
Sun Java™ System

Message Queue 3.5
Administration Guide

Service Pack 1

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 817-6024-10

Copyright © 2004 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved
Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.
U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements. Use is subject to license terms. This distribution may include materials developed by third
parties.
Sun, Sun Microsystems, the Sun logo, Java, Solaris, Sun[tm] ONE, JDK, Java Naming and Directory Interface, Javadoc, JavaMail, JavaHelp, the
Java Coffee Cup logo and the Sun[tm] ONE logo are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries.
All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other
countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.
UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.
This product is covered and controlled by U.S. Export Control laws and may be subject to the export or import laws in other countries. Nuclear,
missile, chemical biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export or
reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied
persons and specially designated nationals lists is strictly prohibited.

Copyright © 2004 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.
Sun Microsystems, Inc. détient les droits de propriété intellectuels relatifs à la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plus des brevets américains listés à
l'adresse http://www.sun.com/patents et un ou les brevets supplémentaires ou les applications de brevet en attente aux Etats - Unis et dans les
autres pays.
L'utilisation est soumise aux termes de la Licence.
Cette distribution peut comprendre des composants développés par des tierces parties.
Sun, Sun Microsystems, le logo Sun, Java, Solaris, Sun[tm] ONE, JDK, Java Naming and Directory Interface, Javadoc, JavaMail, JavaHelp, le logo
Java Coffee Cup et le logo Sun[tm] ONE sont des marques de fabrique ou des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et
dans d'autres pays.
Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux
Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.
UNIX est une marque déposée aux Etats-Unis et dans d'autres pays et licenciée exlusivement par X/Open Company, Ltd.
Ce produit est soumis à la législation américaine en matière de contrôle des exportations et peut être soumis à la règlementation en vigueur dans
d'autres pays dans le domaine des exportations et importations. Les utilisations, ou utilisateurs finaux, pour des armes nucléaires,des missiles,
des armes biologiques et chimiques ou du nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers les pays sous embargo américain, ou vers des entités figurant sur les listes d'exclusion d'exportation américaines, y compris,
mais de manière non exhaustive, la liste de personnes qui fo nt objet d'un ordre de ne pas participer, d'une façon directe ou indirecte, aux
exportations des produits ou des services qui sont régis par la législation américaine en matière de contrôle des exportations et la liste de
ressortissants spécifiquement désignés, sont rigoureusement interdites.

http://www.sun.com/patents
http://www.sun.com/patents

3

Contents

List of Figures . 15

List of Tables . 17

List of Procedures . 21

Preface . 23

Audience for This Guide . 23
Organization of This Guide . 24
Conventions . 25

Text Conventions . 25
Directory Variable Conventions . 26

Other Documentation Resources . 28
The Message Queue Documentation Set . 28
Online Help . 29
JavaDoc . 29
Example Client Applications . 29
The Java Message Service (JMS) Specification . 29

Related Third-Party Web Site References . 30

Chapter 1 Overview . 31
What Is Sun Java System Message Queue? . 31
Product Editions . 33

Platform Edition . 33
Enterprise Edition . 34

Enterprise Messaging Systems . 34
Requirements of Enterprise Messaging Systems . 34
Centralized vs. Peer to Peer Messaging . 35

4 Message Queue 3.5 SP1 • Administration Guide

Messaging System Concepts . 36
Message . 36
Message Service Architecture . 36
Message Delivery Models . 37

The JMS Specification . 38
JMS Message Structure . 38
JMS Programming Model . 38
JMS Administered Objects . 40

JMS/J2EE Programming: Message-Driven Beans . 40
Message-Driven Beans . 41
J2EE Application Server Support . 43

JMS Messaging Issues . 43
JMS Provider Independence . 43
Programming Domains . 44
Client Identifiers . 45
Reliable Messaging . 46

Acknowledgements/Transactions . 46
Persistent Storage . 48

Performance Trade-offs . 49
Message Selection . 49
Message Order and Priority . 49

Chapter 2 The Message Queue Messaging System . 51
Message Queue Message Server . 52

Broker . 52
Connection Services . 54
Message Router . 58
Persistence Manager . 63
Security Manager . 66
Monitoring Service . 70

Physical Destinations . 76
Queue Destinations . 77
Topic Destinations . 78
Auto-Created (vs. Admin-Created) Destinations . 78
Temporary Destinations . 81

Multi-Broker Clusters (Enterprise Edition) . 82
Multi-Broker Architecture . 82
Using Clusters in Development Environments . 85
Cluster Configuration Properties . 86

Contents 5

Message Queue Client Runtime . 86
Message Production . 87
Message Consumption . 88

Message Queue Administered Objects . 89
Connection Factory Administered Objects . 90
Destination Administered Objects . 91
Overriding Attribute Values at Client Startup . 91

Chapter 3 Message Queue Administration Tasks and Tools . 93
Message Queue Administration Tasks . 93

Development Environments . 93
Production Environments . 94

Setup Operations . 94
To Set Up a Production Environment . 94
Maintenance Operations . 95
To Set Up a Production Environment . 95

Message Queue Administration Tools . 97
The Administration Console . 97
Summary of Command Line Utilities . 98

Command Line Syntax . 99
Common Command Line Options . 100

Chapter 4 Administration Console Tutorial . 101
Getting Ready . 102
Starting the Administration Console . 102

To Start the Administration Console . 103
Getting Help . 104

To Display Administration Console Help Information . 104
Working With Brokers . 105

Starting a Broker . 106
To Start a Broker . 106

Adding a Broker . 106
To Add a Broker to the Administration Console . 107

Changing the Administrator Password . 108
To Change the Administrator Password . 108

Connecting to the Broker . 108
To Connect to the Broker . 108

Viewing Connection Services . 109
To View Available Connection Services . 109

Adding Physical Destinations to a Broker . 110
To Add a Queue Destination to a Broker . 111

6 Message Queue 3.5 SP1 • Administration Guide

Working With Physical Destinations . 112
To View the Properties of a Physical Destination . 112
To Purge Messages From a Destination . 113
To Delete a Destination . 114

Getting Information About Topic Destinations . 114
Working with Object Stores . 115

Adding an Object Store . 115
To Add a File-system Object Store . 115

Checking Object Store Properties . 118
To Display the Properties of an Object Store . 118

Connecting to an Object Store . 118
To Connect to an Object Store . 118

Adding a Connection Factory Administered Object . 118
To Add a Connection Factory to an Object Store . 119

Adding a Destination Administered Object . 120
To Add a Destination to an Object Store . 121

Administered Object Properties . 122
To View or Update the Properties of a Destination Object . 122

Updating Console Information . 123
Running the Sample Application . 123

To Run the HelloWorldMessageJNDI Application . 124

Chapter 5 Starting and Configuring a Broker . 127
Configuration Files . 127

Instance Configuration File . 128
Merging Property Values . 128
Property Naming Syntax . 129
Editing the Instance Configuration File . 129

Starting a Broker . 134
Syntax of the imqbrokerd Command . 135
Startup Examples . 136

To Start a Broker Instance That Uses the Default Broker Name and Configuration 136
To Start a Broker Instance With a Trial Enterprise Edition License . 136
To Start a Named Broker Instance With Plugged-in Persistence . 136

Summary of imqbrokerd Options . 136
Working With Clusters (Enterprise Edition) . 140

Cluster Configuration Properties . 140
Connecting Brokers . 142

Connection Methods . 142
To Connect Brokers into a Cluster . 143
Secure Inter-Broker Connections . 143
To Configure Secure Connections Within a Cluster . 143

Contents 7

Managing Brokers in a Cluster . 143
Adding Brokers to a Cluster . 144
To Add a New Broker to an Existing Cluster . 144
Restarting a Broker in a Cluster . 144
To Restart a Broker That is Already a Member of an Existing Cluster 144
Removing a Broker from a Cluster . 145
To Remove a Broker From an Existing Cluster . 145

Managing the Master Broker’s Configuration Change Record . 145
Backing up the Configuration Change Record . 146
To Back Up the Configuration Change Record . 146
Restoring the Configuration Change Record . 146
To Restore the Master Broker in Case of Failure . 146

Logging . 147
Default Logging Configuration . 147
Log Message Format . 148
Changing the Logger Configuration . 148

To Change the Logger Configuration for a Broker . 148
Changing the Output Channel . 149
Changing Log File Rollover Criteria . 150

Chapter 6 Broker and Application Management . 151
Command Utility . 152

Syntax of the imqcmd Command . 152
imqcmd Subcommands . 152
Summary of imqcmd Options . 154
Using imqcmd Commands . 156
Example imqcmd Usage . 157

Managing a Broker . 157
Displaying Broker Information . 159
Updating Broker Properties . 160
Controlling the Broker’s State . 160

Pausing and Resuming a Broker . 161
Shutting Down and Restarting a Broker . 161

Displaying Broker Metrics . 162
Managing Connection Services . 162

Listing Connection Services . 164
Displaying Connection Service Information . 165
Updating Connection Service Properties . 165
Displaying Connection Service Metrics . 166
Pausing and Resuming a Connection Service . 166

Getting Connection Information . 167

8 Message Queue 3.5 SP1 • Administration Guide

Managing Destinations . 168
Creating Destinations . 170
Listing Destinations . 173
Displaying Destination Information . 173
Updating Destination Attributes . 174
Displaying Destination Metrics . 175
Pausing and Resuming Destinations . 175
Purging Destinations . 176
Destroying Destinations . 176
Compacting Destinations . 176

Monitoring a Destination’s Disk Utilization . 177
Reclaiming Unused Destination Disk Space . 178
To Reclaim Unused Destination Disk Space . 178

Managing Durable Subscriptions . 179
Managing Transactions . 180

Chapter 7 Managing Administered Objects . 183
About Object Stores . 184

LDAP Server Object Store . 184
File-system Object Store . 185

Administered Objects . 186
Connection Factory Administered Object Attributes . 187
Destination Administered Object Attributes . 189

Object Manager Utility (imqobjmgr) . 189
Syntax of the imqobjmgr Command . 189
imqobjmgr Subcommands . 190
Summary of imqobjmgr Command Options . 190
Required Information . 192
Using Command Files . 193

Adding and Deleting Administered Objects . 195
Adding a Connection Factory . 195
Adding a Topic or Queue . 196
Deleting Administered Objects . 198

Getting Information . 198
Listing Administered Objects . 199
Information About a Single Object . 199

Updating Administered Objects . 200

Contents 9

Chapter 8 Managing Security . 201
Authenticating Users . 202

Using a Flat-File User Repository . 202
Creating a User Repository . 203
User Manager Utility (imqusermgr) . 203
Groups . 205
States . 206
Format of User Names and Passwords . 206
Populating and Managing a User Repository . 207
Changing the Default Administrator Password . 208

Using an LDAP Server for a User Repository . 209
To Edit the Configuration File to use an LDAP Server . 209

Authorizing Users: the Access Control Properties File . 212
Creating an Access Control Properties File . 213
Access Rules Syntax . 213
Permission Computation . 215
Connection Access Control . 216
Destination Access Control . 216
Destination Auto-Create Access Control . 217

Encryption: Working With an SSL-based Service (Enterprise Edition) . 218
Setting Up an SSL-based Service Over TCP/IP . 219

To Set Up an SSL-based Connection Service . 219
Step 1. Generating a Self-Signed Certificate . 219
To Regenerate a Key Pair . 221
Step 2. Enabling the SSL-based Service in the Broker . 221
To Enable an SSL-based Service in the Broker . 222
Step 3. Starting the Broker . 222
Step 4. Configuring and Running SSL-based Clients . 223

Setting Up an SSL Service Over HTTP . 224
Using a Passfile . 225

Chapter 9 Analyzing and Tuning a Message Service . 227
About Performance . 227

The Performance Tuning Process . 227
Aspects of Performance . 228
Benchmarks . 229
Baseline Use Patterns . 230

10 Message Queue 3.5 SP1 • Administration Guide

Factors That Impact Performance . 231
Application Design Factors that Impact Performance . 232

Delivery Mode (Persistent/Non-persistent Messages) . 234
Use of Transactions . 235
Acknowledgement Mode . 236
Durable vs. Non-durable Subscriptions . 237
Use of Selectors (Message Filtering) . 238
Message Size . 238
Message Body Type . 239

Message Service Factors that Impact Performance . 240
Hardware . 240
Operating System . 241
Java Virtual Machine (JVM) . 241
Connections . 241
Message Server Architecture . 243
Broker Limits and Behaviors . 244
Data Store Performance . 244
Client Runtime Configuration . 245

Monitoring a Message Server . 245
Monitoring Tools . 246

Message Queue Command Utility (imqcmd) . 246
To Use the metrics Subcommand . 248
Message Queue Broker Log Files . 251
To Use Log Files to Report Metrics Information . 251
Message-Based Monitoring API . 252
To Set Up Message-based Monitoring . 253
Choosing the Right Monitoring Tool . 255

Description of Metrics Data . 257
JVM Metrics . 257
Broker-wide Metrics . 258
Connection Service Metrics . 260
Destination Metrics . 261

Troubleshooting Performance Problems . 264
Problem: Clients Can’t Establish A Connection . 264

Symptoms: . 264
Possible Causes: . 264

Problem: Connection Throughput is Too Slow . 269
Symptoms: . 269
Possible Causes: . 269

Problem: Client Can’t Create a Message Producer . 270
Symptoms: . 270
Possible Causes: . 271

Contents 11

Problem: Message Production Is Delayed or Slowed . 272
Symptoms: . 272
Possible Causes: . 272

Problem: Messages Backlogged in Message Server . 275
Symptoms: . 275
Possible Causes: . 275

Problem: Message Server Throughput Is Sporadic . 279
Symptoms: . 279
Possible Causes: . 279

Problem: Messages Not Reaching Consumers . 281
Symptoms: . 281
Possible Causes: . 281

Adjusting Your Configuration To Improve Performance . 282
System Adjustments . 282

Solaris Tuning: CPU Utilization, Paging/Swapping/Disk I/O . 282
Java Virtual Machine Adjustments . 283
Tuning Transport Protocols . 283
Tuning the File-based Persistent Store . 287

Broker Adjustments . 287
Memory Management: Increasing Broker Stability Under Load . 287
Multiple Consumer Queue Performance . 288

Client Runtime Message Flow Adjustments . 289
Message Flow Metering . 289
Message Flow Limits . 289

Appendix A Location of Message Queue Data . 293
Solaris . 293
Linux . 294
Windows . 295

Appendix B Setting Up Plugged-in Persistence . 297
Introduction . 297
Plugging In a JDBC-accessible Data Store . 298

To Plug in a JDBC-accessible Data Store . 298
JDBC-related Broker Configuration Properties . 299
Database Manager Utility (imqdbmgr) . 303

Syntax of the imqdbmgr Command . 303
imqdbmgr Subcommands . 304
Summary of imqdbmgr Command Options . 305

12 Message Queue 3.5 SP1 • Administration Guide

Appendix C HTTP/HTTPS Support (Enterprise Edition) . 307
HTTP/HTTPS Support Architecture . 307
Enabling HTTP Support . 309

To Enable HTTP Support . 309
Step 1. Deploying the HTTP Tunnel Servlet on a Web Server . 309

Deploying as a Jar File . 309
Deploying as a Web Archive File . 310

Step 2. Configuring the httpjms Connection Service . 310
To Activate the httpjms Connection Service . 311

Step 3. Configuring an HTTP Connection . 312
Configuring the Connection Factory . 312
Using a Single Servlet to Access Multiple Brokers . 313
Using an HTTP Proxy . 313

Example 1: Deploying the HTTP Tunnel Servlet on Sun Java System Web Server 314
Deploying as a Jar File . 314
To Add a Tunnel Servlet . 314
To Configure a Virtual Path (Servlet URL) for a Tunnel Servlet . 315
To Load the Tunnel Servlet at Web Server Startup . 315
To Disable the Server Access Log . 316
Deploying as a WAR File . 316
To Deploy the http Tunnel Servlet as a WAR File . 316

Example 2: Deploying the HTTP Tunnel Servlet on Sun Java System Application Server 7.0 . . 317
Using the Deployment Tool . 317
To Deploy the HTTP Tunnel Servlet in an Application Server 7.0 Environment 317
Modifying the server.policy File . 318
To Modify the Application Server’s server.policy File . 319

Enabling HTTPS Support . 319
To Enable HTTPS Support . 319

Step 1. Generating a Self-signed Certificate for the HTTPS Tunnel Servlet 319
Step 2. Deploying the HTTPS Tunnel Servlet on a Web Server . 320

Deploying as a Jar File . 321
Deploying as a Web Archive File . 321

Step 3. Configuring the httpsjms Connection Service . 322
To Activate the httpsjms Connection Service . 322

Step 4. Configuring an HTTPS Connection . 323
Configuring JSSE . 324
To Configure JSSE . 324
Importing a Root Certificate . 324
Configuring the Connection Factory . 325
Using a Single Servlet to Access Multiple Brokers . 325
Using an HTTP Proxy . 326

Contents 13

Example 3: Deploying the HTTPS Tunnel Servlet on Sun Java System Web Server 326
Deploying as a Jar File . 326
To Add a Tunnel Servlet . 327
To Configure a Virtual Path (servlet URL) for a Tunnel Servlet . 328
To Load the Tunnel Servlet at Web Server Startup . 328
To Disable the Server Access Log . 329
Deploying as a WAR File . 329
To Modify the HTTPS Tunnel Servlet WAR File . 329
To Deploy the https Tunnel Servlet as a WAR File . 330

Example 4: Deploying the HTTPS Tunnel Servlet on Sun Java System Application Server 7.0 . 331
Using the Deployment Tool . 331
To Deploy the HTTPS Tunnel Servlet in an Application Server 7.0 Environment 331
Modifying the server.policy file . 332
To Modify the Application Server’s server.policy File . 332

Appendix D Using a Broker as a Windows Service . 333
Running a Broker as a Windows Service . 333
Service Administrator Utility (imqsvcadmin) . 334

Syntax of the imqsvcadmin Command . 334
imqsvcadmin Subcommands . 334
Summary of imqsvcadmin Options . 335
Removing the Broker Service . 335
Reconfiguring the Broker Service . 336
Using an Alternate Java Runtime . 336
Querying the Broker Service . 336
Troubleshooting . 336

To See Logged Service Error Events . 336

Appendix E Technical Notes . 337
System Clock Settings . 337

Synchronization Recommended . 337
Avoid Setting System Clocks Backwards . 338

OS-Defined File Descriptor Limitations . 338
Securing Persistent Data . 339

Built-in Persistent Store . 339
Plugged-in Persistent Store . 340

14 Message Queue 3.5 SP1 • Administration Guide

Appendix F The Message Queue Resource Adapter . 341

Appendix G Message Queue Implementation of Optional JMS Functionality 343

Appendix H Stability of Message Queue Interfaces . 345

Glossary . 349

Index . 353

15

List of Figures

Figure 1-1 Centralized vs. Peer to Peer Messaging . 35

Figure 1-2 Message Service Architecture . 37

Figure 1-3 JMS Programming Objects . 39

Figure 1-4 Messaging with MDBs . 42

Figure 2-1 Message Queue System Architecture . 51

Figure 2-2 Broker Service Components . 53

Figure 2-3 Connection Services Support . 55

Figure 2-4 Persistence Manager Support . 64

Figure 2-5 Security Manager Support . 68

Figure 2-6 Monitoring Service Support . 71

Figure 2-7 Multi-Broker (Cluster) Architecture . 83

Figure 2-8 Messaging Operations . 87

Figure 2-9 Message Delivery to Message Queue Client Runtime . 88

Figure 3-1 Local and Remote Administration Utilities . 98

Figure 5-1 Broker Configuration Files . 129

Figure 9-1 Message Delivery Through a Message Queue Service . 231

Figure 9-2 Performance Impact of Delivery Modes . 235

Figure 9-3 Performance Impact of Subscription Types . 237

Figure 9-4 Performance Impact of a Message Size . 239

Figure 9-5 Transport Protocol Speeds . 242

Figure 9-6 Performance Impact of Transport Protocol . 243

Figure 9-7 Effect of Changing inbufsz on a 1k (1024 bytes) Packet . 285

Figure 9-8 Effect of Changing outbufsz on a 1k (1024 bytes) Packet . 286

Figure C-1 HTTP/HTTPS Support Architecture . 308

16 Message Queue 3.5 SP1 • Administration Guide

17

List of Tables

Table 1 Book Contents . 24

Table 2 Document Conventions . 25

Table 3 Message Queue Directory Variables . 26

Table 4 Message Queue Documentation Set . 28

Table 1-1 JMS Programming Objects . 45

Table 2-1 Main Broker Service Components and Functions . 53

Table 2-2 Connection Services Supported by a Broker . 54

Table 2-3 Connection Service Properties . 57

Table 2-4 Message Router Properties . 62

Table 2-5 Persistence Manager Properties . 66

Table 2-6 Security Manager Properties . 69

Table 2-7 Logging Categories . 72

Table 2-8 Metrics Topic Destinations . 73

Table 2-9 Monitoring Service Properties . 74

Table 2-10 Auto-create Configuration Properties . 79

Table 2-11 Destination Attributes . 91

Table 3-1 Common Message Queue Command Line Options . 100

Table 5-1 Broker Instance Configuration Properties . 130

Table 5-2 imqbrokerd Options . 136

Table 5-3 Cluster Configuration Properties . 140

Table 5-4 imqbrokerd Logger Options and Corresponding Properties . 148

Table 6-1 imqcmd Subcommands . 152

Table 6-2 imqcmd Options . 154

Table 6-3 imqcmd Subcommands Used to Manage a Broker . 158

Table 6-4 Broker Properties Updated by imqcmd . 160

Table 6-5 imqcmd Subcommands Used to Manage Connection Services 163

Table 6-6 Connection Services Supported by a Broker . 164

18 Message Queue 3.5 SP1 • Administration Guide

Table 6-7 Connection Service Properties Updated by imqcmd . 165

Table 6-8 imqcmd Subcommands Used to Manage Connection Services 167

Table 6-9 imqcmd Subcommands Used to Manage Destinations . 168

Table 6-10 Destination Attributes . 171

Table 6-11 Destination disk Utilization Metrics . 177

Table 6-12 imqcmd Subcommands Used to Manage Durable Subscriptions 179

Table 6-13 imqcmd Subcommands Used to Manage Transactions . 180

Table 7-1 LDAP Object Store Attributes . 184

Table 7-2 File-system Object Store Attributes . 186

Table 7-3 Connection Factory Administered Object Attributes . 187

Table 7-4 Destination Administered Object Attributes . 189

Table 7-5 imqobjmgr Subcommands . 190

Table 7-6 imqobjmgr Options . 190

Table 7-7 Naming Convention Examples . 196

Table 8-1 Initial Entries in User Repository . 203

Table 8-2 imqusermgr Subcommands . 204

Table 8-3 imqusermgr Options . 205

Table 8-4 Invalid Characters for User Names and Passwords . 206

Table 8-5 LDAP-related Properties . 210

Table 8-6 Syntactic Elements of Access Rules . 214

Table 8-7 Elements of Destination Access Control Rules . 217

Table 8-8 Keystore Properties . 220

Table 8-9 Passwords in a Passfile . 225

Table 9-1 Comparison of High Reliability and High Performance Scenarios 233

Table 9-2 imqcmd metrics Subcommand Syntax . 247

Table 9-3 imqcmd metrics Subcommand Options . 247

Table 9-4 imqcmd query Subcommand Syntax . 250

Table 9-5 Metrics Topic Destinations . 253

Table 9-6 Pros and Cons of Metrics Monitoring Tools . 256

Table 9-7 JVM Metrics . 257

Table 9-8 Broker-wide Metrics . 258

Table 9-9 Connection Service Metrics . 260

Table 9-10 Destination Metrics . 262

Table A-1 Location of Message Queue Data on Solaris . 293

Table A-2 Location of Message Queue Data on Linux . 294

Table A-3 Location of Message Queue Data on Windows . 295

Table B-1 JDBC-related Properties . 300

List of Tables 19

Table B-2 imqdbmgr Subcommands . 304

Table B-3 imqdbmgr Options . 305

Table C-1 httpjms Connection Service Properties . 311

Table C-2 Servlet Arguments for Deploying HTTP Tunnel Servlet Jar File 315

Table C-3 httpsjms Connection Service Properties . 323

Table C-4 Servlet Arguments for Deploying HTTPS Tunnel Servlet Jar File 327

Table D-1 imqsvcadmin Subcommands . 334

Table D-2 imqsvcadmin Options . 335

Table G-1 Optional JMS Functionality . 343

Table H-1 Stability of Message Queue Interfaces . 345

Table H-2 Interface Stability Classification Scheme . 347

20 Message Queue 3.5 SP1 • Administration Guide

21

List of Procedures

To Set Up a Production Environment . 94

To Set Up a Production Environment . 95

To Start the Administration Console . 103

To Display Administration Console Help Information . 104

To Start a Broker . 106

To Add a Broker to the Administration Console . 107

To Change the Administrator Password . 108

To Connect to the Broker . 108

To View Available Connection Services . 109

To Add a Queue Destination to a Broker . 111

To View the Properties of a Physical Destination . 112

To Purge Messages From a Destination . 113

To Delete a Destination . 114

To Add a File-system Object Store . 115

To Display the Properties of an Object Store . 118

To Connect to an Object Store . 118

To Add a Connection Factory to an Object Store . 119

To Add a Destination to an Object Store . 121

To View or Update the Properties of a Destination Object . 122

To Run the HelloWorldMessageJNDI Application . 124

To Start a Broker Instance That Uses the Default Broker Name and Configuration 136

To Start a Broker Instance With a Trial Enterprise Edition License . 136

To Start a Named Broker Instance With Plugged-in Persistence . 136

To Connect Brokers into a Cluster . 143

To Configure Secure Connections Within a Cluster . 143

To Add a New Broker to an Existing Cluster . 144

To Restart a Broker That is Already a Member of an Existing Cluster . 144

22 Message Queue 3.5 SP1 • Administration Guide

To Remove a Broker From an Existing Cluster . 145

To Back Up the Configuration Change Record . 146

To Restore the Master Broker in Case of Failure . 146

To Change the Logger Configuration for a Broker . 148

To Reclaim Unused Destination Disk Space . 178

To Edit the Configuration File to use an LDAP Server . 209

To Set Up an SSL-based Connection Service . 219

To Regenerate a Key Pair . 221

To Enable an SSL-based Service in the Broker . 222

To Use the metrics Subcommand . 248

To Use Log Files to Report Metrics Information . 251

To Set Up Message-based Monitoring . 253

To Plug in a JDBC-accessible Data Store . 298

To Enable HTTP Support . 309

To Activate the httpjms Connection Service . 311

To Add a Tunnel Servlet . 314

To Configure a Virtual Path (Servlet URL) for a Tunnel Servlet . 315

To Load the Tunnel Servlet at Web Server Startup . 315

To Disable the Server Access Log . 316

To Deploy the http Tunnel Servlet as a WAR File . 316

To Deploy the HTTP Tunnel Servlet in an Application Server 7.0 Environment 317

To Modify the Application Server’s server.policy File . 319

To Enable HTTPS Support . 319

To Activate the httpsjms Connection Service . 322

To Configure JSSE . 324

To Add a Tunnel Servlet . 327

To Configure a Virtual Path (servlet URL) for a Tunnel Servlet . 328

To Load the Tunnel Servlet at Web Server Startup . 328

To Disable the Server Access Log . 329

To Modify the HTTPS Tunnel Servlet WAR File . 329

To Deploy the https Tunnel Servlet as a WAR File . 330

To Deploy the HTTPS Tunnel Servlet in an Application Server 7.0 Environment 331

To Modify the Application Server’s server.policy File . 332

To See Logged Service Error Events . 336

23

Preface

This book, the Sun Java™ System Message Queue 3.5 SP1 Administration Guide,
provides the background and information needed to perform administration tasks
for a Message Queue messaging system.

This preface contains the following sections:

• “Audience for This Guide” on page 23

• “Organization of This Guide” on page 24

• “Conventions” on page 25

• “Other Documentation Resources” on page 28

Audience for This Guide
This guide is meant for administrators as well as application developers who need
to perform Message Queue administration tasks.

A Message Queue administrator is responsible for setting up and managing a
Message Queue messaging system, in particular the Message Queue message
server at the heart of this system. The book does not assume any knowledge or
understanding of messaging systems.

The guide is also meant to be used by application developers to better understand
how to optimize their applications to make best use of the features and flexibility of
the Message Queue messaging system.

Organization of This Guide

24 Message Queue 3.5 SP1 • Administration Guide

Organization of This Guide
This guide is designed to be read from beginning to end. The following table
briefly describes the contents of each chapter:

Table 1 Book Contents

Chapter Description

Chapter 1, “Overview” Presents a high-level conceptual overview of Message Queue
messaging systems and terminology.

Chapter 2, “The Message
Queue Messaging System”

Describes the Message Queue messaging system, with
special emphasis on the Message Queue broker and the
Message Queue client runtime that together provide
messaging services.

Chapter 3, “Message Queue
Administration Tasks and
Tools”

Describes Message Queue administration tasks and tools, and
introduces the command line utilities used for administration,
and their common features.

Chapter 4, “Administration
Console Tutorial”

Provides a hands-on tutorial to acquaint you with the
Administration Console, a graphical interface to the Message
Queue message server.

Chapter 5, “Starting and
Configuring a Broker”

Explains how to start up and configure a Message Queue
broker and a broker cluster.

Chapter 6, “Broker and
Application Management”

Explains how to perform (application-independent) tasks
related to managing Message Queue brokers, as well as tasks
used to manage messaging applications.

Chapter 7, “Managing
Administered Objects”

Explains how to perform tasks related to creating and
managing Message Queue administered objects.

Chapter 8, “Managing Security” Explains how to perform security tasks related to applications,
such as managing authentication, authorization, and
encryption.

Chapter 9, “Analyzing and
Tuning a Message Service”

Describes techniques for monitoring and analyzing message
server performance and explains how to tune the message
server to optimize its performance.

Appendix A, “Location of
Message Queue Data”

Describes the location of various categories of Message
Queue data.

Appendix B, “Setting Up
Plugged-in Persistence”

Explains how to set up Message Queue to use
JDBC-compliant database to perform persistence functions.

Appendix C, “HTTP/HTTPS
Support (Enterprise Edition)”

Explains how to set up HTTP connection services between a
messaging client and the Message Queue message server.

Appendix D, “Using a Broker as
a Windows Service”

Explains how to use the Message Queue Service
Administration utility (imqsvcadmin) to install, query, and
remove the broker (running as an Windows service).

Conventions

Preface 25

Conventions
This section provides information about the conventions used in this document.

Text Conventions

Appendix E, “Technical Notes” Provides a number of specialized technical notes relevant to
topics in this book, but not part of Message Queue-specific
administration.

Appendix F, “The Message
Queue Resource Adapter”

Describes what the Message Queue resource adapter is, how
to deploy it, and how to configure and use it.

Appendix G, “Message Queue
Implementation of
Optional JMS Functionality”

Describes how the Message Queue product handles each of
the items listed in the JMS specification as optional for a JMS
provider to implement.

Appendix H, “Stability of
Message Queue Interfaces”

Describes the stability of various Message Queue interfaces.

“Glossary” Defines terms used in Message Queue documentation.

Table 2 Document Conventions

Format Description

italics Italicized text represents a placeholder. Substitute an appropriate
clause or value where you see italic text. Italicized text is also used
to designate a document title, for emphasis, or for a word or phrase
being introduced.

monospace Monospace text represents example code, commands that you
enter on the command line, directory, file, or path names, error
message text, class names, method names (including all elements
in the signature), package names, reserved words, and URLs.

[] Square brackets to indicate optional values in a command line
syntax statement.

ALL CAPS Text in all capitals represents file system types (GIF, TXT, HTML
and so forth), environment variables (IMQ_HOME), or acronyms
(Message Queue, JSP).

Key+Key Simultaneous keystrokes are joined with a plus sign: Ctrl+A means
press both keys simultaneously.

Table 1 Book Contents (Continued)

Chapter Description

Conventions

26 Message Queue 3.5 SP1 • Administration Guide

Directory Variable Conventions
Message Queue makes use of three directory variables; how they are set varies
from platform to platform. Table 3 describes these variables and summarizes how
they are used on the Solaris™, Windows, and Linux platforms.

Key-Key Consecutive keystrokes are joined with a hyphen: Esc-S means
press the Esc key, release it, then press the S key.

Table 3 Message Queue Directory Variables

Variable Description

IMQ_HOME This is generally used in Message Queue documentation to refer to
the Message Queue base directory (root installation directory):

• On Solaris, there is no root Message Queue installation
directory. Therefore, IMQ_HOME is not used in Message Queue
documentation to refer to file locations on Solaris.

• On Solaris, for Sun Java System Application Server the root
Message Queue installation directory is /imq under the
Application Server base directory.

• On Windows, the root Message Queue installation directory is
set by the Message Queue installer (by default, as C:\Program
Files\Sun\MessageQueue3).

• On Windows, for Sun Java System Application Server, the root
Message Queue installation directory is /imq under the
Application Server base directory.

• On Linux, there is no root Message Queue installation directory.
Therefore, IMQ_HOME is not used in Message Queue
documentation to refer to file locations on Linux.

Table 2 Document Conventions (Continued)

Format Description

Conventions

Preface 27

In this guide, IMQ_HOME, IMQ_VARHOME, and IMQ_JAVAHOME are shown without
platform-specific environment variable notation or syntax (for example, $IMQ_HOME
on UNIX®). Path names generally use UNIX directory separator notation (/).

IMQ_VARHOME This is the /var directory in which Message Queue temporary or
dynamically-created configuration and data files are stored. It can
be set as an environment variable to point to any directory.

• On Solaris, IMQ_VARHOME defaults to the /var/imq directory.

• On Solaris, for Sun Java System Application Server, Evaluation
Edition, IMQ_VARHOME defaults to the IMQ_HOME/var directory.

• On Windows IMQ_VARHOME defaults to the IMQ_HOME\var
directory.

• On Windows, for Sun Java System Application Server,
IMQ_VARHOME defaults to the IMQ_HOME\var directory.

• On Linux, IMQ_VARHOME defaults to the /var/opt/imq directory

IMQ_JAVAHOME This is an environment variable that points to the location of the
Java™ runtime (JRE) required by Message Queue executables:

• On Solaris, IMQ_JAVAHOME defaults to the /usr/j2se/jre
directory, but a user can optionally set the value to wherever
the required JRE resides.

• On Windows, IMQ_JAVAHOME defaults to IMQ_HOME\jre, but a
user can optionally set the value to wherever the required JRE
resides.

• On Linux, Message Queue first looks for the java runtime in the
/usr/java/j2sdkVersion directory, and then looks in the
/usr/java/j2reVersion directory, but a user can optionally set
the value of IMQ_JAVAHOME to wherever the required JRE
resides.

Table 3 Message Queue Directory Variables (Continued)

Variable Description

Other Documentation Resources

28 Message Queue 3.5 SP1 • Administration Guide

Other Documentation Resources
In addition to this guide, Message Queue provides additional documentation
resources.

The Message Queue Documentation Set
The documents that comprise the Message Queue documentation set are listed in
Table 4 in the order in which you would normally use them.

Table 4 Message Queue Documentation Set

Document Audience Description

Message Queue Installation Guide Developers and
administrators

Explains how to install Message
Queue software on Solaris, Linux, and
Windows platforms.

Message Queue Release Notes Developers and
administrators

Includes descriptions of new features,
limitations, and known bugs, as well
as technical notes.

Message Queue Administration
Guide

Administrators, also
recommended for
developers

Provides background and information
needed to perform administration
tasks using Message Queue
administration tools.

Message Queue Java Client
Developer’s Guide

Developers Provides a quick-start tutorial and
programming information for
developers of Java client programs
using the Message Queue
implementation of the JMS and
SOAP/JAXM specifications.

Message Queue C Client
Developer’s Guide

Developers Provides programming and reference
documentation for developers of C
client programs using the C interface
(C-API) to the .Message Queue
message service.

Other Documentation Resources

Preface 29

Online Help
Message Queue includes command line utilities for performing Message Queue
message service administration tasks. To access the online help for these utilities,
see “Common Command Line Options” on page 100.

Message Queue also includes a graphical user interface (GUI) administration tool,
the Administration Console (imqadmin). Context sensitive online help is included
in the Administration Console.

JavaDoc
Message Queue Java client API (including the JMS API) documentation in JavaDoc
format, is provided in a directory that depends upon the operating system (see
Appendix A, “Location of Message Queue Data”).

This documentation can be viewed in any HTML browser such as Netscape or
Internet Explorer. It includes standard JMS API documentation as well as Message
Queue-specific APIs for Message Queue administered objects (see Chapter 3 of the
Message Queue Java Client Developer’s Guide), which are of value to developers of
messaging applications.

Example Client Applications
A number of example applications that provide sample client application code are
included in a directory that depends upon the operating system (see Appendix A,
“Location of Message Queue Data”).

See the README file located in that directory and in each of its subdirectories.

The Java Message Service (JMS) Specification
The JMS specification can be found at the following location:

http://java.sun.com/products/jms/docs.html

The specification includes sample client code.

http://java.sun.com/products/jms/docs.html

Related Third-Party Web Site References

30 Message Queue 3.5 SP1 • Administration Guide

Related Third-Party Web Site References
Third-party URLs are referenced in this document and provide additional, related
information.

NOTE Sun is not responsible for the availability of third-party Web sites
mentioned in this document. Sun does not endorse and is not
responsible or liable for any content, advertising, products, or other
materials that are available on or through such sites or resources.
Sun will not be responsible or liable for any actual or alleged
damage or loss caused by or in connection with the use of or reliance
on any such content, goods, or services that are available on or
through such sites or resources.

31

Chapter 1

Overview

This chapter provides an introduction to Sun Java™ System Message Queue and is
of interest to both administrators and programmers.

What Is Sun Java System Message Queue?
The Message Queue product is a standards-based solution for reliable,
asynchronous messaging for distributed applications. Message Queue is an
enterprise messaging system that implements the Java™ Message Service (JMS)
open standard: in fact it serves as the JMS Reference Implementation. However
Message Queue is also a full-featured JMS provider with enterprise-strength
features.

The JMS specification describes a set of messaging semantics and behaviors, and an
application programming interface (API), that provide a common way for Java
language applications to create, send, receive, and read messages in a distributed
environment (see “JMS Programming Model” on page 38). In addition to
supporting Java messaging applications, Message Queue also provides a C
language interface to the Message Queue service (the Message Queue C-API).

With Sun Java System Message Queue software, processes running on different
platforms and operating systems can connect to a common Message Queue
message service (see “Message Service Architecture” on page 36) to send and
receive information. Application developers are free to focus on the business logic
of their applications, rather than on the low-level details of how their applications
reliably communicate across a network.

Message Queue has features that exceed the minimum requirements of the JMS
specification. Among these features are the following:

What Is Sun Java System Message Queue?

32 Message Queue 3.5 SP1 • Administration Guide

Centralized administration. Provides both command-line and GUI tools for
administering a Message Queue service and managing application-dependent
entities, such as destinations, transactions, durable subscriptions, and security.
Message Queue also supports remote monitoring of the Message Queue service.

Scalable message service. Allows you to service increasing numbers of Message
Queue clients (components or applications) by balancing the load among a number
of Message Queue message server components (brokers) working in tandem
(multi-broker cluster).

Client connection failover. Automatically restores a failed client connection to a
Message Queue message server.

Tunable performance. Lets you increase performance of the Message Queue
service when less reliability of delivery is acceptable.

Multiple transports. Supports the ability of Message Queue clients to
communicate with the Message Queue message server over a number of different
transports, including TCP and HTTP, and using secure (SSL) connections.

JNDI support. Supports both file-based and LDAP implementations of the Java
Naming and Directory Interface (JNDI) as object stores and user repositories.

SOAP messaging support. Supports creation and delivery of SOAP
messages—messages that conform to the Simple Object Access Protocol (SOAP)
specification— via JMS messaging. SOAP allows for the exchange of structured
XML data between peers in a distributed environment. See the Message Queue Java
Client Developer’s Guide for more information.

See Appendix G, “Message Queue Implementation of Optional JMS Functionality” for
documentation of JMS compliance-related issues.

Product Editions

Chapter 1 Overview 33

Product Editions
Sun Java System Message Queue is available in two editions: Platform and
Enterprise—each corresponding to a different feature set and licensed capacity, as
described below. (Instructions for upgrading Message Queue from one edition to
another are in the Message Queue Installation Guide.)

Platform Edition
This edition can be downloaded free from the Sun website and is also bundled with
the Sun Java System Application Server platform. The Platform Edition places no
limit on the number of client connections supported by the Message Queue
message server. It comes with two licenses, as described below:

• a basic license. This license provides basic JMS support (it’s a full JMS
provider), but does not include such enterprise features as load balancing
(multi-broker message service), HTTP/HTTPS connections, secure connection
services, scalable connection capability, client connection failover, queue
delivery to multiple consumers, remote message-based monitoring, and C-API
support. The license has an unlimited duration, and can therefore be used in
less demanding production environments.

• a 90-day trial enterprise license. This license includes all enterprise features
(such as support for multi-broker message services, HTTP/HTTPS
connections, secure connection services, scalable connection capability, client
connection failover, queue delivery to multiple consumers, remote
message-based monitoring, and C-API support) not included in the basic
license. However, the license has a limited 90-day duration enforced by the
software, making it suitable for evaluating the enterprise features available in
the Enterprise Edition of the product (see “Enterprise Edition”).

NOTE The 90-day trial license can be enabled by starting the Message
Queue message server—a Message Queue broker instance—as
described in “To Start a Broker Instance With a Trial Enterprise
Edition License” on page 136.

Enterprise Messaging Systems

34 Message Queue 3.5 SP1 • Administration Guide

Enterprise Edition
This edition is for deploying and running messaging applications in a production
environment. It includes support for multi-broker message services, HTTP/HTTPS
connections, secure connection services, scalable connection capability, client
connection failover, queue delivery to multiple consumers, remote message-based
monitoring, and C-API support. You can also use the Enterprise Edition for
developing, debugging, and load testing messaging applications and components.
The Enterprise Edition has an unlimited duration license that places no limit on the
number of brokers in a multi-broker message service, but is based on the number
of CPUs that are used.

Enterprise Messaging Systems
Enterprise messaging systems enable independent distributed applications or
application components to interact through messages. These components, whether
on the same host, the same network, or loosely connected through the Internet, use
messaging to pass data and to coordinate their respective functions.

Requirements of Enterprise Messaging Systems
Enterprise application systems typically consist of large numbers of distributed
components exchanging many thousands of messages in round-the-clock,
mission-critical operations. To support such systems, an enterprise messaging
system must generally meet the following requirements:

Reliable delivery. Messages from one component to another must not be lost
due to network or system failure. This means the system must be able to guarantee
that a message is successfully delivered.

Asynchronous delivery. For large numbers of components to be able to exchange
messages simultaneously, and support high density throughputs, the sending of a
message cannot depend upon the readiness of the consumer to immediately
receive it. If a consumer is busy or offline, the system must allow for a message to
be sent and subsequently received when the consumer is ready. This is known as
asynchronous message delivery, popularly known as store-and-forward
messaging.

Security. The messaging system must support basic security features:
authentication of users, authorized access to messages and resources, and
over-the-wire encryption.

Enterprise Messaging Systems

Chapter 1 Overview 35

Scalability. The messaging system must be able to accommodate increasing
loads—increasing numbers of users and increasing numbers of messages—without
a substantial loss of performance or message throughput. As businesses and
applications expand, this becomes a very important requirement.

Manageability. The messaging system must provide tools for monitoring and
managing the delivery of messages and for optimizing system resources. These
tools help measure and maintain reliability, security, and performance.

Centralized vs. Peer to Peer Messaging
The requirements of an enterprise messaging system are difficult to meet with a
traditional peer to peer messaging system, illustrated in Figure 1-1.

Figure 1-1 Centralized vs. Peer to Peer Messaging

In such a system every messaging component maintains a connection to every
other component. These connections can allow for fast, secure, and reliable
delivery, however the code for supporting reliability and security must reside in
each component. As components are added to the system, the number of
connections rises exponentially. This makes asynchronous message delivery and
scalability difficult to achieve. Centralized management is also problematic.

The preferred approach for enterprise messaging is a centralized messaging
system, also illustrated in Figure 1-1. In this approach each messaging component
maintains a connection to one central message service. The message service
provides for routing and delivery of messages between components, and is

Component 2Component 1

Component 3 Component 4

Component 1

Component 2

Message Service

Component 3

Component 4

Peer to Peer Messaging Centralized Messaging

Enterprise Messaging Systems

36 Message Queue 3.5 SP1 • Administration Guide

responsible for reliable delivery and security. Components interact with the
message service through a well-defined programming interface. As components
are added to the system, the number of connections rises only linearly, making it
easier to scale the system by scaling the message service. In addition, the central
message service provides for centralized management of the system.

Messaging System Concepts
A few basic concepts underlie enterprise messaging systems. These include the
following: message, message service architecture, and message delivery models.

Message
A message consists of data in some format (message body) and meta-data that
describes the characteristics or properties of the message (message header), such as
its destination, lifetime, or other characteristics determined by the messaging
system.

Message Service Architecture
The basic architecture of a messaging system is illustrated in Figure 1-2. It consists
of message producers and message consumers that exchange messages by way of a
common message service. Any number of message producers and consumers can
reside in the same messaging component (or application). A message producer
sends a message to a message service. The message service, in turn, using message
routing and delivery components, delivers the message to one or more message
consumers that have registered an interest in the message. The message routing
and delivery components are responsible for guaranteeing delivery of the message
to all appropriate consumers.

Enterprise Messaging Systems

Chapter 1 Overview 37

Figure 1-2 Message Service Architecture

Message Delivery Models
There are many relationships between producers and consumers: one to one, one
to many, and many to many relationships. For example, you might have messages
delivered from:

• one producer to one consumer

• one producer to many consumers

• many producers to one consumer

• many producers to many consumers.

These relationships are often reduced to two message delivery models:
point-to-point and publish/subscribe messaging. The focus of the point-to-point
delivery model is on messages that originate from a specific producer and are
received by a specific consumer. The focus of publish/subscribe delivery model is
on messages that originate from any of a number of producers and are received by
any number of consumers. These message delivery models can overlap.

Historically, messaging systems supported various combinations of these two
message delivery models. The Java Message Service (JMS) specification creates
standard semantics for messaging with an API for Java programming. It supports
both the point-to-point and publish/subscribe message delivery models (see
“Programming Domains” on page 44).

Message Service

Message
Routing and

Delivery

Message
Producers

Message
Consumers

The JMS Specification

38 Message Queue 3.5 SP1 • Administration Guide

The JMS Specification
The JMS specification prescribes a set of rules and semantics that govern
messaging, including a programming model, a message structure, and an API.
Because Message Queue provides an implementation of JMS, JMS concepts are
fundamental to understanding how a Message Queue messaging system works.
This introduction explains concepts and terminology needed to understand the
remaining chapters of this book.

JMS Message Structure
A JMS message is composed of three parts: a header, properties, and a body.

Header The header specifies the JMS characteristics of the message: its
destination, whether it is persistent or not, its time to live, and its priority. These
characteristics govern how the messaging system delivers the message.

Properties Properties (which can be thought of as an extension of the header) are
optional—they provide values that applications can use to filter messages
according to various selection criteria. Properties are optional.

Message body The message body contains the actual data to be exchanged. JMS
supports six body types.

JMS Programming Model
In the JMS programming model, JMS clients (components or applications)
exchange messages by way of a JMS message service. Message producers send
messages to the message service, from which message consumers receive them.
These messaging operations are performed using a set of objects (furnished by a
JMS provider) that implement the JMS application programming interface (API).

This section introduces the objects that implement the JMS API and that are used to
set up a JMS client for delivery of messages (for more information, see the Message
Queue Java Client Developer’s Guide). Figure 1-3 shows the JMS objects used to
program the delivery of messages.

The JMS Specification

Chapter 1 Overview 39

Figure 1-3 JMS Programming Objects

In the JMS programming model, a JMS client uses a ConnectionFactory object to
create a connection over which messages are sent to and received from the message
service. A Connection is a client’s active connection to the message service. Both
allocation of communication resources and authentication of the client take place
when a connection is created. It is a relatively heavy-weight object, and most clients
do all their messaging with a single connection.

The connection is used to create sessions. A Session is a single-threaded context
for producing and consuming messages. It is used to create the message producers
and consumers that send and receive messages, and it defines a serial order for the
messages it delivers. A session supports reliable delivery through a number of
acknowledgement options or through transactions.

A client uses a MessageProducer to send messages to a specified physical
destination, represented in the API as a destination identity object. The message
producer can specify a default delivery mode (persistent vs. non-persistent
messages), priority, and time-to-live values that govern all messages sent by the
producer to the physical destination.

Similarly, a client uses a MessageConsumer to receive messages from a specified
physical destination, represented in the API as a destination object. A message
consumer can use a message selector that allows the message service to deliver
only those messages to the message consumer that match the selection criteria.

Connection

Sessions

MessageProducers

MessageConsumers

MessageListener

JMS
Message Service

Message
Routing and

Delivery

Physical Destinations

Message

JMS Client

ConnectionFactory

Destinations

JMS/J2EE Programming: Message-Driven Beans

40 Message Queue 3.5 SP1 • Administration Guide

A message consumer can support either synchronous or asynchronous
consumption of messages. Asynchronous consumption is achieved by registering a
MessageListener with the consumer. The client consumes a message when a
session thread invokes the onMessage() method of the MessageListener object.

JMS Administered Objects
The JMS specification facilitates provider-independent clients by specifying
administered objects that encapsulate provider-specific configuration information.

Two of the objects described in the “JMS Programming Model” on page 38 depend
on how a JMS provider implements a JMS message service. The connection factory
object depends on the underlying protocols and mechanisms used by the provider
to deliver messages, and the destination object depends on the specific naming
conventions and capabilities of the physical destinations used by the provider.

Normally these provider-specific characteristics would make JMS client code
dependent on a specific JMS implementation. However, the JMS specification
requires that provider-specific implementation and configuration information be
encapsulated in connection factory and destination objects that can then be
accessed in a standard, non-provider-specific way.

Administered objects are created and configured by an administrator, stored in a
name service, and accessed by clients through standard Java Naming and
Directory Service (JNDI) lookup code. Using administered objects in this way
makes client code provider-independent.

The two types of administered objects, connection factories and destinations,
encapsulate provider-specific information, but they have very different uses within
a client. A connection factory is used to create connections to the message server,
while destination objects are used to identify physical destinations.

JMS/J2EE Programming: Message-Driven Beans
In addition to the general JMS client programming model introduced in “JMS
Programming Model” on page 38, there is a more specialized adaptation of JMS
used in the context of Java 2 Platform, Enterprise Edition (J2EE platform)
applications. This specialized JMS client is called a message-driven bean and is one of
a family of Enterprise JavaBeans (EJB) components specified in the EJB 2.0
Specification (http://java.sun.com/products/ejb/docs.html).

http://java.sun.com/products/ejb/docs.html

JMS/J2EE Programming: Message-Driven Beans

Chapter 1 Overview 41

The need for message-driven beans arises out of the fact that other EJB components
(session beans and entity beans) can only be called synchronously. These EJB
components have no mechanism for receiving messages asynchronously, since
they are only accessed through standard EJB interfaces.

However, asynchronous messaging is a requirement of many enterprise
applications. Most such applications require that server-side components be able to
communicate and respond to each other without tying up server resources. Hence,
the need for an EJB component that can receive messages and consume them
without being tightly coupled to the producer of the message. This capability is
needed for any application in which server-side components must respond to
application events. In enterprise applications, this capability must also scale under
increasing load.

Message-Driven Beans
A message-driven bean (MDB) is a specialized EJB component supported by a
specialized EJB container (a software environment that provides distributed
services for the components it supports).

Message-driven Bean The MDB is a JMS message consumer that implements the
JMS MessageListener interface. The onMessage method (written by the MDB
developer) is invoked when a message is received by the MDB container. The
onMessage() method consumes the message, just as the onMessage() method of a
standard MessageListener object would. You do not remotely invoke methods on
MDBs—like you do on other EJB components—therefore there are no home or
remote interfaces associated with them. The MDB can consume messages from a
single destination. The messages can be produced by standalone JMS applications,
JMS components, EJB components, or Web components, as shown in Figure 1-4.

JMS/J2EE Programming: Message-Driven Beans

42 Message Queue 3.5 SP1 • Administration Guide

Figure 1-4 Messaging with MDBs

MDB Container The MDB is supported by a specialized EJB container,
responsible for creating instances of the MDB and setting them up for
asynchronous consumption of messages. This involves setting up a connection
with the message service (including authentication), creating a pool of sessions
associated with a given destination, and managing the distribution of messages as
they are received among the pool of sessions and associated MDB instances. Since
the container controls the life-cycle of MDB instances, it manages the pool of MDB
instances so as to accommodate incoming message loads.

Associated with an MDB is a deployment descriptor that specifies the JNDI lookup
names for the administered objects used by the container in setting up message
consumption: a connection factory and a destination. The deployment descriptor
might also include other information that can be used by deployment tools to
configure the container. Each such container supports instances of only a single
MDB.

EJB Container

EJB
Instance

MDB Container

MDB
MDBMDB

Instance onMessage
method

JMS Message Service

Message
Routing and

Delivery

Destinations

JMS
Component

or
Application

JMS
Message
Producers

JMS
Message
Consumer

JMS Messaging Issues

Chapter 1 Overview 43

J2EE Application Server Support
In J2EE architecture (see the J2EE Platform Specification located at
http://java.sun.com/j2ee/download.html#platformspec), EJB containers are hosted
by J2EE application servers. An application server provides resources needed by
the various containers: transaction managers, persistence managers, name services,
and, in the case of messaging and MDBs, a JMS provider.

In the Sun Java System Application Server, JMS messaging resources are provided
by Sun Java System Message Queue:

• For Sun Java System Application Server 7.0, a Message Queue messaging
system is integrated into the application server as its native JMS provider.

• For the Sun J2EE 1.4 Application Server, Message Queue is plugged into the
application server as an embedded JMS resource adapter (see Appendix F,
“The Message Queue Resource Adapter”).

• For future releases of the Application Server, Message Queue will be plugged
into the application server using standard resource adapter deployment and
configuration methods.

JMS Messaging Issues
This section describes a number of JMS programming issues that impact the
administration of a Message Queue message service. The discussion focuses on
concepts and terminology that are needed by a Message Queue administrator.

JMS Provider Independence
JMS specifies the use of administered objects (see “JMS Administered Objects” on
page 40) to support the development of client applications that are portable to
other JMS providers. Administered objects allow JMS clients to use logical names
to look up and reference provider-specific objects. In this way client code does not
need to know specific naming or addressing syntax or configurable properties used
by a provider. This makes the code provider-independent.

Administered objects are Message Queue system objects created and configured by
a Message Queue administrator. These objects are placed in a JNDI directory
service, and a JMS client accesses them using a JNDI lookup.

http://java.sun.com/j2ee/download.html#platformspec

JMS Messaging Issues

44 Message Queue 3.5 SP1 • Administration Guide

Message Queue administered objects can also be instantiated by the client, rather
than looked up in a JNDI directory service. This has the drawback of requiring the
application developer to use provider-specific APIs. It also undermines the ability
of a Message Queue administrator to successfully control and manage a Message
Queue message server.

For more information on administered objects, see “Message Queue Administered
Objects” on page 89.

Programming Domains
JMS supports two distinct message delivery models: point-to-point and
publish/subscribe.

point-to-point (Queue Destinations) A message is delivered from a producer to
one consumer. In this delivery model, the destination is a queue. Messages are first
delivered to the queue destination, then delivered from the queue, one at a time,
depending on the queue’s delivery policy (see “Queue Destinations” on page 77),
to one of the consumers registered for the queue. Any number of producers can
send messages to a queue destination, but each message is guaranteed to be
delivered to—and successfully consumed by—only one consumer. If there are no
consumers registered for a queue destination, the queue holds messages it receives,
and delivers them when a consumer registers for the queue.

Publish/Subscribe (Topic destinations) A message is delivered from a producer
to any number of consumers. In this delivery model, the destination is a topic.
Messages are first delivered to the topic destination, then delivered to all active
consumers that have subscribed to the topic. Any number of producers can send
messages to a topic destination, and each message can be delivered to any number
of subscribed consumers. Topic destinations also support the notion of durable
subscriptions. A durable subscription represents a consumer that is registered with
the topic destination but can be inactive at the time that messages are delivered.
When the consumer subsequently becomes active, it receives the messages. If there
are no consumers registered for a topic destination, the topic does not hold
messages it receives, unless it has inactive consumers with durable subscriptions.

These two message delivery models are handled using different API objects—with
slightly different semantics—representing different programming domains, as
shown in Table 1-1.

JMS Messaging Issues

Chapter 1 Overview 45

You can program both point-to-point and publish/subscribe messaging using the
unified domain objects shown in the first column of Table 1-1. This is the preferred
approach. However, to conform to the earlier JMS 1.02b specification, you can use
the point-to-point domain objects to program point-to-point messaging, and the
publish/subscribe domain objects to program publish/subscribe messaging.

Client Identifiers
JMS providers must support the notion of a client identifier, which associates a JMS
client’s connection to a message service with state information maintained by the
message service on behalf of the client. By definition, a client identifier is unique,
and applies to only one user at a time. Client identifiers are used in combination
with a durable subscription name (see “Publish/Subscribe (Topic destinations)” on
page 44) to make sure that each durable subscription corresponds to only one user.

The JMS specification allows client identifiers to be set by the client through an API
method call, but recommends setting it administratively using a connection factory
administered object (see “JMS Administered Objects” on page 40). If hard wired
into a connection factory, however, each user would then need an individual
connection factory to have a unique identity.

Table 1-1 JMS Programming Objects

Base Type
(Unified Domain)

Point-to-Point Domain Publish/Subscribe
Domain

Destination (Queue or Topic)1

1. Depending on programming approach, you might specify a particular destination type.

Queue Topic

ConnectionFactory QueueConnectionFactory TopicConnectionFactory

Connection QueueConnection TopicConnection

Session QueueSession TopicSession

MessageProducer QueueSender TopicPublisher

MessageConsumer QueueReceiver TopicSubscriber

JMS Messaging Issues

46 Message Queue 3.5 SP1 • Administration Guide

Message Queue provides a way for the client identifier to be both
ConnectionFactory and user specific using a special variable substitution syntax
that you can configure in a ConnectionFactory object. When used this way, a
single ConnectionFactory object can be used by multiple users who create durable
subscriptions, without fear of naming conflicts or lack of security. A user’s durable
subscriptions are therefore protected from accidental erasure or unavailability due
to another user having set the wrong client identifier.

For details on how to use this Message Queue feature, see the discussion of
connection factory attributes in the Message Queue Java Client Developer’s Guide.

In any case, in order to create a durable subscription, a client identifier must be
either programmatically set by the client, using the JMS API, or administratively
configured in the ConnectionFactory objects used by the client.

Reliable Messaging
JMS defines two delivery modes:

Persistent messages These messages are guaranteed to be delivered and
successfully consumed once and only once. Reliability is at a premium for such
messages.

Non-persistent messages These messages are guaranteed to be delivered at most
once. Reliability is not a major concern for such messages.

There are two aspects of assuring reliability in the case of persistent messages. One
is to assure that their delivery to and from a message service is successful. The
other is to assure that the message service does not lose persistent messages before
delivering them to consumers.

Acknowledgements/Transactions
Reliable messaging depends on guaranteeing the successful delivery of persistent
messages to and from a destination. This can be achieved using either of two
general mechanisms supported by a Message Queue session: acknowledgements
or transactions. In the case of transactions, these can either be local or distributed,
under the control of a distributed transaction manager.

JMS Messaging Issues

Chapter 1 Overview 47

Acknowledgements
A session can be configured to use acknowledgements to assure reliable delivery.

In the case of a producer, this means that the message service acknowledges
delivery of a persistent message to its destination before the producer’s send()
method returns. In the case of a consumer, this means that the client acknowledges
delivery and consumption of a persistent message from a destination before the
message service deletes the message from that destination.

Local Transactions
A session can also be configured as transacted, in which case the production and/or
consumption of one or more messages can be grouped into an atomic unit—a
transaction. The JMS API provides methods for initiating, committing, or rolling
back a transaction.

As messages are produced or consumed within a transaction, the broker tracks the
various sends and receives, completing these operations only when the client
issues a call to commit the transaction. If a particular send or receive operation
within the transaction fails, an exception is raised. The client code can handle the
exception by ignoring it, retrying the operation, or rolling back the entire
transaction. When a transaction is committed, all the successful operations are
completed. When a transaction is rolled back, all successful operations are
cancelled.

The scope of a local transaction is always a single session. That is, one or more
producer or consumer operations performed in the context of a single session can
be grouped into a single local transaction.

Since transactions span only a single session, you cannot have an end-to-end
transaction encompassing both the production and consumption of a message. (In
other words, the delivery of a message to a destination and the subsequent delivery
of the message to a client cannot be placed in a single transaction.)

Distributed Transactions
Message Queue also supports distributed transactions. That is, the production and
consumption of messages can be part of a larger, distributed transaction that
includes operations involving other resource managers, such as database systems.
In distributed transactions, a distributed transaction manager tracks and manages
operations performed by multiple resource managers (such as a message service
and a database manager) using a two-phase commit protocol defined in the Java
Transaction API (JTA), XA Resource API specification. In the Java world,
interaction between resource managers and a distributed transaction manager are
described in the JTA specification.

JMS Messaging Issues

48 Message Queue 3.5 SP1 • Administration Guide

Support for distributed transactions means that messaging clients can participate
in distributed transactions through the XAResource interface defined by JTA. This
interface defines a number of methods for implementing two-phase commit. While
the API calls are made on the client side, the Message Queue broker tracks the
various send and receive operations within the distributed transaction, tracks the
transactional state, and completes the messaging operations only in coordination
with a distributed transaction manager—provided by a Java Transaction Service
(JTS).

As with local transactions, the client can handle exceptions by ignoring them,
retrying operations, or rolling back an entire distributed transaction.

Message Queue implements support for distributed transactions through an XA
connection factory, which lets you create XA connections, which in turn lets you
create XA sessions (see “JMS Programming Model” on page 38). In addition,
support for distributed transactions requires either a third party JTS or a
J2EE-compliant Application Server (that provides JTS).

Persistent Storage
The other important aspect of reliability is assuring that once persistent messages
are delivered to their destinations, a message service does not lose them before
they are delivered to consumers. This means that upon delivery of a persistent
message to its destination, the message service must place it in a persistent data
store (see “Persistence Manager” on page 63). If the message service goes down for
any reason, it can recover the message and deliver it to the appropriate consumers.
While this adds overhead to message delivery, it also adds reliability.

A message service must also store durable subscriptions. This is because to
guarantee delivery in the case of topic destinations, it is not sufficient to recover
only persistent messages. The message service must also recover information about
durable subscriptions for a topic, otherwise it would not be able to deliver
messages to subscribers who are inactive when a message arrives, and
subsequently become active.

Messaging applications that are concerned about guaranteed message delivery
must specify messages as persistent and use either queue destinations or durable
subscriptions to topic destinations.

JMS Messaging Issues

Chapter 1 Overview 49

Performance Trade-offs
The more reliable the delivery of messages, the more overhead and bandwidth are
required to achieve it. The trade-off between reliability and performance is a
significant design consideration. You can maximize performance by choosing to
produce and consume non-persistent messages. On the other hand, you can
maximize reliability by producing and consuming persistent messages and using
transacted sessions. Between these extremes are a number of options, depending
on the needs of an application, including the use of Message Queue-specific
connection and acknowledgement properties (see the Message Queue Java Client
Developer’s Guide). These trade-offs are discussed more fully in “Application
Design Factors that Impact Performance” on page 232.

Message Selection
JMS provides a mechanism by which a message service can perform message
filtering and routing based on criteria placed in message selectors. A producing
client can place application-specific properties in the message, and a consuming
client can indicate its interest in messages using selection criteria based on such
properties. This simplifies the work of the client and eliminates the overhead of
delivering messages to clients that don’t need them. However, it adds some
additional overhead to the message service processing the selection criteria.
Message selector syntax and semantics are outlined in the JMS specification.

Message Order and Priority
In general, all messages sent to a destination by a single session are guaranteed to
be delivered to a consumer in the order they were sent. However, if they are
assigned different priorities, a messaging system will attempt to deliver higher
priority messages first.

Beyond this, the ordering of messages consumed by a client application can have
only a rough relationship to the order in which they were produced. This is
because the delivery of messages to destinations and the delivery from those
destinations can depend on a number of issues that affect timing, such as the order
in which the messages are sent, the sessions (connections) from which they are
sent, whether the messages are persistent, the lifetime of the messages, the priority
of the messages, the message delivery policy of queue destinations (see “Queue
Destinations” on page 77), and message service availability.

