properties Handle

1. Start the process by calling the MQPropertiesKeyIterationStart function.

2. Loop using the MQPropertiesKeyIterationHasNext function.

3. Extract the name of each property key by calling the
MQPropertiesKeyIterationGetNext function.

4. Determine the type of the property value for a given key by calling the
MQGetPropertyType function.

5. Use the appropriate MQGet...Property function to find the value of the
specified property key and type.

If you know the property key, you can just use the appropriate MQGet...Property
function to get its value. Code Example 3-2 illustrates how you implement these
steps.

Table 3-2 Functions Used to Get Message Properties

Function Description

MQPropertiesKeyIterationStart Starts the iteration process through the specified
properties handle

MQPropertiesKeyIterationHasNext Returns MQ_TRUE if there are additional property keys left
in the iteration.

MQPropertiesKeyIterationGetNext Passes back the address of the next property key in the
referenced property handle.

MQGetPropertyType Gets the type of the specified property.

MQGetBoolProperty Gets the value of the specified MQBool type property.

MQGetStringProperty Gets the value of the specified MQString type property.

MQGetInt8Property Gets the value of the specified MQInt8 type property.

MQGetInt16Property Gets the value of the specified MQInt16 type property.

MQGetInt32Property Gets the value of the specified MQInt32 type property.

MQGetInt64Property Gets the value of the specified MQInt64 type property.

MQGetFloat32Property Gets the value of the specified MQFloat32 type property.

MQGetFloat64Property Gets the value of the specified MQFloat64 type property.

Working With Connections

54 Message Queue 3.5 SP1 • C Client Developer’s Guide

Working With Connections
All messaging occurs within the context of a connection: the behavior of the
connection is defined by the properties set for that connection. These properties
specify the following information:

• The host name and port of the broker to which you want to connect

• The transport protocol of the connection service used by the client

• How broker and client acknowledgements are handled to support messaging
reliability

• How message flow is to be managed

• Whether the broker can handle secure messaging

You use the functions listed in Table 3-3 to create, start, stop, and close a
connection.

Code Example 3-2 Getting Property Values for a Message Header

MQStatus status;

MQPropertiesHandle headersHandle = MQ_INVALID_HANDLE;

MQBool redelivered;

ConstMQString my_msgtype;

status = (MQGetMessageHeaders(messageHandle, &headersHandle));

status = (MQGetBoolProperty(headersHandle,
MQ_REDELIVERED_HEADER_PROPERTY, &redelivered));

status = MQGetStringProperty(headersHandle,
MQ_MESSAGE_TYPE_HEADER_TYPE_PROPERTY, &my_msgtype);

Table 3-3 Functions Used to Work with Connections

Function Description

MQInitializeSSL Initializes the SSL library. You must call this function before you
create any connection that uses SSL.

MQCreateConnection Creates a connection and passes back a handle to it.

Working With Connections

Chapter 3 Using the C API 55

Before you create a connection, you must do the following:

• Define the connection properties. See “Setting Connection and Message
Properties” on page 50 for more information.

• Specify a user name and password for the connection. See the Message Queue
Administration Guide for information on how to set up users.

• Write a connection exception listener function. You will need to pass a
reference to this listener when you create the connection. This function will be
called synchronously when a connection exception occurs for this connection.
For more information, see “Callback Type for Connection Exception
Handling” on page 82.

• If you want a secure connection, call the MQIntitializeSSL function to
initialize security. This initializes the SSL library. See “Working With Secure
Connections” on page 56 for more information.

When you have completed these steps, you are ready to call MQCreateConnection
to create a connection. After you create the connection, you can create a session as
described in “Working With Sessions and Destinations” on page 57.

When you send a message, you do not need to start the connection explicitly by
calling MQStartConnection. You do need to call MQStartConnection before the
broker can deliver messages to a consumer.

If you need to halt delivery in the course of processing messages, you can call the
MQStopConnection function.

MQStartConnection Starts the specified connection and starts or resumes delivery of
messages.

MQStopConnection Stops the specified connection.

MQGetMetaData Returns a handle to name and version information for the Message
Queue product.

MQCloseConnection Closes the specified connection.

Table 3-3 Functions Used to Work with Connections (Continued)

Function Description

Working With Connections

56 Message Queue 3.5 SP1 • C Client Developer’s Guide

Working With Secure Connections
To set up a secure connection, you need to call the MQInitializeSSl function once
(and only once) before you call the MQCreateConnection function, and you must set
the MQ_CONNECTION_TYPE_PROPERTY to SSL. Depending on the operating system,
you might also need to locate or create NSS certificate database files.

The MQInitializeSSl function initializes the NSS library. The
certificateDatabasePath parameter you pass to the MQInitializeSSL function
should point to a directory that contains the NSS files certN.db, keyN.db, and
secmod.db (where N is a numeric digit). These certificate database files are opened
read-only by the MQInitializeSSL function. You can generate the NSS certificate
database files by using the Netscape or Mozilla browser. You can find the NSS
certificate database files in the directory where the Netscape or Mozilla browser
stores user settings, preferences, and bookmarks. For Mozilla, these files might not
be created automatically. In that case, you can have them created by doing the
following:

1. Start the Mozilla browser.

2. Choose Edit > Preferences > Privacy & Security > Certificates

3. Click the Manager Certificates... button.

Solaris 8 or 9 comes with the Netscape browser, as does RedHat Linux. For
Windows, you can download the Mozilla browser from the following location:

http://www.mozilla.org/

After you call the MQInitializeSSL function, you can call MQCreateConnection to
create an SSL connection to the Message Queue broker by setting the connection
property MQ_CONNECTION_TYPE_PROPERTY to SSL. Setting the connection property
MQ_SSL_BROKER_IS_TRUSTED to MQ_TRUE (the default is MQ_FALSE) is not tested or
supported in this release. Before running your Message Queue C client application
over SSL, you should configure the Message Queue broker to enable SSL-based
connection services. See the Message Queue Administration Guide for instructions on
configuring the broker.

http://www.mozilla.org/

Working With Sessions and Destinations

Chapter 3 Using the C API 57

Shutting Down Connections
In order to do an orderly shutdown, you need to close the connection by calling
MQCloseConnection and then to free the memory associated with the connection by
calling the MQFreeConnection function.

• Closing the connection closes all sessions, producers, and consumers created
from this connection. This also forces all threads associated with this
connection that are blocking in the library to return.

• After all the application threads associated with this connection and its
descendant sessions, producers, consumers, etc. have returned, the application
can call the MQFreeConnection function to release all resources associated with
the connection.

To get information about a connection, call the MQGetMetaData function. This
returns name and version information for the Message Queue product.

Working With Sessions and Destinations
A session is a single-threaded context for producing and consuming messages. You
can create multiple producers and consumers for a session, but you are restricted to
using them serially. In effect, only a single logical thread of control can use them.

Table 3-4 describes the functions you use to create and manage sessions.

Table 3-4 Functions Used to Work with Sessions

Function Description

MQCreateSession Creates the specified session and passes back a
handle to it.

MQGetAcknowledgeMode Passes back the acknowledgement mode of the
specified session.

MQRecoverSession Stops message delivery and restarts message
delivery with the oldest unacknowledged message.
(For non-transacted sessions.)

MQRollBackSession Rolls back a transaction associated with the specified
session.

MQCommitSession Commits a transaction associated with the specified
session.

MQCloseSession Closes the specified session.

Working With Sessions and Destinations

58 Message Queue 3.5 SP1 • C Client Developer’s Guide

Creating a Session
The MQCreateSession function creates a new session and initializes a handle to it in
the sessionHandle parameter. The number of sessions you can create for a single
connection is limited only by system resources. You can create a session after you
have created a connection.

When you create a session, you specify whether it is transacted, the acknowledge
mode, and the receive mode. After you create a session, you can create the
producers, consumers, and destinations that use the session context to do their
work.

Transacted Sessions
If you specify that a session be transacted, the acknowledge mode is ignored.
Within a transacted session, the broker tracks sends and receives, completing these
operations only when the client issues a call to commit the transaction. If a send or
receive operation fails, an exception is raised. Your application can handle the
exception by ignoring it, retrying it, or rolling back the entire transaction. When a
transaction is committed, all the successful operations are completed. When a
transaction is rolled back, all successful operations are cancelled.

Message Acknowledgement
When a message is delivered to a receiving client, the broker waits for the client to
acknowledge receipt of a message before deleting the message from the broker’s
destination.

The receiving client can control messaging reliability by setting the session’s
acknowledge mode to one of the following values:

• MQ_AUTO_ACKNOWLEDGE specifies that the session automatically acknowledge
each message consumed by the client.

• MQ_CLIENT_ACKNOWLEDGE specifies that the client must explicitly acknowledge
messages by calling MQAcknowledgeMessages. In this case, all messages are
acknowledged that have been consumed up to the point where the
acknowledge function is called.

• MQ_DUPS_OK_ACKNOWLEDGE specifies that the session acknowledges receipt of
messages after each ten messages are consumed.

The setting of the connection property MQ_ACK_ON_ACKNOWLEDGE_PROPERTY also
determines the effect of some of these acknowledge modes. For more information,
see Table 4-2 on page 77.

Working With Sessions and Destinations

Chapter 3 Using the C API 59

Receive Mode
You can specify a session’s receive mode as either MQ_SESSION_SYNC_RECEIVE or
MQ_SESSION_ASYNC_RECEIVE. If the session you create will be used for sending
messages only, you should specify MQ_SESSION_SYNC_RECEIVE for its receive mode
for optimization because the asynchronous receive mode automatically allocates
an additional thread for the delivery of messages it expects to receive.

Managing a Session
Managing a session involves using threads appropriately for the type of session
(synchronous or asynchronous) and managing message delivery for both
transacted and nontransacted sessions. For more information, see
“Single-Threaded Session Control” on page 71.

• For a session that is not transacted, use the MQRecoverSession function to
restart message delivery with the last unacknowledged message.

• For a session that is transacted, use the MQRollBackSession function to roll
back any messages that were delivered within this transaction. Use the
MQCommitSession function to commit all messages associated with this
transaction.

• Use the MQCloseSession function to close a session and all its associated
producers and consumers. This function also frees memory allocated for the
session.

You can get information about a session’s acknowledgment mode by calling the
MQGetAcknowledgeMode function.

Creating Destinations
After creating a session, you can create destinations or temporary destinations for
the messages you want to send. Table 3-5 lists the functions you use to create and
to get information about destinations.

Table 3-5 Functions Used to Work with Destinations

Functions Description

MQCreateDestination Creates a destination and initializes a handle to it.

MQCreateTemporaryDestination Creates a temporary destination and initializes a
handle to it.

Working With Sessions and Destinations

60 Message Queue 3.5 SP1 • C Client Developer’s Guide

The MQCreateDestination function creates a destination object and passes a handle
to it back to you. In a production environment, the Message Queue administrator
has to also create a physical destination on the broker, whose name and type is the
same as that of the destination object, in order for messaging to happen. For
example, if you use the MQCreateDestination function to create a queue
destination called myMailQDest, the administrator has to create a physical
destination on the broker named myMailQDest.

By default, the imq.autocreate.topic and imq.autocreate.queue properties for
the broker are turned on. In this case, which is more convenient in a development
environment, the broker automatically creates a physical destination whenever a
message consumer or message producer attempts to access a non-existent
destination. The auto-created physical destination will have the same name as that
of the destination you created using the MQCreateDestination function.

You use the MQCreateTemporaryDestination to create a temporary destination.
You can use such a destination to implement a simple request/reply mechanism.
When you pass the handle of a temporary destination to the MQSetMessageReplyTo
function, the consumer of the message can use that handle as the destination to
which it sends a reply.

Temporary destinations are explicitly created by client applications and are
automatically deleted when the connection is closed. They are maintained (and
named) by the broker only for the duration of the connection for which they are
created. Temporary destinations are system-generated uniquely for their
connection and only their own connection is allowed to create message consumers
for them.

Use the MQGetDestinationType function to determine the type of a destination:
queue or topic. There may be times when you do not know the type of the
destination to which you are replying: for example, when you get a handle from
the MQGetMessageReplyTo function. Because the semantics of queue and topic
destinations differ, you need to determine the type of a destination in order to
reply appropriately.

MQGetDestinationType Returns the type (queue or topic) of the specified
destination.

Table 3-5 Functions Used to Work with Destinations (Continued)

Working With Messages

Chapter 3 Using the C API 61

Working With Messages
This section describes how you use the C-API to complete the following tasks:

• Compose a message

• Send a message

• Receive a message

• Process a message

Composing Messages
You can create either a text message or a bytes message. A message, whether text or
bytes, is composed of a header, properties, and a body. Table 3-6 lists the functions
you use to construct messages.

You begin by creating a message using either the MQCreateBytesMessage function
or the MQCreateTextMessage function. Either of these functions return a message
handle that you can then pass to the functions you use to set the message body,
header, and properties using the functions listed in Table 3-6.

• Use the MQSetStringProperty function to define the body of a text message;
use the MQSetBytesMessageBytes function to define the body of a bytes
message.

Table 3-6 Functions Used to Construct Messages

Function Description

MQCreateBytesMessage Creates an MQ_BYTES_MESSAGE message.

MQCreateTextMessage Creates an MQ_TEXT_MESSAGE message.

MQSetMessageHeaders Sets message header properties. (Optional)

MQSetMessageProperties Sets user-defined message properties.

MQSetStringProperty Sets the body of an MQ_TEXT_MESSAGE message.

MQSetBytesMessageBytes Sets the body of an MQ_BYTES_MESSAGE message.

MQSetMessageReplyTo Specifies the destination where replies to this message should
be sent.

Working With Messages

62 Message Queue 3.5 SP1 • C Client Developer’s Guide

• Use the MQSetMessageHeaders to set any message header properties.

The message header can specify up to eight properties; most of these are set by
the client runtime when sending the message or by the broker. The client can
set MQ_CORRELATION_ID_HEADER_PROPERTY and
MQ_MESSAGE_TYPE_HEADER_PROPERTY for sending a message.

• Use the MQSetMessageProperties function to set any user-defined properties
for this message.

When you set message header properties or when you set additional user-defined
properties, you must pass a handle to a properties object that you have created
using the MQCreateProperties function. For more information, see “Working With
Properties” on page 50.

You can use the MQSetMessageReplyTo function to associate a message with a
destination that recipients can use for replies. To do this, you must first create a
destination that will serve as your reply-to destination. Then, pass a handle to that
destination when you call the MQSetMessageReplyTo function. The receiver of a
message can use the MQGetMessageReplyTo function to determine whether a sender
has set up a destination where replies are to be sent.

Sending a Message
Messages are sent by a message producer within the context of a connection and a
session. Once you have obtained a connection, created a session, and composed
your message, you can use the functions listed in Table 3-7 to create a message
producer and to send the message.

Which function you choose to send a message depends on the following factors:

• Whether you want the send function to override certain message header
properties

Send functions whose names end in Ext allow you to override default values
for priority, time-to-live, and delivery mode header properties.

• Whether you want to send the message to the destination associated with the
message producer

If you created a message producer with no specified destination, you must
used one of the ...ToDestination send functions. If you created a message
producer with a specified destination, you must use one of the other send
functions

Working With Messages

Chapter 3 Using the C API 63

If you send a message using one of the functions that does not allow you to
override header properties, the following message header fields are set to default
values by the send function.

• MQ_PERSISTENT_HEADER_PROPERTY will be set to MQ_PERSISTENT_DELIVERY.

• MQ_PRIORITY_HEADER_PROPERTY will be set to 4.

• MQ_EXPIRATION_HEADER_PROPERTY will be set to 0, which means that the
message will never expire.

To override these values, use one of the extended send functions. For a complete
list of message header properties, see Table 4-5 on page 134.

Message headers also contain fields that can be set by the sending client; in
addition, you can set user-defined message properties as well. For more
information, see “Composing Messages” on page 61.

You can set the broker property MQ_ACK_ON_PRODUCE_PROPERTY to make sure that
the message has reached its destination on the broker:

• By default, the broker acknowledges receiving persistent messages only.

• If you set the property to MQ_TRUE, the broker acknowledges receipt of all
messages (persistent and non-persistent) from the producing client.

• If you set the property to MQ_FALSE, the broker does not acknowledge receipt of
any message (persistent or non-persistent) from the producing client.

Table 3-7 Functions for Sending Messages

Function Action

MQCreateMessageProducer Creates a message producer with no specified
destination.

MQCreateMessageProducerForDestination Creates a message producer with a specified
destination.

MQSendMessage Sends a message for the specified producer.

MQSendMessageExt Sends a message for the specified producer and
allows you to set priority, time-to-live, and delivery
mode.

MQSendMessageToDestination Sends a message to the specified destination.

MQSendMessageToDestinationExt Sends a message to the specified destination and
allows you to set priority, time-to-live, and delivery
mode.

Working With Messages

64 Message Queue 3.5 SP1 • C Client Developer’s Guide

Note that “acknowledgement” in this case is not programmatic but internally
implemented. That is, the client thread is blocked and does not return until the
broker acknowledges messages it receives.

An administrator can set a broker limit, REJECT_NEWEST, which allows the broker to
avert memory problems by rejecting the newest incoming message. If the incoming
message is persistent, then an exception is thrown which the sending client should
handle, perhaps by retrying the send a bit later. If the incoming message is not
persistent, the client has no way of knowing that the broker rejected it. The broker
might also reject a message if it exceeds a specified limit.

Receiving Messages
Messages are received by a message consumer in the context of a connection and a
session. In order to receive messages, you must explicitly start the connection by
calling the MQStartConnection function.

Table 3-8 lists the functions you use to create message consumers and to receive
messages.

Table 3-8 Functions Used to Receive Messages

Function Description

MQCreateMessageConsumer Creates the specified synchronous consumer and passes back a handle
to it.

MQCreateDurableMessageConsumer Creates a durable synchronous message consumer for the specified
destination.

MQCreateAsyncMessageConsumer Creates an asynchronous message consumer for the specified
destination.

MQCreateAsyncDurableMessageConsumer Creates a durable asynchronous message consumer for the specified
destination.

MQUnsubscribeDurableMessageConsumer Unsubscribes the specified durable message consumer.

MQReceiveMessageNoWait Passes a handle back to a message delivered to the specified consumer if
a message is available; otherwise it returns an error.

MQReceiveMessageWait Passes a handle back to a message delivered to the specified consumer if
a message is available; otherwise it blocks until a message becomes
available.

MQReceiveMessageWithTimeout Passes a handle back to a message delivered to the specified consumer if
a message is available within the specified amount of time.

Working With Messages

Chapter 3 Using the C API 65

Working With Consumers
When you create a consumer, you need to make several decisions:

• Do you want to receive messages synchronously or asynchronously?

If you create a synchronous consumer, you can call one of three kinds of
receive functions to receive your messages. If you create an asynchronous
consumer, you must specify the name of a callback function that the client
runtime can call when a message is delivered to the destination for that
consumer. For information about the callback function signature, see “Callback
Type for Asynchronous Messaging” on page 81.

• If you are consuming messages from a topic, do you want to use a durable or a
nondurable consumer?

A durable consumer receives all the messages published to a topic, including
the ones published while the subscriber is inactive. A nondurable consumer
only receives messages while the subscriber is active.

The broker retains a record of this durable subscription and makes sure that all
messages from the publishers to this topic are retained until they are either
acknowledged by this durable subscriber or until they have expired. Sessions
with durable subscribers must always provide the same client identifier. In
addition, each consumer must specify a durable name using the durableName
parameter, which uniquely identifies (for each client identifier) each durable
subscription it creates.

A session’s consumers are automatically closed when you close the session or
connection to which they belong. However, messages will be routed to the durable
subscriber while it is inactive and delivered when a new durable consumer is
recreated. To close a consumer without closing the session or connection to which
it belongs, use the MQCloseMessageConsumer function. If you want to close a
durable consumer permanently, you should call the function
MQUnsubscribeDurableMessageConsumer after closing it, to delete state information
maintained by the broker on behalf of the durable consumer.

MQAcknowledgeMessages Acknowledges the specified message and all messages received before it
on the same session

MQCloseMessageConsumer Closes the specified consumer.

Table 3-8 Functions Used to Receive Messages (Continued)

Function Description

Working With Messages

66 Message Queue 3.5 SP1 • C Client Developer’s Guide

Receiving a Message Synchronously
If you have created a synchronous consumer, you can use one of three receive
functions: MQReceiveMessageNoWait, MQReceiveMessageWait, or
MQReceiveMessagewithTimeOut. In order to use any of these functions, you must
have specified MQ_SESSION_SYNC_RECEIVE for the receive mode when you created
the session.

When you create a session you must specify one of several acknowledge modes for
that session. If you specify MQ_CLIENT_ACKNOWLEDGE as the acknowledge mode for
the session, you must explicitly call the MQAcknowledgeMessages function to
acknowledge messages that you have received. If the session is transacted, the
acknowledge mode parameter is ignored.

When the receiving function returns, it gives you a handle to the delivered
message. You can pass that handle to the functions described in “Processing a
Message” on page 67, in order to read message properties and information stored
in the header and body of the message.

Receiving a Message Asynchronously
To receive a message asynchronously, you must create an asynchronous message
consumer and pass the name of an MQMessageListenerFunc type callback function.
(Therefore, you must set up the callback function before you create the
asynchronous consumer that will use it.) You should start the connection only after
creating an asynchronous consumer. If the connection is already started, you
should stop the connection before creating an asynchronous consumer.

You are also responsible for writing the message listener function. Mainly, the
function needs to process the incoming message by examining its header, body,
and properties, or it needs to pass control to a function that can do this processing.
The client is also responsible for freeing the message handle (either from within the
listener or from outside of the listener) by calling the MQFreeMessage function.

When you create a session you must specify one of several acknowledge modes for
that session. If you specify MQ_CLIENT_ACKNOWLEDGE as the acknowledge mode for
the session, you must explicitly call the MQAcknowledgeMessages function to
acknowledge messages that you have received.

