
OpenBootTM 3.x Supplement for PCI
A Sun Microsystems, Inc. Business
2550 Garcia Avenue
Mountain View, CA 94043
U.S.A.

Part No: 805-1627-10
Revision A, August 1997

Sun Microsystems Computer Company

Please
Recycle

Copyright 1997 Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.
All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use,
copying, distribution, and decompilation. No part of this product or document may be reproduced in any
form by any means without prior written authorization of Sun and its licensors, if any.

Portions of this product may be derived from the UNIX® system, licensed from Novell, Inc., and from the
Berkeley 4.3 BSD system, licensed from the University of California. UNIX is a registered trademark in the
United States and other countries and is exclusively licensed by X/Open Company Ltd. Third-party
software, including font technology in this product, is protected by copyright and licensed from Sun’s
suppliers.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions
as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013 and FAR 52.227-19.

Sun, Sun Microsystems, the Sun logo, Solaris, NFS, SunATM, SunFastEthernet, RSM, Online Backup, Online:
DiskSuite, Solstice DiskSuite, X11/NeWS, JumpStart, Netra, SunATM, SunFDDI, Ultra, Enterprise, RSM
Array 2000, OpenBoot, and Sun-4 are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. SunDoc is a service mark of Sun Microsystems, Inc. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc.
in the United States and other countries. Products bearing SPARC trademarks are based upon an
architecture developed by Sun Microsystems, Inc.

The OPEN LOOK® and Sun™ Graphical User Interfaces were developed by Sun Microsystems, Inc. for its
users and licensees. Sun acknowledges the pioneering efforts of Xerox in researching and developing the
concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license
from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement
OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.

Prestoserve is a trademark of Legato Systems, Inc

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

Copyright 1997 Sun Microsystems Inc., 2550 Garcia Avenue, Mountain View, Californie 94043-1100,
U.S.A.Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en
restreignent l’utilisation, la copie, la distribution, et la décompilation. Aucune partie de ce produit ou
de sa documentation associée ne peut être reproduite sous aucune forme, par quelque moyen que ce
soit, sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a.

Des parties de ce produit pourront être dérivées du système UNIX® licencié par Novell, Inc. et du
système Berkeley 4.3 BSD licencié par l’Université de Californie. UNIX est une marque enregistrée
aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company Ltd. Le logiciel
détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par
un copyright et licencié par des fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun,Solaris, NFS, SunFDDI, Sun ATM, SunFastEthernet, RSM, Online
Backup, Online: DiskSuite, Solstice DiskSuite, X11/NeWS, JumpStart, Netra, Ultra, Enterprise, Sun
RSM Array 2000, SunATM, OpenBoot, et Sun-4 sont des marques déposées ou enregistrées de Sun
Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC, utilisées sous
licence, sont des marques déposées ou enregistrées de SPARC International, Inc. aux Etats-Unis et
dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture
développée par Sun Microsystems, Inc.

Les interfaces d’utilisation graphique OPEN LOOK® et Sun™ ont été développées par Sun
Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les efforts de pionniers de Xerox
pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique
pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface
d’utilisation graphique Xerox, cette licence couvrant aussi les licenciés de Sun qui mettent en place
l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de
Sun.

Prestoserve est une marque de Legato Systems, Inc.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” SANS GARANTIE D’AUCUNE SORTE, NI EXPRESSE
NI IMPLICITE, Y COMPRIS, ET SANS QUE CETTE LISTE NE SOIT LIMITATIVE, DES GARANTIES
CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DES PRODUITS A RÉPONDRE A UNE
UTILISATION PARTICULIERE, OU LE FAIT QU’ILS NE SOIENT PAS CONTREFAISANTS DE PRODUITS
DE TIERS.