JMS Messaging Issues

50 Message Queue 3.5 SP1 • Administration Guide

In the case of a Message Queue message server using multiple interconnected
brokers (see “Multi-Broker Clusters (Enterprise Edition)” on page 82) the ordering
of messages consumed by a client is further complicated by the fact that the order
of delivery from destinations on different brokers is indeterminate. Hence, a
message delivered by one broker might precede a message delivered by another
broker even though the latter might have received the message first.

In any case, for a given consumer, precedence is given for higher priority messages
over lower priority messages.

51

Chapter 2

The Message Queue
Messaging System

This chapter describes the Sun Java™ System Message Queue messaging system,
with specific attention to the main parts of the system, as illustrated in Figure 2-1,
and explains how they work together to provide for reliable message delivery.

Figure 2-1 Message Queue System Architecture

Object Store

Message Queue
 Message Server

Message Queue
Client

Message Queue
Client Runtime

Message Queue
Administration

Broker
Brokers

Administered
Objects

Message Queue Messaging System

Destinations

Message Queue Message Server

52 Message Queue 3.5 SP1 • Administration Guide

The main parts of a Message Queue messaging system, shown in Figure 2-1, are the
following:

• Message Queue Message Server

• Message Queue Client Runtime

• Message Queue Administered Objects

• Message Queue Administration

The first three of these are examined in the following sections. The last is
introduced in Chapter 3, “Message Queue Administration Tasks and Tools.”

Message Queue Message Server
This section describes the different parts of the Message Queue message server
shown in Figure 2-1 on page 51. These include the following:

Broker A Message Queue broker provides delivery services for a Message
Queue messaging system. Message delivery relies upon a number of supporting
components that handle connection services, message routing and delivery,
persistence, security, and logging (see “Broker” for more information). A message
server can employ one or more broker instances (see “Multi-Broker Clusters
(Enterprise Edition)” on page 82).

Physical Destination Delivery of a message is a two-phase process—delivery
from a producing client to a physical destination maintained by a broker, followed
by delivery from the destination to one or more consuming clients. Physical
destinations represent locations in a broker’s physical memory and/or persistent
storage (see “Physical Destinations” on page 76 for more information).

Broker
Message delivery in a Message Queue messaging system—from producing clients
to destinations, and then from destinations to one or more consuming clients—is
performed by a broker (or a cluster of broker instances working in tandem). To
perform message delivery, a broker must set up communication channels with
clients, perform authentication and authorization, route messages appropriately,
guarantee reliable delivery, and provide data for monitoring system performance.

Message Queue Message Server

Chapter 2 The Message Queue Messaging System 53

To perform this complex set of functions, a broker uses a number of different
internal components, each with a specific role in the delivery process. These broker
components are illustrated in Figure 2-2 and described briefly in Table 2-1. The
Message Router component performs the key message routing and delivery
service, and the others provide important support services upon which the
Message Router depends.

Figure 2-2 Broker Service Components

Table 2-1 Main Broker Service Components and Functions

Component Description/Function

Message Router Manages the routing and delivery of messages: These
include JMS messages as well as control messages used
by the Message Queue messaging system to support JMS
message delivery.

incoming
messages

outgoing
messages

Connection
Services

 url

 url

Message
Router

Security
Manager

Persistence
Manager

Main Broker
Components

User
Repository

Data
Store

Monitoring
Service

Message Queue Message Server

54 Message Queue 3.5 SP1 • Administration Guide

You can configure these internal components to optimize the performance of the
broker, depending on load conditions, application complexity, and so on. The
following sections explore more fully the functions performed by the different
components and the properties that can be configured to affect their behavior.

Connection Services
A Message Queue broker supports communication with both Message Queue
application clients and Message Queue administration clients (see “Message
Queue Administration Tools” on page 97). Each service is specified by its service
type and protocol type.

service type specifies whether the service provides JMS message delivery
(NORMAL) or Message Queue administration (ADMIN) services

protocol type specifies the underlying transport protocol layer that supports the
service.

The connection services currently available from a Message Queue broker are
shown in Table 2-2:

Connection Services Manages the physical connections between a broker and
clients, providing transport for incoming and outgoing
messages.

Persistence Manager Manages the writing of data to persistent storage so that
system failure does not result in failure to deliver JMS
messages.

Security Manager Provides authentication services for users requesting
connections to a broker and authorization services (access
control) for authenticated users.

Monitoring Service Generates metrics and diagnostic information that can be
written to a number of output channels that an administrator
can use to monitor and manage a broker.

Table 2-2 Connection Services Supported by a Broker

Service Name Service Type Protocol Type

jms NORMAL tcp

ssljms (Enterprise Edition) NORMAL tls (SSL-based security)

Table 2-1 Main Broker Service Components and Functions (Continued)

Component Description/Function

Message Queue Message Server

Chapter 2 The Message Queue Messaging System 55

You can configure a broker to run any or all of these connection services. Each
connection service is available at a particular port, specified by the broker’s host
name and a port number. The port can be dynamically allocated or you can specify
the port at which a connection service is available.

Each service registers itself with a common Port Mapper but has its own Thread
Pool Manager, as shown in Figure 2-3.

Figure 2-3 Connection Services Support

Port Mapper
Message Queue provides a Port Mapper that maps ports to the different connection
services. The Port Mapper itself resides at a standard port number, 7676. When a
client sets up a connection with the broker, it first contacts the Port Mapper
requesting the port number of the connection service it desires.

httpjms (Enterprise Edition) NORMAL http

httpsjms (Enterprise Edition) NORMAL https (SSL-based security)

admin ADMIN tcp

ssladmin (Enterprise Edition) ADMIN tls (SSL-based security)

Table 2-2 Connection Services Supported by a Broker (Continued)

Service Name Service Type Protocol Type

Thread
Pool

Manager

Connection
Services

Port
Mapper

Thread
Pool

Manager

incoming
messages

outgoing
messages

 url

 url

Message Queue Message Server

56 Message Queue 3.5 SP1 • Administration Guide

You can also assign a static port number for the jms, ssljms, admin and ssladmin
connection services when configuring these connection services, but this is done in
special situations (for example, in connections through a firewall) and not
generally recommended. The httpjms and httpsjms services are configured using
properties described in Table C-1 on page 311 and Table C-3 on page 323,
respectively, in Appendix C, “HTTP/HTTPS Support (Enterprise Edition).”

Thread Pool Manager
Each connection service is multi-threaded, supporting multiple connections. The
threads needed for these connections are maintained in a thread pool managed by
a Thread Pool Manager component. You can configure the Thread Pool Manager to
set a minimum number and maximum number of threads maintained in the thread
pool. As threads are needed by connections, they are added to the thread pool.
When the minimum number is exceeded, the system will shut down threads as
they become free until the minimum number threshold is reached, thereby saving
on memory resources. You want this number to be large enough so that new
threads do not have to be continually created. Under heavy connection loads, the
number of threads might increase until the thread pool’s maximum number is
reached, after which connections have to wait until a thread becomes available.

The threads in a thread pool can either be dedicated to a single connection
(dedicated model) or assigned to multiple connections, as needed (shared model).

Dedicated model Each connection to the broker requires two dedicated threads:
one dedicated to handling incoming messages for the connection and one to
handling outgoing messages for the connection. This limits the number of
connections to half the maximum number of threads in the thread pool, however it
provides for high performance.

Shared model (Enterprise Edition) Connections are processed by a shared
thread whenever sending or receiving messages. Because each connection does not
require dedicated threads, this model increases the number of connections that a
connection service (and therefore, a broker) can support. However there is some
performance overhead involved in the sharing of threads. The Thread Pool
Manager uses a set of distributor threads that monitor connection activity and
assign connections to threads as needed. The performance overhead involved in
this activity can be minimized by limiting the number of connections monitored by
each such distributor thread.

Security
Each connection service supports specific authentication and authorization (access
control) features (see “Security Manager” on page 66).

Message Queue Message Server

Chapter 2 The Message Queue Messaging System 57

Connection Service Properties
The configurable properties related to connection services are shown in Table 2-3.
(For instructions on configuring these properties, see Chapter 5, “Starting and
Configuring a Broker.”)

Table 2-3 Connection Service Properties

Property Name Description

imq.service.activelist List of connection services, by name, separated by commas,
to be made active at broker startup. Supported services are:
jms, ssljms, httpjms, httpsjms, admin, ssladmin.
Default: jms, admin

imq.ping.interval The period between successive attempts of the broker to
ping the Message Queue client runtime across a connection.
Default:120 seconds

imq.hostname Specifies the host (hostname or IP address) to which all
connection services bind if there is more than one host
available (for example, if there is more than one network
interface card in a computer).
Default: all available IP addresses

imq.portmapper.port Specifies the broker’s primary port—the port at which the
Port Mapper resides. If you are running more than one
broker instance on a host, each must be assigned a unique
Port Mapper port.
Default: 7676

imq.portmapper.hostname Specifies the host (hostname or IP address) to which the
Port Mapper binds if there is more than one host available
(for example, if there is more than one network interface card
in a computer).
Default: inherits the value of imq.hostname

imq.portmapper.backlog Specifies the maximum number of concurrent requests that
the Port Mapper can handle before rejecting requests. The
property sets the number of requests that can be stored in
the operating system backlog waiting to be handled by the
port mapper.
Default: 50.

imq.service_name.
protocol_type1.port

For jms, ssljms, admin, and ssladmin services only, specifies
the port number for the named connection service.
Default: 0 (port is dynamically allocated by the Port Mapper)

To configure the httpjms and httpsjms connection services,
see Appendix C, “HTTP/HTTPS Support
(Enterprise Edition).”

Message Queue Message Server

58 Message Queue 3.5 SP1 • Administration Guide

Message Router
Once connections have been established between clients and a broker using the
supported connection services, the routing and delivery of messages can proceed.

imq.service_name.
protocol_type1.hostname

For jms, ssljms, admin, and ssladmin services only, specifies
the host (hostname or IP address) to which the named
connection service binds if there is more than one host
available (for example, if there is more than one network
interface card in a computer).
Default: inherits the value of imq.hostname

imq.service_name.
min_threads

Specifies the number of threads, which once reached, are
maintained in the thread pool for use by the named
connection service.
Default: Depends on connection service (see Table 5-1 on
page 130).

imq.service_name.
max_threads

Specifies the number of threads beyond which no new
threads are added to the thread pool for use by the named
connection service. The number must be greater than zero
and greater in value than the value of min_threads.
Default: Depends on connection service (see Table 5-1 on
page 130).

imq.service_name.
threadpool_model

Specifies whether threads are dedicated to connections
(dedicated) or shared by connections as needed (shared)
for the named connection service. Shared model (threadpool
management) increases the number of connections
supported by a broker, but is implemented only for the jms
and admin connection services.
Default: Depends on connection service (see Table 5-1 on
page 130).

imq.shared.
connectionMonitor_limit

For shared threadpool model only, specifies the maximum
number of connections that can be monitored by a distributor
thread. (The system allocates enough distributor threads to
monitor all connections.) The smaller this value, the faster
the system can assign active connections to threads. A
value of -1 means no limit.
Default: Depends on operating system (see Table 5-1 on
page 130).

1. protocol_type is specified in Table 2-2.

Table 2-3 Connection Service Properties (Continued)

Property Name Description

Message Queue Message Server

Chapter 2 The Message Queue Messaging System 59

Basic Delivery Mechanisms
Broadly speaking, the messages handled by a broker fall into two categories: the
JMS messages sent by producer clients, destined for consumer clients—payload
messages, and a number of control messages that are sent to and from clients in
order to support the delivery of the JMS messages.

If the incoming message is a JMS message, the broker routes it to consumer clients,
based on the type of its destination (queue or topic):

• If the destination is a topic, the JMS message is immediately routed to all active
subscribers to the topic. In the case of inactive durable subscribers, the Message
Router holds the message until the subscriber becomes active, and then
delivers the message to that subscriber.

• If the destination is a queue, the JMS message is placed in the corresponding
queue, and delivered to the appropriate consumer when the message reaches
the front of the queue. The order in which messages reach the front of the
queue depends on the order of their arrival and on their priority.

Once the Message Router has delivered a message to all its intended consumers it
clears the message from memory, and if the message is persistent (see “Reliable
Messaging” on page 46), removes it from the broker’s persistent data store.

Reliable Delivery: Acknowledgements and Transactions
The delivery mechanism just described becomes more complicated when adding
requirements for reliable delivery (see “Reliable Messaging” on page 46). There are
two aspects involved in reliable delivery: assuring that delivery of messages to and
from a broker is successful, and assuring that the broker does not lose messages or
delivery information before messages are actually delivered.

To ensure that messages are successfully delivered to and from a broker, Message
Queue uses a number of control messages called acknowledgements.

For example, when a producer sends a JMS message (a payload message as
opposed to a control message) to a destination, the broker sends back a control
message—a broker acknowledgement—that it received the JMS message. (By
default, Message Queue only does this if the producer specifies the JMS message as
persistent.) The producing client uses the broker acknowledgement to guarantee
delivery to the destination (see “Message Production” on page 87).

Message Queue Message Server

60 Message Queue 3.5 SP1 • Administration Guide

Similarly, when a broker delivers a JMS message to a consumer, the consuming
client sends back an acknowledgement that it has received and processed the
message. A client specifies how automatically or how frequently to send these
acknowledgments when creating session objects, but the principle is that the
Message Router will not delete a JMS message from memory if it has not received
an acknowledgement from each message consumer to which it has delivered the
message—for example, from each of the multiple subscribers to a topic.

In the case of durable subscriptions to a topic, the Message Router retains each JMS
message in that destination, delivering it as each durable subscriber becomes an
active consumer. The Message Router records client acknowledgements as they are
received, and deletes the JMS message only after all the acknowledgements have
been received (unless the JMS message expires before then).

Furthermore, the Message Router confirms receipt of the client acknowledgement
by sending a broker acknowledgement back to the client. The consuming client
uses the broker acknowledgement to make sure that the broker will not deliver a
JMS message more than once (see “Message Consumption” on page 88). This could
happen if, for some reason, the broker fails to receive the client acknowledgement).

If the broker does not receive a client acknowledgement and delivers a JMS
message a second time, the message is marked with a Redeliver flag. The broker
generally redelivers a JMS message if a client connection closes before the broker
receives a client acknowledgement, and a new connection is subsequently opened.
For example, if a message consumer of a queue goes off line before acknowledging
a message, and another consumer subsequently registers with the queue, the
broker will redeliver the unacknowledged message to the new consumer.

The client and broker acknowledgement processes described above apply, as well,
to JMS message deliveries grouped into transactions. In such cases, client and
broker acknowledgements operate on the level of a transaction as well as on the
level of individual JMS message sends or receives. When a transaction commits, a
broker acknowledgement is sent automatically.

The broker tracks transactions, allowing them to be committed or rolled back
should they fail. This transaction management also supports local transactions that
are part of larger, distributed transactions (see “Distributed Transactions” on
page 47). The broker tracks the state of these transactions until they are committed.
When a broker starts up it inspects all uncommitted transactions and, by default,
rolls back all transactions except those in a PREPARED state.

Message Queue Message Server

Chapter 2 The Message Queue Messaging System 61

Reliable Delivery: Persistence
The other aspect of reliable delivery is assuring that the broker does not lose
messages or delivery information before messages are actually delivered. In
general, messages remain in memory until they have been delivered or they expire.
However, if the broker should fail, these messages would be lost.

A producer client can specify that a message be persistent, and in this case, the
Message Router will pass the message to a Persistence Manager that stores the
message in a database or file system (see “Persistence Manager” on page 63) so that
the message can be recovered if the broker fails.

Managing Memory Resources and Message Flow
The performance and stability of a broker depends on the system resources
available and how efficiently resources such as memory are utilized. In particular,
the Message Router could become overwhelmed, using up all its memory
resources, when production of messages is much faster than consumption. To
prevent this from happening, the Message Router uses three levels of memory
protection to keep the system operating as resources become scarce:

Message limits on individual destinations You can set attributes on physical
destinations that specify limits on the number of messages and the total memory
consumed by messages (see Table 6-10 on page 171), and you can also specify
which of four responses are taken by the Message Router when any such limits are
reached. The four limit behaviors are:

• slowing message producers

• throwing out the oldest messages in memory

• throwing out the lowest priority messages in memory, according to age of the
messages

• rejecting the newest messages

System-wide message limits System-wide message limits constitute a second
line of protection. You can specify system-wide limits that apply collectively to all
destinations on the system: the total number of messages and the memory
consumed by all messages (see Table 2-4 on page 62). If any of the system-wide
message limits are reached, the Message Router rejects new messages.

System memory thresholds System memory thresholds are a third line of
protection. You can specify thresholds of available system memory at which the
broker takes increasingly serious action to prevent memory overload. The action
taken depends on the state of memory resources: green (plenty of memory is

Message Queue Message Server

62 Message Queue 3.5 SP1 • Administration Guide

available), yellow (broker memory is running low), orange (broker is low on
memory), red (broker is out of memory). As the broker’s memory state progresses
from green through yellow and orange to red, the broker takes increasingly
serious actions of the following types:

• swapping messages out of active memory into persistent storage (see
“Persistence Manager” on page 63); non-persistent messages, which normally
are not stored, might be swapped out so the system can reclaim memory

• throttling back producers of non-persistent messages, eventually stopping the
flow of messages into the broker (persistent message flow is automatically
limited by the requirement that each message be acknowledged by the broker)

Both of these measures degrade performance.

If system memory thresholds are reached, then you have not adequately set
destination-by-destination message limits and system-wide message limits. In
some situations, it is not possible for the thresholds to catch potential memory
overloads in time. Hence you should not rely on this feature to control memory
resources, but should instead configure destinations individually and collectively
to optimize memory resources.

Message Router Properties
System-wide limits and system memory thresholds for managing memory
resource are detailed in Table 2-4. (For instructions on setting these properties, see
Chapter 5, “Starting and Configuring a Broker.”)

Table 2-4 Message Router Properties

Property Name Description

imq.message.expiration.
interval

Specifies how often reclamation of expired messages
occurs, in seconds.
Default: 60

imq.system.max_count Specifies maximum number of messages held by the
broker. Additional messages will be rejected. A value of -1
means no limit.
Default: -1

imq.system.max_size Specifies maximum total size (in bytes, Kbytes, or Mbytes)
of messages held by the broker. Additional messages will
be rejected. A value of -1 means no limit.
Default: -1

imq.message.max_size Specifies maximum allowed size (in bytes, Kbytes, or
Mbytes) of a message body. Any message larger than this
will be rejected. A value of -1 means no limit.
Default: 70m (Mbytes)

Message Queue Message Server

Chapter 2 The Message Queue Messaging System 63

Persistence Manager
For a broker to recover, in case of failure, it needs to recreate the state of its message
delivery operations. This requires it to save all persistent messages, as well as
essential routing and delivery information, to a data store. A Persistence Manager
component manages the writing and retrieval of this information.

To recover a failed broker requires more than simply restoring undelivered
messages. The broker must also be able to do the following:

• re-create destinations

• restore the list of durable subscriptions for each topic

• restore the acknowledge list for each message

• reproduce the state of all committed transactions

The Persistence Manager manages the storage and retrieval of all this state
information.

When a broker restarts, it recreates destinations and durable subscriptions,
recovers persistent messages, restores the state of all transactions, and recreates its
routing table for undelivered messages. It can then resume message delivery.

imq.resource_state.
threshold

Specifies the percent memory utilization at which each
memory resource state is triggered. The resource state can
have the values green, yellow, orange, and red.
Defaults: 0, 80, 90, and 98, respectively

imq.resource_state.count Specifies the maximum number of incoming messages
allowed in a batch as each memory resource state is
triggered. This limit throttles back message producers as
system memory becomes increasingly scarce.
Defaults: 5000, 500, 50, and 0, respectively

imq.transaction.
autorollback

Specifies (true/false) whether distributed transactions left
in a PREPARED state are automatically rolled back when a
broker is started up. If false, you must manually commit or
roll back transactions using imqcmd (see “Managing
Transactions” on page 180).
Default: false

Table 2-4 Message Router Properties (Continued)

Property Name Description

Message Queue Message Server

64 Message Queue 3.5 SP1 • Administration Guide

Message Queue supports both built-in and plugged-in persistence modules (see
Figure 2-4). Built-in persistence is a file-based data store. Plugged-in persistence
uses a Java Database Connectivity (JDBC™) interface and requires a
JDBC-compliant data store. The built-in persistence is generally faster than
plugged-in persistence; however, some users prefer the redundancy and
administrative features of using a JDBC-compliant database system.

Figure 2-4 Persistence Manager Support

Built-in persistence
The default Message Queue persistent storage solution is a file-based data store.
This approach uses individual files to store persistent data, such as messages,
destinations, durable subscriptions, and transactions.

The file-based data store is located in a directory identified by the name of the
broker instance (instanceName) with which the data store is associated (see
Appendix A, “Location of Message Queue Data”):

…/instances/instanceName/fs350/

The file-based data store is structured so that persistent messages are stored in a
directory according to the destination in which they reside. Most messages are
stored in a single file consisting of variable-sized records.

To alleviate fragmentation as messages are added and removed, you can compact
the variable-sized record file (see “Compacting Destinations” on page 176). In
addition, built-in persistence manager stores messages whose size exceeds a
configurable threshold (imq.persist.file.message.max_record_size) in their
own respective files, rather than in the variable-sized record file. For these
individual files, a file pool is maintained so that files can be reused. When a
message file is no longer needed, instead of being deleted, it is added to the pool of
free files in its destination directory, to be used to store new messages.

Persistence
Manager

JDBC-compliant
Data Store

plugged-in
persistence

built-in
persistence

File-based
Data Store Two

Persistence
Options

Message Queue Message Server

Chapter 2 The Message Queue Messaging System 65

You can configure the maximum number of files in the destination file pool
(imq.persist.file.destination.message.filepool.limit) and specify the
percentage of free files in the file pool (the imq.persist.file.message.
filepool.cleanratio) that are cleaned up—truncated to zero—as opposed to
being simply tagged for reuse (not truncated). The higher the percentage of cleaned
files, the less disk space—but the more overhead—is required to maintain the file
pool. You can also specify whether or not tagged files will be cleaned up at
shutdown (imq.persist.file.message.cleanup). If the files are cleaned up, they
will take up less disk space, but the broker will take longer to shut down.

All other persistent data (destinations, durable subscriptions, and transactions) are
stored in their own separate file: all destinations in one file, all durable
subscriptions in another, and so on.

To maximize reliability, you can specify (imq.persist.file.sync.enabled) that
persistence operations synchronize the in-memory state with the physical storage
device. This helps eliminate data loss due to system crashes, but at the expense of
performance.

Because the data store can contain messages of a sensitive or proprietary nature, it
is recommended that the …instances/instanceName/fs350/ directory be secured
against unauthorized access. For instructions, see “Securing Persistent Data” on
page 339.

Plugged-in persistence
You can set up a broker to access any data store accessible through a JDBC driver.
This involves setting a number of JDBC-related broker configuration properties
and using the Database manager utility (imqdbmgr) to create a data store with the
proper schema. The procedures and related configuration properties are detailed
in Appendix B, “Setting Up Plugged-in Persistence.”

Persistence Manager Properties
Persistence-related configuration properties are detailed in Table 2-5 on page 66.
(For instructions on setting these properties, see Chapter 5, “Starting and
Configuring a Broker.”)

Except for the first of these properties, all the properties in Table 2-5 pertain only to
built-in persistence. Properties pertaining to plugged-in persistence are in
Table B-1 on page 300.

Message Queue Message Server

66 Message Queue 3.5 SP1 • Administration Guide

Security Manager
Message Queue provides authentication and authorization (access control)
features, and also supports encryption capabilities.

Table 2-5 Persistence Manager Properties

Property Name Description

imq.persist.store Specifies whether the broker is using built-in, file-based
(file) persistence or plugged-in JDBC-compliant (jdbc)
persistence.
Default: file

imq.persist.file.sync.
enabled

Specifies whether persistence operations synchronize
in-memory state with the physical storage device. If true,
data loss due to system crash is eliminated, but at the
expense of performance of persistence operations.
Default: false

imq.persist.file.message.
max_record_size

For built-in, file-based persistence, specifies the
maximum size of message that will be added to the
message storage file, as opposed to being stored in a
separate file.
Default: 1m (Mbytes)

imq.persist.file.
destination.message.
filepool.limit

For built-in, file-based persistence, specifies the
maximum number of free files available for reuse in the
destination file pool. The larger the number the faster the
broker can process persistent data. Free files in excess
of this value will be deleted. The broker will create and
delete additional files, in excess of this limit, as needed.
Default: 100

imq.persist.file.message.
filepool.cleanratio

For built-in, file-based persistence, specifies the
percentage of free files in destination file pools that are
maintained in a clean state (truncated to zero). The
higher this value, the more overhead required to clean
files during operation, but the less disk space required for
the file pool.
Default: 0

imq.persist.file.message.
cleanup

For built-in, file-based persistence, specifies whether or
not the broker cleans up free files in destination file pools
on shutdown. A value of false speeds up broker
shutdown, but requires more disk space for the file store.
Default: false

Message Queue Message Server

Chapter 2 The Message Queue Messaging System 67

The authentication and authorization features depend upon a user repository (see
Figure 2-5 on page 68): a file, directory, or database that contains information about
the users of the messaging system—their names, passwords, and group
memberships. The names and passwords are used to authenticate a user when a
connection to a broker is requested. The user names and group memberships are
used, in conjunction with an access control file, to authorize operations such as
producing or consuming messages for destinations.

Message Queue administrators populate a Message Queue-provided user
repository (see “Using a Flat-File User Repository” on page 202), or plug a
pre-existing LDAP user repository into the Security Manager component (see
“Using an LDAP Server for a User Repository” on page 209). The flat-file user
repository is easy to use, but is also vulnerable to security attack, and should
therefore be used only for evaluation and development purposes, while the LDAP
user repository is secure and therefore best suited for production purposes.

Authentication
Message Queue security supports password-based authentication. When a client
requests a connection to a broker, the client must submit a user name and
password. The Security Manager compares the name and password submitted by
the client to those stored in the user repository. On transmitting the password from
client to broker, the passwords are encoded using either base 64 encoding or
message digest (MD5). For more secure transmission, see “Encryption (Enterprise
Edition)” on page 68. You can separately configure the type of encoding used by
each connection service or set the encoding on a broker-wide basis.

Authorization
Once the user of a client application has been authenticated, the user can be
authorized to perform various Message Queue-related activities. The Security
Manager supports both user-based and group-based access control: depending on
a user’s name or the groups to which the user is assigned in the user repository,
that user has permission to perform certain Message Queue operations. You
specify these access controls in an access control properties file (see Figure 2-5).

When a user attempts to perform an operation, the Security Manager checks the
user’s name and group membership (from the user repository) against those
specified for access to that operation (in the access control properties file). The
access control properties file specifies permissions for the following operations:

• establishing a connection with a broker

• accessing destinations: creating a consumer, a producer, or a queue browser
for any given destination or all destinations

• auto-creating destinations

Message Queue Message Server

68 Message Queue 3.5 SP1 • Administration Guide

Figure 2-5 Security Manager Support

The default access control properties file explicitly references only one group:
admin (see “Groups” on page 205). A user in the admin group has admin service
connection permission. The admin service lets the user perform administrative
functions such as creating destinations, and monitoring and controlling a broker. A
user in any other group you define cannot, by default, get an admin service
connection.

As a Message Queue administrator you can define groups and associate users with
those groups in a user repository (though groups are not fully supported in the
flat-file user repository). Then, by editing the access control properties file, you can
specify access to destinations by users and groups for the purpose of producing
and consuming messages, or browsing messages in queue destinations. You can
make individual destinations or all destinations accessible only to specific users or
groups.

In addition, if the broker is configured to allow auto-creation of destinations (see
“Auto-Created (vs. Admin-Created) Destinations” on page 78), you can control for
whom the broker can auto-create destinations by editing the access control
properties file.

Encryption (Enterprise Edition)
To encrypt messages sent between clients and broker, you need to use a connection
service based on the Secure Socket Layer (SSL) standard. SSL provides security at a
connection level by establishing an encrypted connection between an SSL-enabled
broker and an SSL-enabled client.

LDAP Server
User Repository

Security
Manager

Flat File
User Repository

Access Control
Properties File

authentication

authorization

Two
User Repository
Options

Message Queue Message Server

Chapter 2 The Message Queue Messaging System 69

To use a Message Queue SSL-based connection service, you generate a private
key/public key pair using the Key Tool utility (imqkeytool). This utility embeds
the public key in a self-signed certificate and places it in a Message Queue keystore.
The Message Queue keystore is, itself, password protected; to unlock it, you have
to provide a keystore password at startup time. See “Encryption: Working With an
SSL-based Service (Enterprise Edition)” on page 218.

Once the keystore is unlocked, a broker can pass the certificate to any client
requesting a connection. The client then uses the certificate to set up an encrypted
connection to the broker.

The configurable properties for authentication, authorization, encryption, and
other secure communications are shown in Table 2-6. (For instructions on
configuring these properties, see Chapter 5, “Starting and Configuring a Broker.”)

Table 2-6 Security Manager Properties

Property Name Description

imq.authentication.type Specifies whether the password should be passed in base
64 coding (basic) or as a MD5 digest (digest). Sets
encoding for all connection services supported by a broker.
Default: digest

imq.service_name.
authentication.type

Specifies whether the password should be passed in base
64 coding (basic) or as a MD5 digest (digest). Sets
encoding for named connection service, overriding any
broker-wide setting.
Default: inherits value of imq.authentication.type

imq.authentication.
basic.user_repository

Specifies (for base 64 coding) the type of user repository
used for authentication, either file-based (file) or LDAP
(ldap). For additional LDAP properties, see Table 8-5 on
page 210.
Default: file

imq.authentication.
client.response.timeout

Specifies the time (in seconds) the system will wait for a
client to respond to an authentication request from the
broker.
Default: 180 (seconds)

imq.accesscontrol.
enabled

Sets access control (true/false) for all connection services
supported by a broker. Indicates whether system will check
if an authenticated user has permission to use a connection
service or to perform specific Message Queue operations
with respect to specific destinations, as specified in the
access control properties file.
Default: true

Message Queue Message Server

70 Message Queue 3.5 SP1 • Administration Guide

Monitoring Service
The broker includes a number of components for monitoring and diagnosing its
operation. Among these are the following:

• Components that generate data (broker code that logs events and a metrics
generator)

imq.service_name.
accesscontrol.enabled

Sets access control (true/false) for named connection
service, overriding broker-wide setting. Indicates whether
system will check if an authenticated user has permission to
use the named connection service or to perform specific
Message Queue operations with respect to specific
destinations, as specified in the access control properties
file.
Default: inherits the value of imq.accesscontrol.enabled

imq.accesscontrol.file.
filename

Specifies the name of an access control properties file for
all connection services supported by a broker instance. The
file name specifies a relative file path to the access control
directory (see Appendix A, “Location of Message Queue
Data”).
Default: accesscontrol.properties

imq.service_name.
accesscontrol.file.
filename

Specifies the name of an access control properties file for a
named connection service of a broker instance. The file
name specifies a relative file path to the access control
directory (see Appendix A, “Location of Message Queue
Data”).
Default: inherits the value of
imq.accesscontrol.file.filename.

imq.passfile.enabled Specifies (true/false) if user passwords (for SSL, LDAP,
JDBC™) for secure communications are specified in a
passfile.
Default: false

imq.passfile.dirpath Specifies the path to the directory containing the passfile
(depends on operating system).
Default: see Appendix A, “Location of Message Queue
Data”

imq.passfile.name Specifies the name of the passfile.
Default: passfile

imq.keystore.property_name For SSL-based services: specifies security properties
relating to the SSL keystore. See Table 8-8 on page 220.

Table 2-6 Security Manager Properties (Continued)

Property Name Description

Message Queue Message Server

Chapter 2 The Message Queue Messaging System 71

• A Logger component (see “Logger”) that writes out information through a
number of output channels

• A message producer that sends JMS messages containing metrics information
to topic destinations for consumption by JMS monitoring clients.

The general scheme is illustrated in Figure 2-6.

Figure 2-6 Monitoring Service Support

Metrics Generator
The metrics generator provides information about broker activity, such as message
flow in and out of the broker, the number of messages in broker memory and the
memory they consume, the number of connections open, and the number of
threads being used.

You can turn the generation of metrics data on and off, and specify how frequently
metrics reports are generated.

Logger
The Message Queue logger takes information generated by broker code and a
metrics generator and writes that information to a number of output channels: to
standard output (the console), to a log file, and, on Solaris™ platforms, to the
syslog daemon process.

You can specify the type of information gathered by the logger as well as the type
written to each of the output channels.

Broker
Code

Metrics
Generator

Logger
log file

console

Output Channels

syslog (Solaris)

Metrics
Message
Producer

topic destinations

ERROR
WARNING

INFO

Message Queue Message Server

72 Message Queue 3.5 SP1 • Administration Guide

For example, you can specify the Logger level—the type of information gathered
by the Logger—ranging from the most serious and important information (errors),
to less crucial information (metrics data). The categories of information, in order of
decreasing criticality, are shown in Table 2-7:

To set the Logger level, you specify one of these categories. The logger will write
out data of the specified category and all higher categories. For example, if you
specify logging at the WARNING level, the Logger will write out warning
information and error information.

For each output channel, you can specify which of the categories set for the Logger
will be written to that channel. For example, if the Logger level is set to INFO, you
can specify that you want only errors and warnings written to the console, and
only info (metrics data) written to the log file. (For information on configuring and
using the Solaris syslog, see the syslog(1M), syslog.conf(4) and syslog(3C) man
pages.)

In the case of a log file, you can also specify the point at which the log file is closed
and output is rolled over to a new file. Once the log file reaches a specified size or
age, it is saved and a new log file created. The log file is written to a directory
identified by the name of the broker instance (instanceName) with which the log file
is associated (see Appendix A, “Location of Message Queue Data”):

…/instances/instanceName/log/

An archive of the nine most recent log files is retained as new rollover log files are
created.

For information on configuring the Logger, see Table 2-9 on page 74 and
“Changing the Logger Configuration” on page 148.

Table 2-7 Logging Categories

Category Description

ERROR Messages indicating problems that could cause system failure.

WARNING Alerts that should be heeded but will not cause system failure.

INFO Reporting of metrics and other informational messages.

Message Queue Message Server

Chapter 2 The Message Queue Messaging System 73

Metrics Message Producer (Enterprise Edition)
The Message Producer component receives information from the Metrics
Generator component at regular intervals, and writes the information into
messages, which it then sends to one of a number of metric topic destinations,
depending on the type of metrics information contained in the message.

There are five metrics topic destinations, whose names are shown in Table 2-8,
along with the type of metrics messages delivered to each destination.

Message Queue clients subscribed to these metric topic destinations consume the
messages in the destinations and process the metrics information contained in the
messages. For example, a client can subscribe to the mq.metrics.broker
destination to receive and process information such as the total number of
messages in the broker.

The Metrics Message Producer is an internal Message Queue client that creates
messages (of type MapMessage) that contain name-value pairs corresponding to
metrics data. These messages are produced only if there is one or more subscribers
to the corresponding metrics topic destination.

The messages produced by the Metrics Message Producer are of type MapMessage;
they consist of a number of name/value pairs, depending on the type of metrics
they contain. Each name/value pair corresponds to a metric quantity and its value.
For example, broker metrics messages contain values for about a dozen metric
quantities, including the number of messages that have flowed into and out of the
broker, the size of these messages, the number and size of messages currently in
memory, and so forth. For details of the metrics quantities reported in each type of
metrics message, see the Message Queue Java Client Developer’s Guide, which
explains how to write a Message Queue client for consuming metrics messages.

Table 2-8 Metrics Topic Destinations

Topic Destination Name Type of Metrics Messages

mq.metrics.broker Broker metrics

mq.metrics.jvm Java Virtual Machine metrics

mq.metrics.destination_list List of destinations and their types

mq.metrics.destination.queue.
monitoredDestinationName

Destination metrics for queue of specified name

mq.metrics.destination.topic.
monitoredDestinationName

Destination metrics for topic of specified name

Message Queue Message Server

74 Message Queue 3.5 SP1 • Administration Guide

In addition to the metrics information contained in the body of a metrics message,
the header of each message has two properties: one which specifies the metrics
message type and one which records a timestamp. These header properties can be
used by Message Queue client applications to extract data from metrics messages
and record their corresponding timestamps.

Monitoring Service Properties
The configurable properties for setting the generation, logging, and metrics
message production of information by the broker are shown in Table 2-9. (For
instructions on configuring these properties, see Chapter 5, “Starting and
Configuring a Broker.”)

Table 2-9 Monitoring Service Properties

Property Name Description

imq.metrics.enabled Specifies (true/false) whether metrics information
is being written to the logger. Does not affect
production of metrics messages (see
imq.metrics.topic.enabled).
Default: true

imq.metrics.interval If metrics logging is enabled
(imq.metrics.enabled=true), specifies the time
interval, in seconds, at which metrics information is
written to the Logger. A value of -1 means never.
Does not affect time interval for production of
metrics messages (see
imq.metrics.topic.interval).
Default: -1

imq.log.level Specifies the Logger level: the categories of output
that can be written to an output channel. Includes
the specified category and all higher level
categories as well. Values, from high to low, are:
ERROR, WARNING, INFO.
Default: INFO

imq.log.file.output Specifies which categories of logging information
are written to the log file. Allowed values are: any
set of logging categories separated by vertical bars
(|), or ALL, or NONE.
Default: ALL

imq.log.file.dirpath Specifies the path to the directory containing the log
file (depends on operating system).
Default: see Appendix A, “Location of Message
Queue Data”

imq.log.file.filename Specifies the name of the log file.
Default: log.txt

Message Queue Message Server

Chapter 2 The Message Queue Messaging System 75

imq.log.file.rolloverbytes Specifies the size, in bytes, of log file at which
output rolls over to a new log file. A value of -1
means no rollover based on file size.
Default: -1

imq.log.file.rolloversecs Specifies the age, in seconds, of log file at which
output rolls over to a new log file. A value of -1
means no rollover based on age of file.
Default: 604800 (one week)

imq.log.console.output Specifies which categories of logging information
are written to the console. Allowed values are any
set of logging categories separated by vertical bars
(|), or ALL, or NONE.
Default: ERROR| WARNING

imq.log.console.stream Specifies whether console output is written to stdout
(OUT) or stderr (ERR).
Default: ERR

imq.log.syslog.facility (Solaris only) Specifies what syslog facility the
Message Queue broker should log as. Values mirror
those listed in the syslog(3C) man page.
Appropriate values for use with Message Queue
are: LOG_USER, LOG_DAEMON, and LOG_LOCAL0 through
LOG_LOCAL7.
Default: LOG_DAEMON

imq.log.syslog.logpid (Solaris only) Specifies (true/false) whether to log
the broker process ID with the message or not.
Default: true

imq.log.syslog.logconsole (Solaris only) Specifies (true/false) whether to
write messages to the system console if they cannot
be sent to syslog.
Default: false

imq.log.syslog.identity (Solaris only) Specifies the identity string that should
be prepended to every message logged to syslog.
Default: imqbrokerd_ followed by the broker
instance name.

imq.log.syslog.output (Solaris only) Specifies which categories of logging
information are written to syslogd(1M). Allowed
values are any logging categories separated by
vertical bars (|), or ALL, or NONE.
Default: ERROR

Table 2-9 Monitoring Service Properties (Continued)

Property Name Description

Message Queue Message Server

76 Message Queue 3.5 SP1 • Administration Guide

Physical Destinations
Message Queue messaging is premised on a two-phase delivery of messages: first,
delivery of a message from a producer client to a destination on the broker, and
second, delivery of the message from the destination on the broker to one or more
consumer clients. There are two types of destinations (see “Programming
Domains” on page 44): queues (point-to-point delivery model) and topics
(publish/subscribe delivery model). These destinations represent locations in a
broker’s physical memory where incoming messages are marshaled before being
routed to consumer clients.

You create physical destinations using Message Queue administration tools (see
“Getting Connection Information” on page 167). Destinations can also be
automatically created as described in “Auto-Created (vs. Admin-Created)
Destinations” on page 78.

This section describes the properties and behaviors of the two types of physical
destinations: queues and topics.

imq.log.timezone Specifies the time zone for log time stamps. The
identifiers are the same as those used by
java.util.TimeZone.getTimeZone().
For example: GMT, America/LosAngeles,
Europe/Rome, Asia/Tokyo.
Default: local time zone

imq.metrics.topic.enabled Specifies (true/false) whether metrics message
production is enabled. If false, an attempt to
subscribe to a metric topic destination will throw a
client-side exception.
Default: true

imq.metrics.topic.interval Specifies the time interval, in seconds, at which
metrics messages are produced (sent to metric topic
destinations).
Default: 60

imq.metrics.topic.persist Specifies (true/false) whether metrics messages
are persistent or not.
Default: false

imq.metrics.topic.timetolive Specifies the lifetime, in seconds, of metrics
messages sent to metric topic destinations. Default:
300

Table 2-9 Monitoring Service Properties (Continued)

Property Name Description

Message Queue Message Server

Chapter 2 The Message Queue Messaging System 77

Queue Destinations
Queue destinations are used in point-to-point messaging, where a message is
meant for ultimate delivery to only one of a number of consumers that has
registered an interest in the destination. As messages arrive from message
producers, they are queued and delivered to a single message consumer.

Queue Delivery to Multiple Consumers
While any message in a queue destination is delivered to only a single consumer,
Message Queue allows multiple consumers to register with a queue. The broker
routes incoming messages to the different consumers, balancing the load among
them.

The implementation of queue delivery to multiple consumers uses a configurable
load-balancing approach based on the following queue destination attributes:

• maxNumActiveConsumers: Specifies the number of consumers—one or
many—that are active in load-balanced queue delivery

• maxNumBackupConsumers: Specifies the number of backup consumers—none
or many—that can take the place of active consumers should any active
consumers fail.

New consumers will be rejected if the number of consumers exceeds the sum of
these two attributes. (Message Queue Platform Edition supports up to 3 consumers
per queue—two active and one backup—and Message Queue Enterprise Edition
supports an unlimited number.)

The load-balancing mechanism takes into account the message consumption rate of
different consumers. It works like this:

Messages in a queue destination are routed to newly available active consumers (in
the order in which they registered with the queue) in batches of a configurable size
(the queue destination’s consumerFlowLimit attribute). Once these messages have
been delivered, additional messages arriving in the queue are routed in batches to
consumers as consumers become available (that is, when the consumers have
consumed a configurable percentage of messages previously delivered to them).
The dispatch rate to each consumer depends on the consumer’s current capacity
and message processing rate.

When the rate of message production is slow, the broker might dispatch messages
unevenly among active consumers. If you have more active consumers than
necessary, some may never receive messages.

Message Queue Message Server

78 Message Queue 3.5 SP1 • Administration Guide

If an active consumer fails, then the first backup consumer is made active, and
takes over the work of the failed consumer. When a queue destination has more
than one active consumer, no guarantee can be made about the order in which
messages are consumed.

In a broker cluster environment, delivery to multiple consumers can be set to
prioritize local consumers. A queue destination attribute,
localDeliveryPreferred, lets you specify that messages be delivered to remote
consumers only if there are no consumers on a producer’s home broker—that is,
the broker to which the producer sent its messages (the local broker). This lets you
increase performance in situations where routing to remote consumers (through
their home brokers) might cause slowdowns in throughput. (This attribute requires
that the destination’s scope not be restricted to local-only delivery—see Table 6-10
on page 171.)

Memory Considerations
Since messages can remain in a queue for an extended period of time, memory
resources can become an issue. You do not want to allocate too much memory to a
queue (memory is under-utilized), nor do you want to allocate too little (messages
could be rejected). To allow for flexibility, based on the load demands of each
queue, you can set physical properties when creating a queue: maximum number
of messages in queue, maximum memory allocated for messages in queue, and
maximum size of any message in queue (see Table 6-10 on page 171).

Topic Destinations
Topic destinations are used in publish/subscribe messaging, where a message is
meant for ultimate delivery to all of the consumers that have registered an interest
in the destination. As messages arrive from producers, they are routed to all
consumers subscribed to the topic. If consumers have registered a durable
subscription to the topic, they do not have to be active at the time the message is
delivered to the topic—the broker will store the message until the consumer is once
again active, and then deliver the message.

Messages do not normally remain in a topic destination for an extended period of
time, so memory resources are not normally a big issue. However, you can
configure the maximum size allowed for any message received by the destination
(see Table 6-10 on page 171).

Auto-Created (vs. Admin-Created) Destinations
Because a Message Queue message server is a central hub in a messaging system,
its performance and reliability are important to the success of enterprise
applications. Since destinations can consume significant resources (depending on
the number and size of messages they handle, and on the number and durability of

Message Queue Message Server

Chapter 2 The Message Queue Messaging System 79

the message consumers that register), they need to be managed closely to
guarantee message server performance and reliability. It is therefore standard
practice for an administrator to create destinations on behalf of an application,
monitor the destinations, and reconfigure their resource requirements when
necessary.

Nevertheless, there may be situations in which it is desirable for destinations to be
created dynamically. For example, during a development and test cycle, you might
want the broker to automatically create destinations as they are needed, without
requiring the intervention of an administrator.

Message Queue supports this auto-create capability. When auto-creation is enabled,
a broker automatically creates a destination whenever a MessageConsumer or
MessageProducer attempts to access a non-existent destination. (The user of the
client application must have auto-create privileges—see “Destination Auto-Create
Access Control” on page 217).

However, when destinations are created automatically instead of explicitly, clashes
between different client applications (using the same destination name), or
degraded system performance (due to the resources required to support a
destination) can result. For this reason, an auto-created destination is automatically
destroyed by the broker when it is no longer being used: that is, when it no longer
has message consumer clients and no longer contains any messages. If a broker is
restarted, it will only re-create auto-created destinations if they contain persistent
messages.

You can configure a Message Queue message server to enable or disable the
auto-create capability using the properties shown in Table 2-10. (For instructions
on configuring these properties, see Chapter 5, “Starting and Configuring a
Broker.”)

Table 2-10 Auto-create Configuration Properties

Property Name Description

imq.autocreate.topic Specifies (true/false) whether a broker is allowed to
auto-create a topic destination.
Default: true

imq.autocreate.queue Specifies (true/false) whether a broker is allowed to
auto-create a queue destination.
Default: true

imq.autocreate.destination.
maxNumMsgs

Specifies maximum number of unconsumed
messages allowed in an auto-created destination.
Default: 100,000

Message Queue Message Server

80 Message Queue 3.5 SP1 • Administration Guide

imq.autocreate.destination.
maxTotalMsgBytes

Specifies the maximum total amount of memory (in
bytes) allowed for unconsumed messages in the
destination.
Default: 10m (megabytes)

imq.autocreate.destination.
limitBehavior

Specifies how the broker responds when a
memory-limit threshold is reached. Values are:

FLOW_CONTROL — slows down producers

REMOVE_OLDEST — throws out oldest messages

REMOVE_LOW_PRIORITY — throws out lowest priority
messages according to age of the messages

REJECT_NEWEST — rejects the newest messages
Default: REJECT_NEWEST

imq.autocreate.destination.
maxBytesPerMsg

Specifies maximum size (in bytes) of any single
message allowed in an auto-created destination.
Default: 10k (10,240)

imq.autocreate.destination.
maxNumProducers

Specifies maximum number of producers allowed for
the destination. When this limit is reached, no new
producers can be created.
Default: 100

imq.autocreate.destination.
isLocalOnly

Applies only to broker clusters. Specifies that a
destination is not replicated on other brokers, and is
therefore limited to delivering messages only to local
consumers (consumers connected to the broker on
which the destination is created). This attribute
cannot be updated once the destination has been
created.
Default: false

imq.autocreate.queue.
maxNumActiveConsumers

Specifies the maximum number of consumers that
can be active in load-balanced delivery from an
auto-created queue destination. A value of -1 means
an unlimited number.
Default: 1

imq.autocreate.queue.
maxNumBackupConsumers

Specifies the maximum number of backup consumers
that can take the place of active consumers if any fail
during load-balanced delivery from an auto-created
queue destination. A value of -1 means an unlimited
number.
Default: 0

Table 2-10 Auto-create Configuration Properties (Continued)

Property Name Description

Message Queue Message Server

Chapter 2 The Message Queue Messaging System 81

Temporary Destinations
Temporary destinations are explicitly created and destroyed (using the JMS API)
by clients that need a destination at which to receive replies to messages sent to
other clients. These destinations are maintained by the broker only for the duration
of the connection for which they are created. A temporary destination cannot be
destroyed by an administrator, and it cannot be destroyed by a client application as
long as it is in use: that is, if it has active message consumers. Temporary
destinations, unlike admin-created or auto-created destinations (that have
persistent messages), are not stored persistently and are never re-created when a
broker is restarted, however, they are visible to Message Queue administration
tools (see Table 6-9 on page 168).

imq.autocreate.queue.
consumerFlowLimit

Specifies the maximum number of messages that will
be delivered to a consumer in a single batch. In
load-balanced queue delivery, this is the initial
number of queued messages routed to active
consumers before load-balancing commences (see
“Queue Delivery to Multiple Consumers” on page 77).
This limit can be overridden by a lower value set for
the destination’s consumers on their respective
connections (see information on Connection Factory
attributes in the Message Queue Java Client Developer’s
Guide). A value of -1 means an unlimited number.
Default: 1000

imq.autocreate.topic.
consumerFlowLimit

Specifies the maximum number of messages that will
be delivered to a consumer in a single batch. A value
of -1 means an unlimited number.
Default: 1,000

imq.autocreate.queue.
localDeliveryPreferred

Applies only to load-balanced queue delivery in
broker clusters. Specifies that messages be delivered
to remote consumers only if there are no consumers
on the local broker. Requires that the auto-created
destination not be restricted to local-only delivery
(isLocalOnly = false).
Default: false

Table 2-10 Auto-create Configuration Properties (Continued)

Property Name Description

Message Queue Message Server

82 Message Queue 3.5 SP1 • Administration Guide

Multi-Broker Clusters (Enterprise Edition)
The Message Queue Enterprise Edition supports the implementation of a message
server using multiple interconnected broker instances—a broker cluster. Cluster
support provides for scalability of your message server.

As the number of clients connected to a broker increases, and as the number of
messages being delivered increases, a broker will eventually exceed resource
limitations such as file descriptor and memory limits. One way to accommodate
increasing loads is to add more brokers (that is, more broker instances) to a
Message Queue message server, distributing client connections and message
delivery across multiple brokers.

You might also use multiple brokers to optimize network bandwidth. For example,
you might want to use slower, long distance network links between a set of remote
brokers, while using higher speed links for connecting clients to their respective
broker instances.

While there are other reasons for using broker clusters (for example, to
accommodate workgroups having different user repositories, or to deal with
firewall restrictions), failover is not one of them. While Message Queue allows for a
failed connection to be re-established with a different broker in a cluster, state
information is lost. Therefore, one broker in a cluster cannot be used as an
automatic backup for another that fails.

In other words, Message Queue does not presently support a high availability
message server. However, you can use Sun Cluster software and highly available
databases to provide for broker failover. You can also design a messaging
application to use multiple brokers to implement a customized failover solution.

Information on configuring and managing a broker cluster is provided in
“Working With Clusters (Enterprise Edition)” on page 140.

The following sections explain the architecture and internal functioning of Message
Queue broker clusters.

Multi-Broker Architecture
A multi-broker message server allows client connections to be distributed among a
number of broker instances, as shown in Figure 2-7. From a client point of view,
each client connects to an individual broker (its home broker) and sends and
receives messages as if the home broker were the only broker in the cluster.
However, from a message server point of view, the home broker is working in
tandem with other brokers in the cluster to provide delivery services to the
message producers and consumers to which it is directly connected.

Message Queue Message Server

Chapter 2 The Message Queue Messaging System 83

In theory, the brokers within a cluster can be connected in any arbitrary topology.
However, Message Queue only supports fully-connected clusters, that is, a
topology in which each broker is directly connected to every other broker in the
cluster, as shown in Figure 2-7.

Figure 2-7 Multi-Broker (Cluster) Architecture

Message Delivery
In a multi-broker configuration, each destination is replicated on all of the brokers
in a cluster. (With some exceptions, destination attributes in a cluster environment
generally apply collectively to all instances of the destination, that is, to the cluster
as a whole, rather than to the individual destination instances. Also, destinations
for which the isLocalOnly attribute is set to true are not replicated in a cluster.
For more information, see the description of destination attributes, Table 6-10 on
page 171.)

Each broker knows about message consumers that are registered for destinations
on all other brokers. Each broker can therefore route messages from its own
directly-connected message producers to remote message consumers, and deliver
messages from remote producers to its own directly-connected consumers.

Message Queue Message Server

Broker2

Broker1

 Broker3

Client
Client

Clients

Client
Client

Clients

Client
Client

Clients
Configuration
Change Record

Destinations

Master Broker

Message Queue Message Server

84 Message Queue 3.5 SP1 • Administration Guide

In a cluster configuration, the broker to which each message producer is directly
connected performs the routing for messages sent to it by that producer. Hence, a
persistent message is both stored and routed by the message’s home broker.

To minimize traffic between the brokers in a cluster, delivery of messages (from
destination to client runtime) is regulated by flow control mechanisms on
consumer connections. In this way, messages are sent from one broker to another
only when they are to be delivered to a consumer connected to the target broker,
thereby avoiding the passing of unnecessary messages from broker to broker. Also,
in some cases—for example, in the case of queue delivery to multiple
consumers—you can minimize broker to broker traffic by specifying that delivery
to local consumers have priority over delivery to remote consumers (see the
localDeliveryPreferred queue destination attribute, Table 6-10 on page 171).

In situations in which secure, encrypted message delivery between client and
message server is required, a cluster can be configured to also secure delivery of
messages between brokers in a cluster (see “Secure Inter-Broker Connections” on
page 143).

Cluster Synchronization
Whenever an administrator creates or destroys a destination on a broker, this
information is automatically propagated to all other brokers in a cluster. Similarly,
whenever a message consumer is registered with its home broker, or whenever a
consumer is disconnected from its home broker—either explicitly or because of a
client or network failure, or because its home broker goes down—the relevant
information about the consumer is propagated throughout the cluster. In a similar
fashion, information about durable subscriptions is also propagated to all brokers in
a cluster.

The propagation of information about destinations and message consumers to a
particular broker would normally require that the broker be on line when a change
is made in a shared resource. What happens if a broker is off line when such a
change is made—for example, if a broker crashes and is subsequently restarted, or
if a new broker is dynamically added to a cluster?

NOTE Heavy network traffic and/or large messages can clog internal
cluster connections. The increased latency can sometimes cause
locking protocol timeout errors. As a result, clients might get an
exception when trying to create durable subscribers or queue
message consumers. Normally these problems can be avoided by
using a higher speed connection.

Message Queue Message Server

Chapter 2 The Message Queue Messaging System 85

To accommodate a broker that has gone off line (or a new broker that is added),
Message Queue maintains a record of changes made to all persistent entities in a
cluster: that is, a record of all destinations and all durable subscriptions that have
been created or destroyed. When a broker is dynamically added to a cluster, it first
reads destination and durable subscriber information from this configuration change
record. When it comes on line, it exchanges information about current active
consumers with other brokers. With this information, the new broker is fully
integrated into the cluster.

The configuration change record is managed by one of the brokers in the cluster, a
broker designated as the Master Broker. Because the Master Broker is key to
dynamically adding brokers to a cluster, you should always start this broker first. If
the Master Broker is not on line, other brokers in the cluster will not be able to
complete their initialization.

If a Master Broker goes off line, the configuration change record cannot be accessed
by other brokers, and Message Queue will not allow destinations and durable
subscriptions to be propagated throughout the cluster. Under these conditions, you
will get an exception if you try to create or destroy destinations or durable
subscriptions (or attempt a number of related operations like re-activating a
durable subscription).

In a mission-critical application environment it is a good idea to make a periodic
backup of the configuration change record to guard against accidental corruption
of the record and safeguard against Master Broker failure. You can do this using
the -backup option of the imqbrokerd command (see Table 5-2 on page 136), which
provides a way to create a backup file containing the configuration change record.
You can subsequently restore the configuration change record using the -restore
option.

If necessary you can change the broker serving as the Master Broker by backing up
the configuration change record, modifying the appropriate cluster configuration
property (see Table 5-3 on page 140) to designate a new Master Broker, and
restarting the new Master Broker using the -restore option.

Using Clusters in Development Environments
In development environments, where a cluster is used for testing, and where
scalability and broker recovery are not important considerations, there is little need
for a Master Broker. In environments configured without a Master Broker, Message
Queue relaxes the requirement that a Master Broker be running in order to start
other brokers, and allows changes in destinations and durable subscriptions to be
made and to be propagated to all running brokers in a cluster. If a broker goes off
line and is subsequently restored, however, it will not sync up with changes made
while it was off line.

Message Queue Client Runtime

86 Message Queue 3.5 SP1 • Administration Guide

Under test situations, destinations are generally auto-created (see “Auto-Created
(vs. Admin-Created) Destinations” on page 78) and durable subscriptions to these
destinations are created and destroyed by the applications being tested. These
changes in destinations and durable subscriptions will be propagated throughout
the cluster. However, if you reconfigure the environment to use a Master Broker,
Message Queue will re-impose the requirement that the Master Broker be running
for changes to be made in destinations and durable subscriptions, and for these
changes to be propagated throughout the cluster.

Cluster Configuration Properties
Each broker in a cluster must be passed information at startup time about other
brokers in a cluster (host names and port numbers). This information is used to
establish connections between the brokers in a cluster. Each broker must also know
the host name and port number of the Master Broker (if one is used).

All brokers in a cluster should use a common set of cluster configuration
properties. You can achieve this commonality by placing them in one central cluster
configuration file that is referenced by each broker at startup time.

You can also duplicate cluster configuration properties and provide them to each
broker individually. However, this is not recommended because it can lead to
inconsistencies in the cluster configuration. Keeping just one copy of the cluster
configuration properties makes sure that all brokers see the same information.

For more information on cluster configuration properties, see “Working With
Clusters (Enterprise Edition)” on page 140.

The cluster configuration file can be used for storing all broker configuration
properties that are common to a set of brokers. Though it was originally intended
for configuring clusters, it can also be used to store other broker properties
common to all brokers in a cluster.

Message Queue Client Runtime
The Message Queue client runtime provides client applications with an interface to
the Message Queue message service—it supplies Java client applications with all
the JMS programming objects introduced in “JMS Programming Model” on
page 38 and C client applications with the corresponding C interfaces. The
Message Queue client runtime supports all operations needed for clients to send
messages to destinations and to receive messages from such destinations.

Message Queue Client Runtime

Chapter 2 The Message Queue Messaging System 87

This section provides a high level description of how the Message Queue client
runtime works. Factors that affect client application design and performance of the
Java client runtime and the C client runtime are discussed in the Message Queue
Java Client Developer’s Guide and the Message Queue C Client Developer’s Guide,
respectively.

Figure 2-8 illustrates how message production and consumption involve an
interaction between client applications and the Message Queue client runtime,
while message delivery involves an interaction between the Message Queue client
runtime and the Message Queue message server.

Figure 2-8 Messaging Operations

Message Production
In message production, a message is created by the client, and sent over a
connection to a destination on a broker. If the message delivery mode of the
MessageProducer object has been set to persistent (guaranteed delivery, once and
only once), the client thread blocks until the broker acknowledges that the message
was delivered to its destination and stored in the broker’s persistent data store. If
the message is not persistent, no broker acknowledgement message (referred to as
“Ack” in property names) is returned by the broker, and the client thread does not
block.

Message Queue
 Message Server

Message Queue
Client Runtime

Broker
Brokers

Destinations

Message
delivery

Message Queue
Client

Message
production

Message
consumption

Message Queue Client Runtime

88 Message Queue 3.5 SP1 • Administration Guide

Message Consumption
Message consumption is more complex than production. Messages arriving at a
destination on a broker are delivered over a connection to the Message Queue
client runtime under the following conditions:

• the client has set up a consumer for the given destination

• the selection criteria for the consumer, if any, match that of messages arriving
at the given destination

• the connection has been told to start delivery of messages.

Messages delivered over the connection are distributed to the appropriate Message
Queue sessions where they are queued up to be consumed by the appropriate
MessageConsumer objects, as shown in Figure 2-9. Messages are fetched off each
session queue one at a time (a session is single threaded) and consumed either
synchronously (by a client thread invoking the receive method) or
asynchronously (by the session thread invoking the onMessage method of a
MessageListener object).

Figure 2-9 Message Delivery to Message Queue Client Runtime

When a broker delivers messages to the client runtime, it marks the messages
accordingly, but does not really know if they have been received or consumed.
Therefore, the broker waits for the client to acknowledge receipt of a message
before deleting the message from the broker’s destination.

Broker

Connection

Destinations

Client
Runtime

Session 3

Session 2

Session 1

Message
Consumers

Message Queue Administered Objects

Chapter 2 The Message Queue Messaging System 89

Message Queue Administered Objects
Administered Objects allow client application code to be provider-independent.
They do this by encapsulating provider-specific implementation and configuration
information in objects that are used by client applications in a
provider-independent way. Administered objects are created and configured by an
administrator, stored in a name service, and accessed by client applications
through standard JNDI lookup code.

Message Queue provides two types of administered objects: ConnectionFactory
and Destination. While both encapsulate provider-specific information, they have
very different uses within a client application. ConnectionFactory objects are used
to create connections to the message server and Destination objects are used to
identify physical destinations.

Administered objects make it very easy to control and manage a Message Queue
message server:

• You can control the behavior of connections by requiring client applications to
access pre-configured ConnectionFactory objects (see “Connection Factory
Administered Object Attributes” on page 187).

• You can control the proliferation of physical destinations by requiring client
applications to access pre-configured Destination objects that correspond to
existing physical destinations. (You also have to disable the brokers’s
auto-create capability—see “Auto-Created (vs. Admin-Created) Destinations”
on page 78).

• You can control Message Queue message server resources by overriding
message header values set by client applications (see “Connection Factory
Administered Object Attributes” on page 187).

This arrangement therefore gives you, as a Message Queue administrator, control
over message server configuration details, and at the same time allows client
applications to be provider-independent: they do not have to know about
provider-specific syntax and object naming conventions (see “JMS Provider
Independence” on page 43) or provider-specific configuration properties.

You create administered objects using Message Queue administration tools, as
described in Chapter 7, “Managing Administered Objects.” When creating an
administered object, you can specify that it be read only—that is, client applications
are prevented from changing Message Queue-specific configuration values you
have set when creating the object. In other words, client code cannot set attribute
values on read-only administered objects, nor can you override these values using
client application startup options, as described in “Overriding Attribute Values at
Client Startup” on page 91.

Message Queue Administered Objects

90 Message Queue 3.5 SP1 • Administration Guide

While it is possible for client applications to instantiate both ConnectionFactory
and Destination administered objects on their own, this practice undermines the
basic purpose of an administered object—to allow you, as a Message Queue
administrator, to control broker resources required by an application and to tune
its performance. In addition, directly instantiating administered objects makes
client applications provider-specific, rather than provider-independent.

Connection Factory Administered Objects
A ConnectionFactory object is used to establish physical connections between a
client application and a Message Queue message server. It is also used to specify
behaviors of the connection and of the client runtime that is using the connection to
access a broker.

If you wish to support distributed transactions (see “Local Transactions” on
page 47), you need to use a special XAConnectionFactory object that supports
distributed transactions.

To create a ConnectionFactory administered object, see “Adding a Connection
Factory” on page 195.

By configuring a ConnectionFactory administered object, you specify the attribute
values (the properties) common to all the connections that it produces.
ConnectionFactory and XAConnectionFactory objects share the same set of
attributes. These attributes are grouped into a number of categories, depending on
the behaviors they affect:

• Connection specification

• Auto-reconnect behavior

• Client identification

• Message header overrides

• Reliability and flow control

• Queue browser behavior

• Application server support

• JMS-defined properties support

Message Queue Administered Objects

Chapter 2 The Message Queue Messaging System 91

Each of these categories and its corresponding attributes is discussed in some detail
in the Message Queue Java Client Developer’s Guide. While you, as a Message Queue
administrator, might be called upon to adjust the values of these attributes, it is
normally an application developer who decides which attributes need adjustment
to tune the performance of client applications. Table 7-3 on page 187 presents an
alphabetical summary of the attributes.

Destination Administered Objects
A Destination administered object represents a physical destination (a queue or a
topic) in a broker to which the publicly-named Destination object corresponds. Its
two attributes are described in Table 2-11. By creating a Destination object, you
allow a client application’s MessageConsumer and/or MessageProducer objects to
access the corresponding physical destination.