For more information about the signature and content of a call back function, see
“Callback Type for Asynchronous Messaging” on page 81.

When the callback function is called by the session delivery of a message, it gives
you a handle to the delivered message. You can pass that handle to the functions
described in “Processing a Message” on page 67, in order to read message
properties and information stored in the header and body of the message.

Working With Messages

Chapter 3 Using the C API 67

Processing a Message
When a message is delivered to you, you can examine the message’s properties,
type, headers, and body. The functions used to process a message are described in
Table 3-9.

If you are interested in a message’s header information, you need to call the
MQGetMessageHeaders function. If you need to read or check any user-defined
properties, you need to call the MQGetMessageProperties function. Each of these
functions passes back a properties handle. For information on how you can read
property values, see “Getting Message Properties” on page 52.

Before you can examine the message body, you can call the MQGetMessageType
function to determine whether the message is a text or bytes message. You can then
call the MQGetTextMessageText, or the MQGetBytesMessageBytes function to get the
contents of the message.

Some message senders specify a reply destination for their message. Use the
MQGetMessageReplyTo function to determine that destination.

Table 3-9 Functions Used to Process Messages

Function Description

MQGetMessageHeaders Gets message header properties.

MQGetMessageProperties Gets user-defined message properties.

MQGetMessageType Gets the message type: MQ_TEXT_MESSAGE or
MQ_BYTES_MESSAGE

MQGetTextMessageText Gets the body of an MQ_TEXT_MESSAGE message.

MQGetBytesMessageBytes Gets the body of an MQ_BYTES_MESSAGE message.

MQGetMessageReplyTo Gets the destination where replies to this message should be
sent.

Error Handling

68 Message Queue 3.5 SP1 • C Client Developer’s Guide

Error Handling
Nearly all Message Queue C functions return an MQStatus result. You can use this
return value to determine whether the function returned successfully and, if not, to
determine the cause of the error.

Table 3-10 lists the functions you use to get error information.

➤ To Handle Errors in Your Code

1. Call MQStatusIsError, passing it an MQStatus result for the function whose
result you want to test.

2. If the MQStatusIsError function returns MQ_TRUE, call MQGetStatusCode or
MQGetStatusString to identify the error.

3. If the status code and string information is not sufficient to identify the cause of
the error, you can get additional diagnostic information by calling
MQGetErrorTrace to obtain the calling thread’s current error trace if this
information is available.

Chapter 4, “Reference” on page 73, lists common errors returned for each function.
In addition to these errors, the following error codes may be returned by any
Message Queue C function:

• MQ_STATUS_INVALID_HANDLE

• MQ_OUT_OF_MEMORY

• MQ_NULL_PTR_ARG

In addition, the MQ_TIMEOUT_EXPIRED can return from any Message Queue C
function that communicates with the Message Queue broker if the connection
MQ_ACK_TIMEOUT_PROPERTY is set to a non-zero value.

Table 3-10 Functions Used in Handling Errors

Function Description

MQStatusIsError Returns an MQ_TRUE if the specified MQStatus is an error.

MQGetStatusCode Returns the error code for the specified MQStatus.

MQGetStatusString Returns a descriptive string for the specified MQStatus.

MQGetErrorTrace Returns the calling thread’s current error trace or NULL if no error
trace is available.

Memory Management

Chapter 3 Using the C API 69

Memory Management
Table 3-11 lists the functions you use to free or deallocate memory allocated by the
Message Queue-C client library on behalf of the user. Such deallocation is part of
normal memory management and will prevent memory leaks.

The functions MQCloseConnection, MQCloseSession, MQCloseMessageProducer,
and MQCloseMessageConsumer are used to free resources associated with
connections, sessions, producers, and consumers.

You should free a connection only after you have closed the connection with the
MQCloseConnection function and after all of the application threads associated
with this connection and its dependent sessions, producers, and consumers have
returned.

You should not free a connection while an application thread is active in a library
function associated with this connection or one of its dependent sessions,
producers, consumers, and destinations.

Freeing a connection does not release resources held by a message associated with
this connection. You must free memory allocated for this message by explicitly
calling the MQFreeMessage function.

You should not free a properties handle if the properties handle passed to a
function becomes invalid on its return. If you do, you will get an error.

Table 3-11 Functions Used to Free Memory

Function Description

MQFreeConnection Frees memory allocated to the specified connection.

MQFreeDestination Frees memory allocated to the specified destination.

MQFreeMessage Frees memory allocated to the specified message.

MQFreeProperties Frees memory allocated to the specified properties handle.

MQFreeString Frees memory allocated to the specified MQString.

Thread Management

70 Message Queue 3.5 SP1 • C Client Developer’s Guide

Thread Management
This section addresses a number of thread management issues that you should be
aware of in designing and programming a Message Queue C client.

Message Queue C Runtime Thread Model
The Message Queue C-API library creates the thread(s) needed to provide runtime
support for a Message Queue C client. It uses NSPR (Netscape Portable Runtime)
GLOBAL threads. NSPR GLOBAL threads are fully compatible with native threads on
each supported platform. Table 3-12 shows the thread model that the NSPR GLOBAL
threads map to on each platform. For more information on NSPR, please see

http://www.mozilla.org/projects/nspr/

Concurrent Use of Handles
Table 3-13 lists the handles (objects) used in a C client program and specifies which
of these may be used concurrently and which can only be used by one logical
thread at a time.

Table 3-12 Thread Model for NSPR GLOBAL Threads

Platform Thread Model

Solaris pthreads

Linux pthreads

Windows Win32 threads (from Microsoft Visual C++ runtime library msvcrt)

Table 3-13 Handles and Concurrency

Handle Supports Concurrent Use

MQDestinationHandle YES

MQConnectionHandle YES

MQSessionHandle NO

MQProducerHandle NO

MQConsumerHandle NO

http://www.mozilla.org/projects/nspr/

Thread Management

Chapter 3 Using the C API 71

Single-Threaded Session Control
A session is a single-threaded context for producing and consuming messages.
Multiple threads should not use the same session concurrently nor use the objects it
creates concurrently. The only exception to this occurs during the orderly
shutdown of the session or its connection when the client calls the MQCloseSession
or the MQCloseConnection function.

• If a client wants to have one thread producing messages and other threads
consuming messages, the client should use a separate session for its producing
thread.

• Do not create an asynchronous message consumer while the connection is in
started mode.

• A session created with MQ_SESION_ASYNC_RECEIVE mode uses a single thread to
run all its consumers’ MQMessageListenerFunc callback functions. Clients that
want concurrent delivery should use multiple sessions.

• Do not call the MQStopConnection, MQCloseSession, or the MQCloseConnection
functions from a MQMessageListenerFunc callback function. (These calls will
not return until delivery of messages has stopped.)

• You should call the MQFreeConnection function after MQCloseConnection and
all of the application threads associated with a connection and its sessions,
producers, consumers, etc., have returned.

The Message Queue C runtime library provides one thread to a session in
MQ_SESSION_ASYNC_RECEIVE mode for asynchronous message delivery to its
consumers. When the connection is started, all its sessions that have created
asynchronous consumers are dedicated to the thread of control that delivers
messages. Client code should not use such a session from another thread of control.
The only exception to this is the use of MQCloseSession and MQCloseConnection.

MQMessageHandle NO

MQPropertiesHandle NO

Table 3-13 Handles and Concurrency (Continued)

Handle Supports Concurrent Use

Logging

72 Message Queue 3.5 SP1 • C Client Developer’s Guide

Connection Exceptions
When a connection exception occurs, the Message Queue C library thread that is
provided to the connection calls its MQConnectionExceptionListenerFunc callback
if one exists. If an MQConnectionExceptionListenerFunc callback is used for
multiple connections, it can potentially be called concurrently from different
connection threads.

You should not call the MQCloseConnection function in an
MQConnectionExceptionListenerFunc callback. Instead the callback function
should notify another thread to call MQCloseConnection and return.

Logging
The Message Queue C-API library uses two environment variables to control
execution-time logging:

• MQ_LOG_FILE specifies the file to which log messages are directed. If you do not
specify a file name for this variable, stderr is used. If MQ_LOG_FILE is a
directory name, it should include a trailing directory separator.

By default, .n (where n is 0, 1, 2,...) is appended to the actual log file name. This
is used as a rotation index, and the indices are used sequentially when the
maximum log file size is reached. You can use %g to specify a rotation index
replacement in MQ_LOG_FILE after the last directory separator. Only the last %g
is used if multiple %g’s are specified. the %g replacement can be escaped with %.
The maximum rotation index is 9, and the maximum log file size is 1 MB. These
limits are not configurable.

• MQ_LOG_LEVEL specifies a numeric level that indicates the detail of logging
information needed. A value of -1 specifies that nothing be logged. By default
the level is set to 3.

73

Chapter 4

Reference

This chapter provides reference documentation for the Message Queue C-API. It
includes information about the following:

• “Data Types” on page 73 describes the C declarations for data types used by
Message Queue messaging

• “Function Reference” on page 83 describes the C functions that implement
Message Queue messaging

• “Header Files” on page 183 describes the contents of the C-API header files

For information on building C-Message Queue programs, see Chapter 2, “Building
and Running Message Queue C Clients” on page 43.

For information on how you use the C-API to complete specific programming
tasks, see Chapter 3, “Using the C API” on page 47.

Data Types
Table 4-1 summarizes the data types defined by the Message Queue C-API. The
table lists data types in alphabetical order and provides cross references for types
that require broader discussion.

Note that Message Queue data types designated as handles map to opaque
structures (objects). Please do not attempt to dereference these handles to get to the
underlying objects. Instead, use the functions provided to access the referenced
objects.

Data Types

74 Message Queue 3.5 SP1 • C Client Developer’s Guide

Table 4-1 Message Queue C-API Data Type Summary

MQType Description

ConstMQString A constant MQString.

MQAckMode An enum used to specify the acknowledgement mode of a session.
Possible values include the following:
MQ_AUTO_ACKNOWLEDGE
MQ_CLIENT_ACKNOWLEDGE
MQ_DUPS_OK_ACKNOWLEDGE
MQ_SESSION_TRANSACTED.

See “Acknowledge Modes” on page 80 for more information.

MQBool A boolean that can assume one of two values:

MQ_TRUE(=1)
MQ_FALSE(=0).

MQChar char type.

MQConnectionHandle A handle used to reference a Message Queue connection. You
get this handle when you call the MQCreateConnection function.

MQConsumerHandle A handle used to reference a Message Queue consumer. A
consumer can be durable, nondurable and synchronous, or
asynchronous. You get this handle when you call one of the
functions used to create consumers. See “Receiving Messages”
on page 64 for more information.

MQDeliveryMode An enum used to specify whether a message is sent persistently:

MQ_NON_PERSISTENT_DELIVERY
MQ_PERSISTENT_DELIVERY.

You specify this value with the MQSendMessageExt function or the
MQSendMessageToDestinationExt function.

MQDestinationHandle A handle used to reference a Message Queue destination. You
get this handle when you call the MQCreateDestination function
or the MQCreateTemporaryDestination function.

MQDestinationType An enum used to specify the type of a destination:

MQ_QUEUE_DESTINATION
MQ_TOPIC_DESTINATION.

You set the destination type using the MQCreateDestination
function or the MQCreateTemporaryDestination function.

MQError A 32-bit unsigned integer.

MQConnectionExceptionListenerFunc The type of a callback function used for connection exception
handling. For more information, see “Callback Type for
Connection Exception Handling” on page 82.

MQFloat32 A 32-bit floating-point number.

Data Types

Chapter 4 Reference 75

MQFloat64 A 64-bit floating-point number.

MQInt16 A 16-bit signed integer.

MQInt32 A 32-bit signed integer.

MQInt64 A 64-bit signed integer.

MQInt8 An 8-bit signed integer.

MQMessageHandle A handle used to reference a Message Queue message. You get
this handle when you call the MQCreateBytesMessage function, or
the MQCreateTextMessage function, or on receipt of a message.

MQMessageListenerFunc The type of a callback function used for asynchronous message
receipt. For more information, see “Callback Type for
Asynchronous Messaging” on page 81.

MQMessageType An enum passed back by the MQGetMessageType and used to
specify the type of a message; possible values include the
following:

MQ_TEXT_MESSAGE
MQ_BYTES_MESSAGE
MQ_UNSUPPORTED_MESSAGE.

MQProducerHandle A handle used to reference a Message Queue producer. You get
this handle when you call MQCreateMessageProducer or
MQCreateMessageProducerForDestination.

MQPropertiesHandle A handle used to reference Message Queue properties. You use
this handle to define or read connection properties and message
headers or message properties. See “Working With Properties”
on page 50 for more information.

MQReceiveMode An enum used to specify whether consumers are synchronous or
asynchronous. It can be one of the following:

MQ_SESSION_SYNC_RECEIVE
MQ_SESSION_ASYNC_RECEIVE.

See MQCreateSession for more information.

MQSessionHandle A handle used to reference a Message Queue session. You get
this handle when you call the MQCreateSession function.

MQStatus A data type returned by nearly all functions defined in mqcrt.h.
See “Error Handling” on page 68 for more information on how you
handle errors returned by Message Queue functions.

MQString A null terminated UTF-8 encoded character string

Table 4-1 Message Queue C-API Data Type Summary (Continued)

MQType Description

Data Types

76 Message Queue 3.5 SP1 • C Client Developer’s Guide

Connection Properties
When you create a connection using the MQCreateConnection function, you must
pass a handle to an object of type MQPropertiesHandle. To set the properties
referenced by this handle, you do the following:

1. Call the MQCreateProperties function to get a handle to a newly created
properties object

2. Call a function to set one of the connection properties listed in Table 4-2.

Which function you call depends on the type of the property you want to set;
for example, to set an MQString property, you call the MQSetStringProperty
function; to set a MQBool property, you call the MQSetBoolProperty function;
and so on. Each function that sets a property requires that you pass a key name
(constant) and value; these are listed and described in Table 4-2.

3. When you have set all the properties you want to define for the connection,
you can then create the connection, by calling the MQCreateConnection
function.

The runtime library sets the connection properties that specify the name and
version of the Message Queue product; you can retrieve these using the
MQGetMetaData function. These properties are described at the end of Table 4-2,
starting with MQ_NAME_PROPERTY.

MQType An enum used to return the type of a single property; possible
values include the following:

MQ_BOOL_TYPE
MQ_INT8_TYPE
MQ_INT16_TYPE
MQ_INT32_TYPE
MQ_INT64_TYPE
MQ_FLOAT32_TYPE
MQ_FLOAT64_TYPE
MQ_STRING_TYPE
MQ_INVALID_TYPE

Table 4-1 Message Queue C-API Data Type Summary (Continued)

MQType Description

Data Types

Chapter 4 Reference 77

Table 4-2 Connection Properties

Key Name Description

MQ_CONNECTION_TYPE_PROPERTY An MQString specifying the transport protocol of the
connection service used by the client. Supported types are
TCP or SSL.

Default: TCP

MQ_ACK_TIMEOUT_PROPERTY A 32-bit integer specifying the maximum time in milliseconds
that the client runtime will wait for any broker
acknowledgement before returning an MQ_TIMEOUT_EXPIRED
error. A value of 0 means there is no time-out.

Default: 0

MQ_BROKER_HOST_PROPERTY An MQString specifying the broker host name to which to
connect.

No default.

MQ_BROKER_PORT_PROPERTY A 32-bit integer specifying the broker’s primary port number.

No default.

MQ_ACK_ON_PRODUCE_PROPERTY An MQBool specifying whether the producing client waits for
broker acknowledgement of receipt of message from the
producing client.

If set to MQ_TRUE, the broker acknowledges receipt of all
messages (persistent and non-persistent) from the producing
client, and the producing client thread will block waiting for
those acknowledgements.

If set to MQ_FALSE, broker does not acknowledge receipt of any
message (persistent or non-persistent) from the producing
client, and the producing client thread will not block waiting for
broker acknowledgements.

Default: the broker acknowledges receipt of persistent
messages only from the producing client, and the producing
client thread will block waiting for those acknowledgements.

Data Types

78 Message Queue 3.5 SP1 • C Client Developer’s Guide

MQ_ACK_ON_ACKNOWLEDGE_PROPERTY An MQBool specifying whether the broker confirms
(acknowledges) consumer acknowledgements. A consumer
acknowledgement can be initiated either by the client’s
session or by the consuming client, depending on the session
acknowledgement mode (see Table 4-3). If the session’s
acknowledgement mode is MQ_DUPS_OK_ACKNOWLEDGE, this flag
has no effect.

If set to MQ_TRUE, the broker acknowledges all consuming
acknowledgements, and the consuming client thread blocks
waiting for these broker acknowledgements.

If set to MQ_FALSE, the broker does not acknowledge any
consuming client acknowledgements, and the consuming
client thread will not block waiting for such broker
acknowledgements.

Default: MQ_TRUE

For more information, see the discussion for the
MQAcknowledgeMessages function and “Message
Acknowledgement” on page 58.

MQ_CONNECTION_FLOW_COUNT_PROPERTY A 32-bit integer, greater than 0, specifying the number of
Message Queue messages in a metered batch. When this
number of messages is delivered from the broker to the client
runtime, delivery is temporarily suspended, allowing any
control messages that had been held up to be delivered.
Payload message delivery is resumed upon notification by the
client runtime, and continues until the count is again reached.

Default: 100

MQ_CONNECTION_FLOW_LIMIT_ENBABLED
_PROPERTY

An MQBool specifying whether the value
MQ_CONNECTION_FLOW_LIMIT_PROPERTY is used to control
message flow. Specify MQ_TRUE to use the value and MQ_FALSE
otherwise.

Default: MQ_FALSE

Table 4-2 Connection Properties (Continued)

Key Name Description

Data Types

Chapter 4 Reference 79

MQ_CONNECTION_FLOW_LIMIT_PROPERTY A 32-bit integer, greater than 0, specifying the maximum
number of unconsumed messages the client runtime can hold
for each connection. Note however, that unless
MQ_CONNECTION_FLOW_LIMIT_ENBABLED_PROPERTY is MQ_TRUE,
this limit is not checked.

When the number of unconsumed messages held by the
client runtime for the connection exceeds the limit, message
delivery stops. It is resumed (in accordance with the flow
metering governed by MQ_CONNECTION_FLOW_COUNT_PROPERTY)
only when the number of unconsumed messages drops below
the value set with this property.

This limit prevents a consuming client that is taking a long time
to process messages from being overwhelmed with pending
messages that might cause it to run out of memory.

Default: 1000

MQ_SSL_BROKER_IS_TRUSTED An MQ_Bool specifying whether the broker is trusted.

Default: MQ_TRUE

MQ_SSL_CHECK_BROKER_FINGERPRINT An MQ_Bool. If it is set to MQ_TRUE and if
MQ_SSL_BROKER_IS_TRUSTED is MQ_FALSE, the broker’s
certificate fingerprint is compared with the
MQ_SSL_BROKER_CERT_FINGERPRINT property value in case of
certificate authorization failure. If they match, the broker’s
certificate is authorized for use in the SSL connection.

Default: MQ_FALSE

MQ_SSL_BROKER_CERT_FINGERPRINT An MQString specifying the MD5 hash, in hex format, of the
broker's certificate.

Default: NULL

MQ_NAME_PROPERTY An MQString that specifies the name of the Message Queue
product.This property is set by the runtime library. See the
MQGetMetaData function for more information.

MQ_VERSION_PROPERTY An MQInt32 that specifies the version of the Message Queue
product. This property is set by the runtime library. See the
MQGetMetaData function for more information.

MQ_MAJOR_VERSION_PROPERTY An MQInt32 that specifies the major version of the Message
Queue product. For example, if the version is 3.5.0.1, the
major version would be 3.

This property is set by the runtime library. See the
MQGetMetaData function for more information.

Table 4-2 Connection Properties (Continued)

Key Name Description

Data Types

80 Message Queue 3.5 SP1 • C Client Developer’s Guide

Acknowledge Modes
The Message Queue runtime supports reliable delivery by using transacted
sessions or through acknowledgement options set at the session level. When you
use the MQCreateSession function to create a session, you must specify an
acknowledgement option for that session using the acknowledgeMode parameter.
The value of this parameter is ignored for transacted sessions.

Table 4-3 describes the effect of the options you can set using the acknowledgeMode
parameter.

MQ_MINOR_VERSION_PROPERTY An MQInt32 that specifies the minor version of the Message
Queue product. For example, if the version is 3.5.0.1, the
minor version would be 5.

This property is set by the runtime library. See the
MQGetMetaData function for more information.

MQ_MICRO_VERSION_PROPERTY An MQInt32 that specifies the micro version of the Message
Queue product. For example, if the version is 3.5.0.1, the
micro version would be 0.

This property is set by the runtime library. See the
MQGetMetaData function for more information.

MQ_SERVICE_PACK_PROPERTY An MQInt32 that specifies the service pack version of the
Message Queue product. For example, if the version is
3.5.0.1, the service pack version would be 1.

This property is set by the runtime library. See the
MQGetMetaData function for more information.

Table 4-3 acknowledgeMode Values

Enum Description

MQ_AUTO_ACKNOWLEDGE The session automatically acknowledges each message consumed by the client.
This happens when one of the receive functions returns successfully, or when the
message listener processing the message returns successfully.

MQ_CLIENT_ACKNOWLEDGE The client explicitly acknowledges all messages for the session that have been
consumed up to the point when the MQAcknowledgeMessages function has been
called. See the discussion of the function MQAcknowledgeMessages for additional
information.

MQ_DUPS_OK_ACKNOWLEDGE The session acknowledges after ten messages have been consumed and does
not guarantee that messages are delivered and consumed only once.