Contents
1. PCI FCode Information . 1

PCI FCode PROM Header Format. 1

The PCI Expansion PROM Header Format 2

PCI Expansion PROM Data Structure Format 2

Format of Physical Address in “reg” Property 3

PCI Device Configuration Register Access 4

Boot Software Roles . 5

CPU PROM-Generated Properties. 6

2. FCode Design Considerations . 7

Adding a PCI Header to a PROM . 7

Accessing a PCI Device’s Configuration Space Registers 7

Base Address Register Setting . 7

System Cache Line Size . 8

Sun Ultra™ 1 UPA/PCI-Related Nodes 8

Using Physical Addresses . 9
v

Controlling PCI Slot Probing on an Ultra 1 UPA/PCI System. 11

Using 3.x Tokenizer and 3.x CPU PROMs 12

3. FCode Debugging . 15

Packaging PCI FCode . 15

System Flags and FCode Debugging. 16

4. Troubleshooting . 17

Enabling Access to a PCI Device’s Memory Space Locations . 17

Expansion FCode PROM. 18

Packaging Error With Ethernet FCode . 19

select-dev Errors . 21

Index . 23
vi OpenBoot 3.x Supplement for PCI—August 1997

Tables
Table 1-1 PCI FCode PROM Header Format . 1

Table 1-2 PCI Expansion PROM Header Format. 2

Table 1-3 PCI Expansion PROM Data Structure . 2

Table 1-4 PCI FCode PROM Dump . 3
vii

viii OpenBoot 3.x Supplement for PCI—August 1997

Preface
The OpenBoot 3.x Supplement for PCI is intended to provide OpenBoot PROM
developers with information to aid them in development for PCI.

How This Book Is Organized
This manual is divided into the following chapters:

Chapter 1, “PCI FCode Information,” has basic information for developers
writing FCode for use with PCI.

Chapter 2, “FCode Design Considerations,” is material for developers to take
note of when designing PCI FCode.

Chapter 3, FCode Debugging,” describes how to debug FCode code that is
used with PCI.

Chapter 4, Troubleshooting,” contains information intended to help you when
troubleshooting problems when FCode is used with PCI.
ix

Related Documents
The following documents contain topics that relate to the information
in this document.

Application Title Part Number

Boot firmware standard IEEE 1275 Boot Firmware Standard
(EEE 800-678-4333) n/a

Writing PCI FCode IEEE 1275/PCI Bindings. Open Firmware (1275) Homepage:
http://playground.sun.com/1275/
IEEE 1275/PCI bindings:
http://playground.sun.com/1275/bindings/pci/ n/a

FCode descriptions, testing Writing FCode 3.x Programs —call SunExpress 800-873-7869
PostScript available online from SunSoft on the 2.5.1 Device
Developer Kit CD
Full paper doc set.

SDDK-251-CDB
DDDK-251-CDB
802-5895-10

PCI specification PCI Local Bus Specification, Rev. 2.1, PCI-to-PCI Bridge
Architecture Specification Rev. 1.0
(PCI Special Interest Group,
800-433-5177 or 503-797-4207) n/a

OpenBoot command reference OpenBoot 3.x Command Reference
OpenBoot 2.x Command Reference
(Sun Express, 800-873-7869)

802-3242-10
802-3241-10
x OpenBoot 3.x Supplement for PCI—August 1997

Ordering Sun Documents
SunDocsSM is a distribution program for Sun Microsystems technical
documentation. Easy, convenient ordering and quick delivery is available from
SunExpress. You can find a full listing of available documentation on the World
Wide Web: http://www.sun.com/sunexpress/

Sun Welcomes Your Comments
Please use the Reader Comment Card that accompanies this document. We are
interested in improving our documentation and welcome your comments and
suggestions.

If a card is not available, you can email or fax your comments to us. Please
include the part number of your document in the subject line of your email or
fax message.

• Email: smcc-docs@sun.com

• Fax: SMCC Document Feedback
1-415-786-6443
Preface

xii OpenBoot 3.x Supplement for PCI—August 1997

PCI FCode Information 1
This chapter contains basic information for developers writing FCode for use
with PCI.

PCI FCode PROM Header Format
The PCI FCode PROM header format is described in Table 1-1.

Table 1-1 PCI FCode PROM Header Format

Header Format

PCI expansion PROM header 28 bytes

PCI data structure 24 bytes

FCode (8 Byte FCode header + FCode code bytes)

If you are dloading or booting your FCode image on a Solaris 2.5.1 or 2.6
system, you must replace the a.out header by an ELF header.

The fakeboot utility can add an ELF header based on parameters that you
pass to fakeboot. The addhdr utility can also add either an a.out or ELF
header, in addition to adding a PCI header and PCI data structure.
1

1

The PCI Expansion PROM Header Format
The PCI expansion PROM header format (28 bytes) is as follows:

Table 1-2 PCI Expansion PROM Header Format

Byte Offset Value Description

00 55(h) PROM signature byte one.

01 aa(h) PROM signature byte two.

02-03 34 00 (h) SPARC reserved value

04-17 00 00 Reserved for processor architecture-unique data.