To create a Destination administered object, see “Adding a Topic or Queue” on
page 196.

Overriding Attribute Values at Client Startup
As with any Java application, you can start messaging applications using the
command-line to specify system properties. This mechanism can also be used to
override attribute values of administered objects used in client application code.
For example, you can override the configuration of an administered object accessed
through a JNDI lookup in client application code.

Table 2-11 Destination Attributes

Attribute/property name Description

imqDestinationName Specifies the provider-specific name of the physical
destination. You specify this name when you create a
physical destination. Destination names must contain
only alphanumeric characters (no spaces) and can begin
with an alphabetic character or the characters “_” and “$”.
They cannot begin with the character string “mq.”
Default: Untitled_Destination_Object

imqDestinationDescription Specifies information useful in managing the object.
Default: A Description for the Destination Object

Message Queue Administered Objects

92 Message Queue 3.5 SP1 • Administration Guide

To override administered object settings at client application startup, you use the
following command line syntax:

java [[-Dattribute=value]…] clientAppName

where attribute corresponds to any of the ConnectionFactory administered object
attributes documented in “Connection Factory Administered Object Attributes” on
page 187.

For example, if you want a client application to connect to a different broker than
that specified in a ConnectionFactory administered object accessed in the client
code, you can start up the client application using command line overrides to set
the imqBrokerHostName and imqBrokerHostPort of another broker.

If an administered object has been set as read-only, however, the values of its
attributes cannot be changed using command-line overrides. Any such overrides
will simply be ignored.

93

Chapter 3

Message Queue Administration
Tasks and Tools

Sun Java™ System Message Queue administration consists of a number of tasks
and a number of tools for performing those tasks.

This chapter first provides an overview of administrative tasks and then describes
the administration tools, focusing on common features of the command line
administration utilities.

Message Queue Administration Tasks
The specific tasks you need to perform depend on whether you are in a
development or a production environment.

Development Environments
In a development environment, the work focuses on programming Message Queue
client applications. The Message Queue message server is needed principally for
testing. In a development environment, the emphasis is on flexibility, and you
typically adopt the following practices:

• You want minimal administration—consisting mostly of starting up a broker
for developers to use in testing.

• You use default implementations of the data store (built-in file-based
persistence), user repository (file-based user repository), access control
properties file, and object store (file-system store). These default
implementation are usually adequate for developmental testing.

Message Queue Administration Tasks

94 Message Queue 3.5 SP1 • Administration Guide

• If you are performing multi-broker testing, you probably would not use a
Master Broker.

• You generally use auto-created destinations rather than explicitly creating
destinations

• You might instantiate administered objects in client code rather than use
centrally-managed administered objects.

Production Environments
In a production environment, in which applications must be reliably deployed and
run, administration is much more important. The administration tasks you have to
perform depend on the complexity of your messaging system and the complexity
of the applications it must support. In general, however, these tasks can be
grouped into setup operations and maintenance operations.

Setup Operations

➤ To Set Up a Production Environment

Typically you have to perform at least some, if not all, of the following setup
operations:

• Administrator security (protected use of administration tools):

❍ Make sure admin connection service is activated (see Table 2-3 on page 57)

❍ Authorization: allow access to admin connection service for a specific
individual or admin group (see “Connection Access Control” on page 216)

❍ If authorization is for a group, make sure the administrator belongs to the
admin group.

• File-based user repository: has a default admin group. Make sure
administrator is in admin group, or if using the default admin user,
change the admin password (see “Changing the Default Administrator
Password” on page 208).

• LDAP user repository: make sure administrator is in admin group

Message Queue Administration Tasks

Chapter 3 Message Queue Administration Tasks and Tools 95

• General security (see Chapter 8, “Managing Security”):

❍ Authentication: make entries into the file-based user repository or
configure the broker to use an existing LDAP user repository

(At a minimum, you want to password protect administration capability.)

❍ Authorization: modify access settings in the access control properties file

❍ Encryption: set up SSL-based connection services

• Administered objects (see Chapter 7, “Managing Administered Objects”):

❍ configure or set up an LDAP object store

❍ create ConnectionFactory and destination administered objects

• Broker clusters (see “Working With Clusters (Enterprise Edition)” on
page 140):

❍ create a central configuration file

❍ use a Master Broker

• Persistence: configure the broker to use plugged-in persistence, rather than
built-in persistence (see Appendix B, “Setting Up Plugged-in Persistence”)

• Memory management: set destination attributes so that the number of
messages and the amount of memory allocated for messages fit within
available broker memory resources (see Table 6-10 on page 171)

Maintenance Operations

➤ To Set Up a Production Environment

In addition, in a production environment, Message Queue message server
resources need to be tightly monitored and controlled. Application performance,
reliability, and security are at a premium, and you have to perform a number of
ongoing tasks, described below, using Message Queue administration tools:

• Application management:

❍ disable the broker’s auto-create capability (see Table 2-10 on page 79)

❍ create physical destinations on behalf of applications (see “Creating
Destinations” on page 170)

❍ set user access to destinations (see “Authorizing Users: the Access Control
Properties File” on page 212)

Message Queue Administration Tasks

96 Message Queue 3.5 SP1 • Administration Guide

❍ monitor and manage destinations (see “Managing Destinations” on
page 168)

❍ monitor and manage durable subscriptions (see “Managing Durable
Subscriptions” on page 179)

❍ monitor and manage transactions (see “Managing Transactions” on
page 180)

• Broker administration and tuning:

❍ use broker metrics to tune and reconfigure the broker (see Chapter 9,
“Analyzing and Tuning a Message Service” on page 227)

❍ manage broker memory resources (see Chapter 9, “Analyzing and Tuning
a Message Service” on page 227)

❍ add brokers to clusters to balance loads (see “Working With Clusters
(Enterprise Edition)” on page 140)

❍ recover failed brokers (see “Starting a Broker” on page 134)

• Managing administered objects:

❍ create additional ConnectionFactory and destination administered objects
as needed (see “Adding and Deleting Administered Objects” on page 195)

❍ adjust ConnectionFactory attribute values to improve performance and
throughput (see “Connection Factory Administered Object Attributes” on
page 187 and “Updating Administered Objects” on page 200)

Message Queue Administration Tools

Chapter 3 Message Queue Administration Tasks and Tools 97

Message Queue Administration Tools
Message Queue administration tools fall into two categories: command line
utilities and a graphical user interface (GUI) Administration Console (imqadmin).
The Console combines the capabilities of two command line utilities: the
Command utility (imqcmd) and the Object Manager utility (imqobjmgr). You can use
the Console (and these two command line utilities) to manage a broker remotely
and to manage Message Queue administered objects. The other command line
utilities (imqbrokerd, imqusermgr, imqdbmgr, and imqkeytool) must be run on the
same host as their associated broker, as shown in Figure 3-1 on page 98.

Information on the Administration Console is available in the online help. The
command line utilities, which are generally used to perform specialized tasks, are
described in “Summary of Command Line Utilities.”

The Administration Console
You can use the administration console to do the following:

• Connect to a broker and manage it.

• Create and manage physical destinations on the broker

• Connect to an object store

• Add administered objects to the object store and manage them.

There are some tasks that you cannot use the Administration Console to perform;
chief among these are starting up a broker, creating broker clusters, configuring
more specialized properties of a broker and physical destinations, and managing a
user database.

Chapter 4, “Administration Console Tutorial” provides a brief, hands-on tutorial to
familiarize you with the Console and to illustrate how you use it to accomplish
basic tasks.

Message Queue Administration Tools

98 Message Queue 3.5 SP1 • Administration Guide

Summary of Command Line Utilities
This section introduces the command line utilities you use to perform Message
Queue administration tasks. You use the Message Queue utilities to start up and
manage a broker and to perform other, more specialized administrative tasks.

Figure 3-1 Local and Remote Administration Utilities

All Message Queue utilities are accessible from a command line interface (CLI).
Utility commands share common formats, syntax conventions, and options, as
described in a subsequent section of this chapter. You can find more detailed
information on the use of the command line utilities in subsequent chapters.

Broker (imqbrokerd) You use the Broker utility to start the broker. You use options
to the imqbrokerd command to specify whether brokers should be connected in a
cluster and to specify additional configuration information. The imqbrokerd
command is documented in Chapter 5, “Starting and Configuring a Broker.”

Command (imqcmd) After starting a broker, you use the Command utility to
create, update, and delete physical destinations; control the broker and its
connection services; and manage the broker’s resources. The imqcmd command is
documented in Chapter 6, “Broker and Application Management.”

Broker Host

imqbrokerd

Broker

imqusermgr

imqkeytool

imqdbmgr

imqsvcadmin
(Windows only)

Remote Admin Host

Administration
Console

imqcmd

imqobjmgr

Message Queue Administration Tools

Chapter 3 Message Queue Administration Tasks and Tools 99

Object Manager (imqobjmgr) You use the Object Manager utility to add, list,
update, and delete administered objects in an object store accessible via JNDI.
Administered objects allow JMS clients to be provider-independent by insulating
them from JMS provider-specific naming and configuration formats. The
imqobjmgr command is documented in Chapter 7, “Managing Administered
Objects.”

User Manager (imqusermgr) You use the User Manager utility to populate a
file-based user repository used to authenticate and authorize users. The
imqusermgr command is documented in Chapter 8, “Managing Security.”

Key Tool (imqkeytool) You use the Key Tool utility to generate self-signed
certificates used for SSL authentication. The imqkeytool command is documented
in Chapter 8, “Managing Security” and in Appendix C, “HTTP/HTTPS Support
(Enterprise Edition).”

Database Manager (imqdbmgr) You use the Database Manager utility to create and
manage a JDBC-compliant database used for persistent storage. The imqdbmgr
command is documented in Appendix B, “Setting Up Plugged-in Persistence.”

Service Administrator (imqsvcadmin) You use the Service Administrator utility to
install, query, and remove the broker as a Windows service. The imqsvcadmin
command is documented in Appendix D, “Using a Broker as a Windows Service.”

Command Line Syntax
Message Queue command-line interface utilities are simple shell commands. That
is, from the standpoint of the Windows, Linux, or Solaris command shell where
they are entered, the name of the utility itself is a command and its subcommands
or options are simply arguments passed to that command. For this reason, there
are no commands to start or quit the utility, per se, and no need for such
commands.

All the command line utilities share the following command syntax:

Utility_Name [subcommand] [argument] [[-option_name [-option_argument]]…]

Utility_Name specifies the name of a Message Queue utility, for example, imqcmd,
imqobjmgr, imqusermgr, and so on.

There are four important things to remember:

• Specify options after subcommands (and arguments, if the utility accepts both
types of operands).

• If an argument contains a space, enclose the whole argument in quotation
marks. It is generally safest to enclose an attribute-value pair in quotes.

Message Queue Administration Tools

100 Message Queue 3.5 SP1 • Administration Guide

• If you specify the -v (version) or the -h/-H (help) options on a command line,
nothing else on that command line is executed. See Table 3-1 on page 100 for a
description of common options.

• Separate the subcommand, arguments, options, and option arguments with
spaces.

The following is an example of a command line that has no subcommand clause.
The command starts the default broker.

imqbrokerd

The following command is a bit more complicated: it destroys a destination of type
queue that is named myQueue for an administrator (user) named admin with a
corresponding password admin, without confirmation and without output being
displayed on the console.

imqcmd destroy dst -t q -n myQueue -u admin -p admin -f -s

Common Command Line Options
Table 3-1 describes the options that are common to all Message Queue
administration utilities. Aside from the requirement that you specify these options
after you specify the subcommand on the command line, the options described
below (or any other options passed to a utility) do not have to be entered in any
special order.

Table 3-1 Common Message Queue Command Line Options

Option Description

-h Displays usage help for the specified utility.

-H Displays expanded usage help, including attribute list and examples
(supported only for imqcmd and imqobjmgr).

-s Turns on silent mode: no output is displayed. Specify as -silent for
imqbrokerd.

-v Displays version information.

-f Performs the given action without prompting for user confirmation.

-pre (Used only with imqobjmgr) Turns on preview mode, allowing the user to
see the effect of the rest of the command line without actually performing
the command. This can be useful in checking for the value of default
attributes.

-javahome path Specifies an alternate Java 2 compatible runtime to use (default is to use
the runtime on the system or the runtime bundled with Message Queue).

101

Chapter 4

Administration Console Tutorial

This tutorial focuses on the use of the Administration Console, a graphical interface
for administering a Message Queue message server. By following this tutorial, you
will learn how to do the following:

• Start a broker and use the Console to connect to it and manage it

• Create physical destinations on the broker

• Create an object store and use the Console to connect to it

• Add administered objects to the object store

The tutorial is designed to set up the destinations and administered objects needed
to run a simple JMS-compliant application, HelloWorldMessageJNDI, which is
available in the helloworld subdirectory of the example applications /demo
directory (see Appendix A, “Location of Message Queue Data”). In the last part of
the tutorial you run this application.

This tutorial is provided mainly to guide you through performing basic
administration tasks using the Administration Console. It is not a substitute for
reading through the Message Queue Java Client Developer’s Guide or other chapters
of this Administration Guide.

Some Message Queue administration tasks cannot be accomplished using
graphical tools; you will need to use command line utilities to perform such tasks
as the following:

• Configuring certain physical destination properties

Some physical destination properties cannot be configured using the
Administration Console. These can be configured as described in the section
titled “Managing Destinations” on page 168.

Getting Ready

102 Message Queue 3.5 SP1 • Administration Guide

• Creating broker clusters

See “Working With Clusters (Enterprise Edition)” on page 140 for more
information.

• Managing a user database

See “Authenticating Users” on page 202 for more information.

Getting Ready
Before you can start this tutorial you must install the Message Queue product. For
more information, see the Message Queue Installation Guide. Note that this tutorial
is Windows-centric, with added notes for UNIX® users.

In this tutorial, choosing Item1 > Item2 > Item3 means that you should pull down
the menu called Item1, choose Item2 from that menu and then choose Item3 from
the selections offered by Item2.

Starting the Administration Console
The Administration Console is a graphical tool that you use to do the following:

• Create references to and connect to brokers

• Administer brokers

• Create physical destinations on the brokers, which are used by the broker for
message delivery

• Connect to object stores in which you place Message Queue administered
objects

Administered objects allow you to manage the messaging needs of
JMS-compliant applications. For more information, see “Message Queue
Administered Objects” on page 89.

Starting the Administration Console

Chapter 4 Administration Console Tutorial 103

➤ To Start the Administration Console

1. Choose Start > Programs > Sun Java System Message Queue 3.5 SP1 >
Administration.

You may need to wait a few seconds before the Console window is displayed.

Non-Windows users: enter the following command at the command prompt:

/usr/bin/imqadmin (on Solaris)

/opt/imq/bin/imqadmin (on Linux)

2. Take a few seconds to examine the Console window.

The Console features a menu bar at the top, a tool bar just underneath the
menu bar, a navigational pane to the left, a results pane to the right (now
displaying graphics identifying the Sun Java System Message Queue product),
and a status pane at the bottom.

No tutorial can provide complete information, so let’s first find out how to get help
information for the Administration Console.

Starting the Administration Console

104 Message Queue 3.5 SP1 • Administration Guide

Getting Help
Locate the Help menu at the extreme right of the menu bar.

➤ To Display Administration Console Help Information

1. Pull down the Help menu and choose Overview. A help window is displayed.

Notice how the help information is organized. The navigation pane, on the left,
shows a table of contents; the results pane, on the right, shows the contents of
any item you select in the navigation pane.

Look at the results pane of the Help window. It shows a skeletal view of the
Administration Console, identifying the use of each of the Console’s panes.

2. Look at the Help window’s navigational pane. It organizes topics in three
areas: overview, object store management, and broker management. Each of
these areas contains files and folders. Each folder provides help for dialog
boxes containing multiple tabs; each file provides help for a simple dialog box
or tab.

Your first Console administration task, “Adding a Broker” on page 106, will be
to create a reference to a broker you manage through the Console. Before you
start, however, check the online help for information.

Working With Brokers

Chapter 4 Administration Console Tutorial 105

3. Click the Add Broker item in the Help window’s navigational pane.

Note that the results pane has changed. It now contains text that explains what
it means to add a broker and that describes the use of each field in the Add
Broker dialog box. Field names are shown in bold text.

4. Read through the help text.

5. Close the Help window.

Working With Brokers
A broker provides delivery services for a Message Queue messaging system.
Message delivery is a two-phase process: the message is first delivered to a
physical destination on a broker and then it is delivered to one or more consuming
clients.

Working with brokers involves the following tasks:

• Start and configure the broker

You can start the broker from the Start > Programs menu on Windows or by
using the imqbrokerd command. If you use the imqbrokerd command, you can
specify broker configuration information using command line options. If you
use the Programs menu, you can specify configuration information using the
Console and in other ways described in Chapter 5, “Starting and Configuring a
Broker.”

• Manage the broker and its services either by using the Administration Console
or by using the Command command-line utility (imqcmd).

• Create the physical destinations needed by client applications

• Monitor resource use to improve throughput and reliability

The broker supports communication with both application clients and
administration clients. It does this by means of different connection services, and
you can configure the broker to run any or all of these services. For more
information about connection services, see “Connection Services” on page 54.

NOTE You cannot start a broker instance using the Administration
Console.

Working With Brokers

106 Message Queue 3.5 SP1 • Administration Guide

Starting a Broker
You cannot start a broker using the Administration Console. Start the broker as
described in the following procedure (also, see Chapter 5, “Starting and
Configuring a Broker”).

➤ To Start a Broker

1. Choose Start > Programs >Sun Java System Message Queue 3.5 SP1 > Message
Broker.

Non-Windows: enter the following command to start a broker.

/usr/bin/imqbrokerd (on Solaris)

/opt/imq/bin/imqbrokerd (on Linux)

The command prompt window is displayed and indicates that the broker is
ready.

2. Bring the Administration Console window back into focus. You are now ready
to add the broker to the Console and to connect to it.

You do not have to start the broker before you add a reference to it in the
Administration Console, but you must start the broker before you can connect to it.

Adding a Broker
Adding a broker creates a reference to that broker in the Administration Console.
After adding the broker, you can connect to it.

Working With Brokers

Chapter 4 Administration Console Tutorial 107

➤ To Add a Broker to the Administration Console

1. Right-click on Brokers in the navigation pane and choose Add Broker.

2. Enter MyBroker in the Broker Label field.

This provides a label that identifies the broker in the Administration Console.

Note the default host name (localhost) and primary port (7676) specified in
the dialog box. These are the values you will need to specify later, when you
configure the connection factory that the client will use to set up connections to
this broker.

Leave the Password field blank. Your password will be more secure if you
specify it at connection time.

3. Click OK to add the broker.

Look at the navigation pane. The broker you just added should be listed there
under Brokers. The red X over the broker icon tells you that the broker is not
currently connected to the Console.

Working With Brokers

108 Message Queue 3.5 SP1 • Administration Guide

4. Right-click on MyBroker and choose Properties from the popup menu.

The broker properties dialog box is displayed. You can use this dialog box to
update any of the properties you specified when you added the broker.

5. Click Cancel to dismiss the dialog box.

Changing the Administrator Password
When you connect to the broker, you are prompted for a password if you have not
specified one when you added the broker. By default, the Administration Console
can connect to a broker as user admin with password admin. For improved security,
it is a good idea to change the default administrator password (admin) before you
connect.

➤ To Change the Administrator Password

1. Open a command-prompt window or, if one is already opened, bring it
forward.

2. Enter a command like the following, substituting your own password for
abracadabra. The password you specify then replaces the default password of
admin.

imqusermgr update -u admin -p abracadabra

The change takes effect immediately. You must specify the new password
whenever you use one of the Message Queue command line utilities or the
Administration Console.

Although clients use a different connection service than administrators, you are
also assigned a default user name and password so that you can test Message
Queue without having to do extensive administrative set up. By default, a client
can connect to the broker as user guest with the password guest. You should,
however, establish secure user names and passwords for clients as soon as you can.
See “Authenticating Users” on page 202 for more information.

Connecting to the Broker

➤ To Connect to the Broker

1. Right-click MyBroker and choose Connect to Broker.

A dialog box is displayed that allows you to specify your name and password.

Working With Brokers

Chapter 4 Administration Console Tutorial 109

2. Enter admin in the Password field or whatever value you specified for the
password in “Changing the Administrator Password” on page 108.

Specifying the user name admin and supplying the correct password connects
you to the broker, with administrative privileges.

3. Click OK to connect to the broker.

After you connect to the broker, you can choose from the Actions menu to get
information about the broker, to pause and resume the broker, to shutdown and
restart the broker, and to disconnect from the broker.

Viewing Connection Services
A broker is distinguished by the connection services it provides and the physical
destinations it supports.

➤ To View Available Connection Services

1. Select Services in the navigation pane.

Available services are listed in the results pane. For each service, its name, port
number, and state is provided.

Working With Brokers

110 Message Queue 3.5 SP1 • Administration Guide

2. Select the jms service by clicking on it in the results pane.

3. Pull down the Actions menu and note the highlighted items.

You have the option of pausing the jms service or of viewing and updating its
properties.

4. Choose Properties from the Actions menu.

Note that by using the Service Properties dialog box, you can assign the service
a static port number and you can change the minimum and maximum number
of threads allocated for this service.

5. Click OK or Cancel to close the Properties dialog box.

6. Select the admin service in the results pane.

7. Pull down the Actions menu.

Notice that you cannot pause this service (the pause item is disabled). The
admin service is the administrator’s link to the broker. If you paused it, you
would no longer be able to access the broker.

8. Choose Actions > Properties to view the properties of the admin service.

9. Click OK or Cancel when you’re done.

Adding Physical Destinations to a Broker
By default destination auto-creation is enabled for a broker, which allows it to
create physical destinations dynamically. Thus, in a development environment,
you do not have to explicitly create destinations in order to test client code.

Working With Brokers

Chapter 4 Administration Console Tutorial 111

However, in a production setting, it is advisable to explicitly create physical
destinations. This allows you, the administrator, to be fully aware of the
destinations that are in use on the broker.

You control whether the broker can add auto-created destinations by setting the
imq.autocreate.topic or imq.autocreate.queue properties. For more
information, see “Auto-Created (vs. Admin-Created) Destinations” on page 78.

In this section of the tutorial, you will add a physical destination to the broker. You
should note the name you assign to the destination; you will need it later when you
create an administered object that corresponds to this physical destination.

➤ To Add a Queue Destination to a Broker

1. Right-click the Destinations node of MyBroker and choose Add Broker
Destination.

The following dialog box is displayed:

Working With Brokers

112 Message Queue 3.5 SP1 • Administration Guide

2. Enter MyQueueDest in the Destination Name field.

3. Select the Queue radio button if it is not already selected.

4. Click OK to add the physical destination.

The destination now appears in the results pane.

Working With Physical Destinations
Once you have added a physical destination on the broker, you can do any of the
following tasks, as described in the following procedures:

• View and update the properties of a physical destination

• Purge messages at a destination

• Delete a destination

➤ To View the Properties of a Physical Destination

1. Select the Destinations node of MyBroker.

2. Select MyQueueDest in the results pane.

3. Choose Actions > Properties.

The following dialog box is displayed:

Working With Brokers

Chapter 4 Administration Console Tutorial 113

Note that the dialog box displays current status information about the queue as
well as some properties that you can change.

4. Click Cancel to close the dialog box.

➤ To Purge Messages From a Destination

1. Select the physical destination in the results pane.

2. Choose Actions > Purge Messages.

A confirmation dialog box is displayed.

Purging messages removes the messages and leaves an empty destination.

Working With Brokers

114 Message Queue 3.5 SP1 • Administration Guide

➤ To Delete a Destination

1. Select the physical destination in the results pane.

2. Choose Edit > Delete.

A confirmation dialog box is displayed.

Deleting a destination purges the messages at that destination and removes the
destination.

Getting Information About Topic Destinations
The broker topic destination properties dialog box includes an additional tab that
lists information about durable subscriptions. This tab is disabled for queue
destinations.

You can use this dialog box to:

• purge durable subscriptions, removing all messages associated with a durable
subscription

• delete durable subscriptions, purging all messages associated with a durable
subscription and also removing the durable subscription

NOTE Do not delete the MyQueueDest queue destination.

Working with Object Stores

Chapter 4 Administration Console Tutorial 115

Working with Object Stores
An object store, be it an LDAP directory server or a file system store (directory in
the file system), is used to store Message Queue administered objects that
encapsulate Message Queue-specific implementation and configuration
information about objects that are used by client applications.

Although administered objects can be instantiated and configured within client
code, it is preferable that you, as administrator, create and configure these objects
and store them in an object store that can be accessed by client applications using
JNDI. This allows client code to be provider-independent.

For more information about administered objects, see “Message Queue
Administered Objects” on page 89.

You cannot use the Administration Console to create an object store. You must do
this ahead of time as described in the following section.

Adding an Object Store
Adding an object store creates a reference to an existing object store in the
Administration Console. This reference is retained even if you quit and restart the
Console.

➤ To Add a File-system Object Store

1. If you do not already have a folder named Temp on your C drive, create it now.

The sample application used in this tutorial assumes that the object store is a
folder named Temp on the C drive. In general, a file-system object store can be
any directory on any drive.

Non-Windows: you can use the /tmp directory, which should already exist.

2. Right-click on Object Stores and choose Add Object Store.

The following dialog box is displayed:

Working with Object Stores

116 Message Queue 3.5 SP1 • Administration Guide

3. Enter MyObjectStore in the field named ObjectStoreLabel.

This simply provides a label for the display of the object store in the
Administration Console.

In the following steps, you will need to enter JNDI name/value pairs. These
pairs are used by JMS-compliant applications for looking up administered
objects.

4. From the Name drop-down list, select java.naming.factory.initial.

This property allows you to specify what JNDI service provider you wish to
use. For example, a file system service provider or an LDAP service provider.

5. In the Value field, enter the following

com.sun.jndi.fscontext.RefFSContextFactory

This means that you will be using a file system store. (For an LDAP store, you
would specify com.sun.jndi.ldap.LdapCtxFactory.)

In a production environment, you will probably want to use an LDAP
directory server as an object store. For information about setting up the server
and doing JNDI lookups, see “LDAP Server Object Store” on page 184.

6. Click the Add button.

Notice that the property and its value are now listed in the property summary
pane.

Working with Object Stores

Chapter 4 Administration Console Tutorial 117

7. From the Name drop-down list, choose java.naming.provider.url.

This property allows you to specify the exact location of the object store. For a
file system type object store, this will be the name of an existing directory.

8. In the Value field, enter the following

file:///C:/Temp

(file:///tmp on Solaris and Linux)

9. Click the Add button.

Notice that both properties and their values are now listed in the property
summary pane. If you were using an LDAP server, you might also have to
specify authentication information; this is not necessary for a file-system store.

10. Click OK to add the object store.

11. If the node MyObjectStore is not selected in the navigation pane, select it now.

The Administration Console now looks like this:

The object store is listed in the navigation pane and its contents, Destinations
and Connection Factories, are listed in the results pane. We have not yet added
any administered objects to the object store, and this is shown in the Count
column of the results pane.

A red X is drawn through the object store’s icon in the navigation pane. This
means that it is disconnected. Before you can use the object store, you will need
to connect to it.

file:///C:/Temp
file:///tmp

Working with Object Stores

118 Message Queue 3.5 SP1 • Administration Guide

Checking Object Store Properties
While the Administration Console is disconnected from an object store, you can
examine and change some of the properties of the object store.

➤ To Display the Properties of an Object Store

1. Right click on MyObjectStore in the navigational pane.

2. Choose Properties from the popup menu.

A dialog box is displayed that shows all the properties you specified when you
added the object store. You can change any of these properties and click OK to
update the old information.

3. Click OK or Cancel to dismiss the dialog box.

Connecting to an Object Store
Before you can add objects to an object store, you must connect to it.

➤ To Connect to an Object Store

1. Right click on MyObjectStore in the navigational pane.

2. Choose Connect to Object Store from the popup menu.

Notice that the object store’s icon is no longer crossed out. You can now add
objects, connection factories and destinations, to the object store.

Adding a Connection Factory
Administered Object
You can use the administration console to create and configure a connection
factory. A connection factory is used by client code to connect to the broker. By
configuring a connection factory, you can control the behavior of the connections it
is used to create.

For information on configuring connection factories, see the online help and the
Message Queue Java Client Developer’s Guide.

Working with Object Stores

Chapter 4 Administration Console Tutorial 119

➤ To Add a Connection Factory to an Object Store

1. If not already connected, connect to MyObjectStore (see “Connecting to an
Object Store” on page 118)

2. Right click on the Connection Factories node and choose Add Connection
Factory Object.

The Add Connection Factory Object dialog box is displayed.

3. Enter the name “MyQueueConnectionFactory” in the LookupName field.

This is the name that the client code uses when it looks up the connection
factory as shown in the following line from HelloWorldMessageJNDI.java:

qcf=(javax.jms.QueueConnectionFactory)
ctx.lookup(“MyQueueConnectionFactory”)

4. Select the QueueConnectionFactory from the pull-down menu to specify the
type of the connection factory.

NOTE The Administration Console lists and displays only Message Queue
administered objects. If an object store should contain a
non-Message Queue object with the same lookup name as an
administered object that you wish to add, you will receive an error
when you attempt the add operation.

Working with Object Stores

120 Message Queue 3.5 SP1 • Administration Guide

5. Click the Connection Handling tab.

6. The Message Server Address List field is where you would normally enter the
address of the broker to which the client will connect. An example for this field
looks like this:

mq://localhost:7676/jms

You do not need to enter a value since, by default, the connection factory is
configured to connect to a broker running on the localhost on port 7676, which
is the configuration that the tutorial example expects.

7. Click through the tabs for this dialog box to see the kind of information that
you can configure for the connection factory. Use the Help button in the lower
right hand corner of the Add Connection Factory Object dialog box to get
information about individual tabs. Do not change any of the default values for
now.

8. Click OK to create the queue connection factory.

9. Look at the results pane: the lookup name and type of the newly created
connection factory are listed.

Adding a Destination Administered Object
Destination administered objects are associated with physical destinations on the
broker; they point to those destinations, as it were, allowing clients to look up and
find physical destinations, independently of the provider-specific ways in which
those destinations are named and configured.

When a client sends a message, it looks up (or instantiates) a destination
administered object and references it in the send() method of the JMS API. The
broker is then responsible for delivering the message to the physical destination
that is associated with that administered object:

• If you have created a physical destination that is associated with that
administered object, the broker delivers the message to that physical
destination.

• If you have not created a physical destination and the autocreation of physical
destinations is enabled, the broker itself creates the physical destination and
delivers the message to that destination.

• If you have not created a physical destination and the autocreation of physical
destinations is disabled, the broker cannot create a physical destination and
cannot deliver the message.

mq://localhost:7676/jms

Working with Object Stores

Chapter 4 Administration Console Tutorial 121

In the next part of the tutorial, you will be adding an administered object that
corresponds to the physical destination you added earlier.

➤ To Add a Destination to an Object Store

1. Right-click on the Destinations node (under the MyObjectStore node) in the
navigation pane.

2. Choose Add Destination Object.

The Administration Console displays an Add Destination Object dialog box
that you use to specify information about the object.

3. Enter “MyQueue” in the Lookup Name field.

The lookup name is used to find the object using JNDI lookup calls. In the
sample application, the call is the following:

queue=(javax.jms.Queue)ctx.lookup(“MyQueue”);

4. Select the Queue radio button for the Destination Type.

5. Enter MyQueueDest in the Destination Name field.

This is the name you specified when you added a physical destination on the
broker (see “Adding Physical Destinations to a Broker” on page 110).

6. Click OK.

7. Select Destinations in the navigation pane and notice how information about
the queue destination administered object you have just added is displayed in
the results pane.

Working with Object Stores

122 Message Queue 3.5 SP1 • Administration Guide

Administered Object Properties
To view or update the properties of an administered object, you need to select
Destinations or Connection Factories in the navigation pane, select a specific object
in the results pane, and choose Actions > Properties.

➤ To View or Update the Properties of a Destination Object

1. Select the Destinations node of MyObjectStore in the navigational pane.

2. Select MyQueue in the results pane.

3. Choose Actions > Properties to view the Destination Object Properties dialog
box.

Note that the only values you can change are the destination name and the
description. To change the lookup name, you would have to delete the object
and then add a new queue administered object with the desired lookup name.

4. Click Cancel to dismiss the dialog box.

Updating Console Information

Chapter 4 Administration Console Tutorial 123

Updating Console Information
Whether you work with object stores or brokers, you can update the visual display
of any element or groups of elements by choosing View > Refresh.

Running the Sample Application
The sample application HelloWorldMessageJNDI is provided for use with this
tutorial (for the location, see Step 1, below). It uses the physical destination and
administered objects that you created in the foregoing tutorial: a queue physical
destination named MyQueueDest, a queue connection factory administered object
and queue administered object with JNDI lookup names
MyQueueConnectionFactory and MyQueue respectively.

The code creates a simple queue sender and receiver, and sends and receives a
“Hello World” message.

Running the Sample Application

124 Message Queue 3.5 SP1 • Administration Guide

➤ To Run the HelloWorldMessageJNDI Application

1. Make the directory that includes the HelloWorldmessageJNDI application your
current directory; for example:

cd IMQ_HOME\demo\helloworld\helloworldmessagejndi (on Windows)

cd /usr/demo/imq/helloworld/helloworldmessagejndi (on Solaris)

cd /opt/imq/demo/helloworld/helloworldmessagejndi (on Linux)

You should find the HelloWorldMessageJNDI.class file present. (If you make
changes to the application, you will need to re-compile it using the instructions
for compiling a client application in the Quick Start Tutorial of the Message
Queue C Client Developer’s Guide.)

2. Set the CLASSPATH variable to include the current directory containing the file
HelloWorldMessageJNDI.class as well as the following jar files that are
included in the Message Queue product: jms.jar, imq.jar, and
fscontext.jar. See the Message Queue Java Client Developer’s Guide for
instructions on setting the CLASSPATH.

The JNDI jar file (jndi.jar) file is bundled with JDK 1.4. If you are using this
JDK, you do not have to add jndi.jar to your CLASSPATH setting. If you are
using an earlier version of the JDK, you must include jndi.jar in your
CLASSPATH. See the Message Queue Java Client Developer’s Guide for additional
information)

3. Before you run the application, open the source file
HelloWorldMessageJNDI.java and read through the source. It is short, but it is
amply documented and it should be fairly clear how it uses the administered
objects and destinations you have created using the tutorial.

4. Run the HelloWorldMessageJNDI application by executing one of the
commands below:

java HelloWorldMessageJNDI (Windows)

% java HelloWorldMessageJNDI file:///tmp (Solaris and Linux)

file:///tmp

Running the Sample Application

Chapter 4 Administration Console Tutorial 125

If the application runs successfully, you should see the following output:

java HelloWorldMessageJNDI
Using file:///C:/Temp for Context.PROVIDER_URL

Looking up Queue Connection Factory object with lookup name:
MyQueueConnectionFactory
Queue Connection Factory object found.
Looking up Queue object with lookup name: MyQueue
Queue object found.

Creating connection to broker.
Connection to broker created.

Publishing a message to Queue: MyQueueDest
Received the following message: Hello World

file:///C:/Temp

Running the Sample Application

126 Message Queue 3.5 SP1 • Administration Guide

127

Chapter 5

Starting and Configuring a Broker

After installing Sun Java™ System Message Queue, you use the imqbrokerd
command to start a broker. The configuration of the broker instance is governed by
a set of configuration files and by options passed with the imqbrokerd command,
which override corresponding properties in the configuration files.

This chapter explains the syntax of the imqbrokerd command and how you use
command line options and configuration files to configure the broker instance. In
addition, it also describes how you do the following:

• edit a broker instance configuration file

• work with broker clusters

• control logging for the broker

For a description of how to start and use the broker as a Windows service, see
“Using a Broker as a Windows Service” on page 333.

Configuration Files
Installed broker configuration file templates, which are used to configure the
broker, are located in a directory that varies by operating system, as shown in
Appendix A, “Location of Message Queue Data.”

This directory stores the following files:

• A default configuration file that is loaded on startup. This file is called
default.properties and is not editable. You might need to read this file to
determine default settings and to find the exact names of properties you want
to change.

Configuration Files

128 Message Queue 3.5 SP1 • Administration Guide

• An installation configuration file that contains any properties specified when
Message Queue is installed. This file is called install.properties; it cannot be
edited after installation.

Instance Configuration File
The first time you run a broker, an instance configuration file is created that you
can use to specify configuration properties for that instance of the broker. The
instance configuration file is stored in a directory identified by the name of the
broker instance (instanceName) with which the configuration file is associated (see
Appendix A, “Location of Message Queue Data”):

…/instances/instanceName/props/config.properties

The instance configuration file is maintained by the broker instance. It is modified
when you make configuration changes using administration tools. You can also
edit an instance configuration file by hand to make configuration changes (see
“Editing the Instance Configuration File” on page 129). To do so, you must be the
owner of the …/instances/instanceName directory or log in as root to change
privileges on the directory.

If you connect broker instances in a cluster (see “Multi-Broker Clusters (Enterprise
Edition)” on page 82) you may also need to use a cluster configuration file to specify
cluster configuration information. For more information, see “Cluster
Configuration Properties” on page 140.

Merging Property Values
At startup, the system merges property values in the different configuration files. It
uses values set in the installation and instance configuration files to override values
specified in the default configuration file. You can override the resulting values by
using imqbrokerd command options. This scheme is illustrated in Figure 5-1.

NOTE The …/instances/instanceName directory (and the instance
configuration file) is owned by whoever created the corresponding
broker instance. All subsequent start-ups of the broker instance
must be by that same user.

Configuration Files

Chapter 5 Starting and Configuring a Broker 129

Figure 5-1 Broker Configuration Files

Property Naming Syntax
Any Message Queue property definition in a configuration file uses the following
naming syntax:

propertyName=value[[,value1]…]

For example, the following entry specifies that the broker will hold up to 50,000
messages in memory and persistent storage before rejecting additional messages:

imq.system.max_count=50000

The following entry specifies that a new log file will be created every day (86400
seconds):

imq.log.file.rolloversecs=86400

Table 5-1 on page 130 lists the broker configuration properties (and their default
values) in alphabetical order.

Editing the Instance Configuration File
The first time a broker instance is run, a config.properties file is automatically
created. You can edit this instance configuration file to customize the behavior and
resource use of the corresponding broker instance.

install.properties

config.properties

imqbrokerd
 -name MyBroker
 -metrics 5

MyBroker

default.properties

overrides

overrides

overrides

install configuration file

instance configuration file

default configuration file

Configuration Files

130 Message Queue 3.5 SP1 • Administration Guide

The broker instance reads the config.properties file only at startup. To make
permanent changes to the config.properties file, you can either

• use administration tools. For information about properties you can set using
imqcmd, see Table 6-4 on page 160.

• edit the config.properties file while the broker instance is shut down; then
restart the instance. (On Solaris and Linux platforms, only the user that first
started the broker instance has permission to edit the config.properties file.)

Table 5-1 lists the broker instance configuration properties (and their default
values) in alphabetical order. For more information about the meaning and use of
each property, please consult the specified cross-referenced section.

Table 5-1 Broker Instance Configuration Properties

Property Name Type Default Value Reference

imq.accesscontrol.enabled boolean true Table 2-6 on page 69

imq.accesscontrol.file.
filename

string accesscontrol.
properties

Table 2-6 on page 69

imq.authentication.basic.
user_repository

string file Table 2-6 on page 69

imq.authentication.
client.response.timeout

integer
(seconds)

180 Table 2-6 on page 69

imq.authentication.type string digest Table 2-6 on page 69

imq.autocreate.destination.
isLocalOnly

boolean false Table 2-10 on page 79

imq.autocreate.destination.
limitBehavior

string REJECT_NEWEST Table 2-10 on page 79

imq.autocreate.destination.
maxBytesPerMsg

byte string1 10k Table 2-10 on page 79

imq.autocreate.destination.
maxNumMsgs

integer 100,000 Table 2-10 on page 79

imq.autocreate.destination.
maxNumProducers

integer 100 Table 2-10 on page 79

imq.autocreate.destination.
maxTotalMsgBytes

byte string1 10m Table 2-10 on page 79

imq.autocreate.queue boolean true Table 2-10 on page 79

1 Values that are typed as a byte string, can be expressed in bytes, Kbytes, and Mbytes: For example: 1000 means 1000 bytes; 7500b
means 7500 bytes; 77k means 77 kilobytes (77 x 1024 = 78848 bytes); 17m means 17 megabytes (17 x 1024 x 1024 = 17825792 bytes)

Configuration Files

Chapter 5 Starting and Configuring a Broker 131

imq.autocreate.queue.
consumerFlowLimit

integer 1000 Table 2-10 on page 79

imq.autocreate.queue.
localDeliveryPreferred

boolean false Table 2-10 on page 79

imq.autocreate.queue.
maxNumActiveConsumers

integer 1 Table 2-10 on page 79

imq.autocreate.queue.
maxNumBackupConsumers

integer 0 Table 2-10 on page 79

imq.autocreate.topic boolean true Table 2-10 on page 79

imq.autocreate.topic.
consumerFlowLimit

integer 1,000 Table 2-10 on page 79

imq.cluster.property_name Table 5-3 on page 140

imq.hostname string all available IP addresses Table 2-3 on page 57

imq.httpjms.http.property_name Table C-1 on page 311

imq.httpsjms.https.
property_name

Table C-3 on page 323

imq.keystore.property_name Table 8-8 on page 220

imq.log.console.output string ERROR|WARNING Table 2-9 on page 74

imq.log.console.stream string ERR Table 2-9 on page 74

imq.log.file.dirpath string See Appendix A, “Location
of Message Queue Data”

Table 2-9 on page 74

imq.log.file.filename string log.txt Table 2-9 on page 74

imq.log.file.output string ALL Table 2-9 on page 74

imq.log.file.rolloverbytes integer
(bytes)

-1
(no rollover)

Table 2-9 on page 74

imq.log.file.rolloversecs integer
(seconds)

604800 Table 2-9 on page 74

imq.log.level string INFO Table 2-9 on page 74

imq.log.syslog.facility string LOG_DAEMON Table 2-9 on page 74

imq.log.syslog.identity string imqbrokerd_${imq.
instanceName}

Table 2-9 on page 74

Table 5-1 Broker Instance Configuration Properties (Continued)

Property Name Type Default Value Reference

1 Values that are typed as a byte string, can be expressed in bytes, Kbytes, and Mbytes: For example: 1000 means 1000 bytes; 7500b
means 7500 bytes; 77k means 77 kilobytes (77 x 1024 = 78848 bytes); 17m means 17 megabytes (17 x 1024 x 1024 = 17825792 bytes)

Configuration Files

132 Message Queue 3.5 SP1 • Administration Guide

imq.log.syslog.logconsole boolean false Table 2-9 on page 74

imq.log.syslog.logpid boolean true Table 2-9 on page 74

imq.log.syslog.output string ERROR Table 2-9 on page 74

imq.log.timezone string local time zone Table 2-9 on page 74

imq.message.expiration.
interval

integer
(seconds)

60 Table 2-4 on page 62

imq.message.max_size byte string1 70m Table 2-4 on page 62

imq.metrics.enabled boolean true Table 2-9 on page 74

imq.metrics.interval integer
(seconds)

-1
(never)

Table 2-9 on page 74

imq.metrics.topic.enabled boolean true Table 2-9 on page 74

imq.metrics.topic.interval integer
(seconds)

60 Table 2-9 on page 74

imq.metrics.topic.persist boolean false Table 2-9 on page 74

imq.metrics.topic.timetolive integer
(seconds)

300 Table 2-9 on page 74

imq.passfile.dirpath string See Appendix A, “Location
of Message Queue Data”

Table 2-6 on page 69

imq.passfile.enabled boolean false Table 2-6 on page 69

imq.passfile.name string passfile Table 2-6 on page 69

imq.persist.file.
destination.message.
filepool.limit

integer 100 Table 2-5 on page 66

imq.persist.file.message.
cleanup

boolean false Table 2-5 on page 66

imq.persist.file.message.
filepool.cleanratio

integer 0 Table 2-5 on page 66

imq.persist.file.message.
max_record_size

byte string 1 1m Table 2-5 on page 66

imq.persist.file.sync.
enabled

boolean false Table 2-5 on page 66

Table 5-1 Broker Instance Configuration Properties (Continued)

Property Name Type Default Value Reference

1 Values that are typed as a byte string, can be expressed in bytes, Kbytes, and Mbytes: For example: 1000 means 1000 bytes; 7500b
means 7500 bytes; 77k means 77 kilobytes (77 x 1024 = 78848 bytes); 17m means 17 megabytes (17 x 1024 x 1024 = 17825792 bytes)

Configuration Files

Chapter 5 Starting and Configuring a Broker 133

imq.persist.jdbc.property_name Table B-1 on page 300

imq.persist.store string file Table 2-5 on page 66

imq.ping.interval integer 120 Table 2-3 on page 57

imq.portmapper.backlog integer 50 Table 2-3 on page 57

imq.portmapper.hostname string inherited from
imq.hostname

Table 2-3 on page 57

imq.portmapper.port integer 7676 Table 2-3 on page 57

imq.resource_state.count integer
(percent)

5000 (green)
500 (yellow)
50(orange)
0 (red)

Table 2-4 on page 62

imq.resource_state.
threshold

integer
(percent)

0 (green)
80 (yellow)
90(orange)
98 (red)

Table 2-4 on page 62

imq.service.activelist list jms,admin Table 2-3 on page 57

imq.service_name.
accesscontrol.enabled

boolean inherits value from
system-wide property

Table 2-6 on page 69

imq.service_name.
accesscontrol.file.filename

string inherits value from
system-wide property

Table 2-6 on page 69

imq.service_name.
authentication.type

string inherits value from
system-wide property

Table 2-6 on page 69

imq.service_name.max_threads integer 1000 (jms)
500 (ssljms)
500 (httpjms)
500 (httpsjms)
10 (admin)
10 (ssladmin)

Table 2-3 on page 57

imq.service_name.min_threads integer 10 (jms)
10 (ssljms)
10 (httpjms)
10 (httpsjms)
4 (admin)
4 (ssladmin)

Table 2-3 on page 57

Table 5-1 Broker Instance Configuration Properties (Continued)

Property Name Type Default Value Reference

1 Values that are typed as a byte string, can be expressed in bytes, Kbytes, and Mbytes: For example: 1000 means 1000 bytes; 7500b
means 7500 bytes; 77k means 77 kilobytes (77 x 1024 = 78848 bytes); 17m means 17 megabytes (17 x 1024 x 1024 = 17825792 bytes)

Starting a Broker

134 Message Queue 3.5 SP1 • Administration Guide

Starting a Broker
To start a broker instance use the imqbrokerd command.

To override one or more property values, specify a valid imqbrokerd
command-line option. Command-line options override values in the broker
configuration files, but only for the current broker session: command line options
are not written to the instance configuration file.

imq.service_name.protocol_type.
hostname

string inherited from
imq.hostname

Table 2-3 on page 57

imq.service_name.protocol_type.
port

integer 0
(dynamically allocated)

Table 2-3 on page 57

imq.service_name.
threadpool_model

string dedicated (jms)
dedicated (ssljms)
dedicated (httpjms)
dedicated (httpsjms)
dedicated (admin)
dedicated (ssladmin)

Table 2-3 on page 57

imq.shared.
connectionMonitor_limit

integer 512 (Solaris & Linux)
64 (Windows)

Table 2-3 on page 57

imq.system.max_count integer,
0 (no limit)

-1 Table 2-4 on page 62

imq.system.max_size byte string1,
0 (no limit)

-1 Table 2-4 on page 62

imq.transaction.autorollback boolean false Table 2-4 on page 62

imq.user_repository.ldap.
property_name

Table 8-5 on page 210

NOTE You cannot start a broker instance using the Administration Console
(imqadmin) or the Command Utility (imqcmd). The broker instance
must already be running to use these Message Queue
administration tools.

Table 5-1 Broker Instance Configuration Properties (Continued)

Property Name Type Default Value Reference

1 Values that are typed as a byte string, can be expressed in bytes, Kbytes, and Mbytes: For example: 1000 means 1000 bytes; 7500b
means 7500 bytes; 77k means 77 kilobytes (77 x 1024 = 78848 bytes); 17m means 17 megabytes (17 x 1024 x 1024 = 17825792 bytes)

Starting a Broker

Chapter 5 Starting and Configuring a Broker 135

Syntax of the imqbrokerd Command
The syntax of the imqbrokerd command is as follows (options and arguments are
separated by a space):

imqbrokerd [[-Dproperty=value]…]
[-backup fileName]
[-cluster “[broker1] [[,broker2]…]”
[-dbuser userName] [-dbpassword password]
[-force]
[-h|-help]
[-javahome path]
[-ldappassword password]
[-license licenseName]
[-loglevel level]
[-metrics interval]
[-name instanceName]
[-password keypassword] [-passfile fileName]
[-port number]
[-remove instance]
[-reset data]
[-restore fileName]
[-shared]
[-silent|-s] [-tty]
[-upgrade-store-nobackup]
[-version]
[-vmargs arg1 [[arg2]…]

NOTE On Solaris, you can configure the broker to automatically restart
after an abnormally exit, by setting the RESTART property in the
/etc/imq/imqborkerd.conf configuration file to YES.

NOTE On Solaris and Linux platforms, permissions on the directories
containing configuration information and persistent data depend on
the umask of the user that starts the broker instance the first time.
Hence, for the broker instance to function properly, it must be
started subsequently only by the original user.

Starting a Broker

136 Message Queue 3.5 SP1 • Administration Guide

Startup Examples
The following examples show the use of the imqbrokerd command. For more
details on the imqbrokerd command line options, see Table 5-2 on page 136.

➤ To Start a Broker Instance That Uses the Default Broker Name and
Configuration

Use the following command:

imqbrokerd

This starts a default instance of a broker (named imqbroker) on the local machine
with the Port Mapper at port 7676.

➤ To Start a Broker Instance With a Trial Enterprise Edition License

If you have a Platform Edition license, but wish to try out Enterprise Edition
features for a period of 90 days, you can enable a trial Enterprise Edition license,
using the -license command line option and passing “try” as the license to use:

imqbrokerd -license try

You must use this option each time you start the broker instance, otherwise it
defaults back to the basic Platform Edition license.

➤ To Start a Named Broker Instance With Plugged-in Persistence

To start a broker named myBroker that uses a plugged-in data store (see
Appendix B, “Setting Up Plugged-in Persistence” on page 297) and which requires
a username and password, use the following command:

imqbrokerd -name myBroker -dbuser myName -dbpassword myPassword

Summary of imqbrokerd Options
Table 5-2 describes the options to the imqbrokerd command and describes the
configuration properties, if any, affected by each option.

Table 5-2 imqbrokerd Options

Option Properties Affected Description

-backup fileName None affected. Applies only to broker clusters. Backs up a Master
Broker’s configuration change record to the
specified file. See “Backing up the Configuration
Change Record” on page 146.

Starting a Broker

Chapter 5 Starting and Configuring a Broker 137

-cluster“[broker1]
[[,broker2]…]”

where broker is either

• host[:port]

• [host]:port

Sets imq.cluster.brokerlist to
the list of brokers to which to
connect.

Applies only to broker clusters. Connects to all the
brokers on the specified hosts and ports. This list
is merged with the list in the
imq.cluster.brokerlist property. If you don’t
specify a value for host, localhost is used. If you
don’t specify a value for port, the value 7676 is
used. See “Working With Clusters (Enterprise
Edition)” on page 140 for more information on how
to use this option to connect multiple brokers.

-dbpassword password Sets imq.persist.jdbc.
password to specified password

Specifies the password for a plugged-in
JDBC-compliant data store. See Appendix B,
“Setting Up Plugged-in Persistence.”

-dbuser userName Sets imq.persist.jdbc.user
to specified user name

Specifies the user name for a plugged-in
JDBC-compliant database. See Appendix B,
“Setting Up Plugged-in Persistence.”

-Dproperty=value Sets system properties. Overrides
corresponding property value in
instance configuration file.

Sets the specified property to the specified value.
See Table 5-1 on page 130 for broker
configuration properties.

Caution: Be careful to check the spelling and
formatting of properties set with the D option. If you
pass incorrect values, the system will not warn
you, and Message Queue will not be able to set
them.

-force None affected. Performs action without user confirmation. This
option applies only to the
-remove instance and the
-upgrade-store-nobackup options, which
normally require confirmation.

-h|-help None affected. Displays help. Nothing else on the command line is
executed.

-javahome path None affected. Specifies the path to an alternate
Java 2- compatible JDK. The default is to use the
bundled runtime.

-ldappassword
password

Sets imq.user_repository.
ldap.password to specified
password

Specifies the password for accessing a LDAP user
repository. See “Using an LDAP Server for a User
Repository” on page 209.

Table 5-2 imqbrokerd Options (Continued)
Option Properties Affected Description

Starting a Broker

138 Message Queue 3.5 SP1 • Administration Guide

-license [licenseName] None affected. Specifies the license to load, if different from the
default for your Message Queue product edition. If
you don’t specify a license name, this lists all
licenses installed on the system. Depending on the
installed Message Queue edition, the values for
licenseName are pe (Platform Edition—basic
features), try (Platform Edition—90-day trial
enterprise features), and unl (Enterprise Edition).
See “Product Editions” on page 33.

-loglevel level Sets imq.broker.log.level to
the specified level.

Specifies the logging level as being one of NONE,
ERROR, WARNING, or INFO. The default value is INFO.
For more information, see “Logger” on page 71.

-metrics interval Sets imq.metrics.
interval to the specified number
of seconds.

Specifies that broker metrics be written to the
Logger at an interval specified in seconds.

-name instanceName Sets imq.instancename to the
specified name.

Specifies the instance name of this broker and
uses the corresponding instance configuration file.
If you do not specify a broker name, the name of
the instance is set to imqbroker.
Note: If you run more than one instance of a
broker on the same host, each must have a unique
name.

-passfile fileName Sets imq.passfile.
enabled to true. Sets jmq.
passfile.dirpath to the path that
contains the file.
Sets imq.passfile.name to the
name of the file.

Specifies the name of the file from which to read
the passwords for the SSL keystore, LDAP user
repository, or JDBC-compliant database. For more
information, see “Using a Passfile” on page 225.

-password keypassword Sets imq.keystore.
password to the specified
password.

Specifies the password for the SSL certificate
keystore. For more information, see “Security
Manager” on page 66.

-port number Sets imq.portmapper.port to the
specified number.

Specifies the broker’s Port Mapper port number.
By default, this is set to 7676. To run two instances
of a broker on the same server, each broker’s Port
Mapper must have a different port number.
Message Queue clients connect to the broker
instance using this port number.

-remove instance None affected. Causes the broker instance to be removed:
deletes the instance configuration file, log files,
persistent store, and other files and directories
associated with the instance. Requires user
confirmation unless -force option is also
specified.

Table 5-2 imqbrokerd Options (Continued)
Option Properties Affected Description

Starting a Broker

Chapter 5 Starting and Configuring a Broker 139

-reset store|
messages|
durables|
props

None affected. Resets the data store (or a subset of the data
store) or the configuration properties of a broker
instance, depending on the argument given.

Resetting the data store clears out all persistent
data, including persistent messages, durable
subscriptions, and transaction information. This
allows you to start the broker instance with a clean
slate. You can also clear only all persistent
messages or only all durable subscriptions. (If you
do not want the persistent store to be reset on
subsequent restarts, then re-start the broker
instance without using the -reset option.) For
more information, see “Persistence Manager” on
page 63.

Resetting the broker’s properties, replaces the
existing instance configuration file
(config.properties) with an empty file: all
properties assume default values.

-restore fileName None affected. Applies only to broker clusters. Replaces the
Master Broker’s configuration change record with
the specified backup file. This file must have been
previously created using the -backup option. See
“Restoring the Configuration Change Record” on
page 146.

-shared Sets imq.jms.
threadpool_model to shared.

Specifies that the jms connection service be
implemented using the shared threadpool model,
in which threads are shared among connections to
increase the number of connections supported by
a broker instance. For more information, see
“Connection Services” on page 54.

-silent|-s Sets imq.log.console.
output to NONE.

Turns off logging to the console.

-tty Sets imq.log.console.
output to ALL

Specifies that all messages be displayed to the
console. By default only WARNING and ERROR level
messages are displayed.

-upgrade-store-
nobackup

None affected Specifies that an upgrade to Message Queue 3.5
or Message Queue 3.5 SPx from an incompatible
version automatically removes the old data store.
For additional details, see the Message Queue
Installation Guide.

-version None affected. Displays the version number of the installed
product.

Table 5-2 imqbrokerd Options (Continued)
Option Properties Affected Description

Working With Clusters (Enterprise Edition)

140 Message Queue 3.5 SP1 • Administration Guide

Working With Clusters (Enterprise Edition)
This section describes the properties you use to configure multi-broker clusters,
describes two methods of connecting brokers, and explains how to manage
clusters. For an introduction to clusters, see “Multi-Broker Clusters (Enterprise
Edition)” on page 82.

When working with clusters, make sure that you synchronize clocks among the
hosts of all brokers in a cluster (see “System Clock Settings” on page 337).

Cluster Configuration Properties
When you connect brokers into a cluster, all the connected brokers must specify as
set of cluster configuration properties. These properties describe the participation
of the brokers in a cluster. Table 5-3 summarizes the cluster-related configuration
properties. Properties marked with an asterisk (*) must have the same value for all
brokers in a cluster.

-vmargs arg1 [[arg2]…] None affected Specifies arguments to pass to the Java VM.
Separate arguments with spaces. If you want to
pass more than one argument or if an argument
contains a space, use enclosing quotation marks.
For example:
imqbrokerd -tty -vmargs "-Xmx128m -Xincgc"

Table 5-3 Cluster Configuration Properties

Property Name Description

imq.cluster.brokerlist* Specifies all the brokers in a cluster. Consists of a
comma-separated list of host:port entries, where host is the
host name of each broker and port is its Port Mapper port
number. For example:
host1:3000, host2:8000, ctrhost

imq.cluster.
masterbroker*

Specifies which broker in a cluster (if any) is the Master
Broker that keeps track of state changes. Property consists
of host:port where host is the host name of the Master Broker
and port is its Port Mapper port number. Set this property for
production environments. For example, ctrhost:7676

Table 5-2 imqbrokerd Options (Continued)
Option Properties Affected Description

Working With Clusters (Enterprise Edition)

Chapter 5 Starting and Configuring a Broker 141

You can use one of two methods to set cluster properties:

• You set the cluster-related configuration properties in each broker’s instance
configuration file (or in the command line that starts each broker). For
example, to connect broker A (on host1, port 7676), broker B (on host2, port
5000) and broker C (on ctrlhost, port 7676), the instance configuration file for
brokers A, B, and C would need to set the following property.

imq.cluster.brokerlist=host1, host2:5000, ctrlhost

If you decide to change a cluster configuration, this method requires you to
update cluster-related properties in all the brokers.

imq.cluster.url* Specifies the location of a cluster configuration file. Used in
cases where brokers reference one central cluster
configuration file rather than being individually configured.
Consists of a URL string: If kept on a web server it can be
accessed using a normal http:URL. If kept on a shared
drive it can be accessed using a file:URL.

For example: http://webserver/imq/cluster.properties
file:/net/mfsserver/imq/cluster.properties

imq.cluster.port For each broker within a cluster, can be used to specify the
port number for the cluster connection service. The cluster
connection service is used for internal communication
between brokers in a cluster.
Default: 0 (port is dynamically allocated)

imq.cluster.hostname For each broker within a cluster, can be used to specify the
host (hostname or IP address) to which the cluster
connection service binds if there is more than one host
available (for example, if there is more than one network
interface card in a computer). The cluster connection
service is used for internal communication between brokers
in a cluster.
Default: inherits the value of imq.hostname (see Table 2-3 on
page 57)

imq.cluster.transport* Specifies the network transport used by the cluster
connection service for internal communication between
brokers in a cluster. For secure, encrypted message delivery
between brokers, set this property to ssl for all brokers in a
cluster. Default: tcp

Table 5-3 Cluster Configuration Properties (Continued)

Property Name Description

Working With Clusters (Enterprise Edition)

142 Message Queue 3.5 SP1 • Administration Guide

• You set cluster configuration properties in one central cluster configuration
file. These properties might include the list of brokers to be connected
(imq.cluster.brokerlist), the network transport to use for the cluster
connection service (imq.cluster.transport), and optionally, the address of
the Master Broker (imq.cluster.masterbroker).

If you use this method, you must also set the imq.cluster.url property (for
every broker in the cluster) to point to the location of the cluster configuration
file. From the point of view of easy maintenance, this is the recommended
method of cluster configuration.

The following code sample shows the contents of a cluster configuration file. Both
host1 and ctrlhost are running on the default port. These properties specify that
host1, host2, and ctrlhost are connected in a cluster and that ctrlhost is the
Master Broker.

The instance configuration file for each broker connected in this cluster, must then
contain the URL of the cluster configuration file; for example:

Connecting Brokers
This section describes how to connect brokers into a cluster and how to configure
the cluster for secure, encrypted message delivery between brokers in the cluster.

Connection Methods
There are two general methods of connecting brokers into a cluster: connecting
with or without a cluster configuration file.

No matter which method you use, each broker that you start attempts to connect to
the other brokers every five seconds; that attempt will succeed once the Master
Broker is started up. If a broker in the cluster starts before the Master Broker, it will
remain in a suspended state, rejecting client connections. When the Master Broker
starts, the suspended broker will automatically become fully functional.

imq.cluster.brokerlist=host1,host2:5000,ctrlhost
imq.cluster.masterbroker=ctrlhost

imq.cluster.url=file:/home/cluster.properties

Working With Clusters (Enterprise Edition)

Chapter 5 Starting and Configuring a Broker 143

Method 1: Connecting Without a Cluster Configuration File

➤ To Connect Brokers into a Cluster

1. Use the -cluster option to the imqbrokerd command that starts a broker, and
specify the complete list of brokers (to connect to) as an argument to the
-cluster option.

2. Do this for each broker you want to connect to the cluster when you start that
broker.

For example, the following command starts a new broker and connects it to the
broker running on the default port on host1, the broker running on port 7677
on host2 and the broker running on port 7678 on localhost.

imqbrokerd -cluster host1,host2:7677,:7678

Method 2: Connecting With a Cluster Configuration File
It is also possible to create a cluster configuration file that specifies the list of
brokers to be connected (and optionally, the address of the Master Broker). This
method of defining clusters is better suited for production systems. If you use this
method, each broker in the cluster must set the value of the imq.cluster.url
property to point to the cluster configuration file.

Secure Inter-Broker Connections
In situations where you want secure, encrypted message delivery between the
brokers in a cluster, you have to configure the cluster connection service to use an
SSL-based transport protocol, as follows.

➤ To Configure Secure Connections Within a Cluster

1. For each broker in the cluster, set up SSL-based connection services.

See the instructions in “Setting Up an SSL-based Service Over TCP/IP” on
page 219.

2. Set the imq.cluster.transport cluster configuration property to ssl.

If you are not using a cluster configuration file, you need to set this property
for each broker in the cluster.

Managing Brokers in a Cluster
Once you have set up a broker cluster, you might need to add a new broker, restart
a broker that is already part of the cluster, or remove a broker from the cluster.

Working With Clusters (Enterprise Edition)

144 Message Queue 3.5 SP1 • Administration Guide

Adding Brokers to a Cluster

➤ To Add a New Broker to an Existing Cluster

• If you are using a cluster configuration file, then

a. Add the new broker to the imq.cluster.brokerlist property in the
cluster configuration file.

b. Issue the following command to every broker in the cluster.

imqcmd reload cls

This forces all the brokers to reload the imq.cluster.brokerlist property
and to make sure that all persistent information for brokers in the cluster is
up to date.

c. Start the new broker specifying the imq.cluster.url property on the
command line using the -D option.

This points the broker to the cluster configuration file.

• If you are not using a cluster configuration file, then when you start the new
broker, specify the imq.cluster.brokerlist,the imq.cluster.transport (if
using a secure cluster connection service), and (if necessary) the
imq.cluster.masterbroker properties on the command line using the
-D option.

Restarting a Broker in a Cluster
If a broker in a cluster crashed or was shut down for some reason, you need to
restart it as a member of the cluster.

➤ To Restart a Broker That is Already a Member of an Existing Cluster

• If the cluster is not defined using a cluster configuration file, when you restart
the broker, specify the imq.cluster.brokerlist (and if necessary the
imq.cluster.masterbroker) properties on the command line using the -D
option. If the cluster does not include a Master Broker, you can simply use the
-cluster option to specify the list of brokers in the cluster when you restart the
broker.