Table 4-2 Connection Properties (Continued)

Key Name Description

Data Types

Chapter 4 Reference 81

Callback Type for Asynchronous Messaging
When you call the MQCreateAsyncMessageConsumer function or the
MQCreateAsyncDurableMessageConsumer function, you must pass the name of an
MQMessageListenerFunc type callback function that is to be called when the
consumer receives a message to the specified destination.

The MQMessageListenerFunc type has the following definition:

Parameters

MQ_SESSION_TRANSACTED This value is read only. It is set by the library if you have passed MQ_TRUE for the
isTransacted parameter to the MQCreateSession function. It is returned to you by
the MQGetAcknowledgeMode function if the session is transacted.

MQError (* MQMessageListenerFunc)(

const MQSessionHandle sessionHandle,
const MQConsumerHandle consumerHandle,
MQMessageHandle messageHandle
void * callbackData);

sessionHandle The handle to the session to which this consumer belongs. The
client runtime specifies this handle when it calls your message
listener.

consumerHandle A handle to the consumer receiving the message. The client
runtime specifies this handle when it calls your message
listener.

messageHandle A handle to the incoming message. The client runtime specifies
this handle when it calls your message listener.

callbackData The void pointer that you passed to the function
MQCreateAsyncMessageConsumer or the function
MQCreateAsyncDurableMessageConsumer.

Table 4-3 acknowledgeMode Values (Continued)

Enum Description

Data Types

82 Message Queue 3.5 SP1 • C Client Developer’s Guide

The body of a message listener function is written by the receiving client. Mainly,
the function needs to process the incoming message by examining its header, body,
and properties. The client is also responsible for freeing the message handle (either
from within the handler or from outside the handler) by calling MQFreeMessage.

In addition, you should observe the following guidelines when writing the
message listener function:

• If you specify MQ_CLIENT_ACKNOWLEDGE as the acknowledge mode for the
session, you must explicitly call the MQAcknowledgeMessages function to
acknowledge messages that you have received. For more information, see the
description of the function MQAcknowledgeMessages.

• Do not try to close the session (or the connection to which it belongs) and
consumer handle in the message listener.

• It is possible for a message listener to return an error; however, this is
considered a client programming error. If the listener discovers that the
message is badly formatted or if it cannot process it for some other reason, it
must handle the problem itself by re-directing it to an application-specific
bad-message destination and process it later.

If the message listener does return an error, the client runtime will try to
redeliver the message once if the session’s acknowledge mode is either
MQ_AUTO_ACKNOWLEDGE or MQ_DUPS_OK_ACKNOWLEDGE.

Callback Type for Connection Exception
Handling
The client runtime will call this function when a connection exception occurs.

The MQConnectionExceptionListenerFunc type has the following definition:

Void (* MQConnectionExceptionListenerFunc)(

const MQConnectionHandle connectionHandle,
MQStatus exception,
void * callbackData);

Function Reference

Chapter 4 Reference 83

Parameters

The body of a connection exception listener function is written by the client. This
function will only be called synchronously with respect to a single connection. If
you install it as the connection exception listener for multiple connections, then it
must be reentrant.

Do not try to close the session (or the connection to which it belongs) in the
exception listener.

Function Reference
This section describes the C-API functions in alphabetical order. Table 4-4 lists the
C-API functions.

connectionHandle The handle to the connection on which the connection
exception occurred. The client runtime sets this handle when it
calls the connection exception handler.

exception An MQStatus for the connection exception that occurred. The
client runtime specifies this value when it calls the exception
handler.

You can pass this status result to any functions used to handle
errors to get an error code or error string. For more information,
see “Error Handling” on page 68.

callbackData Whatever void pointer was passed as the
listenerCallbackData parameter to the MQCreateConnection
for more information.

Table 4-4 Message Queue C-API Function Summary

Function Description

MQAcknowledgeMessages Acknowledges the specified message and all messages received
before it on the same session.

MQCloseConnection Closes the specified connection.

MQCloseMessageConsumer Closes the specified consumer.

MQCloseMessageProducer Closes the specified message producer without closing its
connection.

MQCloseSession Closes the specified session.

MQCommitSession Commits a transaction associated with the specified session.

Function Reference

84 Message Queue 3.5 SP1 • C Client Developer’s Guide

MQCreateAsyncDurableMessageConsumer Creates a durable asynchronous message consumer for the
specified destination.

MQCreateAsyncMessageConsumer Creates an asynchronous message consumer for the specified
destination.

MQCreateBytesMessage Creates an MQ_BYTES_MESSAGE message.

MQCreateConnection Creates a connection to the broker.

MQCreateDestination Creates a a logical destination and passes a handle to it back to
you.

MQCreateDurableMessageConsumer Creates a durable synchronous message consumer for the
specified destination.

MQCreateMessageConsumer Creates a synchronous message consumer for the specified
destination.

MQCreateMessageProducer Creates a message producer with no default destination.

MQCreateMessageProducerForDestination Creates a message producer with a default destination.

MQCreateProperties Creates a properties handle.

MQCreateSession Creates a session and passes back a handle to the session.

MQCreateTemporaryDestination Creates a temporary destination and passes its handle back to
you.

MQCreateTextMessage Creates a text message.

MQFreeConnection Releases memory assigned to the specified connection and to all
resources associated with that connection.

MQFreeDestination Releases memory assigned to the specified destination and to all
resources associated with that destination.

MQFreeMessage Releases memory assigned to the specified message.

MQFreeProperties Releases the memory allocated to the referenced properties
handle.

MQFreeString Releases the memory allocated to the specified MQString.

MQGetAcknowledgeMode Passes back the acknowledgement mode of the specified session.

MQGetBoolProperty Passes back a property of type MQBool.

MQGetBytesMessageBytes Passes back the address and size of a MQ_BYTES_MESSAGE
message body.

MQGetDestinationType Passes back the type of the specified destination.

Table 4-4 Message Queue C-API Function Summary (Continued)

Function Description

Function Reference

Chapter 4 Reference 85

MQGetErrorTrace Returns a string describing the stack at the time the specified error
occurred.

MQGetFloat32Property Passes back the value of the MQFloat32 property for the specified
key.

MQGetFloat64Property Passes back the value of the MQFloat64 property for the specified
key.

MQGetInt16Property Passes back the value of the MQInt16 property for the specified
key.

MQGetInt32Property Passes back the value of the MQInt32 property for the specified
key.

MQGetInt64Property Passes back the value of the MQInt64 property for the specified
key.

MQGetInt8Property Passes back the value of the MQInt8 property for the specified key.

MQGetMessageHeaders Passes back a handle to the header of the specified message.

MQGetMessageProperties Passes back a handle to the properties for the specified message.

MQGetMessageReplyTo Passes back the destination where replies to this message should
be sent.

MQGetMessageType Passes back the type of the specified message.

MQGetMetaData Passes back Message Queue version information.

MQGetPropertyType Passes back the type of the specified property key.

MQGetStatusCode Returns the code for the specified MQStatus result.

MQGetStatusString Returns a string description for the specified MQStatus result.

MQGetStringProperty Passes back the value for the specified property. Type (in the
function name) can be String, Bool, Int8, Int16, Int32, Int64,
Float32, Float64.

MQGetTextMessageText Passes back the contents of an MQ_TEXT_MESSAGE message.

MQInitializeSSL Initializes the SSL library. You must call this function before you
create a connection that uses SSL.

MQPropertiesKeyIterationGetNext Passes back the next property key in the properties handle.

MQPropertiesKeyIterationHasNext Returns true if there is another property key in a properties object.

MQPropertiesKeyIterationStart Starts iterating through a properties object.

MQReceiveMessageNoWait Passes back a handle to a message delivered to the specified
consumer.

Table 4-4 Message Queue C-API Function Summary (Continued)

Function Description

Function Reference

86 Message Queue 3.5 SP1 • C Client Developer’s Guide

MQReceiveMessageWait Passes back a handle to a message delivered to the specified
consumer when the message becomes available.

MQReceiveMessageWithTimeout Passes back a handle to a message delivered to the specified
consumer if a message is available within the specified amount of
time.

MQRecoverSession Stops message delivery and restarts message delivery with the
oldest unacknowledged message.

MQRollBackSession Rolls back a transaction associated with the specified session.

MQSendMessage Sends a message for the specified producer.

MQSendMessageExt Sends a message for the specified producer and allows you to set
priority, time-to-live, and delivery mode.

MQSendMessageToDestination Sends a message to the specified destination.

MQSendMessageToDestinationExt Sends a message to the specified destination and allows you to
set message header properties.

MQSetBoolProperty Sets an MQBool property with the specified key to the specified
value.

MQSetBytesMessageBytes Sets the message body for the specified MQ_BYTES_MESSAGE
message.

MQSetFloat32Property Sets an MQFloat 32 property with the specified key to the specified
value.

MQSetFloat64Property Sets an MQFloat 64 property with the specified key to the specified
value.

MQSetInt16Property Sets an MQInt16 property with the specified key to the specified
value.

MQSetInt32Property Sets an MQInt 32 property with the specified key to the specified
value.

MQSetInt64Property Sets an MQInt64 property with the specified key to the specified
value.

MQSetInt8Property Sets an MQInt8 property with the specified key to the specified
value.

MQSetMessageHeaders Sets the header part of the message.

MQSetMessageProperties Sets the user-defined properties for the specified message.

MQSetMessageReplyTo Specifies the destination where replies to this message should be
sent.

MQSetStringProperty Sets an MQString property with the specified key to the specified
value.

Table 4-4 Message Queue C-API Function Summary (Continued)

Function Description

Function Reference

Chapter 4 Reference 87

MQSetStringProperty Sets the message body for the specified MQ_TEXT_MESSAGE
message.

MQSetTextMessageText Defines the body for a text message.

MQStartConnection Starts the specified connection to the broker and starts or resumes
message delivery.

MQStatusIsError Returns MQ_TRUE if the specified MQStatus result is an error.

MQStopConnection Stops the specified connection to the broker. This stops the broker
from delivering messages.

MQUnsubscribeDurableMessageConsumer Unsubscribes the specified durable message consumer.

Table 4-4 Message Queue C-API Function Summary (Continued)

Function Description

MQAcknowledgeMessages

88 Message Queue 3.5 SP1 • C Client Developer’s Guide

MQAcknowledgeMessages
The MQAcknowledgeMessages function acknowledges the specified message and all
messages received before it on the same session. This function is valid only if the
session is created with acknowledge mode set to MQ_CLIENT_ACKNOWLEDGE.

Return Value

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

Whether you receive messages synchronously or asynchronously, you can call the
MQAcknowledgeMessages function to acknowledge receipt of the specified message
and of all messages that preceded it.

When you create a session you specify one of several acknowledge modes for that
session; these are described in Table 4-3. If you specify MQ_CLIENT_ACKNOWLEDGE as
the acknowledge mode for the session, you must explicitly call the
MQAcknowledgeMessages function to acknowledge receipt of messages consumed in
that session.

MQAcknowledgeMessages (const MQSessionHandle sessionHandle,
const MQMessageHandle messageHandle);

sessionHandle The handle to the session for the consumer that received the
specified message.

messageHandle A handle to the message that you want to acknowledge. This
handle is passed back to you when you receive the message
(either by calling one of the receive functions or when a
message is delivered to your message listener function.)

MQAcknowledgeMessages

Chapter 4 Reference 89

By default, the calling thread to the MQAcknowledgeMessages function will be
blocked until the broker acknowledges receipt of the acknowledgment for the
broker consumed. If, when you created the session’s connection, you specified the
property MQ_ACK_ON_ACKNOWLEDGE_PROPERTY to be MQ_FALSE, the calling thread
will not wait for the broker to acknowledge the acknowledgement.

Common Errors
MQ_SESSION_NOT_CLIENT_ACK_MODE

MQ_MESSAGE_NOT_IN_SESSION

MQ_CONCURRENT_ACCESS

MQ_SESSION_CLOSED

MQ_BROKER_CLOSED

MQCloseConnection

90 Message Queue 3.5 SP1 • C Client Developer’s Guide

MQCloseConnection
The MQCloseConnection function closes the connection to the broker.

MQCloseConnection (MQConnectionHandle connectionHandle);

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

Closing the connection closes all sessions, producers, and consumers created from
this connection. This also forces all threads associated with this connection that are
blocking in the library to return.

Closing the connection does not actually release all the memory associated with the
connection. After all the application threads associated with this connection (and
its dependent sessions, producers, and consumers) have returned, you should call
the MQFreeConnection function to release these resources.

Common Errors
MQ_CONCURRENT_DEADLOCK

(If the function is called from an exception listener or a consumer’s message
listener.)

connectionHandle The handle to the connection that you want to close. This handle is
created and passed back to you by the MQCreateConnection
function.

MQCloseMessageConsumer

Chapter 4 Reference 91

MQCloseMessageConsumer
The MQCloseMessageConsumer function closes the specified message consumer.

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

A session’s consumers are automatically closed when you close the session or
connection to which they belong. To close a consumer without closing the session
or connection to which it belongs, use the MQCloseMessageConsumer function.

If the consumer you want to close is a durable consumer and you want to close this
consumer permanently, you should call the function
MQUnsubscribeDurableMessageConsumer after closing the consumer in order to
delete any state information maintained by the broker for this consumer.

Common Errors
MQ_CONSUMER_NOT_IN_SESSION

MQ_BROKER_CONNECTION_CLOSED

MQCloseMessageConsumer (MQConsumerHandle consumerHandle);

consumerHandle The handle to the consumer you want to close. This handle is
created and passed back to you by one of the functions used to
create consumers.

This handle is invalid after the function returns.

MQCloseMessageProducer

92 Message Queue 3.5 SP1 • C Client Developer’s Guide

MQCloseMessageProducer
The MQCloseMessageProducer function closes a message producer.

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

Use the MQCloseMessageProducer function to close a producer without closing its
associated session or connection.

Common Errors
MQ_PRODUCER_NOT_IN_SESSION

MQCloseMessageProducer (MQProducerHandle producerHandle);

producerHandle A handle for this producer that was passed to you by the
MQCreateMessageProducer function or by the
MQCreateMessageProducerForDestination function.

This handle is invalid after the function returns.

MQCloseSession

Chapter 4 Reference 93

MQCloseSession
The MQCloseSession function closes the specified session.

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

Closing a session closes the resources (producers and consumers) associated with
that session and frees up the memory allocated for that session.

There is no need to close the producers or consumers of a closed session.

Common Errors
MQ_CONCURRENT_DEADLOCK

(If called from a consumer’s message listener in the session.)

MQCloseSession (MQSessionHandle sessionHandle);

sessionHandle The handle to the session that you want to close. This handle is
created and passed back to you by the MQCreateSession function.

This handle is invalid after the function returns.

MQCommitSession

94 Message Queue 3.5 SP1 • C Client Developer’s Guide

MQCommitSession
The MQCommitSession function commits a transaction associated with the specified
session.

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

A transacted session supports a series of transactions. Transactions organize a
session’s input message stream and output message stream into a series of atomic
units. A transaction’s input and output units consist of those messages that have
been produced and consumed within the session’s current transaction. (Note that
the receipt of a message cannot be part of the same transaction that produces the
message.) When you call the MQCommitSession function, its atomic unit of input is
acknowledged and its associated atomic unit of output is sent.

The completion of a session’s current transaction automatically begins the next
transaction. The result is that a transacted session always has a current transaction
within which its work is done. Use the MQRollBackSession function to roll back a
transaction.

Common Errors
MQ_NOT_TRANSACTED_SESSION

MQ_CONCURRENT_ACCESS

MQ_SESSION_CLOSED

MQ_BROKER_CONNECTION_CLOSED

MQCommitSession (const MQSessionHandle sessionHandle);

sessionHandle The handle to the transacted session that you want to commit.

MQCreateAsyncDurableMessageConsumer

Chapter 4 Reference 95

MQCreateAsyncDurableMessageConsumer
The MQCreateAsyncDurableMessageConsumer function creates an asynchronous
durable message consumer for the specified destination.

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

MQCreateAsyncDurableMessageConsumer (

const MQSessionHandle sessionHandle,
const MQDestinationHandle destinationHandle,
ConstMQString durableName,
ConstMQString messageSelector,
MQBool noLocal,
MQMessageListenerFunc messageListener,
void * listenerCallbackData,
MQConsumerHandle * consumerHandle);

sessionHandle The handle to the session to which this consumer belongs.
This handle is passed back by the MQCreateSession function.
For this asynchronous durable consumer, the session must
have been created with the MQ_SESSION_ASYNC_RECEIVE
receive mode.

destinationHandle A handle to a topic destination on which the consumer receives
messages. This handle remains valid after the call.

durableName An MQString specifying a name for the durable subscriber. The
library makes a copy of the durableName string.

messageSelector An expression (based on SQL92 conditional syntax) that
specifies the criteria upon which incoming messages should be
selected for this consumer.

Specify a NULL or empty string to indicate that there is no
message selector for this consumer. In this case, all messages
are delivered.

The library makes a copy of the messageSelector string.

For more information about SQL, see X/Open CAE
Specification Data Management: Structured Query Language
(SQL), Version 2, ISBN 1-85912-151-9, March 1966.

noLocal Specify MQ_TRUE to inhibit delivery of messages published by
this consumer’s own connection.

MQCreateAsyncDurableMessageConsumer

96 Message Queue 3.5 SP1 • C Client Developer’s Guide

In the case of an asynchronous consumer, you should not start a connection before
calling the MQCreateAsyncDurableMessageConsumer function. (You should create a
connection, create a session, set up your asynchronous consumer, create the
consumer, and then start the connection.) Attempting to create a consumer when
the connection is not stopped, will result in an MQ_CONCURRENT_ACCESS error.

The MQCreateAsyncDurableMessageConsumer function creates an asynchronous
durable message consumer for the specified destination. You can define
parameters to filter messages and to inhibit the delivery of messages you published
to your own connection. Note that the session’s receive mode (sync/async) must be
appropriate for the kind of consumer you are creating (sync/async). To create a
synchronous durable message consumer for a destination, call the function
MQCreateDurableMessageConsumer.

Durable consumers can only be used for topic destinations. If you are creating an
asynchronous consumer for a queue destination or if you are not interested in
messages that arrive to a topic while you are inactive, you might prefer to use the
function MQCreateAsyncMessageConsumer.

The broker retains a record of this durable subscription and makes sure that all
messages from the publishers to this topic are retained until they are either
acknowledged by this durable subscriber or until they have expired. Sessions with
durable subscribers must always provide the same client identifier. (See
MQCreateConnection, clientID parameter.) In addition, each durable consumer
must specify a durable name using the durableName parameter, which uniquely
identifies (for each client identifier) the durable subscription when it is created.

messageListener The name of an MQMessageListenerFunc type callback function
that is to be called when this consumer receives a message on
the specified destination.

listenerCallbackData A pointer to data that you want passed to your message
listener function when it is called by the library.

consumerHandle Output parameter for the handle that references the consumer
for the specified destination.

MQCreateAsyncDurableMessageConsumer

Chapter 4 Reference 97

A session’s consumers are automatically closed when you close the session or
connection to which they belong. However, messages will be routed to the durable
subscriber while it is inactive and delivered when the durable consumer is
recreated. To close a consumer without closing the session or connection to which
it belongs, use the MQCloseMessageConsumer function. If you want to close a
durable consumer permanently, you should call the
MQUnsubscribeDurableMessageConsumer after closing it to delete state information
maintained by the Broker on behalf of the durable consumer.

Common Errors
MQ_NOT_ASYNC_RECEIVE_MODE

MQ_INVALID_MESSAGE_SELECTOR

MQ_DESTINATION_CONSUMER_LIMIT_EXCEEDEED

MQ_TEMPORARY_DESTINATION_NOT_IN_CONNECTION

MQ_CONSUMER_NO_DURABLE_NAME

MQ_QUEUE_CONSUMER_CANNOT_BE_DURABLE

MQ_CONCURRENT_ACCESS

MQ_SESSION_CLOSED

MQ_BROKER_CONNECTION_CLOSED

MQCreateAsyncMessageConsumer

98 Message Queue 3.5 SP1 • C Client Developer’s Guide

MQCreateAsyncMessageConsumer
The MQCreateAsyncMessageConsumer function creates an asynchronous message
consumer for the specified destination.

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

MQCreateAsyncMessageConsumer

(const MQSessionHandle sessionHandle,
const MQDestinationHandle destinationHandle,
ConstMQString messageSelector,
MQBool noLocal,
MQMessageListenerFunc messageListener,
void * listenerCallBackData,
MQConsumerHandle * consumerHandle);

sessionHandle The handle to the session to which this consumer belongs.
This handle is created and passed back to you by the
MQCreateSession function. For this asynchronous consumer,
the session must have been created with the
MQ_SESSION_ASYNC_RECEIVE receive mode.

destinationHandle A handle to the destination on which the consumer receives
messages. This handle remains valid after the call returns.

messageSelector An expression (based on SQL92 conditional syntax) that
specifies the criteria upon which incoming messages should be
selected for this consumer.

Specify a NULL or empty string to indicate that there is no
message selector for this consumer. In this case, all messages
will be delivered.

The library makes a copy of the messageSelector string.

For more information about SQL, see X/Open CAE
Specification Data Management: Structured Query Language
(SQL), Version 2, ISBN 1-85912-151-9, March 1966.

noLocal Specify MQ_TRUE to inhibit delivery of messages published by
this consumer’s own connection.

The setting of this parameter applies only to topic destinations.
It is ignored for queues.

MQCreateAsyncMessageConsumer

Chapter 4 Reference 99

In the case of an asynchronous consumer, you should not start a connection before
calling the MQCreateAsyncDurableMessageConsumer function. (You should create a
connection, create a session, set up your asynchronous consumers, create the
consumer, and then start the connection.) Attempting to create a consumer when
the connection is not stopped will result in an MQ_CONCURRENT_ACCESS error.