18-19 1c 00 Pointer to PCI data structure (assuming PCI data
structure follows immediately after PCI
expansion PROM Header).

1A-1B 00 00 Pad bytes.

PCI Expansion PROM Data Structure Format
The PCI expansion PROM data structure (24 bytes) is described in Table 1-2.

Table 1-3 PCI Expansion PROM Data Structure

Byte offset Description /(Hex. value)

00-03 signature: P C I R (50 43 49 52)

04-05 vendor id

06-07 device id

08-09 Pointer to Vital Product Data

0A-0B PCI data structure length (18
00)

0C PCI data structure revision.

0D Programming interface code

0E Subclass code

0F Class code

10-11 Image length in 512 bytes

12-13 Revision level of code/data
2 OpenBoot 3.x Supplement for PCI—August 1997

1

Table 1-3 shows a dump of initial bytes in a PCI FCode PROM with an a.out
header in the first 32 bytes.

Table 1-4 PCI FCode PROM Dump

Hex Addr Hex Value

00000 01 03 01 07 00 00 46 98 00 00 00 00 00 00 00 00

00010 00 00 00 00 00 00 40 00 00 00 00 00 00 00 00 00

00020 55 aa 34 00 00 00 00 00 00 00 00 00 00 00 00 00

00030 00 00 00 00 00 00 00 00 1c 00 00 00 50 43 49 52

00040 8e 10 01 10 00 c0 18 00 00 00 00 02 7e 00 00 01

00050 01 80 00 00 fd 03 18 6e 00 00 46 64 xx xx xx xx

For the PROM above, the vendor id is 0x108e, the device id is 0x1001, the
pointer to Vital Product Data is 0xc000, class code is 0x02,subclass code is 0,
programming interface code is 0, image length (in 512 bytes) is 0x7e, FCode
length is 0x4664 bytes, xx..... are FCode data.

Format of Physical Address in “reg” Property
• For PCI, the “reg” property value has 5 32-bit numbers:
• - phys.hi
• , phys.mid,
• phys.lo,
• size.hi
• , size.lo.
• The size.hi and size.lo are values for a register size the address and

type of which are defined by phys.hi, phys.mid, and phys.low.

14 Code type (01)

15 Indicator byte. For last image
(80)

16-17 Reserved (00 00)

Table 1-3 PCI Expansion PROM Data Structure (Continued)

Byte offset Description /(Hex. value)
PCI FCode Information 3

1

The format of the physical address in the “reg” property is as follows:

phys.hi cell: npt000ss bbbbbbbb dddddfff rrrrrrrr

phys.mid cell: hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

phys.low cell: LLLLLLLL LLLLLLLL LLLLLLLL LLLLLLLL

where

• n is 0 if the address is relocatable; 1 otherwise.

• p is 1 if the addressable region is prefetchable; 0 otherwise.

• t is 1 if the address is aliased (for non-relocatable I/O), below 1MByte (for
memory), or below 64KBytes (for relocatable I/O).

• ss=00 ==> configuration space.

• ss=01 ==> I/O space.

• ss=10 ==> 32 bit memory space.

• ss=11 ==> 64 bit memory space.

• bbbbbbbb is an 8-bit bus number (assigned by the CPU PROM at probe time).

• ddddd is a 5-bit device number.

• fff is a 3-bit function number.

• rrrrrrrr is an 8-bit register number.

• hh..hh is a 32-bit unsigned number, most significant bits.

• LL..LL is a 32-bit unsigned number, least significant bits.

PCI Device Configuration Register Access
To find the address to use for configuration register access on your PCI device,
look in the format for the physical address of the “reg” property. You can use
the phys.hi cell of the first entry in the "reg" property, as the base address for
the configuration space.
4 OpenBoot 3.x Supplement for PCI—August 1997

1

The first entry in the “reg” property must be the configuration space entry
(bbbb.bbbb.dddd.dfff.0000.0000 binary). Use that (or any other method), to obtain
the values of bbbb.bbbb, ddddd and fff for your device. Then use:

ok "<parent-pci-bus-node>" select-dev

ok <bbbb.bbbb.dddd.dfff>XX config-l@

(XX is the offset for that register configuration.) For example, if the bus number
is 1000.0001 (0x81), the device number is 0.0000, and the function number is
001 (0x01), then use

ok " /pci@1f,2000" select-dev

ok 81.0100 config-l@ (to read device id and vendor id)
ok 81.0104 config-w@ (to read command register)
ok 81.0130 config-l@ (to read the expansion PROM base address register)

Boot Software Roles
There are three kinds of software that come into play during a boot:
• Operating system kernel,
• FCode operating system kernel driver.