• If the cluster is defined using a cluster configuration file, use the -D option to
specify the imq.cluster.url property on the command line used to start the
broker.

Working With Clusters (Enterprise Edition)

Chapter 5 Starting and Configuring a Broker 145

Removing a Broker from a Cluster

➤ To Remove a Broker From an Existing Cluster

• If the brokers A, B, and C were all started using the following command line,
then just restarting A will not remove it from the cluster.

imqbrokerd -cluster A,B,C

Instead, you need to restart all the other brokers with the following command
line:

imqbrokerd -cluster B,C

Then, you need to start broker A without specifying the -cluster option.

• If the list of brokers was specified using a cluster configuration file, then you
will need to do the following:

a. Remove mention of the broker from the configuration file.

b. Change or remove the imq.cluster.url property for the broker that is
being removed so that it no longer uses the common properties.

c. Use the imqcmd reload cls command to force all the brokers to reload
their cluster configuration and thereby reconfigure the cluster.

Managing the Master Broker’s Configuration
Change Record
Each cluster can have one Master Broker that keeps track of any changes in the
persistent state of the cluster. The state includes information about durable
subscriptions and administrator-created physical destinations. All brokers consult
the Master Broker during startup (which, in turn, consults its configuration change
record) in order to synchronize information about these persistent objects.
Consequently, the failure of the Master Broker would make such synchronization
impossible. As a result, if the Master Broker fails, you cannot create or delete
physical destinations or durable subscriptions.

Because of the important information it contains, it is important that you back up
the Master Broker’s configuration change record regularly and restore it in case of
failure.

The following sections explain how to back up and restore the configuration
change record.

Working With Clusters (Enterprise Edition)

146 Message Queue 3.5 SP1 • Administration Guide

Backing up the Configuration Change Record

➤ To Back Up the Configuration Change Record

Use the -backup option of the imqbrokerd command. For example,

imqbrokerd -backup mybackuplog

It is important you do this in a timely manner. Restoring a very old backup can
result in loss of information: any changes in physical destinations or durable
subscriptions since the backup was last done will be lost.

Restoring the Configuration Change Record

➤ To Restore the Master Broker in Case of Failure

1. Shut down all the brokers in the cluster.

2. Restore the Master Broker’s configuration change record using the following
command:

imqbrokerd -restore mybackuplog

3. If you assign a new name or port number to the Master Broker, you must
update the cluster configuration file to specify that the Master Broker is part of
the cluster and to specify its new name (using the property
imq.cluster.masterbroker).

4. Restart all the brokers.

The restoration of the broker will inevitably result in some stale data being
reloaded into the broker’s configuration change record; however, doing frequent
periodic backups, as described in the previous section, should minimize this
problem.

Because the Master Broker keeps track of the entire history of changes to persistent
objects, its database can grow significantly over a period of time. The backup and
restore operations have the positive effect of compressing and optimizing this
database.

Logging

Chapter 5 Starting and Configuring a Broker 147

Logging
This section describes the default logging configuration for the broker and explains
how you can change that configuration to redirect log information to alternate
output channels and change log file rollover criteria. For an introduction to
logging, see “Logger” on page 71. For information on using logging to report
broker metrics, see “Monitoring Tools” on page 246.

Default Logging Configuration
When you start the broker, it is automatically configured to save log output to a set
of rolling log files located in a directory identified by the name of the broker
instance (instanceName) with which the log files are associated (see Appendix A,
“Location of Message Queue Data”):

…/instances/instanceName/log/

The log files are simple text files. They are named as follows, from earliest to latest:

log.txt
log_1.txt
log_2.txt
…
log_9.txt

By default, log files are rolled over once a week; the system maintains nine backup
files.

• To change the directory in which the log files are kept, set the property
imq.log.file.dirpath to the desired path.

• To change the root name of the log files from log to something else, set the
imq.log.file.filename property.

The broker supports three log categories: ERROR, WARNING, INFO (see Table 2-7 on
page 72). Setting a logging level gathers messages for that level and all higher
levels. The default log level is INFO. This means that ERROR, WARNING, and INFO
messages are all logged by default.

Logging

148 Message Queue 3.5 SP1 • Administration Guide

Log Message Format
Logged messages consist of a timestamp (see Table 2-9 on page 74 to change the
timestamp time zone), message code, and the message itself. The volume of
information varies with the log level you have set. The following is an example of
an INFO message.

Changing the Logger Configuration
All Logger properties are described in Table 2-9 on page 74.

➤ To Change the Logger Configuration for a Broker

1. Set the log level.

2. Set the output channel (file, console, or both) for one or more logging
categories.

3. If you log output to a file, configure the rollover criteria for the file.

You complete these steps by setting Logger properties. You can do this in one of
two ways:

• Change or add Logger properties in the config.properties file for a broker
before you start the broker.

• Specify Logger command line options in the imqbrokerd command that starts
the broker. You can also use the broker option -D to change Logger properties
(or any broker property).

Options passed on the command line override properties specified in the broker
instance configuration files. Table 5-4 lists the imqbrokerd options that affect
logging.

[13/Sep/2000:16:13:36 PDT] B1004 Starting the broker service using tcp [
25374,100] with min threads 50 and max threads of 500

Table 5-4 imqbrokerd Logger Options and Corresponding Properties

imqbrokerd Options Description

-metrics interval Specifies the interval (in seconds) at which metrics information is
written to the Logger.

-loglevel level Sets the log level to one of ERROR, WARNING, INFO.

Logging

Chapter 5 Starting and Configuring a Broker 149

The following sections describe how you can change the default configuration in
order to do the following:

• change the output channel (the destination of log messages)

• change rollover criteria

Changing the Output Channel
By default, error and warning messages are displayed on the terminal as well as
being logged to a log file. (On Solaris error messages are also written to the
system’s syslog daemon.)

You can change the output channel for log messages in the following ways:

• To have all log categories (for a given level) output displayed on the screen, use
the -tty option to the imqbrokerd command.

• To prevent log output from being displayed on the screen, use the -silent
option to the imqbrokerd command.

• Use the imq.log.file.output property to specify which categories of logging
information should be written to the log file. For example,

imq.log.file.output=ERROR

• Use the imq.log.console.output property to specify which categories of
logging information should be written to the console. For example,

imq.log.console.output=INFO

• On Solaris, use the imq.log.syslog.output property to specify which
categories of logging information should be written to Solaris syslog. For
example,

imq.log.syslog.output=NONE

-silent Turns off logging to the console.

-tty Sends all messages to the console. By default only WARNING and
ERROR level messages are displayed.

Table 5-4 imqbrokerd Logger Options and Corresponding Properties (Continued)

imqbrokerd Options Description

Logging

150 Message Queue 3.5 SP1 • Administration Guide

Changing Log File Rollover Criteria
There are two criteria for rolling over log files: time and size. The default is to use a
time criteria and roll over files every seven days.

• To change the time interval, you need to change the property
imq.log.file.rolloversecs. For example, the following property definition
changes the time interval to ten days:

imq.log.file.rolloversecs=864000

• To change the rollover criteria to depend on file size, you need to set the
imq.log.file.rolloverbytes property. For example, the following definition
directs the broker to rollover files after they reach a limit of 500,000 bytes

imq.log.file.rolloverbytes=500000

If you set both the time-related and the size-related rollover properties, the first
limit reached will trigger the rollover. As noted before, the broker maintains up to
nine rollover files.

NOTE Before changing logger output channels, you must make sure that
logging is set at a level that supports the information you are
mapping to the output channel. For example, if you set the log level
to ERROR and then set the imq.log.console.output property to
WARNING, no messages will be logged because you have not enabled
the logging of WARNING messages.

151

Chapter 6

Broker and Application Management

This chapter explains how to perform tasks related to managing the broker and the
services it provides. Some of these tasks are independent of any particular client
application. These include:

• controlling the broker’s state: you can pause, resume, shutdown, and restart
the broker.

• querying and updating broker properties

• managing connection services

Other broker tasks are performed on behalf of specific applications; these include
managing physical destinations, durable subscriptions, and transactions:

• Message Queue messages are routed to their receivers or subscribers by way of
broker destinations. You are responsible for creating these destinations on the
broker.

• Message Queue allocates and maintains resources for durable subscribers even
when clients that have durable subscriptions become inactive. You use the
Message Queue Command tool to get information about durable subscriptions
and to destroy durable subscriptions or purge their messages in order to save
Message Queue resources.

• Message Queue transactions and distributed transactions are tracked by a
broker. You might need to manually commit or roll back transactions if a
failure takes place.

This chapter explains how you use the Command utility (imqcmd) to perform all
these tasks. You can accomplish a number of these same tasks by using the
Administration Console, the graphical interface to the Message Queue message
server. For more information, see Chapter 4, “Administration Console Tutorial.”

Command Utility

152 Message Queue 3.5 SP1 • Administration Guide

Command Utility
The Command utility allows you to manage the broker and the services it
provides. This section describes the basic imqcmd command syntax, provides a
listing of subcommands, and summarizes imqcmd options. Subsequent sections
explain how you use these commands to accomplish specific tasks.

Syntax of the imqcmd Command
The general syntax of the imqcmd command is as follows:

imqcmd subcommand argument [options]
imqcmd -h|H
imqcmd -v

Note that if you specify the -v, -h, or -H options, no subcommands specified on the
command line are executed. For example, if you enter the following command,
version information is displayed but the restart subcommand is not executed.

imqcmd restart bkr -v

imqcmd Subcommands
The Command utility (imqcmd) includes the subcommands listed in Table 6-1: The
subcommands are described in more detail in the task-oriented sections of this
chapter.

Table 6-1 imqcmd Subcommands

Subcommand and Argument Description

commit txn Commits a transaction.

compact dst Compacts the built-in file-based data store for one or more
destinations.

create dst Creates a destination.

destroy dst Destroys a destination.

destroy dur Destroys a durable subscription.

list cxn Lists connections for a broker.

list dst Lists destinations on a broker.

list dur Lists durable subscriptions to a topic.

Command Utility

Chapter 6 Broker and Application Management 153

list svc Lists services on a broker.

list txn Lists transactions on a broker.

metrics bkr Displays broker metrics.

metrics dst Displays destination metrics.

metrics svc Displays service metrics.

pause bkr Pauses all services on a broker.

pause dst Pauses one or more destinations on a broker.

pause svc Pauses a single service on a broker.

purge dst Purges all messages on a destination without destroying the
destination.

purge dur Purges all messages on a durable subscription without
destroying the durable subscription.

query bkr Queries and displays information on a broker.

query cxn Queries and displays information on a connection.

query dst Queries and displays information on a destination.

query svc Queries and displays information on a service.

query txn Queries and displays information on a transaction.

reload cls Reloads broker cluster configuration.

restart bkr Restarts the current running broker instance. Cannot be used
to start a new broker instance.

resume bkr Resumes all services on a broker.

resume dst Resumes one or more paused destinations on a broker.

resume svc Resumes one service.

rollback txn Rolls back a transaction.

shutdown bkr Shuts down the broker instance. Can be subsequently started
using the imqbrokerd command, but not the restart bkr
subcommand of imqcmd.

update bkr Updates attributes of a broker.

update dst Updates attributes of a destination.

update svc Updates attributes of a service.

Table 6-1 imqcmd Subcommands (Continued)

Subcommand and Argument Description

Command Utility

154 Message Queue 3.5 SP1 • Administration Guide

Summary of imqcmd Options
Table 6-2 lists the options to the imqcmd command. For a discussion of their use, see
the following task-based sections.

Table 6-2 imqcmd Options

Option Description

-b hostName:port Specifies the name of the broker’s host and its port number. The
default value is localhost:7676.

To specify port only: -b :7878
To specify name only: -b somehost

-c clientID Specifies the ID of the durable subscriber to a topic. See “Managing
Durable Subscriptions” on page 179.

-d destinationName Specifies the name of the topic. Used with the list dur and
destroy dur subcommands. See “Managing Durable
Subscriptions” on page 179.

-f Performs action without user confirmation.

-h Displays usage help. Nothing else on the command line is
executed.

-H Displays usage help, attribute list, and examples. Nothing else on
the command line is executed.

-int interval Specifies the interval, in seconds, at which the metrics bkr,
metrics dst, and metrics svc subcommands display metrics
output.

-javahome path Specifies an alternate Java 2 compatible runtime to use (default is
to use the runtime on the system or the runtime bundled with
Message Queue).

-m metricType Specifies the type of metric information to display. Use this option
with the metrics dst, metrics svc, or metrics bkr subcommand.
The value of metricType depends on whether the metrics are
generated for a destination, a service, or a broker.

-msp numSamples Specifies the number of metric samples the metrics bkr, metrics
dst, and metrics svc subcommands display in their metrics output.

-n argumentName Specifies the name of the subcommand argument. Depending on
the subcommand, this might be the name of a service, a physical
destination, a durable subscription, a connection ID, or a
transaction ID.

Command Utility

Chapter 6 Broker and Application Management 155

You must specify the options for host name and port number (-b), user name (-u),
password (-p), and secure connection (-secure) each time you issue a imqcmd
subcommand. If you don’t specify the host name and port number, it uses the
default values. If you don’t specify user name and password information, you will
be prompted for them. If you don’t specify -secure, then the connection will not be
secure.

-o attribute=value Specifies the value of an attribute. Depending on the subcommand
argument, this might be the attribute of a broker (see “Managing a
Broker” on page 157), service (see “Managing Connection
Services” on page 162), or destination (see “Managing
Destinations” on page 168).

-p password Specifies your (the administrator’s) password. If you omit this value,
you will be prompted for it.

-pst pauseType Specifies whether producers, consumers, or both are paused when
pausing a destination. See “Managing Destinations” on page 168.

-rtm timeout Specifies the initial (retry) timeout period (in seconds) of an imqcmd
subcommand. The timeout is the length of time the imqcmd
subcommand will wait after making a request to the broker. Each
subsequent retry of the subcommand will use a timeout value that
is a multiple of the initial timeout period. Default: 10

-rtr numRetries Specifies the number of retries attempted after an imqcmd
subcommand first times out. Default: 5

-s Silent mode. No output will be displayed.

-secure Specifies a secure administration connection to the broker using
the ssladmin connection service (see “Step 4. Configuring and
Running SSL-based Clients” on page 223).

-svn serviceName Specifies the service for which connections are listed. See “Getting
Connection Information” on page 167.

-t destType Specifies the type of a destination: t (topic) or q (queue). See
“Managing Destinations” on page 168.

-tmp Displays temporary destinations. See Table 6-9 on page 168.

-u userName Specifies your (the administrator’s) name. If you omit this value, you
will be prompted for it.

-v Displays version information. Nothing else on the command line is
executed.

Table 6-2 imqcmd Options (Continued)

Option Description

Command Utility

156 Message Queue 3.5 SP1 • Administration Guide

Using imqcmd Commands
In order to use imqcmd commands to manage the broker, you must do the
following:

• Start the broker using the imqbrokerd command.

See “Starting a Broker” on page 134. You can use the Command utility only to
administer brokers that are already running; you cannot use it to start a broker.

• Specify the target broker using the -b option unless the broker is running on
the local host, on port 7676.

• Specify the proper administrator user name and password. If you do not do
this, you will be prompted for it. Either way, be aware that every operation you
perform using imqcmd will be authenticated against a user repository. For more
information, see “Authenticating Users” on page 202.

When you install Message Queue, a default flat-file user repository is installed.
The repository is shipped with two entries: one for an admin user and one for a
guest user. These entries allow you to connect to the broker instance without
doing any additional work. For example, if you are just testing Message
Queue, you can run the imqcmd utility using the default user name and
password (admin/admin).

If you are setting up a production system, you will need to do some additional
work to authenticate and authorize administrative users (see Chapter 8,
“Managing Security”). In particular, you need to make entries in the Message
Queue user repository (see “Using a Flat-File User Repository” on page 202).
You also have the option of using an LDAP directory server for your user
repository (see “Using an LDAP Server for a User Repository” on page 209).

NOTE To be able to use the -secure option, you must first set up and
enable the ssladmin service on the target broker instance, as
described in “Setting Up an SSL-based Service Over TCP/IP” on
page 219.

Managing a Broker

Chapter 6 Broker and Application Management 157

Example imqcmd Usage
The following examples illustrate the use of the imqcmd command:

• To list the properties of the broker running on localhost at port 7676:

imqcmd query bkr -u admin -p admin

• To list the properties of the broker running on myserver at port 1564; the user’s
name is alladin, the user’s password is abracadabra.

imqcmd query bkr -b myserver:1564 -u alladin -p abracadabra

Assuming that the user name alladin was assigned to the admin group, you
will be connected as an admin client to the specified broker.

• To list the properties of the broker running on localhost at port 7676, with the
initial timeout for the command set to 20 seconds and the number of retries
(after timeout) set to 7.

imqcmd query bkr -u admin -p admin -rtm 20 -rtr 7

Managing a Broker
The Command utility includes subcommands that you can use to perform the
following broker management tasks:

• Displaying Broker Information

• Updating Broker Properties

• Displaying Broker Metrics

• Controlling the Broker’s State

To manage connection services for a broker, see “Managing Connection Services”
on page 162. To manage broker destinations, see “Managing Destinations” on
page 168

Table 6-3 lists the imqcmd subcommands used to manage brokers. If no host name
or port is specified, the default (localhost:7676)is assumed.

Managing a Broker

158 Message Queue 3.5 SP1 • Administration Guide

Table 6-3 imqcmd Subcommands Used to Manage a Broker

Subcommand Syntax Description

metrics bkr [-b hostName:port]
[-m metricType]
[-int interval]
[-msp numSamples]

Displays broker metrics for the default broker or a
broker at the specified host and port.

Use the -m option to specify the type of metric to
display:

ttl Displays metrics on messages and packets
flowing into and out of the broker. (default metric type)

rts Displays metrics on rate of flow of messages
and packets into and out of the broker (per second).

cxn Displays connections, virtual memory heap, and
threads.

Use the -int option to specify the interval (in seconds)
at which to display the metrics. The default is 5
seconds.

Use the -msp option to specify the number of samples
displayed in the output. The default is an unlimited
number (infinite).

pause bkr [-b hostName:port] Pauses the default broker or a broker at the specified
host and port. See “Pausing and Resuming a Broker”
on page 161.

query bkr -b hostName:port Lists the current settings of properties of the default
broker or a broker at the specified host and port. Also
shows the list of running brokers (in a multi-broker
cluster) that are connected to the specified broker.

reload cls Applies only to broker clusters. Forces all the brokers in
a cluster to reload the imq.cluster.brokerlist
property and update cluster information. See “Adding
Brokers to a Cluster” on page 144 for more information.

restart bkr [-b hostName:port] Shuts down and restart the default broker or a broker at
the specified host and port.

Note that this command restarts the broker using the
options specified when the broker was first started. If
you want different options to be in effect, you must
shutdown the broker and then start it again, specifying
the options you want.

resume bkr [-b hostName:port] Resumes the default broker or a broker at the specified
host and port.

shutdown bkr [-b hostName:port] Shuts down the default broker or a broker at the
specified host and port.

Managing a Broker

Chapter 6 Broker and Application Management 159

Remember that you must specify the broker host name and port number when
using any of the subcommands listed in Table 6-3 unless you are targeting the
broker running on localhost at port 7676

Displaying Broker Information
To query and display information about a single broker, use the query bkr
subcommand. For example:

imqcmd query bkr -u admin -p admin

This command produces output like the following:

update bkr [-b hostName:port]
-o attribute=value
[-o attribute=value1]…

Changes the specified attributes for the default broker
or a broker at the specified host and port.

Version 3.5 SP1
Instance Name imqbroker
Primary Port 7676

Current Number of Messages in System 0
Current Total Message Bytes in System 0

Max Number of Messages in System unlimited (-1)
Max Total Message Bytes in System unlimited (-1)
Max Message Size 70m

Auto Create Queues true
Auto Create Topics true
Auto Created Queue Max Number of Active Consumers 1
Auto Created Queue Max Number of Backup Consumers 0

Cluster Broker List (active)
Cluster Broker List (configured)
Cluster Master Broker
Cluster URL

Log Level INFO
Log Rollover Interval (seconds) 604800
Log Rollover Size (bytes) unlimited (-1)

Table 6-3 imqcmd Subcommands Used to Manage a Broker (Continued)

Subcommand Syntax Description

Managing a Broker

160 Message Queue 3.5 SP1 • Administration Guide

Updating Broker Properties
You can use the update bkr subcommand to update any of the broker properties
listed in Table 6-4. Note that updates to the broker are automatically written to the
broker’s instance configuration file.

For example, the following command turns off the auto-creation of queue
destinations:

imqcmd update bkr -o “imq.autocreate.queue=false”
-u admin -p admin

Controlling the Broker’s State
After you start the broker, you can use the following imqcmd subcommands to
control the state of the broker.

Table 6-4 Broker Properties Updated by imqcmd

Property Reference

imq.autocreate.queue Table 2-10 on page 79

imq.autocreate.topic Table 2-10 on page 79

imq.autocreate.queue.maxNumActiveConsumers Table 2-10 on page 79

imq.autocreate.queue.maxNumBackupConsumers Table 2-10 on page 79

imq.cluster.url Table 5-3 on page 140.

imq.log.level Table 2-9 on page 74

imq.log.file.rolloversecs Table 2-9 on page 74

imq.log.file.rolloverbytes Table 2-9 on page 74

imq.system.max_count Table 2-4 on page 62

imq.system.max_size Table 2-4 on page 62

imq.message.max_size Table 2-4 on page 62

imq.portmapper.port Table 2-3 on page 57

Managing a Broker

Chapter 6 Broker and Application Management 161

Pausing and Resuming a Broker
• Pausing the broker. Pausing a broker suspends the broker’s connection service

threads, which causes the broker to stop listening on the connection ports. As a
result, the broker will no longer be able to accept new connections, receive
messages, dispatch messages.

However, pausing a broker does not suspend the admin connection service,
letting you perform administration tasks needed to regulate the flow of
messages to the broker. For example, if a particular destination is bombarded
with messages, you can pause the broker and take any of the following actions
that might help you fix the problem: trace the source of the messages, limit the
size of the destination, or destroy the destination.

Pausing a broker also does not suspend the cluster connection service.
However message delivery within a cluster depend on the delivery functions
performed by the different brokers in the cluster.

The following command pauses the broker running on myhost at port 1588.

imqcmd pause bkr -b myhost:1588 -u admin -p admin

(You can also pause individual connection services—see “Pausing and
Resuming a Connection Service” on page 166—as well as individual
destinations—see “Pausing and Resuming Destinations” on page 175)

• Resuming the broker. Resuming the broker reactivates the broker’s service
threads and the broker resumes listening on the ports. The following command
resumes the broker running on localhost at port 7676.

imqcmd resume bkr -u admin -p admin

Shutting Down and Restarting a Broker
• Shutting down the broker. Shutting down the broker terminates the broker

process. This is a graceful termination: the broker stops accepting new
connections and messages, it completes delivery of existing messages, and it
terminates the broker process. The following command shuts down the broker
running on ctrlsrv at port 1572

imqcmd shutdown bkr -b ctrlsrv:1572 -u admin -p admin

• Restarting the broker. Shuts down and restarts the broker. The following
command restarts the broker running on localhost at port 7676:

imqcmd restart bkr -u admin -p admin

Managing Connection Services

162 Message Queue 3.5 SP1 • Administration Guide

Displaying Broker Metrics
To display metrics information about a broker, use the metrics bkr subcommand.
For example, to get the rate of message flow into and out of the broker at ten second
intervals:

imqcmd metrics bkr -m rts -int 10 -u admin -p admin

This command produces output like the following:

For a more detailed description of the use of imqcmd to report broker metrics, see
“Monitoring Tools” on page 246.

Managing Connection Services
The Command utility includes subcommands that allow you to perform the
following connection service management tasks:

• Listing Connection Services

• Displaying Connection Service Information

• Updating Connection Service Properties

• Displaying Connection Service Metrics

• Pausing and Resuming a Connection Service

For an overview of Message Queue connection services, see “Connection Services”
on page 54.

Table 6-5 lists the imqcmd subcommands used to manage connection services. If no
host name or port is specified, the default (localhost:7676)is assumed.

--
 Msgs/sec Msg Bytes/sec Pkts/sec Pkt Bytes/sec
 In Out In Out In Out In Out
--
 0 0 27 56 0 0 38 66
 10 0 7365 56 10 10 7457 1132
 0 0 27 56 0 0 38 73
 0 10 27 7402 10 20 1400 8459
 0 0 27 56 0 0 38 73

Managing Connection Services

Chapter 6 Broker and Application Management 163

Table 6-5 imqcmd Subcommands Used to Manage Connection Services

Subcommand Syntax Description

list svc [-b hostName:port] Lists all connection services on the default broker or
on a broker at the specified host and port.

metrics svc -n serviceName
[-b hostName:port]
[-m metricType]
[-int interval]
[-msp numSamples]

Displays metrics for the specified service on the
default broker or on a broker at the specified host and
port.

Use the -m option to specify the type of metric to
display:

ttl Displays metrics on messages and packets
flowing into and out of the broker by way of the
specified service. (default metric type)

rts Displays metrics on rate of flow of messages
and packets into and out of the broker (per second) by
way of the specified service.

cxn Displays connections, virtual memory heap,
and threads.

Use the -int option to specify the interval (in seconds)
at which to display the metrics. The default is 5
seconds.

Use the -msp option to specify the number of samples
displayed in the output. The default is an unlimited
number (infinite).

pause svc -n serviceName
[-b hostName:port]

Pauses the specified service running on the default
broker or on a broker at the specified host and port.
You cannot pause the admin service.

query svc -n serviceName
[-b hostName:port]

Displays information about the specified service
running on the default broker or on a broker at the
specified host and port.

resume svc -n serviceName
[-b hostName:port]

Resumes the specified service running on the default
broker or on a broker at the specified host and port.

update svc -n serviceName
[-b hostName:port]
-o attribute=value
[-o attribute=value1]…

Updates the specified attribute of the specified service
running on the default broker or on a broker at the
specified host and port. For a description of service
attributes, see Table 6-7 on page 165.

Managing Connection Services

164 Message Queue 3.5 SP1 • Administration Guide

A broker supports connections from both application clients and administration
clients. The connection services currently available from a Message Queue broker
are shown in Table 6-6. The values in the Service Name column are the values you
use to specify a service name for the -n option. As shown in the table, each service
is specified by the service type it uses—NORMAL (application clients) or ADMIN
(administration clients)—and an underlying transport layer.

Listing Connection Services
To list available connection services on a broker, use a command like the following:

imqcmd list svc [-b hostName:portNumber] -u admin -p admin

For example, the following command lists the services available for the broker
running on the host myServer on port 6565.

imqcmd list svc -b MyServer:6565 -u admin -p admin

The following command lists all services on the broker running on localhost at
port 7676:

imqcmd list svc -u admin -p admin

The command will output information like the following:

Table 6-6 Connection Services Supported by a Broker

Service Name Service Type Protocol Type

jms NORMAL tcp

ssljms (Enterprise Edition) NORMAL tls (SSL-based security)

httpjms (Enterprise Edition) NORMAL http

httpsjms (Enterprise Edition) NORMAL https (SSL-based security)

admin ADMIN tcp

ssladmin (Enterprise Edition) ADMIN tls (SSL-based security)

--
Service Name Port Number Service State
--
admin 41844 (dynamic) RUNNING
httpjms - UNKNOWN
httpsjms - UNKNOWN

Managing Connection Services

Chapter 6 Broker and Application Management 165

Displaying Connection Service Information
To query and display information about a single service, use the query
subcommand. For example,

imqcmd query svc -n jms -u admin -p admin

This command produces output like the following:

Updating Connection Service Properties
You can use the update subcommand to change the value of one or more of the
service properties listed in Table 6-7.

jms 41843 (dynamic) RUNNING
ssladmin dynamic UNKNOWN
ssljms dynamic UNKNOWN

Service Name jms
Service State RUNNING
Port Number 60920 (dynamic)

Current Number of Allocated Threads 0
Current Number of Connections 0

Min Number of Threads 10
Max Number of Threads 1000

Table 6-7 Connection Service Properties Updated by imqcmd

Property Description

port The port assigned to the service to be updated (does not apply to
httpjms or httpsjms). A value of 0 means the port is dynamically
allocated by the Port Mapper.

minThreads The minimum number of threads assigned to the service.

maxThreads The maximum number of threads assigned to the service.

Managing Connection Services

166 Message Queue 3.5 SP1 • Administration Guide

The following command changes the minimum number of threads assigned to the
jms service to 20.

imqcmd update svc -n jms -o “minThreads=20”

Displaying Connection Service Metrics
To display metrics information about a single service, use the metrics
subcommand. For example, to get cumulative totals for messages and packets
handled by the jms connection service:

imqcmd metrics svc -n jms -m ttl -u admin -p admin

This command produces output like the following:

For a more detailed description of the use of imqcmd to report connection service
metrics, see “Monitoring Tools” on page 246.

Pausing and Resuming a Connection Service
To pause any service other than the admin service (which cannot be paused), use a
command like the following:

imqcmd pause svc -n serviceName -u admin -p admin

Pausing a service has the following effects:

• The broker stops accepting new client connections on the paused service. If a
Message Queue client attempts to open a new connection, it will get an
exception.

• All the existing connections on the paused service are kept alive, but the broker
suspends all message processing on such connections until the service is
resumed. (For example, if a client attempts to send a message, the send()
method will block until the service is resumed.)

Msgs Msg Bytes Pkts Pkt Bytes

In Out In Out In Out In Out

164 100 120704 73600 282 383 135967 102127
657 100 483552 73600 775 876 498815 149948

Getting Connection Information

Chapter 6 Broker and Application Management 167

• The message delivery state of any messages already received by the broker is
maintained. (For example, transactions are not disrupted and message delivery
will resume when the service is resumed.)

To resume a service, use a command like the following:

imqcmd resume svc -n serviceName -u admin -p admin

Getting Connection Information
The Command utility includes subcommands that allow you to list and get
information about connections.

Table 6-8 lists the imqcmd subcommands that apply to connections. If no host name
or port is specified, they are assumed to be localhost, 7676.

To query and display information about a single connection service, use the query
subcommand. For example,

imqcmd query cxn -n 421085509902214374 -u admin -p admin

This command produces output like the following:

Table 6-8 imqcmd Subcommands Used to Manage Connection Services

Subcommand Syntax Description

list cxn [-svn serviceName]
[-b hostName:port]

Lists all connections of the specified service name on
the default broker or on a broker at the specified host
and port. If the service name is not specified, all
connections are listed.

query cxn -n connectionID
[-b hostName:port]

Displays information about the specified connection
on the default broker or on a broker at the specified
host and port.

Connection ID 421085509902214374
User guest
Service jms
Producers 0
Consumers 1
Host 111.22.333.444
Port 60953
Client ID
Client Platform

Managing Destinations

168 Message Queue 3.5 SP1 • Administration Guide

Managing Destinations
All Message Queue messages are routed to their consumer clients by way of queue
and topic destinations created on a particular broker.

The Command utility includes subcommands that allow you to perform the
following destination management tasks:

• Creating Destinations

• Listing Destinations

• Displaying Destination Information

• Updating Destination Attributes

• Displaying Destination Metrics

• Pausing and Resuming Destinations

• Purging Destinations

• Destroying Destinations

• Compacting Destinations

For an introduction to destinations, see “Physical Destinations” on page 76.

Table 6-9 provides a summary of the imqcmd destination subcommands. Remember
to specify the host name and port of the broker if this is not the default broker
(localhost:7676).

Table 6-9 imqcmd Subcommands Used to Manage Destinations

Subcommand Syntax Description

compact dst [-t destType
-n destName]

Compacts the built-in file-based data store for the
destination of the specified type and name. If no
destination type and name are specified, then all
destinations are compacted. Destinations must be
paused before they can be compacted.

create dst -t destType
-n destName
[-o attribute=value]
[-o attribute=value1]…

Creates a destination of the specified type, with the
specified name, and the specified attributes. Destination
names must contain only alphanumeric characters (no
spaces) and can begin with an alphabetic character or
the characters “_” and “$”. They cannot begin with the
character string “mq.”

destroy dst -t destType
-n destName

Destroys the destination of the specified type and name.

Managing Destinations

Chapter 6 Broker and Application Management 169

list dst [-t destType] [-tmp] Lists all destinations of the specified type, with option of
listing temporary destinations as well (see “Temporary
Destinations” on page 81).

The type argument can have two values:

destType = q (queue)
destType = t (topic)

If the type is not specified, all destinations of all types
are listed.

metrics dst -t destType
-n destName
[-m metricType]
[-int interval]
[-msp numSamples]

Displays metrics information for the destination of the
specified type and name.

Use the -m option to specify the type of metric to display:

ttl Displays metrics on messages and packets
flowing into and out of the destination and residing in
memory. (default metric type))

rts Displays metrics on rate of flow of messages and
packets into and out of the destination (per second) and
other rate information.

con Displays consumer-related metrics.

dsk Displays disk usage metrics.

Use the -int option to specify the interval (in seconds)
at which to display the metrics. The default is 5 seconds.

Use the -msp option to specify the number of samples
displayed in the output. The default is an unlimited
number (infinite).

pause dst [-t destType
-n destName]
[-pst pauseType]

Pauses the delivery of messages to consumers (-pst
CONSUMERS), or from producers (-pst PRODUCERS), or
both (-pst ALL), for the destination of the specified type
and name. If no destination type and name are
specified, then all destinations are paused. The default
is ALL.

purge dst -t destType
-n destName

Purges messages at the destination of the specified
type and name.

query dst -t destType
-n destName

Lists information about the destination of the specified
type and name.

resume dst [-t destType
-n destName]

Resumes the delivery of messages for the paused
destination of the specified type and name. If no
destination type and name are specified, then all
destinations are resumed.

Table 6-9 imqcmd Subcommands Used to Manage Destinations (Continued)

Subcommand Syntax Description

Managing Destinations

170 Message Queue 3.5 SP1 • Administration Guide

Creating Destinations
When creating a destination, you must specify the following:

• The destination type: topic or queue

• The destination name: must contain only alphanumeric characters (no spaces)
and can begin with an alphabetic character or the characters “_” and “$”. The
name cannot begin with the character string “mq.”

• Any non-default values for the destination’s attributes

Many of the destination attributes are used to manage broker memory resources
and message flow. For example, you can specify the maximum number of
producers allowed for a destination or the maximum number (or size) of messages
allowed in a destination. These limits are similar to those that can be set on a
broker-wide basis using broker configuration properties (see “Managing Memory
Resources and Message Flow” on page 61). You can also specify how the broker
responds when these limits are reached.

There are also destination attributes that apply only to queue destinations. These
are used to specify the number of active and backup consumers used in
load-balanced delivery of messages to multiple consumers (see “Queue
Destinations” on page 77).

Table 6-10 describes the attributes that apply for each type of destination. You can
set the attribute values when you create or update a destination. For auto-created
destinations you set default property values in the broker’s instance configuration
file (see “Configuration Files” on page 127).

update dst -t destType
-n destName
-o attribute=value
[-o attribute=value1]…

Updates the value of the specified attributes at the
specified destination.

The attribute name may be any of the attributes
described in Table 6-10.

Table 6-9 imqcmd Subcommands Used to Manage Destinations (Continued)

Subcommand Syntax Description

Managing Destinations

Chapter 6 Broker and Application Management 171

Table 6-10 Destination Attributes

Destination
Type

Attribute Default Value Description

Queue &
Topic

maxNumMsgs1 -1
(unlimited)

Specifies maximum number of unconsumed
messages allowed in the destination.

Queue &
Topic

maxTotalMsgBytes1 -1
(unlimited)

Specifies the maximum total amount of memory
(in bytes) allowed for unconsumed messages in
the destination.

Queue &
Topic

limitBehavior REJECT_
NEWEST

Specifies how the broker responds when a
memory-limit threshold is reached. Values are:

FLOW_CONTROL — slows down producers

REMOVE_OLDEST — throws out oldest messages

REMOVE_LOW_PRIORITY — throws out lowest
priority messages according to age of the
messages (producing client receives no
notification of message deletion)

REJECT_NEWEST — rejects the newest messages
(producing client gets exception for rejection of
persistent messages, but no notification for
rejection of non-persistent messages)

Queue &
Topic

maxBytesPerMsg -1
(unlimited)

Specifies maximum size (in bytes) of any single
message allowed in the destination (producing
client gets exception for rejection of persistent
messages, but no notification for rejection of
non-persistent messages.

Queue &
Topic

maxNumProducers1 -1
(unlimited)

Specifies maximum number of producers
allowed for the destination. When this limit is
reached, no new producers can be created.

Queue only maxNumActiveConsumers 1 Specifies the maximum number of consumers
that can be active in load-balanced delivery from
a queue destination. A value of -1 means an
unlimited number. (Platform Edition limits this
value to 2.)

Queue only maxNumBackupConsumers 0 Specifies the maximum number of backup
consumers that can take the place of active
consumers, if any fail during load-balanced
delivery from a queue destination. A value of -1
means an unlimited number.

1. In a cluster environment, this property applies to each instance of the destination in the cluster, rather than collectively to all
instances in the cluster.

Managing Destinations

172 Message Queue 3.5 SP1 • Administration Guide

• To create a queue destination, enter a command like the following:

imqcmd create dst -n myQueue -t q -o “maxNumActiveConsumers=5”

Note that a destination name must contain only alphanumeric characters (no
spaces) and can begin with an alphabetic character or the characters “_” and
“$”. It cannot begin with the character string “mq,” which is reserved for
metrics topic destinations (see Table 2-8 on page 73.

• To create a topic destination, enter a command like the following:

imqcmd create dst -n myTopic -t t -o “maxBytesPerMsg=5000”

Queue &
Topic

consumerFlowLimit Topics: 1000

Queues: 1000

Specifies the maximum number of messages
that will be delivered to a consumer in a single
batch. In load-balanced queue delivery, this is
the initial number of queued messages routed to
active consumers before load-balancing
commences (see “Queue Delivery to Multiple
Consumers” on page 77). This limit can be
overridden by a lower value specified for the
destination’s consumers on their respective
connections (see information on Connection
Factory attributes in the Message Queue Java
Client Developer’s Guide). A value of -1 means an
unlimited number.

Queue only localDeliveryPreferred false Applies only to load-balanced queue delivery in
broker clusters. Specifies that messages be
delivered to remote consumers only if there are
no consumers on the local broker. Requires that
the destination not be restricted to local-only
delivery (isLocalOnly = false).

Queue &
Topic

isLocalOnly false Applies only to broker clusters. Specifies that a
destination is not replicated on other brokers,
and is therefore limited to delivering messages
only to local consumers (consumers connected
to the broker on which the destination is
created). This attribute cannot be updated once
the destination has been created.

Table 6-10 Destination Attributes (Continued)

Destination
Type

Attribute Default Value Description

1. In a cluster environment, this property applies to each instance of the destination in the cluster, rather than collectively to all
instances in the cluster.

Managing Destinations

Chapter 6 Broker and Application Management 173

Listing Destinations
You can get information about a destination’s current attribute values, about the
number of producers or consumers associated with a destination, and about
messaging metrics, such as the number and size of messages in the destination.

To find a destination about which you want to get information, you can first list all
destinations on a particular broker using the list dst subcommand. For example,
to get a list of all destinations on the broker running on myHost at port 4545, enter
the following command:

imqcmd list dst -b myHost:4545

The list dst subcommand can optionally specify the type of destination to list or
optionally include temporary destinations (using the -tmp option). Temporary
destinations are created by clients, normally for the purpose of receiving replies to
messages sent to other clients (see “Temporary Destinations” on page 81).

Displaying Destination Information
To get information about a destination’s current attribute values, use the query dst
subcommand, such as in the following command:

imqcmd query dst -t q -n XQueue -u admin -p admin

This command produces output like the following:

Destination Name Destination Type

XQueue Queue

On the broker specified by:

Host Primary Port

localhost 7676

Destination Name XQueue
Destination Type Queue
Destination State RUNNING
Created Administratively true

Current Number of Messages 0
Current Total Message Bytes 0
Current Number of Producers 0
Current Number of Active Consumers 0

Managing Destinations

174 Message Queue 3.5 SP1 • Administration Guide

The output also shows the number of producers and consumers associated with
the destination. For queue destinations, this would include both active and backup
consumers.

You can use the update dst subcommand to change the values of one or more
attributes (see “Updating Destination Attributes” on page 174).

Updating Destination Attributes
You can change the attributes of a destination by using the update dst
subcommand and the -o option to specify the attribute to update. You can use the
-o option more than once if you want to update more than one attribute. For
example, the following command changes the maxBytesPerMsg attribute to 1000
and the MaxNumMsgs to 2000:

imqcmd update dst -t q -n myQueue -o “maxBytesPerMsg=1000”
-o “maxNumMsgs=2000” -u admin -p admin

See Table 6-10 on page 171 for a list of the attributes that you can update.

You cannot use the update dst subcommand to update the type of a destination or
to update the isLocalOnly attribute.

Current Number of Backup Consumers 0

Max Number of Messages unlimited (-1)
Max Total Message Bytes unlimited (-1)
Max Bytes per Message unlimited (-1)
Max Number of Producers 100
Max Number of Active Consumers 1
Max Number of Backup Consumers 0

Limit Behavior REJECT_NEWEST
Consumer Flow Limit 100
Is Local Destination false
Local Delivery is Preferred false

Managing Destinations

Chapter 6 Broker and Application Management 175

Displaying Destination Metrics
To get message metrics information about a destination, use the metrics dst
subcommand, such as in the following command:

imqcmd metrics dst -t q -n XQueue -m ttl -u admin -p admin

This command produces output like the following:

For a more detailed description of the use of imqcmd to report destination metrics,
see “Monitoring Tools” on page 246.

Pausing and Resuming Destinations
You can pause a destination to control the delivery of messages from producers to
the destination, or from the destination to consumers, or both. In particular, you
can pause the flow of messages into a destination to help prevent destinations from
being overwhelmed with messages when production of messages is much faster
than consumption.

To pause the delivery of messages to or from a destination, use the pause dst
subcommand, as in the following command:

imqcmd pause dst -n myQueue -t q -pst PRODUCERS -u admin -p admin

imqcmd pause dst -n myTopic -t t -pst CONSUMERS -u admin -p admin

In the case where you have paused a destination and want to resume delivery,
enter the following command:

imqcmd resume dst -n myQueue -t q

In a multi-broker cluster, instances of the destination reside on each broker in the
cluster. You must pause each of these destinations individually.

Msgs Msg Bytes Msg Count Total Msg Bytes (k) Largest

In Out In Out Current Peak Avg Current Peak Avg Msg (k)

200 200 147200 147200 0 200 0 0 143 71 0
300 200 220800 147200 100 200 10 71 143 64 0
300 300 220800 220800 0 200 0 0 143 59 0

Managing Destinations

176 Message Queue 3.5 SP1 • Administration Guide

Purging Destinations
You can purge all messages currently queued at a destination. Purging a
destination means that all messages queued at the physical destination are deleted.
You might want to purge messages when the messages accumulated at a
destination are taking up too much of the system’s resources. This might happen
when a queue does not have any registered consumer clients and is receiving many
messages. It might also happen if inactive durable subscribers to a topic do not
become active. In both cases, messages are held unnecessarily.

To purge messages at a destination, use the purge dst subcommand, as in the
following commands:

imqcmd purge dst -n myQueue -t q -u admin -p admin

imqcmd purge dst -n myTopic -t t -u admin -p admin

In the case where you have shut down the broker and do not want old messages to
be delivered when you restart it, use the -reset messges option to purge stale
messages; for example:

imqbrokerd -reset messages -u admin -p admin

This saves you the trouble of purging destinations after restarting the broker.

In a multi-broker cluster, instances of the destination reside on each broker in the
cluster. You must purge each of these destinations individually.

Destroying Destinations
To destroy a destination, use the destroy dst subcommand, as in the following
command:

imqcmd destroy dst -t q -n myQueue -u admin -p admin

Destroying a destination purges all messages at that destination and removes it
from the broker; the operation is not reversible.

Compacting Destinations
If you are using the built-in file-based data store (as opposed to a plugged-in
JDBC-compliant data store) as the persistent store for messages, you can monitor
disk utilization and compact the disk when necessary.

Managing Destinations

Chapter 6 Broker and Application Management 177

The file-based message store is structured so that messages are stored in directories
according to the destinations in which they are being held. In each destination’s
directory, most messages are stored in one file consisting of variable-sized records,
the variable-sized record file. (To alleviate fragmentation, messages whose size
exceeds a configurable threshold will be stored in their own individual files.) As
messages of varying sizes are persisted and then removed from the variable-sized
record file, holes may develop in the file where free records are not being re-used.

To manage unused free records, the Command utility includes subcommands for
monitoring disk utilization per destination and for reclaiming free disk space when
utilization drops.

Monitoring a Destination’s Disk Utilization
To monitor a destination’s disk utilization, use the following imqcmd subcommand:

imqcmd metrics dst -t q -n myQueue -m dsk -u admin -p admin

This command produces output like the following:

The columns in the subcommand output have the following meaning:

Reserved Used Utilization Ratio

806400 804096 99
1793024 1793024 100
2544640 2518272 98

Table 6-11 Destination disk Utilization Metrics

Metric Description

Reserved Disk space in bytes used by all records, including records that hold active
messages and free records waiting to be reused

Used Disk space in bytes used by records that hold active messages

Utilization Ratio Quotient of used disk space divided by reserved disk space. The higher the
ratio, the more the disk space is being used to hold active messages.

Managing Destinations

178 Message Queue 3.5 SP1 • Administration Guide

Reclaiming Unused Destination Disk Space
The disk utilization pattern depends on the characteristics of the messaging
application that uses a particular destination. Depending on the relative flow of
messages into and out of a destination, and the relative size of messages, the
reserved disk space might grow over time.

If the message producing rate is greater than the message consuming rate, then free
records should generally be reused and the utilization ratio should be on the high
side. However, if the message producing rate is similar to or smaller than the
message consuming rate, you can expect that the utilization ratio will be low.

In general, you want the reserved disk space to stabilize and the utilization to
remain high. As a rule of thumb, if the system reaches a steady state in which the
amount of reserved disk space stays pretty much constant and the utilization rate is
high (above 75%), there is no need to reclaim the unused disk space. If the system
reaches a steady state and the utilization rate is low (below 50%), you can compact
the disk to reclaim the disk space occupied by free records.

If the reserved disk space continues to increase over time, you should reconfigure
the destination’s memory management by setting destination memory limit
properties and limit behaviors (see Table 6-10 on page 171).

➤ To Reclaim Unused Destination Disk Space

1. Pause the destination.

imqcmd pause dst -t q -n myQueue -u admin -p admin

2. Compact the disk.

imqcmd compact dst -t q -n myQueue -u admin -p admin

3. Resume the destination.

imqcmd resume dst -t q -n myQueue -u admin -p admin

If destination type and name are not specified, then these operations are performed
for all destinations.

Managing Durable Subscriptions

Chapter 6 Broker and Application Management 179

Managing Durable Subscriptions
You might need to use imqcmd subcommands to manage a broker’s durable
subscriptions. A durable subscription is a subscription to a topic that is registered by
a client as durable; it has a unique identity and it requires the broker to retain
messages for that subscription even when its consumer becomes inactive.
Normally, the broker may only delete a message held for a durable subscriber
when the message expires.

Table 6-12 provides a summary of the imqcmd durable subscription subcommands.
Remember to specify the host name and port of the broker if this is not the default
(localhost:7676) broker.

For example, the following command lists all durable subscriptions to the topic
SPQuotes

imqcmd list dur -d SPQuotes

For each durable subscription to a topic, the list dur subcommand returns the
name of the durable subscription, the client ID of the user, the number of messages
queued to this topic, and the state of the durable subscription (active/inactive). For
example:

Table 6-12 imqcmd Subcommands Used to Manage Durable Subscriptions

Subcommand Description

list dur -d destName Lists all durable subscriptions for the specified
destination.

destroy dur -n subscrName
-c client_id

Destroys the specified durable subscription with the
specified Client Identifier (see “Client Identifiers” on
page 45).

purge dur -n subscrName
-c client_id

Purges all messages for the specified durable
subscription with the specified Client Identifier (see
“Client Identifiers” on page 45).

Name Client ID Number of Durable Sub
Messages State

--
myDurable myClientID 1 INACTIVE

Managing Transactions

180 Message Queue 3.5 SP1 • Administration Guide

You can use the information returned from the list dur subcommand to identify a
durable subscription you might want to destroy or for which you want to purge
messages. Use the name of the subscription and the client ID to identify the
subscription. For example:

imqcmd destroy dur -n myDurable -c myClientID

Managing Transactions
All transactions initiated by client applications are tracked by the broker. These can
be simple Message Queue transactions or distributed transactions managed by an
XA resource manager (see “Local Transactions” on page 47). Each transaction has a
Message Queue transaction ID—a 64 bit number that uniquely identifies a
transaction on the broker. Distributed transactions also have a distributed
transaction ID (XID) assigned by the distributed transaction manager—up to 128
bytes long. Message Queue maintains the association of an Message Queue
transaction ID with an XID.

For distributed transactions, in cases of failure, it is possible that transactions could
be left in a PREPARED state without ever being committed. Hence, as an
administrator you might need to monitor and then roll back or commit transactions
left in a prepared state.

Table 6-13 provides a summary of the imqcmd transactions subcommands.
Remember to specify the host name and port of the broker if this is not the default
(localhost:7676) broker.

For example, the following command lists all transactions in a broker.

imqcmd list txn

Table 6-13 imqcmd Subcommands Used to Manage Transactions

Subcommand Description

list txn Lists all transactions, being tracked by the broker.

query txn -n transaction_id Lists information about the specified transaction.

commit txn -n transaction_id Commits the specified transaction.

rollback txn -n transaction_id Rolls back the specified transaction.

Managing Transactions

Chapter 6 Broker and Application Management 181

For each transaction, the list subcommand returns the transaction ID, state, user
name, number of messages or acknowledgements, and creation time. For example:

The command shows all transactions in the broker, both local and distributed. You
can only commit or roll back transactions in the PREPARED state. You should only do
so if you know that the transaction has been left in this state by a failure and is not
in the process of being committed by the distributed transaction manager.

For example, if the broker’s auto-rollback property is set to false (see Table 2-4 on
page 62), then you have to manually commit or roll back transactions found in a
PREPARED state at broker startup.

The list subcommand also shows the number of messages that were produced in
the transaction and the number of messages that were acknowledged in the
transaction (#Msgs/#Acks). These messages will not be delivered and the
acknowledgements will not be processed until the transaction is committed.

The query subcommand lets you see the same information plus a number of
additional values: the Client ID, connection identification, and distributed
transaction ID (XID). For example,

imqcmd query txn -n 64248349708800

produces output like the following:

Transaction ID State User name # Msgs/ Creation time

Acks

64248349708800 PREPARED guest 4/0 1/30/02 10:08:31 AM
64248371287808 PREPARED guest 0/4 1/30/02 10:09:55 AM

Client ID
Connection guest@192.18.116.219:62209->jms:62195
Creation time 1/30/02 10:08:31 AM
Number of acknowledgements 0
Number of messages 4
State PREPARED
Transaction ID 64248349708800
User name guest
XID
6469706F6C7369646577696E6465723130313234313431313030373230

Managing Transactions

182 Message Queue 3.5 SP1 • Administration Guide

The commit and rollback subcommands can be used to commit or roll back a
distributed transaction. As mentioned previously, only a transaction in the
PREPARED state can be committed or rolled back. For example:

imqcmd commit txn -n 64248349708800

It is also possible to configure the broker to automatically roll back transactions in
the PREPARED state at broker startup. See the imq.transaction.autorollback
property in Table 2-4 on page 62 for more information.

183

Chapter 7

Managing Administered Objects

The use of administered objects enables the development of client applications that
are portable to other JMS providers. Administered objects are objects that
encapsulate provider-specific configuration and naming information. These objects
are normally created by a Message Queue administrator and used by client
applications to obtain connections to the broker, which are then used to send
messages to and receive messages from physical destinations.

For an overview of administered objects, see“Message Queue Administered
Objects” on page 89.

Message Queue provides two administration tools for creating and managing
administered objects: the command line Object Manager utility (imqobjmgr) and
the GUI Administration Console. These tools enable you to do the following:

• Add or delete administered objects to an object store.

• List existing administered objects.

• Query and display information about an administered object.

• Modify an existing administered object in the object store.

This chapter explains how you use the Object Manager utility (imqobjmgr) to
perform these tasks. Because these tasks involve an understanding of the attributes
of both the object store you are using and of the administered objects you are
creating, this chapter provides background on these two topics before describing
how to use imqobjmgr to manage administered objects.

For information using the Administration Console, see Chapter 4, “Administration
Console Tutorial.”

About Object Stores

184 Message Queue 3.5 SP1 • Administration Guide

About Object Stores
Administered objects are placed in a readily available object store where they can
be accessed by client applications through a JNDI lookup. There are two types of
object stores you can use: a standard LDAP directory server or a file-system object
store.

LDAP Server Object Store
An LDAP server is the recommended object store for production messaging
systems. LDAP implementations are available from a number of vendors and are
designed for use in distributed systems. LDAP servers also provide security
features that are useful in production environments.

Message Queue administration tools can manage object stores on LDAP servers.
However, you might first need to configure the LDAP server to store java objects
and perform JNDI lookups, as prescribed in the documentation for the LDAP
server.

In using an LDAP server as your object store, you need to specify the attributes
shown in Table 7-1. These attributes fall into the following categories:

• Initial Context: This attribute is fixed for an LDAP server object store.

• Location: Specifies the URL and directory path for storing your administered
objects, as set up in the LDAP server. In particular you must check that the
specified path exists.

• Security Information: Depends on the LDAP provider. You should consult the
documentation provided with your LDAP implementation to determine
whether security information is required on all operations or only on
operations that change the stored data.

Table 7-1 LDAP Object Store Attributes

Attribute Description

java.naming.factory.
initial

The initial context for a JNDI lookup on an LDAP server

com.sun.jndi.ldap.LdapCtxFactory

java.naming.provider.url LDAP server URL and directory path information. For
example:

ldap://mydomain.com:389/ou=mqobjs, o=myapp

where administered objects are stored in the
/myapp/mqobjs directory

ldap://mydomain.com:389/ou=mqobjs

About Object Stores

Chapter 7 Managing Administered Objects 185

File-system Object Store
Message Queue also supports a file-system object store implementation. While the
file-system object store is not fully tested and is therefore not recommended for
production systems, it has the advantage of being very easy to use in development
environments. Rather than setting up an LDAP server, all you have to do is create a
directory on your local file system.

However a file-system store cannot be used as a centralized object store for clients
deployed across multiple computer nodes unless these clients have access to the
directory where the object store resides. In addition, any user with access to that
directory can use Message Queue administration tools to create and manage
administered objects.

java.naming.security.
principal

The identity of the principal for authenticating the caller to
the LDAP server.The format of this entry depends on the
authentication scheme.For example:

uid=fooUser, ou=People, o=mq

If this property is unspecified, the behavior is determined
by the LDAP service provider.

java.naming.security.
credentials

The credentials of the principal for authenticating the caller
to the LDAP server. The value of the property depends on
the authentication scheme: it could be a hashed
password, clear-text password, key, certificate, and so on.
For example:

fooPasswd

If this property is unspecified, the behavior is determined
by the LDAP service provider.

java.naming.security.
authentication

Security level to use. Its value is one of the following key
words: none, simple, strong.

for example, If you specify simple, you will be prompted
for any missing principal or credential values. This will
allow you a more secure way of providing identifying
information.

If this property is unspecified, the behavior is determined
by the LDAP service provider.

Table 7-1 LDAP Object Store Attributes (Continued)

Attribute Description

Administered Objects

186 Message Queue 3.5 SP1 • Administration Guide

In using a file-system object store, you need to specify the attributes shown in
Table 7-2. These attributes fall into the following categories:

• Initial Context: The value of this attribute is fixed for a file system object store.

• Location: The value of this attribute specifies the directory path for storing
your administered objects. The directory must exist and have the proper access
permissions for the user of Message Queue administration tools as well as the
users of the client applications that will access the store.

Administered Objects
For an overview of administered objects, see “Message Queue Administered
Objects” on page 89.

Message Queue administered objects are of two basic kinds: connection factories
and destinations. Connection factory administered objects are used by client
applications to create a connection to a broker. Destination administered objects are
used by client applications to identify the destination to which a producer is
sending messages or from which a consumer is retrieving messages. (A special
SOAP endpoint administered object is used for SOAP messaging—see the Message
Queue Java Client Developer’s Guide for more information.)

Depending on the message delivery model (point-to-point or publish/subscribe),
connection factories and destinations of a specific type can be used. In
point-to-point programming, for example, a queue connection factory and a queue
destination can be used. Similarly, in publish and subscribe programming, a topic
connection factory and a topic destination can be used. Non-specific connection
factory and destination administered object types are also available, as are
connection factory types that support distributed transactions (see Table 1-1 on
page 45 for all the supported types).

Table 7-2 File-system Object Store Attributes

Attribute Description

java.naming.factory.
initial

The initial context for a JNDI lookup on a file system object
store:

com.sun.jndi.fscontext.
RefFSContextFactory

java.naming.provider.url Directory path information. For example:

file:///C:/myapp/mqobjs

file:///C:/myapp/mqobjs

Administered Objects

Chapter 7 Managing Administered Objects 187

The attributes of an administered object are specified using attribute-value pairs.
The following sections describe these attributes.

Connection Factory Administered Object
Attributes
Connection factory (and XA connection factory) administered objects have the
attributes listed in Table 7-3. The attribute you are primarily concerned with is
imqAddressList, which you use to specify the broker to which the client will
establish a connection. The section, “Adding a Connection Factory” on page 195,
explains how you specify a attributes when you add a connection factory
administered object to your object store.

For more descriptions of connection factory attributes and information on how
they are used, see the Message Queue Java Client Developer’s Guide and the JavaDoc
API documentation for the following Message Queue class:
com.sun.messaging.ConnectionConfiguration.

Table 7-3 Connection Factory Administered Object Attributes

Attribute/property name Type Default Value

imqAckOnAcknowledge String No value

imqAckOnProduce String No value

imqAckTimeout String 0 millisecs

imqAddressList String No value

imqAddressListIterations Integer 1

imqAddressListBehavior String PRIORITY

imqBrokerHostName (Message Queue 3.0) String localhost

imqBrokerHostPort (Message Queue 3.0) Integer 7676

imqBrokerServicePort (Message Queue
3.0)

Integer 0

imqConfiguredClientID String No value

imqConnectionFlowCount Integer 100

imqConnectionFlowLimit Integer 1000

imqConnectionFlowLimitEnabled Boolean false

imqConnectionType (Message Queue 3.0) String TCP

Administered Objects

188 Message Queue 3.5 SP1 • Administration Guide

imqConnectionURL (Message Queue 3.0) String http://localhost/imq/
tunnel

imqConsumerFlowLimit Integer 1000

imqConsumerFlowThreshold Integer 50

imqDefaultPassword String guest

imqDefaultUsername String guest

imqDisableSetClientID Boolean false

imqJMSDeliveryMode Integer 2 (persistent)

imqJMSExpiration Long 0 (does not expire)

imqJMSPriority Integer 4 (normal)

imqLoadMaxToServerSession Boolean true

imqOverrideJMSDeliveryMode Boolean false

imqOverrideJMSExpiration Boolean false

imqOverrideJMSHeadersTo
TemporaryDestinations

Boolean false

imqOverrideJMSPriority Boolean false

imqQueueBrowserMaxMessages
PerRetrieve

Integer 1000

imqQueueBrowserRetrieveTimeout Long 60,000 (milliseconds)

imqReconnectAttempts Integer 0

imqReconnectEnabled Boolean false

imqReconnectInterval Long 3000 (milliseconds)

imqSetJMSXAppID Boolean false

imqSetJMSXConsumerTXID Boolean false

imqSetJMSXProducerTXID Boolean false

imqSetJMSXRcvTimestamp Boolean false

imqSetJMSXUserID Boolean false

imqSSLIsHostTrusted (Message Queue 3.0) Boolean true

Table 7-3 Connection Factory Administered Object Attributes (Continued)

Attribute/property name Type Default Value

Object Manager Utility (imqobjmgr)

Chapter 7 Managing Administered Objects 189

Destination Administered Object Attributes
The destination administered object that identifies a physical topic or queue
destination has the attributes listed in Table 7-4. The section, “Adding a Topic or
Queue” on page 196, explains how you specify these attributes when you add a
destination administered object to your object store.

The attribute you are primarily concerned with is imqDestinationName. This is the
name you assign to the physical destination that corresponds to the topic or queue
administered object. You can also provide a description of the destination that will
help you distinguish it from others that you might create to support many
applications.

For more information, see the JavaDoc API documentation for the Message Queue
class com.sun.messaging.DestinationConfiguration.

Object Manager Utility (imqobjmgr)
The Object Manager utility allows you to create and manage Message Queue
administered objects. This section describes the basic imqobjmgr command syntax,
provides a listing of subcommands, and summarizes imqobjmgr command options.
Subsequent sections explain how you use the imqobjmgr subcommands to
accomplish specific tasks.

Syntax of the imqobjmgr Command
The general syntax of the imqobjmgr command is as follows:

imqobjmgr subcommand [options]
imqobjmgr -h|H
imqobjmgr -v

Table 7-4 Destination Administered Object Attributes

Attribute/property name Type Default

imqDestinationDescription String A Description for the
destination Object

imqDestinationName String1

1. Destination names can contain only alphanumeric characters (no spaces) and must begin with an alphabetic
character or the characters “_” and/or “$”.

Untitled_Destination_Object

Object Manager Utility (imqobjmgr)

190 Message Queue 3.5 SP1 • Administration Guide

Note that if you specify the -v, -h, or -H options, no subcommands specified on the
command line are executed. For example, if you enter the following command,
version information is displayed but the list subcommand is not executed.

imqobjmgr list -v

imqobjmgr Subcommands
The Object Manager utility (imqobjmgr) includes the subcommands listed in
Table 7-5:

Summary of imqobjmgr Command Options
Table 7-6 lists the options to the imqobjmgr command. For a discussion of their use,
see the task-based sections that follow.

Table 7-5 imqobjmgr Subcommands

Subcommand Description

add Adds an administered object to the object store.

delete Deletes an administered object from the object store.

list Lists administered objects in the object store.

query Displays information about the specified administered object.

update Modifies an existing administered object in the object store.

Table 7-6 imqobjmgr Options

Option Description

-f Performs action without user confirmation.

-h Displays usage help. Nothing else on the command line is
executed.

-H Displays usage help, attribute list, and examples. Nothing else on
the command line is executed.

-i fileName Specifies the name of an command file containing all or part of the
subcommand clause, specifying object type, lookup name, object
attributes, object store attributes, or other options. Typically used
for repetitive information, such as object store attributes.

Object Manager Utility (imqobjmgr)

Chapter 7 Managing Administered Objects 191

The following section describes information that you need to provide when
working with any imqobjmgr subcommand.

-j attribute=value Specifies attributes necessary to identify and access a JNDI object
store. See “LDAP Server Object Store” on page 184 and
“File-system Object Store” on page 185.

-javahome path Specifies an alternate Java 2 compatible runtime to use (default is
to use the runtime on the system or the runtime bundled with
Message Queue).

-l lookupName Specifies the JNDI lookup name of an administered object. This
name must be unique in the object store’s context.

-o attribute=value Specifies attributes of an administered object. See “Connection
Factory Administered Object Attributes” on page 187 and
“Destination Administered Object Attributes” on page 189

-pre Preview mode. Indicates what will be done without performing the
command.

-r read-only_state Specifies whether an administered object is a read-only object. A
value of true indicates the administered object is a read-only
object. Clients cannot modify the attributes of read-only
administered objects. The read-only state is set to false by default.

-s Silent mode. No output will be displayed.

-t objectType Specifies the type of a Message Queue administered object:

q = queue

t = topic

cf = connection factory

qf = queue connection factory

tf = topic connection factory

xcf = XA connection factory (distributed transactions)

xqf = XA queue connection factory (distributed transactions)

xtf = XA topic connection factory (distributed transactions)

e = SOAP endpoint1

-v Displays version information. Nothing else on the command line is
executed.

1. This administered object type is used to support SOAP messages (see the Message Queue Java Client Developer’s
Guide).

Table 7-6 imqobjmgr Options (Continued)

Option Description

Object Manager Utility (imqobjmgr)

192 Message Queue 3.5 SP1 • Administration Guide

Required Information
When performing most tasks related to administered objects, you must specify the
following information as options to imqobjmgr subcommands:

• The administered object type:

The allowed types are shown in Table 7-6.