The MQCreateAsyncMessageConsumer function creates an asynchronous message
consumer for the specified destination. You can define parameters to filter
messages and to inhibit the delivery of messages you published to your own
connection. Note that the session’s receive mode (sync/async) must be appropriate
for the kind of consumer you are creating (sync/async). To create a synchronous
message consumer for a destination, use the MQCreateMessageConsumer function.

If this consumer is on a topic destination, it will only receive messages produced
while the consumer is active. If you are interested in receiving messages published
while this consumer is not active, you should create a consumer using the
MQCreateAsyncDurableMessageConsumer function instead.

A session’s consumers are automatically closed when you close the session or
connection to which they belong. To close a consumer without closing the session
or connection to which it belongs, use the MQCloseMessageConsumer function.

Common Errors
MQ_NOT_ASYNC_RECEIVE_MODE

MQ_INVALID_MESSAGE_SELECTOR

MQ_DESTINATION_CONSUMER_LIMIT_EXCEEDEED

MQ_TEMPORARY_DESTINATION_NOT_IN_CONNECTION

MQ_CONCURRENT_ACCESS

MQ_SESSION_CLOSED

MQ_BROKER_CONNECTION_CLOSED

messageListener The name of an MQMessageListenerFunc type callback function
that is to be called when this consumer receives a message for
the specified destination.

listenerCallbackData A pointer to data that you want passed to your message
listener function when it is called by the library.

consumerHandle Output parameter for the handle that references the consumer
for the specified destination.

MQCreateBytesMessage

100 Message Queue 3.5 SP1 • C Client Developer’s Guide

MQCreateBytesMessage
The MQCreatesBytesMessage function creates a bytes message and passes a handle
to it back to you.

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

After you obtain the handle to a bytes message, you can use this handle to define
its content with the MQSetBytesMessageBytes function, to set its headers with the
MQSetMessageHeaders function, and to set its properties with the
MQSetMessageProperties function.

MQCreateBytesMessage (MQMessageHandle * messageHandle);

messageHandle Output parameter for the handle to the new, empty message.

MQCreateConnection

Chapter 4 Reference 101

MQCreateConnection
The MQCreateConnection function creates a connection to the broker.

If you want to connect to the broker over SSL, you must call the MQInitializeSSL
function to initialize the SSL library before you create the connection.

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

MQCreateConnection

(MQPropertiesHandle propertiesHandle
ConstMQString username,
ConstMQString password,
ConstMQString clientID,
MQConnectionExceptionListenerFunc exceptionListener,
void * listenerCallBackData,
MQConnectionHandle * connectionHandle);

propertiesHandle A handle that specifies the properties that determine the
behavior of this connection. You must create this handle using
the MQCreateProperties function before you try to create a
connection. This handle will be invalid after the function
returns.

See Table 4-2 on page 77 for information about connection
properties.

username An MQString specifying the user name to use when connecting
to the broker.

The library makes a copy of the username string.

password An MQString specifying the password to use when connecting
to the broker.

The library makes a copy of the password string.

clientID An MQString used to identify the connection. If you use the
connection for a durable consumer, you must specify a
non-NULL client identifier.

The library makes a copy of the clientID string.

exceptionListener A connection-exception callback function used to notify the
user that a connection exception has occurred.

MQCreateConnection

102 Message Queue 3.5 SP1 • C Client Developer’s Guide

The MQCreateConnection function creates a connection to the broker. The behavior
of the connection is specified by key values defined in the properties referenced by
the propertiesHandle parameter. You must use the MQCreateProperties function
to define these properties.

You cannot change the properties of a connection you have already created. If you
need different connection properties, you must close and free the old connection
and then create a new connection with the desired properties.

Use the exceptionListener parameter to pass the name of a user-defined callback
function that can be called synchronously when a connection exception occurs for
this connection. Use the exceptionCallBackData parameter to specify any user
data that you want to pass to the callback function.

• Use the MQStartConnection function to start or restart the connection. Use the
MQStopConnection function to stop a connection.

• Use the MQGetMetaData function to get information about the name of the
Message Queue product and its version.

• Use the MQCloseConnection function to close a connection, and then use the
MQFreeConnection function to free the memory allocated for that connection.

listenerCallBackData A data pointer that can be passed to the connection
exceptionListener callback function whenever it is called. The
user can set this pointer to any data that may be useful to pass
along to the connection exception listener for this connection.
Set this to NULL if you do not need to pass data back to the
connection exception listener.

connectionHandle Output parameter for the handle to the connection that is
created by this function.

MQCreateConnection

Chapter 4 Reference 103

Common Errors
MQ_INCOMPATIBLE_LIBRARY

MQ_CONNECTION_UNSUPPORTED_TRANSPORT

MQ_COULD_NOT_CREATE_THREAD

MQ_INVALID_CLIENT_ID

MQ_CLIENT_ID_IN_USE

MQ_COULD_NOT_CONNECT_TO_BROKER

MQ_SSL_NOT_INITIALIZED

This error can be returned if MQ_CONNECTION_TYPE_PROPERTY is SSL and you
have not called the MQInitializeSSL function before creating this connection.

MQCreateDestination

104 Message Queue 3.5 SP1 • C Client Developer’s Guide

MQCreateDestination
The MQCreateDestination function creates a a logical destination and passes a
handle to it back to you.

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

The MQCreateDestination function creates a logical destination and passes a
handle to it back to you. Note that the Message Queue administrator has to also
create a physical destination on the broker, whose name and type is the same as the
destination created here, in order for messaging to happen. For example, if you use
this function to create a queue destination called myMailQDest, the administrator
has to create a physical destination on the broker named myMailQDest.

MQCreateDestination (const MQSessionHandle sessionHandle
ConstMQString destinationName,
MQDestinationType destinationType,
MQDestinationHandle * destinationHandle);

sessionHandle The handle to the session with which you want to associate this
destination.

destinationName An MQString specifying the logical name of this destination.
The library makes a copy of the destinationName string. See
discussion below.

Destination names starting with “mq” are reserved and should
not be used by clients.

destinationType An enum specifying the destination type, either
MQ_QUEUE_DESTINATION or MQ_TOPIC_DESTINATION.

destinationHandle Output parameter for the handle to the newly created
destination. You can pass this handle to functions sending
messages or to message producers or consumers.

MQCreateDestination

Chapter 4 Reference 105

If you are doing development, you can simplify this process by turning on the
imq.autocreate.topic or imq.autocreate.queue properties for the broker. If you
do this, the broker automatically creates a physical destination whenever a
message consumer or message producer attempts to access a non-existent
destination. The auto-created destination will have the same name as the logical
destination name you specified using the MQCreateDestination function. By
default, the broker has the properties imq.autocreate.topic and
imq.autocreate.queue turned on.

Common Errors
MQ_INVALID_DESTINATION_TYPE

MQ_SESSION_CLOSED

MQCreateDurableMessageConsumer

106 Message Queue 3.5 SP1 • C Client Developer’s Guide

MQCreateDurableMessageConsumer
The MQCreateDurableMessageConsumer function creates a synchronous durable
message consumer for the specified topic destination.

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

MQCreateDurableMessageConsumer

(const MQSessionHandle sessionHandle,
const MQDestinationHandle destinationHandle,
ConstMQString durableName,
ConstMQString messageSelector,
MQBool noLocal
MQConsumerHandle * consumerHandle);

sessionHandle The handle to the session to which this consumer belongs.
This handle is passed back to you by the MQCreateSession
function. For this (synchronous) durable consumer, the session
must have been created with the MQ_SESSION_SYNC_RECEIVE
receive mode.

destinationHandle A handle to a topic destination on which the consumer receives
messages. This handle remains valid after the call returns.

durableName An MQString specifying the name of the durable subscriber to
the topic destination. The library makes a copy of the
durableName string.

messageSelector An expression (based on SQL92 conditional syntax) that
specifies the criteria upon which incoming messages should be
selected for this consumer.

Specify a NULL or empty string to indicate that there is no
message selector for this consumer. In this case, the consumer
receives all messages. The library makes a copy of the
messageSelector string.

For more information about SQL, see X/Open CAE
Specification Data Management: Structured Query Language
(SQL), Version 2, ISBN 1-85912-151-9, March 1966.

MQCreateDurableMessageConsumer

Chapter 4 Reference 107

The MQCreateDurableMessageConsumer function creates a synchronous message
consumer for the specified destination. A durable consumer receives all the
messages published to a topic, including the ones published while the subscriber is
inactive.

You can define parameters to filter messages and to inhibit the delivery of
messages you published to your own connection. Note that the session’s receive
mode (sync/async) must be appropriate for the kind of consumer you are creating
(sync/async). To create an asynchronous durable message consumer for a
destination, call the function MQCreateAsyncDurableMessageConsumer.

Durable consumers are for topic destinations. If you are creating a consumer for a
queue destination or if you are not interested in messages that arrive to a topic
while you are inactive, you should use the function MQCreateMessageConsumer.

The broker retains a record of this durable subscription and makes sure that all
messages from the publishers to this topic are retained until they are either
acknowledged by this durable subscriber or until they have expired. Sessions with
durable subscribers must always provide the same client identifier (see
MQCreateConnection, clientID parameter). In addition, each durable consumer
must specify a durable name using the durableName parameter, which uniquely
identifies (for each client identifier) the durable subscription when it is created.

A session’s consumers are automatically closed when you close the session or
connection to which they belong. However, messages will be routed to the durable
subscriber while it is inactive and delivered when the durable consumer is
recreated. To close a consumer without closing the session or connection to which
it belongs, use the MQCloseMessageConsumer function. If you want to close a
durable consumer permanently, you should call the
MQUnsubscribeDurableMessageConsumer function after closing it to delete state
information maintained by the broker on behalf of the durable consumer.

noLocal Specify MQ_TRUE to inhibit delivery of messages published by
this consumer’s own connection.

consumerHandle Output parameter for the handle that references the consumer
for the specified destination.

MQCreateDurableMessageConsumer

108 Message Queue 3.5 SP1 • C Client Developer’s Guide

Common Errors
MQ_NOT_SYNC_RECEIVE_MODE

MQ_INVALID_MESSAGE_SELECTOR

MQ_DESTINATION_CONSUMER_LIMITE_EXCEEDEED

MQ_TEMPORARY_DESTINATION_NOT_IN_CONNECTION

MQ_CONSUMER_NO_DURABLE_NAME

MQ_QUEUE_CONSUMER_CANNOT_BE_DURABLE

MQ_CONCURRENT_ACCESS

MQ_SESSION_CLOSED

MQ_BROKER_CONNECTION_CLOSED

MQCreateMessageConsumer

Chapter 4 Reference 109

MQCreateMessageConsumer
The MQCreateMessageConsumer function creates a synchronous message consumer
for the specified destination.

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

MQCreateMessageConsumer

(const MQSessionHandle sessionHandle,
const MQDestinationHandle destinationHandle,
ConstMQString messageSelector,
MQBool noLocal
MQConsumerHandle * consumerHandle);

sessionHandle The handle to the session to which this consumer belongs.
This handle is passed back to you by the MQCreateSession
function. For this (synchronous) consumer, the session must
have been created with the MQ_SESSION_SYNC_RECEIVE receive
mode.

destinationHandle A handle to the destination on which the consumer receives
messages. This handle remains valid after the call returns.

messageSelector An expression (based on SQL92 conditional syntax) that
specifies the criteria upon which incoming messages should be
selected for this consumer. Specify a NULL or empty string to
indicate that there is no message selector for this consumer
and that all messages should be returned.

The library makes a copy of the messageSelector string.

For more information about SQL, see X/Open CAE
Specification Data Management: Structured Query Language
(SQL), Version 2, ISBN 1-85912-151-9, March 1966.

noLocal Specify MQ_TRUE to inhibit delivery of messages published by
this consumer’s own connection. This applies only to topic
destinations; it is ignored for queues.

consumerHandle Output parameter for the handle that references the consumer
for the specified destination.

MQCreateMessageConsumer

110 Message Queue 3.5 SP1 • C Client Developer’s Guide

The MQCreateMessageConsumer function creates a synchronous message consumer
for the specified destination. You can define parameters to filter messages and to
inhibit the delivery of messages you published to your own connection. Note that
the session’s receive mode (sync/async) must be appropriate for the kind of
consumer you are creating (sync/async). To create an asynchronous message
consumer for a destination, use the MQCreateAsyncMessageConsumer function.

If the consumer is a topic destination, it can only receive messages that are
published while it is active. To receive messages published while this consumer is
not active, you should create a consumer using either the
MQCreateDurableMessageConsumer function or the
MQCreateAsyncDurableMessageConsumer function, depending on the receive mode
you defined for the session.

A session’s consumers are automatically closed when you close the session or
connection to which they belong. To close a consumer without closing the session
or connection to which it belongs, use the MQCloseMessageConsumer function.

Common Errors
MQ_NOT_SYNC_RECEIVE_MODE

MQ_INVALID_MESSAGE_SELECTOR

MQ_DESTINATION_CONSUMER_LIMIT_EXCEEDEED

MQ_TEMPORARY_DESTINATION_NOT_IN_CONNECTION

MQ_CONCURRENT_ACCESS

MQ_SESSION_CLOSED

MQ_BROKER_CONNECTION_CLOSED

MQCreateMessageProducer

Chapter 4 Reference 111

MQCreateMessageProducer
The MQCreateMessageProducer function creates a message producer that does not
have a specified destination.

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

The MQCreateMessageProducer function creates a message producer that does not
have a specified destination. In this case, you will specify the destination when
sending the message itself by using either the MQSendMessageToDestination
function or the MQSendMessageToDestinationExt function.

Using the MQCreateMessageProducer function is appropriate when you want to use
the same producer to send messages to a variety of destinations. If, on the other
hand, you want to use one producer to send many messages to the same
destination, you should use the MQCreateMessageProducerForDestination
function instead.

A session’s producers are automatically closed when you close the session or
connection to which they belong. To close a producer without closing the session or
connection to which it belongs, use the MQCloseMessageProducer function.

Common Errors
MQ_SESSION_CLOSED

MQCreateMessageProducer (const MQSessionHandle sessionHandle,
MQProducerHandle * producerHandle);

sessionHandle The handle to the session to which this producer should
belong.

producerHandle Output parameter for the handle that references the producer.

MQCreateMessageProducerForDestination

112 Message Queue 3.5 SP1 • C Client Developer’s Guide

MQCreateMessageProducerForDestination
The MQCreateMessageProducerForDestination function creates a message
producer with a specified destination.

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

The MQCreateMessageProducerForDestination function creates a message
producer with a specified destination. All messages sent out by this producer will
go to that destination. Use the MQSendMessage function or the MQSendMessageExt
function to send messages for a producer with a specified destination.

Use the MQCreateMessageProducer function when you want to use one producer to
send messages to a variety of destinations.

A session’s producers are automatically closed when you close the session or
connection to which they belong. To close a producer without closing the session or
connection to which it belongs, use the MQCloseMessageProducer function.

Common Errors
MQ_SESSION_CLOSED

MQ_BROKER_CONNECTION_CLOSED

MQCreateMessageProducerForDestination

(const MQSessionHandle sessionHandle,
const MQDestinationHandle destinationHandle,
MQProducerHandle * producerHandle);

sessionHandle The handle to the session to which this producer belongs.

destinationHandle A handle to the destination where you want this producer to
send all messages. This handle remains valid after the call
returns.

producerHandle Output parameter for the handle that references the producer.

MQCreateProperties

Chapter 4 Reference 113

MQCreateProperties
The MQCreateProperties function creates a properties handle and passes it back to
the caller.

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

Use the MQCreateProperties function to get a properties handle. You can then use
the appropriate MQSet...Property function to set the desired properties.

MQCreateProperties (MQPropertiesHandle * propertiesHandle);

propertiesHandle Output parameter for the handle that references the newly
created properties object.

MQCreateSession

114 Message Queue 3.5 SP1 • C Client Developer’s Guide

MQCreateSession
The MQCreateSession function creates a session, defines its behavior, and passes
back a handle to the session.

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

MQCreateSession (const MQConnectionHandle connectionHandle,
MQBool isTransacted,
MQAckMode acknowledgeMode,
MQReceiveMode receiveMode
MQSessionHandle * sessionHandle);

connectionHandle The handle to the connection to which this session belongs. This
handle is passed back to you by the MQCreateConnection function.
You can create multiple sessions on a single connection.

isTransacted An MQBool specifying whether this session is transacted. Specify
MQ_TRUE if the session is transacted. In this case, the
acknowledgeMode parameter is ignored.

acknowledgeMode An enumeration of the possible kinds of acknowledgement modes
for the session. See Table 4-3 on page 80 for information on these
values.

After you have created a session, you can determine its
acknowledgement mode by calling the MQGetAcknowledgeMode
function.

receiveMode An enumeration specifying whether this session will do
synchronous or asynchronous message receives. Specify
MQ_SESSION_SYNC_RECEIVE or MQ_SESSION_ASYNC_RECEIVE.

If the session is only for producing messages, the receiveMode has
no significance. In that case, specify MQ_SESSION_SYNC_RECEIVE to
optimize the session’s resource use.

sessionHandle A handle to this session. You will need to pass this handle to the
functions you use to manage the session and to create
destinations, consumers, and producers associated with this
session.

MQCreateSession

Chapter 4 Reference 115

The MQCreateSession function creates a new session and passes back a handle to it
in the sessionHandle parameter. The number of sessions you can create for a single
connection is limited only by system resources. A session is a single-thread context
for producing and consuming messages. You can create multiple producers and
consumers for a session, but you are restricted to use them serially. In effect, only a
single logical thread of control can use them.

A session with a registered message listener is dedicated to the thread of control
that delivers messages to the listener. This means that if you want to send
messages, for example, you must create another session with which to do this. The
only operations you can perform on a session with a registered listener, is to close
the session or the connection.

After you create a session, you can create the producers, consumers, and
destinations that use the session context to do their work.

• For a session that is not transacted, use the MQRecoverSession function to
restart message delivery with the last unacknowledged message.

• For a session that is transacted, use the MQRollBackSession function to roll
back any messages that were delivered within this transaction. Use the
MQCommitSession function to commit all messages associated with this
transaction.

• For a session that has acknowledgeMode set to MQ_CLIENT_ACKNOWLEDGE, use
MQAcknowledgeMessages to acknowledge consumed messages.

• Use the MQCloseSession function to close a session and all its associated
producers and consumers. This function also frees memory allocated for the
session.

MQCreateTemporaryDestination

116 Message Queue 3.5 SP1 • C Client Developer’s Guide

MQCreateTemporaryDestination
The MQCreateTemporaryDestination function creates a temporary destination and
passes its handle back to you.

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

You can use a temporary destination to implement a simple request/reply
mechanism. When you pass the handle of a temporary destination to the
MQSetMessageReplyTo function, the consumer of the message can use that handle as
the destination to which it sends a reply.

Temporary destinations are explicitly created by client applications; they are
deleted when the connection is closed. They are maintained (and named) by the
broker only for the duration of the connection for which they are created.
Temporary destinations are system-generated uniquely for their connection and
only their own connection is allowed to create message consumers for them.

For more information, see the Message Queue Administration Guide.

Common Errors
MQ_INVALID_DESTINATION_TYPE

MQ_SESSION_CLOSED

MQCreateTemporaryDestination (const MQSessionHandle sessionHandle
MQDestinationType destinationType,
MQDestinationHandle * destinationHandle);

sessionHandle The handle to the session with which you want to associate this
destination.

destinationType An enum specifying the destination type, either
MQ_QUEUE_DESTINATION or MQ_TOPIC_DESTINATION.

destinationHandle Output parameter for the handle to the newly created
temporary destination.

MQCreateTextMessage

Chapter 4 Reference 117

MQCreateTextMessage
The MQCreatesTextMessage function creates a text message and passes a handle to
it back to you.

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

After you obtain the handle to a text message, you can use this handle to define its
content with the MQSetStringProperty function, to set its headers with the
MQSetMessageHeaders function, and to set its properties with the
MQSetMessageProperties function.

MQCreateTextMessage (MQMessageHandle * messageHandle);

messageHandle Output parameter for the handle to the new, empty message.

MQFreeConnection

118 Message Queue 3.5 SP1 • C Client Developer’s Guide

MQFreeConnection
The MQFreeConnection function deallocates memory assigned to the specified
connection and to all resources associated with that connection.

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

You must call this function after you have closed the connection with the
MQCloseConnection function and after all of the application threads associated
with this connection and its dependent sessions, producers, and consumers have
returned.

You must not call this function while an application thread is active in a library
function associated with this connection or one of its dependent sessions,
producers, consumers, and destinations.

Calling this function does not release resources held by a message or a destination
associated with this connection. You must free memory allocated for a message or
a destination by explicitly calling the MQFreeMessage or the MQFreeDestination
function.

Common Errors
MQ_STATUS_CONNECTION_NOT_CLOSED

MQFreeConnection (MQConnectionHandle connectionHandle);

connectionHandle A handle to the connection you want to free.

MQFreeDestination

Chapter 4 Reference 119

MQFreeDestination
The MQFreeDestination function frees memory allocated for the destination
referenced by the specified handle.

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

Calling the MQFreeConnection or the MQCloseSession function does not
automatically free destinations created for the connection or for the session.

MQFreeDestination (MQDestinationHandle destinationHandle);

destinationHandle A handle to the destination you want to free.

MQFreeMessage

120 Message Queue 3.5 SP1 • C Client Developer’s Guide

MQFreeMessage
The MQFreeMessage function frees memory allocated for the message referenced by
the specified handle.

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

Calling the MQFreeConnection function does not automatically free messages
associated with that connection.

MQFreeMessage (MQMessageHandle messageHandle);

messageHandle A handle to the message you want to free.

MQFreeProperties

Chapter 4 Reference 121

MQFreeProperties
The MQFreeProperties function frees the memory allocated to the referenced
properties object.