This section describes the normal Solaris boot scenario, including their
functions and the order in which they begin.

At power-on, the CPU PROM begins execution. It probes all on-board devices
and plug-in cards to interpret the FCodes on all FCode PROMs. In the FCode
probing process, some FCode PROMs execute commands to reset the device.
But, generally, FCode PROMs generate device properties for respective devices.

Then, the CPU PROM boots over the specified boot device (using its FCode
boot driver), loads bootblk (or inetboot for network booting), and passes
control to the bootblk code. The bootblk code loads the kernel and modules,
and passes control to the kernel. The kernel at some point starts to use the OS-
device driver.

The order is:
• CPU-PROM
• FCode-PROM
• bootblk
• Operating system kernel
• Operating System driver
PCI FCode Information 5

1

CPU PROM-Generated Properties
This section discusses the properties created by the motherboard CPU PROM
from the information given in the configuration space registers of the PCI
device.

The CPU PROM normally generates the following properties in a PCI device
node:
• vendor-id
• device-id
• revision-id
• class-code

and devsel-speed from information in configuration space registers. The
"interrupts" property is present if the Interrupt Pin register is non-zero.
The following properties will be present only if the corresponding capability is
available from the device or the corresponding value was non-zero as indicated
in the configuration space registers:
• 66mhz-capable
• udf-supported
• cache-line-size
• fast-back-to-back
• subsystem-id
• subsystem-vendor-id

min-grant and max-latency properties are created unless the header type is
01. The CPU PROM also creates the "assigned-addresses" property, with
entries for each address base register for which an address was assigned.
6 OpenBoot 3.x Supplement for PCI—August 1997

FCode Design Considerations 2
This chapter contains information to consider when designing FCode code for
PCI.

Adding a PCI Header to a PROM
To add a PCI header to your PROM, look at the source code of fakeboot.c
from DDK 2.5.1, and enhance it to add a PCI header for your PROM. Another
approach is to use addhdr, available with the Solaris 2.6 DDK.

Accessing a PCI Device’s Configuration Space Registers
It isn’t necessary to do anything extra to access your device’s configuration
space registers. They are always accessible.

Base Address Register Setting
The base address registers used in configuration space are set by the CPU
PROM.

The CPU PROM (not the PCI card's FCode PROM) allocates the base address
for memory andor I/O space on your PCI device and for the FCode PROM.
7

2

System Cache Line Size
You must write the system’s cash line size into the cash line size configuration
space register of your PCI. To do this, look in the cache-line-size register of the
configuration space; it refers to the cache line size supported by the PCI device.

Sun Ultra™ 1 UPA/PCI-Related Nodes
The PCI-related nodes on the Sun Ultra™ 1 UPA/PCI system are
/pci@1f,4000 and /pci@1f,2000. pcia and pcib are required for the
NVRAM variables pcia-probe-list and pcib-probe-list and are
determined as follows:

Each PCI bus has a property named "slot-name" which gives information
about slots on that PCI bus and sometimes indicate which NVRAM variable
corresponds to it.

To get a value for that property, type the following:

ok " </pci-bus-node>" select-dev
ok " slot-name" get-my-property drop decode-int .h cr type

To get a PCI bus at /pci@1f,2000,type the following:

ok " /pci@1f,2000" select-dev
ok " slot-name" get-my-property drop decode-int .h cr type

6
pcia slot 1pcia slot 2
ok “ /pci@1f.4000” select-dev
ok “ slot-name” get–my–property drop decode-int .h cr type
4
32-bit slot 2

The display will be something like the following to indicate that the devices

under /pci@1f,2000 relate to pcia.
8 OpenBoot 3.x Supplement for PCI—August 1997

2

In a Sun Ultra 1 UPA/PCI with four plug-in PCI slots, only slot 1 is physically
present for pci@1f,2000. It can also support 66 Mhz., 64 bit PCI devices as
shown in the following example

ok " /pci@1f,4000" select-dev
ok " slot-name" get-my-property drop decode-int .h cr type
34
pcib slot 2pcib slot 4pcib slot 5

.

This example indicates that devices under /pci@1f,4000 relate to pcib.