• The JNDI lookup name of the administered object:

This is the logical name that will be used in the client code to refer to the
administered object (using JNDI) in the object store.

• Administered object attributes (needed especially for the add and update
subcommands):

❍ For destinations: The name of the physical destination on the broker. This
is the name that was specified with the -n option to the imqcmd create dst
subcommand. If you do not specify the name, the default name of
Untitled_Destination_Object will be used.

❍ For connection factories: The most commonly used attribute is the address
list (imqAddressList) specifying the message server addresses (one or
more) to which the client will attempt to connect. If you do not specify this
information, the local host and default port number (7676) are used,
meaning the client will attempt a connection to a broker on port 7676 of the
local host. The section “Adding a Connection Factory” on page 195
explains how you specify object attributes.

For additional attributes, see “Connection Factory Administered Object
Attributes” on page 187.

• Object store attributes:

This information depends on whether you are using a file-system store or
LDAP server, but must include the following attributes:

❍ The type of JNDI implementation (initial context attribute). For example,
file-system or LDAP.

❍ The location of the administered object in the object store (provider URL
attribute), that is, its “folder” as it were.

❍ The user name, password, and authorization type, if any, required to
access the object store.

For more information about object store attributes see “LDAP Server Object
Store” on page 184 and “File-system Object Store” on page 185.

Object Manager Utility (imqobjmgr)

Chapter 7 Managing Administered Objects 193

Using Command Files
The imqobjmgr command allows you to specify the name of a command file that
uses java property file syntax to represent all or part of the imqobjmgr
subcommand clause.

Using a command file with the Object Manager utility (imqobjmgr) is especially
useful to specify object store attributes, which are likely to be the same across
multiple invocations of imqobjmgr and which normally require a lot of typing.
Using an command file can also allow you to avoid a situation in which you might
otherwise exceed the maximum number of characters allowed for the command
line.

The general syntax for an imqobjmgr command file is as follows (the version
property reflects the version of the command file and not of the Message Queue
product—it is not a command line option—and its value must be set to 2.0):

As an example of how you can use an command file, consider the following
imqobjmgr command:

version=2.0
cmdtype=[add | delete | list | query | update]
obj.type=[q | t | qf | tf | cf | xqf | xtf | xcf | e]
obj.lookupName=lookup name
obj.attrs.objAttrName1=value1
obj.attrs.objAttrName2=value2
obj.attrs.objAttrNameN=valueN
…
objstore.attrs.objStoreAttrName1=value1
objstore.attrs.objStoreAttrName2=value2
objstore.attrs.objStoreAttrNameN=valueN
…

imqobjmgr add
-t qf
-l "cn=myQCF"
-o "imqAddressList=mq://foo:777/jms"
-j "java.naming.factory.initial=

com.sun.jndi.ldap.LdapCtxFactory"
-j "java.naming.provider.url=

ldap://mydomain.com:389/o=imq"
-j "java.naming.security.principal=

uid=fooUser, ou=People, o=imq"
-j "java.naming.security.credentials=fooPasswd"
-j "java.naming.security.authentication=simple"

mq://foo:777/jms
ldap://mydomain.com:389/o=imq

Object Manager Utility (imqobjmgr)

194 Message Queue 3.5 SP1 • Administration Guide

This command can be encapsulated in a file, say MyCmdFile, that has the following
contents:

You can then use the -i option to pass this file to the Object Manager utility
(imqobjmgr):

imqobjmgr -i MyCmdFile

You can also use the command file to specify some options, while using the
command line to specify others. This allows you to use the command file to specify
parts of the subcommand clause that is the same across many invocations of the
utility. For example, the following command specifies all the options needed to
add a connection factory administered object, except for those that specify where
the administered object is to be stored.

In this case, the file MyCmdFile would contain the following definitions:

version=2.0
cmdtype=add
obj.type=qf
obj.lookupName=cn=myQCF
obj.attrs.imqAddressList=mq://foo:777/jms
objstore.attrs.java.naming.factory.initial=\

com.sun.jndi.ldap.LdapCtxFactory
objstore.attrs.java.naming.provider.url=\

ldap://mydomain.com:389/o=imq
objstore.attrs.java.naming.security.principal=\

uid=fooUser, ou=People, o=imq
objstore.attrs.java.naming.security.credentials=fooPasswd
objstore.attrs.java.naming.security.authentication=simple

imqobjmgr add
-t qf
 -l "cn=myQCF"
 -o "imqAddressList=mq://foo:777/jms"
-i MyCmdFile

version=2.0
objstore.attrs.java.naming.factory.initial=\

com.sun.jndi.ldap.LdapCtxFactory
objstore.attrs.java.naming.provider.url=\

mq://foo:777/jms
ldap://mydomain.com:389/o=imq
mq://foo:777/jms

Adding and Deleting Administered Objects

Chapter 7 Managing Administered Objects 195

Additional examples of command files can be found at the following location:

IMQ_HOME/demo/imqobjmgr

Adding and Deleting Administered Objects
This section explains how you add administered objects for connection factories
and topic or queue destinations to the object store.

Adding a Connection Factory
To enable client applications to obtain a connection to the broker, you add an
administered object that represents the type of connections the client applications
want: a topic connection factory or a queue connection factory

To add a queue connection factory, use a command like the following:

ldap://mydomain.com:389/o=imq
objstore.attrs.java.naming.security.principal=\

uid=fooUser, ou=People, o=imq
objstore.attrs.java.naming.security.credentials=fooPasswd
objstore.attrs.java.naming.security.authentication=simple

NOTE The Object Manager utility (imqobjmgr) lists and displays only
Message Queue administered objects. If an object store should
contain a non-Message Queue object with the same lookup name as
an administered object that you wish to add, you will receive an
error when you attempt the add operation.

imqobjmgr add
-t qf
-l "cn=myQCF"
-o "imqAddressList=mq://myHost:7272/jms"
-j "java.naming.factoryinitial=

com.sun.jndi.ldap.LdapCtxFactory"
-j "java.naming.provider.url=ldap://mydomain.com:389/o=imq"
-j "java.naming.security.principal=

ldap://mydomain.com:389/o=imq
mq://myHost:7272/jms
ldap://mydomain.com:389/o=imq

Adding and Deleting Administered Objects

196 Message Queue 3.5 SP1 • Administration Guide

The preceding command creates an administered object whose lookup name is
cn=myQCF and which connects to a broker running on myHost and listens on port
7272. The administered object is stored in an LDAP server. You can accomplish the
same thing by specifying an command file as an argument to the imqobjmgr
command. For more information, see “Using Command Files” on page 193.

Adding a Topic or Queue
To enable client applications to access physical destinations on the broker, you add
administered objects that identify these destinations, to the object store.

It is a good practice to first create the physical destinations before adding the
corresponding administered objects to the object store. Use the Command utility
(imqcmd) to create the physical destinations on the broker that are identified by
destination administered objects in the object store. For information about creating
physical destinations, see “Getting Connection Information” on page 167.

The following command adds an administered object that identifies a topic
destination whose lookup name is myTopic and whose physical destination name is
TestTopic. The administered object is stored in an LDAP server.

uid=fooUser, ou=People, o=imq"
-j "java.naming.security.credentials=fooPasswd"
-j "java.naming.security.authentication=simple"

NOTE Naming Conventions: If you are using an LDAP server to store the
administered object, it is important that you assign a lookup name
that has the prefix “cn=” as in the example above (cn=myQCF). You
specify the lookup name with the -l option. You do not have to use
the cn prefix if you are using a file-system object store, however do
not use lookup names that have a “/” in them. See Table 7-7.

Table 7-7 Naming Convention Examples

Object Store Type Good Name Ban Name

LDAP server cn=myQCF myQCF

file system myTopic myObjects/myTopic

Adding and Deleting Administered Objects

Chapter 7 Managing Administered Objects 197

This is the same command, only the administered object is stored in a Solaris file
system:

In the LDAP server case, as an example, you could use an command file,
MyCmdFile, to specify the subcommand clause. The file would contain the
following text:

imqobjmgr add
-t t
-l "cn=myTopic"
-o "imqDestinationName=TestTopic"
-j "java.naming.factory.initial=

com.sun.jndi.ldap.LdapCtxFactory"
-j "java.naming.provider.url=

ldap://mydomain.com:389/o=imq"
-j "java.naming.security.principal=

uid=fooUser, ou=People, o=imq"
-j "java.naming.security.credentials=fooPasswd"
-j "java.naming.security.authentication=simple"

imqobjmgr add
-t t
-l "cn=myTopic"
-o "imqDestinationName=TestTopic"
-j "java.naming.factory.initial=

com.sun.jndi.fscontext.RefFSContextFactory"
-j "java.naming.provider.url=

file:///home/foo/imq_admin_objects"

version=2.0
cmdtype=add
obj.type=t
obj.lookupName=cn=myTopic
obj.attrs.imqDestinationName=TestTopic
objstore.attrs.java.naming.factory.initial=

com.sun.jndi.fscontext.RefFSContextFactory
objstore.attrs.java.naming.provider.url=

file:///home/foo/imq_admin_objects
objstore.attrs.java.naming.security.principal=

uid=fooUser, ou=People, o=imq
objstore.attrs.java.naming.security.credentials=fooPasswd
objstore.attrs.java.naming.security.authentication=simple

ldap://mydomain.com:389/o=imq
file:///home/foo/imq_admin_objects
file:///home/foo/imq_admin_objects

Getting Information

198 Message Queue 3.5 SP1 • Administration Guide

Use the -i option to pass the file to the imqobjmgr command:

imqobjmgr -i MyCmdFile

Adding a queue object is exactly the same, except that you specify q for the -t
option.

Deleting Administered Objects
Use the delete subcommand to delete an administered object. You must specify
the lookup name of the object, its type, and its location.

The following command deletes an administered object for a topic whose lookup
name is cn=myTopic and which is stored on an LDAP server.

Getting Information
Use the list and query subcommands to list administered objects in the object
store and to display information about an individual object.

NOTE If you are using an LDAP server to store the administered object, it
is important that you assign a lookup name that has the prefix “cn=”
as in the example above. You specify the lookup name with the -l
option. You do not have to use this prefix if you are using a
file-system object store.

imqobjmgr delete
 -t t
 -l "cn=myTopic"
 -j "java.naming.factory.initial=

com.sun.jndi.ldap.LdapCtxFactory"
 -j "java.naming.provider.url=

ldap://mydomain.com:389/o=imq"
 -j "java.naming.security.principal=

uid=fooUser, ou=People, o=imq"
 -j "java.naming.security.credentials=fooPasswd"
 -j "java.naming.security.authentication=simple"

ldap://mydomain.com:389/o=imq

Getting Information

Chapter 7 Managing Administered Objects 199

Listing Administered Objects
Use the list subcommand to get a list of all administered objects or to get a list of
all administered objects of a specific type. The following sample code assumes that
the administered objects are stored in an LDAP server.

The following command lists all objects.

The following command lists all objects of type queue.

Information About a Single Object
Use the query subcommand to get information about an administered object. You
must specify the object’s lookup name and the attributes of the object store
containing the administered object (such as initial context and location).

In the following example, the query subcommand is used to display information
about an object whose lookup name is cn=myTopic.

imqobjmgr list
-j "java.naming.factory.initial=

com.sun.jndi.ldap.LdapCtxFactory"
-j "java.naming.provider.url=

ldap://mydomain.com:389/o=imq"
-j "java.naming.security.principal=

uid=fooUser, ou=People, o=imq"
-j "java.naming.security.credentials=fooPasswd"
-j "java.naming.security.authentication=simple"

imqobjmgr list
-t q
-j "java.naming.factory.initial=

com.sun.jndi.ldap.LdapCtxFactory"
-j "java.naming.provider.url=

ldap://mydomain.com:389/o=imq"
-j "java.naming.security.principal=

uid=fooUser, ou=People, o=imq"
-j "java.naming.security.credentials=fooPasswd"
-j "java.naming.security.authentication=simple"

ldap://mydomain.com:389/o=imq
ldap://mydomain.com:389/o=imq

Updating Administered Objects

200 Message Queue 3.5 SP1 • Administration Guide

Updating Administered Objects
You use the update command to modify the attributes of administered objects. You
must specify the lookup name and location of the object. You use the -o option to
modify attribute values.

This command changes the attributes of an administered object that represents a
topic connection factory:

imqobjmgr query
-l "cn=myTopic"
-j "java.naming.factory.initial=

com.sun.jndi.ldap.LdapCtxFactory"
-j "java.naming.provider.url=

ldap://mydomain.com:389/o=imq"
-j "java.naming.security.principal=

uid=fooUser, ou=People, o=imq"
-j "java.naming.security.credentials=fooPasswd"

-j "java.naming.security.authentication=simple"

imqobjmgr update
 -t tf
 -l "cn=MyTCF"
 -o imqReconnectAttempts=3
 -j "java.naming.factory.initial=

com.sun.jndi.ldap.LdapCtxFactory"
 -j "java.naming.provider.url=

ldap://mydomain.com:389/o=imq"
 -j "java.naming.security.principal=

uid=fooUser, ou=People, o=imq"
 -j "java.naming.security.credentials=fooPasswd"
 -j "java.naming.security.authentication=simple"

ldap://mydomain.com:389/o=imq
ldap://mydomain.com:389/o=imq

201

Chapter 8

Managing Security

This chapter explains how to perform tasks related to security. These include
authentication, authorization, and encryption.

Authenticating Users You are responsible for maintaining a list of users, their
groups, and passwords in a user repository. You can use a different user repository
for each broker instance. The first part of this chapter explains how you create,
populate, and manage that repository. For an introduction to Message Queue
security, see “Security Manager” on page 66.

Authorizing Users: the Access Control Properties File You are responsible for
editing an access control properties file that maps each user’s access to broker
operations to the user’s name or group membership. You can use a different access
control properties file for each broker instance. The second part of this chapter
explains how you can customize this file.

Encryption: Working With an SSL-based Service (Enterprise Edition) Using a
connection service based on the Secure Socket Layer (SSL) standard allows you to
encrypt messages sent between clients and broker. For an introduction to how
Message Queue handles encryption, see “Encryption (Enterprise Edition)” on
page 68. The last part of this chapter explains how to set up an SSL-based
connection service and provides additional information about using SSL.

For situations in which a password is needed for a broker to secure access to an SSL
keystore, an LDAP user repository, or a JDBC-compliant persistent store, there are
three means of providing such passwords:

• by having the system prompt you when the broker is started

• by passing in passwords as command line options when starting the broker
(see “Starting a Broker” on page 134 and Table 5-2 on page 136)

• by storing passwords in a passfile that the system accesses when starting the
broker (See “Using a Passfile” on page 225)

Authenticating Users

202 Message Queue 3.5 SP1 • Administration Guide

Authenticating Users
When a user attempts to connect to the broker, the broker authenticates the user by
inspecting the name and password provided, and grants the connection if they
match those in a broker-specific user repository that each broker is configured to
consult. This repository can be of two types:

• a flat-file repository that is shipped with Message Queue

This type of user repository is very easy to use; however it is vulnerable to
security attacks, and should therefore be used only for evaluation and
development purposes. You can populate and manage the repository using the
User Manager utility (imqusermgr). To enable authentication, you populate the
user repository with each user’s name, password, and the name of the user’s
group.

For more information on setting up and managing the user repository, see
“Using a Flat-File User Repository.”

• an LDAP server

This could be an existing or new LDAP directory server that uses the LDAP v2
or v3 protocol. It is not as easy to use as the flat-file repository, however it is
secure and scalable, and therefore better for production environments.

If you are using an LDAP user repository, you will need to use the tools
provided by the LDAP vendor to populate and manage the user repository.
For more information, see “Using an LDAP Server for a User Repository” on
page 209.

Using a Flat-File User Repository
Message Queue provides a flat-file user repository and a command line tool,
Message Queue User Manager (imqusermgr) that you can use to populate and
manage the flat-file user repository. The following sections describe the flat-file
user repository and how you use the Message Queue User Manager utility
(imqusermgr) to populate and manage that repository.

Authenticating Users

Chapter 8 Managing Security 203

Creating a User Repository
The flat-file user repository is instance specific. A default user repository (named
passwd) is created for each broker instance that you start. This user repository is
placed in a directory identified by the name of the broker instance (instanceName)
with which the repository is associated (see Appendix A, “Location of Message
Queue Data”):

…/instances/instanceName/etc/passwd

The repository is created with two entries (rows), as illustrated in Table 8-1, below.

These initial entries allow the Message Queue broker to be used immediately after
installation without any intervention by the administrator. In other words, no
initial user/password setup is required for the Message Queue broker to be used.

The initial guest user entry allows clients to connect to a broker instance using the
default guest user name and password (for testing purposes, for example).

The initial admin user entry allows you to use imqcmd commands to administer a
broker instance using the default admin user name and password. It is
recommended that you update this initial entry to change the password (see
“Changing the Default Administrator Password” on page 208).

The following sections explain how you populate and manage a flat-file user
repository.

User Manager Utility (imqusermgr)
The User Manager utility (imqusermgr) lets you edit or populate a flat-file user
repository.

This section describes the basic imqusermgr command syntax, provides a listing of
subcommands, and summarizes imqusermgr command options. Subsequent
sections explain how you use the imqusermgr subcommands to accomplish specific
tasks.

Table 8-1 Initial Entries in User Repository

User Name Password Group State

admin admin admin active

guest guest anonymous active

Authenticating Users

204 Message Queue 3.5 SP1 • Administration Guide

Before using imqusermgr, keep the following things in mind:

• If a broker-specific user repository does not yet exist, you have to start up the
corresponding broker instance to create it.

• The imqusermgr command has to be run on the host where the broker is
installed

• You have to have the appropriate permissions to write to the repository,:
namely, on Solaris and Linux, you have to be the root user or the user who first
created the broker instance

Syntax of the imqusermgr Command
The general syntax of the imqusermgr command is as follows:

imqusermgr subcommand [options]
imqusermgr -h
imqusermgr -v

Note that if you specify the -v or -h options, no subcommands specified on the
command line are executed. For example, if you enter the following command,
version information is displayed but the list subcommand is not executed.

imqusermgr list -v

imqusermgr Subcommands
Table 8-2 lists the imqusermgr subcommands.

Table 8-2 imqusermgr Subcommands

Subcommand Description

add [-i instanceName] -u userName -p passwd [-g group]
[-s]

Adds a user and associated password to the
specified (or default) broker instance repository, and
optionally specifies the user’s group.

delete [-i instanceName] -u userName [-s] [-f] Deletes the specified user from the specified (or
default) broker instance repository.

list [-i instanceName] [-u userName] Displays information about the specified user or all
users in the specified (or default) broker instance
repository.

update [-i instanceName] -u userName -p passwd [-a
state] [-s] [-f]
update [-i instanceName] -u userName -a state [-p
passwd] [-s] [-f]

Updates the password and/or state of the specified
user in the specified (or default) broker instance
repository.

Authenticating Users

Chapter 8 Managing Security 205

Summary of imqusermgr Command Options
Table 8-3 lists the options to the imqusermgr command.

Groups
When adding a user entry to the user repository for a broker instance, you have the
option of specifying one of three predefined groups for the user: admin, user, or
anonymous. If no group is specified, the default group user is assigned.

• admin group. For broker administrators. Users who are assigned this group
can, by default, configure, administer, and manage the broker. You can assign
more than one user to the admin group.

NOTE Examples in the following sections assume the default broker
instance.

Table 8-3 imqusermgr Options

Option Description

-a active_state Specifies (true/false) whether the user’s state
should be active. A value of true means that the state
is active. This is the default.

-f Performs action without user confirmation

-h Displays usage help. Nothing else on the command
line is executed.

-i instanceName Specifies the broker instance user repository to which
the command applies. If not specified, the default
instanceName, imqbroker, is assumed.

-p passwd Specifies the user’s password.

-g group Specifies the user group. Valid values are admin,
user, anonymous.

-s Sets silent mode.

-u userName Specifies the user name.

-v Displays version information. Nothing else on the
command line is executed.

Authenticating Users

206 Message Queue 3.5 SP1 • Administration Guide

• user group. For normal (non-administration) Message Queue client users.
Most client users will access the broker by being authenticated in the user
group. By default, application client users in this group can produce messages
to and consume messages from all topics and queues, or can browse messages
in any queue by default.

• anonymous group. For Message Queue clients that do not wish to use a user
name that is known to the broker (possibly because the client application does
not know of a real user name to use). This is analogous to the anonymous
account present in most FTP servers. You can assign only one user to the
anonymous group at any one time. It is expected that you will restrict the access
privileges of this group as compared to the user group through access control,
or that you will remove users from this group at deployment time.

In order to change a user’s group, you must delete the user entry and then add
another entry for the user, specifying the new group.

You can specify access rules that define what operations the members of that group
may perform. For more information, see “Authorizing Users: the Access Control
Properties File” on page 212.

States
When you add a user to a repository, the user’s state is active by default. To make
the user inactive, you must use the update command. For example, the following
command makes the user JoeD inactive:

imqusermgr update -u JoeD -a false

Entries for users that have been rendered inactive are retained in the repository;
however, inactive users cannot open new connections. If a user is inactive and you
add another user who has the same name, the operation will fail. You must delete
the inactive user entry or change the new user’s name or use a different name for
the new user. This prevents you from adding duplicate user names.

Format of User Names and Passwords
User names and passwords must follow these guidelines:

• The user name may not contain the characters listed in Table 8-4.

Table 8-4 Invalid Characters for User Names and Passwords

Character Description

* Asterisk

, Comma

Authenticating Users

Chapter 8 Managing Security 207

• The user name and passwords may not contain a new line or carriage return as
characters.

• If the name or password contains a space, the entire name or password must be
enclosed in quotation marks.

• The name or password must be at least one character long.

• There is no limit on the length of passwords or user names—except for that
imposed by the command shell on the maximum number of characters that can
be entered on a command line.

Populating and Managing a User Repository
Use the add subcommand to add a user to a repository. For example, the following
command adds the user, Katharine with the password sesame to the default
broker instance user repository.

imqusermgr add -u Katharine -p sesame -g user

Use the delete subcommand to delete a user from a repository. For example, the
following command deletes the user, Bob:

imqusermgr delete -u Bob

Use the update subcommand to change a user’s password or state. For example,
the following command changes Katharine’s password to alladin:

imqusermgr update -u Katharine -p alladin

To list information about one user or all users, use the list command. The
following command shows information about the user named isa:

imqusermgr list -u isa

: Colon

Table 8-4 Invalid Characters for User Names and Passwords (Continued)

Character Description

Authenticating Users

208 Message Queue 3.5 SP1 • Administration Guide

The following command lists information about all users:

imqusermgr list

Changing the Default Administrator Password
For the sake of security, you should change the default password of admin to one
that is only known to you. You need to use the imqusermgr tool to do this.

The following command changes the default password for the mybroker broker
instance to grandpoobah.

imqusermgr update -i mybroker -u admin -p grandpoobah

% imqusermgr list -u isa

User repository for broker instance: imqbroker

User Name Group Active State

isa admin true

% imqusermgr list

User repository for broker instance: imqbroker

User Name Group Active State

admin admin true
guest anonymous true
isa admin true
testuser1 user true
testuser2 user true
testuser3 user true
testuser4 user false
testuser5 user false

Authenticating Users

Chapter 8 Managing Security 209

You can quickly confirm that this change is in effect, by running any of the
command line tools when the broker instance is running. For example, the
following command should work.

imqcmd list svc -i mybroker -u admin -p grandpoobah

Using the old password should fail.

After changing the password, you should supply the new password any time you
use any of the Message Queue administration tools, including the Administration
Console.

Using an LDAP Server for a User Repository
If you want to use an LDAP server for a user repository, you must set certain
broker properties in the instance configuration file. These properties enable the
broker instance to query the LDAP server for information about users and groups
whenever a user attempts to connect to the broker instance or perform certain
messaging operations. The instance configuration file (config.properties) is
located in a directory identified by the name of the broker instance (instanceName)
with which the configuration file is associated (see Appendix A, “Location of
Message Queue Data”):

…/instances/instanceName/props/config.properties

➤ To Edit the Configuration File to use an LDAP Server

1. Specify that you are using an LDAP user repository by setting the following
property:

imq.authentication.basic.user_repository=ldap

2. Set the imq.authentication.type property to determine whether a password
should be passed from client to broker in base64 encoding (basic) or in MD5
digest (digest). When using an LDAP directory server for a user repository,
you must set the authentication type to basic. For example,

imq.authentication.type=basic

Authenticating Users

210 Message Queue 3.5 SP1 • Administration Guide

3. You must also set the broker properties that control LDAP access. These
properties, stored in a broker’s instance configuration file, are described in
Table 8-5. Message Queue uses JNDI APIs to communicate with the LDAP
directory server. Consult JNDI documentation for more information on syntax
and on terms referenced in these properties. Message Queue uses a Sun JNDI
LDAP provider and uses simple authentication.

Message Queue supports LDAP authentication failover: you can specify a list
of LDAP directory servers for which authentication will be attempted (see the
imq.user.repos.ldap.server property in Table 8-5).

Table 8-5 LDAP-related Properties

Property Description

imq.user_repository.
ldap.server

The host:port for the LDAP server, where host specifies the
fully qualified DNS name of the host running the directory
server and port specifies the port number that the directory
server is using for communications. To specify a list of
failover servers, use the following syntax:
host1:port1 ldap://host2:port2 ldap://host3:port3…
where entries in the list are separated by spaces. Note that
each failover server address after the first one begins with
ldap.

imq.user_repository.
ldap.principal

The distinguished name that the broker will use to bind to
the directory server for a search. If the directory server
allows anonymous searches, this property does not need to
be assigned a value.

imq.user_repository.
ldap.password

The password associated with the distinguished name
used by the broker. This property can only be specified in a
passfile (see “Using a Passfile” on page 225).

There are a number of ways to provide a password. The
most secure is to let the broker prompt you for a password.
Less secure is to use a passfile and read-protect the
passfile. Least secure is to specify the password using the
following command line option: imqbrokerd
-ldappassword.

If the directory server allows anonymous searches, no
password is needed.

imq.user_repository.
ldap.base

The directory base for user entries.

imq.user_repository.
ldap.uidattr

The provider-specific attribute identifier whose value
uniquely identifies a user. For example: uid, cn, etc.

ldap://host2:port2
ldap://host3:port3%E2%80%A6

Authenticating Users

Chapter 8 Managing Security 211

See the broker’s default.properties file for a sample (default) LDAP user-
repository-related properties setup.

imq.user_repository.
ldap.usrfilter

A JNDI search filter (a search query expressed as a logical
expression). By specifying a search filter for users, the
broker can narrow the scope of a search and thus make it
more efficient. For more information, see the JNDI tutorial
at the following location:
http://java.sun.com/products/jndi/tutorial.

 This property does not have to be set.

imq.user_repository.
ldap.grpsearch

A boolean specifying whether you want to enable group
searches. Consult the documentation provided by your
LDAP provider to determine whether you can associate
users into groups.

Note that nested groups are not supported in Message
Queue.

Default: false

imq.user_repository.
ldap.grpbase

The directory base for group entries.

imq.user_repository.
ldap.gidattr

The provider-specific attribute identifier whose value is a
group name.

imq.user_repository.
ldap.memattr

The attribute identifier in a group entry whose values are
the distinguished names of the group’s members.

imq.user_repository.
ldap.grpfiltler

A JNDI search filter (a search query expressed as a logical
expression). By specifying a search filter for groups, the
broker can narrow the scope of a search and thus make it
more efficient. For more information, see the JNDI tutorial
at the following location.

http://java.sun.com/products/jndi/tutorial

This property does not have to be set.

imq.user_repository.
ldap.timeout

An integer specifying (in seconds) the time limit for a
search. By default this is set to 180 seconds.

imq.user_repository.
ldap.ssl.enabled

A boolean specifying whether the broker should use the
SSL protocol when talking to an LDAP server. This is set to
false by default.

Table 8-5 LDAP-related Properties (Continued)

Property Description

http://java.sun.com/products/jndi/tutorial
http://java.sun.com/products/jndi/tutorial

Authorizing Users: the Access Control Properties File

212 Message Queue 3.5 SP1 • Administration Guide

4. If necessary, you need to edit the users/groups and rules in the access control
properties file. For more information about the use of access control property
files, see “Authorizing Users: the Access Control Properties File” on page 212.

5. If you want the broker to communicate with the LDAP directory server over
SSL during connection authentication and group searches, you need to activate
SSL in the LDAP server and then set the following properties in the broker
configuration file:

❍ Specify the port used by the LDAP server for SSL communications. For
example:

imq.user_repository.ldap.server=myhost:7878

❍ Set the broker property imq.user_repository.ldap.ssl.enabled
to true.

Authorizing Users:
the Access Control Properties File

After connecting to a broker instance, a user might want to produce a message,
consume a message at a destination, or browse messages at a queue destination.
When the user attempts to do this, the broker checks a broker-specific access control
properties file (ACL file) to see whether the user is authorized to perform the
operation. The ACL file contains rules that specify which operations a particular
user (or group of users) is authorized to perform. By default, all authenticated
users are allowed to produce and consume messages at any destination. You can
edit the ACL file to restrict these operations to certain users and groups.

The ACL file is used independently of whether user information is placed in a
flat-file user repository (see “Using a Flat-File User Repository” on page 202) or in
an LDAP user repository (see “Using an LDAP Server for a User Repository” on
page 209).

Authorizing Users: the Access Control Properties File

Chapter 8 Managing Security 213

Creating an Access Control Properties File
The ACL file is instance specific. A default file (named
accesscontrol.properties) is created for each broker instance that you start. This
ACL properties file is placed in a directory identified by the name of the broker
instance (instanceName) with which the ACL file is associated (see Appendix A,
“Location of Message Queue Data”):

…/instances/instanceName/etc/accesscontrol.properties

The ACL file is formatted like a Java properties file. It starts by defining the version
of the file and then specifies access control rules in three sections:

• connection access control

• destination access control

• destination auto-create access control

The version property defines the version of the ACL properties file; you may not
change this entry.

version=JMQFileAccessControlModel/100

The three sections of the ACL file that specify access control are described below,
following a description of the basic syntax of access rules and an explanation of
how permissions are calculated.

Access Rules Syntax
In the ACL properties file, access control defines what access specific users or
groups have to protected resources like destinations and connection services.
Access control is expressed by a rule or set of rules, with each rule presented as a
Java property:

The basic syntax of these rules is as follows:

resourceType.resourceVariant.operation.access.principalType = principals

Authorizing Users: the Access Control Properties File

214 Message Queue 3.5 SP1 • Administration Guide

Table 8-6 describes the elements of syntax rules.

Here are some examples of access rules:

• The following rule means that all users may send a message to the queue
named q1.

queue.q1.produce.allow.user=*

• The following rule means that any user may send messages to any queue.

queue.*.produce.allow.user=*

Table 8-6 Syntactic Elements of Access Rules

Element Description

resourceType One of the following: connection, queue or topic.

resourceVariant An instance of the type specified by resourceType. For example, myQueue. The
wild card character (*) may be used to mean all connection service types or all
destinations.

operation Value depends on the kind of access rule being formulated.

access One of the following: allow or deny.

principalType One of the following: user or group. For more information, see “Groups” on
page 205.

principals Who may have the access specified on the left-hand side of the rule. This may
be an individual user or a list of users (comma delimited) if the principalType
is user; it may be a single group or a list of groups (comma delimited list) if the
principalType is group. The wild card character (*) may be used to represent
all users or all groups.

NOTE To specify non-ASCII user, group, or destination names, you must
use Unicode escape (\uXXXX) notation. If you have edited and saved
the ACL file with these names in a non-ASCII encoding, you can
convert the file to ASCII with the Java native2ascii tool. For more
detailed information, see
http://java.sun.com/j2se/1.4/docs/guide/intl/faq.html

http://java.sun.com/j2se/1.4/docs/guide/intl/faq.html

Authorizing Users: the Access Control Properties File

Chapter 8 Managing Security 215

Permission Computation
The following principles are applied when computing the permissions implied by
a series of rules:

• Specific access rules override general access rules. After applying the following
two rules, all can send to all queues, but Bob cannot send to tq1.

queue.*.produce.allow.user=*

queue.tq1.produce.deny.user=Bob

• Access given to an explicit principal overrides access given to a * principal. The
following rules deny Bob the right to produce messages to tq1, but allow
everyone else to do it.

queue.tq1.produce.allow.user=*

queue.tq1.produce.deny.user=Bob

• The * principal rule for users overrides the corresponding * principal for groups.
For example, the following two rules allow all authenticated users to send
messages to tq1.

queue.tq1.produce.allow.user=*

queue.tq1.produce.deny.group=*

• Access granted a user overrides access granted to the user’s group. In the
following example, if Bob is a member of User, he will be denied permission to
produce messages to tq1, but all other members of User will be able to do so.

queue.tq1.produce.allow.group=User

queue.tq1.produce.deny.user=Bob

• Any access permission not explicitly granted through an access rule is
implicitly denied. For example, if the ACL file contained no access rules, all
users would be denied all operations.

• Deny and allow permissions for the same user or group cancel themselves out.
For example, the following two rules result in Bob not being able to browse q1:

queue.q1.browse.allow.user=Bob

queue.q1.browse.deny.user=Bob

Authorizing Users: the Access Control Properties File

216 Message Queue 3.5 SP1 • Administration Guide

The following two rules result in the group User not being able to consume
messages at q5.

queue.q5.consume.allow.group=User

queue.q5.consume.deny.group=User

• When multiple same left-hand rules exist, only the last entry takes effect.

Connection Access Control
The connection access control section in the ACL properties file contains access
control rules for the broker’s connection services. The syntax of connection access
control rules is as follows:

connection.resourceVariant.access.principalType = principals

Two values are defined for resourceVariant: NORMAL and ADMIN. By default all users
can have access to the NORMAL type, but only those users whose group is admin may
have access to ADMIN type connection services.

You can edit the connection access control rules to restrict a user’s connection
access privileges. For example, the following rules deny Bob access to NORMAL but
allow everyone else:

connection.NORMAL.deny.user=Bob

connection.NORMAL.allow.user=*

You can use the asterisk (*) character to specify all authenticated users or groups.

You may not create your own service type; you must restrict yourself to the
predefined types specified by the constants NORMAL and ADMIN.

Destination Access Control
The destination access control section of the access control properties file contains
destination-based access control rules. These rules determine who (users/groups)
may do what (operations) where (destinations). The types of access that are
regulated by these rules include sending messages to a queue, publishing messages
to a topic, receiving messages from a queue, subscribing to a topic, and browsing a
messages in a queue.

Authorizing Users: the Access Control Properties File

Chapter 8 Managing Security 217

By default, any user or group can have all types of access to any destination. You
can add more specific destination access rules or edit the default rules. The rest of
this section explains the syntax of destination access rules, which you must
understand to write your own rules.

The syntax of destination rules is as follows:

resourceType.resourceVariant.operation.access.principalType = principals

Table 8-7 describes these elements:

Access can be given to one or more users and/or one or more groups.

The following examples illustrate different kinds of destination access control
rules:

• Allow all users to send messages to any queue destinations.

queue.*.produce.allow.user=*

• Deny any member of the group user to subscribe to the topic Admissions.

topic.Admissions.consume.deny.group=user

Destination Auto-Create Access Control
The final section of the ACL properties file, includes access rules that specify for
which users and groups the broker will auto-create a destination.

When a user creates a producer or consumer at a destination that does not already
exist, the broker will create the destination if the broker’s auto-create property has
been enabled and if the physical destination does not already exist.

Table 8-7 Elements of Destination Access Control Rules

Component Description

resourceType Must be one of queue or topic.

resourceVariant A destination name or all destinations (*), meaning all queues or all
topics.

operation Must be one of produce, consume, or browse.

access Must be one of allow or deny.

principalType Must be one of user or group.

Encryption: Working With an SSL-based Service (Enterprise Edition)

218 Message Queue 3.5 SP1 • Administration Guide

By default, any user or group has the privilege of having a destination auto-created
by the broker. This privilege is specified by the following rules:

queue.create.allow.user=*

topic.create.allow.user=*

You can edit the ACL file to restrict this type of access.

The general syntax for destination auto-create access rules is as follows:

resourceType.create.access.principalType = principals

Where resourceType is either queue or topic.

For example, the following rules allow the broker to auto-create topic destinations
for everyone except Snoopy.

topic.create.allow.user=*

topic.create.deny.user=Snoopy

Note that the effect of destination auto-create rules must be congruent with that of
destination access rules. For example, if you 1) change the destination access rule to
forbid any user from sending a message to a destination but 2) enable the
auto-creation of the destination, the broker will create the destination if it does not
exist but it will not deliver a message to it.

Encryption: Working With an SSL-based Service
(Enterprise Edition)

Message Queue Enterprise Edition supports connection services based on the
Secure Socket Layer (SSL) standard: over TCP/IP (ssljms and ssladmin) and over
HTTP (httpsjms). These SSL-based connection services allow for the encryption of
messages sent between clients and broker. The current Message Queue release
supports SSL encryption based on self-signed server certificates.

To use an SSL-based connection service, you need to generate a private key/public
key pair using the Key Tool utility (imqkeytool). This utility embeds the public key
in a self-signed certificate that is passed to any client requesting a connection to the
broker, and the client uses the certificate to set up an encrypted connection.

While Message Queue’s SSL-based connection services are similar in concept, there
are some differences in how you set them up. Secure connections over TCP/IP and
over HTTP are therefore discussed separately in the following sections.

Encryption: Working With an SSL-based Service (Enterprise Edition)

Chapter 8 Managing Security 219

Setting Up an SSL-based Service Over TCP/IP
There are three SSL-based connection services that provide a direct, secure
connection over TCP/IP.

ssljms This connection service is used to deliver messages over a secure,
encrypted connection between a client and broker.

ssladmin This connection service is used to create a secure, encrypted connection
between the Message Queue Command utility (imqcmd)—the command line
administration tool—and a broker. A secure connection is not supported for the
Administration Console (imqadmin).

cluster This connection service is used to deliver messages over a secure,
encrypted connection between brokers in a cluster (see “Secure Inter-Broker
Connections” on page 143).

➤ To Set Up an SSL-based Connection Service

1. Generate a self-signed certificate.

2. Enable the ssljms connection service, ssladmin connection service, or cluster
connection service in the broker.

3. Start the broker.

4. Configure and run the client (applies only to ssljms connection service).

The procedures for setting up ssljms and ssladmin connection services are
identical, except for Step 4, configuring and running the client.

Each of the steps is discussed in some detail in the sections that follow.

Step 1. Generating a Self-Signed Certificate
Message Queue’s SSL Support is oriented toward securing on-the-wire data with
the assumption that the client is communicating with a known and trusted server.
Therefore, SSL is implemented using only self-signed certificates.

Run the imqkeytool command to generate a self-signed certificate for the broker.
The same certificate can be used for the ssljms connection service, ssladmin
connection service, or cluster connection service. Enter the following at the
command prompt:

imqkeytool -broker

Encryption: Working With an SSL-based Service (Enterprise Edition)

220 Message Queue 3.5 SP1 • Administration Guide

The utility will prompt you for the information it needs. (On UNIX® systems you
may need to run imqkeytool as the superuser (root) in order to have permission to
create the keystore.)

First, imqkeytool prompts you for a keystore password, then it prompts you for
some organizational information, and then it prompts you for confirmation. After
it receives the confirmation, it pauses while it generates a key pair. It then asks you
for a password to lock the particular key pair (key password); you should enter
Return in response to this prompt: this makes the key password the same as the
keystore password.

Running imqkeytool runs the JDK keytool utility to generate a self-signed
certificate and places it in Message Queue’s keystore, located in a directory that
depends upon the operating system, as shown in Appendix A, “Location of
Message Queue Data.”

The keystore is in the same format as that supported by the JDK1.2 keytool utility.

The configurable properties for the Message Queue keystore are shown in
Table 8-8. (For instructions on configuring these properties, see Chapter 5,
“Starting and Configuring a Broker.”)

NOTE Remember the password you provide—you will need to provide
this password later to the broker (when you start it) so it can open
the keystore. You can also store the keystore password in a passfile
(see “Using a Passfile” on page 225).

Table 8-8 Keystore Properties

Property Name Description

imq.keystore.file.
dirpath

For SSL-based services: specifies the path to the directory
containing the keystore file. Default: see Appendix A,
“Location of Message Queue Data.”

imq.keystore.file.name For SSL-based services: specifies the name of the keystore
file.
Default: keystore

Encryption: Working With an SSL-based Service (Enterprise Edition)

Chapter 8 Managing Security 221

You may need to regenerate a key pair in order to solve certain problems; for
example:

• You forgot the keystore password.

• The SSL-based service fails to initialize when you start a broker and you get the
exception:
java.security.UnrecoverableKeyException: Cannot recover key.

This exception may result from the fact that you had provided a key password
that was different from the keystore password when you generated the
self-signed certificate in “Step 1. Generating a Self-Signed Certificate” on
page 219.

➤ To Regenerate a Key Pair

1. Remove the broker’s keystore, located as shown in Appendix A, “Location of
Message Queue Data.”

2. Rerun imqkeytool to generate a key pair as described in “Step 1. Generating a
Self-Signed Certificate” on page 219.

Step 2. Enabling the SSL-based Service in the Broker
To enable the SSL-based service in the broker, you need to add ssljms
(or ssladmin) to the imq.service.activelist property.

imq.keystore.password For SSL-based services: specifies the keystore password.
This property can only be specified in a passfile (see “Using
a Passfile” on page 225).

There are a number of ways to provide a password. The
most secure is to let the broker prompt you for a password.
Less secure is to use a passfile and read-protect the
passfile. Least secure is to specify the password using the
following command line option: imqbrokerd
-ldappassword.

NOTE The SSL-based cluster connection service is enabled using the
imq.cluster.transport property rather than the
imq.service.activelist property. See “Secure Inter-Broker
Connections” on page 143.

Table 8-8 Keystore Properties (Continued)

Property Name Description

Encryption: Working With an SSL-based Service (Enterprise Edition)

222 Message Queue 3.5 SP1 • Administration Guide

➤ To Enable an SSL-based Service in the Broker

1. Open the broker’s instance configuration file.

The instance configuration file is located in a directory identified by the name
of the broker instance (instanceName) with which the configuration file is
associated (see Appendix A, “Location of Message Queue Data”):

…/instances/instanceName/props/config.properties

2. Add an entry (if one does not already exist) for the imq.service.activelist
property and include SSL-based services in the list.

By default, the property includes the jms and admin connection services. You
need to add the ssljms or ssladmin connection services or both (depending on
the services you want to activate):

imq.service.activelist=jms,admin,ssljms,ssladmin

Step 3. Starting the Broker
Start the broker, providing the keystore password. You can provide the password
in any one of the following ways:

• Allow the broker to prompt you for the password when it starts up

imqbrokerd
Please enter Keystore password: mypassword

• Use the -password option to the imqbrokerd command:

imqbrokerd -password mypassword

• Put the password in a passfile file (see “Using a Passfile” on page 225) which is
accessed at broker startup. You have to first set the following broker
configuration property (see “Editing the Instance Configuration File” on
page 129):

imq.passfile.enabled=true

Once this property is set, you can access the passfile in either of two ways:

❍ pass the location of the passfile to the imqbrokerd command:

imqbrokerd -passfile /tmp/mypassfile

❍ start the broker without the -passfile option, but specify the location of the
passfile using the following two broker configuration properties:

imq.passfile.dirpath=/tmp

imq.passfile.name=mypassfile

Encryption: Working With an SSL-based Service (Enterprise Edition)

Chapter 8 Managing Security 223

For a listing of passfile-related broker properties, see Table 2-6 on page 69.

When you start a broker or client with SSL, you might notice that it consumes a lot
of cpu cycles for a few seconds. This is because Message Queue uses JSSE (Java
Secure Socket Extension) to implement SSL. JSSE uses
java.security.SecureRandom() to generate random numbers. This method takes
a significant amount of time to create the initial random number seed, and that is
why you are seeing increased cpu usage. After the seed is created, the cpu level
will drop to normal.

Step 4. Configuring and Running SSL-based Clients
Finally, you need to configure clients to use the secure connection services. There
are two types of clients, depending on the connection service you are using:
application clients that use ssljms, and the Message Queue administration clients
(such as imqcmd) that use ssladmin. These are treated separately in the following
sections.

Application Clients
You have to make sure the client has the necessary Secure Socket Extension (JSSE)
jar files in its classpath, and you need to tell it to use the ssljms connection service.

1. If your client is not using J2SDK1.4 (which has JSSE and JNDI support built in),
make sure the client has the following jar files in its class path:

jsse.jar, jnet.jar, jcert.jar, jndi.jar

2. Make sure the client has the following Message Queue jar files in its class path:

imq.jar, jms.jar

3. Start the client and connect to the broker’s ssljms service. One way to do this is
by entering a command like the following:

java -DimqConnectionType=TLS clientAppName

Setting imqConnectionType tells the connection to use SSL.

For more information on using ssljms connection services in client
applications, see the chapter on using administered objects in the Message
Queue Java Client Developer’s Guide.

Administration Clients (imqcmd)
You can establish a secure administration connection by including the -secure
option when using imqcmd (see Table 6-2 on page 154) for example:

imqcmd list svc -b hostName:port -u adminName -p adminPassword -secure

Encryption: Working With an SSL-based Service (Enterprise Edition)

224 Message Queue 3.5 SP1 • Administration Guide

where adminName and adminPassword are valid entries in the Message Queue user
repository. (If you are using a flat-file repository, see “Changing the Default
Administrator Password” on page 208).

Listing the connection services is a way to show that the ssladmin service is
running, and that you can successfully make a secure admin connection, as shown
in the following output:

Setting Up an SSL Service Over HTTP
In this SSL-based connection service (httpsjms), the client and broker establish a
secure connection by way of a HTTPS tunnel servlet. The architecture and
implementation of HTTPS support is described in Appendix C, “HTTP/HTTPS
Support (Enterprise Edition)” on page 307.

Listing all the services on the broker specified by:

Host Primary Port
localhost 7676

Service Name Port Number Service State
admin 33984 (dynamic) RUNNING
httpjms - UNKNOWN
httpsjms - UNKNOWN
jms 33983 (dynamic) RUNNING
ssladmin 35988 (dynamic) RUNNING
ssljms dynamic UNKNOWN

Successfully listed services.

Using a Passfile

Chapter 8 Managing Security 225

Using a Passfile
In cases where you want the broker to start up without prompting you for needed
passwords, or without requiring you to supply these passwords as options to the
imqbrokerd command, you can place the needed passwords in a passfile. This
passfile can then be specified using the -passfile option when starting up a
broker:

imqbrokerd -passfile myPassfile

A passfile is a simple text file containing passwords. The file is not encrypted, and
therefore less secure than supplying passwords manually. Nevertheless you can
set permissions on the file that limit who has access to view it. The permissions set
on the passfile need to provide read access to the user who starts the broker.

A passfile can contain the passwords shown in Table 8-9:

A sample passfile can be found at a location that depends on operating system, as
shown in Appendix A, “Location of Message Queue Data.”

Table 8-9 Passwords in a Passfile

Password Description

imq.keystore.password Specifies the keystore password for SSL-based services
(see Table 8-8 on page 220).

imq.user_repository.ldap.
password

Specifies the password associated with the distinguished
name assigned to a broker for binding to a configured
LDAP user repository (see Table 8-5 on page 210).

imq.persist.jdbc.password Specifies the password used to open a database
connection, if required (see Table B-1 on page 300).

Using a Passfile

226 Message Queue 3.5 SP1 • Administration Guide

227

Chapter 9

Analyzing and Tuning a
Message Service

This chapter covers a number of topics about how to analyze and tune a Message
Queue service to optimize the performance of your messaging applications. It
includes the following topics:

• About Performance

• Factors That Impact Performance

• Monitoring a Message Server

• Troubleshooting Performance Problems

• Adjusting Your Configuration To Improve Performance

About Performance

The Performance Tuning Process
The performance you get out of a messaging application depends on the
interaction between the application and the Message Queue service. Hence,
maximizing performance requires the combined efforts of both the application
developer and the administrator.

The process of optimizing performance begins with application design and
continues through to tuning the message service after the application has been
deployed. The performance tuning process includes the following stages:

• Defining performance requirements for the application

About Performance

228 Message Queue 3.5 SP1 • Administration Guide

• Designing the application taking into account factors that affect performance
(especially trade-offs between reliability and performance)

• Establishing baseline performance measures

• Tuning or reconfiguring the message service to optimize performance.

The process outlined above is often iterative. During deployment of the
application, a Message Queue administrator evaluates the suitability of the
message server for the application’s general performance requirements. If the
benchmark testing meets these requirements, the administrator can tune the
system as described in this chapter. However, if benchmark testing does not meet
performance requirements, then a redesign of the application might be necessary
or the deployment architecture might need to be modified.

Aspects of Performance
In general, performance is a measure of the speed and efficiency with which a
message service delivers messages from producer to consumer. However, there are
several different aspects of performance that might be important to you,
depending on your needs.

Connection Load The number of message producers, or message consumers, or
the number of concurrent connections a system can support.

Message throughput The number of messages or message bytes that can be
pumped through a messaging system per second.

Latency The time it takes a particular message to be delivered from message
producer to message consumer.

Stability The overall availability of the message service or how gracefully it
degrades in cases of heavy load or failure.

Efficiency The efficiency of message delivery; a measure of message throughput
in relation to the computing resources employed.

These different aspects of performance are generally inter-related. If message
throughput is high, that means messages are less likely to be backlogged in the
message server, and as a result, latency should be low (a single message can be
delivered very quickly). However, latency can depend on many factors: the speed
of communication links, message server processing speed, and client processing
speed, to name a few.

About Performance

Chapter 9 Analyzing and Tuning a Message Service 229

In any case, there are several different aspects of performance. Which of them are
most important to you generally depends on the requirements of a particular
application.

Benchmarks
Benchmarking is the process of creating a test suite for your messaging application
and of measuring message throughput or other aspects of performance for this test
suite.

For example, you could create a test suite by which some number of producing
clients, using some number of connections, sessions, and message producers, send
persistent or non-persistent messages of a standard size to some number of queues
or topics (all depending on your messaging application design) at some specified
rate. Similarly, the test suite includes some number of consuming clients, using
some number of connections, sessions, and message consumers (of a particular
type) that consume the messages in the test suite’s destinations using a particular
acknowledgement mode.

Using your standard test suite you can measure the time it takes between
production and consumption of messages or the average message throughput rate,
and you can monitor the system to observe connection thread usage, message
storage data, message flow data, and other relevant metrics. You can then ramp up
the rate of message production, or the number of message producers, or other
variables, until performance is negatively impacted. The maximum throughput
you can achieve is a benchmark for your message service configuration.

Using this benchmark, you can modify some of the characteristics of your test
suite. By carefully controlling all the factors that might have an impact on
performance (see “Application Design Factors that Impact Performance” on
page 232), you can note how changing some of these factors affects the benchmark.
For example, you can increase the number of connections or the size of messages
five-fold or ten-fold, and note the impact on performance.

Conversely, you can keep application-based factors constant and change your
broker configuration in some controlled way (for example, change connection
properties, thread pool properties, JVM memory limits, limit behaviors, built-in
versus plugged-in persistence, and so forth) and note how these changes affect
performance.

This benchmarking of your application provides information that can be valuable
when you want to increase the performance of a deployed application by tuning
your message service. A benchmark allows the effect of a change or a set of changes
to be more accurately predicted.

About Performance

230 Message Queue 3.5 SP1 • Administration Guide

As a general rule, benchmarks should be run in a controlled test environment and
for a long enough period of time for your message service to stabilize.
(Performance is negatively impacted at startup by the Just-In-Time compilation
that turns Java code into machine code.)

Baseline Use Patterns
Once a messaging application is deployed and running, it is important to establish
baseline use patterns. You want to know when peak demand occurs and you want
to be able to quantify that demand. For example, demand normally fluctuates by
number of end-users, activity levels, time of day, or all of these.

To establish base-line use patterns you need to monitor your message server over
an extended period of time, looking at data such as number of connections, number
of messages stored in the broker (or in particular destinations), message flows into
and out of a broker (or particular destinations), numbers of active consumers, and
so forth. You can also use average and peak values provided in metrics data.

It is important to check these baseline metrics against design expectations. By
doing so, you are checking that client code is behaving properly: for example, that
connections are not being left open or that consumed messages are not being left
unacknowledged. These coding errors consume message server resources and
could significantly affect performance.

The base-line use patterns help you determine how to tune your system for optimal
performance. For example, if one destination is used significantly more than
others, you might want to set higher message memory limits on that destination
than on others, or to adjust limit behaviors accordingly. If the number of
connections needed is significantly greater than allowed by the maximum thread
pool size, you might want to increase the threadpool size or adopt a shared thread
model. If peak message flows are substantially greater than average flows, that
might influence the limit behaviors you employ when memory runs low.

In general, the more you know about use patterns, the better you are able to tune
your system to those patterns and to plan for future needs.

Factors That Impact Performance

Chapter 9 Analyzing and Tuning a Message Service 231

Factors That Impact Performance
Message latency and message throughput, two of the main performance indicators,
generally depend on the time it takes a typical message to complete various steps
in the message delivery process. These steps are shown below for the case of a
persistent, reliably delivered message. The steps are described following the
illustration.

Figure 9-1 Message Delivery Through a Message Queue Service

Data Store

Consumer
Client

Producer
Client

Message
Server

1

2

3

4

6

7

8

9

5

10

Factors That Impact Performance

232 Message Queue 3.5 SP1 • Administration Guide

1. The message is delivered from producing client to message server

2. The message server reads in the message

3. The message is placed in persistent storage (for reliability)

4. The message server confirms receipt of the message (for reliability)

5. The message server determines the routing for the message

6. The message server writes out the message

7. The message is delivered from message server to consuming client

8. The consuming client acknowledges receipt of the message (for reliability)

9. The message server processes client acknowledgement (for reliability)

10. The message server confirms that client acknowledgement has been processed

Since these steps are sequential, any one of them can be a potential bottleneck in
the delivery of messages from producing clients to consuming clients. Most of
these steps depend upon physical characteristics of the messaging system: network
bandwidth, computer processing speeds, message server architecture, and so forth.
Some, however, also depend on characteristics of the messaging application and
the level of reliability it requires.

The following subsections discuss the impact of both application design factors
and messaging system factors on performance. While application design and
messaging system factors closely interact in the delivery of messages, each
category is considered separately.

Application Design Factors that
Impact Performance
Application design decisions can have a significant effect on overall messaging
performance.

The most important factors affecting performance are those that impact the
reliability of message delivery. Among these are the following factors:

• Delivery Mode (Persistent/Non-persistent Messages)

• Use of Transactions

• Acknowledgement Mode

• Durable vs. Non-durable Subscriptions

Factors That Impact Performance

Chapter 9 Analyzing and Tuning a Message Service 233

Other application design factors impacting performance are the following:

• Use of Selectors (Message Filtering)

• Message Size

• Message Body Type

The sections that follow describe the impact of each of these factors on messaging
performance. As a general rule, there is a trade-off between performance and
reliability: factors that increase reliability tend to decrease performance.

The following table shows how the various application design factors generally
affect messaging performance. The table shows two scenarios—a high reliability,
low performance scenario and a high performance, low reliability scenario—and
the choice of application design factors that characterizes each. Between these
extremes, there are many choices and trade-offs that affect both reliability and
performance.

Table 9-1 Comparison of High Reliability and High Performance Scenarios

Application Design
Factor

High Reliability
Low Performance Scenario

High Performance
Low Reliability Scenario

Delivery mode Persistent messages Non-persistent messages

Use of transactions Transacted sessions No transactions

Acknowledgement mode AUTO_ACKNOWLEDGE or
CLIENT_ACKNOWLEDGE

DUPS_OK_ACKNOWLEDGE

Durable/non-durable
subscriptions

Durable subscriptions Non-durable subscriptions

Use of selectors Message filtering No message filtering

Message size Small messages Large messages

Message body type Complex body types Simple body types

Factors That Impact Performance

234 Message Queue 3.5 SP1 • Administration Guide

Delivery Mode (Persistent/Non-persistent Messages)
As described in “Reliable Messaging” on page 46, persistent messages guarantee
message delivery in case of message server failure. The broker stores the message
in a persistent store until all intended consumers acknowledge they have
consumed the message.

Broker processing of persistent messages is slower than for non-persistent
messages for the following reasons:

• A broker must reliably store a persistent message so that it will not be lost
should the broker fail.

• The broker must confirm receipt of each persistent message it receives.
Delivery to the broker is guaranteed once the method producing the message
returns without an exception.

• Depending on the client acknowledgment mode, the broker might need to
confirm a consuming client’s acknowledgement of a persistent message.

The differences in performance between the persistent and non-persistent modes
can be significant. Figure 9-2 compares throughput for persistent and
non-persistent messages in two reliable delivery cases: 10k-sized messages
delivered both to a queue and to a topic with durable subscriptions. Both cases use
the AUTO_ACKNOWLEDGE acknowledgement mode.

NOTE In the graphs that follow, performance data were generated on a
two-CPU, 1002 Mhz, Solaris 8 system, using file-based persistence.
The performance test first warmed up the Message Queue broker,
allowing the Just-In-Time compiler to optimize the system and the
persistent database to be primed.

Once the broker was warmed up, a single producer and single
consumer were created and messages were produced for 30
seconds. The time required for the consumer to receive all produced
messages was recorded, and a throughput rate (messages per
second) was calculated. This scenario was repeated for different
combinations of the application design factors shown in Table 9-1.

Factors That Impact Performance

Chapter 9 Analyzing and Tuning a Message Service 235

Figure 9-2 Performance Impact of Delivery Modes

Use of Transactions
A transaction is a guarantee that all messages produced in a transacted session and
all messages consumed in a transacted session will be either processed or not
processed (rolled back) as a unit.

Message Queue supports both local and distributed transactions (see “Local
Transactions” and “Distributed Transactions” on page 47, respectively, for more
information).

A message produced or acknowledged in a transacted session is slower than in a
non-transacted session for the following reasons:

• Additional information must be stored with each produced message.

• In some situations, messages in a transaction are stored when normally they
would not be (for example, a persistent message delivered to a topic
destination with no subscriptions would normally be deleted, however, at the
time the transaction is begun, information about subscriptions is not available).

• Information on the consumption and acknowledgement of messages within a
transaction must be stored and processed when the transaction is committed.

Queue Topic w ith
Durable

Subscriber

M
sg

s/
se

c. Persistent

Non-persistent

Factors That Impact Performance

236 Message Queue 3.5 SP1 • Administration Guide

Acknowledgement Mode
One mechanism for ensuring the reliability of JMS message delivery is for a client
to acknowledge consumption of messages delivered to it by the Message Queue
message server (see “Reliable Delivery: Acknowledgements and Transactions” on
page 59)

If a session is closed without the client acknowledging the message or if the
message server fails before the acknowledgment is processed, the broker redelivers
that message, setting a JMSRedelivered flag.

For a non-transacted session, the client can choose one of three acknowledgement
modes, each of which has its own performance characteristics:

• AUTO_ACKNOWLEDGE. The system automatically acknowledges a message once
the consumer has processed it. This mode guarantees at most one redelivered
message after a provider failure.

• CLIENT_ACKNOWLEDGE. The application controls the point at which messages are
acknowledged. All messages processed in that session since the previous
acknowledgement are acknowledged. If the message server fails while
processing a set of acknowledgments, one or more messages in that group
might be redelivered.

• DUPS_OK_ACKNOWLEDGE. This mode instructs the system to acknowledge
messages in a lazy manner. Multiple messages can be redelivered after a
provider failure.

(Using CLIENT_ACKNOWLEDGE mode is similar to using transactions, except there is
no guarantee that all acknowledgments will be processed together if a provider
fails during processing.)

Performance is impacted by acknowledgement mode for the following reasons:

• Extra control messages between broker and client are required in
AUTO_ACKNOWLEDGE and CLIENT_ACKNOWLEDGE modes. The additional control
messages add additional processing overhead and can interfere with JMS
payload messages, causing processing delays.

• In AUTO_ACKNOWLEDGE and CLIENT_ACKNOWLEDGE modes, the client must wait
until the broker confirms that it has processed the client’s acknowledgment
before the client can consume additional messages. (This broker confirmation
guarantees that the broker will not inadvertently redeliver these messages.)

• The Message Queue persistent store must be updated with the
acknowledgement information for all persistent messages received by
consumers, thereby decreasing performance.

Factors That Impact Performance

Chapter 9 Analyzing and Tuning a Message Service 237

Durable vs. Non-durable Subscriptions
Subscribers to a topic destination fall into two categories, those with durable and
non-durable subscriptions, as described in “Publish/Subscribe (Topic
destinations)” on page 44:

Durable subscriptions provide increased reliability at the cost of slower
throughput for the following reasons:

• The Message Queue message server must persistently store the list of messages
assigned to each durable subscription so that should a message server fail, the
list is available after recovery.

• Persistent messages for durable subscriptions are stored persistently, so that
should a message server fail, the messages can still be delivered after recovery,
when the corresponding consumer becomes active. By contrast, persistent
messages for non-durable subscriptions are not stored persistently (should a
message server fail, the corresponding consumer connection is lost and the
message would never be delivered).

Figure 9-3 compares throughput for topic destinations with durable and
non-durable subscriptions in two cases: persistent and non-persistent 10k-sized
messages. Both cases use AUTO_ACKNOWLEDGE acknowledgement mode.

You can see from Figure 9-3 that the performance impact of using durable
subscriptions is manifest only in the case of persistent messages; and the impact in
that case is because persistent messages are only stored persistently for durable
subscriptions, as explained above.

Figure 9-3 Performance Impact of Subscription Types

Persistent Non-persistent

M
sg

s/
se

c. Durable
Subscriptions

Non-durable
Subscriptions

Factors That Impact Performance

238 Message Queue 3.5 SP1 • Administration Guide

Use of Selectors (Message Filtering)
Application developers often want to target sets of messages to particular
consumers. They can do so either by targeting each set of messages to a unique
destination or by using a single destination and registering one or more selectors
for each consumer.

A selector is a string requesting that only messages with property values (see “JMS
Message Structure” on page 38) that match the string are delivered to a particular
consumer. For example, the selector NumberOfOrders >1 delivers only the
messages with a NumberOfOrders property value of 2 or more.

Registering consumers with selectors lowers performance (as compared to using
multiple destinations) because additional processing is required to handle each
message. When a selector is used, it must be parsed so that it can be matched
against future messages. Additionally, the message properties of each message
must be retrieved and compared against the selector as each message is routed.
However, using selectors provides more flexibility in a messaging application.

Message Size
Message size affects performance because more data must be passed from
producing client to broker and from broker to consuming client, and because for
persistent messages a larger message must be stored.

However, by batching smaller messages into a single message, the routing and
processing of individual messages can be minimized, providing an overall
performance gain. In this case, information about the state of individual messages
is lost.

Figure 9-4 compares throughput in kilobytes per second for 1k, 10k, and 100k-sized
messages in two cases: persistent and non-persistent messages. All cases send
messages are to a queue destination and use AUTO_ACKNOWLEDGE acknowledgement
mode.

Figure 9-4 shows that in both cases there is less overhead in delivering larger
messages compared to smaller messages. You can also see that the almost 50%
performance gain of non-persistent messages over persistent messages shown for
1k and 10k-sized messages is not maintained for 100k-sized messages, probably
because network bandwidth has become the bottleneck in message throughput for
that case.

Factors That Impact Performance

Chapter 9 Analyzing and Tuning a Message Service 239

Figure 9-4 Performance Impact of a Message Size

Message Body Type
JMS supports five message body types, shown below roughly in the order of
complexity:

• BytesMessage: Contains a set of bytes in a format determined by the
application

• TextMessage: Is a simple java.lang.String

• StreamMessage: Contains a stream of Java primitive values

• MapMessage: Contains a set of name-and-value pairs

• ObjectMessage: Contains a Java serialized object

While, in general, the message type is dictated by the needs of an application, the
more complicated types (MapMessage and ObjectMessage) carry a performance
cost—the expense of serializing and deserializing the data. The performance cost
depends on how simple or how complicated the data is.

Persistent Non-persistent

K
ilo

by
te

s/
se

c.
1k

10k

100k

Factors That Impact Performance

240 Message Queue 3.5 SP1 • Administration Guide

Message Service Factors that
Impact Performance
The performance of a messaging application is affected not only by application
design, but also by the message service performing the routing and delivery of
messages.

The following sections discuss various message service factors that can affect
performance. Understanding the impact of these factors is key to sizing a message
service and diagnosing and resolving performance bottlenecks that might arise in a
deployed application.

The most important factors affecting performance in a Message Queue service are
the following:

• Hardware

• Operating System

• Java Virtual Machine (JVM)

• Connections

• Broker Limits and Behaviors

• Message Server Architecture

• Data Store Performance

• Client Runtime Configuration

The sections below describe the impact of each of these factors on messaging
performance.