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

You should not free a properties handle if the properties handle passed to a
function becomes invalid on its return. If you do, you will get an error.

MQFreeProperties (MQPropertiesHandle propertiesHandle);

propertiesHandle A handle to the properties object you want to free.

MQFreeString

122 Message Queue 3.5 SP1 • C Client Developer’s Guide

MQFreeString
The MQFreeString function frees the memory allocated for the specified MQString.

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

MQFreeString (MQString statusString);

statusString An MQString returned by the MQGetStatusString function or by
the MQGetErrorTrace function.

MQGetAcknowledgeMode

Chapter 4 Reference 123

MQGetAcknowledgeMode
The MQGetAcknowledgeMode function passes back the acknowledgement mode of
the specified session.

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

If you want to change the acknowledge mode, you need to create another session
with the desired mode.

MQGetAcknowledgemode (const MQSessionHandle sessionHandle
MQAckMode * ackMode);

sessionHandle The handle to the session whose acknowledgement mode you want
to determine.

ackMode Output parameter for the ackMode. The ackMode returned can be
one of four enumeration values. See Table 4-3 on page 80 for
information about these values.

MQGetBoolProperty

124 Message Queue 3.5 SP1 • C Client Developer’s Guide

MQGetBoolProperty
The MQGetBoolProperty function passes back the value of the MQBool property for
the specified key.

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

Common Errors
MQ_NOT_FOUND

MQ_INVALID_TYPE_CONVERSION

MQGetBoolProperty (const MQPropertiesHandle propertiesHandle,
ConstMQString key,
MQBool * value);

propertiesHandle A properties handle whose property value for the specified key you
want to get.

key The name of a property key.

value Output parameter for the property value.

MQGetBytesMessageBytes

Chapter 4 Reference 125

MQGetBytesMessageBytes
The MQGetBytesMessageBytes function passes back the address and size of a bytes
message body.

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

After you obtain the handle to a message, you can use the MQGetMessageType to
determine its type and, if the type is MQ_BYTES_MESSAGE, you can use the
MQGetBytesMessageBytes function to retrieve the message bytes (message body).

The bytes message passed to you by this function is not a copy. You should not
modify the bytes or attempt to free it.

MQGetBytesMessageBytes (const MQMessageHandle messageHandle,
const MQInt8 * messageBytes
MQInt32 * messageBytesSize);

messageHandle A handle to a message that is passed to you when you receive
a message.

messageBytes Output parameter that contains the start address of the bytes
that constitute the body of this bytes message.

messageBytesSize Output parameter that contains the size of the message body
in bytes.

MQGetDestinationType

126 Message Queue 3.5 SP1 • C Client Developer’s Guide

MQGetDestinationType
The MQGetDestinationType passes back the type of the specified destination.

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

Use the MQGetDestinationType function to determine the type of a destination:
queue or topic. There may be times when you do not know the type of the
destination to which you are replying: for example, when you get a handle from
the MQGetMessageReplyTo function. Because the semantics of queue and topic
destinations differ, you need to determine the type of a destination in order to
reply appropriately.

Once you have created a destination with a specified type, you cannot change the
type dynamically. If you want to change the type of a destination, you need to free
the destination using the MQFreeDestination function and then to create a new
destination, with the desired type, using the MQCreateDestination or the
MQCreateTemporaryDestination function.

MQGetDestinationType (const MQDestinationHandle destinationHandle,
MQDestinationType * destinationType);

destinationHandle A handle to the destination whose type you want to know.

destinationType Output parameter for the destination type; either
MQ_QUEUE_DESTINATION or MQ_TOPIC_DESTINATION.

MQGetErrorTrace

Chapter 4 Reference 127

MQGetErrorTrace
The MQGetErrorTrace function returns an MQString describing the error trace at the
time when a function call failed for the calling thread.

MQString MQGetErrorTrace ()

Having found that a Message Queue function has not returned successfully, you
can get an error trace when the error occurred by calling the MQGetErrorTrace
function in the same thread that called the unsuccessful Message Queue function.

The MQGetErrorTrace function returns an MQString describing the error trace if it
can determine this information. The function will return a NULL string if there is no
error trace available.

The following is an example of an error trace output.

You must call the MQFreeString function to free the MQString returned by the
MQGetErrorTrace function when you are done.

connect:../../../../src/share/cclient/io/TCPSocket.cpp:195:mq:-5981
readBrokerPorts:../../../../src/share/cclient/client/PortMapper

Client.cpp:48:mq:-5981
connect:../../../../../src/share/cclient/client/protocol/

TCPProtocolHandler.cpp:111:mq:-5981
connectToBroker:../../../../src/share/cclient/client/Connection.

cpp:412:mq:-5981
openConnection:../../../../src/share/cclient/client/Connection.

cpp:227:mq:1900
MQCreateConnectionExt:../../../../src/share/cclient/cshim/

iMQConnectionShim.cpp:102:mq:1900

MQGetFloat32Property

128 Message Queue 3.5 SP1 • C Client Developer’s Guide

MQGetFloat32Property
The MQGetFloat32Property function passes back the value of the MQFloat32
property for the specified key.

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

Common Errors
MQ_NOT_FOUND

MQ_INVALID_TYPE_CONVERSION

MQGetFloat32Property (const MQPropertiesHandle propertiesHandle,
ConstMQString key,
MQFloat32 * value);

propertiesHandle A properties handle whose property value for the specified key you
want to get.

key The name of a property key.

value Output parameter for the property value.

MQGetFloat64Property

Chapter 4 Reference 129

MQGetFloat64Property
The MQGetFloat64Property function passes back the value of the MQFloat64
property for the specified key.

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

Common Errors
MQ_NOT_FOUND

MQ_INVALID_TYPE_CONVERSION

MQGetFloat64Property (const MQPropertiesHandle propertiesHandle,
ConstMQString key,
MQFloat64 * value);

propertiesHandle A properties handle whose property value for the specified key you
want to get.

key The name of a property key.

value Output parameter for the property value.

MQGetInt16Property

130 Message Queue 3.5 SP1 • C Client Developer’s Guide

MQGetInt16Property
The MQGetInt16Property function passes back the value of the MQInt16 property
for the specified key.

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

Common Errors
MQ_NOT_FOUND

MQ_INVALID_TYPE_CONVERSION

MQGetInt16Property (const MQPropertiesHandle propertiesHandle,
ConstMQString key,
MQInt16 * value);

propertiesHandle A properties handle whose property value for the specified key you
want to get.

key The name of a property key.

value Output parameter for the property value.

MQGetInt32Property

Chapter 4 Reference 131

MQGetInt32Property
The MQGetInt32Property function passes back the value of the MQInt32 property
for the specified key.

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

Common Errors
MQ_NOT_FOUND

MQ_INVALID_TYPE_CONVERSION

MQGetInt32Property (const MQPropertiesHandle propertiesHandle,
ConstMQString key,
MQInt32 * value);

propertiesHandle A properties handle whose property value for the specified key you
want to get.

key The name of a property key.

value Output parameter for the property value.

MQGetInt64Property

132 Message Queue 3.5 SP1 • C Client Developer’s Guide

MQGetInt64Property
The MQGetInt64Property function passes back the value of the MQInt64 property
for the specified key.

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

Common Errors
MQ_NOT_FOUND

MQ_INVALID_TYPE_CONVERSION

MQGetint64Property (const MQPropertiesHandle propertiesHandle,
ConstMQString key,
MQInt64 * value);

propertiesHandle A properties handle whose property value for the specified key you
want to get.

key The name of a property key.

value Output parameter for the property value.

MQGetInt8Property

Chapter 4 Reference 133

MQGetInt8Property
The MQGetInt8Property function passes back the value of the MQInt8 property for
the specified key.

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

Common Errors
MQ_NOT_FOUND

MQ_INVALID_TYPE_CONVERSION

MQGetInt8Property (const MQPropertiesHandle propertiesHandle,
ConstMQString key,
MQInt8 * value);

propertiesHandle A properties handle whose property value for the specified key you
want to get.

key The name of a property key.

value Output parameter for the property value.

MQGetMessageHeaders

134 Message Queue 3.5 SP1 • C Client Developer’s Guide

MQGetMessageHeaders
The MQGetMessageHeaders function passes back a handle to the message headers.

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

The MQGetMessageHeaders function passes back a handle to the message headers.
The message header includes the fields described in Table 4-5. Note that most of
the fields are set by the send function; the client can optionally set only two of these
fields for sending messages.

MQGetMessageHeaders (const MQMessageHandle messageHandle
MQPropertiesHandle * headersHandle) ;

messageHandle The message handle.

headersHandle Output parameter for the handle to the message header
properties.

Table 4-5 Message Header Properties

Key Type Set By

MQ_CORRELATION_ID_HEADER_PROPERTY MQString Client (optional)

MQ_MESSAGE_TYPE_HEADER_PROPERTY MQString Client (optional)

MQ_PERSISTENT_HEADER_PROPERTY MQBool Send function

MQ_EXPIRATION_HEADER_PROPERTY MQInt64 Send function

MQ_PRIORITY_HEADER_PROPERTY MQInt8 Send function

MQ_TIMESTAMP_HEADER_PROPERTY MQInt64 Send function

MQ_MESSAGE_ID_HEADER_PROPERTY MQString Send function

MQ_REDELIVERED_HEADER_PROPERTY MQBool Message Broker

MQGetMessageHeaders

Chapter 4 Reference 135

You are responsible for freeing the headersHandle after you are done with it. Use
the MQFreeProperties function to free the handle.

Use the MQGetMessageProperties function to determine whether any
application-defined properties were set for this message and to find out their value.

MQGetMessageProperties

136 Message Queue 3.5 SP1 • C Client Developer’s Guide

MQGetMessageProperties
The MQGetMessageProperties function passes back the user-defined properties for
a message.

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

The MQGetMessageProperties function allows you to get application-defined
properties for a message. Properties allow an application, via message selectors, to
select or filter messages on its behalf using application-specific criteria. Having
obtained the handle, you can either use one of the MQGet...Property functions to
get a value (if you know the key name) or you can iterate through the properties
using the MQPropertiesKeyIterationStart function.

You will need to call the function MQFreeProperties to free the resources
associated with this handle after you are done using it.

Common Errors
MQ_NO_MESSAGE_PROPERTIES

MQGetMessageProperties (const MQMessageHandle messageHandle,
MQPropertiesHandle * propsHandle);

messageHandle A handle to a message whose properties you want to get.

propertiesHandle Output parameter for the handle to the message properties.

MQGetMessageReplyTo

Chapter 4 Reference 137

MQGetMessageReplyTo
The MQGetMessageReplyTo function passes back the destination where replies to
this message should be sent.

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

The sender uses the MQSetMessageReplyTo function to specify a destination where
replies to the message can be sent. This can be a normal destination or a temporary
destination. The receiving client can pass the message handle to the
MQGetMessageReplyTo function and determine whether a destination for replies has
been set up for the message by the sender and what that destination is. The
consumer of the message can then use that handle as the destination to which it
sends a reply.

You might need to call the MQGetDestinationType function to determine the type
of the destination whose handle is returned to you: queue or topic so that you can
set up your reply appropriately.

The advantage of setting up a temporary destination for replies is that Message
Queue automatically creates a physical destination for you, rather than your
having to have the administrator create one, when the broker’s
auto.create.destination property is turned off.

You are responsible for freeing the destination handle by calling the function
MQFreeDestination.

Common Errors
MQ_NO_REPLY_TO_DESTINATION

MQGetMessageReplyTo (const MQMessageHandle messageHandle,
MQDestinationHandle * destinationHandle);

messageHandle A handle to a message expecting a reply. This is the handle
that is passed back to you when you receive the message.

destinationHandle Output parameter for the handle to the reply destination.

MQGetMessageType

138 Message Queue 3.5 SP1 • C Client Developer’s Guide

MQGetMessageType
The MQGetMessageType function passes back information about the type of a
message: MQ_TEXT_MESSAGE or MQ_BYTES_MESSAGE.

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

After you obtain the handle to a message, you can determine the type of the
message using the MQGetMessageType function. Having determined its type, you
can use the MQGetTextMessageText function or the MQGetBytesMessageBytes
function to obtain the message content.

Note that other message types might be added in the future. You should not design
your code so that it only expects two possible message types.

MQGetMessageType (const MQMessageHandle messageHandle,
MQMessageType * messageType);

messageHandle A handle to a message whose type you want to determine.

messageType Output parameter that contains the message type:
MQ_TEXT_MESSAGE or MQ_BYTES_MESSAGE.

MQGetMetaData

Chapter 4 Reference 139

MQGetMetaData
The MQGetMetaData function returns name and version information for the current
Message Queue product.

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

The Message Queue product you are using is identified by a name and a version
number. For example: “Sun Java(tm) System Message Queue 3.5.0.1.” The version
number consists of a major, minor, micro, and service pack component. For
example, the major part of version 3.5.0.1 is 3; the minor is 5; the micro is 0; the
service pack is 1.

The name and version information of the Message Queue product are set by the
library when you call the MQCreateConnection function to create the connection. You
can retrieve this information by calling the MQGetMetaData function and passing a
properties handle. Once the function returns and passes the handle back, you can
use one of the MQGet...Properties functions to determine the value of a property
(key). These properties are described at the end of Table 4-2 on page 77.

MQGetMetaData (const MQConnectionHandle connectionHandle,
MQPropertiesHandle * propertiesHandle)

connectionHandle The handle to the connection that you want the meta information
about.

propertiesHandle Output parameter that contains the properties handle.

MQGetPropertyType

140 Message Queue 3.5 SP1 • C Client Developer’s Guide

MQGetPropertyType
The MQGetPropertyType function returns the type of the property value for a
property key in the specified properties handle.

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

Use the appropriate MQGet...Property function to find the value of the specified
property key.

Common Errors
MQ_NOT_FOUND

MQGetPropertyType (const MQPropertiesHandle propertiesHandle,
ConstMQString key,
MQType * propertyType);

propertiesHandle A properties handle that you want to access.

key The property key for which you want to get the type of the
property value.

propertyType Output parameter for the type of the property value.

MQGetStatusCode

Chapter 4 Reference 141

MQGetStatusCode
The MQGetStatusCode function returns the error code associated with specified
status.

Parameters

Having found that a Message Queue function has not returned successfully, you
can determine the reason by passing the return status. This function will return the
error code associated with the specified status. These codes are listed and
described in Appendix A on page 185.

Some functions might return an MQStatus that contains an NSPR or NSS library
error code instead of a Message Queue error code when they fail. For NSPR and
NSS library error codes, the MQGetStatusString function will return the symbolic
name of the NSPR or NSS library error code. See NSPR and NSS public
documentation for NSPR and NSS error code symbols and their interpretation at
the following locations:

• For NSPR error codes, see the “NSPR Error Handling” chapter:
http://www.mozilla.org/projects/nspr/reference/html/index.html

• For SSL and SEC error codes, see the “NSS and SSL Error Codes” chapter:
http://www.mozilla.org/projects/security/pki/nss/ref/ssl/

To obtain an MQString that describes the error, use the MQGetStatusString
function. To get an error trace associated with the error, use the MQGetErrorTrace
function.

MQError MQGetStatusCode (const MQStatus status);

status The status returned by any Message Queue function that
returns an MQStatus.

http://www.mozilla.org/projects/nspr/reference/html/index.html
http://www.mozilla.org/projects/security/pki/nss/ref/ssl/

MQGetStatusString

142 Message Queue 3.5 SP1 • C Client Developer’s Guide

MQGetStatusString
The MQGetStatusString function returns an MQString describing the specified
status.

Parameters

Having found that a Message Queue function has not returned successfully, you
can determine the reason why by passing the return status. This function will
return an MQString describing the error associated with the specified status.

To obtain the error code for the specified status, use the MQGetStatusCode
function. To get an error trace associated with the error, use the MQGetErrorTrace
function.

You must call the MQFreeString function to free the MQString returned by the
MQGetStatusString function when you are done.

MQString MQGetStatusString (const MQStatus status);

status The status returned by any Message Queue function that
returns an MQStatus.

MQGetStringProperty

Chapter 4 Reference 143

MQGetStringProperty
The MQGetStringProperty function passes back the value of the specified key for
the specified MQString property.

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

You should not modify or attempt to free the value returned.

MQGetStringProperty (const MQPropertiesHandle propertiesHandle,
ConstMQString key,
ConstMQString * value);

propertiesHandle A properties handle whose property value for the specified key you
want to get.

key The name of a property key.

value Output parameter that points to the value of the specified key

MQGetTextMessageText

144 Message Queue 3.5 SP1 • C Client Developer’s Guide

MQGetTextMessageText
The MQGetTextMessageText function passes back the contents of a text message.

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

After you obtain the handle to a message, you can use the MQGetMessageType to
determine its type and, if the type is text, you can use the MQGetTextMessageText
function to retrieve the message text.

The MQString passed to you by this function is not a copy. You should not modify
the bytes or attempt to free it.

MQGetTextMessageText (const MQMessageHandle messageHandle,
ConstMQString * messageText);

messageHandle A handle to an MQ_TEXT_MESSAGE message that is passed to
you when you receive a message.

messageText The output parameter that points to the message text.

MQInitializeSSL

Chapter 4 Reference 145

MQInitializeSSL
The MQInitializeSSL function initializes the SSL library. You must call this
function once and only once before you create any connection that uses SSL.

MQInitializeSSL (ConstMQString certificateDatabasePath);

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

The Message Queue C-API library uses NSS to support the SSL transport protocol
between the Message Queue C client and the Message Queue broker.

Before you connect to a broker over SSL, you must initialize the SSL library by
calling the MQInitializeSSL function. The certificateDatabasePath parameter
specifies the path to the NSS certificate database where cert7.db or cert8.db,
key3.db, and secmod.db are located.

Common Errors
MQ_INCOMPATIBLE_LIBRARY

MQ_SSL_ALREADY_INITIALIZED

certificateDatabasePath An MQString specifying the path to the certificate data
base.

MQPropertiesKeyIterationGetNext

146 Message Queue 3.5 SP1 • C Client Developer’s Guide

MQPropertiesKeyIterationGetNext
The MQPropertiesKeyIterationGetNext function passes back the address of the
next property key in the referenced properties handle.

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

To get message properties:

1. Start the process by calling the MQPropertiesKeyIterationStart function.

2. Loop using the MQPropertiesKeyIterationHasNext function.

3. Extract the name of each property key by calling the
MQPropertiesKeyIterationGetNext function.

4. Determine the type of the property value for a given key by calling the
MQGetPropertyType function.

5. Use the appropriate MQGet...Property function to find the property value for
the specified property key.

If you know the property key, you can just use the appropriate MQGet...Property
function to access its value.

You should not modify or free the property key that is passed back to you by this
function. Note that this function is not multi-thread-safe.

MQPropertiesKeyIterationGetNext (const MQPropertiesHandle
propertiesHandle,
ConstMQString * key);

propertiesHandle A properties handle whose contents you want to access.

key The output parameter for the next properties key in the
iteration. You should not attempt to modify or free it.

MQPropertiesKeyIterationHasNext

Chapter 4 Reference 147

MQPropertiesKeyIterationHasNext
The MQPropertiesKeyIterationHasNext function returns MQ_TRUE if there are
additional property keys left in the iteration.

Return Value
MQBool

Parameters

To get message properties:

1. Start the process by calling the MQPropertiesKeyIterationStart function.

2. Loop using the MQPropertiesKeyIterationHasNext function.

3. Extract the name of each property key by calling the
MQPropertiesKeyIterationGetNext function.

4. Determine the type of the property value for a given key by calling the
MQGetPropertyType function.

5. Use the appropriate MQGet...Property function to find the value for the
specified property key.

If you know the property key, you can just use the appropriate MQGet...Property
function to get its value. Note that this function is not multi-thread-safe.

MQPropertiesKeyIterationHasNext

(const MQPropertiesHandle propertiesHandle);

propertiesHandle A properties handle that you want to access.

MQPropertiesKeyIterationStart

148 Message Queue 3.5 SP1 • C Client Developer’s Guide

MQPropertiesKeyIterationStart
The MQPropertiesKeyIterationStart function starts or resets the iteration process
or the specified properties handle.

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

To get message properties:

1. Start the process by calling the MQPropertiesKeyIterationStart function.

2. Loop using the MQPropertiesKeyIterationHasNext function.

3. Extract the name of each property key by calling the
MQPropertiesKeyIterationGetNext function.

4. Determine the type of the property value for a given key by calling the
MQGetPropertyType function.

5. Use the appropriate MQGet...Property function to find the property value for
the specified property key.

If you know the property key, you can just use the appropriate MQGet...Property
function to get its value. Note that this function is not multi-thread-safe.

MQPropertiesKeyIterationStart (const PropertiesHandle
propertiesHandle);

propertiesHandle A properties handle that you want to access.

MQReceiveMessageNoWait

Chapter 4 Reference 149

MQReceiveMessageNoWait
The MQReceiveMessageNoWait function passes a handle back to a message
delivered to the specified consumer if a message is available.

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

This function can only be called if the session is created with receive mode
MQ_SESSION_SYNC_RECEIVE. The MQReceiveMessageNoWait function passes a handle
back to you in the messageHandle parameter if there is a message arrived for the
consumer specified by the consumerHandle parameter. If there is no message for
the consumer, the function returns immediately with an error.

When you create a session, you specify one of several acknowledge modes for that
session; these are described in Table 4-3. If you specify MQ_CLIENT_ACKNOWLEDGE as
the acknowledge mode for the session, you must explicitly call the
MQAcknowledgeMessages function to acknowledge messages that you have
received. For more information, see the description of the function
MQAcknowledgeMessages.

MQReceiveMessageNoWait (const MQConsumerHandle consumerHandle,
 MQMessageHandle * messageHandle);

consumerHandle The handle to the message consumer. This handle is passed
back to you when you create a synchronous message
consumer.

messageHandle Output parameter for the handle to the message to be
received. You are responsible for freeing the message handle
when you are done by calling the MQFreeMessage function.