The PCI slot in a Sun Ultra 1 UPA/PCI with a 4 plug-in is used as follows :
• Slots 2, 4, and 5 under /pci@1f,4000 support 33 Mhz., 32 bit PCI devices.
• Slot 3 under /pci@1f,4000 is used for an on-board SCSI device.

Note that the value of the “slot-name" property differs for different systems.
Some systems may not differentiate the PCI bus by the value of the "slot-
name" property.

In different releases of the PROM for the same system, the value of the "slot-
name" property may also change. You may need to refer to your system
documentation for details about using PCI buses on the system.

Alternatively, you can find which NVRAM variable refers to which PCI bus by
setting the NVRAM variables to different values or by plugging PCI cards in
different slots.

Using Physical Addresses
When you need to find and use physical addresses to access, for instance,
configuration space registers on a Sun Ultra 1 UPA/PCI system, use MMU
bypassing by selecting with the correct ASI space. The arguments for the space
{c,d,w,l,x} command includes an address and ASI code (and data for a
write operation.)

On Sun Ultra 1 UPA/PCI systems, the PCI device configuration registers are
viewed using the following address:

lfe.0100.0000 + x
FCode Design Considerat6ions 9

2

where the 32-bit value of X is represented in bit format as:

bbbb.bbbb.dddd.dfff.rrrr.rrrr

where

bbbb.bbbb is an 8-bit bus number
dddd.d is a five bit device number
fff is a three-bit function number
rrrr.rrrr is an eight-bit register number

For example, if the bus number is 81, device number is 0 and function number
is 1, then x will be 81.0100, giving you a configuration register base.

This will give you access to the 0th configuration register at 1fe.0181.0100
(physical address). On Sun Ultra 1 UPA/PCI systems, you can use ASI 0x15 for
a non-cacheable address being accessed by MMU bypass. If you are accessing
a little-endian device, use ASI 0xld.

You can get bus number, device number, and function number from my-space
after selecting that device or from the "reg" property value for that device.
Look in IEEE 1275/PCI binding for the "reg" property format.

In general, to get physical addresses for registers in any space, (configuration
space, 32- bit memory space, and others) use the map-in command. map-in
requires phys.lo, phys.mid, phys.hi, and length arguments. You can
take the phys.lo, phys.mid, and phys.hi numbers from the
corresponding "reg" property.

In the case of configuration space, getting the physical address is easy since
phys.lo and phys.mid are always zero. phys.hi is just the configuration
space address.
10 OpenBoot 3.x Supplement for PCI—August 1997

2

Table 2-1 is an example of getting the physical address of the configuration
space registers, using onboard Ethernet on a Sun Ultra 1 UPA/PCI system:

Code Example 2-1 Configuration Space Registers Physical Address

ok " /pci@1f,4000/network@1,1" begin-select-dev
ok pwd

/pci@1f,4000/network@1,1
ok .properties
.
.
reg (Config Space ---->) 00000900 00000000 00000000 00000000 00000000
(32bit memory space ---->) 02000910 00000000 00000000 00000000 00007020
.
.
.
ok 0 0 900 100 " map-in" $call-parent constant my-cfg-vaddr
ok my-cfg-vaddr .
fff80900
ok my-cfg-vaddr map?
VA:fff80900
G:0 W:1 P:1 E:1 CV:0 CP:0 L:0 Soft1:1 PA[40:13]:ff00800 PA:1fe01000000
Diag:0 Soft2:0 IE:0 NFO:0 Size:0 V:1
PA:1fe01000900

This results in the physical address for the base of configuration registers as
1fe.0100.0900 for this device. For plug-in PCI devices, the registers’
physical address may vary if the device is plugged into a different slot, or if
other devices are present. Similarly, use the "reg" entry for memory or I/O
space, to find a physical address for those spaces.

Controlling PCI Slot Probing on an Ultra 1 UPA/PCI System
You can control probing of PCI slots on your Sun Ultra 1 UPA/PCI system as
follows: during normal system initialization on the Sun Ultra 1 UPA/PCI
system, there are NVRAM variables that indicate to the CPU PROM which
slots to probe and in what order.
FCode Design Considerat6ions 11

2

On the Sun Ultra 1 UPA/PCI system the slots are: pcia-probe-list and
pcib-probe-list. The default value for pcia-probe-list is 1,2; for
pcib-probe-list, it is 5,4,3,2. To disable slot 4 probing on pcib during
normal initialization after a reset, change pcib-probe-list to:

ok setenv pcib-probe-list 5,3,2

To probe slot 4 on pcib manually after a reset, type:

ok 4 probe-pci-slot /pci@1f,4000

Note that not all CPU PROMs have the probe-pci-slot command. In future
PROMs, this command may not work in the same way or may be eliminated.