Hardware
For both the Message Queue message server and client applications, CPU
processing speed and available memory are primary determinants of message
service performance. Many software limitations can be eliminated by increasing
processing power, while adding memory can increase both processing speed and
capacity. However, it is generally expensive to overcome bottlenecks simply by
upgrading your hardware.

Factors That Impact Performance

Chapter 9 Analyzing and Tuning a Message Service 241

Operating System
Because of the efficiencies of different operating systems, performance can vary,
even assuming the same hardware platform. For example, the thread model
employed by the operating system can have an important impact on the number of
concurrent connections a message server can support. In general, all hardware
being equal, Solaris is generally faster than Linux, which is generally faster than
Windows.

Java Virtual Machine (JVM)
The message server is a Java process that runs in and is supported by the host JVM.
As a result, JVM processing is an important determinant of how fast and efficiently
a message server can route and deliver messages.

In particular, the JVM’s management of memory resources can be critical.
Sufficient memory has to be allocated to the JVM to accommodate increasing
memory loads. In addition, the JVM periodically reclaims unused memory, and
this memory reclamation can delay message processing. The larger the JVM
memory heap, the longer the potential delay that might be experienced during
memory reclamation.

Connections
The number and speed of connections between client and broker can affect the
number of messages that a message server can handle as well as the speed of
message delivery.

Message Server Connection Limits
All access to the message server is by way of connections. Any limit on the number
of concurrent connections can affect the number of producing or consuming clients
that can concurrently use the message server.

The number of connections to a message server is generally limited by the number
of threads available. Message Queue uses a thread pool manager, which you can
configure to support either a dedicated thread model or a shared thread model (see
“Thread Pool Manager” on page 56). The dedicated thread model is very fast
because each connection has dedicated threads, however the number of
connections is limited by the number of threads available (one input thread and
one output thread for each connection). The shared thread model places no limit on
the number of connections, however there is significant overhead and throughput
delays in sharing threads among a number of connections, especially when those
connections are busy.

Factors That Impact Performance

242 Message Queue 3.5 SP1 • Administration Guide

Transport Protocols
Message Queue software allows clients to communicate with the message server
using various low-level transport protocols. Message Queue supports the
connection services (and corresponding protocols) shown in “Connection Services
Support” on page 55. The choice of protocols is based on application requirements
(encrypted, accessible through a firewall), but the choice impacts overall
performance.

Figure 9-5 Transport Protocol Speeds

Figure 9-5 reflects the performance characteristics of the various protocol
technologies:

• TCP provides the fastest method to communicate with the broker.

• SSL is 50 to 70 percent slower than TCP when it comes to sending and
receiving messages (50 percent for persistent messages, closer to 70 percent for
non-persistent messages). Additionally, establishing the initial connection is
slower with SSL (it might take several seconds) because the client and broker
(or Web Server in the case of HTTPS) need to establish a private key to be used
when encrypting the data for transmission. The performance drop is caused by
the additional processing required to encrypt and decrypt each low-level TCP
packet.

Figure 9-6 compares throughput for TCP and SSL for two cases: a high
reliability scenario (1k persistent messages sent to topic destinations with
durable subscriptions and using AUTO_ACKNOWLEDGE acknowledgement mode)
and a high performance scenario (1k non-persistent messages sent to topic
destinations without durable subscriptions and using DUPS_OK_ACKNOWLEDGE
acknowledgement mode).

Figure 9-6 shows that protocol has less impact in the high reliability case. This
is probably because the persistence overhead required in the high reliability
case is a more important factor in limiting throughput than the protocol speed.

HTTPS HTTP SSL TCP

Slow Fast

Factors That Impact Performance

Chapter 9 Analyzing and Tuning a Message Service 243

Figure 9-6 Performance Impact of Transport Protocol

• HTTP is slower than either the TCP or SSL. It uses a servlet that runs on a Web
server as a proxy between the client and the broker. Performance overhead is
involved in encapsulating packets in HTTP requests and in the requirement
that messages go through two hops--client to servlet, servlet to broker--to reach
the broker.

• HTTPS is slower than HTTP because of the additional overhead required to
encrypt the packet between client and servlet and between servlet and broker.

Message Server Architecture
A Message Queue message server can be implemented as a single broker or as
multiple interconnected broker instances—a broker cluster.

As the number of clients connected to a broker increases, and as the number of
messages being delivered increases, a broker will eventually exceed resource
limitations such as file descriptor, thread, and memory limits. One way to
accommodate increasing loads is to add more broker instances to a Message Queue
message server, distributing client connections and message routing and delivery
across multiple brokers.

High reliability scenario Low reliability scenario

M
sg

s/
se

c.
TCP

SSL

Factors That Impact Performance

244 Message Queue 3.5 SP1 • Administration Guide

In general, this scaling works best if clients are evenly distributed across the
cluster, especially message producing clients. Because of the overhead involved in
delivering messages between the brokers in a cluster, clusters with limited
numbers of connections or limited message delivery rates, might exhibit lower
performance than a single broker.

You might also use a broker cluster to optimize network bandwidth. For example,
you might want to use slower, long distance network links between a set of remote
brokers within a cluster, while using higher speed links for connecting clients to
their respective broker instances.

For more information on clusters, see “Multi-Broker Clusters (Enterprise Edition)”
on page 82 and “Working With Clusters (Enterprise Edition)” on page 140.

Broker Limits and Behaviors
The message throughput that a message server might be required to handle is a
function of the use patterns of the messaging applications the message server
supports. However, the message server is limited in resources: memory, CPU
cycles, and so forth. As a result, it would be possible for a message server to
become overwhelmed to the point where it becomes unresponsive or unstable.

The Message Queue message server has mechanisms built in for managing
memory resources and preventing the broker from running out of memory. These
mechanisms include configurable limits on the number of messages or message
bytes that can be held by a broker or its individual destinations, and a set of
behaviors that can be instituted when destination limits are reached (see
“Managing Memory Resources and Message Flow” on page 61.

With careful monitoring and tuning, these configurable mechanisms can be used to
balance the inflow and outflow of messages so that system overload cannot occur.
While these mechanisms consume overhead and can limit message throughput,
they nevertheless maintain operational integrity.

Data Store Performance
Message Queue supports both built-in and plugged-in persistence (see
“Persistence Manager” on page 63). Built-in persistence is a file-based data store.
Plugged-in persistence uses a Java Database Connectivity (JDBC™) interface and
requires a JDBC-compliant data store.

The built-in persistence is significantly faster than plugged-in persistence;
however, a JDBC-compliant database system might provide the redundancy,
security, and administrative features needed for an application.

Monitoring a Message Server

Chapter 9 Analyzing and Tuning a Message Service 245

In the case of built-in persistence, you can maximize reliability by specifying that
persistence operations synchronize the in-memory state with the data store. This
helps eliminate data loss due to system crashes, but at the expense of performance.

Client Runtime Configuration
The Message Queue client runtime provides client applications with an interface to
the Message Queue message service. It supports all the operations needed for
clients to send messages to destinations and to receive messages from such
destinations. The client runtime is configurable (by setting connection factory
attribute values), allowing you to set properties and behaviors that can generally
improve performance and message throughput.

For example, the Message Queue client runtime supports the following
configurable behaviors:

• Connection flow metering (imqConnectionFlowCount), which helps you
prevent congestion due to the flow of both JMS messages and Message Queue
control messages across the same connection.

• Connection flow limits (imqConnectionFlowLimit), which helps you avoid
client resource limitations by limiting the number of messages that can be
delivered over a connection to the client runtime, waiting to be consumed.

• Consumer flow limits (imqConsumerFlowLimit), which helps improve load
balancing among consumers in multi-consumer queue delivery situations (so
no one consumer can be sent a disproportionate number of messages) and
which helps prevent any one consumer on a connection from overwhelming
other consumers on the connection. This property limits the number of
messages per consumer that can be delivered over a connection to the client
runtime, waiting to be consumed. This property can also be configured as a
queue destination property (consumerFlowLimit).

For more information on these behaviors and the attributes used to configure them,
see “Client Runtime Message Flow Adjustments” on page 289.

Monitoring a Message Server
A Message Queue server can be configured to provide metrics information that
you can use to monitor its performance. This section describes the various tools
you can use to monitor a message server and the metrics data that can be obtained
using these tools.

Monitoring a Message Server

246 Message Queue 3.5 SP1 • Administration Guide

For information on how to use metrics data to troubleshoot performance problems
or to analyze and tune message server performance, see “Troubleshooting
Performance Problems” on page 264.

Monitoring Tools
You can obtain metrics information using the following tools:

• Message Queue Command Utility (imqcmd)

• Message Queue Broker Log Files

• Message-Based Monitoring API

The following sections describe how to use each of these tools to obtain metrics
information. For a comparison of the different tools, see “Choosing the Right
Monitoring Tool” on page 255.

Message Queue Command Utility (imqcmd)
The Command utility (imqcmd) is Message Queue’s basic command line
administration tool. It allows you to manage the broker and its connection services,
as well as application-specific resources such as physical destinations, durable
subscriptions, and transactions. The imqcmd command is documented in Chapter 6,
“Broker and Application Management.”

One of the capabilities of the imqcmd command is its ability to obtain metrics
information for the broker as a whole, for individual connection services, and for
individual destinations. To obtain metrics data, you generally use the metrics
subcommand of imqcmd. Metrics data is written at an interval you specify, or the
number of times you specify, to the console screen.

You can also use the query subcommand (see “imqcmd query” on page 250) to
obtain a more limited subset of metrics data.

imqcmd metrics
The syntax and options of imqcmd metrics are shown in Table 9-2 and Table 9-3,
respectively.

Monitoring a Message Server

Chapter 9 Analyzing and Tuning a Message Service 247

Table 9-2 imqcmd metrics Subcommand Syntax

Subcommand Syntax Metrics Data Provided

metrics bkr
[-b hostName:port]
[-m metricType]
[-int interval]
[-msp numSamples]
[-u userName
[-p pasword

Displays broker metrics for the default broker or a
broker at the specified host and port.

or

metrics svc -n serviceName
[-b hostName:port]
[-m metricType]
[-int interval]
[-msp numSamples]
[-u userName
[-p pasword

Displays metrics for the specified service on the default
broker or on a broker at the specified host and port.

or

metrics dst -t destType
-n destName
[-b hostName:port]
[-m metricType]
[-int interval]
[-msp numSamples]
[-u userName
[-p pasword

Displays metrics information for the destination of the
specified type and name.

Table 9-3 imqcmd metrics Subcommand Options

Subcommand Options Description

-b hostName:port Specifies the hostname and port of the broker for which
metrics data is reported. The default is localhost:7676

-int interval Specifies the interval (in seconds) at which to display
the metrics. The default is 5 seconds.

Monitoring a Message Server

248 Message Queue 3.5 SP1 • Administration Guide

Procedure: Using the metrics Subcommand to Display Metrics Data
This section describes the procedure for using the metrics subcommand to report
metrics information.

➤ To Use the metrics Subcommand

1. Start the broker for which metrics information is desired.

See “Starting a Broker” on page 134.

2. Issue the appropriate imqcmd metrics subcommand and options as shown in
Table 9-2 and Table 9-3.

-m metricType Specifies the type of metric to display:

ttl Displays metrics on messages and packets
flowing into and out of the broker (default metric type)

rts Displays metrics on rate of flow of messages
and packets into and out of the broker (per second)

cxn Displays connections, virtual memory heap, and
threads (brokers and connection services only)

con Displays consumer-related metrics (destinations
only)

dsk Displays disk usage metrics (destinations only)

-msp numSamples Specifies the number of samples displayed in the
output. The default is an unlimited number (infinite).

-n destName Specifies the destination name of the destination (if
any) for which metrics data is reported. There is no
default.

-n serviceName Specifies the connection service (if any) for which
metrics data is reported. There is no default.

-t destTyp Specifies the type (queue or topic) of the destination (if
any) for which metrics data is reported. There is no
default.

-u userName Specifies your (the administrator’s) name. If you omit
this value, you will be prompted for it.

-p password Specifies your (the administrator’s) password. If you
omit this value, you will be prompted for it.

Table 9-3 imqcmd metrics Subcommand Options

Subcommand Options Description

Monitoring a Message Server

Chapter 9 Analyzing and Tuning a Message Service 249

Metrics Outputs: imqcmd metrics
This section shows example metrics subcommand outputs for broker-wide,
connection service, and destination metrics.

Broker-wide metrics. To get the rate of message and packet flow into and out of
the broker at 10 second intervals, use the metrics bkr subcommand:

imqcmd metrics bkr -m rts -int 10 -u admin -p admin

This command produces output similar to the following (see data descriptions in
Table 9-8 on page 258):

Connection service metrics. To get cumulative totals for messages and packets
handled by the jms connection service, use the metrics svc subcommand:

imqcmd metrics svc -n jms -m ttl -u admin -p admin

This command produces output similar to the following (see data descriptions in
Table 9-9 on page 260):

Destination metrics. To get metrics information about a destination, use the
metrics dst subcommand:

imqcmd metrics dst -t q -n XQueue -m ttl -u admin -p admin

--
 Msgs/sec Msg Bytes/sec Pkts/sec Pkt Bytes/sec
 In Out In Out In Out In Out
--
 0 0 27 56 0 0 38 66
 10 0 7365 56 10 10 7457 1132
 0 0 27 56 0 0 38 73
 0 10 27 7402 10 20 1400 8459
 0 0 27 56 0 0 38 73

Msgs Msg Bytes Pkts Pkt Bytes

In Out In Out In Out In Out

164 100 120704 73600 282 383 135967 102127
657 100 483552 73600 775 876 498815 149948

Monitoring a Message Server

250 Message Queue 3.5 SP1 • Administration Guide

This command produces output similar to the following (see data descriptions in
Table 9-10 on page 262):

To get information about a destination’s consumers, use the following metrics dst
subcommand:

imqcmd metrics dst -t q -n SimpleQueue -m con -u admin -p admin

This command produces output similar to the following (see data descriptions in
Table 9-10 on page 262):

imqcmd query
The syntax and options of imqcmd query are shown in Table 9-4 along with a
description of the metrics data provided by the command.

Msgs Msg Bytes Msg Count Total Msg Bytes (k) Largest

In Out In Out Current Peak Avg Current Peak Avg Msg (k)

200 200 147200 147200 0 200 0 0 143 71 0
300 200 220800 147200 100 200 10 71 143 64 0
300 300 220800 220800 0 200 0 0 143 59 0

--
Active Consumers Backup Consumers Msg Count

Current Peak Avg Current Peak Avg Current Peak Avg
--

1 1 0 0 0 0 944 1000 525

Table 9-4 imqcmd query Subcommand Syntax

Subcommand Syntax Metrics Data Provided

query bkr
[-b hostName:port]
[-int interval]
[-msp numSamples]

Information on the current number of messages and
message bytes stored in broker memory and persistent
store (see “Displaying Broker Information” on
page 159)

or

Monitoring a Message Server

Chapter 9 Analyzing and Tuning a Message Service 251

Message Queue Broker Log Files
The Message Queue logger takes information generated by broker code, a
debugger, and a metrics generator and writes that information to a number of
output channels: to standard output (the console), to a log file, and, on Solaris™
platforms, to the syslog daemon process. The logger is describe in “Logger” on
page 71.

You can specify the type of information gathered by the logger as well as the type
written to each of the output channels. In particular, you can specify that you want
metrics information written out to a log file.

Procedure: Using Broker Log Files to Report Metrics Data
This section describes the procedure for using broker log files to report metrics
information. For general information on configuring the logger, see “Logging” on
page 147.

➤ To Use Log Files to Report Metrics Information

1. Configure the broker’s metrics generation capability:

a. Confirm imq.metrics.enabled=true

Generation of metrics for logging is turned on by default.

metrics svc -n serviceName
[-b hostName:port]
[-int interval]
[-msp numSamples]

Information on the current number of allocated threads
and number of connections for a specified connection
service (see “Displaying Connection Service
Information” on page 165)

or

metrics dst -t destType
-n destName
[-b hostName:port]
[-int interval]
[-msp numSamples]

Information on the current number of producers, active
and backup consumers, and messages and message
bytes stored in memory and persistent store for a
specified destination (see “Displaying Destination
Information” on page 173)

NOTE Because of the limited metrics data provided by imqcmd query, this
tool is not represented in the tables presented in the section,
“Description of Metrics Data,”on page 257.

Table 9-4 imqcmd query Subcommand Syntax

Subcommand Syntax Metrics Data Provided

Monitoring a Message Server

252 Message Queue 3.5 SP1 • Administration Guide

b. Set the metrics generation interval to a convenient number of seconds.

imq.metrics.interval=interval

This value can be set in the config.properties file or using the
-metrics interval command line option when starting up the broker.

2. Confirm that the logger gathers metrics information:

imq.log.level=INFO

This is the default value. This value can be set in the config.properties file or
using the -loglevel level command line option when starting up the broker.

3. Confirm that the logger is set to write metrics information to the log file:

imq.log.file.output=INFO

This is the default value. It can be set in the config.properties file.

4. Start up the broker.

Metrics Outputs: Log File
The following shows sample broker metrics output to the log file (see the
description of metrics data in Table 9-7 and Table 9-8 on page 258):

Message-Based Monitoring API
Message Queue provides a metrics monitoring capability by which the broker can
write metrics data into JMS messages, which it then sends to one of a number of
metrics topic destinations, depending on the type of metrics information contained
in the message.

You can access this metrics information by writing a client application that
subscribes to the metrics topic destinations, consumes the messages in these
destinations, and processes the metrics information contained in the messages. The
general scheme is described in “Metrics Message Producer (Enterprise Edition)” on
page 73.

[21/Jul/2003:11:21:18 PDT]
Connections: 0 JVM Heap: 8323072 bytes (7226576 free) Threads: 0 (14-1010)

In: 0 msgs (0bytes) 0 pkts (0 bytes)
Out: 0 msgs (0bytes) 0 pkts (0 bytes)

Rate In: 0 msgs/sec (0 bytes/sec) 0 pkts/sec (0 bytes/sec)
Rate Out: 0 msgs/sec (0 bytes/sec) 0 pkts/sec (0 bytes/sec)

Monitoring a Message Server

Chapter 9 Analyzing and Tuning a Message Service 253

There are five metrics topic destinations, whose names are shown in Table 9-5,
along with the type of metrics messages delivered to each destination.

Procedure: Setting Up Message-Based Monitoring
This section describes the procedure for using the message-based monitoring
capability to gather metrics information. The procedure includes both client
development and administration tasks.

➤ To Set Up Message-based Monitoring

1. Write a metrics monitoring client.

See the Message Queue Java Client Developer’s Guide for instructions on
programming clients that subscribe to metrics topic destinations, consume
metrics messages, and extract the metrics data from these messages.

2. Configure the broker’s Metrics Message Producer by setting broker property
values in the config.properties file:

a. Enable metrics message production.

Set imq.metrics.topic.enabled=true

The default value is true.

b. Set the interval (in seconds) at which metrics messages are generated.

Set imq.metrics.topic.interval=interval

The default is 60 seconds.

Table 9-5 Metrics Topic Destinations

Topic Name Type of Metrics Messages

mq.metrics.broker Broker metrics

mq.metrics.jvm Java Virtual Machine metrics

mq.metrics.destination_list List of destinations and their types

mq.metrics.destination.queue.
monitoredDestinationName

Destination metrics for queue of specified name

mq.metrics.destination.topic.
monitoredDestinationName

Destination metrics for topic of specified name

Monitoring a Message Server

254 Message Queue 3.5 SP1 • Administration Guide

c. Specify whether you want metrics messages to be persistent (that is,
whether they will survive a broker failure).

Set imq.metrics.topic.persist

The default is false.

d. Specify how long you want metrics messages to remain in their respective
destinations before being deleted.

Set imq.metrics.topic.timetolive

The default value is 300 seconds

3. Set any access control you desire on metrics topic destinations.

See the discussion in “Security and Access Considerations,” below.

4. Start up your metrics monitoring client.

When consumers subscribe to a metrics topic, the metrics topic destination will
automatically be created. Once a metrics topic has been created, the broker’s
metrics message producer will begin sending metrics messages to the metrics
topic.

Security and Access Considerations
There are two reasons to restrict access to metrics topic destinations:

• Metrics data might include sensitive information about a broker and its
resources

• Excessive numbers of subscriptions to metrics topic destinations might
increase broker overhead and negatively impact performance

Because of these considerations, it is advisable to restrict access to metrics topic
destinations.

Monitoring clients are subject to the same authentication and authorization control
as any other client. Only users maintained in the Message Queue user repository
are allowed to connect to the broker.

You can provide additional protections by restricting access to specific metrics
topic destinations through an access control properties file, as described in
“Authorizing Users: the Access Control Properties File” on page 212.

For example, the following entries in an accesscontrol.properties file will deny
access to the mq.metrics.broker metrics topic to everyone except user1 and user 2.

Monitoring a Message Server

Chapter 9 Analyzing and Tuning a Message Service 255

The following entries will only allow users user3 to monitor topic t1.

Depending on the sensitivity of metrics data, you can also connect your metrics
monitoring client to a broker using an encrypted connection. For information on
using encrypted connections, see “Encryption: Working With an SSL-based Service
(Enterprise Edition)” on page 218.

Metrics Outputs: Metrics Messages
The metrics data outputs you get using the message-based monitoring API is a
function of the metrics monitoring client you write. You are limited only by the
data provided by the metrics generator in the broker. For a complete list of this
data, see “Description of Metrics Data” on page 257.

Choosing the Right Monitoring Tool
Each of the monitoring tools discussed in the previous sections has its advantages
and disadvantages.

Using the imqcmd metrics command, for example, lets you quickly sample
information tailored to your needs when you want it, but makes it somewhat
difficult to look at historical information, or to manipulate the data
programmatically.

The log files, on the other hand, provide a long-term record of metrics data,
however the information in the log file is difficult to parse for meaningful
information.

The message-based monitoring API lets you easily extract the information you
need, process it, manipulate or format the data programmatically, present graphs
or send alerts; however, you have to write a custom application to capture and
analyze the data.

topic.mq.metrics.broker.consume.deny.user=*
topic.mq.metrics.broker.consume.allow.user=user1,user2

topic.mq.metrics.destination.topic.t1.consume.deny.user=*
topic.mq.metrics.destination.topic.t1.consume.allow.user=user3

Monitoring a Message Server

256 Message Queue 3.5 SP1 • Administration Guide

In addition, each of these tools gathers a somewhat different subset of the metrics
information generated by the broker. For information on which metrics data is
gathered by which monitoring tool, see “Description of Metrics Data” on page 257.

Table 9-6 compares the different tools by showing the pros and cons of each.

Table 9-6 Pros and Cons of Metrics Monitoring Tools

Metrics
Monitoring Tool

Pros Cons

imqcmd metrics Remote monitoring

Convenient for spot checking

Reporting interval set in
command option; can be
changed on the fly

Easy to select specific data of
interest

Data presented in easy tabular
format

No single command gets all data

Difficult to analyze data
programmatically

Doesn’t create historical record

Difficult to see historical trends

Log files Regular sampling

Creates a historical record

Need to configure broker properties;
must shut down and restart broker to
take effect

Local monitoring only

Data format very difficult to read or
parse; no parsing tools

Reporting interval cannot be changed
on the fly; the same for all metrics data

Does not provide flexibility in selection
of data

Broker metrics only; destination and
connection service metrics not included

Possible performance hit if interval set
too short

Message-based
monitoring API

Remote monitoring

Easy to select specific data of
interest

Data can be analyzed
electronically and presented in
any format

Need to configure broker properties;
must shut down and restart broker to
take effect

You need to write your own metrics
monitoring client

Reporting interval cannot be changed
on the fly; the same for all metrics data

Monitoring a Message Server

Chapter 9 Analyzing and Tuning a Message Service 257

Description of Metrics Data
The metrics information reported by a broker can be grouped into the following
categories:

• Java Virtual Machine (JVM) metrics. Information about the JVM heap size.

• Broker-wide metrics. Information about messages stored in a broker and
about message flows into and out of a broker, both in terms of numbers of
messages and numbers of bytes (in absolute terms as well as rates). This
category also includes information about memory usage.

• Connection Service metrics. Information about connections and connection
thread resources, as well as information about message flows for a particular
connection service.

• Destination metrics. Information about message flows into and out of a
particular destination, information about a destination’s consumers, and
information about memory and disk space usage.

The following sections present the metrics data available in each of these
categories. For information on the monitoring tools referred to in the following
tables, see “Monitoring Tools” on page 246.

JVM Metrics
Table 9-7 lists and describes the metrics data the broker generates for the broker
process JVM heap and shows which of the data can be obtained using the different
metrics monitoring tools.

Table 9-7 JVM Metrics

Metric Quantity Description imqcmd
metrics bkr
(metricType)

Log
File

Metrics
Message
(metrics topic)2

2. For metrics topic destination names, see Table 9-5 on page 253.

JVM heap:
free memory

The amount of free memory available for
use in the JVM heap

Yes
(cxn)

Yes Yes
(…jvm)

JVM heap:
total memory

The current JVM heap size Yes
(cxn)

Yes Yes
(…jvm)

JVM heap:
max memory

The maximum to which the JVM heap size
can grow.

No Yes1

1. Shown only at broker startup.

Yes
(…jvm)

Monitoring a Message Server

258 Message Queue 3.5 SP1 • Administration Guide

Broker-wide Metrics
Table 9-8 lists and describes the data the broker reports regarding broker-wide
metrics information. It also shows which of the data can be obtained using the
different metrics monitoring tools.

Table 9-8 Broker-wide Metrics

Metric Quantity Description imqcmd
metrics bkr
(metricType)

Log
File

Metrics
Message
(metrics topic)1

Connection Data

Num connections Number of currently open connections to
the broker

Yes
(cxn)

Yes Yes
(…broker)

Num threads Number of threads currently in use Yes
(cxn)

Yes No

Min threads Number of threads, which once reached,
are maintained in the thread pool for use by
connection services

Yes
(cxn)

Yes No

Max threads Number of threads, beyond which no new
threads are added to the thread pool for use
by connection services

Yes
(cxn)

Yes No

Stored Messages Data

Num messages Number of JMS messages currently stored
in broker memory and persistent store

No
Use query bkr

No Yes
(…broker)

Total message bytes Number of JMS messages bytes currently
stored in broker memory and persistent
store

No
Use query bkr

No Yes
(…broker)

Message Flow Data

Num messages in Number of JMS messages that have flowed
into the broker since it was last started

Yes
(ttl)

Yes Yes
(…broker)

Message bytes in Number of JMS message bytes that have
flowed into the broker since it was last
started

Yes
(ttl)

Yes Yes
(…broker)

Num packets in Number of packets that have flowed into the
broker since it was last started; includes
both JMS messages and control messages

Yes
(ttl)

Yes Yes
(…broker)

Packet bytes in Number of packet bytes that have flowed
into the broker since it was last started;
includes both JMS messages and control
messages

Yes
(ttl)

Yes Yes
(…broker)

Monitoring a Message Server

Chapter 9 Analyzing and Tuning a Message Service 259

Num messages out Number of JMS messages that have flowed
out of the broker since it was last started.

Yes
(ttl)

Yes Yes
(…broker)

Message bytes out Number of JMS message bytes that have
flowed out of the broker since it was last
started

Yes
(ttl)

Yes Yes
(…broker)

Num packets out Number of packets that have flowed out of
the broker since it was last started; includes
both JMS messages and control messages

Yes
(ttl)

Yes Yes
(…broker)

Packet bytes out Number of packet bytes that have flowed
out of the broker since it was last started;
includes both JMS messages and control
messages

Yes
(ttl)

Yes Yes
(…broker)

Rate messages in Current rate of flow of JMS messages into
the broker

Yes
(rts)

Yes No

Rate message bytes in Current rate of flow of JMS message bytes
into the broker

Yes
(rts)

Yes No

Rate packets in Current rate of flow of packets into the
broker; includes both JMS messages and
control messages

Yes
(rts)

Yes No

Rate packet bytes in Current rate of flow of packet bytes into the
broker; includes both JMS messages and
control messages

Yes
(rts)

Yes No

Rate messages out Current rate of flow of JMS messages out of
the broker

Yes
(rts)

Yes No

Rate message bytes out Current rate of flow of JMS message bytes
out of the broker

Yes
(rts)

Yes No

Rate packets out Current rate of flow of packets out of the
broker; includes both JMS messages and
control messages

Yes
(rts)

Yes No

Rate packet bytes out Current rate of flow of packet bytes out of
the broker; includes both JMS messages
and control messages

Yes
(rts)

Yes No

Destinations Data

Num destinations Number of physical destination in the broker No No Yes
(…broker)

1. For metrics topic destination names, see Table 9-5 on page 253.

Table 9-8 Broker-wide Metrics (Continued)

Metric Quantity Description imqcmd
metrics bkr
(metricType)

Log
File

Metrics
Message
(metrics topic)1

Monitoring a Message Server

260 Message Queue 3.5 SP1 • Administration Guide

Connection Service Metrics
Table 9-9 lists and describes the metrics data the broker reports for individual
connection services. It also shows which of the data can be obtained using the
different metrics monitoring tools.

Table 9-9 Connection Service Metrics

Metric Quantity Description imqcmd
metrics svc
(metricType)

Log
File

Metrics
Message
(metrics topic)

Connection Data

Num connections Number of currently open connections Yes
(cxn)
Also query svc

No No

Num threads Number of threads currently in use, totaled
across all connection services

Yes
(cxn)
Also query svc

No No

Min threads Number of threads, which once reached, are
maintained in the thread pool for use by
connection services, totaled across all
connection services

Yes
(cxn)

No No

Max threads Number of threads, beyond which no new
threads are added to the thread pool for use
by connection services, totaled across all
connection services

Yes
(cxn)

No No

Message Flow Data

Num messages in Number of JMS messages that have flowed
into the connection service since the broker
was last started

Yes
(ttl)

No No

Message bytes in Number of JMS message bytes that have
flowed into the connection service since the
broker was last started

Yes
(ttl)

No No

Num packets in Number of packets that have flowed into the
connection service since the broker was last
started; includes both JMS messages and
control messages

Yes
(ttl)

No No

Packet bytes in Number packet bytes that have flowed into
the connection service since the broker was
last started; includes both JMS messages
and control messages

Yes
(ttl)

No No

Num messages out Number of JMS messages that have flowed
out of the connection service since the
broker was last started.

Yes
(ttl)

No No

Monitoring a Message Server

Chapter 9 Analyzing and Tuning a Message Service 261

Destination Metrics
Table 9-9 lists and describes the metrics data the broker reports for individual
destinations. It also shows which of the data can be obtained using the different
metrics monitoring tools.

Message bytes out Number of JMS message bytes that have
flowed out of the connection service since
the broker was last started

Yes
(ttl)

No No

Num packets out Number of packets that have flowed out of
the connection service since the broker was
last started; includes both JMS messages
and control messages

Yes
(ttl)

No No

Packet bytes out Number packet bytes that have flowed out of
the connection service since the broker was
last started; includes both JMS messages
and control messages

Yes
(ttl)

No No

Rate messages in Current rate of flow of JMS messages into
the broker through the connection service.

Yes
(rts)

No No

Rate message bytes in Current rate of flow of JMS message bytes
into the connection service

Yes
(rts)

No No

Rate packets in Current rate of flow of packets into the
connection service; includes both JMS
messages and control messages

Yes
(rts)

No No

Rate packet bytes in Current rate of flow of packet bytes into the
connection service; includes both JMS
messages and control messages

Yes
(rts)

No No

Rate messages out Current rate of flow of JMS messages out of
the connection service

Yes
(rts)

No No

Rate message bytes out Current rate of flow of JMS message bytes
out of the connection service

Yes
(rts)

No No

Rate packets out Current rate of flow of packets out of the
connection service; includes both JMS
messages and control messages

Yes
(rts)

No No

Rate packet bytes out Current rate of flow of packet bytes out of
the connection service; includes both JMS
messages and control messages

Yes
(rts)

No No

Table 9-9 Connection Service Metrics (Continued)

Metric Quantity Description imqcmd
metrics svc
(metricType)

Log
File

Metrics
Message
(metrics topic)

Monitoring a Message Server

262 Message Queue 3.5 SP1 • Administration Guide

Table 9-10 Destination Metrics

Metric Quantity Description imqcmd
metrics dst
(metricType)

Log
File

Metrics
Message
(metrics topic)1

Consumer Data

Num active consumers Current number of active consumers Yes
(con)

No Yes
(…destName)

Avg num active
consumers

Average number of active consumers since
the broker was last started

Yes
(con)

No Yes
(…destName)

Peak num active
consumers

Peak number of active consumers since
the broker was last started

Yes
(con)

No Yes
(…destName)

Num backup consumers Current number of backup consumers
(applies only to queues)

Yes
(con)

No Yes
(…destName)

Avg num backup
consumers

Average number of backup consumers
since the broker was last started (applies
only to queues)

Yes
(con)

No Yes
(…destName)

Peak num backup
consumers

Peak number of backup consumers since
the broker was last started (applies only to
queues)

Yes
(con)

No Yes
(…destName)

Stored Messages Data

Num messages Number of JMS messages currently stored
in destination memory and persistent store

Yes
(con)
(ttl)
(rts)
Also query dst

No Yes
(…destName)

Avg num messages Average number of JMS messages stored
in destination memory and persistent store
since the broker was last started

Yes
(con)
(ttl)
(rts)

No Yes
(…destName)

Peak num messages Peak number of JMS messages stored in
destination memory and persistent store
since the broker was last started

Yes
(con)
(ttl)
(rts)

No Yes
(…destName)

Total message bytes Number of JMS message bytes currently
stored in destination memory and
persistent store

Yes
(ttl)
(rts)
Also query dst

No Yes
(…destName)

Avg total message bytes Average number of JMS message bytes
stored in destination memory and
persistent store since the broker was last
started

Yes
(ttl)
(rts)

No Yes
(…destName)

Monitoring a Message Server

Chapter 9 Analyzing and Tuning a Message Service 263

Peak total message
bytes

Peak number of JMS message bytes
stored in destination memory and
persistent store since the broker was last
started

Yes
(ttl)
(rts)

No Yes
(…destName)

Peak message bytes Peak number of JMS message bytes in a
single message received by the destination
since the broker was last started

Yes
(ttl)
(rts)

No Yes
(…destName)

Message Flow Data

Num messages in Number of JMS messages that have
flowed into this destination since the broker
was last started

Yes
(ttl)

No Yes
(…destName)

Msg bytes in Number of JMS message bytes that have
flowed into this destination since the broker
was last started

Yes
(ttl)

No Yes
(…destName)

Num messages out Number of JMS messages that have
flowed out of this destination since the
broker was last started

Yes
(ttl)

No Yes
(…destName)

Msg bytes out Number of JMS message bytes that have
flowed out of this destination since the
broker was last started

Yes
(ttl)

No Yes
(…destName)

Rate num messages in Current rate of flow of JMS messages into
the destination

Yes
(rts)

No No

Rate num messages out Current rate of flow of JMS messages out
of the destination

Yes
(rts)

No No

Rate msg bytes
in

Current rate of flow of JMS message bytes
into the destination

Yes
(rts)

No No

Rate Msg bytes
out

Current rate of flow of JMS message bytes
out of the destination

Yes
(rts)

No No

Disk Utilization Data

Disk reserved Disk space (in bytes) used by all message
records (active and free) in the destination
file-based store

Yes
(dsk)

No Yes
(…destName)

Disk used Disk space (in bytes) used by active
message records in destination file-based
store

Yes
(dsk)

No Yes
(…destName)

Table 9-10 Destination Metrics (Continued)

Metric Quantity Description imqcmd
metrics dst
(metricType)

Log
File

Metrics
Message
(metrics topic)1

Troubleshooting Performance Problems

264 Message Queue 3.5 SP1 • Administration Guide

Troubleshooting Performance Problems
There are a number of performance problems that can occur in using a Message
Queue service to support an application. These problems include the following:

• Problem: Clients Can’t Establish A Connection

• Problem: Connection Throughput is Too Slow

• Problem: Client Can’t Create a Message Producer

• Problem: Message Production Is Delayed or Slowed

• Problem: Messages Backlogged in Message Server

• Problem: Message Server Throughput Is Sporadic

• Problem: Messages Not Reaching Consumers

Each of these problems is discussed below along with possible causes and
solutions.

Problem: Clients Can’t Establish A Connection

Symptoms:
• Client cannot make a new connection.

• Client cannot auto-reconnect on failed connection.

Possible Causes:
• Client applications are not closing connections, causing the number of

connections to exceed resource limitations.

Disk utilization ratio Quotient of used disk space over reserved
disk space. The higher the ratio, the more
the disk space is being used to hold active
messages

Yes
(dsk)

No Yes
(…destName)

1. For metrics topic destination names, see Table 9-5 on page 253.

Table 9-10 Destination Metrics (Continued)

Metric Quantity Description imqcmd
metrics dst
(metricType)

Log
File

Metrics
Message
(metrics topic)1

Troubleshooting Performance Problems

Chapter 9 Analyzing and Tuning a Message Service 265

To confirm this cause of the problem:

List all connections to a broker:

imqcmd list cxn

The output will list all connections and the host from which each connection
has been made, revealing an unusual number of open connections for specific
clients.

To resolve the problem:

Rewrite the offending clients to close unused connections.

• Broker is not running or there is a network connectivity problem.

To confirm this cause of the problem:

❍ Telnet to the broker’s primary port (for example, the default of 7676) and
verify that the broker responds with Port Mapper output.

❍ Verify that the broker process is running on the host.

To resolve the problem:

❍ Start up the broker.

❍ Fix the network connectivity problem.

• Connection service is inactive or paused.

To confirm this cause of the problem:

Check the status of all connection services:

imqcmd list svc

If the status of a connection service is shown as unknown or paused, then clients
will not be able to establish a connection using that service.

To resolve the problem:

❍ If the status of a connection service is shown as unknown, then it is missing
from the active service list (imq.service.active). In the case of SSL-based
services, the service might also be improperly configured, causing the
broker to make the following entry in the broker log: ERROR [B3009]:
Unable to start service ssljms: [B4001]: Unable to open protocol
tls for ssljms service... followed by an explanation of the
underlying cause of the exception.

To properly configure SSL services, see “Setting Up an SSL-based Service
Over TCP/IP” on page 219.

Troubleshooting Performance Problems

266 Message Queue 3.5 SP1 • Administration Guide

❍ If the status of a connection service is shown as paused, then resume the
service (see “Pausing and Resuming a Connection Service” on page 166).

• Too few threads available for the number of connections required.

To confirm this cause of the problem:

Check for the following entry in the broker log: WARNING [B3004]: No threads
are available to process a new connection on service ... Closing the
new connection.

Also check the number of connections on the connection service and the
number of threads currently in use:

imqcmd query svc -n serviceName
or
imqcmd metrics svc -n serviceName -m cxn

Each connection requires two threads: one for incoming messages and one for
outgoing messages (see “Thread Pool Manager” on page 56).

To resolve the problem:

❍ If you are using a dedicated thread pool model (imq.service_name.
threadpool_model=dedicated), the maximum number of connections is
half the maximum number of threads in the thread pool. Therefore, to
increase the number of connections, increase the size of the thread pool
(imq.service_name.max_threads) or switch to the shared thread pool model.

❍ If you are using a shared thread pool model (imq.service_name.
threadpool_model=shared), the maximum number of connections is half
the product of the following two properties: the connection Monitor limit
(imq.service_name.connectionMonitor_limit) and the maximum number of
threads (imq.service_name.max_threads). Therefore, to increase the number
of connections, increase the size of the thread pool or increase the
connection monitor limit.

❍ Ultimately, the number of supportable connections (or the throughput on
connections) will reach input/output limits. In such cases, use a
multi-broker cluster (see “Working With Clusters (Enterprise Edition)” on
page 140) to distribute connections among the broker instances within the
cluster.

• Too few file descriptors for the number of connections required on the Solaris
or Linux platform (see “OS-Defined File Descriptor Limitations” on page 338).

Troubleshooting Performance Problems

Chapter 9 Analyzing and Tuning a Message Service 267

To confirm this cause of the problem:

Check for an entry in the broker log similar to the following: Too many open
files.

To resolve the problem:

Increase the file descriptor limit, as described in the ulimit man page.

• TCP backlog limits the number of simultaneous new connection requests that
can be established.

The TCP backlog places a limit on the number of simultaneous connection
requests that can be stored in the system backlog (imq.portmapper.backlog)
before the Port Mapper rejects additional requests. (On Windows platforms
there is a hard-coded backlog limit: 5 for Windows desktops and 200 for
Windows servers.)

The rejection of requests because of backlog limits is usually a transient
phenomenon, due to an unusually high number of simultaneous connection
requests.

To confirm this cause of the problem:

Check the broker log to see if some connection requests are being accepted
while others at about the same time are being rejected. Rejected connection
requests return a java.net.ConnectException: Connection refused.

To resolve the problem:

The following approaches can be used to resolve TCP backlog limitations:

❍ Program the client to retry the attempted connection after a short interval
of time (this normally works because of the transient nature of this
problem).

❍ Increase the value of imq.portmapper.backlog.

❍ Check that clients are not closing and then opening connections too often.

• Operating system limits the number of concurrent connections.

The Windows operating system license places limits on the number of
concurrent remote connections that are supported.

Troubleshooting Performance Problems

268 Message Queue 3.5 SP1 • Administration Guide

To confirm this cause of the problem:

Check that there are plenty of threads available for connections (using
imqcmd query svc) and check the terms of your Windows license agreement. If
you can make connections from a local client, but not from a remote client, then
operating system limitations might be the cause of the problem.

To resolve the problem:

❍ Upgrade the Windows license to allow more connections.

❍ Distribute connections among a number of broker instances by setting up a
multi-broker cluster.

• Authentication or authorization of the user is failing.

The authentication can be failing due to an incorrect password, because there is
no entry for the user in the user repository, or because the user does not have
access permissions for the connection service.

To confirm this cause of the problem:

Check entries in the broker log for the Forbidden error message. This will
indicate an authentication error, but will not indicate the reason for it.

❍ If you are using a file-based user repository, enter the following command:

imqusermgr list -i instanceName -u userName

If the output shows a user, then the wrong password was probably
submitted. If the output shows an Error [B3048]: User does not exist
in the password file, then there is no entry in the user repository.

❍ If you are using an LDAP server user repository, use the appropriate tools
to check if there is an entry for the user.

❍ Check the access control properties file to see if there are restrictions on
access to the connection service.

To resolve the problem:

❍ If there is no entry for the user in the user repository, then add the user to
the user repository (see “Populating and Managing a User Repository” on
page 207).

❍ If the wrong password was used, provide the correct password.

❍ If the access control properties are improperly set, edit the access control
properties file to grant connection service permissions (see “Connection
Access Control” on page 216).

Troubleshooting Performance Problems

Chapter 9 Analyzing and Tuning a Message Service 269

Problem: Connection Throughput is Too Slow

Symptoms:
• Message throughput does not meet expectations.

• The number of supported connections to a broker is not limited as described in
“Problem: Clients Can’t Establish A Connection” on page 264, but rather by
message input/output rates.

Possible Causes:
• Network connection or WAN is too slow.

To confirm this cause of the problem:

Ping the network to see how long it takes for the ping to return, and then
consult a network administrator. Also you can send and receive messages
using local clients and compare the delivery time with that of remote clients
(which use a network link).

To resolve the problem:

If the connection is too slow, upgrade the network link.

• Connection service protocol is inherently slow compared to TCP. For example,
SSL-based or HTTP-based protocols are slower than TCP (see Figure 9-5 on
page 242).

To confirm this cause of the problem:

If you are using SSL-based or HTTP-based protocols, try using TCP and
compare the delivery times.

To resolve the problem:

Application requirements usually dictate the protocols being used, so there is
little that you can do, other than to attempt to tune the protocol as described in
(“Tuning Transport Protocols” on page 283).

• Connection service protocol is not optimally tuned.

To confirm this cause of the problem:

Try tuning the protocol and see if it makes a difference.

Troubleshooting Performance Problems

270 Message Queue 3.5 SP1 • Administration Guide

To resolve the problem:

Try tuning the protocol as described in (“Tuning Transport Protocols” on
page 283).

• Messages are so large they consume too much bandwidth.

To confirm this cause of the problem:

Try running your benchmark with smaller-sized messages.

To resolve the problem:

❍ Compress message bodies using java.util.zip.

❍ Use messages as notifications of data to be sent, but move the data using
another protocol.

• What appears to be slow connection throughput is actually a bottleneck in
some other step of the message delivery process.

To confirm this cause of the problem:

If none of the items above appear to be the cause of what appears to be slow
connection throughput, consult Figure 9-1 on page 231 for other possible
bottlenecks and check for symptoms associated with the following problems:

❍ “Problem: Message Production Is Delayed or Slowed” on page 272

❍ “Problem: Messages Backlogged in Message Server” on page 275

❍ “Problem: Message Server Throughput Is Sporadic” on page 279

To resolve the problem:

Follow the problem resolution guidelines provided in the problem
troubleshooting sections above.

Problem: Client Can’t Create a
Message Producer

Symptoms:
• A message producer cannot be created for a destination; the client receives an

exception.

Troubleshooting Performance Problems

Chapter 9 Analyzing and Tuning a Message Service 271

Possible Causes:
• A destination has been configured to allow only a limited number of

producers.

One of the ways of avoiding the accumulation of messages on a destination is
to limit the number of producers (maxNumProducers) that can be supported by
the destination.

To confirm this cause of the problem:

Check the destination (see “Displaying Destination Information” on page 173):

imqcmd query dst

The output will show the current number of producers and the value of
maxNumProducers. If the two values are the same, then the number of
producers has reached its configured limit. When a new producer is rejected by
the broker, the broker returns a ResourceAllocationException [C4088]: A
JMS destination limit was reached and makes the following entry in the
broker log: [B4183]: Producer can not be added to destination.

To resolve the problem:

Increase the value of the maxNumProducers attribute (see “Updating
Destination Attributes” on page 174).

• The user is not authorized to create a message producer due to settings in the
access control properties file.

To confirm this cause of the problem:

When a new producer is rejected by the broker, the broker returns a
JMSSecurityException [C4076]: Client does not have permission to
create producer on destination and makes the following entries in the
broker log: [B2041]: Producer on destination denied and [B4051]:
Forbidden guest.

To resolve the problem:

Change the access control properties to allow the user to produce messages
(see “Destination Access Control” on page 216).

Troubleshooting Performance Problems

272 Message Queue 3.5 SP1 • Administration Guide

Problem: Message Production Is
Delayed or Slowed

Symptoms:
• When sending persistent messages, the send() method does not return and the

client blocks.

• When sending a persistent message, client receives an exception.

• Producing client slows down.

Possible Causes:
• The message server is backlogged (messages are accumulating in broker

memory) and has responded by slowing message producers.

When the number of messages or number of message bytes in destination
memory reaches configured limits, the broker attempts to conserve memory
resources in accordance with the specified limit behavior. The following limit
behaviors slow down message producers:

❍ FLOW_CONTROL: the broker does not immediately acknowledge receipt of
persistent messages (thereby blocking a producing client)

❍ REJECT_NEWEST: the broker rejects new messages (and throws an exception
for each rejected persistent message).

Similarly, when the number of messages or number of message bytes in
broker-wide memory (for all destinations) reaches configured limits, the
broker will attempt to conserve memory resources by rejecting the newest
messages.

Also, when system memory limits are reached (because destination or
broker-wide limits have not been set properly), the broker takes increasingly
serious action to prevent memory overload, including throttling back message
producers.

For a discussion of these mechanisms, see “Managing Memory Resources and
Message Flow” on page 61).

Troubleshooting Performance Problems

Chapter 9 Analyzing and Tuning a Message Service 273

To confirm this cause of the problem:

When a message is rejected by the broker due to configured message limits, the
broker returns a JMSException [C4036]: A server error occurred and
makes entries in the broker log: WARNING [B2011]: Storing of JMS message
from IMQconn failed, followed by a message indicating the limit that has been
reached:

❍ If the message limit is on a destination, the broker makes an entry like the
following: [B4120]: Can not store message on destination destName
because capacity of maxNumMsgs would be exceeded.

❍ If the message limit is broker wide, the broker makes an entry like the
following: [B4024]: The Maximum Number of messages currrently in
the system has been exceeded, rejecting message.

More generally, you can check for message limit conditions before the
rejections occur by querying destinations and the broker and inspecting their
configured message limit settings, and by monitoring the number of messages
or number of message bytes currently in a destination (or in the broker as a
whole) using the appropriate imqcmd commands (see Table 9-10 on page 262
and Table 9-8 on page 258, respectively).

To resolve the problem:

There are a number of approaches to addressing the slowing of producers due
to messages becoming backlogged:

❍ Modify the message limits on a destination (or broker-wide) being careful
not to exceed memory resources. In general, you want to manage memory
on a destination-by-destination level so that broker-wide message limits
are never reached. For more information, see “Broker Adjustments” on
page 287.

❍ Change the limit behaviors on a destination to not slow message
production when message limits are reached, but rather to discard
messages in memory. For example, you can specify the REMOVE_OLDEST and
REMOVE_LOW_PRIORITY limit behaviors, which delete messages that
accumulate in memory (see Table 6-10 on page 171).

• Broker cannot save a persistent message to the data store.

If the broker cannot access a data store or write a persistent message to the data
store, then the producing client is blocked. This condition can also occur if
destination or broker-wide message limits are reached, as described above.

Troubleshooting Performance Problems

274 Message Queue 3.5 SP1 • Administration Guide

To confirm this cause of the problem:

If the broker is unable to write to the data store, it makes one of the following
entries in the broker log: [B2011]: Storing of JMS message from
connectionID failed… or [B4004]: Failed to persist message
messageID…

To resolve the problem:

❍ In the case of built-in persistence, try increasing the disk space of the
file-based data store.

❍ In the case of a JDBC-compliant data store, check that plugged-in
persistence is properly configured (see Appendix B, “Setting Up
Plugged-in Persistence”). If so, consult your database administrator to
troubleshoot other database problems.

• Broker acknowledgement timeout is too short.

Due to slow connections or a lethargic message server (caused by high CPU
utilization or scarce memory resources), a broker might require more time to
acknowledge receipt of a persistent message than allowed by the value of the
connection factory’s imqAckTimeout attribute.

To confirm this cause of the problem:

If the imqAckTimeout value is exceeded, the broker returns a JMSException
[C4000]: Packet acknowledge failed.

To resolve the problem:

Change the value of the imqAckTimeout connection factory attribute (see
“Connection Factory Administered Object Attributes” on page 187).

• Producing client is encountering JVM limitations.

To confirm this cause of the problem:

❍ Check if the client application receives an Out Of Memory error.

❍ Check the free memory available in the JVM heap using runtime methods
such as freeMemory(), MaxMemory(), and totalMemory().

To resolve the problem:

Adjust the JVM (see “Java Virtual Machine Adjustments” on page 283).

Troubleshooting Performance Problems

Chapter 9 Analyzing and Tuning a Message Service 275

Problem: Messages Backlogged in
Message Server

Symptoms:
• Number of messages or message bytes in broker (or in specific destinations)

increases steadily over time.

To see if messages are accumulating, check how the number of messages or
message bytes in the broker changes over time and compare to configured
limits. First check the configured limits:

imqcmd query bkr

(Note: the imqcmd metrics bkr subcommand does not display this
information.)

Then check for message accumulation in each destination:

imqcmd query dst -t destType -n destName
or
imqcmd metrics dst -t destType -n destName -m ttl

To see if messages have exceeded configured destination or broker-wide limits,
check the broker log for the following entry: WARNING [B2011]: Storing of
JMS message from…failed. This entry will be followed by another entry
explaining the limit that has been exceeded.

• Message production is delayed or produced messages are rejected by the
broker.

• Messages take an unusually long time to reach consumers.

Possible Causes:
• Client code defects: consumers are not acknowledging messages.

Messages are held in a destination until they have been acknowledged by all
consumers to which the messages have been sent. Hence, if a client is not
acknowledging consumed messages, the messages accumulate in the
destination without being deleted.

For example, client code might have the following defects:

❍ Consumers using CLIENT_ACKNOWLEDGEMENT or transacted session might
not be calling Session.acknowledge() or Session.commit() on a regular
basis.

Troubleshooting Performance Problems

276 Message Queue 3.5 SP1 • Administration Guide

❍ Consumers using AUTO_ACKNOWLEDGE sessions might be hanging for some
reason.

To confirm this cause of the problem:

If a message server is not busy, that is, the rates of messages flowing into and
out of a destination are low, then messages might be accumulating because of
not being acknowledged.

Check for the message flow rate into and out of the broker:

imqcmd metrics bkr -m rts

Then check flow rates for each of the individual destinations:

imqcmd metrics bkr -t destType -n destName -m rts

Also check client code to see if messages are being properly acknowledged.

• There are inactive durable subscriptions on a topic destination.

If a durable subscription is inactive, then messages are stored in a destination
until the corresponding consumer becomes active and can consume the
messages.

To confirm this cause of the problem:

Check the state of durable subscriptions on each topic destination:

imqcmd list dur -d destName

To resolve the problem:

You can take any of the following actions:

❍ Purge all messages for the offending durable subscriptions (see “Managing
Durable Subscriptions” on page 179).

❍ Specify message limit and limit behavior attributes for the topic (see
Table 6-10 on page 171). For example, you can specify the REMOVE_OLDEST
and REMOVE_LOW_PRIORITY limit behaviors, which delete messages that
accumulate in memory.

❍ Purge all messages from the corresponding destinations (see “Purging
Destinations” on page 176).

❍ Limit the time messages can remain in memory: you can rewrite the
producing client to set a time-to-live value on each message. You can
override any such settings for all producers sharing a connection by setting
the imqOverrideJMSExpiration and imqJMSExpiration connection factory
attributes (see Table 7-3 on page 187).

Troubleshooting Performance Problems

Chapter 9 Analyzing and Tuning a Message Service 277

• There are too few consumers available to consume messages in a queue.

If there are too few active consumers to which messages can be delivered, a
queue destination can become backlogged as messages accumulate. This
condition can occur for any of the following reasons:

❍ Too few active consumers exist for the destination.

❍ Consuming clients have failed to establish connections.

❍ no active consumers use a selector that matches messages in the queue.

To confirm this cause of the problem:

To help determine the reason for unavailable consumers, check the number of
active consumers on a destination:

imqcmd metrics dst -n destName -t q -m con

To resolve the problem:

You can take any of the following actions, depending on the reason for
unavailable consumers:

❍ Create more active consumers for the queue, by starting up additional
consuming clients.

❍ Adjust the imq.consumerFlowLimit broker property to optimize queue
delivery to multiple consumers (see “Multiple Consumer Queue
Performance” on page 288).

❍ Specify message limit and limit behavior attributes for the queue (see
Table 6-10 on page 171). For example, you can specify the REMOVE_OLDEST
and REMIOVE_LOW_PRIOROTY limit behaviors, which delete messages that
accumulate in memory.

❍ Purge all messages from the corresponding destinations (see “Purging
Destinations” on page 176).

❍ Limit the time messages can remain in memory: you can rewrite the
producing client to set a time-to-live value on each message, you can
override any such setting for all producers sharing a connection by setting
the imqOverrideJMSExpiration and imqJMSExpiration connection factory
attributes (see Table 7-3 on page 187).

• Message consumers are processing too slowly to keep up with message
producers.

Troubleshooting Performance Problems

278 Message Queue 3.5 SP1 • Administration Guide

In this case topic subscribers or queue receivers are consuming messages more
slowly than the producers are sending messages. One or more destinations is
getting backlogged with messages due to this imbalance.

To confirm this cause of the problem:

Check for the rate of flow of messages into and out of the broker:

imqcmd metrics bkr -m rts

Then check flow rates for each of the individual destinations:

imqcmd metrics bkr -t destType -n destName -m rts

To resolve the problem:

❍ Optimize consuming client code.

❍ For queue destinations, increase the number of active consumers (see
“Multiple Consumer Queue Performance” on page 288).

• Client acknowledgement processing is slowing down message consumption.

Two factors affect the processing of client acknowledgements:

❍ Significant broker resources can be consumed in processing client
acknowledgements. As a result, message consumption might be slowed in
those acknowledgement modes in which consuming clients block until the
broker confirms client acknowledgements.

❍ JMS payload messages and Message Queue control messages (such as
client acknowledgements) share the same connection. As a result, control
messages can be held up by JMS payload messages, slowing message
consumption.

To confirm this cause of the problem:

Check the flow of messages relative to the flow of packets. If the number of
packets per second is out of proportion to the number of messages, then client
acknowledgements might be a problem.

Also check if the client has received a JMSException [C4000]: Packet
acknowledge failed message.

To resolve the problem:

❍ Modify the acknowledgement mode used by clients, for example, switch to
DUPS_OK_ACKNOWLEDGEMENT or CLIENT_ACKNOWLEDGEMENT.

❍ If using CLIENT_ACKNOWLEDGEMENT or transacted sessions, group a larger
number of messages into a single acknowledgement.

Troubleshooting Performance Problems

Chapter 9 Analyzing and Tuning a Message Service 279

❍ Adjust consumer and connection flow control parameters (see “Client
Runtime Message Flow Adjustments” on page 289).

• The broker is not able to keep up with produced messages.

In this case, messages are flowing into the broker faster than the broker can
route and dispatch them to consumers. The sluggishness of the broker can be
due to limitations in any or all of the following: CPU, network socket
read/write operations, disk read/write operations, memory paging, the
persistent store, or JVM memory limits.

To confirm this cause of the problem:

Check that none of the other causes of this problem are responsible.

To resolve the problem:

❍ Upgrade the speed of your computer or your data store.

❍ Use a broker cluster to distribute the load among a number of broker
instances.

Problem: Message Server Throughput
Is Sporadic

Symptoms:
• Message throughput sporadically drops, then resumes normal performance.

Possible Causes:
• The broker is very low on memory resources

Because destination and broker limits were not properly set, the broker takes
increasingly serious action to prevent memory overload, and this can cause the
broker to become very sluggish until the message backlog is cleared.

To confirm this cause of the problem:

Check the broker log for a low memory condition ([B1089]: In low memory
condition, broker is attempting to free up resources), followed by an
entry describing the new memory state and the amount of total memory being
used.

Troubleshooting Performance Problems

280 Message Queue 3.5 SP1 • Administration Guide

Also check the free memory available in the JVM heap:

imqcmd metrics bkr -m cxn

Free memory is low when the value of total JVM memory is close to the
maximum JVM memory value.

To resolve the problem:

❍ Adjust the JVM (see “Java Virtual Machine Adjustments” on page 283).

❍ Increase system swap space.

• JVM memory reclamation (garbage collection) is taking place.

Memory reclamation periodically sweeps through the system to free up
memory. When this occurs, all threads are blocked. The larger the amount of
memory to be freed up and the larger the JVM heap size, the larger the delay
due to memory reclamation.

To confirm this cause of the problem:

Monitor CPU usage on your computer. There will be a big drop when memory
reclamation is taking place.

Also start your broker using the following command line options:

-vmargs -verbose:gc

Standard output indicates the time that memory reclamation takes place.

To resolve the problem:

In multiple CPU computers, set the memory reclamation to take place in
parallel:

-XX:+UseParallelGC=true

• The JVM is using the Just-In-Time compiler to speed up performance.

To confirm this cause of the problem:

Check that none of the other causes of this problem are responsible.

To resolve the problem:

Let the system run for a while; performance should improve.

Troubleshooting Performance Problems

Chapter 9 Analyzing and Tuning a Message Service 281

Problem: Messages Not Reaching Consumers

Symptoms:
• Messages sent by producers are not received by consumers.

Possible Causes:
• Limit behaviors are causing messages to be deleted on the broker.

When the number of messages or number of message bytes in destination
memory reach configured limits, the broker will attempt to conserve memory
resources. Three of the configurable behaviors taken by the broker when these
limits are reached will cause messages to be lost:

❍ REMOVE_OLDEST: deleting the oldest messages

❍ REMOVE_LOW_PRIORITY: deleting the lowest priority messages according to
age of the messages

❍ REJECT_NEWEST: rejecting new messages (which throws an exception for
rejected persistent messages).

As the number of messages or number of message bytes in broker memory
reach configured limits, the broker will attempt to conserve memory resources
by rejecting the newest messages.

To confirm this cause of the problem:

Check the broker log for the following entry: WARNING [B2011]: Storing of
JMS message from…failed. This entry will be followed by another entry
explaining the limit that has been exceeded. There will be no entry, however,
showing the deletion of messages.

To resolve the problem:

Change limits or change behavior.

• Message timeout value expires

The broker will delete messages whose timeout value has expired. If a
destination gets sufficiently backlogged with messages, messages whose
time-to-live value is too short might be deleted.

To confirm this cause of the problem:

Check broker log file for the following entry; Expiring Messages: Expired n
messages.

Adjusting Your Configuration To Improve Performance

282 Message Queue 3.5 SP1 • Administration Guide

To resolve the problem:

Use override

• Clock times are not synchronized between different computers.

If clocks are not in synchronization, then broker calculations of message
lifetimes can be in error, causing messages to exceed their expiration time and
be deleted.

To confirm this cause of the problem:

Check clocks on all computers.

To resolve the problem:

Synchronize clocks (see “System Clock Settings” on page 337).

• Consuming client failed to start message delivery on a connection.

Messages cannot be delivered until client code establishes a connection and
starts message delivery on the connection.

To confirm this cause of the problem:

Check that client code establishes a connection and starts message delivery.

To resolve the problem:

Rewrite the client code to establish a connection and start message delivery.

Adjusting Your Configuration To
Improve Performance

System Adjustments
The following sections describe adjustments you can make to the operating system,
JVM, and communication protocols.

Solaris Tuning: CPU Utilization, Paging/Swapping/Disk I/O
See your system documentation for tuning your operating system.

Adjusting Your Configuration To Improve Performance

Chapter 9 Analyzing and Tuning a Message Service 283

Java Virtual Machine Adjustments
By default, the broker uses a JVM heap size of 192MB. This is often too small for
significant message loads and should be increased.

When the broker gets close to exhausting the JVM heap space used by Java objects,
it uses various techniques such as flow control and message swapping to free
memory. Under extreme circumstances it even closes client connections in order to
free the memory and reduce the message inflow. Hence it is desirable to set the
maximum JVM heap space high enough to avoid such circumstances.

However, if the maximum Java heap space is set too high, in relation to system
physical memory, the broker can continue to grow the Java heap space until the
entire system runs out of memory. This can result in diminished performance,
unpredictable broker crashes, and/or affect the behavior of other applications and
services running on the system. In general, you need to allow enough physical
memory for the operating system and other applications to run on the machine.

In general it is a good idea to evaluate the normal and peak system memory
footprints, and configure the Java heap size so that it is large enough to provide
good performance, but not so large as to risk system memory problems.

To change the minimum and maximum heap size for the broker, use the -vmargs
command line option when starting the broker. For example:

/usr/bin/imqbrokerd -vmargs "-Xms256m -Xmx1024m"

This command will set the starting Java heap size to 256MB and the maximum Java
heap size to 1GB.

• On Solaris, if starting the broker via /etc/rc (that is, /etc/init.d/imq),
specify broker command line arguments in the /etc/imq/imqbrokerd.conf
file. See the comments in that file for more information.

• On Windows, if starting the broker as a Window's service, specify JVM
arguments using the -vmargs option to the imqsvcadmin install command.
See “Service Administrator Utility (imqsvcadmin)” on page 334.

In any case, verify settings by checking the broker's log file or using the
imqcmd metrics bkr -m cxn command.

Tuning Transport Protocols
Once a protocol that meets application needs has been chosen, additional tuning
(based on the selected protocol) might improve performance.

Adjusting Your Configuration To Improve Performance

284 Message Queue 3.5 SP1 • Administration Guide

A protocol’s performance can be modified using the following three broker
properties:

• imq.protocol protocol_type nodelay

• imq.protocol protocol_type inbufsz

• imq.protocol protocol_type outbufsz

For TCP and SSL protocols, these properties affect the speed of message delivery
between client and broker. For HTTP and HTTPS protocols, these properties affect
the speed of message delivery between the Message Queue tunnel servlet (running
on a Web server) and the broker. For HTTP/HTTPS protocols there are additional
properties that can affect performance (see “HTTP/HTTPS Tuning” on page 286).

The protocol tuning properties are described in the following sections.

nodelay
The nodelay property affects Nagle's algorithm (the value of the TCP_NODELAY
socket-level option on TCP/IP) for the given protocol. Nagle's algorithm is used to
improve TCP performance on systems using slow connections such as wide-area
networks (WANs).