MQReceiveMessageNoWait

150 Message Queue 3.5 SP1 • C Client Developer’s Guide

You can use the MQReceiveMessageWait function if you want the receive function to
block while waiting for a message to arrive. You can use the
MQReceiveMessageWithTimeout function to wait for a specified time for a message
to arrive.

Common Errors
MQ_NOT_SYNC_RECEIVE_MODE

MQ_CONCURRENT_ACCESS

MQ_NO_MESSAGE

MQ_CONSUMER_CLOSED

MQ_SESSION_CLOSED

MQ_BROKER_CONNECTION_CLOSED

MQReceiveMessageWait

Chapter 4 Reference 151

MQReceiveMessageWait
The MQReceiveMessageWait function passes a handle back to a message delivered
to the specified consumer when the message becomes available.

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

This function can only be called if the session is created with receive mode
MQ_SESSION_SYNC_RECEIVE. The MQReceiveMessageWait function passes a handle
back to you in the messageHandle parameter if there is a message arrived for the
consumer specified by the consumerHandle parameter. If there is no message for
the consumer, the function blocks until a message is delivered.

When you create a session, you specify one of several acknowledge modes for that
session; these are described in Table 4-3. If you specify MQ_CLIENT_ACKNOWLEDGE as
the acknowledge mode for the session, you must explicitly call the
MQAcknowledgeMessages function to acknowledge messages that you have
received. For more information, see the description of the function
MQAcknowledgeMessages.

MQReceiveMessageWait (const MQConsumerHandle consumerHandle,
 MQMessageHandle * messageHandle);

consumerHandle The handle to the message consumer. This handle is passed
back to you when you create a synchronous message
consumer.

messageHandle Output parameter for the handle to the message to be
received. You are responsible for freeing the message handle
when you are done by calling the MQFreeMessage function.

MQReceiveMessageWait

152 Message Queue 3.5 SP1 • C Client Developer’s Guide

You can use the MQReceiveMessageNoWait function instead if you do not want to
block while waiting for a message to arrive. You can use the function
MQReceiveMessageWithTimeout to wait for a specified time for a message to arrive.

Common Errors
MQ_NOT_SYNC_RECEIVE_MODE

MQ_CONCURRENT_ACCESS

MQ_CONSUMER_CLOSED

MQ_SESSION_CLOSED

MQ_BROKER_CONNECTION_CLOSED

MQReceiveMessageWithTimeout

Chapter 4 Reference 153

MQReceiveMessageWithTimeout
The MQReceiveMessageWithTimeout function passes a handle back to a message
delivered to the specified consumer if a message is available within the specified
amount of time.

Return Value
MQStatus. See the MQStatusIsError function for more information.

This function can only be called if the session is created with receive mode
MQ_SESSION_SYNC_RECEIVE. The MQReceiveMessageWithTimeout function passes a
handle back to you in the messageHandle parameter if a message arrives for the
consumer specified by the consumerHandle parameter in the amount of time
specified by the timoutMilliseconds parameter. If no message arrives within the
specified amount of time, the function returns an error.

When you create a session, you specify one of several acknowledge modes for that
session; these are described in Table 4-3. If you specify MQ_CLIENT_ACKNOWLEDGE as
the acknowledge mode for the session, you must explicitly call the
MQAcknowledgeMessages function to acknowledge messages that you have
received. For more information, see the description of the function
MQAcknowledgeMessages.

MQReceiveMessageWithTimeout (const MQConsumerHandle consumerHandle,
MQInt32 timeoutMilliseconds,
MQMessageHandle * messageHandle);

consumerHandle The handle to the message consumer. This handle is passed
back to you when you create a synchronous message
consumer.

timeoutMilliseconds The number of milliseconds to wait for a message to arrive.

messageHandle Output parameter for the handle to the message to be
received. You are responsible for freeing the message handle
when you are done by calling the MQFreeMessage function.

MQReceiveMessageWithTimeout

154 Message Queue 3.5 SP1 • C Client Developer’s Guide

You can use the MQReceiveMessageWait function to block while waiting for a
message to arrive. You can use the MQReceiveMessageNoWait function if you do not
want to wait for the message to arrive.

Common Errors
MQ_NOT_SYNC_RECEIVE_MODE

MQ_CONCURRENT_ACCESS

MQ_TIMEOUT_EXPIRED

MQ_CONSUMER_CLOSED

MQ_SESSION_CLOSED

MQ_BROKER_CONNECTION_CLOSED

MQRecoverSession

Chapter 4 Reference 155

MQRecoverSession
The MQCRecoverSession function stops message delivery and restarts message
delivery with the oldest unacknowledged message.

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

You can only call this function for sessions that are not transacted. To rollback
message delivery for a transacted session, use the MQRollBackSession function.
This function may be most useful if you use the MQ_CLIENT_ACKNOWELDGE mode.

All consumers deliver messages in a serial order. Acknowledging a received
message automatically acknowledges all messages that have been delivered to the
client.

Restarting a session causes it to take the following actions:

• Stop message delivery in this session

• Mark all messages that might have been delivered but not acknowledged as
“redelivered”

• Restart the delivery sequence including all unacknowledged messages that
had been previously delivered. (Redelivered messages might not be delivered
in their original delivery order.)

Common Errors
MQ_TRANSACTED_SESSION

MQ_CONCURRENT_ACCESS

MQ_SESSION_CLOSED

MQ_BROKER_CONNECTION_CLOSED

MQRecoverSession (const MQSessionHandle sessionHandle);

sessionHandle The handle to the session that you want to recover.

MQRollBackSession

156 Message Queue 3.5 SP1 • C Client Developer’s Guide

MQRollBackSession
The MQRollBackSession function rolls back a transaction associated with the
specified session.

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

A transacted session groups messages into an atomic unit known as a transaction.
As messages are produced or consumed within a transaction, the broker tracks the
various sends and receives, completing these operations only when you call the
MQCommitSession function.

If a send or receive operation fails, you must use the MQRollBackSession function
to roll back the entire transaction. This means that those messages that have been
sent are destroyed and those messages that have been consumed are automatically
recovered.

Common Errors
MQ_NOT_TRANSACTED_SESSION

MQ_CONCURRENT_ACCESS

MQ_SESSION_CLOSED

MQ_BROKER_CONNECTION_CLOSED

MQRollBackSession (const MQSessionHandle sessionHandle);

sessionHandle The handle to the transacted session that you want to roll back.

MQSendMessage

Chapter 4 Reference 157

MQSendMessage
The MQSendMessage function sends a message using the specified producer.

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

The MQSendMessage function sends the specified message on behalf of the specified
producer to the destination associated with the message producer. If you use this
function to send a message, the following message header fields are set to default
values when the send completes.

• MQ_PERSISTENT_HEADER_PROPERTY will be set to MQ_PERSISTENT_DELIVERY.

This means that the calling thread will be blocked, waiting for the broker to
acknowledge receipt of your messages, unless you set the connection property
MQ_ACK_ON_PRODUCE_PROPERTY to MQ_FALSE.

• MQ_PRIORITY_HEADER_PROPERTY will be set to 4.

• MQ_EXPIRATION_HEADER_PROPERTY will be set to 0, which means that the
message will never expire.

If you set those message properties, they will be ignored when a message is sent.
To send a message with these properties set to different values, you can use the
MQSendMessageExt function to specify different values for these properties.

MQSendMessage (const MQProducerHandle producerHandle,
const MQMessageHandle messageHandle);

producerHandle The handle to the producer sending this message. This handle
is passed back to you by the
MQCreateMessageProducerForDestination function.

messageHandle A handle to the message you want to send.

MQSendMessage

158 Message Queue 3.5 SP1 • C Client Developer’s Guide

You cannot use this function with a producer that is created without a specified
destination.

Common Errors
MQ_PRODUCER_NO_DESTINATION

MQ_PRODUCER_CLOSED

MQ_SESSION_CLOSED

MQ_BROKER_CONNECTION_CLOSED

MQSendMessageExt

Chapter 4 Reference 159

MQSendMessageExt
The MQSendMessageExt function sends a message using the specified producer and
allows you to specify selected message header properties.

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

MQSendMessageExt (const MQProducerHandle producerHandle,
const MQMessageHandle messageHandle
MQDeliveryMode msgDeliveryMode,
MQInt8 msgPriority,
MQInt64 msgTimeToLive);

producerHandle The handle to the producer sending this message. This handle
is passed back to you by the
MQCreateMessageProducerForDestination function.

messageHandle A handle to the message you want to send.

msgDeliveryMode An enum

MQ_PERSISTENT_DELIVERY
MQ_NONPERSISTENT_DELIVERY.

msgPriority A integer value of 0 through 9; 0 being the lowest priority and 9
the highest.

msgTimeToLive An integer value specifying in milliseconds how long the
message will live before it expires. When a message is sent, its
expiration time is calculated as the sum of its time-to-live value
and current GMT. A value of 0 indicates that he message will
never expire.

MQSendMessageExt

160 Message Queue 3.5 SP1 • C Client Developer’s Guide

The MQSendMessageExt function sends the specified message on behalf of the
specified producer to the destination associated with the message producer. Use
this function if you want to change the default values for the message header
properties as shown in the next table.

If you set these message headers using the MQSetMessageHeaders function before
the send, they will be ignored when the message is sent. When the send completes,
these message headers hold the values that are set by the send.

You cannot use this function with a producer that is created without a specified
destination.

You can set the broker property MQ_ACK_ON_PRODUCE_PROPERTY to make sure that
the message has reached its destination on the broker:

• By default, the broker acknowledges receiving persistent messages only.

• If you set the property to MQ_TRUE, the broker acknowledges receipt of all
messages (persistent and non-persistent) from the producing client.

• If you set the property to MQ_FALSE, the broker does not acknowledge receipt of
any message (persistent or non-persistent) from the producing client.

Note that “acknowledgement” in this case is not programmatic but internally
implemented. That is, the client thread is blocked and does not return until the
broker acknowledges messages it receives from the producing client.

Common Errors
MQ_PRODUCER_NO_DESTINATION

MQ_INVALID_PRIORITY

MQ_INVALID_DELIVERY_MODE

MQ_PRODUCER_CLOSED

MQ_SESSION_CLOSED

MQ_BROKER_CONNECTION_CLOSED

Property Default value

msgDeliveryMode MQ_PERSISTENT_DELIVERY

msgPriority 4

msgTimeToLive 0, meaning no expiration limit

MQSendMessageToDestination

Chapter 4 Reference 161

MQSendMessageToDestination
The MQSendMessageToDestination function sends a message using the specified
producer to the specified destination.

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

The MQSendMessageToDestination function sends the specified message on behalf
of the specified producer to the specified destination. If you use this function to
send a message, the following message header fields are set as follows when the
send completes.

• MQ_PERSISTENT_HEADER_PROPERTY will be set to MQ_PERSISTENT_DELIVERY.

This means that the caller will be blocked, waiting for broker
acknowledgement for the receipt of your messages unless you set the
connection property MQ_ACK_ON_PRODUCE_PROPERTY to MQ_FALSE.

• MQ_PRIORITY_HEADER_PROPERTY will be set to 4.

• MQ_EXPIRATION_HEADER_PROPERTY will be set to 0, which means that the
message will never expire.

MQSendMessageToDestination

(const MQProducerHandle producerHandle,
const MQMessageHandle messageHandle,
const MQDestinationHandle destinationHandle);

producerHandle The handle to the producer sending this message. This handle
is passed back to you by the MQCreateMessageProducer
function.

messageHandle A handle to the message you want to send.

destinationHandle A handle to the destination where you want to send the
message.

MQSendMessageToDestination

162 Message Queue 3.5 SP1 • C Client Developer’s Guide

To send a message with these properties set to different values, you must use the
MQSendMessageToDestinationExt function, which allows you to set these three
header properties.

If you set these message headers using the MQSetMessageHeaders function before
the send, they will be ignored when the message is sent. When the send completes,
these message headers hold the values that are set by the send.

You cannot use this function with a producer that is created without a specified
destination.

Common Errors
MQ_PRODUCER_HAS_DEFAULT_DESTINATION

MQ_PRODUCER_CLOSED

MQ_SESSION_CLOSED

MQ_BROKER_CONNECTION_CLOSED

MQSendMessageToDestinationExt

Chapter 4 Reference 163

MQSendMessageToDestinationExt
The MQSendMessageToDestinationExt function sends a message to the specified
destination for the specified producer and allows you to set selected message
header properties.

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

MQSendMessageToDestinationExt

(const MQProducerHandle producerHandle,
const MQMessageHandle messageHandle,
const MQDestinationHandle destinationHandle,
MQDeliveryMode msgDeliveryMode,
MQInt8 msgPriority,
MQInt64 msgTimeToLive);

producerHandle The handle to the producer sending this message. This handle
is passed back to you when you call the
MQCreateMessageProducer function.

messageHandle A handle to the message you want to send.

destinationHandle A handle to the destination where you want to send the
message.

msgDeliveryMode An enum of either MQ_PERSISTENT_DELIVERY or
MQ_NONPERSISTENT_DELIVERY.

msgPriority A integer value of 0 through 9; 0 being the lowest priority and 9
the highest.

msgTimeToLive An integer value specifying in milliseconds how long the
message will live before it expires. When a message is sent, its
expiration time is calculated as the sum of its time-to-live value
and current GMT. A value of 0 indicates that the message will
never expire.

MQSendMessageToDestinationExt

164 Message Queue 3.5 SP1 • C Client Developer’s Guide

The MQSendMessageToDestinationExt function sends the specified message on
behalf of the specified producer to the specified destination. Use this function if
you want to change the default values for the message header properties as shown
below:

If these default values suit you, you can use the MQSendMessageToDestination
function to send the message.

You cannot use this function with a producer that is created with a specified
destination.

You can set the broker property MQ_ACK_ON_PRODUCE_PROPERTY to make sure that
the message has reached its destination on the broker:

• By default, the broker acknowledges receiving persistent messages only from
the producing client.

• If you set the property to MQ_TRUE, the broker acknowledges receipt of all
messages (persistent and non-persistent) from the producing client.

• If you set the property to MQ_FALSE, the broker does not acknowledge receipt of
any message (persistent or non-persistent) from the producing client.

Note that “acknowledgement” in this case is not programmatic but internally
implemented. That is, the client thread is blocked and does not return until the
broker acknowledges messages it receives.

Common Errors
MQ_PRODUCER_HAS_DEFAULT_DESTINATION

MQ_INVALID_PRIORITY

MQ_INVALID_DELIVERY_MODE

MQ_PRODUCER_CLOSED

MQ_SESSION_CLOSED

MQ_BROKER_CONNECTION_CLOSED

Property Default value

msgDeliveryMode MQ_PERSISTENT_DELIVERY

msgPriority 4

msgTimeToLive 0, meaning no expiration limit

MQSetBoolProperty

Chapter 4 Reference 165

MQSetBoolProperty
The MQSetBoolProperty function sets an MQBool property with the specified key to
the specified value.

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

Common Errors
MQ_HASH_VALUE_ALREADY_EXISTS

MQSetBoolProperty (const MQPropertiesHandle propertiesHandle,
ConstMQString key,
MQBool value);

propertiesHandle A handle to the properties object whose property value for the
specified key you want to set.

key The name of the property key. The library makes a copy of the
property key.

value The MQBool property value.

MQSetBytesMessageBytes

166 Message Queue 3.5 SP1 • C Client Developer’s Guide

MQSetBytesMessageBytes
The MQSetBytesMessageBytes function defines the body for a bytes message.

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

After you obtain the handle to a bytes message from MQCreateBytesMessage, you
can use this handle to define its body with the MQSetBytesMessageBytes function,
to set its application-defined properties with the MQSetMessageProperties
function, and to set certain message headers with the MQSetMessageHeaders
function.

MQSetBytesMessageBytes (const MQMessageHandle messageHandle,
const MQInt8 * messageBytes,
MQInt32 messageSize);

messageHandle A handle to an MQ_BYTES_MESSAGE message whose body you
want to set.

messageBytes A pointer to the bytes you want to set. The library makes a copy
of the message bytes.

messageSize An integer specifying the number of bytes in messageBytes.

MQSetFloat32Property

Chapter 4 Reference 167

MQSetFloat32Property
The MQSetFloat32Property function sets an MQFloat32 property with the specified
key to the specified value.

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

Common Errors
MQ_HASH_VALUE_ALREADY_EXISTS

MQSetFloat32Property (const MQPropertiesHandle propertiesHandle,
ConstMQString key,
MQFloat32 value);

propertiesHandle A handle to the properties object whose property value for the
specified key you want to set.

key The name of a property key. The library makes a copy of the
property key.

value The MQFloat32 property value.

MQSetFloat64Property

168 Message Queue 3.5 SP1 • C Client Developer’s Guide

MQSetFloat64Property
The MQSetFloat64Property function sets an MQFloat64 property with the specified
key to the specified value.

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

Common Errors
MQ_HASH_VALUE_ALREADY_EXISTS

MQSetFloat64Property (const MQPropertiesHandle propertiesHandle,
ConstMQString key,
MQFloat64 value);

propertiesHandle A handle to the properties object whose property value for the
specified key you want to set.

key The name of a property key. The library makes a copy of the
property key.

value The MQFloat64 property value.

MQSetInt16Property

Chapter 4 Reference 169

MQSetInt16Property
The MQSetInt16Property function sets an MQInt16 property with the specified key
to the specified value.

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

Common Errors
MQ_HASH_VALUE_ALREADY_EXISTS

MQSetInt16Property (const MQPropertiesHandle propertiesHandle,
ConstMQString key,
MQInt16 value);

propertiesHandle A handle to the properties object whose property value for the
specified key you want to set.

key The name of a property key. The library makes a copy of the
property key.

value The MQInt16 property value.

MQSetInt32Property

170 Message Queue 3.5 SP1 • C Client Developer’s Guide

MQSetInt32Property
The MQSetInt32Property function sets an MQInt32 property with the specified key
to the specified value.

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

Common Errors
MQ_HASH_VALUE_ALREADY_EXISTS

MQSetInt32Property (const MQPropertiesHandle propertiesHandle,
ConstMQString key,
MQInt32 value);

propertiesHandle A handle to the properties object whose property value for the
specified key you want to set.

key The name of a property key. The library makes a copy of the
property key.

value The MQInt32 property value.

MQSetInt64Property

Chapter 4 Reference 171

MQSetInt64Property
The MQSetInt64Property function sets an MQInt64 property with the specified key
to the specified value.

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

Common Errors
MQ_HASH_VALUE_ALREADY_EXISTS

MQSetInt64Property (const MQPropertiesHandle propertiesHandle,
ConstMQString key,
MQInt64 value);

propertiesHandle A handle to the properties object whose property value for the
specified key you want to set.

key The name of a property key. The library makes a copy of the
property key.

value The MQInt64 property value.

MQSetInt8Property

172 Message Queue 3.5 SP1 • C Client Developer’s Guide

MQSetInt8Property
The MQSetInt8Property function sets an MQInt8 property with the specified key to
the specified value.

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

Common Errors
MQ_HASH_VALUE_ALREADY_EXISTS

MQSetInt8Property (const MQPropertiesHandle propertiesHandle,
ConstMQString key,
MQInt8 value);

propertiesHandle A handle to the properties object whose property value for the
specified key you want to set

key The name of a property key. The library makes a copy of the
property key.

value The MQInt8 property value.

MQSetMessageHeaders

Chapter 4 Reference 173

MQSetMessageHeaders
The MQSetMessageHeaders function creates the header part of the message.

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

After you have created a properties handle and defined values for message header
properties using one of the MQSet...Property functions, you can pass the handle
to the MQSetMessageHeaders function to define the message header properties.

The message header properties are described in Table 4-6. For sending messages,
the client can only set two of these: the correlation ID property and the message
type property. The client is not required to set these; they are provided for the
client’s convenience. For example, the client can use the key
MQ_MESSAGE_TYPE_HEADER_PROPERTY to sort incoming messages according to
application-defined message types.

MQSetMessageHeaders (const MQMessageHandle messageHandle
MQPropertiesHandle headersHandle);

messageHandle A handle to a message.

headersHandle A handle to the header properties object. This handle will be
invalid after the function returns.

Table 4-6 Message Header Properties

Key Type Set By

MQ_CORRELATION_ID_HEADER_PROPERTY MQString Client (optional)

MQ_MESSAGE_TYPE_HEADER_PROPERTY MQString Client (optional)

MQ_PERSISTENT_HEADER_PROPERTY MQBool Send function

MQ_EXPIRATION_HEADER_PROPERTY MQInt64 Send function

MQ_PRIORITY_HEADER_PROPERTY MQInt8 Send function

MQ_TIMESTAMP_HEADER_PROPERTY MQInt64 Send function

MQ_MESSAGE_ID_HEADER_PROPERTY MQString Send function

MQSetMessageHeaders

174 Message Queue 3.5 SP1 • C Client Developer’s Guide

Header properties that are not specified in the headersHandle are not affected. You
cannot use this function to override header properties that are set by the broker or
the send function. The header properties for persistence, expiration, and priority
(Table 4-6) are set to default values if the user called the MQSendMessage or
MQSendMessageToDestination function, or they are set to values the user specifies
(in parameters) if the user called the MQSendMessageExt or the
MQSendMessageToDestinationExt function.

Use the MQSetBytesMessageBytes function or the MQSetStringProperty to set the
body of a message. Use the MQSetMessageProperties function to set the
application-defined properties of a message that are not part of the header.

Common Errors
MQ_PROPERTY_WRONG_VALUE_TYPE

MQ_REDELIVERED_HEADER_PROPERTY MQBool Message Broker

Table 4-6 Message Header Properties (Continued)

Key Type Set By

MQSetMessageProperties

Chapter 4 Reference 175

MQSetMessageProperties
The MQSetMessageProperties function sets the specified properties for a message.