Using 3.x Tokenizer and 3.x CPU PROMs
When using the 3.x Tokenizer while testing FCode under CPU OpenBoot
PROM 3.x versions, make sure that you use OpenBoot PROMs version 3.1 or
later. You will need the following NVRAM patch for PROMs prior to 3.1

Code Example 2-2 NVRAM Patch for PROMS Prior to Version 3.1

ok nvedit
0:: nl-move(src dst len --) rot n->l rot n->l rot n->l
(move);
1: ['] nl-move is move
2: ['] l>>a 2 la+ dup l@ h# 1000 invert and swap l!
3: ['] lrshift 2 la+ dup l@ h# 1000 invert and swap l!
4: ^C
ok nvstore
ok setenv use-nvramrc? true
ok reset-all

 Note that while using the 2.x or 3.x tokenizer, literals or numbers that have bit
31 set to 1 will extend this bit (1) to bit 63 on 3.x CPU PROMs. For example,
the following code will give a value of ffff.ffff.8000.000

8000.0000 constant xxx
12 OpenBoot 3.x Supplement for PCI—August 1997

2

When such words or constants are used in address manipulation or otherwise,
your code should clip them to a 32 bit value:

Get a real 8000.0000 by:

ff ff ff ff bljoin constant x-num

: clip-num (n -- l) x-num and ;

8000.0000 clip-num constant xxx

or

use "xxx clip-num" wherever "xxx" is being used.
FCode Design Considerat6ions 13

2

14 OpenBoot 3.x Supplement for PCI—August 1997

FCode Debugging 3
This chapter contains examples for creating a PCI FCode package and using
debugging flags in debugging FCode.

Packaging PCI FCode
The following is an example of testing a new version of an FCode program
when the developer creates a new package:

ok 4000 dload /stand/mydev.fcode
ok 0 0 " 4,0” " /pci@1f,2000" begin-package
ok 4020 1 byte-load
ok end-package

However, when performing an ls, it is obvious that there are now two
packages corresponding to the card:

ok l
ffd70c00 pci108e,1001@4,0
ffd6e860 pci108e,1001@4,0
ok

To override the original package so that the downloaded code is executed,
remove the PCI card PROM. The CPU PROM will create a device node for the
card, but the name property will have a value of pci<DDDD>,<VVVV>.
15

3

Create a name property for your device in your downloaded code with a
different value than the one created by the CPU PROM. Then refer to your
device by its full device path.

System Flags and FCode Debugging
The following is an example of how to use Sun systems debugging flags to aid
in debugging FCode.

Set the NVRAM variable fcode-debug? to true to keep the headers for words
that are preceded with headers in your code.

Some CPU PROMS have a fcode-verbose variable to display each FCode as
it is being read at probe time by the CPU PROM token interpreter.

To turn it on, before you probe your FCode, type:

ok true to fcode-verbose?
<probe-your-card>

To set it from NVRAMRC, type:

ok nvedit
0: true to fcode-verbose?
^C
ok nvstore
ok setenv use-nvramrc? tru
ok reset-all

Some CPU PROMs have pcimsg? and probemsg? variables to give additional
PCI-related information. You can turn them on in the way as described in
what to do before you probe your FCode. pcimsg? controls the display of all
accesses to PCI configuration space. probemsg? controls the display of
probing status information, including physical allocation.

Note that not all CPU PROMs have pcimsg? and probemsg?. In future
PROMs, this command may not work in the same way or may be eliminated.
16 OpenBoot 3.x Supplement for PCI—August 1997

Troubleshooting 4
This chapter contains examples for troubleshooting your PCI FCode.

Enabling Access to a PCI Device’s Memory Space Locations
Problem:

When loading FCode, memory space locations can’t be accessed.

Solution:

Look in the format for the physical address of the reg property. Then locate
the values of bbbb.bbbb,ddddd and fff for your device by using:

ok " <parent-pci-bus-node>" select-dev
ok 3 <bbbb.bbbb.dddd.dfff>04 config-w!