When the algorithm is used, TCP tries to prevent several small chunks of data from
being sent to the remote system (by bundling the data in larger packets). If the data
written to the socket does not fill the required buffer size, the protocol delays
sending the packet until either the buffer is filled or a specific delay time has
elapsed. Once the buffer is full or the time-out has occurred, the packet is sent.

For most messaging applications, performance is best if there is no delay in the
sending of packets (Nagle’s algorithm is not enabled). This is because most
interactions between client and broker are request/response interactions: the client
sends a packet of data to the broker and waits for a response. For example, typical
interactions include:

• Creating a connection

• Creating a producer or consumer

• Sending a persistent message (the broker confirms receipt of the message)

• Sending a client acknowledgement in an AUTO_ACKNOWLEDGE or
CLIENT_ACKNOWLEDGE session (the broker confirms processing of the
acknowledgement)

For these interactions, most packets are smaller than the buffer size. This means
that if Nagle's algorithm is used, the broker delays several milliseconds before
sending a response to the consumer.

Adjusting Your Configuration To Improve Performance

Chapter 9 Analyzing and Tuning a Message Service 285

However, Nagle’s algorithm may improve performance in situations where
connections are slow and broker responses are not required. This would be the case
where a client sends a non-persistent message or where a client acknowledgement
is not confirmed by the broker (DUPS_OK_ACKNOWLEDGE session).

inbufsz/outbufsz
The inbufsz property sets the size of the buffer on the input stream reading data
coming in from a socket. Similarly, outbufsz sets the buffer size of the output
stream used by the broker to write data to the socket.

In general, both parameters should be set to values that are slightly larger than the
average packet being received or sent. A good rule of thumb is to set these property
values to the size of the average packet plus 1k (rounded to the nearest k).

For example, if the broker is receiving packets with a body size of 1k, the overall
size of the packet (message body + header + properties) is about 1200 bytes. An
inbufsz of 2k (2048 bytes) gives reasonable performance.

Increasing the inbufsz or outbufsz greater than that size may improve performance
slightly; however, it increases the memory needed for each connection.

Figure 9-6 shows the consequence of changing inbufsz on a 1k packet.

Figure 9-7 Effect of Changing inbufsz on a 1k (1024 bytes) Packet

Figure 9-8 shows the consequence of changing outbufsz on a 1k packet.

Adjusting Your Configuration To Improve Performance

286 Message Queue 3.5 SP1 • Administration Guide

Figure 9-8 Effect of Changing outbufsz on a 1k (1024 bytes) Packet

HTTP/HTTPS Tuning
In addition to the general properties discussed in the previous two sections,
HTTP/HTTPS performance is limited by how fast a client can make HTTP requests
to the Web server hosting the Message Queue tunnel servlet.

A Web server might need to be optimized to handle multiple requests on a single
socket. With JDK version 1.4 and later, HTTP connections to a Web server are kept
alive (the socket to the Web server remains open) to minimize resources used by
the Web server when it processes multiple HTTP requests. If the performance of a
client application using JDK version 1.4 is slower than the same application
running with an earlier JDK release, you might need to tune the Web server
keep-alive configuration parameters to improve performance.

In addition to such Web-server tuning, you can also adjust how often a client polls
the Web server. HTTP is a request-based protocol. This means that clients using an
HTTP-based protocol periodically need to check the Web server to see if messages
are waiting. The imq.httpjms.http.pullPeriod broker property (and the
corresponding imq.httpsjms.https.pullPeriod property) specifies how often the
Message Queue client runtime polls the Web server.

If the pullPeriod value is -1 (the default value), the client runtime polls the server
as soon as the previous request returns, maximizing the performance of the
individual client. As a result, each client connection monopolizes a request thread
in the Web server, possibly straining Web server resources.

If the pullPeriod value is a positive number, the client runtime periodically sends
requests to the Web server to see if there is pending data. In this case, the client
does not monopolize a request thread in the Web server. Hence, if large numbers of
clients are using the Web server, you might conserve Web server resources by
setting the pullPeriod to a positive value.

Adjusting Your Configuration To Improve Performance

Chapter 9 Analyzing and Tuning a Message Service 287

Tuning the File-based Persistent Store
For information on tuning the file-based persistent store, see “Built-in persistence”
on page 64.

Broker Adjustments
The following sections describe adjustments you can make to broker properties to
improve performance.

Memory Management: Increasing Broker Stability Under Load
Memory management can be configured on a destination-by-destination level or
on a system-wide level (for all destinations, collectively).

Using Destination Limits
For information on destination limits, see “Managing Destinations” on page 168.

Using System-wide Limits
If message producers tend to overrun message consumers, then messages can
accumulate in the broker. While the broker does contain a mechanism for throttling
back producers and swapping messages out of active memory in low memory
conditions (see “Managing Memory Resources and Message Flow” on page 61), it's
wise to set a hard limit on the total number of messages (and message bytes) that
the broker can hold.

Control these limits by setting the imq.system.max_count and the
imq.system.max_size broker properties. See “Editing the Instance Configuration
File” on page 129 or “Summary of imqbrokerd Options” on page 136 for
information on setting broker properties.

For example

imq.system.max_count=5000

The defined value above means that the broker will only hold up to 5000
undelivered/unacknowledged messages. If additional messages are sent, they are
rejected by the broker. If a message is persistent then the producer will get an
exception when it tries to send the message. If the message is non-persistent, then
the broker silently drops the message.

To have non-persistent messages return an exception like persistent messages, set
the following property on the connection factory object used by the client:

imqAckOnProduce = true

Adjusting Your Configuration To Improve Performance

288 Message Queue 3.5 SP1 • Administration Guide

The setting above may decrease the performance of sending non-persistent
messages to the broker (the client waits for a reply before sending the next
message), but often this is acceptable since message inflow to the broker is typically
not a system bottleneck.

When an exception is returned in sending a message, the client should pause for a
moment and retry the send again.

Multiple Consumer Queue Performance
The efficiency with which multiple queue consumers process the messages in a
queue destination depends on configurable queue destination attributes, namely
the number of active consumers (maxNumActiveConsumers) and the maximum
number of messages that can be delivered to a consumer in a single batch
(consumerFlowLimit). These attributes are described in Table 6-10 on page 171.

To achieve optimal message throughput there must be a sufficient number of active
consumers to keep up with the rate of message production for the queue, and the
messages in the queue must be routed and then delivered to the active consumers
in such a way as to maximize their rate of consumption. The general mechanism
for balancing message delivery among multiple consumers is described in “Queue
Delivery to Multiple Consumers” on page 77.

If messages are accumulating in the queue, it is possible that there is an insufficient
number of active consumers to handle the message load. It is also possible that
messages are being delivered to the consumers in batch sizes that cause messages
to be backing up on the consumers. For example, if the batch size
(consumerFlowLimit) is too large, one consumer might receive all the messages in a
queue while other active consumers receive none. If consumers are very fast, this
might not be a problem.

However, if consumers are relatively slow, you want messages to be distributed to
them evenly, and therefore you want the batch size to be small. The smaller the
batch size, the more overhead is required to deliver messages to consumers.
Nevertheless, for slow consumers, there is generally a net performance gain to
using small batch sizes.

Adjusting Your Configuration To Improve Performance

Chapter 9 Analyzing and Tuning a Message Service 289

Client Runtime Message Flow Adjustments
This section discusses flow control behaviors that impact performance (see “Client
Runtime Configuration” on page 245). These behaviors are configured as attributes
of connection factory administered objects. For information on setting connection
factory attributes, see Chapter 7, “Managing Administered Objects.”

Message Flow Metering
Messages sent and received by clients (JMS messages), as well as Message Queue
control messages, pass over the same client-broker connection. Delays in the
delivery of control messages, such as broker acknowledgements, can result if
control messages are held up by the delivery of JMS messages. To prevent this type
of congestion, Message Queue meters the flow of JMS messages across a
connection.

JMS messages are batched (as specified with the imqConnectionFlowCount
property) so that only a set number are delivered; when the batch has been
delivered, delivery of JMS messages is suspended, and pending control messages
are delivered. This cycle repeats, as other batches of JMS messages are delivered,
followed by queued up control messages.

The value of imqConnectionFlowCount should be kept low if the client is doing
operations that require many responses from the broker; for example, the client is
using the CLIENT_ACKNOWLEDGE or AUTO_ACKNOWLEDGE modes, persistent messages,
transactions, queue browsers, or if the client is adding or removing consumers. If,
on the other hand, the client has only simple consumers on a connection using
DUPS_OK_ACKNOWLEDGE mode, you can increase imqConnectionFlowCount without
compromising performance.

Message Flow Limits
There is a limit to the number of JMS messages that the Message Queue client
runtime can handle before encountering local resource limitations, such as
memory. When this limit is approached, performance suffers. Hence, Message
Queue lets you limit the number of messages per consumer (or messages per
connection) that can be delivered over a connection and buffered in the client
runtime, waiting to be consumed.

Consumer-based Limits
When the number of JMS messages delivered to the client runtime exceeds the
value of imqConsumerFlowLimit for any consumer, message delivery for that
consumer stops. It is resumed only when the number of unconsumed messages for
that consumer drops below the value set with imqConsumerFlowThreshold.

Adjusting Your Configuration To Improve Performance

290 Message Queue 3.5 SP1 • Administration Guide

The following example illustrates the use of these limits: consider the default
settings for topic consumers

imqConsumerFlowLimit=1000

imqConsumerFlowThreshold=50

When the consumer is created, the broker delivers an initial batch of 1000 messages
(providing they exist) to this consumer without pausing. After sending 1000
messages, the broker stops delivery until the client runtime asks for more
messages. The client runtime holds these messages until the application processes
them. The client runtime then allows the application to consume at least 50%
(imqConsumerFlowThreshold) of the message buffer capacity (i.e. 500 messages)
before asking the broker to send the next batch.

In the same situation, if the threshold were 10%, the client runtime would wait for
the application to consume at least 900 messages before asking for the next batch.

The next batch size is calculated as follows:

imqConsumerFlowLimit - (current number of pending msgs in buffer)

So, if imqConsumerFlowThreshold is 50%, the next batch size can fluctuate between
500 and 1000, depending on how fast the application can process the messages.

If the imqConsumerFlowThreshold is set too high (close to 100%), the broker will
tend to send smaller batches, which can lower message throughput. If the value is
set too low (close to 0%), the client might be able to finish processing the remaining
buffered messages before the broker delivers the next set, causing message
throughput degradation. Generally speaking, unless you have specific
performance or reliability concerns, you will not have to change the default value
of imqConsumerFlowThreshold attribute.

The consumer-based flow controls (in particular imqConsumerFlowLimit) are the
best way to manage memory in the client runtime. Generally, depending on the
client application, you know the number of consumers you need to support on any
connection, the size of the messages, and the total amount of memory that is
available to the client runtime.

Connection-based Limits
In the case of some client applications, however, the number of consumers might
be indeterminate, depending on choices made by end users. In those cases, you can
still manage memory, using connection-level flow limits.

Adjusting Your Configuration To Improve Performance

Chapter 9 Analyzing and Tuning a Message Service 291

Connection-level flow controls limit the total number of messages buffered for all
consumers on a connection. If this number exceeds the imqConnectionFlowLimit,
then delivery of messages through the connection will stop until that total drops
below the connection limit. (The imqConnectionFlowLimit is only enabled if you
set the imqConnectionFlowLimitEnabled property to true.)

The number of messages queued up in a session is a function of the number of
message consumers using the session and the message load for each consumer. If a
client is exhibiting delays in producing or consuming messages, you can normally
improve performance by redesigning the application to distribute message
producers and consumers among a larger number of sessions or to distribute
sessions among a larger number of connections.

Adjusting Your Configuration To Improve Performance

292 Message Queue 3.5 SP1 • Administration Guide

293

Appendix A

Location of Message Queue Data

Sun Java System Message Queue uses many categories of data, each of which is
stored in a different location, depending on the operating system, as shown in the
following sections. In the tables that follow, instanceName identifies the name of the
broker instance with which the data is associated.

Solaris
Table A-1 shows the location of Message Queue data on the Solaris platform.

NOTE Data locations for Message Queue bundled with Sun Java System
Application Server, on Solaris are shown in Table A-3 on page 295.

Table A-1 Location of Message Queue Data on Solaris

Data Category Location on Solaris

Broker instance configuration
properties

/var/imq/instances/instanceName/props/
config.properties

Broker configuration file templates /usr/share/lib/imq/props/broker/

Persistent store (messages,
destinations, durable
subscriptions, transactions)

/var/imq/instances/instanceName/fs350/

or a JDBC-accessible data store

Broker instance log file directory
(default location)

/var/imq/instances/instanceName/log/

Administered objects
(object store)

local directory of your choice

or an LDAP server

Linux

294 Message Queue 3.5 SP1 • Administration Guide

Linux
Table A-2 shows the location of Message Queue data on the Linux platform.

Security: user repository /var/imq/instances/instanceName/etc/passwd

or an LDAP server

Security: access control file
(default location)

/var/imq/instances/instanceName/etc/
accesscontrol.properties

Security: passfile directory
(default location)

/var/imq/instances/instanceName/etc/

Security: example passfile /etc/imq/passfile.sample

Security: broker’s keystore file
location

/etc/imq/

JavaDoc API documentation /usr/share/javadoc/imq/index.html

Example applications and
configurations

/usr/demo/imq/

Java archive (.jar), web archive
(.war), and resource adapter
archive (.rar) files

/usr/share/lib/

Table A-2 Location of Message Queue Data on Linux

Data Category Location on Windows

Broker instance configuration
properties

/var/opt/imq/instances/instanceName/props/
config.properties

Broker configuration file
templates

/opt/imq/lib/props/broker/

Persistent store (messages,
destinations, durable
subscriptions, transactions)

/var/opt/imq/instances/instanceName/fs350/

or a JDBC-accessible data store

Broker instance log file directory
(default location)

/var/opt/imq/instances/instanceName/log/

Administered objects
(object store)

local directory of your choice

or an LDAP server

Table A-1 Location of Message Queue Data on Solaris (Continued)

Data Category Location on Solaris

Windows

Appendix A Location of Message Queue Data 295

Windows
Table A-3 shows the location of Message Queue data on the Windows platform
and on some Message Queue installations bundled with Sun Java System
Application Server. For more information, see Table 3 on page 26, and the
definitions for IMQ_HOME and IMQ_VARHOME.

Security: user repository /var/opt/imq/instances/instanceName/etc/
passwd

or an LDAP server

Security: access control file
(default location)

/var/opt/imq/instances/instanceName/etc/
accesscontrol.properties

Security: passfile directory
(default location)

/var/opt/imq/instances/instanceName/etc/

Security: example passfile /etc/opt/imq/passfile.sample

Security: broker’s keystore file
location

/etc/opt/imq/

JavaDoc API documentation /opt/imq/javadoc/index.html

Example applications and
configurations

/opt/imq/demo/

Java archive (.jar), web archive
(.war), and resource adapter
archive (.rar) files

/opt/imq/lib/

Table A-3 Location of Message Queue Data on Windows

Data Category Location on Windows

Broker instance configuration
properties

IMQ_VARHOME\instances\instanceName\props\
config.properties

Broker configuration file
templates

IMQ_HOME\lib\props\broker\

Persistent store (messages,
destinations, durable
subscriptions, transactions)

IMQ_VARHOME\instances\instanceName\fs350\

or a JDBC-accessible data store

Broker instance log file directory
(default location)

IMQ_VARHOME\instances\instanceName\log\

Table A-2 Location of Message Queue Data on Linux (Continued)

Data Category Location on Windows

Windows

296 Message Queue 3.5 SP1 • Administration Guide

Administered objects
(object store)

local directory of your choice

or an LDAP server

Security: user repository IMQ_VARHOME\instances\instanceName\etc\
passwd

or an LDAP server

Security: access control file
(default)

IMQ_VARHOME\instances\instanceName\
etc\accesscontrol.properties

Security: passfile directory
(default location)

IMQ_HOME\etc\

Security: example passfile IMQ_HOME\etc\passfile.sample

Security: broker’s keystore file
location

IMQ_HOME\etc\

JavaDoc API documentation IMQ_HOME\javadoc\index.html

Example applications and
configurations

IMQ_HOME\demo\

Java archive (.jar), web archive
(.war), and resource adapter
archive (.rar) files

IMQ_HOME\lib\

Table A-3 Location of Message Queue Data on Windows (Continued)

Data Category Location on Windows

297

Appendix B

Setting Up Plugged-in Persistence

This appendix explains how to set up a broker to use plugged-in persistence to
access a JDBC-accessible data store.

Introduction
Message Queue brokers include a Persistence Manager component that manages
the writing and retrieval of persistent information (see “Persistence Manager” on
page 63). The Persistence Manager is configured by default to access a built-in,
file-based data store, but you can reconfigure it to plug in any data store accessible
through a JDBC-compliant driver.

To configure a broker to use plugged-in persistence, you need to set a number of
JDBC-related properties in the broker instance configuration file. You also need to
create the appropriate database schema for performing Message Queue persistence
operations. Message Queue provides a utility, Database Manager (imqdbmgr),
which uses your JDBC driver and broker configuration properties to create and
manage the plugged-in database.

The procedure described in this appendix is illustrated using, as an example, the
PointBase DBMS bundled with the Java 2 Platform, Enterprise Edition (J2EE) SDK.
Version 1.4 is available for download from java.sun.com. The example uses
PointBase's embedded version (instead of the client/server version). In the
procedures, instructions are illustrated using path names and property names from
the PointBase example. They are identified by the word “Example:”

Example configurations for Oracle and PointBase can be found in the examples
location shown in Appendix A, “Location of Message Queue Data.” In addition,
examples for PointBase embedded version, PointBase server version, Oracle, and
Cloudscape are provided as commented-out values in the instance configuration
file.

Plugging In a JDBC-accessible Data Store

298 Message Queue 3.5 SP1 • Administration Guide

Plugging In a JDBC-accessible Data Store
It takes just a few steps to plug in a JDBC-accessible data store.

➤ To Plug in a JDBC-accessible Data Store

1. Set JDBC-related properties in the broker’s configuration file.

See the properties documented in Table B-1 on page 300.

2. Place a copy or a symbolic link to your JDBC driver jar file located in the
following path:

/usr/share/lib/imq/ext/ (on Solaris)

/opt/imq/lib/ext/ (on Linux)

IMQ_VARHOME\lib\ext (on Windows)

Copy Example (Solaris):

% cp j2eeSDK_install_directory/pointbase/lib/pointbase.jar
/usr/share/lib/imq/ext

Symbolic Link Example (Solaris):

% ln -s j2eeSDK_install_directory/lib/pointbase/pointbase.jar
/usr/share/lib/imq/ext

3. Create the database schema needed for Message Queue persistence.

Use the imqdbmgr create all command (for an embedded database) or the
imqdbmgr create tbl command (for an external database). See “Database
Manager Utility (imqdbmgr)” on page 303.

Example:

a. Change to directory where imqdbmgr resides.

cd /usr/bin (on Solaris)

cd /opt/imq/bin (on Linux)

cd IMQ_HOME/bin (on Windows)

b. enter the imqdbmgr command.

imqdbmgr create all

JDBC-related Broker Configuration Properties

Appendix B Setting Up Plugged-in Persistence 299

JDBC-related Broker Configuration Properties
The broker’s instance configuration file is located in a directory identified by the
name of the broker instance (instanceName) with which the configuration file is
associated (see Appendix A, “Location of Message Queue Data”):

…/instances/instanceName/props/config.properties

If the file does not yet exist, you have to start up the broker using the
-name instanceName option, for Message Queue to create the file.

Table B-1 presents the configuration properties that you need to set when plugging
in a JDBC- accessible data store. You set these properties in the instance
configuration file (config.properties) of each broker instance that uses
plugged-in persistence.

The instance configuration properties enable you to customize the SQL code that
creates the Message Queue database schema: there is a configurable property that
specifies the SQL code that creates each database table. These properties are
needed to properly specify the data types used by the plugged-in database.

Since there are incompatibilities between database vendors with respect to the
exact SQL syntax, be sure to check the corresponding documentation from your
database vendor and adjust the properties in Table B-1accordingly. For example,
for the PointBase database, you may need to adjust the maximum length allowed
for the MSG column (see the imq.persist.jdbc.table.IMQMSG35 property) in the
IMQMSG35 table.

Table B-1 includes values you would specify for the PointBase DBMS example.

NOTE If an embedded database is used, it is recommended that it be
created under the following directory:

…/instances/instanceName/dbstore/dabatabseName.

If an embedded database is not protected by a user name and
password, it is probably protected by file system permissions.
To ensure that the database is readable and writable by the
broker, the user who runs the broker should be the same user
who created the embedded database using the imqdbmgr
command (see “Database Manager Utility (imqdbmgr)” on
page 303).

JDBC-related Broker Configuration Properties

300 Message Queue 3.5 SP1 • Administration Guide

Table B-1 JDBC-related Properties

Property Name Description

imq.persist.store Specifies a file-based or JDBC-based data store.

Example:

jdbc

imq.persist.jdbc.brokerid
(optional)

Specifies a broker instance identifier that is appended to database
table names to make them unique in the case where more than
one broker instance is using the same database as a persistent
data store. (Usually not needed in the case of an embedded
database, which stores data for only one broker instance.) The
identifier must be an alphanumeric string whose length does not
exceed the maximum table name length, minus 12, allowed by the
database.

Example: not needed for PointBase embedded version.

imq.persist.jdbc.driver Specifies the java class name of the JDBC driver to connect to the
database.

Example:

com.pointbase.jdbc.jdbcUniversalDriver

imq.persist.jdbc.opendburl Specifies the database URL for opening a connection to an
existing database.

Example:

jdbc:pointbase:embedded:dbName;
database.home= …/instances/instanceName/dbstore

imq.persist.jdbc.createdburl
(optional)

Specifies the database URL for opening a connection to create a
database. (Only specified if the database is to be created using
imqdbmgr.)

Example:

jdbc:pointbase:embedded:dbName;new,
database.home= …/instances/instanceName/dbstore

imq.persist.jdbc.closedburl
(optional)

Specifies the database URL for shutting down the current
database connection when the broker is shutdown.

Example: not required for PointBase

imq.persist.jdbc.user
(optional)

Specifies the user name used to open a database connection, if
required. For security reasons, the value can be specified instead
using command line options:
imqbrokerd -dbuser
and imqdbmgr -u

JDBC-related Broker Configuration Properties

Appendix B Setting Up Plugged-in Persistence 301

imq.persist.jdbc.needpassword
(optional)

Specifies whether the database requires a password for broker
access. Value of true means password is required. The password
can be specified using the following command line options:
imqbrokerd -dbpassword
imqdbmgr -p

If the password is not provided using either command line options
or a passfile (see “Using a Passfile” on page 225), the broker will
prompt for the password.

imq.persist.jdbc.password
(optional)

Specifies password used to open a database connection, if
required. This property can only be specified in a passfile (see
“Using a Passfile” on page 225).

There are a number of ways to provide a password. The most
secure is to let the broker prompt you for a password. Less secure
is to use a passfile and read-protect the passfile. Least secure is
to specify the password using the following command line options:
imqbrokerd -dbpassword
imqdbmgr -p

imq.persist.jdbc.table.IMQSV35 SQL command used to create the version table.

Example:

CREATE TABLE ${name} (STOREVERSION INTEGER NOT NULL,
BROKERID VARCHAR(100))

imq.persist.jdbc.table.IMQCCREC35 SQL command used to create the configuration change record
table.

Example:

CREATE TABLE ${name} (RECORDTIME BIGINT NOT NULL,
RECORD BLOB(10k))

imq.persist.jdbc.table.IMQDEST35 SQL command used to create the destination table.

Example:

CREATE TABLE ${name} (DID VARCHAR(100) NOT NULL,
DEST BLOB(10k), primary key(DID))

imq.persist.jdbc.table.IMQINT35 SQL command used to create the interest table.

Example:

CREATE TABLE ${name} (CUID BIGINT NOT NULL, INTEREST
BLOB(10k), primary key(CUID))

Table B-1 JDBC-related Properties (Continued)

Property Name Description

JDBC-related Broker Configuration Properties

302 Message Queue 3.5 SP1 • Administration Guide

As with all broker configuration properties, values can be set using the -D
command line option. If a database requires certain database specific properties to
be set, these also can be set using the -D command line option when starting the
broker (imqbrokerd) or the Database Manager utility (imqdbmgr).

imq.persist.jdbc.table.IMQMSG35 SQL command used to create the message table.

Example:

CREATE TABLE ${name} (MID VARCHAR(100) NOT NULL, DID
VARCHAR(100), MSGSIZE BIGINT, MSG BLOB(1m), primary
key(MID))

The default maximum length for the MSG column is 1 Megabyte
(1m). If you expect to have messages that are larger than this, set
the length accordingly. If the tables have already been created,
you need to recreate them to make the change.

imq.persist.jdbc.table.IMQPROPS35 SQL command used to create the property table.

Example:

CREATE TABLE ${name} (PROPNAME VARCHAR(100) NOT
NULL, PROPVALUE BLOB(10k), primary key(PROPNAME))

imq.persist.jdbc.table.IMQILIST35 SQL command used to create the interest state table.

Example:

CREATE TABLE ${name} (MID VARCHAR(100) NOT NULL,
CUID BIGINT, DID VARCHAR(100), STATE INTEGER,
primary key(MID, CUID))

imq.persist.jdbc.table.IMQTXN35 SQL command used to create the transaction table.

Example:

CREATE TABLE ${name} (TUID BIGINT NOT NULL, STATE
INTEGER, TSTATEOBJ BLOB(10K), primary key(TUID))

imq.persist.jdbc.table.IMQTACK35 SQL command used to create the transaction acknowledgement
table.

Example:

CREATE TABLE ${name} (TUID BIGINT NOT NULL, TXNACK
BLOB(10k))

Table B-1 JDBC-related Properties (Continued)

Property Name Description

Database Manager Utility (imqdbmgr)

Appendix B Setting Up Plugged-in Persistence 303

Example:

For the PointBase embedded database example, instead of specifying the absolute
path of a database in database connection URLs (as those shown in Table B-1
examples), the -D command line option can be used to define the PointBase system
directory:

-Ddatabase.home=IMQ_VARHOME/instances/instanceName/dbstore

In that case the URLs to create and open a database can be specified simply as:

imq.persist.jdbc.createdburl=jdbc:pointbase:embedded:dbName;new

and

imq.persist.jdbc.opendburl=jdbc:pointbase:embedded:dbName

respectively.

Database Manager Utility (imqdbmgr)
Message Queue provides a Database Manager utility (imqdbmgr) for setting up the
schema needed for persistence. The utility can also be used to delete Message
Queue database tables should the tables become corrupted or should you wish to
use a different database as a data store.

This section describes the basic imqdbmgr command syntax, provides a listing of
subcommands, and summarizes imqdbmgr command options.

Syntax of the imqdbmgr Command
The general syntax of the imqdbmgr command is as follows:

imqdbmgr subcommand argument [options]
imqdbmgr -h|-help
imqdbmgr -v|-version

Note that if you specify the -v or -h options, no subcommands specified on the
command line are executed. For example, if you enter the following command,
version information is displayed but the create subcommand is not executed.

imqdbmgr create all -v

Database Manager Utility (imqdbmgr)

304 Message Queue 3.5 SP1 • Administration Guide

imqdbmgr Subcommands
The Database Manager utility (imqdbmgr) includes the subcommands listed in
Table B-2:

Table B-2 imqdbmgr Subcommands

Subcommand
and Argument

Description

create all Creates a new database and Message Queue persistent store schema.
This command is used on an embedded database system, and when used,
the property imq.persist.jdbc.createdburl needs to be specified.

create tbl Creates the Message Queue persistent store schema in an existing
database system. This command is used on an external database system.

delete tbl Deletes the existing Message Queue database tables in the current
persistent store database.

delete oldtbl Deletes all Message Queue database tables in an earlier version persistent
store database. Used after the persistent store has been automatically
migrated to the current version of Message Queue.

recreate tbl Deletes the existing Message Queue database tables in the current
persistent store database and then re-creates the Message Queue
persistent store schema.

reset lck Resets the lock so the persistent store database can be used by other
processes.

Database Manager Utility (imqdbmgr)

Appendix B Setting Up Plugged-in Persistence 305

Summary of imqdbmgr Command Options
Table B-3 lists the options to the imqdbmgr command.

Table B-3 imqdbmgr Options

Option Description

-Dproperty=value Sets the specified property to the specified value.

-b instanceName Specifies the broker instance name and use the corresponding
instance configuration file.

-h Displays usage help. Nothing else on the command line is
executed.

-p password Specifies the database password.

-u name Specifies the database user name.

-v Displays version information. Nothing else on the command line is
executed.

Database Manager Utility (imqdbmgr)

306 Message Queue 3.5 SP1 • Administration Guide

307

Appendix C

HTTP/HTTPS Support
(Enterprise Edition)

Message Queue, Enterprise Edition (see “Product Editions” on page 33) includes
support for both HTTP and HTTPS connections. (HTTPS is HTTP over a Secure
Socket Layer—SSL—transport connection.) This support allows client applications
to communicate with the broker using the HTTP protocol instead of direct TCP
connections. This appendix describes the architecture used to enable this support
and explains the setup work needed to allow clients to use HTTP-based
connections for Message Queue messaging.

HTTP/HTTPS Support Architecture
Message Queue messaging can be run on top of HTTP/HTTPS connections.
Because HTTP/HTTPS connections are normally allowed through firewalls, this
allows client applications to be separated from a broker by a firewall.

Figure C-1 on page 308 shows the main components involved in providing
HTTP/HTTPS support.

• On the client side, an HTTP or HTTPS transport driver encapsulates the
Message Queue message into an HTTP request and makes sure that these
requests are sent to the Web server in the correct sequence.

• The client can use an HTTP proxy server to communicate with the broker if
necessary. The proxy’s address is specified using command line options when
starting the client. See “Using an HTTP Proxy” on page 313 for more
information.

NOTE HTTP/HTTPS support is available for Java clients but not for C
clients.

HTTP/HTTPS Support Architecture

308 Message Queue 3.5 SP1 • Administration Guide

• An HTTP or HTTPS tunnel servlet (both bundled with Message Queue) is
loaded in the web server and used to pull JMS messages out of client HTTP
requests before forwarding them to the broker. The HTTP/HTTPS tunnel
servlet also sends broker messages back to the client in response to HTTP
requests made by the client. A single HTTP/HTTPS tunnel servlet can be used
to access multiple brokers.

Figure C-1 HTTP/HTTPS Support Architecture

• On the broker side, the httpjms or httpsjms connection service unwraps and
de-multiplexes incoming messages from the corresponding tunnel servlet.

• If the Web server fails and is restarted, all connections are restored and there is
no effect on clients. If the broker fails and is restarted, an exception is thrown
and clients must re-establish their connections. In the unlikely case that both
the Web server and the broker fail, and the broker is not restarted, the Web
server will restore client connections and continue waiting for a broker
connection— without notifying clients. To avoid this situation, always restart
the broker.

As you can see from Figure C-1, the architecture for HTTP and HTTPS support are
very similar. The main difference is that, in the case of HTTPS (httpsjms connection
service), the tunnel servlet has a secure connection to both the client application
and broker.

JMS Client
Broker

httpjms/httpsjms
Connection

Services

Web Server

Message Queue
Client Runtime

HTTP/S
Transport

Drivers

HTTP Proxy

Firewall

HTTP

TLS

HTTPS

TCP/IP

HTTP
Tunnel
Servlet

HTTPS
Tunnel
Servlet

Enabling HTTP Support

Appendix C HTTP/HTTPS Support (Enterprise Edition) 309

The secure connection to the broker is provided through an SSL-enabled tunnel
servlet—Message Queue’s HTTPS tunnel servlet—which passes a self-signed
certificate to any broker requesting a connection. The certificate is used by the
broker to set up an encrypted connection to the HTTPS tunnel servlet. Once this
connection is established, a secure connection between a client application and the
tunnel servlet can be negotiated by the client application and the web server.

Enabling HTTP Support
The following sections describe the steps you need to take to enable HTTP support.

➤ To Enable HTTP Support

1. Deploy the HTTP tunnel servlet on a web server.

2. Configure the broker’s httpjms connection service and start the broker.

3. Configure an HTTP connection.

Step 1. Deploying the HTTP Tunnel Servlet
on a Web Server
There are two general ways you can deploy the HTTP tunnel servlet on a web
server:

• deploying it as a jar file—for web servers that support Servlet 2.1 or earlier

• deploying it as a web archive (WAR) file—for web servers that support Servlet
2.2 or later

Deploying as a Jar File
Deploying the Message Queue tunnel servlet consists of making the appropriate jar
files accessible to the host web server, configuring the web server to load the
servlet on startup, and specifying the context root portion of the servlet’s URL.

The tunnel servlet jar file (imqservlet.jar) contains all the classes needed by the
HTTP tunnel servlet, and can be found in a directory that depends upon operating
system (see Appendix A, “Location of Message Queue Data”).

Enabling HTTP Support

310 Message Queue 3.5 SP1 • Administration Guide

Any web server with servlet 2.x support can be used to load this servlet. The servlet
class name is:

com.sun.messaging.jmq.transport.
httptunnel.servlet.HttpTunnelServlet

The web server must be able to see the imqservlet.jar file. If you are planning to
run the web server and the broker on different hosts, you should place a copy of
the imqservlet.jar file in a location where the web server can access it.

You also need to configure the web server to load this servlet on startup, and you
might need to specify the context root portion of the servlet’s URL (see “Example 1:
Deploying the HTTP Tunnel Servlet on Sun Java System Web Server” on page 314).

It is also recommended that you disable your web server’s access logging feature in
order to improve performance.

Deploying as a Web Archive File
Deploying the HTTP tunnel servlet as a WAR file consists of using the deployment
mechanism provided by the web server. The HTTP tunnel servlet WAR file
(imqhttp.war) is located in the directory containing .jar, .war, and .rar files, and
depends on your operating system (see Appendix A, “Location of Message Queue
Data”).

The WAR file includes a deployment descriptor that contains the basic
configuration information needed by the web server to load and run the servlet.
Depending on the web server, you might also need to specify the context root
portion of the servlet’s URL (see “Example 2: Deploying the HTTP Tunnel Servlet
on Sun Java System Application Server 7.0” on page 317).

Step 2. Configuring the httpjms
Connection Service
HTTP support is not activated for a broker by default, so you need to reconfigure
the broker to activate the httpjms connection service. Once reconfigured, the broker
can be started as outlined in “Starting a Broker” on page 134.

Enabling HTTP Support

Appendix C HTTP/HTTPS Support (Enterprise Edition) 311

➤ To Activate the httpjms Connection Service

1. Open the broker’s instance configuration file.

The instance configuration file is stored in a directory identified by the name of
the broker instance (instanceName) with which the configuration file is
associated (see Appendix A, “Location of Message Queue Data”):

…/instances/instanceName/props/config.properties

2. Add the httpjms value to the imq.service.activelist property:

imq.service.activelist=jms,admin,httpjms

At startup, the broker looks for a web server and HTTP tunnel servlet running on
its host machine. To access a remote tunnel servlet, however, you can reconfigure
the servletHost and servletPort connection service properties.

You can also reconfigure the pullPeriod property to improve performance. The
httpjms connection service configuration properties are detailed in Table C-1 on
page 311.

Table C-1 httpjms Connection Service Properties

Property Name Description

imq.httpjms.http.
servletHost

Change this value, if necessary, to specify the name of the host
(hostname or IP address) on which the HTTP tunnel servlet is
running. (This can be a remote host or a specific hostname on a
local host.) Default: localhost

imq.httpjms.http.
servletPort

Change this value to specify the port number that the broker uses to
access the HTTP tunnel servlet. (If the default port is changed on
the Web server, then you must change this property accordingly.)
Default: 7675

imq.httpjms.http.
pullPeriod

Specifies the interval, in seconds, between HTTP requests made by
a client runtime to pull messages from the broker. (Note that this
property is set on the broker and propagates to the client runtime.) If
the value is zero or negative, the client keeps one HTTP request
pending at all times, ready to pull messages as fast as possible.
With a large number of clients, this can be a heavy drain on web
server resources and the server may become unresponsive. In such
cases, you should set the pullPeriod property to a positive number
of seconds. This sets the time the client’s HTTP transport driver
waits before making subsequent pull requests. Setting the value to a
positive number conserves web server resources at the expense of
the response times observed by clients. Default: -1

Enabling HTTP Support

312 Message Queue 3.5 SP1 • Administration Guide

Step 3. Configuring an HTTP Connection
A client application must use an appropriately configured connection factory
administered object to make an HTTP connection to a broker. This section
discusses HTTP connection configuration issues.

Configuring the Connection Factory
To enable HTTP support, you need to set the connection factory’s imqAddressList
attribute to the HTTP tunnel servlet URL. The general syntax of the HTTP tunnel
servlet URL is the following:

http://hostName:port/contextRoot/tunnel

where hostName:port is the name and port of the web server hosting the HTTP
tunnel servlet and contextRoot is a path set when deploying the tunnel servlet on
the web server.

For more information on connection factory attributes in general, and the
imqAddressList attribute in particular, see the Message Queue Java Client
Developer’s Guide.

You can set connection factory attributes in one of the following ways:

• Using the -o option to the imqobjmgr command that creates the connection
factory administered object (see “Adding a Connection Factory” on page 195),
or set the attribute when creating the connection factory administered object
using the Administration Console (imqadmin).

• Using the -D option to the command that launches the client (see the Message
Queue Java Client Developer’s Guide).

imq.httpjms.http.
connectionTimeout

Specifies the time, in seconds, that the client runtime waits for a
response from the HTTP tunnel servlet before throwing an
exception. (Note that this property is set on the broker and
propagates to the client runtime.) This property also specifies the
time the broker waits after communicating with the HTTP tunnel
servlet before freeing up a connection. A timeout is necessary in this
case because the broker and the tunnel servlet have no way of
knowing if a client that is accessing the HTTP servlet has terminated
abnormally. Default: 60

Table C-1 httpjms Connection Service Properties (Continued)

Property Name Description

Enabling HTTP Support

Appendix C HTTP/HTTPS Support (Enterprise Edition) 313

• Using a an API call to set the attributes of a connection factory after you create
it programmatically in client code (see the Message Queue Java Client
Developer’s Guide).

Using a Single Servlet to Access Multiple Brokers
You do not need to configure multiple web servers and servlet instances if you are
running multiple brokers. You can share a single web server and HTTP tunnel
servlet instance among concurrently running brokers. If multiple broker instances
are sharing a single tunnel servlet, you must configure the imqAddressList
connection factory attribute as shown below:

http://hostName:port/contextRoot/tunnel?ServerName=bkrHostName:instanceName

Where bkrHostName is the broker instance host name and instanceName is the name
of the specific broker instance you want your client to access.

To check that you have entered the correct strings for bkrHostName and
instanceName, generate a status report for the HTTP tunnel servlet by accessing the
servlet URL from a browser. The report lists all brokers being accessed by the
servlet:

Using an HTTP Proxy
If you are using an HTTP proxy to access the HTTP tunnel servlet:

• Set http.proxyHost system property to the proxy server host name.

• Set http.proxyPort system property to the proxy server port number.

You can set these properties using the -D option to the command that launches the
client application.

HTTP tunnel servlet ready.
Servlet Start Time : Thu May 30 01:08:18 PDT 2002
Accepting TCP connections from brokers on port : 7675
Total available brokers = 2
Broker List :

jpgserv:broker2
cochin:broker1

Enabling HTTP Support

314 Message Queue 3.5 SP1 • Administration Guide

Example 1: Deploying the HTTP Tunnel Servlet
on Sun Java System Web Server
This section describes how you deploy the HTTP tunnel servlet both as a jar file
and as a WAR file on the Sun Java System Web Server. The approach you use
depends on the version of Sun Java System Web Server: If it does not support
Servlet 2.2 or later, it will not be able to handle WAR file deployment.

Deploying as a Jar File
The instructions below refer to deployment on Sun Java System Web Server 6.1
using the browser-based administration GUI. This procedure consists of the
following general steps:

1. add a servlet

2. configure the servlet virtual path

3. load the servlet

4. disable the servlet access log

These steps are described in the following subsections. You can verify successful
HTTP tunnel servlet deployment by accessing the servlet URL using a web
browser. It should display status information.

Adding a Servlet

➤ To Add a Tunnel Servlet

1. Select the Servlets tab.

2. Choose Configure Servlet Attributes.

3. Specify a name for the tunnel servlet in the Servlet Name field.

4. Set the Servlet Code (class name) field to the following value:

com.sun.messaging.jmq.transport.
httptunnel.servlet.HttpTunnelServlet

5. Enter the complete path to the imqservlet.jar in the Servlet Classpath field.
For example:

/usr/share/lib/imq/imqservlet.jar (on Solaris)

/opt/imq/lib/imqservlet.jar (on Linux)

IMQ_HOME/lib/imqservlet.jar (on Windows)

Enabling HTTP Support

Appendix C HTTP/HTTPS Support (Enterprise Edition) 315

6. In the Servlet args field, enter any optional arguments, as shown in Table C-2:

If using both arguments, separate them with a comma:

servletPort=portNumber, servletHost=…

The servletHost and servletPort argument apply only to communication
between the Web Server and broker, and are set only if the default values are
problematic. However, in that case, you also have to set the broker
configuration properties accordingly (see Table C-1 on page 311), for example:

imq.httpjms.http.servletPort

Configuring a Servlet Virtual Path (Servlet URL)

➤ To Configure a Virtual Path (Servlet URL) for a Tunnel Servlet

1. Select the Servlets tab.

2. Choose Configure Servlet Virtual Path Translation.

3. Set the Virtual Path field.

The Virtual Path is the /contextRoot/tunnel portion of the tunnel servlet URL:

http://hostName:port/contextRoot/tunnel

For example, if you set the contextRoot to imq, then the Virtual Path field would
be:

/imq/tunnel

4. Set the Servlet Name field to the same value as in Step 3 in “Adding a Servlet”
on page 314.

Loading a Servlet

➤ To Load the Tunnel Servlet at Web Server Startup

1. Select the Servlets tab.

Table C-2 Servlet Arguments for Deploying HTTP Tunnel Servlet Jar File

Argument Default Value Reference

servletHost all hosts See Table C-1 on page 311

servletPort 7675 See Table C-1 on page 311

Enabling HTTP Support

316 Message Queue 3.5 SP1 • Administration Guide

2. Choose Configure Global Attributes.

3. In the Startup Servlets field, enter the same servlet name value as in Step 3 in
“Adding a Servlet” on page 314.

Disabling a Server Access Log
You do not have to disable the server access log, but you will obtain better
performance if you do.

➤ To Disable the Server Access Log

1. Select the Status tab.

2. Choose the Log Preferences Page.

3. Use the Log client accesses control to disable logging

Deploying as a WAR File
The instructions below refer to deployment on Sun Java System Web Server 6.0
Service
Pack 2. You can verify successful HTTP tunnel servlet deployment by accessing the
servlet URL using a web browser. It should display status information.

➤ To Deploy the http Tunnel Servlet as a WAR File

1. In the browser-based administration GUI, select the Virtual Server Class tab
and select Manage Classes.

2. Select the appropriate virtual server class name (for example, defaultClass)
and click the Manage button.

3. Select Manage Virtual Servers.

4. Select an appropriate virtual server name and click the Manage button.

5. Select the Web Applications tab.

6. Click on Deploy Web Application.

7. Select the appropriate values for the WAR File On and WAR File Path fields so
as to point to the imqhttp.war file, which can be found in a directory that
depends on your operating system (see Appendix A, “Location of Message
Queue Data”).

Enabling HTTP Support

Appendix C HTTP/HTTPS Support (Enterprise Edition) 317

8. Enter a path in the Application URI field.

The Application URI field value is the /contextRoot portion of the tunnel servlet
URL:

http://hostName:port/contextRoot/tunnel

For example, if you set the contextRoot to imq, then the Application URI field
would be:

/imq

9. Enter the installation directory path (typically somewhere under the Sun Java
System Web Server installation root) where the servlet should be deployed.

10. Click OK.

11. Restart the web server instance.

The servlet is now available at the following address:

http://hostName:port/contextRoot/tunnel

Clients can now use this URL to connect to the message service using an HTTP
connection.

Example 2: Deploying the HTTP Tunnel Servlet
on Sun Java System Application Server 7.0
This section describes how you deploy the HTTP tunnel servlet as a WAR file on
the Sun Java System Application Server 7.0.

Two steps are required:

• deploy the HTTP tunnel servlet using the Application Server 7.0 deployment
tool

• modify the application server instance’s server.policy file

Using the Deployment Tool

➤ To Deploy the HTTP Tunnel Servlet in an Application Server 7.0 Environment

1. In the web-based administration GUI, choose

App Server > Instances > server1 > Applications > Web Applications.

2. Click the Deploy button.

Enabling HTTP Support

318 Message Queue 3.5 SP1 • Administration Guide

3. In the File Path: textfield, enter the location of the HTTP tunnel servlet WAR
file (imqhttp.war).

The location of the imqhttp.war file depends on your operating system (see
Appendix A, “Location of Message Queue Data”)

4. Click OK.

5. On the next screen, set the value for the Context Root textfield.

The Context Root field value is the /contextRoot portion of the tunnel servlet
URL:

http://hostName:port/contextRoot/tunnel

For example, you could set the Context Root field to:

/imq

6. Click OK.

The next screen shows that the tunnel servlet has been successfully deployed,
is enabled by default, and—in this case—is located at:

/var/opt/SUNWappserver7/domains/domain1/server1/applications/
j2ee-modules/imqhttp_1

The servlet is now available at the following address:

http://hostName:port/contextRoot/tunnel

Clients can now use this URL to connect to the message service using an HTTP
connection.

Modifying the server.policy File
The Application Server 7.0 enforces a set of default security policies that unless
modified would prevent the HTTP tunnel servlet from accepting connections from
the Message Queue broker.

Each application server instance has a file that contains its security policies or rules.
For example, the location of this file for the server1 instance on Solaris is:

/var/opt/SUNWappserver7/domains/domain1/server1/config/
server.policy

To make the tunnel servlet accept connections from the Message Queue broker, an
additional entry is required in this file.

Enabling HTTPS Support

Appendix C HTTP/HTTPS Support (Enterprise Edition) 319

➤ To Modify the Application Server’s server.policy File

1. Open the server.policy file.

2. Add the following entry:

Enabling HTTPS Support
The following sections describe the steps you need to take to enable HTTPS
support. They are similar to those in “Enabling HTTP Support” on page 309 with
the addition of steps needed to generate and access SSL certificates.

➤ To Enable HTTPS Support

1. Generate a self-signed certificate for the HTTPS tunnel servlet.

2. Deploy the HTTPS tunnel servlet on a web server.

3. Configure the broker’s httpsjms connection service and start the broker.

4. Configure an HTTPS connection.

Each of these steps is discussed in more detail in the sections that follow.

Step 1. Generating a Self-signed Certificate for
the HTTPS Tunnel Servlet
Message Queue’s SSL support is oriented toward securing on-the-wire data with
the assumption that the client is communicating with a known and trusted server.
Therefore, SSL is implemented using only self-signed server certificates. In the
httpsjms connection service architecture, the HTTPS tunnel servlet plays the role of
server to both broker and application client.

grant codeBase
"file:/var/opt/SUNWappserver7/domains/domain1/server1/

applications/j2ee-modules/imqhttp_1/-”
{

permission java.net.SocketPermission "*",
“connect,accept,resolve";

};

Enabling HTTPS Support

320 Message Queue 3.5 SP1 • Administration Guide

Run the imqkeytool utility to generate a self-signed certificate for the tunnel
servlet. Enter the following at the command prompt:

imqkeytool -servlet keystore_location

The utility will prompt you for the information it needs. (On Unix systems you
may need to run imqkeytool as the superuser (root) in order to have permission to
create the keystore.)

First, imqkeytool prompts you for a keystore password, then it prompts you for
some organizational information, and then it prompts you for confirmation. After
it receives the confirmation, it pauses while it generates a key pair. It then asks you
for a password to lock the particular key pair (key password); you should enter
Return in response to this prompt: this makes the key password the same as the
keystore password.

Running imqkeytool runs the JDK keytool utility to generate a self-signed
certificate and to place it in Message Queue’s keystore file located as specified in
the keystore_location argument. (The keystore is in the same keystore format as that
supported by the JDK1.2 keytool.)

Step 2. Deploying the HTTPS Tunnel Servlet
on a Web Server
There are two general ways you can deploy the HTTPS tunnel servlet on a web
server:

• deploying it as a jar file—for web servers that support Servlet 2.1 or earlier

• deploying it as a web archive (WAR) file—for web servers that support Servlet
2.2 or later

NOTE Remember the password you provide—you will need to provide
this password later to the tunnel servlet so it can open the keystore.

NOTE The HTTPS tunnel servlet must be able to see the keystore. Make
sure you move/copy the generated keystore located in
keystore_location to a location accessible by the HTTPS tunnel servlet
(see “Step 2. Deploying the HTTPS Tunnel Servlet on a Web Server”
on page 320).

Enabling HTTPS Support

Appendix C HTTP/HTTPS Support (Enterprise Edition) 321

In either case, you should make sure that encryption is activated for the web server,
enabling end to end secure communication between the client and broker.

Deploying as a Jar File
Deploying the Message Queue tunnel servlet consists of making the appropriate jar
files accessible to the host web server, configuring the web server to load the
servlet on startup, and specifying the context root portion of the servlet’s URL.

The tunnel servlet jar file (imqservlet.jar) contains all the classes needed by the
HTTPS tunnel servlet, and can be found in a directory that depends upon
operating system (see Appendix A, “Location of Message Queue Data”).

Any web server with servlet 2.x support can be used to load this servlet. The servlet
class name is:

com.sun.messaging.jmq.transport.
httptunnel.servlet.HttpsTunnelServlet

The web server must be able to see the imqservlet.jar file. If you are planning to
run the web server and the broker on different hosts, you should place a copy of
the imqservlet.jar file in a location where the web server can access it.

You also need to configure the web server to load this servlet on startup, and you
might need to specify the context root portion of the servlet’s URL (see “Example 3:
Deploying the HTTPS Tunnel Servlet on Sun Java System Web Server” on
page 326).

Make sure that the JSSE jar files are in the classpath for running servlets in the web
server. Check the web server’s documentation for how to do this.

An important aspect of configuring the web server is specifying the location and
password of the self-signed certificate to be used by the HTTPS tunnel servlet to
establish a secure connection with a broker. You have to place the keystore created
in “Step 1. Generating a Self-signed Certificate for the HTTPS Tunnel Servlet” on
page 319 in a location accessible by the HTTPS tunnel servlet.

It is also recommended that you disable your web server’s access logging feature in
order to improve performance.

Deploying as a Web Archive File
Deploying the HTTPS tunnel servlet as a WAR file consists of using the
deployment mechanism provided by the web server. The HTTPS tunnel servlet
WAR file (imqhttps.war) is located in a directory that depends on your operating
system (see Appendix A, “Location of Message Queue Data”).

Enabling HTTPS Support

322 Message Queue 3.5 SP1 • Administration Guide

The WAR file includes a deployment descriptor that contains the basic
configuration information needed by the web server to load and run the servlet.
Depending on the web server, you might also need to specify the context root
portion of the servlet’s URL (see “Example 4: Deploying the HTTPS Tunnel Servlet
on Sun Java System Application Server 7.0” on page 331).

However, the deployment descriptor of the imqhttps.war file cannot know where
you have placed the keystore file needed by the tunnel servlet (see “Step 1.
Generating a Self-signed Certificate for the HTTPS Tunnel Servlet” on page 319).
This requires you to edit the tunnel servlet’s deployment descriptor (an XML file)
to specify the keystore location before deploying the imqhttps.war file.

Step 3. Configuring the httpsjms
Connection Service
HTTPS support is not activated for a broker by default, so you need to reconfigure
the broker to activate the httpsjms connection service. Once reconfigured, the
broker can be started as outlined in “Starting a Broker” on page 134.

➤ To Activate the httpsjms Connection Service

1. Open the broker’s instance configuration file.

The instance configuration file is stored in a directory identified by the name of
the broker instance (instanceName) with which the configuration file is
associated (see Appendix A, “Location of Message Queue Data”):

…/instances/instanceName/props/config.properties

2. Add the httpsjms value to the imq.service.activelist property:

imq.service.activelist=jms,admin,httpsjms

At startup, the broker looks for a web server and HTTPS tunnel servlet running on
its host machine. To access a remote tunnel servlet, however, you can reconfigure
the servletHost and servletPort connection service properties.

You can also reconfigure the pullPeriod property to improve performance. The
httpsjms connection service configuration properties are detailed in Table C-3.

Enabling HTTPS Support

Appendix C HTTP/HTTPS Support (Enterprise Edition) 323

Step 4. Configuring an HTTPS Connection
A client application must use an appropriately configured connection factory
administered object to make an HTTPS connection to a broker.

However, the client must also have access to SSL libraries provided by the Java
Secure Socket Extension (JSSE) and must also have a root certificate. The SSL
libraries are bundled with JDK 1.4. If you have an earlier JDK version, see
“Configuring JSSE,” otherwise proceed to “Importing a Root Certificate.”

Table C-3 httpsjms Connection Service Properties

Property Name Description

imq.httpsjms.https.
servletHost

Change this value, if necessary, to specify the name of the host
(hostname or IP address) on which the HTTPS tunnel servlet is
running. (This can be a remote host or a specific hostname on a
local host.) Default: localhost

imq.httpsjms.https.
servletPort

Change this value to specify the port number that the broker uses
to access the HTTPS tunnel servlet. (If the default port is changed
on the Web server, then you must change this property
accordingly.) Default: 7674

imq.httpsjms.https.
pullPeriod

Specifies the interval, in seconds, between HTTP requests made
by each client to pull messages from the broker. (Note that this
property is set on the broker and propagates to the client runtime.)
If the value is zero or negative, the client keeps one HTTP request
pending at all times, ready to pull messages as fast as possible.
With a large number of clients, this can be a heavy drain on web
server resources and the server may become unresponsive. In
such cases, you should set the pullPeriod property to a positive
number of seconds. This sets the time the client’s HTTP transport
driver waits before making subsequent pull requests. Setting the
value to a positive number conserves web server resources at the
expense of the response times observed by clients. Default: -1

imq.httpsjms.https.
connectionTimeout

Specifies the time, in seconds, that the client runtime waits for a
response from the HTTPS tunnel servlet before throwing an
exception. (Note that this property is set on the broker and
propagates to the client runtime.) This property also specifies the
time the broker waits after communicating with the HTTPS tunnel
servlet before freeing up a connection. A timeout is necessary in
this case because the broker and the tunnel servlet have no way of
knowing if a client that is accessing the HTTPS servlet has
terminated abnormally. Default: 60

Enabling HTTPS Support

324 Message Queue 3.5 SP1 • Administration Guide

Once these issues are resolved, you can proceed to configuring the HTTPS
connection.

Configuring JSSE

➤ To Configure JSSE

1. Copy the JSSE jar files to the JRE_HOME/lib/ext directory.

jsse.jar, jnet.jar, jcert.jar

2. Statically add the JSSE security provider by adding

security.provider.n=com.sun.net.ssl.internal.ssl.Provider

to the JRE_HOME/lib/security/java.security file (where n is the next
available priority number for security provider package).

3. If not using JDK1.4, you need to set the following JSSE property using the -D
option to the command that launches the client application:

java.protocol.handler.pkgs=com.sun.net.ssl.internal.www.protocol

Importing a Root Certificate
If the root certificate of the CA who signed your web server’s certificate is not in the
trust database by default or if you are using a proprietary web server certificate,
you have to add that certificate to the trust database. If this is the case, follow the
instruction below, otherwise go to “Configuring the Connection Factory.”

Assuming that the certificate is saved in cert_file and that trust_store_file is your
keystore, run the following command:

JRE_HOME/bin/keytool -import -trustcacerts
-alias alias_for_certificate -file cert_file
-keystore trust_store_file

Answer YES to the question: Trust this certificate?

You also need to specify the following JSSE properties using the -D option to the
command that launches the client application:

javax.net.ssl.trustStore=trust_store_file

javax.net.ssl.trustStorePassword=trust_store_passwd

Enabling HTTPS Support

Appendix C HTTP/HTTPS Support (Enterprise Edition) 325

Configuring the Connection Factory
To enable HTTPS support, you need to set the connection factory’s
imqAddressList attribute to the HTTPS tunnel servlet URL. The general syntax of
the HTTPS tunnel servlet URL is the following:

https://hostName:port/contextRoot/tunnel

where hostName:port is the name and port of the web server hosting the HTTPS
tunnel servlet and contextRoot is a path set when deploying the tunnel servlet on
the web server.

For more information on connection factory attributes in general, and the
imqAddressList attribute in particular, see the Message Queue Java Client
Developer’s Guide.

You can set connection factory attributes in one of the following ways:

• Using the -o option to the imqobjmgr command that creates the connection
factory administered object (see “Adding a Connection Factory” on page 195),
or set the attribute when creating the connection factory administered object
using the Administration Console (imqadmin).

• Using the -D option to the command that launches the client application (see
the Message Queue Java Client Developer’s Guide).

• Using an API call to set the attributes of a connection factory after you create it
programmatically in client application code (see the Message Queue Java Client
Developer’s Guide).

Using a Single Servlet to Access Multiple Brokers
You do not need to configure multiple web servers and servlet instances if you are
running multiple brokers. You can share a single web server and HTTPS tunnel
servlet instance among concurrently running brokers. If multiple broker instances
are sharing a single tunnel servlet, you must configure the imqAddressList
connection factory attribute as shown below:

https://hostName:port/contextRoot/tunnel?ServerName=bkrHostName:instanceName

Where bkrHostName is the broker instance host name and instanceName is the name
of the specific broker instance you want your client to access.

To check that you have entered the correct strings for bkrhostName and
instanceName, generate a status report for the HTTPS tunnel servlet by accessing
the servlet URL from a browser. The report lists all brokers being accessed by the
servlet:

https://hostName:port/contextRoot/tunnel
https://hostName:port/contextRoot/tunnel?ServerName=bkrHostName:instanceName

Enabling HTTPS Support

326 Message Queue 3.5 SP1 • Administration Guide

Using an HTTP Proxy
If you are using an HTTP proxy to access the HTTPS tunnel servlet:

• Set http.proxyHost system property to the proxy server host name.

• Set http.proxyPort system property to the proxy server port number.

You can set these properties using the -D option to the command that launches the
client application.

Example 3: Deploying the HTTPS Tunnel Servlet
on Sun Java System Web Server
This section describes how you deploy the HTTPS tunnel servlet both as a jar file
and as a WAR file on the Sun Java System Web Server. The approach you use
depends on the version of Sun Java System Web Server: If it does not support
Servlet 2.2 or later, it will not be able to handle WAR file deployment.

Deploying as a Jar File
The instructions below refer to deployment on Sun Java System Web Server 6.1
using the browser-based administration GUI. This procedure consists of the
following general steps:

1. add a servlet

2. configure the servlet virtual path

3. load the servlet

4. disable the servlet access log

HTTPS tunnel servlet ready.
Servlet Start Time : Thu May 30 01:08:18 PDT 2002
Accepting secured connections from brokers on port : 7674
Total available brokers = 2
Broker List :

jpgserv:broker2
cochin:broker1

Enabling HTTPS Support

Appendix C HTTP/HTTPS Support (Enterprise Edition) 327

These steps are described in the following subsections. You can verify successful
HTTPS tunnel servlet deployment by accessing the servlet URL using a web
browser. It should display status information.

Adding a Servlet

➤ To Add a Tunnel Servlet

1. Select the Servlets tab.

2. Choose Configure Servlet Attributes.

3. Specify a name for the tunnel servlet in the Servlet Name field.

4. Set the Servlet Code (class name) field to the following value:

com.sun.messaging.jmq.transport.
httptunnel.servlet.HttpsTunnelServlet

5. Enter the complete path to the imqservlet.jar in the Servlet Classpath field.
For example:

/usr/share/lib/imq/imqservlet.jar (on Solaris)

/opt/imq/lib/imqservlet.jar (on Linux)

IMQ_HOME/lib/imqservlet.jar (on Windows)

6. In the Servlet args field, enter required and optional arguments, as shown in
Table C-4.

Table C-4 Servlet Arguments for Deploying HTTPS Tunnel Servlet Jar File

Argument Default Value Required
?

See Also

keystoreLocation none Yes Table 8-8 on page 220

keystorePassword none Yes Table 8-8 on page 220

servletHost all hosts No Table C-3 on page 323

servletPort 7674 No Table C-3 on page 323

Enabling HTTPS Support

328 Message Queue 3.5 SP1 • Administration Guide

Separate the arguments with a comma, for example:

keystoreLocation=keystore_location,keystorePassword=keystore_password,
servletPort=portnumber

The servletHost and servletPort argument apply only to communication
between the Web Server and broker, and are set only if the default values are
problematic. However, in that case, you also have to set the broker
configuration properties accordingly (see Table C-3 on page 323), for example:

imq.httpsjms.https.servletPort

Configuring a Servlet Virtual Path (Servlet URL)

➤ To Configure a Virtual Path (servlet URL) for a Tunnel Servlet

1. Select the Servlets tab.

2. Choose Configure Servlet Virtual Path Translation.

3. Set the Virtual Path field.

The Virtual Path is the /contextRoot/tunnel portion of the tunnel servlet URL:

https://hostName:port/contextRoot/tunnel

For example, if you set the contextRoot to imq, then the Virtual Path field would
be:

/imq/tunnel

4. Set the Servlet Name field to the same value as in Step 3 in “Adding a Servlet”
on page 327.

Loading a Servlet

➤ To Load the Tunnel Servlet at Web Server Startup

1. Select the Servlets tab.

2. Choose Configure Global Attributes.

3. In the Startup Servlets field, enter the same servlet name value as in Step 3 in
“Adding a Servlet” on page 327.

Disabling a Server Access Log
You do not have to disable the server access log, but you will obtain better
performance if you do.

https://hostName:port/contextRoot/tunnel

Enabling HTTPS Support

Appendix C HTTP/HTTPS Support (Enterprise Edition) 329

➤ To Disable the Server Access Log

1. Select the Status tab.

2. Choose the Log Preferences Page.

3. Use the Log client accesses control to disable logging

Deploying as a WAR File
The instructions below refer to deployment on Sun Java System Web Server 6.0
Service
Pack 2. You can verify successful HTTPS tunnel servlet deployment by accessing
the servlet URL using a web browser. It should display status information.

Before deploying the HTTPS tunnel servlet, make sure that JSSE jar files are
included in the web server’s classpath. The simplest way to do this is to copy the
jsse.jar, jnet.jar, and jcert.jar to IWS60_TOPDIR/bin/https/jre/lib/ext.

Also, before deploying the HTTPS tunnel servlet, you have to modify its
deployment descriptor to point to the location where you have placed the keystore
file and to specify the keystore password.

➤ To Modify the HTTPS Tunnel Servlet WAR File

1. Copy the WAR file to a temporary directory.

cp /usr/share/lib/imq/imqhttps.war /tmp (on Solaris)

cp /opt/imq/lib/imqhttps.war /tmp (on Linux)

cp IMQ_HOME/lib/imqhttps.war /tmp (on Windows)

2. Make the temporary directory your current directory.

$ cd /tmp

3. Extract the contents of the WAR file.

$ jar xvf imqhttps.war

4. List the WAR file’s deployment descriptor.

$ ls -l WEB-INF/web.xml

5. Edit the web.xml file to provide correct values for the keystoreLocation and
keystorePassword arguments (as well as servletPort and servletHost
arguments, if necessary).

6. Re-assemble the contents of the WAR file.

$ jar uvf imqhttps.war WEB-INF/web.xml

Enabling HTTPS Support

330 Message Queue 3.5 SP1 • Administration Guide

You are now ready to use the modified imqhttps.war file to deploy the HTTPS
tunnel servlet. (If you are concerned about exposure of the keystore password, you
can use file system permissions to restrict access to the imqhttps.war file.)

➤ To Deploy the https Tunnel Servlet as a WAR File

1. In the browser-based administration GUI, select the Virtual Server Class tab.
Click Manage Classes.

2. Select the appropriate virtual server class name (for example, defaultClass)
and click the Manage button.

3. Select Manage Virtual Servers.

4. Select an appropriate virtual server name and click the Manage button.

5. Select the Web Applications tab.

6. Click on Deploy Web Application.

7. Select the appropriate values for the WAR File On and WAR File Path fields so
as to point to the modified imqhttps.war file (see “To Modify the HTTPS
Tunnel Servlet WAR File” on page 329.)