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

After you obtain the handle to a message, you can use this handle to define its body
with the MQSetStringProperty function or the MQSetBytesMessageBytes function,
to set its header properties with the MQSetMessageHeaders function, and to set its
application-defined properties with the MQSetMessageProperties function.

Property values are set prior to sending a message. The MQSetMessageProperties
function allows you to set application-defined properties for a message. Properties
allow an application, via message selectors, to select or filter, messages on its behalf
using application-specific criteria.

You define the message properties and their values using the MQCreateProperties
function to create a properties object, then you use one of the set property functions
to define each key and value in it. See “Working With Properties” on page 50 for
more information.

To change the properties of a message, call the MQSetMessageProperties function,
passing a different properties handle.

MQSetMessageProperties (const MQMessageHandle messageHandle,
MQPropertiesHandle propsHandle);

messageHandle A handle to a message whose application-defined properties
you want to set.

propertiesHandle A handle to a properties object that you have created and set
using one of the set property functions. This handle is invalid
after the function returns.

MQSetMessageReplyTo

176 Message Queue 3.5 SP1 • C Client Developer’s Guide

MQSetMessageReplyTo
The MQSetMessageReplyTo function specifies the destination where replies to this
message should be sent.

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

The sender uses the MQSetMessageReply function to specify a destination where
replies to the message can be sent. This can be a normal destination or a temporary
destination. The receiver of a message can use the MQGetMessageReplyTo function
to determine whether a sender has set up a destination where replies are to be sent.
The advantage of setting up a temporary destination for replies is that Message
Queue automatically creates a physical destination for you, rather than your
having to have the administrator create one if the broker’s
auto_create_destination property is turned off.

MQSetMessageReplyTo

(const MQMessageHandle messageHandle,
const MQDestinationHandle destinationHandle);

messageHandle A handle to a message expecting a reply.

destinationHandle The destination to which the reply is sent. Usually this is a
handle to a destination that you created using the
MQCreateDestination function or the function
MQCreateTemporaryDestination. The handle is still valid when
this function returns.

MQSetStringProperty

Chapter 4 Reference 177

MQSetStringProperty
The MQSetStringProperty function sets an MQString property with the specified
key t to the specified value.

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

The library makes a copy of the property key and also makes a copy of the value.

MQSetStringProperty (const MQPropertiesHandle propertiesHandle,
ConstMQString key,
ConstMQString value);

propertiesHandle A handle to the properties object whose property value for the
specified key you want to set. You get this handle from the
MQCreateProperties function.

key The name of a property key. The library makes a copy of the
property key

value The property value to set. The library makes a copy of the value.

MQSetTextMessageText

178 Message Queue 3.5 SP1 • C Client Developer’s Guide

MQSetTextMessageText
The MQSetTextMessageText function defines the body for a text message.

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

After you obtain the handle to a text message, you can use this handle to define its
body with the MQSetStringProperty function. You can set its application-defined
properties with the MQSetMessageProperties function, and you can set certain
message headers with the MQSetMessageHeaders function.

MQSetTextMessageText (const MQMessageHandle messageHandle,
ConstMQString messageText);

messageHandle A handle to a message whose text body you want to set.

messageText An MQString specifying the message text. The library makes a
copy of the message text.

MQStartConnection

Chapter 4 Reference 179

MQStartConnection
The MQStartConnection function starts the specified connection to the broker and
starts or resumes message delivery.

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

When a connection is created it is in stopped mode. Until you call this function,
messages are not delivered to any consumers. Call this function to start a
connection or to restart a connection that has been stopped with the
MQStopConnection function. To create an asynchronous consumer, you could have
the connection in stopped mode, and start or restart the connection after you have
set up the asynchronous message consumer.

Use the MQCloseConnection function to close a connection, and then use the
MQFreeConnection function to free the memory allocated to the connection.

Common Errors
MQ_BROKER_CONNECTION_CLOSED

MQStartConnection (const MQConnectionHandle connectionHandle);

connectionHandle The handle to the connection that you want to start. This handle is
the handle that is created and passed back to you by the
MQCreateConnection function.

MQStatusIsError

180 Message Queue 3.5 SP1 • C Client Developer’s Guide

MQStatusIsError
The MQStatusIsError function returns MQ_TRUE if the status parameter passed to it
represents an error.

Parameters

Nearly all Message Queue C library functions return an MQStatus. You can pass
this status result to the MQStatusIsError function to determine whether your call
succeeded or failed. If the MQStatusIsError function returns MQ_TRUE(=1), the
function failed; if it returns MQ_FALSE(=0), the function returned successfully.

If the MQStatusIsError returns MQ_TRUE, you can get more information about the
error that occurred by passing the status returned to the MQGetStatusCode
function. This function will return the error code associated with the specified
status.

To obtain an MQString that describes the error, use the MQGetStatusString
function. To get an error trace associated with the error, use the MQGetErrorTrace
function.

MQBool MQStatusIsError (const MQStatus status);

status The status returned by any Message Queue function that
returns an MQStatus.

MQStopConnection

Chapter 4 Reference 181

MQStopConnection
The MQStopConnection function stops the specified connection to the broker. This
stops the broker from delivering messages.

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

You can restart message delivery by calling the MQStartConnection function.
When the connection has stopped, delivery to all the connection’s message
consumers is inhibited: synchronous receives block, and messages are not
delivered to message listeners. This call blocks until receives and/or message
listeners in progress have completed.

You should not call MQStopConnection in a message listener callback function.

Use the MQCloseConnection function to close a connection, and then use the
MQFreeConnection function to free the memory allocated to the connection.

Common Errors
MQ_BROKER_CONNECTION_CLOSED

MQ_CONCURRENT_DEADLOCK

MQStopConnection (const MQConnectionHandle connectionHandle);

connectionHandle The handle to the connection that you want to stop. This handle is
passed back to you by the MQCreateConnection function.

MQUnsubscribeDurableMessageConsumer

182 Message Queue 3.5 SP1 • C Client Developer’s Guide

MQUnsubscribeDurableMessageConsumer
The MQUnsubscribeDurableMessageConsumer function unsubscribes the specified
durable message consumer.

Return Value
MQStatus. See the MQStatusIsError function for more information.

Parameters

When you call the MQUnsubscribeDurableMessageConsumer function, the client
runtime instructs the broker to delete the state information that the broker
maintains for this consumer. If you try to delete a durable consumer while it has an
active topic subscriber or while a received message has not been acknowledged in
the session, you will get an error. You should only unsubscribe a durable message
consumer after closing it.

Common Errors
MQ_CANNOT_UNSUBSCRIBE_ACTIVE_CONSUMER

MQ_CONSUMER_NOT_FOUND

MQUnsubscribeDurableMessageConsumer

(const MQSessionHandle sessionHandle,
ConstMQString durableName);

sessionHandle The handle to the session to which this consumer belongs.
This handle is created and passed back to you by the
MQCreateSession function.

durableName An MQString specifying the name of the durable subscriber.

Header Files

Chapter 4 Reference 183

Header Files
The Message Queue C-API is defined in the header files listed in Table 4-7. The
files are listed in alphabetical order. The file mqcrt.h includes all the Message
Queue C-API header files.

Table 4-7 Message Queue C-API Header Files

File Name Contents

mqbasictypes.h Defines the types MQBool, MQInt8, MQInt16, MQInt32,
MQInt64, MQFloat32, MQFloat64.

mqbytes-message.h Function prototypes for creating, getting, setting bytes
message.

mqcallback-types.h Asynchronous receive and connection exception handling
callback types.

mqconnection.h Function prototypes for creating, managing, and closing
connections. Function prototype for creating session.

mqconnection-props.h Connection property constants

mqconsumer.h Function prototypes for synchronous receives and closing
the consumer.

mqcrt.h All Message Queue C-API public header files.

mqdestination.h Function prototypes to free destinations and get
information about destinations.

mqerrors.h Error codes

mqheader-props.h Message header property constants

mqmessage.h Function prototypes for getting and setting parts of
message, freeing message, and acknowledging message.

mqproducer.h Function prototypes for sending messages and closing the
message producer.

mqproperties.h Function prototypes for creating, setting, and getting
properties

mqsession.h Function prototypes for managing and closing sessions;
for creating destinations, message producers and
message consumers.

mqssl.h Function declaration for initializing the SSL library.

mqstatus.h Function prototypes for getting error information.

Header Files

184 Message Queue 3.5 SP1 • C Client Developer’s Guide

mqtext-message.h Function prototypes for creating, getting, setting text
message.

mqtypes.h Enumeration of types that can be stored in a properties
object, of types of message that can be received, of
acknowledgement modes, of delivery modes, of
destination types, of session receiving modes, and of
handle types.

mqversion.h Version information constant definitions.

Table 4-7 Message Queue C-API Header Files (Continued)

185

Appendix A

Message Queue C API Error Codes

Having found that a Message Queue function has not returned successfully, you
can determine the reason by passing the return status of that function to the
MQGetStatusCode function, which returns the error code associated with the
specified status. This appendix lists the error codes that can be returned and
provides a description that is associated with that code. You can retrieve the error
string (description) by calling the MQGetStatusString function.

Some Message Queue functions, when they fail, might return an MQStatus result
that contains an NSPR or NSS library error code instead of a Message Queue error
code. For NSPR and NSS library error codes, the MQGetStatusString function
returns the symbolic name of the NSPR or NSS library error code. Please see NSPR
and NSS public documentation for NSPR and NSS error code symbols and their
interpretation at the following locations:

• For NSPR error codes, see the “NSPR Error Handling” chapter:
http://www.mozilla.org/projects/nspr/reference/html/index.html

• For NSS error codes, see the “NSS and SSL Error Codes” chapter:
http://www.mozilla.org/projects/security/pki/nss/ref/ssl/

When checking a Message Queue function for return errors, you should only
reference the Message Queue common error code symbol names in order to
maintain maximum compatibility with future releases. For each function,
Chapter 4, “Reference” on page 73, lists the common error codes that can be
returned by that function.

For information on error handling, see “Error Handling” on page 68.

http://www.mozilla.org/projects/nspr/reference/html/index.html
http://www.mozilla.org/projects/security/pki/nss/ref/ssl/

Error Codes

186 Message Queue 3.5 SP1 • C Client Developer’s Guide

Error Codes
Table A-1 lists the error codes in alphabetical order. For each code listed, it
provides a description for the error code and notes whether it is a common error
(Common).

Table A-1 Message Queue C Client Error Codes

Code Common Description

MQ_ACK_STATUS_NOT_OK Acknowledgement status is not OK

MQ_ADMIN_KEY_AUTH_MISMATCH Admin key authorization mismatch

MQ_BAD_VECTOR_INDEX Bad vector index

MQ_BASIC_TYPE_SIZE_MISMATCH Message Queue basic type size
mismatch

MQ_BROKER_BAD_REQUEST Broker: bad request

MQ_BROKER_BAD_VERSION Broker: bad version

MQ_BROKER_CONFLICT Broker: conflict

MQ_BROKER_CONNECTION_CLOSED X Broker connection is closed.

MQ_BROKER_ERROR Broker: error

MQ_BROKER_FORBIDDEN Broker: forbidden

MQ_BROKER_GONE Broker: gone

MQ_BROKER_INVALID_LOGIN Broker: invalid login

MQ_BROKER_NOT_ALLOWED Broker: not allowed

MQ_BROKER_NOT_FOUND Broker: not found

MQ_BROKER_NOT_IMPLEMENTED Broker: not implemented

MQ_BROKER_PRECONDITION_FAILED Broker: precondition failed

MQ_BROKER_TIMEOUT Broker: timeout

MQ_BROKER_UNAUTHORIZED Broker: unauthorized

MQ_BROKER_UNAVAILABLE Broker: unavailable

MQ_CANNOT_UNSUBSCRIBE_ACTIVE_CONSUMER X Cannot unsubscribe an active consumer.

MQ_CLIENTID_IN_USE X Client id already in use

MQ_CONCURRENT_ACCESS X Concurrent access

MQ_CONCURRENT_DEADLOCK X Operation may cause deadlock

Error Codes

Appendix A Message Queue C API Error Codes 187

MQ_CONCURRENT_NOT_OWNER Concurrent access not owner

MQ_CONNECTION_CREATE_SESSION_ERROR Connection failed to create a session.

MQ_CONNECTION_OPEN_ERROR Connection failed to open a connection.

MQ_CONNECTION_START_ERROR Connection start failed.

MQ_CONNECTION_UNSUPPORTED_TRANSPORT X The transport specified is not supported.

MQ_CONSUMER_CLOSED X The consumer was closed.

MQ_CONSUMER_EXCEPTION An exception occurred on the consumer.

MQ_CONSUMER_NO_DURABLE_NAME X There is no durable name specified

MQ_CONSUMER_NO_SESSION The consumer has no session.

MQ_CONSUMER_NOT_FOUND X Message consumer not found

MQ_CONSUMER_NOT_IN_SESSION X The consumer is not part of this session.

MQ_CONSUMER_NOT_INITIALIZED The consumer has not been initialized.

MQ_COULD_NOT_CONNECT_TO_BROKER X Could not connect to Broker

MQ_COULD_NOT_CREATE_THREAD X Could not create thread

MQ_DESTINATION_CONSUMER_LIMIT_EXCEEDED X The number of consumers on the
destination exceeded limit.

MQ_DESTINATION_NO_CLASS The message does not have a destination
class

MQ_DESTINATION_NO_NAME The message does not have a destination
name.

MQ_DESTINATION_NOT_TEMPORARY The destination is not temporary

MQ_END_OF_STREAM End of stream

MQ_FILE_NOT_FOUND The property file could not be found

MQ_FILE_OUTPUT_ERROR File output error

MQ_HANDLED_OBJECT_IN_USE The object could not be deleted because
there is another reference to it.

MQ_HANDLED_OBJECT_INVALID_HANDLE_ERROR The object is invalid (i.e. it has not been
deleted).

MQ_HANDLED_OBJECT_NO_MORE_HANDLES A handle could not be allocated because
the supply of handles has been
exhausted.

MQ_HASH_TABLE_ALLOCATION_FAILED The hash table could not be allocated

Table A-1 Message Queue C Client Error Codes (Continued)

Code Common Description

Error Codes

188 Message Queue 3.5 SP1 • C Client Developer’s Guide

MQ_HASH_VALUE_ALREADY_EXISTS X The hash value already exists in the hash
table.

MQ_INCOMPATIBLE_LIBRARY X The library is incompatible

MQ_INPUT_STREAM_ERROR Input stream error

MQ_INTERNAL_ERROR Generic internal error

MQ_INVALID_ACKNOWLEDGE_MODE X Invalid acknowledge mode

MQ_INVALID_AUTHENTICATE_REQUEST Invalid authenticate request

MQ_INVALID_CLIENTID X Invalid client id

MQ_INVALID_CONSUMER_ID Invalid consumer id

MQ_INVALID_DELIVERY_MODE X Invalid delivery mode.

MQ_INVALID_DESTINATION_TYPE X Invalid destination type.

MQ_INVALID_ITERATOR Invalid iterator

MQ_INVALID_MESSAGE_SELECTOR X Invalid message selector.

MQ_INVALID_PACKET Invalid packet

MQ_INVALID_PACKET_FIELD Invalid packet field

MQ_INVALID_PORT Invalid port

MQ_INVALID_PRIORITY X Invalid priority

MQ_INVALID_RECEIVE_MODE X Invalid receive mode.

MQ_INVALID_TRANSACTION_ID Invalid transaction id

MQ_INVALID_TYPE_CONVERSION X The object could not be converted invalid
input

MQ_MD5_HASH_FAILURE MD5 Hash failure

MQ_MESSAGE_NO_DESTINATION The message does not have a destination

MQ_MESSAGE_NOT_IN_SESSION X The message was not delivered to the
session.

MQ_NEGATIVE_AMOUNT Negative amount

MQ_NO_AUTHENTICATION_HANDLER No authentication handler

MQ_NO_CONNECTION The Session’s connection has been
closed

MQ_NO_MESSAGE X There was no message to receive.

Table A-1 Message Queue C Client Error Codes (Continued)

Code Common Description

Error Codes

Appendix A Message Queue C API Error Codes 189

MQ_NO_MESSAGE_PROPERTIES X There are no message properties

MQ_NO_REPLY_TO_DESTINATION X The message does not have a reply to
destination.

MQ_NOT_ASYNC_RECEIVE_MODE X Session not in async receive mode.

MQ_NOT_FOUND X Not found

MQ_NOT_IPV4_ADDRESS Not an IPv4 Address

MQ_NOT_SYNC_RECEIVE_MODE X Session not in sync receive mode.

MQ_NOT_TRANSACTED_SESSION X Session is not transacted.

MQ_NULL_PTR_ARG X NULL pointer passed to method

MQ_NULL_STRING The string is NULL

MQ_NUMBER_NOT_INT16 Number not a UINT16

MQ_OBJECT_NOT_CLONABLE The object cannot be cloned

MQ_OUT_OF_MEMORY X Out of memory

MQ_PACKET_OUTPUT_ERROR Packet output error

MQ_POLL_ERROR Poll error

MQ_PORTMAPPER_ERROR Portmapper error

MQ_PORTMAPPER_INVALID_INPUT Portmapper returned invalid.

MQ_PORTMAPPER_WRONG_VERSION Portmapper is the wrong version

MQ_PRODUCER_CLOSED X Producer closed.

MQ_PRODUCER_HAS_DESTINATION X The producer has a specified destination

MQ_PRODUCER_NO_DESTINATION X The producer does not have a specified
destination.

MQ_PRODUCER_NOT_IN_SESSION X The producer is not part of this session

MQ_PROPERTY_FILE_ERROR There was an error reading from the
property file

MQ_PROPERTY_NULL Property is NULL.

MQ_PROPERTY_WRONG_VALUE_TYPE X Property has the wrong value type

MQ_PROTOCOL_HANDLER_AUTHENTICATE_FAILED Authenticating to the broker failed.

MQ_PROTOCOL_HANDLER_DELETE_DESTINATION_FAILED Deleting destination failed

MQ_PROTOCOL_HANDLER_ERROR Protocol Handler error

Table A-1 Message Queue C Client Error Codes (Continued)

Code Common Description

Error Codes

190 Message Queue 3.5 SP1 • C Client Developer’s Guide

MQ_PROTOCOL_HANDLER_GOODBYE_FAILED Error in saying goodbye to broker.

MQ_PROTOCOL_HANDLER_HELLO_FAILED Error saying hello to the broker.

MQ_PROTOCOL_HANDLER_READ_ERROR Reading a packet from the broker failed.

MQ_PROTOCOL_HANDLER_RESUME_FLOW_FAILED Error resume flow from broker.

MQ_PROTOCOL_HANDLER_SET_CLIENTID_FAILED Setting client id failed.

MQ_PROTOCOL_HANDLER_START_FAILED Starting broker connection failed.

MQ_PROTOCOL_HANDLER_STOP_FAILED Stopping broker connection failed.

MQ_PROTOCOL_HANDLER_UNEXPECTED_REPLY Received an unexpected reply from the
broker.

MQ_PROTOCOL_HANDLER_WRITE_ERROR Writing a packet to the broker failed.

MQ_QUEUE_CONSUMER_CANNOT_BE_DURABLE X A queue consumer cannot be durable

MQ_READ_CHANNEL_DISPATCH_ERROR Read channel couldn’t dispatch packet.

MQ_READQTABLE_ERROR ReadQTable error

MQ_RECEIVE_QUEUE_CLOSED The receive queue is closed.

MQ_RECEIVE_QUEUE_ERROR The Session is not associated with a
connection.

MQ_REFERENCED_FREED_OBJECT_ERROR A freed object was referenced.

MQ_REUSED_CONSUMER_ID Reused consumer id

MQ_SERIALIZE_BAD_CLASS_UID Serialize bad class UID

MQ_SERIALIZE_BAD_HANDLE Serialize bad handle

MQ_SERIALIZE_BAD_MAGIC_NUMBER Serialize bad magic number

MQ_SERIALIZE_BAD_SUPER_CLASS Serialize bad super class

MQ_SERIALIZE_BAD_VERSION Serialize bad version

MQ_SERIALIZE_CANNOT_CLONE Serialize cannot clone

MQ_SERIALIZE_CORRUPTED_HASHTABLE Serialize corrupted hashtable

MQ_SERIALIZE_NO_CLASS_DESC Serialize no class description

MQ_SERIALIZE_NOT_CLASS_DEF Serialize not class definition

MQ_SERIALIZE_NOT_CLASS_HANDLE Serialize not a class object

MQ_SERIALIZE_NOT_HASHTABLE Serialize not a hashtable

Table A-1 Message Queue C Client Error Codes (Continued)

Code Common Description

Error Codes

Appendix A Message Queue C API Error Codes 191

MQ_SERIALIZE_NOT_OBJECT_HANDLE Serialize not a handle object

MQ_SERIALIZE_STRING_CONTAINS_NULL Serialize string contains NULL

MQ_SERIALIZE_STRING_TOO_BIG Serialize string too big

MQ_SERIALIZE_TEST_ERROR Serialize testing error

MQ_SERIALIZE_UNEXPECTED_BYTES Serialize unexpected bytes

MQ_SERIALIZE_UNRECOGNIZED_CLASS Serialize unrecognized class

MQ_SESSION_CLOSED X Session closed

MQ_SESSION_NOT_CLIENT_ACK_MODE X Session is not in client acknowledge
mode

MQ_SOCKET_CLOSE_FAILED Could not close the socket

MQ_SOCKET_CONNECT_FAILED Could not connect socket to the host

MQ_SOCKET_ERROR Socket error

MQ_SOCKET_READ_FAILED Could not read from the socket

MQ_SOCKET_SHUTDOWN_FAILED Could not shutdown socket

MQ_SOCKET_WRITE_FAILED Could not write to the socket

MQ_SSL_ALREADY_INITIALIZED X SSL has already been initialized

MQ_SSL_CERT_ERROR SSL certification error

MQ_SSL_ERROR SSL error

MQ_SSL_INIT_ERROR SSL initialization error

MQ_SSL_NOT_INITIALIZED X SSL not initialized

MQ_SSL_SOCKET_INIT_ERROR SSL socket initialization error

MQ_STATUS_CONNECTION_NOT_CLOSED X The connection cannot be deleted
because it was not closed.