This will write to the configuration space command register and thus enable
access to memory and I/O space. This sets bit[0] and bit[1] of the command
register. In the same way, you may set other bits in the command register, if
required. If the Sbus number is 1000.0001 (0x81), the device number is 0.0000,
and the function number is 001 (0x01), you will then use:

ok " /pci@1f,2000" select-dev
ok 81.0104 config-w@ 3 or 81.0104 config-w!
17

4

Normally, your FCode driver’s open routine should enable such access. FCode
can use the value returned by my-space and add an offset of 4 to get the
address of the command register. It can then set various bits in the command
register to enable the desired access. Use the close routine to disable that
access.

Expansion FCode PROM
Problem:

A developer is unable to access his expansion FCode PROM. How can access
to it be enabled?

Solution:

To enable access, look in the format for the physical address of the reg
property. Then obtain the values of bbbb.bbbb, ddddd and fff for your
device by using:

ok "<parent-pci-bus-node>" select-dev
ok <bbbb.bbbb.dddd.dfff>04 config-w@ 3 or
<bbbb.bbbb.dddd.dfff>04
config-w!
ok <bbbb.bbbb.dddd.dfff>30 config-l@ 1 or
<bbbb.bbbb.dddd.dfff>30 config-l!

This will first enable memory and I/O space access. Then, it will read the value
from the expansion PROM configuration space base address register (at offset
0x30) or 1 to it, and write the value in the expansion PROM base address
register to enable access to your FCode PROM. This sets bit[0] of the expansion
PROM base address register. If the bus number is 1000.0001 (0x81), the device
number is 00000, and the function number is 001 (0x01), use example:

ok " /pci@1f,2000" select-dev
k 81.0104 config-w@ 3 or 81.0104 config-w!
ok 81.0130 config-l@ 1 or 81.0130 config-l!
18 OpenBoot 3.x Supplement for PCI—August 1997

4

If the FCode needs to access PROM data (for example, to access Vital Product
Data stored in the PROM) then the FCode should enable PROM access by
using the value returned by my-space and adding an offset of 0x30 as the
register address. The FCode should read the value from the address, or 1, and
write it to that address.

Also, since the FCode was copied to memory, then the devices memory and
I/O spaces may not be enabled. The FCode must then enable them, using the
following FCode:

ok my-space h# 30 + dup config-l@ 1 or swap config-l! (enable PROM
access)
ok my-space h# 4 + dup config-w@ 3 or swap config-w! (enable
I/O,memory access)

Using the previous example, you can disable expansion PROM access as:

ok my-space h# 30 + dup config-l@ 1 invert and swap
config-l!(disable PROM access)

Packaging Error With Ethernet FCode
Problem:

When you try to load the FCode from Ethernet, the code seems to load without
errors. However, when you build the package, the following error is displayed:

ok 4000 dload /stand/cheerio.o
Boot device: /pci@1f,4000/network@1,1:,|stand|cheerio.o File
and args:
ok 0 0 " 0,1" " /pci@1f,2000" begin-package
ok 4000 1 byte-load
Unimplemented FCode token before address 4004
Warning: FCode sequence resulted in a net stack depth change of 1
ok
Troubleshooting 19

4

Solution:

One error may be due to the PCI header attached to the PROM image.

Dump the download image beginning at 4000, for example, 4000 60 dump,
and see where fd starts. It is the beginning of the FCode data for the byte-
load. For instance, if the FCode data starts at x, use the address x in

ok X 1 byte-load

fd is the beginning of the FCode header and is 8 bytes long:

fd, <tokenizer-version>,<2 reserved bytes/checksum>,<4byte of
FCode length>

Note – If you begin your FCode source with fcode-version1, the first FCode
data is fd, but if you use fcode-version2, the first FCode data is f1.

Another error may be due to:

my-address is two 32-bit numbers for PCI and only one 32-bit number for
SBus.

Change your FCode to handle two numbers returned from my address.

To do this, use the following code:

my-address constant my-bus-addr-mid constant my-bus-addr-low

: my-bus-addr (-- paddr.low paddr.mid)
my-bus-addr-low my-bus-addr-mid
;

Then use my-bus-addr to create the reg property.
20 OpenBoot 3.x Supplement for PCI—August 1997

4

select-dev Errors
To debug your FCode/device for errors while using select-dev on the
device, do the following:

Add a dummy open method to your device node's FCode if you want to select
the device to map in the device, look at the ok prompt, look at the device
registers, and so on

ok dev /pci..../<device-node>
ok : open true ;

:

 This may generate the following message about open not being unique:

ok device-end

 Now you can use select-dev to select your device. Then use
"map-in" $call-parent to map in the device registers, and examine them.
(The -endianness may differ from what you think. Verify the way that the
device is mapped with map? Also, verify that rl@ and other register access
words return the data in the way you expect.
Troubleshooting 21

4

22 OpenBoot 3.x Supplement for PCI—August 1997

Index
Numerics
3.x tokenizer, 12
66mhz-capable, 6

A
accessing a PCI device’s configuration

space registers, 7
addhdr, 1, 7
adding a PCI header to a PROM, 7
"assigned-addresses", 6

B
boot scenario, Solaris, 5
boot software roles, 5
booting FCode image, 1

C
cache-line-size, 6
$call-parent, 21
class-code, 6
configuration space base address, 4
configuration space command

register, 17
CPU PROM-generated properties, 6
D
device property generation, 5
device-id, 6
devsel-speed, 6
dloading FCode image, 1

E
expansion FCode PROM access, 18

F
fakeboot, 1
fakeboot.c, 7
fast-back-to-back, 6
fcode-debug?, 16
set "fcode-verbose?", 16
from NVRAMRC, 16

M
map?, 21
"map-in", 21
map-in command, 10
max-latency, 6
min-grant, 6
23

24
N
NVRAM variable fcode-debug?, 16

P
packaging PCI FCode, 15
PCI data structure, 1
PCI device configuration register access, 4
PCI device’s memory space locations,

enabling access to, 17
PCI expansion PROM data structure, 2
PCI expansion PROM header, 1
PCI expansion PROM header format, 2
PCI FCode PROM dump, 3
PCI FCode PROM header format, 1
pcia, 8
pcia-probe-list, 12
pcib, 8, 12
pcib-probe-list, 12
pcimsg?, 16
phys.hi, 3, 10
phys.hi cell, 4
phys.lo, 3, 10
phys.mid, 3, 10
physical addresses, finding and using, 9
plug-in PCI device physical address, 11
probemsg?, 16
property, 6
property physical address format, 3, 4

R
"reg", 3, 4
revision-id, 6

S
select-dev-generated errors, 21
size.hi, 3
size.lo, 3
subsystem-id, 6
subsystem-vendor-id, 6

Sun Ultra-1 UPA/PCI-related nodes, 8
system flags and FCode debugging, 16

T
troubleshooting, 17

U
udf-supported, 6

V
variable fcode-debug?, 16
vendor-id, 6
Vital Product Data, 3, 19

X
xxx clip-num, 13
OpenBoot 3.x Supplement for PCI—August 1997

	OpenBootTM 3.x Supplement for PCI
	Contents
	1. PCI FCode Information 1
	2. FCode Design Considerations 7
	3. FCode Debugging 15
	4. Troubleshooting 17

	Tables
	Preface

	How This Book Is Organized
	Related Documents
	Ordering Sun Documents
	Sun Welcomes Your Comments
	PCI FCode Information
	1

	PCI FCode PROM Header Format
	Table 1-1 PCI FCode PROM Header Format

	The PCI Expansion PROM Header Format
	Table 1-2 PCI Expansion PROM Header Format

	PCI Expansion PROM Data Structure Format
	Table 1-3 PCI Expansion PROM Data Structure
	Table 1-4 PCI FCode PROM Dump

	Format of Physical Address in “reg” Property
	PCI Device Configuration Register Access
	Boot Software Roles
	CPU PROM-Generated Properties
	FCode Design Considerations
	2

	Adding a PCI Header to a PROM
	Accessing a PCI Device’s Configuration Space Registers
	Base Address Register Setting
	System Cache Line Size
	Sun Ultra™ 1 UPA/PCI-Related Nodes
	Using Physical Addresses
	Code Example 2-1 Configuration Space Registers Physical Address

	Controlling PCI Slot Probing on an Ultra 1 UPA/PCI System
	Using 3.x Tokenizer and 3.x CPU PROMs
	Code Example 2-2 NVRAM Patch for PROMS Prior to Version 3.1
	FCode Debugging
	3

	Packaging PCI FCode
	System Flags and FCode Debugging
	Troubleshooting
	4

	Enabling Access to a PCI Device’s Memory Space Locations
	Expansion FCode PROM
	Packaging Error With Ethernet FCode
	select-dev Errors
	Index

	Numerics
	A
	B
	C
	D
	E
	F
	M
	N
	P
	R
	S
	T
	U
	V
	X