8. Enter a path in the Application URI field.

The Application URI field value is the /contextRoot portion of the tunnel servlet
URL:

https://hostName:port/contextRoot/tunnel

For example, if you set the contextRoot to imq, then the Application URI field
would be:

/imq

9. Enter the installation directory path (typically somewhere under the Sun Java
System Web Server installation root) where the servlet should be deployed.

10. Click OK.

11. Restart the web server instance.

The servlet is now available at the following address:

https://hostName:port/imq/tunnel

Clients can now use this URL to connect to the message service using a secure
HTTPS connection.

https://hostName:port/contextRoot/tunnel
https://hostName:port/imq/tunnel

Enabling HTTPS Support

Appendix C HTTP/HTTPS Support (Enterprise Edition) 331

Example 4: Deploying the HTTPS Tunnel Servlet
on Sun Java System Application Server 7.0
This section describes how you deploy the HTTPS tunnel servlet as a WAR file on
the Sun Java System Application Server 7.0.

Two steps are required:

• deploy the HTTPS tunnel servlet using the Application Server 7.0 deployment
tool

• modify the application server instance’s server.policy file

Using the Deployment Tool

➤ To Deploy the HTTPS Tunnel Servlet in an Application Server 7.0 Environment

1. In the web-based administration GUI, choose

App Server > Instances > server1 > Applications > Web Applications.

2. Click the Deploy button.

3. In the File Path: textfield, enter the location of the HTTPS tunnel servlet WAR
file (imqhttps.war).

The location of the imqhttps.war file depends on your operating system (see
Appendix A, “Location of Message Queue Data”)

4. Click OK.

5. On the next screen, set the value for the Context Root textfield.

The Context Root field value is the /contextRoot portion of the tunnel servlet
URL:

https://hostName:port/contextRoot/tunnel

For example, you could set the Context Root field to:

/imq

6. Click OK.

The next screen shows that the tunnel servlet has been successfully deployed,
is enabled by default, and—in this case—is located at:

/var/opt/SUNWappserver7/domains/domain1/server1/applications/
j2ee-modules/imqhttps_1

https://hostName:port/contextRoot/tunnel

Enabling HTTPS Support

332 Message Queue 3.5 SP1 • Administration Guide

The servlet is now available at the following address:

https://hostName:port/contextRoot/tunnel

Clients can now use this URL to connect to the message service using an HTTPS
connection.

Modifying the server.policy file
The Application Server 7.0 enforces a set of default security policies that unless
modified would prevent the HTTPS tunnel servlet from accepting connections
from the Message Queue broker.

Each application server instance has a file that contains its security policies or rules.
For example, the location of this file for the server1 instance on Solaris is:

/var/opt/SUNWappserver7/domains/domain1/server1/config/
server.policy

To make the tunnel servlet accept connections from the Message Queue broker, an
additional entry is required in this file.

➤ To Modify the Application Server’s server.policy File

1. Open the server.policy file.

2. Add the following entry:

grant codeBase
"file:/var/opt/SUNWappserver7/domains/domain1/server1/

applications/j2ee-modules/imqhttps_1/-”
{

permission java.net.SocketPermission "*",
“connect,accept,resolve";

};

https://hostName:port/contextRoot/tunnel

333

Appendix D

Using a Broker as a Windows Service

This appendix explains how you use the Service Administrator (imqsvcadmin)
utility to install, query, and remove a broker running as a Windows Service.

Running a Broker as a Windows Service
You have the option of installing a broker as a Windows service when you install
Message Queue. You can also use imqsvcadmin to install a broker as a Windows
service after you have installed Message Queue.

Installing a broker as a Windows service means that it will start at system startup
time and run in the background until you shut down. Consequently, you do not
use the imqbrokerd command to start the broker—unless, you want to start an
additional instance. To pass any start-up options to the broker, you can use the
-args argument to the imqsvcadmin command (see Table D-2 on page 335) and
specify exactly the same options you would have used for the imqbrokerd
command (see “Starting a Broker” on page 134). Use the imqcmd command to
control broker operations as usual.

When running as a Windows service, the Task Manager lists the broker as two
executable processes. The first is imqbrokersvc.exe, which is the native Windows
service wrapper. The second is the Java runtime that is actually running the broker.

Only one broker at a time can be installed and run as a Windows service.

Service Administrator Utility (imqsvcadmin)

334 Message Queue 3.5 SP1 • Administration Guide

Service Administrator Utility (imqsvcadmin)
The Service Administrator utility (imqsvcadmin) allows you to install, query, and
remove the broker (running as a Windows service). This section describes the basic
syntax of imqsvcadmin commands, provides a listing of subcommands,
summarizes imqsvcadmin command options, and explains how to use these
commands to accomplish specific tasks.

Syntax of the imqsvcadmin Command
The general syntax of imqsvcadmin commands is as follows:

imqsvcadmin subcommand [options]

imqsvcadmin -h

Note that if you specify the -v, -h, or -H options, no other subcommands specified
on the command line are executed. For example, if you enter the following
command, help information is displayed but the query subcommand is not
executed.

imqsvcadmin query -h

imqsvcadmin Subcommands
The Message Queue Service Administrator utility (imqsvcadmin) includes the
subcommands listed in Table D-1:

Table D-1 imqsvcadmin Subcommands

Subcommand Description

install Installs the service and specifies startup options.

query Displays the startup options to the imqsvcadmin command. This
includes whether the service is started manually or automatically,
its location, the location of the java runtime, and the value of the
arguments passed to the broker on startup.

remove Removes the service.

Service Administrator Utility (imqsvcadmin)

Appendix D Using a Broker as a Windows Service 335

Summary of imqsvcadmin Options
Table D-2 lists the options to the imqsvcadmin command. For a discussion of their
use, see the task-based sections that follow.

The information that you specify using the -javahome, -vmargs, and -args options
is stored in the Window’s registry under the keys JavaHome, JVMArgs, and
ServiceArgs in the path

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet
\Services\iMQ_Broker\Parameters

Removing the Broker Service
Before you remove the broker service, you should use the imqcmd shutdown bkr
command to shut down the broker. Then use the imqsvcadmin remove command to
remove the service, and restart your computer.

Table D-2 imqsvcadmin Options

Option Description

-h Displays usage help. Nothing else on the command line is executed.

-javahome path Specifies the path to an alternate Java 2 compatible runtime to use
(default is to use the runtime on the system or the runtime bundled with
Message Queue.

Example: imqsvcadmin -install -javahome d:\jdk1.4

-jrehome path Specifies the path to a Java 2 compatible JRE.

Example: imqsvcadmin -install -jrehome d:\jre\1.4

-vmargs arg
[[arg]…]

Specifies additional arguments to pass to the Java VM that is running the
broker service. (You can also specify these arguments in the Windows
Services Control Panel Startup Parameters field.)

Example: -vmargs "-Xms16m -Xmx128m"

-args arg [[arg]…] Specifies additional command line arguments to pass to the broker
service. For a description of the imqbrokerd options, see “Starting a
Broker” on page 134.

(You can also specify these arguments in the Windows Services Control
Panel Startup Parameters field.) For example,

imqsvcadmin -install
-args “-passfile d:\imqpassfile”

Service Administrator Utility (imqsvcadmin)

336 Message Queue 3.5 SP1 • Administration Guide

Reconfiguring the Broker Service
To reconfigure the service, remove the service first, and then reinstall it, specifying
different startup options with the -args argument.

Using an Alternate Java Runtime
You can use either the -javahome or -jrehome options to specify the location of an
alternate java runtime. You can also specify these options in the Windows Services
Control Panel Startup Parameters field. Note that the Startup Parameters field
treats the back slash (\) as an escape character, so you will have to type it twice
when using it as a path delimiter; for example, -javahome d:\\jdk1.3.

Querying the Broker Service
To determine the startup options for the broker service, use the -q option to the
imqsvcadmin command.

Troubleshooting
If you get an error when you try and start the service, you can see error events that
were logged by doing the following.

➤ To See Logged Service Error Events

1. Start the Event Viewer

2. Look under Log > Application.

3. Select View > Refresh to see any error events.

imqsvcadmin -query

Service iMQ_Broker is installed.
Display Name: iMQ_Broker
Start Type: Manual
Binary location: c:\Program Files\Sun Microsystems\

Message Queue 3.5\bin\imqbrokersvc
JavaHome: c:\j2sdk1.4.0
Broker Args: -passfile d:\imqpassfile

337

Appendix E

Technical Notes

This appendix contains short write-ups on the following topics:

• System Clock Settings

• OS-Defined File Descriptor Limitations

• Securing Persistent Data

System Clock Settings
When using a Message Queue system, you should be careful to synchronize system
clocks and avoid setting them backward.

Synchronization Recommended
It is recommended that you synchronize the clocks on all hosts interacting with the
Message Queue system. This is particularly important if you are using message
expiration (TimeToLive). Failure to synchronize the hosts’ clocks may result in
TimeToLive not working as expected (messages may not be delivered). You should
synchronize clocks before starting any brokers.

Solaris You can issue the rdate command on a local host to synchronize with
remote host. (You must be superuser--that is, root--to run this command.) For
example, the following command synchronizes the local host (call it Host 2) with
remote host Host1:

rdate Host1

Linux The command is similar to Solaris, but you must provide the -s option:

rdate -s Host1

OS-Defined File Descriptor Limitations

338 Message Queue 3.5 SP1 • Administration Guide

Windows you can issue the net command with the time subcommand to
synchronize your local host with a remote host. For example, the following
command synchronizes the local host (call it Host 2) with remote host Host1:

net time \\Host1 /set

Avoid Setting System Clocks Backwards
You should avoid setting the system clock backwards on systems running a
Message Queue broker. Message Queue uses timestamps to help identify internal
objects such as transactions and durable subscriptions. If the system clock is set
backwards it is theoretically possible that a duplicate internal identifier can be
generated. The broker attempts to compensate for this by introducing some
randomness to identifiers and by detecting clock shift when running, but if the
system clock is shifted backwards by a significant amount when a broker is not
running, then there is a slight risk of identifier duplication.

If you need to set the system clock backwards on a system running a broker by
more than a few seconds, it is recommended that you either do it when there are no
transactions or durable subscriptions, or do it when the broker is not running, then
wait the amount of time you have shifted the clock before bringing the broker back
up.

But the ideal approach is to synchronize clocks before starting up any brokers, and
then use an appropriate technique to ensure that clocks don’t drift significantly
after deployment.

OS-Defined File Descriptor Limitations
On the Solaris and Linux platforms, the shell in which the client or broker is
running places a soft limit on the number of file descriptors that a client can use. In
the Message Queue system, each connection a client makes, or each connection a
broker accepts, uses one of these file descriptors. Each destination that has
persistent messages also uses a file descriptor.

As a result, the number of connections is limited by these factors. You cannot have
a broker or client running with more than 256 connections on Solaris or 1024 on
Linux without changing the file descriptor limit. (The connection limit is actually
lower than that due to the use of file descriptors for persistence.)

To change the file descriptor limit, see the ulimit man page. The limit needs to be
changed in each shell in which a client or broker will be executing.

Securing Persistent Data

Appendix E Technical Notes 339

Securing Persistent Data
The broker uses a persistent store that can contain, among other information,
message files that are being temporarily stored. Since these messages might contain
proprietary information, it is recommended that the data store be secured against
unauthorized access.

A broker can use either the built-in or plugged-in persistence.

Built-in Persistent Store
A broker using built-in persistence writes persistent data to a flat file data store
located in a directory that depends upon the platform (see Appendix A, “Location
of Message Queue Data”):

…/instances/instanceName/fs350/

where instanceName is a name identifying the broker instance.

The instanceName/filestore/ directory is created when the broker instance is
started for the first time. The procedure for securing this directory depends on the
operating system on which the broker is running.

Solaris and Linux The permissions on the
IMQ_VARHOME/instances/instanceName/filestore/ directory depend on the
umask of the user that started the broker instance. Hence, permission to start a
broker instance and to read its persistent files can be restricted by appropriately
setting the umask. Alternatively, an administrator (superuser) can secure
persistent data by setting the permissions on the IMQ_VARHOME/instances directory
to 700.

Windows The permissions on the
IMQ_VARHOME/instances/instanceName/filestore/ directory can be set using the
mechanisms provided by the Windows operating system that you are using. This
generally involves opening a properties dialog for the directory.

Securing Persistent Data

340 Message Queue 3.5 SP1 • Administration Guide

Plugged-in Persistent Store
A broker using plugged-in persistence writes persistent data to a JDBC Compliant
database.

For a database managed by a database server (for example, an Oracle database), it
is recommended that you create a user name and password to access the Message
Queue database tables (tables whose names start with “IMQ”). If the database does
not allow individual tables to be protected, create a dedicated database to be used
only by Message Queue brokers. See the database vendor for documentation on
how to create user name/password access.

The user name and password required to open a database connection by a broker
can be provided as broker configuration properties. However it is more secure to
provide them as command line options when starting up the broker (see Message
Queue Administration Guide, Appendix A, “Setting Up Plugged-in Persistence”).

For an embedded database that is accessed directly by the broker via the database's
JDBC™ driver (for example, a Cloudscape database), security is usually provided
by setting file permissions (as described in “Built-in Persistent Store,” above) on the
directory where the persistent data will be stored. To ensure that the database is
readable and writable by both the broker and the imqdbmgr utility, however, both
should be run by the same user.

341

Appendix F

The Message Queue
Resource Adapter

Message Queue includes a JMS resource adapter.

A resource adapter is a standardized way for plugging additional functionality
into a J2EE 1.4 compliant application server, in compliance with the J2EE
Connector Architecture (J2EECA) 1.5 specification. This architecture allows any
J2EE 1.4 compliant application server to interact with external systems in a
standardized way. These external systems include various enterprise information
systems (EIS), as well as various messaging systems, for example, a JMS provider.

The standardized interactions facilitated by J2EECA 1.5 include connection
pooling, thread pooling, transaction and security context propagation, as well as
support for message driven bean containers of various kinds. The specification also
includes a standardized way to create connection factories and other administered
objects.

By plugging a JMS resource adapter into an application server, J2EE components
deployed and running in the application server environment can exchange JMS
messages. The JMS connection factory and destination administered objects needed
by these components can be created and configured using J2EE application server
administration tools.

Other administrative operations, however, such as managing a message server and
physical destinations, are not included in the J2EECA specification, and can only be
performed through provider specific tools.

The Message Queue resource adapter is embedded in the Sun J2EE 1.4 Application
Server. The Message Queue resource adapter, however has not yet been certified
with any other J2EE 1.4 application server.

342 Message Queue 3.5 SP1 • Administration Guide

The Message Queue resource adapter is a single file (imqjmsra.rar) and is located
in a directory that depends on operating system, as shown in Appendix A,
“Location of Message Queue Data.” The imqjmsra.rar file contains the resource
adapter deployment descriptor (ra.xml) as well as the jar files that must be used by
the application server in order to use the adapter.

You can use the Message Queue resource adapter in any J2EE 1.4 compliant
application server by following the resource adapter deployment and
configuration instructions that come with that application server. As commercial
J2EE 1.4 application servers become available, and the Message Queue resource
adapter becomes certified for those application servers, this appendix will provide
specific information on the relevant deployment and configuration procedures.

343

Appendix G

Message Queue Implementation of
Optional JMS Functionality

The JMS specification indicates certain items that are optional-- each JMS provider
(vendor) chooses whether or not to implement them. The Message Queue product
handling of each of these optional items is indicated below:

Table G-1 Optional JMS Functionality

Section in JMS Specification Description and Message Queue Handling

3.4.3
JMSMessageID

“Since message ID’s take some effort to create and increase a
message’s size, some JMS providers may be able to optimize
message overhead if they are given a hint that message ID is
not used by an application. JMS Message Producer provides a
hint to disable message ID.”

Message Queue implementation: Product does not disable
Message ID generation (any setDisableMessageID() call in
MessageProducer is ignored). All messages will contain a valid
MessageID value.

3.4.12
Overriding Message Header
Fields

“JMS does not define specifically how an administrator overrides
these header field values. A JMS provider is not required to
support this administrative option.”

Message Queue implementation: The Message Queue
product supports administrative override of the values in
message header fields through configuration of connection
factory administered objects (see Table 7-3 on page 187).

 3.5.9
JMS Defined Properties

“JMS Reserves the ’JMSX’ Property name prefix for JMS
defined properties.”
“Unless noted otherwise, support for these properties is
optional.”

Message Queue implementation: The JMSX properties
defined by the JMS 1.1 specification are supported in the
Message Queue product (see Table 7-3 on page 187).

344 Message Queue 3.5 SP1 • Administration Guide

3.5.10
Provider-specific Properties

“JMS reserves the ’JMS_<vendor_name>’ property name prefix for
provider-specific properties.”

Message Queue implementation: The purpose of the
provider-specific properties is to provide special features needed
to support JMS use with provider-native clients. They should not
be used for JMS to JMS messaging. Message Queue 3.5 SP1
does not use provider-specific properties.

 4.4.8
Distributed Transactions

“JMS does not require that a provider support distributed
transactions.”

Message Queue implementation: Distributed transactions
are supported in this release of the Message Queue product
(see “Distributed Transactions” on page 47).

4.4.9
Multiple Sessions

“For PTP <point-to-point distribution model>, JMS does not
specify the semantics of concurrent QueueReceivers for the
same queue; however, JMS does not prohibit a provider from
supporting this.” See section 5.8 of the JMS specification for
more information.

Message Queue implementation: The Message Queue
implementation supports queue delivery to multiple consumers.
For more information, see “Queue Delivery to Multiple
Consumers” on page 77.

Table G-1 Optional JMS Functionality (Continued)

Section in JMS Specification Description and Message Queue Handling

345

Appendix H

Stability of Message Queue
Interfaces

Sun Java System Message Queue uses many interfaces, that might be of use to
administrators for automating administration tasks. Table H-1 classifies these
interfaces according to how stable they are, that is, how unlikely they are to change
in subsequent versions of the product. The classification scheme is described in
Table H-2 on page 347.

Table H-1 Stability of Message Queue Interfaces

Interface Classification

imqbrokerd command line interface Evolving

imqadmin command line interface Unstable

imqcmd command line interface Evolving

imqdbmgr command line interface Unstable

imqkeytool command line interface Evolving

imqobjmgr command line interface Evolving

imqusermgr command line interface Unstable

imqobjmgr command file Evolving

imqbrokerd command Stable

imqadmin command Unstable

imqcmd command Stable

imqdbmgr command Unstable

imqkeytool command Stable

imqobjmgr command Stable

imqusermgr command Unstable

346 Message Queue 3.5 SP1 • Administration Guide

JMS API (javax.jms) Standard

JAXM API (javax.xml) Standard

C-API Evolving

Message-based monitoring API Evolving

Administered Object API (com.sun.messaging) Evolving

imq.jar location and name Stable

jms.jar location and name Evolving

imqbroker.jar location and name Private

imqutil.jar location and name Private

imqadmin.jar location and name Private

imqservlet.jar location and name Evolving

imqhttp.war location and name Evolving

imqhttps.war location and name Evolving

imqjmsra.rar location and name Evolving

imqxm.jar location and name Evolving

jaxm-api.jar location and name Evolving

saaj-api.jar location and name Evolving

saaj-impl.jar location and name Evolving

activation.jar location and name Evolving

mail.jar location and name Evolving

dom4j.jar location and name Private

fscontext.jar location and name Unstable

Output from imqbrokerd, imqadmin, imqcmd, imqdbmgr, imqkeytool,
imqobjmgr, imqusermgr

Unstable

Broker log file location and content format Unstable

passfile Unstable

accesscontrol.properties Unstable

Table H-1 Stability of Message Queue Interfaces (Continued)

Interface Classification

Appendix H Stability of Message Queue Interfaces 347

Table H-2 Interface Stability Classification Scheme

Classification Description

Private Not for direct use by customers. May change or be removed in any
release.

Evolving For use by customers. Subject to incompatible change at a major
(e.g. 3.0, 4.0) or minor (e.g. 3.1, 3.2) release. The changes will be
made carefully and slowly. Reasonable efforts will be made to
ensure that all changes are compatible but that is not guaranteed.

Stable For use by customers. Subject to incompatible change at a major
(e.g 3.0, 4.0) release only.

Standard For use by customers. These interfaces are defined by a formal
standard, and controlled by a standards organization. Incompatible
changes to these interfaces are rare.

Unstable For use by customers. Subject to incompatible change at a major
(e.g. 3.0, 4.0) or minor (e.g. 3.1, 3.2) release. Customers are
advised that these interfaces may be removed or changed
substantially and in an incompatible way in a future release. It is
recommended that customers not create explicit dependencies on
unstable interfaces.

348 Message Queue 3.5 SP1 • Administration Guide

349

Glossary

This glossary provides information about terms and concepts you might encounter
while using Sun Java System Message Queue.

administered objects A pre-configured Message Queue object—a connection
factory or a destination—created by an administrator for use by one or more JMS
clients.

The use of administered objects allows JMS clients to be provider-independent;
that is, it isolates them from the proprietary aspects of a provider. These objects are
placed in a JNDI name space by an administrator and are accessed by JMS clients
using JNDI lookups.

asynchronous communication A mode of communication in which the sender of
a message need not wait for the sending method to return before it continues with
other work.

authorization The process by which a message service determines whether a user
can access message service resources, such as connection services or destinations.

broker The Message Queue entity that manages message routing, delivery,
persistence, security, and logging, and which provides an interface that allows an
administrator to monitor and tune performance and resource use.

client An application (or software component) that interacts with other clients
using a message service to exchange messages.

client identifier An identifier that associates a connection and its objects with a
state maintained by the Message Queue message server on behalf of the client.

client runtime See Message Queue client runtime.

350 Message Queue 3.5 SP1 • Administration Guide

cluster Two or more interconnected brokers that work in tandem to provide
messaging services.

configuration file One or more text files containing Message Queue settings that
are used to configure a broker. The properties are instance-specific or
cluster-related.

connection 1) An active connection to a Message Queue message server. This can
be a queue connection or a topic connection. 2) A factory for sessions that use the
connection underlying Message Queue message server for producing and
consuming messages.

connection factory The administered object the client uses to create a connection
to Message Queue message server. This can be a QueueConnectionFactory object
or a TopicConnectionFactory object.

consume The receipt of a message taken from a destination by a message
consumer.

consumer An object (MessageConsumer) created by a session that is used for
receiving messages from a destination. In the point-to-point delivery model, the
consumer is a receiver or browser (QueueReceiver or QueueBrowser); in the
publish/subscribe delivery model, the consumer is a subscriber (TopicSubscriber).

data store A database where information (durable subscriptions, data about
destinations, persistent messages, auditing data) needed by the broker is
permanently stored.

delivery mode An indicator of the reliability of messaging: whether messages are
guaranteed to be delivered and successfully consumed once and only once
(persistent delivery mode) or guaranteed to be delivered at most once
(non-persistent delivery mode).

delivery model The model by which messages are delivered: either
point-to-point or publish/subscribe. In JMS there are separate programming
domains for each, using specific client runtime objects and specific destination
types (queue or topic), as well as a unified programming domain.

delivery policy A specification of how a queue is to route messages when more
than one message consumer is registered. The policies are: single, failover, and
round-robin.

Glossary 351

destination The physical destination in a Message Queue message server to
which produced messages are delivered for routing and subsequent delivery to
consumers. This physical destination is identified and encapsulated by an
administered object that a client uses to specify the destination for which it is
producing messages and/or from which it is consuming messages.

domain A set of objects used by JMS clients to program JMS messaging
operations. There are two programming domains: one for the point-to-point
delivery model and one for the publish/subscribe delivery model.

JMS (Java Message Service) A standard set of interfaces and semantics that
define how a Java client accesses the facilities of a message service. These interfaces
provide a standard way for Java programs to create, send, receive, and read
messages.

JMS provider A product that implements the JMS interfaces for a messaging
system and adds the administrative and control functions needed for a complete
product.

Message Queue client runtime Software that provides JMS clients with an
interface to the Message Queue message server. The client runtime supports all
operations needed for clients to send messages to destinations and to receive
messages from such destinations.

Message Queue message server Software that provides delivery services for a
Message Queue messaging system, including connections to JMS clients, message
routing and delivery, persistence, security, and logging. The message server
maintains physical destinations to which JMS clients send messages, and from
which the messages are delivered to consuming clients.

message selector A way for a consumer to select messages based on property
values (selectors) in JMS message headers. A message service performs message
filtering and routing based on criteria placed in message selectors.

message service See Message Queue message server.

messages Asynchronous requests, reports, or events that are consumed by JMS
clients. A message has a header (to which additional fields can be added) and a
body. The message header specifies standard fields and optional properties. The
message body contains the data that is being transmitted.

352 Message Queue 3.5 SP1 • Administration Guide

messaging A system of asynchronous requests, reports, or events used by
enterprise applications that allows loosely coupled applications to transfer
information reliably and securely.

point-to-point delivery model Producers address messages to specific queues;
consumers extract messages from queues established to hold their messages. A
message is delivered to only one message consumer.

produce Passing a message to the client runtime for delivery to a destination.

producer An object (MessageProducer) created by a session that is used for
sending messages to a destination. In the point-to-point delivery model, a producer
is a sender (QueueSender); in the publish/subscribe delivery model, a producer is
a publisher (TopicPublisher).

publish/subscribe delivery model Publishers and subscribers are generally
anonymous and may dynamically publish or subscribe to a topic. The system
distributes messages arriving from a topic’s multiple publishers to its multiple
subscribers.

queue An object created by an administrator to implement the point-to-point
delivery model. A queue is always available to hold messages even when the client
that consumes its messages is inactive. A queue is used as an intermediary holding
place between producers and consumers.

session A single threaded context for sending and receiving messages. This can
be a queue session or a topic session.

topic An object created by an administrator to implement the publish/subscribe
delivery model. A topic may be viewed as node in a content hierarchy that is
responsible for gathering and distributing messages addressed to it. By using a
topic as an intermediary, message publishers are kept separate from message
subscribers.

transaction An atomic unit of work which must either be completed or entirely
rolled back.

user group The group to which the user of a Message Queue client belongs for
purposes of authorizing access to Message Queue message server resources, such
as connections and destinations.

353

Index

A
access control file

access rules 215
format of 213
location 294, 295, 296
use for 212
version 213

access rules 215
acknowledgements

about 46, 59
broker 59
client 60, 88
delivery, of 60
transactions, and 60
wait period for 187

admin connection service 55, 164
administered objects

about 40, 89
attributes of 187
connection factory, See connection factory

administered objects
deleting 198
destination, See destination administered objects
listing 199
look up name for 191
object stores, See object stores
provider-independence 90
querying 199
queue, See queues
required information 192
topic, See topics
types 40, 89, 186

updating 200
XA connection factory, See connection factory

administered objects
administration tasks

development environments 93
production environments 94

administration tools
about 97
Administration Console 97
command line utilities 98

API documentation 29, 294, 295, 296
application servers, and Message Queue 43
applications, See client applications
attributes

administered objects 187
destinations 171

authentication
about 67
managing 202

authorization
about 67
managing 212
user groups 68
See also access control file

auto-create destinations
about 78
properties 79

Section B

354 Message Queue 3.5 SP1 • Administration Guide

B
benchmarks, performance 229
bottlenecks, performance 232
broker clusters

adding brokers to 143
architecture 243
architecture of 82
cluster configuration file 86, 141
configuration change record 85
configuration properties 86, 140
connecting brokers 142
in development-only environments 85
Master Broker 85, 86
option to specify 137
performance impact of 244
propagation of information in 84
reasons for using 82, 243
restarting a broker in 144
secure inter-broker connections 143
setting properties 141
synchronizing clocks 140

broker instances, See brokers
broker metrics

logger properties 74, 251
metric quantities 258
metrics messages 73
reporting interval, logger 138
using broker log files 252
using imqcmd 162, 249, 250
using message-based monitoring 253

broker monitoring service
about 70
properties 74

brokers
about 52
access control, See authorization
acknowledgements (Ack) 59, 187
auto-create destination properties 79
clusters, See broker clusters
components and functions 53
configuration files, See configuration files
connecting to 156
connecting together 142
connection services, See connection services
controlling state of 160
displaying properties of 159

HTTP support for 309
httpjms connection service properties 311
HTTPS, support for 319
httpsjms connection service properties 323
instance configuration properties 130
instance name 138
interconnected, See broker clusters
JDBC support, See JDBC support
limit behaviors 61, 244
listing connection services 164
logging, See logger
managing 157
Master Broker 85
memory management 61, 170, 244
message capacity 62, 134, 160
message flow control, See message flow control
message routing, See message router
metrics, See broker metrics
monitoring, See broker monitoring service
multi-broker clusters, See broker clusters
pausing 158, 161
persistence manager, See persistence manager
properties 160
querying 159
recovery from failure 63
restarting 63, 158, 161
resuming 158, 161
security manager, See security manager
shutting down 161
starting 135
starting an SSL-based service 222
updating properties of 160
Windows service, running as 333

built-in persistence 64

C
certificates 219, 319
client

applications, See client applications
identifiers (ClientID) 45
programming model 38
runtime, See client runtime

Section C

Index 355

client applications
example 29, 294, 295, 296
factors impacting performance 232
provider-independence 43
system properties, and 91

client runtime
about 87
configuration of 245
message flow tuning 289

Cloudscape 297
cluster configuration file 86
cluster connection service

port number for 141
setting up, secure 143, 219

clusters, See broker clusters
command files 193
command line syntax 99
command line utilities

about 98
basic syntax 99
imqbrokerd, See, imqbrokerd command
imqcmd, See, imqcmd command
imqdbmgr See, imqdbmgr command
imqkeytool, See, imqkeytool command
imqobjmgr, See, imqobjmgr command
imqsvcadmin, See, imqsvcadmin command
imqusermgr, See, imqusermgr command
options common to 100

command options 100
components

EJB 40
MDB 41

configuration change record 85
configuration files

default 128
editing 130
installation 128
instance 128, 141, 160, 293, 294, 295
location 293, 294, 295
template location 293, 294, 295
templates 293, 294, 295

connecting, to brokers 156

connection factory administered objects
about 90
adding 195
attributes 90, 187
ClientID, and 45
introduced 39
JNDI lookup 40
overrides 91

connection service metrics
metric quantities 260
using imqcmd metrics 166, 249
using imqcmd query 251

connection services
about 54
access control for 69
activated at startup 57
admin 55, 164
cluster 143, 219
commands affecting 163
connection type 54
displaying properties of 165
HTTP, See HTTP connections
httpjms 55, 164
HTTPS, See HTTPS connections
httpsjms 55, 164
jms 54, 164
metrics data, See connection service metrics
pausing 163, 166
port mapper, See port mapper
properties 57, 165
querying 163, 167
resuming 163, 166
service type 54
ssladmin, See ssladmin connection service
SSL-based 221
ssljms, See ssljms connection service
static ports for 57
thread allocation 165
thread pool manager 56
updating 163, 165, 167

connections
commands affecting 167
introduced 39
listing 167
performance impact of 241
querying 167

Section D

356 Message Queue 3.5 SP1 • Administration Guide

consumers 39
containers

EJB 42
MDB 42

control messages 59

D
data store

about 63
flat-file 64
JDBC-accessible 65
location 293, 294, 295
performance impact of 244
resetting 139

data, Message Queue, location of 293
delivery modes

non-persistent 46
performance impact of 234
persistent 46

delivery, reliable 46
destination administered objects

about 91
attributes 189
introduced 39

destination metrics
metric quantities 261
using imqcmd metrics 169, 247, 249
using imqcmd query 251
using message-based monitoring 253

destinations
access control 216
attribute values 173
attributes of 171
auto-created 78, 217
batching messages for delivery 81, 172
compacting file-based data store 168
creating 170
destroying 168, 170, 176
displaying attribute values 173
getting information about 169
information about 173
introduced 52
limit behaviors 61, 170, 171

listing 169, 173
managing 168
metrics, See destination metrics
pausing 169, 175
physical 76
purging messages from 169, 176
queue, See queues
restricted scope in cluster 80, 172
resuming 169, 175
temporary 81, 173
topic, See topics
types 76, 169
updating attributes 170

directory variables
IMQ_HOME 26
IMQ_JAVAHOME 27
IMQ_VARHOME 27

distributed transactions
about 47
XA resource manager 47, 180
See also XA connection factories

domains 44
durable subscribers, See durable subscriptions
durable subscriptions

about 44
ClientID, and 45
destroying 179, 180
id 154
listing 179
managing 179
performance impact of 237
purging messages for 179

E
editions, product

about 33
enterprise 34
platform 33

encryption
about 68
Key Tool, and 69
SSL-based services, and 218

Section F

Index 357

enterprise edition 34
environment variables, See directory variables
example applications 29, 294, 295, 296

F
failover 82
file descriptor limits 338
firewalls 56, 307
flow control, See message flow control

H
hardware, performance impact of 240
HTTP

connection service, See httpjms connection service
proxy 307
support architecture 307
transport driver 307

HTTP connections
multiple brokers, for 313
request interval 311
support for 307
tunnel servlet, See HTTP tunnel servlet

HTTP tunnel servlet
about 308
deploying 309

httpjms connection service
about 55, 164
configuring 310
setting up 309

HTTPS
connection service, See httpsjms connection

service
support architecture 307

HTTPS connections
multiple brokers, for 325
request interval 323
support for 307
tunnel servlet, See HTTPS tunnel servlet

HTTPS tunnel servlet
about 308
deploying 320

httpsjms connection service
about 55, 164
configuring 322
setting up 319

I
imq.accesscontrol.enabled property 69, 130
imq.accesscontrol.file.filename property 70, 130
imq.authentication.basic.user_repository

property 69, 130
imq.authentication.client.response.timeout

property 69, 130
imq.authentication.type property 69, 130
imq.autocreate.destination.isLocalOnly property 80,

130
imq.autocreate.destination.limitBehavior

property 80, 130
imq.autocreate.destination.maxBytesPerMsg

property 80, 130
imq.autocreate.destination.maxCount property 79,

130
imq.autocreate.destination.maxNumMsgs

property 79
imq.autocreate.destination.maxNumProducers

property 80, 130
imq.autocreate.destination.maxTotalMsgBytes

property 80, 130
imq.autocreate.queue property 79, 130, 160
imq.autocreate.queue.consumerFlowLimit

property 81, 131
imq.autocreate.queue.localDeliveryPreferred

property 81, 131
imq.autocreate.queue.maxNumActiveConsumers

property 80, 131, 160
imq.autocreate.queue.maxNumBackupConsumers

property 80, 131, 160
imq.autocreate.topic property 79, 131, 160
imq.cluster.brokerlist property 140

Section I

358 Message Queue 3.5 SP1 • Administration Guide

imq.cluster.masterbroker property 140
imq.cluster.port property 141
imq.cluster.transport property 141
imq.cluster.url property 141, 160
imq.hostname property 57, 131
imq.httpjms.http.connectionTimeout property 312
imq.httpjms.http.pullPeriod property 311
imq.httpjms.http.servletHost property 311
imq.httpjms.http.servletPort property 311
imq.httpsjms.https.connectionTimeout property 323
imq.httpsjms.https.pullPeriod property 323
imq.httpsjms.https.servletHost property 323
imq.httpsjms.https.servletPort property 323
imq.keystore.file.dirpath property 220
imq.keystore.file.name property 220
imq.keystore.password property 221, 225
imq.log.console.output property 75, 131
imq.log.console.stream property 75, 131
imq.log.file.dirpath property 74, 131
imq.log.file.filename property 74
imq.log.file.name property 131
imq.log.file.output property 74, 131
imq.log.file.rolloverbytes property 75, 131, 160
imq.log.file.rolloversecs property 75, 131, 160
imq.log.level property 74, 131, 160
imq.log.syslog.facility property 75, 131
imq.log.syslog.identity property 75, 131
imq.log.syslog.logconsole property 75, 132
imq.log.syslog.logpid property 75, 132
imq.log.syslog.output property 75, 132
imq.log.timezone property 76, 132
imq.message.expiration.interval property 62, 132
imq.message.max_size property 62, 132, 160
imq.metrics.enabled property 74, 132
imq.metrics.interval property 74, 132
imq.metrics.topic.enabled property 76, 132
imq.metrics.topic.interval property 76, 132
imq.metrics.topic.persist property 76, 132
imq.metrics.topic.timetolive property 76, 132
imq.passfile.dirpath property 70, 132
imq.passfile.enabled property 70, 132

imq.passfile.name property 70, 132
imq.persist.file.destination.message.filepool.limit

property 66, 132
imq.persist.file.message.cleanup property 66, 132
imq.persist.file.message.filepool.cleanratio

property 66, 132
imq.persist.file.message.max_record_size

property 66, 132
imq.persist.file.message.vrfile.max_record_size

property 64
imq.persist.file.sync.enabled property 66, 132
imq.persist.jdbc.brokerid property 300
imq.persist.jdbc.closedburl property 300
imq.persist.jdbc.createdburl property 300
imq.persist.jdbc.driver property 300
imq.persist.jdbc.needpassword property 301
imq.persist.jdbc.opendburl property 300
imq.persist.jdbc.password property 225, 301
imq.persist.jdbc.table.IMQCCREC35 property 301
imq.persist.jdbc.table.IMQDEST35 property 301
imq.persist.jdbc.table.IMQINT35 property 301
imq.persist.jdbc.table.IMQLIST35 property 302
imq.persist.jdbc.table.IMQMSG35 property 302
imq.persist.jdbc.table.IMQPROPS35 property 302
imq.persist.jdbc.table.IMQSV35 property 301
imq.persist.jdbc.table.IMQTACK35 property 302
imq.persist.jdbc.table.IMQTXN35 property 302
imq.persist.jdbc.user property 300
imq.persist.store property 66, 133, 300
imq.ping.interval property 57, 133
imq.portmapper.backlog property 57, 133
imq.portmapper.hostname property 57, 133
imq.portmapper.port property 57, 133, 160
imq.protocol protocol_type inbufsz 284
imq.protocol protocol_type nodelay 284
imq.protocol protocol_type outbufsz 284
imq.resource_state.count property 63, 133
imq.resource_state.threshold property 63, 133
imq.service.activelist property 57, 133
imq.service_name.accesscontrol.enabled property 70,

133

Section I

Index 359

imq.service_name.accesscontrol.file.filename
property 70, 133

imq.service_name.authentication.type property 69,
133

imq.service_name.max_threads property 58, 133
imq.service_name.min_threads property 58, 133
imq.service_name.protocol_type.hostname

property 58, 134, 141
imq.service_name.protocol_type.port property 57, 134
imq.service_name.threadpool_model property 58,

134
imq.shared.connectionMonitor_limit property 58,

134
imq.system.max_count property 62, 134, 160
imq.system.max_size property 62, 134, 160
imq.transaction.autorollback property 63, 134, 182
imq.user_repository.ldap.base property 210
imq.user_repository.ldap.gidattr property 211
imq.user_repository.ldap.grpbase property 211
imq.user_repository.ldap.grpfiltler property 211
imq.user_repository.ldap.grpsearch property 211
imq.user_repository.ldap.memattr property 211
imq.user_repository.ldap.password property 210,

225
imq.user_repository.ldap.principal property 210
imq.user_repository.ldap.server property 210
imq.user_repository.ldap.ssl.enabled property 211
imq.user_repository.ldap.timeout property 211
imq.user_repository.ldap.uidattr property 210
imq.user_repository.ldap.usrfilter property 211
IMQ_HOME directory variable 26
IMQ_JAVAHOME directory variable 27
IMQ_VARHOME directory variable 27
imqAckOnAcknowledge attribute 187
imqAckOnProduce attribute 187
imqAckTimeout attribute 187
imqAddressList attribute 187
imqAddressListBehavior attribute 187
imqAddressListIterations attribute 187

imqbrokerd command
about 98
command syntax 135
options 136
using 135

imqBrokerHostName attribute (Message Queue
3.0) 187

imqBrokerHostPort attribute (Message Queue
3.0) 187

imqBrokerServicePort attribute (Message Queue
3.0) 187

imqcmd command
about 98
command syntax 152
connecting to a broker 156
destination management 168
metrics monitoring 246
options 154
secure connection to broker 155, 223
subcommands 152
transaction management 180
used for 152

imqConfiguredClientID attribute 187
imqConnectionFlowCount attribute 187
imqConnectionFlowLimit attribute 187
imqConnectionFlowLimitEnabled attribute 187
imqConnectionType attribute (Message Queue

3.0) 187
imqConnectionURL attribute (Message Queue

3.0) 188
imqConsumerFlowLimit attribute 188
imqConsumerFlowThreshold attribute 188
imqdbmgr command

about 99
command syntax 303
options 305
subcommands 304

imqDefaultPassword attribute 188
imqDefaultUsername attribute 188
imqDestinationDescription attribute 91, 189
imqDestinationName attribute 91, 189
imqDisableSetClientID attribute 188
imqFlowControlLimit attribute 188
imqJMSDeliveryMode attribute 188

Section J

360 Message Queue 3.5 SP1 • Administration Guide

imqJMSExpiration attribute 188
imqJMSPriority attribute 188
imqkeytool command

about 99
command syntax 219, 320
using 219, 320

imqLoadMaxToServerSession attribute 188
imqobjmgr command

about 99
command syntax 189
options 190
subcommands 190
used for 189

imqOverrideJMSDeliveryMode attribute 188
imqOverrideJMSExpiration attribute 188
imqOverrideJMSHeadersToTemporaryDestinations

attribute 188
imqOverrideJMSPriority attribute 188
imqQueueBrowserMax MessagesPerRetrieve

attribute 188
imqQueueBrowserRetrieveTimeout attribute 188
imqReconnectAttempts attribute 188
imqReconnectEnabled attribute 188
imqReconnectInterval attribute 188
imqSetJMSXAppID attribute 188
imqSetJMSXConsumerTXID attribute 188
imqSetJMSXProducerTXID attribute 188
imqSetJMSXRcvTimestamp attribute 188
imqSetJMSXUserID attribute 188
imqSSLIsHostTrusted attribute (Message Queue

3.0) 188
imqsvcadmin command

about 99
command syntax 334
options 335
subcommands 334
used for 334

imqusermgr command
about 99
command syntax 204
options 204
passwords 206
subcommands 204

use for 203
user names 206

instance configuration files, See configuration files

J
J2EE applications

EJB specification 40
JMS, and 40
message-driven beans, See message-driven beans

Java Virtual Machine, See JVM
JDBC support

about 65
driver 297, 300
setting up 297

JDK
option to specify path to 154, 191, 335
specify path to 137

JMS
message structure 38
programming model 38
specification 29, 31, 38

jms connection service 54, 164
JNDI

administered objects, and 40, 43
initial context 184, 186
location (provider URL) 184, 186
lookup 89, 91, 115, 192
lookup name 192, 196
Message Queue support of 32
message-driven beans, and 42
object store 99, 184
object store attributes 184, 192

JVM
metrics, See JVM metrics
performance impact of 241
tuning for performance 283

JVM metrics
metric quantities 257
using broker log files 252
using imqcmd metrics 248
using message-based monitoring 253

Section K

Index 361

K
key pairs

generating 220
regenerating 221

Key Tool 69
keystore

file 220, 320
properties 220

L
LDAP server

authentication failover 210
object store attributes 184
user-repository access 210

licenses
for Message Queue editions 33
starting with trial Enterprise Edition license 136
startup option 138

limit behaviors
broker 61
destinations 61, 170, 171

listeners 40, 41
load-balanced queue delivery

about 77
attributes 80
tuning for performance 288

log files
default location 72, 293, 294, 295
rollover criteria 75

logger
about 71
as broker component 54
categories 72
changing configuration 148
levels 72, 74, 138
message format 148
metrics information 74
output channels 71, 149, 251
redirecting log messages 150
rollover criteria 150
writing to console 75, 139

logging, See logger

M
managing

brokers 157
destinations 168

Master Broker 85, 86
MDB, See message-driven beans
memory management

for broker 61
tuning for performance 287
using destination attributes 170

message consumers, See consumers
message delivery models 37, 44
message flow control

broker 61, 170
limits 289
metering 289
performance impact of 245
tuning for performance 289

message listeners, See listeners
message producers, See producers
message router

about 58
as broker component 53
properties 62

message server
about 52
architecture 243
multi-broker, See broker clusters 82

message service
about 36
factors impacting performance 240

message-driven beans
about 41
application server support 43
deployment descriptor 42
MDB container 42

messages
acknowledgements 60
body type, and performance 239
broker limits on 62, 134, 160
consumption of 88
control 59
delivery models 37, 44
delivery modes, See delivery modes
destination limits on 171

Section O

362 Message Queue 3.5 SP1 • Administration Guide

messages (continued)
filtering, See selectors
flow control, See message flow control
introduced 38
latency 228
listeners for 40, 88
load-balanced queue delivery 77
metrics 73
metrics messages, See metrics messages
ordering 49
persistence of 61, 63
persistent 46
point-to-point delivery 44
prioritizing 49
production of 87
publish/subscribe delivery 44
purging from a destination 169
reclamation of expired 62
redelivery 60
reliable delivery of 46
routing and delivery 59
size, and performance 238
SOAP 32
structure 38
throughput performance 228

messaging system
architecture 36
Message Queue architecture 52
message service 36

metrics
about 71
data, See metrics data
messages, See metrics messages
monitoring tools See metrics monitoring tools
topic destinations 73, 253

metrics data
broker, See broker metrics
connection service, See connection service metrics
descriptive listing of 257
destination, See destination metrics
using broker log files 251
using imqcmd metrics 248
using message-based monitoring API 253

metrics messages
about 73, 253
contents of 73
type 73, 253

metrics monitoring tools
compared 255
Message Queue Command Utility (imqcmd) 246
Message Queue log files 251
message-based monitoring API 252

monitoring, See performance monitoring

O
object stores

about 184
file-system store 185
file-system store attributes 186
LDAP server 184
LDAP server attributes 184
locations 293, 294, 296

operating system
performance impact of 241
tuning Solaris performance 282

Oracle 297

P
passfile

broker configuration properties 70
command line option 138
location 225, 294, 295, 296
using 225

password file, See passfile
passwords

encoding of 69
JDBC 225
LDAP 225
naming conventions 206
passfile, See passfile
SSL keystore 138, 221, 225

passwords, default 188
pausing

brokers 158, 160, 161
connection services 163, 166
destinations 169, 175

Section P

Index 363

performance
about 227
baseline patterns 230
benchmarks 229
bottlenecks 232
factors impacting, See performance impact factors
indicators 228
measures of 228
monitoring, See performance monitoring
optimizing, See performance tuning
reliability trade-offs 49, 233
troubleshooting 264
tuning, See performance tuning

performance impact factors
acknowledgement mode 236
broker limit behaviors 244
connections 241
data store 244
delivery mode 234
durable subscriptions 237
hardware 240
JVM 241
message body type 239
message flow control 245
message server architecture 244
message size 238
operating system 241
selectors 238
transactions 235
transport protocols 242

performance monitoring
metrics data, See metrics data
tools, See metrics monitoring tools 245

performance tuning
broker adjustments 287
client runtime adjustments 289
process overview 227
system adjustments 282

permissions
access control properties file 67, 213
admin service 68
computing 215
data store 65
embedded database 299
keystore 320
Message Queue operations 67

passfile 225
user repository 204

persistence
built-in 64
data store See data store
delivery modes, See delivery modes
JDBC, See JDBC persistence
persistence manager, See persistence manager
plugged-in, See plugged-in persistence

persistence manager
about 63
as broker component 54
data store, See data store
JDBC data store 299
plugged-in persistence, and 297
properties 66

persistent messages 46
platform edition 33
plugged-in persistence

about 65
setting up 297
tuning for performance 287

PointBase 297
point-to-point delivery 44
port mapper

about 55
port assignment for 57, 138

portability, See provider-independence
ports, dynamic allocation of 56
producers

about 39
destination limits on 80, 171

programming domains 44
properties

administered objects, See administered objects,
attributes of

auto-create 79
broker instance configuration 130
broker monitoring service 74
broker, updating 160
cluster configuration 140
connection service 57
destinations, See destinations, attributes of
httpjms connection service 311
httpsjms connection service 323

Section Q

364 Message Queue 3.5 SP1 • Administration Guide

properties (continued)
JDBC-related 300
keystore 220
logger 74
memory management 62, 170
message router 62
persistence 66
security 69

protocol types
HTTP 55, 164
TCP 54, 164
TLS 54, 164

protocols, See transport protocols
provider-independence

about 43
administered objects 90

publish/subscribe delivery 44
purging, messages from destinations 176

Q
querying

brokers 159
connection services 163, 165, 167

queue destinations, See queues
queue load-balanced delivery

attributes 171
queues 77

adding administered objects for 197
attributes of 171
auto-created 79, 130
load-balanced delivery, See load-balanced queue

delivery

R
redeliver flag 60
reliable delivery 46

performance trade-offs 49, 233
resource adapter 43
restarting brokers 158, 161

resuming
brokers 158, 160, 161
connection services 163, 166
destinations 175

routing, See message router

S
Secure Socket Layer standard, See SSL
security

authentication, See authentication
authorization, See authorization
encryption, See encryption
manager, See security manager
object store, for 184

security manager
about 66
as broker component 54
properties 69

selectors
about 49
as message properties 38
performance impact of 238

self-signed certificates 219, 319
service types

ADMIN 54
NORMAL 54

servlet, tunnel, See HTTP/HTTPS tunnel servlet
sessions

acknowledgement options for 46
introduced 39
transacted 46

shutting down brokers 158, 161
Simple Object Access Protocol See SOAP
SOAP 32
SSL

about 68
connection services, See SSL-based connection

services
encryption, and 218
over HTTP 224
over TCP/IP 219

Section T

Index 365

ssladmin connection service
about 55, 164
setting up 219

SSL-based connection services
setting up 201, 219
starting up 222

ssljms connection service
about 54, 164
setting up 219

starting
brokers 135
brokers in a cluster 144
SSL-based connection services 222

subscriptions
about 44
durable, See durable subscriptions

syslog 72, 149
system properties, setting 91

T
TCP 54, 164
temporary destinations 81, 173
thread pool manager

about 56
dedicated threads 56
shared threads 56

TLS 54, 164
tools, administration, See administration tools
topic destinations, See topics
topics

about 44
adding administered objects for 196
as physical destinations 78
attributes of 171
auto-created 79, 130

transactions
about 46
acknowledgements, and 60
committing 180
distributed, See distributed transactions
information about 180
managing 180

performance impact of 235
rolling back 180

transport protocols
performance impact of 242
protocol types, See protocol types
relative speeds 242
tuning for performance 283

troubleshooting 264
tunnel servlet See HTTP/HTTPS tunnel servlet

U
updating

brokers 160
connection services 163, 165, 167

user groups
about 67
default 68
deleting assignment 206
predefined 205

user names
attribute 188
default 203
format 206

user repository
about 67
flat-file 202
LDAP server 210
location 294, 295, 296
managing 207
platform dependence 204
populating 207
property 69
user groups 206
user states 206

W
Windows service, broker running as 333

Section X

366 Message Queue 3.5 SP1 • Administration Guide

X
XA connection factories

See also connection factory administered objects
XA connection factories, about 48
XA resource manager, See distributed transactions

	Message Queue 3.5 Administration Guide
	Contents
	List of Figures
	List of Tables
	List of Procedures
	Preface
	Audience for This Guide
	Organization of This Guide
	Conventions
	Text Conventions
	Directory Variable Conventions

	Other Documentation Resources
	The Message Queue Documentation Set
	Online Help
	JavaDoc
	Example Client Applications
	The Java Message Service (JMS) Specification

	Related Third-Party Web Site References

	1. Overview
	What Is Sun Java System Message Queue?
	Product Editions
	Platform Edition
	Enterprise Edition

	Enterprise Messaging Systems
	Requirements of Enterprise Messaging Systems
	Centralized vs. Peer to Peer Messaging
	Messaging System Concepts
	Message
	Message Service Architecture
	Message Delivery Models

	The JMS Specification
	JMS Message Structure
	JMS Programming Model
	JMS Administered Objects

	JMS/J2EE Programming: Message-Driven Beans
	Message-Driven Beans
	J2EE Application Server Support

	JMS Messaging Issues
	JMS Provider Independence
	Programming Domains
	Client Identifiers
	Reliable Messaging
	Acknowledgements/Transactions
	Persistent Storage

	Performance Trade-offs
	Message Selection
	Message Order and Priority

	2. The Message Queue Messaging System
	Message Queue Message Server
	Broker
	Connection Services
	Message Router
	Persistence Manager
	Security Manager
	Monitoring Service

	Physical Destinations
	Queue Destinations
	Topic Destinations
	Auto-Created (vs. Admin-Created) Destinations
	Temporary Destinations

	Multi-Broker Clusters (Enterprise Edition)
	Multi-Broker Architecture
	Using Clusters in Development Environments
	Cluster Configuration Properties

	Message Queue Client Runtime
	Message Production
	Message Consumption

	Message Queue Administered Objects
	Connection Factory Administered Objects
	Destination Administered Objects
	Overriding Attribute Values at Client Startup

	3. Message Queue Administration Tasks and Tools
	Message Queue Administration Tasks
	Development Environments
	Production Environments
	Setup Operations
	To Set Up a Production Environment
	Maintenance Operations
	To Set Up a Production Environment

	Message Queue Administration Tools
	The Administration Console
	Summary of Command Line Utilities
	Command Line Syntax
	Common Command Line Options

	4. Administration Console Tutorial
	Getting Ready
	Starting the Administration Console
	To Start the Administration Console
	Getting Help
	To Display Administration Console Help Information

	Working With Brokers
	Starting a Broker
	To Start a Broker

	Adding a Broker
	To Add a Broker to the Administration Console

	Changing the Administrator Password
	To Change the Administrator Password

	Connecting to the Broker
	To Connect to the Broker

	Viewing Connection Services
	To View Available Connection Services

	Adding Physical Destinations to a Broker
	To Add a Queue Destination to a Broker

	Working With Physical Destinations
	To View the Properties of a Physical Destination
	To Purge Messages From a Destination
	To Delete a Destination

	Getting Information About Topic Destinations

	Working with Object Stores
	Adding an Object Store
	To Add a File-system Object Store

	Checking Object Store Properties
	To Display the Properties of an Object Store

	Connecting to an Object Store
	To Connect to an Object Store

	Adding a Connection Factory Administered�Object
	To Add a Connection Factory to an Object Store

	Adding a Destination Administered Object
	To Add a Destination to an Object Store

	Administered Object Properties
	To View or Update the Properties of a Destination Object

	Updating Console Information
	Running the Sample Application
	To Run the HelloWorldMessageJNDI Application

	5. Starting and Configuring a Broker
	Configuration Files
	Instance Configuration File
	Merging Property Values
	Property Naming Syntax
	Editing the Instance Configuration File

	Starting a Broker
	Syntax of the imqbrokerd Command
	Startup Examples
	To Start a Broker Instance That Uses the Default Broker Name and Configuration
	To Start a Broker Instance With a Trial Enterprise Edition License
	To Start a Named Broker Instance With Plugged-in Persistence

	Summary of imqbrokerd Options

	Working With Clusters (Enterprise Edition)
	Cluster Configuration Properties
	Connecting Brokers
	Connection Methods
	To Connect Brokers into a Cluster
	Secure Inter-Broker Connections
	To Configure Secure Connections Within a Cluster

	Managing Brokers in a Cluster
	Adding Brokers to a Cluster
	To Add a New Broker to an Existing Cluster
	Restarting a Broker in a Cluster
	To Restart a Broker That is Already a Member of an Existing Cluster
	Removing a Broker from a Cluster
	To Remove a Broker From an Existing Cluster

	Managing the Master Broker’s Configuration Change Record
	Backing up the Configuration Change Record
	To Back Up the Configuration Change Record
	Restoring the Configuration Change Record
	To Restore the Master Broker in Case of Failure

	Logging
	Default Logging Configuration
	Log Message Format
	Changing the Logger Configuration
	To Change the Logger Configuration for a Broker
	Changing the Output Channel
	Changing Log File Rollover Criteria

	6. Broker and Application Management
	Command Utility
	Syntax of the imqcmd Command
	imqcmd Subcommands
	Summary of imqcmd Options
	Using imqcmd Commands
	Example imqcmd Usage

	Managing a Broker
	Displaying Broker Information
	Updating Broker Properties
	Controlling the Broker’s State
	Pausing and Resuming a Broker
	Shutting Down and Restarting a Broker

	Displaying Broker Metrics

	Managing Connection Services
	Listing Connection Services
	Displaying Connection Service Information
	Updating Connection Service Properties
	Displaying Connection Service Metrics
	Pausing and Resuming a Connection Service

	Getting Connection Information
	Managing Destinations
	Creating Destinations
	Listing Destinations
	Displaying Destination Information
	Updating Destination Attributes
	Displaying Destination Metrics
	Pausing and Resuming Destinations
	Purging Destinations
	Destroying Destinations
	Compacting Destinations
	Monitoring a Destination’s Disk Utilization
	Reclaiming Unused Destination Disk Space
	To Reclaim Unused Destination Disk Space

	Managing Durable Subscriptions
	Managing Transactions

	7. Managing Administered Objects
	About Object Stores
	LDAP Server Object Store
	File-system Object Store

	Administered Objects
	Connection Factory Administered Object Attributes
	Destination Administered Object Attributes

	Object Manager Utility (imqobjmgr)
	Syntax of the imqobjmgr Command
	imqobjmgr Subcommands
	Summary of imqobjmgr Command Options
	Required Information
	Using Command Files

	Adding and Deleting Administered Objects
	Adding a Connection Factory
	Adding a Topic or Queue
	Deleting Administered Objects

	Getting Information
	Listing Administered Objects
	Information About a Single Object

	Updating Administered Objects

	8. Managing Security
	Authenticating Users
	Using a Flat-File User Repository
	Creating a User Repository
	User Manager Utility (imqusermgr)
	Groups
	States
	Format of User Names and Passwords
	Populating and Managing a User Repository
	Changing the Default Administrator Password

	Using an LDAP Server for a User Repository
	To Edit the Configuration File to use an LDAP Server

	Authorizing Users: the Access Control Properties File
	Creating an Access Control Properties File
	Access Rules Syntax
	Permission Computation
	Connection Access Control
	Destination Access Control
	Destination Auto-Create Access Control

	Encryption: Working With an SSL-based Service (Enterprise Edition)
	Setting Up an SSL-based Service Over TCP/IP
	To Set Up an SSL-based Connection Service
	Step 1. Generating a Self-Signed Certificate
	To Regenerate a Key Pair
	Step 2. Enabling the SSL-based Service in the Broker
	To Enable an SSL-based Service in the Broker
	Step 3. Starting the Broker
	Step 4. Configuring and Running SSL-based Clients

	Setting Up an SSL Service Over HTTP

	Using a Passfile

	9. Analyzing and Tuning a Message Service
	About Performance
	The Performance Tuning Process
	Aspects of Performance
	Benchmarks
	Baseline Use Patterns

	Factors That Impact Performance
	Application Design Factors that Impact�Performance
	Delivery Mode (Persistent/Non-persistent Messages)
	Use of Transactions
	Acknowledgement Mode
	Durable vs. Non-durable Subscriptions
	Use of Selectors (Message Filtering)
	Message Size
	Message Body Type

	Message Service Factors that Impact�Performance
	Hardware
	Operating System
	Java Virtual Machine (JVM)
	Connections
	Message Server Architecture
	Broker Limits and Behaviors
	Data Store Performance
	Client Runtime Configuration

	Monitoring a Message Server
	Monitoring Tools
	Message Queue Command Utility (imqcmd)
	To Use the metrics Subcommand
	Message Queue Broker Log Files
	To Use Log Files to Report Metrics Information
	Message-Based Monitoring API
	To Set Up Message-based Monitoring
	Choosing the Right Monitoring Tool

	Description of Metrics Data
	JVM Metrics
	Broker-wide Metrics
	Connection Service Metrics
	Destination Metrics

	Troubleshooting Performance Problems
	Problem: Clients Can’t Establish A Connection
	Symptoms:
	Possible Causes:

	Problem: Connection Throughput is Too Slow
	Symptoms:
	Possible Causes:

	Problem: Client Can’t Create a Message�Producer
	Symptoms:
	Possible Causes:

	Problem: Message Production Is Delayed�or�Slowed
	Symptoms:
	Possible Causes:

	Problem: Messages Backlogged in Message�Server
	Symptoms:
	Possible Causes:

	Problem: Message Server Throughput Is�Sporadic
	Symptoms:
	Possible Causes:

	Problem: Messages Not Reaching Consumers
	Symptoms:
	Possible Causes:

	Adjusting Your Configuration To Improve�Performance
	System Adjustments
	Solaris Tuning: CPU Utilization, Paging/Swapping/Disk I/O
	Java Virtual Machine Adjustments
	Tuning Transport Protocols
	Tuning the File-based Persistent Store

	Broker Adjustments
	Memory Management: Increasing Broker Stability Under Load
	Multiple Consumer Queue Performance

	Client Runtime Message Flow Adjustments
	Message Flow Metering
	Message Flow Limits

	A. Location of Message Queue Data
	Solaris
	Linux
	Windows

	B. Setting Up Plugged-in Persistence
	Introduction
	Plugging In a JDBC-accessible Data Store
	To Plug in a JDBC-accessible Data Store

	JDBC-related Broker Configuration Properties
	Database Manager Utility (imqdbmgr)
	Syntax of the imqdbmgr Command
	imqdbmgr Subcommands
	Summary of imqdbmgr Command Options

	C. HTTP/HTTPS Support (Enterprise Edition)
	HTTP/HTTPS Support Architecture
	Enabling HTTP Support
	To Enable HTTP Support
	Step 1. Deploying the HTTP Tunnel Servlet on�a�Web Server
	Deploying as a Jar File
	Deploying as a Web Archive File

	Step 2. Configuring the httpjms Connection�Service
	To Activate the httpjms Connection Service

	Step 3. Configuring an HTTP Connection
	Configuring the Connection Factory
	Using a Single Servlet to Access Multiple Brokers
	Using an HTTP Proxy

	Example 1: Deploying the HTTP Tunnel Servlet on Sun Java System Web Server
	Deploying as a Jar File
	To Add a Tunnel Servlet
	To Configure a Virtual Path (Servlet URL) for a Tunnel Servlet
	To Load the Tunnel Servlet at Web Server Startup
	To Disable the Server Access Log
	Deploying as a WAR File
	To Deploy the http Tunnel Servlet as a WAR File

	Example 2: Deploying the HTTP Tunnel Servlet on Sun Java System Application Server 7.0
	Using the Deployment Tool
	To Deploy the HTTP Tunnel Servlet in an Application Server 7.0 Environment
	Modifying the server.policy File
	To Modify the Application Server’s server.policy File

	Enabling HTTPS Support
	To Enable HTTPS Support
	Step 1. Generating a Self-signed Certificate for the HTTPS Tunnel Servlet
	Step 2. Deploying the HTTPS Tunnel Servlet on�a Web Server
	Deploying as a Jar File
	Deploying as a Web Archive File

	Step 3. Configuring the httpsjms Connection�Service
	To Activate the httpsjms Connection Service

	Step 4. Configuring an HTTPS Connection
	Configuring JSSE
	To Configure JSSE
	Importing a Root Certificate
	Configuring the Connection Factory
	Using a Single Servlet to Access Multiple Brokers
	Using an HTTP Proxy

	Example 3: Deploying the HTTPS Tunnel Servlet on Sun Java System Web Server
	Deploying as a Jar File
	To Add a Tunnel Servlet
	To Configure a Virtual Path (servlet URL) for a Tunnel Servlet
	To Load the Tunnel Servlet at Web Server Startup
	To Disable the Server Access Log
	Deploying as a WAR File
	To Modify the HTTPS Tunnel Servlet WAR File
	To Deploy the https Tunnel Servlet as a WAR File

	Example 4: Deploying the HTTPS Tunnel Servlet on Sun Java System Application Server 7.0
	Using the Deployment Tool
	To Deploy the HTTPS Tunnel Servlet in an Application Server 7.0 Environment
	Modifying the server.policy file
	To Modify the Application Server’s server.policy File

	D. Using a Broker as a Windows Service
	Running a Broker as a Windows Service
	Service Administrator Utility (imqsvcadmin)
	Syntax of the imqsvcadmin Command
	imqsvcadmin Subcommands
	Summary of imqsvcadmin Options
	Removing the Broker Service
	Reconfiguring the Broker Service
	Using an Alternate Java Runtime
	Querying the Broker Service
	Troubleshooting
	To See Logged Service Error Events

	E. Technical Notes
	System Clock Settings
	Synchronization Recommended
	Avoid Setting System Clocks Backwards

	OS-Defined File Descriptor Limitations
	Securing Persistent Data
	Built-in Persistent Store
	Plugged-in Persistent Store

	F. The Message Queue Resource Adapter
	G. Message Queue Implementation of Optional JMS Functionality
	H. Stability of Message Queue Interfaces
	Glossary
	Index