MQ_STATUS_INVALID_HANDLE X The handle is invalid

MQ_STRING_NOT_NUMBER String not a number

MQ_SUCCESS X Success

MQ_TCP_ALREADY_CONNECTED TCP already connected.

MQ_TCP_CONNECTION_CLOSED TCP connection is closed.

MQ_TCP_INVALID_PORT Invalid TCP port.

Table A-1 Message Queue C Client Error Codes (Continued)

Code Common Description

Error Codes

192 Message Queue 3.5 SP1 • C Client Developer’s Guide

MQ_TEMPORARY_DESTINATION_NOT_IN_CONNECTION X The temporary destination is not in the
connection.

MQ_TIMEOUT_EXPIRED X Timeout expired

MQ_TRANSACTED_SESSION X Session is transacted.

MQ_TRANSACTION_ID_IN_USE Transaction id in use.

MQ_TYPE_CONVERSION_OUT_OF_BOUNDS The object conversion failed because the
value is out of bounds

MQ_UNEXPECTED_ACKNOWLEDGEMENT Received an unexpected
acknowledgement

MQ_UNEXPECTED_NULL Unexpected null

MQ_UNINITIALIZED_STREAM Uninitialized stream

MQ_UNRECOGNIZED_PACKET_TYPE The packet type was unrecognized

MQ_UNSUPPORTED_ARGUMENT_VALUE Unsupported argument value

MQ_UNSUPPORTED_AUTH_TYPE Unsupported authentication type

MQ_UNSUPPORTED_MESSAGE_TYPE The JMS message type is not supported

MQ_VECTOR_TOO_BIG Vector too big

MQ_WRONG_ARG_BUFFER_SIZE Buffer is the wrong size

Table A-1 Message Queue C Client Error Codes (Continued)

Code Common Description

193

Index

A
acknowledgements

about 31
broker, See broker acknowledgements
client, See client acknowledgements
data type for 74
periodic 80

administration tools 23
administration, about 23
applications, example 17
applications, See JMS clients
AUTO_ACKNOWLEDGE mode 35

B
broker

acknowledging consumed messages 31, 78
acknowledging sent messages 77
certificate for 79
control messages 78
host port for 77
name for 77
security 79

broker acknowledgements
about 34
automatic 80

C
C API

header files 44
runtime library 44

certificate database files 56
client acknowledgements 88

about 35
effect on performance 41
explicit 80
modes, See client acknowledgment modes

client acknowledgment modes
AUTO_ACKNOWLEDGE 35
CLIENT_ACKNOWLEDGE 35
DUPS_OK_ACKNOWLEDGE 36

client identifier (ClientID) 30
client runtime

about 22
configurable properties 38
message consumption, and 34
message production, and 34

CLIENT_ACKNOWLEDGE mode 35
connection properties

iterating through 148
type of 140

connections
about 27
closing 90
creating 55, 101
creating properties for 51, 113
exceptions 74, 82

Section D

194 Message Queue 3.5 SP1 • C Client Developer’s Guide

connections (continued)
freeing 69, 118
freeing properties of 69, 121
handle to 74
orderly shutdown 57
properties of 75, 76
secure, initializing 56, 145
specifying 38
starting 179
stopping 181
timed out limit 77
transport protocol for 77

ConstMQString type 74
consumers 28

asynchronous 66
closing 91
creating asynchronous 98
creating asynchronous durable 95
creating durable 106
creating synchronous 109
handle to 74
synchronous 66, 149, 151, 153
type of 75
unsubscribing durable 182
working with 65

D
delivery modes

data type for 74
effects on performance 40
non-persistent 30
persistent 30

delivery, reliable 30
destinations

creating 59, 104
creating temporary 116
freeing 119
getting type of 126
handle to 74
type of 74

directory variables
IMQ_HOME 15

domains 29

DUPS_OK_ACKNOWLEDGE mode 36
durable subscribers, See durable subscriptions
durable subscriptions

about 29
ClientID, and 30

E
environment variables, See directory variables
error handling

error trace 127
error type 74
getting status code 141
MQStatus type 75
status string 142

example applications 17
exceptions

listener for 74

F
fixed integer type support 45
flow count, message 42

H
header files 44, 183

I
IMQ_HOME directory variable 15

J
JMS API 24

Section L

Index 195

JMS clients
about 24
client runtime, and 22
performance, See performance
programming model 24
setup summary 48

JMS specification 17
JMSCorrelationID message header field 26
JMSDeliveryMode message header field 25
JMSDestination message header field 25
JMSExpiration message header field 25
JMSMessageID message header field 25
JMSPriority message header field 25
JMSRedelivered message header field 26
JMSReplyTo message header field 26
JMSTimestamp message header field 26
JMSType message header field 26

L
licenses for Message Queue editions 22
listeners, message

about 28
asynchronous consumption, and 35
data type for 75, 81

logging 72

M
memory management 69
message acknowledgements 58
message consumption

about 28, 34
asynchronous 36, 81
synchronous 36

message delivery models 29
message headers

fields 25
getting 134

properties 63
setting 173

message listeners, See listeners, message
message producers 28
message properties

default values for 63
getting 52, 136
handle to 75
introduced 26
iterating through 53, 148
setting 175
type of 140

Message Queue
fixed integer type support 45
header files 183
licenses for 22
meta data for 139
name of 79
product editions 22
version of 79

Message Queue message server 22
Message Queue programs, building 43
messages

about 24
acknowledging 88
body 26
composing 61
consumption of, See message consumption
correlation id 134
creating bytes type 100
creating text type 117
delivery models 29
delivery modes, See delivery modes
delivery of 33
duplicate sends 36
expiration of 134
filtering 67
flow count 42
freeing 120
getting text of 144
getting type of 138
handle to 75
headers, See message headers
limit of unconsumed 79
listeners for, See listeners, message
mode of 134

Section M

196 Message Queue 3.5 SP1 • C Client Developer’s Guide

messages (continued)
ordering of 37
persistent 30
persistent storage 32
point-to-point delivery 29
prioritizing 37
priority of 134
processing 67
production of 34
publish/subscribe delivery 29
receiving 64
redelivered status 134
reliable delivery of 31
reply-to destination 137, 176
selection and filtering of 37
selector for 95, 98, 106
sending 62, 157, 159, 161, 163
set text of 178
type of 75, 134

messages properties
creating 113
freeing 121

messaging system, architecture 22
MQ_ACK_ON_ACKNOWLEDGE_PROPERTY 31,

58, 78
MQ_ACK_ON_PRODUCE_PROPERTY 77
MQ_ACK_TIMEOUT_PROPERTY 39, 77
MQ_AUTO_ACKNOWLEDGE enum 80
MQ_BOOL_TYPE property 76
MQ_BROKER_NAME_PROPERTY 77
MQ_BROKER_PORT_PROPERTY 77
MQ_BYTES_MESSAGE message type 75
MQ_CLIENT_ACKNOWLEDGE enum 80
MQ_CONNECTION_FLOW_COUNT_PROPERTY

39, 78
MQ_CONNECTION_FLOW_LIMIT_ENABLED_PR

OPERTY 39
MQ_CONNECTION_FLOW_LIMIT_ENBABLED

_PROPERTY 78
MQ_CONNECTION_FLOW_LIMIT_PROPERTY 39

, 79
MQ_CONNECTION_TYPE_PROPERTY 77
MQ_CONNECTION_TYPEPROPERTY 56
MQ_CORRELATION_ID_HEADER_PROPERTY 13

4

MQ_DUPS_OK_ACKNOWLEDGE enum 80
MQ_EXPIRATION_HEADER_PROPERTY 63, 134
MQ_FLOAT32_TYPE property 76
MQ_FLOAT64_TYPE property 76
MQ_INT16_TYPE property 76
MQ_INT32_TYPE property 76
MQ_INT64_TYPE property 76
MQ_INT8_TYPE property 76
MQ_INVALID_TYPE property 76
MQ_LOG_FILE 72
MQ_LOG_LEVEL 72
MQ_MESSAGE_ID_HEADER_PROPERTY 134
MQ_MESSAGE_TYPE_HEADER_PROPERTY 134
MQ_NAME_PROPERTY 79
MQ_PERSISTENT_HEADER_PROPERTY 63, 134
MQ_PRIORITY_HEADER_PROPERTY 63, 134
MQ_REDELIVERED_HEADER_PROPERTY 134
MQ_SESSION_ASYNC_RECEIVE 59
MQ_SESSION_ASYNC_RECEIVE consumer

type 75
MQ_SESSION_SYNC_RECEIVE 59
MQ_SESSION_SYNC_RECEIVE consumer type 75
MQ_SESSION_TRANSACTED enum 81
MQ_SSL_BROKER_IS_TRUSTED 56, 79
MQ_SSL_CHECK_BROKER_FINGERPRINT 79
MQ_STRING_TYPE property 76
MQ_TEXT_MESSAGE message type 75
MQ_TIMESTAMP_HEADER_PROPERTY 134
MQ_UNSUPPORTED_MESSAGE message type 75
MQ_VERSION_PROPERTY 79
MQAckMode type 74
MQAcknowledgeMessages function 88
MQBool type 74
MQChar type 74
MQCloseConnection function 90
MQCloseMessageConsumer function 91
MQCloseMessageProducer function 92
MQCloseSession function 93
MQCommitSession function 94
MQConnectionExceptionListenerFunc type 74, 82
MQConnectionHandle type 74
MQConsumerHandle type 74

Section M

Index 197

MQCreateAsyncDurableMessageConsumer
function 95

MQCreateAsyncMessageConsumer function 98
MQCreateBytesMessage function 100
MQCreateConnection function 101
MQCreateDestination function 104
MQCreateDurableMessageConsumer function 106
MQCreateMessageConsumer function 109
MQCreateMessageProducer function 111
MQCreateMessageProducerForDestination

function 112
MQCreateProperties function 113
MQCreateSession function 114
MQCreateTemporaryDestination function 116
MQCreateTextMessage function 117
mqcrt library 45
mqcrt runtime library 44
MQDeliveryMode type 74
MQDestinationHandle type 74
MQDestinationType type 74
MQError type 74
MQFloat64 type 75
MQFreeConnection function 118
MQFreeDestination function 119
MQFreeMessage function 120
MQFreeProperties function 121
MQFreeString function 122
MQGetAcknowledgemode function 123
MQGetBoolProperty function 124
MQGetBytesMessageBytes function 125
MQGetDestinationType function 126
MQGetErrorTrace function 127
MQGetFloat32Property function 128
MQGetFloat64Property function 129
MQGetInt16Property function 130
MQGetInt32Property function 131
MQGetint64Property function 132
MQGetInt8Property function 133
MQGetMessageHeaders function 134
MQGetMessageProperties function 136
MQGetMessageReplyTo function 137
MQGetMessageType function 138

MQGetMetaData function 139
MQGetPropertyType function 140
MQGetStatusCode function 141
MQGetStatusString function 142
MQGetStringProperty function 143
MQGetTextMessageText function 144
MQInitializeSSL function 56, 145
MQInt32 type 75
MQInt8 type 75
MQMessageHandle type 75
MQMessageListenerFunc type 75, 81
MQMessageType type 75
MQProducerHandle type 75
MQPropertiesHandle type 75
MQPropertiesKeyIterationGetNext function 146
MQPropertiesKeyIterationHasNext function 147
MQPropertiesKeyIterationStart function 148
MQReceiveMessageNoWait function 149
MQReceiveMessageWait function 151
MQReceiveMessageWithTimeout function 153
MQReceiveMode type 75
MQRecoverSession function 155
MQRollBackSession function 156
MQSendMessage function 157
MQSendMessageExt function 159
MQSendMessageToDestination function 161
MQSendMessageToDestinationExt function 163
MQSessionHandle type 75
MQSetBoolProperty function 165
MQSetBytesMessageBytes function 166
MQSetFloat32Property function 167
MQSetFloat64Property function 168
MQSetInt16Property function 169
MQSetInt32Property function 170
MQSetInt64Property function 171
MQSetInt8Property function 172
MQSetMessageHeaders function 173
MQSetMessageProperties function 175
MQSetMessageReplyTo function 176
MQSetStringProperty function 177
MQSetTextMessageText function 178
MQStartConnection function 179

Section N

198 Message Queue 3.5 SP1 • C Client Developer’s Guide

MQStatus type 75
MQStatusIsError function 180
MQStopConnection function 181
MQString type 75
MQType type 76
MQUnsubscribeDurableMessageConsumer

function 182

N
NSPR library 45
NSS library 45

P
performance

effect of delivery mode 40
factors affecting 40
message flow count 42

persistence
about 32
delivery modes, See delivery modes
persistent messages 30

point-to-point delivery 29
producers 28

closing 92
creating 111
creating for destination 112
handle to 75

programming domains 29
programming examples

build instructions 45
running 46

properties, client runtime See client runtime
publish/subscribe delivery 29

Q
queue destinations 29

R
reliable delivery 30
runtime library 44

S
sample programs

compiler options for 44
running 46

selection, of messages 37
sessions

about 28
acknowledge mode of 123
acknowledgement options for 31
closing 93
committing 94
creating 58, 114
handle to 75
managing 59
recovering 155
rolling back 156
transacted 31, 58, 81

T
thread management 70
topic destinations 29
transactions

about 31
committing 94
working with 58

	Message Queue 3.5 C Client Developer’s Guide
	Contents
	List of Figures
	List of Tables
	List of Procedures
	Preface
	Audience for This Guide
	Organization of This Guide
	Conventions
	Text Conventions
	Directory Variable Conventions

	Other Documentation Resources
	The Message Queue Documentation Set
	Online Help
	Example Client Applications
	The Java Message Service (JMS) Specification

	Related Third-Party Web Site References

	1. Introduction
	What Is Message Queue?
	Message Queue Features
	Java and C Interfaces
	Product Editions

	Message Queue Messaging System Architecture
	The JMS Programming Model
	Message
	Header
	Properties
	Message Body Types

	Destination
	Connection
	Session
	Message Producer
	Message Consumer
	Message Listener

	Client Design Issues
	Programming Domains
	Client Identifiers
	Reliable Messaging
	Delivery Mode
	Acknowledgements and Transactions
	Persistent Storage
	Performance Trade-offs

	Message Production and Consumption
	Message Production
	Message Consumption
	Synchronous and Asynchronous Consumption
	Message Selection
	Message Order and Priority

	Configuring Connections
	Connection Handling
	Reliability
	Flow Control
	Security
	Version Information

	Managing Flow Control
	Delivery Mode
	Acknowledgement Mode
	Message Flow Metering

	2. Building and Running Message Queue C Clients
	Getting Ready
	Building Programs
	Providing Runtime Support

	Working With the Sample C-Client Programs
	Building the Sample Programs
	To Compile and Link on Solaris
	To Compile and Link on Linux
	To Compile on Windows
	To Link on Windows

	Running the Sample Programs

	3. Using the C API
	Message Queue C Client Setup Operations
	To Set Up a Message Queue C Client to Produce Messages
	To Set Up a Message Queue C Client to Consume Messages Synchronously
	To Set Up a Message Queue C Client to Consume Messages Asynchronously

	Working With Properties
	Setting Connection and Message Properties
	To Set Properties for a Connection
	To Set Message Properties

	Getting Message Properties
	To Iterate Through a Properties Handle

	Working With Connections
	Working With Secure Connections
	Shutting Down Connections

	Working With Sessions and Destinations
	Creating a Session
	Transacted Sessions
	Message Acknowledgement
	Receive Mode

	Managing a Session
	Creating Destinations

	Working With Messages
	Composing Messages
	Sending a Message
	Receiving Messages
	Working With Consumers
	Receiving a Message Synchronously
	Receiving a Message Asynchronously

	Processing a Message

	Error Handling
	To Handle Errors in Your Code

	Memory Management
	Thread Management
	Message Queue C Runtime Thread Model
	Concurrent Use of Handles
	Single-Threaded Session Control
	Connection Exceptions

	Logging

	4. Reference
	Data Types
	Connection Properties
	Acknowledge Modes
	Callback Type for Asynchronous Messaging
	Parameters

	Callback Type for Connection Exception Handling
	Parameters

	Function Reference
	MQAcknowledgeMessages
	Return Value
	Return Value
	Parameters
	Common Errors

	MQCloseConnection
	Return Value
	Parameters
	Common Errors

	MQCloseMessageConsumer
	Return Value
	Parameters
	Common Errors

	MQCloseMessageProducer
	Return Value
	Parameters
	Common Errors

	MQCloseSession
	Return Value
	Parameters
	Common Errors

	MQCommitSession
	Return Value
	Parameters
	Common Errors

	MQCreateAsyncDurableMessageConsumer
	Return Value
	Parameters
	Common Errors

	MQCreateAsyncMessageConsumer
	Return Value
	Parameters
	Common Errors

	MQCreateBytesMessage
	Return Value
	Parameters

	MQCreateConnection
	Return Value
	Parameters
	Common Errors

	MQCreateDestination
	Return Value
	Parameters
	Common Errors

	MQCreateDurableMessageConsumer
	Return Value
	Parameters
	Common Errors

	MQCreateMessageConsumer
	Return Value
	Parameters
	Common Errors

	MQCreateMessageProducer
	Return Value
	Parameters
	Common Errors

	MQCreateMessageProducerForDestination
	Return Value
	Parameters
	Common Errors

	MQCreateProperties
	Return Value
	Parameters

	MQCreateSession
	Return Value
	Parameters

	MQCreateTemporaryDestination
	Return Value
	Parameters
	Common Errors

	MQCreateTextMessage
	Return Value
	Parameters

	MQFreeConnection
	Return Value
	Parameters
	Common Errors

	MQFreeDestination
	Return Value
	Parameters

	MQFreeMessage
	Return Value
	Parameters

	MQFreeProperties
	Return Value
	Parameters

	MQFreeString
	Return Value
	Parameters

	MQGetAcknowledgeMode
	Return Value
	Parameters

	MQGetBoolProperty
	Return Value
	Parameters
	Common Errors

	MQGetBytesMessageBytes
	Return Value
	Parameters

	MQGetDestinationType
	Return Value
	Parameters

	MQGetErrorTrace
	MQGetFloat32Property
	Return Value
	Parameters
	Common Errors

	MQGetFloat64Property
	Return Value
	Parameters
	Common Errors

	MQGetInt16Property
	Return Value
	Parameters
	Common Errors

	MQGetInt32Property
	Return Value
	Parameters
	Common Errors

	MQGetInt64Property
	Return Value
	Parameters
	Common Errors

	MQGetInt8Property
	Return Value
	Parameters
	Common Errors

	MQGetMessageHeaders
	Return Value
	Parameters

	MQGetMessageProperties
	Return Value
	Parameters
	Common Errors

	MQGetMessageReplyTo
	Return Value
	Parameters
	Common Errors

	MQGetMessageType
	Return Value
	Parameters

	MQGetMetaData
	Return Value
	Parameters

	MQGetPropertyType
	Return Value
	Parameters
	Common Errors

	MQGetStatusCode
	Parameters

	MQGetStatusString
	Parameters

	MQGetStringProperty
	Return Value
	Parameters

	MQGetTextMessageText
	Return Value
	Parameters

	MQInitializeSSL
	Return Value
	Parameters
	Common Errors

	MQPropertiesKeyIterationGetNext
	Return Value
	Parameters

	MQPropertiesKeyIterationHasNext
	Return Value
	Parameters

	MQPropertiesKeyIterationStart
	Return Value
	Parameters

	MQReceiveMessageNoWait
	Return Value
	Parameters
	Common Errors

	MQReceiveMessageWait
	Return Value
	Parameters
	Common Errors

	MQReceiveMessageWithTimeout
	Return Value
	Common Errors

	MQRecoverSession
	Return Value
	Parameters
	Common Errors

	MQRollBackSession
	Return Value
	Parameters
	Common Errors

	MQSendMessage
	Return Value
	Parameters
	Common Errors

	MQSendMessageExt
	Return Value
	Parameters
	Common Errors

	MQSendMessageToDestination
	Return Value
	Parameters
	Common Errors

	MQSendMessageToDestinationExt
	Return Value
	Parameters
	Common Errors

	MQSetBoolProperty
	Return Value
	Parameters
	Common Errors

	MQSetBytesMessageBytes
	Return Value
	Parameters

	MQSetFloat32Property
	Return Value
	Parameters
	Common Errors

	MQSetFloat64Property
	Return Value
	Parameters
	Common Errors

	MQSetInt16Property
	Return Value
	Parameters
	Common Errors

	MQSetInt32Property
	Return Value
	Parameters
	Common Errors

	MQSetInt64Property
	Return Value
	Parameters
	Common Errors

	MQSetInt8Property
	Return Value
	Parameters
	Common Errors

	MQSetMessageHeaders
	Return Value
	Parameters
	Common Errors

	MQSetMessageProperties
	Return Value
	Parameters

	MQSetMessageReplyTo
	Return Value
	Parameters

	MQSetStringProperty
	Return Value
	Parameters

	MQSetTextMessageText
	Return Value
	Parameters

	MQStartConnection
	Return Value
	Parameters
	Common Errors

	MQStatusIsError
	Parameters

	MQStopConnection
	Return Value
	Parameters
	Common Errors

	MQUnsubscribeDurableMessageConsumer
	Return Value
	Parameters
	Common Errors

	Header Files

	A. Message Queue C API Error Codes
	Error Codes

	Index

